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Editorial on the Research Topic 
Computational tools in inferring cancer tissue-of-origin and molecular classification towards personalized cancer therapy, volume III


As one of the severe diseases threatening the health of human being, the cancer has an increasing incidence and mortality. To a certain extent, cancer mortality can be reduced if cases are classified and treated correctly. During the past decades, computational tools have showed significant advantages in classification, diagnosis, and prognosis of cancer types. Although there have been several computational methods developed in this area, the accuracy is yet to be improved to sure a clinical application. Taken together, it is required that more studies that can develop effective signatures and novel computational tools to build the personalized cancer therapy. The Research Topic here introduces not only many kinds of methods or tools to infer cancer tissue-of-origin and molecular classification, but also covers translational studies for cancer treatment in hospitals. The 26 published articles consist of 25 original research papers and a case report, which illustrates the use of computational tools in discovering molecular biomarkers and establishing more accurate prognostic models in various cancer types, including but not limited to breast cancer (BC), colorectal cancer (CRC), gastric cancer (GC), hepatocellular carcinoma (HCC), stomach cancer (SC), lung adenocarcinoma (LUAD), esophageal cancer (EC), glioma and pancreatic cancer (PC).
Of which, eight studies focused on the development of computational approaches. Huang et al. established multi-parametric MRI-based radiomics models to differentiate molecular subtype and androgen receptor (AR) expression in BC. They used the leave-one-out cross-validation (LOOCV) method to construct machine learning models. Then, they applied six supervised classification algorithms and applied the receiver operating characteristic (ROC) curve to demonstrate the model performance. A similar study in CRC was completed by Hu et al. In their project, they built radiomics models based on different phase CT images for predicting Kirsten rat sarcoma virus (KRAS) mutation in patients with CRC. Moreover, Lu et al. proposed a novel framework that uses Extreme Gradient Boosting (XG Boost) to trace the primary site of cancer of unknown primary site (CUP) based on microarray-based gene expression data. In addition, Niu et al. explored a deep learning model to predict tumor mutation burden (TMB) based on histopathological images of LUAD. And Su et al. served a novel computational framework for predicting the survival of cancer patients with PD-1/PD-L1 checkpoint blockade therapy. Besides, nomogram survival prediction models were developed to predict the prognosis of HCC after invasive treatment (Zhang S.W et al.). And an algorithm developed to combine polymorphisms in cytochrome P450 genes and clinicopathological signatures to identify a subpopulation of BC patients (Pang et al.). Besides, Miao et al. developed a novel computational method to predict tissue-of-origin of cancer of unknown primary patients by explicitly integrating expression quantitative trait loci (eQTL) into an XGBoost classification model. Notably, twelve studies aimed to reveal the novel prognosis-related signatures in different cancers. For instance, Lai et al. considered the important role of lncRNAs in epigenetic regulation and protein-coding gene regulation. Hence a prognostic model with good predictive performance based on 10 ferroptosis-related lncRNAs was constructed. Similarly, Xiao et al. indicated that immune ferroptosis-related genes might be potential predictors of STAD’s response to ICI immunotherapy biomarkers. Based on gene expression profiles, a highly survival-associated five-gene risk score model was established by Chen et al. to predict the prognosis of multiple myeloma patients (Chen et al.). And Huang et al. explored a potential association between metabolism and cell renal cell carcinoma (ccRCC). They established model could serve as an independent prognostic biomarker, provide potential therapeutic targets for the clinical treatment of RCC. Besides, Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators. Ding et al.’s study offered a relatively comprehensive understanding of KDM6B’s role in cancer development. Huang et al. suggested that coiled-coil domain containing 134 (CCDC134) can serve as a biomarker of poor prognosis and a potential immunotherapy target in BC. Likewise, cell cycle checkpoints related genes (CCCRGs) signature have potential utility in predicting patient outcomes, and response to immunotherapies and chemotherapies for LUAD patients (Yang et al.). And the metabolic pathway phenotypes may predict overall survival excellently for HCC patients (Ye et al.). Apart from that, TIMM 8A could be clarified as a biomarker for poor prognosis of BC and a potential target of immunotherapy (Zhang Y et al.). And the mitochondrial-associated protein leucine-rich pentatricopeptide repeat-containing (LRPPRC) may act as an oncogene via maintaining mitochondrial homeostasis and could be used as a predictive marker for patient prognosis in PC (Wang et al.). Especially, 11-gene panel is suitable for molecular classification in grade 3 endometrial endometrioid carcinoma and for guiding prognosis (Li L et al.). Then it is showed that KRT19P3 could be used as a marker to differentiate BC from para cancer tissue (Fan et al.).
Furthermore, two studies have screened and identified genes associated with cancer diagnosis and treatment. By weighted gene co-expression network analysis, eight hub genes were finally identified to be closely correlated with LUAD recurrence (Shen et al.). Several immune-related genes and immune cell subtypes related to the neoadjuvant chemotherapy response were identified, and further verified the importance of immunotherapy combined with chemotherapy (Zhou et al.). In addition, three studies have developed or benefited from sequencing technologies. Zhuang et al. proposed a novel single-cell RNA sequencing (scRNA-seq) data analysis method based on gene function enrichment analysis to divide genes into different gene functional modules and to extract the characteristics of the cells from these functional feature matrices. And a novel method was developed to detect microsatellite instability (MSI) based on next-generation sequencing (NGS) data (Li S et al.). And Lin et al. used whole-exome sequencing (WES) to explore the differences in the evolution map and heterogeneity in different regions and detect tumor-specific mutations in patients to help improve the prognosis of EC patients. Finally, one case report discussed the tumor mutation burden as an indicator to predict efficacy of immune checkpoint inhibitors. In this report, they used one advanced lung squamous cell carcinoma case as a discussion of the significance of TMB (Wu et al.).
In conclusion, the research articles and case report in this Research Topic had guiding significance for inferring cancer tissue-of-origin and molecular classification. The potential applications of individualized cancer treatment have been widely described in these articles. At the same time, we are also looking forward to more new methods in cancer molecular classification, diagnosis, prognosis, and treatment.
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Objective

To investigate whether radiomics features extracted from multi-parametric MRI combining machine learning approach can predict molecular subtype and androgen receptor (AR) expression of breast cancer in a non-invasive way.



Materials and Methods

Patients diagnosed with clinical T2–4 stage breast cancer from March 2016 to July 2020 were retrospectively enrolled. The molecular subtypes and AR expression in pre-treatment biopsy specimens were assessed. A total of 4,198 radiomics features were extracted from the pre-biopsy multi-parametric MRI (including dynamic contrast-enhancement T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion coefficient map) of each patient. We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). The performances of binary classification models were assessed via the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). And the performances of multiclass classification models were assessed via AUC, overall accuracy, precision, recall rate, and F1-score.



Results

A total of 162 patients (mean age, 46.91 ± 10.08 years) were enrolled in this study; 30 were low-AR expression and 132 were high-AR expression. HR+/HER2− cancers were diagnosed in 56 cases (34.6%), HER2+ cancers in 81 cases (50.0%), and TNBC in 25 patients (15.4%). There was no significant difference in clinicopathologic characteristics between low-AR and high-AR groups (P > 0.05), except the menopausal status, ER, PR, HER2, and Ki-67 index (P = 0.043, <0.001, <0.001, 0.015, and 0.006, respectively). No significant difference in clinicopathologic characteristics was observed among three molecular subtypes except the AR status and Ki-67 (P = <0.001 and 0.012, respectively). The Multilayer Perceptron (MLP) showed the best performance in discriminating AR expression, with an AUC of 0.907 and an accuracy of 85.8% in the testing dataset. The highest performances were obtained for discriminating TNBC vs. non-TNBC (AUC: 0.965, accuracy: 92.6%), HER2+ vs. HER2− (AUC: 0.840, accuracy: 79.0%), and HR+/HER2− vs. others (AUC: 0.860, accuracy: 82.1%) using MLP as well. The micro-AUC of MLP multiclass classification model was 0.896, and the overall accuracy was 0.735.



Conclusions

Multi-parametric MRI-based radiomics combining with machine learning approaches provide a promising method to predict the molecular subtype and AR expression of breast cancer non-invasively.





Keywords: breast cancer, radiomics, molecular subtype, androgen receptor, magnetic resonance imaging, machine learning



Introduction

According to the International Agency for Research on Cancer, breast cancer has become the most prevalent cancer and the leading cause of cancer death in women worldwide (1). Breast cancer is a highly heterogeneous disease and can be classified into different molecular subtypes based on the expression of several specific molecular receptors. The biological diversity of breast cancer is associated with various clinical manifestations, treatment responses, and prognoses (2). Based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), breast cancers are classified into three distinct molecular subtypes as follows: hormone receptor (HR) positive and HER2 negative (HR+/HER2−), HER2+, and triple-negative breast cancer (TNBC) (3). This classification system is widely used to guide individual systematic therapy of breast cancer: HR+ patients require effective endocrine therapy; HER2+ patients require anti-HER2 therapy; TNBC patients require cytotoxic therapy. Thus, it is crucial to detect the ER, PR, and HER2 status to select the optimal treatment for patients with breast cancer. However, the current treatment strategies have some limitations. It has been reported that 30–50% of patients with ER+ tumors were resistant to endocrine treatment (4). Approximately 65% of patients with HR−/HER2+ tumors did not respond to anti-HER2 treatment, and about 70% of patients who initially responded experienced tumor progression after treatment (5). TNBC is considered the most aggressive phenotype of breast cancer with a very poor prognosis due to the absence of specific targeted treatment. Consequently, there has been increased foci on developing novel biomarkers to guide clinical decisions for breast cancer (6–13).

The androgen receptor (AR) has been reported as a prognostic biomarker which provides additional information and might be a viable therapeutic target in breast cancer (10–12, 14–18). AR is a member of the steroid hormone receptor superfamily of ligand-activated transcription factors and is overexpressed in 70–90% of breast cancers (10, 14). Furthermore, AR expression is variable in different subtypes of breast cancer, and high AR expression was reported in about 75% of HR+ cases, 50–60% of HER2+ cases, and 20–40% of TNBC cases, respectively (19). According to some current studies, AR has been confirmed as a biomarker associated with a favorable prognosis of breast cancer in terms of disease-free survival (DFS) and overall survival (OS) (15, 20, 21). In patients with HER2+ breast cancer who underwent neoadjuvant chemotherapy, high AR expression was associated with a better therapeutic response (11). Although TNBCs are frequently grouped together due to lack of ER, PR, and HER2 expression, TNBCs actually were heterogeneous. Among the six molecular subtypes of TNBCs proposed by Lehmann et al., the luminal androgen receptor subtype, characterized by the AR expression, was associated with an improved prognosis compared to other subtypes (10, 22, 23). Additionally, AR as a therapeutic target is under the clinical investigation for breast cancer, especially in the TNBCs or tumors resistant to first-line targeted therapy (18, 24, 25).

Thus, detecting molecular subtype and AR expression of breast cancer is important for treatment selection and predicting therapeutic response. For tumor larger than 2 cm (clinical T2–4 stage) with/without axillary metastasis, if the molecular subtype and AR expression could be identified before surgery, we can determine whether the patient is suitable for neoadjuvant chemotherapy and which scheme should be used. However, currently, we cannot obtain histologic information by routine imaging examinations including mammography, ultrasound, and magnetic resonance imaging (MRI). Breast biopsy is still the standard operation to acquire histologic characteristics of breast cancer. However, breast biopsy is an invasive surgical procedure and is inapplicable for some patients. Besides, the assessment of molecular subtype and AR expression from pre-treatment biopsy specimen cannot reflect the change of receptors expression during treatment. Thus, an alternative method that can accurately and non-invasively evaluate the expression of receptors in breast cancer is an urgent requirement, which would be helpful to guide clinical treatment.

In recent years, an increasing interest has been focused on identifying imaging surrogates and developing non-invasive diagnostic tools for cancer characterization (26). Due to rapid advancements in quantitative radiology methods such as radiomics, radiogenetics, and radioproteomics, tumor biology could be evaluated in a non-invasive and cost-effective way. Radiomics allows inference of tumoral molecular status from medical image-derived features, and it allows the study of the tumoral heterogeneity both spatially and over time (27, 28). Multi-parametric MRI, including dynamic contrast-enhancement (DCE) images, diffusion-weighted images (DWI), and other MRI sequences, is a well-established imaging modality for diagnosis, pre-operative staging, and surgical planning of breast cancer in current routine clinical practice. DCE imaging is considered the most sensitive modality for detecting breast cancer (29). Ruey-Feng Chang et al. reported that the degree of heterogeneity on breast DCE-MRI was associated with molecular receptor status (30). DWI and its derived apparent diffusion coefficient (ADC) map also served as a non-contrast MR screening method in lesion detection and distinguishing malignancy from benign tumor (31). Several studies applied radiomics based on breast MRI for the evaluation of malignancy, differentiation of molecular subtype, prediction of receptor expression, and evaluation of response to neoadjuvant therapy in breast cancer (27, 32–35). Some studies have reported that quantitative parameters of functional MRI, deep learning analysis, and MRI-based radiomics analysis had the potential in predicting molecular subtype and Ki-67 expression in breast cancer (36–45). However, no published study reported the accuracy of MRI combining with radiomics in predicting AR expression and explored the importance of different MRI sequences in predicting molecular subtype of breast cancer. The feasibility of multi-parametric MRI-based radiomics models in predicting molecular subtype and AR expression of breast cancer still needs to be explored. Compared to previous studies, we firstly investigated the further radiomics analysis using multi-parametric MRI including DCE, T2-weighted images (T2WI), and ADC images for the breast cancer molecular subtype classification and AR expression. To analyze which type of feature and machine learning method will affect the classifier, we compared the performance of radiomics features from different types of MR image and their combinations, and we also compared the performance of three different feature selection strategies and several supervised classification algorithms. In our study, to explore the correlations between the receptor expression and MRI-derived radiomics features, we used partial dependency plot (PDP) to explain radiomics feature, which was a supplement to other published studies.



Materials and Methods


Study Population

This study was approved by the Ethical Committee of the First Affiliated Hospital, Sun Yat-sen University, and the requirement for written informed consent was waived due to the retrospective nature of this study. We retrieved 1,947 consecutive patients with breast cancer who underwent breast multi-parametric MRI examination and following treatment in our center from March 2016 to July 2020. The inclusion criteria were as follows: (I) the patient had a histologically proven invasive breast cancer and a histologic result of AR, ER, PR, HER2, and Ki-67 expression; (II) the breast MRI examination was performed before biopsy or anti-tumor treatment within 1 month; (III) the tumor was not smaller than 2 cm (clinical T2–4 stage), in order to ensure sufficient information of MRI-derived radiomics features and reduce the influence of partial volume effect; (IV) the patient had complete baseline data. The exclusion criteria were as follows: (I) lack of MRI examination or poor imaging quality; (II) the patient had bilateral breast carcinoma or multifocal lesions in the ipsilateral breast; (III) the patient had known distant metastasis or another malignancy; (IV) lack of histologically proven receptor status. Finally, a total of 162 patients (all were females; mean age: 46.9 ± 10.08 years, range: 23–78 years) with 162 invasive breast cancers (clinical T2–4 stage) were enrolled in this study.



MRI Protocol

All the breast MRI examinations were performed using a 3.0 Tesla (T) MR scanner (Verio, Siemens Healthcare, Erlangen, Germany) with a dedicated 16-channel phased-array breast coil. During the MRI examination, the breasts of the patient were fixed with the prone position. The multi-parametric MRI sequences included a transverse T1-weight dynamic contrast-enhancement image (T1-DCE), a transverse fat-suppressed T2-weighted image (FS-T2WI), a transverse DWI, and a DWI-derived ADC map.

All the MRI sequences used for analysis in our study met the standard MR imaging acquisition procedure. Firstly, a transverse FS-T2WI was obtained. Secondly, a transverse DWI was performed using an echo-planar imaging sequence. Thirdly, a transverse T1-weighted image was acquired immediately before contrast agent injection and at six consecutive time points after the contrast agent injection. The contrast agent injection was as follows: After finishing the conventional MRI sequences acquisition, the gadolinium contrast agent (Magnevist, Bayer HealthCare Pharmaceuticals Inc., Wayne, USA) was intravenously injected at a dose of 0.1 mmol per kilogram of body weight and a rate of 2 ml/s. When the contrast agent injection was over, a 20 ml saline flush was followed. The ADC value was calculated in the MRI workstation as follow:

	

where S0 is the DWI signal intensity at b = 0 s/mm2, S(b) is the DWI signal intensity at b = 1,000 s/mm2. The detailed MRI scanning parameters of T1-DCE, FS-T2WI, and ADC map are listed in Table 1.


Table 1 | Scanning parameters for three MRI sequences.





Pathological Analysis

A professional breast surgeon performed the ultrasound-guided breast biopsy using a 14G core needle, and more than three tumor tissue samples were acquired per patient. Then the samples were fixed by formalin and embedded by paraffin, and stained by hematoxylin and eosin (H&E staining). Immunohistochemical (IHC) analysis was used to determine the ER, PR, HER2, Ki-67, and AR expression.

The ER and PR status were defined as positive if ≥1% of tumor cells showing positively stained nuclei. For HER2 status determination, an IHC score 3+ was defined as positive, while an IHC score 0 or 1+ was defined as negative. An IHC score 2+ of HER2 was considered indeterminate. Fluorescence in situ hybridization (FISH) was performed to assess gene amplification, and HER2 was considered positive if the ratio ≥2.0. Ki-67 expression was evaluated by calculating the percentage of tumor cells with positively stained nuclei from at least 500 cells in a slicer. We set 30% as the cut-off value, and <30% was considered Ki-67 low expression, while ≥30% was considered Ki-67 high expression. According to the IHC and FISH results, breast cancers were classified into three subtypes in our study: (I) HR+/HER2− (ER+ and/or PR+, and HER2−); (II) HER2+ (ER−, PR−, and HER2+); (III) TNBC (ER−, PR−, and HER2−). The AR status was defined as positive if ≥10% of tumor cells showed positive staining.



Image Processing, ROI Delineation, and Radiomics Analysis

The image processing, delineation of tumor region of interest (ROI), and radiomics analysis contained three steps: (1) imaging preprocessing to all the MRI sequences; (2) segmentation of the ROIs; (3) extraction of radiomics feature. The bias field of MRI scanning could cause variation in imaging signal intensity, which was not caused by any biological differences of breast cancer. We used N4 Bias Field Correction package to correct the bias field before tumor segmentation. Image normalization was necessary for all MRI sequences to achieve intensity homogeneity, so the range of voxel intensity in MR image was scaled to 0–2,000 to avoid the influence of imaging intensity inconsistency.

After imaging preprocessing, two radiologists with ≥10 years of clinical experience in breast MRI drew the ROIs of the breast cancers in T1-DCE due to the high intensity of tumor in this sequence. When there was a disagreement about the tumor margin, an elder radiologist with 22 years of clinical experience in breast MRI made the final decision to the ROI after carefully distinguishing the tumor region. Then the ROIs in T1-DCE were then registered and applied to the other two sequences (FS-T2WI and ADC map), and the MRI slicers and orientation were matched carefully between T1-DCE and FS-T2WI (or ADC map). During ROI segmentation, the necrosis, air, and calcification area of the breast cancer were excluded carefully. Finally, we completed ROI delineation in all the MRI sequences.

Radiomics features were extracted using Pyradiomics package plugged in the 3D-slicer software. Before feature extraction, spacing standardization of MR images was done to ensure a uniform voxel spacing (1.0 × 1.0 × 1.0 mm3) in the three-dimensional space. A total of 4,230 radiomics features were extracted from ROI in three sequences (1410 features for each sequence). For each MRI sequence, 19 intensity-based first-order statistical features, 17 shape-based features (3D), 24 gray level co-occurrence matrix (GLCM) features, 16 gray level size zone matrix (GLSZM) features, 16 gray level run length matrix (GLRLM) features, 5 neighborhood gray-tone difference matrix (NGTDM) features, and 14 neighboring gray level dependence matrix (NGLDM) features were extracted from the original images. Moreover, we used Laplacian of Gaussian imaging filters (kernel size: 1, 2, 3, 4, 5, and 6) and wavelet imaging filters to deal with all the original images and generate more images, and a total of 1299 intensity-based first-order statistical features and texture features were then calculated and extracted from those derived images. Removing the redundant shape-based features (16 features extracted from FS-T2WI and ADC map, respectively), a total of 4,198 radiomics features were extracted and used for the following analysis per patient. The details of radiomics features calculation formulas are listed in Supplementary Material.



Feature Selection

Inter- and intra-class correlation coefficients (ICCs) were calculated to evaluate the inter-observer and intra-observer reproducibility of all the radiomics features. Thirty cases of MRI containing 15 AR− and 15 AR+ were randomly chosen. For the intra-class ICCs, the ROI segmentation was done by two radiologists skilled in breast MRI independently. For the inter-class ICCs, radiologist 1 repeated the segmentation work 1 month after the completion of ROI segmentation of these cases. Radiomics features with inter- and intra-class ICCs >0.75 were considered having good reproducibility and could be selected for model construction.

Some features might improve the performance of classification model, while others might reduce that, so it is necessary to choose the meaningful features relevant to the AR expression and molecular subtype. For dimensionality reduction of the total radiomics features, we used three feature selection strategies to select the optimal features as follows: (1) the least absolute shrinkage and selection operator (LASSO) and following recursive feature elimination (RFE) method; (2) the maximum relevance–minimum redundancy (mRMR) method (46); (3) the Boruta method (47). For LASSO and RFE algorithm, 10-fold cross-validation was used to ensure the robustness of the selected features. Firstly, the dimension of features was reduced to 100 (we considered that the 100 features is enough to cover the most valuable features as LASSO is suitable to process high-dimensional and small-sample size data with the collinearity) by LASSO. Then the most significant features were further identified by RFE among these 100 features. The number of retained features was determined according to the best average accuracy in the testing dataset with a robust Random Forest (RF) classifier. For mRMR algorithm, it was used to select the features that are most relevant to the predictive labels and eliminate the redundant feature. We obtained the top 30 features and then evaluated the inter-class distribution difference and AUC value of each feature. Only the features with significant distribution difference (p-value <0.05) or an AUC value that >0.5 were selected (for predicting molecular subtypes, feature with a significant distribution difference between any two subtypes was retained). For Boruta algorithm, the importance of each feature was calculated by 100 times, and an average importance value was obtained, then the features with an average importance value higher than that of the shadow feature were remained. The details of these three feature selection methods are described in Supplementary Material. Finally, a pairwise Pearson correlation coefficient matrix (PCCM) was then used to identify any pair of features with high correlation. If the absolute value of correlation coefficient ≥0.8, a high correlation between two features was considered, and only one feature with a higher performance would be remained.



Model Development and Evaluation

To maximize the utilization of samples and ensure the robustness of models, we used the leave-one-out cross-validation (LOOCV) method to construct machine learning models. All patients with breast cancer were divided into the training dataset (161 patients) and the testing dataset (the rest one patient) in turn, and 162 times of data splitting were performed. In each loop of LOOCV, the total radiomics features extracted from three MRI sequences were used. In the training dataset split by LOOCV, to ensure the uniform scale of feature value, all the radiomics features were standardized using z-score normalization, and the following is the calculating formula:

	

where x is the original value of feature, and μ and σ are the mean and standard deviation values of x, respectively, and y is the transformed feature value. Then the features of patient in the testing dataset were transformed according to the corresponding feature value in the training dataset.

We retained the features selected from three feature selection methods for predicting molecular subtype and AR expression, respectively. Finally, the 23 features (10 features from DCE-MRI, 9 features from T2WI, and 4 features from ADC-map) were retained for predicting AR expression, and 30 features (7 features from DCE-MRI, 14 features from T2WI, and 9 features from ADC-map) were retained for predicting molecular subtypes. And to evaluate which type of features divided by MRI sequences or selection strategies would influence the model performance, we compared the model performances developed with different feature sets as follows: (1) total features, (2) features selected by LASSO-RFE, (3) features selected by mRMR, (4) features selected by Boruta, (5) features from DCE-MRI, (6) features from T2WI, (7) features from ADC-map, (8) features from DCE-MRI and T2WI, (9) features from DCE-MRI and ADC-map, and (10) features from T2WI and ADC-map. Those 10 feature sets were used to develop the prediction models.

For predicting AR expression, we applied six supervised classification algorithms, including RF, Logistic Regression (LR), Gaussian Naïve Bayes (GNB), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM, based on radial basis function), and Multilayer Perceptron (MLP). For predicting molecular subtype, we applied six supervised classification algorithms, including RF (based on the “one vs. one” decision function), LR (based on the “one vs. rest” decision function), Gaussian process classifier (GPC, based on the “one vs. rest” decision function), SVM (based on radial basis function and the “one vs. one” decision function), Linear Discriminant Analysis (LDA), and Multilayer Perceptron (MLP). The details of machine learning algorithms are described in Supplementary Material. The hyper-parameters of above machine learning algorithms were tuned by grid search approach and 10-fold cross-validation in the training dataset. In each loop of LOOCV, the hyper-parameters with the best AUC in the validation dataset were retained and used for the final model establishment using the whole training dataset. And the rest one patient in the testing dataset was used to evaluate the model performance. After finishing one round of LOOCV, each patient would get a predicted probability of the corresponding predicted label. The details of tuning hyper-parameters of different machine learning algorithms are described in Supplementary Materials.

To intuitively demonstrate the model performance of predicting AR expression, the receiver operating characteristic (ROC) curve was applied. The area under the curve (AUC) and other diagnostic indexes, including accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were used to evaluate the diagnostic performance of models in the testing dataset. While for evaluating the multiclass model performances of predicting molecular subtype, we used the micro-AUC and weighted macro-AUC to evaluate the comprehensive model performance, and the AUC in different subtypes were evaluated as well. The F1-score, precision, recall rate, and overall accuracy were also calculated based on different subtypes and models in the testing dataset. The workflow of this study is presented in Figure 1. Then, to evaluate the importance of those features contributing to the prediction results, the Shapley (SHAP) value of each feature was calculated in the model with the best AUC, and the importance rankings of features were shown as bar plots.




Figure 1 | The workflow of this study.





Statistical Analysis

The data were calculated and analyzed using SPSS (software version, 22.0). All numeric data were calculated and expressed as the mean ± standard deviation (SD), while categorical data were expressed as the relative distribution frequency and percentage. The Kolmogorov-Smirnov test and F-test were used to evaluate the normality and homogeneity of variance of the numeric data, respectively. The independent t-test, Fisher’s exact test, and Mann-Whitney U test were applied to compare the baseline characteristics for numeric variables. The Chi-square test was applied for categorical variables between AR− and AR+ population cohorts and different subtypes. Pearson’s coefficients were calculated to analyze the relationship between the radiomics features and the baseline characteristics. The Mann-Whitney U test was used to compare the differences of the diagnostic performance (accuracy, sensitivity, specificity, PPV, NPV, precision, and recall rate) between the predictive models. The 95% confidence interval of AUC was calculated by the De-long test. P-value <0.05 was considered statistically significant.




Results


Clinicopathologic Characteristics

In total, 162 females with invasive breast cancer were identified and included in our study. The mean age of all the patients was 46.91 ± 10.08 years (age range, 23–78 years). Of the 162 patients, 30 patients (18.5%) had histologically confirmed low AR expression, while 132 patients (81.5%) had high AR expression. The distribution based on molecular subtype was as follows: 56 were HR+/HER2− (34.6%), 81 were HER2+ (50.0%), and 25 were TNBC (15.4%). There was no significant interclass difference in age, histologic tumor type, clinical anatomic stage, clinical T stage, and clinical N stage between the low-AR and high-AR expression groups (p-value = 0.335, 0.350, 0.377, 0.873, and 0.412, respectively). The characteristics with statistically significant differences were menopausal status, ER, PR, HER2, and Ki-67 expression between those two groups (p-value = 0.043, <0.001, <0.001, 0.015, and 0.006, respectively). Among the three molecular subtypes, the AR and Ki-67 expression showed significant differences (p-value = <0.001 and 0.012, respectively). No significant differences were found across other clinical characteristics among those three molecular subtypes. The clinical and histopathologic characteristics of patients are summarized in Tables 2 and 3.


Table 2 | Clinical and histopathologic characteristics of patients grouped by AR expression.




Table 3 | Clinical and histopathologic characteristics of patients grouped by molecular subtypes.





Feature Selection and Radiomics Component Development

For radiomics features extracted from the T1-DCE, T2WI, and ADC-map, 1,368, 1,275, and 1,320 features showed reliable with an ICC higher than 0.75, respectively. Thus, a total of 3,963 features were used for further analysis. After LASSO-RFE fusion feature selection, the seven and the five most optimal radiomics features were selected for predicting molecular subtype and AR expression of breast cancer, respectively. After mRMR feature selection, 16 and 11 radiomics features were retained for predicting those two histologic outcomes, respectively. While after Boruta feature selection, 13 and 14 radiomics features were retained. Combining the total features selected from three strategies, we finally got 27 features and 34 features for predicting AR expression and molecular subtype of breast cancer, respectively. Then the Pearson correlation coefficient between any pair of these features was calculated, and the Pearson correlation coefficient matrix heatmaps are shown in Figures 2 and 3. There was multi-collinearity between some radiomics features retained in both feature sets. The Pearson correlation coefficient was in a range of −0.89–0.86 and −1.0–1.0 in two feature sets, respectively (if the absolute value of correlation coefficient ≥0.8, there was considered a high correlation between two features, and only one feature with a higher AUC or a significant inter-group distribution difference would be retained). After deleting the features with high correlation coefficient, 23 and 30 features were retained for predicting AR expression and molecular subtype, respectively.




Figure 2 | Pearson correlation coefficient heatmap of selected features on predicting AR expression. Red color denotes a positive correlation, and green color denotes a negative correlation, and the shade of the color indicates the correlation degree.






Figure 3 | Pearson correlation coefficient heatmap of selected features on predicting molecular subtype. Red color denotes a positive correlation, and green color denotes a negative correlation, and the shade of the color indicates the correlation degree.



The mean value and standard deviation of each feature were calculated to describe the inter-group distribution. The AUC was applied to assess the diagnostic performance of each radiomics feature for predicting AR expression. The mean value and standard deviation and the AUC values with 95% confidence intervals (only for binary classification model) of the selected features are listed in Supplementary Materials. For predicting molecular subtypes, we retained 23 features after feature selection as follows: 7 features from DCE-MRI, 14 features from T2WI, and 9 features from ADC-map. For predicting AR expression, we retained 30 features after feature selection as follows: 10 features from DCE-MRI, 9 features from T2WI, and 4 features from ADC-map. Each MRI sequence had retained radiomics features for subsequent analysis to predict molecular subtype and AR expression, so we considered using multi-parametric MRI was reasonable and valuable.



Model Construction and Performance Evaluation

Based on the LOOCV feature selection strategy, we constructed different machine models with distinct feature sets and algorithms. The AUCs of these models are shown in Figure 4. For predicting molecular subtype, the mean AUC of models using the total features was 0.842, which outperformed that of the models with other nine feature sets. The feature sets from three selection strategies had various mean AUCs, and the LASSO-RFE was better than other two selection strategies (mean micro-AUC: 0.789, 0.726, and 0.716 in LASSO-RFE, Boruta, and mRMR, respectively). While to assess the role of feature sets from different MRI in model performance, we compared different combinations of features from DCE-MRI, T2WI, and ADC-map. When using the total features, the models had the best performance. For predicting AR expression, the mean AUC of models using the total features was 0.886, which outperformed that of the models with other nine feature sets as well. The Boruta-based feature set outperformed other two feature sets (mean micro-AUC: 0.847, 0.780, and 0.765 in Boruta, mRMR, and LASSO-RFE, respectively). And the models using the total feature had the better performance than other combinations of MRI sequences. So in the further machine learning model constructions, we used the total features so as to ensure a high performance of the models for predicting both molecular subtype and AR expression.




Figure 4 | AUCs of the models on the testing dataset. (A) Six machine learning classifiers and 10 feature sets were utilized for predictive model construction on predicting AR expression; (B) six machine learning classifiers and 10 feature sets were utilized for predictive model construction on predicting molecular subtype.



For predicting molecular subtype, the model performance for classifying TNBC vs. non-TNBC, HER2+ vs. HER2−, and HR+/HER2− vs. others in the testing dataset are shown in Table 4, and the micro-AUC and macro-AUC were also calculated to compare the model performances. To evaluate the performance of the multiclass model, precision, recall rate, F1-score, and overall accuracy were calculated in different subtypes, and the results are shown in Table 5. The micro-AUC values of MLP, GPC, LDA, SVM, RF, and LR model for predicting molecular subtype of breast cancer were 0.896, 0.757, 0.840, 0.865, 0.812, and 0.881, respectively. The MLP and LR model had the relatively highest AUCs, and these two AUCs were not significantly different (p-value = 0.119). The MLP also presented a considerable accuracy with 0.735, which was higher than other models. The other discriminative metrics also revealed a great diagnostic performance of the MLP model in the testing dataset. Then we evaluated the model performance in specific subtype, and the AUC (0.965; 95% CI: 0.924–0.987) of MLP model outperformed other models in classifying TNBC vs. non-TNBC, the accuracy was 92.6%, the sensitivity was 92.0%, and the specificity was 92.7%. The MLP model was also better than other models in classifying HER2+ vs. HER2−, and the AUC, accuracy, sensitivity, and specificity were 0.840 (95% CI: 0.774–0.893) and 79.0%, 77.8%, and 80.3%, respectively. For classifying HR+/HER2− vs. others, the MLP model had the highest AUC (0.860, 95% CI: 0.797–0.910), and its accuracy was 82.1%, with a sensitivity of 73.2% and a specificity of 86.8%. The ROC curves of various models are shown in Figure 5.


Table 4 | Performances of the six machine learning classifiers for predicting molecular subtype.




Table 5 | Performances of the six machine learning classifiers for predicting molecular subtype.






Figure 5 | ROC curves of the models predicting molecular subtype on the testing dataset. (A) Six machine learning classifiers were utilized for predictive model construction and their AUCs; (B–D) ROC curve of MLP, SVM, and LR in classifying TNBC and non-TNBC, HER2+ and HER2−, and HR+/HER2− and others, respectively.



For predicting AR expression, we compared the predictive performance of six models based on different classification algorithms in the testing dataset (see Table 6). The MLP model had an AUC of 0.907 and an accuracy of 85.8% in the testing dataset, which outperformed the other models. The model also showed a sensitivity of 85.6% and a specificity of 86.7% for predicting high AR expression. The ROC curves of different models in the testing dataset are shown in Figure 6. Using MLP algorithms to integrate the selected radiomics features, our models achieved the perfect AUCs to predict molecular subtype and AR expression, and the confusion matrixes are shown in Figure 7.


Table 6 | Performances of the six machine learning classifiers for predicting AR expression.






Figure 6 | ROC curves of the models predicting AR expression on the testing dataset. (A) Six machine learning classifiers were utilized for predictive model construction and their AUCs; (B–D) ROC curve of RF, MLP, and LR in three subtypes (TNBC, HER2+, and HR+/HER2−), respectively.






Figure 7 | (A) Confusion matrix of MLP on predicting AR expression; (B) Confusion matrix of MLP on predicting molecular subtype.





Explanation of Features

Actually, it is still a challenge to compare the radiomics features extracted from macroscopic resolution in medical images to subcellular scale in histologic images, which could not provide direct biological explanation of radiomics features. However, the local comparisons and analysis could provide additional information of the radiomics features correlated to the observed histological signatures, thus enabling further screening of radiologic predictors for differentiating histological phenotype in a non-invasive way. We tried to explain the selected features on how they differentiated AR+ and AR− groups (and different molecular subtypes), and we used the inter-group distribution of features and PDP to reveal the marginal effects of radiomics features on the predicted labels. Several representative features from various MRI sequences were chosen to draw PDPs (see Supplementary Material). For predicting AR expression, a higher DCE_wavelet-HLH_firstorder_Kurtosis value was positively correlated with AR+, and such associations were consistent in distinct value ranges, and the distribution difference of such feature in AR+ and AR− also supported this finding (AR+: 6.343 ± 1.555; AR−: 5.114 ± 1.633). While a lower DCE_original_firstorder_Skewness value was inversely correlated with AR+ status, and the mean value of such feature in AR+ group was lower than that in AR− group actually (AR+: 0.088 ± 0.363; AR−: 0.254 ± 0.347). For features from T2WI and ADC-map, T2WI_wavelet-HLH_firstorder_Minimum, T2WI_wavelet-HLH_glcm_Contrast, and ADC_wavelet-HHH_ngtdm_Busyness also showed inverse correlation with AR+ status, while T2WI_wavelet-LLH_gldm _DependenceEntropy and ADC_original_firstorder_Kurtosis showed positive correlation with AR+ status. For predicting molecular subtypes, PDPs also provided a proper explanation. As shown in Supplementary Material, we chose three representative features from different MRI sequences and explored the relation between features and subtypes. The distributions of DCE_wavelet-LHH_glcm_Idn value in subtypes were as follows: 0.928 (HR+/HER2−) > 0.909 (HER2+) > 0.883 (TNBC), in which the PDPs also indicated a similar result. The distribution of T2WI_wavelet-HHH_glcm_Correlation and ADC_wavelet-HHL_glcm_ClusterShade values in three subtypes was also consistent with the PDP analysis [for T2WI_wavelet-HHH_glcm_Correlation: 0.059 (HER2+) > 0.053 (TNBC) > 0.045 (HR+/HER2−); for ADC_wavelet-HHL_glcm _ClusterShade: 0.569 (HR+/HER2−) > −0.021 (TNBC) > −0.551 (HER2+)]. Those findings revealed that some radiomics features were associated with AR expression and molecular subtypes. Taken together, these visualized PDPs could provide explanations of the selected features on how they influenced the predicted labels.

Furthermore, SHAP values were calculated of the two selected radiomics feature sets using the MLP models with the best AUC to visualize the importance rank of features, respectively. All the features with their importance degree contributing to prediction results are listed in Figure 8. From the feature ranking, we could know that different kinds of features had various influences on the predicted labels. For predicting AR expression, all the features played relatively equal roles in this binary classification model. While for predicting molecular subtype, some features had different effects on the predicted labels in MLP model.




Figure 8 | (A) Feature contribution weights for the MLP model predicting AR expression, and class 0 means AR < 10%, class 1 means AR ≥ 10%; (B) Feature contribution weights for the MLP model predicting molecular subtype, and class 0 means TNBC, class 1 means HER2+, class 2 means HR+/HER2−.






Discussion

Our study showed that some specific radiomics features extracted from multi-parametric MRI could predict molecular subtype and AR status in breast cancer. We further developed machine learning models with those selected radiomics features to differentiate molecular subtype and AR expression in breast cancer. For predicting molecular subtype, we used six classification algorithms to construct the model. The MLP classifiers showed the best diagnostic performance with the AUCs of 0.965, 0.840, and 0.860 and the accuracies of 92.6%, 79.0%, and 82.1% in three classification tasks (TNBC vs. non-TNBC, HER2+ vs. HER2−, and HR+/HER2− vs. others) on the testing dataset, respectively. And the micro-AUC (value: 0.896) and macro-AUC (value: 0.888) of the MLP model also outperformed other models, which indicated that MLP classifier had the great potential to assess molecular subtype. For predicting AR expression, the MLP classifier yielded the best performance with an AUC of 0.907 and an accuracy of 85.8% on the testing dataset. Some MRI-based radiomics predictors could non-invasively predict molecular subtype and AR expression in breast cancer. They may have tremendous potential to help with clinical diagnosis and treatment decisions.

The molecular subtypes of breast cancer could help to determine patients’ treatment selection and decision-making in clinical practice, such as endocrine therapy, anti-HER2 therapy, and cytotoxic therapy for different subtypes. TNBC is the most aggressive subtype of breast cancer and correlated with a worse prognosis than other subtypes. Patients with HR+ subtype cancer could receive endocrine therapy in addition to surgery and radiation treatment; patients with HER2+ subtype cancer could receive additional targeted treatment with monoclonal antibodies; patients with TNBC currently have no available targeted treatment (48). In recent years, AR has been proved to be widely expressed in breast cancer and was considered as a significant prognostic biomarker and therapeutic target in breast cancer (12, 16). The high AR expression was a significant independent prognostic factor that correlated to improved OS and DFS of breast cancer patients (12). Kevin H Kensler et al. have reported that AR+ indicated a better prognosis in ER+ tumors and a poor prognosis in ER− tumors (14). For TNBC, a recent study revealed that AR+/Cath-D+ co-expression was an independent prognostic factor of worse OS, and AR and Cath-D may be the therapeutic targets for combinatory therapy (49). For breast cancer patients treated with neoadjuvant chemotherapy, Isabell Witzel et al. found that a high AR mRNA level was associated with a lower rate of pathological complete remission (pCR) but with an improved prognosis, including DFS and OS in the neoadjuvant TECHNO clinical trials (17). The above studies indicated that AR could be regarded as a candidate biomarker for breast cancer. In our study, significant distribution differences of ER, PR, and HER2 expression were found between the low-AR group and the high-AR group, and the p-values were <0.001, <0.001, and 0.015, respectively, which contrasted to previous research and indicated interaction of protein expression might exist among those receptors in breast cancer. Due to the therapeutic and prognostic value, more attentions have been given to the study of AR expression in breast cancer in clinical practice.

Jiande Wu et al. reported that machine learning analysis of RNA-Sequence data was efficient and could be used for classifying breast cancer into TNBC and non-TNBC (39). Compared with gene detection, the histologic results from immunohistochemistry were easily obtained with lower spending, and it was used widely in clinical practice. However, obtaining breast cancer tissue was an invasive operation and might be inapplicable for some patients. Due to the tumoral volume limitation, location difficulty of puncture, non-standard IHC, or other inapplicable situations for biopsy histology, a traditional breast biopsy may not accurately reflect the molecular subtype and the degree of AR expression. Our study hypothesized that the spatial heterogeneity of breast tumor differed among molecular subtypes and could be quantified using radiomic method. To derive sufficient information from the entire tumor in a non-invasive way, our study used different machine learning algorithms combining distinct radiomics feature sets to find the optimal models to differentiate TNBC vs. non-TNBC, HER2+ vs. HER2−, and HR+/HER2− vs. others, and achieved excellent performance. We also found that radiomics features derived from three MRI sequences were all critical for model construction since the combination of feature sets from multi-parametric MRI had the best performance in the prediction model. Therefore, the radiomics-based models that we constructed had the potential to make a differential diagnosis of molecular subtype of breast cancer. We also explored a non-invasive radiomics-based method to detect AR expression, which might help develop a more comprehensive treatment strategy for patients with breast cancer.

Breast multi-parametric MRI (including T1-DCE, DWI, et al.) is increasingly applied in clinical routine imaging examination and is used for tumor diagnosis and response assessment (50). But it is difficult to adequately differentiate molecular subtypes of breast cancer by routine visual observing of medical images. Radiomics has been used as a quantitative analysis method for the correlation between image-based radiomics features and protein expression levels, which can provide comprehensive and objective information on tumoral biologic characteristics (26, 27). Several studies have shown that radiomics features from medical images have a great potential to be the surrogate marker for breast cancer phenotype (37, 38, 40, 43, 44, 51). Ming Fan et al. reported that a radiomics model based on the intra-tumoral and peri-tumoral heterogeneity in the decomposition of image time-series signals could accurately identify breast cancer subtypes with an AUC of 0.897 (43). Daniele La Forgia et al. reported that radiomics combining contrast-enhanced spectral mammography performed well in predicting histological subtypes of breast cancer, with accuracies of 90.87%, 83.79%, and 84.80% in discriminating HER2+/HER2−, ER+/ER−, and Ki67+/Ki67− breast cancer, respectively (44). Doris Leithner et al. found that a multi-parametric MRI-based radiomics approach might assist in the non-invasive differentiation of TN and luminal A subtype breast cancers from other subtypes (40). Those studies indicated that radiomics analysis was a useful analytical tool to predict receptor status in breast cancer. Previous studies have reported that some intra-tumoral radiomic biomarkers were associated with the histological characteristics of breast cancer (52–55). Actually, MRI-based radiomics required accurate tumor boundary labeling, which is a necessary step for traditional radiomics analysis. In addition, MRI-based radiomics could make better use of the spatial information of the whole tumor, which was ignored by breast ultrasound and mammography as they only reflected the tumor on a single image in most cases. The predictive outcomes of those studies included ER, PR, HER2 status, and Ki-67 expression, and radiomics models had been proven to have potential in detecting them. However, the feasibility of multi-parametric MRI-based radiomics analysis in predicting molecular subtype and AR status of breast cancer still needs to be verified.

There were some studies exploring the biological meaning of radiomics features, but no study had solved the problem (56–58). In our study, we tried to use PDPs to explain which relation the radiomics feature had with the histological outcomes. And we chose some representative features from multi-parametric MRI to draw PDPs. For predicting molecular subtype or AR expression, the PDPs of features from T1-DCE, T2WI, and ADC-map were all consistent with the distribution of the features in the groups. These findings suggested that some features extracted from medical images might relate to the phenotype of breast cancer. Though it is still hard to explain the biological foundations of these features, our study provided additional validation of radiomics features for relationships to histologic phenotypes.

In our study, breast cancers with various molecular subtypes were included for analysis. We used LOOCV to balance the covariates. After feature selection, 30 and 23 radiomics features were selected for predicting molecular subtype and AR expression, respectively. Those radiomics features were used to construct the predictive model with various classical classification algorithms. Of our models, MLP classifier had the best comprehensive performance in the differentiation of molecular subtype and AR expression. It indicated neural network model might have the great potential to be applied in the field of radiomics due to its strong processing ability in high-throughput data. Otherwise, we compared whether feature sets from three feature selection strategies and seven feature sets from different types and combinations of MRI sequences had various influences to the model construction. Those various feature sets actually developed models with different performance, and the combination of different types of features could improve the models. It also indicated that a multiple-feature selection strategy might be important for radiomics study. The results of our study indicated that our radiomics model might predict molecular subtype and AR expression non-invasively and significantly avoid unnecessary biopsy for breast cancer patients. Although we acknowledge that it is impossible to identify molecular expression using MR imaging alone accurately, underlying tumoral radiologic features may be associated with molecular expression, such as enhancement pattern and a lower ADC value (59). These tumoral imaging patterns could be easily visualized and quantified using radiomics approach (60). Our predictive model can differentiate molecular subtype and AR status in breast cancer non-invasively and guide individualized treatment. To the best of our knowledge, this is the first study to apply radiomics analysis to investigate the correlation between MRI image-derived radiomics features and AR expression in breast cancer. And we explored the application value of multi-parametric MRI-based radiomics model in predicting molecular subtypes of breast cancer.

There are some limitations of our study. First, the sample size for analysis was small, and the proportion of low-AR expression patients and TNBC were relatively small. Although we corrected the performance of model by LOOCV and eventually achieved a promising result, such imbalance might influence the machine learning model development. Second, our study was retrospective and needed to be validated with an external cohort to determine the value of our model in clinical practice and improve the confidence of performance. Third, only MR image radiomics features were used for analysis. Multi-omics study combining other medical images, such as ultrasound images, mammography, or breast CT, might improve the performance of our predictive model. Compared to other published studies, an integrated model using different types of medical images is worth further study, and our study only analyzed MRI-derived radiomics features. Fourth, we just used classical supervised classification algorithm to construct models, and deep learning–based features from MR images need further study. Our next step is to conduct prospective and standardized research on the multi-omics study for predicting AR expression and molecular subtype. And external validations from multi-centers will be considered in our future study.



Conclusions

Our study explored the feasibility of the MRI-based radiomics features for predicting the molecular subtype and AR expression of breast cancer. Some radiomics features were associated with the expression of receptors in breast cancer and might have a predictive value. A radiomics model based on the selected radiomics features was constructed to assess the molecular subtype and histological AR status for individual breast cancer patients non-invasively and achieved a great performance. Our model could serve as an efficient tool to assist in clinical decision-making process.
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Despite the recent progress of lung adenocarcinoma (LUAD) therapy, tumor recurrence remained to be a challenging factor that impedes the effectiveness of treatment. The objective of the present study was to predict the hub genes affecting LUAD recurrence via weighted gene co-expression network analysis (WGCNA). Microarray samples from LUAD dataset of GSE32863 were analyzed, and the modules with the highest correlation to tumor recurrence were selected. Functional enrichment analysis was conducted, followed by establishment of a protein–protein interaction (PPI) network. Subsequently, hub genes were identified by overall survival analyses and further validated by evaluation of expression in both myeloid populations and tissue samples of LUAD. Gene set enrichment analysis (GSEA) was then carried out, and construction of transcription factors (TF)–hub gene and drug–hub gene interaction network was also achieved. A total of eight hub genes (ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) were finally identified to be closely correlated with LUAD recurrence. In addition, TFs that regulate hub genes have been predicted, including MYC, PML, and YY1. Finally, drugs including arsenic trioxide, cisplatin, Jinfukang, and sunitinib were mined for the treatment of the eight hub genes. In conclusion, our study may facilitate the invention of targeted therapeutic drugs and shed light on the understanding of the mechanism for LUAD recurrence.
Keywords: lung adenocarcinoma, tumor recurrence, weighted gene co-expression network analysis, hub genes, transcription factor
INTRODUCTION
As one of the most frequently diagnosed and severe tumors worldwide, lung cancer was estimated to cause almost one-quarter of all cancer deaths in 2021 (Siegel et al., 2021). Lung adenocarcinoma (LUAD) is the most common type of lung cancer, which accounts for more than 40% of lung cancer incidence (Shi et al., 2016). Although the resection of early-stage LUAD remains to be the best treatment option, over 30% of LUAD patients develop recurrence and finally lead to dismal outcomes (Carnio et al., 2013; Uramoto and Tanaka, 2014). Therefore, identifying core regulators governing LUAD recurrence and elucidating the underlying mechanisms involved in the progression of LUAD would promote the development of effective strategies for diagnosis, treatment, and prognosis of this devastating disease.
As a systematic algorithm to identify tumor-specific indicators and predict cancer-related signaling pathways, the weighted gene co-expression network analysis (WGCNA) approach provides a comprehensive strategy to elucidate the interactions of pathogenic genes and to determine the correlation between gene networks and clinical traits (Langfelder and Horvath, 2008). With the help of WGCNA, genes were classified into different modules for functional prediction, while the most central genes could be further targeted as hub genes. Other than previous bioinformatics methodologies that mainly focus on individual genes, WGCNA implements methods for both weighted and unweighted correlation networks and displays the characteristics of biological systems more precisely (Barabási et al., 2011).
With the rapid advancement in recent years, WGCNA has been widely applied in the research of various cancer types (Liang et al., 2020; Yao et al., 2020; Liu et al., 2021). In terms of LUAD, DYNLRB2 and SPTBN1 were predicted to be tumor suppressors and may serve as biomarkers for LUAD patients (Zhu et al., 2021), while KIF11 was identified to be essential for LUAD cell proliferation and metastasis (Li et al., 2021). By utilizing WGCNA, long noncoding RNA (lncRNA) SVIl-AS1 was revealed to associate with chemoresistance in LUAD by acting as competing endogenous RNA (ceRNA) (Guo et al., 2021). Moreover, high-throughput data analysis by WGCNA indicates that SPP1 may be a key regulator in LUAD, which could be directly regulated by four miRNAs and indirectly regulated by 49 lncRNAs (Luo et al., 2021). However, comprehensive identification of biomarkers correlated with LUAD recurrence using WGCNA is yet to be investigated.
As an emerging technology, single-cell RNA-sequencing (scRNA-seq) is widely accepted as a powerful approach to study the heterogeneity of gene expression in individual cells (Suvà and Tirosh, 2019). By sequencing of LUAD cells harboring EGFR mutations, elevated expression of ELF3 was observed in advanced tumor cells, which promotes tumorigenesis through PI3K/AKT/NF-κB signaling pathway (He et al., 2021). Analysis of scRNA-seq data from LUAD samples manifested as subsolid nodules suggested that malignant cells in subsolid nodules undergo a strong metabolic reprogram and immune stress (Xing et al., 2021). Moreover, a multi-region scRNA-seq study revealed that LUAD exhibits pronounced intratumor cell heterogeneity within single sites and transcriptional lineage-plasticity programs (Sinjab et al., 2021).
Here in this study, WGCNA was constructed by using the GSE32863 dataset containing gene expression profiling data from 58 LUAD tumors and their matched normal adjacent lung tissue samples. Specific modules correlated with LUAD recurrence were identified, followed by hub gene prediction and functional analyses. Noteworthy, single-cell analysis was further applied to determine the expression of hub genes in different LUAD cell types, and the potential interactions between hub genes and therapeutic drugs were also investigated.
MATERIALS AND METHODS
Data Acquisition and Preprocessing
The microarray dataset GSE32863 of human LUAD with patient clinical information was extracted from Gene Expression Omnibus (GEO) database (Selamat et al., 2012). GSE32863 dataset was obtained using Illumina HumanWG-6 v3.0 expression beadchip. It includes 58 LUAD samples, which were used to construct a co-expression network followed by extraction of hub genes. R package was used to annotate raw data, generate an expression matrix, and match probes with official gene symbols. The median absolute deviations (MADs) were ranked from the largest to smallest, and the expressions of the top 25% genes with the largest differences in the samples were extracted for in-depth analysis.
Weighted Gene Co-Expression Network Analysis
We used the R package “WGCNA” to perform WGCNA on selected genes to find out the expression patterns between different genes (Langfelder and Horvath, 2008). Genes with similar expression patterns were regarded as a specific module and marked with a unique color. Subsequently, the correlation between these modules was calculated, and a heatmap was created to show the independence between each module. Then, a correlation analysis was performed to find modules related to clinical information. Modules closely related to tumor recurrence were chosen for further analysis.
Gene Ontology and Pathway Enrichment Analysis
In order to understand the biological functions and signal pathways involved in the genes from the selected modules, differentially expressed genes (DEGs) in these modules were analyzed through the R package “clusterProfiler” (Yu et al., 2012). Then, another R package “ggplot2” was used to perform the top 10 enrichment terms of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Enriched GO terms and KEGG pathways were identified base on the cutoff criterion of p < 0.05.
Protein–Protein Interaction of the Key Module Genes
For hub gene screening, genes from the selected modules were uploaded to the STRING database to build a protein–protein interaction (PPI) network (Szklarczyk et al., 2019). The interaction score >0.4 was defined as the threshold of the key genes in the PPI network. Then, a Cytoscape plug-in cytoHubba was used to extract the top 1% targets in these modules based on the degree method (Shannon et al., 2003).
Identification and Validation of Real Hub Genes
Based on the cytoHubba analysis, the top 15 genes in the selected modules and the genes enriched in KEGG pathway were selected as candidate hub targets for further analysis. In this study, the Kaplan–Meier plotter (http://kmplot.com/analysis/) was used to draw the survival analyses of the candidate hub targets, while the Gene Expression Profiling Interactive Analysis (GEPIA) webserver (Tang et al., 2017) (http://gepia.cancer-pku.cn/) was used to verify the outcomes of survival analysis so as to screen out real hub genes. With the use of the Human Protein Atlas (http://www.proteinatlas.org) database, the real hub genes were further validated by immunohistochemistry (IHC). Moreover, Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) was used to detect the expression of key targets in various cell types of lung cancer. In addition, the cBioPortal tool (http://www.cbioportal.org/; version: 2.2.0) was used to compare the genetic variations of the real hub genes in LUAD. Finally, the cBioPortal tool was also used to present the co-expression analysis of real hub genes.
Gene Set Enrichment Analysis
In the validation set GSE116959, samples of LUAD were divided into low and high groups according to the expression level of the genes. To explore the potential function of real hub genes in LUAD, gene set enrichment analysis (GSEA) was conducted and mapped into KEGG pathway enrichment database. The terms with p-value <0.05 were chosen as the cutoff criteria.
Construction of Transcription Factor–Real Hub Gene Network and Drug–Real Hub Gene Interaction
A regulating network on hub genes and LUAD was constructed by Cytoscape software. Then, the plugin iRegulon of Cytoscape was applied to forecast transcription factor (TF) regulation networks. In addition, Comparative Toxicogenomics Database (http://ctdbase.org/), a robust and publicly available database that aims to reveal how environmental exposures affect human health, was used to search for drugs for the hub genes. Chemicals supported by at least one database were selected as the potential drugs. Potential drug–key target interaction was constructed by Cytoscape. The final list only involves drugs that may interact with at least two key targets and have been reported to have an anticancer pharmacological activity.
RESULTS
Identification of Key Modules Associated With Lung Adenocarcinoma Recurrence
The flowchart of strategy in this study is summarized in Figure 1. GSE32863, a GEO dataset containing gene expression profiling data of 58 matched LUAD and non-tumor lung samples, was analyzed using the R package WGCNA. Clinical characteristics of tumor pathological stage, gender, recurrence, egfr, kras, lkb1, and smoking status of LUAD patients were denoted. After screening by MADs arranged from large to small, the expression of the top 25% genes (6,360 genes) with the greatest differences in samples were selected for further analyses.
[image: Figure 1]FIGURE 1 | Experimental design and workflow of this study.
After classification of DEGs with similar expression patterns into modules by average linkage clustering, 14 modules were finally identified by merging similar modules when the MedissThres was set at 0.25 (Figure 2A). Among them, module eigengenes of three modules (green, purple, and brown) were found to be more related to the tumor recurrence as others. Scatter plots further indicated positive correlations between members of these three modules and gene significance for LUAD recurrence (Figures 2B–D). Herein, the green, purple, and brown modules were chosen as key modules associated with LUAD recurrence for further investigation.
[image: Figure 2]FIGURE 2 | Identification of modules associated with the clinical features of lung adenocarcinoma (LUAD). (A) Heatmap to show the correlation between modules and clinical traits with LUAD. p-Values are shown in brackets. (B–D) Scatter plot analysis to show the association between Module membership and gene significance for LUAD recurrence in green (B), purple (C), and brown modules (D).
Functional Analysis of Genes in Three Key Modules
To understand the biological functions of genes in the selected modules, GO and KEGG pathway analyses were firstly applied. As depicted in Figure 3, genes in three key modules were expected to exert their functions in terms of cell adhesion molecule binding, endosome membrane, ribosomal subunit and autophagy, etc. Meanwhile, these genes could only be enriched in one single cellular pathway called Tight Junction signaling pathway (Figure 4 and Table 1).
[image: Figure 3]FIGURE 3 | Gene Ontology (GO) enrichment analyses of gene members in three chosen modules. The colored geometry represents GO term enrichment, dots represent biological process (BP), triangles represent molecular function (CC), rectangles represent cellular component (MF), red indicates low enrichment, and green indicates high enrichment. The sizes of the geometries represent the number of genes in each GO category.
[image: Figure 4]FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Genes in three modules (marked in red) could only be enriched in Tight Junction signaling pathway.
TABLE 1 | KEGG pathway analysis of the three significant modules genes related to LUAD recurrence.
[image: Table 1]Next, genes in three key modules were extracted to establish a PPI network through STRING database and Cytoscape software. As a result, a total of 926 DEGs of the three key modules were mapped into the PPI network, including 1,426 nodes and 9,522 edges. In addition, the top 15 key targets within PPI network were selected with the help of cytoHubba plug-in in Cytoscape software based on rank of degree (Figure 5).
[image: Figure 5]FIGURE 5 | Identification of the top 15 genes from the protein–protein interaction (PPI) network of the three modules.
Identification and Validation of Hub Genes for Lung Adenocarcinoma Recurrence
According to the results above, 40 genes (25 genes could be mapped into the KEGG pathway plus 15 key targets in PPI network) remained the potentials to be the hub genes for LUAD recurrence. For the purpose of scope reduction and effect evaluation, overall survival analysis was firstly performed on these candidate genes using the survival information of Kaplan–Meier plotter. After the first round of screening, only genes with significant impact on LUAD patient survival were further validated by survival analysis with GEPIA. As a result, a total of eight candidate hub genes (ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) were identified to be significantly correlated with LUAD patient survival with both survival analysis methods (Figure 6). Remarkably, all eight candidate genes were found to be correlated with poor LUAD patient survival through GEPIA, five of which (ACTR3, ARPC5, RAB13, HNRNPK, and SRSF1) were inversely revealed to be associated with favorable outcome using Kaplan–Meier plotter.
[image: Figure 6]FIGURE 6 | Survival analyses of the eight hub gene candidates identified. (A–H) Overall survival of the eight hub gene candidates in lung adenocarcinoma (LUAD) based on Kaplan–Meier plotter. (I–P) Overall survival of the eight hub gene candidates in LUAD based on the Gene Expression Profiling Interactive Analysis (GEPIA) database. p < 0.05 was considered to indicate a statistically significant difference. ACTR3, actin-related protein 3; ARPC5, actin-related protein 2/3 complex subunit 5; HNRNPK, heterogeneous nuclear ribonucleoprotein K; NOP58, NOP58 ribonucleoprotein; PA2G4, proliferation-associated 2G4; RAB13, RAB13 member RAS oncogene family; SRSF1, serine- and arginine-rich splicing factor 1; WDR12, WD repeat domain 12.
We next sought to investigate the expression of these candidate genes in LUAD. Firstly, comprehensive single-cell RNA sequencing data mapping myeloid populations in non-small cell lung tumor and peripheral blood was utilized to detect the expression of our candidate genes in different types of immune cells (Zilionis et al., 2019). As presented in Figure 7, candidate genes ACTR3, ARPC5, and HNRNPK were highly expressed in almost all types of lung cancer immune cells, while RAB13, PA2G4, and WDR12 were found to be less abundant in the majority of myeloid populations in lung cancer. As compared with the rest of the hub genes, ACTR3, ARPC5, and HNRNPK are all characterized in regulation of actin polymerization (Yoo et al., 2006; Kopitar et al., 2019). Thus, the hyperactivation of these three genes in lung cancer cells may reflect the significance of actin polymerization during the development of cancer. Next, the distribution and expression of these eight hub gene candidates were checked using IHC staining data of both LUAD and adjacent non-tumor samples from The Human Protein Atlas database. Representative IHC images revealed elevated protein levels of HNRNPK, PA2G4, WDR12, SRSF1, and NOP58 in LUAD samples (Figure 8), suggesting the dysregulation of these genes during progression of LUAD.
[image: Figure 7]FIGURE 7 | Expression of eight hub gene candidates in various clusters of human immune cells from non-small cell lung tumor (t) and peripheral blood (b). t, tumor; b, blood; DCs, dendritic cells; pDCs, plasmacytoid DCs; RBC, red blood cell. The size of dots represents the percentage of expression; red and blue represent the level of scaled mean expression.
[image: Figure 8]FIGURE 8 | Immunohistochemical images of eight hub genes in lung adenocarcinoma (LUAD) recurrence. The protein levels of (A–E) in LUAD tissues were compared with normal lung tissues from the Human Protein Atlas database.
The genetic alterations of these candidate genes were then determined using cBioPortal. Interestingly, seven out of the eight genes were found to be amplificated in LUAD, while only half of them were reported to be partially mutated (Figures 9A,B). Gene co-expression analysis of the eight candidate genes was also performed using cBioPortal database. As shown in Figure 9C, highly positive co-expression was observed in pairs of PA2G4–NOP58, HNRNPK–SRSF1, and NOP58–SRSF1, while significantly negative co-expression was revealed in pairs of HNRNPK–ARPC5 and SRSF1–ARPC5.
[image: Figure 9]FIGURE 9 | Genetic alteration information and co-expression analysis of the eight hub genes. (A) A visual summary across a set of lung adenocarcinoma (LUAD) (data from Lung Adenocarcinoma, The Cancer Genome Atlas (TCGA), Nature 2014) showed the genetic alterations connected with the eight hub genes, which were altered in 75 (31.8%) of 230 sequenced patients (230 in total). (B) An overview of changes in the eight hub genes from the genomics datasets of LUAD in TCGA database. Summary for lung adenocarcinoma: Gene altered in 20% of 230 cases, Mutation 1.74% (4 in 230 cases), Amplification 17.39% (40 in 230 cases), and Multiple Alterations 0.87% (2 in 230 cases). (C) The co-expression analysis of the eight hub genes using the 230 samples above based on cBioPortal database.
To investigate the biological characteristics of right candidate genes associated with LUAD recurrence, the GSEA assay was further applied. The results in Figure 10 showed that upregulation of these candidate genes was enriched in multiple cellular processed such as Fc gamma R-mediated phagocytosis, regulation of actin cytoskeleton, spliceosome, and tight junction.
[image: Figure 10]FIGURE 10 | Gene set enrichment analysis (GSEA) using GSE116959 showed a positive enrichment of identified hub genes associated with four Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways.
In total, all the above findings indicated that all eight candidate genes may serve as the hub genes associated with tumor recurrence in LUAD.
Constructions of Transcription Factor–Hub Gene Network and Drug–Hub Gene Interaction Network Associated With Lung Adenocarcinoma Recurrence
To enhance the significance of our study, we next sought to establish the transcriptional regulatory network of hub genes and TFs by a Cytoscape plug-in iRegulon. As revealed in Figure 11, a total of 57 TFs and eight hub genes were involved in this network, such as models of MYC–NOP58, MYC–WDR12, MYC–SRSF1, MYC–PA2G4, MYC–HNRNPK, PML–HNRNPK, TAF1–HNRNPK, YY1–HNRNPK, and TAF1–HNRNPK. To facilitate the future targeted drug screening, Comparative Toxicogenomics Database was used to search for drugs specialized in targeting the eight hub genes. Drugs that may interact with at least two hub genes and have been reported to have an anticancer pharmacological activity were selected. Finally, 11 drugs including arsenic trioxide, cisplatin, copper, ICG 001, Jinfukang, tretinoin, doxorubicin, sodium selenite, quercetin, sunitinib, and epigallocatechin gallate were discovered (Figure 12).
[image: Figure 11]FIGURE 11 | The transcriptional regulatory network of eight hub genes and TFs. TFs, transcription factors. A green hexagon node represents the TFs, a pink circular node represents hub genes, a light blue diamond node represents the lung adenocarcinoma (LUAD), and the interaction is represented by an arrow. The numbers of arrows in the networks demonstrate the contribution of 1 TF to the hub genes; and the higher the degree, the more central the nodes were within the network.
[image: Figure 12]FIGURE 12 | Interactions between drugs and the identified hub genes based on CTD database and literature validation. Light blue circular node represents drugs, red diamond node represents hub genes, their interaction is represented by line, and the degree value represents the number of targets acted on by the drug.
DISCUSSION
Despite the novel improvements in the diagnosis and treatment of LUAD in recent years, tumor recurrence remained to be the leading cause of treatment failure and mortality after surgery (Martini et al., 1995). With the help of WGCNA approach, a total of eight hub genes were screened out as LUAD recurrence-associated hub genes in the present study. To the best of our knowledge, most of them were firstly reported as key modulators of LUAD recurrence.
Among the identified hub genes, both ACTR3 and ARPC5 encode subunits of the human Arp2/3 protein complex, which has been implicated in the control of actin polymerization in cells (Abella et al., 2016). As compared with the less studied ACTR3, the potential of ARPC5 as a prognostic biomarker has been investigated in multiple cancer types such as hepatocellular carcinoma (Huang et al., 2021) and multiple myeloma (Xiong and Luo, 2018). In this study, we further confirmed the association between both Arp2/3 components and LUAD recurrence, which may extend the clinical relevance of these biomarkers into the prognosis of lung cancer.
As a member of Rab-associated G protein family, RAB13 controls the trafficking and cellular localization of a number of key modulators in cancer and thus affects the tumorigenesis (Ioannou and McPherson, 2016). Based on The Cancer Genome Atlas (TCGA) database, elevated expression of RAB13 has been observed in the majority of cancers and is inversely correlated with patient prognosis. Moreover, by analyzing published microarray data for NCI-60 cancer cells, RAB13 was further discovered as a target gene relevant to radiosensitivity (Kim et al., 2012). Here, we observed significant amplification of RAB13 in LUAD sample, which deserves to be further investigated to unveil its role in the carcinogenesis of LUAD.
Interestingly, five out of the eight hub genes identified in the current study (HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) are mainly located in the nucleus and are involved in functions of rRNA processing, RNA splicing, and ribosome biogenesis. For instance, HNRNPK is a component of the hnRNP complex and a highly conserved RNA- and DNA-binding protein (Pinol-Roma et al., 1988). Downregulation of HNRNPK in human LUAD cell line significantly reduced the formation of metastatic lung tumor nodules in mice, suggesting its role in lung metastasis (Li et al., 2019). Another example is NOP58, which forms box C/D small nucleolar ribonucleoprotein (snoRNP) with three other protein members to exert its functions in rRNA methylation and ribosome biogenesis (Shubina et al., 2016). Dysregulation of snoRNP members including NOP58 has been widely reported in cancer, which directly contributes to the overactivated ribosome biogenesis during cancer progression (Wu et al., 2020; Yi et al., 2021). Therefore, it is speculated that hyperactivation of ribosome biogenesis, which can be initiated by these hub genes, may play a crucial role in LUAD recurrence.
In addition, transcription factors (TFs) that regulate hub genes have been predicted, including MYC (Massó-Vallés et al., 2020), PML (Kuo et al., 2014), and YY1 (Lin et al., 2020). It has been reported that they were potential therapeutic targets for lung cancer and were closely related to lung cancer metastasis and recurrence. Finally, through CTD database and literature mining, it was discovered that arsenic trioxide (Huang and Zeng, 2019), Jinfukang (Que et al., 2021), sunitinib (Park and Kim, 2020), and other drugs reported to treat lung cancer could act on these eight hub genes.
In general, our current study aimed to find hub genes that might be correlated with the recurrence of LUAD using WGCNA approach. A total of eight genes including ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58 were identified and further validated using multiple bioinformatics tools. It is anticipated that these hub genes could serve as biomarkers or therapeutic targets for LUAD treatment.
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Tamoxifen (TAM) is the most commonly used adjuvant endocrine drug for hormone receptor-positive (HR+) breast cancer patients. However, how to accurately evaluate the risk of breast cancer recurrence and metastasis after adjuvant TAM therapy is still a major concern. In recent years, many studies have shown that the clinical outcomes of TAM-treated breast cancer patients are influenced by the activity of some cytochrome P450 (CYP) enzymes that catalyze the formation of active TAM metabolites like endoxifen and 4-hydroxytamoxifen. In this study, we aimed to first develop and validate an algorithm combining polymorphisms in CYP genes and clinicopathological signatures to identify a subpopulation of breast cancer patients who might benefit most from TAM adjuvant therapy and meanwhile evaluate major risk factors related to TAM resistance. Specifically, a total of 256 patients with invasive breast cancer who received adjuvant endocrine therapy were selected. The genotypes at 10 loci from three TAM metabolism-related CYP genes were detected by time-of-flight mass spectrometry and multiplex long PCR. Combining the 10 loci with nine clinicopathological characteristics, we obtained 19 important features whose association with cancer recurrence was assessed by importance score via random forests. After that, a logistic regression model was trained to calculate TAM risk-of-recurrence score (TAM RORs), which is adopted to assess a patient’s risk of recurrence after TAM treatment. The sensitivity and specificity of the model in an independent test cohort were 86.67% and 64.56%, respectively. This study showed that breast cancer patients with high TAM RORs were less sensitive to TAM treatment and manifested more invasive characteristics, whereas those with low TAM RORs were highly sensitive to TAM treatment, and their conditions were stable during the follow-up period. There were some risk factors that had a significant effect on the efficacy of TAM. They were tissue classification (tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e−16), the number of lymph node metastases (Node-Negative vs. Node < 4, p = 5.3e−07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e−15), and the expression levels of estrogen receptor (ER) and progesterone receptor (PR) (ER < 50% vs. ER ≥ 50%, p = 1.3e−12; PR < 50% vs. PR ≥ 50%, p = 2.6e−08). The really remarkable thing is that different genotypes of CYP2D6*10(C188T) show significant differences in prediction function (CYP2D6*10 CC vs. TT, p < 0.019; CYP2D6*10 CT vs. TT, p < 0.037). There are more than 50% Chinese who have CYP2D6*10 mutation. So the genotype of CYP2D6*10(C188T) should be tested before TAM therapy.




Keywords: breast cancer, hormone receptor-positive, tamoxifen, risk factors, risk-of-recurrence score



Introduction

Hormone receptor-positive (HR+) breast cancer accounts for 75% of all breast cancer patients and is the most common molecular subtype of this disease (1, 2). According to the National Comprehensive Cancer Network 2017 (NCCN2017) (3), HR+ includes estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+). Currently, the standard adjuvant endocrine therapy for HR+ breast cancer is 5-year treatment with tamoxifen (TAM) or aromatase inhibitor (AI) (3).

TAM is the earliest and most classical drug in endocrine therapy for breast cancer (4–7). In 1998, The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) published a meta-analysis of 37,000 randomized clinical trials in 55 groups in The Lancet. The study suggested that oral TAM for 5 years in HR+ breast cancer patients can reduce the risk of recurrence of early breast cancer by 47% and the risk of death by 26%, with a survival rate improvement of at least 10 years. The efficacy was independent of age, menstrual status, lymph node metastasis, or prior chemotherapy. In 2011, EBCTCG updated the results, further confirming the efficacy of 5-year TAM treatment after surgery, and a continuing effect until 15 years after surgery. These results established the foundation for oral 5-year TAM as a standard protocol for adjuvant endocrine therapy for breast cancer patients (8). In 2017, EBCTCG studied 88 clinical trials with follow-up over 5 to 20 years, which assessed the risk of breast cancer recurrence in 62,923 patients with at least 5-year TAM treatment. It was found that even in patients with low histological grade of T1N0, 10% of patients had developed distant metastasis 20 years later. Therefore, it is necessary to prolong the time of endocrine therapy or strengthen endocrine therapy for patients with high risk of recurrence (9).

The same dose of TAM (10 mg, b.i.d.) was administrated to patients, however, with significantly different effectiveness in individual patients (10), which presents the need for precision medicine (11, 12). This individualized difference in effectiveness could not be fully explained by liver and kidney function, age, lifestyle or a combination of medication, and patient compliance. Genetic factors might play an important decisive role (13, 14). A number of studies have shown that TAM metabolized through the cytochrome P450 enzymes of the liver to the active products 4-hydroxytamoxifen and endoxifen to play pharmacological effects. However, the cytochrome P450 enzyme activity is influenced by its genetic polymorphism.

CYP2D6 is a key enzyme in the metabolic process of TAM, and the relationship between its genetic polymorphism with TAM metabolism and efficacy has attracted much attention (13, 15). Several studies have shown that the CYP2D6 enzymatic activity in breast cancer patients with CYP2D6*3(775delA), CYP2D6*4(G506-1A), CYP2D6*5 (fragment deletion), CYP2D6*10(C188T), and CYP2D6*41 (c.985+39G>A) alleles is reduced; the levels of activated intermediate metabolites 4-hydroxytamoxifen and endoxifen are decreased after TAM treatment; and the recurrence rate of breast cancer is higher, while the survival rate after recurrence is lower (16–19). Among Chinese population, the distribution frequency of CYP2D6*10 was shown to be as high as 50%, which was thought to be a major factor affecting in vivo activation efficiency of TAM (20). The serum concentrations of endoxifen in breast cancer patients with CYP2D6*1 / *10(CT) and CYP2D6*10 / *10(TT) were shown to be decreased more significantly than those of individuals with wild-type CYP2D6 (10).

CYP2C19 is a typical CYP450 enzyme that affects the metabolism of TAM transforming into 4-hydroxytamoxifen, and it also participates in the metabolism of estradiol and estrone (16–18). The enzymatic activity of CYP2C19 in patients with CYP2C19*2(G681A) and *3(G636A) alleles is decreased, and the 5-year disease-free survival (DFS) rate is lower than that in patients with CYP2C19 wild type (21–23). However, some studies suggest that the activity of CYP2C19 in breast cancer patients with CYP2C19*17(C-806T) allele was enhanced, and the application of TAM treatment was beneficial to those patients (16, 24).

N-Demethylation of TAM is mainly mediated by CYP3A5, and CYP3A5*3(A6986G) mutation reduces the enzymatic activity (9, 25). Goetz et al. showed that the DFS time, DFS rate, and overall survival (OS) rate of breast cancer patients with different CYP3A5 genotypes were similar (26). However, another study (27) found that the recurrence risk of individuals with CYP3A5*3 / *3(GG) is significantly decreased after 5 years of TAM therapy, suggesting that CYP3A5 polymorphism might also be an important factor affecting the efficacy of TAM.

In summary, there lacks a unified quantitative indicator to predict the superiority of TAM in the treatment of patients with early HR+ breast cancer. There lacks predictive model to specifically differentiate the patients with recurrence risk after early TAM treatment. We aimed to develop such a model to more efficiently guide such patients for improved DFS from individualized TAM therapy.



Materials and Methods


Patient Selection

In this retrospective study, patients’ information was retrieved from the sample database of the Galactophore Department, Cancer Hospital Affiliated to Harbin Medical University. The keywords used to screen patients from the sample storage management system included invasive breast cancer, HR+, endocrine therapy, and TAM. Briefly, 5,731 patients were retrieved. Among these, patients were excluded based on the following criteria (Figure S1): 1) patients without clinicopathological information or incomplete clinical pathology information; 2) patients with HER2 (3+) or HER2 fluorescence in situ hybridization (FISH) (+) who received trastuzumab treatment; 3) patients without disease progression treated with toremifene or AIs; 4) patients without blood samples; or 5) patients with failed repeated extraction of blood sample. Finally, 256 patients were included in the study.

This was a retrospective study. Informed consent from patients was not required in this study. All samples were retrieved from the sample library of Cancer Hospital Affiliated to Harbin Medical University. This study was approved by the Ethics Committee of Cancer Hospital Affiliated to Harbin Medical University (Ethical No. KY2017-03).

This study involved the clinical information and pathological data that might be related to the incidence of recurrence and metastasis, including tissue classification, the maximum diameter of tumor, the number of lymph node metastases, whether the patients were in menopause or not, patient’s age, and the expression levels of ER, PR, HER2, and Ki67. Recurrence and metastasis were defined as the recurrence of primary lesions, metastasis of axillary lymph nodes, mammary glands, and distant organs. All the patients received TAM 10 mg each time, twice daily. In addition, all patients’ information and blood samples used in this study were obtained following the approval from the hospital.



Detection of Genetic Polymorphism

In recent years, time-of-flight mass spectrometry (TOFMS) has become a very effective method for genotyping single-nucleotide polymorphisms (SNPs). TOFMS can detect genotypes rapidly and efficiently (28). Several SNP genotyping methods have been implemented with a high degree of automation and are being applied for large-scale association studies. It is the working principle of TOFMS. Firstly, a segment of DNA containing SNP site was amplified by PCR (about 50 bp before and after SNP site). And then SAP enzyme was used to remove the dNTP and the primers in the PCR system. A single-base extension primer was added in which three “terminal base” was next to SNP site and used four kinds of ddNTP instead of dNTP (ddNTP corresponds to the allele of SNP locus). So only one base is extended at the SNP locus. TOFMS was used to detect the difference of the molecular weight between the extended product and the non-extended primer, which can determine the base at this point (29, 30).

Genetic polymorphisms were assessed using DNA extraction from retained blood samples and were examined based on TOFMS platform and multiplex long PCR. TOFMS platform obtained the genotypes at nine loci of three genes at a time. We designed three primers for each site, and the primer sequence information was provided in the Supplementary Materials (Table S1, S2). The primers were designed by an online software named Agena Bioscience (www.agenacx.com). The deletion of CYP2D6*5 fragments was obtained by multiplex long PCR.



Derivation of the Prediction Model

A total of 256 patients who met the inclusion criteria were divided into the training cohort and test cohort according to the surgery time before or after June 1, 2013 (Figure 1 and Figure S2). A total of 117 patients were assigned to the training cohort, while the remaining 139 patients were assigned to the test cohort (Table S6). The training cohort was used to analyze the correlation between clinicopathological factors, gene locus polymorphism, the recurrence and metastasis of disease. The test cohort was used to test the performance of the algorithm model. The training cohort and test cohort both included patients who developed recurrence and metastasis, as well as those without disease progression during 5 years of clinical follow-up. All patients’ clinical information and detection results of genetic polymorphism were assigned a value based on the degree of disease malignancy and TAM metabolic enzyme activity, which was used for subsequent mathematical statistics (Table 1 and Tables S1, S3–S5).




Figure 1 | Schematic for development of TAM RORs. In total, 256 patients were eligible for analysis. Samples were split into training and independent test sets by the surgery time. The training set was used to tune the parameters and select the best model using five-fold cross-validation. After training, the test set was used to independently assess the performance of the final model. TAM RORs, tamoxifen risk-of-recurrence score.




Table 1 | Patients’ information and tumor characteristics.



We constructed a model to predict the risk of breast cancer recurrence and metastasis by clinicopathological factors and gene locus polymorphism. The Random Forest algorithm was used for assessing the importance of all known features. We selected top features according to MeanDecreaseGini score of the Random Forest algorithm. The top features were used as the input for further logistic regression analysis to predict the risk of breast cancer recurrence and metastasis.

There are hyper-parameters in our model including number of features, tree number, and link function. A grid search algorithm was used to select the hyper-parameters as below.

	Feature Number = [3, 6, 9, 12, 15, 18]

	Tree Number = [1000, 10000, 20000]

	Feature Importance Index = [“MeanDecreaseGini”, “MeanDecreaseAccuracy

	(absolute value)”, “MeanDecreaseAccuracy”].



We used the five-fold cross-validation to select these hyper-parameters. The results are shown in Table 2. As a result, we set the feature number to be 9, Feature Importance Index to be “MeanDecreaseGini,” and Tree num to be 20,000 (Table 2). After that, the model with these hyper-parameter set was trained by the whole training dataset. The whole process can be found in Table 3.


Table 2 | Hyper-parameter selection by cross-validation.




Table 3 | The process of building TAM RORs model.



In the training cohort (N = 117), the Random Forest algorithm was used for the importance assessment of 19 variables including patient’s age, whether the patient was menopausal or not, the number of lymph node metastases, the maximum diameter of tumor, tissue classification, and the expression levels of ER, PR, HER2, Ki67, CYP2D6 *2, *3, *4, *5, *10, *41, CYP2C19 *2, *3, *17, and CYP3A5*3 (Figure S3). Ten variables with MeanDecreaseGini score less than 2.1 were excluded; the remaining nine variables were used for further logistic regression analysis. As a result, TAM RORs (1) = −2.74 + 3.54Grade + 0.75LN + 0.28CYP2C19*2 + 0.49PR + 0.31CYP2D6*10 + 1.11ER − 0.1CYP3A5*3 − 0.28Ki67 − 0.37Size was obtained. Then, TAM RORs (1) were converted into binary results. Specifically, a patient is considered to have high risk of breast cancer recurrence and metastasis if TAM RORs (2) = 1/(1 + e-TAM RORs(1)) is greater or equal to 0.175 and have low risk if the value is less than 0.175. The cutoff 0.175 is trained by the training dataset, by which we obtained a training area under the curve (AUC) of 0.87. Lastly, the TAM RORs of each patient in the test cohort were calculated to verify the performance of the model in an independent testing data (AUC = 0.86) (Table S7 and Figure S4). We also tested the other two methods: neural network and support vector machine (SVM).

SVM is one of the popular supervised learning algorithms. It is used for Classification as well as Regression problems. Primarily, it is used for Classification situation in machine learning. The aim of the SVM algorithm is to find the best line or decision boundary, which can divide n-dimensional space into classes in order to put the new data point in the correct space easily in the future. This best decision boundary is termed a hyperplane. SVM selects the extreme vectors that help in finding the hyperplane. These extreme cases are named as support vectors, and then the algorithm is termed as SVM.

Neural networks are used almost in every machine learning application because of their reliability and mathematical power. Each neuron in the neural networks is divided into different groups according to the order of receiving information. Each group can be regarded as a neural layer. The neurons in each layer receive the output of the neurons in the previous layer and output to the neurons in the next layer. The information in the whole network propagates in one direction, and there is no reverse information propagation. The feedforward network can be represented by a directed acyclic graph. The feedforward network can be regarded as a function, and the complex mapping from input space to output space is realized through the multiple compositions of simple non-linear functions. The network structure is simple and easy to implement.

In this article, we applied four-level neural networks on our classification problem by using R programming.

R version 3.4.3 (2017-11-30) was used for the classification and training of the prediction model (Figure 1).



Statistical Analysis

The statistical package stats of R version 3.4.3 software was used for statistical analysis. We studied the difference of clinicopathological variables or genotypes between two groups with different TAM RORs value. Specifically, we conducted Wilcoxon’s test, adjusted the p-values by the Benjamini–Hochberg method, and added the p-values to ggplot for box blots and dot plots (Figures S6, S7). Friedman’s test was adopted to discover the significant difference between logistic regression, the SVM algorithms and Feedforward Neural Network and the compared algorithms on the test dataset.




Results


A Logistic Regression Model to Predict the Performance of Tamoxifen Adjuvant Therapy

In the training cohort (N = 117), 75 (64.10%) patients obtained high TAM RORs (2) scores, while 42 (35.90%) patients obtained low TAM RORs (2) scores. Among 75 patients with high TAM RORs (2) scores, 42 (56.00%) patients developed recurrence and metastasis after TAM treatment. Among 42 patients with low TAM RORs (2) scores, 35 (83.33%) patients had no disease progression during the follow-up period. Therefore, we speculated that patients with high TAM RORs (2) scores had poor prognosis and were more likely to exhibit invasive tumor characteristics, while those with low TAM RORs (2) scores had good prognosis and stable disease control after TAM treatment (Table 4).


Table 4 | TAM RORs predicts recurrence and metastasis in breast cancer.



In the test cohort, the recurrence and metastasis probability of breast cancer patients after TAM treatment was evaluated, and our hypothesis was verified. Among 139 patients in the test dataset, 80 (57.55%) patients obtained high TAM RORs, while 59 (42.45%) patients obtained low TAM RORs. Among 80 patients with high TAM RORs, 52 (65.00%) developed recurrence and metastasis after TAM treatment. In addition, among 59 patients with low TAM RORs, 51 (86.44%) patients did not have disease progression during the follow-up period. Therefore, we verified that the sensitivity and specificity of TAM RORs (2) were 86.67% and 64.56%, respectively (Table 2). Moreover, our hypothesis was verified: breast cancer patients with high TAM RORs (2) were always less sensitive to TAM treatment and had tumor invasion occurrence. Conversely, breast cancer patients with low TAM RORs have always high sensitivity to TAM treatment and had stable disease control (Figures 2 and 3, Table S4, Figure S5).




Figure 2 | TAM RORs predicts recurrence and metastasis in breast cancer. Box-whisker plots of TAM RORs (1) values. TAM RORs, tamoxifen risk-of-recurrence score.






Figure 3 | Disease-free survival (DFS) in TAM RORs. TAM RORs, tamoxifen risk-of-recurrence score.





Major Risk Factors for Tamoxifen Resistance

According to the TAM RORs value, the effects of breast cancer patients’ information and tumor characteristics on the efficacy of TAM were observed. Among patients’ information and their tumor characteristics, four factors including the number of lymph node involvement, the expression levels of ER and PR, tumor diameter, and tumor tissue classification had a significant effect on the efficacy of TAM (Node-Negative vs. Node < 4, p = 5.3e−07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e−15; ER < 50% vs. ER ≥ 50%, p = 1.3e−12; PR < 50% vs. PR ≥ 50%, p = 2.6e−08; tumor Size < 2cm vs. tumor Size ≥ 2cm, p = 0.013; tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e−16; Figure S6). Similarly, the effect of TAM metabolism-related gene locus polymorphisms on the efficacy of TAM in breast cancer patients was observed. We detected 10 loci in CYP2D6, CYP3A5, and CYP2C19. Among these loci, three loci, i.e., CYP2D6*10(C188T), CYP2C19*2(G681A), and CYP3A5*3(A6986G), had a significant effect on the efficacy of TAM (CYP2D6*10(C188T): CC vs. TT, p < 0.019; CT vs. TT, p < 0.037; CYP2C19*2(G681A): GG vs. GA, p < 0.02; GG vs. AA, p < 0.0043; CYP3A5*3(A6986G): AG vs. GG, p < 0.0029; AA vs. GG, p < 0.038; Figure S7). There were significant differences between wild type and CYP2D6*10 / *10 (p < 0.019), as well as between CYP2D6*1 / *10 and CYP2D6*10 / *10 (p < 0.037). Patients with CYP2D6*10 were more likely to obtain higher TAM RORs (1) scores, and their disease progression occurred during the follow-up period. There are more than 50% Chinese whose have CYP2D6*10 mutation. So it is very important to know which genotypes CYP2D6*10(C188T) patients have. The genetic polymorphism of this locus significantly affected the activation efficiency of TAM in vivo and is an important predictor of prognosis in TAM treatment. There was also a significant difference between wild type and CYP3A5*1 / *3 (p < 0.038). However, a significant difference existed between CYP3A5*1/ *3 and CYP3A5*3 / *3 (p < 0.003): 53.08% CYP3A5*3 / *3 patients obtained low TAM RORs, and no disease progression was observed during the follow-up period. The results were similar to those reported by Wegman et al., who suggested that the risk of recurrence in individuals with CYP3A5*3 / *3 significantly decreases after 5 years of TAM treatment (27).



Comparison of the Predictive Effectiveness

Clinically, STEPP analysis is used to predict the risk of recurrence in premenopausal patients with HER2-negative /HR+ early breast cancer. The prediction results of Subpopulation Treatment Effect Pattern Plot (STEPP) analysis were used to determine whether Ovarian Function Suppression (OFS) should be performed in conjunction with endocrine therapy. However, this method only involves clinicopathological indicators, and it did not take into account the impact of TAM metabolism.

We screened 132 patients with HER2-negative premenopausal breast cancer from 256 patients. Among them, 44 patients had breast cancer recurrence, whereas 88 patients had no recurrence or metastasis in 5 years of follow-up. The prognosis was predicted by STEPP score. Among the 44 patients with breast cancer recurrence, 39 patients were diagnosed as “medium-high risk,” and 34 patients as “low risk” among the 88 patients without recurrence and metastasis. The predictive sensitivity was 88.64% and specificity was only 38.64% in the screened 265 patients. The prognosis was predicted by TAM RORs. Among the 44 patients with breast cancer recurrence, 38 patients with high risk of recurrence were identified, and 40 patients with “low risk” of recurrence were identified among 88 patients without recurrence metastasis. The predictive sensitivity of TAM RORs in 265 patients reached 86.36% and specificity reached 54.54%. The comparison of the two formulas can be found to be equally excellent in predicting patients with high recurrence risk. However, in the prediction of low-risk patients, TAM RORs showed better specificity.

We have tested other two methods among which deep learning has the best performance (AUC: 0.88). The sensitivity and specificity of SVM are lower than those of the logistic regression. That is, the predictive ability of SVM is inferior to that of the logistic regression. On the other hand, the performance of Fully Connected Feedforward Neural Network is slightly better than that of the current model.

To judge whether or not our approaches were statistically significant, Friedman’s test was conducted at α = 0.05 in terms of TAM RORs from 139 patients in the test dataset. TAM RORs of each patient from the three algorithms were the data used to conduct Friedman’s test. The results of algorithms on 139 patients of the test dataset are shown in Table 5. Here, χ2 is the chi-square, df is the degree of freedom, and p is the p-value. Friedman’s test results told us that there was no strong significant difference between the three compared algorithms because p-value was not less than the specific value of alpha, which is set to be 0.05.


Table 5 | Results of Friedman’s test between our approaches and the three compared algorithms.



Friedman’s test results told us that there was no strong significant difference between the three compared algorithms. However, the Fully Connected Feedforward Neural Network is implicit and has explicit formula for predicting, which is difficult in mining the biological mechanisms behind the prediction and it. Thus, we finally chose the logistic regression in this study.




Discussion

TAM, as a standard drug for the endocrine therapy of breast cancer (3), effectively reduces the recurrence and mortality of HR+ breast cancer patients (4, 8, 31, 32). Nonetheless, 50% of the patients did not benefit from it, which presents a great concern in clinical practice (33–35). The prognosis of ER-positive breast cancer patients has always been a hot topic in clinical research. At present, there are five recognized clinical prediction methods (3, 36–41): 1) Oncotype Dx recurrence score (RS), 2) PAM50-based Prosigna risk of recurrence (ROR), 3) Breast Cancer Index (BCI), 4) EndoPredict (EPclin), and 5) MammaPrint Netherland Kanker Institute 70-gene signature. These prognosis prediction methods are all based on multigene expression profiles. Compared with independent clinical factors, multigene expression profiles combined with clinical factors have shown significantly predictive efficiency (42). Nevertheless, following the progression of TAM metabolic mechanism research, it has been shown that being the activation product of TAM, endoxifen has high activity to inhibit the growth of tumor by competitive binding of ER with estradiol and blocking estrogenic effect. This process is regulated by multiple enzymes including CYP2D6, CYP2C19, and CYP3A5 (43–45). The activities of these enzymes are influenced by the genetic polymorphism at different loci, thus showing individual differences (23–25). These enzymes further reveal the individual differences in drug sensitivity of TAM and the efficacy of treatment. At present, the genetic polymorphisms affecting the metabolic efficiency of TAM had not been covered by any algorithm model of clinical prognostic assessment, which can be interpreted as a knowledge gap to predict the prognosis of ER-positive breast cancer patients with TAM treatment (36–41, 46–49). The present study was based on the factors affecting TAM metabolic efficiency, combined with clinicopathological information necessary to establish an algorithm model to evaluate the benefit of patients after TAM treatment.

The efficacy of TAM was predicted by three methods, which have the same training set and test set. They are Logistic Regression, SVM, and Fully Connected Feedforward Neural Network. In SVM, when kernel = “linear,” the sensitivity and specificity are 58% and 92%; when kernel = “sigmoid,” the sensitivity and specificity are 58% and 92%; and when kernel = “radial,” the sensitivity and specificity are 65% and 89.9%. The predictive ability of SVM is inferior to that of the logistic regression. In the Fully Connected Feedforward Neural Network, set the number of network layers to 4 and the middle-hidden layers to 2, the sensitivity and specificity are 86.67% and 73.41%, respectively. On the other hand, Friedman’s test results told us that there was no strong significant difference between our approaches and the three compared algorithms. Since the Fully Connected Feedforward Neural Network has bad interpretability, in considering the practical application, we finally chose the logistic regression.

There were limitations in this study. This was a retrospective study based on the collection of clinical samples. Although we have included as much as possible of the available clinical information, the clinical treatments for invasive breast cancer still had a certain impact on the study; e.g., after surgical treatment, patients received routine chemotherapy before they underwent TAM endocrine therapy. This might explain why a small number of patients had high TAM RORs, suggesting a higher risk of recurrence, but there was no disease progression found in actual clinical follow-up. Nonetheless, although the datasets had some limitations, they performed well in the current verification. We also tried to enroll as many patients as possible in the study to further verify our TAM RORs. In addition, we adopted a simple logistic regression model to perform the prediction, which might not be optimal. Deep learning and network-based methods have been proven to be effective in many similar prediction problems (50–55), which will be tested in the future to improve the prediction accuracy.

In the analysis of genetic polymorphisms in 256 patients, we found that the genotype frequency of CYP2C19*2(G681A) was different from that in the National Center for Biotechnology Information (NCBI) SNP database. It was CYP2C19*2(G681A) AA genotype (in our study: 7.03% vs. China population frequency from NCBI: 0%) (Table S8). We collected 243 blood samples from healthy individuals in Northeastern China and verified this phenotype: CYP2C19*2(G681A) AA genotype 8.2%. It shows the distribution characteristics of CYP2C19*2(G681A) in Northeast China.

Over the recent years, with the rapid development of precision medicine, gene detection has become more and more important for cancer diagnosis, prognosis, and drug selection (56–62). Several studies have shown that the metabolic efficiency of TAM was related to the genetic polymorphisms of certain P450 enzymes, thereby affecting the efficacy of drug therapy. Based on this theory, our TAM RORs can be used to predict the efficacy of TAM treatment and improve personalized endocrine therapy in patients with invasive breast cancer.
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Critical in revealing cell heterogeneity and identifying new cell subtypes, cell clustering based on single-cell RNA sequencing (scRNA-seq) is challenging. Due to the high noise, sparsity, and poor annotation of scRNA-seq data, existing state-of-the-art cell clustering methods usually ignore gene functions and gene interactions. In this study, we propose a feature extraction method, named FEGFS, to analyze scRNA-seq data, taking advantage of known gene functions. Specifically, we first derive the functional gene sets based on Gene Ontology (GO) terms and reduce their redundancy by semantic similarity analysis and gene repetitive rate reduction. Then, we apply the kernel principal component analysis to select features on each non-redundant functional gene set, and we combine the selected features (for each functional gene set) together for subsequent clustering analysis. To test the performance of FEGFS, we apply agglomerative hierarchical clustering based on FEGFS and compared it with seven state-of-the-art clustering methods on six real scRNA-seq datasets. For small datasets like Pollen and Goolam, FEGFS outperforms all methods on all four evaluation metrics including adjusted Rand index (ARI), normalized mutual information (NMI), homogeneity score (HOM), and completeness score (COM). For example, the ARIs of FEGFS are 0.955 and 0.910, respectively, on Pollen and Goolam; and those of the second-best method are only 0.938 and 0.910, respectively. For large datasets, FEGFS also outperforms most methods. For example, the ARIs of FEGFS are 0.781 on both Klein and Zeisel, which are higher than those of all other methods but slight lower than those of SC3 (0.798 and 0.807, respectively). Moreover, we demonstrate that CMF-Impute is powerful in reconstructing cell-to-cell and gene-to-gene correlation and in inferring cell lineage trajectories. As for application, take glioma as an example; we demonstrated that our clustering methods could identify important cell clusters related to glioma and also inferred key marker genes related to these cell clusters.
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Introduction

Biological tissues are composed of a variety of heterogeneous cells, and their presence will have a profound impact on the biological functions of cells. The single-cell RNA sequencing (scRNA-seq) technology (1) allows for the analysis of gene expression data at the level of individual cells. As a promising tool, scRNA-seq technology can reveal heterogeneity among cells and identify new putative cell types and cell states (2–5). Cell clustering is the main approach for cell type and cell state inference. Despite the rapid development of scRNA-seq technology, the biological fluctuation and protocol technical biases in single-cell experiments and the high dimensionality and sparsity of scRNA-seq data make cell clustering based on scRNA-seq challenging (6).

Various scRNA-seq clustering methods have been developed in recent years, most of which are based on similarity measurement between cells. For example, CORR derives cell similarity in genetic differences between cell pairs (7). SIMLR adopts multiple Gaussian kernel representations, which allows greater flexibility than a single kernel or similarity measures in defining cell-to-cell similarities (8). Seurat constructs weighted nearest neighbor graph based on typical correlation to obtain technology similarity between cells (9). SC3 constructs a consensus similarity matrix based on three measurements of distances (10). SSC (11), SSSC (12), and S3C2 (13) are sparse subspace clustering methods, which aim to describe the relations among all elements as a combination in the same subspace rather than consider pair elements only. Most of the scRNA-seq cell clustering methods derive the similarity between cell pairs by considering the complete gene expression matrix, which ignore the function of genes on cell clustering from the perspective of molecular mechanism and the impact of biological significance. Since the differences in the morphology and structure of different cells are caused by the selective expression of genes, it is more reasonable to analyze scRNA-seq data in terms of functional gene sets.

The Gene Ontology (GO) (14, 15) is a formal representation of a body of knowledge within biological domain, which consists of a set of gene classes with relations that operate between them. It describes the biological knowledge of gene and gene product with respect to three aspects: the molecular functions (MFs), cellular locations, and processes that gene products may carry out. It stands to reason that different types of cells may have different gene expression characteristics in a GO term gene set.

In this work, we propose a feature extraction method based on gene functional sets, named FEGFS, to analyze and integrate the gene expression characteristics of cells on different functional gene sets derived from GO terms (Figure 1). We select functional gene sets by gene functional enrichment analysis, and the terms semantic similarity analysis and multistep integration of gene sets for scRNA-seq data, and kernel principal component analysis (KPCA) is applied on the single-cell gene expression data of these selected gene functional sets to reduce the dimension of features, and the reduced expression data are integrated into a feature matrix. We consider cell clustering in terms of feature matrix rather than using the expression values of all genes as a whole in scRNA-seq analysis, which not only conforms to biological rules more but also can improve the cell clustering effect. To evaluate the performance of FEGFS, we use agglomerative hierarchical clustering for cell clustering on the derived feature matrix, and we compared the clustering results with seven state-of-art clustering methods on six independent datasets, and the results demonstrate that FEGFS can significantly improve clustering accuracy.




Figure 1 | The flowchart of FEGFS + clustering. (A) Gene Ontology (GO) analysis. (B) Redundancy reduction. (C) Elimination of duplicate genes. (D) Feature extraction and clustering analysis.





Method


Datasets and Data Preprocessing

We adopt six real scRNA-seq datasets in this study to evaluate the performance of FEGFS. The cell labels in each scRNA-seq dataset are known or valid in their respective studies, the sample labels of Zeisel dataset are predicted according to the experiment (16), and the sample labels of the other five datasets are obtained from experimental studies. These datasets are grouped into two levels (small sample (with number of samples ≤1,000) and large sample [with number of samples >1,000)] according to the number of cells. Pollen (17), Biase (18), Goolam (19), and Patel (20) datasets are assigned to small sample datasets. Klein (21) and Zeisel (22) datasets are assigned to large sample datasets. We summarize the details of the six real scRNA-seq datasets (Table 1). As shown in the table, the numbers of samples of these datasets range from 56 (Biase) to 3005 (Zeisel); and the numbers of cell types range from 4 (Klein) to 11 (Pollen). During our downstream analysis, the proportion of principal components retained by feature extraction of different levels datasets is also different.


Table 1 | A summary of six scRNA-seq datasets used in this study.



In order to eliminate the interference with noise genes in scRNA-seq datasets, the actual number of noise genes removed from the datasets is determined by the number of samples of the datasets. In this study, we adopt 3 Units multiplied by 1% of the number of samples in the dataset to remove noise genes (e.g., in Pollen dataset (with number of cells of 301): 3 Units × 3 (1% of samples) = 9 Units; that is, when the gene is expressed in less than nine cells, the gene is removed) (23), and the gene expression values are log-transformed with pseudo-count 1:





Gene Ontology Enrichment Analysis

GO is a widely used biological database. It consists of two aspects: one is the GO itself; that is, the terms defined by biologists and the structural relationships between them. The other is the annotation of GO, which is the relationship between gene products and the entries. As a strictly functional category, GO links the relationships between different functional categories by directed acyclic graphs (DAGs).

We use g:Profiler (24) to characterize and process the list of genes in the scRNA-seq dataset. Before processing, we first apply g:Convert to transform gene identifier into the internal format of Ensemble genes. Then we apply g:GOSt to analyze the gene table of various organisms. The algorithm is based on the gene set structure of biological term annotation. The purpose is to distinguish meaningful and meaningless biological results, reduce the importance of p-value, and eliminate the false-positive problem. Statistical enrichment analysis maps genes to known functional information sources (Biological Process (BP), Cellular Component (CC), and MF) and detects and counts the significantly rich GO nodes.



Reduce the Redundancy of Gene Ontology Term Set

In order to alleviate the redundancy of GO term sets, we apply REVIGO (25) to perform semantic similarity analysis. SimRel as the semantic similarity measure for comparison is defined (26) as follows:

 

where g1 and g2 are two GO terms, P() is the relative frequency of GO Term in UniProt database, MIA ∈ S(g1, g2), and S(g1, g2) is the common ancestor set of terms g1 and g2 in the ontology.

The p-value of each GO term that is used in function enrichment analysis and subsequent semantic similarity analysis is defined as follows:

 

where N is the number of genes in the genome that belong to the same GO level (BP, MF and CC) with considered GO term; M is the number of genes of this GO term; n is the number of genes in our input data that belong to the same GO level (BP, MF, and CC) with this GO term; and k is the number of genes in our input data that belong to the GO term.

The calculated p-value is corrected by false discovery rate (FDR) (27). In our test, we choose FDR = 0.05 as the threshold. GO nodes with FDR ≤ 0.05 are defined as significantly enriched nodes.

In order to reduce the redundancy of GO term set, we apply REVIGO to select the representative GO term for each cluster according to p-values. After the semantic similarity analysis, there are about 100–250 GO nodes in GO term set, in which gene duplication problems are very serious.

To further reduce redundancy, the gene repetitive rate matrix of GO nodes is constructed, and the calculation formula of each element in the matrix is as follows:



where gene_num{GOs} represents the number of genes in GO nodes.

The gene repetitive rate matrix is applied to merge the GO terms. Specifically, if the elements of one GO term belong to another, GO terms containing a larger number of genes are retained, while GO terms containing a smaller number are deleted; then, with 0.8 as the threshold of repetitive rate, GO terms in pairs are merged into a new terms set so as to greatly reduce the redundancy of GO terms set, and the scRNA-seq expression matrix restricted on each new term is named as functional feature matrix.



Feature Extraction and Cluster Analysis

In the process of feature extraction, after comparing several dimension reduction methods—t-distributed stochastic neighbor embedding (t-SNE) (28), multidimensional scaling (MDS), and KPCA—we choose KPCA as our feature extraction method. KPCA is a non-linear feature dimension reduction algorithm to process linear inseparable dataset, in which a non-linear mapping is used to map the samples in the input matrix X to a high-dimensional or even infinite-dimensional space (called feature space) such that the samples are linearly separable in feature space, and then PCA is applied to reduce the dimension in the high-dimensional space.

In our study, we compare several kernel methods (radial basis function, sigmoid, cosine etc.), and we choose cosine kernel method of KPCA in the data dimension reduction of functional feature matrices. The cosine kernel function is shown as follows:



Agglomerative hierarchical clustering method is applied on the reduced functional feature matrices, and we evaluate the clustering performance by adjusted Rand index (ARI) and normalized mutual information (NMI). By calculating the distances of sample set pairs, agglomerative hierarchical clustering merges the two sample sets with the minimum distance and repeats the above process by recalculating the distances of the new sample sets pairs. The distance of sample set pair is calculated by Euclidean distance D:





Evaluation Measures

In order to evaluate the effectiveness of functional feature matrix for cell clustering, we choose NMI, ARI, homogeneity score (HOM), and completeness score (COM) to quantify the consistency between the inferred and predefined cell clusters in each scRNA-seq data.

ARI is defined as follows:





where F is the number of pair samples in the same category in both the real label and the clustering prediction label, while G is the number of pair samples in different categories. N is the number of samples in the dataset.

NMI is defined as follows:



where I(F,G) is the mutual information of F and G



H(F) and H(G) are the entropy of partitions F and G; Fi is the dataset belonging to class i; and Gj is the dataset belonging to class j in the clustering results.



where N is the total number of cells.

HOM is defined as



COM is defined as



where N(Fi, Gi) is the number of samples correctly classified in the ith cluster, and N(Gi) is the total number of samples in the ith cluster. N(Fi) is the total number of samples in the ith type.



Software Availability

FEGFS is implemented in Python3 as an open-source software under the GNU General Public License, and the source code is freely available together with full documentation at https://github.com/R-c-j/FEGFS.




Result


The Construction Principle of Functional Feature Matrix

The construction of functional feature matrix is mainly divided into three steps: GO functional enrichment analysis, and GO term sets redundancy reduction and feature extraction.

In the process of GO functional enrichment analysis, the genes of real scRNA-seq data are used as the input set when statistical enrichment analysis is performed according to their molecular mechanisms. According to their MFs, cell environment, and the BPs that they participate in, the genes are divided into three types, MF, CC, and BP; taking Pollen dataset as an example, it contains 13,678 genes after preprocessing, and the ordered query is used in the functional enrichment analysis (g:Profiler), with the default options: User threshold is 0.05 and Significance threshold is G:SCS, and we get 800 GO nodes after the functional enrichment analysis.

The number of GO nodes obtained from the statistical enrichment analysis is huge (about 1,000), and the redundancy is high. We perform semantic similarity analysis on the GO term set to remove the redundant nodes by REVIGO (25), in which we choose the father GO node as the representative node in each cluster with SimRel equals 0.4. After semantic similarity analysis, the number of GO nodes is about 200 to 300, and there are many duplicates of the genes between some GO nodes. To solve this problem, we calculate the repetitive rate for any two GO nodes, and we construct gene repetitive rate matrix, which is symmetric. We preliminarily filter the completely covered GO nodes, take 0.8 as the threshold of repetitive rate and merge the nodes, and recalculate the gene repetitive rate and repeat the above process. After screening twice, the number of nodes in the GO term set reduces to about 80–150. For example, in Pollen dataset, after GO functional enrichment analysis and semantic similarity analysis, GO:0033554 (cellular response to stress) contains 810 genes, GO:0070498 (interleukin-1-mediated signaling pathway) contains 46 genes, and the gene repetitive rate between the two GO terms is 1, so GO:0070498 is filtered and GO:0033554 is reserved. After all GO nodes with gene repetitive rate of 1 are filtered, GO terms are screened twice with the gene repetitive rate of 0.8; for example, GO:0045202 (synapse) contains 10 genes, GO:0048519 (negative regulation of BP) contains 119 genes, there are nine genes in the intersection of the two terms, and the repetitive rate is 0.9 > 0.8, so GO:0045202 and GO:0048519 are combined into a new functional feature node.

We perform feature extraction on each functional feature matrix by applying KPCA. The proportion of principal components to be retained is different according to different levels of sample sets (Figure 2B). In the four small sample datasets of Pollen, Goolam, Patel, and Biase [numsample ∈ (0,1000)], we choose 40% principal component retention ratio; and in larger sample datasets, such as Klein dataset [numsample ∈ (1000,3000], we choose 60% principal component retention ratio, and in datasets with a sample size greater than 3,000, such as Zeisel dataset [numsample ∈ (1000,3000)], we use 80% of the principal component retention ratio to reduce the dimension of gene expression matrix of each functional feature matrix.




Figure 2 | (A) The clustering effect comparison of SC3, SSC, SIMLR, CORR, SinNLRR, Seurat, SSSC, and S3C2 on four datasets. (B) Line graph of retention rate based on adjusted Rand index (ARI). (C) Comparison of ARI values between K-means and agglomerative hierarchical clustering based on FEGFS.



After the above three steps of processing, we integrate all the processed functional feature matrices into a feature matrix and use it for downstream analysis (Figure 1).



Clustering Effect Evaluation

We evaluate the performance of FEGFS on six real scRNA-seq datasets by cell clustering and visualizing with t-SNE, where cells were colored according to their cell type annotations (Figure 3). In our work, we apply agglomerative hierarchical clustering on these six datasets.




Figure 3 | The t-distributed stochastic neighbor embedding (t-SNE) visualization of cells on six real single-cell RNA sequencing (scRNA-seq) datasets using different clustering methods.



To prove the effectiveness of FEGFS, we compare the results of agglomerative hierarchical clustering with other seven state-of-the-art clustering methods (Figure 2A), including SC3 (10), Seurat (9), CORR (7), SIMLR (8), SSSC (12), SinNLRR (29), and SSC (11).

In the process of comparison, all of the other methods use the same data preprocessing method as FEGFS. With the four evaluation indicators ARI, NMI, HOM, and COM, the clustering results of all methods on the six scRNA-seq datasets are shown in Figure 4, and the results of k-means clustering based on function feature matrix are shown in Figure 2C. Compared with SSC and its improved methods SSSC, our method is significantly superior in scRNA-seq datasets of Pollen, Goolam, Patel, Klein, and Zeisel. For the small sample datasets Pollen and Goolam, the highest ARI values (0.955 and 0.910) are obtained by FEGFS; even in the two larger sample datasets Zeisel and Klein, our method is only second among all the algorithms to SC3. Therefore, FEGFS can help to extract the characteristics of different cell types and promote the analysis of single-cell transcriptome data.




Figure 4 | Gene Functional Network significantly improves the performance of the existing cell type identification tool Agglomerative. The adjusted Rand index (ARI) and normalized mutual information (NMI) obtained by clustering on six scRNA-seq datasets using different cluster algorithms.





Expression Distribution of Cluster Marker Genes

An important task of scRNA-seq analysis is to be able to identify the marker gene in the cluster and to determine whether the gene is a cell-specific maker gene. FEGFS can effectively identify the corresponding cell types from the glioma data and infer that EGFR is significantly expressed in the three tumors (Figure 5). Among them, the significant expression of EGFR is inversely correlated with the expression of PDGFRA in MGH30 cells. According to the experimental findings, the heterogeneous expression of RTKs and other signaling molecules across individual glioblastoma tumor cells may impair RTK signaling and the immunogenicity of targeted receptors.




Figure 5 | Related gene expression distribution in glioma data.






Discussion

In scRNA-seq data analysis, most of the existing methods use the whole single-cell gene expression matrix for analysis, without considering the influence of gene function from the perspective of molecular mechanism and ignoring certain biological significance.

In this study, we propose a novel scRNA-seq data analysis method based on gene function enrichment analysis to divide genes into different gene functional modules and to extract the characteristics of the cells from these functional feature matrices. As a data processing method, FEGFS considers the similarity between cells more fully, and it can improve the clustering accuracy. Our results suggest that gene function is indispensable for single-cell analysis like rare cell type inference and cell type identification.

It is of note that in the process of reducing the redundancy of the gene sets, we use two methods, namely, semantic similarity analysis and reduction of gene repetition between gene sets. We test the impact of these two methods on cell clustering. The results show that semantic similarity analysis does affect the performance of cell clustering, and although the effect of reduction of gene repetition is not obvious, it reduces the redundancy of gene sets and computational time complexity (Table 2) significantly. Especially in view of the increase in the size of the scRNA-seq dataset, a good data processing method with rapid operation speed is crucial.


Table 2 | Comparison of running time.



However, FEGFS method still has a few limitations. Firstly, we need the gene ID in the scRNA-seq data to perform gene function enrichment analysis, but some scRNA-seq datasets do not provide gene ID, or the gene ID in the data cannot be matched, so these datasets cannot be considered, or the genes are deleted, which may result in the loss of some important information. Secondly, FEGFS is only combined with simple clustering method, which is not necessarily optimal. It is practicable to improve the clustering method after FEGFS analysis.
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Multiple myeloma is a heterogeneous plasma cell malignancy that remains incurable because of the tendency of relapse for most patients. Survival outcomes may vary widely due to patient and disease variables; therefore, it is necessary to establish a more accurate prognostic model to improve prognostic precision and guide clinical therapy. Here, we developed a risk score model based on myeloma gene expression profiles from three independent datasets: GSE6477, GSE13591, and GSE24080. In this model, highly survival-associated five genes, including EPAS1, ERC2, PRC1, CSGALNACT1, and CCND1, are selected by using the least absolute shrinkage and selection operator (Lasso) regression and univariate and multivariate Cox regression analyses. At last, we analyzed three validation datasets (including GSE2658, GSE136337, and MMRF datasets) to examine the prognostic efficacy of this model by dividing patients into high-risk and low-risk groups based on the median risk score. The results indicated that the survival of patients in low-risk group was greatly prolonged compared with their counterparts in the high-risk group. Therefore, the five-gene risk score model could increase the accuracy of risk stratification and provide effective prediction for the prognosis of patients and instruction for individualized clinical treatment.
Keywords: multiple myeloma, prognosis, risk score model, overall survival, prediction
INTRODUCTION
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy, which is the second most common hematological malignancy in the world (Kazandjian, 2016). There were 16,500 new cases and 10,300 deaths of MM in China in 2016; the morbidity and mortality rates increased with age, and older people were at higher risk of MM (Gerecke et al., 2016; Liu et al., 2019). The median survival in MM is approximately 6 years, with survival duration ranging from a few months to more than 10 years (Rajkumar, 2020). The International Staging System (ISS) is a widely used system for the stratification of MM patients based on easy-to-apply variables (serum beta2-microglobulin and serum albumin) (Greipp et al., 2005). In 2015, the International Myeloma Working Group (IMWG) developed the revised international staging system (R-ISS); it classifies patients into three risk groups by combining the ISS with high-risk cytogenetic abnormalities (CA) [del (17p), t (4; 14) (p16; q32), or t (14; 16) (q32; q23)] and serum lactate dehydrogenase (LDH) (Palumbo et al., 2015). For cytogenetic changes, t (4; 14), t (14; 16), t (14; 20), del (17p), and hypodiploidy have been found to be associated with high-risk diseases (Rajkumar et al., 2013; Lakshman et al., 2018).
Over the past 15 years, the survival rate of MM has improved significantly (Kumar et al., 2014). Bortezomib, lenalidomide, and dexamethasone (VRd) is the current standard of treatment for newly diagnosed MM (Rajkumar, 2020). For the treatment of recurrent MM, proteasome inhibitors, immunomodulatory substances, and classical chemotherapy agents are the main therapeutic measures (Gerecke et al., 2016). But even under these treatments, almost all patients with MM eventually relapse; the survival outcomes of MM are highly heterogeneous. Therefore, it is important to perform risk stratification for patients with MM and to find reliable prognostic biomarkers, which can better improve prognostic accuracy and guide clinical treatment (Shaughnessy et al., 2007). Comprehensive clinical information and gene expression data in public biological databases can provide opportunities to identify the prognostic signature for MM, and the biomarkers which are associated with prognostic and survival outcomes can be identified based on the gene expression of myeloma patient tissues. Studies have demonstrated that prognostic models based on the gene expression signature can predict survival outcomes in multiple independent datasets, and the discriminatory ability was also better than other combinations of traditional risk scores (Heuck et al., 2014). In addition, further validation and analysis can also be performed in combination with other clinical information from more cohorts, to provide new insights for clinical application (Cai et al., 2020).
The gene expression profiles can be used to calculate differentially expressed genes (DEGs) between myeloma patients and healthy individuals, and the DEGs may associate with the prognosis of MM patients (Alizadeh et al., 2000). Some studies have already investigated the use of gene expression profiles alone or in combination with clinical factors as an improvement to estimate patient survival risk (Fernandez-Teijeiro et al., 2004; Habermann et al., 2008). The least absolute shrinkage and selection operator (Lasso) regression is a method for variable selection; it reduces the number of variables and only retains the most influential variables by using dimensionality reduction techniques. Univariate and multivariate Cox regression analyses were performed to obtain the genes correlated with prognosis in order to produce an accurate and refined model.
In this study, we integrated multiple datasets to develop and validate an effective prognostic risk model for MM patients, which was successfully validated in additional three independent datasets to demonstrate the stability and reliability of the risk model. This model contributes to risk stratification, providing important implications for the prognosis of MM and may offer the prospect of personalized therapeutic.
MATERIALS AND METHODS
MM Dataset
We systematically searched for MM datasets that were publicly available and provided prognosis information, and the datasets must have complete survival data, including survival status and OS/PFS/EFS time. For this study, GSE6477, GSE13591, GSE24080, GSE2658, and GSE136337 were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and normalized between different arrays. Detailed clinic-cytogenetic information including t (4; 14), t (14; 16), del (17p), ISS, and R-ISS stage and survival data were included in the datasets. The MMRF CoMMpass study is a clinical trial of newly diagnosed MM patients sponsored by the Multiple Myeloma Research Foundation; the project provides clinical information (including survival data) and the expression profile data of MM patients. Because both GSE6477 and GSE13591 contained healthy individuals and MM patients, the microarray data from these two databases were used to obtain DEGs between the two groups. GSE24080, as a training dataset, contained 559 MM patients, while the testing datasets GSE2658, GSE136337, and MMRF contained 559, 256, and 559 MM patients, respectively. The study workflow is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Study flowchart of prognostic model building and validation.
Acquisition of Prognostic Associated Genes
From GSE6477 and GSE13591 dataset, healthy individuals and MM patients were screened out, and the data were combined to create an expression matrix including 20 healthy individuals and 206 MM patients. Then, we acquired the DEGs between the two groups, genes with |log fold change| > 1 and Benjamini–Hochberg–adjusted p < 0.05 were considered as significant DEGs. At last, the DEGs were overlapped with 20,174 genes in the GSE24080 dataset to generate the matrix of prognostic model–associated genes.
Lasso Regression Analysis
The GSE24080 dataset was used as the training dataset to construct the risk score model. In order to improve the prediction accuracy and interpretability of the prognostic model, Lasso regression was used to select potential prognostic genes. In this result, all genes have their own relative coefficients, and with the continuous selection and simulation of significant features, we can acquire an optimal model with the parameter lambda.min which contains the top features for constructing the risk score model. In the receiver operating characteristic (ROC) curve, the survival outcome was predicted by the patients’ risk score, and the area under curve (AUC) of the model was used to demonstrate the prediction ability of the Lasso model.
Construction and Validation of Prognostic Risk Score Model
We used the univariate Cox regression to select genes correlated with prognosis (p < 0.05). Next, the Kaplan–Meier analysis was performed to screen for the genes significantly associated with survival outcome. Then, multivariate Cox regression was used to analyze these key genes (p < 0.05) prior to establishing the prognostic risk score model. The risk scores of all samples were calculated according to the equation: risk score = ∑coefficient value ∗ expression level.
The GSE2658, GSE136337 and MMRF datasets, were used for validation. With the median risk scores as the cut-off value to classify the high-risk and low-risk groups, we used the log-rank test to compare the difference between the two groups in both training and testing datasets.
Statistical Analysis
The R software “sva” package was used to perform correction and acquire the integrated expression matrix by removing batch effects between different datasets. The R software “Limma” package was used to obtain DEGs, and the “Glmnet” package was used to further construct the model. Survival was compared using the Kaplan–Meier analysis with log-rank tests. Univariate and multivariate Cox regression analyses were performed for subsequent analyses. The R software “ggpubr” package was used to visualize the risk scores of patients in different survival states with the Wilcoxon tests. The R software “survival” and “survminer” packages were used to divide the patients into high-risk and low-risk groups by the median risk score. The R software vision 3.6.3 was used for statistical analyses. A two-sided p < 0.05 was considered statistically significant.
RESULTS
Identification of Prognostic Model–Associated Genes
To develop the prognostic model for MM, GSE6477 dataset and GSE13591 dataset were used to acquire the DEGs between MM patients and healthy individuals. A total of 304 DEGs were identified with the cutoffs of |log fold change| > 1 and Benjamini–Hochberg–adjusted p < 0.05, among which, 90 genes were upregulated and 214 genes were downregulated, as shown in the volcano plot (Supplementary Figure S1). Next, the GSE24080 dataset was used as the training dataset and to construct the prognostic model, 20,174 genes from 559 MM patients were obtained from it. By overlapping these genes with the 304 DEGs obtained above, we acquired a matrix containing 304 genes as the prognostic model–associated genes (Supplementary Table S1).
Construction of Lasso Regression Model
We used Lasso regression to select the prognostic-related genes. In this regression, the contributions of all the genes were weighted by their relative coefficients. Cross validation was used to get the best performance of the model; the left dashed line represents lambda.min, which was utilized to generate the most accurate model by minimizing the prediction error (Figure 2A). Finally, 304 genes were narrowed down to 38 potential predictor variables (Supplementary Table S2) with nonzero coefficients in the Lasso regression model. The final risk score can be acquired by multiplying the expression of each gene with its corresponding coefficient and adding them together; then, we used the median of the risk score as the cut-off value to divide the high-risk and low-risk groups. By comparing the two groups, we found the 38-gene predictive model could distinguish the survival and death events effectively (Wilcoxon test p < 2.2e-16, Figure 2B). In the ROC curve, the area under curve (AUC) of the predictive model is 0.785, indicating that the predictive ability of the model is favorable (Figure 2C).
[image: Figure 2]FIGURE 2 | Screen prognostic genes by Lasso regression analysis. (A) Acquisition of the best Lambda value. The left dashed line represents lambda.min, the right dashed line represents lambda.1se. (B) To distinguish the survival and death events by the model based on lambda.min. 0: alive, 1: death. (C) ROC curve is used to evaluate the predictive performance of the model.
Construction of the Prognostic Model
Next, the univariate Cox regression analysis and Kaplan–Meier survival analysis were used to filter the target genes, and the results showed 20 genes (Supplementary Table S3) in the GSE24080 dataset were significantly associated with prognosis. To further screen the key genes, we performed multivariate Cox regression analysis of the 20 genes, and finally we obtained a 11-gene prognostic model which was significantly associated with the prognosis in MM patients (Supplementary Table S4). We further screened the 11 genes and ordered them according to the p value. The data indicated that the log-rank p values of all genes in the model were minimal (log-rank p < 0.01), when containing the top four or top five genes. To obtain the optimal model, we compared the prediction results of the four-gene model and the five-gene model for the prognosis of MM. Results showed that when applying the four-gene model in the testing dataset (GSE136337), Kaplan–Meier curves of PFS showed no difference between the high-risk and low-risk groups divided by the median risk score (log-rank p = 0.092, Supplementary Figure S1B), which indicated that the four-gene model was not as valid as the five-gene model; the five-gene model can predict the prognostic outcome more effectively. Therefore, the five genes were used to build a risk score model, including EPAS1, ERC2, PRC1, CSGALNACT1, and CCND1, the multivariate Cox regression analysis showed them significantly associated with prognosis in MM patients (Figure 3A). Among them, EPAS1, ERC2, CSGALNACT1, and CCND (hazard ratio <1) were protective genes, while PRC1 was a harmful gene (hazard ratio >1). Then MM patients were divided into the high-risk and low-risk groups by the median risk score, and the KM analysis was used to compare the overall survival (OS) difference between the two groups. As shown in Figures 3B–F, we found that the differences between each gene’s two groups were highly significant. The high expressions of PRC1 were infaust for survival outcome in MM patients, but other genes are beneficial.
[image: Figure 3]FIGURE 3 | Construction of the five-gene risk score model. (A) Multivariate Cox regression analysis of the five genes (**p < 0.01 and ***p < 0.001). The figure also showed Hazard ratio, Global log-rank p, C-index, and AIC. (B–F) Kaplan–Meier survival of five prognostic genes: EPAS1, ERC2, PRC1, CSGALNACT1, and CCND1.
Next, the dot plots were used to compare the survival of patients in the high-risk and low-risk groups and found that the survival of the low-risk group was higher than the survival of the high-risk group (Figures 4A,B). The gene expression levels in the heat map showed that four genes were decreased in the high-risk group (Figure 4C) and consistent with their hazard ratio (HR) values (HR < 1). The time-dependent ROC analysis was used to assess the predictive ability of the model, the AUC values for 1-year, 3-year, and 5-year survival were 0.685, 0.735, and 0.676, respectively (Figure 4D). In the GSE24080 dataset, to verify the predictive ability of the five-gene risk score model in the training dataset, the patients were divided into high-risk and low-risk groups by the median risk score. We found the difference between the two groups was highly significant in event-free survival (EFS) and OS (log-rank p < 0.0001; Figures 4E,F). The results demonstrated that the five-gene prognostic model was significantly associated with prognosis in MM patients.
[image: Figure 4]FIGURE 4 | Risk score model based on five-gene signature in the training dataset. (A) MM patients were divided into high-risk and low-risk groups based on the median risk score. (B) Scatter plot of survival time and status in the high-risk and low-risk groups. (C) Gene expression heat map for five prognostic genes in the high-risk and low-risk groups. (D) Assessment of the predictive ability of the model by time-dependent ROC analysis. (E,F) Kaplan–Meier curves of overall survival and event-free survival for the high-risk group and low-risk group in MM patients (log-rank test, p < 0.0001).
Validation of the Five-Gene Risk Score Model
In order to validate the predictive ability of the five-gene risk score model, we analyzed three testing datasets: the MMRF dataset, GSE2658, and GSE136337 datasets. In these testing datasets, the median risk score was taken as the cut-off value to divide high-risk and low-risk groups; then Kaplan–Meier survival curves were used to distinguish the differences between the two groups in MM patients. In the MMRF dataset, the survival information contains OS and progress-free survival (PFS), both survival information could be used to verify the five-gene risk score model. The results showed that the differences between the two groups were highly significant in OS (log-rank p < 0.001) as well as PFS (log-rank p < 0.001), and the high-risk group predicted poor survival outcome, in line with the training dataset (Figures 5A,B). Similarly, both in the GSE2658 (Figure 5C) GSE136337 datasets (Figures 5D,E), the high-risk groups showed significantly shorter OS than the low-risk groups and the log-rank p values were <0.0001, 0.00017, and 0.012, respectively. Taken together, our five-gene risk score model was confirmed to be an independent prognostic factor in three testing datasets and can effectively predict the prognostic risk of MM patients.
[image: Figure 5]FIGURE 5 | Validation of the five-gene risk score model in the testing datasets by Kaplan–Meier curves. (A) OS in the MMRF dataset (p = 0.00082). (B) PFS in the MMRF dataset (p = 0.00021). (C) OS in GSE2658 (p < 0.0001). (D) OS in GSE136337 (p = 0.00017). (E) PFS in GSE136337 (p = 0.012). MM patients were divided into high-risk and low-risk groups by the median risk score. The difference between the two groups was tested by the log-rank test.
Identification of Genetic Risk Indicators
Del (17p), t (4; 14), and t (14; 16) are defined as high-risk genetic factors by the IMWG. To verify the predictive ability of the five-gene risk score model in patients with or without these genetic factors, we analyzed the GSE136337 dataset which contains these indicators. First, we divided MM patients into two subgroups based on absence/presence del (17p), and the number of these patients were 411 and 15, respectively. Then, the patients were further subdivided into high-risk and low-risk groups by the median risk score. Kaplan–Meier curves of PFS showed no difference between the del (17p) FALSE and del (17p) TRUE group (log-rank p = 0.86), which indicated that del (17p) was not an effective indicator for prognostic outcome (Supplementary Figure S2A). However, in patients without del (17p), the difference between two groups was statistically significant (log-rank p < 0.0001, Figure 6A), with the high-risk group showing shorter overall survival than the low-risk group, whereas in patients with del (17p), the difference was not significant (log-rank p = 0.49; Supplementary Figure S2B).
[image: Figure 6]FIGURE 6 | Validation of the five-gene risk score model in patients without genetic risk indicators by Kaplan–Meier curves. (A) MM patients without del (17p) (p = 0.0002). (B) MM patients without t (4,14) (p = 0.00039). (C) MM patients without t (14,16) (p = 0.00015). MM patients were divided into high-risk and low-risk groups by the median risk score.
Similarly, the results showed that there was no difference between the t (4,14) FALSE and t (4,14) TRUE group, indicating t (4,14) was not an effective indicator for prognostic outcomes (log-rank p = 0.98, Supplementary Figure S2C). In patients without t (4,14), the low-risk group showed higher overall survival than the high-risk group (log-rank p < 0.0001; Figure 6B). But for patients with t (4,14), the difference between the two groups was not significant (log-rank p = 0.1; Supplementary Figure S2D). Since there was only 1 MM patient with t (14,16), t (14,16) also cannot be used as a predictor of prognosis (log-rank p = 0.48, Supplementary Figure S2E). For 425 MM patients without t (14,16), the result showed that the survival was longer in the low-risk group than in the high-risk group (log-rank p < 0.0001; Figure 6C). In conclusion, our five-gene risk score model could effectively predict the prognosis of MM patients without high-risk genetic factors.
Identification of Clinical Risk Indicators
R_ISS and ISS were the widely used systems for the stratification of MM patients. In the MMRF dataset, the difference between different stages were highly significant (log-rank p < 0.0001; Supplementary Figures S3A,B). The ISS and R_ISS systems divided MM patients into three stages, and stage II and stage III were considered as progressive stages for MM patients. Thus, we verified the model’s predictive ability in the patients with these two stages, and the results showed that by combining the data from the ISS stage II and III, the difference in OS between the high-risk and low-risk groups was highly significant (log-rank p = 0.0049; Figure 7A), the survival of the low-risk group was longer than the survival of high-risk group. However, for the ISS stage I, the difference between the two groups was not discernible (log-rank p = 0.16; Supplementary Figure S3C). For R-ISS, we performed the same analysis, broadly consistent with the above. For stage II and III, the difference between the high-risk and low-risk groups was significant (log-rank p = 0.01; Figure 7B); stage I was not significant (log-rank p = 0.7; Supplementary Figure S3D). As the disease progressed, the risk scores became higher. The risk scores were significantly higher in stage II and III patients than in stage I patients in the ISS (Wilcoxon test p = 0.00045, Figure 7C) and R-ISS (Wilcoxon test p = 0.00076, Figure 7D). In addition, for ISS, when comparing stage II and stage III patients with stage I patients separately, the difference of risk scores between two stages were significant (Wilcoxon test p < 0.05). But the difference was not significant between stage II and stage III patients (Wilcoxon test p = 0.1). For R-ISS, when comparing stage I patients, stage II patients, and stage III patients separately, the risk scores between these stages were highly significant (Wilcoxon test p < 0.05, Supplementary Figure S3E,F). In conclusion, for high-risk ISS and R_ISS stage patients, the five-gene risk score model was confirmed to be an independent prognostic factor and can be further used to predict the prognostic outcome more accurately.
[image: Figure 7]FIGURE 7 | Validation of the five-gene risk score model in ISS and R_ISS. (A) Kaplan–Meier curves of MM patients in stage II and III of ISS (p = 0.0049). (B) Kaplan–Meier curves of MM patients in stage II and III of R-ISS (p = 0.01). (C) Survival differences between stage I and stage II and III of ISS (p = 0.00045). (D) Survival differences between stage I and stage II and III of R_ISS (p = 0.00076). MM patients were divided into high-risk and low-risk groups by the median risk score.
DISCUSSION
MM is a malignancy of terminally differentiated plasma cells, which in most cases remain incurable, the MM cells are mainly resident in the bone marrow (Kumar et al., 2017). Patients suffering from MM often display heterogeneous clinical outcomes, and MM remains a challenge due to the tendency to relapses for most patients (Sonneveld and Broijl, 2016). Among patients receiving the same treatments, survival outcomes can vary widely. In this regard, treatment options for individualized treatment are lacking.
Therefore, a prognostic signature beyond the current staging system is needed to establish to improve prognostic precision and guide clinical therapy. Many studies have found that gene transcription levels are closely related to tumor prognosis and biomarkers have been studied to improve prediction accuracy. In this study, we integrated public MM datasets and constructed a five-gene prognostic risk score model. The results demonstrated its validity in three independent datasets. The risk score model was confirmed to be an independent prognostic factor in multiple analyses that included genetic factors and clinical factors. Compared with other prognostic models, our model predicted survival outcomes effectively and were applied to predict the prognosis of patients with high-risk ISS/R-ISS stage or patients without high-risk genetic factors innovatively. As shown in Figure 6, for patients without del (17p), t (4,14), and t (14,16), the difference between two groups was statistically significant, the high-risk group showed shorter overall survival than the low-risk group.
The five genes in the risk score model: Endothelial PAS domain-containing protein 1 (EPAS1), often known as HIF2α, is a type of hypoxia-inducible factor (Tian et al., 1997). In colorectal carcinoma, the EPAS1 protein expression inversely correlated with higher tumor grade and is associated with poor prognosis (Baba et al., 2010). ERC2 (ELKS/RAB6-Interacting/CAST Family Member 2) is a protein-coding gene located in presynaptic active zones (Ko et al., 2006). In renal-cell carcinomas (Arai et al., 2014), frequent genetic and transcriptional inactivation of ERC2 occurs, suggesting that ERC2 may be involved in cancer progression. PRC1 (protein regulator of cytokinesis-1) belongs to the microtubule-associated protein family and is involved in cytokinesis. PRC1 was significantly overexpressed in breast cancer and lung adenocarcinoma (Shimo et al., 2007; Zhan et al., 2017), despite the possible molecular mechanisms have not been fully elucidated. CSGALNACT1 (chondroitin sulfate N-acetylgalactosaminyltransferase 1) encodes a protein involved in glycos–aminoglycan chain synthesis and modifications. Studies showed that in myeloma, CSGALNACT1 was under-expressed in MM cells compared to normal bone marrow plasma cells, which suggest that the overexpression of CSGALNACT1 is associated with a good prognosis (Bret et al., 2009). CCND1 (cyclin D1) is involved in regulating cell cycle and transcriptional processes. Previous studies have found that in myeloma, the dysregulation of CCND1 is associated with oncogenic event in patients (Padhi et al., 2013), but further functional studies are needed to validate.
The advantage of our research is large sample sizes, five GEO datasets, and the MMRF dataset are used for system analysis; and a variety of algorithms are used to explore the optimal prognostic model. For survival information (OS, PFS, and EFS) in three testing datasets, the five-gene risk score model also acquired effective prognostic predictions; the survival of low-risk group was higher than the survival in the high-risk group. For genetic factors [del (17p), t (4; 14), and t (14; 16)] and clinical factors (ISS and R-ISS), adding the model can increase the prediction accuracy significantly. All these results demonstrate the stability and reliability of the model, which is an independent predictor of survival, can identify high-/low-risk patients and provide effective treatment recommendations. More importantly, in previous studies, these five genes have been confirmed to be associated with tumor, so further functional studies are needed to evaluate the roles of five genes in myeloma.
Despite the model is effective in predicting prognosis, there were still some shortcomings. First, we used multiple datasets, but there are biases between different platforms which may cause differences in results. Second, this is a retrospective study; further prospective studies are needed to confirm the results. Third, the contribution of each gene in the five-gene risk score model is unknown, further functional studies are needed to be validated.
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Ferroptosis is associated with the prognosis and therapeutic responses of patients with various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions. Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical data were downloaded from TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model, which was verified in two test cohorts. Risk scores for patients with stomach cancer were calculated, and patients were divided into two risk groups. The low-risk group, based on the median value, had a longer overall survival time in the KM curve, and a lower proportion of dead patients in the survival distribution curve. Potential mechanisms and possible functions were revealed using GSEA and the ceRNA network. By integrating clinical information, the association between lncRNAs and clinical features was analyzed and several features affecting prognosis were identified. Then, a nomogram was developed to predict survival rates, and its good predictive performance was indicated by a relatively high C-index (0.67118161) and a good match in calibration curves. Next, the association between these lncRNAs and therapy was explored. Patients in the low-risk group had an immune-activating environment, higher immune scores, higher TMB, lower TIDE scores, and higher expression of immune checkpoints, suggesting they might receive a greater benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was observed. In summary, this model had guiding significance for prognosis and personalized therapy. It helped screen patients with stomach cancer who might benefit from immunotherapy and guided the selection of personalized chemotherapeutic drugs.
Keywords: stomach cancer, ferroptosis, prognostic, lncRNA, immunotherapy, chemotherapy
INTRODUCTION
Stomach cancer is a malignant tumor worldwide. Research has shown that gastric cancer ranks fifth in global incidence and sixth in mortality, with over one million new cases and an estimated 769,000 deaths in 2020 (Sung et al., 2021). The AJCC/UICC TNM staging system has been used to predict prognosis for many years (Marano et al., 2015). However, due to the complexity and high heterogeneity of stomach cancer, patients with the same TNM stratification sometimes present distinct prognoses. Hence the development of novel and effective biological markers to predict prognosis is urgently needed. Treatment strategies for stomach cancer currently include endoscopic resection, surgery, perioperative or adjuvant chemotherapy, and targeted therapy (Smyth et al., 2020). The treatment efficacy in patients is affected by the chosen treatment strategy. Hence, biological markers of gastric cancer for personalized treatment, including selecting effective strategies and avoiding excessive treatment, are important.
Ferroptosis is a form of cell death that differs from apoptosis and autophagy in morphology, biochemistry, and genetics (Dixon et al., 2012). Ferroptosis-inducing factors result in the accumulation of reactive oxygen species by affecting glutathione peroxidase activities, which regulates cell death (Li et al., 2020). Recently, the involvement of ferroptosis in tumor suppression has received increasing attention (Lang et al., 2019; Liang et al., 2019; Lei et al., 2020; Tang et al., 2020). In addition, ferroptosis is associated with cancer therapy responses, such as immunotherapy, radiotherapy, and chemotherapy. CD8+ T cells activated by immunotherapy enhance the ferroptosis-specific lipid peroxidation of tumor cells to improve the antitumor efficacy of immunotherapy (Wang W. et al., 2019). Biomimetic magnetic nanoparticles, Fe3O4-SAS@PLT, sensitize cells to ferroptosis, improving the cancer immunotherapy response rate of noninflammatory tumors (Jiang et al., 2020). Ferroptosis agonists increase but ferroptosis antagonists limit radiotherapy efficacy in tumors (Lang et al., 2019). The ferroptosis inducer erastin increases the sensitivity of acute myeloid leukemia cells to chemotherapeutic agents in a RAS-independent manner (Yu et al., 2015). Therefore, biomarkers related to ferroptosis may have the potential to predict the prognosis and therapeutic response.
Long non-coding RNAs (lncRNAs) are a type of nonprotein-coding RNA with a length of >200 nucleotides (Alexander et al., 2010). A large number of lncRNAs are associated with various cancers, exhibiting antitumor or oncogenic functions. Alterations in lncRNA expression and their mutations are involved in tumorigenesis and metastasis (Bhan et al., 2017). Dysregulation of specific lncRNAs is closely related to the ferroptosis process in various malignant tumors (Wu Y et al., 2020). LINC00336 binds the RNA-binding protein ELAVL1, inhibiting ferroptosis in lung cancer (Wang M. et al., 2019). The lncRNA P53RRA promotes ferroptosis and apoptosis by affecting the transcription of several metabolic genes (Mao et al., 2018). However, relatively few studies have assessed the roles of lncRNAs in the ferroptosis process in stomach cancer.
In this study, the potential associations of ferroptosis-related lncRNAs with prognosis and treatment efficacy in patients with stomach cancer were explored. By integrating The Cancer Genome Atlas (TCGA) and the FerrDb databases, a prognostic model based on 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) was constructed, and patients were divided into different risk subgroups based on risk scores. The biological mechanism underlying different prognoses and the functions of these 10 lncRNAs were revealed. Then, the association between these lncRNAs and clinicopathological features was analyzed and several clinical factors related to prognosis were used to construct a nomogram that predicted the overall survival (OS) probability. Next, the association between this model and treatment efficacy was explored. Immune infiltration, immune checkpoint inhibition therapy, and sensitivity to chemotherapeutic drugs were analyzed. We aimed to provide effective biomarkers for predicting the prognosis and therapeutic response of patients with stomach cancer.
MATERIALS AND METHODS
Data Mining and Processing
The transcriptional expression and corresponding clinical data of stomach cancer samples were downloaded from UCSC Xena1 (Goldman et al., 2020). The miRNA expression was obtained from TCGA2 (Hutter and Zenklusen, 2018). The known 259 ferroptosis-related genes were downloaded from the FerrDb database3 (Zhou and Bao, 2020). Samples without clinical information and OS times less than 30 days were deserted. LncRNAs and mRNAs were annotated according to annotated files downloaded from the GENCODE project4 (Frankish et al., 2019). Gene expression was transformed into Transcripts Per Kilobase of exon model per Million mapped reads (TPM) format to eliminate the effects of sequencing depth and gene length. Finally, 337 STAD samples were divided into a training cohort and a test cohort by 2:1 in the “caret” R package.
Construction of a Prognostic Model
Spearman correlation analysis was conducted to screen lncRNAs related to ferroptosis with the condition of “p-value <0.01 and absolute values of correlation coefficients ≥0.5”. Firstly, univariate Cox proportional hazards regression (UniCox) analysis was used to screen lncRNAs associated with overall survival. All these lncRNAs were further enrolled into Least absolute shrinkage and selection operator (Lasso) analysis for dimension reduction in the “glmnet” R package. Then, prognostic lncRNAs, as risk signatures, were identified and used to construct a prognostic model in Multivariate Cox proportional hazards regression (MultiCox) analysis. Risk scores were calculated in a linear combination of expression values and regression coefficients of risk signatures. Based on the median value of risk scores in the training cohort, patients could be divided into the high- and low-risk groups. A Sankey plot was plotted to depict the relationship of ferroptosis-related genes, screened lncRNAs associated with prognosis and ferroptosis, and protect or risk roles to OS in the “ggalluvial” R package.
Assessment and Validation in a Prognostic Model
Considering the specialty of survival status, time-independent ROC curves, along with Area under these ROCs, were done to assess the sensitivity, and specificity of the prognostic model in the “timeROC” R package. Survival probability was compared between the high- and low-risk groups by Kaplan–Meier (KM) survival analysis. The risk score curve, the survival status distribution curve, and the expression heatmap were plotted. In addition, the expression of lncRNA signatures between the high- and low-risk groups was compared with the Mann-Whitney U test. Significance levels were annotated on the right side. All these analyses were conducted in two test cohorts to validate the results. In addition, survival rates of signatures with different expression levels were analyzed in the KM curves, which again indicated their roles to OS.
Risk Signatures and Clinical Factors
Overall risk scores and expression of these lncRNAs in different clinical subgroups were compared using the Mann-Whitney U test in the test2 cohort. Clinical factors included age, gender, neoplasm histological grade, pathological T, pathological M, pathological N, and tumor stage. p < 0.05 was thought to have a significant difference.
Construction and Assessment of a Nomogram
UniCox analysis was used to identify clinicopathological factors related to prognosis in the test2 cohort, with the screening condition of p < 0.05. A nomogram was constructed to predict OS probabilities at 1-, 3-, and 5-years by integrating these prognostic features. The concordance index (C-index) was calculated to assess the performance of this nomogram. And calibration curves at 1-, 3-, 5-years were plotted to assess agreement between the predicted and actual OS rates in the “rms” R package.
Function Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was used to elucidate underlying biological mechanisms resulting in differences in the prognoses of two risk subgroups, which was performed in GSEA V4.1.0 software. NOM p-value < 0.05, FDR q-value < 0.25, and |NES| > 1 were the cutoff criterion. A ceRNA network was constructed to reveal the functions of lncRNA signatures, which was displayed by Cytoscape V3.7.1 software. Firstly, 171 DEmiRNAs and 4,288 DEmRNAs between the high- and low-risk group in the test2 cohort were identified in the “edger” R package. Next, lncRNA signatures were enrolled into the miRCode database5 (Jeggari et al., 2012) to predict corresponding miRNAs, and then the lncRNA-miRNA axes were built by taking intersection with DEmiRNAs. Subsequently, target mRNAs were obtained by integrating DEmRNAs, and the predicted results from TargetScan6 (Agarwal et al., 2015), miRDB7 (Chen and Wang, 2020), and miRTarBase8 (Huang et al., 2020) database. Predicted mRNAs, found in at least 2 databases, were selected. Finally, the GO terms in biological process (BP) and the KEGG pathways were revealed via the “clusterProfiler” R package. p-value and q-value were both 0.05 as cutoff values.
Evaluation of Immune Infiltration
Single-sample Gene Set Enrichment Analysis (ssGSEA) was performed to quantify immune infiltration between two risk groups in the “gsva” R package. The immune activity of 16 immune cells and 13 immune functions was quantified in the “gsva” R package. The higher the ssGSEA score, the stronger the immune activity. The immune difference between the two risk groups was depicted in the heatmap and violin plots. In addition, stromal scores and immune scores for patients with STAD were calculated in the“estimate” R package by applying the ESTIMATE algorithm (Yoshihara et al., 2013). The stromal and immune scores in risk subgroups were compared in violin plots.
Immune Checkpoint Therapy
Tumor mutation burden (TMB), defined as the number of somatic mutations per 1000,000 bases, was a biomarker that predicted the efficacy of immunotherapy. Tumor mutation data were downloaded from the TCGA database9 (Hutter and Zenklusen, 2018), and the TMB between the two risk groups was calculated and compared. Besides, gene mutations of patients with STAD were presented via the “maftools” R package. The top 20 genes with the most mutations were selected. Tumor Immune Dysfunction and Exclusion (TIDE) scores for patients, which also did help to predict immune checkpoint inhibitor (ICI) therapy response, were calculated in the TIDE database10 (Fu et al., 2020). The TIDE scores in risk subgroups were compared in violin plots. Finally, the expression of known immune checkpoints between the high- and low-risk groups was compared.
Sensitivity to Chemotherapy Drugs
The half-maximal inhibitory concentration (IC50) values of chemotherapeutic drugs were predicted in the “pRRophetic” R package. By building statistical models from gene expression and drug sensitivity data in a very large panel of cancer cell lines, this package can predict the chemotherapeutic response from Tumor Gene Expression Levels (Geeleher et al., 2014). We explored 5 common chemotherapeutic drugs for stomach cancer, including mitomycin. C, cisplatin, docetaxel, etoposide, and paclitaxel.
Statistical Analysis
All data were processed in the R 4.1.0 software. The difference in two distinct subgroups was compared with the Mann-Whitney U test. p-value <0.05 was a criterion of statistically significant differences.
RESULTS
Data and Corresponding Clinicopathological Features
A flow chart of data process and analysis in this study was depicted (Figure 1). After data preprocessing and partitioning, there were 225 STAD samples in the training cohort, 112 STAD samples in the test1 cohort, and 337 STAD samples in the test2 cohort. Their clinicopathological features were summarized (Table 1).
[image: Figure 1]FIGURE 1 | The flow chart in this study.
TABLE 1 | Clinicopathologic characteristics of patients with STAD in the training cohort and two test cohorts.
[image: Table 1]Prognostic Model Construction
To identify lncRNAs associated with prognosis and ferroptosis, spearman coefficient, and UniCox analysis were conducted and 109 lncRNAs were identified. Then Lasso analysis was applied to reduce redundancy and simplify models. When partial likelihood deviance was minimal, 32 candidate lncRNAs were obtained as candidates (Figures 2A,B). After MultiCox analysis, 10 ferroptosis-related lncRNAs were identified and used to construct a prognostic model (Figure 2C; Supplementary Table S2). A Sankey diagram was applied to display the relationship of ferroptosis-related genes, lncRNAs in the model, and their roles in OS. AC012020.1 and AC243829.4 were protective factors and the others were risk factors for OS (Figure 2D). The formula was shown below:
[image: Figure 2]FIGURE 2 | Construction of a prognostic model based on ferroptosis-related lncRNAs. (A, B) Variable coefficients and the partial likelihood deviance under different lambda in the Lasso analysis. (C) 10 independent prognostic lncRNAs were found via the MultiCox regression analysis. (D) A Sankey diagram showed the relationship of ferroptosis-related genes, screened 10 lncRNAs, and protect or risk roles in OS.
Risk Score = 2.214344584 * ExpAC009299.2 − 0.859698908 * ExpAC012020.1 + 0.68393393 * ExpAC092723.2 + 1.037748564 * ExpAC093642.1 − 1.181411845 * ExpAC243829.4 + 0.815962314 * ExpAL121748.1 + 0.188412024 * ExpFLNB-AS1 + 0.058077818 * ExpLINC01614 + 0.384845713 * ExpLINC02485 + 0.44150546 * ExpLINC02728.
Assessment and Validation
Risk scores for all patients with STAD were calculated, and patients were divided into high- and low-risk groups, based on the median score of 0.815527251 in the training cohort. The predictive sensitivity and specificity of this prognostic model were assessed by constructing time-independent ROC curves. The AUCs of ROC curves at 1-, 3-, and 5-years were 0.683, 0.763, and 0.849, respectively, which indicated good performance (Figure 3A). The KM curve showed that the high-risk subgroup had a shorter overall survival time (Figure 3B). Risk scores for patients with STAD were presented in ascending order (Figure 3C). The survival distribution curve showed a higher proportion of dead patients in the high-risk group and a lower proportion of dead patients in the low-risk group (Figure 3D). Compared with the low-risk group, the expression levels of eight lncRNA signatures were significantly upregulated in the high-risk group, while AC243829.4 expression was reversed and AC012020.1 tended to be downregulated (Figure 3E). The same analyses were conducted to validate in the test1 cohort containing new external samples and the test2 cohort containing all STAD samples. Similar results were obtained, except that the differences in the expression of several lncRNAs were not significant in the test1 cohort, potentially due to its small sample size (Supplementary Figures S1, S2). The KM survival analysis of 10 lncRNAs showed that higher expression of AL121748.1, LINC01614, and AC009299.2 was associated with a shorter OS probability, which again indicated their risk roles (Supplementary Figure S3).
[image: Figure 3]FIGURE 3 | Assessment of the prognostic model in the training cohort. (A) Time-independent ROC curves along with their AUC were conducted to assess the sensitivity and specificity. (B) The KM survival curves showed a higher survival rate in the low-risk group. (C) Risk scores for patients with STAD were presented in ascending order. (D) The survival status distribution curve showed a higher proportion of dead patients in the high-risk group. (E) The expression heatmap of these 10 lncRNAs was plotted and significance levels were annotated on the right side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
Signatures and Clinical Factors
Risk scores for different clinical subgroups were compared in the test2 cohort to elucidate the association between the prognostic model and clinical factors. Patients with distant metastases had higher risk scores, and patients with pathological T3 or T4 tended to higher risk scores. However, no significant differences were observed in other clinical subgroups (Supplementary Figures S4, S5A). KM survival analyses of pathological M subgroups were conducted to determine whether clinical factors affected the prognostic performance of this model. Patients with higher risk scores in the pathological M0 subgroup still had shorter overall survival time (Supplementary Figure S5B). A statistically significant difference was not observed, but a trend toward a difference was identified in the pathological M1 group, potentially because of the limited number of 22 samples (Supplementary Figure S5C). These analyses indicated that risk scores predict OS independently. Gene expression levels in different clinical subgroups were analyzed to further explore the potential link between the signatures and clinicopathological features. The expression of four lncRNAs was associated with age (Supplementary Figure S6A), but not with gender (Supplementary Figure S6B). AC093642.1, AC243829.4, AL121748.1, LINC01614, and LINC02728 were expressed at higher levels in the higher neoplasm histological grade group (Supplementary Figure S6C). Only the expression of AC009299.2 and FLNB-AS1 in the tumor stage subgroups was significantly different (Supplementary Figure S6D). The expression of AC009299.2 and AL121748.1 in the pathological T subgroups was significantly different (Supplementary Figure S6E), but no differences in the pathological M subgroups (Supplementary Figure S6F). Compared with the pathological N0 or N1 group, the expression of AC009299.2, AC093642.1, AL121748.1, and FLNB-AS1 was significantly different in the pathological N2 or N3 group (Supplementary Figure S6G). The results from analyses between 10 signatures and clinical features again indicated roles for some lncRNAs as risk factors, especially AC009299.2.
Nomogram Construction and Assessment
Using the prognostic factors, a nomogram was built to predict the survival rates of patients with STAD. The UniCox analysis identified several factors affecting prognosis, including age, pathological N, tumor stage, and risk score (Figure 4A). This nomogram was used to predict the 1-, 3-, and 5-years overall survival rates of patients with STAD (Figure 4B). The C-index was 0.67118161, and the calibration curves at 1-, 3-, and 5-years showed a good match between the predicted and actual OS rates (Figures 4C–E).
[image: Figure 4]FIGURE 4 | Construction and assessment of a nomogram in the test2 cohort. (A) Four factors including age, pathological N, tumor Stage, and risk score, were found to be related to prognosis. (B) A nomogram was constructed to predict overall survival rates at 1-, 3-, and 5-years. (C–E) Calibration curves were plotted to assess agreement between the predicted and actual OS rates.
Functional Analysis
The underlying biological mechanisms resulting in differences in the prognoses of the two risk subgroups were elucidated by conducting KEGG pathway analysis with GSEA software in the test2 cohort. Genes in the low-risk group were enriched in multiple pathways, including oxidative phosphorylation, glutathione metabolism, and glyoxylate and dicarboxylate metabolism. Genes in the high-risk group were significantly enriched in the TGF-beta signaling pathway, adherens junction, and MAPK signaling pathway, among others (Figure 5). A ceRNA network was constructed, and functional enrichment analysis based on target mRNAs was conducted to reveal the functions of these 10 lncRNAs. LncRNA-miRNA-mRNA axes were displayed (Figure 6; Supplementary Table S3). Five lncRNAs (AC093642.1, LINC02485, FLNB-AS1, LINC02728, and AC009299.2) regulated the expression of 73 mRNAs through the corresponding 10 miRNAs, thus participating in a variety of biological processes. Functional enrichment analysis identified GO terms in BP and KEGG pathways (Supplementary Table S4). The top 20 results were shown (Supplementary Figure S7).
[image: Figure 5]FIGURE 5 | The enriched KEGG pathways were revealed in the two risk groups via GSEA software. NOM p-value < 0.05, FDR q-value < 0.25, and |NES| > 1 were the cutoff criterion. (A,B) Distinct pathways enriched in the high- and low-risk groups, (C) Enrichment plot: KEGG_TGF_BETA_SIGNALING_PATHWAY, (D) Enrichment plot: KEGG_ADHERENS_JUNCTION, (E) Enrichment plot: KEGG_MAPK_SIGNALING_PATHWAY, (F) Enrichment plot: KEGG_OXIDATIVE_PHOSPHORYLATION, (G) Enrichment plot: KEGG_GLUTATHIONE_METABOLISM, and (H) Enrichment plot: KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM.
[image: Figure 6]FIGURE 6 | Function analysis of these 10 lncRNAs. The lncRNA-miRNA-mRNA network was constructed by integrating differential genes and predicted results from miRCode, TargetScan, miRDB, and miRTarBase database.
Evaluation of Immune Infiltration
Immunotherapy is a new treatment for stomach cancer that may improve the antitumor ability in patients by activating their immune systems. However, not all patients with gastric cancer are suitable for immunotherapy, suggesting that identifying these patients is vital. Here, the association between the immune landscape and the prognostic model was explored to determine whether the risk score helps to identify patients who would possibly benefit from immunotherapy. Immune infiltration was compared between the two risk groups using ssGSEA and the ESTIMATE algorithm. A heatmap of ssGSEA scores for 16 immune cells and 13 immune functions was plotted (Figure 7A). The higher the ssGSEA score, the stronger the immune activity. Compared with the high-risk group, the immune activities of most innate immune cells (aDCs, DCs, macrophages, NK cells, and pDCs) and adaptive immune cells (CD8+ T, Thf, Th1, Th2, and Treg cells) were higher in the low-risk group (Figure 7B). Similar results were obtained for immune functions, such as checkpoint, cytolytic activity, and type II IFN response (Figure 7C). Immune scores and stromal scores of STAD samples were calculated using the ESTIMATE algorithm. Higher immune scores and lower stromal scores were observed in the low-risk group (Figure 8). Considering the immune-activating environment, particularly the higher immune activity of the “checkpoint”, and higher immune scores of the low-risk group, the response to immunotherapy would likely differ between the two risk groups. Hence, immune checkpoint inhibitor therapy was analyzed next.
[image: Figure 7]FIGURE 7 | Evaluation of Immune infiltration between two risk groups in the test2 cohort. (A) The heatmap of ssGSEA scores in patients with STAD was plotted to quantify the immune activity of immune cells and immune functions. The ssGSEA scores of 16 immune cells (B) and 13 immune functions (C).
[image: Figure 8]FIGURE 8 | Immune and stromal scores were calculated by the ESTIMATE algorithm in the test2 cohort. Patients in the low-risk group had higher immune scores (A) while lower stromal scores (B).
Immune Checkpoint Inhibitor Therapy
The TMB is a potential biomarker for selecting patients who may respond to immune checkpoint inhibitor therapy (Chan et al., 2019). A greater benefit of anti-PD-L1 monoclonal antibody was observed for patients with a high TMB (Peters et al., 2017). The TMB was calculated and compared between the two risk groups (Figure 9B). Patients in the low-risk group had a higher TMB, indicating that they may benefit from ICI therapy. The association between the expression of 10 lncRNAs and the TMB was analyzed. Higher TMBs were observed in patients with lower expression of AC093642.1 and AL121748.1 (Figure 9A). In addition, gene mutations in STAD samples based on risk levels were presented in detail (Supplementary Figure S8). The top three genes were TTN, TP53, and MUC16. Genes exhibited different mutation ratios including KMT2D [16 of 176 (9.1%) vs. 34 of 153 (22.2%)], PIK3CA [15 of 176 (8.5%) vs. 32 of 153 (20.9%)], ARID1A [35 of 176 (19.9%) vs. 47 of 153 (30.7%)], HMCN1 [19 of 176 (10.8%) vs. 32 of 153 (20.9%)], and TTN [75 of 176 (42.6%) vs. 79 of 153 (51.6%)]. TIDE scores were calculated to predict the ICI response, which were used to simulate two mechanisms of tumor immune evasion: inducing T cell dysfunction and preventing T cell infiltration (Jiang et al., 2018; Fu et al., 2020). Patients with lower TIDE scores had a lower chance of immune evasion and received more benefits from ICI therapy. The violin plot showed that patients in the low-risk group had lower TIDE scores (Figure 9C). Patients with STAD who responded to immune checkpoint inhibitors had lower risk scores (Figure 9D). Next, we explored the relationship between risk scores and common immune checkpoints. Compared with the high-risk group, the expression of some immune checkpoints was significantly higher in the low-risk group (Figure 10).
[image: Figure 9]FIGURE 9 | Immune checkpoint inhibitor (ICI) therapy response was assessed through the TMB and TIDE scores in the test2 cohort. (A) The expression values of these 10 lncRNAs were compared in different TMB levels. (B) The TMB was significantly distinct in the high- and low-risk groups. (C) Patients in the high-risk group had higher TIDE scores indicating a higher chance of immune evasion. (D) Risk scores for patients who responded to ICI therapy and those who did not were compared.
[image: Figure 10]FIGURE 10 | Known immune checkpoints (A) and their ligands (B) in the test2 cohort.
Chemotherapy Efficacy Related to the Risk Score
The association between this prognostic model and the efficacy of chemotherapeutic drugs was analyzed. The IC50 values of common chemotherapeutic drugs were predicted and compared between the high- and low-risk groups. Patients in the low-risk group had significantly lower IC50 values and were more sensitive to cisplatin, docetaxel, and mitomycin.C. However, no differences in sensitivity to etoposide and paclitaxel were observed (Figure 11).
[image: Figure 11]FIGURE 11 | The sensitivity to common chemotherapeutic drugs of patients with STAD in the test2 cohort. (A) Cisplatin, Docetaxel, and Mitomycin.C. (B) Etoposide. (C) Paclitaxel.
DISCUSSION
Ferroptosis is involved in physical conditions or various diseases including cancers (Mou et al., 2019). In recent years, the use of ferroptosis in cancer treatment has attracted great attention. Ultrasmall silica nanoparticles induce ferroptosis and suppress tumor growth, suggesting their therapeutic potential (Kim et al., 2016). The imbalance between the transcription factors HIC1 and HNF4A, regulating ferroptosis up-regulated factors (FUF), and ferroptosis down-regulated factors (FDF), respectively, may help treat liver cancer (Zhang et al., 2019). In lung adenocarcinoma, STK11/KEAP1 commutation leads to resistance to pharmacologically induced ferroptosis and high expression of ferroptosis-protective genes, which is associated with early death and aggressive tumor development (Wohlhieter et al., 2020). These results indicate that the induction of ferroptosis in cancer cells can effectively improve the prognosis and enhance treatment efficacy. Hence, ferroptosis-related biomarkers, which are reliable predictors of the prognosis and treatment response, have been developed for a wide range of malignant tumors (Liu Y. et al., 2020; Wu G. et al., 2020; Zhuo et al., 2020; Jiang et al., 2021). A ferroptosis-related 15-gene signature of LUAD is built and can accurately predict the prognosis (Zhang et al., 2021). A novel ferroptosis-related gene signature for prognostic prediction in patients with glioma is built and the association between these genes and immune checkpoint molecules is revealed (Chen Z. et al., 2021). Considering the important role of lncRNAs in epigenetic regulation, transcriptional regulation, post-transcriptional regulation, and protein-coding gene regulation, we developed a reliable biomarker by integrating ferroptosis and lncRNAs. In our study, a prognostic model with good predictive performance based on 10 ferroptosis-related lncRNAs was constructed and patients with stomach cancer were divided into two risk groups based on risk scores. Patients in the low-risk group had a longer overall survival time than those in the high-risk group.
Underlying biological mechanisms, which resulted in prognostic differences, were revealed by GSEA. Metabolic pathways, including oxidative phosphorylation, glutathione metabolism, and glyoxylate and dicarboxylate metabolism, were enriched in the low-risk group. The Warburg effect shows that the energy needed for cellular processes is primarily generated through mitochondrial oxidative phosphorylation (OXPHOS) and aerobic glycolysis, in normal differentiated cells and most cancer cells, respectively (Vander Heiden et al., 2009). Compared with oxidative phosphorylation, aerobic glycolysis is less efficient at generating adenosine 5′-triphosphate (ATP). Intestinal gastric carcinomas, but not precancerous stages, are often characterized by loss of OXPHOS complex I, acting as tumor suppressors, and this pathological phenomenon occurs independently of Helicobacter pylori infection (Feichtinger et al., 2017). Glutathione metabolism and ferroptosis are closely related. The glutathione/GPX4-independent axis suppresses ferroptosis, and GPX4 protects cells from ferroptosis by decreasing phospholipid peroxides via glutathione (Stockwell et al., 2020). In addition, glutathione (GSH) metabolism plays a beneficial or pathogenic role in a variety of malignant tumors and excess GSH promotes tumor progression and metastasis (Bansal and Simon, 2018). Altered glyoxylate and dicarboxylate metabolism are associated with the chromosomal instability status in gastric cancer (Tsai et al., 2018). Genes in the high-risk group were significantly enriched in the TGF-beta signaling pathway, adherens junction, and MAPK signaling pathway, among others. The transforming growth factor (TGF)-β signaling pathway has a dual function and pleiotropic nature. This pathway has tumor suppressor functions in normal and early-stage cancer cells, including cell-cycle arrest and apoptosis, but has cancer-promoting functions in late-stage cancer cells, including metastasis and chemoresistance (Colak and Ten Dijke, 2017; Seoane and Gomis, 2017). Activation of transforming growth factor-beta 1 Signaling in fibroblasts increases the motility and invasiveness of gastric cancer cells (Ishimoto et al., 2017). The TGF-β receptor inhibitor, LY2109761, increases radiosensitivity in GC by regulating the TGF-β/SMAD4 signaling pathway (Yang et al., 2019). Mitogen-activated protein kinases (MAPKs) include three major subfamilies: extracellular-signal-regulated kinases (ERK MAPKs), c-Jun N-terminal kinases, stress-activated protein kinases (JNKs or SAPKs), and MAPK14 (Fang and Richardson, 2005).
Relatively little research has been conducted on these 10 lncRNAs at present. LINC01614 is identified as an oncogenic lncRNA that promotes proliferation and migration in gastric cancer (Chen Y. et al., 2021). LINC01614 promotes FOXP1 expression by inhibiting miR-217, which ultimately stimulates the development of LUAD (Liu et al., 2018). Upregulation of LINC01614, induced by SP1, promotes malignant glioma progression by modulating the miR-383/ADAM12 axis (Wang et al., 2020). These studies imply that LINC01614 is a factor contributing to an unfavorable prognosis of various cancers, consistent with our results. The expression levels of FLNB-AS1 are positively correlated with the survival probability of patients with breast cancer and FLNB-AS1 may be a potential diagnostic or prognostic marker of tamoxifen resistance (Zhang X. et al., 2020). AL121748.1 may be involved in multiple metabolic processes, such as amino acid, lipid, and glucose metabolism in cirrhotic HCC (Ma and Deng, 2019). By constructing a ceRNA network, the functions of some lncRNAs were explored. The GO analysis showed that these lncRNAs were involved in cell cycle regulation, especially the G1/S phase transition, which was related to the transition from RNA and ribosome synthesis to the reproduction of genetic material. The KEGG analysis showed that these lncRNAs were involved in several pathways, including microRNAs in cancer, the cell cycle, the PI3K−Akt signaling pathway, and various cancers. However, the functions mentioned above required further biological verification.
Using current standard therapies, the prognosis of patients with advanced-stage gastric cancer remains poor (Zhao et al., 2019). Immunotherapy, an innovative approach, is developed to improve the survival rate of patients with various cancers, such as lung cancer, gastric cancer, and breast cancer. In this study, immune infiltration was assessed using ssGSEA and the ESTIMATE algorithm. The abundance of several innate immune cells and adaptive immune cells, such as CD8+ T cells, DCs, pDCs, and Tregs, was lower in the high-risk subgroup. Patients with advanced non-small-cell lung cancer presenting with greater CD8+ T cell infiltration exhibit a superior treatment response to pembrolizumab, an anti-PD-1 drug (Garon et al., 2019). Dendritic cells (DCs), which are antigen-presenting cells, often eliminate tumors by stimulating naive T cell differentiation (Fu et al., 2021). HIF-1α inhibits plasmacytoid DC (pDC) differentiation, leading to tumor progression (Labiano et al., 2015). Treg cells are key subsets of effector T cells with strong immunosuppressive effects. The immune activity of most of the immune functions was higher in the low-risk subgroup, such as checkpoint, cytolytic activity, and type II IFN response. The immune cytolytic activity score reflects antitumor immunity and predicts clinical outcomes of patients with GC (Hu et al., 2021). Type II IFN (IFN-γ) is a critical driver of programmed death ligand-1 (PD-L1) expression in cancer and host cells (Ayers et al., 2017). These results showed that patients in the high-risk group were immunosuppressed compared to the other group.
Considering the immune-activating environment and higher immune scores in the low-risk group, we speculated a potentially significant difference in immunotherapy efficacy in the two subgroups. Thus, ICI therapy was studied in detail. The immune checkpoint inhibitor response was assessed by calculating the TMB and TIDE scores. The results showed higher TMB and lower TIDE scores for the low-risk group, indicating that these patients might receive a greater benefit from ICI therapy. Common immune checkpoints, such as PD1, PD-L1, and CTLA4, were expressed at high levels in the low-risk group, which validated this speculation. Pembrolizumab, an anti-PD-1 drug, has shown manageable safety and promising activity in patients with advanced gastric or gastroesophageal junction cancer who have received at least 2 lines of treatment (Fuchs et al., 2018; Smyth et al., 2020). Nivolumab, an antibody inhibitor of programmed death-1 (PD-1), is approved as an option for third- or later-line treatment of advanced gastric/gastroesophageal junction (G/GEJ) cancer (Kang et al., 2017; Janjigian et al., 2018; Boku et al., 2019). In addition, the genetic mutation waterfall diagram showed that KMT2D, PIK3CA, ARID1A, HMCN1, and TTN mutations were enriched in the low-risk group. KMT2D mutant cells show higher protein turnover and IFNγ-stimulated antigen presentation and both mice and human KMT2D mutant tumors show increased immune infiltration (Wang G.et al., 2020). The PIK3CA mutation may alter the levels of PD-1, PD-L1, and PD-L2 (Cho et al., 2019; Liu J. et al., 2020). The frequency of TTN mutations is significantly positively correlated with the objective response rate of patients receiving anti-PD1/PD-L1/CTLA-4 monotherapy (Jia et al., 2019). In summary, risk scores based on 10 ferroptosis-related lncRNAs could help screen patients with stomach cancer who might benefit from immunotherapy.
Accumulating studies have shown that ferroptosis and chemotherapy are inseparable. Erastin, an inducer of ferroptosis, enhances the sensitivity to chemotherapy, and radiotherapy, suggesting a promising future application in cancer therapy (Zhao et al., 2020). Cisplatin and paclitaxel promote miR-522 secretion which decreases the accumulation of lipid-ROS by suppressing ALOX15 expression and ultimately results in chemoresistance in gastric cancer (Zhang H. et al., 2020). In our study, risk stratification based on 10 ferroptosis-related lncRNAs was correlated with the response to several common chemotherapeutic drugs. Patients with stomach cancer in the low-risk group experienced greater survival benefit from chemotherapy with mitomycin. C, cisplatin, and docetaxel. These findings might be helpful to guide the selection of personalized chemotherapy drugs.
Undoubtedly, there were some limitations in this study. Firstly, the sample size was relatively limited. To verify the modeling results, the TCGA cohort was split, which destroyed the model efficiency to a certain extent. Secondly, clinical information was deficient, which resulted in limited analysis related to important clinical factors. Finally, all results were obtained by statistical analysis, biological tests were needed further to verify.
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Supplementary Figure 1 | Validation of the prognostic model in the test1 cohort. (A) Time-independent ROC curves along with their AUC were conducted to assess the sensitivity and specificity. (B) The KM survival curves showed a higher survival rate in the low-risk group. (C) Risk scores for stomach patients with STAD were presented in ascending order. (D) The survival status distribution curve showed a higher proportion of dead patients in the high-risk group. (E) The expression heatmap of these 10 lncRNAs was plotted and significance levels were annotated on the right side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
Supplementary Figure 2 | Validation of the prognostic model in the test2 cohort. (A) Time-independent ROC curves along with their AUC were conducted to assess the sensitivity and specificity. (B) The KM survival curves showed a higher survival rate in the low-risk group. (C) Risk scores for patients with STAD were presented in ascending order. (D) The survival status distribution curve showed a higher proportion of dead patients in the high-risk group. (E) The expression heatmap of these 10 lncRNAs was plotted and significance levels were annotated on the right side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
Supplementary Figure 3 | The KM survival curves of these 10 lncRNAs with different expression levels were plotted. Based on their median values, lncRNAs were divided into high and low expression groups.
Supplementary Figure 4 | The association between risk scores and clinicopathological factors in the test2 cohort.
Supplementary Figure 5 | (A) Risk scores for patients with or without distant metastases were compared. The KM survival analyses in two pathological M subgroups were conducted, including (B) patients without distant metastases (M0) and (C) patients with distant metastases (M1).
Supplementary Figure 6 | The association between the expression of lncRNAs and clinicopathological factors in the test2 cohort. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
Supplementary Figure 7 | Functional analysis of these 10 lncRNAs. The top 20 results of GO terms in BP (A, B) and KEGG pathways (C, D) were shown. P-value and q-value were both 0.05 as cutoff values.
Supplementary Figure 8 | Gene mutations based on risk levels in the test2 cohort. The top 20 genes were presented.
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Long non-coding RNAs (LncRNAs) have already been taken as critical regulatory molecules in breast carcinoma (BC). Besides, the progression of BC is closely associated with the immune system. However, the relationship between lncRNAs and the tumor immune system in BC has not been fully studied. LncRNA KRT19P3 has been reported to inhibit the progression of gastric cancer. In the present study, we first discovered that KRT19P3 was downregulated in BC tissues compared with para cancer tissue. Then we showed that KRT19P3 could be used as a marker to differentiate BC from para cancer tissue. Increased expression of KRT19P3 markedly inhibited the proliferation, migration, and invasion rate of BC cells in vitro and tumor growth of BC in vivo. Conversely, KRT19P3 knockdown by siRNA markedly promoted the proliferation, migration, and invasion rate of BC cells after being transfected. Comparison of clinical parameters showed an inverse relationship between the expression of KRT19P3 and pathological grade. Furthermore, immunohistochemistry (IHC) was applied to reveal the positive rate of the expression of Ki-67, programmed death-ligand 1 (PD-L1), and CD8 in BC tissues. Correlation analysis showed that Ki-67 and PD-L1 were inversely proportional to KRT19P3 but CD8 was directly proportional to KRT19P3. In conclusion, this study demonstrated that lncRNA KRT19P3 inhibits BC progression, and may affect the expression of PD-L1 in BC, which in turn affects CD8+ T (CD8 positive Cytotoxic T lymphocyte) cells in the immune microenvironment.
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Introduction

BC ranks the first in the diagnosis of female tumors and it is the fifth leading cause of death due to cancer worldwide (1–3). Despite advances in multiple types of treatments, the prognosis for BC patients remains dismal (4). For this reason, the identification of the mechanisms responsible for the pathogenesis of BC is urgent for improving the clinical outcome (5, 6).

LncRNAs are a kind of non-coding RNAs with methylguanosine cap and polyadenylate (poly-A) structure and a length of more than 200 nucleotides, most of which are transcripts of RNA polymerase II (7–9). At first, LncRNAs have been considered as non-functional genes. Nevertheless, with more deeply research, it has been discovered that lncRNAs play crucial roles in the progression of tumors by promoting or inhibiting biological behaviors such as cell proliferation, migration, and EMT (10–14), which allows tumor and other types of cells around the tumor microenvironment to interact with each other. Meanwhile, LncRNAs can regulate the expression of key genes associated with immune function affecting the function of immune cells involved in the microenvironment of tumors (15). For instance, lncRNA KCNQ1OT1 promoted the progression of prostate cancer by suppressing CD8+ T cells cytotoxicity through the KCNQ1OT1/miR-15a/PD-L1 axis (16). Yilong Ai et al. found that CRNDE specifically sponged miR-545-5p to induce T-cell immunoglobulin and mucin domain-3 (TIM-3), thus contributing to CD8+ T-cell exhaustion in Oral squamous cell carcinoma (OSCC) (17). Although the functional roles of lncRNAs in BC are diverse, the study of the relationship between lncRNAs and the tumor immune system is still in its infancy. T cell-regulated adaptive immune responses can induce the expression of PD-L1 in the tumor microenvironment (18). However, the expression of PD-L1 inhibits T lymphocytes from playing a role in the immune microenvironment (7). From this point of view, it is interesting that lncRNAs are involved in the immune process.

LncRNA KRT19P3 is a pseudogene located on Chromosome 4. It was reported to inhibit gastric cancer proliferation and invasion through the NF-κB signaling pathway (19). To study the role of KRT19P3 in BC, we have investigated the function of KRT19P3 in BC in vitro and its association with the immune. This study provides a theoretical and experimental basis for immune-related studies between lncRNA KRT19P3 and BC.



Materials and Methods


Cell Culture

BC cell line MDA-MB-231 was purchased from Procell Life Science & Technology Co., Ltd. (Wuhan, China). The cell line was cultured in RPM1640 medium (Solarbio, USA) added with 10% FBS (Hyclone, Logan, UT, USA). The environment in the incubator was maintained at 5% CO2 and a constant temperature of 37°C.



Reverse Transcription-Quantitative Real-Time PCR

Axygen Total RNA Preparation Kit (Corning Life Sciences Co., Ltd., Suzhou, China) was used to extract total RNA. M-MuLV reverse transcriptase (New England Biolabs), RNase inhibitors, and dNTPs (Takara) was used to synthesize cDNA. A fluorescence quantitative PCR instrument (ABI7500Fast, USA) was used for RT-qPCR. GAPDH was used as an internal control.

The primer sequences are as follows:

GAPDH forward primer 5’-GCACCGTCAA-GGCTGAGAAC-3’;

Reversed primer 5’-TGGTGAAGACGCCAGTGGA-3’;

KRT19P3 forward primer5’-CAGTGAGAGGCAGAATCAGG-3’;

Reversed primer5’-TTGGAGGTGGACAGGCTATT-3’.

The relative expression of KRT19P3 was analyzed by 2-△CT.



Cell Transfection

The pcDNA3.1-KRT19P3 plasmids and siRNAs were provided by Professor Jie Zheng, Department of Pathology, Weifang Medical College. Lipofectamine2000 (Invitrogen, USA) was used to transfect MDA-MB-231 cells. The plasmids and Lipofectamine 2000 Reagent were mixed and incubated in a 1: 1 ratio for 15 minutes and then added to a six-well plate. The siRNAs and Lipofectamine 2000 Reagent were mixed and incubated in a 1: 1.3 ratio for 15 minutes and then added to a six-well plate. The overexpression and knockdown efficiency was confirmed 24 h after transfection by qRT-PCR.



EdU Assay

MDA-MB-231 proliferation capacity was detected by BeyoClick™ EdU-594 Cell Proliferation Assay Kit (Shanghai Biyuntian Biotechnology Co., Ltd., Shanghai, China). Cells after transfection 24 h were seeded onto 96-well plates, and three duplicate wells were set for each group, 2×104 cells per well. Proliferation efficiency was the percentage of positive cells stained with EdU.



Migration and Invasion Assay

The potential of invasion and migration was detected using transwell inserts (Corning, Cambridge, MA, USA). In the migration assay, 4×104 cells were added above the chamber, RPMI1640 with 10% FBS in the lower chamber, and the chambers were fixed after 24 hours. Apodemsa staining solution (Solarbio, USA) was stained for 40 minutes and observed microscopically. Invasion assay was performed by adding Matrigel (Corning, Cambridge, MA, USA) on the top of the membrane to simulate cell transmembrane assay. We randomly took five fields for cell counting under the microscope.



In Vivo Tumorigenic

Lentivirus vector LV-KRT19P3 and LV-NC transfected MDA-MB-231 cells. 1×107 cells in 100μl of PBS were injected into the mammary fat pads of 4-week-old female athymic BALB/c nude mice (Vital River, Beijing, China). Mice were grouped (six for each group) and housed under SPF conditions at the Experimental Animal Center of Weifang Medical College. Tumor growth was observed weekly and tumor volumes (V) were calculated as V = (tumor length× width2)/2. Six weeks later, bioluminescence was used in the IVIS system. These mice were killed and tumor nodules were extracted and evaluated with hematoxylin and eosin staining. Animal use in the study was performed following the animal care and ethical committee of the medical sector in Weifang Medical College.



Human tissues

A total of 98 BC tissues and non-tumor breast tissues 5cm away from the cancer region were obtained from the First Affiliated Hospital of Weifang Medical University from Feb 2019 to Jun 2019. Half of the tumor tissues were paraffin-embedded, and the other half tissues were stored at -150°C for RT-qPCR detection. The above specimens have been diagnosed as BC by clinicians. This study conformed to the standards of the Ethics Committee of Weifang People’s Hospital.



Immunohistochemistry

The expression of CD8+ T and PD-L1 genes in 80 breast cancer tissues and matching normal tissue specimens were detected by IHC. Xylene was used to deparaffinized and diluted graded alcohols to hydrated; pH 9.0 citric acid buffer was used to repair antigens at high temperature and pressure; endogenous peroxidase was blocked with 0.3% H2O2; and incubated with primary antibodies of CD8 and PD-L1 (Beijing Zhongshan Jinqiao, China) for an hour at room temperature. Finally, DAB for color staining. The positive side of CD8 protein staining was mainly localized on the nucleus, and the experimental results were judged according to the proportion of positive cells, with 10% as the cutoff value, ≥ 10% as positive, and<10% as negative.



Statistical Analysis

SPSS 25 software was used for statistical analysis. Graph Pad Prism7 software was used for picture drawing. We used ROC (receiver operating curve) to assess the diagnostic value of KRT19P3 in BC and normal breast. Chi-square test and Fisher’s exact test were used to analyze the relationship between KRT19P3 and clinical parameters as well as PD-L1. The correlation analysis was performed using Spearman’s correlation test. Differences between the two groups were analyzed using a T-test. P value<0.05 was considered statistically significant.




Results


LncRNA KRT19P3 Inhibited BC Cell Proliferation, Migration, and Invasion In Vitro

Regarding the KRT19P3 played an important part in gastric cancer cell migration and invasion capability, we investigated the role of KRT19P3 on BC cells. To reveal the role of KRT19P3 in BC cell proliferation, we overexpressed KRT19P3 with pcDNA3.1(+) plasmid vector or downregulated KRT19P3 using siRNA in MDA-MB-231 cells. The overexpression and knockdown efficiency was confirmed by qRT-PCR, with 24.6 ± 2.3-fold increase and 0.5 ± 0.1-fold decreases respectively, in MDA-MB-231 cells after 24 h transfection (Figures 1A, B). EdU assays were carried out to examine cell proliferation ability in different groups. The results showed that overexpression of KRT19P3 significantly inhibited MDA-MB-231 cells proliferation by 10.85% (Figure 1C), whereas, KRT19P3 knockdown enhanced cell proliferation by 12.79% compared with a control group (Figure 1D). In addition, the transwell assay revealed that upregulation of KRT19P3 substantially increased the migration and invasion rate of MBA-MD-231 cells by 45.13% and 45.45% respectively (Figure 1E). In contrast, KRT19P3 knockdown remarkably decreased the migration and invasion rate of MBA-MD-231 cells by 38.85% and 23.69% respectively (Figure 1F). In conclusion, the results showed that KRT19P3 functions as a tumor suppressor gene in vitro. These results indicated that KRT19P3 suppressed tumorigenesis via reducing proliferation capacity, migration, and invasion abilities of BC cells in vitro.




Figure 1 | KRT19P3 inhibited BC cell proliferation, migration and invasion. (A) RT-qPCR results showed that pcDNA3.1-KRT19P3 transfection significantly increased the KRT19P3 level in MDA-MB-231 cells. (B) RT-qPCR results showed that siRNA transfection significantly decreased the KRT19P3 level in MDA-MB-231 cells. (C) EDU assay to detect the effect of overexpression of KRT19P3 on cell proliferation. (D) EDU assay to detect the effect of interfering KRT19P3 on cell proliferation. (E) Transwell assay to detect the effect of overexpression of KRT19P3 on cell migration and invasion. (F) Transwell assay to detect the effect of interfering with KRT19P3 on cell migration and invasion. *P < 0.05, **P < 0.01, ***P < 0.001.





LncRNA KRT19P3 Inhibited BC Growth In Vivo

Vitro experiments showed that KRT19P3 functions as a tumor suppressor gene. We further explored the effect of KRT19P3 on BC cells in vivo. The results showed that the tumor volumes of LV-KRT19P3 transfected cells were significantly smaller than that of LV-NC transfected xenograft tumors (Figure 2A). Immunohistochemistry for Ki-67 detection revealed that tumor cells in the LV-KRT19P3 group showed a lower positivity rate than those in the LV-NC group (Figure 2B). In summary, these data demonstrated that KRT19P3 suppressed BC in vivo.




Figure 2 | LncRNA KRT19P3 inhibited BC growth in vivo. (A) A stable MDA-MB-231 cell line overexpressing KRT19P3(LV-KRT19P3) was constructed and injected under the subcutaneous of nude mice to establish a xenograft tumor model with 6 mice in each group. Moreover, primary tumor growth was measured every week after injection. The tumor volumes in the LV-KRT19P3 group were significantly smaller than those in the LV-NC group. (B) Immunohistochemistry for Ki-67 detection revealed that cancer cells in the LV-NC group showed a higher positivity rate than those in the LV-KRT19P3 group (magnification × 200).





LncRNA KRT19P3 Significantly Decreased in Human BC Tissues

KRT19P3 inhibits the functions of BC cells through the results in vitro and in vivo. We explored the relationship between KRT19P3 and clinical parameters.

Paired specimens were collected from 98 pairs of female BC patients (Figures 3A, B), and the tumor size ranged from 0.60 cm to 9.00 cm. The RT-qPCR result showed that the median expression of KRT19P3 was 0.0063 in BC tissues and 0.0550 in non-tumor tissues. KRT19P3 was 8.7302-fold higher in para cancer tissues than in tumor tissues (Figure 3C). The ROC curve was drawn according to the expression of KRT19P3 in BC and para cancer tissues and the AUC under the curves was calculated. AUC was 0.9296, indicating that KRT19P3 could better differentiate BC tissues from non-tumor tissues (Figure 3D).




Figure 3 | LncRNA KRT19P3 significantly decreased in human BC tissues. (A) HE pictures of breast cancer tissue (H&E × 200). (B) HE pictures of normal breast tissue (H&E × 200). (C) The expression of KRT19P3 in human breast cancer tissues (Tumor, n=98) and corresponding para cancer tissues (Normal, n=98) was detected by RT-qPCR. (D) The ROC curve was drawn according to the expression of KRT19P3 in breast cancer tissues and para cancer tissues (AUC=0.9296, P<0.0001). (E) Relationship between KRT19P3 and Ki-67 index (Ki-67 positive rate ≥30%, r= -0.213, P<0.05). (F) Relationship between KRT19P3 and pathology grade (r= -0.227, P<0.05).



Moreover, IHC results indicated that Ki-67 expression was reduced in the KRT19P3 up-regulated group compared with the control group (Figure 3E). On the other hand, a comparison of clinical parameters showed an inverse relationship between KRT19P3 and pathological grade (Figure 3F).



LncRNA KRT19P3 Correlated With PD-L1 and CD8+ T Cell

We conducted IHC experiments to detect the positive rate of PD-L1 and CD8+ T in tissues from 80 pairs of breast cancer patients. Statistical analysis indicated that the expression of PD-L1 was significantly lower (Figures 4A–C) and CD8+ T was significantly higher (Figures 4D–F) in the KRT19P3 high expression group. Spearman analysis revealed that KRT19P3 is negatively correlated with PD-L1 (r= -0.227, P=0.047) and positively correlated with CD8+ T (r= 0.223, P= 0.046, Table 1). The results suggested that KRT19P3 may affect the function of CD8+T through the PD-1/PD-L1 axis.




Figure 4 | LncRNA KRT19P3 correlated with PD-L1 and CD8+ T cell. (A, B) PD-L1 expression in breast cancer tissue (A positive staining, 200x; B negative staining, 200x). (C) KRT19P3 expression was lower in the PD-L1-positive group than in the PD-L1-negative group in breast cancer tissues (n=80). (D, E) CD8 expression in breast cancer tissues (D positive staining, 200x, E negative staining, 200x). (F) KRT19P3 expression was higher in the CD8+ T high group than in the CD8+ T cell low expression group in breast cancer tissues (n=80).




Table 1 | The relationship between KRT19P3 and PD-L1, CD8 in BC tissues.






Discussion

Oncogenesis is a gradual process, involving multistage reactions and the accumulation of multiple molecular mutations. LncRNAs have been identified as critical players in oncogenesis and immune response. However, the process of lncRNA involvement in tumor immunity remains incompletely elaborated. KRT19P3, located on chromosome 4, is a transcriptional length of 828 bp of lncRNA, suggesting that it can participate in a variety of biological processes (20).

It was confirmed that KRT19P3 was highly expressed in bladder cancer tissues compared to normal bladder tissues (21). KRT19P3 was less expressed in gastric cancer tissues compared to normal gastric tissues (19). However, the role played by KRT19P3 in the BC is unclear. It is well known that proliferation, migration, and invasion are the obvious biological features of malignant tumors (22). In the present study, we provide evidence for a functional role of lncRNA KRT19P3 in cell proliferation, migration, and invasion of BC. We found that overexpression of KRT19P3 inhibited the proliferation, migration, and invasion of BC cells in vitro and the growth of xenografts in nude mice. Taken together, KRT19P3 may function as an

Subsequently, we confirmed the differential expression of KRT19P3 in breast cancer tissues and para cancer tissues by clinical samples. The expression of KRT19P3 was higher in non-tumor tissues than in BC tissues. The expression of KRT19P3 in BC tissues and para cancer tissues was plotted by the ROC curve. The result showed that AUC under the curve was 0.9626, indicating that KRT19P3 could be used as a better index to distinguish BC from normal breast tissues. Correlation analysis with clinical parameters showed that the expression of KRT19P3 in the high Ki-67 index group was lower than that in the low Ki-67 index group. It is well known that Ki-67 is an important clinical proliferative marker for many types of cancer, and a high Ki-67 index predicts a poor prognosis for patients (23). Qiu et al. found that the expression of oncogene LINC00668 was positively correlated with the Ki-67 proliferation index in BC tissues, and showed by cell function experiments that downregulation of LINC00668 expression decreased the proliferation of BC cells (24). Similarly, the expression of KRT19P3 in BC tissues was inversely correlated with pathological grade, which is consistent with the finding of a significant positive correlation between the expression of the oncogene lncRNA GClnc1 and histological grade in bladder cancer tissues found by Zhuang et al. (25). Comprehensive analysis showed that KRT19P3 could inhibit the progression of BC, which further verified the results of in vitro cell experiments and in vivo animal experiments. Meanwhile, the expression of KRT19P3 in BC tissues correlated with the PD-L1 and CD8+ T cells. The results showed that in the group with high KRT19P3 expression, the PD-L1 positivity rate decreased while the CD8+ T cell positivity rate increased. the expression of KRT19P3 was negatively correlated with PD-L1 and positively correlated with CD8+ T cells.

The tumor immune microenvironment is the internal environment for tumors development and metastasis (13, 16, 26, 27). CD8+ T cells play an important role in the elimination of tumor cells and their continued proliferation and growth after the elimination of tumor immune escape (28) and are also the main effector cells in the elimination of tumor cells in the internal environment (29). However, PD-L1 is a protein molecule that inhibits the action of effector T cells and is one of the ligands of PD-1, which is expressed by a variety of tumor cells as well as immune cells. High expression of PD-L1 in BC is associated with prognostic markers of malignancy (30, 31). When PD-1 binds to its receptor, PD-L1, it transmits negative regulatory signals to T cells and induces them to become dormant. Based on the correlation analysis between KRT19P3 and PD-L1, CD8+ T, it was hypothesized that KRT19P3 may inhibit BC progression by reducing PD-L1 expression in tumor cells and activating the tumor-killing potential of CD8+ T cells, which is also consistent with the findings of Sun et al. (32), who blocked the PD-1/PD-L1 pathway and thus rescued the depleted CD8+ T cells.

In summary, our study confirmed that KRT19P3 was less expressed in BC than in normal breast tissues and inhibited the function of BC cells. Combined with clinical parameters, KRT19P3 played the role of the tumor suppressor gene in BC. The expression of KRT19P3 was negatively correlated with PD-L1 but positively correlated with CD8+ T cells. Therefore, KRT19P3 may inhibit BC progression through the immune pathway. We will actively explore the specific mechanism in the follow-up study. This finding may provide a new direction for the diagnosis and treatment of BC.
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Background

The expression of Coiled-Coil Domain Containing 134(CCDC134) is up-regulated in different pan-cancer species. However, its prognostic value and correlation with immune infiltration in breast cancer are unclear. Therefore, we evaluated the prognostic role of CCDC134 in breast cancer and its correlation with immune invasion.



Methods

We downloaded the transcription profile of CCDC134 between breast cancer and normal tissues from the Cancer Genome Atlas (TCGA). CCDC134 protein expression was assessed by the Clinical Proteomic Cancer Analysis Consortium (CPTAC) and the Human Protein Atlas. Gene set enrichment analysis (GSEA) was also used for pathway analysis. Receiver operating characteristic (ROC) curve was used to differentiate breast cancer from adjacent normal tissues. Kaplan-Meier method was used to evaluate the effect of CCDC134 on survival rate. The protein-protein interaction (PPI) network is built from STRING. Function expansion analysis is performed using the ClusterProfiler package. Through tumor Immune Estimation Resource (TIMER) and tumor Immune System Interaction database (TISIDB) to determine the relationship between CCDC134 expression level and immune infiltration. CTD database is used to predict drugs that inhibit CCDC134 and PubChem database is used to determine the molecular structure of identified drugs.



Results

The expression of CCDC134 in breast cancer tissues was significantly higher than that of CCDC134 mRNA expression in adjacent normal tissues. ROC curve analysis showed that the AUC value of CCDC134 was 0.663. Kaplan-meier survival analysis showed that patients with high CCDC134 had a lower prognosis (57.27 months vs 36.96 months, P = 2.0E-6). Correlation analysis showed that CCDC134 mRNA expression was associated with tumor purity immune invasion. In addition, CTD database analysis identified abrine, Benzo (A) Pyrene, bisphenol A, Soman, Sunitinib, Tetrachloroethylene, Valproic Acid as seven targeted therapy drugs that may be effective treatments for seven targeted therapeutics. It may be an effective treatment for inhibiting CCDC134.



Conclusion

In breast cancer, upregulated CCDC134 is significantly associated with lower survival and immune infiltrates invasion. Our study suggests that CCDC134 can serve as a biomarker of poor prognosis and a potential immunotherapy target in breast cancer. Seven drugs with significant potential to inhibit CCDC134 were identified.





Keywords: breast cancer, CCDC134, biomarker, prognosis, immune infiltration



Introduction

Breast cancer (BC) has overtaken lung cancer as the most common cancer worldwide and is the most common cancer in women (1). Over the past 20 years, the number of new cases of breast cancer has gradually increased globally, from 1.15 million (2002) (2) to 1.38 million (2008) (3), 1.68 million (2012) (4) and 2.09 million (2018) (5); The projected figure for 2050 is about 3.2 million (6). Thanks to advances in early screening and the development of anti-cancer strategies, the treatment of breast cancer has improved significantly. However, the recurrence rate remains high (7–9). Studies have shown that the prognosis of breast cancer is influenced by a variety of clinical factors (10), such as age, tumor size, histological grade, lymphatic infiltration, number of lymph node metastases, hormone receptor status, Her-2 status, and positive margins. Due to the complexity of the onset of breast cancer and the heterogeneity of tumors, although many prognostic markers have been found, the prediction efficiency is still inadequate (11, 12). It is necessary to build a new breast cancer risk prediction model to improve the treatment and prognosis of breast cancer patients.

Relevant studies have reported that CCDCl34 is a newly discovered secreted protein screened by Huang et al. (13) through cell chip in 2008, which is widely expressed in a variety of human normal tissues, cancer tissues and cell lines. CCDC134 is a protein coding gene. Disorders associated with CCDC134 include Ehlers-Danlos syndrome, hyperactivity type. CCDC134 is reported to be a novel CD8+T cell stimulator that promotes proliferation and activation of CD8+ T cells in exocrine form, suggesting a cytokine like function (14). It has been reported that this gene may affect ERK and JNK signaling activity in gastric cancer cells (13, 15).

At present, the relationship between CCDCl34 and breast tumors has not been reported. We hypothesized that CCDC134 levels were associated with breast cancer survival. To test this hypothesis, we evaluated the prognostic role of CCDC134 in breast Cancer based on data from the Cancer Genome Atlas (TCGA). In this study, we found that CCDC134 is up-regulated in breast cancer. Notably, upregulation of CCDC134 was associated with adverse clinical features and risk factors. We further evaluated the diagnostic and prognostic value of CCDC134 in breast cancer and its correlation. Our study suggests that overexpression of CCDC134 in breast cancer is associated with lower survival.



Materials and Methods


TCGA Datasets

Download transcription and expression data of CCDC134 and corresponding clinical information from TCGA official website (16). More than 5 samples of the 33 registered cancers were selected for analysis. Finally, the RNA-SEQ gene expression data of workflow type FPKM were transformed into TPM format and log2 transformation for further study. As all data were downloaded from TCGA, no approval from the Ethics Committee was required for this study. We provided the database links for this article in Supplementary Table 1.



RNA Sequencing Data of CCDC134 in Breast Cancer

RNA-seq expression data of CCDC134 in breast cancer were also downloaded from TCGA and the XIANTAO platform (https://www.xiantao.love/). Therefore, data on 1109 breast cancers and 113 adjacent normal tissues were retained. The selected samples contained CCDC134 gene expression data and relevant clinical information, including age, sex, smoking status, T stage, N stage, M stage, tumor site, ER/PR/HER2 status, etc. The mRNA expression data were the mean of X ± SD.



Clinical Proteomic Tumor Analysis Consortium (CPTAC) and UALCAN

CPTAC (https://proteomics.cancer.gov/programs/cptac) application of proteomics techniques, by mass spectrometry analysis of tumor biological specimens, quantification and identification of each tumor sample, the composition of the protein and the protein group were characterized (17). UALCAN[http://ualcan.path.uab.edu/] is a user-friendly online resource for analyzing publicly available cancer data (18). In this study, we used UALCAN to analyze the expression of CCDC134 protein in CPTAC.



The Human Protein Atlas (HPA)

HPA (https://proteinatlas.org/) contains normal tissue and tumor tissue protein levels of human gene expression profile information (19). In this study, we compared the expression of CCDC134 protein in normal lung tissue and breast cancer tissue by HPA.



GSEA (Gene Set Enrichment Analysis) Functional and Pathway Analysis

GSEA (20) was performed using clusterProfiler, enrichPlot and ggplot2 R packet (V 3.3.3) to demonstrate important functions and pathways between the two groups. The expression level of CCDC134 was used as a phenotypic marker. Adjusted p values<0.05, the enrichment of standardized scores (|NES|) < 1, the false discovery rate (FDR)<0.25 is significant difference.



Construction and Evaluation of Line Graph

Individual prediction of 1-year, 3-year and 5-year survival probability (21). Based on the results of multiple variable analysis, the column chart was constructed. The RMS R package (version 6.2-0) is used to generate a Nomogram with significant clinical features and calibration diagrams. C concordiindex and correction curve were used to estimate its predictive ability.



Protein-Protein Interaction (PPI) Networks and Functional Enrichment Analysis

STRING is an online database for retrieving interacting genes [version 11.0 (https://www.string-db.org/)] (22). In this study, we used STRING to search for co-expressed genes and construct a PPI network (23, 24), with an interaction score of 0.4. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by gene ontology (GO) and co-expressed genes was performed using ClusterProfiler software package and GGploT2 software package visualization (20).



Tumor Immune Estimation Resource (TIMER) Database

The TIMER (https://cistrome.shinyapps.io/timer/) is a comprehensive online database, analysis of a wide variety of cancer types related to immune infiltrating (25). In this study, we used TIMER to determine the relationship between CCDC134 expression and six types of immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) in breast cancer.



Tumor-Immune System Interaction Database (TISIDB)

TISIDB (http://cis.hku.hk/TISIDB/) is a tumor-immune system interaction online portal (26). In this study, we used TISIDB to determine CCDC134 and tumor-infiltrating lymphocyte (TILs) expression in human cancers. The relative abundance of TILs was deduced from gene expression profile and gene set variation analysis. Spearman test was used to measure the correlation between CCDC134 and TILs. The relative abundance threshold was set as |R| >0.5, P-value <0.05.



Recurrence - Free Survival (RFS) Data Analysis

Survival data from KMPLOT online analysis database (https://kmplot.com/analysis/index.php?p = service). Affy IDS of CCDC134 are 220077_at. “Auto select best truncation value” and “Basic type” were selected for breast cancer analysis.



Screening of Small Molecule Therapeutic Drugs

The selected genes are used for potential drug prediction in CTDBase. CTD database (https://ctdbase.org/). can be used to advance the understanding of chemical medicines and human health based on studies of the relationships between chemistry, genes, phenotypes, diseases and the environment. PubChem database (https://pubchem.ncbi.nlm.nih.gov/) is used to determine the identified molecular structure of the drug.



Statistical Analyses

All statistical analyses were performed using R (V 3.6.3), and differences were visualized using R package GGplot2 (20), clusterProfiler package [version 3.14.3] (for GSEA analysis). Paired T test and Mann-Whitney U test were used to determine the difference between breast cancer tissue and adjacent normal tissue. ROC curves were used to detect CCDC134 cutoff values (27–29) using pROC packages.




Results


Expression Pattern of CCDC134 in Pan-Cancer Perspective

To assess the mRNA expression pattern of CCDC134 in different cancer types, 15 cancer types with fewer than 5 samples from the normal group were excluded from the analysis. The final working set involved 18 cancer types. As shown in Figure 1, CCDC134 was significantly upregulated in 14 of the 18 cancers compared with normal tissue. This data suggests that CCDC134 mRNA expression is abnormal in different cancer types.




Figure 1 | Expression pattern of CCDC134 from the perspective of pan-cancer. CCDC134 mRNA expression was significant in 17 of the 18 cancers compared with normal tissue. (ns, p≥0.05; *p< 0.05; ***p<0.001). BLCA, Bladder Urothelial Carcinoma; BRCA, Bladder Urothelial Carcinoma; CHOL, Cholangiocarcinoma, COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma, GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma.





Upregulated mRNA and Protein Expression of CCDC134 in Patients With Breast Cancer

To detect CCDC134 mRNA and protein expression in breast cancer, we analyzed CCDC134 expression data in TCGA and HPA.As shown in Figure 2A, unpaired data analysis showed that CCDC134 mRNA expression level in breast cancer tissues (n = 1109) was significantly higher than that in normal tissues (n = 113)(Figure 2A, 3.391±0.636 vs 3.005±0.618, The Mann - Whitney U - test, P < 0.001). Paired data analysis also showed that mrna expression level of CCDC134 in breast cancer tissues (n = 112) was significantly higher than that in adjacent normal tissues (n = 112) (Figure 2B, 3.351±0.597 vs 2.998±0.617, P <0.001). In order to comprehensively analyze CCDC134 protein expression, we used UALCAN to analyze CPTAC. The results showed that CCDC134 protein expression in breast cancer was significantly higher than that in normal tissues (Figure 2C). As shown in Figures 2D, E, HPA immunohistochemical staining also showed up-regulation of CCDC134 protein expression in breast cancer tissues. These results showed that both mRNA and protein expression of CCDC134 were up-regulated in breast cancer tissues.




Figure 2 | CCDC134 mRNA and protein expression in breast cancer. (A) CCDC134 mRNA expression levels in 1109 breast and 113 normal breast cancers. (B) CCDC134 mRNA expression levels in 112 breast cancer patients and matched adjacent normal samples. (C) CCDC134 protein expression level based on CPTAC. (D) CCDC134 protein levels based on Human Protein Atlas. Normal tissue, https://www.proteinatlas.org/ENSG00000100147-CCDC134/tissue/breast#img; (E) Tumor tissue, https://www.proteinatlas.org/ENSG00000100147-CCDC134/pathology/breast+cancer#img. (***p<0.001).





Gene Set Enrichment Analysis (GSEA)

In order to understand the biological function of CCDC134, we analyzed the DEGs between the low and high CCDC134 expression groups according to the median expression value of CCDC134. GSEA pathway analysis was also performed (Supplementary Table 2) (Figure 3). The result shows that CCDC134 is enriched in CELL_CYCLE, REACTOME_DNA_REPLICATION, and WP_PI3KAKTMTOR_VITD3. Low tolerance_by_vasoactive_INte and REACTOME_FCERI_MEDIATED_NF_KB_ACTIVATION were found (Figure 3). At the same time, we completed the GO analysis(Supplementary Table 3). BP and keratinization, differentiation, chemical stimulation involved in detecting bitter sensory perception, epidermal cell differentiation. The first five CC terms are associated with cajal bodies, nucleosomes, DNA packaging complexes, keratin filaments, and intermediate filaments. The first five MF terms were associated with bitter taste receptor activity, channel activity, passive transmembrane transporter activity, inhibitory extracellular ligand gated ion channel activity, and taste receptor activity (Figure 3B).




Figure 3 | GSEA analysis results. (A) Genes enriched in representative pathways were analyzed by GSEA function. (B) GO and KEGG analysis of DEGs in low and high expression samples of CCDC134.





Clinicopathological Features

To evaluate the relationship between CCDC134 mRNA expression and clinicopathological features in breast cancer samples, mann-Whitney U test and Logistic regression analysis were performed. As shown in Table 1 and Figure 4, CCDC134 expression was observed to have a strong association with PR status (P = 0.002), ER status (P < 0.001) and PAM50 types (P < 0.001). However, CCDC134 expression was not associated with T stage (P = 0.640), N stage (P =0.545), M stage (P = 0.921), age (P = 174 0.081), pathological stage (P =0.786) and HER2 status (P =0.737). In summary, these results suggest that CCDC134 was involved in hormone receptor levels. Since the efficacy and prognosis of endocrine therapy for breast cancer were closely related to hormone receptor expression level, the results indicated that CCDC134 might be a biomarker of efficacy and prognosis of BC.


Table 1 | Clinical characteristics of the Breast invasive carcinoma patients (TCGA).






Figure 4 | CCDC134 mRNA level relationship with clinical pathological characteristics. There was no significant difference between CCDC134 mRNA expression and T (A), N (B), M (C) level, age (D) and HER2 (G) level. It was negatively correlated with PR (E) and ER (F) status. (ns, p≥0.05; ***p<0.001).





Diagnostic and Prognostic Value

In order to study the diagnostic value of CCDC134 in distinguishing breast cancer samples from normal breast cancer, ROC curve analysis was conducted. As shown in Figure 5A, ROC curve analysis shows that the AUC value of CCDC134 is 0.663, 95% Confidence interval (95% CI) = 0.611-0.715. When the critical value was 2.904, the sensitivity was 0.460 and the specificity was 0.800. The positive predictive value was 0.190, and the negative predictive value was 0.936. The results suggest that CCDC134 may be a promising biomarker for differentiating adenocarcinoma tissue from normal tissue. The relationship between CCDC134 mRNA expression and RFS in breast cancer patients was explored by Kaplan-Meier curve. As shown in Figure 5B, the RFS of patients with high level CCDC134 breast cancer was shorter than that of patients with low level CCDC134 breast cancer (57.27 months vs. 36.96 months, P = 2.0E-6).




Figure 5 | ROC and Kaplan-Meier curves of CCDC134. (A) THE ROC curve showed that the AUC value of CCDC134 was 0.663. (B) Kaplan-Meier survival curve showed that the RFS of breast cancer patients with high CCDC134 mRNA expression was shorter (57.27 months vs. 36.96 months) than that of breast cancer patients with low CCDC134 mRNA expression. P = 2.0 e-6).





Constructed a Nomogram Diagram

To provide a quantitative method for predicting the prognosis of BRCA patients, we constructed a Nomogram diagram of CCDC134 and independent clinical risk factors (T/N/M stage, CCDC134, age, PAM50). In this Nomogram based on multivariate Cox analysis, a point scale is used to assign points to these variables. Draw a straight line up to determine the number of points for a variable and adjust the sum of points assigned to each variable to a range from 0 to 100. The integrals of the variables are added up and recorded as an overall score. The 1-year, 3-year, and 5-year survival probabilities for BRCA patients were determined vertically from the total point axis down to the outcome axis (Figure 6A). The nomogram C-index of OS is predicted to be 0.729 (0.705-0.753) (Figure 6B).




Figure 6 | Construction of a rosette to predict the probability of survival in BRCA patients. (A) Nomogram to predict 1 -, 3 -, and 5-year BRCA survival probabilities consisting of CCDC134 and independent clinical risk factors. (B) Nomograms calibrated to predict the probabilities of 1 -, 3 - and 5-year survival. The gray line represents actual survival.





PPI Network and Functional Annotation

To build the PPI network and functional annotations, we performed STRING database, GO and KEGG analysis. Figure 7A showed the network of CCDC134 and its 10 co-expressed genes (Supplementary Table 4). As shown in Figure 7B, changes in CCDC134 bioprocesses were related to sphingomyelin metabolism, active regulation of glycolysis, positive regulation of nucleotide catabolism, active regulation of coenzyme metabolism, and assembly of ribosome macrosubunits. Functional annotations showed that these genes were involved in 5S rRNA binding, phosphotransferase activity for other substituted phosphate groups, rRNA binding, histone acetyl transferase activity, peptide-lysine-N-acetyl transferase activity and other functions. The correlation analysis of CCDC134 expression and co-expressed genes in TCGA breast cancer was shown in Figures 7C–J (successfully converted to 9 Entrez ID).




Figure 7 | PPI network and functional enrichment analysis. (A) CCDC134 and its co-expressed gene network. (B) Functional enrichment analysis of co-expressed genes. (C–J) The correlation analysis of CCDC134 expression and co-expressed genes.





Correlation Between CCDC134 and Immune Cell Infiltration

We analyzed the correlation between CCDC134 expression and six types of tumor-infiltrating immune cells in the TIMER database. As shown in Figure 8A, CCDC134 expression was correlated with tumor purity (r = 0.023, P = 4.68E −01), B cells (R = 0.125, P = 9.54E −05), CD8+ T cells (r =0.108, P = 7.38E −04), CD4+ T cells (r = 0.101, 1.66E-03), macrophages (r = 0.101, P = 1.54E−03), neutrophils (r = 0.189, P = 4.62E−09) and dendritic cells (r = 0.165, P = 2.92E−07) were correlated. Figure 8B shows the correlation between CCDC134 and PD-L1 (CD274) (r =0.214, P = 7.89E−13). We also assessed the correlation between CCDC134 expression and 28 types of lymphocytes in the TISIDB database. Figure 8C shows the relationship between CCDC134 expression and 28 types of lymphocytes in human cancers. As shown in Figures 8D–K, the expression of CCDC134 was correlated with that of CCDC134 and Act_CD4 + T cells (r= 0.105, P = 0.000486), DC cells (r= 0.192, P = 1.61E-10), MDSC cells (r= 0.073, P = 0.0153), monocytes (r = 0.063, P = 0.0375), pDC cells (r = 0.074, P = 0.0144), Tgd cells (r = 0.083, P = 0.00578) and the abundance of Tcm_CD4 + T cells (r= 0.091, P = 0.00246) and CD56DIM (r= 0.072, P = 0.0173). These data suggest that CCDC134 may play a specific role in immune invasion of breast cancer.




Figure 8 | CCDC134 expression and the immune level of correlation. (A) The expression of CCDC134 in breast cancer was correlated with tumor purity, B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils and dendritic cells. (C) Relationship between CCDC134 expression and 28 lymphocyte species in human tumors. (B) CCDC134 expression was positively correlated with CD274(PD-L1) in breast cancer. (D–K) CCDC134 and CD4 + T cells (r= 0.105, P = 0.000486), DC cells (r= 0.192, P = 1.61E-10), MDSC cells (r= 0.073, P = 0.0153), monocytes (r = 0.063, P = 0.0375), pDC cells (r = 0.074, P = 0.0144), Tgd cells (r = 0.083, P = 0.00578), Tcm_CD4 + T cells (r= 0.091, P = 0.00246) and CD56DIM (r= 0.072, P = 0.0173).





Small Molecule Therapeutics

The correlation between CCDC134 and potential drugs was analyzed using CTD database(Supplementary Table 5). A total of seven drugs were identified, including abrine, Benzo(A) Pyrene, bisphenol A, Soman, Sunitinib, Tetrachloroethylene and Valproic Acid (Figure 9). These drugs have a potential inhibitory effect on CCDC134.




Figure 9 | Prediction of potential drug and molecular structure affecting CCDC134. (A) CTD database predicts potential drugs that affect CCDC134, with green representing drug molecules that inhibit CCDC134. (B–H) PubChem database predicts the molecular structures of seven targeted drugs. (B) abrine, (C) Benzo(A) Pyrene, (D) bisphenol A, (E) Soman, (F) Sunitinib, (G) Tetrachloroethylene, (H) Valproic Acid.






Discussion

In this study, we found that CCDC134 mRNA and protein expression were up-regulated in breast cancer tissues. ROC curve analysis indicated that CCDC134 may be a promising diagnostic biomarker for differentiating breast cancer from normal tissues. Using Kaplan-Meier curves and univariate analysis, we confirmed that CCDC134 expression is associated with short RFS and that CCDC134 can serve as a potential biomarker of poor prognosis in breast cancer. In addition, CCDC134 may play a specific role in immune invasion of breast cancer.

Studies have shown (30) that CCDC134 is a novel gene involved in severe progressive deformation recessive osteogenesis imperfecta (type III). (15)Decreased CCDC134 expression has been reported to enhance erK1/2 activation and JNK/SAPK expression. CCDC134 regulates cell migration and invasion and may be a therapeutic target for gastric cancer. Exposure to CCDC134 promotes proliferation of CD8 + T cells through the Janus kinase 3- signal transductor and transcriptional activator 5 pathway. Two members of the γ c cytokine family effectively block CCDC134 binding to activated CD8 + T cells. This provides evidence that CCDC134 may be a potential member of the γ c cytokine family (31).

Huang, J (32) showed that CCDC134 may act as a new regulator of hADA2a and play a role in the PCAF complex through hADA2a, affecting its acetyltransferase activity and UV-induced DNA damage repair. However, in breast cancer, CCDC134 expression and its prognostic value have not been fully studied. Systematic approaches to breast cancer include surgery, endocrine therapy, radiotherapy and targeted therapy, and Endocrine therapy is of great significance in the treatment of patients with hormone receptor positivity. In the estrogen receptor. Positive (ER+) patients, 5 years of adjuvant tamoxifen (that suppresses ER) reduces breast cancer mortality by approximately one third (0-14 years), recurrence about half (0-4 years) and about one third (5-9 years) (33). We found that the upregulation of CCDC134 was negatively correlated with hormones. In addition, since ER and PR status are correlated with prognosis, CCDC134 may be used as a predictor of hormone receptor status, and whether endocrine therapy biomark is needed. Furthermore, according to kaplan-Meier curves and log-rank tests, breast cancer patients with high mRNA expression had lower survival rates than those with low CCDC134 levels. Based on our data, we conclude that CCDC134 can serve as a biomarker for poor prognosis in breast cancer. To identify patients with poor clinical prognosis.

There is little research on the possible role of CCDC134 in human lymphocytes. The correlation analysis between CCDC134 expression and immune cell infiltration in breast cancer has not been studied. In this study, we used TIMER to find that this gene could cause an increase in the number of infiltrating immune cells such as CD8+T in tumor tissues, but the expression of this gene was also positively correlated with the expression of PD-L1. Therefore, although this gene could recruit immune cells into tumor tissues, it could also lead to an increase in the expression of PD-L1 on the surface of tumor cells. Therefore, the high expression of this gene still has an inhibitory effect against tumor immune response. It is necessary to further study the mechanism and develop corresponding targeted drugs to remove the immunosuppressive effect of this gene and improve the survival prognosis of tumor patients.

By using the CTD database to predict drugs that inhibit CCDC134, seven drugs were identified. Previous studies supported abrine, Benzo(A) Pyrene, bisphenol A, Soman, Sunitinib, Tetrachloroethylene, and Valproic Acid can target CCDC134 in vitro and is expected to make new progress in the treatment of breast cancer. PubChem databases were used to determine the molecular structure of identified drugs.

There are several limitations to this study. Firstly, the expression and prognostic significance of CCDC134 were studied through online public database. Further studies on clinical samples and cell animal experiments are needed to verify these results. Secondly, in vitro and in vivo experiments need to be designed in order to further study the detailed mechanism of CCDC134 affecting immune invasion of breast cancer. Thirdly, besides CCDC134, there might be other novels genes associated with breast cancer (34). It might be better to study the association between them. Finally, all analyses in this study focus on bulk sequencing data. Fourthly, it might be better to study the role of CCDC134 using single cell sequencing to avoid cell heterogeneity using methods like single cell clustering (35–38).

In summary, in this study, we found for the first time that CCDC134 is highly up-regulated in breast cancer, and poor prognosis can be used as a potential prognostic marker and may play a specific role in immune infiltration.
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Objective: Esophageal cancer is an aggressive malignant tumor, with 90 percent of the patients prone to recurrence and metastasis. Although recent studies have identified some potential biomarkers, these biomarkers’ clinical or pathological significance is still unclear. Therefore, it is urgent to further identify and study novel molecular changes occurring in esophageal cancer. It has positive clinical significance to identify a tumor-specific mutation in patients after surgery for an effective intervention to improve the prognosis of patients.
Methods: In this study, we performed whole-exome sequencing (WES) on 33 tissue samples from six esophageal cancer patients with lymph node metastasis, compared the differences in the genomic and evolutionary maps in different tissues, and then performed pathway enrichment analysis on non-synonymous mutation genes. Finally, we sorted out the somatic mutation data of all patients to analyze the subclonality of each tumor.
Results: There were significant differences in somatic mutations between the metastatic lymph nodes and primary lesions in the six patients. Clustering results of pathway enrichment analysis indicated that the metastatic lymph nodes had certain commonalities. Tumors of the cloned exploration results illustrated that five patients showed substantial heterogeneity.
Conclusion: WES technology can be used to explore the differences in regional evolutionary maps, heterogeneity, and detect patients’ tumor-specific mutations. In addition, an in-depth understanding of the ontogeny and phylogeny of tumor heterogeneity can help to further find new molecular changes in esophageal cancer, which can improve the prognosis of EC patients and provide a valuable reference for their diagnosis.
Keywords: esophageal carcinoma, whole-exome sequencing, lymph node metastases, multi-region sequencing, subclone
INTRODUCTION
Esophageal carcinoma (EC) is a malignant tumor that occurs in the epithelial tissue of the esophagus. The number of EC patients in China accounts for 70% of EC patients worldwide. EC is highly aggressive and has a poor prognosis, with the 5-year survival rate being only 10–25% (Bolton et al., 2009; Chen et al., 2013; Pennathur et al., 2013; He et al., 2020a). Surgical resection is the primary treatment method for EC (Chadwick et al., 2016). However, 90% of EC patients who underwent surgery had recurrence and metastasis. Nearly half of them recurred within 5 years after surgery (Koshy et al., 2004; Scheithauer, 2004), and the annual survival rate was only about 40% (Allum et al., 2011; Alderson et al., 2015). After surgery, the local recurrence and distant metastasis are still clinically challenging issues for most cancers (He et al., 2020b; Liu et al., 2021). Many factors influence the prognosis of EC patients undergoing radical resection, such as living environment, clinicopathological features, molecular biological indicators, and treatment methods. It has been reported that DNA damage and repair processes lead to somatic mutations in cancer genomes (Pleasance et al., 2010). Recent studies have identified some genomic abnormalities as potential biomarkers for EC (Guo et al., 2013; Zhu et al., 2013), but these biomarkers’ clinical or pathological significance remains unclear. Therefore, further studies are urgently needed to identify new molecular changes in EC.
It is well known that genetic changes are the root cause of tumorigenesis, and cancers are caused by the accumulation of genomic alterations (Meyerson et al., 2010). With the progress of sequencing technology (next-generation sequencing, NGS), more and more studies are using whole-exome sequencing (WES) to study the comprehensive molecular characteristics of cancer, which allows querying thousands of variants of multiple genes in a given tumor sample at the same time (Ng et al., 2010; The Cancer Genome Atlas Network, 2012). Recent cancer genome analysis compared multiple samples of a single individual to gain insights into the evolutionary history of the cancer genome (Meyerson et al., 2010). For example, the primary tumor genome was compared with the matched metastatic tumor genome (Yachida et al., 2010). Based on WES technology, many driving genes and several critical signaling pathways of EC pathogenesis have been identified (Dulak et al., 2013; Zhang et al., 2015; Cheng et al., 2016; Deng et al., 2017; The Cancer Genome Atlas Research Network, 2017). However, the biological relationship between different intratumoral clonal subgroups is still unclear. Some scholars have begun to explore the diagnosis and treatment of tumors from the perspective of tumor heterogeneity (Liu et al., 2016; Furuta et al., 2017; Wang et al., 2020). A study published in 2015 conducted regional segmentation of the same lesion in patients with ESCC and used WES to explore tumor heterogeneity (Cao et al., 2015). Che et al. used WES to examine mutational concordance and heterogeneity between EC patients with matched dysplasia and carcinomatosis and tumor-free patients with only dysplasia samples. By performing clonal evolutionary analysis of individual patients, it has been found that most driver mutations of EC are also present in dysplastic tissue (Chen et al., 2017). All the aforementioned studies have shown that tumors evolve through different subclones, so there is heterogeneity among tumors, which leads to tumor recurrence and drug resistance (Gerlinger et al., 2012; Fisher et al., 2013; Sottoriva et al., 2013). Therefore, detection of tumor-specific mutations in patients with EC after surgery is helpful to timely take effective intervention measures, which is an effective way to improve the survival rate of EC patients and has positive clinical significance to improve their prognosis.
In this study, WES was applied to lymph node (LN) metastasis samples of EC patients to compare the difference of genomic landscape and evolution map in multiregional LNs and explore tumor heterogeneity based on somatic mutation information.
MATERIALS AND METHODS
Sample Collection
To explore the heterogeneity of EC, we collected the information of esophageal cancer patients from Fujian Cancer Hospital. Patients included were with the following criteria: male patients undergone surgery; patients with corresponding case data and histological specimens; and patients diagnosed with LN metastasis. Written informed consent was obtained from all participants. A total of 33 tumor tissue samples and lymph node metastasis samples were obtained from 6 EC patients. These samples included seven primary carcinomas, 20 LNs with metastatic carcinoma, and six normal mucosae (Table1). The detailed pathological information and clinical information (Table 2), such as the prognosis of the enrolled patients, were collected simultaneously. WES was performed with DNA isolated from tissues.
TABLE 1 | Information of all samples in six patients.
[image: Table 1]TABLE 2 | Summary of the general clinical information of EC patients.
[image: Table 2]DNA Extraction and Quantification
Genomic DNA from fresh tumors and normal tissue were extracted using a DNeasy Blood & Tissue Kit (Qiagen). Purified genomic DNA was qualified by using Nanodrop2000 for A260/280 and A260/A230 ratios (Thermo Fisher Scientific). According to the manufacturer’s recommendations, all DNA samples were quantified by using Qubit 3.0 and a dsDNA HS Assay Kit (Life Technologies). Genomic DNA from normal lung tissue was used as the normal control.
Library Preparation
Sequencing libraries were prepared using the KAPA Hyper Prep kit (KAPA Biosystems) with an optimized manufacturer’s protocol. Briefly, 1 μg of genomic DNA was sheared into 350-bp fragments using a Covaris M220 instrument (Covaris), followed by end repair, A-tailing, and ligation with index sequencing adapters. Then, size selection for genomic DNA libraries was carried out using Agencourt AMPure XP beads (Beckman Coulter). Finally, libraries were amplified by using PCR and purified using Agencourt AMPure XP beads.
Exome Sequencing and Data Processing
Exome capture was performed using the IDT xGen Exome Research Panel V1.0 (Integrated DNA Technologies). Enriched libraries were sequenced using the Illumina HiSeq 4000 platform to reach the mean coverage depth of ∼60X for the normal control (normal lung tissue) and ∼200X for the tumor samples.
Paired-end sequencing reads were aligned to the reference human genome (build hg19) with the Burrows–Wheeler Aligner (bwa-mem). Alignment results (BAM files) were further processed for de-duplication, base quality recalibration, and indel realignment using the Picard suite (http://picard.sourceforge.net/) and the Genome Analysis Toolkit (GATK). MuTect with default parameters was applied to paired normal and tumor BAM files for the identification of somatic single-nucleotide variants (SNVs). SNVs in the 1000 Genomes Project and dbSNP with a frequency > 1% were excluded. Small insertions and deletions (indels) were detected using SCALPEL. SNV and indel annotations were performed by ANNOVAR using the reference genome hg19 and standard databases version 2014 and functional prediction programs. Gene-level copy number ratios were calculated by CNVKit. Relative copy-ratios for each exon were calculated by correcting for imbalanced library size, GC bias, sequence repeats, and target density using the CNVKit algorithm.
Pathway Enrichment Analysis
We conducted KEGG enrichment for non-synonymous mutation genes to extend significance analysis beyond individual genes. We checked the distribution of non-synonymous mutation genes identified in KEGG and performed pathway enrichment analysis, labeling, and visualization in the database by observing the genome.
Tumor Heterogeneity Analysis
PyClone was used to conduct statistical analysis on somatic mutation data (Roth et al., 2014). PyClone is a stratified Bayesian model that inferred the cell prevalence for each variant (the percentage of tumor cells in the sample containing the variant), clustering the variants based on the covariance of multiple sample prevalence estimates for the same patient (Findlay et al., 2016; Lamy et al., 2016; McPherson et al., 2016). We used Citup for evolutionary analysis to infer the subclonal of EC patients. Citup, a bioinformatics tool for tumor clonal inference using phylogenetic theory, can infer tumor heterogeneity from multiple samples obtained from a single patient (Malikic et al., 2015). Given the mutation frequency of each sample, Citup uses an optimization-based algorithm to find the evolutionary tree that can best explain the data and infer the tumor clone with phylogeny. This method can use data from multiple samples to deduce clonal populations and their frequencies subject to phylogenetic constraints. To sum up, mutation data from multiple samples of the same patient were used as the input data to software PyClone. Then, allele-specific copy number measurements were made for each mutation site in each sample. Second, evolutionary analyses were performed using Citup. Finally, the results were visualized with the R package timescape.
RESULTS
Framework for This Study
An overview of the main workflow for this study is shown in Figure 1. Specifically, after DNA was extracted from tumor and normal tissues, a gene library was prepared and sequenced using Illumina HiSeq 4000 platform. The sequencing reads were then compared with the reference human genome to identify the somatic SNV. Based on the results of mutation analysis, KEGG was used for pathway enrichment analysis of non-synonymous mutations. In addition, somatic mutation data were statistically analyzed to infer subclones of EC patients.
[image: Figure 1]FIGURE 1 | Overview of the main workflow.
There Are Differences in Somatic Mutations Among Primary Tumors and Metastatic LNs
Thirty-three formalin-fixed paraffin-embedded tissues (FFPE) and frozen tissue samples from six EC patients were collected. WES was performed on all samples to further explore potential heterogeneity and the cloning progress, and SamTools was applied to invoke somatic variations. To identify specific mutations at this locus, we screened non-identical and frameshift mutations with a mutation frequency greater than 5%. For all primary sites and metastatic LNs, the total number of mutations (non-homozygous and frame-coding mutations with a mutation frequency of not less than 5%) ranged from 18 to 1,221. Specific mutations are shown in Figures 2A,B. We observed that C: G > T: A had the largest number of mutations both in metastatic LNs and primary lesions. For primary lesions of all patients, the largest number of C: G > T: A occurred in patient 5. The heatmap in Figure 2C shows all the metastatic LNs and primary mutations at each site. It can be seen that the mutations of metastatic LNs and primary were distinct, indicating that there are differences in somatic mutations between metastatic LNs and primary lesions.
[image: Figure 2]FIGURE 2 | Somatic mutations in tumor samples. (A) Histogram of non-synonymous mutation counts with mutation frequency greater than 5% in primary samples. (B) Histogram of non-synonymous mutation counts with mutation frequency greater than 5% in LN samples. (C) Mutation spectrum of LNs and primary: the column represents the sample, the row represents the site, and each cell represents the mutation count of the sample at that site.
Metastatic LNs Have Pathway Commonality
KEGG enrichment analysis for non-synonymous mutant genes was used to extend the significance analysis beyond a single gene. Our results (shown in Figure 3) indicated that metastatic LNs had certain commonalities. Lymph nodes and primary foci shared many pathways, such as hsa04512: ECM receiver interaction, hsa00562: inositol phosphate metabolism, hsa05210: colorectal cancer, hsa04070: phosphatidylinositol signaling system, hsa04020: calcium signaling pathway, and hsa04510: focal adhesion. These signaling pathways are often dysregulated in a variety of cancers, which enhances confidence in the study of their respective mechanisms.
[image: Figure 3]FIGURE 3 | KEGG pathway enrichment in multi-region of primary and metastatic LNs.
The pathways of primary focus acting alone were hsa04330: Notch signaling pathway, hsa05215: prostate cancer, hsa04114: oocyte meiosis, hsa04270: vascular smooth muscle contraction, hsa05212: pancreatic cancer, hsa05220: chronic myeloid leukemia, and hsa04920: adipocytokine signaling pathway. The Notch signaling pathway mediates different biological processes, including stem cell self-renewal, progenitor cell fate determination, and terminal differentiation. The expression of the Notch pathway core transcription complex and its target genes was closely related to the invasive clinicopathological variables of esophageal squamous cell carcinoma (ESCC). In conclusion, this result suggests that the normal function of the aforementioned signal pathways may be widely affected by the related mutant genes and is helpful to the development of heterogeneity research of EC.
Primary and LNs Are Heterogeneous
We collated somatic mutation data from all patients to analyze and explore the evolutionary relationship between primary and metastases LNs at the molecular level. We analyzed the subclonality of each tumor using PyClone. The cell prevalence of each variant was estimated using the copy number and tumor purity based on its allele frequency. The results of different clustering types according to the cell prevalence distribution of different samples are shown in Figure 4. It is important to note that the sample order is not chronological but that primary and metastatic LNs were collected simultaneously. The results showed that different patients had different subclones. Even for the same patient, the prevalence of cells in distinct clusters varied in different samples. For example, subclone 10 from patient 1 (Figure 4A) has a low cellular prevalence in cardiac lymph nodes but is higher in other samples. The other cluster 11 of patient 1 was almost exclusively present in the primary lymph nodes, with little or no presence in other samples. Clusters 9 and 10 in patient 3 (Figure 4C) were found in primary and seven lymph nodes. Similarly, patient 6 also showed substantial heterogeneity (Figure 4F). Interestingly, according to the survival information in Table 2, both patient 1 and patient 6 died, suggesting that tumor heterogeneity may affect the prognosis and survival of patients.
[image: Figure 4]FIGURE 4 | Subclones of primary and metastatic LNs in all samples generated by using PyClone were composed. Each panel represents a patient, the x-axis represents not a time but a sample, and the y-axis represents the mean cell prevalence of variation in all clusters in each sample. (A–F) Patients 1 to 6.
To further investigate the inference of tumor clones, we conducted an evolutionary analysis of mutant clusters and cell prevalence in all samples to identify the parent clones of each tumor clone. According to the analysis results of Citup, the metastatic evolution diagrams of all patients are shown in Figure 5. The results showed that the founder clone of the primary tumor was absent. However, the most persistent clones were traced back to the primary tumor during disease progression. Except for patient 5, the samples of all patients showed significant heterogeneity. For patient 6, in particular, the clones not present in primary 2 were present in the left lymph node, while clones present in primary 2 were not in the left lymph node. This indicated a substantial heterogeneity between primary 2 and left lymph nodes. The distribution of these subclones in different sites of all samples probably reflected the prognosis of patients.
[image: Figure 5]FIGURE 5 | Fish diagram of each patient’s tumor clone envelogram.
DISCUSSION
Esophageal cancer is highly invasive and prone to recurrence and metastasis. Recent whole-exome sequencing and whole-genome sequencing have shown that patients with EC have a high mutation rate (Song et al., 2014; Zhang et al., 2015), with a large number of copy number changes and large-scale chromosome rearrangements. Hence, it is urgent to further study new molecular changes in EC. With the rapid development of cancer genome sequencing, the genomic heterogeneity between and within tumors has been a vital cancer feature (Zhang et al., 2013; Murugaesu et al., 2015). It is of positive significance to detect whether there are tumor-specific mutations in patients and take effective intervention measures to improve patients’ prognosis and survival rate.
This study collected 33 samples from six EC patients, including tumor tissue and lymph node metastases. WES was performed on these samples to compare genomic and evolutionary maps in different regions. Then, we performed pathway enrichment on non-synonymous mutation genes. Finally, the subclonality of each tumor based on the somatic mutation data of all patients was analyzed. Results showed that the total number of mutations in metastatic LNs and primary ranged from 18 to 1,221. The largest number of mutations found was C: G > T: A. There were significant differences in somatic mutations between metastatic lymph nodes and primary lesions in six patients. Moreover, the metastatic LNs had certain commonalities based on the clustering results of pathway enrichment. For example, ECM–receptor interaction is the most abundant signal pathway in the ESCC cell line (Ma et al., 2021). The extracellular matrix (ECM) serves an essential role in tissue and organ morphogenesis and maintains cell and tissue structure and function. Transmembrane molecules mediate specific interactions between cells and the ECM. These interactions lead to direct or indirect control of cellular activities such as adhesion, migration, differentiation, proliferation, and apoptosis. But the primary had some independent pathways. Notch and other developmental pathways are involved in different cell functions from cell cycle regulation to self-renewal (Moghbeli et al., 2015). The expression of Notch pathway core transcription complex and its target gene and the overexpression of TWIST1 are closely related to the invasive clinicopathological variables of ESCC (Fahim et al., 2020). Adipokines play a significant regulatory role in the adipocytokine signaling pathway. The increase in the adipocyte volume and number is positively correlated with leptin production and negatively associated with adiponectin production. Obesity may increase the risk of ESCC and affect its growth and progression (Liu et al., 2020). Tumors of the cloned exploration results showed that different patients had distinct subclones. Even for the same patient, the prevalence of cells in different clusters varied among samples.
It is of notice that there are a few limitations to this study. First, we only focused on genomic changes, and other levels of molecular data such as gene expression have also been proven vital in studying the recurrence and metastasis of many cancers (He et al., 2020c). Second, since EC is quite heterogeneous, it might be helpful to check EC samples at the single-cell level to identify cell clusters (Xu et al., 2020; Zhuang et al., 2021). Finally, the number of patients was limited, and the increase in the sample size might provide more meaningful findings.
In summary, we used WES to explore the differences in the evolution map and heterogeneity in different regions and detect tumor-specific mutations in patients to help improve the prognosis of EC patients. However, there are still some limitations to this study. The original data are insufficient, which is an urgent problem to be solved. In the future, we will intake more cases of EC, increase the sample size, and deeply understand the ontogeny and phylogeny of tumor heterogeneity to further identify new molecular changes in EC.
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Cancer of unknown primary site (CUP) is a heterogeneous group of cancers whose tissue of origin remains unknown after detailed investigation by conventional clinical methods. The number of CUP accounts for roughly 3%–5% of all human malignancies. CUP patients are usually treated with broad-spectrum chemotherapy, which often leads to a poor prognosis. Recent studies suggest that the treatment targeting the primary lesion of CUP will significantly improve the prognosis of the patient. Therefore, it is urgent to develop an efficient method to accurately detect tissue of origin of CUP in clinical cancer research. In this work, we developed a novel framework that uses Extreme Gradient Boosting (XGBoost) to trace the primary site of CUP based on microarray-based gene expression data. First, we downloaded the microarray-based gene expression profiles of 59,385 genes for 57,08 samples from The Cancer Genome Atlas (TCGA) and 6,364 genes for 3,101 samples from the Gene Expression Omnibus (GEO). Both data were divided into training and independent testing data with a ratio of 4:1. Then, we obtained in the training data 200 and 290 genes from TCGA and the GEO datasets, respectively, to train XGBoost models for the identification of the primary site of CUP. The overall 5-fold cross-validation accuracies of our methods were 96.9% and 95.3% on TCGA and GEO training datasets, respectively. Meanwhile, the macro-precision for the independent dataset reached 96.75% and 98.8% on, respectively, TCGA and GEO. Experimental results demonstrated that the XGBoost framework not only can reduce the cost of clinical cancer traceability but also has high efficiency, which might be useful in clinical usage.




Keywords: cancer of the unknown primary site, human malignancies, gene expression, XGBoost, gene selection



Introduction

Cancer of unknown primary site (CUP) is a rare type of tumor whose primary lesion cannot be determined even after a detailed investigation by conventional clinical medical methods (1). CUP only accounts for 3%–5% of all human malignancies and has an annual incidence of approximately 7–12 per 100,000 persons (2, 3). However, it is the fourth leading cause of cancer death, because targeted therapy usually requires knowledge of the tissue origin of cancer (4, 5). It is clear that there is an urgent need for an effective and efficient method of tracing the primary site of CUP patients (6).

Recently, next-generation sequencing technologies have facilitated the usage of biomarker-based personalized CUP therapies (7). With the increasing availability to acquire high-throughput genomic and transcriptomic data, various types of molecular biomarkers have been identified and used in identifying the tissue of origin of CUP (8–12). First, patterns of DNA somatic mutations of a CUP patient in conjunction with the Random Forest algorithm were used to predict cancer tissue of origin (8, 13). However, the prediction accuracy is still not satisfactory, especially for clinical usage. Second, copy number alteration was also used to predict tumor tissue of origin with a deep learning framework (14). Though the accuracy improved, it is not easy to call copy number alteration easily for an individual patient. Third, tissue-specific miRNA and DNA methylation markers combined with the random forest algorithm also achieved good prediction results (11, 15–17). However, DNA methylation pattern is also expensive to achieve, which may restrict its clinical usage. Fourth, mRNA is probably the most studied molecule in detecting tissue of origin of CUP patients, which is usually used together with classification algorithms like naive Bayesian and Tree Boosting (10, 18–20). Fifth, there are also methods combining two or several types of molecular biomarkers to predict tissue of origin of CUP (9, 11). Finally, immunohistochemical and diagnostic methods combined with machine learning or deep learning algorithms were also widely used to detect the primary site of CUP (16, 18, 21, 22).

Microarray data analysis of gene expression files is a high-throughput sequencing approach using sequencing technology (23–25). Since RNA-seq has many advantages over microarray such ability to detect novel transcripts, microarray-based detection of tissue of origin of CUP is more or less ignored by previous studies. However, the advantages of RNA-seq seem not to affect the detection of tissue of origin. In addition, there are plenty of microarray data, and microarray seems to be more robust than RNA-seq. Thus, it still might be worthy to test the ability of microarray data in tracing the primary site of CUP. In this study, we developed microarray-based Extreme Gradient Boosting (XGBoost) models from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to infer tissue of origin of CUP. To illustrate the validity and rationality of the model, we further revealed the gene expression level in each cancer type and analyzed the enrichment of the genes used in the models.



Materials and Methods

The framework of this study is shown in Figure 1, which consists of a few steps including data collection, feature selection, model construction, and model validation.




Figure 1 | A computational framework to detect the primary site of cancer with an unknown primary lesion.




Data Preparation

Microarray gene expression datasets of different cancer types were downloaded from TCGA and GEO. The detailed information of the datasets is summarized in Table 1. Specifically, a total of 5,708 samples were downloaded from TCGA, covering 15 types of cancer; microarray expression of 59,385 genes for each sample was also retrieved. Similarly, 3,101 samples were also downloaded from GEO, covering 19 types of cancer; microarray expression of 6,364 genes for each sample was also retrieved. The dataset downloaded from TCGA was denoted as T dataset, while that from GEO was denoted as G dataset. Cancers in the hypopharynx, oropharynx, tongue, larynx, stomach, pancreas, oral cavity, mandible, floor of mouth (FOM), and prostate were combined with the other cancer types in the G dataset, due to their small sample size. Therefore, the number of cancer types in dataset G was reduced from 19 to 10. The specific number of samples per cancer of the T and G datasets is shown in Figure 2. Detailed information for each sample in the G and T datasets can be found in Supplementary Table S1, available online at https://github.com/liqianyue/zeitgeist/tree/main/CUP/dataset.


Table 1 | Detailed information of the data used in this study.






Figure 2 | The number of samples for each cancer type. (A) T dataset. (B) G dataset.




Training and Testing Datasets

The training and testing datasets were constructed as follows:

	(1) T dataset: Since the numbers of samples in each cancer vary widely, stratified random sampling was used to split the data into the training set and testing set (26). For breast cancer, the samples were randomly distributed to training and testing sets with a ratio of 1:1. For all the other cancers, the ratio was set to 4:1. The reason is that there are ~1,200 samples in breast cancer, and it will dominate the training dataset if the ratio is 4:1. Our general rule is that the ratio is 1:1 if the sample number of a cancer type exceeds 20% total sample size; the ratio is 4:1, otherwise. Finally, 4,202 samples were obtained across 15 cancers in the training set and 1,506 samples in the testing set.

	(2) G dataset: By a similar rationale, stratified random sampling was also used to split the data. The ratios for breast cancer and colorectal cancer were set to 1:1, and those for other cancer types were 4:1. Finally, 1,853 samples were obtained across 10 cancers in the training set and 1,248 samples in the testing set.





Oversampling

It is worth noting that there is a large difference in the sample number across different cancer types in the training set, which will bias the prediction model. So the Synthetic Minority Oversampling Technique (SMOTE) method was chosen to balance the datasets, which is an oversampling method (27). Specifically, SMOTE first selects a minority class at random and finds its k nearest minority class neighbors. The synthetic instance is then created by choosing one of the k nearest neighbors b at random and connecting a and b to form a line segment in the feature space.




Gene Selection Method

For machine learning classification algorithms, irrelevant and redundant features could weaken the effectiveness of the learning algorithm. Therefore, reducing the number of gene features can not only reduce the complexity of the model algorithm and shorten training time but also make the model more generalizable and uneasy to overfit. The gradient boosting algorithm was chosen for gene selection (28). Specifically, the gradient boosting algorithm was first used to calculate the importance score of every gene feature in the T and G training sets. After the importance score was sorted from the largest to smallest, the top X (X = 10, 20, 30, …, 1000) significant genes were sequentially selected as the input features of models, and then the performance of the model with these X-dimensional features in 5-fold cross-validation was recorded (see Figure 3). Finally, 200 and 390 genes were determined from each sample in the T and G datasets, respectively, based on the analysis of the 5-fold cross-validation results. The selected gene names can be found in Supplementary Table S2, available online at https://github.com/liqianyue/zeitgeist/tree/main/CUP/dataset.




Figure 3 | Performance of the model with top x genes in 5-fold cross-validation. (A) T dataset and (B) G dataset.





Model Training

XGBoost is a machine learning system for tree boosting proposed by Chen and Guestrin (29), which has been widely used in the field of bioinformatics in recent years (30–32). For example, Chen and Zhou have used the XGBoost method to trace the primary lesion (19). Similar to this article, XGBoost also has been used to infer the primary lesion of solid tumor types (19) and predict the progression of early-stage prostate cancer in veterans (33). In general, XGBoost is an ensemble model that integrates multiple weak classifiers to reduce the impact of each tree and provide a better learning space.

To obtain the best XGBoost model for solving this problem, three key hyperparameters were selected for fine-tuning during its training within the 5-fold cross-validation based on stratified random sampling. The first parameter “gamma” is the minimum decreasing value of loss function required for node splitting; a high gamma value indicates a more conservative algorithm. The second parameter “max_depth” is the deepest depth of all trees; the larger the max_depth is, the more specific and localized samples the model will learn. The third parameter “min_child_weight” determines the minimum leaf node sample weight sum, which is mainly used to avoid overfitting. When this value is large, it will prevent the model from learning specific local samples.



Performance Assessment

A 5-fold cross-validation based on stratified random sampling was used to evaluate the classification performance. First of all, the samples of each category were randomly divided into five subsets. Next, one of the subsets was selected as the validation set each time without repetition, and the remaining samples were used as the training set. Finally, the prediction results in the test set (five times) were aggregated and used to measure the prediction performance of the model.

For general classification problems, precision (P), recall (R), accuracy (ACC), and F1_score were usually adopted to assess the performance of the method. They have been widely used as measurement metrics in previous works (18, 34). They are defined in the following equations. Before that, there was a need to calculate Tp, Tn, Fp, and Fn, whose definitions are shown in Table 2.


Table 2 | Parameters for performance assessment.



Then,

	

	

	

	

Additionally, for multiclassification problems with multiple confusion matrices, macro-average and micro-average were used to evaluate the performance of models (31). Macro-average mainly contains macro_P, macro_R, and macro_F1; similarly, micro-average contains micro_P, micro_R, and micro_F1. Their definitions are shown in the following equations.

	

	

	

	

	

	

where (P1, R1), (P2, R2), …, (Pn, Rn) are the precision and recall calculated on the confusion matrix of each class separately. The average of Tp, Tn, Fp, and Fn are obtained by averaging the individual elements of the confusion matrix for all classes, they are recorded respectively as  .

To better measure the classification results of all cancer types, the receiver operating characteristic (ROC) was also drawn, which used the true-positive rate (TPR) and false-positive rate (FPR) as the horizontal axis and the vertical axis, respectively. In addition, we were interested in the area under the ROC curve, denoted by AUC, which is another commonly used evaluation criterion. The TPR and FPR are defined in the following equations.

	

	




Results


Genes Selected in T Dataset and G Dataset

In the T training dataset and G training dataset, in order to determine the number of genes, we used 5-fold cross-validation based on stratified random sampling to evaluate the performance of the model in the gene selection approach. In this part, we only calculated the overall accuracy; the specific results are shown in Table 3. Under each of the two datasets, we bolded the accuracy corresponding to the best performing dimension.


Table 3 | The influence of gene number to the performance of the XGBoost model based on 5-fold cross-validation.



Specifically, in the T training dataset, the prediction accuracy of the model was 0.968, when we selected the top 200 genes to train the model. Similarly, in the G dataset, we chose 390 genes, and the accuracy of the model was 0.953. To test the effect of model selections, we compared in Figure 3 the prediction performances of commonly used machine learning algorithms, including XGBoost, support vector machine with linear kernel function (svm_lin), support vector machine with radial base kernel function (svm_rbf) (35), k-nearest neighbor (knn) (36), and logistic regression (lg) (37).

We also plotted in Figure 4 the expression levels of the top 60 genes selected from the T and G training datasets in each cancer. Each column in Figure 4 represents a selected gene; each row represents a cancer type; the color of a block indicates the normalized average expression of a gene in a cancer type. As can be seen, there are a few genes only highly expressed in one cancer type, which might be specific for distinguishing that cancer type. For example, SMC1B is highly expressed in cervical cancer. SMC1B (Structural Maintenance Of Chromosomes 1B) is a protein-coding gene associated with cell cycle, mitosis, and meiosis. Papasavvas et al. found that SMC1B is a feature of cancer precursor dysplasia within high-risk HPV infection (38). There are also other genes highly expressed in several cancer types, indicating that the classification process is quite complex.




Figure 4 | Expression of selected genes in individual cancer types. (A) T dataset. (B) G dataset.





The XGBoost Algorithm Showed the Best Generalization Performance on the Test Dataset

Previously, we selected 200 and 390 genes as final feature inputs of our classifiers from the T and G datasets, respectively. Then, in the T training dataset, we used 5-fold cross-validation with overall accuracy as the model evaluation metric. At last, we obtained the optimum parameters for the final XGBoost model with gamma = 0, max_depth = 12, and min_child_weight = 4. Similarly, in the G training dataset, we obtained the optimum parameters, gamma = 0, max_depth = 19, and min_child_weight = 4.

After inputting the best parameters obtained previously into the XGBoost model, we used the full training set data to train the model. Then we used the overall accuracy, macro-average, and micro-average to evaluate the performance of prediction models in the independent test dataset. Furthermore, for the prediction models, we also compared the performances of a few commonly used machine learning algorithms including XGBoost, svm_lin, knn, svm_rbf, and lg. The results of the method comparison are shown in Figure 5; the XGBoost model shows the best classification prediction on both the T and G independent test datasets. Furthermore, Table 4 shows the specific performances of the XGBoost model. Finally, the results of ROC and AUC of the XGBoost model in every type of cancer on independent test datasets are shown in Figure 6. As can be seen, XGBoost shows good classification performances on each cancer type.




Figure 5 | Comparison of machine learning models for independent testing on the (A) T and (B) G datasets.




Table 4 | The performance of XGBoost model in testing data.






Figure 6 | ROC and AUC of XGBoost model in each cancer on test datasets. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve; XGBoost, Extreme Gradient Boosting.





Enrichment Analysis

For understanding why the selected genes can trace the origin of CUP, we further performed function enrichment analyses on the 200 and 390 genes selected from the T and G datasets, respectively. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are shown in Figures 7 and 8 (39). The enrichment results showed that the genes were significantly enriched in the maintenance and regulation of cell differentiation during morphogenesis of human organs and sub-organ tissues, such as tissue of morphogenesis, regulation of body fluid level, and regulation of system process. Furthermore, the selected genes are highly associated with the development and metastasis of cancer. For example, the aberrant activation of tissue of morphogenesis can also drive distinct stages of cancer progression, including tumor invasiveness, cell dissemination, and metastatic colonization and outgrowth (40). The relationship between hemostasis and malignancy is well recognized, with both elements interacting in a “vicious cycle,” where cancers overexpress procoagulants and thrombin, which in turn promote both prothrombotic potential and tumor growth, invade, and spread (41).




Figure 7 | GO and KEGG enrichment analyses of the 200 genes on the T dataset (A) and 390 genes on the G dataset (B). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.






Figure 8 | Protein–protein interaction network. The MCODE algorithm was then applied to this network to identify neighborhoods where proteins are densely connected. Each MCODE network is assigned a unique color. The GO enrichment analysis was applied to each MCODE network to assign “meaning” to the network component. GO, Gene Ontology.






Discussions

To date, various classification models based on machine learning have been built to trace tissue of origin of CUP. For instance, Chen achieved an average R2-score of 96.38% based on XGBoost classification in the RNA-seq datasets of TCGA and the GEO. Liang used the 10-fold cross-validation to evaluate the overall accuracy of naive Bayesian algorithms, which reached 91%. Currently, the prediction for CUP was between 80% and 95%. In 2019, Albaradei with colleagues also proposed a deep learning model called Deep2Met to predict metastatic colorectal cancer using DNA methylation data, which achieved AUC and average F-scores of 0.97 and 0.95, respectively (42).

Although we have made some progress in these studies, there are still some limitations. To be specific, due to the difference in probes between TCGA and the GEO datasets, the two datasets can neither be validated against each other nor be aggregated for use in model training. Moreover, the total number of samples collected for many cancer types was low, resulting in poor model predictions for these types. For example, the accuracies were low for the eyes and adrenal gland on the T dataset, as well as the bone and liver on the G dataset.

Despite that some similar studies have achieved good results, there is still room for improvement. For instance, further research should consider integrating multiple types of biomarkers to improve inference accuracies, such as circulating tumor DNA (43) and H&E images (44). It is also favorable to adopt more advanced machine learning algorithms for prediction or to use algorithms that integrate learning more efficiently (45). In a recent breakthrough, Liu et al. systematically compared the performances of three types of biomarkers including DNA methylation, gene expression profile, and somatic mutation as well as their combinations in inferring the tissue of origin of CUP patients (11). In addition, single-cell RNA sequencing is able to measure the gene expression at the single-cell level, which might further contribute to the accuracy of CUP tissue-of-origin inference (46). Finally, in our current model, there are still other limitations in terms of the source of the cancer data; therefore, it is also a very worthwhile research direction to transfer the model trained on TCGA dataset to the GEO or other datasets.



Conclusion

In this study, we proposed a machine learning-based approach to detect the primary site of CUP. First, in order to improve the efficiency and prevent over-fitting of models, we selected 200 and 390 genes from all genes on the T and G datasets, respectively. Additionally, we also took heat maps, which is a kind of visualization method, to show the expression level of selected genes. Second, we explored the machine learning frame based on the XGBoost model because the performance evaluation showed that it achieved relatively good results for each cancer type in all models. Finally, we used GO and KEGG enrichment analyses to validate the reasonableness of the gene selection results. In summary, the proposed approach not only can reduce the cost of clinical cancer traceability but also has high efficiency; thus, it is promising in clinical cancer research practice.
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Lung adenocarcinoma (LUAD) is one of the most common malignancies with the highest mortality globally, and it has a poor prognosis. Cell cycle checkpoints play a central role in the entire system of monitoring cell cycle processes, by regulating the signalling pathway of the cell cycle. Cell cycle checkpoints related genes (CCCRGs) have potential utility in predicting survival, and response to immunotherapies and chemotherapies. To examine this, based on CCCRGs, we identified two lung adenocarcinoma subtypes, called cluster1 and cluster2, by consensus clustering. Enrichment analysis revealed significant discrepancies between the two subtypes in gene sets associated with cell cycle activation and tumor progression. In addition, based on Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we have developed and validated a cell cycle checkpoints-related risk signature to predict prognosis, tumour immune microenvironment: (TIME), immunotherapy and chemotherapy responses for lung adenocarcinoma patients. Results from calibration plot, decision curve analysis (DCA), and time-dependent receiver operating characteristic curve (ROC) revealed that combining age, gender, pathological stages, and risk score in lung adenocarcinoma patients allowed for a more accurate and predictive nomogram. The area under curve for lung adenocarcinoma patients with 1-, 3-, 5-, and 10-year overall survival was: 0.74, 0.73, 0.75, and 0.81, respectively. Taken together, our proposed 4-CCCRG signature can serve as a clinically useful indicator to help predict patients outcomes, and could provide important guidance for immunotherapies and chemotherapies decision for lung adenocarcinoma patients.
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INTRODUCTION
Lung cancer is one of the leading threats to human health, with more than 1.8 million lung cancer cases globally, according to Global Cancer Statistics 2020 estimates (Sung et al., 2021). Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancers, and lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, with a high degree of heterogeneity and aggressiveness (Thai et al., 2021). Despite improvements in multiple therapies, LUAD patients still have poor prognosis, due to local recurrence and distant metastasis (Tan and Tan, 2022). Therefore, it is necessary to develop a risk stratification method and find reliable molecular signature for early diagnosis, prognostic prediction, and treatment options of LUAD.
Tumours are a class of diseases in which cell cycle regulatory mechanisms are disrupted (Lugli et al., 2021). Cell cycle checkpoints serve as DNA surveillance mechanisms in the entire system of monitoring cell cycle processes, and play a central role in preventing the accumulation and reproduction of genetic mutations during cell division (Panagopoulos and Altmeyer, 2021). Importantly, some studies have indicated that most cell cycle control functions are essential for cancer cell survival (Walston et al., 2021; Liu et al., 2022). In cancer cells, DNA damage checkpoints are frequently damaged, allowing cells to continue dividing despite the accumulation of genetic errors (Huang and Zhou, 2020). Conversely, genes involved in DNA replication stress checkpoints in cancer cells rarely mutate, as many cancers increasingly rely on DNA replication stress checkpoints function to tolerate high levels of replication stress (Técher et al., 2017). Similarly, cancer cells rely on functional spindle assembly checkpoints to prevent catastrophic missegregation of chromosomes (Musacchio, 2015). Previous studies have shown that cell cycle checkpoints related genes have potential prognostic value in a variety of cancers, so targeting cell cycle checkpoints is therefore a promising strategy (Fei and Xu, 2018; Sonntag et al., 2021). It is feasible to establish a risk signature based on the cell cycle checkpoints to assess patients outcome and therapeutic efficacy. Notably, several risk signatures have been developed to explore the prognostic value of DNA damage repair and cell cycle progression-related genes (Chen et al., 2021a; Jiang et al., 2021). However, the predictive value of risk signature constructed using cell cycle checkpoints as a clinical indicator in lung adenocarcinoma is unclear.
Tumour cells survive and proliferate in vivo via evading recognition and attack by the body’s immune system through a variety of mechanisms (Jiang et al., 2019; Anichini et al., 2020). Recently, immunotherapies for lung adenocarcinoma, which stimulates specific immune responses to kill tumour cells, has become a hot topic (Bauml and Knepley, 2020). Bioinformatics analysis of tumour immune microenvironment, tumour mutation burden (TMB), and immune checkpoints expression levels can help predict immunotherapy efficacy and promote precision therapies.
In this study, we investigated the potential biological significance of cell cycle checkpoints in LUAD. Based on prognostic genes associated with cell cycle checkpoints, we identified lung adenocarcinoma patients in the TCGA database into two subtypes using consensus clustering. In addition, we constructed a risk signature using LASSO-Cox regression, to more accurately evaluate the clinical value of CCCRGs in LUAD. There were significant differences in patients outcomes, immune implication, chemotherapeutic efficacy, and gene mutation status between high- and low-risk groups. This study may shed new light on the molecular mechanisms underlying LUAD, and provides insights into personalized targeted therapies for LUAD patients. In the future, the technology may help doctors make better treatment decisions.
MATERIALS AND METHODS
Data Collection and Processing
By cleansing and standardizing lung adenocarcinoma data from The TCGA dataset, we obtained gene expression profiles from 515 tumour samples and 59 cancer-adjacent normal tissues [log2 (TPM+1)]. Clinical information data was eventually collated and extracted from 500 tumor samples after deletion of the missing data and samples with 0 survival time. GSE31210, GSE10072, GSE27262, GSE68465, and GSE50081 were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Samples lacking survival data were deleted and all data were standardized and corrected for log2 (x+1). Mutation data were downloaded from the TCGA database (https://portal.gdc.cancer.gov/). Tumor mutation burden data were downloaded from the cBioPortal (https://www.cbioportal.org/). Differentially expressed genes (DEGs) were analysed using the R package “limma” for TCGA, GSE3120, GSE10072, GSE27262, and GSE68465 databases (Ritchie et al., 2015). (|FoldChange|>2, adjusted p < 0.05).
Consensus Clustering and Molecular Subtypes of Cell Cycle Checkpoints Related Genes
Univariate Cox analysis of differentially expressed CCCRGs was performed to obtain 25 prognostic related CCCRGs (Ahmed et al., 2022). Unsupervised cluster analysis was performed using R package “ConsensusClusterPlus”, using agglomeration km clustered with a 1-Pearson correlating distribution, and resampling of 80% of the samples for 1000 repetitions (Wilkerson and Hayes, 2010). The optimal clustering was determined under cumulative distribution curve (CDF) and the rationality of clustering was further validated by principal component analysis (PCA).
Enrichment Analysis
Differentially expressed genes between the two subtypes were obtained by R package “limma” (version 3.40.6) (Ritchie et al., 2015). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses were performed by R package “Cluster Profiler” (version 3.14.3) to obtain enrichment results (Cao et al., 2021). (p value <0.05, FDR <0.05) Gene Set Enrichment Analysis (GSEA) software (version 3.0) was obtained from the GSEA website. We downloaded c2.cp.kegg.v7.4.symbols.gmt (KEGG) and h.all.v7.4.symbols.gmt (Hallmark) gene sets from the Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). GSEA analysis was conducted in two subgroups, to assess relevant pathways and molecular mechanisms based on gene expression profiles and phenotypic subsets, with a minimum set of 5 genes, a maximum set of 5,000 genes, and 1,000 repetitions (p value <0.05, FDR <0.05) (Subramanian et al., 2005). Gene Set Variation Analysis (GSVA) calculated the enrichment score for each sample in the Hallmark gene sets using the R package “GSVA”, setting the minimum set at 5 and the maximum set at 5000 (Hänzelmann et al., 2013).
Construction of Signature
In this study, we used the R package “glmnet” to integrate survival time, survival status, and gene expression data for regression analysis using the LASSO-Cox method. We also set up a 10-fold cross validation to get the best signature (Wu et al., 2021). Ultimately, we constructed a prognostic signature based on CCCRGs to predict survival in LUAD patients. The risk score was calculated as follows: risk score = (β1 × Gene1 Exp) + (β2 × Gene2 Exp) + . . . + (βi × Genei Exp) (Tibshirani, 1997; Friedman et al., 2010; Wang et al., 2019). Patients with LUAD were classified into high- and low-risk groups based on risk score. Kaplan-Meier analysis and ROC analysis were conducted to examine the applicability and stability of the model. In addition, we used R package “rms” to establish a nomogram using Cox regression to assess prognostic significance of clinicopathologic factors and risk score in LUAD samples (Iasonos et al., 2008).
Tumour Immune Microenvironment and Immunotherapies Efficacy Prediction
We evaluated ESTIMATEScore, ImmuneScore, StromalScore, and TumorPurity using the ESTIMATE algorithm (Ma et al., 2021). The TIMER algorithm was used to evaluate tumour infiltration of 6 immune cell types (Li et al., 2017). Single-sample GSEA (ssGSEA) was applied to calculate immune infiltration of 24 immune cell types (Chong et al., 2021). In addition, we validated immune infiltration using the EPIC algorithm (Yang et al., 2021). Tumour mutation burden, calculated based on somatic non-synonymous mutations, is a potential biomarker of immunotherapies response (Chan et al., 2019). In addition, we extracted and analyzed the expression profile of immune checkpoints genes CTLA4, LAG3, TIGIT, PD1, PDL1, PDL2, and TIM3 in the TCGA database. Analysis of TMB and immune checkpoints genes can be used to evaluate the efficacy of immunotherapies.
Prediction of Chemotherapeutic Efficacy
Using the R package “pRRophetic” and LUAD patients’ gene expression matrices, we predicted minimum drug inhibition concentrations (IC50) in both high- and low-risk groups, and ultimately obtained drugs with statistically significant IC50 values that could be potential candidates for LUAD treatments (Geeleher et al., 2014).
Genetic Mutation Analysis
Somatic mutation analysis of LUAD samples was obtained from the TCGA database website in the “maf” format (Liu et al., 2018). Waterfall mapping was then performed using the “Maftools” package in the R software. Visualization results helped analyze and summarize the mutant genes (Mayakonda et al., 2018).
RESULTS
Identification of Two Different Molecular Subtypes in Lung Adenocarcinoma Based on Cell Cycle Checkpoints Related Genes
The flow diagram of our present study is illustrated in Figure 1. Differentially expressed genes were obtained from four databases: TCGA-LUAD, GSE31210, GSE72094, and GSE27262. Cell cycle checkpoints related genes were derived from the Reactome_Cell_Cycle_Checkpoint gene set. Overlapping genes were identified by intersection of these differentially expressed genes with cell cycle checkpoints related genes. Then, 25 prognostic relevant CCCRGs were identified using univariate Cox regression analysis (Figure 2A). Based on consensus clustering of these genes, we subdivided LUAD patients in the TCGA cohort into subgroups (Figure 2B). When the cluster number K = 2, the clustering stability was the best (Figures 2C,D). In two subtypes, 280 patients were classified as cluster1, and 235 patients were classified as cluster2. We further validated the sample classification of cluster1 and cluster2 using principal component analysis (Figure 2E). By comparing the prognostic differences between cluster1 and cluster2, we found that patients in cluster1 had significantly worse prognosis (Figure 2F). In addition, expression of 25 CCCRGs were obviously different in both subtypes, and were generally higher in cluster1 (Figures 2G,H). we found LUAD patients in cluster1 had higher pathological stages than in cluster2 via volcano map. Furthermore, we compared the age and gender differences between the two subtypes, and found that 46.44% of patients were older than 65 in cluster1, while 58.08% of patients were older than 65 in cluster2. In terms of gender, 47.86% of patients in cluster1 were female, while 60.43% of patients in cluster2 were female (Supplementary Figures S1A,B). When we investigated the prognostic difference between the two subtypes in terms of age and gender, we found that cluster1 had a worse prognosis in patients older than 65, while no significant difference between cluster1 and cluster2 in patients younger than 65. In addition, in both sexes, cluster1 had a worse prognosis than cluster2 (Supplementary Figure S1C).
[image: Figure 1]FIGURE 1 | Flow chart of the data analyzing process.
[image: Figure 2]FIGURE 2 | Identification of cell cycle checkpoints-associated subtypes by consensus clustering. (A) Prognostic associated differential genes obtained through Venn diagram. (B–D) Consensus clustering analysis for 25 genes in 515 LUAD samples (k = 2). (E) PCA of cluster1 and cluster2. (F) Kaplan-Meier curve of OS in the two subgroups. (G,H) Heatmap and histogram visualizing the expression of 25 CCCRGs in two subtypes.
Two Subtypes of Lung Adenocarcinoma Patients Exhibited Different Immune Landscapes
We performed immunoinfiltration analyses of the two different subtypes, and the results from the ESTIMATE algorithm showed that cluster1 had lower ESTIMATEScore, ImmuneScore, StromalScore, while higher TumourPurity compared to cluster2 (Figures 3A–D). The results of the TIMER algorithm showed that cluster1 has a lower abundance of B Cells and CD4+T Cells (Figure 3E). The results of the EPIC algorithm showed that cluster1 has a lower abundance of B Cells, CD4+T Cells, endothelial, and NK cells (Supplementary Figure S3A). In addition, immune infiltrating landscapes derived using ssGSEA algorithms were significantly different between cluster1 and cluster2. As shown in Figure 3F, B cells, T cells, Tcm cells, TFH cells, Th17 cells, CD8+ T cells, NK cells, DC cells, iDC cells, pDC cells, and Mast cells had lower immune status in cluster1, while Th2 cells, Tgd, and NK CD56dim cells had higher immune status in cluster1. Furthermore, we compared immune checkpoints expression across the two subtypes and found that CTLA4, LAG3, TIGIT, PD-1, PD-L1, PD-L2 were significantly higher in cluster1 than in cluster2, as shown in Figure 3G. Taken together, these results suggested that the cluster1 may be more favourable to tumour immune escape.
[image: Figure 3]FIGURE 3 | Analysis of the TIME and the expression of immune checkpoints in two subtypes. (A–D) ESTIMATE score, ImmuneScore, StromalScore and TumorPurity calculated by ESTIMATE algorithm. (E) Immune infiltration of 6 immune cell types using TIMER algorithm. (F) Immune infiltration of 24 immune cell types using ssGSEA algorithm. (G) Differences in expression of immune checkpoints between the two subtypes.
Identification of Differentially Expressed Genes and Functional Enrichment Analysis in Two Subtypes
We analyzed differentially expressed genes between cluster1 and cluster2 using the R package “limma” (version 3.40.6). The volcano plot showed up-regulated and down-regulated genes (|FoldChange| >2) (Figure 4A).The potential biological mechanism was investigated by functional enrichment analysis. We selected 451 differentially expressed genes for KEGG and GO analysis (|FoldChange| >2) (Supplementary Table S1; Supplementary Table S2). KEGG results revealed that differentially expressed genes were enriched in cell cycle-related pathways (Figure 4B), such as cell cycle, oocyte meiosis, DNA replication, p53 signalling pathway, and cellular senescence. Furthermore, we found that the differentially expressed genes between the two subtypes were enriched for a variety of biological processes. Figure 4C illustrated the results of GO enrichment analysis, which can be classified into biological processes, cellular components, and molecular functions. GSEA analysis was carried out using the KEGG and Hallmark gene sets (Supplementary Table S3; Supplementary Table S4), which revealed that activation of cell cycle was significantly enhanced in cluster1 compared to cluster2, including cell cycle, oocyte meiosis, P53 signalling, MTORC1 signalling, G2M checkpoint, MYC targets, Glycolysis, DNA repair, E2F targets, PI3K-AKT-MTOR signalling, and other associated pathways (Supplementary Figures S2A,B). To further explore the differences in biological pathways between two different cell cycle checkpoints related subtypes, we used the GSVA algorithm to calculate Hallmark gene sets enrichment scores (Supplementary Figure S2C; Supplementary Table S5). Notably, by comparing the differences in GSVA scores between the two subtypes, we obtained 29 statistically significant biological pathways (Figure 4D). These results suggested that cluster1 is significantly associated with tumor initiation and progression, and may lead to poor prognosis in lung adenocarcinoma patients by affecting cell cycle and proliferation-associated signalling pathways.
[image: Figure 4]FIGURE 4 | Functional enrichment analysis between two subtypes. (A) Volcano map showed differentially expressed genes between two subtypes in TCGA cohort. (B) Differentially expressed genes were selected for KEGG analysis (|FC|>2, p < 0.05). (C) GO analysis of differentially expressed genes (|FC|>2, p < 0.05). (D) Heat map showed difference in GSVA scores between two subtypes.
A Risk Signature Was Built by Cell Cycle Checkpoints Related Genes in TCGA Database
We constructed a risk signature to predict the prognostic value of CCCRGs in lung adenocarcinoma. Figure 5A showed the results of the univariate Cox analysis. Then, we performed a LASSO regression analysis using 25 overall survival-related (OS) CCCRGs (Figure 5B). A risk signature with four genes was selected, using optimal lambda values (CCNB1, CDC25C, CENPM, EXO1) (Figures 5C,D). In addition, according to the coefficients of these four genes, we calculated the risk score of each LUAD patient as follows: risk score = (0.131810530210757 × CCNB1 Exp) + (0.0258950480925646 × CDC25C Exp) + (0.0505775207458941 × CENPM Exp) + (0.0852753768507349 × EXO1 Exp). Regarding the diagnostic efficiency of the risk signature, ROC curves presented acceptable assessment results (Figure 5E). Based on risk score, our prognostic model successfully classified LUAD patients into high- and low-risk groups. Figure 5F showed differences in the expression and survival status of four candidate genes between high- and low-risk groups. By mapping the Kaplan-Meier survival curve, we were able to conclude that the OS of 250 patients in the high-risk group was worse than that of 250 patients in the low-risk group (p < 0.001) (Figure 5G). We then compared differences in clinicopathologic factors between high and low risk groups. Results revealed that patients with age ≤65 had higher risk score (Figure 6A), male had higher risk score (Figure 6B), current smokers had higher risk score than never smokers (Figure 6G), and those with higher TNM stages and pathological stages tended to have higher risk score (Figures 6C–F). In addition, prognostic analysis of various clinicopathological factors revealed poor outcomes in high-risk group (Figures 6H–P).
[image: Figure 5]FIGURE 5 | Construction of the prognostic signature. (A) Forestplot showed 25 prognostic associated CCCRGs obtained by univariate Cox regression analysis. (B–D) LASSO regression analysis and 10-fold cross-validation were performed to calculate the best lambda and identify the four most significant prognostic genes. (E) ROC results from a 4-genes prognostic model were used to analyze patients’ 1-, 3-, and 5-year overall survival. (F) Risk score, outcome status, gene expression profiles were shown in the training cohort. (G) Kaplan-Meier curve for OS in training cohort based on risk score.
[image: Figure 6]FIGURE 6 | Relationship between risk score and clinicopathological features. Risk score differed by age (A), gender (B), smoking status (G), TNM stage (C–E), and pathological stage (F). Survival curves of LUAD patients by age (H,I), smoking status (J–L), gender (M,N) and pathological stage (O,P) were obtained by comparing high-risk group with low-risk group.
Validation of Four Genes Prognostic Signature in Gene Expression Omnibus Cohort
To better verify the predictive ability of the prognostic signature we constructed, we calculated the risk score of LUAD patients in the GSE31210, GSE68465, and GSE50081 databases, using the same formula: risk score = (0.131810530210757 × CCNB1 Exp) + (0.0258950480925646 × CDC25C Exp) + (0.05057720458941 × CENPM Exp) + (0.0852753768507349 × EXO1 Exp). Based on the risk score, patients were divided into high-risk and low-risk groups. Heat maps showed that four genes in GSE31210, GSE68465, and GSE50081 had higher expression in high-risk groups (Figures 7A–C). The Kaplan-Meier survival curves revealed worse outcomes in high-risk groups across all three GEO databases (Figures 7D–F). As shown in Figures 7G–I, the AUC values of time-dependent ROC curves at 1-, 3-, and 5-years show acceptable assessment results. In addition, we performed a comprehensive bioinformatics analysis of all four genes involved in the development of prognostic signature, to further understand their expression in cancers. By analysing the TCGA database, we found that CCNB1, CDC25C, CENPM, and EXO1 were highly expressed in almost all of the 33 cancers (Supplementary Figures S4A–D), and we also noticed significant high expression in LUAD (Supplementary Figure S5C). By extracting immunohistochemistry data from the Human Protein Atlas (HPA) database, we found that CCNB1 and CENPM are highly expressed (at protein level) in LUAD and associated with poor prognosis (Supplementary Figures S5A,B). Finally, a comprehensive analysis of TCGA, GEPIA and Kaplan-Meier Plotter databases revealed that high mRNA expression of CCNB1, CDC25C, CENPM, and EXO1 was associated with poor survival in lung adenocarcinoma patients (Supplementary Figures S6A–D).
[image: Figure 7]FIGURE 7 | Validation of the prognostic signature. (A–C) Risk score, outcome status, gene expression profiles were shown in the GSE31210 cohort, GSE68465 cohort and GSE50081 cohort. (D–F) Kaplan-Meier curve for OS in validation cohort based on risk score. (G–I) Time-independent ROC curves of the risk score for predicting the 1-, 3-, and 5-year overall survival in the validation cohort.
Risk Signature Was Associated With Tumor Immune Microenvironment in Lung Adenocarcinoma
Spearman analysis was used to analyze the relationship between risk score and immune cell subpopulations. First, we employed the ESTIMATE algorithm to assess differences between high- and low-risk scores. The results showed that the high-risk group had lower ESTIMATEScore, ImmuneScore, and StromalScore, while higher TumorPurity compared to the low-risk group (Figures 8A–D). Subsequently, we used TIMER algorithm to analyze the abundance of six immune cell types in the high- and low-risk groups. Results showed that B cells, CD4+T cells, macrophages, and myeloid DC cells were less abundant in the high-risk group, which suggested that cell cycle checkpoints-related genes may promote tumor progression by suppressing anti-tumor immune system activation (Figure 8F). Furthermore, Figure 8E also showed negative correlation between risk score and immune cells infiltration. To further investigate the impact of risk score on the tumor immune microenvironment, we used the EPIC and ssGSEA algorithms. EPIC algorithm displayed that the high-risk group had lower abundance of B cells, CD4+T cells, endothelial cells, and NK cells than low-risk group (Supplementary Figure S3B). In addition, risk score was negatively associated with immune cells infiltration (Supplementary Figures S3C–E). The ssGSEA results showed a negative correlation between risk score and most of the 24 immune cell types, such as CD8+T cells, DC cells, iDC cells, eosinophils, Mast cells, and B cells (Figure 8G), while positively correlated with few immune cell types, such as Th2 cells. Notably, we also compared abundance differences between high- and low-risk groups across 24 immune cell types. We found higher abundance of B cells, T cells, Tcm cells, TFH cells, Th17 cells, CD8+T cells, NK cells, NK CD56bright cells, DC cells, iDC cells, pDC cells, eosinophils, macrophages, and mast cells in high-risk group, while lower abundance in Th2 cells, Tgd cells, and NK CD56dim cells in low-risk group (Figure 8H). However, there was no statistical difference between the high- and low-risk groups for T helper cells, Tem cells, Th1 cells, Treg cells, cytotoxic cells, aDC cells, and neutrophils. All of these results confirmed that LUAD patients in high-risk group exhibit a propensity for immune escape, indicating poor prognosis.
[image: Figure 8]FIGURE 8 | Immune landscape in cell cycle checkpoints related signature. (A–D) ESTIMATE score, ImmuneScore, StromalScore and TumorPurity calculated by ESTIMATE algorithm. (E,F) Immune infiltration of 6 immune cell types using TIMER algorithm. (G) Relationship between risk score and abundance of 24 immune cell types. (H) Differences in abundance of 24 immune cells between high- and low-risk group.
Differences in Immunotherapies and Chemotherapies Responses, and Gene Mutations in Lung Adenocarcinoma Patients With High or Low Risk Score
Immune checkpoints’ expression were strongly associated with immunotherapy efficacy. By comparing immune checkpoints expression between high- and low-risk groups, we found higher expression of LAG3, PD-1, PD-L1, and PD-L2 in the high-risk group, suggesting that LUAD patients with high risk scores may achieve better immunotherapy outcomes (Figure 9A). To further analyze the relationship between risk score and immunotherapies, we calculated the tumour mutation burden. Tumor mutation burden as a novel marker for evaluating the efficacy of PD-1 antibody therapy has been demonstrated in the treatment of cancers with mismatch repair defects. As shown in Figure 9B, LUAD patients in the high-risk group had higher tumour mutation burden, which meant patients with high risk scores are more susceptible to PD-1 antibody therapy. In addition, we performed IC50 analysis in high- and low-risk groups to screen for effective chemotherapies. The estimated IC50 of Camptothecin, Cisplatin, Rapamycin, Gemcitabine, Docetaxel, and Mitomycin C were significantly higher in the low-risk group than in the high-risk group. It suggested that lung adenocarcinoma patients in the low-risk group are more resistant to chemotherapies (Figure 9C). Finally, we analyzed differences in gene mutations between high- and low-risk groups (Figure 9D). As shown by the results, the most common types of mutations in the high-risk group in descending order were TP53, TTN, CSMD3, MUC16, RYR2, ZFHX4, LRPIB, USH2A, SPTA1, and FLG, while the most common types of mutations in the low-risk group in descending order were TTN, MUC16, TP53, RYR2, CSMD3, KRAS, LRP1B, USH2A, ZFHX4, and FLG.
[image: Figure 9]FIGURE 9 | Gene mutation and response prediction for immunotherapies and chemotherapies in 4-genes risk signature. (A) Differences in expression of immune checkpoints between high-risk group and low-risk group. (B) Relationship between risk score and tumor mutation burden (TMB). (C) Differences in chemotherapies between high and low risk groups. (D) Status of mutations between high- and low-risk groups.
Construction and Validation of a Predictive Nomogram
In addition, to further validate the usability and clinical applicability of the prognostic signature, we developed a predictive nomogram for 1-, 3-, and 5-year OS using the TCGA database. The nomogram integrated clinicopathologic factors such as age, gender, pathological stages with the risk score (Figure 10A). (C-index = 0.70, p < 0.0001) The calibration curve of the nomogram showed good agreement between the predicted survival and the observed survival (Figure 10B). Decision curve analysis (DCA), and ROC curve also had acceptable accuracy (Figures 10C,D). The AUC value of the nomogram in the 1-, 3-, 5-, and 10-year overall survival were 0.74, 0.73, 0.75, and 0.81, respectively, which demonstrated excellent predictive efficacy (Figure 10E). Results from univariate Cox analysis and multivariate Cox analysis in LUAD patients revealed that the risk score was an independent prognostic factor (Figure 10F). Taken together, risk score, combined with other clinical parameters, can improve the model’s predictive accuracy. These results suggested that a risk signature based on CCCRGs can reliably and accurately predict outcomes in LUAD patients.
[image: Figure 10]FIGURE 10 | Construction of nomogram. (A) Nomogram showed risk score’s efficacy in predicting 1-, 3-, and 5-year OS after combining patients age, gender, and pathological stage. (B–E) Calibration plot, DCA curve and ROC curve showed acceptable accuracy. (F) Univariate Cox analysis and multivariate Cox analysis of risk score.
DISCUSSION
Cell cycle regulation in cancer cells is aberrant, with cancer cells receiving signals of continuous proliferation that drive continued cell division. A growing body of research has shown that this persistent cell division is driven not by uncontrolled cell cycle progression, but by mutations in signalling pathways that block apoptosis and initiate cell cycle exit (Chen et al., 2009; Matthews et al., 2022). Cell cycle checkpoints act as monitors of cell cycle activity, ensuring the integrity of the number of chromosomes and the proper functioning of the cell cycle (Matthews et al., 2022). Furthermore, aberrant expression of checkpoints genes in the cell cycle has been investigated and validated as an important factor involved in the pathogenesis and progression of LUAD (Keijzers et al., 2018; Zhang et al., 2018; Xiao et al., 2022).
Cell cycle checkpoints include DNA damage checkpoints, DNA replication stress checkpoints, and spindle assembly checkpoints. The primary role of DNA damage checkpoints in response to DNA damage is to prevent the accumulation and reproduction of genetic errors during cell division (Bednarski and Sleckman, 2019). DNA replication stress checkpoints only work in stage S, and their important function is to prevent DNA damage caused by replication stress (Li et al., 2022). DNA replication stress checkpoints control cell cycle progression by limiting CDK activity. The spindle assembly checkpoints (SAC) function at the M stage to ensure that the replicated DNA is equally distributed between the two daughter cells (Manic et al., 2017). Because the cell cycle is an extremely delicate regulatory process, endless division also poses fundamental challenges for cancer cells, which also need a number of cell cycle checkpoints to maintain their proliferative function. It is therefore realistic to explore the potential role of cell cycle checkpoints in LUAD and their impact on patient survival and treatment. Furthermore, due to the extremely complex tumor immune microenvironment of lung adenocarcinoma, the role of cell cycle checkpoints in regulating the tumor immune microenvironment requires further investigation (Egloff et al., 2006; Chen et al., 2020).
Previous studies have explored the potential value of huge cell cycle related genes in predicting survival in cancer patients. Yongfeng Hui et al. investigated the prognostic value of cell cycle progression-derived genes in hepatocellular carcinoma (HCC) (Hui et al., 2021). Wai Hoong Chang et al. explored the prognostic value of DNA repair genes in pan-cancer and confirmed that DNA repair genes were associated with dysregulation of cell cycle and hypoxia (Chang and Lai, 2019). Fangyu Chen et al. integratedly investigated the predictive value of cell cycle-related and immune-related genes in lung adenocarcinoma (Chen et al., 2021b). HCC can be divided into two subtypes with different molecular and clinical characteristics based on DNA damage repair related genes (Lin et al., 2021). Zhiyuan Zhang et al. constructed a robust signature based on the cell cycle-related genes in colon cancer (Zhang et al., 2021). However, most prognostic models were constructed using broad cell cycle related genes. Cell cycle checkpoints, a specific set of genes, had not been investigated for lung adenocarcinoma classification or survival prediction. Therefore, this study specifically targeted cell cycle checkpoints, a gene set that plays an important role in tumor activation and tumor immune microenvironment regulation (Chen et al., 2020). Further study of cell cycle checkpoints will facilitate targeted therapies and provide valuable recommendations for immunotherapy and chemotherapy options.
In this study, we performed a univariate Cox regression analysis of differentially expressed cell cycle checkpoints related genes in lung adenocarcinoma and finally identified 25 prognostic cell cycle checkpoints-related genes. Based on the expression of these genes, lung adenocarcinoma patients were categorized into two molecular subtypes using an unsupervised consensus clustering approach. The two subtypes had different prognostic states and immune phenotypes. In addition, different immunophenotypes can help guide specific immunotherapies. Of the two subtypes we identified, cluster1 had a worse prognosis and a reduced abundance of immune infiltration that promoted tumor escape. Cluster2, on the other hand, corresponded to a higher level of immune infiltration and was characterized by anti-tumor immunity. Notably, cluster1 expressed high levels of immunohibitors, suggesting a potential for better efficacy of immunotherapies. Upon enrichment analysis of both subtypes, we found that cluster1 significantly enriched for proliferation-associated signalling pathways such as E2F targets (Kent and Leone, 2019), G2M checkpoint (Smith et al., 2020), MTORC1 signalling (Carroll, 2020), MYC targets (Dang, 2012), PI3K-AKT-MTOR signaling (Polivka and Janku, 2014). We also noted that cluster1 has a higher GSVA enrichment score for the interferon response pathways than cluster2. Interferon signalling pathways were balanced between immune cells and tumor cells. Manipulating interferon signals could lead to more effective cancer immunotherapies (Benci et al., 2019). Furthermore, we found that cluster1 has higher glycolysis, hypoxia, and reactive oxygen species enrichment levels. Metabolic stress originating from mitochondria can accelerate cell differentiation in the absence of oxygen. Increased levels of reactive oxygen species (ROS) in T cells resulted in severe T cell dysfunction or exhaustion (Scharping et al., 2021). Therefore, reducing T cell ROS levels and alleviating tumor hypoxia can effectively block T cell functional immune exhaustion and achieve synergistic anticancer effects of tumor immunotherapies. Significantly, cluster2 was dramatically associated with downregulation of the KRAS signalling pathway. These results suggested that cluster2 may have lower mutation levels and better prognosis than cluster1.
To further investigate the prognostic effects of cell cycle checkpoints related genes on survival and treatment response, we performed LASSO-Cox regression analysis on 25 prognostic cell cycle checkpoints-related genes. Four genes most associated with prognosis were obtained: CDC25C, CENPM, EXO1, and CCNB1. Based on these four genes, we constructed a prognostic signature in the TCGA database. Patients with high risk scores died more often and had significantly worse outcomes than patients with low risk scores. To validate the reliability of the established signature, we validated the efficacy of the prognostic signature using three external validation sets (GSE31210, GSE68465, GSE50081), and obtained results consistent with the training set. Time-dependent ROC curves also showed good predictive accuracy.
Since cell cycle checkpoints were remarkably related to the tumor immune microenvironment, we also explored the association of risk scores with the tumor microenvironment. By using ESTIMATE, TIMER, EPIC, and ssGSEA algorithms, we found that high risk scores corresponded to low immune infiltration abundance, and low risk scores corresponded to high immune infiltration abundance. These results suggested that lung adenocarcinoma patients with high risk scores were more susceptible to tumor immune escape (Zeng et al., 2020). Therapies targeting immune checkpoints have developed significantly for lung adenocarcinoma in recent years, and our model was obviously associated with immunotherapeutic efficacy (Topalian et al., 2016; Hosseinkhani et al., 2020). We found high expression of immunoinhibitors and higher TMB scores in high-risk group, suggesting that immunotherapies may improve outcomes for patients with high risk scores. In addition, we performed a genetic mutation analysis of lung adenocarcinoma patients, which showed that patients with high risk scores had a higher mutation probability, revealing that lung adenocarcinoma patients with high risk scores were more likely to further progress. Moreover, it is noteworthy that we also predicted the efficacy of chemotherapies in our model, showing that IC50 values in high-risk group were significantly lower than in low-risk group in lung adenocarcinoma patients, suggesting that patients in the high-risk group were more sensitive to Camptothecin, Cisplatin, Rapamycin, Gemcitabine, Docetaxel, and Mitomycin C (Pirker, 2020). This indicated that our signature could be used for personalized treatment of LUAD patients.
Notably, we constructed a more accurate nomogram after integrating risk scores, age, gender, and pathological stages. In nomogram, the risk score was classified as an independent prognostic factor, which can be used as a complement to clinical factors. The risk score effectively took into account the missing parts of the pathological stage and improved the overall prediction effect of the signature. In general, a better understanding of cancer cell cycle control will help guide our treatment of patients. With a wide range of inhibitors of cell cycle checkpoints already in clinical studies, targeting cell cycle checkpoints is expected to be an important approach to cancer treatment (Ghelli Luserna di Rora’ et al., 2017; Gupta et al., 2022; Shcherba et al., 2014). However, there were still some shortcomings in our study which should be notified in generalizing the findings. First, our study was based on a bioinformatics approach which needs to be further validated in experiments. In addition, clinical applications of cell cycle checkpoints-related risk score and the constructed nomogram need to be validated in a clinical setting.
CONCLUSION
In the current study, we used consensus clustering to identify two molecular subtypes based on cell cycle checkpoints-related genes in lung adenocarcinoma. Functional and immune analyses revealed that dysregulation of cell cycle checkpoints would hamper the immune system, affect cell cycle, and ultimately lead to poor prognosis in lung adenocarcinoma patients. In addition, we constructed a cell cycle checkpoints-related prognostic signature. This signature may be used for predicting prognosis and therapeutic response. To sum up, our study highlighted two cell cycle checkpoints related subtypes in LUAD and constructed a prognostic signature with four CCCRGs that can serve as a clinically useful indicator. Our work could contribute to risk stratification in lung adenocarcinoma patients, offer ideas for new targeted drugs, and provide theoretical support for personalized medicine.
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Background

Gastric cancer (GC) is the fifth commonest cancer and the third commonest reason of death causing by cancer worldwide. Currently, tumor immunology and ferropotosis develop rapidly that has made gastric cancer be treated in new directions. So, finding the potential targets and prognostic biomarkers for immunotherapy combined with ferropotosis is urgent.



Methods

By mining TCGA, immune-related genes, ferropotosis-related genes and immune-ferropotosis-related differentially expressed genes (IFR-DEGs) were identified. The independent prognostic value of IFR-DEGs was determined by differential expression analysis, prognostic analysis, and univariate and lasso regression analysis. Then, based on the prognostic risk model, the correlation between IFR-DEGs and immune scores, immune checkpoints were evaluated. Besides, we predicted the response of high and low risk groups to drugs.



Results

A 15-gene prognostic feature was constructed. The high-risk group had a poorer prognosis than the low-risk group. High-risk group had higher level of Treg immune cell infiltration compared with that in the low-risk group, and the tumor purity, immune checkpoint PD-1 and CTLA4, and immunity in the high-risk group were higher than those in the low-risk group. These results indicate that immune ferropotosis-related genes migh be potential predictors of STAD’s response to ICI immunotherapy biomarkers. In addition, the response of small molecule drugs such as Nilotini, Sunitinib, Imatinib, etc. for high and low risk groups was predicted.



Conclusion

IFRSig can be regarded as an independent prognostic feature and may estimate OS and clinical treatment response in patients with STAD. IFRSig also has important correlation with immune microenvironment. A new understanding of the immune-ferropotosis-related genes during the occurrence and development of STAD is provided in this study.
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Introduction

Gastric cancer (GC) is the fifth commonest cancer and the third commonest reason of death causing by cancer worldwide (1), and is one of the commonest digestive system cancers (2). Frequent recurrence and metastasis contribute to the diagnosis, treatment and high death rate in GC (3, 4). However, the discomfort symptoms in the early stage of GC are less obvious or not. In most cases, GC has developed that cannot be treated surgically and radically by the time of diagnosis. Tumor pathology (T), lymph node biopsy (N) and distant organ metastasis (M) are currently the main criteria for judging patients’ prognosis, but there are also great differences in the prognosis of patients under the same TNM stage (5).

Ferroptosis, as a newly regulated cell death mode, differs from the molecular characteristics of other forms of regulatory cell death. Its genetic, biochemical and morphological characteristics are classified as iron-dependent cell death and superoxide lipids Accumulation (6). Ferropotosis is closely associated to tumor occurrence and development. Some studies have shown that ferropotosis-related factors or pathways can regulate the sensitivity of tumor cells to ferropotosis by affecting related mechanisms such as iron metabolism, ROS synthesis, and antioxidant system. It is reported that ferritin phagocytosis is mediated by interacting with surface arginine residues in ferritin heavy chain 1 (FTH1) (7, 8). NCOA4 overexpression induces ferropotosis by increasing intracellular free iron content, glutathione production, and reactive oxygen species (ROS) levels (9). Ferropotosis plays a vital role in varied diseases, which include GC (10–12). Targeted ferropotosis may be a potential therapeutic strategy for GC patients. Over the years, according to the observation, the prognosis of GC is related to pathological staging, moreover, tumor immune status may impact the prognosis of patients highly (13). Closely related to the development of tumor immunosuppressive microenvironment, A large number of studies on the relationship (14, 15). The pathogenesis of GC has been newly recognized through a large number of studies on the relationship between iron death and immunity, including the intervention of ferropotosis can effectively improve immune suppression (16, 17).

As lots of ferropotosis-related genes regulating the relation between ferropotosis and tumor, the prognosis of patients can be evaluated by the expression of ferropotosis-related genes in tumor tissues. In this study, the STAD gene expression information was obtained by the analysis of Cancer Genome Atlas (TCGA) database, and then the differential expression of immune ferropotosis-related genes in the sample was analyzed, thus, the survival of STAD patients was predicted effectively by constructing a model containing multiple genes. The correlation between the risk scoring model and immune status was analyzed, the potential mechanisms were explored, diagnosis and treatment basis for clinical treatment were provided, and new therapeutic targets were found.



Materials and Methods


Microarray Data Analytics and Screening of Differentially Expressed Genes Related to Immune Ferropotosis

To compare differentially expressed genes (IFR-DEG) associated with immune ferropotosis in STAD, TCGA database was used for subsequent analysis. The downloading of human immune-related genes (IRGs) from the ImmPort database (https://www.immport.org./home) and the GeneCard database (https://www.genecards.org/) reached 17,500 in total, and the downloading of ferropotosis-related genes (FRGs) from the FerrDb database (http://www.datjar.com:40013/bt2104/) and previous literature (18) reached 398 in total. The cutoff condition settings are log2 fold change (logFC) < -2, p -value < 0.05, which is statistically evident.



Construction and Verification of a Prognostic Model of Differentially Expressed Genes Related to Immune Ferropotosis

Based on a preliminary screening of IFR-DEGs with differentially expressed, the survival-related IFR-DEGs with significant prognostic value (p < 0.05) was determined by performing a single factor Cox analysis of overall survival (OS). The predictive models of candidate immunity and ferropotosis-related IFR-DEGs were determined by performing minimum absolute contraction and selection operator LASSO proportional regression.

A total of 352 STAD patients were randomly assigned to either the training cohort or the test cohort in a 1:1 ratio to construct and validate risk scores (176 in the training cohort, 176 in the test cohort). For the training cohort, a linear combination of expression values for each prognostic gene was applied to construct the prognostic risk profile of our immune and ferropotosis-related genes (IFRSig). The establishment of profile was based on corresponding coefficients. Patients from the TCGA-STAD dataset were divided into low-risk group and high-risk group according to the median value of the risk score. Principal component analysis (PCA) was used to explore the distribution characteristics of different groups through the R package. Finally, the validity of prognostic indicators was evaluated by using the area under the curve (AUC) of the “time receiver operating characteristic curve (ROC) “.

Functional enrichment analysis of differentially expressed genes related to immune Ferropotosis in gastric cancer Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed through the ClusterProfiler package, so that functional annotation and enrichment pathways were explored, where p < 0.05 indicating statistically evident differences.



Survival Analysis and Verification

To assess the expression and prognostic value of IFR-DEGs in STAD further, a difference analysis and a prognostic analysis were performed through the “survival” package. According to the Cox proportional risk model and the Kaplan-Meier model, the risk ratio (HR) was calculated, Statistical significance was defined as p < 0.05 or <0.01.



Clinicopathological Correlation Analysis and Column Diagram Construction

According to the “survival” package in the R software, with combination of clinicopathological features, the correlation between IFR-DEGs and clinicopathological features was analyzed. R package “rms” was used to obtain the column line diagram and calibration curve. The risk score related to the prognostic mode, as a prognostic factor, was used to assess the 1-year, 3-year and 5-year OS.



Relationship Between Risk Score and Immune Cell Infiltration

SsGSEA and CIBERSORT R scripts were used to quantify the relative proportion of infiltrated immune cells. Spearman rank correlation analysis was used to explore the relationship between risk score values and immune-infiltrating cells. Furthermore, TIDE algorithm was used to evaluate two different tumor immune escape mechanisms using IFR-DEG markers.



Predicting Response to Chemotherapy

The R package of pRRophetic was applied for predicting the median maximum inhibitory concentration (IC50) of common small molecule drugs. IC50 represents the effectiveness of the substance in inhibiting specific biological or biochemical functions. Wilcoxon symbolic rank test was used for inter-group differences.



Statistical Analysis

R software (version 4.0.2) was applied for statistical analysis. Perl programming language (version 5.30.2) was applied for data processing. Multivariate Cox regression analysis was applied to assess prognostic significance. PCA was also performed using R’s ggplot2 package. Kaplan-Meier curves and logrank tests were used to analyze survival differences between the two groups. Pearson correlation coefficient test was used for gene correlation analysis; Spearman correlation coefficient test was applied for risk score and correlation analysis of immune cells and immune genes. When p < 0.05, the difference was statistically evident.




Results


Identification of Differentially Expressed Genes Related to Immune Ferropotosis in Gastric Cancer Compared With Normal Gastric Tissue

The volcanogram showed 7180 up-regulated DEGs and 3772 down-regulated DEGs screened in the TCGA (Figure 1A). Then, 17,500 human IRGs from the ImmPort database and genecard and 398 human ferropotosis-related genes from FerrDb were analyzed by Venn diagram analysis, and 75 co-expressed genes were obtained (Figure 1B). We used lasso regression to construct a prediction model of DEG-related risks (Figure 1C). The risk score formula: risk score = (Expi × βi). (Exp: model gene expression level; β: model gene coefficient) (Figure 1D). Coefficient risk was shown in the annex. Based on the median risk score (50%), patients had two groups: high-risk group and low-risk group. The results of PCA verify the differential expression of high and low risk groups in STAD patients (Figure 1E). Correlation network diagram of prognostic model genes were illustrated in Figure 1F.




Figure 1 | Screening for differentially expressed genes. Volcanic diagram of differentially expressed genes (DEG) between normal gastric tissue and gastric cancer (A). Red represents up-regulated genes and blue represents down-regulated genes. According to three data sets (B) Venn diagram showing 75 immune ferropotosis genes. LASSO regression analysis of 75 DEGs. Ten-fold cross-validation was applied to calculate the best lambda, which leads to a minimum mean cross-validated error (C). A total of 15 DEHGs were adopted for the LASSO model (D). (E) PCA diagram of high and low risk groups. (F) Correlation network diagram of prognostic model genes. PCA, principal component analysis; IRG, Human immunity-related genes; FRG, human ferropotosis-related genes.





Construction and Verification of Prognostic Risk Model of Differentially Expressed Genes Related to Immune Ferropotosis

According to the median risk score, high-risk group or low-risk group of patients were sorted for the training cohort and test (Figures 2A, B). In the training cohort, there were evident differences in OS between high-risk and low-risk groups (Figures 2C–F, p < 0.001). In the two groups of the test cohort, the same significant difference as OS was repeated (Figures 2G, H, p < 0.05). As the results showed, the clinical prognosis of patients with low-risk scores was better than that of patients with high-risk scores, which was consistent with the two groups of results in each cohort. All results showed that IFRSig might have accurate pre-measurement capabilities for OS.




Figure 2 | Correlation between the prognostic model and the overall survival (OS) of patients in the TCGA train Cohort (A, C, E, G), the TCGA test Cohort (B, D, F, H). The distribution of survival time (A, B), risk score (C, D) and genes expression levels (E, F) and OS (G, H). Patients were classified into low-risk and high-risk groups by using the median score as a cut-off value. The red dots and lines represent the patients in high-risk groups. The green dots and lines represent the patients in low-risk groups. STAD, gastric cancer; KM, Kaplan-Mayer; ROC, receiver operating characteristics.





Risk Score Is an Independent Prognostic Factor

In the TCGA cohort (training set), univariate Cox regression analysis showed age (P < 0.001), tumor stage (P= 0.025), and risk score (P < 0.001) had significant correlation with OS (Figures 3A, B), while multivariate Cox regression analysis showed that age (P = 8.802e -04), tumor stage (P = 0.017), and risk score (P < 0.001) had significant correlation with OS (Figures 3C, D). These results suggest that IFRGs were independent prognostic factors for STAD.




Figure 3 | Independent prognostic factor analysis. Results of univariate Cox regression analysis to determine cancer genome mapping (TCGA) training cohort (A) and verify the association between overall survival and clinical characteristics in cohort (B). Results of multivariate Cox regression analysis to determine TCGA training cohort (C) and validation cohort (D) correlation between overall survival and clinical characteristics in the data set.





Heat Map and GO/KEGG Pathway Enrichment Analysis

To observe the expression of prognostic model genes in clinical features, we constructed an expression heat map based on clinical feature correlation to observe the expression relationship of prognostic model genes between high-risk and low-risk groups, as well as the patient’s age, gender metastasis, tumor stage, grade and immune score (Figure 4A). In addition, we found that in biological processes (BP), extracellular matrix organization, muscle system process, cellular component enriched in collagen-containing extracellular matrix, external side of plasma membrane, contractile fiber part. molecular function enriched in extracellular matrix structural constituent, glycosaminoglycan binding, heparin binding. More important, KEGG enriched in ECM-receptor interaction, Dilated cardiomyopathy, Focal adhesion (Figure 4B).




Figure 4 | Clinically relevant heat map and GO/KEGG pathway enrichment analysis. (A) Based on risk characteristics associated with prognosis, a heat map using data about clinicopathological characteristics of patients was plotted. The higher the intensity of red, the higher the expression. The higher the intensity of blue, the lower the expression. **p < 0.01, ***p < 0.001. (B) The graph shows the GO and KEGG analysis of high and low risk differential genes.





The IFRSig as a Prognostic Predictor

We examined the prognostic power of IFRSig. GC patients from TCGA cohort were reassigned age, G2-2, G3-4, T3-4, N1-3, M0, and gender as prognostic and clinicopathological factors according to different conditions. Kaplan Meier survival analysis for each subgroup and survival indicated that the operating-system GC low-risk group evidently prolonged patients regardless of age and TNM stage (P < 0.001, Figure 5), which suggested that IFRSig can have good predictive power in most subclinical subgroups.




Figure 5 | Kaplan-Meier survival curves of GC patients in different clinical subgroups. (A–I) OS survival curves of high and low risk GC patients in age, G1-2, G3-4, T3-4, N1-3, M0, female, male subgroups. OS, overall survival.





Identification and Verification of Nomograms

Column charts are a tool that is reliable to estimate cancer patients’ individualized risk scores. IFRSig and other clinical were used in this paper. Multivariate Cox regression analysis of pathological covariates, constructed a columnar graph based on the entire TCGA set (Figure 6A), in the cohort. The AUC of columnar graphs 1, 3, and 5 years were 0.694, 0.715, and 0.703, respectively, indicating that the columnar graph has good specificity and sensitivity level to OS (Figure 6B). The calibration chart was consistent with the diagonal, confirming the predicted value of the prognostic columnar chart for 1-year, 3-year, and 5-year OS (Figure 6C). All results showed that the columnar chart constructed by IFRSig had good prognostic ability for STAD patients.




Figure 6 | Construction and validation of a columnar chart. (A) Survival columnar charts based on the total TCGA cohort. (B) The ROC curve compares the prognostic ability of columnar charts in the TCGA cohort at 1, 3, and 5 years. (C) Calibration curves to predict 1, 3, and 5-year survival in STAD patients in the TCGA cohort. *p < 0.05. ***p < 0.001.





Immune Characteristics

To make the investigation of complex crosstalk between IFRSig and immune signatures better, the immunoinfiltration profile of immunoinfiltrating cells from STAD samples were assessed. We further compared the association between immunoinfiltrating cells and IFRSig, noted that regulatory T cells (Tregs, p < 0.0001) were significantly increased in STAD patients in the high-risk group (Figure 7A). This was in line with previous observations that link the high expression of Treg and macrophages with tumor progression and immunosuppression (19). In the correlation of immune function expression, we found that the high-risk group with functions such as check point and T_cell_co-inhibition was stronger than the lower-risk group, which indicating that the high-risk group had stronger immunosuppression (Figure 7B).




Figure 7 | Relationship between IFRSig and immune infilration immune function. (A) Box plot showing association between IFRSig and Immunoinfiltrating cells. (B) Box plot showing association between IFRSig and immune functions. NS No Significance, *p < 0.05, **p < 0.01, ***p < 0.001.





The Analysis of Immune Microenvironment, Immune Escape and Immune Checkpoint

Regarding the TME score, high-risk patients had higher stromal scores, immune scores, and ESTIMATE score than low-risk patients (Figures 8A–C). In addition, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was based to predict the response of risk levels to immune checkpoint inhibitors. In our results, the high-risk group had a higher Exclusion, Dysfunction and TIDE score than the low risk-group (Figures 8D–F). Immune checkpoints couldch regulate tumor immune infiltration, so the expression values of IFRSig were compared with 3 immune checkpoints. As shown in (Figures 8G–I), PD-1 (p = 0.0023), PD-L1 (p = 0.15), CTLA-4 (p = 0.045) expression difference. These results suggested that the IF gene might be a potential predictive biomarker of STAD response to ICI immunotherapy.




Figure 8 | The analysis of immune microenvironment, immune escape and immune checkpoint. (A–C) Comparison of ESTIMATE score, Stromal score and Immune Score between high-risk and low-risk subgroups. (D–F) Immune Escape. (D) Exclusion, (E) Dysfunction, and (F) TIDE score in different risk-groups. (G–I) Box plot showing correlation between IFRSig and immune checkpoint (PCDC1, CD274 and CTLA-4); ***p < 0.001.





Potential Drugs

Many small molecule drugs were often resistant during cancer treatment, resulting in poor efficacy of drugs for gastric cancer and worse clinical results (20). To verify the use of drugs in different risk groups, the median maximum inhibitory concentration (IC50) was compared. IC50 is helpful for the quantification of the therapeutic ability of drugs to induce cancer cell apoptosis, which is inversely proportional to the sensitivity of small molecule drugs (21). Based on the pRophetic algorithm, we calculated the effects of 9 common targeted drugs for tumors (Nilotini, Sunitinib, Rapamycin, Imatinib, Gefitinib, Axitinib, Bryostatin, Dasatinib, and Pazopanib) in GC patients, and explored the relationship between risk scores and drug resistance based on IC50 (Figures 9A–I). Those with p > 0.05 were excluded. As Figure 9E showing, high-risk group has evidently higher IC50 of Gefitinib than that in the low-risk group, indicating that patients with high IFRSig may not profit by these drugs. Nilotini, Sunitinib, Rapamycin, Imatinib, Gefitinib, Axitinib, Bryostatin, Dasatinib, and Pazopanib were significantly reduced in the high-risk, group, so these small molecule drugs might be more sensitive to high-risk patients and had a greater impact. The results show that the risk prognosis model not only could divide individuals into groups with different risk, but also could assist in the selection of small molecule drugs according to the sensitivity values corresponding to clinically observed GC patients.




Figure 9 | (A–I) The half-maximum, inhibitory concentration (IC50) of 9 common small molecule drugs (Nilotini, Sunitinib, Rapamycin, Imatinib, Gefitinib, Axitinib, Bryostatin, Dasatinib, and Pazopanib).






Discussion

GC is a highly heterogeneous malignant tumor with an increasing incidence, poor prognosis and high mortality worldwide (22). It’s proved that commonly used clinicopathological parameters (such as TNM stage, age, gender, viral infection and serum CEA level) are not sufficient to correctly predict the prognosis of patients (23, 24). Thus, it has become an urgent clinical problem to be solved to study the mechanism of the occurrence and development of gastric cancer. We learned that ferropotosis-related genes are closely associated to cancer, and their expression levels change with cancer stages (25). Few studies have linked the prognosis and treatment of STAD with ferropotosis-related genes. Hope to illustrate this correlation with some analysis.

We performed Venn diagram analysis based on gastric cancer differential genes and immune ferropotosis related genes in TCGA. Obtaining 75 co-expressed immune ferropotosis-related DEGs, we established a prognostic risk model after performing lasso regression analysis. Then, the independent prognostic value of IFRSig was determined by differential expression analysis, prognostic analysis, and multivariate cox regression analysis. All results show that the risk model has good prognostic ability for STAD patients.

To provide new insights into the pathogenesis of STAD and an effective tool to predict STAD therapeutic effect, which may contribute to provide additional therapeutic and prognostic benefits. We assigned cancer samples to the high-risk group and the low-risk group, IFRSig, the dominant factor in the prognostic risk model and column diagram. Our results have a satisfactory correlation with clinical results, which indicates that IFRSig is a good predictor of risk factors. It is of note that this model might be further improved by more advanced machine learning algorithms as illustrated in other similar medical studies (26–28).

Immunity and ferropotosis-related genes or pathways have been shown to be involved in the proliferation, differentiation, invasion and metastasis of gastric tumors through different pathways of tumor progression and pathogenesis. At present, it has been confirmed that a variety of immune genes (29–31) have different tables in gastric cancer tissues, and participate in multiple processes of gastric cancer occurrence, including the proliferation, apoptosis, and migration of tumor cells.

In the tumor microenvironment, cancer cells and immune cells exert a large number of chemokines and cytokines to regulate the onset and progression of tumors. We studied and found that that regulatory T cells increasing is especially crucial. The strong immunosuppressive microenvironment in cancer is a key challenge for treating cancer. Tregs and tumor-associated macrophages can directly reduce T cell proliferation in the immune microenvironment. It can also affect the invasiveness of tumors by affecting lactate metabolism. Our study suggests that high-risk STAD patients may be associated with immune escape. However, the mechanism between immune ferropotosis genes and Tregs is still unclear, and it needs to research further to solve this problem. We further assessed the expression levels of these immunosuppressive checkpoint inhibitors and found that IFRSig is related to CTLA-4, PD-1, PD-L1, among which PD-1 had the greatest association. The resistance and sensitivity of small molecule drugs were analyzed to predict the potential of IFRSig to determine the therapeutic effect.

The study is not perfect enough. The predictive power of the prognostic model has not been verified in the GEO cohort and the ICGC cohort. We are also cared for whether the correlation between genes, ferropotosis and immunity can be accurately calculated by the general correlation test. In addition, the study is conducted at a bulk level, a single cell study will be more accurate in reflecting cell heterogeneity (32). This study is a retrospective analysis according to bioinformatics data and has not yet verified the prospective analysis, which needs more experimental and clinical data.

In summary, an IFRSig that is closely related to the prognosis of STAD is developed. It can better estimate OS in combination with immunological characteristics and can predict the clinical treatment response of STAD.



Conclusion

In this study, immune ferropotosis-related genes with independent prognostic value were obtained through comprehensive bioinformatics analysis. A prognostic risk model was established. There are significant correlations between immune ferropotosis-related genes and immune scores, immune checkpoints, small molecule drugs. IFRSig can be regarded as an independent prognostic feature and may estimate OS and clinical treatment response in STAD patients. This is a new understanding of IF genes during the occurrence and development of STAD.
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Hepatocellular carcinoma is a disastrous cancer with an aberrant metabolism. In this study, we aimed to assess the role of metabolism in the prognosis of hepatocellular carcinoma. Ten metabolism-related pathways were identified to classify the hepatocellular carcinoma into two clusters: Metabolism_H and Metabolism_L. Compared with Metabolism_L, patients in Metabolism_H had lower survival rates with more mutated TP53 genes and more immune infiltration. Moreover, risk scores for predicting overall survival based on eleven differentially expressed metabolic genes were developed by the least absolute shrinkage and selection operator (LASSO)-Cox regression model in The Cancer Genome Atlas (TCGA) dataset, which was validated in the International Cancer Genome Consortium (ICGC) dataset. The immunohistochemistry staining of liver cancer patient specimens also identified that the 11 genes were associated with the prognosis of liver cancer patients. Multivariate Cox regression analyses indicated that the differentially expressed metabolic gene-based risk score was also an independent prognostic factor for overall survival. Furthermore, the risk score (AUC = 0.767) outperformed other clinical variables in predicting overall survival. Therefore, the metabolism-related survival-predictor model may predict overall survival excellently for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent primary cancers worldwide and ranks third in all cancer-related mortality (1, 2). Numerous therapeutic strategies for treating liver cancer have been developed, including surgical resection, radiofrequency ablation, liver transplantation, and targeted therapy (3, 4). Despite the fact that great progress has been made in clinical treatment, the survival rates of liver cancer patients within 5 years are still as low as 18% because of the highly malignant tumors, the high recurrence rate, and drug resistance (5, 6). Several factors have been identified to affect and predict HCC prognosis, such as microRNAs and blood groups (7, 8). However, these factors still could not predict the prognosis accurately. Therefore, it is paramount to exploring how specific cellular tumor progression pathways contribute to HCC prognostic stratification for cancer treatment development.

It is proposed that cancer cells must modify their metabolic programs to obtain energy and macronutrient during rapid growth (9, 10). Metabolism regulated by oncogenes allow tumor cells to survive and proliferate in the tumor microenvironment (11). In fact, metabolic reprogramming is a well-established hallmark of cancer (12, 13). Many studies suggested that in order to adapt to the growth and proliferation of HCC cells, the aberrant metabolism of cells develops, which is related to the prognosis of patients (14–16). Strikingly, the functional importance of metabolic alterations often diverges on tumor subtypes, leading to visible therapeutic vulnerability discrepancies in cancer therapy (17, 18). However, metabolic heterogeneity within different HCC subtypes defined by distinct metabolic pathways, which may further result in differences in oncogenes and tumor immunity, has not been well implemented.

In this study, we classified HCC into two different clusters by metabolism-related pathways profiling: Metabolism_H and Metabolism_L. Then, we explored the relationship between the classification and mutation of oncogenes and tumor immunity. Differentially expressed metabolic genes (DEMGs) were identified according to metabolism status and the DEMG-based survival-predictor model was also developed for predicting survival rates of HCC patients, as shown in Figure 1. Moreover, immunohistochemistry staining showed that, compared with normal tissues, 8 of the 11 genes were differentially expressed in cancer tissues, while 3 genes revealed no significant differences. Most of these differentially expressed genes (DEGs) were consistent with our prognostic model, which further verified the reliability of the model. Therefore, the DEMG-based survival-predictor model might have the great potential to predict survival rates of HCC patients.




Figure 1 | The workflow of this work.





Materials and Methods


Patient Datasets

The data of RNA-seq and clinical features in HCC patients were extracted from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and LIRI_JP from International Cancer Genome Consortium (ICGC) (https://icgc.org/). For further analysis, a total of three hundred and twelve patients with both gene expression and overall survival (OS) data were extracted. Moreover, a total of thirty pairs of paraffin-embedded specimens were collected for this study from the pathology department, including both HCC and matched para-carcinoma tissues. All the specimens were obtained from HCC patients who underwent tumor resection. Clinical and pathological information of these specimens are presented in Table S1. This study was approved by the Ethics Department of the First Affiliated Hospital of Wenzhou Medical University.



Clustering

We first downloaded KEGG pathways from GSEA (http://software.broadinstitute.org/gsea/index.jsp). Then, we conducted univariate Cox analyses by SPSS 19.0 in TCGA and LIRI_JP, respectively, to acquire significant metabolism-related pathways. We selected the 10 mutual metabolism-related pathways between TCGA and LIRI_JP. For each HCC dataset, we quantified the enrichment levels of the 10 mutual metabolism-related pathways in each HCC sample through the single-sample gene set enrichment analysis (ssGSEA) score. Based on the enrichment levels (ssGSEA scores) of the 10 mutual metabolism-related pathways, we performed hierarchical clustering analysis of HCC.



Multi-Omics Analysis

We obtained the mutation data of HCC patients from TCGA and LIRI_JP. The data containing somatic variants were stored in the form of Mutation Annotation Format (MAF). Mutation data were analyzed and summarized using “GenVisR” package in R software. Copy number variation (CNV) analysis was performed using data of TCGA through cBioPortal (www.cbioportal.org).

To screen out methylation-driven genes, we calculated correlation between gene methylation level and expression using the “MethylMix” package in R software with corFilter = −0.3 and adjusted p-value < 0.05 as the cutoff value. Then, based on the median of beta-values of methylation, we divided HCC patients into two groups and performed Kaplan–Meier (K-M) survival analysis. The genes were considered to be significantly associated with OS based on the threshold of p < 0.05.



Evaluation of Immune Cell Infiltration Level, Tumor Purity, and Stromal Content Between the Two Clusters

We used ESTIMATE (19) to evaluate the immune cell infiltration level (immune score), tumor purity, and stromal content (stromal score) of each HCC sample in Metabolism_H and Metabolism_L cohorts.



Assessment of Tumor-Infiltrating Immune Cells

After removing data with p-value >0.05 of the correlation between the samples and the immune cells, the RNA-sequencing data of TCGA and LIRI_JP were used to estimate the proportions of 22 types of infiltrating immune cells using the CIBERSORT algorithm following the procedure as previously reported (20). We calculated the expression level of 22 immune cells in each sample through a deconvolution algorithm to quantify the number of cells in each sample. The R packages of e1071, parallel, and preprocessCore were used. The estimate package could adopt the RNA-seq data to calculate the immune and mechanism scores of the specimen, and then evaluate the purity of the tumor. The principle was to evaluate the above content through the signature of the characteristic tumor’s RNA-seq and the input file needed RNA-seq. Common genes data were also required to calculate the inner matrix. We used the estimate package to calculate the score of each sample’s immunity and matrix, then obtained the purity of the tumor and used it for the next calculation.



Identification of Metabolism-Related Pathways–Immune-Related Pathways Networks

We first quantified the enrichment levels of immune-related pathways in each HCC sample of Metabolism_H and Metabolism_L by the ssGSEA score. Then, metabolism-related pathways–immune-related pathways networks were drawn by cytoscape online software (http://www.cytoscape.org/).



Gene Set Enrichment and Functional Enrichment Analyses

We performed gene set enrichment analysis of the LIRI_JP and TCGA datasets by GSEA (R implementation) (21, 22). This analysis identified the KEGG (22) pathways that were upregulated or downregulated in Metabolism_H and Metabolism_L, respectively. Terms in KEGG with a false discovery rate (FDR) < 0.05 were considered significantly enriched and were visualized using R package “plyr”, “grid”, “gridExtra”, and “ggplot2” (23). Gene ontology (GO) analysis was performed using the R package “GOplot” (FDR < 0.05) (24).



DEMG-Based Classifiers for Overall Survival

The least absolute shrinkage and selection operator (LASSO)-Cox regression model (25) was used to identify the most accurate predictive DEMGs for OS. The risk score of each patient was determined based on the DEMG-based classifiers. The patients were categorized into two groups by median score. The survival estimation of patients was analyzed by the K-M method.



Predictive Performance of the DEMG-Based Classifiers

The univariate and multivariate Cox regression analyses were conducted to identify significant prognostic predictors associated with OS. The time-dependent receiver operating characteristics (tdROC) analysis by the “timeROC” package of R software was used to assess performance of clinical variables and classifiers. The area under the curve (AUC) of tdROC represented the predictive accuracy. In addition, p-values < 0.05 were considered statistically significant.



Immunohistochemical Staining

Paraffin-embedded liver tissue sections (4 µm) were deparaffinized in xylene and rehydrated in ethanol solutions. Then, the tissue sections were boiled in sodium citrate buffer using a microwave oven for 15 min to perform antigen retrieval, and 3% hydrogen peroxide was used for inhibiting the activity of endogenous peroxidase. Subsequently, to prevent nonspecific binding, the sections were blocked with 5% normal goat serum for 30 min at a temperature of 37°C. Primary antibodies for RRM2 (Proteintech, Wuhan, China, 11661-1-AP; 1:200), LPCAT1 (Proteintech, Wuhan, China, 16112-1-AP; 1:200), G6PD (Proteintech, Wuhan, China, 25413-1-AP; 1:500), CYP3A5 (Proteintech, Wuhan, China, 13737-1-AP; 1:200), CYP2C9 (Proteintech, Wuhan, China, 16546-1-AP; 1:500), BDH1 (Proteintech, Wuhan, China, 15417-1-AP; 1:200), ADH4 (Proteintech, Wuhan, China, 16474-1-AP; 1:200), PYCR1 (ABclonal, Wuhan, China, A13346; 1:100), PTGES (ABclonal, Wuhan, China, A18632; 1:100), HK2 (ABclonal, Wuhan, China, A0994; 1:100), and ADH1C (ABclonal, Wuhan, China, A8081; 1:100) diluted with antibody diluent buffer were added to corresponding tissues and then incubated overnight at 4°C. After washing, secondary antibodies (goat anti-rabbit antibody) (BioSharp Inc., China) were employed to incubate for 1 h. Finally, the sliders were stained with diaminobenzidine (DAB) (Beijing Zhongshan Golden Bridge Biotechnology, China) for color visualization and counterstained with hematoxylin. The staining results were evaluated by three blinded pathologists independently, and their median values were adopted as final score. Staining intensity was divided into four levels according to the following criteria: 0 point (negative), 1 point (weak), 2 points (moderate), and 3 points (strong). The proportion of positive staining area was scored as follows: 0 point (<5%), 1 point (5%–25%), 2 points (26%–50%), 3 points (51%–75%), and 4 points (>75%). The total scores consisted of multiplying the positive staining area percentage scores by staining intensity scores (26, 27).



Data Analysis

The Student’s t-test, Wilcoxon test, and other data processing were completed by SPSS 19.0 and GraphPad Prism 7.0 software. The K-M log rank test was calculated by medcalc (Version 19.0). Continuous variables were expressed as the mean ± standard deviation (SD). When all the hypotheses have a p-value < 0.05, the difference is statistically significant.




Results


Metabolism-Related Pathways Profiling Identified Two HCC Clusters

Firstly, we acquired KEGG signaling pathways by GSEA and singled out 42 metabolism-related pathways (Table S2). There were 14 significant pathways in TCGA (Figure 2A) and 19 significant pathways in LIRI_JP (Figure 2B), which were both associated with OS of HCC. Among the metabolism-related pathways, there were 10 pathways shared by the two datasets (Figure 2C).




Figure 2 | Metabolism-related pathways profiling identified two HCC clusters. (A) In TCGA, univariate Cox analyses showed that there were 14 significant metabolic pathways contributing to OS in HCC. (B) In LIRI_JP, there were 19 significant pathways. (C) A Venn diagram showed 10 metabolism-related pathways shared by TCGA and LIRI_JP. (D, E) Based on the different gene expressions of the 10 pathways, HCC was clustered: Metabolism_H and Metabolism_L in TCGA. (G, H) HCC was also clustered: Metabolism_H and Metabolism_L in LIRI_JP; Kaplan–Meier survival analysis results indicated that the two clusters had significantly different survival rates in both (F) TCGA (log-rank test p-value = 6.02e−05) and (I) LIRI_JP (log-rank test p-value = 2.527e−04). HCC, hepatocellular carcinoma; OS, overall survival.



Next, the 10 metabolism-related pathways were clustered in TCGA and LIRI_JP, respectively (Figures 2D, G). Interestingly, the two datasets showed similar clustering results, with two clusters being clearly separated (Figures 2E, H). The 10 metabolic pathways related to prognosis were clustered using the k-means method. As shown in Figure 2E, in the two classifications, 10 pathways have different expression trends. We defined the one with poor prognosis as Metabolism_H, and the other as Metabolism_L. The clusters significantly correlated with histologic grade, TMN stage, and AJCC pathological stage (p < 0.001) (Table 1). Moreover, survival analyses showed that the different metabolic subtypes of HCC had distinct clinical outcomes. The Metabolism_L subtype likely had a better survival prognosis than the Metabolism_H subtype (Figures 2F, I).


Table 1 | Correlations between risk score of the metabolism-related pathways classifier with overall survival and clinicopathological characteristics in the TCGA-LIHC cohort.





The Mutant Oncogenes, Copy Number Variation, and DNA Methylation Analysis

To explore why the Metabolism_L subtype likely had a better survival prognosis than the Metabolism_H subtype, we analyzed three parts of the differences between the two clusters: the mutant oncogenes, copy number variation, and DNA methylation. Obviously, there were several oncogenes mutated in most HCC patients, especially TP53, TTN, and MUC16 mutated in more than 50 samples (20%) (Figures 3A–C). For most cancer types, the TP53, TTN, and MUC16 genes were found to mutate frequently (25). The waterfall plot illustrated that TP53 and TTN were mutated in different numbers of patients. Metabolism_H was more likely to have TP53 mutations (Student’s t-test, p < 0.001) (Figure 3D), while TTN showed the opposite. Figure 3E shows that the mutated TP53 gene was less expressed than the wild (Wilcoxon test, p < 0.05).




Figure 3 | Different mutant oncogenes between HCC Metabolism_H and Metabolism_L. (A) Waterfall plots suggested that TP53, TTN, and MUC16 were main mutant oncogenes in HCC patients, but they were different between (B) Metabolism_H and (C) Metabolism_L. (D) Metabolism_H was more likely to have TP53 mutations (Student’s t-test, p < 0.001). (E) The mutated TP53 gene was less expressed than the wild type (Wilcoxon test, p = 0.037). HCC, hepatocellular carcinoma.  *p < 0.05, **p < 0.01, ***p < 0.001.



As demonstrated in Figure S1, HCC patients showed significantly different CNV in the two subtypes. For instance, according to the blue representing deletions and the red representing amplifications, large chunks of DNA were removed in chromosome 4 of the Metabolism_H subtype. The detailed information of CNV of each gene is shown in Table S3. Figure S1C shows ten genes with the most obvious differences in CNV between Metabolism_H and Metabolism_L: NUP210L, KCNN3, FAM189B, SCAMP3, CTSS, DPM3, EFNA1, GBA, GBAP1, and KRTCAP2, all of which were amplified on chromosome 1, and more frequent in Metabolism_H.

Through whole-genome DNA methylation analysis, we firstly screened out 240 methylation-driven genes whose genetic expressions were negatively correlated with methylation, and found that 30 of them were related to the HCC prognosis. Then, based on the 30 methylation-driven genes, the heatmap indicated that methylation levels of the 30 genes were significantly different between Metabolism_H and Metabolism_L (Figure 4A). For example, the methylation level of PDK4 was higher in Metabolism_H, while the methylation level of TMEM165 was higher in Metabolism_L. Moreover, the survival analyses also showed that the survival rates of HCC patients with hypermethylated PDK4 and hypomethylated TMEM165 were lower, which was consistent with differences in gene methylation levels and prognosis between Metabolism_H and Metabolism_L (Figure 4B).




Figure 4 | The DNA methylation level analysis. (A) The heatmap of 30 methylation driving genes associated with prognosis. (B) K–M survival analysis of HCC patients with hypermethylated or hypomethylated PDK4 and TMEM165.





Immunological Evaluation of the Metabolism-Related Pathway-Based HCC Subtypes

Due to the fact that tumor infiltration lymphocytes were closely related to metabolism and prognosis of tumors (28), we explored the immune infiltration of the metabolism-related pathway-based HCC subtypes according to immune scores (Figure S2). When comparing the tumor immunity microenvironment of the two HCC subtypes, we found that the two clusters were significantly different. Compared with Metabolism_L, the immune scores were significantly higher in Metabolism_H (Kruskal–Wallis test, p < 0.001) (Figure S2B). In addition, although stromal scores did not have significant difference between Metabolism_H and Metabolism_L in TCGA, we obtained opposite trends when comparing the tumor purities and stromal scores of the two HCC subtypes. The tumor purity was higher in Metabolism_L while the stromal score was higher in Metabolism_H (Kruskal–Wallis test, p < 0.05) (Figures S2A, C). The ESTIMATE Score was also higher in Metabolism_H (Kruskal–Wallis test, p < 0.01) (Figure S2D). In conclusion, these results indicated that Metabolism_H contained more immune cells and stromal cells, while Metabolism_L contained more tumor cells.

Therefore, we analyzed immune cell makeups of the two subtypes and found that they were obviously different. Metabolism_H contained more M2 macrophages in LIRI_JP and neutrophils in TCGA, while Metabolism_L contained more CD8 T cells in LIRI_JP and M1 macrophages in TCGA (Wilcoxon test, p < 0.05) (Figures 5A, B). Based on the two subtypes, we analyzed their immune pathways, which were also differently expressed (Figure 5C). Then, for identifying the relationship between metabolism and immune in HCC, a metabolism-related pathways–immune-related pathways network was conducted including 5 immune-related pathways and 9 metabolism-related signal pathways (Figure 5D).




Figure 5 | Distribution of immune cells in Metabolism_H and Metabolism_L. (A) In TCGA, Metabolism_L contained more naive B cells, gamma delta T cells, and resting mast cells (Wilcoxon test), the same as in (B) LIRI−JP. (C) A heatmap showed that different clusters led to significantly different gene expressions in immune pathways. (D) A metabolism-related pathways–immune-related pathways network indicated that metabolic pathways were associated with tumor immunity.



Furthermore, we further analyzed the immune checkpoint-related gene expression and found that the expression levels of PD-L1, CTLA-4, TIM-3 were significantly higher in Metabolism_H (Figure S3A). Based on the previous study of the cancer stemness (29), mRNA expression-based stemness index (mRNAsi) was higher in Metabolism_H (Figure S3B).



GSEA-Based KEGG Analysis and GO Analysis

A total of 110 prominent KEGG pathways including pathways expressed differently in Metabolism_H and Metabolism_L were selected (Table S4). The 82 high-expression pathways in Metabolism_H, such as “Pathways in cancer” and “TOLL like receptor signaling pathways”, were related to tumor proliferation and metastasis, indicating worse survival prognosis of Metabolism_H. However, the 28 high-expression pathways in Metabolism_L were mainly concentrated on metabolic process, such as “Tryptophan metabolism”, “Primary bile acid biosynthesis”, and “Retinol metabolism”. Figure 6A shows GSEA enrichment plots of representative gene sets on several representative pathways of Metabolism_H and Metabolism_L.




Figure 6 | Gene set enrichment and functional enrichment analyses. (A) KEGG pathways enriched in Metabolism_H and Metabolism_L, respectively. (B) A Venn diagram showed 135 DEMGs were overlapped among TCGA_ DEGs, LIRI_JP_DEGs, and MRGs. (C) KEGG pathways in Immunity_H and Immunity_L.



There were 946 metabolism-related genes (MRGs) that expressed in 110 prominent KEGG pathways. There were 757 DEGs between Metabolism_H and Metabolism_L in TCGA and 2,468 DEGs in LIRI_JP. A total of 135 DEMGs overlapped among TCGA_DEGs, LIRI_JP_DEGs, and MRGs in the Venn diagram (Figure 6B). The 135 DEMGs were mainly associated with the following biological processes: small molecule catabolic process; carboxylic acid biosynthetic and catabolic processes; organic acid biosynthetic and catabolic process; cellular amino acid biosynthetic, metabolic, and catabolic process; and alpha-amino acid metabolic and catabolic process (Figure 6C). The results also indicated that the DEMGs were mainly associated with the following cellular contents: mitochondrial matrix, peroxisome, and microbody (Figure 6C). Moreover, the DEMGs were related to molecular functions, such as coenzyme binding, iron ion binding, and cofactor binding (Figure 6C).



Prognostic Value of DEMGs

In order to investigate the effect of DEMGs on HCC prognosis, we first conducted univariate Cox analyses in TCGA and LIRI_JP, respectively. Sixty DEMGs in TCGA and LIRI_JP related to mortality were identified (Figures 7A, B). Among the 60 DEMGs, there are 36 genes shared by the two datasets (Figure 7C). According to the results of the LASSO-Cox regression model, 11 prognostic DEMGs with non-zero regression coefficients were finally chosen as the potential prognostic biomarkers for the OS of HCC patients (Figures 7C, D). The detailed information of DEMGs for constructing the prognostic signature is summarized in Table S5. The formula of the eleven-DEMG survival-predictor model was as follows: eleven-DEMG survival-predictor model score = (0.0177074543570851 * RRM2) + (0.000599168151290748 * PYCR1) + (0.000451238392995456 * PTGES) + (0.0000832126857397287 * LPCAT1) + (0.0154490143978134 * HK2) + (0.00824505291131197 * G6PD) − (0.00170896754573046* CYP3A5) − (0.000591128394736733* CYP2C9) − (0.00190395464082525 * BDH1) − (0.000171745083443705 * ADH4) − (0.000267396449305932 * ADH1C). Based on the survival-predictor model, we evenly divided HCC patients into two groups by the median risk score cutoff point, whose value is −0.0687, in TCGA: high risk and low risk (Figure 7E). The enrichment levels of the 11 genes in the two groups quantified by the ssGSEA was also significantly different. Then, K-M analysis showed that survival rates were significantly lower in the high-risk group (p < 0.001) (Figure 7G). Interestingly, we used the same eleven-DEMG survival-predictor model and cutoff point to cluster patients in LIRI_JP, in which the similar results were obtained (Figure 7F). The survival analysis also indicated that high risk had a worse OS (p < 0.001) (Figure 7H).




Figure 7 | The survival-predictor model based on eleven DEMGs. Univariate Cox analyses showed that 60 DEMGs contributed to the OS in (A) TCGA and (B) LIRI_JP, respectively. (C, D) The LASSO regression model identified the 11 most accurate predictive DEMGs in TCGA. (E) HCC patients were divided into two groups by the median risk score cutoff point in TCGA: high risk and low risk. (F) According to the same cutoff point, HCC patients were also divided into two groups in LIRI_JP; Kaplan–Meier Survival analysis results indicated that the two groups had significantly different survival rates in both (G) TCGA (log-rank test p-value = 1.217e−06) and (H) LIRI_JP (log-rank test p-value = 9.355e−10). DEMGs, differentially expressed metabolic genes; HCC, hepatocellular carcinoma.





Differential Expression Levels of the Eleven DEMGs

To further verify the bioinformatics analysis results, we collected both HCC and matched para-carcinoma tissues for IHC. Compared with normal tissue, the PYCR1, LPCAT1, and G6PD significantly expressed more in HCC tissue, while CYP3A5, CYP2C9, BDH1, ADH4, and ADH1C expressed less (Figure 8A), and the expression of RRM2, PTGES, and HK2 has no significant difference between two tissues (Figure S4A). The statistical analysis results are shown in Figures 8B–I and Figures S4B–D. Most of these results were consistent with our prognostic model, further indicating that the gene-based classifier had great value in predicting the mortality for HCC patients.




Figure 8 | The differential expression of 8 genes in cancer and matched normal tissues. (A) Representative image of immunohistochemistry staining and (B–I) immunohistochemical staining scores. (× 200, scale bar = 100 µm). Data are presented as the means ± SD. *p < 0.05 and **p < 0.01.





The DEMGs-Based Risk Score Outperforms Other HCC Prognostic Factors

For identifying the clinical significance of the DEMG-based survival-predictor model, we conducted the univariate Cox analysis in TCGA. The results indicated that tumor stage, T classification, M classification, and risk score were correlated with the survival rates (p < 0.05) (Figure 9A). Moreover, in multivariate Cox analysis, the risk score was significant (p < 0.01) while other factors were not associated with OS (p > 0.05) (Figure 9B). More importantly, the time-dependent ROC curves suggested that the DEMG-based risk score with an AUC of 0.767 could predict mortality more accurately than other HCC prognostic factors: age (AUC = 0.527), gender (AUC = 0.501), grade (AUC = 0.501), stage (AUC = 0.661), T (AUC = 0.667), N (AUC = 0.494), and M (AUC = 0.506) (Figure 9C). In LIRI-JP, we acquired the same results (Figures 9D–F).




Figure 9 | Comparison of prediction accuracy among the classifiers and other factors. The (A) univariate Cox analysis and (B) multivariate Cox analysis of DEMG-based risk score and other factors in TCGA. (C) The DEMG-based risk score was more accurate with an AUC of 0.767 in TCGA. The (D) univariate Cox analysis and (E) multivariate Cox analysis of risk score and other factors in LIRI_JP. (F) The DEMG-based risk score was more accurate with an AUC of 0.785 in LIRI_JP. DEMGs, differentially expressed metabolic genes; AUC, area under the curve.






Discussion

As the center of human metabolism, the liver is engaged in the metabolic interchange of water-soluble and lipid metabolites all the time; no other organ can match the metabolic rate of the liver (30). Moreover, the biological processes of toxic substance decomposition and metabolism processes, P450 pathway, p53 pathway, and alcohol dehydrogenase activity have been reported to be related to HCC in previous studies (31–33). Thus, metabolism pathways in the liver may provide a way to predict the prognosis of HCC (34).

In this study, we divided HCC patients into two groups by analyzing the activation of metabolic pathways (Figures 2E, F). The two groups mainly showed significant differences in expressions in 10 metabolic pathways, such as purine metabolism, pyrimidine metabolism, and fructose and mannose metabolism. Tumor cells generate energy by glycolysis despite the presence of sufficient oxygen to support the proliferation and differentiation of cancer cells, which is called the Warburg effect (35). Glutamines, which provide the nitrogen required for the biosynthesis of purine and pyrimidine nucleotides, are also needed in the survival and growth of tumor cells (35). These studies are consistent with our conclusions, suggesting that the Metabolism_L subtype with a lower expression of purine metabolic, pyrimidine metabolic, fructose and mannose metabolic, and amino sugar and nucleotide sugar metabolic pathways will likely have a better survival prognosis (Figures 2F, I). The two subtypes also showed significant differences on taurine and hypotaurine metabolism, retinol metabolism, and fatty acid metabolism. Free fatty acid was confirmed as an independent risk factor for cancer (36), and statin can improve survival outcomes and increases overall survival (37–39). Furthermore, the retinol and retinal are also associated with the diagnosis and prognosis of HCC (16). In brief, the metabolic pathways selected in the current study were all related to survival and proliferation of tumors.

Then, we analyzed mutated genes and tumor immunity in two subtypes, respectively. Figure 3 shows that the mutation rate of the TP53 gene was significantly different in Metabolism_H and Metabolism_L, and Metabolism_H expressed more TP53. The wild-type TP53 protein plays an important role in apoptosis after DNA damage and in cell cycle regulation (40). However, the mutant TP53 protein loses its wild-type function and accumulates in the nucleus, which is considered to be a highly specific marker of malignant tumors (41). Similarly, TP53 also plays an important role in HCC (42, 43). Mutant TP53 proteins simultaneously lose their tumor-suppressive functions and obtain new capacities to advance tumorigenesis (44). Ling et al. (45) indicated that HCC patients with non-functional mutant genes of TP53 tended to have a worse survival prognosis. CNV analysis suggested that the two HCC subtypes were different in chromosomal structural variation. As we have mentioned, several genes promoting the development of liver cancer, such as SCAMP3 and CCT3 (46), amplified more frequently in Metabolism_H. However, some gene expressions were negatively correlated with methylation. For instance, as shown in Figure 4, the levels of methylation of the MRG PDK4 were higher in Metabolism_H, and low expression of PDK4 promoted proliferation and metastasis of HCC (47). In conclusion, these findings explain why survival rates in Metabolism_H are lower. Interestingly, the two subtypes also showed significant differences in tumor immunity, and the immune-related pathways interacted with metabolic pathways. Some studies have proved that some immune cells associate with the prognosis of HCC, such as CD8+ T cells, regulatory T cells (Tregs), and B cells (48). HCC produced lactic and carbonic acids excessively by exacerbating glycolysis to change the tumor immunity microenvironment (49). Figure S1 shows that Metabolism_L contained more tumor cells and less immune cells compared with Metabolism_H. Recent studies reported that immune cell infiltration could affect the prognosis of HCC and intratumoral infiltration by dendritic cells and neutrophils may result in poor prognosis in HCC patients (50, 51). Neutrophils not only were involved in the activation and regulation of immune cells, but also promoted the progression of HCC by releasing cytokines (52). Moreover, macrophages, especially M2 macrophages, contributed to the poor prognosis of HCC (53), whose infiltration within the tumor microenvironment could facilitate tumor growth, angiogenesis, invasion, as well as metastasis (54). According to our results, tumor tissue of Metabolism_H contained more M2 macrophages and neutrophils. Conversely, tumor tissue of Metabolism_H contained less CD8 T cells, which were the primary cytotoxic lymphocytes exerting antitumor effects (55). Although p-values of M2 macrophages, neutrophils, and CD8 T cells were less than 0.05 in only one of the two databases, which may be due to insufficient data, the difference in the two immune cells was consistent between the two databases. Moreover, a lower proportion of CD8 T cells indicated an immune-suppressive state in Metabolism_H, and the Metabolism_H subtype had higher mRNAsi and higher expressions of immune checkpoint-related genes such as PD-L1 (56, 57). Therefore, it was no surprise that the Metabolism_H had a lower survival rate.

According to the LASSO regression method, we determined 11 DEMGs: RRM2, PYCR1, PTGES, LPCAT1, HK2, G6PD, CYP3A5, CYP2C9, BDH1, ADH4, and ADH1C. Reports have indicated that most of the 11 DEMGs were closely related to the OS of tumor (58–61). Among the 11 DEMGs, PYCR1 plays a vital part in the promotion of HCC cell proliferation by increasing proline biosynthesis effectively (62). Additionally, LPCAT1 participates in cell proliferation, migration, and invasion by modulating phospholipid composition, in HCC (63). In our study, we divided the HCC patients into two groups based on the 11-DEMG-based classification in TCGA. Then, we verified the correctness of this grouping method in TCGA. The two groups all showed significantly different survival rates in TCGA and LIRI-JP. Moreover, the differential expression of the 11 genes in cancer and matched normal tissues was observed by immunohistochemistry staining. Compared with normal tissues, 8 genes showed remarkable differential expression between cancer tissues and normal tissues, while 3 genes revealed no significant differences. The limitations may come from differential expression patterns of genes, population differences, or statistical noise, and require more experiments to be verified. In addition, when compared with the clinicopathological risk factors, the 11-DEMG-based risk score was better at predicting survival in both TCGA and LIRI-JP, which was the highlight of this study. There is absolutely no doubt that our 11-DEMG-based classifiers possessed their own unique prediction. When the classifiers are combined with clinicopathological risk factors, it would provide a more accurate prediction for OS at different times for HCC patients. Therefore, the DEMG-based survival-predictor model has shown a favorable effect on survival prediction, which will contribute to therapeutic decision-making.

However, there are several limitations in this study. Firstly, we found that tumor metabolism was associated with tumor immunity, but, regrettably, this study mainly focused on the association between the MRGs and the OS of HCC. It will be interesting to combine metabolic genes with immune genes to predict HCC OS in the future. Secondly, this study was a retrospective study utilizing the TCGA and LIRI-JP databases. Therefore, more prospective studies were still needed. Third, if we could discover tumor biomarker detection in a more accessible blood sample, it would be more clinically valuable. Finally, a study at the single-cell level would be better in entangling the heterogeneity among the cells (64–66), which will be the subject of a future work.



Conclusions

In summary, we identified two metabolism-based classifiers associated with OS in HCC and confirmed that the differences in survival rates in the two clusters may be related to mutated genes and tumor immunology. According to the LASSO regression method, we determined 11 DEMGs. Notably, the DEMG-based survival-predictor model could accurately predict the OS of HCC patients, and the results may contribute to the development of individual therapy.
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Tumor mutation burden (TMB) is an important biomarker for tumor immunotherapy. It plays an important role in the clinical treatment process, but the gold standard measurement of TMB is based on whole exome sequencing (WES). WES cannot be done in most hospitals due to its high cost, long turnaround times and operational complexity. To seek out a better method to evaluate TMB, we divided the patients with lung adenocarcinoma (LUAD) in TCGA into two groups according to the TMB value, then analyzed the differences of clinical characteristics and gene expression between the two groups. We further explored the possibility of using histopathological images to predict TMB status, and developed a deep learning model to predict TMB based on histopathological images of LUAD. In the 5-fold cross-validation, the area under the receiver operating characteristic (ROC) curve (AUC) of the model was 0.64. This study showed that it is possible to use deep learning to predict genomic features from histopathological images, though the prediction accuracy was relatively low. The study opens up a new way to explore the relationship between genes and phenotypes.
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Introduction

At present, the most advanced treatment for non-small cell lung cancer is the combination of immunotherapy and chemotherapy. Among them, PD-L1 expression is a common biomarker in immunotherapy response, but a large number of patients with low PD-L1 expression and some patients with h7igh PD-L1 expression are suitable for this treatment plan (1–3). Therefore, searching for new predictors of immunotherapy response is crucial.

TMB is an important biomarker for predicting immunotherapy (4–6). TMB is a measure of the total number of non-synonymous somatic mutations per megabase in the coding region of the tumor genome (7). Tumors with high TMB are thought to express a variety of neoantigens. A number of studies have shown that the response of patients with advanced solid tumors to immunotherapy is related to high TMB (4, 7, 8). Therefore, researchers will pay more attention to the existence of TMB when implementing immunotherapy. Therefore, there is an urgent need for a low-cost, fast and reliable TMB detection method.

Whole-exome sequencing is the gold standard for measuring TMB. However, due to technical limitations and high costs, whole-exome sequencing has not been promoted in the field of clinical oncology (9). Therefore, clinicians usually use low-cost next-generation targeted gene sequencing. When the gene-directed therapy guided by the target panel is used and tested, the turnaround time is usually about three weeks. At present, clinicians are trying to re-adjust the purpose of targeted sequencing analysis to facilitate the prediction of TMB when using whole-exome sequencing, and use the default technical method to normalize the number of mutant genes found in the sequencing area (10). Therefore, to obtain a robust normalized TMB, paired normal samples and a larger panel size (at least about 2 megabases) are required (11). The increase in panel size is directly proportional to the cost, which forces a trade-off between the depth of sequencing and the number of patients for each sequencing run. In most clinical treatment processes, the turnaround time of targeted sequencing analysis usually exceeds the prescribed time due to the limitations of various problems. Therefore, it is very beneficial to develop an alternative and convenient method to assess TMB.

Although early histopathologists have recognized the connection between individual genetic mutations and certain cancer morphological phenotypes, they did not consider the application of TMB. Previous machine learning used manual features in histopathological images (12, 13) to distinguish subtypes (14) and predict recurrence (15, 16) and survival outcomes (17). With the rise of deep learning, it is expected to achieve more robust and accurate predictions in biomedical images (18). Deep convolutional networks have shown good results in tumor detection (19–21) and distinguishing subtypes of non-small cell lung cancer (22, 23) and other cancers (24, 25).

Here, we used the ResNet18 deep learning model and used the formalin-fixed paraffin-embedded (FFPE) hematoxylin and eosin (H&E) stained lung adenocarcinoma (LUAD) histopathology images from the Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga) to predict TMB status. We tried to develop a deep learning method for LUAD, because compared with other cancers of TCGA, we can obtain a large number of sequence and image data of patients with non-small cell lung cancer, and used TMB as a biomarker for tumor treatment. ResNet18 is a convolutional neural network (CNN) that achieves advanced performance on ImageNet. We convinced that with the further development of deep learning and clinical verification, deep learning can provide a potential alternative detection method to determine TMB, while reducing the diagnosis cycle and cost consumption. Our results showed that we could use deep learning techniques to detect previously unexplored features in histopathological images that have been clinically proven to be useful.



Methods


Data Processing

In this study, we used whole-slide images (WSIs) of LUAD from TCGA (https://portal.gdc.cancer.gov/repository/). In addition, the clinical information and next generation sequencing results of these patients were downloaded and analyzed. All LUAD WSIs were stored in SVS format and adjusted to 0.5 um per pixel at the same magnification (40x). These WSIs were then marked with tumor areas by a professional pathologist (Figure 1A). We set a TMB threshold (10, corresponding to a maftools count of 400) to mark each patient’s TMB status.




Figure 1 | Computational pipeline for predicting TMB in lung cancer. (A) The tumor area was annotated by a professional pathologist and cut into 512*512 image blocks. (B) Image processing includes noise reduction (discarding image blocks with a blank rate greater than 30%) and color normalization (Macenko method). (C) Divide TMB high and low with 10 as the threshold. (D) The prediction model was constructed with residual network, the model was tested with 5-fold cross-validation, and receiver operating characteristic (ROC) curve was used to evaluate the model.



Considering that the image pixels of WSIs were too large, it cannot be directly used as the input of the deep learning network. Therefore, we divided WSIs into 512*512 pixels slides, each WSI can be divided into tens of thousands image slides. And then deleted slides with less information (e.g. blank rate over 30%) (15). The error of the manual production process and the difference between stains and scanners will produce a color difference between digital sections, which will cause errors in the subsequent analysis work. Therefore, we performed color normalization using the Macenko method in the Tia toolbox software package (Figure 1B) (26).

In the pipeline, we promised each patient and its related slides were allocated to a training or testing dataset to ensure that there was no overlap problem and to ensure the accuracy of the final test results (Figure 1C). The final model predicted the TMB status according to the features of each patient, so as to assist the doctor in giving the corresponding immunity treatment plan.



Deep Learning on Histopathological Images

We used a deep neural network based on the ResNet18 architecture to predict the probability of TMB status for each tile (Figure 1D). ResNet18 builds a 18-layer deep convolutional neural network by repeatedly using two residual blocks, Conv Block and Identity Block. The last of the ResNet18 architecture is a fully connected layer for soft-max operations. The output produced two normalized probability predictions. We choose a TMB value of ten as the segmentation threshold. The model parameters were initialized using pre-trained weights form the ImageNet competition (27). Using backpropagation to train all parameters of the model during model training. The loss function was defined as the cross entropy between the true label and the predicted probability.



Patient-Level Prediction

As shown in Figure 1, the TMB status of each image block can be predicted by our prediction model, and these predicted image blocks were divided into two categories: TMB high and TMB low by the soft-max function. The image patches of each patient were then aggregated together to predict the probability of high or low TMB for each patient. Specifically, we divided the number of patches predicted to be high TMB per patient by the total number of patches per patient. If its probability was greater than 0.5, the LUAD cancer patient was predicted to have high TMB, otherwise, the patient was defined as low TMB. And the patient’s TMB status is the standard for subsequent provision of corresponding treatment plans.



Performance Evaluation

After the model was trained, cross-validation was used for model testing and performance evaluation. We used the percentage of correctly classified slices to aggregate the probability of each slide. We used the scikit-learn in the python library to calculate the ROC curve and the corresponding AUC value in the case of prediction.

In addition, we performed survival analysis of true and predicted TMB status of these 427 lung adenocarcinoma patients. Overall survival time was calculated from the date of surgery to the date of death or last follow-up contact. Survival curves were estimated using the Kaplan-Meier multiplicative limit method (E. L. 28). Differences in predicted survival outcomes between high and low TMB groups were compared by log-rank test.



Hyperparameter and Model Selection

Model selection and all hyperparameters were based on the performance of the validation dataset, including the use of the ResNet18 model, optimization of parameters, and so on. The validation dataset is only used after the model is developed and used to introduce all the results obtained in this research. In the process of model evaluation, the methods and models we use are not modified in any way to ensure independence assumptions between datasets. To avoid the effects of the algorithm falling into local optimal solutions and data noise, we employed the SGD + momentum optimizer, where momentum assigns a value of 0.9. For every seven epochs, the learning rate of the parameters decayed by 0.1 times. Moreover, 30 epochs were trained throughout the process.



Statistical Analysis

All statistical analysis was conducted using R software. We used statistical methods to analyze the differences of clinical characteristics in 427 cases of TCGA lung adenocarcinoma patients with high and low TMB data.

In clinical, for continuous clinical characteristic variables such as age and the number of cigarettes per day, we used the Wilcoxon rank sum test method to analyze (29). For non-continuous variables such as tumor stage, we used the fisher’s exact test method to analyze. P-values less than 0.05 were considered statistically significant.

DESeq2 method of R package was used to analyze the difference of mRNA in TMB high and low groups. DEseq2 requires the input data to be an unnormalized matrix of integers (30). At the same time, we also performed GO (gene ontology) enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis on mRNA, and annotated from three aspects: BP (biological process), MF (molecular function), and CC (cellular component). The GO enrichment and KEGG calculation method and formula are the same, and they are calculated using the hypergeometric test:

	

Among them, ‘N’ is the number of genes with Pathway annotation in all genes. ‘n’ is the number of differentially expressed genes in N. ‘M’ is the number of genes annotated as a specific pathway in all genes. ‘m’ is the number of differentially expressed genes annotated as a specific Pathway. The calculated P value is further corrected for multiple testing to obtain the corrected p-value (that is, the Q value). Usually we take Q value ≤ 0.05 as a threshold, and a pathway that satisfies this condition is defined as a pathway that is significantly enriched in differentially expressed genes (31).




Results


Smoking and Age Were Significantly Correlated With TMB Status

In this study, 468 patients’ sequencing results were downloaded from TCGA and 427 H&E-stained WSIs of formalin-fixed paraffin-embedded tumor tissue sections of all available LUAD cases were obtained. Therefore, after matching the patient information, 427 patients were finally included in this study. The clinical information of these 427 patients was also obtained from TCGA and performed statistical analysis, and some of the clinical information was shown in Table 1. According to the TMB threshold, the number of TMB high was 88, and the number of TMB low was 339 among 427 patients with LUAD.


Table 1 | Summary of the general clinical information of patients with lung adenocarcinoma.



Then, we analyzed the relationship between these clinical characteristics and TMB status, the results were shown in Figure 2. Daily cigarette consumption was significant different (p=0.014) in patients between TMB-H group and TMB-L group (Figure 2A). The daily smoking volume of TMB-H group was significantly higher than that of TMB-L group. Besides, the age of patients in TMB-H group was significantly lower than that in TMB-L group (Figure 2B). Whereas, there was no significant correlation between tumor stage and TMB status, with a P value of 0.09, which was shown in Supplementary Figure 1.




Figure 2 | Correlation of several clinical features with TMB status. (A) Correlation analysis between daily cigarette consumption and TMB status. (B) Relationship between ages and TMB status.





Many Differential Genes Were Identified Between TMB-H and TMB-L Samples

The mRNA sequencing data of cancer tissue samples from 427 patients with lung adenocarcinoma were downloaded from TCGA. And then these patients were divided into TMB-H group and TMB-L group according to the value of TMB. To explore whether the changes of high or low expression of some key genes will directly lead to the increase of the total number of gene mutations, that is, affect TMB status, the gene expression differences between the two groups were analyzed using DESeq2. With log2 |fold change| ≧ 1 and p value ≤ 0.05 as the threshold, we got 2140 significantly differentially expressed genes in TMB-H group compared with TMB-L group. Among these genes, 960 genes were up-regulated and 1180 genes were down-regulated in TMB-H group (Figure 3A). The top 10 up-regulated genes and down-regulated genes in TMB-H group compared to TMB-L group were shown respectively in Figure 3B.




Figure 3 | Differentially expressed genes in TMB-H group compared with TMB-L group. (A) Volcano plots of the differentially expressed genes. Red dots represent up-regulated genes, blue dots represent down-regulated genes and gray dots represent genes with no significant expression differences. (B) Heatmap of top 10 up-regulated genes and down-regulated genes in TMB-H group compared to TMB-L group.





The Differential Genes Between TMB-H and TMB-L Are Significantly Enriched in Many GO Terms and KEGG Pathways

Go enrichment analysis and KEGG pathway enrichment analysis were further carried out to clarify the functions and signaling pathways involved in these differential expressed genes. GO enrichment analyses include three aspects: BP, CC and MF. The top ten Go terms in the biological process were displayed in Figure 4A, including hormone metabolic process, sodium ion transport, carboxylic acid transport, regulation of blood pressure, digestion, digestive system process, neuron fate commitment, G protein-coupled receptor signaling pathway etc. KEGG pathway analysis results indicated that differentially expressed genes are mainly enriched in the neuroactive ligand-receptor interaction pathway, Calcium signalling pathway, drug metabolism-cytochrome P450 pathway and nicotine addiction pathway (Figure 4B). Genes in these pathways may regulate the mutation and repairment of DNA.




Figure 4 | Functional enrichment and pathway analysis results of differentially expressed genes. (A) Top 10 enriched GO terms annotated in biological process. (B) Top 10 KEGG pathways of the differentially expressed genes.





Histopathological Images Could be Used to Predict TMB

After preprocessing, the histological images of H&E staining in TMB high group were labeled as 1, meaning positive sample, and those in TMB low was labeled as 0. Small tiles of pathological images from the same patient are divided into the same dataset to ensure that information is not leaked. Then the ResNet18 model was employed to train the samples, and 5-fold cross validation was used to split the samples and verify the results.

The classification model we developed will be used to predict TMB status of the entire slide image of a given patient, which will provide a certain basis for pathologists’ later diagnosis and treatment. The ROC curve and AUC of the predict model were shown in Figure 5A and the confusion matrix was illustrated in Figure 5B. The TMB predict model achieved a relatively good performance, with an area under the curve (AUC) of 0.641.




Figure 5 | Performance of the TMB predict model based on histopathological images. Area under the receiver operator curves (ROCs) (A) and the confusion matrix (B) of the deep learning model.



We further evaluated the performance of the deep learning model by survival analysis (Figure 6). As shown in Figure 6A, there was no significant difference in the survival time between TMB-H group and TMB-L group from the real clinical statistics. The survival analysis results of the two groups were not significantly different based on the predict TMB status by H&E-stained histological images, which was consistent with the real statistical data (Figure 6B).




Figure 6 | Survival analysis. (A) Survival analysis based on the true clinical data. (B) Survival analysis based on the predict result of TMB status by H&E-stained histological images.






Discussion

TMB plays an important role in immunotherapy response, and it is an immunotherapeutic biomarker recommended by National Comprehensive Cancer Network (NCCN) guidelines. In this study, we proved that TMB can be evaluated using digitized FFPE histopathological images in LUAD, though the prediction accuracy was relatively low. This may be related to the small number of training datasets or the threshold division of TMB. In addition, the inconsistent calculation method of TMB may also lead to inaccurate data division, which will have an impact on the results.

At present, the generalization ability of the model is affected by the dataset. In the course of clinical treatment, patients with advanced malignant tumors have relatively small diagnostic biopsy specimens, which may come from many different potential sites, including the liver, lymph nodes and other sites. In order to test the practical application of our method to clinical samples, it is necessary for us to train and test in these different scenarios. In addition, TCGA FFPE images can be highly enriched in tumor cells, but this does not reflect the real tissue samples used in the biopsy process. However, experts can manually mark the tumor area on the slide image and apply ResNet18 to the area of interest. In view of the results obtained using FFPE section samples, it was feasible to use frozen sections for research in the future.

Our deep learning model was only trained to determine whether TMB was above a selected threshold, rather than predicting specific TMB values. And, it would be better if we had an independent validation set to validate our model. As a clinically relevant measurement standard, TMB usually requires additional and laborious testing. We can predict TMB from the H&E-stained histopathology images of the LUAD datasets in TCGA. In the future, we can predict TMB from H&E images of lung squamous cell carcinoma (LUSC). In addition, our method has certain advantages compared with other diagnostic tools. We can predict the TMB value of each area of the image. This method can represent the heterogeneity of TMB itself or the heterogeneity of histological characteristics related to high TMB.

There are a few limitations of this work. First, we used deep learning to link genome-wide features with histopathological images, which helps to study the spatial heterogeneity of tumors and the relationship between cancer phenotypes and genotypes. Therefore, the use of deep learning is a useful method to improve the current large number of ready-made histopathological images, and helps to prioritize and screen patient samples and follow-up treatment. However, the prediction accuracy of model is relatively low. More advanced machine learning models might be able to improve the accuracy like some recent classification models used in other biological problems (32–34). Second, we used 5-fold cross validation to evaluate the model accuracy. It might be better to find some more independent datasets. However, it is infeasible to find a new dataset with both histopathological images and WES. Finally, TMB is used as an indicator for immunotherapy. It might be more direct to predict the outcomes of immunotherapy directly. However, this is listed as our future work provided that we can find some appropriate datasets.
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Background: In the absence of targeted therapy or clear clinically relevant biomarkers, neoadjuvant chemotherapy (NAC) is still the standard neoadjuvant systemic therapy for breast cancer. Among the many biomarkers predicting the efficacy of NAC, immune-related biomarkers, such as immune-related genes and tumor-infiltrating lymphocytes (TILs), play a key role.
Methods: We analyzed gene expression from several datasets in the Gene Expression Omnibus (GEO) database and evaluated the relative proportion of immune cells using the CIBERSORT method. In addition, mIHC/IF detection was performed on clinical surgical specimens of triple-negative breast cancer patients after NAC.
Results: We obtained seven immune-related genes, namely, CXCL1, CXCL9, CXCL10, CXCL11, IDO1, IFNG, and ORM1 with higher expression in the pathological complete response (pCR) group than in the non-pCR group. In the pCR group, the levels of M1 and γδT macrophages were higher, while those of the M2 macrophages and mast cells were lower. After NAC, the proportions of M1, γδT cells, and resting CD4 memory T cells were increased, while the proportions of natural killer cells and dendritic cells were decreased with downregulated immune-related genes. The results of mIHC/IF detection and the prognostic information of corresponding clinical surgical specimens showed the correlation of proportions of natural killer cells, CD8-positive T cells, and macrophages with different disease-free survival outcomes.
Conclusion: The immune-related genes and immune cells of different subtypes in the tumor microenvironment are correlated with the response to NAC in breast cancer, and the interaction between TILs and NAC highlights the significance of combining NAC with immunotherapy to achieve better clinical benefits.
Keywords: tumor immunology, immunogenetics, tumor immune microenvironment, biomarkers of breast cancer, neoadjuvant chemotherapy
INTRODUCTION
Neoadjuvant systemic therapy (NST) has become one of the major preoperative treatments for all subtypes of breast cancer (BC) over the past decade (Steenbruggen et al., 2017). Although chemotherapy in combination with other treatments is currently the preferred approach in NST, neoadjuvant chemotherapy (NAC) remains the standard NST in the absence of targeted therapy or clear clinically relevant biomarkers (Lebert et al., 2018). The therapeutic effect of NST in early BC can be reflected by some indicators, such as pathological response rate and disease-free survival (DFS) (Kong et al., 2011; Vaidya et al., 2018).
No specific methods have been established to predict the treatment response of patients receiving NAC; therefore, many predictors have been proposed to predict the prognosis of BC patients and select appropriate treatment strategies (Xu et al., 2020). In addition, multi-omics analysis has become a burgeoning approach to identify solid tumors for different molecular characteristics and clinical outcomes in recent years (Su et al., 2020). Among many predictors of whether patients achieve pathological complete response (pCR) and DFS benefit, tumor-infiltrating lymphocytes (TILs) and immune-related genes play a key role (Chica-Parrado et al., 2020), which is not only related to the crucial role of the tumor immune microenvironment (TIME) in the antitumor process but also related to the modulatory effect of chemotherapy on the TIME in NAC. The role of the TIME in the antitumor process can be determined by the correlation between the TIME and NAC response, whereas the modulation effect of chemotherapy on the TIME can be interpreted from the changes in the TIME before and after NAC.
Several researchers have made an effort to predict the NAC response by immune-related genes and obtained a prediction model with several genes as the core (Pérez-Pena et al., 2019). In addition, the changes in immune-related genes before and after NAC have also been summarized (Di Cosimo et al., 2019), but there is still no acknowledged NAC response–related immune gene set in BC. In terms of the TIME, TILs have been widely recognized as a crucial biomarker for predicting the efficacy of NAC in BC for a long time, which has been highlighted by a few pooled analyses, especially in triple-negative breast cancer (TNBC) (Loi et al., 2019; Park et al., 2019). In addition, changes in TILs before and after NAC are related to the therapeutic effects and relatively long-term prognosis in addition to pCR rate (such as DFS) of BC patients (Hamy et al., 2019; Herrero-Vicent et al., 2019). The relationships of various immune cell subtypes in TILs with the prognosis of NAC and its changes are serious and controversial topics of research (Kim et al., 2020).
In the present study, several datasets were used to analyze the role of immune-related genes and TILs in the therapeutic effect after NAC and their changes before and after NAC, which will identify several immune-related genes and corresponding immune cells related to the NAC response. In addition, we also used the clinical surgical specimens of BC patients after NAC to obtain the differences in the proportion of several types of immune cells to verify the correlation between different subtypes of TILs and prognosis.
MATERIALS AND METHODS
Gene Expression and Clinical Data
High-throughput sequencing gene expression data (Illumina HiSeq 2500 format) from the GSE123845 dataset and microarray gene expression data (Affymetrix U133 Plus 2.0 gene expression array format) from four datasets (GSE32646, GSE31519, GSE32072, and GSE18728) were obtained from the National Centre for Biotechnology Information (NCBI) in the Gene Expression Omnibus (GEO) database. The GSE123845, GSE32646, and GSE31519 datasets were used to investigate the relationship between immune gene expression and response in patients who received NAC, while the GSE32072 and GSE18728 datasets were used to compare the changes in immune genes and immune infiltration before and after NAC. Detailed information about the datasets is available in Supplementary Table S1. Gene expression levels (mRNA expression z score from RNA-sequence) of 1097 BC patients from The Cancer Genome Atlas (TCGA) genomic cancer data were used to explore the relationship of seven differentially expressed genes (DEGs) with immune cell fractions.
Formalin-fixed paraffin-embedded (FFPE) tissue sections (4 µm thick) from six nonmetastatic TNBC patients admitted to the Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University during 2016–2020 were utilized in this study to verify the correlation between the immune cell proportion in TILs and the prognosis of TNBC patients who received NAC. DFS was defined as the time from surgery to the occurrence of the first metastasis, and the detailed clinical information, grouping, and treatment of patients are described in Table1.
TABLE 1 | Detailed clinical information of six patients.
[image: Table 1]Identification of DEGs, Gene Ontology , and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis of DEGs
DEGs were extracted and analyzed using the Limma, Impute, and EdgeR packages in R (Ritchie et al., 2015; McDermaid et al., 2019). DEGs were defined as p < 0.05 and log of fold change (logFC) > 1 or logFC ≤ −1. In the GSE123845 and GSE32646 datasets, the pCR groups were set as the control groups, and the non-pCR groups were set as the experimental groups. In the GSE32072 and GSE18728 datasets, the pre-NAC groups were set as the control groups, and the post-NAC groups were set as the experimental groups. Gene Ontology (GO) analysis refers to the high-throughput annotation of biological functions (BP), cellular components (CC), and molecular function (MF) of all genes in the genome by using bioinformatics methods and tools. The Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/) (Kanehisa et al., 2017) is a database that provides gene and genome functional significance at the molecular and pathway levels. The DOSE, ClusterProfiler, Org.Hs.eg.db, and Enrichplot packages in R (Yu et al., 2012; Yu et al., 2015; Pu et al., 2021) were used for the GO and KEGG pathway enrichment analyses of DEGs.
Gene Set Enrichment Analyses
GSEA was performed to compare the gene expression among hallmark gene sets of pCR and non-pCR patients using GSEA version 4.1.0 provided by the Broad Institute (http://software.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2005). KEGG pathway enrichment analysis was performed using gene sets from the Broad Institute (http://ftp.broadinstitute.org://pub/gsea/gene_sets/c2.cp.kegg.v6.2.symbols.gmt). In GSEA, the significance of each pathway was classified by a threshold of false discovery rate (FDR) q-value <0.05.
Protein–Protein Interaction Network Construction and Network Core Genes Extraction
To explore interactions, including gene neighborhood, fusion, and co-occurrence of DEGs, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.0 (Szklarczyk et al., 2019) was used by inputting the gene names of the DEGs and exporting the results with a minimum required interaction score of 0.7 as the PPI network. Genes with a number of adjacent nodes ≥7 were identified as network core genes.
CIBERSORT Deconvolution Algorithm
The CIBERSORT deconvolution algorithm was used to estimate the fraction of 22 immune cell types in each tumor tissue to evaluate intratumor immune cell composition (Newman et al., 2015). These 22 cell fractions were calculated via the online calculator (https://cibersort.stanford.edu/) as previously reported (Takeshita et al., 2019). The fraction of 22 immune cell types estimated from each sample was filtered by p value < 0.05 to obtain more accurate prediction results.
Survival Analysis
For plotting Kaplan–Meier (K-M) curves of GSE31519 grouping samples based on the proportion of different immune cells, GraphPad Prism 8.0.0 for Windows (GraphPad Software Inc., San Diego, California, USA) was used, and the log-rank test was used to assess the significance of event-free survival (EFS) differences.
Multiplex Immunohistochemistry/Immunofluorescence Protocol and the Preparation of Fractions of Different Immune Cells and Tumor Cells
To identify tumor cells and different subsets of immune cells in the TIME, immunofluorescence staining was performed using the Pano 7-Plex IHC kit (Cat. No. 0004100100; Panovue, Beijing, China), according to previously published methods (Taube et al., 2020; Yeong et al., 2020). In brief, slides were incubated with different primary antibodies (CD56, CD8, CD68, HLA-DR, and PanCK) followed by incubation with horseradish peroxidase–conjugated secondary antibodies and tyramine signal amplification. The slides were treated with microwave heat treatment after each TSA (PerkinElmer, Waltham, Massachusetts, US) operation. After all human antigens were labeled, the nuclei were stained with 4′-6′-diamidino-2-phenylindole (DAPI, Sigma–Aldrich). To obtain a multispectral image, the colored slides were scanned using a Mantra system (PerkinElmer, Waltham, Massachusetts, US), which captured fluorescence spectra at 20-nm wavelength intervals from 420 to 720 nm at the same exposure time and combined them into a single stack image.
The autofluorescence spectra of tissues and each luciferin were extracted from unstained and single-stained section images. The extracted images were further used to establish the spectral library required for multispectral decomposition through inForm image analysis software (PerkinElmer, US). Using this spectral library, we obtained reconstructed images without self-fluorescence. The fluorescence score (Hscore value) of each antigen stain and the fractions of different immune cells and tumor cells in the TIME were also obtained using the software.
Statistical Analysis
The statistical analyses of the data from the various datasets were performed using R software (http:///www.r-project.org/) and Bioconductor (http://bioconductor.org/) (Sepulveda, 2020). For differential gene analysis between groups, the Wilcoxon test was conducted using R software. To explore the association of 21 immune cell subtypes between the control groups and experimental groups, the Wilcoxon test was used using R software. A heatmap was produced with the pheatmap package in R (Pu et al., 2021). The nonparametric independent sample t-test was used to examine the difference in the fraction of cells between the long-DFS and short-DFS groups. All p values were bilateral, and a p value of <0.05 was considered statistically significant.
RESULTS
BC Patient Response to NAC Is Related to Immune-Related Genes
In total, 27 pCR samples and 88 non-pCR samples from the GSE32646 dataset were used for differential gene expression analysis, which identified 302 DEGs (filtering with p = 0.05 and logFC = 1; Supplementary Table S2). Genetic clustering analysis of the heatmap shows the top 20 genes according to the absolute value of the fold change (Figure 1A), and a volcano plot of the DEGs is shown in Figure 1B. The PPI results obtained from the abovementioned DEGs are shown in Figure 1C, which had a high confidence result with 0.7 as the minimum required interaction score and the removal of the independent gene. Using the number of adjacent nodes as criteria, we obtained the network core genes, including CXCL1, CXCL9, CXCL10, ADCY1, CXCL11, IDO1, IFNG, NPY1R, and ORM1 (Figure 1D), and the immune-related genes included several chemokine CXC subfamily molecules, namely, IDO1, IFNG, and ORM1.
[image: Figure 1]FIGURE 1 | Response of BC patients to NAC is related to immune-related genes and pathways. (A) Genetic clustering analysis of the heatmap showed DEGs (p value < 0.05, logFC >1 or logFC < −1) with the fold change TOP20 from dataset GSE32646. The redder points in the heatmap indicate the higher expression of the gene in the corresponding sample, while the green points indicate the lower expression. (B) Volcanic diagram of gene expression from the dataset GSE32646. All genes are in the diagram, the red dots represent logFC >1 and p value < 0.05 DEGs; the blue dots represent logFC < −1 and p value < 0.05 DEGs; the rest were gray points with no statistical significance. (C) PPI results obtained from DEGs of dataset GSE32646. Each node represents a gene and the line between the circle nodes represents the interaction between the two proteins. (D) Number of adjacent nodes for each gene is shown in a bar chart and genes with number of adjacent nodes ≥7 were identified as network core genes. (E) DEGs from dataset GSE32646 are enriched in the GO containing BP, CC, and MF. (F) KEGG pathways of DEGs from the dataset GSE32646. One bubble represents a KEGG term, the size of the bubble represents the number of genes in the enriched signaling pathway, and the color represents significance. (G) Visualization results of the KEGG pathways with NES value TOP15 obtained from the gene expression data in the dataset GSE123845.
In addition, 1097 BC samples from the TCGA database were divided into two groups with high and low expression based on the immune-related DEGs extracted from the GSE32646 dataset. The differential analyses of the 22 immune cell fractions are shown in Supplementary Figures S1A–E. The differences in the expression levels of CXCL1, CXCL9, IDO1, and IFNG between the high- and low-expression groups showed that M1 macrophages, CD8 T cells, and resting CD4 memory T cells accounted for a high proportion in the high-expression group and that M2 macrophages and resting mast cells accounted for a high proportion in the low-expression group. The trend of differences for ORM1 between groups was the same as that for the abovementioned DEGs, but the differences were not statistically significant.
BC Patient Response to NAC Is Related to Immune-Related Pathways
GO enrichment analysis of the GSE32464 dataset showed that the BPs of the DEGs were mainly enriched in the migration and chemotaxis of immune cells and immune response and the MF of the DEGs was enriched in the regulation of the activity of chemokines and their receptors (Figure 1E). In addition, KEGG pathway analysis indicated that the DEGs were enriched in cytokine–cytokine receptor interactions, chemokine signaling pathways, and IL-17 signaling pathways (Figure 1F).
In addition, the gene expression data in the GSE123845 dataset were divided into the pCR group and non-pCR group, which were used to conduct GSEA to obtain the KEGG pathways with normalized enrichment score (NES), and the top 15 pathways are shown in Figure 1G. The signaling pathways were enriched in immune-related pathways, including the chemokine signaling pathway, apoptosis-related pathways, hematopoietic cell lineage–related pathways, and pathogen infection–related pathways.
Differences Between Immune Cell Fractions of the Tumor Microenvironment in BC Patients Who Received NAC With Different Therapeutic Effects
The 22 immune cell type fractions obtained from the gene expression data of the GSE32646 dataset using the deconvolution algorithm are shown by a heatmap in Figure 2A after filtering with p value < 0.05. In addition, 25 pCR samples and 76 non-pCR samples were used for the estimated immune cell content analysis (Supplementary Table S3). The correlation of 22 immune cells in the TIME is shown in Figure 2B. The correlation coefficient of naive B cells and naive CD4 T cells reached 0.47, and the correlation coefficient of naive M0 macrophages and naive CD4 T cells was −0.41. Moreover, the correlation coefficient of M0 macrophages and M1 macrophages was −0.4. Differential analysis of the 22 immune cell fractions in pCR and non-pCR samples was performed, and the results were visualized using a violin plot (Figure 2C). M1 macrophages, M2 macrophages, resting mast cells, and γδT cells had high proportions and statistically significant differences (p value<0.05). Among these, the levels of M1 macrophages and γδT cells were higher in the pCR samples, whereas those of M2 macrophages and resting mast cells were higher in the non-pCR samples.
[image: Figure 2]FIGURE 2 | Differences between immune cell fractions of the TIME in BC patients with different NAC responses. (A) Heatmap of the fraction of 22 immune cell types for comparison between pCR samples and non-pCR samples from dataset GSE32646. The redder points in the heatmap indicate that the fraction of immune cells in the corresponding sample was higher, while the gray points indicate lower fraction. (B) Correlation of 22 immune cells in the TIME from dataset GSE32646: Red represents positive correlation, blue represents negative correlation, and the depth of color indicates the strength of correlation. (C) Differential analysis of 22 immune cell fractions in pCR and non-pCR samples from dataset GSE32646. Blue represents pCR samples and orange represents non-pCR samples, and p value represents the statistical significance of the differential analysis between the two groups for each immune cell. (D) Survival analysis of different grouping by immune cells subtypes in 63 TNBC samples from dataset GSE31519. (E) Survival analysis of different grouping by immune cells subtypes in 18 TNBC samples received NAC from dataset GSE31519.
Moreover, the fractions of the γδT cells, M1 macrophages, M2 macrophages, and resting mast cells obtained from the gene expression data of the GSE31519 dataset and the survival data of samples are shown in Supplementary Table S4. These four types of immune cells in the TIME were utilized to explore the EFS benefit in TNBC patients with or without NAC. An EFS benefit trend was observed in 63 TNBC patients with high M1 macrophages and γδT cells (Figure 2D), and this trend was also found in 18 patients who received NAC (Figure 2E). However, the EFS benefit trend in TNBC patients with low M2 macrophages and resting mast cells was only found in patients who received NAC.
Immunofluorescence analysis of six TNBC samples after NAC showed CD56-positive natural killer (NK) cells, CD8-positive T cells, CD68-positive/HLA-DR-positive macrophages (M1 macrophages), and PanCK-positive tumor cells (Figures 3A–D). The fraction of immune and tumor cells mentioned above in each sample and the corresponding DFS are shown in Table 2. The results of the t-test to determine the difference in the fraction of cells between the short-DFS (Patients #1-3) and long-DFS (Patients #4-6) groups showed no significant differences in statistics (Supplementary Figure S2).
[image: Figure 3]FIGURE 3 | mIHC/IF results of different immune cell subtypes from six TNBC patients received NAC. The fluorescence staining of CD56 (A), CD8 (B), CD68, and HLA-DR (C). (D) mIHC/IF staining results of CD56, CD8, CD68, HLA-DR, PanCK, and DAPI.
TABLE 2 | Fraction of immune and tumor cells mentioned in each sample.
[image: Table 2]Changes in Immune-Related Genes and Immune Cell Fractions in BC Patients Before and After NAC
In total, 21 samples before NAC and the corresponding paired samples after NAC were used for comparisons of gene expression in the GSE32072 dataset, which identified 352 DEGs (filtered with adjusted p value = 0.05 and logFC = 1; Supplementary Table S5), including immune-related genes, such as FCGR2C, KIR2DL5A, and CD300A. Genetic clustering analysis of the heatmap showed the top 20 genes with an absolute value of logFC (Figure 4A). In addition, GO enrichment analysis showed that the DEGs were mainly enriched in BPs that included migration and chemotaxis of leukocytes and extracellular matrix organization, and the MF of the DEGs was to regulate the activity of extracellular matrix binding (Figure 4B).
[image: Figure 4]FIGURE 4 | Changes in immune-related genes and immune cell fractions in BC patients before and after NAC. (A) Genetic clustering analysis of the heatmap showed DEGs (p value < 0.05, logFC >1 or logFC < −1) with the fold change TOP20 from dataset GSE32072. (B) BP, CC, and MF of DEGs from dataset GSE32072. (C) Differential analysis of 22 immune cell fractions in pre-NAC and post-NAC samples from dataset GSE32072. Blue represents pre-NAC samples and orange represents pre-NAC samples, and p value represents the statistical significance of the differential analysis between the two groups for each immune cell. (D) PCA cluster analysis showed that the red dots represent the sample before NAC and the blue dots represent the sample after NAC. (E) Paired difference analysis of resting NK cells and M1 macrophages from dataset GSE32072 and CD4 memory resting T cells from dataset GSE18728.
From the gene expression data of samples before and after NAC in the GSE32072 dataset, the 22 immune cell type fractions were obtained after filtering with a p value < 0.05. Moreover, 21 pre-NAC samples and 19 post-NAC samples were utilized to estimate immune cell content (Supplementary Table S6). Differential analysis of 22 immune cell fractions before and after NAC samples was performed to obtain a violin plot (Figure 4C). M1 macrophages, γδT cells, resting CD4 memory T cells, resting natural killer (NK) cells, and resting dendritic cells were found to be among the 22 types of immune cells with high proportions and statistically significant differences (p <0.05). Among these, the levels of M1 macrophages, γδT cells, and resting CD4 memory T cells were higher in post-NAC samples, whereas those of resting NK cells and resting dendritic cells were higher in pre-NAC samples. PCA with cluster analysis was performed using the differences in the 22 immune cell fractions in the GSE32072 dataset (Figure 4D). In the PCA, the samples before and after NAC were not completely separated, but the trend of dispersion was observed. After filtering with a p value < 0.05, 19 pre-NAC samples and corresponding post-NAC samples were utilized to estimate the immune cell content from data in the GSE18728 dataset (Supplementary Table S7). The paired difference analysis of resting NK cells (from the GSE32072 dataset), M1 macrophages (from the GSE32072 dataset), and resting CD4 memory T cells (from the GSE18728 dataset) before and after NAC is shown in Figure 4E. These findings demonstrated that the levels of M1 macrophages and resting CD4 memory T cells were higher in post-NAC samples, whereas those of resting NK cells were higher in pre-NAC samples.
DISCUSSION
In the present study, we identified several immune-related genes that correlated with the efficacy of NAC in breast cancer patients. In contrast to other prognostic-related signatures, such as survival prognostic subnetwork signatures (SPNs) (Song et al., 2015), the present study focused on breast cancer patients who received NAC, and the differential expression of immune-related genes was used to identify a correlation between NAC and immune effects. Four of the immune-related genes were chemokines, namely, CXCL1, CXCL9, CXCL10, and CXCL11, and the other genes were IDO1, IFNG, and ORM1. Chemokines secreted by cancer cells are a class of molecules involved in shaping the TIME and regulating the balance between antitumor and protumor factors, which induces leukocytes to enter the TIME and indirectly induces the tumor-related stromal compartment to secrete angiogenic and lymphangiogenic growth factors (Unver, 2019). Among them, CXCL9, CXCL10, and CXCL11 promote the antitumor immune response by recruiting Th1, CD8+ T, and NK cells in the TIME (Nagarsheth et al., 2017), which is consistent with the enriched pathways of leukocyte chemotaxis and migration in the present study. Notably, CXCL9 and TILs have been shown to be highly significant predictors of NAC responses in classic studies, such as the GeparDuo (Denkert et al., 2010) and GeparSixto (Denkert et al., 2015) trials. In addition, the immunoregulatory effect of CXCL9, CXCL10, and the CXCL11/CXCR3 axis on tumor sites to promote antitumor immunity has been used as a new tumor therapeutic target (Tokunaga et al., 2018). Not only positive results of CXCR3 antagonists in vitro and in vivo in the preclinical model of BC have been obtained, but also positive results of various immune checkpoint inhibitors (ICIs) regulating CXCL9, CXCL10, and CXCL11 in clinical studies have been obtained (Karin, 2018).
CXCL1 generally promotes tumor progression in melanoma, colorectal cancer, breast cancer and other tumors. A previous study (Franklin et al., 2020) has reported that in patients with TNBC, Ras/MAPK-related gene expression signatures positively correlate with myeloid/neutrophil-recruiting CXCL1/2 expression and negatively correlate with CXCL9/10/11. However, another study (Lv et al., 2014) has reported that miR141-CXCL1-CXCR2 signaling–induced Treg recruitment regulates the metastasis and survival of non–small cell lung cancer; therefore, the type of immune cells that CXCL1 recruits in the TIME should be further explored. Interestingly, the expression of IL-17A and CXCL1 mRNA is increased in BC cells, and their changes are correlated (Ma et al., 2018), indicating that Th17 cells are increased in CXCL1-induced BC progression. Thus, CXCL1 combined with the IL-17 signaling pathway should be further investigated.
Indoleamine 2,3-dioxygenase 1 (IDO1) has been used as an immunotherapy target and prognostic immune-related biomarker in recent years. Contrary to the positive correlation between IDO1 and TILs in most studies (Zhai et al., 2015) and the expression of IDO1 indicating a good NAC response in BC, other studies (Salvador-Coloma et al., 2020) have shown that IDO1 is positively correlated with early myeloid–derived suppressor cells (eMDSCs) and has a poor NAC response, which may be related to the different influences of IDO1 expression in tumor cells and immune stromal cells on prognosis. IFNG is an IFN-γ–encoding gene that plays an orchestrating role in innate immunity and inflammatory responses in the TIME. In the TIME of BC, M1 macrophages, CD8+ T cells, dendritic cells (DCs), and neutrophils all inhibit tumor growth by secreting inflammatory cytokines, such as IFN-γ (Shihab et al., 2020). As an acute phase protein, ORM1 has the ability to induce monocytes to release IL-1, TNF-α, IL-6, and IL-12 (Ligresti et al., 2012), and a multivariate classification model using the six proteins, including ORM1, predicts responses to NAC and further predicts relapse-free survival of BC patients (Hyung et al., 2011).
In the present study, the expression of the abovementioned genes was higher in the group with a good response to NAC, which could select patients who would respond more efficiently to NAC and further explain the significance of immunotherapy in addition to chemotherapy in NST for BC patients with these gene signatures. Furthermore, the expression of immune-related genes, such as FCGR2C, KIR2DL5A, and CD300A, was found to change before and after NAC in the present study. These genes are all downregulated after NAC and are related to the killing efficacy of NK cells (van der Heijden et al., 2012; De Re et al., 2014; Lopez-Sejas et al., 2016). These findings not only suggest that local immune downregulation occurs in the TIME after NAC but also reiterate the necessity of adding immunotherapy to NST to modify the TIME to achieve better efficacy in BC.
For the interaction between immune cells in the TIME and NAC in BC, the close correlation between the 22 immune cell fractions may reflect crosstalk in the TIME, which was the basis for the hypothesis for observing the difference in the TIME between tumor samples with or without response to NAC in the present study. Interestingly, the different immune cell subtypes in TILs were associated with different responses to NAC in BC patients in the present study. Among these immune cells, the levels of M1 macrophages and γδT cells were higher in the pCR samples, whereas those of M2 macrophages and resting mast cells were higher in the non-pCR samples, which was consistent with the results of previous studies (Kaewkangsadan et al., 2017; Reddy et al., 2019), showing the correlation between NAC response and immune cells. However, the γδT cells have been shown to be associated with immunosuppression in the TIME of BC and poor prognosis (Morrow et al., 2019). Such inconsistency may be related to the different functions of the γδT cell subtypes, but the unique antigen-recognition ability of γδT cells in immunotherapy has shown promise in the combination of NAC and immunotherapy (Fisher et al., 2014). A previous study (Patin et al., 2018) has shown that type I IFN receptor signaling controls the activity of protumoral IL17A-producing γδT cells in breast cancer, which is consistent with the high expression of IFNG, the high proportion of the γδT cells in the pCR group, and the enriched IL-17 signaling pathway in the present study. According to the results in the TCGA database, high expression levels of CXCL1, CXCL9, IDO1, and IFNG were correlated with higher proportions of M1 macrophages, CD8 T cells, and resting CD4 memory T cells, but low expression levels of these genes were correlated with lower proportions of M2 macrophages and mast cells. The expression of these immune-related genes indicated the immune activation state of the TIME, and the abovementioned results were consistent with the role of these immune cells in the TIME (Ravelli et al., 2017). Except for the correlation between the proportion of different immune cells and pCR rate, the prognosis-related TIME of breast cancer, especially that of the TNBC patients who received NAC, was emphasized by the results of the EFS benefit with different immune cell components in the GSE31519 dataset.
In the present study, the changes in the TIME induced by NAC were reflected by increased M1 macrophages, γδT cells, and resting CD4 memory T cells but decreased NK cells and DCs. However, previous studies analyzing TILs before and after changes in clinical BC samples have reported contradicting results (Kim et al., 2020; Wesolowski et al., 2020). Thus, it remains unknown which immune cells will increase or decrease after NAC. However, as long as the immune cell subtype in the TIME changes after NAC, it will provide the basis for NAC combined with immunotherapy and the corresponding target cells. Modulating the TIME can be achieved either by targeting immune checkpoints on the increased immune cells or by avoiding apoptosis of the decreased immune cells, which is a method for immunotherapy to achieve better therapeutic effects in combination with NAC. More importantly, previous studies (Hamy et al., 2019; Herrero-Vicent et al., 2019) have shown that the increase in TILs after NAC is correlated with shorter DFS and aggressive tumor characteristics, suggesting the importance of TILs before and after NAC as a prognostic biomarker. Consistent with this finding, our mIHC/IF results showed that patients #4–6 with fewer total NK cells and more M1 macrophages had longer DFS after NAC. These results suggested that different subtypes of TILs had the potential of indicating different DFS outcomes in TNBC after NAC, thus highlighting the significance of combining NAC with ICIs targeting different immune cells to achieve better clinical benefits. However, due to the small sample size in the present study, our results were not statistically calculated. One limitation of the present study was that the changes in immune cells in samples before and after NAC were not compared due to sampling limitations. In the future, our team will expand the sample size and continue to explore the temporal and spatial heterogeneity of the TIME before and after NAC in BC. In addition, the relationship between the changes in peripheral blood immune cells and TILs is currently a hot topic of research as there is an urgent need for dynamic monitoring of biomarkers to screen appropriate immunotherapy populations for BC patients (Axelrod et al., 2020).
CONCLUSION
Immune-related genes and different subtypes of immune cells are biomarkers correlated with the therapeutic effect of NAC for BC. In the present study, the interaction between the TIME and NAC was discussed in terms of the therapeutic effect of different TIMEs on chemotherapy and the changes in the TIME after NAC. Several immune-related genes and immune cell subtypes related to the NAC response were identified, and several immune cell fractions were significantly changed before and after NAC. The present study analyzed samples in databases and clinics to conduct a more detailed study on the correlation between the efficacy of NAC in BC and the TIME, which further verified the importance of immunotherapy combined with chemotherapy.
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Supplementary Figure S1 | Differences between immune cell fractions of the TIME in BC patients with different expressions of DEGs. The data from the TCGA database showed that the expressions of immune-related DEGs we extracted from GSE32646 are associated with 22 immune cell fractions: Green is for low-expression samples and red is for high-expression samples, and p value represents the statistical significance of the differential analysis between the two groups for each immune cell. (A) Expression of CXCL1. (B) Expression of CXCL9. (C) Expression of IDO1. (D) Expression of IFNG. (E) Expression of ORM1.
Supplementary Figure S2 | Differences in the fraction of cells between the short-DFS and long-DFS groups. T-test differential analyses in the fraction of cells between the short-DFS (Patients #1–3) and long-DFS (Patients #4–6) groups.
Supplementary Table S1 | Detailed information about the five datasets.
Supplementary Table S2 | 302 DEGs between the pCR group and non-pCR group from the dataset GSE32646.
Supplementary Table S3 | Immune cell content analysis from the dataset GSE32646.
Supplementary Table S4 | Immune cell content analysis and the survival data from GSE31519.
Supplementary Table S5 | 352 DEGs between before and after NAC groups from GSE32072.
Supplementary Table S6 | Immune cell content analysis from the dataset GSE32072.
Supplementary Table S7 | Immune cell content analysis from the dataset GSE18728.
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Introduction: Epigenetic-targeted therapy has been increasingly applied in the treatment of cancers. Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators and the tissue microenvironment whereas the pan-cancer analysis of KDM6B remains unavailable.
Methods: The dual role of KDM6B in 33 cancers was investigated based on the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases. TIMER2 and GEPIA2 were applied to investigate the KDM6B levels in different subtypes or stages of tumors. Besides, the Human Protein Atlas database allowed us to conduct a pan-cancer study of the KDM6B protein levels. GEPIA2 and Kaplan–Meier plotter were used for the prognosis analysis in different cancers. Characterization of genetic modifications of the KDM6B gene was analyzed by the cBioPortal. DNA methylation levels of different KDM6B probes in different TCGA tumors were analyzed by MEXPRESS. TIMER2 was applied to determine the association of the KDM6B expression and immune infiltration and DNA methyltransferases. Spearman correlation analysis was used to assess the association of the KDM6B expression with TMB (tumor mutation burden) and MSI (microsatellite instability). The KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis and GO (Gene ontology) enrichment analysis were used to further investigate the potential mechanism of KDM6B in tumor pathophysiology.
Results: KDM6B was downregulated in 11 cancer types and upregulated across five types. In KIRC (kidney renal clear cell carcinoma) and OV (ovarian serous cystadenocarcinoma), the KDM6B level was significantly associated with the pathological stage. A high level of KDM6B was related to poor OS (overall survival) outcomes for THCA (thyroid carcinoma), while a low level was correlated with poor OS and DFS (disease-free survival) prognosis of KIRC. The KDM6B expression level was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts, across various cancer types with different correlations. Furthermore, the enrichment analysis revealed the relationship between H3K4 and H3K27 methylation and KDM6B function.
Conclusion: Dysregulation of the DNA methyltransferase activity and methylation levels of H3K4 and H3K27 may involve in the dual role of KDM6B in tumorigenesis and development. Our study offered a relatively comprehensive understanding of KDM6B’s dual role in cancer development and response to immunotherapy.
Keywords: KDM6B, tumorigenesis, prognosis, immunotherapy, epigenetic regulation
INTRODUCTION
Epigenetic dysregulation leads to aberrant transcriptional programs that promote tumor occurrence and progression (Hogg et al., 2020). Thus, epigenetic therapies focus on normalizing the malignant phenotype-related DNA methylation status or post-translational modifications on histones, exerting their effects as tumor suppressors (Bates, 2020). Enzymes that regulate the methylation of lysine-rich N-terminal histone “tails” contribute to the epigenetic modulation of tumor-associated pathways, such as NF-κB and p53 signaling pathways (Agger et al., 2009; Park et al., 2016). Moreover, epigenetic modification, including histone methylation, has also been identified as one of the mechanisms that silence gene expression and then evade immune cells in solid tumor cells (Ratnam et al., 2021). Therefore, it is necessary to investigate the potential mechanisms of histone methylation regulatory enzymes in pan cancers.
Lysine-specific demethylase 6B (KDM6B) or Jumonji domain-containing protein-3 (JMJD3), belonging to histone H3 lysine 27 (H3K27) demethylases, regulates the gene expression by histone demethylation in response to an intracellular or extracellular stimulation under physiological or pathological conditions. KDM6B regulates a wide range of pathways involved in development, inflammation, and specifically cancers, such as WNT, NF-κB, and BMP (Salminen et al., 2014; Xu et al., 2014; Park et al., 2016). Over-expression of KDM6B results in unhindered transcription and disrupts core gene-regulatory architecture by decreasing the H3K27me3 level, which plays a dual role in cancers (Lagunas-Rangel, 2021). For example, KDM6B serves as an oncogene in pancreatic ductal adenocarcinoma cells via demethylating H3K27me3 to prompt the expression of cyclin D1 cooperating with smad2/3 (Cao et al., 2021). However, KDM6B inhibits tumorigenesis via removing H3K27me3 to induce neuronal differentiation in neuroblastoma (Yang et al., 2019). Nevertheless, despite the extensive clinical statistics, there is no available cross-sectional evidence of the correlation of KDM6B and different cancers.
Considering the potential link between genes and cancers, it is necessary to explore the correlation between genes of interest and the occurrence and prognosis in pan cancers and the underlying molecular mechanisms. The publicly funded Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database contain functional genomic datasets for different types of tumors (Sidaway, 2017; Alexandrov et al., 2020; Lee et al., 2020), which makes it possible to perform a pan-cancer analysis. In this article, we reviewed the experimentally determined evidence for the correlation between KDM6B and different cancer types or stages. A pan-cancer study of KDM6B using the TCGA project and the GEO database was conducted here for the first time. We also explored the potential KDM6B-associated pathways in the pathogenesis or clinical outcomes in numerous cancers, including expression difference, survival conditions, genetic changes, DNA methylation, immune infiltration, and related biological processes. Our goal was to determine how KDM6B influences the clinical outcomes and immune infiltration in certain cancers and recognize the potential pathways to offer a relatively comprehensive understanding of KDM6B’s dual role, which may serve as a new therapeutic target.
MATERIALS AND METHODS
Analysis of Gene Expression
We used the TIMER2.0 (Tumor Immune Estimation Resource 2nd Edition) website (http://timer.cistrome.org/) (Li et al., 2020) to detect the difference of the KDM6B expression between tumor tissues and their adjacent normal tissues of various tumors from the TCGA database with the Wilcoxon test except the cancers with extremely restricted or without normal tissues, such as TCGA–DLBC (diffuse large B-cell lymphoma) and TCGA–TGCT (testicular germ cell tumors). For these cancers, instead, we visited the GEPIA2 (Gene Expression Profiling Interactive Analysis 2nd Edition) web server (http://gepia2.cancer-pku.cn/#analysis) (Tang et al., 2019) to gain boxplots showing the expression differences between tumor tissues and their matching normal tissues from the GTEx (Genotype–Tissue Expression) database, with the main parameters set as follows: p-value cutoff at 0.01 and absolute log2 fold change cutoff at 1 and expressing as “Match TCGA normal and GTEx data” (Cui X. et al., 2020; Shen Y.-T. et al., 2021). Furthermore, we obtained violin plots of the KDM6B expression across all types of tumors at different pathological stages (stage I to IV) in TCGA conducted by one-way ANOVA with the “pathological stage plot” module. Log2 TPM (transcripts per million) + 1 transformed expression data were applied to convert the expression data in the box or violin graph, and Pr (>F) < 0.05 was considered to be statistically significant (Shen Y.-T. et al., 2021). Also, the Human Protein Atlas website (https://www.proteinatlas.org/) was used to explore the KDM6B levels across 20 tumor types by entering “KDM6B” (Uhlén et al., 2015).
Analysis of Survival Prognosis
We employed GEPIA2 to acquire significance map data showing the OS (overall survival) and DFS (disease-free survival) outcomes of high and low KDM6B expressions across all tumors in TCGA. As previously reported, cutoff-high (50%) and cutoff-low (50%) values were applied as thresholds to divide the samples into the high- and low-expression cohorts (Cui X. et al., 2020; Zhao et al., 2020; Wu et al., 2021). We also obtained survival plots and performed a hypothesis test via the log-rank test. Moreover, we used the Kaplan–Meier plotter web server (http://kmplot.com/analysis/) to perform an analysis of OS, DMFS (distant metastasis-free survival), FP (first progression), PFS (progress-free survival), RFS (relapse-free survival), and PPS (post-progression survival) (Lánczky and Győrffy, 2021). As previously reported, the patients of breast, ovarian, gastric, and lung cancers were divided into two groups by the median expression level of KDM6B. Hazard ratio (HR) with 95% confidence intervals and the corresponding log-rank p value were computed, and then, the K–M survival plots were drawn (Hou et al., 2017; Lei et al., 2021).
Analysis of Genetic Alteration and Methylation Modification
We tested KDM6B genetic change features in the cBioPortal web (https://www.cbioportal.org/) (Szklarczyk et al., 2015; Zhou et al., 2019). After that, we acquired information on the frequency of changes, type of mutation, and copy number changes in all tumors from TCGA. Furthermore, we acquired information in overall survival across all TCGA tumors followed with KDM6B gene alterations or not. Furthermore, the Kaplan–Meier plots that were generated with p log-rank values and p value < 0.05 were considered significant. Moreover, we selected the MEXPRESS website (https://mexpress.be/) (Koch et al., 2015) to investigate the KDM6B DNA methylation level of multiple probes across different tumors in TCGA datasets. The beta value, Benjamini–Hochberg-adjusted p-value, and Pearson correlation coefficient (R) value were calculated. We also analyzed the relationships between the expression of KDM6B and four DNA methyltransferases [DNMT1, DNMT2 (TRDMT1), DNMT3A, and DNMT3B] with TIMER2.0 (Yan et al., 2021). Heatmap colors represent the purity-adjusted partial Spearman’s rho value.
Analysis of Immune Infiltration
We explored the association between the KDM6B expression and immune infiltration across all tumors in TCGA with TIMER2.0. CIBERSORT, CIBERSORT-ABS, TIMER, quanTIseq, MCP-counter, xCell, and EPIC algorithms (Hao et al., 2021) were applied to evaluate the immune infiltration data in all tumors across all immune cells in TIMER2.0, including monocytes, mast cells, macrophages, CD4+ T cells, CD8+ T cells, Treg, follicular helper T cells, NK T cells, NK cells, neutrophils, common lymphoid progenitors, hematopoietic stem cells, common myeloid progenitors, endothelial cells, DCs (dendritic cells), granulocyte–monocyte progenitors, myeloid-derived suppressor cells, eosinophils, and cancer-associated fibroblasts. The purity-adjusted Spearman’s rank correlation test was used to obtain the p-values and sectional correlation values. Finally, the data across all the immune cells were shown in the form of heatmaps, and the data on cancer-associated fibroblasts were also visualized as scatterplots.
Correlation of the KDM6B Expression With TMB (Tumor Mutation Burden), MSI (Microsatellite Instability), and MMR (Mismatch Repair)
TMB represented Mut/Mb (the number of mutations per mega base) of DNA in tumor cells (Addeo et al., 2021). MSI resulted from mismatch repair deficiency and was correlated with a favorable prognosis compared with microsatellite stable cancers (Dan et al., 2019). TMB and MSI scores were calculated with R based on the data downloaded from TCGA (Cheng et al., 2021). Spearman correlation analysis was performed to investigate the relationship between the KDM6B expression and TMB and MSI. MMR was a DNA repair mechanism which repaired the mismatched nucleotide bases to normal. Thus, we explored the potential association between the level of KDM6B and MMR genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) using TIMER2.0, with the heatmap colors representing the partial Spearman’s rho value.
Analysis of KDM6B-Related Gene Enrichment
We visited the functional protein association networks’ (STRING) web server (https://string-db.org/) (Szklarczyk et al., 2015) with the basic parameters defined as follows: minimum required interaction score (“low confidence 0.150”), maximum number of interactors to display (“no more than 50 interactors” in the first shell), meaning of the network edges (“evidence”), and active interaction sources (“experiments”), as previously stated (Li et al., 2021). Finally, we acquired the top 50 KDM6B-related proteins with experimental evidence. With Cytoscape software (Shannon et al., 2003), we obtained the protein–protein interaction network of these proteins. The GEPIA2 “Similar Gene Detection” module was applied to recognize the top 100 KDM6B-related target genes from all tumor tissues in the TCGA dataset. To explore the correlation between KDM6B and the chosen genes, the Pearson correlation analysis on the paired genes was performed. Scatter plots with log2 (TPM) were drawn to determine and show the coefficient of correlation (R-value) and p-value (Cui X. et al., 2020). Moreover, with top 50 KDM6B-related proteins, we transferred gene symbol ID to Entrez ID with org.Hs.eg.db (version 3.10.0) and then performed the KEGG (Kyoto encyclopedia of genes and genomes) and GO (Gene ontology) analyses and visualized the results with “clusterProfiler” (version 3.14.3) and “gplot2” (version 3.3.3) R packages (Yu et al., 2012), with the two-tailed p value <0.05 considered statistically significant.
RESULTS
KDM6B Expression in Cancers
Using TIMER2, we investigated the KDM6B expression levels across all tumors in TCGA. As reported (Cui X. et al., 2020), we used normal tissues from GTEx data to assess the KDM6B expression difference between tumor and normal tissues when extremely limited normal tissue samples were obtained in TCGA, and the results were exhibited against a white background in Figure 1A. As demonstrated in Figure 1A, KDM6B shared a lower expression level in the tumor tissues of BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), COAD (colon adenocarcinoma), KICH (kidney chromophobe), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), THCA (thyroid carcinoma) (all p < 0.001), and LIHC (liver hepatocellular carcinoma) (p < 0.01). On the contrary, the KDM6B expression level increased in the tumor tissues of CHOL (cholangiocarcinoma), HNSC (head and neck squamous cell carcinoma) (both p < 0.001), ESCA (esophageal carcinoma) and KIRC (kidney renal clear cell carcinoma) (both p < 0.05). For DLBC (lymphoid neoplasm diffuse large B-cell lymphoma), LAML (acute myeloid leukemia), OV (ovarian serous cystadenocarcinoma), and TGCT (testicular germ cell tumors), the KDM6B level decreased in the tumor tissues of DLBC, TGCT, and OV, while KDM6B expressed higher levels in the tumor tissues of LAML, all with p < 0.01 (Figure 1B).
[image: Figure 1]FIGURE 1 | Expression of KDM6B in different tumors. (A) Expression status of KDM6B in different cancers or specific cancer subtypes was analyzed through TIMER2. *p < 0.05; **p < 0.01; ***p < 0.001. (B) For the types of DLBC, LAML, OV, and TGCT in the TCGA project, the corresponding normal tissues from the GTEx database were included as controls. The box plot data were supplied. *p < 0.05.
In addition, we explored the KDM6B protein expression in the cohort of the Human Protein Atlas database across 20 different tumor types. The results revealed that most malignant cells were moderately positive (Figure 2). Intense staining was sometimes seen in cervical, testicular, and endometrial cancers. Some cancers stained poorly or negatively, including hepatocellular, renal, and gastric cancers (Uhlén et al., 2015).
[image: Figure 2]FIGURE 2 | Expression of KDM6B in different tumors and pathological stages. (A) KDM6B protein level across 20 cancer types in Human Protein Atlas (HPA). (B) Representative immunohistochemical staining of KDM6B in HPA. (C) Based on the TCGA data, the KDM6B expression levels were analyzed in the main pathological stages (stage I, II, III, and IV) of KIRC, and OV. log2 (TPM + 1) was applied for log scale.
We also found that the KDM6B expression levels were significantly related to the pathological stages of KIRC and OV with GEPIA2 (Figure 2C). To describe the expression differences among different stages more accurately, we performed the Wilcoxon signed-rank test to analyze the KDM6B expression at different pathological stages of KIRC and OV with the TCGA portal website (http://tumorsurvival.org/), as previously reported (Shen E. et al., 2021). The p-value and box figures were exhibited in the (Supplementary Figure S1). The aforementioned results suggested that the KDM6B expression differed in cases with diverse types and stages of certain cancers.
Survival Analysis
We divided the cases into high and low KDM6B expressing groups and analyzed the association between the KDM6B expression level and clinical outcomes in different cancer cases. As shown in Figure 3A, highly expressed KDM6B was associated with the poor prognosis of OS for THCA (p = 0.0048). In addition, a low KDM6B expression was correlated with the poor OS prognosis (p = 0.006) and DFS prognosis (p = 0.00029) for KIRC. Moreover, we used the Kaplan–Meier plotter tool to explore the survival data on other cancers (Gyorffy, 2021). The results showed a relevance between a low KDM6B expression and poor RFS (Figure 3B, p = 0.0012) prognosis for breast cancer. However, a high KDM6B expression was correlated with a poor DMFS prognosis (p = 0.0075) for breast cancer (Figure 3B). On the contrary, high KDM6B expressions were related to poor OS (p = 5.3e-05) and FP (p = 8.3e-11) prognosis for lung cancer (Figure 3B) and poor OS (p = 1.3e-10), FP (P = 1e-09) and PPS (p < 1.0e-16) prognosis for gastric cancer (Figure 3B). Table 1 showed the effects of low KDM6B expression on clinical outcomes in various cancers based on our results.
[image: Figure 3]FIGURE 3 | Correlation between the KDM6B expression and survival prognosis of cancers in TCGA. (A) Using the GEPIA2 tool to perform overall survival and disease-free survival analyses of different tumors in TCGA with the KDM6B expression. (B) Using the Kaplan–Meier plotter to perform a series of survival analyses, including OS, DMFS, RFS, PFS, PPS, and FP via the expressions of KDM6B in breast cancer, ovarian cancer, lung cancer, and gastric cancer cases.
TABLE 1 | Effects of a low KDM6B expression on clinical outcomes in various cancers. The patient samples were divided into two cohorts based on the median expression (high-expression and low-expression group) of KDM6B. The “Expression Level” showed the expression difference in tumor tissues and matched normal tissues.
[image: Table 1]Genetic Alteration and DNA Methylation Modification Analysis
We detected a genetic change of KDM6B in several tumor cases from TCGA projects with cBioPortal. The highest frequency of change in KDM6B (>8%) was found in melanoma patients with “mutation” as the main type (Figure 4A). The “multiple alterations” composed of all types of the undifferentiated stomach adenocarcinoma cases, which showed an alteration frequency of >7% (Figure 4A). Most prostate adenocarcinoma cases with genetic changes had an altered copy number deletion of KDM6B (∼4% frequency) (Figure 4A). Notably, the “amplification” type was the predominant type of sarcoma cases, with a change rate of approximately 2% (Figure 4A). The KDM6B mutation type, location, and number of cases are shown in Figure 4B. Moreover, we investigated the associations between changes in the KDM6B gene and clinical outcomes in different cancers. The data in Figure 4C indicate that the cases without altered KDM6B showed better OS when compared with those with KDM6B alteration in LAML (p = 0.0105) and TGCT (p = 1.87e-14).
[image: Figure 4]FIGURE 4 | Mutation features of KDM6B in different tumors of TCGA. We analyzed the mutation features of KDM6B for the tumors in TCGA dataset using the cBioPortal tool. The alteration frequencies with mutation type (A) and mutation site (B) are displayed. We also analyzed the potential correlation between the mutation status and overall survival of LAML and TGCT (C) using the cBioPortal tool.
Next, as shown in Supplementary Figure S2, we tested the relationship between the KDM6B level and DNA methyltransferases, including DNMT1, DNMT2 (TRDMT1), DNMT3A, and DNMT3B with TIMER2.0. The results revealed that the KDM6B expression level was positively related to DNA methyltransferases in various cancers significantly, especially in BRCA−Basa, BRCA−Her2, BRCA−LumA, CESC, DLBC, ESCA, KIRP, LGG, LIHC, and THYM. With the TCGA project, we applied the MEXPRESS to explore the possible links of KDM6B and DNA methylation to the differential pathogeneses of cancer. For TGCT, we detected that methylation of KDM6B DNA was significantly correlated with a multi-probe gene expression in the non-promoter regions, such as cg19449286 (p < 0.001 and R = 0.464), as shown in Supplementary Figure S1B.
Immune Infiltration Analysis
Tumor-infiltrating immune cells, a significant part of the microenvironment in a tumor, were deeply linked to the tumor origin, progression, and metastasis (DeBerardinis, 2020). It has been conveyed that tumor-associated fibroblasts, which comprised the microenvironment of the tumor, played a role in immune infiltration regulation of various immune cells in tumors (Fridman et al., 2011; Steven and Seliger, 2018; Chen and Song, 2019). In this study, we assessed the potential association between the immune infiltration level and KDM6B expression across different tumors in TCGA with the CIBERSORT, CIBERSORT-ABS, TIMER, xCell, MCP-counter, quanTIseq, and EPIC algorithms. KDM6B was associated with multiple immune cells, suggesting that KDM6B may affect the progression and clinical outcomes of tumors via the tumor microenvironment. Analysis executed with all or most of the above-mentioned algorithms showed significantly positive correlations between immune infiltration and KDM6B expression in different cancers, for example, Tregs and COAD; endothelial cell and COAD, KIRC, PAAD, SKCM-metastasis, and STAD; neutrophils and PCGC, PRAD, and THCA; and follicular helper T cells and GBM and UCEC (Supplementary Figure S3, Table 2). However, the immune infiltration of T-cell gamma delta was negatively correlated with the KDM6B expression in BRCA-LumA and CESC (Supplementary Figure S2, Table 2). In addition, we detected a significantly positive association between the KDM6B expression and tumor-associated fibroblast infiltration levels in tumors of BRCA, HNSC−HPV−, LIHC, LUAD, OV, PAAD, SKCM, and SKCM−Metastasis from TCGA (Figure 5).
TABLE 2 | KDM6B expression level and the correlation with immune infiltration, TMB, and MSI in various cancers, in which the KDM6B expression level was significantly different from its matched normal tissues. p < 0.05 was considered significant, and only the significant correlation was exhibited in the table.
[image: Table 2][image: Figure 5]FIGURE 5 | Immune infiltration of cancer-associated fibroblasts. Different algorithms were used to explore the potential correlation between the expression level of the KDM6B and the infiltration level of cancer-associated fibroblasts across all types of cancers in TCGA.
Analysis of TMB, MSI, and MMR
As exhibited in Figure 6A, the KDM6B expression showed a significantly positive correlation with TMB in HNSC, UCEC, COAD, and KIRP, whereas a higher expression of KDM6B was negatively correlated with TMB in BRCA, LIHC, THYM, PAAD, and SKCM. A similar relationship was found existing between KDM6B and MSI. As exhibited in Figure 6B, KDM6B was significantly related to six types of cancers, including LUSC, LUAD, DLBC, GBM, COAD, and UCEC, among which the majority of the associations were positive, except DLBC as the only type negatively correlated with KDM6B. The exact data on TMB and MSI are provided in Supplementary Table S2. Table 2 shows the correlation between the KDM6B expression level, TMB, and MSI in various cancers, in which the KDM6B expression level was significantly different with its matched normal tissues. As for the MMR genes, KDM6B was positively correlated with all five MMR genes in GBM, HNSC-HPV-, KIRC, KIRP, LIHC, PRAD, SARC, and THCA, whereas COAD was the sole type that only had a negative correlation with KDM6B (Figure 6C).
[image: Figure 6]FIGURE 6 | Correlations between the KDM6B expression and tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR). (A) Spearman correlation analysis of KDM6B and TMB. (B) Spearman correlation analysis of KDM6B and MSI. The abscissa represents the correlation coefficient between genes and TMB or MSI; the ordinate represents different tumors. The size of the dots represents the size of the correlation coefficient, and the colors represent the significance of the p value. The bluer the color, the smaller is the p value. (C) Correlations between KDM6B levels and MMR gene (MLH1, MSH2, MSH6, PMS2, and EPCAM) expressions.
KDM6B-Related Protein Enrichment Analysis
To explore the potential mechanisms of KDM6B in tumor pathophysiology, we sought to highlight KDM6B-binding proteins and KDM6B expression-related genes in several pathway enrichment analyses. We gained top 50 experimentally determined KDM6B-binding proteins with STRING. The protein–protein interaction network of these proteins is shown in Figure 7A. With the GEPIA2 tool, we pooled all TCGA tumor expression data to gain the top 100 genes related to the KDM6B expression. As shown in Figure 7B, the KDM6B expression level was positively related to that of ELMSAN1 (MIDEAS, Mitotic deacetylase–associated SANT domain protein) (R = 0.54), MIDN (midnolin) (R = 0.55), MNT (MAX network transcriptional repressor) (R = 0.6), POLR2A (RNA polymerase II subunit A) (R = 0.52), and SF1 (splicing factor 1) (R = 0.53) genes (all p < 0.001).
[image: Figure 7]FIGURE 7 | KDM6B-related gene enrichment analysis. (A) Protein–protein interaction (PPI) network of the top 50 available experimentally determined KDM6B-binding proteins obtained from the STRING website. (B) Using the GEPIA2 approach, we also obtained the top 100 KDM6B-correlated genes in TCGA projects and analyzed the expression correlation between KDM6B and related genes, including ELMSAN1, MIDN, MNT, POLR2A, and SF1.
Furthermore, we executed GO and KEGG analyses with the KDM6B-related proteins. The top three significant terms in BPs (biological processes), MFs (molecular functions), and CCs (cellular components) and KEGG pathways are shown in Figure 8. Detailed results of the GO and KEGG analyses are shown in Supplementary Table S2. The GO analysis revealed that target proteins were mostly enriched in covalent chromatin modification, histone modification, and histone H4 acetylation in BP enrichment analysis; methyltransferase complex, MLL1 complex, and MLL1/2 complex in CC analysis; and histone methyltransferase activity (H3-K4 specific), beta-catenin binding, and unfolded protein binding in MF analysis. The KEGG analysis indicated that target proteins were meaningfully enriched in pathways in Cushing syndrome, estrogen signaling pathway, and protein processing in the endoplasmic reticulum (Figure 8). These data suggested that histone methylation dysregulation may be associated with the role of KDM6B during tumor pathogenesis, which is consistent with previous studies (Qin et al., 2021; Yildirim-Buharalioglu, 2022).
[image: Figure 8]FIGURE 8 | Based on the KDM6B-binding and interacted proteins, the KEGG pathway and GO analysis was performed and shown as bar chart (A) and bubble chart (B). The top three significant terms in BPs (biological processes), MFs (molecular functions), and CCs (cellular components) and KEGG pathways are shown in bar chart. The GO analysis revealed that target proteins were mostly enriched in covalent chromatin modification, histone modification, and histone H4 acetylation in the BP enrichment analysis; methyltransferase complex, MLL1 complex, and MLL1/2 complex in the CC analysis; and histone methyltransferase activity (H3-K4 specific), modification-dependent protein binding, and unfolded protein binding in the MF analysis. The KEGG analysis indicated that the target proteins were significantly enriched in pathways of Cushing syndrome, estrogen signaling pathway, and protein processing in the endoplasmic reticulum.
Above all, the results showed that the KDM6B expression had a different impact on the prognosis among various cancers. Genetic alteration of KDM6B also affected the prognosis of acute myeloid leukemia (LAML) and testicular germ cell tumors (TGCTs). The KDM6B expression level was associated with DNA methyltransferase activity, TMB, MSI, and immune cell infiltration, across various cancer types with different correlations, through which KDM6B may impact on the clinical outcomes and immune therapeutic effects. The top 50 proteins most correlated were recognized using STRING. GO and KEGG enrichment analyses showed that the most closely related pathway was histone methylation regulation.
DISCUSSION
As a histone demethylase, KDM6B is responsible for the enzymatic removal of the repressive chromatin mark H3K27me3 which is involved in biological pathways such as differentiation, development, and apoptosis. These biological pathways tend to impact response reactions against intracellular or extracellular stimulations and suggest a functional link between KDM6B and clinical diseases, including inflammations, especially, cancers (Zhang et al., 2018; Mallaney et al., 2019; Cao et al., 2021). However, whether KDM6B has influences on the pathogenesis of various tumors via certain pathways remains unclear. This study intended to explore the dual role of KDM6B widely. Therefore, with the TCGA and GEO databases, we thoroughly characterized the KDM6B expression in 33 types of tumors and examined the related molecular properties of the expression level, genetic alterations, or DNA methylation. We found that the expression of KDM6B differed in different cancer types and stages. With the KM survival analyses, we revealed that an irregular KDM6B expression may serve as a prognostic biomarker in several cancers, such as breast cancer, lung cancer, and gastric cancer. Moreover, we also predicted that the KDM6B expression level was correlated with the tumor immune microenvironment. GO and KEGG analytic approaches were performed to recognize the KDM6B‐related biological mechanisms.
To improve the chances of cures for cancer patients, it is necessary to explore tumor-specific target molecules for a precise treatment through identifying the differentially expressed genes (Andre et al., 2014). Therefore, it was valuable to perform a pan‐cancer analysis of the expression difference and potential molecular mechanism of KDM6B across different cancers. The observation of KDM6B downregulation across cancer types was consistent with prior knowledge that KDM6B could regulate the expression levels of specific genes and the interactions of protein molecules contributing to tumor suppression (Lagunas-Rangel, 2021). In this work, we observed that KDM6B was down-regulated in 11 of 16 cancer types (Figure 1). On the contrary, we observed the KDM6B upregulation across 5 of 16 cancer types. Interestingly, we also observed that KDM6B upregulated in KIRC compared with the adjacent normal tissues, but the expression level gradually decreased as the tumor progressed. In tumorigenesis, KDM6B induced an epithelial−mesenchymal transition and lymph node metastasis in KIRC (Li et al., 2015). However, our results revealed that a higher expression level of KDM6B may be correlated with lower stages and favorable survival outcomes, which may be attributed to cell-type specific effects. Nonetheless, the role of KDM6B in these cancers, especially KIRC, still needed to be further explored.
Although immunotherapy has shown increasing the therapeutic impact in tumors, we barely obtained any reports focusing on the relationship between the KDM6B expression and tumor immunity through literature search. Therefore, we explored the potential association between KDM6B expression and immune infiltration levels of various immune cells with TIMER2. As a result, we detected a positive relation between the KDM6B expression and the immune infiltration level of Treg in COAD and LUSC; endothelial cell and COAD, KIRC, PAAD (pancreatic adenocarcinoma), SKCM (skin cutaneous melanoma)-metastasis, and STAD (stomach adenocarcinoma); neutrophil and PCGC (pheochromocytoma and paraganglioma), PRAD, and THCA; and follicular helper T cells and GBM (glioblastoma multiforme) and UCEC (uterine corpus endometrial carcinoma). Remarkably, for example, the immune infiltration of T-cell gamma delta was negatively correlated with the KDM6B expression in BRCA-LumA and CESC based on all or most algorithms. In addition, the results showed that the KDM6B expression correlates with the degree of the infiltration of tumor-associated fibroblasts in various cancers, including BRCA, HNSC (head and neck squamous cell carcinoma), HPV−, LIHC, LUAD (lung adenocarcinoma), OV, PAAD, SKCM, and SKCM−metastasis. Cancer-associated fibroblasts have been reported to have an important impact on tumor metastasis, progression, and prognosis (Houthuijzen and Jonkers, 2018; Paauwe et al., 2018). The evidence suggests the potential role KDM6B plays in the tumor immunity.
Generally, higher TMB was related to a favorable overall survival and better response to immunotherapy (Cui Y. et al., 2020). MSI status, resulting from defects in MMR, is likely to be an independent favorable predictor of survival in pan-cancer patients, with MSI-positive tumors having a better survival outcome (Weiss et al., 2011; Samstein et al., 2019). With the correlation varying in different tumors, the KDM6B expression level was correlated with TMB in nine cancer types and with MSI in six cancer types, thus affecting the response to immunotherapy. Our results also revealed that the KDM6B expression was positively related to the MMR gene expression in most tumors, except for COAD. Based on the previous studies, the aforementioned results suggested that KDM6B might affect the response to immunotherapy and survival outcomes in various cancer types via TMB, MSI, or MMR, offering a new predictor for the immunotherapy efficacy.
Induced by DNA methylases, characteristic hypermethylation in the promoter or enhancer of certain genes, especially cancer-associated genes, was a specific feature of cancer cells (Kondo et al., 2019). Based on the positive association between KDM6B and DNA methyltransferases in various cancers, we assumed that KDM6B may affect the DNA methylation status in tumorigenesis. Moreover, DNA methylation affected the KDM6B expression level as well, which in turn affected its function in cancers (Malouf et al., 2016; Luo et al., 2018). It was reported that KDM6B controls the spermatogonial compartment through the regulation of fragmentation of spermatogonial cysts (Iwamori et al., 2013). In TGCT patients, we detected a possible association between non-promoter DNA methylation and KDM6B expression, suggesting the possible impact of KDM6B DNA methylation on TGCT progression.
KDM6B plays oncogenic roles in several tumors. In prostate cancer, KDM6B demethylates H3K27me3 at cyclin D1 promoter and prompts the expression of cyclin D1 cooperating with smad2/3 (Cao et al., 2021). Upregulated KDM6B facilitates tumor metastasis in osteosarcoma through modulating the lactate dehydrogenase expression (Jiang et al., 2021). In addition to the demethylase activity, KDM6B upregulates the expression of the MAPK signaling pathway components including ELK1 and FOS and then mediates the growth and survival of multiple myeloma cells (Ohguchi et al., 2017). On the contrary, KDM6B can also serve as a tumor suppressor. In non-small cell lung cancer patients, KDM6B significantly decreases in the serum and may play a pro-apoptotic role via promoting the nuclear translocation of FOXO1 (Ma et al., 2015; Ge et al., 2019). In squamous cell carcinoma, KDM6B is repressed by the transcription factor CSL, contributing to tumor proliferation, occurrence, and correlated inflammation (Al Labban et al., 2018). In neuroblastoma, KDM6B is upregulated by retinoic acid via HOXC9 to remove the repressive chromatin marker H3K27me3 and induce neuronal differentiation, thus inhibiting cell proliferation and tumorigenicity (Yang et al., 2019). To explore the specific mechanisms of its dual effects in cancers, we used KDM6B-related proteins across all tumors to perform GO and KEGG enrichment analyses and identified the potential impact of H3K4 and H3K27 methylation on the pathogenesis of cancers. As one of the predominant epigenetic mechanisms, histone methylation has attracted increasing attention on its potential link with tumorigenesis in recent years (Fetahu and Taschner-Mandl, 2021). In addition to catalytically removing the methyl groups from H3K27me3, KDM6B also bonded to the Set1/MLL H3K4 methyltransferase complex to activate gene transcription (Shi et al., 2014; Yu et al., 2018). H3K4 trimethylation was associated with transcriptional activation, while H3K27 trimethylation contributed to transcriptional silencing (Lien et al., 2020). Hypermethylation of the proto-oncogene H3K4 may activate transcription of oncogenes and other cancer-associated genes, eventually contributing to the development and progression of tumors (Li et al., 2017). A similar effect can be achieved via upgraded methionine metabolism induced by H3K4 methylation (Tran et al., 2017). Furthermore, a meta-analysis revealed that a higher H3K4 trimethylation level was correlated with a poorer overall survival (Li et al., 2018). In epigenetic regulation for cancer occurrence and development, methylation of H3K27 was considered to be a precursor to abnormal methylation sites and commonly existed on tumor suppressor genes (Barzily-Rokni et al., 2011; Ryu et al., 2019). These pieces of evidence were consistent with the carcinogenic role of KDM6B in most tumors. Taking into account the transcriptional regulation mechanism, KDM6B can also achieve tumor suppression via the same way in certain cancers, such as neuroblastoma sphere-forming cells and squamous cell carcinoma cells. KDM6B upregulates the expression of specific genes, such as p53, p21, HOX, and ERβ so as to restrain cell growth and boost differentiation, senescence, and apoptosis through the histone demethylase activity in tumor cells (Lagunas-Rangel, 2021). The KEGG analysis also indicated that the crosstalk of the KDM6B and IL-17 signaling pathways may influence the effects of KDM6B in cancers (Supplementary Table S2). KDM6B, together with KDM6A, was identified as the core regulator of T helper (Th) cells, and the inhibition of KDM6A/B contributed to the metabolic reprogramming followed by the suppression of IL-17 levels in Th17 cells, which mainly produced IL-17 cytokine (Cribbs et al., 2020; Sugaya, 2020). Substantial evidence supported a promoting role for IL-17 in tumorigenesis. In prostate cancer, IL-17 promoted prostate carcinogenesis through the induction of epithelial-to-mesenchymal transition mediated by MMP7 (Zhang et al., 2017). In pancreatic ductal adenocarcinoma, IL-17 not only recruited neutrophils and activated neutrophil extracellular traps but also mediated the exclusion of cytotoxic CD8 T cells from tumors, with a higher expression of IL17 representing poorer clinical outcomes (Zhang et al., 2020). However, the anti-tumor effects of IL-17 in special conditions have also been revealed. IL-17A directly induced a decrease in differentiation, apoptosis, and proliferation of myeloid-derived suppressor cell lines, suggesting that increased IL-17 signaling may restore immune responses (Ma et al., 2018). In breast cancer, the antitumor effects of IL-17E, also namely IL-25 and a member of IL-17 family, were induced by apoptosis and infiltration of eosinophils and B cells via binding to IL‐25R on tumor cells (Gowhari Shabgah et al., 2021). Thus, the IL-17 signaling pathway may also participate in the dual role of KDM6B. Above all, KDM6B played dual roles in different oncological contexts via various mechanisms and its clinical significance remained to be further established.
Some limitations to this study should be addressed. The survival analysis in several cancers was not assessed due to a lack of available data. In addition, the functions of KDM6B in pan-cancers were only tested with the bioinformatics analysis; therefore, in vitro or in vivo experiments should be performed to conduct a more solid conclusion.
In summary, this study assessed the dual role of KDM6B in tumor progression and clinical outcomes across all types and stages of cancers in TCGA for the first time. KDM6B expression was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts. Thus, KDM6B may affect the response to immunotherapy and clinical outcomes. Dysregulation of the DNA methyltransferase activity and the methylation level of H3K4 and H3K27 involve in the dual role of KDM6B in tumorigenesis and development. It is of great value to investigate the exact role of KDM6B in tumorigenesis and immune microenvironment to generate more precise preventive measures and immunotherapy.
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Objective

To develop and validate radiomics models based on multiphasic CT in predicting Kirsten rat sarcoma virus (KRAS) gene mutation status in patients with colorectal cancer (CRC).



Materials and Methods

A total of 231 patients with pathologically confirmed CRC were retrospectively enrolled and randomly divided into training(n=184) and test groups(n=47) in a ratio of 4:1. A total of 1316 quantitative radiomics features were extracted from non-contrast phase (NCP), arterial-phase (AP) and venous-phase (VP) CT for each patient. Four steps were applied for feature selection including Spearman correlation analysis, variance threshold, least absolute contraction and selection operator, and multivariate stepwise regression analysis. Clinical and pathological characteristics were also assessed. Subsequently, three classification methods, logistic regression (LR), support vector machine (SVM) and random tree (RT) algorithm, were applied to develop seven groups of prediction models (NCP, AP, VP, AP+VP, AP+VP+NCP, AP&VP, AP&VP&NCP) for KRAS mutation prediction. The performance of these models was evaluated by receiver operating characteristics curve (ROC) analysis.



Results

Among the three groups of single-phase models, the AP model, developed by LR algorithm, showed the best prediction performance with an AUC value of 0.811 (95% CI:0.685–0.938) in the test cohort. Compared with the single-phase models, the dual-phase (AP+VP) model with the LR algorithm showed better prediction performance (AUC=0.826, 95% CI:0.700-0.952). The performance of multiphasic (AP+VP+NCP) model with the LR algorithm (AUC=0.811, 95%CI: 0.679-0.944) is comparable to the model with the SVM algorithm (AUC=0.811, 95%CI: 0.695-0.918) in the test cohort, but the sensitivity, specificity, and accuracy of the multiphasic (AP+VP+NCP) model with the LR algorithm were 0.810, 0.808, 0.809 respectively, which were highest among these seven groups of prediction models in the test cohort.



Conclusion

The CT radiomics models have the potential to predict KRAS mutation in patients with CRC; different phases may affect the predictive efficacy of radiomics model, of which arterial-phase CT is more informative. The combination of multiphasic CT images can further improve the performance of radiomics model.





Keywords: colorectal cancer, computed tomography, radiomics, Kirsten rat sarcoma virus, mutation



Introduction

Colorectal cancer (CRC) is the second most common cancer and the fourth-leading cause of cancer death in China (1). Kirsten Rat Sarcoma virus (KRAS) is the most common mutated oncogene in colorectal cancer, about 30%-45% of patients with CRC have mutations in the KRAS, which is one of the high-risk factors that drive distant metastasis of tumor cells (2). Those patients with CRC who have KRAS mutations have no benefit of the antibody-targeted therapies to the epidermal growth factor receptor (EGFR) (3). Hence, KRAS mutational test has been recommended by the National Comprehensive Cancer Network (NCCN) guidelines for patients with suspected or proven metastatic CRCs for guiding targeted therapy (4).

At present, the gold standard for determinate KRAS mutation status is the pathological examination of tumor tissue in clinical practice (4). However, some patients cannot tolerate biopsy due to its invasiveness, and the insufficient quality of biopsy specimens may hinder efficient and robust mutation testing. In addition, tumor tissues have the characteristics of spatial and temporal heterogeneity (5), which makes biopsy samples may not accurately reflect the tumor genotype expression, especially after multiple treatments (6, 7). Therefore, it would be meaningful for developing a relatively simple and non-invasive method for identifying KRAS mutational status in patients with CRC.

Some non-invasive methods had been used to predict KRAS mutation status in previous studies, and the most used imaging technique was fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET)-CT (8–11). However, the sample size of these studies was generally small and the research results had been conflicting between different studies (10, 12).

In recent years, radiomics is an emerging technique that has been widely studied in the early diagnosis, efficacy evaluation, and prognosis prediction of tumors (13–16). Previous studies indicated that radiomics has shown great prediction performance and clinical potential for predicting the genetic mutations status of glioma (17, 18), lung cancer (19, 20), and breast cancer (21). In addition, radiomics has been studied in CRC for predicting KRAS mutation (22–27), but most of these studies have only used portal venous phase CT images for radiomics analysis. It is not yet clear whether the non-contrast phase (NCP), arterial phase (AP), venous phase (VP) CT images can be used to predict KRAS mutation in patients with CRC, and the value of the combination of multiphasic radiomics features has yet to be investigated.

Therefore, the aim of our study was to investigate the performance of CT radiomics analysis based on multiphasic CT imaging for predicting KRAS mutation in patients with CRC.



Material and Methods


Patients

The study conformed to the provisions of the Declaration of Helsinki (as revised in 2013). Ethical approval is not required for this study as it is based on information collected as part of routine clinical practice. Informed consent was waived because of the retrospective design. We retrospectively analyzed data from patients who were surgically confirmed to have CRC from January 2014 to December 2018. A total of 231 patients met the inclusion criteria for this study. The inclusion criteria and exclusion criteria were shown in Supplementary Material S1. All patients were randomly divided into training and test groups in a ratio of 4:1. There were 184 cases in the training group (80 cases of KRAS mutant type, 104 cases of wild type) and 47 cases in the test group (21 cases of KRAS mutant type, 26 cases of wild type).

Baseline clinical characteristics, including age, gender, maximum tumor diameter, levels of carcinoembryonic antigen (CEA), carbohydrate antigen-199 (CA199), and carbohydrate antigen-724(CA724)were collected from the medical records. The pathological characteristics of tumor surgical specimens, including tumor TNM stage, tumor location, and tumor differentiation grade (well, moderately, and poorly differentiated) were assessed as well.



Identification of KRAS Mutation Status

All surgically resected specimens were processed conventionally by a trained pathologist. DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tumor tissues by the DNA FFPE Tissue Kit (Xiamen Aide Biological Co., Ltd.). Mutations of KRAS (exons 2, 3, and 4) were analyzed by polymerase chain reaction (PCR) and the amplification refractory mutation system (ARMS) method.



Image Acquisition and Segmentation

All patients underwent contrast-enhanced abdominal and pelvic CT by using 64-detector or 128-detector row spiral CT systems in our hospital. The CT image acquisition settings are described in Supplementary Material S2. All NCP, AP, and VP CT images were retrieved from a picture archiving and communication system (PACS) for image segmentation and analysis except for the portal venous phase CT images.

For the lesion segmentation, the region of interest (ROI) was segmented by using software ITK-SNAP (v.3.8.0; http://www.itksnap.org). Firstly, we manually delineated along the contour of tumors on the largest slices on the VP CT images, excluding the air and feces in the intestinal tract. And the ROIs on the NCP and AP CT images were delineated with reference to that on the VP CT images (Figure 1). The ROI of lesions was manually determined by two radiologists with 3 and 8 years of experience, with unanimous agreement. Radiologists were blind to grouping and genetic test results.




Figure 1 | Different CT-phase images used for radiomics analysis. (A–C) Images before the preprocessing of non-contrast phase, arterial-phase, and venous-phase. (D–F) Images after the preprocessing and delineated along the contour of tumor on the largest slices of tumor.





Image Preprocessing and Radiomics Feature Extraction

The original images of all cases and the ROI of lesions were preprocessed by using the AK software (Artificial Intelligence Kit, version 3.3.0, GE healthcare) before radiomics feature extraction. The CT image slice and the ROI was resampled to a uniform pixel dimension size of 1×1×1 mm3 by using Linear Interpolation and Nearest Neighbour Interpolation (Figure 1).

All radiomics features were extracted using AK software, the detailed information of these features was available in the documentation for PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/features.html), which followed the IBSI radiomics guidelines. Seven categories of feature parameters, including first-order features, shape features, gray level co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray level run length matrix (GLRLM), neighbourhood gray-tone difference matrix (NGTDM), and gray level dependence matrix (GLDM) were selected for feature extraction (Figure 2). In addition, Wavelet transform, Laplacian of Gaussian (LoG) and Local binary pattern (LBP) were applied to the original image respectively and yielded a corresponding derived image. Ultimately, a total of 1316 quantitative 2D radiomics features was exacted based on the original image and its corresponding derived image.




Figure 2 | Radiomics analysis workflow of our study.





Radiomics Feature Selection and Radiomics Model Building

All cases in the training cohort were used to train the predictive model, while cases in the test cohorts were used to independently evaluate the model’s performance. All radiomics features were imported into the IPMs software (Institute of Precision Medicine Statistics, version 2.4.2, GE healthcare). Before analyses, the missing values were replaced by the median, and the data were standardized by the Z-score method. For the radiomics feature selection, four steps were performed to select the optimal feature subsets for predicting KRAS mutations. First, we used the Spearman correlation analysis. If the correlation coefficient between feature and gene mutation status is small than 0.1, the feature will be eliminated. Second, the Variance threshold method was used to remove features with a variance value lower than 1. Third, the least absolute shrinkage and selection operator (LASSO) algorithm was performed for eliminating the redundancy, this approach can estimate the regression coefficients for every feature and successively shrink them to avoid inflation of the estimated coefficients, resulting in superior predictive performance (28). Fourth, we used multivariate stepwise regression analysis to select the features which were considered to be associated with KRAS mutations. The p-in and p-out of multivariate stepwise analysis were 0.05 and 0.10, respectively. Finally, logistic regression (LR), support vector machine (SVM), and random tree (RT) algorithm were used to build seven groups of prediction models, including the NCP, AP, VP, AP+VP, AP+VP+NCP, AP&VP and AP&VP&NCP models. 5-fold cross-validation was used to select the model with the best performance in the training process. For the SVM and RF, the hyper-parameters of these models were automatic selected by search method, the detailed information of gamma, C, max depth, min samples split, and n estimators were shown in Table S1.



Validation of the Radiomics Model

The receiver operating characteristic (ROC) curve was employed to evaluate the performance of radiomics models for the prediction of KRAS mutation. The area under the curve (including the 95% confidence interval), sensitivity, specificity, and accuracy were also recorded. The calibration curve and the Hosmer-Lemeshow test were used to evaluate the goodness-of-fit of the radiomics model. Decision curve analysis (DCA) was used to evaluate models’ net benefits in different threshold probabilities in the training and test cohort. P<0.05 was considered statistically significant.



Statistical Analysis

The clinical and pathological characteristics were analyzed by SPSS Statistics 25.0 software, and a two-sided p value of less than 0.05 was statistically considered significant. We used independent samples t-test or Mann-Whitney U test to compare the differences in continuous variables between the patients in different groups, including age and maximum tumor diameter. The differences in categorical variables, including sex, tumor stage, tumor location, tumor differentiation grade, levels of CEA, CA199 and CA724, were assessed using chi-squared or Fisher’s exact tests.




Result


Clinical and Pathological Characteristics

There were no significant differences in the clinical and pathological characteristics between the training and the test cohort (p = 0.210-0.879, Table S2). The clinical and pathological characteristics in the training and test cohorts are listed in Table 1. There were significant differences in TNM stage and M stage between the mutated group and the wild-type group in the training cohort (P < 0.05), but they were not confirmed in the test cohort. There were no significant differences between the mutated group and the wild-type group in both cohorts in terms of age, gender, maximum tumor diameter, tumor location, tumor differentiation grade, T stage, N stage and CEA, CA199, CA724 levels.


Table 1 | Patient and tumor characteristics in the training and test cohort.





Feature Selection and Radiomics Model Building

A total of 1316 radiomics features were extracted from the ROIs of the NCP, AP, and VP CT images for each patient, respectively. After four steps of feature selection, 5, 6 and 7 optimal radiomics features were selected from each phase CT images, respectively (Table 2; Figure 3). Three groups of single-phase radiomics models were built based on corresponding optimal radiomics features, including the NCP, AP, and VP models. The AP+VP model was built based on 13 (6 + 7) features obtained from the combination of the AP and VP. The AP+VP+NCP model based on 18 (5 + 6+7) features was obtained from the combination of three phases. In addition, we combined the 2632 radiomics features of the AP and VP at first and then four steps of feature selection were implemented, 7 radiomics features were selected to build the AP&VP model. In the same way, 12 radiomics features were selected to build the AP&VP&NCP model.


Table 2 | Radiomics features for each phase.






Figure 3 | The coefficients of radiomics features in our AP+VP+NCP model developed by LR classifiers.



Finally, seven groups of radiomics models for predicting KRAS mutation were constructed by LR, SVM, and RF classifiers using the above-selected features.



Predictive Performance of Radiomics Model

The results of the seven groups of radiomics model in the training and test cohort were shown in Figure 4 and Tables 3, 4. Among the three groups of single-phase models, the AP model developed by LR classifiers had the best prediction performance, which had the AUCs of the test cohort was 0.811 (95% CI, 0.685-0.938). Compared to the AP model, the prediction efficiency of the VP model developed by SVM classifiers and NCP model by LR classifiers was relatively lower with an AUC of 0.692(95% CI, 0.556-0.815) and 0.639(95% CI, 0.479-0.800) in the test cohort, respectively. The combined model, including AP+VP model and AP+VP+NCP model, showed an improved performance in comparison with the single-phase model. The AP+VP model developed by LR classifiers showed better prediction performance with an AUC of 0.826(95% CI, 0.700-0.952) in the test cohort. Compared to the AP+VP model, although the AP+VP+NCP model showed no significant improvements in the test cohort with an AUC of 0.811(95% CI, 0.679-0.944) obtained by LR and 0.811(95%CI, 0.695-0.918) by SVM, but the AP+VP+NCP model developed by LR showed better prediction efficiency on the sensitivity, specificity, accuracy, which was 0.810, 0.808 and 0.809, respectively. The AP&VP model developed by LR and AP&VP&NCP model by SVM showed a moderate predictive performance, which had the AUCs of the test cohort was 0.773 (95% CI, 0.650-0.883) and 0.777(95% CI, 0.655-0.889), respectively.




Figure 4 | The receiver operating characteristic curves of radiomic models based on different CT-phase images in the training (A–C) and test (D–F) cohort, respectively. N-model: NCP model; A-model: AP model; V-model: VP model; A+V-model: AP+VP model; A+V+N-model: AP+VP+NCP model; A&V-model: AP&VP model; A&V&N-model: AP&VP&NCP-model.




Table 3 | Performance of the single-phase model in the test cohort.




Table 4 | Performance of the combine phase model in the test cohort.



The Hosmer-Lemeshow test yielded a non-significant p-value ranging from 0.076 to 0.815 in the LR models. suggesting no departure from the perfect fit. The calibration curve of the multiphasic (AP+VP+NCP) model for KRAS mutation prediction probability shows good accordance between prediction and observation in the training and test cohort (Figure 5). The DCA for the seven groups of radiomics models in the test cohort was presented in Figure 6. The DCA showed that the AP model, dual-phase model, and multiphasic model showed relatively more area, suggesting the good performance of the radiomics models in terms of clinical application.




Figure 5 | Calibration curve of the AP+VP+NCP model developed by LR classifiers in the training (A) and test (B) cohort, respectively.






Figure 6 | The decision curves of radiomics models developed by three classifiers (A, LR; B, SVM; C, RF) based on different CT-phase images in the test cohort. N-model: NCP model; A-model: AP model; V-model: VP model; A+V-model: AP+VP model; A+V+N-model: AP+VP+NCP model; A&V-model: AP&VP model; A&V&N-model: AP&VP&NCP-model.






Discussion

In this study, we built seven groups of radiomics models based on different phase CT images for predicting KRAS mutation in patients with CRC. We found that single-phase models have the potential to predict KRAS mutation, with the AP model developed by LR showing the better predictive performance. The model developed by LR showed similar results as SVM except for the NCP model. The predictive performance of the AP+VP and AP+VP+NCP model was further improved compared to that of the single-phase model, and the AP+VP model showed the best predictive performance, but the AP+VP+NCP model showed better predictive performance comprehensively, showing that combing the different phase CT radiomics features could elevate the model’s prediction ability.

There were some previous radiomics studies on the KRAS mutation prediction in CRC. Meng et al. (29) found that radiomic signatures based on multiparametric MRI had the potential to predict KRAS mutation in rectal cancer with an AUC of 0.651 (95% CI, 0.539-0.763). Cui et al. (26)reported that T2WI-based radiomics signature had a moderate performance to predict KRAS mutation in rectal cancer with an AUC of 0.714 (95% CI, 0.602–0.827). The above studies showed an encouraging result for predicting KRAS status by using radiomics, but compare with our study, our best model was the dual-phase (AP+VP) model developed by LR with relatively higher predictive performance, which had an AUCs of 0.826 in the test cohort. Furthermore, as the CT examination is convenient for the patients in clinical practice and also recommended by NCCN guidelines on the management of patients with CRC (4), CT images had been usually used as their research object of radiomics in colorectal cancer. Wu et al. (25)reported that the hand-crafted radiomics signature was associated with the KRAS mutation in CRC with the C-index, sensitivity, and specificity were 0.727, 0.412 and 0.868 in the validation cohort, respectively. Yang et al. (24)found that the proposed CT-based radiomics signature was related to KRAS/NRAS/BRAF mutations with the AUC, sensitivity, and specificity were 0.829, 0.686 and 0.857 in the validation cohort, respectively. Although these studies had higher AUC than that obtained in our study, the sensitivity of these models was relatively low, which may be related to the use of single-phase CT in these studies. While in our study, the single-phase models also showed relatively lower sensitivity, but the multiphasic (AP+VP+NCP) model in our study showed satisfactory predictive performance with the AUC, sensitivity, and specificity were all above 0.8 in the test cohort.

Additionally, many studies in this field have only focused on the portal venous phase CT images (22–25), without investigating the predictive value of radiomics features from other phase CT images for the KRAS mutation in patients with CRC. Some previous studies showed that both unenhanced and contrast-enhanced CT radiomics features have a certain value for reflecting the heterogeneity of tumors (30–32). Badic et al. (30) reported that some radiomics features with moderate correlations between unenhanced and enhanced CT images had complementary prognostic value and were found to be associated with survival in patients with CRC. To the best of our knowledge, this is the first study that predicted KRAS mutation in patients with CRC using different phases CT images. Our results showed that the single-phase model have moderate predictive performance, while the AP+VP and AP+VP+NCP model have further improved predictive performance in comparison with the single-phase model, and the AP+VP+NCP model has more comprehensively predictive performance, suggesting that different phase CT images could provide complementary information for predicting KRAS mutation. We also found that the predictive efficacy of the AP model was better than that of the other single-phase model. It may be that the AP CT image mainly reflects the blood perfusion of the tumor tissue, which may better reflect the tumor microenvironment. Moreover, the predictive performance of the AP+VP and AP+VP+NCP model was slightly higher than those of the AP&VP and AP&VP&NCP model. This may be because the method of feature selection at first and then combined would guarantee that the optimal features of each CT phase can play a role in the combined model.

Choosing a proper classifier can improve the stability and predictive performance of the model. The LR classifier is a linear regression method that had been usually used in many machines learning studies for its good interpretability and suitability to solve dichotomous problem (13, 19, 25). For SVM, it is a robust and effective classifier based on structural risk minimization that had been proved to be a powerful classifier in the previous studies (24, 26). Our previous study had used these two algorithms to build model for distinguishing the solid solitary pulmonary lesion based on T2WI images and showed relatively better performance (33). In this study, we could find that the model developed by LR showed similar results as SVM except for the NCP model, and both of these classifiers had moderate predictive performance, it may be that these two classifiers are suitable for solving the problem with a small sample. In addition, although the RF classifier had been showed good performance in other studies (29), which has more hyper-parameters and is a relatively complicated model, the RF classifier showed overfitting in the training and test cohort in our study, it may be that our sample size is relatively small.

For the radiomics features selection, 5, 6, and 7 features were selected from the NCP, AP, and VP, respectively, to form radiomics models, which were mainly derived from GLDM, GLRLM, and GLSZM. The three sets of higher-order radiomics features could quantify the image uniformity and heterogeneity, which were found to be correlated with KRAS mutation in CRC. Among the 18 radiomics features in the AP+VP+NCP model, the log-sigma-glrlm-LongRunEmphasis contributed the most to the detection of KRAS status. The GLRLM refer to quantify gray level runs, which are defined as the length in number of consecutive pixels that have the same gray level value. LongRunEmphasis is a measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and more coarse structural textures within the ROIs, suggesting that the textures of the images with KRAS mutation were more coarse than those without KRAS mutation. Notably, we found that the wavelet features accounted for the largest proportion of the optimal feature set (11/18), indicating that wavelet features have relatively good predictive performance, which is in line with the previous studies (29, 34, 35). Wavelet transform is a common method for multi-scale texture analysis in image processing, which can quantify the heterogeneity within tumors at different scales and extract more texture information (36). In addition, Small AreaEmphasis selected from GLSZM accounted for the largest proportion (3/6) in the radiomics feature set of the AP model, and also appeared in the NCP model (1/5), suggesting that this feature may have good stability in predicting KRAS mutation, which is a measure of the distribution of small size zones, with a greater value indicative of more fine textures within the ROIs.

There were some limitations in this study. First, the present study is a single-center retrospective study, therefore an independent dataset is needed for external validation. Second, the slice thickness of NCP CT images in this study was not completely consistent, however, we have minimized the effect by resampling in the preprocessing process. Finally, 2D segmentation of the tumor was adopted in this study, however, previous studies had shown that the texture analysis results of 2D segmentation and 3D whole-tumor segmentation are similar (37).

In conclusion, our study showed that different phase CT radiomics features could provide different values in predicting KRAS mutations, the combined model, including the dual-phase (AP+VP) model and multiphasic (AP+VP+NCP) model, showed more satisfactory predictive performance compared with the single-phase models, which may suggest that different phase CT images should be considered in radiomics research, rather than single-phase CT image.
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Background

Immune checkpoint inhibitors (ICIs) induce durable responses, but only a minority of patients achieve clinical benefits. The development of gene expression profiling of tumor transcriptomes has enabled identifying prognostic gene expression signatures and patient selection with targeted therapies.



Methods

Immune exclusion score (IES) was built by elastic net-penalized Cox proportional hazards (PHs) model in the discovery cohort and validated via four independent cohorts. The survival differences between the two groups were compared using Kaplan-Meier analysis. Both GO and KEGG analyses were performed for functional annotation. CIBERSORTx was also performed to estimate the relative proportion of immune-cell types.



Results

A fifteen-genes immune exclusion score (IES) was developed in the discovery cohort of 65 patients treated with anti-PD-(L)1 therapy. The ROC efficiencies of 1- and 3- year prognosis were 0.842 and 0.82, respectively. Patients with low IES showed a longer PFS (p=0.003) and better response rate (ORR: 43.8% vs 18.2%, p=0.03). We found that patients with low IES enriched with high expression of immune eliminated cell genes, such as CD8+ T cells, CD4+ T cells, NK cells and B cells. IES was positively correlated with other immune exclusion signatures. Furthermore, IES was successfully validated in four independent cohorts (Riaz’s SKCM, Liu’s SKCM, Nathanson’s SKCM and Braun’s ccRCC, n = 367). IES was also negatively correlated with T cell–inflamed signature and independent of TMB.



Conclusions

This novel IES model encompassing immune-related biomarkers might serve as a promising tool for the prognostic prediction of immunotherapy.





Keywords: gene expression profile, immune exclusion, checkpoint inhibitors, biomarker, prognosis, response



Introduction

Tumor cells acquire numerous genomic alterations, deriving “non-self” neoantigens that the immune system can recognize. Although an immune response is noticed in patients with cancer, this response is usually ineffective to tumor elimination (1–4). One of the reasons is the mechanism of immune escape, including profound local immune suppression, induction of dysfunction, tolerance in T-cell signaling, and evasion of immune destruction by the expression of endogenous “immune checkpoints” that generally lead to immune responses after antigen activation (5). These discoveries have increased cancer understanding and developed immunotherapy treatments such as immune checkpoint inhibitors (ICIs) (6). To date, ICIs therapy like anti-PD-1 has been successful for treating many cancers, particularly malignant melanoma, non-small cell lung cancer, and bladder cancer, among others (7–10).

One challenge of the ICIs immunotherapy is the limited proportion of responders, which leads to the urgent need to find predictive biomarkers to identify responders from non-responders (11). Emerging data suggest that patients overexpressing PD-L1 in tumors by IHC have improved clinical outcomes under anti-PD-1 immunotherapy (12). Although PD-L1 IHC seems predictive in lung cancer, it might not be suitable for many other cancers. The microenvironment of tumors has been recognized as a complex system, as the immune response is affected by many different mechanisms besides PD-L1 (13). Besides, IHC-based detection of PD-L1 as a predictive biomarker is confounded by multiple issues, many still unresolved so far, such as variable detection antibodies and cutoff values and the biomarker’s stability and staining of tumor versus immune cells (12–14).

The development of gene expression profiling within tumors has enabled identifying prognostic gene expression signatures and patient selection (15, 16). Recently reported studies had assessed the association of immune-related gene expression in patients with various solid tumors who received immunotherapy. For instance, a genome-wide analysis of melanoma patients treated with recombinant IL2 revealed a signature predictive of clinical response from pretreatment biopsies (14). Moreover, an IFN-inflammatory immune gene expression signature is associated with both enhanced overall response rates (ORRs) and progression-free survival (PFS) in patients with melanoma who received pembrolizumab, which is subsequently being investigated in other malignancies (17). Other examples include an eight-gene signature reflecting pre-existing immunity, the T-effector/IFN-γ signature, explored in a phase II trial of non–small cell lung carcinoma (NSCLC) (18). Although these studies revealed the intrinsic association between pre-existing immunity and the benefit of ICI therapy, the limitations still exist. On the one hand, these studies failed to consider the functional status of pre-existing immunity, which might affect the outcomes of ICI therapy to a large extent. On the other hand, the selection of those signature genes was mainly based on prior knowledge rather than data exploration, which might lead to insufficient application coverage of these signatures.

Previous research revealed two distinct mechanisms of immune escape in tumor (5; Joyce et al., 2015). One is T cell dysfunction, and the other is T cell exclusion. Approaches that measure immune functional signature based on the gene expression profile were developed to explore the correlation with clinical response of immunotherapy, such as Tumor Immune Dysfunction and Exclusion (TIDE) (19), which identified factors which underlie mechanisms of tumor immune evasion.

So far, most published prognostic gene expression signatures have been explored from the perspective of immune activation and elimination (20, 21). However, as another essential character of the tumor microenvironment, immune-exclusive signatures play a suppression role and are rarely researched. Predicting clinical benefit to ICI therapy requires an understanding of how tumors escape the immune system.

In this study, we evaluated the immune-related gene expression profiles in patients with advanced NSCLC, skin cutaneous melanoma (SKCM), and also head and neck squamous cell carcinoma (HNSCC). We are supposed to find an immune signature that can explain the immune-exclusive statement of tumor samples and can predict response to anti-PD-1 checkpoint inhibitor independently of cancer type.



Materials and Methods


Patients and Datasets

This study is a retrospective analysis of patients with immune checkpoint inhibitor therapies. All of the cohorts involved in this study were collected from public datasets, including Prat’s (n=65), Liu’s (n=121), Riaz’s (n=41), Nathanson’s (n=24) and Braun’s (n=181) (22–26). Progression-free survival (PFS) was defined as the beginning of treatment to the date of disease progression (PD). Patients who had not progressed were censored at the date of their last scan. Objective response rate (ORR) was defined as the percentage of patients with complete response (CR) or partial response (PR). Non-objective response (NOR) was defined as the percentage of patients who failed to reach ORR certification. Durable clinical benefit (DCB) was defined as the percentage of patients who achieved CR or PR or stable disease (SD) lasting > 6 months; non-durable clinical benefit (NDB) was defined as PD or SD that lasted ≤ 6 months.



Immune Exclusion Signature

Firstly, the elastic net-penalized Cox proportional hazards (PHs) model was used to select genes with significant power for predictive value in the discovery cohort. Elastic net, a combination of Ridge and most minor absolute shrinkage and selection operator (LASSO) methods, was applied to select prediction features. The regularization parameter, λ, was specified by 10-fold cross-validation, whereas the L1-L2 trade-off parameter, α, was set to 0.5, with equal Ridge and LASSO penalties. The potential prognostic factors determined by the elastic net-penalized CoxPH regression were subjected to multivariate CoxPH regression analysis to adjust the risk scores of each gene chosen for prognostic clinical parameters. Then, variables exhibiting significance in the adjusted analyzes were entered into a backward, stepwise-elimination Cox regression model. The output calculation formula was: RiskScore = gene expression 1×Coef1+gene expression 2×Coef2+…+gene expression n×Coefn:

	

In this study, the calculation formula of IES was: IES = -2.20*10-5*exp(CCL5)-1.55*10-5*exp(CCR5)+2.67*10-7*exp(CD46)+2.51*10-5*exp(CXCL6)+2.97*10-6*exp(GPI)-4.40*10-4*exp(GZMM)-1.52*10-3*exp(IL13)-1.83*10-3*exp(IL1RAPL2)+2.10*10-6*exp(ITGB1)-1.51*10-4*exp(KLRK1)-7.47*10-5*exp(NFKB2)-1.66*10-4*exp(PDCD1)+1.12*10-4*exp(PLA2G6)-2.56*10-4*exp(TARP)+5.85*10-5*exp(TNFSF4). The software R package cenROC was applied to calculate the ROC of IES for prognostic classification.



Differentially Expressed Genes

The software R package DESeq2 (V.1.30.1) was used to calculate the fold-change of transcripts and to screen for differentially expressed genes (DEGs) (27) in the RNA-seq data. A fold-change larger than two and an adjusted p-value less than 0.05 were set as the cutoff values for screening significant DEGs. Cluster analysis and heatmap generation were performed by the R package and ComplexHeatmap (V.3.12) (25).



KEGG Pathway, GO and GSEA

All differentially expressed genes were subjected to KEGG term analysis and GO biological processes, including calculation of Benjamini-Hochberg corrected p-values through ToppGene(https://toppgene.cchmc.org/) (28). Gene Set Enrichment Analysis (GSEA) was performed using the GSEA software v.3.0 (Broad Institute, Cambridge, USA) (22).



Estimation of Immune-Cell Type Fractions

Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), which is a deconvolution algorithm that can characterize the cell proportion of complex tissues, based on LM22, a normalized gene expression profiles (GEPs) (23, 24, 29). In this study, CIBERSORT (https://cibersort.stanford.edu/) and leucocyte signature matrix 22 (LM22) were used to quantify the proportions of immune-cell types HNSCC samples from the TCGA data. Normalized gene expression data were analyzed by the CIBERSORT algorithm, running 1000 permutations. The CIBERSORT p-value reflects the statistical significance of the results, and a threshold less than 0.05 is recommended. Finally, samples with CIBERSORT p-values less than 0.05 were included in correlation analyzes between genes and immune-cell types.



Immune Gene Signatures

Twenty-three independent gene signatures tracking different cell types (e.g., CD8 T cells, NK cells, and Macrophage) and microenvironment (e.g., cytolytic and dysfunction signatures) were evaluated. Correlation coefficients between IES and different gene signatures were calculated. An unsupervised analysis was performed to cluster correlation coefficients with similar values together. The correlation coefficients of each signature can be found in Supplementary Table S2.



Statistical Analysis

Categorical variables were evaluated with Fisher’s exact tests. Correlation analysis was assessed by Pearson coefficient. Multivariable Cox proportional hazards models were built with gene expressions as covariables. Stepwise regression was used to determine the most informative variables included in multiple (linear) regression models. ROC analysis was done using the cenROC package in R. Significance of overall survival (OS) and progression-free survival (PFS) was determined via Kaplan-Meier analysis with log-rank analysis. The hazard ratio was calculated by the cox function of the survival package in R. All statistical analysis was performed in the R statistical environment version 3.6.1. All tests were two-tailed and a p-value < 0.05 was considered significant.




Results


Immune−Related Gene Expression in the Prognosis of Immunotherapy

To explore the immune-related genes that are related to the prognosis of immunotherapy, we introduced a cohort of 65 patients with advanced NSCLC (n=35), HNSCC (n=5), and SKCM (n=25) from Prat et al. (26). Patients were treated with anti-PD-1 monotherapy, and the expression profile of 730 immune-related genes on this cohort was collected. We compared the relationship between clinical characteristics and immune-related gene expression.

We found that the expression of 41 genes was associated with clinical survival (p < 0.05, respectively) (Figure S1). This 41-gene cluster includes complement-related proteins such as C3, C6 and C8A, C-C/C-X-C chemokine ligands/receptors such as CCL5, CCR5, CXCL6 and CXCR3, Interleukin protein families such as IL2 and IL13, Tumor necrosis factor family/superfamily such as TNF and TNFSF4, immune cell surface markers such as CD8A and CD46. The expression of some genes, such as IFNA17 and IL2, had a higher risk associated with prognosis, while others affected patients’ survival slightly. In order to find the gene combinations and their coefficients that are most suitable for prognosis prediction, we applied “Coxnet”, an algorithm that fits cox model regularized by an elastic net penalty (30). Penalty maximum likelihood estimation was performed with 1000 bootstrap replicates (Figure 1A). The optimal weighting coefficient of each gene was determined by the regularisation parameter lambda using the 1–SE standard (Figure 1B). Overall, fifteen genes, CCL5, CCR5, CD46, CXCL6, GPI, GZMM, IL13, IL1RAPL2, ITGB1, KLRK1, NFKB2, PDCD1, PLA2G6, TARP and TNFSF4, were selected out to explore patient prognosis (Figure 1C). The calculation formula of risk score was defined as:




Figure 1 | Construction of the immune−related gene model in the prognosis of immunotherapy. (A) 1000 bootstrap replicates by lasso Cox regression analysis for variable selection. (B) LASSO coefficients of prognosis genes. Each curve represents a prognosis gene. (C) Multivariate Cox proportional-hazards model of 15 immune-related genes based on Prat cohort. Forest plot of 15 immune-related genes and their association with clinical survival, with hazard ratio values shown on the y-axis, and p-values derived from multivariate CoxPH analysis. (D) Hierarchal clustering analysis of 15 immune-related genes in the Prat cohort. '*',P < 0.05. '**', P < 0.01.



RiskScore = -2.20*10-5*exp(CCL5)-1.55*10-5*exp(CCR5)+2.67*10-7*exp(CD46)+2.51*10-5*exp(CXCL6)+2.97*10-6*exp(GPI)-4.40*10-4*exp(GZMM)-1.52*10-3*exp(IL13)-1.83*10-3*exp(IL1RAPL2)+2.10*10-6*exp(ITGB1)-1.51*10-4*exp(KLRK1)-7.47*10-5*exp(NFKB2)-1.66*10-4*exp(PDCD1)+1.12*10-4*exp(PLA2G6)-2.56*10-4*exp(TARP)+5.85*10-5*exp(TNFSF4)

Among 15 genes, expression of six genes, CD46, CXCL6, GPI, ITGB1, PLA2G6 and TNFSF4, increased the risk of distant recurrence, whereas CCL5, CCR5, GZMM, IL13, IL1RAPL2, KLRK1, NFKB2, PDCD1 and TARP expression had a protective effect against prognosis (Table S1). In particular, each single gene expression had little contribution to the higher or lower risk of prognosis, such as PDCD1 (PD-1, hazard ratio: 0.99), which indicated the complexity of the tumor immune microenvironment (Figure 1C).



Prognosis and Clinical Response Prediction With Gene Expression Profile

Fifteen gene expression profiles according to patient prognosis are presented in Figure 1D. All patients were divided into two risk groups according to predict scores based on the regression equation of 15 gene expression profiles. The cutoff of low and high risk was based on the median value of the predicted score (cutoff = -0.133). The result of hierarchical cluster analysis was similar to the predicted-score grouping (Figure 1D). Patients in the low-risk group were enriched in expression genes of cancer-suppressing inflammation such as NFKB2 and CCR5. In contrast, patients in the high-risk group were enriched in expression genes of cancer-promoting inflammation such as ITGB1 and CD46.

To understand the relationship between clinical prognosis and 15 risk genes, we analyzed the correlation between progression-free survival (PFS) and individual gene expression (Figure S2). Patients were divided into two groups according to the median expression level. We found that only IL1RAPL2 expression showed a significant correlation in clinical prognosis (Figure S2). The expression of the remaining 14 genes tended to predict prognosis to various extents, though it did not reach significance. When merging the expression of 15 genes, patients in the high-risk group had 2.48-fold higher risk of death compared with patients in the low-risk group (hazard ratio [HR]: 2.48, 95% confidence interval [CI]: 1.34, 4.59, p=0.003, Figure 2A; Table S2). We applied R package cenROC to analysis the ROC efficiencies and found that the area under the ROC curve (AUC) of 1- and 3- year prognosis were 0.842 and 0.82, respectively (Figure 2B). Similar results were observed by cancer types of non-squamous NSCLC and SKCM (Figure S3). Cancer types of squamous NSCLC and HNSCC did not reach significance due to the small candidate size (Figure S3).




Figure 2 | Prognosis and clinical response prediction with gene expression profile. (A) Kaplan–Meier survival curves of PFS in high-risk patients versus low-risk patients based on Prat pan-cancer anti-PD-1 monotherapy cohort. (B) Sensitivity and specificity of the prognosis risk score model were assessed by time-dependent ROC analysis. (C) Violionplot of the distribution of risk score value between patients with ORR and NOR. (D) Barplot of object response rate between the high risk group and the low risk group.



Based on the survival analysis results, we evaluated the predicted score and made a prediction model of clinical response in patients. First, we analyzed the predictive performance of every single gene by ROC curve (Figure S4). The objective response’s largest AUC was 0.637 of PLA2G6 gene. None of the gene expression was significantly related to the response of anti-PD-1 therapy, including PD-1 (Figures S5, S6). However, the predictive risk score value from 15 immune-related gene expression levels was observed to increase significantly. This combination predictive model had an AUC of 0.731, higher than the AUC of PD-L1 expression (AUC=0.625, Figure S7). Patients without clinical response had a higher value of predicted score (Figure 2C). In particular, only 6 of 33 patients in the high-risk group had an objective response after anti-PD-1 therapy (ORR rate: 18.2%) compared with 43.8% of patients in the low-risk group (Figure 2D). Together, the expression profile of 15 filtered risk genes was correlated with the prognosis and clinical response of patients treated with anti-PD-1 therapy.



Pathway and Gene Ontology Analysis Revealed the Difference in Immune Activities Between Two Risk Groups

To identify the inner differences in the tumor microenvironment between two risk groups divided by the predicted score of 15 genes expression, an unsupervised analysis of 730 immune-related genes and risk classification was performed in Figure 3A. We observed that cluster 2, which mainly consisted of patients with a low-risk score, was enriched with a large number of highly expressed immune eliminated cell genes, such as CD8+ T cells (PRF1, CD8A, CD8B, GZMM and FLT3LG), CD4+ T cells (IL26 and IL17A), NK cells (SPN, BCL2 and NCR1) and B cells (BLK and CD19). Then the analysis of differential expression genes was performed between two risk groups, and the expression of 62 genes (of 730) was identified as statistically altered (p <0.05) (Figures 3B, S8; Table S3). The majority of differentially expressed genes displayed decreased expression in the high-risk group. The greatest downregulation of differential expression gene was MS4A1 (2.64 folds), while the expression of ARG1 and S100A7 in the high-risk group upregulated 2.52 folds and 2.66 folds, respectively.




Figure 3 | Pathway and gene ontology analysis between two risk groups. (A) Hierarchal clustering analysis of 730 immune-related genes, marked with some markers expressed in CD8+ T cells (PRF1, CD8A, CD8B, GZMM and FLT3LG), CD4+ T cells (IL26 and IL17A), NK cells (SPN, BCL2 and NCR1) and B cells (BLK and CD19). (B) Differential expression analysis between high-risk patients and low-risk patients in the Prat cohort. “UP” indicates that the gene was significantly up-regulated in the high-risk group while “DOWN” indicates the gene was significantly up-regulated in the low-risk group. (C, D) were GO and KEGG enrichment of DEGs, demonstrating that most are related to immune processes. (E) The difference of immune cell infiltration abundances between high- and low-risk patients. (F) and (G) were GO and KEGG enrichment of 15 immune-related genes. (H) Different expression in immune checkpoints (CD274, PDCD1LG2, CTLA4, LAG3, CD28, CD40, CD80, HAVCR2, TIGIT, and TNFRSF9) between high- and low-risk patients. '*',P < 0.05.'**',P < 0.01.'***',P < 0.001.’****’,P < 0.0001. “ns”, no significance.



To better understand the differential expression genes discovered above, we performed pathway enrichment analysis of all differential expression genes between two risk groups by computing their KEGG term and biological process associations. Our analysis generated a total of 19 KEGG terms with a significant p-value (p < 0.05, Benjamini-Hochberg corrected) (Figure 3C). Among these KEGG terms, ‘Cytokine-cytokine receptor interaction’ attracted the highest number of differential expression genes, 16 of which seven were discovered among the top twelve differentially expressed transcripts (Table S4). After gene ontology analysis, we found ten biological process terms that highly correlated with the differential expression genes (p < 0.001, Benjamini-Hochberg corrected) (Figure 3D). Most terms were immune-related receptor activity (i.e., T cell, CCR chemokine and CXCR chemokine) and cytokine activity.

Immune cells are essential components of the tumor microenvironment and closely correlate with immunotherapy responses. We used the CIBERSORT software to assess the abundances of 22 different immune-cell types in 65 patients (Table S5). Similar to the findings of KEGG pathways, naïve B cells, CD4 resting-memory T cells, and activated natural killer (NK) cells account for more enormous proportions of the infiltrating immune cells in the low-risk group than in the high-risk group (Figure 3E).



The 15-Gene Expression Profile Is Correlated With Immune-Excluded Microenvironment Characteristics

Path enrichment analysis was also applied to understand the key pathways and biological processes involved in the 15-gene expression profile. Significant pathways and GO terms with two or more enriched genes were selected. The results showed that all of the selected pathways and GO terms were highly relevant to the tumor immune response, such as cytokine signaling, interleukins signaling and lymphocyte activation (Figures 3F, G). These critical steps of immune response explained the expression of 15 risk genes that could predictively evaluate the response to immunotherapy.

To further explore the association between the predictive risk score and various immune-related signatures, Pearson correlation analysis was performed to calculate the pairwise correlations among 24 signatures in 65 patients (Figure S9). The result of hierarchical clustering revealed that our predictive risk score was positively correlated with M2 macrophage signature, cancer-associated fibroblast (CAF) signature and tumor exclusion signature, while negatively correlated with immune-elimination-related signatures such as cytotoxic T lymphocytes (CTL) signature, MHC-II signature and interferon-gamma (IFN-γ) signature. This observation helps us understand that patients with high predicted risk scores received worse clinical outcomes could be explained by the immune exclusion status in their tumor microenvironment to some extends. We also found that the predictive risk score was positively correlated with the expression of classical immune checkpoints, such as PD1, PD-L1, and CTLA4 (Figure 3H). Thus, we termed our 15-gene risk score as “Immune Exclusion Score” (IES).



Validation of IES Score in Multiple ICIs Therapy Cohorts

To validate the robustness and eligibility of the IES, we collected three more cohorts that underwent ICIs treatments. All of the patients in the three cohorts were with advanced melanoma, including Liu cohort (n=121), Riaz cohort (n=41) and Nathanson cohort (n=24) (31–33). IES scores were calculated among patients in three cohorts and applied to predict the clinical response of immunotherapy (Tables S6–S8). ROC analysis showed that the ROC efficiencies of 1- prognosis were 0.547 and 0.622 in Liu and Nathanson cohort, respectively (1- year prognosis AUC was unevaluable in Riaz cohort). While the ROC efficiencies of 3- year prognosis were 0.622, 0.558 and 0.836 in Riaz, Liu and Nathanson cohort, respectively (Figures 4A–C). Patients were divided into IES high and low groups according to the Youden index and the threshold value were -0.0006, -0.0001 and -0.0015 in Riaz, Liu and Nathanson cohort, respectively. We observed a better survival rate and more extended survival advantage in patients within the IES low group in all of the three cohorts (Figures 4D–F). In the Riaz and Nathanson cohorts, the cutoff value was close to the median value of IES among patients. We found that patients with high IES were correlated with worse clinical response in three cohorts, while the objective response rates of the low IES group among three cohorts were 31.8%, 43.9% and 60%, respectively (Figure S10). These results confirmed the predictive performance of clinical outcomes of IES in immunotherapy.




Figure 4 | The predictive efficacy of 15 immune-related genes risk score in three validation cohorts. (A–C) Sensitivity and specificity of the risk score model were assessed in each dataset by time-dependent ROC analysis. (D–F) Overall survival analysis between high- and low-risk groups in each cohorts.



Since the cancer type of all three cohorts used for verification above was melanoma, we introduced another immunotherapy cohort of clear-cell renal cell carcinoma(ccRCC) from Braun et al. (34). The ccRCC cohort contains 181 patients treated with anti-PD-1 therapy. Previously studies revealed that traditional biomarkers of immunotherapy such as PD-L1 and TMB didn’t show the ability to distinguish the clinical outcome in ccRCC and the microenvironment of CD8+ T-cell infiltration was related to poor prognosis of immunotherapy. After calculating the IES of ccRCC patients, survival analysis and ROC analysis were applied to evaluate the performance of IES. Intriguingly, our results indicated that patients with high IES, whose tumor microenvironment had the feature of immune exclusion, were correlated with longer PFS (p=0.02, IES cutoff=-0.0976) (Figure S11; Table S9). This result was consistent with the findings in ccRCC, although different from the majority of understanding in the tumor microenvironment. Previous studies proved that PBRM1 mutation was promoting factor of ccRCC ICIs therapy. Thus, we applied IES in the PBRM1-mut subgroup of the ccRCC cohort (Figure S11). The findings in the datasets above showed that patients with high IES scores showed a worse prognosis of OS in the PBRM1-mut subgroup, which indicated that IES could further filter patients with worse clinical outcomes and prognosis ICIs therapy who acquired PBRM1 mutations.



Comparison Between IES and Other Biomarkers of Immunotherapy

Recently, the expression of genes related to cytolytic immune activity was associated with clinical response to ICIs in certain tumors (35, 36). A previous study discovered a T cell–inflamed 18-gene expression profile (GEP) shown to predict response to anti–PD-1 therapy (37). To compare the performance on clinical response to anti-PD-1 therapy between GEP and IES, T cell–inflamed GEP was assessed in all patients from the Prat cohort, Liu cohort, Riaz cohort and Nathanson cohort (Figure S12). We found that higher T cell–inflamed GEP scores were also positively associated with response and prognosis in Prat cohort, Liu cohort, Riaz cohort and Nathanson cohort, showing that the T cell–activated tumor environment also affects response in addition to IES. However, significance was not demonstrated in the subgroups by cancer types in Prat cohort when using GEP as a predictor. We also found that a higher proportion of responders were enriched in the “low-risk” group by IES, compared with GEP.

We next evaluated the correlation between GEP and IES among those patients. Negative correlations were found between GEP and IES, and 57.1% of shared patients were selected as low risk by both GEP and IES (Figure 5A). So IES could be a necessary complement to GEP.




Figure 5 | Comparison between IES and other biomarkers. (A) Correlation between T cell–inflamed GEP score and IES score in Prat, Liu, and Riaz cohorts. (B) Correlation between somatic mutation counts or TMB and IES score in Liu and Riaz cohorts.



Furthermore, we evaluated the relationship between TMB and IES in Liu and Riaz cohort. IES score was found independent of TMB in the discovery and validation datasets with correlations of -0.11 and 0.011, respectively (Figure 5B). This result indicated that the IES score could be applied independently or jointly with TMB in predicting the response of ICIs therapy.




Discussion

The immune checkpoint inhibitors (ICIs) have made remarkable progress in the clinical treatment of tumors in the past decade (38–40). However, immune escape mechanisms and immune resistance to ICIs therapy have not been well-studied. Here, we discovered and developed an immune exclusion-related 15-gene risk score termed “Immune Exclusion Score” (IES) to predict the clinical response and prognosis to anti-PD-1 therapy. Limited clinical outcomes and prognosis to anti-PD-1 treatment occurred in patients with high IES risk scores in the discovery and validation datasets. Besides, IES was also found as a necessary complement to T cell-inflamed GEP signature and independent to TMB, reflective of the relationship of GEP and TMB to IES. These observations suggest that using the IES immune exclusion biomarker may help identify patients who are responsive to anti–PD-1 therapies and explain the mechanism of immune exclusion in the tumor microenvironment.

In this study, we focused on 15 immune-related gene expressions as a prognostic marker of ICIs therapy. Among these genes, CCL5, CCR5 and PDCD1 are essential regulators of T-cell antigen receptor signaling (41–43). Gene GZMM, KLRK1 and NFKB2 activate and improve the cytolytic activity of T and NK cells (44–46). While the high expression of gene CD46, CXCL6 and GPI inhibit the inflammation of the tumor microenvironment (47–49). Our results revealed that CCL5, CCR5, GZMM, IL13, IL1RAPL2, KLRK1, NFKB2, PDCD1 and TARP expression were strong protective effects against distant recurrence of ICIs. The rest genes, CD46, CXCL6, GPI, ITGB1, PLA2G6 and TNFSF4, were revealed for the negative association with tumor suppression.

The differential gene expression and pathway analysis were evaluated between two risk groups divided by the IES scores. Our results showed that patients with low IES score enriched with highly expressed immune eliminated cell genes of CD8+ T cells, CD4+ T cells, NK cells and B cells. Most of the enriched pathways were related to immune-cell membrane receptor activity and cytokine activity. We also observed that naïve B cells, CD4 resting-memory T cells, and activated natural killer (NK) cells infiltrated more enormous proportions in the low IES group than in the high IES group.

Our study results may explain the low response rates and the limited efficacy of ICIs for patients with high IES scores. The IES was positively correlated with immune exclusion signatures such as M2 macrophage signature and CAF signature. In contrast, IES was negatively correlated with immune-elimination-related signatures such as CTL signature, MHC-II signature and IFN-γ signature. In addition, the IES score was positively correlated with the high expression of immune checkpoints like PD1, PD-L1 and CTLA4, which indicated the status of immune suppression among IES-high patients.

The limitations of this study still exist. Firstly, the development and validation of IES were conducted on four retrospective cohorts. Prospective clinical studies are needed to verify the clinical efficacy of IES as a predictive biomarker for immunotherapy. Secondly, the prognostic model is built based only on gene expression data. A model involving more types of data, especially pathological images might be able to improve the prediction accuracy (50, 51). Thirdly, due to the limited size of patients/cohorts, IES was confirmed in a small number of cancer types, such as NSCLC, melanoma, ccRCC and NPC. Data on more cancer types are needed to prove the broad applicability of IES. Besides, all of the cohorts introduced in this study were treated with ICI monotherapy. Combined treatment approaches with ICIs, such as ICI combined with chemotherapy, demonstrated a superior clinical response in recent trials. A more significant implication will illustrate if IES is successfully validated in the combination of ICIs and chemotherapy.



Conclusions

Our data demonstrate that IES can be used to categorize tumors into different subgroups that exhibit distinct patterns of potentially recognizable biology to enhance clinical response. Although the utility of IES, T cell–inflamed GEP and TMB, as well as other emerging agnostic biomarkers, need further validated for response prediction to various immunotherapy approaches, including combination therapies, these findings provide the possibility for further exploring the utility of these biomarkers as guides for clinical precision cancer immunotherapy.



Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.



Author Contributions

XS, HJ, ZG, and ML contributed to research design. Data analysis was carried out by HJ, JW, JX, and XL. JY and XD developed the algorithm and refined the prediction model. ND, HL, and TG collected clinical information that was used in the study and critically revised the manuscript. XS, HJ, and ND wrote the manuscript. All authors provided feedback and approved the final version.



Acknowledgments

We thank all patients and researchers involved in this study.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.930589/full#supplementary-material

Supplementary Figure 1 | Forest plot of 41 immune-related genes and their association with clinical survival.

Supplementary Figure 2 | Kaplan–Meier survival curves of PFS in high-expression patients versus low-expression patients grouped by 15 immune-related genes median expression level in Prat cohort.

Supplementary Figure 3 | Kaplan–Meier survival curves of PFS in high-risk patients versus low-risk patients with advanced SKCM (n=25), LUAD (n=22), HNSCC (n=5), and LUSC (13) in Prat cohort.

Supplementary Figure 4 | The ROC curves of the IES score and 15 immune-related genes expression level for predicting response in the Prat cohort.

Supplementary Figure 5 | Objective response rate (ORR) between high- and low-expressed patients of 15 immune-related genes in patients in the Prat cohorts. ORR is defined as having a partial response (PR) or a complete response (CR); NOR is defined as having no PR or CR.

Supplementary Figure 6 | The different expression level of 15 immune-related genes between ORR and NOR patients in the Prat cohort. ORR is defined as having a partial response (PR) or a complete response (CR); NOR is defined as having no PR or CR. ‘ns’, not significant. ‘*’, P < 0.05.

Supplementary Figure 7 | The ROC curves and AUC values of the risk score from 15 immune-related genes expression level and PD-L1 expression level for predicting objective response in the Prat cohort. ‘ns’, not significant.

Supplementary Figure 8 | Hierarchal clustering analysis of DEGs, split by the high- and low-risk groups.

Supplementary Figure 9 | Pairwise correlation coefficients heatmap among 24 signatures in (A) Prat cohort, (B) Liu cohort and (C) Riaz cohort.

Supplementary Figure 10 | Prediction efficacy of IES for clinical response in three validation datasets. (A) The ROC curves and AUC values in each cohort. (B) Objective response rate (ORR) between high- and low-risk patients in the three cohorts. ORR is defined as having a partial response (PR) or a complete response (CR); NOR is defined as having no PR or CR.

Supplementary Figure 11 | The predictive value of IES score in ccRCC cohort. (A) ROC curves and AUC values, (B) Objective response rate (ORR), and (C) Kaplan–Meier survival curves of PFS between high- and low-risk patients in the total ccRCC cohort, PBRM1-mut subset, and PBRM1-wt subset. ORR is defined as having a partial response (PR) or a complete response (CR); NOR is defined as having no PR or CR.

Supplementary Figure 12 | The predictive value of GEP score in Prat, Liu, Riaz, and Nathanson cohorts. (A) Objective response rate (ORR) and (B) Kaplan–Meier survival curves of PFS or OS between high- and low-risk patients in the four cohorts. ORR is defined as having a partial response (PR) or a complete response (CR); NOR is defined as having no PR or CR.



Abbreviations

IES, immune exclusion score; ICIs, immune checkpoint inhibitors; GEPs, gene expression profiles; NK, activated natural killer; CAF, cancer-associated fibroblast; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; NSCLC, non-small cell lung cancer; SKCM, skin cutaneous melanoma; HNSCC, head and neck squamous cell carcinoma; ccRCC, clear-cell renal cell carcinoma; NPC, nasopharyngeal carcinoma; anti-PD-(L)1, anti-programmed death-(ligand) 1; MHC, major histocompatibility complex; ORR, objective response rate; NOR, non-objective response; DCB, durable clinical benefit; NDB, non-durable clinical benefit; CR, complete response; PR, partial response; SD, stable disease; PD, disease progression; PFS, progression-free survival; OS, overall survival; TMB, tumor mutation burden; ROC, receiver operating characteristic curve; AUC, area under ROC curve; HIC, immunohistochemistry.



References

1. Mellman, I, Coukos, G, and Dranoff, G. Cancer Immunotherapy Comes of Age. Nature (2011) 480(7378):480–9. doi: 10.1038/nature10673

2. Topalian, SL, Weiner, GJ, and Pardoll, DM. Cancer Immunotherapy Comes of Age. J Clin Oncol (2011) 29(36):4828–36. doi: 10.1200/jco.2011.38.0899

3. Zhang, W, Yin, Z, Sun, Z, Tian, Y, and Wang, Y. Selecting Transferrable Neurophysiological Features for Inter-Individual Emotion Recognition via a Shared-Subspace Feature Elimination Approach. Comput Biol Med (2020) 123:103875. doi: 10.1016/j.compbiomed.2020.103875

4. Alar, HS, and Fernandez, PL. Accurate and Efficient Mosquito Genus Classification Algorithm Using Candidate-Elimination and Nearest Centroid on Extracted Features of Wingbeat Acoustic Properties. Comput Biol Med (2021) 139:104973. doi: 10.1016/j.compbiomed.2021.104973

5. Gajewski, TF, Schreiber, H, and Fu, YX. Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nat Immunol (2013) 14(10):1014–22. doi: 10.1038/ni.2703

6. Topalian, SL, Hodi, FS, Brahmer, JR, Gettinger, SN, Smith, DC, McDermott, DF, et al. Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. N Engl J Med (2012) 366(26):2443–54. doi: 10.1056/NEJMoa1200690

7. Brahmer, JR, Tykodi, SS, Chow, LQ, Hwu, WJ, Topalian, SL, Hwu, P, et al. Safety and Activity of Anti-PD-L1 Antibody in Patients With Advanced Cancer. N Engl J Med (2012) 366(26):2455–65. doi: 10.1056/NEJMoa1200694

8. Garon, EB, Rizvi, NA, Hui, R, Leighl, N, Balmanoukian, AS, Eder, JP, et al. Pembrolizumab for the Treatment of non-Small-Cell Lung Cancer. N Engl J Med (2015) 372(21):2018–28. doi: 10.1056/NEJMoa1501824

9. Robert, C, Schachter, J, Long, GV, Arance, A, Grob, JJ, Mortier, L, et al. Pembrolizumab Versus Ipilimumab in Advanced Melanoma. N Engl J Med (2015) 372(26):2521–32. doi: 10.1056/NEJMoa1503093

10. Bellmunt, J, de Wit, R, Vaughn, DJ, Fradet, Y, Lee, JL, Fong, L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med (2017) 376(11):1015–26. doi: 10.1056/NEJMoa1613683

11. Yarchoan, M, Hopkins, A, and Jaffee, EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med (2017) 377(25):2500–1. doi: 10.1056/NEJMc1713444

12. Patel, SP, and Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther (2015) 14(4):847–56. doi: 10.1158/1535-7163.Mct-14-0983

13. Balkwill, FR, Capasso, M, and Hagemann, T. The Tumor Microenvironment at a Glance. J Cell Sci (2012) 125(Pt 23):5591–6. doi: 10.1242/jcs.116392

14. Weiss, GR, Grosh, WW, Chianese-Bullock, KA, Zhao, Y, Liu, H, Slingluff, CL Jr, et al. Molecular Insights on the Peripheral and Intratumoral Effects of Systemic High-Dose rIL-2 (Aldesleukin) Administration for the Treatment of Metastatic Melanoma. Clin Cancer Res (2011) 17(23):7440–50. doi: 10.1158/1078-0432.Ccr-11-1650

15. Liu, H, Qiu, C, Wang, B, Bing, P, Tian, G, Zhang, X, et al. Evaluating DNA Methylation, Gene Expression, Somatic Mutation, and Their Combinations in Inferring Tumor Tissue-Of-Origin. Front Cell Dev Biol (2021) 9:619330. doi: 10.3389/fcell.2021.619330

16. Yang, M, Yang, H, Ji, L, Hu, X, Tian, G, Wang, B, et al. A Multi-Omics Machine Learning Framework in Predicting the Survival of Colorectal Cancer Patients. Comput Biol Med (2022) 146:105516. doi: 10.1016/j.compbiomed.2022.105516

17. Ribas, A, Robert, C, Hodi, FS, Wolchok, JD, Joshua, AM, Hwu, W-J, et al. Association of Response to Programmed Death Receptor 1 (PD-1) Blockade With Pembrolizumab (MK-3475) With an Interferon-Inflammatory Immune Gene Signature. J Clin Oncol (2015) 33(15_suppl):3001–1. doi: 10.1200/jco.2015.33.15_suppl.3001

18. Fehrenbacher, L, Spira, A, Ballinger, M, Kowanetz, M, Vansteenkiste, J, Mazieres, J, et al. Atezolizumab Versus Docetaxel for Patients With Previously Treated non-Small-Cell Lung Cancer (POPLAR): A Multicentre, Open-Label, Phase 2 Randomised Controlled Trial. Lancet (2016) 387(10030):1837–46. doi: 10.1016/s0140-6736(16)00587-0

19. Jiang, P, Gu, S, Pan, D, Fu, J, Sahu, A, Hu, X, et al. Signatures of T Cell Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat Med (2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

20. Nema, R, Shrivastava, A, and Kumar, A. Prognostic Role of Lipid Phosphate Phosphatases in non-Smoker, Lung Adenocarcinoma Patients. Comput Biol Med (2021) 129:104141. doi: 10.1016/j.compbiomed.2020.104141

21. Tu, M, Ye, L, Hu, S, Wang, W, Zhu, P, Lu, X, et al. Identification of Glioma Specific Genes as Diagnostic and Prognostic Markers for Glioma. Curr Bioinf (2021) 16(1):120–9. doi: 10.2174/1574893615999200424090954

22. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc Natl Acad Sci U S A (2005) 102(43):15545–50. doi: 10.1073/pnas.0506580102

23. Yoshihara, K, Shahmoradgoli, M, Martínez, E, Vegesna, R, Kim, H, Torres-Garcia, W, et al. Inferring Tumour Purity and Stromal and Immune Cell Admixture From Expression Data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

24. Newman, AM, Liu, CL, Green, MR, Gentles, AJ, Feng, W, Xu, Y, et al. Robust Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods (2015) 12(5):453–7. doi: 10.1038/nmeth.3337

25. Ding, Y, Tang, J, and Guo, F. Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model With Amino Acid Contact Information. Int J Mol Sci (2016) 17(10):1623. doi: 10.3390/ijms17101623

26. Prat, A, Navarro, A, Paré, L, Reguart, N, Galván, P, Pascual, T, et al. Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Res (2017) 77(13):3540–50. doi: 10.1158/0008-5472.Can-16-3556

27. Love, MI, Huber, W, and Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With Deseq2. Genome Biol (2014) 15(12):550. doi: 10.1186/s13059-014-0550-8

28. Chen, J, Bardes, EE, Aronow, BJ, and Jegga, AG. ToppGene Suite for Gene List Enrichment Analysis and Candidate Gene Prioritization. Nucleic Acids Res (2009) 37(Web Server issue):W305–311. doi: 10.1093/nar/gkp427

29. Chen, B, Khodadoust, MS, Liu, CL, Newman, AM, and Alizadeh, AA. Profiling Tumor Infiltrating Immune Cells With CIBERSORT. Methods Mol Biol (2018) 1711:243–59. doi: 10.1007/978-1-4939-7493-1_12

30. Friedman, J, Hastie, T, and Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw (2010) 33(1):1–22. doi: 10.18637/jss.v033.i01

31. Nathanson, T, Ahuja, A, Rubinsteyn, A, Aksoy, BA, Hellmann, MD, Miao, D, et al. Somatic Mutations and Neoepitope Homology in Melanomas Treated With CTLA-4 Blockade. Cancer Immunol Res (2017) 5(1):84–91. doi: 10.1158/2326-6066.Cir-16-0019

32. Riaz, N, Havel, JJ, Makarov, V, Desrichard, A, Urba, WJ, Sims, JS, et al. Tumor and Microenvironment Evolution During Immunotherapy With Nivolumab. Cell (2017) 171(4):934–49.e916. doi: 10.1016/j.cell.2017.09.028

33. Liu, D, Schilling, B, Liu, D, Sucker, A, Livingstone, E, Jerby-Arnon, L, et al. Integrative Molecular and Clinical Modeling of Clinical Outcomes to PD1 Blockade in Patients With Metastatic Melanoma. Nat Med (2019) 25(12):1916–27. doi: 10.1038/s41591-019-0654-5

34. Braun, DA, Hou, Y, Bakouny, Z, Ficial, M, Sant' Angelo, M, Forman, J, et al. Interplay of Somatic Alterations and Immune Infiltration Modulates Response to PD-1 Blockade in Advanced Clear Cell Renal Cell Carcinoma. Nat Med (2020) 26(6):909–18. doi: 10.1038/s41591-020-0839-y

35. Tumeh, PC, Harview, CL, Yearley, JH, Shintaku, IP, Taylor, EJ, Robert, L, et al. PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature (2014) 515(7528):568–71. doi: 10.1038/nature13954

36. Rooney, MS, Shukla, SA, Wu, CJ, Getz, G, and Hacohen, N. Molecular and Genetic Properties of Tumors Associated With Local Immune Cytolytic Activity. Cell (2015) 160(1-2):48–61. doi: 10.1016/j.cell.2014.12.033

37. Ayers, M, Lunceford, J, Nebozhyn, M, Murphy, E, Loboda, A, Kaufman, DR, et al. IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. J Clin Invest (2017) 127(8):2930–40. doi: 10.1172/jci91190

38. Darvin, P, Toor, SM, Sasidharan Nair, V, and Elkord, E. Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp Mol Med (2018) 50(12):1–11. doi: 10.1038/s12276-018-0191-1

39. Wilky, BA. Immune Checkpoint Inhibitors: The Linchpins of Modern Immunotherapy. Immunol Rev (2019) 290(1):6–23. doi: 10.1111/imr.12766

40. Ramos-Casals, M, Brahmer, JR, Callahan, MK, Flores-Chávez, A, Keegan, N, Khamashta, MA, et al. Immune-Related Adverse Events of Checkpoint Inhibitors. Nat Rev Dis Primers (2020) 6(1):1–21. doi: 10.1038/s41572-020-0160-6

41. Lapteva, N, and Huang, XF. CCL5 as an Adjuvant for Cancer Immunotherapy. Expert Opin Biol Ther (2010) 10(5):725–33. doi: 10.1517/14712591003657128

42. Ribas, A, and Wolchok, JD. Cancer Immunotherapy Using Checkpoint Blockade. Sci (New York N.Y.) (2018) 359(6382):1350–5. doi: 10.1126/science.aar4060

43. Jiao, X, Nawab, O, Patel, T, Kossenkov, AV, Halama, N, Jaeger, D, et al. Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Res (2019) 79(19):4801–7. doi: 10.1158/0008-5472.Can-19-1167

44. Ishimaru, N, Kishimoto, H, Hayashi, Y, and Sprent, J. Regulation of Naive T Cell Function by the NF-Kappab2 Pathway. Nat Immunol (2006) 7(7):763–72. doi: 10.1038/ni1351

45. Roufas, C, Chasiotis, D, Makris, A, Efstathiades, C, Dimopoulos, C, and Zaravinos, A. The Expression and Prognostic Impact of Immune Cytolytic Activity-Related Markers in Human Malignancies: A Comprehensive Meta-Analysis. Front Oncol (2018) 8:27. doi: 10.3389/fonc.2018.00027

46. Lazarova, M, and Steinle, A. The NKG2D Axis: An Emerging Target in Cancer Immunotherapy. Expert Opin Ther Targets (2019) 23(4):281–94. doi: 10.1080/14728222.2019.1580693

47. Tsai, YG, Lai, JC, Yang, KD, Hung, CH, Yeh, YJ, and Lin, CY. Enhanced CD46-Induced Regulatory T Cells Suppress Allergic Inflammation After Dermatophagoides Pteronyssinus-Specific Immunotherapy. J Allergy Clin Immunol (2014) 134(5):1206–09.e1201. doi: 10.1016/j.jaci.2014.06.005

48. Hussein, NH, Amin, NS, and El Tayebi, HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol (2020) 10:537311. doi: 10.3389/fonc.2020.537311

49. Zheng, S, Shen, T, Liu, Q, Liu, T, Tuerxun, A, Zhang, Q, et al. CXCL6 Fuels the Growth and Metastases of Esophageal Squamous Cell Carcinoma Cells Both In Vitro and In Vivo Through Upregulation of PD-L1 via Activation of STAT3 Pathway. J Cell Physiol (2021) 236(7):5373–86. doi: 10.1002/jcp.30236

50. Yang, J, Ju, J, Guo, L, Ji, B, Shi, S, Yang, Z, et al. Prediction of HER2-Positive Breast Cancer Recurrence and Metastasis Risk From Histopathological Images and Clinical Information via Multimodal Deep Learning. Comput Struct Biotechnol J (2022) 20:333–42. doi: 10.1016/j.csbj.2021.12.028

51. Ye, Z, Zhang, Y, Liang, Y, Lang, J, Zhang, X, Zang, G, et al. Cervical Cancer Metastasis and Recurrence Risk Prediction Based on Deep Convolutional Neural Network. Curr Bioinf (2022) 17(2):164–73. doi: 10.2174/1574893616666210708143556




Conflict of Interest: Authors XS, HJ, JW, HL, JX, XL, JY, TG, XD, and ZG were employed by YuceBioTechnology Co., Ltd., Shenzhen, China.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Su, Jin, Du, Wang, Lu, Xiao, Li, Yi, Gu, Dan, Gao and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 30 June 2022

doi: 10.3389/fonc.2022.916379

[image: image2]


A Novel Algorithm for Detecting Microsatellite Instability Based on Next-Generation Sequencing Data


Shijun Li 1†, Bo Wang 2†, Miaomiao Chang 1, Rui Hou 2, Geng Tian 2* and Ling Tong 1*


1 Pathology Department, Chifeng Municipal Hospital, Chifeng, China, 2 Science Department, Geneis Beijing Co., Ltd., Beijing, China




Edited by: 

Cheng Guo, Columbia University, United States

Reviewed by: 

Xiangzheng Fu, Hunan University, China

Wenjun Shen, Shantou University, China

Li Peng, Hunan University of Science and Technology, China

*Correspondence: 

Geng Tian
 tiang@geneis.cn 

Ling Tong
 tongling007@163.com












†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology


Received: 09 April 2022

Accepted: 27 May 2022

Published: 30 June 2022

Citation:
Li S, Wang B, Chang M, Hou R, Tian G and Tong L (2022) A Novel Algorithm for Detecting Microsatellite Instability Based on Next-Generation Sequencing Data. Front. Oncol. 12:916379. doi: 10.3389/fonc.2022.916379




Objectives

Microsatellite instability (MSI) is the condition of genetic hypermutability caused by spontaneous acquisition or loss of nucleotides during the DNA replication. MSI has been discovered to be a useful immunotherapy biomarker clinically. The main DNA-based method for MSI detection is polymerase chain reaction (PCR) amplification and fragment length analysis, which are costly and laborious. Thus, we developed a novel method to detect MSI based on next-generation sequencing (NGS) data.



Methods

We chose six markers of MSI. After alignment and reads counting, a histogram was plotted showing the counts of different lengths for each marker. We then designed an algorithm to discover peaks in the generated histograms so that the peak numbers discovered in NGS data resembled that in PCR-based method.



Results

We selected nine samples as the training dataset, 101 samples for validation, and 68 samples as the test dataset from Chifeng Municipal Hospital, Inner Mongolia, China. The NGS-based method achieved 100% accuracy for the validation dataset and 98.53% accuracy for the test dataset, in which only one false positive was detected.



Conclusions

Accurate MSI judgments were achieved using NGS data, which could provide comparable MSI detection with the gold standard, PCR-based methods.





Keywords: microsatellite instability (MSI), NGS, PCR-based methods, peak discovery, Smoothing



Introduction

DNA mismatch repair (MMR) system is able to correct length-altering mutations during DNA replication. MMR dysfunction leads to insertion/deletion mutations in repeats of short non-coding microsatellites (1–6 bp). The spontaneous acquisition or loss of nucleotides in repetitive DNA sequence tracts is considered microsatellite instability (MSI). Inactive germline mutations in the MMR pathways (including MSH2, MSH6, MLH1, and PMS2) result in deficient MMR, which usually occurs in patients with Lynch syndrome (LS), and somatic promoter hypermethylation of MLH1 in the sporadic cancers (1, 2).

MSI analysis is useful in clinical implications for patients with colorectal cancer (CRC) such as classification of LS (2) and prediction of response to 5-fluorouracil–based adjuvant therapy (3), informing choice for immunotherapy and providing prognosis information (4–7). European Society for Medical Oncology has recommended MSI testing for better immunotherapy selection, and the National Comprehensive Cancer Network (NCCN) guidelines endorsed universal MSI or MMR testing for newly diagnosed CRC or endometrial cancer in 2018 to evaluate suspected patients with LS.

There are two most commonly used methods to determine MSI status, including immunohistochemistry (IHC) for MMR proteins and fluorescent multiplex polymerase chain reaction (PCR) and capillary gel electrophoresis for microsatellite sites. PCR-based MSI testing is the golden standard method for detecting MSI status, which is determined by visual assessment of allele size changes. The National Cancer Institute recommended to use Bethesda panel with five markers, which includes two mononucleotide repeats of BAT-25 and three dinucleotide repeats of D5S346, D2S123, and D17S250 (8). To compare the length of microsatellite markers between tumor and matched normal sample, we measure the length of those markers to determine the MSI status of a tumor sample. Tumors with altered lengths of two or more markers, one marker, and zero markers are classified as high MSI (MSI-H), low MSO (MSI-L), and microsatellite stable (MSS), respectively. An alternative PCR-based MSI testing panel relies on five poly-A mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24, and NR-27). It is considered more standard because of its high specificity and sensitivity (9). Another panel containing six mononucleotide repeats (NR-27, NR-28, Bat-25, Bat-26, NR-24, and Mono-27) and three pentanucleotide markers (Penta C, Penta D, and Amel) is also used to detect MSI status (10).

IHC-based MMR detection method is practicable and cost-effective. The loss of IHC expression of an MMR protein reveals the status of a specific target gene in the confirmatory testing. However, accurate interpretation of staining results requires well-trained pathologists. Furthermore, some MMR gene mutations may produce dysfunctional proteins and IHC stain expression, which leads to a false positive result (11, 12).

Because tissue samples from patients are limited, it is important to improve the efficiency of the testing. Targeted next-generation sequencing (NGS) has brought an unprecedented scale of genomic data, allowing dozens to hundreds of genes to be sequenced simultaneously and with higher sensitivity for low-prevalence mutations (13). The main advantage of using NGS to test MSI status is the ability to determine tumor mutation burden (TMB), along with other potential targetable alterations simultaneously. Therefore, NGS-based algorithms have emerged as a new way to detect MSI status. Several NGS-based MSI detection methods have been proposed in recent years (13–15). NCCN recommends to detect MSI and TMB and genes associated with targeted therapy at the same time. NGS-based methods can accomplish these tasks in one single run, but PCR-based method cannot.

Combining NGS with analysis tools, such as MSIsensor, one can reliably infer MSI status from large-panel targeted NGS data (14). Here, we developed a new algorithm to detect MSI status based on NGS data. Moreover, our algorithm supplied the unstable markers in an explainable way, which might bring new insights into the therapies for cancer patients. Since currently, clinical research tends to combine MSS-L and MSS as one single status (16), we classify our samples into only MSI-H and MSI-L samples.



Results


Sample Collection

A total of 178 samples were collected from Chifeng Municipal Hospital. The matched clinical data are summarized as Table 1 and detailed information could be found in Supplementary Table 2. Both tumor and matched blood sample were sequenced for all patients. This dataset was split by chronological order into a training set (nine samples), a validation set (101 samples), and a test set (68 samples). During the hyperparameter tuning phase, only the training set could be accessed by the algorithm. The validation set was used to estimate the algorithm’s accuracy. Once the hyperparameters were optimized, the test set was used to evaluate the accuracy and generalization ability of the proposed algorithm.


Table 1 | Summary for samples.



A schematic of our algorithm is shown in Figure 1.




Figure 1 | A schematic for MSI detection and algorithm optimization. The dataset was split into three parts: a training set, a validation set, and a test set. The training set was used to design and optimize the peak-finding algorithm in the NGS data to mimic the PCR result. The validation set was used for determining whether the algorithm could be generalized to samples beyond the training set. The test set was collected independently to further evaluate the algorithm’s performance.





Peaks From NGS Data Were Similar to PCR Results

According to the PCR-based method, the numbers of peaks could be inferred to evaluate the MSI status. Thus, we designed an algorithm to locate the peaks in the genome to make the peak numbers inferred by the NGS-based method are close to that number generated by the PCR-based method.

Our method first extracts read depth information from the input BAM file, such depth information is visualized as Figure 2A. We then calculated the peak numbers for NGS data and compared them with matched PCR results. The results show that, without any additional manipulations, the peaks discovered in NGS data are more than those identified in the PCR result (from 4 to 10 for all samples in the training set, Figure 2B). Peaks that were only detected in the NGS data are potential technical noise in the sequencing data caused by diminishing of light strength linearity (17). Thus, noise reduction is needed for an accurate peak detection method developed for the NGS data.




Figure 2 | (A) The peaks detected by the PCR method and the NGS method in the tumor sample of 21CF30228. The peaks detected in the PCR data were shown in the middle [the x-axis is the PCR product length, and the y-axis is the corresponding Relative Fluorescence Units (RFU)], and the peaks detected in the NGS data were plotted accordingly on the left and right. As shown in the figure, the peaks were similar between the NGS data and the PCR data. (B) The peak discovered from the raw depth plot has a huge difference between NGS data and PCR data. The peaks’ lengths detected by the PCR are larger than that detected by NGS. This is due to the shift caused by PCR primer not being adjacent to the repeat sequence of the markers.





Restricting peak height and smoothing is helpful for noise removal in NGS data.

Because the NGS data might be noisy, two strategies, restricting peak height and smoothing, were used to eliminate false peaks. Restricting peak height is to remove peaks with too low heights (see Materials and methods for details). The height threshold was set as a hyperparameter for further tuning. An example applying the hyperparameters was plotted in Figure 3 to intuitively display the effects of the two hyperparameters.




Figure 3 | An example using the tumor sample (A) and normal sample (B) of 21CF30228 to display the effects of the two hyperparameters, smoothing and peak threshold restricting. The red line on the bottom of each figure is the threshold for peak filtering. Peaks detected under the threshold will be ignored.



The goal of smoothing is to eliminate the noise caused by sequencing errors and to capture true signals. Smoothing or not was set as candidate procedures for further hyperparameter determination.



Hyperparameter Determination

After creating a set of parameters, we defined a loss function diff (see Loss function to minimize section in Materials and methods) to minimize the difference between the actual peak numbers that detected by PCR method and our algorithm.

We performed grid search for the optimal hyperparameters: whether smoothing or not combining with the peak height threshold among 0.1, 0.2, 0.3, …, 3.0. diff values were plotted against the peak height threshold and smoothing or not in Figure 4A. The minimum diff value of the smoothing method is 0.66, whereas the minimum diff of the non-smoothing method is 0.88. Because a lower threshold guarantees more sensitivity, the hyperparameters were set as smoothing and 0.2 for peak height threshold. The differences of the peaks detected in the NGS and PCR for per sample were plotted in Figure 4B, showing the algorithm under the optimal hyperparameters could sufficiently mimic the PCR result.




Figure 4 | (A) The average difference between NGS data and PCR data changes for different hyperparameters. The minimum of average difference was obtained when smoothing was applied and the peak threshold was set to (20% × average depth). (B) The peak differences between NGS and PCR for all the training samples before and after picking the optimal hyperparameters.





The Algorithm Performed Well on the Independent Dataset

The optimized hyperparameters were applied to our algorithm to find peaks in the NGS data. After peak discovery, the six markers for each patient were determined as stable or unstable using the same standards of the PCR-based method, which would finally result in the classification of MSI status for the patients (see Patient MSI status determination section of Materials and methods for details).

Finally, we achieved a 100% accuracy for the validation dataset and 98.53% accuracy for the test dataset, in which only one false positive result was reported. This indicates that our algorithm is applicable for clinical diagnosis. We also calculated the recall and specificity for all cancers for both validation set and test set. In most cancers, 100% accuracy was achieved. All metrics were summarized in Supplementary Table 3.



Comparisons to MSIsensor

We compared our algorithm to another MSI detection algorithm, MSIsensor, which is currently one of the best algorithms for MSI detection. The same training set, validation set, and test set were used to choose the threshold for MSIsensor. Three thresholds, i.e., 3.5%, 20%, and 40%, were chosen as the candidate. As for the threshold of 3.5%, there was one false positive in the training dataset. As for the threshold of 20%, there were 7 false positives, whereas only four false positives were detected for the threshold of 40%. Thus, 40% was set to the threshold for MSIsensor. The performances of our method and MSIsensor were plotted in confusion matrix in Figure 5. As shown in the validation set, our algorithm outperformed MSIsensor. However, they were equally accurate in the test set. One false positive was detected by our algorithm and MSIsensor separately. However, our algorithm detected 21CF30073 as a false positive and MSIsensor detected 20CF30697 as a false positive. Furthermore, as shown in Supplementary Table 2, if we combine the two methods and determine MSI-H only if the two methods both determined MSI-H for one sample, then 100% accuracy would be achieved.




Figure 5 | Confusion matrix for (A) our algorithm on the validation set, (B) MSIsensor on the validation set, (C) our algorithm on the test set, and (D) MSIsensor on the test set.






Materials and Methods


PCR Method to Determine MSI Status

The Microread MSI Kit was used to determine the MSI status. First the six pairs of primers were used to amplify both tissues from tumor and matched blood as normal. Capillary electrophoresis was then used to genotype the lengths of the products amplified by the primers. GeneMapper was finally used to check the peaks manually to assess whether the tumor tissue consists of unstable markers compared to the matched normal tissue.



Next-Generation Sequencing

We chose six markers covered by Microread MSI Kit for further research. The corresponding probes for each marker were listed in Supplementary Table 1.

The capture probes were designed and produced by BOKE Co., Ltd. The samples were prepared for targeted NGS using BGI sequencer MGISEQ-2000.



Pipeline for Depth Extraction

To simulate the results from PCR-based method, a histogram of count for each length is needed. A regular bioinformatics pipeline was first used for BAM file generation. First, trimmomatic v0.38 was used to trim adapters. Second, bwa v0.7.12 aln was used for alignment using hg19 as the reference genome. SAMtools v0.1.19 sort and rmdup were applied to the BAM file. For each marker, the surrounding reads were extracted from bam file using SAMtools v0.1.19. Afterward, using the anchor sequence, we calculated the read number for all markers. The position and the anchor sequence for all markers are listed in Table 2. For each marker, the reads were extracted from BAM file using SAMtools v0.1.19 and then matched with the anchor regex or complementary reverse anchor regex to count for the marker sequences. All anchor sequences were confirmed to be uniquely mapped to the sequencing within the scope of that marker’s position. The script CollectDepthInfoForMSI.sh is for collecting the depths for each length from the BAM file.


Table 2 | Anchor sequences for each marker for obtaining peak. CR, complementary reverse.





Peak Discovery

We define eminent number in the middle of three numbers as a peak. For recalling the peaks at the end of a series of numbers, we added zeros at the start and the end of the series of peaks to make sure that the first and the last number could also be detected as a peak.



Smoothing and De-Duplication

Our algorithm is a peak finding algorithm in the noised NGS data. Thus, we implemented the robust peak discovery algorithm, attempting to avoid discovering false peaks. The main strategy for noise reduction is smoothing procedure, which involves calculating the average height among flanks.

To remove the noise that might be caused by experimental artifacts, the following procedures were applied.

First, the relative height was calculated to standardize the heights and the relatively low peaks were recognized as false peaks. The relative height of the nth position is defined as

	

where N is the total number of detected peaks and h is the absolute height of each peak. A hyperparameter, Rh, is set as the threshold for peaks. If a peak is discovered and its rhn≥Rh, then the peak is reckoned as a real peak; otherwise, the peak is considered as a false peak caused by technical noise. This step will help eliminate some false peaks.

Second, the smoothing step was applied. Smoothing step is a procedure to calculate the average height among its neighborhood:

	



Unstable Marker Discovery

After peak discovery, the markers could be determined as stable or unstable according to the comparison between tumor and normal samples. If a marker has different peak numbers in tumor and normal tissue, then the marker would be classified as an unstable marker. If the peak numbers are the same for both tissues, then a gap ≥2 for tumor/normal tissue peak position would lead to an unstable marker judgment.



Loss Function to Minimize

To minimize the gap between NGS data and PCR data, a loss function is defined as

	

where S is the total number samples, T is the total number of markers,   is the number of peaks discovered in the ith sample in the tth marker in NGS data by the algorithm, and   is the peak number discovered in the ith sample in the tth marker in the PCR data. This loss function could evaluate the average difference in peaks between NGS data and PCR data for each sample.



Patient MSI Status Determination

After determination of all six makers for a patient, the MSI status for a patient could be determined. For a patient with two or more unstable markers, we would regard the patient as a patient with MSI-H. This is consistent with the determination standard of PCR-based method. The script JudgeMSI.py is for determining the MSI status according to the depth files from tumor and normal samples.



Detection by MSIsensor

The BAM file was prepared as mentioned above, and the bed for the six markers were used. The other parameters were set to default.




Discussion

In this work, we implemented a novel algorithm to determine MSI status based on NGS data. Our algorithm could simulate the distribution of peaks. In the independent 68-sample dataset, we achieved an accuracy of 98.53% and a sensitivity of 100%, showing promise in clinical practice. Furthermore, very small number of samples is sufficient to train an accurate model. As shown in our work, we used only nine samples as the training set. In fact, there are 108 markers for our hyperparameter tuning. According to the accuracy in the validation set and the test set, the small amount of training set was enough for an accurate mimicking from NGS to the PCR result. Furthermore, because the MSI status is highly imbalanced with few MSI-H samples, our method requiring no MSI-H samples is an advantage. Our method also outperformed MSIsensor on our dataset, and we also found that combining the two methods might make the result more accurate. Because the false negative for MSI detection is severer, this finding should be verified by more data.

Further efforts could be made for the development of the algorithm. First of all, more data are needed to generalize the hyperparameters for more real-world data and data from other platforms such as Illumina. As a pan-cancer dataset, our work also needs more data for validation, because many cancers were underrepresented in our dataset. More peak discovery hyperparameters could be involved such as distance and prominence (18). Recently, machine learning is emerging as a handy tool for bioinformatics in both biological applications (19–24) and theory discovery (25–28). Because this work is data-driven, machine learning could be also used to address it. However, most machine learning algorithms require input of uniform length, which is not satisfied by NGS data. Thus, we need to design methods to generate uniform features from diverse NGS data. On the other hand, recurrent neural network (RNN), which has been vastly used for natural language processing (29), could solve the problem with inconsistent features and has been applied to biology years ago (30). The RNN has advantages over handcrafted features and might be applicable to this problem.



Conclusion

Here, we developed an algorithm to determine MSI status for patients with cancer using the NGS data, and the accuracy is comparable to the gold standard, PCR-based method. The accuracy and the sensitivity are both acceptable for clinical use.
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Renal cell carcinoma (RCC) is the most common type of renal cancer, characterized by the dysregulation of metabolic pathways. RCC is the second highest cause of death among patients with urologic cancers and those with cancer cell metastases have a 5-years survival rate of only 10–15%. Thus, reliable prognostic biomarkers are essential tools to predict RCC patient outcomes. This study identified differentially expressed genes (DEGs) in the gene expression omnibus (GEO) database that are associated with pre-and post-metastases in clear cell renal cell carcinoma (ccRCC) patients and intersected these with metabolism-related genes in the Kyoto encyclopedia of genes and genomes (KEGG) database to identify metabolism-related DEGs (DEMGs). GOplot and ggplot packages for gene ontology (GO) and KEGG pathway enrichment analysis of DEMGs with log (foldchange) (logFC) were used to identify metabolic pathways associated with DEMG. Upregulated risk genes and downregulated protective genes among the DEMGs and seven independent metabolic genes, RRM2, MTHFD2, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2, were found using univariate and multivariate Cox regression analysis, intersection, and Lasso-Cox regression analysis to establish a metabolic risk score signature (MRSS). Kaplan-Meier survival curve of Overall Survival (OS) showed that the low-risk group had a significantly better prognosis than the high-risk group in both the training cohort (p < 0.001; HR = 2.73, 95% CI = 1.97–3.79) and the validation cohort (p = 0.001; HR = 2.84, 95% CI = 1.50–5.38). The nomogram combined with multiple clinical information and MRSS was more effective at predicting patient outcomes than a single independent prognostic factor. The impact of metabolism on ccRCC was also assessed, and seven metabolism-related genes were established and validated as biomarkers to predict patient outcomes effectively.
Keywords: prognostic biomarker, clear cell renal cell carcinoma, papillary renal cell carcinoma, metabolic-related genes, renal cance
1 INTRODUCTION
As the third most lethal tumor of the urinary system after prostate cancer and bladder cancer, renal cell carcinoma (RCC) is getting more attention (Global Burden of Disease Cancer et al., 2022). There are almost 430,000 new RCC patients worldwide each year, of whom approximately 180,000 will die of this disease (Sung et al., 2021). The prevalence and mortality of RCC continue to rise, posing a severe threat to human health (Owens, 2016; Turajlic et al., 2018; Elias et al., 2021).
RCC is a general term for a class of diseases divided into different pathological subtypes based on histological and morphological differences. The most common RCC subtype, clear cell renal cell carcinoma (ccRCC), accounts for approximately 75% of cases, followed by papillary renal cell carcinoma (pRCC), accounting for 18.5% of cases. Other rare subtypes of RCC include renal chromophobe carcinoma and renal collecting duct carcinoma (Ricketts et al., 2018). Recent studies have demonstrated metabolic abnormalities in a large proportion of RCC cases (Linehan et al., 2019; Bobulescu et al., 2021; Qi et al., 2021).
As imaging diagnostic technology and treatment methods continue to develop, it becomes easier to detect tumors early and initiate timely treatment, improving the survival rate of RCC patients. As a result, the proportion of patients with advanced RCC has declined from 30 to 17% (Strizova et al., 2019; Schulz et al., 2021; Tariq et al., 2022). While many small-molecule targeted drugs with immune checkpoint inhibitors have been marketed and put into use, side effects and drug resistance limit their application. In addition, a large proportion of patients receiving immune checkpoint inhibitor therapy have a similar prognosis as those receiving targeted agents. Notably, the prognosis of metastatic RCC patients is still poor, with the 5-years survival rate remaining at 10–15%. Thus, there is an urgent need to find reliable biomarkers to predict RCC patient outcomes (Kabaria et al., 2016; Reed et al., 2019; Lee et al., 2021a; Bedke et al., 2021; Doppalapudi et al., 2021; Ince and Eisen, 2021).
Metabolism is the most fundamental biological process of organism self-renewal. Tumor cells have different metabolic processes than normal cells because they derive most of their energy from glycolysis while normal cells obtain energy through oxidative phosphorylation under normoxic conditions (Fang et al., 2021; Huang et al., 2021; Morrissey et al., 2021; Xing et al., 2021). Using ccRCC as an example, studies have shown that loss of VHL gene function or VHL gene loss on the 3P chromosome exists in more than 90% of hereditary and a large proportion of sporadic ccRCC (Jonasch et al., 2021). This weakens the degradation of targeted HIF1/2 transcription factors, resulting in the accumulation of HIF1/2 transcription factors under normoxic conditions, putting cells in pseudo-hypoxic situations that lead to the remodeling of metabolic processes and upregulation of various growth factors (Bacigalupa and Rathmell, 2020). Metabolic remodeling of the tumor causes metabolic abnormalities at the original location (Li et al., 2014). In addition, tumor cells use exosomes and cytokines to alter cell metabolism in other body regions, weakening the immune response and enabling tumor metastasis (Morrissey et al., 2021).
Since abnormal cell metabolism is an essential marker for tumorigenesis and progression, it was hypothesized that metabolism-related genes could predict RCC patient outcomes (Wettersten et al., 2017). Many studies have assessed the relationship between metabolic markers and outcomes associated with the ccRCC subtype (Hakimi et al., 2016; Wu et al., 2020; Zhang et al., 2021). In contrast, few have explored the relationship between metabolic prognostic markers and other significant RCC subtypes. This study investigated the correlation between the metabolic machinery and the prognosis of ccRCC patients using the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds/?term) (Barrett et al., 2013) and the Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga) databases. A metabolic gene-based risk score signature was established to predict ccRCC patient outcomes effectively. The signature was further validated using pRCC patient data to reveal potential associations between the major subtypes of RCC.
2 MATERIALS AND METHODS
2.1 KEGG Metabolism-Related Genes Download
The KEGG database was searched using Homo sapiens as the species to identify genes that play a role in metabolic regulation. The number of metabolic pathways was obtained, and metabolic-related pathway-related genes were downloaded using the R package, KEGGREST (Therneau and Grambsch, 2000) and tidyverse (Wickham et al., 2019). All genes in the pathway were collected for further research (Supplementary Table S1).
2.2 GEO Genes Obtained
Gene expression data was downloaded from the GSE66272 dataset and divided into two subsets, GSE66270 (M0) and GSE66271 (M1), based on whether the tumor had metastasized. DEG screening was performed using the limma package (Ritchie et al., 2015) with the screening conditions set as: | log2FC | > 2 and adj. p-value <0.05. Visualization was performed using the ggplot2 package (Wickham, 2016) for the volcano plot. DEGs in the dataset were collected for further study.
2.3 Intersecting Genes by Venn Diagram
The DEGs were divided into the M0 and M1 groups based on the subset in which the genes were located and further subdivided into those with upregulated or downregulated expression. Upregulated DEGs in the M0 and M1 datasets were intersected, and the same action was taken for downregulated DEGs to obtain differentially expressed genes expressed before and after tumor metastasis. The upregulated and downregulated DEGs were each intersected with metabolism-related genes to obtain metabolism-related DEGs (MRGs) in tumors. Visualization was performed using Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html).
2.4 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis and Protein-Protein Interaction Network Construction
MRGs’ GO and KEGG enrichment analysis was performed using the R package clusterprofiler (Wu et al., 2021), org. Hs.eg.db (Carlson, 2019) and GOplot (Walter et al., 2015) to assess biological processes and pathways in which genes play a role. Enrichment results were filtered by setting adj. p-value < 0.05 as condition, visualized by ggplot2. Protein functions can impact the function and expression of other proteins. Thus, protein-protein interaction (PPI) data were acquired using the STRING database. The filtering condition was set to the minimum required interaction score: highest confidence (0.900). Cytoscape3.8.0 was used to visualize the PPIs.
2.5 Identification of Metabolically Relevant Prognostic Genes in the TCGA-KIRC Cohort
RNAseq data in the level 3 HTSeq-FPKM format was downloaded from the ccRCC project (KIRC) in TCGA. The RNAseq data were converted into the resulting TPM format data, and Log2 (Exp+1) transformation and standardization processing were performed. After excluding abnormal data, univariate Cox regression analysis was performed using the survival package (Therneau, 2022).
The hazard ratio (HR) for selected genes from the univariate Cox regression analysis was visualized using the ggplot2 package with a p-value <0.05. The upregulated risk genes and downregulated protective genes were intersected with DEG Corresponding trends in change using the Venny2.1 tool for further analysis. A total of 23 differentially expressed metabolism genes (DEMGs) were selected. While an HR > 1 indicated that the gene may be a risk gene and be associated with a poor prognosis, an HR < 1 indicated that the gene may have a protective effect and be associated with a good prognosis.
Overall survival (OS) was defined as the time from the beginning of a random assignment to death for any reason (the last follow-up time was for patients lost to follow-up and the end of follow-up was for patients still alive when the study ended). OS is considered the most efficient endpoint in oncology clinical trials and is the preferred endpoint when patient survival can be adequately assessed. Disease-free survival (DFS) was defined as the time between the start of randomization and disease recurrence or death (for any reason). Progression-free interval (PFI) was defined as the time from the randomization date of primary treatment to disease recurrence. To increase the prediction accuracy, KM survival curves were plotted by Cox regression for DEMGs. The OS, DSS, and PFI of the DEMGs were analyzed, and the genes with a Cox regression p-value <0.05 were considered metabolism-related prognostic genes.
The Delong test and plotted receiver operating characteristic (ROC) curves were performed to validate the accuracy of the KM curves selected to predict the OS of ccRCC patients and determine whether the selected genes had potential as ccRCC biomarkers.
2.6 Establishment of a Metabolic Risk Score Signature (MRSS) for Prognosis
To select potential genes that are reliably associated with ccRCC prognosis, the glmnet package and survival package was used to fit the Least Absolute Shrinkage and Selection Operator (LASSO) regression model on 16 DEMGs. The study subjected parameter selection to a 10-fold cross-validation, with partial likelihood biases meeting the minimum criteria.
Subsequently, a multivariate Cox regression analysis was performed to obtain the regression coefficients of independent prognostic factors. The DEMGs with significant OS, DFS, and PFI survival curve differences were identified by combining multivariate Cox regression coefficients (β-Values), the MRSS model was built, and the formula was defined as follows (Exp represents the gene expression level and β represents regression coefficients from the multivariate Cox analysis):
[image: image]
Data processing was performed using the pROC package (Robin et al., 2011) and the area under the ROC curve (AUC) was calculated to test the accuracy of models for predicting 1, 3 and 5-years survival. Data were visualized using the ggplot2 package.
2.7 Metabolism Risk Score Signature Combined With Clinical Information
The TCGA dataset supplied clinical information, including the predictive prognosis factors. Univariate Cox analysis was performed to clarify the correlation between MRSS and OS. Multivariate Cox regression analysis was then used to evaluate whether the established MRSS could be an independent predictor. To evaluate the OS of ccRCC patients as comprehensively as possible, a prognostic nomogram including age, gender, stage and MRSS was created using the RMS package (Harrell, 2020) combined with the survival package. The concordance index (c-index) was used to evaluate the predictive accuracy of the nomogram.
2.8 Validation of the MRSS
To evaluate whether the model applies to other renal tumors, considering that they often have similar anatomic and pathological manifestations to ccRCC, pRCC (TCGA - KIRP) was selected as a validation dataset (n = 326).
Genes involved in building the MRSS mode were filtered out of the dataset and. Their expression was normalized; then, these data were combined with the MRSS calculation formula to calculate a risk score for each patient in the TCGA-KIRP cohort. Based on the median risk score, TCGA-KIRP patients were divided into a high-risk and a low-risk group. KM survival and ROC curves were plotted to assess differences in prognosis for the two groups of patients and whether there was sufficient accuracy in predicting outcomes using the MRSS.
The 1 -, 3 - and 5-years survival probabilities of TCGA-KIRP patients were also compared using a nomogram by combining age, gender, and disease stage. The calibration curve was plotted to verify the model’s performance, and the C-index was used to compare the accuracy of traditional TNM-stage, MRSS, and nomogram prediction.
To assess the prognostic value of the MRSS in ccRCC, the KM-plotter online analysis website (Lánczky and Győrffy, 2021) and the GEPIA database (Tang et al., 2017) contain multiple GEO/TCGA/GTEx datasets were used to plot survival curves. RNA expression of prognostic renal cancer-related genes was collected from the GENT2 website (Park et al., 2019) and visualized. The protein expression of the MRSS-involved genes was analyzed using the PDC000127 dataset from The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (Edwards et al., 2015) (CPTAC, https://proteomics.cancer.gov/programs/cptac).
2.9 Cell Culture
The 786-O ccRCC cell line was gifted by Prof Dahong Zhang from Zhejiang Provincial People’s Hospital. The HK-2 human normal renal tubular epithelial cell line was obtained from the cell bank of the Chinese Academy of Sciences. The 2 cell lines were cultured in Dulbecco’s Modified Eagle Medium (Gibco, United States) supplemented with 10% fetal bovine serum (Gibco, United States) and 1% penicillin-streptomycin (Gibco, United States) at 37 °C in an incubator (Thermo, United States) with 5% CO2 and saturated humidity.
2.10 RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction
Total RNA of the 786-O and HK-2 cells was extracted using the Trizol reagent (Ambion, United States) and dissolved in RNase-free ddH2O (Takara Bio, China) under the manufacturer’s instructions. Next, the RNA samples were utilized for generating cDNA using the PrimeScript™ RT Master Mix Kit (Takara Bio, China). Finally, the cDNA samples were employed for qRT-PCR with the TB Green® Premix Ex Taq™ Kit (Takara Bio, China). The amplification was performed using the CFX96 Real-Time system (BIO-RAD, United States). The primers of RRM2, MTHFD2, AGXT2, ALDH6A1, GLDC, HOGA1, ETNK2 and GAPDH were synthesized by Sangon (Sangon Biotech, China), and the sequences are listed in Supplementary Table S10. GAPDH was applied as an internal control, and the relative expression level of 7 genes was calculated by the 2−ΔΔCT method (Schmittgen and Livak, 2008). The detailed procedure for qRT-PCR is given in Supplementary Table S11.
2.11 Statistical Analysis
Data were summarized and transformed using Excel. Independent prognostic factors were processed using univariate/multivariate Cox regression analysis. All data were further processed and visualized using R (v3.6.3), with a p-value <0.05 considered significant.
3 RESULTS
3.1 Differentially Expressed Gene Analysis
26 samples in the GSE66271 (M1) dataset and 28 in the GSE66270 (M0) dataset were downloaded, with tumors and paracancerous tissues accounting for half of each dataset. All gene expression data were normalized (Figure 1A, 2A) and filtered with |log2FC > 2| and adj. p-value <0.05. Volcano plots (Figure 1B, 2B) were used to assess DEG gene expression broadly, and PCA analysis (Figure 1C, 2C) with a heatmap (Figure 1D, 2D) was used to assess differences in the expression patterns of tumor and paracancerous tissue patterns. Under these conditions, 355 upregulated and 554 downregulated genes were collected from the M1 dataset (Supplementary Table S2), and 630 upregulated and 805 downregulated genes were collected from the M0 dataset (Supplementary Table S3). Genes differentially expressed before and after tumor metastasis were obtained by taking the intersection of up and downregulated genes in the M0 and M1 datasets, respectively. The up and downregulated DEGs were then intersected with metabolic genes from the KEGG database (Supplementary Table S1) to obtain DEMGs expressed in the tumor before and after metastasis. 17 and 72 up and downregulated DEMGs were obtained (Supplementary Table S4), respectively. This process was visualized with a Venn diagram (Figure 3).
[image: Figure 1]FIGURE 1 | GSE66270 (M0) dataset analysis (A) Boxplots show that the median across samples is essentially on a horizontal line, indicating good normalization. (B) Volcano map; Blue and red dots represent up and downregulated genes that were eligible for screening. The current threshold was |logFC| > 2 with adj. p-value <0.05 (C) The samples from each group were separated in the PCA plot The ratio of PC1 and PC2 was high, indicating an obvious difference between groups and meaningful results of subsequent difference analyses should be reliable. (D) Heatmap of significantly differentially expressed genes.
[image: Figure 2]FIGURE 2 | GSE66271 (M1) dataset analysis (A) Boxplots. (B) Volcano map; Blue and red dots represent up and downregulated genes. The current threshold was |logFC| >2 with a adj. p-value <0.05 (C) PCA plot indicated an obvious difference between the groups. (D) Heatmap of significantly differentially expressed genes.
[image: Figure 3]FIGURE 3 | Screening DEMGs by intersecting DEGs and MRGs. Venn diagram of DEGs in M0 (A) and M1 (B) datasets and MRGs. GO and KEGG pathway enrichment analysis and PPI network.
GO (Figure 4A) and KEGG pathway enrichment (Figure 4B) analyses were performed to clarify the DEGs’ potential biological processes and signaling pathways. DEG expression was determined using the M1 dataset, and the data (Supplementary Tables S5, S6) were visualized. The plot can be divided into the inner and outer circles. Each column of the inner circle corresponds to an entry, and the height is the relative size of the adj. p-value. The higher the value, the smaller the p. adjust of the ID. The color of the corresponding column represents the Z-score value of the entry. “Up” and “Down” represent the logFC of the molecules corresponding to the entry as positive and negative.
[image: Figure 4]FIGURE 4 | Results of GO enrichment (A) and KEGG pathway analyses (B).
Protein coding genes undergo transcription and translation to produce corresponding proteins with genetically determined functions. In contrast, the execution of protein function is not isolated, and there is a mutual connection between individual proteins. The STRING database collected PPI information from the DEMGs, and the “highest confidence (0.900)” was set as the required minimum interaction score. The data were imported into Cytoscape (v3.8.0) for network visualization. The color of the network node represents whether a gene is up or downregulated, and the size of the network node correlates positively with the degree of the node (Figure 5).
[image: Figure 5]FIGURE 5 | PPI network with node degree value with trends. A more considerable degree value of a target represents more association with other targets. Green represents downregulation and red represents upregulation.
3.2 Result of Cox Regression Analysis and Screened Prognostic Related DEMGs
At a screening conditional p-value <0.05, univariate Cox regression analysis results showed that 5 up and 29 downregulated DEMGs were associated with patient prognosis, and gene-disease associations became smaller when the HR approached 1. High expression of risk genes (HR > 1) was associated with poor prognosis, whereas high expression of protective genes (HR < 1) was associated with good prognosis (Figure 6A). The risk genes that were upregulated and protective genes that were downregulated in tumors were of particular interest. By intersection screening, 3 upregulated risk genes and 19 downregulated protective genes were obtained from the DEMGs (Figure 6B, C).
[image: Figure 6]FIGURE 6 | The forest plot shows the results of the univariate Cox regression analysis (A); The up-regulated risk genes (B) and down-regulated protective genes (C) in DEMGs were screened by taking the intersection.
To further screen and explore the relationship between the obtained genes and prognosis, the expression of each gene in TCGA-KIRC patients was assessed, duplicates were excluded, and the gene expression levels were divided into a high expression (high) and low expression (low) group according to the median expression level. The patients’ differential OS, DSS, and PFI were analyzed by Cox regression to plot the KM survival curves; Screening resulted in 16 prognostically relevant DEMGs (Table 1) (Supplementary Figures S1, S2). The expression of potential biomarkers under different survival outcomes was explored in the TCGA-KIRC cohort. High expression of risk genes and low expression of protective genes correspond with worse prognostic outcomes (Figure 7A). pRCC is the second most prevalent phenotype among RCC, and similar results were found in the TCGA-KIRP cohort (Figure 7B).
TABLE 1 | Significance testing for survival analysis.
[image: Table 1][image: Figure 7]FIGURE 7 | Clinical outcome correlation analysis of the DEMGs. Boxplots showed that DEMG expression differed significantly between patients with different clinical outcomes. Compared with normal individuals, patients in the TCGA-KIRC cohort (A) and TCGA-KIRP (B) whose clinical outcome was survival had upregulated risk gene expression and downregulated protective gene expression. This trend was more pronounced in patients with a clinical outcome of death.
Delong’s test was used to test the prediction accuracy of independent DEMGs, and the results were visualized with the pROC package. The area under the ROC curve range (AUC) ranged from 0.5 to 1. The closer the AUC is to 1, the higher the detection accuracy. Conversely, an AUC equal to 0.5 suggests low accuracy of detection. The selected DEMGs all had high accuracy and could predict ccRCC outcomes (Figure 8).
[image: Figure 8]FIGURE 8 | ROC curves for the 3 upregulated risk genes (A) and the 19 downregulated protective genes (B)–(E). Construction and Evaluation of the MRSS Prognostic Value.
Lasso Cox regression analysis was performed to test whether the screened DEMGs could serve as a prognostic biomarker for ccRCC (Figures 9A,B). The model achieves the best prediction when 7 is chosen as the penalty coefficient (Figure 9C) (Supplementary Tables S7, S8). We also performed multivariate Cox regression analysis on the 7 metabolism genes, which were still able to enter the equation as a prognostic predictor (Supplementary Table S9). The corresponding regression coefficients of 7 metabolic genes, MTHFD2, RRM2, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2 were 0.075, 0.323, - 0.057, - 0.350, - 0.138, - 0.018 and -0.006, respectively (Figure 9D). The formula of the established MRSS was as follows:
[image: image]
[image: Figure 9]FIGURE 9 | MRSS built using ccRCC patient data (A) Optimization of the model parameters by 10-fold cross-validation. (B) The risk score, survival status, and heatmap of 7 DEMGs in the TCGA-KIRC patient cohorts (C) Lasso coefficient profiles of the 16 DEMGs from the survival analysis and (D) coefficient value barplot of each model gene.
3.3 The Value of MRSS in Predicting Clinical Characteristics
Based on the MRSS formula, the risk score of each patient in the TCGA-KIRC cohort was collected, and the patients were subsequently divided into high-risk and low-risk groups based on the median score. Results from the KM survival curve for the prognosis of patients in the high-risk group performed worse than those in the low-risk group (Figure 10A). ROC curves were plotted to evaluate the ability of the established models to predict patient outcomes at 1, 3, and 5 years and the AUC values were 0.716, 0.681, and 0.691, respectively, indicating that the established models were able to predict patient outcomes (Figure 10B).
[image: Figure 10]FIGURE 10 | Establishment of MRSS and assessment of its predictive value using nomograms (A) OS survival curves were significantly different between the high- and low-risk groups in the TCGA-KIRC dataset. (B) Time-dependent ROC curves showed that MRSS predicted patients 1 -, 3 - and 5-years OS with sufficient accuracy (C) Nomogram for predicting patient outcome in the TCGA-KIRC cohort incorporating multiple clinicopathologic factors. DCA curves to examine the clinical application of MRSS, nomogram, and independent clinicopathological factors at 1- (D), 3- (E), and 5-years (F).
Univariate and multivariate Cox regression analyses determined whether the established MRSS had prognostic significance. The univariate Cox regression analysis showed that risk scores, TNM stage, cancer stage, and serum calcium concentration may be reliable prognostic indicators. Furthermore, the risk score was the only significant predictor in the multivariate Cox regression analysis. These results suggested that the established MRSS model could be a valuable biomarker for predicting ccRCC outcomes (Table 2).
TABLE 2 | Univariate and multivariate Cox regression analysis of clinicopathological factors associated with OS of ccRCC patients.
[image: Table 2]The nomogram is a standard clinical tool to evaluate patient prognosis, combining different prognostic factors and variables to comprehensively assess the probability of clinical events within a certain period. Compared with traditional disease staging, the user-friendly nomogram brings higher accuracy and is more accessible to understand prognoses by digitizing various factors and simple calculations (Balachandran et al., 2015). Several factors showed prognostic correlation, so a nomogram containing a variety of pathological factors was established, including the MRSS model. The nomogram (Figure 10C) showed that many prognostic factors were digitally assigned, and ccRCC patient outcomes could be reliably predicted by calculating the score.
The consistency index (c-index) refers to the proportion of all patient pairs whose predicted results are consistent with actual observations. The c-index was used to evaluate the predictive ability of various characteristics. The nomogram c-index that combined multiple clinicopathological factors was the highest at 0.771 and slightly weaker at MRSS, with a c-index of 0.769 compared with 0.755 in the conventional TNM stage c-index (Table 3). As a result, the model outperformed conventional TNM stage prediction but was weaker than the comprehensive nomogram. Consistent with the c-index, the nomogram that incorporated multiple clinicopathological factors performed best in the DCA curve (Figures 10D–F).
TABLE 3 | C-index.
[image: Table 3]3.4 Validation of Other Kidney Cancer Species
According to the WHO classification of urinary cancers, ccRCC, characterized by malignant tumors composed of clear or eosinophilic cytoplasmic cells, is the largest pathological renal cancer subtype, accounting for 60–85% of cases. The second most common RCC is pRCC, which originates from tubular epithelial cells and accounts for 18.5% of reported RCC cases.
The model in this study was validated using representative pRCC and clinical data from the TCGA-KIRP cohort. A risk score was calculated for each patient in the TCGA-KIRP cohort using the previously established MRSS formula. The cohort was divided into high- and low-risk groups based on the median patient risk score.
Survival analysis showed that the low-risk group had a better prognosis than the high-risk group (Figure 11A) (p = 0.001; HR = 2.84, 95% CI = 1.50–5.38). Time-dependent ROC analysis curves showed good agreement between the actual OS of the model built-in patients in predicting OS (Figure 11B, 0.828, 0.743, and 0.707 in 1, 3, and 5 years, respectively). A predictive nomogram was developed using standard clinical features and MRSS for predicting the likelihood of 1, 3, and 5-years prognostic survival in patients with pRCC (Figure 11C). The calibration curve showed that the predictive effect of the model on patient survival outcomes fitted well with the actual observation (Figure 11D). C-index and DCA curve results consistently revealed that the predictive effect of MRSS on the prognostic survival probability of pRCC was better than that of conventional TNM staging, and the nomogram had the best predictive effect (Figures 11E–G).
[image: Figure 11]FIGURE 11 | The predictive performance of MRSS using the TCGA-KIRP cohort (A) OS survival curves show that the low-risk group has better prognostic outcomes than the high-risk group. (B) Time-dependent ROC curve analysis of MRSS at 1, 3, and 5 years (C) Nomogram used to predict 1-, 3-, and 5-years survival probabilities for patients in the TCGA-KIRP cohort. (D) Calibration curves were used to evaluate the fitting effect of the nomogram on the prediction of patient survival probability at 1, 3, and 5 years with the actual outcomes. DCA curve of the nomogram, MRSS, and pathology-based tumor staging to evaluate the survival prediction of patients in the TCGA-KIRP cohort at 1(E), 3(F), and 5(G) years.
To further investigate the prognostic value of the established model, GENT2 (Figure 12A) and CPTAC (Figure 12B) databases were used to examine the expression of each gene in the MRSS model at the transcription and protein levels; we also tested transcript levels in cultured cells (Figure 12C). Consistent with the TCGA database, the respective genes composing MRSS maintained similar transcription and protein expression. The GEPIA database (Supplementary Figure S3A) and Kaplan-Meier plot (Supplementary Figure S3B) results showed that the expression of each gene in MRSS was highly correlated with the prognosis of ccRCC patients, and the respective independent genes could serve as potential biomarkers.
[image: Figure 12]FIGURE 12 | RCC biomarker expression at the transcript and protein level (A) 7 independent biomarkers had different transcript expressions in tumor and normal tissues. (B) 7 independent biomarkers had different protein expression in tumor and normal tissues. (C) 2 risky genes, RRM2 and MTHFD2, significantly increased in 786-O cells compared with HK-2 cells at the transcript level. The remaining 5 protective genes, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2, were significantly down-regulated in 786-O cells compared to HK-2 cells at the transcript level. All results are expressed as mean ± SD, n = 6 per group.
4 DISCUSSION
RCC, also known as renal adenocarcinoma, is a highly malignant tumor in the urinary system that accounts for 80–90% of malignant renal tumors. This disease has a high degree of heterogeneity, because it is associated with mild symptoms in its early stages and is thus usually diagnosed and treated once it has advanced (Hsieh et al., 2017; Motzer et al., 2022). Kidney cancer is the third most common cancer of the genitourinary system, second only to prostate and bladder cancer, accounting for 2–3% of malignant tumors in adults (MacLennan et al., 2012). The incidence and mortality of RCC are rising each year, drawing worldwide attention (Mokdad et al., 2017).
Past studies have explored the molecular mechanisms of common RCC subtypes such as ccRCC and pRCC. The findings suggest that genes associated with kidney cancer, including VHL, MET, FH, FLCN, TSC1, TSC2, and SDH, are involved in metabolic pathways linked to oxygen and iron or nutrient sensing, thus characterizing kidney cancer as a cellular metabolic disease (Linehan et al., 2010). Indeed, the carcinogenic process of ccRCC, the primary subtype of RCC, is closely related to metabolism. A hallmark of ccRCC is metabolic remodeling, including stabilization of HIF1/2 transcription factors resulting from VHL mutations, which create pseudohypoxia, increase glycolysis and angiogenic growth factor secretion, and elevate expression of proteins, including CCND1, PDK1, LDH, and GLUT1, that are associated with glucose metabolism regulation and cell proliferation (Linehan et al., 2010; Linehan et al., 2019; Xiao et al., 2020).
More patients show no significant prognostic improvement following applied tumor immunotherapy, suggesting that reliable biomarkers for predicting treatment outcomes should remain a significant focus of oncology research efforts (Motzer et al., 2018; Motzer et al., 2019; Rini et al., 2019; Braun et al., 2021). The current study aims to establish reliable biomarkers associated with metabolism to effectively predict the prognostic outcome of ccRCC patients. The role of metabolism-related genes in the development and metastasis of ccRCC was used to construct a prediction model by analyzing and validating it using the TCGA-KIRP cohort and external datasets. Since the two pathological subtypes, ccRCC, and pRCC, account for more than 90% of RCC case reports, they were used to assess the efficacy of the established prediction model in RCC.
Human-derived genes using metabolic terms were downloaded from the KEGG database, and the GSE66272 dataset was downloaded from GEO. Since the GEO dataset has pre- and post-tumor metastasis subsets, we separated these into the GSE66270 and GSE66271 datasets to find DEGs. These genes were intersected to obtain differentially expressed before and after metastasis. The DEGs were crossed with metabolism-related genes to obtain DEMGs before and after tumor metastasis. GO and KEGG pathway enrichment analysis results showed that DEMGs were associated with multiple metabolism-related biological processes and pathways. The TCGA-KIRC cohort was then selected as the data cohort to elucidate the correlation between metabolism and ccRCC. Using univariate Cox regression analysis on the DEMGs, the HRs of DEMGs for ccRCC were obtained. Of these, upregulated risk genes and downregulated protective genes were selected to coincide with tumor progression.
The prognosis-related ROC curves of each gene were plotted to assess the relationship between prognosis-relevant DEMGs and the OS, DSS, and PFI by KM patient survival curves. The prognosis-related DEMGs were selected for further model construction. MRSS predictive prognosis was developed using Lasso-Cox regression analysis of the selected genes. These included the RRM2 gene, which encodes a ribonucleotide reductase subunit and provides raw materials for DNA synthesis. Deregulated cell proliferation dramatically increases DNA replication in cancer cells, increasing the demand for raw materials needed for DNA synthesis. Studies indicate that RRM2 is involved in cytogenetic material synthesis and promotes the growth and metastasis of various cancers (Dawany et al., 2011; Das et al., 2021). In contrast, silencing RRM2 gene expression induced cell cycle arrest and inhibited cell proliferation (Yang et al., 2017). Moreover, RRM2 promoted RCC cell acquired resistance to VEGF tyrosine kinase inhibitors, inhibiting the effect of PD-1 blocker immunotherapy (Xiong et al., 2021).
MTHFD2 encodes a bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, a mitochondrial enzyme that participates in one-carbon metabolism, and studies indicate that in RCC, MTHFD2 can remodel metabolism through RNA methylation. In contrast, knockdown of MTHFD2 expression reduced xenograft tumor growth (Green et al., 2019). This may be associated with modulation of the NADPH to NADP ratio in cancer cells, depleting GSH, and triggering cancer cell apoptosis (Yang et al., 2022). MTHFD2 is also a metabolic checkpoint linking purine metabolism to autoimmune responses (Sugiura et al., 2022). It is highly expressed in various cancers, playing a role in metabolic remodeling and regulating of the cell cycle in the mitochondria and nucleus, respectively (Lee et al., 2021b; Liu et al., 2021; Yao et al., 2021; Ren et al., 2022).
AGXT2 is a multifunctional mitochondrial aminotransferase with diverse cellular physiological functions predominantly expressed in kidney cells and hepatocytes. Its substrates are biomarkers for renal, cardiovascular, and metabolic diseases (Rodionov et al., 2014; Ye et al., 2021).
ETNK2 is an ethanolamine kinase that has enhanced expression in gastric, non-small cell lung, and prostate cancers (Miwa et al., 2021). ETNK2 promotes liver metastasis of gastric cancer by inhibiting the p53-Bcl2 apoptotic pathway, resulting in a poor prognosis. Phosphatidylethanolamine synthesis in non-small cell lung cancer is significantly enhanced by ETNK2, whereas reduced ETNK2 expression in prostate cancer results from the loss of TET2 targeted demethylation (Kamdar et al., 2019; Lesko et al., 2021).
HOGA1 encodes the mitochondrial 4-hydroxy-2-oxoglutarate aldolase, and mutations cause oxalate accumulation in the kidney and primary hyperoxaluria type 3 (Ventzke et al., 2017).
GLDC primarily regulates glycine metabolism and is an essential metabolic enzyme for protein and amino acid metabolism. GLDC also promotes non-small cell lung cancer progression by inducing glycolysis with pyrimidine metabolism. GLDC inhibition impairs pyruvate metabolism in cancer cells, resulting in loss of their metabolic energy source (Zhang et al., 2012; Woo et al., 2018). GLDC upregulation induces autophagy in HCC cells and inhibits liver cancer metastasis. High GLDC expression in neuroblastoma cells prevents the accumulation of toxic metabolites. In contrast, GLDC inhibition in glioblastoma causes an accumulation of glycine and results in reduced cell viability, indicating that glycine catabolism by GLDC is critical for proliferation and tumorigenesis (Alptekin et al., 2019; Abdollahi et al., 2021). However, GLDC was significantly decreased in ccRCC, while overexpression suppressed the proliferation and migration of tumor cells (Chen et al., 2020).
Previous studies indicate that the ALDH6A1 gene is related to the aldehyde dehydrogenase family of proteins, and the mitochondrial methylmalonate semialdehyde dehydrogenase encoded by ALDH6A1 functions in the valine and pyrimidine catabolic pathways. There is an inverse correlation between ALDH6A1 expression and both RCC progression and patient outcomes (Perroud et al., 2009). A similar trend was reported during collecting duct cancer and the progression of liver cancer (Wach et al., 2019; Shin et al., 2020). Studies have also shown that ALDH6A1 was positively expressed in breast cancer stem cells, and gradually decreased during tumor progression (Johansson et al., 2015; Xu et al., 2021). These results indicate that the same trends occur in the progression of different cancer types, suggesting that ALDH6A1 may be involved in tumor initiation and progression.
PRCC is the second most common RCC subtype, histologically resembling ccRCC in anatomic location and sharing many similar oncogenic factors (Guimarães-Teixeira et al., 2021; Tian et al., 2021; Weng et al., 2021). As a result of possible similarities in anatomical location, causative factors, and histological type, TCGA-KIRP data was used as a validation cohort to evaluate the predictive value of MRSS.
Results of the survival analysis were used to divide patients into a high-risk and low-risk group based on the median risk score calculated by MRSS. There was a significant difference in the OS of the two groups of patients, indicating that MRSS may have the potential to become an effective biomarker for predicting ccRCC and pRCC outcomes. Furthermore, the ROC curve drawn by Delong’s test results indicated that the model was in good agreement with the observed patient prognosis. The nomogram with age, gender, pathological stage, and TNM stage as covariates showed that the established model remained a reasonable independent predictor. To better decipher the power of the model in predicting disease outcomes, nomograms that combined multiple clinical variables were developed to score the survival probability of each patient. DCA curve and c-index results showed that MRSS had a higher predictive accuracy than traditional TNM staging for this outcome. However, nomograms that integrated multiple clinical variables still performed best. Interestingly, the MRSS constructed as a biomarker could reliably predict ccRCC and pRCC patient outcomes, indicating that the model was robust and broadly applicable. These findings may expand the horizons of RCC treatment.
In RCC and other carcinoma research, biomarkers for predicting outcomes have become widely used (Huang et al., 2016; Mo et al., 2018; Qu et al., 2018; Wei et al., 2019). At the time of preparation of this manuscript, the existing literature had established and published studies on metabolic risk models for ccRCC (Liu et al., 2020; Guo et al., 2021). The number of metabolic genes associated with prognosis was different from those shown here due to varying screening criteria. However, however, the RRM2 and ALDH6A1 genes were included in the results, indicating that the model was reliable and robust.
This study explored a potential association between metabolism and ccRCC. The predictive effect of the established biomarkers based on the seven metabolic genes was verified as reliable and stable for patients with ccRCC and pRCC. The established model could serve as an independent prognostic biomarker, provide potential therapeutic targets for the clinical treatment of RCC, including ccRCC and pRCC, and add a dimension for correlation studies.
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Background

Treatments for patients with early‐stage hepatocellular carcinoma (HCC) include liver transplantation (LT), liver resection (LR), radiofrequency ablation (RFA), and microwave ablation (MWA), are critical for their long-term survival. However, a computational model predicting treatment-independent prognosis of patients with HCC, such as overall survival (OS) and recurrence-free survival (RFS), is yet to be developed, to our best knowledge. The goal of this study is to identify prognostic factors associated with OS and RFS in patients with HCC and develop nomograms to predict them, respectively.



Methods

We retrospectively retrieved 730 patients with HCC from three hospitals in China and followed them up for 3 and 5 years after invasive treatment. All enrolled patients were randomly divided into the training cohort and the validation cohort with a 7:3 ratio, respectively. Independent prognostic factors associated with OS and RFS were determined by the multivariate Cox regression analysis. Two nomogram prognostic models were built and evaluated by concordance index (C-index), calibration curves, area under the receiver operating characteristics (ROC) curve, time-dependent area under the ROC curve (AUC), the Kaplan–Meier survival curve, and decision curve analyses (DCAs), respectively.



Results

Prognostic factors for OS and RFS were identified, and nomograms were successfully built. Calibration discrimination was good for both the OS and RFS nomogram prediction models (C-index: 0.750 and 0.746, respectively). For both nomograms, the AUC demonstrated outstanding predictive performance; the DCA shows that the model has good decision ability; and the calibration curve demonstrated strong predictive power. The nomograms successfully discriminated high-risk and low-risk patients with HCC associated with OS and RFS.



Conclusions

We developed nomogram survival prediction models to predict the prognosis of HCC after invasive treatment with acceptable accuracies in both training and independent testing cohorts. The models may have clinical values in guiding the selection of clinical treatment strategies.
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Introduction

Liver cancer is one of the most prevalent and aggressive tumors, as well as the third leading cause of cancer-related mortality, with roughly 906,000 new cases and 83,0000 deaths reported in 2020 (1). Hepatocellular carcinoma (HCC) is the most common primary liver cancer comprising 75%–85% of all liver cancers. At present, there is no effective method for the treatment of advanced liver cancer, so the early treatment of liver cancer is very important for the prognosis of patients (2).

Early-stage HCC has been defined as Barcelona Clinic Liver Cancer (BCLC) 0 and A stages (BCLC 0/A), with curative therapy being the primary therapeutic option (2, 3). The treatment of early-stage HCC is feasible, but most patients with intermediate or advanced liver cancer have limited treatment opportunities and receive palliative treatment. The main curative treatments for early-stage HCC are liver resection (LR) and liver transplantation (LT). Radiofrequency ablation (RFA) or microwave ablation (MWA) is a viable minimally invasive therapy option for very early and early HCC, with equivalent outcomes to surgical resection (4–7). The high postoperative recurrence rate of liver cancer is the main obstacle affecting the low survival rate of patients with liver cancer (8–10).

There are several staging and grading systems for HCC, most notably the BCLC classification and the AJCC/TNM eight edition (11, 12). Several other factors were reported as potential predictor for the postoperative outcomes of patients with HCC, such as aspartate aminotransferase–to-platelet ratio index, albumin-bilirubin score (ALBI), the Model for Endstage Liver Disease (MELD) score and the Child-Pugh score (11, 13, 14). In addition, there are a few machine learning models for predicting the prognosis of cancer patients for other types of cancers based on histopathological images and multi-omics data (15–18). However, to our best knowledge, an accurate model predicting treatment-independent prognosis of patients with HCC, such as overall survival (OS) and recurrence-free survival (RFS), is yet to be developed. Although the treatment technology of HCC has made progress, the OS and RFS of patients with HCC are still relatively low. At present, there is still an urgent need for accurate models to predict OS and RFS in patients with HCC, guide individualized treatment, and prolong survival.

Nomogram is a user-friendly graphical prediction model tool that can help with therapeutic decision-making by quantifying the impacts of a variety of parameters (19). Therefore, we aimed to identify prognostic factors associated with OS and RFS in patients with HCC with different invasive treatments, including LT, LR, and minimally invasive approach (RFA or MWA) and develop nomograms to estimate 3-year and 5-year OS and RFS, respectively.



Materials and methods


Study Population

We retrospectively retrieved 730 patients with HCC underwent LT, LR, and RFA or MWA in three Chinese medical centers (Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; The First Central Clinical School, Tianjin Medical University, Tianjin, China; and Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China), and the follow-up deadline was on May 2019.

The inclusion criteria were as follows: (1) patients were validated by pathological diagnosis with primary HCC and assessed at BCLC 0/A; (2) patients underwent LT, LR, and RFA or MWA; (3) patients with complete clinic-pathological follow-up data; and (4) distant metastasis was not found.



Data Collection and Follow-Ups

In our study, we collected the following clinical data from patients with HCC: (1) demographic characters, including age, gender, body mass index (BMI), and cirrhosis; (2) tumor size (largest tumor diameter), number, and location were estimated using magnetic resonance imaging (MRI) and/or computed tomography (CT) before treatment; (3) curative options, including LT, LR, and RFA or MWA; (4) microvascular invasion and differentiation grade were assessed postoperatively by postoperative pathology; and (5) BCLC classification was used to identify tumor stage. BMI was calculated using the following formula: BMI = weight (kg)/height (m2).

OS was defined as the time from the date of surgery to the date of death, and RFS was defined as the time from surgery to the date of first recurrence. All data were obtained from the first laboratory examination after admission. hepatitis C virus (HCV) and/or hepatitis B virus (HBV) infection as the presence of absence of anti-HCV or HBV surface antigen, respectively. Laboratory tests included routine blood tests, liver function tests, and alpha fetoprotein (AFP). Subgroup analysis will be performed based on Laboratory tests as follows: gamma-glutamyl transpeptidase (GGT) (<45 versus  ≥45, U/L), albumin (ALB) (<35 versus ≥35, g/L), prothrombin time (PT) (≤13 versus>13, s), aspartate aminotransferase (AST) (≤40 versus>40, U/L), total bilirubin (TBIL) (<20 versus ≥20, µmol/L), and AFP (<400 versus ≥400, ng/ml). MELD score grade, Child-Pugh Classification, and ALBI grade were also recorded. MELD score has been proved to be a predictor of survival in different end-stage liver diseases (20). Liver function was evaluated using Child-Pugh classification system. ALBI grade I: ≤−2.60 score; ALBI grade II: >−2.60 to ≤−1.39 score; ALBI grade III: >−1.39 score.



Statistical Analysis

Statistical analysis was performed by R software (R Statistical Software, version 4.1.2). Independent prognostic factors were identified using multivariate Cox regression analyses. The results are presented as hazard ratio (HR) with 95% confidence intervals (CIs). Nomogram and calibration plots were constructed using R software. The C-index, ROC curve, calibration curve, and DCA were used to assess the nomogram. On the basis of the nomogram risk scores, Kaplan–Meier (K–M) survival curves were plotted for patients in the high-risk and low-risk groups.




Results


Patients’ Demographics and Clinical Characteristics

As shown in Table 1, a total of 730 patients diagnosed with primary HCC were included in our research. After using R software, patients were randomly allocated in a 7:3 ratio between the training cohort (512 patients) and the validation cohort (218 patients). In the OS analysis, the median follow-up period of the entire study cohort was 56.9 months (interquartile range, 2.8–116.3 months). In the RFS analysis, the median follow-up period for the overall research population was 41.3 months (interquartile range, 1.7–116.3 months). The training cohort was used to build the nomogram and internally validate the model, whereas the validation cohort was utilized for external verification. Both the training and the validation cohort had no statistical differences in their baseline characteristics in OS or RFS groups (Table 1).


Table 1 | Demographic and clinical characteristics of patients.



In the entire cohort, 68.8% were aged < 60 years, 18.7% of the population were women, 58.8% were BMI < 25, and 87.8% of patients had cirrhosis. For all evaluated tumors, CT, MRI, or pathological examination results were available. Tumor size was defined as the largest diameter and 69.9% were less than 3 cm. There were 576 cases with a single tumor and 154 cases with multiple tumors. According to tumor location, 127 cases were in the left lobe, 571 cases were in the right lobe, and 32 cases were in both lobes. Pathological examination revealed microvascular invasion in 13.3% of all patients, whereas 55.3% were not. Child-Pugh grade and ALBI grade were used for assessment of hepatic function, and MELD score wasused to assess disease severity. After evaluation, most patients with liver cancer have good liver function.

The other components included GGT < 45 U/L (43.2% versus 56.8%), ALB < 35 g/L (26.6% versus 73.4%), PT ≤ 13 s (47.5% versus 52.5%), AST≤ 40 U/L (60.8% versus 39.2%), TBIL < 20 µmol/L (56.4% versus 43.6%), AFP < 400 ng/ml (86.6% versus 13.4%), HCV negative (18.6% versus 81.4%), and HBV negative (91.8% versus 8.2%). In the BCLC classification, grades 0/A accounted for 15.6% and 84.4%, respectively.



Identification Prognostic Risk Factors For OS and RFS in 512 Patients With HCC

Multivariate analysis was conducted to identify the prognostic risk factors for OS and RFS. The results are shown in Table 2. In the OS analysis, gender (HR: 1.680; 95% CI: 1.002, 2.817; P = 0.049), BMI (HR: 1.621; 95% CI: 1.131, 2.324; P = 0.009), tumor number (HR: 2.165; 95% CI: 1.323, 3.544; P = 0.002), tumor size (HR: 2.180; 95% CI: 1.412, 3.391; P < 0.001), and operation (LR: HR: 3.905, 95% CI: 2.068, 7.372; P < 0.001; RFA or MWA: HR: 7.135, 95% CI: 3.906, 13.033; P < 0.001) were statistically significant differences. In the RFS analysis, tumor number (HR: 1.829; 95% CI: 1.223, 2.736; P = 0.003), operation (LR: HR: 6.019; 95% CI: 3.588, 10.098; P < 0.001; RFA or MWA: HR: 12.089; 95% CI: 7.417, 19.703; P < 0.001), GGT (HR: 1.650; 95% CI 1.199, 2.269; P = 0.002), and HCV (HR: 0.430; 95% CI: 0.213, 0.870; P = 0.019) were considered statistically different.


Table 2 | Multivariate analyses for OS and RFS in patients with 512 HCC (training cohort).





Nomogram for OS and RFS Construction and Performance Evaluation

The identification prognostic risk factors of OS and RFS were included to create prognostic nomograms to assess the 3-year and 5-year OS and RFS of patients with HCC (Figure 1). Nomograms predicted 3-year and 5-year OS and RFS indicated that operation factors had major impacts on patient prognosis. The 3-year and 5-year AUCs for OS were 0.757 and 0.795, respectively, and were 0.788 and 0.801 for RFS, respectively (Figures 2A, B, E, F). In the OS testing cohort, the AUCs of 3-year and 5-year AUCs were 0.686 and 0.774, respectively (Figures 2C, D). In the RFS testing cohort, the AUCs of 3-year and 5-year AUCs were 0.768 and 0.786, respectively (Figures 2G, H). On the 3-year and 5-year calibration plots of OS and RFS, calibration curves revealed the consistency of the nomogram between predicted and actual observed and showed that the nomograms were highly consistent in both training and validation cohorts (Figure 3). In addition, the DCA curves revealed that the nomogram had a high prediction efficiency for CSS of patients with HCC in both OS and RFS (Figure 4).




Figure 1 | Prognostic nomograms to predict the overall survival (A) and recurrence-free survival (B) of hepatocellular carcinoma patients.






Figure 2 | The overall survival ROC curves for 3 years (A) and 5 years (B), respectively, validated by the model establishment training cohort; ROC curves for 3 years (C) and 5 years (D), respectively, validated by the validation group. The recurrence-free survival ROC curves in the training cohort [(E) 3 years; (F) 5 years] and the validation cohort [(G) 3 years; (H) 5 years].






Figure 3 | The overall survival calibration curve for predicting patient survival at 3 years (A) and 5 years (B) in the training cohort and 3 years (C) and 5 years (D) in the validation cohort. The recurrence-free survival calibration curve for predicting patient survival at 3 years (E) and 5 years (F) in the training cohort and 3 years (G) and 5 years (H) in the validation cohort.






Figure 4 | The overall survival decision curve in the training cohort [(A) 3 years; (B) 5 years] and the validation cohort [(C) 3 years; (D) 5 years]. The recurrence-free survival decision curve in the training cohort [(E) 3 years; (F) 5 years] and the validation cohort [(G) 3 years; (H) 5 years].



Furthermore, the K–M survival curve revealed that high-risk individuals have a worse prognosis than low-risk patients (Figure 5). In both the OS and RFS analyses, the nomogram models outperformed the other factors, with C-indices of 0.750 (OS, 95% CI: 0.713–0.787) and 0.746 (RFS, 95% CI: 0.715–0.777) in the training cohort and 0.794 (OS, 95% CI: 0.739–0.849) and 0.757 (RFS, 95% CI: 0.708–0.806) in the validation cohort (Table 3).




Figure 5 | The Kaplan–Meier survival curves for low- and high- risk groups in patients with HCC based on risk scores. The overall survival Kaplan–Meier survival curves in the training cohort (A) and the validation cohort (B). The recurrence-free survival Kaplan–Meier survival curves in the training cohort (C) and the validation cohort (D).




Table 3 | Ranking of clinical staging system using C-index for OS and RFS in the training and validation cohorts.






Discussion

To our knowledge, this is the first attempt to construct prognostic nomograms for OS and RFS to predict the prognosis of patients with HCC with different invasive treatments, including LT, LR, and minimally invasive approach (RFA or MWA). Although our nomograms had good performance in predicting survival at 3 and 5 years in patients with HCC, it might be further improved by integrating more types of data, such as pathological images and multi-omics data (17, 21), and by applying more advanced classification algorithms as used in cancer diagnosis and other biological problems (15, 22). In the future, we will explore these directions.

Multivariate analyses revealed that the choice of different invasive treatments (including LT, LR, RFA, and MWA) may be an important independent prognostic factor in the patients with HCC. We have further shown that minimally invasive approach (RFA or MWA) was the strongest predictor, followed by LR and LT, but some studies reported retrospective studies contrary to our study. Resection is the preferred option for patients with early-stage liver cancer (BCLC 0/A) and confer 5-year OS rates of 64.2% (4, 23, 24). Studies by other investigators suggest that LT is the best treatment option for patients with early HCC (25, 26). Minimally invasive surgery has undeniably played a significant role in HCC treatment in recent years. RFA or MWA was a common type of minimally invasive surgery, they showed comparable outcome and similar survival rates with LR (27–29). Compared with our previous nomogram studies, we were fortunate to have access to treatment-independent prognostic factors, including LT, LR, RFA, and MWA (30). As a result, we created predictive nomograms to predict OS and RFS in patients with HCC undergone various invasive therapies. The nomograms were validated as an effective tool for predicting long-term outcomes. The current findings will need to be confirmed by larger prospective investigations into why different invasive treatments have different outcomes in the future. However, it is worthy noticing that we only considered single factors in the current analyses and ignore the relationship among these factors, for example, correlation and collinearity. Theoretically, integrating the correlation (collinearity) among the factors into multivariate analyses will increase the size of feature space and should increase the performance of our model. However, it will also make the model more complicated, and thus, we consider it as a future work.

In our study, tumor number (solitary versus multiple) was shown to play a role in the OS nomogram as well as in the RFS nomogram. Several studies have identified the presence of multiple tumors as a crucial risk factor for recurrence, which is consistent with the findings of our study (31, 32). Patients with HCC have a poor prognosis due to metastasis and recurrence. There is a strong association between tumor number > 1 and 3-year and 5-year OS, according to Xiao et al. (33). Compared with single tumor, multiple tumors are more prone to microvascular invasion (MVI) which will lead to increased tumor recurrence after surgery (34, 35).

In the OS nomogram, gender, BMI, and tumor size were also independent prognostic risk factors of patients with HCC. Gender was a prognostic factor also find in the nomogram for predicting the prognosis of patients with HCC with pulmonary metastases (36). In Global Cancer Statistics 2020, the incidence and mortality rates of liver cancer are two to three times greater in men than in women (1). Women are generally at lower risk for the development of HCC compared with men, and this may be due, in part, to the beneficial effects of sex hormones (37, 38). Sex hormone therapy is one of the potential development avenues of HCC treatment as part of multimodal liver cancer treatment.

In patients undergoing LR for HCC, preoperative bodyweight is linked to long-term prognosis (39). Furthermore, BMI ≥ 25 kg/m2 negatively affected the surgical outcomes of patients with HBV-related HCC (BMI < 25 kg/m2 group: 3-, 5-, and 8-year survival rates of 88.3%, 81.6%, and 73.9%, respectively, versus BMI ≥ 25 kg/m2 group 85.8%, 61.0%, and 48.1%, respectively) (40). Previous study had revealed that the beneficial BMI level for patients with HCC following MWA is 21.5 to 23.1 kg/m2 and can therefore achieve a longer survival time (41). Hence, it is critical for patients with HCC with weight concerns to confirm the beneficial BMI levels and the need for further research for different treatments.

Tumor size was not associated with RFS, and increasing trends toward the mortality of all patients with OS were observed for patients with a tumor size of ≤3 cm (21.9%) compared with patients with a tumor size of 3< R ≤ 5 cm (33.2%), which was consistent with previous work. However, in a large international study, large tumor size was the key parameter related to early HCC recurrence after LR, and they built a preoperative model for RFS in the entire cohort (low risk: 2-year RFS 64.8%; intermediate risk: 2-year RFS 42.5%; and high risk: 2-year RFS 20.7%) (42). A previous study has also reported that tumor size was not an independent prognostic factor of OS or RFS after curative resection and did not influence survival in patients with HCC without vascular invasion (43). We pointed out that tumor size is an important risk factor for OS and RFS, but different invasive treatments can obtain good clinical results and effectively reduce the recurrence rate. Therefore, tumor size is not a prognostic risk factor for the RFS nomogram.

In the RFS nomogram, there were prognostic risk factors also include GGT and HCV. A 384-patient study has shown that GGT > 50 U/L and indocyanine green retention of 15 min (ICG-R15) > 10% were identified as preoperative independent risk factors affecting 1-, 3-, and 5-year RFS (72.8%, 43.3%, and 27%, respectively) (44). A meta-analysis shows that high pretreatment serum GGT level is significantly correlated with poor survival and unfavorable clinicopathological features in patients with HCC, suggesting that pretreatment serum GGT may be an economical and effective prognostic biomarker for patients with HCC (45). Surgical patients who received HCV treatment had improved RFS compared with those who did not (91 vs. 80 months, p = 0.03) (46). Our findings are consistent with the few prior studies that found patients with HCC with HCV infection as a protective prognostic factor for patients with HCC in different invasive approaches to treatments. Patients with non-viral HCC have poorer prognosis than those with HCV-HCC (47). The reason why patients with HCV-HCC improve survival is that, possibly, antiviral therapy and virus replication reduced cancerous HCV‐HCC tissues  (46, 48–50). As a result, more research studies into the impact of antiviral medication on the outcomes of patients with HCC following surgery are needed.



Conclusions

Our study identified prognostic risk factors for OS and RFS in patients with early-stage HCC treated with different invasive treatments (including LT, LR, RFA, and MWA), and we established and validation two prognostic nomograms. Two nomograms will be clinical settings for customized risk assessment and surgical decision-making. Furthermore, developing personalized treatment regimens for patients with different prognoses is beneficial.
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There are many treatment options for advanced lung cancer, among which immunotherapy has developed rapidly and benefited a lot of patients. However, immunotherapy can only benefit a subgroup of patients, and how to select patients suitable for this therapy is critical. Tumor mutation burden (TMB) is one of the important reference indicators for immune checkpoint inhibitors (ICIs). However, there are many factors influencing the usage of this indicator, which will lead to considerable consequences if not treated well. In this study, we performed a case study on a male advanced lung squamous cell carcinoma patient of age 83. The patient suffered from “cough and sputum”, and did chest CT scans on 24 October 2018, which showed “a mass-like mass in the anterior segment of the right lung upper lobe, about 38mm×28mm”. He was treated with systemic chemotherapy; however, the tumor was still under progression. Although PD-L1 was not tested in gene testing, he had a TMB value of 10.26 mutations/Mb with a quantile value 88.63%. Thus, “toripalimab injection” was added as immunotherapy and the size of the lesion decreased. In summary, we adopted a clinical case as the basis to explore the value and significance of TMB in immunotherapy in this study. We hope that more predictive molecular markers will be discovered, which will bring more treatment methods for advanced lung cancer.
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Introduction

Lung cancer, also known as lung carcinoma, is one of the most prevalent malignant tumors worldwide (1, 2). Patients with lung cancer suffer frequently from recurrence and metastasis, while a few patients even cannot determine the original lesion (1, 3–5). Advanced lung cancer patients have diversified treatments. With the advancement of precision medicine and further exploration at the molecular level, molecular targeted drugs are widely used. It brings new treatment methods to lung cancer patients in addition to surgery and chemoradiotherapy. Targeted drug resistance cannot be avoided (6–11), and therefore, it is vital to actively find new treatments to prolong the survival time of patients.

In recent years, immune checkpoint inhibitors (ICIs) have developed rapidly, and monoclonal antibodies CTLA-4, PD-1, and PD-L1 have greatly extended the survival time of advanced lung cancer patients (12, 13). However, the efficacies of ICIs depend on the genetics of specific patients. Thus, it is critical to identify indicators that could predict the performance of different ICIs on a patient. Widely used indicators for immunotherapy include programmed death ligand-1 (PD-L1), mismatch repair (MMR), microsatellite instability (MSI), and tumor mutation burden (TMB). TMB is defined as the total number of substitutions and insertions, deletion mutations per megabase in the exon-coding region of a tumor specimen. High TMB usually means more neoantigens, and thus, immune system will have more chance to identify tumor cells. However, since TMB is an exome-wide indicator, it is not specific for detecting one specific mutation and one ICI. Thus, sometimes the patients selected based on this criterion will not benefit from immunotherapy. As a result, there is still a debate on the usage of TMB, and it is critical to show some clinical cases with immunotherapy and high TMB. This kind of cases can further guide the appropriate usage of this important indicator and help to select beneficiaries of immunotherapy in advance. In this paper, we use one advanced lung squamous cell carcinoma case as a discussion of the significance of TMB.



Case study

The patient suffered from “cough and sputum”, and he underwent chest CT scans on 24 October 2018 which showed “a mass-like mass in the anterior segment of the right lung upper lobe, about 38mm×28mm” (Figure 1).




Figure 1 | Two representative CTs of the patient on 24 October 2018.



Lung biopsy: (the right upper lung) Squamous cell carcinoma infiltration is seen in the large amount of fibrous collagen tissue. Whole-body PET/CT: 1. Peripheral lung cancer of the anterior segment of the right lung upper lobe involves the adjacent pleura; 2. Multiple metastases in the right pleura. Diagnosis is “right upper lung squamous cell carcinoma (T3N0M1a stage IVA)”. Ten-gene detection of puncture tissue: 10-gene mutations such as EGFR were not detected.

The patient was given “paclitaxel liposome + nedaplatin”, “docetaxel + nedaplatin”, and “gemcitabine + nedaplatin” systemic chemotherapy on 28 November 2018. During the reexamination of the lung lesions, there was no significant reduction compared with the baseline. Reexamination of the chest CT scan on 28 May 2019 revealed that the lung lesions were slightly enlarged, but less than 20% (Figure 2). The patient refused to continue chemotherapy. Then the patient was given “recombinant human endostatin injection” for antitumor angiogenesis and “afatinib” second-line systemic therapy.




Figure 2 | Two representative CTs of the patient on 28 May 2019.



Reexamination of the chest CT scan on 21 December 2019 revealed that the lung lesions were significantly enlarged (49 mm × 34 mm) (Figure 3), and bone imaging revealed new bone metastasis. The progress of the disease was evaluated. The blood gene test did not find the mutant gene. PD-L1 was not tested, but TMB had 10.26 mutations/Mb, and the quantile value was 88.63%.




Figure 3 | Two representative CTs of the patient in 21 December 2019.



On 14 January 2020, the systemic chemotherapy of “paclitaxel liposome + nedaplatin” was given again, the “recombinant human endostatin injection” antitumor angiogenesis treatment was continued, and the “toripalimab injection” was added with immunotherapy and continuous follow-up. On 20 April 2020, reexamination of the chest CT scan showed that the right lung lesion shrank to 33 mm × 30 mm (Figure 4).




Figure 4 | Two representative CTs of the patient on 20 April 2020.



Reexamination of the chest CT scan on 21 May 2020 showed that the right lung lesion shrank to 31 mm × 21 mm (Figure 5). Due to multicyclic chemotherapy, the patient began to show bone marrow suppression. On 11 August 2020, the number of circulating tumor cells (CTCs) was detected to be 2. Chemotherapy was stopped, and the “recombinant human endostatin injection” combined with “toripalimab injection” was continued.




Figure 5 | Two representative CTs of the patient on 21 May 2020.



On 10 August 2020, reexamination of the chest CT scan revealed that the lung lesions have not changed much from the previous one (Figure 6).




Figure 6 | Two representative CTs of the patient on 10 August 2020.





Discussion

It is critical to identify prognostic biomarkers that can predict the efficacy of a treatment, as well as the recurrence and survival of cancer patients. Many studies have focused on identifying these biomarkers (14–18), among which TMB received more and more attention. TMB refers to the sum of substitution, insertion, and deletion mutations in the coding region of the evaluated tumor cell genes (19). We can also simply think of how many cell genes in the tumor tissue have mutated. If tumor cells have more gene mutations (i.e., high TMB), they are more likely to produce abnormal proteins; these proteins are called neoantigens. Studies have shown that every 150 non-synonymous mutations produce one to two neoantigens, and these antigens can be the immune system that sees through and activates the body’s T-cell immune response (20–24). TMB is a pan-cancer immunotherapy biomarker, which has proven to be useful in almost all cancers including lung cancer, colorectal cancer, melanoma, endometrial cancer, cervical cancer, and bladder cancer.

Previous studies often used PD-L1 as a molecular marker for screening immune expression benefits (25). However, it was found in the phase III clinical trial of CheckMate 026 that even if the PD-L1 expression level is greater than 50%, patients cannot fully benefit from nivolumab treatment. In another study which based on this result, in the subgroup with high TMB, nivolumab had an ORR of 47%, while chemotherapy combined with nivolumab was 28%, and PFS was 9.7 months for the former and 5.8 months for the latter. It shows that nivolumab is significantly better than chemotherapy (26). From a genetic point of view, the more non-synonymous the mutations, the more the neoantigens may be recognized by the autoimmune system, and the final immunotherapy effect will be stronger. Therefore, the higher the TMB, the more it benefited from ICIs (27, 28). Both CheckMate 568 phase II and CheckMate 227 phase III studies have also confirmed that regardless of the level of PD-L1 expression, nivolumab combined with ipilimumab has benefited populations. However, the use of TMB as a molecular marker to predict efficacy can only be used in patients with TMB ≥10 mut/Mb; it was found that PFS was longer than that in the chemotherapy group, and the ORR was also higher. Therefore, we suggest that TMB ≥10 mut/Mb should often be considered as an effective cutoff index for screening patients who benefit from immunotherapy (29, 30).

A number of studies have shown that lung cancer patients with high TMB have better efficacy and prognosis after they used ICIs. In 2018, the National Comprehensive Cancer Network even included TMB in its lung cancer guidelines. Yarchoan et al. published an article in the New England Journal in 2017. The study compared the ORR value of TMB in the treatment of 27 kinds of tumors with PD-1 or PD-L1. The results showed that TMB was related to the ORR value of 55% of patients, and the efficacy prediction of lung cancer is more accurate. The linear relationship formula: overall effective rate = 10.8×log(X)-0.7, where “X” represents the number of somatic DNA mutation load per megabase (21). In the CheckMate 026 study, nivolumab- and platinum-containing chemotherapy was used in the first-line treatment of advanced lung cancer. WES was used to measure TMB, and the patients were divided into three groups (<100 mutations, 100–242 mutations, ≥243 mutations); the results showed that the high TMB subgroup (≥243 mutations) patients treated with nivolumab had higher ORR and longer PFS than the chemotherapy group (31). In February 2018, Annals of Oncology published two studies of CheckMate 017 and CheckMate 057. After 3-year minimum follow-up, whether it is squamous or non-squamous NSCLC, the OS value of the nivolumab group was significantly prolonged than that of the docetaxel group (HR = 0.70, 95% CI: 0.61–0.81), and they got benefits from continued survival (32). In addition, an article published on Nat Genet in 2019 (16) brought light to the prediction of the efficacy of TMB as ICIs. This is the largest clinical study on both of them so far. It includes 1,662 patients who have received ICIS treatment and also covers 10 types of malignant tumors. The study found that in most patients, the overall survival rate of 20% patients with TMB in the high is higher than that in 80% patients with TMB in the low, which confirms that TMB can be used as a biomarker for predicting the efficacy of ICIs. It has contributed to exploring the threshold of TMB.

The above paragraphs mentioned the use of WES to measure the TMB value, but the current clinical testing is mainly based on major genetic companies’ Panel, which may be closely related to the low price. It causes many uncertain factors, such as different test reagents, or different numbers of genes, and different set standard parameter values. However, regardless of the TMB detection method, the level of TMB expression needs to be considered related to many factors. Chalmers et al. (33) have found that there is a significant correlation between TMB expression and age. The study showed that median TMB at age 10 was 1.67 mutations/Mb, and median TMB at age 88 was 4.50 mutations/Mb. At the same time, the study also predicted the TMB of between age 10 and age 90 according to A linear model, and the final difference was 2.4-fold. Rizvi et al. (34) also studied the efficacy of pembrolizumab in the treatment of advanced lung cancer and found that it is closely related to smoking, changes in DNA repair pathways, and high expression of neoantigens in tumor tissues. These factors are also related to high TMB.

To sum up, immunotherapy has brought all cancer treatments into another era of precision medical care, with unlimited potential. The current research on its efficacy is generally considerable, and most patients can benefit from it. However, research on indicators for predicting its efficacy is still at the tip of the iceberg, and there is no clear single molecular marker that can determine the efficacy of ICIs. Therefore, it is hoped that more studies that can effectively predict molecular markers are in full swing. At present, it is certain that the combination of immunotherapy and existing treatment methods will be a key subject of lung cancer treatment research. At the same time, we are also looking forward to more new methods, but how to optimize the allocation of these combinations has a long way to go.
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Over the past two decades, the incidence of endometrial cancer (EC) is increasing, and there is a need for molecular biomarkers to predict prognosis and guide treatment. A recent study from The Cancer Genome Atlas suggested to implement the EC analysis by molecular profile for improving diagnosis, prognosis, and therapeutic treatment. In this study, next-generation sequencing was performed on 70 cases of G3 endometrioid ECs (EECs) using an 11-gene panel (TP53, MLH1, MSH2, MSH6, PMS2, EPCAM, PIK3CA, CTNNB1, KRAS, PTEN, and POL) for molecular classification. The molecular classification based on the 11-gene NGS panel identified four molecular subgroups: POLE-ultramutated (n = 20, 28.6%), MSI-H (n = 27, 38.6%), NSMP (n = 13, 18.6%) and TP53mut (n = 10, 14.3%). The NGS method showed 98.6% (69 of 70 cases, kappa value 98%) in concordance with the cases assessed by immunohistochemistry (IHC). Among the seven dead cases, four were MSI-H tumors, two were TP53mut/p53abn tumors, and one was NSMP tumors with an average overall survival (OS) of 14.7 months. TP53mut subgroup showed that poor OS rates and POLE group have favorable prognosis. Our work suggested that the 11-gene panel is suitable for molecular classification in G3 EECs and for guiding prognosis and treatment decisions.




Keywords: molecular subtype, endometrial carcinoma, POLE ultramutated, microsatellite instability, p53 abnormal



Introduction

Endometrial cancer (EC) is the sixth most diagnosed cancer in women worldwide (1). The incidence and mortality of EC gradually increases in recent years particularly in industrialized countries. In China, EC is the eighth most diagnosed cancer in women in China with estimated 63.4 thousand newly cases in 2015 (2, 3). The 5-year relative survival rate of EC is 72.8% (4). Bokhman’s dualistic classification broadly classified EC into type I and type II based on histological features and has long been used for clinical diagnostic and therapeutic direction (5). Type I ECs consist mostly of endometrioid ECs (EECs), which are typically low-grade with favorable prognosis. Type II ECs are mostly serous ECs with high-grade and worse prognosis. The 2014 WHO classification for ECs is based on morphologic features, but it has interobserver variation and poor reproducibility especially among high-grade ECs (6, 7). Traditional classification strategies for ECs have proven to be challenging due to the heterogeneous molecular feature of EC. In the last decade, emerging technologies allow the understand of cancer in molecular aspect and bring new diagnostic and therapeutic approaches for cancer into clinical practice (8–10). Like most other types of cancer, EC is a group of heterogeneous tumors with different molecular characteristics. In 2013, The Cancer Genome Atlas (TCGA) Research Network reported four molecular subgroups for EC: POLE (ultramutated), microsatellite instable (MSI, hypermutated), copy number high (CNH), and copy number low (CNL) based on a comprehensive genomic analysis of 373 endometrial carcinomas (11). POLE-ultramutated subgroup characterized by pathogenic POLE exonuclease domain mutations is composed of endometrioid tumors and associated with the most favorable prognosis. Microsatellite instable tumors characterized by deficient MMR (dMMR) with high microsatellite instability (MSI-H) have endometrioid histology and an intermediate prognosis. CNH subgroup characterized by high copy number alterations and TP53 mutations is associated with poor prognosis and serous histology. CNL subgroup is composed of low-grade endometrioid tumors that are microsatellite-stable and have an intermediate prognosis. The prognostic value TCGA classification has repeatedly been confirmed, offering the possibility of drastically improving the patient management (12–14). However, this classification remains challenging in practice, mainly due to expensive and difficulties of multi-omics analyses. Subsequent classifier, the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE), reproduced the four TCGA prognostic subgroups using immunohistochemistry (IHC) for mismatch repair (MMR) proteins and p53 as surrogates of MSI testing and copy number alteration analysis, respectively (15–18).

Given the accumulating evidence on the value of molecular classification on the prognosis prediction and personized treatment for EC, molecular classification is included in the fifth edition of the WHO classification of tumors of the female genital tract, the National Comprehensive Cancer Network (NCCN) and the ESGO/ESTRO/ESP guidelines for EC (19–21). Next-generation sequencing (NGS) technology is a promising method enabling large-scale genomic sequencing (22), which may have advantageous in accuracy and time and cost efficiency for molecular classification of EC. However, few studies have reported the utility of NGS panel alone for EC molecular classification. In this study, we applied NGS technology to determine the molecular subtypes of G3 EECs using a 11-gene panel and compared with IHC approaches.



Materials and methods


Case selection and histologic review

Our retrospective cohort consists of 70 patients with grade 3 EEC treated at Fujian Provincial Cancer Hospital from June 2018 to May 2021. According to the revised standards of the 5th edition of the WHO classification in 2017, all hematoxylin and eosin slides were reviewed by two pathologists (GC and JL) and the diagnosis of grade 3 EEC was confirmed on the basis of morphologic features. Clinical and pathology database of patients were collected, including age, tumor size, tumor size, FIGO stage, lymph node status, and LVSI. This retrospective study was approved by the Ethics Committee of Fujian Provincial Cancer Hospital.



Next-generation sequencing

For NGS assay, six to eight formaldehyde-fixed and paraffin embedded tissue (FFPE) sections of 5- to 10-µm-thin size containing more than 50% tumor cells were used, and total DNA was extract from FFPE using a TIANamp FFPE DNA Kit (TianGen, Beijing). DNA concentration was measured using a Quantus Fluorometer (Promega, Shanghai, China). Library was prepared using a RingCap amplicon library kit for the custom-designed 11-gene panel (SpaceGen, Xiamen, China). The panel targets the whole coding regions of TP53, MLH1, MSH2, MSH6, PMS2, and EPCAM and hotspot region of PIK3CA, CTNNB1, KRAS, PTEN, and POLE exonuclease domain. MSI status was determined by the NGS method including five mononucleotide repeat MSI markers (BAT25, BAT26, NR-21, NR-24, and MONO-27) within the 11-gene panel. Sequencing was performed on a Miseq Dx platform (Illumina, USA). Raw sequencing data were trimmed and aligned to human hg19 reference genome using Trimmomatic (version 0.36) and Burrow-Wheeler Aligner (BWA) (version 0.7.17). Next, aligned reads were processed to call SNVs and small Indels using Pisces (version 5.2.9), followed by variants annotation using ANNOVAR (version 20180426). MSIsensor-pro package (version 1.2.0) was used to identify MS-stable (MSS, no MSI makers), MSI-low (MSI-L, one MSI maker), and MSI-high (MSI-H, two or more MSI makers) tumors without matched normal sample (20).



Immunohistochemistry

IHC was performed on 3-µm-thick FFPE sections using primary antibodies as follows: MLH1 (clone: MAB-0838, 1:300, Maxim, Fuzhou, China), PMS2 (clone: MAB-0859, 1:300, Maxim, Fuzhou, China), MSH2 (clone: MAB-0836, 1:300, Maxim, Fuzhou, China), MSH6 (clone: MAB-0831, 1:300, Maxim, Fuzhou, China), and p53 (clone: MAB-0674, 1:300, Maxim, Fuzhou, China). Tumors showed any loss of nuclear expression of the four MMR proteins (MLH1, PMS2, MSH2, and MSH6) were designated as MMR-deficient (MMRd). P53 expression and mutant patterns were interpreted as abnormal/aberrant/mutation-type (p53abn) or wild type (p53wt) following previous published criteria (19). Three patterns were considered aberrant: (1) strong diffuse nuclear staining in > 75% of tumor cells; (2) complete absence of staining; and (3) cytoplasmic staining. All the IHC images for MMR status and p53 expression were reviewed independently by two pathologists (GC and JL).



MLH1 promoter methylation testing

Genomic DNA from 42 FFPE tumor samples was extracted by a TIANamp FFPE DNA Kit (TianGen, Beijing), and Bisulphite treatment was performed on 1 µg of DNA with the EpiTect Bisulfite kit (Qiagen, Valencia, CA, United States). Bisulfite-converted DNA was amplified for MLH1 (a methylation-independent reaction for normalization), and methylation status was analyzed on the basis of previously reported method (23).



Statistical analysis

Statistical analysis was performed in SPSS 22.0. Associations of clinicopathological parameters with molecular subtypes were compared using chi-squared test in. For the concordance of NGS-based and IHC-based methods, kappa value was calculated.




Results


Clinicopathological characteristics

Seventy patients with high-grade EEC were 29–67 years old at onset, with a median age of 54.5 years. All patients were operated by “hysterectomy, double ovaries and fallopian tubes and pelvic lymph node dissection”. Postoperatively, tumor diameter of 0.5–9 cm was seen (except for two cases which showed rough mucosa and no obvious tumor mass); as for the site of onset, 13 cases were in the lower part of the uterine body and 57 cases were in other parts of the uterine body. In our group, 33 cases had tumor infiltration depth of more than one-half of muscle layer, 28 cases had cancer thrombus in the vasculature, and 20 patients had lymph node metastasis. According to the 2009 International FIGO staging criteria, there are 29 patients in stage I, 14 patients in stage II, 24 patients in stage III, and three patients in stage IV. In terms of postoperative adjuvant therapy, 41 cases were treated with radiotherapy, 18 with adjuvant chemotherapy, three with adjuvant local radiotherapy, and eight without adjuvant therapy; as for concomitant diseases, eight patients had a history of hypertension (grades 2–3) and two patients had diabetes mellitus; regarding the family history of malignancy, there were six cases of patients with cancer in their immediate family. The baseline clinicopathological characteristics of the 70 G3 EEC patients are shown in Table 1. The univariable associations of their molecular subtypes with clinicopathological parameters were calculated. All clinicopathological parameters (age, tumor size, myometrial invasion, myometrial invasion, FIGO stage, lymph node status, and LVSI) are shown no significant relationship with molecular subtypes (P > 0.05).


Table 1 | Univariable associations of molecular subtypes with clinicopathological parameters.





Molecular typing based on NGS detection

The molecular classification using NGS panel for 70 G3 EECs was shown in Table 1. The molecular classification based on the 11-gene NGS panel identified four molecular subgroups: POLE-ultramutated (n = 20, 28.6%), MSI-H (n = 27, 38.6%), NSMP (n = 13, 18.6%), and TP53mut (n = 10, 14.3%). On the basis of the 11-gene NGS panel, pathogenic mutations of PTEN, TP53, PIK3CA, CTNNB1, and KRAS were found in 54.3%, 28.6%, 22.9%, 5.7%, and 12.9% of the total cases, respectively, as seen in Table 2 and Figure 1.


Table 2 | Molecular classification of 70 G3 EECs.






Figure 1 | Gene mutational profile 70 G3 EECs.



Among the 20 cases in the POLE-ultramutated subgroup, the most common hotspot mutations (P286R and V411L) were found in 10 (50%) and seven (35%) tumor samples, respectively (Table 2). In addition, A456P, P436R, and Y473C were each present in one case (Table 2). Furthermore, the most commonly hotspot mutation (P286R and V411L) covers 85% of the POLE-ultramutated cases. In addition, high mutational load and multiple molecular features were observed in the POLE-ultramutated subgroup with on two MMRd/MSH-H cases and seven TP53mut/p53abn cases (Table 3 and Figure 1).


Table 3 | Molecular characteristics of POLE-ultramutated G3 EECs.





MSI-NGS testing

We identified 28 MSI-H (40%), four MSI-L (5.7%), and 38 MSS (54.3%) EECs, respectively. Twenty-seven of the 28 MSI-H tumors were classified as MSI-H subtype with only one tumor that belongs to POLE subtype. Among these MSI-H tumors, two cases showed normal MMR staining by IHC and were classified to the NSMP group, indicating the strong consistency between the MSI-NGS and MMR-IHC methods. Further MLH1 methylation testing showed that one of the two doubtable cases was high-methylated (Figure 2) and the other was not methylated. The not methylated MSI-H case had two instable repeat loci (BAT-26 and MONO-27) with an additional MSH2 nonsense mutation (p.Q344X, mutation allele frequency: 48.17%) tested by NGS but showed normal MMR staining by IHC.




Figure 2 | Immunohistochemical staining characteristics of EECs of MLH1 methylation. (A) X40 and (B) X100: Morphology of high-grade endometrioid adenocarcinoma with MLH1 methylation. (B) MLH1 protein expression pattern is completely absent of high-grade endometrioid adenocarcinoma with MLH1 methylation (X200). (C–F) MSH2, MSH6, and PMS2 protein are positive expression pattern of high-grade endometrioid adenocarcinoma with MLH1 methylation (X200).



There were twenty (28.6%) tumors harboring somatic pathogenic mutations of TP53 identified by NGS, of which, 10 were classified to TP53mut, eight were POLE-ultramutated, and two were MSI-H (Table 4). Among these cases, five tumors showed normal p53 staining by IHC (three cases in the POLE-ultramutated group and two cases in the MSI-H group, see Table 4). In addition, there was one sample identified TP53wt by NGS but showed p53 abnormal staining by IHC.


Table 4 | Comparison of NGS and IHC for TP53 (p53) status assessment.





IHC

The molecular classification based on POLE sequencing and MMR and p53 IHC identified four parallel subgroups: POLE-ultramutated (n = 20, 28.6%), MMRd (n = 26, 37.1%), NSMP (n = 14, 20%), and p53mut (n = 10, 14.3%) (Figure 3). The molecular classification using NGS panel and IHC for 70 G3 EECs was shown in Table 1. The NGS method showed 98.6% (69 of 70 cases) in line with the IHC method (kappa value 98%).




Figure 3 | Immunohistochemical staining characteristics of EECs of TP53 subtypes. (A, B) Morphology of high-grade endometrioid adenocarcinoma with TP53 gene mutation and its diffuse positive expression pattern of p53 protein (X200). (C, D) High-grade endometrioid adenocarcinoma with TP53 gene mutation is rich in lymphocyte stroma and its p53 protein expression pattern is completely absent (X200). (E, F) The morphology of high-grade endometrioid adenocarcinoma without mutation of TP53 gene and its positive expression pattern of p53 protein (X200).





Morphological characteristics based on molecular typing

Morphologically, the POLE-EDM subtype is similar to the morphological characteristics of serous carcinoma, but there are still subtle differences. It is mainly manifested in the areas of tumors that are easy to see sheet necrosis, and there are different numbers of bizarre polynucleoma giant cells and tumors. Tumor-related lymphocytes and neutrophils can be seen in the necrotic area except for the tumorous stroma (Figure 4). Partially visible deep muscle infiltration (11 of 20, 55.0%), intravascular tumor thrombus (8 of 20, 40.0%), and lymph node metastasis (2 of 20, 10.0%).




Figure 4 | Morphological characteristics of POLE-EDM endometrioid adenocarcinoma. (A) The tumor cells grow in glandular tube and papillary shape (X100). (B) The tumor cells present a solid, nest-like muscular layer infiltration pattern (X100). (C) The mesenchyme adjacent to the tumor cell nest, rich in tumor-associated lymphocyte areas (X200). (D) Excluding necrotic area, tumor stroma is rich in tumor-associated neutrophil area (X200). (E, F) tumor giant cells of varying sizes and rare pathological mitotic figures (X400).



The morphological characteristics of MSI-H subtype are similar to high-grade serous carcinoma. Sheet necrosis is easy to see, the stroma is rich in inflammatory cells dominated by lymphocytes, the nucleus is significantly atypia, and the mitotic image is easy to see (Figure 5). Most tumors have infiltrated more than one-half of the muscle layer (15 of 26, 57.7%), and some have vascular invasion (13 of 26, 50%), but lymph node metastasis is less (10 of 26, 38.5%).




Figure 5 | The morphology of high-grade endometrioid adenocarcinoma of MSI-H subtypes and its expression pattern of MMR protein (X100). (A) X40 and (B) X100: The morphological characteristics of MSI-H subtype are similar to high-grade serous carcinoma. Sheet necrosis is easy to see; the stroma is rich in inflammatory cells dominated by lymphocytes (C) X200 and (D) X400: The nucleus is significantly atypia, and the mitotic image is easy to see of EECs of MSI-H subtypes. (E, F) MLH1 and PMS2 proteins expression pattern are positive expression pattern (X100). (G, H) MSH2 and MSH6 proteins expression pattern are completely absent (X100).



The TP53 mutant is easy to see the coexistence of solid and adenoid tumors. Compared with serous carcinoma, the contrast between nuclear atypia and tissue structure is slightly lower, and mitotic images are easy to see (Figure 6). In addition, there was one case with tumor infiltration depth exceeding one-half of the muscle layer, three cases with vascular invasion, three cases with lymph node metastasis, and one case with positive cytology of peritoneal washing fluid.




Figure 6 | Morphological characteristics of EECs of TP53 subtypes. (A) X40 and (B) X100: The coexistence of solid and adenoid tumors of EECs of TP53 subtypes. (C) X200 and (D) X400: The contrast between nuclear atypia and tissue structure is slightly lower with mitotic images.






Discussion

Molecular classification strategies (multi-omics) for endometrial carcinoma described in the initial TCGA study are expensive, time-consuming, and technically challenging for clinical use. Subsequent large cohort studies (ProMisE and PORTEC) developed clinically feasible molecular classifiers based on surrogate strategies including POLE sequencing, MMR-IHC, p53-IHC, or TP53 sequencing. NGS is a promising method enabling large-scale genomic sequencing and advantageous in accuracy and time and cost efficiency for molecular classification of EC. In this study, we designed an NGS panel and aimed to evaluate its potential clinical utility as an EC molecular classification tool. Our study population consists of 70 G3 EECs, mostly (85.7%) aged <60 years old. We identified four molecular subgroups: POLE-ultramutated (28.6%), MSI-H (38.6%), NSMP (18.6%), and TP53mut (14.3%) using the 11-gene NGS panel, indicating the high heterogeneity in molecular subtypes of G3 EECs, which has been reported in several recent studies. In the retrospective cohort of Bosse’s study on 381 G3 EECs, there were 49 (12.9%) POLE, 79 (20.7%) p53abn, 115 (30.2%) NSMP, and 138 (36.2%) MMRd tumors. The higher percentage of POLE-ultramutated cases and lower percentage of p53abn cases in our study may be on account of younger age at diagnosis of the patients (24, 25). As reported in the 257 young (<50 years old) women with EC from the ProMisE cohort, more POLE-mutated cases and less in p53abn cases were observed compared with other non-age-stratified cohorts (26). Furthermore, the NGS method showed 98.6% (69 of 70 cases) in line with the IHC method (kappa value 98%). Similar results have been reported by Huvila et al. They compared the results of NGS-based (Foundation One CDx with 114 repeat loci) and IHC-based (ProMisE) molecular classification for ECs. The result showed excellent agreement in 98.1% of cases between MSI-NGS and MMR-IHC analyses with one tumor described MSS by NGS but loss of MLH1 and PMS2 expression by IHC (27). In addition, consistent with previous findings, the most commonly hotspot mutation (P286R and V411L) covers 85% of the POLE-ultramutated cases.

Recently, with the emergence of molecular classification and approval of several immune checkpoint inhibitors for EC, MSI has become a part of the standard molecular testing for EC. In tumor cells, aberrant expression of MMR proteins causes microsatellite instability that can be assessed by the IHC, PCR, and NGS methods. In the TCGA study, MSI status was determined using PCR amplification and capillary electrophoresis on seven repeat loci and used to define the MSI-H (hypermutated) subgroup (11). MMR-IHC, a surrogate method for MSI testing, showed a high diagnostic accuracy in recent large cohort studies (26). As a promising strategy for MSI testing, NGS method enables detection of hundreds of MSI markers and MMR gene mutations. A recent study has reported that using NGS for the detection of MMR gene mutations to identify MSI hypermutated ECs is insufficient for MMR gene mutation that is not the only factor leading to MSI-H/MMRd (28). The NGS panel used in this study was designed to detect somatic mutations of the five MMR genes and instability of five microsatellite repeat loci using multiplex amplicon sequencing. We identified 28 MSI-H ECs, 27 of which were classified as the MSI-H subgroup. Among these, two cases showed normal MMR expression and were classified to the NSMP group by IHC, indicating the strong consistency (26 of 28, 92.8%) between the MSI-NGS and MMR-IHC methods. Similar results have been reported by Huvila et al (27). They compared the results of NGS-based (Foundation One CDx with 114 repeat loci) and IHC-based (ProMisE) molecular classification for ECs. The result showed excellent agreement in 98.1% of cases between MSI-NGS and MMR-IHC analyses with one tumor described MSS by NGS but loss of MLH1 and PMS2 expression by IHC (27). We further confirmed that one of the two doubtable ECs was MLH1 promoter hypermethylated tumor. The non-methylated MSI-H case had two instable repeat loci (BAT- 26 and MONO-27) and an additional MSH2 p.Q344X mutation with an allele frequency of 48.17% tested by NGS; further analysis is needed to identify whether it is a Lynch syndrome tumor. These results indicated NGS panel is a useful diagnostic tool for MSI-H ECs and may be more accuracy than IHC due to interobserver variability (29). In addition, when doubtable results exist, MLH1 promoter methylation analysis is essential for validation.

There were 20 (28.6%) tumors harboring somatic pathogenic mutations of TP53 identified by NGS, of which 10 were classified to TP53mut, eight were POLE-ultramutated and two were MSI-H. Among these cases, five tumors showed normal p53 staining by IHC, which were referred to as “multiple-classifier”. In addition, there was one sample of the POLE subgroup identified TP53wt by NGS but showed p53 abnormal staining by IHC. Consistently, all cases in the TP53mut group were observed abnormal expression of p53 protein by IHC. Interestingly, the six inconsistent cases with TP53 mutations or p53 abnormal staining were “multiple-classifier” ECs (four cases in the POLE-ultramutated group and two cases in the MSI-H group). This is likely because that more TP53 mutations could be identified by NGS compared with p53 IHC (30). TP53 mutations or abnormal expression in the “multiple-classifier” cases may occur secondary to POLE mutation of MMRd during tumor progression that is confirmed in previous findings (31). Furthermore, TP53 mutations may not impact the expression of p53 protein (32). A recent study reported that the concordance between p53 IHC and TP53 mutation was 155 of 168 (92.3%) overall and 117 of 123 (95.1%) after excluding MMRd and POLEmut EC, suggesting a high proportion of inconsistent cases in “multiple-classifier” ECs 30. Future studies are needed to better understand the inconsistency between TP53 sequencing and p53 IHC in “multiple-classifier” ECs.

In summary, in our study, the designed 11-gene NGS panel showed excellent availability for EC molecular classification as compared with IHC approaches. The NGS panel combined mutation and MSI analyses provide an efficient and accurate molecular classifier for EC. However, there are a few limitations of this study. For example, the cohort used in this study is not particularly large, which might affect the robust of statistics used in this study. In addition, although the molecular classification is important, it might be also important to study the drugs specific for subtypes using some drug repositioning or other methods (33, 34). Moreover, this study is mostly at DNA level, the integration of multi-omics data might provide more useful subtyping. Finally, it might be better to introduce single-cell technologies (35), because EC is a quite heterogeneous cancer. In the future, more work should be done based on larger cohorts to validate its prognostic value before clinical application.
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Cancer of unknown primary (CUP) refers to cancer with primary lesion unidentifiable by regular pathological and clinical diagnostic methods. This kind of cancer is extremely difficult to treat, and patients with CUP usually have a very short survival time. Recent studies have suggested that cancer treatment targeting primary lesion will significantly improve the survival of CUP patients. Thus, it is critical to develop accurate yet fast methods to infer the tissue-of-origin (TOO) of CUP. In the past years, there are a few computational methods to infer TOO based on single omics data like gene expression, methylation, somatic mutation, and so on. However, the metastasis of tumor involves the interaction of multiple levels of biological molecules. In this study, we developed a novel computational method to predict TOO of CUP patients by explicitly integrating expression quantitative trait loci (eQTL) into an XGBoost classification model. We trained our model with The Cancer Genome Atlas (TCGA) data involving over 7,000 samples across 20 types of solid tumors. In the 10-fold cross-validation, the prediction accuracy of the model with eQTL was over 0.96, better than that without eQTL. In addition, we also tested our model in an independent data downloaded from Gene Expression Omnibus (GEO) consisting of 87 samples across 4 cancer types. The model also achieved an f1-score of 0.7–1 depending on different cancer types. In summary, eQTL was an important information in inferring cancer TOO and the model might be applied in clinical routine test for CUP patients in the future.




Keywords: cancer of unknown primary, tissue-of-origin, expression quantitative trait loci, XGBoost, TCGA, GEO



Introduction

About 5% of cancer patients could not be diagnosed with regular clinical and pathological examinations, including medical history inquiry, physical examination, blood routine examination, biochemical examination, urine routine examination, stool routine examination, occult blood test, chest, abdomen and pelvic CT, and immunohistochemical examination (https://www.mskcc.org/cancer-care/types/cancer-unknown-primary-origin). This kind of cancer is called cancer of unknown primary (CUP), which is commonly treated by broad-spectrum chemotherapy with a usually bad prognosis. A landmark study suggested that therapy targeting primary lesion could significantly improve the survival of patients (1). Thus, it is critical to develop novel methods in identifying the tissue-of-origin (TOO) of CUP.

In recent years, many computational methods have been developed for this purpose based on various types of biomarkers (2). For example, He et al. used somatic single-nucleotide polymorphism (SNP) to infer TOO of CUP, which achieved a cross-validation area under curve (AUC) of approximately 0.8 (3). To improve the performance, gene expression profiles were introduced by combining a few machine learning methods like XGBoost and random forest (4, 5). In addition, other markers like miRNA and DNA methylation were also used (6, 7). There are also a few studies integrating multiple types of biomarkers, e.g., SNP and gene expression (8) and gene expression and DNA methylation (7). However, the accuracy especially in independent testing datasets is yet to be improved to meet the clinical criteria. A possible way to improve accuracy is to mine the intrinsic association among various types of biomarkers.

Expression quantitative trait locus (eQTL) is a locus that explains the association between SNPs and gene expression levels (9). eQTL analysis is important in revealing the genetic structure of gene expression (10, 11). For practical purposes, eQTLs were divided into cis-eQTL and trans-eQTL according to the distance from SNP to gene transcription (9). As a common definition, cis-eQTLs are denoted in a predefined window of megabase of a genomic sequence, upstream or downstream of the target gene; trans-eQTLs are denoted as any locus located outside the same window or even on different chromosomes (12). Gong et al. also developed the database PancanQTL following a similar approach, defining cis-eQTL and trans-eQTL of 33 cancer types (13). The database has demonstrated the role of genetic variation in tumor development and progression. Additionally, Gibson et al. introduced some prominent eQTL resources and eQTL publications (14, 15).

Though eQTL has been widely used in cancer research, it has not been applied in CUP analysis. In this study, we integrated eQTL into our machine learning model to infer the primary lesion of CUP. Specifically, we first collected cancer-associated eQTLs based on The Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/) and GTEx analysis (http://www.gtexportal.org/home/). Based on the eQTLs, we trained a CUP model using data from TCGA. We validated the performance of our model by cross-validation and independent testing through our collected data from Gene Expression Omnibus (GEO).



Materials and methods


Data preparation

In order to obtain cancer-related eQTL, the calculation can be carried out according to the process mentioned in the Introduction section. However, in reality, SNP data are usually inaccessible and not easy to download because they are protected. In the work by Gong and Mei et al., they have calculated the cis-eQTLs and trans-eQTLs in 33 cancer types, and created the database PancanQTL, which is an accessible database (http://bioinfo.life.hust.edu.cn/PancanQTL/) to support searching, browsing, and downloading. We downloaded cis-eQTLs for 20 cancers, which have been studied abundantly and have more complete data samples, from PancanQTL for further study.

The training data were downloaded from TCGA, and the test data were downloaded from GEO. The number and proportion of samples for each cancer in the training data and test data are detailed in Table 1.


Table 1 | Data size and proportion.





Generate MAP files and PED files

Due to the fact that the input files for the next step, “quality control with Plink”, need to be in MAP and PED formats, the raw TCGA data must be converted into MAP and PED files. There are 7 columns of data in the PED file, and the names of each column are as follows: Family ID (if there is no Family information, the Family ID can be replaced by the Individual ID itself), Individual ID, Paternal ID (0 = unknown), Maternal ID (0 = unknown), Phenotype (0 = unknown), sex (1 = male; 2 = female; 0 = unknown), and SNP type data. There are 4 columns in the MAP file, and the data names of each column are as follows: chromosome number (number format, 0 = unknown), SNP name (character or number, note that it should correspond to SNP column in PED file every to each), molar position of chromosome (optional, 0 = unknown), and SNP physical coordinate (position of variant on chromosome). The MAP content can be defined using the following website: https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/.



Correction covariable and quality control analysis

In this step, confounders are corrected and normalized. A confounder can be any unknown variable that affects the correlation measure between the independent and dependent variables (genetic and non-genetic bias) (16). Its purpose is to remove the impact of technical differences such as bench effects. In order to solve these problems, we need correction covariables and quality control. Daniel Fischer summarized some common software (17): The following are common processes and software in cancer.

	1. The first three genotyping principal components (PCs): Firstly, we can do quality control analysis with Plink (http://zzz.bwh.harvard.edu/plink/) or synbree (18, 19). Then, we can use GCTA (https://cnsgenomics.com/software/gcta/#Overview) to generate the top 3 PCs.

	2. The first 15 expression PEER (Probabilistic Estimation of Expression Residuals) factors: In this step, we can use PEER Programs (https://hpc.nih.gov/apps/peer.html) to generate 15 PEER factors.

	3. Gender, tumor stage, age, and other factors.





eQTL analysis using MatrixQTL

We can also use Merlin, snpMatrix, eMap, FastMap, and other programs (17), but normally, matrixEQTL (http://cran.r-project.org/package=MatrixEQTL) is used for ultra-fast analysis (Figure 1). Shabalin et al. developed the program using matrix calculations and explained the statistical principles of the different patterns (Supplementary Tables 1, 2).




Figure 1 | The flow diagram of common eQTL analysis processes. The eQTL data we analyzed were also generated by these processes.





Feature selection method

The cis-eQTLs of 20 cancers downloaded from PancanQTL were intersected, and the genes in which these eQTLs were located were identified. Intersect these genes with genes from the training data and test data. The following procedure considered only these genes. Then, random forest was used for feature selection.

Random forest was proposed by Leo Breiman in 2001 (20). It is a kind of integrated learning algorithm that uses a decision tree as a learning machine and uses Bagging (Bootstrap Aggregating) to extract data (21–23). The idea of using random forest to evaluate the importance of features can be summarized as follows: the “contribution” of each feature in each tree in random forest is calculated, and then the “contribution” between features is compared after taking an average value. “Contribution” can often be measured by the Gini Index (formula 4 and formula 5) or OOB (out of bag) (24). The so-called OOB data refer to the data obtained through repeated sampling for training the decision tree whenever the decision tree is established, but about 1/3 of the data are not utilized and do not participate in the establishment of the decision tree (25). This part of data can be used to evaluate the performance of the decision tree and calculate the prediction error rate of the model, which is called OOB data error. This is an unbiased estimate (20).



Gini index of D is defined under the condition of a known feature A:



Noise interference is randomly added to the features of all samples of OOB data outside the bag (the values of samples at the features can be randomly changed), and the error of data outside the bag is calculated again, which is denoted as errOOB2. Assuming there are N trees in the forest, the importance of the feature is ∑​(errOOB2 − errOOB1) /N .

The reason why this value can explain the importance of the feature is that, if the random noise is added, the accuracy of the OOB data decreases significantly (that is, errOOB2 increases), which indicates that this feature has a great influence on the prediction result of the sample, and thus the importance is relatively high.



Classification method

In this study, we used random forest for feature selection and XGBoost for classifier (5), which was programed by Tian Chen (26). The XGBoost algorithm uses the gradient boosting decision tree algorithm, in which boosting is an ensemble technique where new models are added to correct the errors made by existing models. Models are added sequentially until no further improvements can be made. It uses a gradient descent algorithm to minimize the loss when adding new models. Therefore, gradient boosting makes use of the residual error or error of the previous learner to train the next model and ultimately achieve the predicted effect. The biggest difference between XGBoost and other ensemble learning is that its objective function is added with the regular term after the Taylor expansion, which results in a great increase in its computational speed.

We also used MLP Classfier (multilayer perceptron classifier) for cancer classification. The multilayer perceptron classifier of Kurt Hornik et al. in 1989 was based on the feedforward artificial neural network (ANN) classifier (27). Feedforward neural networks refer to the start of the input layer before receiving only one layer of input and output, and the calculated results to the floor will not give feedback before the whole process can be represented using a directed acyclic graph. The multi-layer perceptron is a full connection between layers, and the layer of any one neuron is connected to the layer of all neurons. In addition to the input and output layers, the MLP Classifier can have multiple hidden layers in the middle. If there is no hidden layer, the problem of linearly separable data can be solved. Here, we use the simplest MLP Classifier (which contains an input layer, a hidden layer, and an output layer structure) to expand the explanation.

From input layer to hidden layer: Since input layer X={1, x1… ,  xm}  to the hidden layer A={1,  a1, … , ak} is fully connected, where element 1 is the bias node, then the output of the hidden layer is  X1= f1( W1X+ b1), where W1 is the weight (also known as the connection coefficient); b1 is offset. The f function can be the usual sigmoid or tanh function 3:



From hidden layer to output layer: Hidden layer to output layer is a multi-category logistic regression, namely, Softmax regression; thus, the output of the output layer is  f2( W2 X1+ b2), where f2 is Softmax function 4.



where xi is the output value of the ith node and J is the number of output nodes. Obviously, the Softmax function can limit the output value conversion range of multiple classification problems to [0,1], and the sum is 1.

Neural networks have the remarkable ability to make meaning out of complex or imprecise data, and can be used to extract patterns and detect complex trends that neither humans nor other computer technologies can notice. A trained neural network can provide a prediction. Its advantages include the following: MLP is self-adaptive; MLP does not make any comparisons with other probability-based models of functions or other probability-based information considered in its assumptions about potential probability density; and the required decision-making function can be generated directly through training.




Results


XGBoost showed better prediction performance than MLP

The eQTLs of 7,000 samples across 20 types of solid tumors were downloaded from PancanQTL. The genes where these eQTLs were located intersected with the genes in the training data. Following the intersection, the random forest algorithm was used to select the features of these genes, and XGBoost and MLP Classifier were used to classify them. The TCGA data were randomly divided 9:1 and 1/10 was used for testing and 9/10 were used for cross-validation (Figure 2 and Table 2). The results of tenfold cross-validation (10-CV) showed that XGBoost has a higher and more stable accuracy in each feature number. Therefore, XGBoost was used to train TCGA data as a whole (Figure 3), and 800 gene features with optimal results in 10-CV were selected to obtain the classifier. Additionally, the trained model was tested independently using 114 samples from four cancer types in a GEO testing data.




Figure 2 | The performance of the model against the number of genes. Tenfold cross-validation was used to train the model, and some data that were not used for training were independently used for testing. XGBoost and MLP were used for classification, respectively. The accuracies of training and verification are shown in this figure.




Table 2 | The accuracy of training data and testing data.






Figure 3 | The receiver operating characteristic curve (ROC curve) for classification. Twenty cancer ROC curves of the optimal 10-fold CVs’ results are shown in (A–C). (D) The average ROC curve.



As shown in the results of the test data (Figure 4 and Table 3), the classifier had a better specific recognition capability for BRCA, and the scores of both recall and f1-score were above 90%. We need to improve the recognition of OV and PRAD. The cancer can be isolated alone, or further information can be added based on existing biological pathways.




Figure 4 | The performance of the model in the testing data. (A) The model test results (R2-score) on four cancers. (B) The confusion matrix on testing data.




Table 3 | The model test results (precision, recall, and f1-score) of 4 cancers on the GEO dataset.





Top 15 genes in feature selection with each eQTLs

We analyzed 15 genes selected from testing data and training data to reverse-explore the biological implications of their effects on cancer (Figure 5). For the AFFAP1L2 gene, its transcript level in BRCA, KIRP, and LUAD is higher than other cancer types (28). For CREB3L4, which is expressed in BRCA and HNSC, the cancer associated with it is prostate cancer (29). HNF1A is mainly expressed in BRCA and BCA, leading to familial hepatic adenomas (30). We picked rs1169300 for its maximum magnitude in the presence of this gene; a large study pooling data from 3 Finnish studies totaling over 18,000 individuals concluded that while this SNP is not likely to be causative (relative to cancer), it and one other CRP SNP (rs2464196) are associated with increased risk for lung cancer (31). KLK3 is expressed in BLCA, BRCA, LIHC, and LUAD, and the gene is highly expressed in cancers such as prostate cancer and breast cancer (32). We picked rs2735839 for its maximum magnitude in the presence of this gene. A study of ~1,800 Caucasian prostate cancer patients concludes that the rs2735839(A) allele is associated with aggressive prostate cancer in general, and more specifically, in Gleason score 7 patients, it is more often associated with being GS 4 + 3 rather than GS 3 + 4 (odds ratio 1.85, CI: 1.31–2.61) (33). PLCB2 is expressed in BLCA, BRCA, COAD, ESCA, HNSC, KIRC, LGG, and LIHC, and the cancer associated with this gene expression is PRAD (34). RC3H1 is expressed in BLCA, BRCA, and COAD, and diseases associated with RC3H1 include immune dysregulation and systemic hyperinflammation syndrome and angioimmunoblastic T-cell lymphoma (35). The TMEM176A gene is present in BLCA and is highly expressed in liver cancer (36). TMPRSS2 is expressed in BRCA, GBM, LGG, LIHC, and other cancer types; the p-value is the highest in LGG (37). WT1 is expressed in BRCA, LUAD, and HNSC, with the highest t-stat in BRCA (38). CCL16 is expressed in STAD, PRAD, and LIHC, which is more obvious in breast cancer. CDH17 is expressed in BRCA, HNSC, and a gene in metanephric adenoma and gastric cancer (39, 40). HOXB13 maintains a relatively high transcript level in the adult prostate. We picked rs138213197, which is an SNP in the homeobox transcription factor HOXB13 gene located in a cluster of HOX genes on ch 17q21–22 (41). Overall, rs138213197(T) was reported to lead to a 20-fold higher risk for prostate cancer, based on having been observed in 72 of ~5,000 patients but in only 1 person out of 1,400 controls (thus, overall odds ratio 20.1, CI: 3.5–803.3, p = 8.5 × 10−7) (30). KLK2 is mainly expressed in PRAD and KIRC, resulting in prostate cancer. SLC45A3 is mainly expressed in BRCA and KIRC, resulting in prostate cancer (42). STEAP2, similar to SLC45A3, also causes prostate cancer (42).




Figure 5 | The heatmaps of gene expression. Heatmaps representing the expressions of 15 genes for each cancer sample in the training data (A) and testing data (B) were averaged and then log-transformed. Red represented high expression and blue represented low expression.





Enrichment analysis

The top 800 genes that made the testing data the most accurate were selected for enrichment analysis with the Gene Ontology (GO) database and the Kyoto Encyclopedia of Gene and Genomes (KEGG) database by Metascape. The results indicated that these genes were significantly enriched in pathways in cancer, especially in gastric cancer and basal cell carcinoma (Figures 6A, C). The KEGG pathway of basal cell carcinoma contained KEGG functional sets of Hedgehog (Hh) signaling, where abnormalities in the Hh signaling pathway have been reported to be associated with divergent cancers (43). The pathway of glycosaminoglycan biosynthesis (GAG) is also significantly enriched in this study. GAG plays multiple regulatory roles in tumor-related angiogenesis, coagulation, invasion, and metastasis (6, 44). Sulfur metabolism and peroxisome are also significantly enriched, both of which are related to the metabolic disorders of cancer (45, 46).




Figure 6 | The enrichment analysis display. (A) KEGG enrichment histogram. The pathways of 800 genes’ enrichment were demonstrated (p< 0.01). (B) GO enrichment histogram. The top 20 pathways with 800 genes were demonstrated (p< 0.01). The pathway association networks of KEGG and GO are shown in (C) and (D). In the networks, each node represented a pathway, and the edges between nodes represented the existence of common genes between pathways.



The results of GO enrichment analysis (Figures 6B, D) showed that there was significant enrichment of cell adhesion proteins/adhesion involved in cell communication, and the loss of intercellular adhesion may lead to cell escape from the primary lesion and metastasis. Among those, the high expression of plakophilin 2 (PKP2) has been reported to be associated with several human cancers. PKP2 promotes cell proliferation, migration, and invasion by activating the EGFR signaling pathway in LUAD cells (47). Lymphocyte-specific protein tyrosine kinase (LCK) is a key T-cell kinase that is involved in hematologic malignancies (48). In the GO analysis results, there was also significant enrichment of “proto-oncogene vav”, which is a human oncogene derived from a locus commonly expressed in hematopoietic cells (48). In addition, tumor necrosis factor (TNF) was also enriched. TNF induces cell survival, apoptosis, and necrosis, and is widely expressed in cancer (49).




Discussion

CUP is a malignant cancer with a high mortality rate. The study of CUP from the perspective of gene expression and SNP is conducive to the fundamental understanding of the disease and the improvement of treatment.

In previous studies, eQTL has shown tissue specificity (50). eQTL is also used to study cancer risk, development, and treatment response. We have used a novel approach to incorporate cancer-related eQTLs into our cancer tissue traceability model. We extracted genes with cancer-related eQTLs as part of the feature selection process and used the genes with cancer-related eQTLs for subsequent model training. Following feature selection-based eQTL analysis, the number of genes was reduced from 23,366 to 16,717. This significantly improves the prediction and generalization capabilities of the model.

In this model, eQTL is applied to infer tumor origin for the first time, which achieved better performances than using single markers. However, there are a few limitations of this study. Firstly, previous studies suggested that other biomarkers like pathological images are important in cancer diagnosis and prognosis prediction (51–53). It would be interesting to incorporate these biomarkers together with eQTL to infer TOO of CUP. Secondly, the machine learning algorithm used in this study is quite standard. More complicated models might be able to improve the performance as shown elsewhere (54, 55). Finally, the independent testing dataset used in this study is small, and a dataset containing more types of cancers should be curated in the future.



Conclusion

In this study, we first described the biological basis of eQTL and the commonly used mathematical models, then we discussed the application of eQTL in diseases and cancer, as well as the general use of eQTL in cancer analysis and other software and websites for additional information. We used eQTL to classify cancer. The results of 10-fold cross-validation of TCGA data with different features led to the selection of XGBoost as the optimal model, and the reason for this selection is explained along with its eQTL. Afterward, we discussed the possibility of using other algorithms in eQTL analysis to solve the problems in traditional analysis, and also discussed the use of eQTL analysis for subjects other than mRNA expression.
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Backgrounds

Breast cancer is a common malignant tumors in women. TIMM8A was up-regulated in different cancers. The aim of this work was to clarify the value of TIMM8A in the diagnosis, prognosis of Breast Cancer (BC), and its association with immune cells and immune detection points. Gene mutations.



Methods

The transcription and expression profile of TIMM8A between BC and normal tissues was downloaded from The Cancer Genome atlas (TCGA). The expression of TIMM8A protein was evaluated by human protein map. The correlation between TIMM8A and clinical features was analyzed using the R package to establish a ROC diagnostic curve. cBioPortal and MethSurv were used to identify gene alterations and DNA methylation and their effects on prognosis. The tumor immune estimation resource (TIMER) database and tumor immune system interaction database (TISIDB) database were used to determine the relationship between TIMM8A gene expression levels and immune infiltration. The CTD database was used to predict related drugs that inhibit TIMM8A, and the PubChem database was used to determine the molecular structure of potentially effective drug small molecules.



Results

The expression of TIMM8A in breast cancer tissues was significantly higher than that in normally adjacent tissues to cancer. ROC curve analysis showed that the AUC value of TIMM8A was 0.679. Kaplan-Meier method showed that patients with high TIMM8A had a lower prognosis (Overall Survival HR = 1.83 (1.31 − 2.54), P < 0.001) than patients with low TIMM8A expression of breast cancer (148.5 months vs. 115.4 months, P < 0.001). Methylation levels at seven CpG were associated with prognosis. Correlation analysis showed that TIMM8A expression was associated with tumor immune cell infiltration. There was a significant positive correlation of TIMM8A with PDL-1, and CTLA-4 in BC. In addition, CTD database analysis identified 15 small molecular drugs that target TIMM8A, such as Cyclosporine, Leflunomide, and Tretinoin, which might be effective therapies for targeted inhibition of TIMM8A.



Conclusion

In breast cancer, up-regulated TIMM 8A was significantly related to lower survival rate and higher immune invasiveness. Our research showed that TIMM 8A could be used as a biomarker for poor prognosis of breast cancer and a potential target of immunotherapy.





Keywords: Breast cancer, TIMM8A, biomarkers, prognosis, immune infiltration



Introduction

Breast cancer (BC) in women had exceeded lung cancer to be the most prevalent cancer, with an approximated 2.26 million new cases (11.7%) (1). BC was also the dominant reason of cancer death among women worldwide (2). Fortunately, the level of diagnosis and treatment has been continuously improved in recent years, and the mortality of BC has been continuously r decreased. However, the recurrence and metastasis still occur in patients within 5 years, and distal metastasis is a major reason of death in BC patients (3). Researches have exhibited that the prognosis of BC is affected by many clinical aspects, such as age, tumor size, histological grade, lymphatic invasion, lymph node, hormone receptor status, etc. However, as the molecular mechanism behind the invasive characteristics of BC is still unclear, it’s crucial to study new biomarkers for forecasting the prognosis of patients and tumor invasiveness. Establishment of a new risk prediction model for breast cancer would promote the medication and prognosis of BC patients (4, 5).

There is expanding studies that the immune system plays an important role in cancer (6). The tumor immune microenvironment (TIME) is a cellular immune ecosystem composed of immune cells (7), the extracellular matrix, fibroblasts, endothelial cells, and various cytokines. Continuing studies have shown that tyrosine kinase inhibitors (TKIs), immune checkpoint inhibitors (ICIs), and molecularly targeted drugs can effectively inhibit BC. Due to the highly dynamic TIME in BC (8), as well as glucose and lipid metabolism, BC may be associated with different types of medicine resistance to TKIs and ICIs.

TIMM8A (translocate of inner mitochondrial membrane 8a) has been found that TIMM8A is related to Mohr-Tranebjaerg syndrome and focal muscle Zhang Li disorder (9).The molecular functions include mitochondrial protein input and protein metabolism.TIMM8B is an important homologue of this gene. It has been reported that Mutations in the TIMM8A gene lead to Mohr-Tranebjrg Syndrome (MTS) (10), and TIMM8A is related to the proliferation of ovarian cancer cell line SKOV3/DDP subcutaneous xenografts (11).

However, the link between TIMM8A and BC has not been described. We presumed that TIMM8A levels were related to BC survival. Immune evasion mechanisms for BC adaptation include downregulation of antigen presentation/recognition, shortage of immune effector cells, blockage of maturation of anti-tumor immune cells, aggregation of immunosuppressive cells, creation of inhibitory cytokines, and upregulation of immune checkpoint modulators. The TME refers to the episode, growth and metastasis of tumor, which is closely related to the internal and external environment of tumor cells.

In this study, we found that the mRNA level of TIMM8A was up-regulated in BC. The up-regulation of TIMM8A is negatively related to clinical features. The diagnostic and prognostic role of TIMM8A in breast cancer was further evaluated. Here, we also analyzed the relationship between TIMM8A and immune cells, biomarkers and immune checkpoints (IC). The gene mutation, DNA methylation and related pathways associated with the episode and development of BC were also examined. In addition, the correlation between TIMM8A and immune infiltration was examined by Tumor Immune Estimation Resource (TIMER) and Tumor Immune System Interaction Database (TISIDB). Meanwhile, the relationship between TIMM8A and Important immune subsystem was evaluated. Our results could potentially reveal new targets and strategies for BC diagnosis and medication.



Materials and methods


TCGA data set

From the official website of TCGA (12) Link to download the transcriptional expression data of TIMM8A and the corresponding clinical information. We analyzed 33 registered cancers. Finally, for further investigation, we downloaded TCGA data, and we converted the RNA sequencing data from FPKM to TPM format and transformed log2. All data were downloaded from TCGA. This study did not require ethics committee approval.



RNA sequencing data of TIMM8A in breast cancer

RNA-seq expression data of TIMM8A in breast cancer were also downloaded from TCGA and the XIANTAO platform (https://www.xiantao.love/). Therefore, after eliminating the invalid clinical data, the data of 1109 cases of breast cancer and 113 cases of normal tissues adjacent to cancer were kept. TIMM8A gene expression data and relevant clinical information including age, T-phase, N-phase, M-phase, tumor site, ER/PR/HER2 status were selected for inclusion. The mRNA expression data were X ± SD mean.



Mutation and immune infiltration analysis

We used cBioPortal (http://www.cbioportal.org/) to analyze the mutation frequency of TIMM8A in BC. The type of mutation in TIMM8A in BC was further assessed using the Cancer Somatic Mutation Catalog (COSMIC) database (http://cancer.sanger.ac.uk). The correlation between TIMM8A expression and immune infiltration was assessed using the TIMER database (https://cistrome.shinyapps.io/timer/).



The Human Protein Atlas (HPA)

HPA (https://proteinatlas.org/) contains human gene expression profile information of protein levels in normal tissues and tumor tissues (13). In this study, we compared the expression of TIMM8A protein in normal breast tissues and breast cancer tissues by HPA.



GO/KEGG

Visualization using the ClusterProfiler package and the GGploT2 package analyzed the Kyoto gene and genomic Baike Encyclopedia (KEGG) pathway enriched by gene ontology (GO) and co-expression genes.



GSEA function and pathway analysis

Gene set enrichment analysis (GSEA) was performed using the ggplot2 R package (V3.3.3) to demonstrate important functions and pathways between the two groups. Expression levels of TIMM8A were used as phenotypic markers. Adjusted p-values < 0.05, enrichment of normalized scores (|NES|) < 1, and false discovery rate (FDR) < 0.25 were significantly different.



Construction and evaluation of nomogram

Personal predictions of 1-,3-and 5-year survival probabilities. Based upon the results of multivariate analysis, a histogram was constructed. The RMS R package (version 6.2-0) was used to generate Nomograms with important clinical features and calibration maps. Concordance indices and modified curves were used to estimate their predictive power.



DNA methylation information of TIMM8A

MethSurv database (https://biit.cs.ut.ee/methsurv/) was used to evaluate DNA methylation of TIMM8A in TCGA database. And the prognostic value of CpG methylation in TIMM8A was analyzed.



Tumor Immune Estimation Resource (TIMER) database

TIMER (https://cistrome.shinyapps.io/timer/) is a comprehensive online database analyzing various cancer types associated with immune penetration. We used the TIMER database to determine the relationship between TIMM8A expression and six types of immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells).



Tumor-Immune System Interaction Database (TISIDB)

TISIDB (http://cis.hku.hk/TISIDB/) was an online portal for tumor-immune system interactions. In this study, we used TISIDB to determine TIMM8A and tumor-infiltrating lymphocyte (TILs) expression in human cancers. The relative abundance of TILs was derived from gene expression profiles and gene set variation analysis. Spearman’s test was used to determine the correlation between TIMM8A and TILs.



Immune checkpoints analysis

Correlation analysis between TIMM8A and immune checkpoints using the xiantao platform (www.xiantao.love) and the TIMER (https://cistrome.shinyapps.io/timer/) was analyzed by GGploT2 R package based on the expression of TCGA. Results with the P < 0.05 was considered statistically significant.



Screening of small molecule therapeutic drugs

The CTD database was applied to predict potential associations of TIMM8A with drugs. CTD database (https://ctdbase.org/), can be used for research based on the relationship between chemistry, genes, phenotypes, disease and environment, promoted the understanding of chemical drugs and human health. Use the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) to view the molecular structures of related drugs.



Statistical analysis

All statistical analyses used R (V 3.6.3). Paired t-test and Mann-Whitney U test were used to determine differences between breast cancer tissue and adjacent normal tissue. Visualization was performed using the R package GGplot2 (14), the clusterProfiler package (version 3.14.3) (for GSEA analysis). ROC curve plotting was performed using the pROC package (15).




Results


The expression of TIMM8A at the pan-cancer level

Figures 1A, B show the mRNA expression of TIMM8A in different cancer types. The results suggest that compared with normal tissues, TIMM8A was significantly up-regulated in 16 of 33 cancers. It indicated that the expression of TIMM8A mRNA was abnormal in different cancer types.




Figure 1 | Expression patterns of TIMM8A from a pan-cancer perspective. Compared with normal tissues, TIMM8A mRNA expression was significant in 16 of 33 cancers. (A) Box plot; (B) Radar chart. (ns, p≥0.05; *p<0.05; **p<0.01; ***p<0.001).





mRNA expression of TIMM8 in BC

To examine the mRNA and protein expression of TIMM8A in breast cancer, we analyzed the expression data of TIMM8A in TCGA (Figure 2C). As shown in Figure 2A, the unpaired data analysis showed that the mRNA expression level of TIMM8A in breast cancer tissues (n = 1109) was significantly higher than that in normal tissues (n = 113) (Figure 2A, 3.391 soil 0.636 vs 3.005 soil 0.618, Mann -Whitney U-test, P < 0.001). Paired data analysis also revealed that TIMM8A messenger RNA expression levels were significantly higher in breast cancer tissues (n = 112) than in adjacent normal tissues (n = 112) (Figure 2B, 3.351 soil 0.597 vs 2.998 soil 0.617, P < 0.001). These results suggested that the mRNA expression of TIMM8A was upregulated in breast cancer tissues.




Figure 2 | TIMM8A expression in TCGA. (A) TIMM8A mRNA expression levels in Tumor and Normal. (B) TIMM8A mRNA expression levels in 112 breast cancer patients and matched adjacent normal samples. (C) TIMM8A in TCGA expression in breast cancer tissue. (***p<0.001).





Protein expression and diagnostic and prognostic value

The HPA immunohistochemical staining database was used to show that TIMM8A protein expression was up-regulated in breast cancer tissues (Figures 3A, B). ROC curve analysis was applied to investigate the diagnostic value of TIMM8A in differentiating breast cancer from normal breast cancer. ROC curve analysis showed that the AUC value of TIMM8A was 0.679, CI = 0.0.632-0.727 (Figure 3C). To explore the relationship between TIMM8A expression and OS in breast cancer patients, we drew Kaplan Meier curves. The OS of patients with breast cancer with high TIMM8A expression was shorter than that of patients with breast cancer with low TIMM8A expression (115.4 months vs. 148.5 months, P < 0.001) (Figure 3D).




Figure 3 | Protein Expression and Diagnostic and prognostic value of TIMM8A. (A) TIMM8A protein levels based on Human Protein Atlas. Normal tissue; (B) Tumor tissue. (C) The ROC curve shows the AUC value of TIMM8A. (D) The Kaplan-Meier survival curve shows the OS of breast cancer patients.





Clinicopathological characteristics

To explore the relationship between TIMM8A mRNA expression and clinicopathological features in breast cancer tissues, we performed Mann-Whitney U test and logistic regression analysis. As shown in Table 1 and Figures 4A–H, there was a significant difference in different T phase (P = 0.016), PR status (P < 0.001), ER status (P < 0.001), HER2 status (P = 0.014), and OS event (P < 0.001). However, the expression level of TIMM8A was not correlated with N phase (P = 0.455), M phase (P = 0.162), age (P = 0.120). In summary, these results indicated that TIMM8A was related to hormone levels, age, T phase, os events, and further suggested that TIMM8A might be a biomarker of poor prognosis for breast cancer.


Table 1 | Clinical characteristics of breast cancer patients.






Figure 4 | The relationship between TIMM8A mRNA level and clinicopathological characteristics. TIMM8A mRNA expression is negatively correlated with age (D), ER (E) and PR (F) status, positively correlated with OS event (H) and there is no significant difference in T (A), N (B), M (C) levels, and HER2 (G) status. (ns, p ≥ 0.05; *p < 0.05; ***p < 0.001).





Mutations in TIMM8A in BC

The mutation frequency of TIMM8A in breast cancer was evaluated in the cBioPortal database. The selection included an analysis of 1084 samples. The somatic mutation frequency of TIMM8A in breast cancer was 0.55% and was mainly composed of missense mutations (Figure 5A). The type, and sites of TIMM8A genetic alterations were further shown in Figure 5B. In addition, the mutation type of TIMM8A was further evaluated in another database, COSMIC. For clarity, Figure 5C show a pie chart of two types of mutations. Missense substitution occurred in approximately 16.67% of the samples and in-frame deletion occurred in 16.67% of the samples. Substitution mutations mainly occurred in C > A 1 (100%).




Figure 5 | Mutations in BC. (A) The gene alteration of TIMM8A in pan-cancer. (B) The schematic representation of TIMM8A mutations in BC (cBioPortal). (C) The mutation types in the Catalogue of Somatic Mutations in Cancer (COSMIC) database.





TIMM8A methylation in BC patients

The DNA methylation level of TIMM8A and the prognostic value of each CpG were studied using the MethSurv tool. MethSurv results suggest 16 methylated CpG check points, of which cg19680277 had the highest DNA methylation (Figure 6). Methylation levels at seven CpG check points were associated with prognosis, namely cg01062269, cg24976080, cg19680277, cg21411942, cg19014767, cg16245086, and cg08358587 (p < 0.05) (Table 2). The overall survival rate of patients with high TIMM8A methylation at these CpG check points was lower than that of patients with low TIMM8A methylation.




Figure 6 | Visualization between methylation levels and TIMM8A expression.




Table 2 | Effect of methylation level on prognosis of BC.





Differential genes associated with TIMM8A in breast cancer

TIMM8A-related differentially expressed genes in breast cancer were identified according to the TCGA database. Differentially expressed genes related to TIMM8A were identified based on the Spearman test. The first 25 positive (r > 0) and the first 25 negative (r < 0) related genes were shown in the heat map (Figure 7A, B). According to Spearman’s test results, positively correlated genes with coefficients > 0.3 were selected. The results showed that 2518 genes were positively correlated with TIMM8A, and 159 were negatively correlated. As shown in Figure 7C, these genes were selected for visualization and analysis. GO and KEGG enrichment analysis was performed on the differentially expressed genes. The following biological processes were significantly affected: DNA replication, DNA replication initiation, DNA conformation change, DNA-dependent DNA replication, cell cycle G1/S phase transition, chromosome segregation, chromatin remodeling, etc. The terms of cell components are mainly enriched in chromosomal region, chromosome, centromeric region, cortical actin cytoskeleton, small nucleolar ribonucleoprotein complex, cortical cytoskeleton, kinetochore, etc. Molecular functional terms mainly focus on DNA replication origin binding, catalytic activity, acting on DNA, DNA helicase activity, endoribonuclease activity, producing 5’-phosphomonoesters, etc. KEGG results show that co-expressed genes are mainly involved in Cell cycle, Ribosome biogenesis in eukaryotes pathway.




Figure 7 | Heat map and enrichment of TIMM8A-related differentially expressed genes in breast cancer. (A) heat map shows genes positively correlated to TIMM8A (showing the first 25 genes). (B) heat map shows genes negatively correlated with TIMM8A (showing the first 25 genes). (C) GO analysis and KEGG enrichment of differentially related genes. (***p > 0.001).





Single gene difference analysis Gene Set Enrichment Analysis (GSEA)

Based on the median expression value of TIMM8A, we analyzed the DEGs between the TIMM8A low-expression group and the high-expression group in order to understand the biological function of TIMM8A and GSEA pathway analysis (Figure 8). The results show that TIMM8A is rich in BREAST_CANCER_BASAL_UP, BREAST_CANCER_RELAPSE_IN, BONE_DN, BENPORATH_ES_WITH_H3K27ME3, BENPORATH_SUZ12_TARGETS.




Figure 8 | GSEA analysis results. Genes enriched in representative pathways by GSEA functional analysis.





Univariate and multivariate cox regression analysis of TIMM8A and clinical data

Univariate and multivariate survival analyses were performed using Cox regression models. Multivariate Cox analysis compared the effects of TIMM8A expression and other clinical features on survival. TIMM8A was separated into two groups based on the best cut-off value: high expression and low expression. The statistical significance of two tailed test was set as 0.05.

OS was linked with age, T stage, N stage, M stage, HR status, and TIMM8A expression in a univariate Cox regression analysis. In addition, multivariate Cox regression analysis showed that TIMM8A expression (HR=1.688, p=0.016 is an independent prognostic factor for BC patients (Table 3). T stage, N stage, M stage, and TIMM8A expression were all linked to OS in a univariate Cox regression analysis. These findings demonstrate that TIMM8A is upregulated in BC and is linked to a negative prognosis.


Table 3 | Univariate and Multivariate Cox Regression Analysis of TIMM8A and Clinical Data.





Construction and evaluation of the nomogram

We created a Nomogram of TIMM8A and independent clinical risk indicators (T/N/M staging, TIMM8A, age) to give a quantitative way for predicting the prognosis of BC patients (Figure 9A). A point scale was used to award points to these variables in this Nomogram based on multivariate cox analysis. Draw a straight line upward to establish the variable’s number of points, and then modify the total of the points allotted to each variable to a range of 0 to 100.The integrals of the variables are summed together to obtain a total score. BC patients’ 1-year, 3-year, and 5-year survival probabilities were calculated vertically from the total point axis to the outcome axis (Figures 9B-D). The nomogram’s C-index for OS prediction was 0.775. (0.745-0.805).




Figure 9 | Construct a Nomogram to predict the survival probability of BC patients. (A) Nomogram predicts the 1-year, 3-year, and 5-year BC survival probability composed of TIMM8A and independent clinical risk factors. (B–D) Calibration plot of nomogram for predicting probabilities of 1-, 3-, and 5-year survival probability. Grey line indicates actual survival.





The correlation between TIMM8A and immune cell infiltration

We analyzed the correlation between TIMM8A expression and 6 tumor-infiltrating immune cells in the TIMER database. As shown in Figure 10A, the expression of TIMM8A is related to tumor purity (r = 0.098, P = 2e − 03), B cells (r = 0.133, P = 3.12e − 05), CD8 + T cells (r = 0.129, P = 5.01e − 05), CD4 + T cells (r = 0.01, 7.64e-01), macrophages (r = -0.007, P = 8.29e − 01), and neutrophils (r = 0.153, P = 2. 05e − 06), dendritic cells (r = 0.118, P = 2.77e − 04). Figure 10B depicts the TISIDB database’s link between TIMM8A expression and 28 lymphocytes. Figure 10C show that the expression of TIMM8A is related to the abundance of CD8 + T cells (r = 0.171, P = 1.24e-08), CD4 cells (r = 0.347, P < 2.2E-16), Tgd cells (r = 0.177, P = 3.43-09), Th2 cells (r = 0.104, P = 0.0000562), CD56 cells (r=0.072, P = 0.0177), and DC cells (r = 0.146, P = 1.1e-06). These findings implied that TIMM8A may play a unique function in the immunological invasion of breast cancer.




Figure 10 | TIMM8A expression correlates with immune level. (A) TIMM8A expression in breast cancer correlates with tumor purity, B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and dendritic cells. (B) TIMM8A expression in human tumors correlates with 28 lymphocytes. (C) Relationship between TIMM8A and CD8 + T cells, CD4 cells, Tgd cells, Th2 cells, CD56 cells, DC cells.





Relationship between TIMM8A expression and immune checkpoints in BC

PDL-1 (CD274), PD-1 (PDCD-1) and CTLA-4 were key immune checkpoints involved in tumor immune escape. Given TIMM8A’s putative oncogenic function in BC, the association of TIMM8A with PDL-1, PD-1, and CTLA-4 was investigated in both the TIMER and TCGA databases. In BC, there was a substantial positive connection between TIMM8A and PDL-1 and CTLA-4 (Figure 11).




Figure 11 | Correlation between TIMM8A and PDL-1 (CD247), PD-1, CTLA-4 expression in BC. The TIMER and TCGA database respectively TIMM8A expression and PDL-1 (A, D), PD-1 (B, E) and CTLA 4 (C, F).





Small molecular drugs

We used the CTD database to analyze the correlation between TIMM8A and potential drugs (Supplementary Table 1). A total of 15 drugs were identified as having inhibitory effects on TIMM8A (Figure 12). These drugs had potential inhibitory effects on TIMM8A.




Figure 12 | Predicting potential drugs and molecular structures that affect TIMM8A. (A) CTD database predicts potential drugs that affect TIMM8A, and green represents drug molecules that inhibit TIMM8A. (B–P) PubChem database predicts molecular structures of 15 targeted drugs.






Discussion

TIMM8A is a member of zinc finger proteins family that form hetero-oligomeric complexes in the mitochondrial intermembrane region. TIMM8A mutations are linked to the Mohr-Tranebjaerg syndrome, a progressive neurological illness (16). TIMM8A has been linked to the growth of SKOV3/DDP ovarian cancer cell line subcutaneous xenografts (11). However, the mRNA level of TIMM8A and its predictive significance in BC have not been well explored. Breast cancer systemic therapy choices contains surgery, endocrine treatment, radiation treatment, and targeted treatment. In the management of hormone receptor-positive individuals, endocrine therapy is extremely important. According to certain accounts, various hormone levels alter a patient’s prognosis (17–19). We found that upregulation of TIMM8A was inversely correlated with hormone receptor status. Furthermore, because ER and PR status are linked to prognosis, TIMM8A might be used to predict hormone receptor status and the requirement for endocrine treatment. Those with high mRNA expression in breast cancer had a poorer survival rate than patients with low TIMM8A levels. TIMM8A expression exhibited an excellent capacity to differentiate cancer and normal tissues, suggesting that it could be took as a potentially beneficial diagnostic and prognostic marker for BC.

Even if gene mutations were linked with bad prognosis and were closely related to malignancies, the rate of TIMM8A gene alterations in BC was only approximately 0.18%, and there was no substantial association between gene changes and poor OS. DNA methylation was a ubiquitous epigenetic process seen in all cancers (20, 21). We investigated the link between the degree of DNA methylation in TIMM8A and the prognosis of cancer patients. Hypomethylation was associated with prognosis at seven CpG check points, including cg19014767, cg16245086 and cg08358587.

Immunotherapy had drastically transformed the paradigm of cancer treatment in recent decades and had been acknowledged as a potential therapeutic frontier (22, 23). Furthermore, mounting data suggested that the TIME was linked to tumor growth and metastasis (7). Furthermore, several studies had demonstrated that series of immune cells were related with BC malignancies (24). In addition, the effectiveness of immunotherapy not only required sufficient immune cells penetration into the tumor microenvironment, but also relied on the adequate expression of IC. There had been no research on the relationship between TIMM8A expression and immune cells in BC. TIMER was employed in this work to discover that this gene might enhance the invading immune cells such as CD8 + T cells, but it was also favorably connected with the expression of PD-L1 and CTLA-4. As a result, this gene might enhanced PD-L1 expression, which resulting in an immune microenvironment suppressive state. It suggested that targeting TIMM8A might promote the efficacy of ICIs in BC. As a result, more research into its mechanism was required in order to eliminate the immunosuppressive impact of TIMM8A and enhance the OS of tumor patients.

15 medicines were found by utilizing the CTD database to forecast medications which inhibited TIMM8A.TIMM8A may be targeted and was predicted to bring new advances in BC therapy after being utilized in the PubChem database to establish the molecular structure of discovered medicines.

We also discovered that TIMM8A mRNA and protein expression are up-regulated in BC tissues in our study. According to ROC curve study, TIMM8A might considered as a potential diagnostic biomarker to distinguish BC from normal tissues. We verified that TIMM8A expression was linked with short OS using the Kaplan Meier curve and univariate analysis, and TIMM8A could be employed as a possible biomarker for poor prognosis of BC. Furthermore, TIMM8A might have a role in the immune escape of BC.

At present, this study still had some limitations. Firstly, the expression of TIMM8A and its prognostic significance were examined through online database. We required further studies on in vitro/animal experiments, and clinical samples validations. Secondly, mechanism experiments in both vitro and in vivo should be designed to investigate how TIMM8A affected BC immune invasion.

To summarize, we firstly discovered in this work that TIMM8A was greatly up-regulated in BC. TIMM8A could considered as a prognostic candidate marker, and that it might play a special function associated with immune infiltration.



Conclusions

In conclusion, TIMM8A was important and could be used as a potential biomarker for prognosis in BC. Furthermore, TIMM8A could have a role in the immunological invasion of BC.
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Number KRT19P3 x> P-value

Low expression High expression

PD-L1 4.139  0.047"
Negative 11 4 7
Positive 69 47 22
CD8 3.982 0.046"
Negative 26 12 14
Positive 54 138 41

*P < 0.05.
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Datasets Cell types

Biase
Goolam
Pollen
Patel
Klein
Zeisel

T o

~ s o

Number of cells

56
124
301
430

2717
3005

Number of GO terms

201
218
282
208
237
253

Number of genes

22,528
22,624
13,678
5,610
22,192
11,718

Units

FPKM
Count
M
TPM
umi
umi

Organism

Mus musculus
M. musculus
Homo sapiens
H. sapiens

M. musculus
M. musculus

scRNA-seq, single-cell RNA sequencing;
molecular identifier.

GO, Gene Ontology; FPKM, fragments per kilobase of transcript per million mapped reads; TPM, transcripts per kilobase million; UMI, unique
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Datasets sc3 ssc SIMLR CORR SinNLRR Seurat §ssC FEGFS
Biase 49.38 258 151 272 419 4.00 6.72 210
Goolam 43.92 207 1.59 12,57 9.78 5.28 3.21 2453
Pollen 48.78 3.08 435 59.24 18.41 4.18 151 23.76
Patel 57.92 213 577 5227 15.51 390 223 5.40
Klein 608.09 99.00 452.00 3,180.00 2,976.60 37.88 147.00 989.556
Zeisel 615.77 76.00 362.00 7.740.00 6,381.90 127.89 144.00 1,710.15

Uinit is in seconds.
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level

Low

High

Cancer type

BLCA (bladder urothelial carcinoma)

BRCA (breast invasive carcinoma)
COAD (colon adenocarcinoma)

KICH (kidney chromophobe)

LUAD (ung adenocarcinoma)
LUSC (lung squamous cell carcinoma)

THCA (thyroid carcinoma)
LIHC (iver hepatocellular carcinoma)

DLBC (ymphoid neoplasm diffuse
large B-cell lymphorma)

OV (ovarian serous
cystadenocarcinoma)

TGCT (testicular germ cell tumors)
CHOL (cholangiocarcinoma)

HNSC (head and neck squamous cell
carcinoma)

ESCA (esophageal carcinoma)

KIRC (icney renal clear cell carcinoma)

LAML (acute myeloid leukemia)

Immune infiltration

Positive
Mast cells and neutrophils

Gancer-associated fioroblasts and mast cells

Tregs, B cells, cancer-associated fioroblasts, denditic cells,
endothelial cells, macrophages, monocytes, and neutrophils
Mast cells, monocytes, cancer-associated fibroblasts, and
neutrophils

B cells, cancer-associated fibroblasts, and endothelial cells
Tregs, cancer-associated fibroblasts, endothelial cells, and mast
cells

Endothelial cells, cancer-associated fibroblasts, mast cells, and
neutrophils

©D4" T calls, cancer-associated fioroblasts, tregs, B cells,
monocytes, and neutrophils
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Characteristic Low expression  High expression p
of CCDC134 of CCDC134

n 541 542

T stage, n (%) 0.640

T1 137 (12.7%) 140 (13%)

T2 318 (29.4%) 311 (28.8%)

T3 72 (6.7%) 67 (6.2%)

T4 14 (1.3%) 21 (1.9%)

N stage, n (%) 0.545

NO 248 (23.3%) 266 (25%)

N1 190 (17.9%) 168 (15.8%)

N2 58 (5.5%) 58 (5.5%)

N3 40 (3.8%) 36 (3.4%)

M stage, n (%) 0.516

MO 450 (48.8%) 452 (49%)

M1 8 (0.9%) 12 (1.3%)

Age, n (%) 0.081

<=60 315 (29.1%) 286 (26.4%)

>60 226 (20.9%) 256 (23.6%)

Pathologic stage, n (%) 0.786

Stage | 90 (8.5%) 91 (8.6%)

Stage Il 315 (29.7%) 304 (28.7%)

Stage Il 123 (11.6%) 119 (11.2%)

Stage IV 7(0.7%) 11 (1%)

Histological type, n (%) 0.001

Infiltrating Ductal Carcinoma 373 (38.2%) 399 (40.8%)

Infiltrating Lobular Carcinoma 126 (12.9%) 79 (8.1%)

PR status, n (%) 0.002

Negative 145 (14%) 197 (19.1%)

Indeterminate 3(0.3%) 1(0.1%)

Positive 365 (35.3%) 323 (31.2%)

ER status, n (%) <0.001

Negative 91 (8.8%) 149 (14.4%)

Indeterminate 1(0.1%) 1(0.1%)

Positive 421 (40.7%) 372 (35.9%)

HER2 status, n (%) 0.737

Negative 279 (38.4%) 279 (38.4%)

Indeterminate 7 (1%) 5(0.7%)

Positive 75 (10.3%) 82 (11.3%)

PAMS0, n (%) <0.001

Normal 22 (2%) 18 (1.7%)

LumA 310 (28.6%) 252 (23.3%)

LumB 103 (9.5%) 101 (9.3%)

Her2 35 (3.2%) 47 (4.3%)

Basal 71 (6.6%) 124 (11.4%)
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LR

SVM

RF

parameter

AUC (95%Cl)
Accuracy
Sensitivity
Specificity
AUC (95%Cl)
Accuracy
Sensitivity
Specificity
AUC (95%Cl)
Accuracy
Sensitivity
Specificity

AP+VP

0.826 (0.700-0.952)
0.745
0.714
0.769
0.821(0.702-0.927)
0.787
0.810
0.769
0.691 (0.557-0.819)
0.681
0.524
0.808

AP+VP+NCP

0.811 (0.679-0.944)
0.809
0.810
0.808
0.811(0.695-0.918)
0.766
0.714
0.808
0.753 (0.630-0.867)
0.681
0.571
0.769

AP&VP

0.773 (0.650-0.883)
0.723
0.762
0.692
0.767 (0.646-0.880)
0.766
0.714
0.808
0.734 (0.609-0.854)
0.702
0.571
0.808

AP&VP&NCP

0.767 (0.641, 0.885)
0.723
0.667
0.769
0.777 (0.655-0.889)
0.728
0.619
0.808
0.707 (0.582-0.833)
0.681
0.524
0.808
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parameter NCP AP VP

LR AUC (95%Cl) 0.639 (0.479-0.800) 0.811 (0.685-0.938) 0.678 (0.521-0.834)
Accuracy 0617 0.766 0.660
Sensitivity 0.476 0.762 0.571
Specificity 0.731 0.769 0.731

SVM AUC (95%Cl) 0.537 (0.393-0.681) 0.799 (0.684-0.900) 0.692 (0.556-0.815)
Accuracy 0532 0.766 0.638
Sensitivity 0.333 0.714 0.381
Specificity 0.692 0.808 0.846

RF AUC (95%Cl) 0.509 (0.367-0.659) 0.708 (0.574, 0.834) 0.626 (0.494-0.758)
Accuracy 0511 0.617 0.532
Sensitivity 0.333 0.429 0.381
Specificity 0.654 0.769 0.654
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CT phase

Non-contrast

arterial

venous

Category

GLSZM
GLDM
GLCM
GLRLM
GLSZM
GLRLM
GLSZM
GLSZM
GLDM
GLSZM
GLDM
GLSZM
First Order
First Order
GLRLM
GLDM
GLRLM
GLDM

00 S XSSO0 A3 N=20838 =

Names

joriginal_glszm_SmallAreaEmphasis
wavelet-HHL_gldm_LargeDependenceEmphasis
wavelet-HLH_glcm_Imc1
wavelet-LLL_glrim_GrayLevelNonUniformityNormalized
log-sigma-3-0-mm-3D_glszm_GraylLevelNonUniformityNormalized
wavelet-HHL_glrim_ShortRunEmphasis
Ibp-3D-k_glszm_SmallAreaEmphasis
wavelet-HLH_glszm_SmallAreaEmphasis
joriginal_gldm_DependenceVariance
wavelet-LLL_glszm_SmallAreaEmphasis
wavelet-HLH_gldm_SmallDependenceHighGrayLevelEmphasis
wavelet-LHL_glszm_SizeZoneNonUniformityNormalize
lbop-3D-m1_firstorder_Maximum
lbp-3D-m2_firstorder_10Percentile
log-sigma-2-0-mm-3D_glrim_LongRunEmphasis
wavelet-LLL_gldm_LowGrayLevelEmphasis
wavelet-LHH_glrim_GrayLevelVariance

log-sigma-2-0-mm-3D_gldm_LargeDependencelLowGraylLevelEmphasis

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level dependence matrix.
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Characteristics

Age
Gender, n (%)
Male
Female
Tumor location, n (%)
Ascending colon
Transverse colon
Descending colon
Sigmoid colon
Rectum
Diameter, cm (Mean + SD)
Histologic grade, n (%)
Poor
Moderate
Well
TNM stage, n (%)
|
Il
n

L\
T stage, n (%)
T
T2
T3
T4
N stage, n (%)
NO
N1
N2
M stage, n (%)
MO
M1
CEA, n (%)
< 5 (normal)
>5 (abnormal)
CA199,n (%)
< 89 (normal)
>39 (abnormal)
CA724,n (%)
< 6.9 (normal)

>6.9 (abnormal)

Training cohort P Test cohort
Wild-type group (n = 104) Mutated group (n = 80) Wild-type group (n=26) Mutated group (n = 21)
61.94 £ 1227 64.76 + 12.96 0.133 62.12 + 13.27 65.52 + 12.71
57 (54.81%) 42 (52.50%) 0.756 6 (61.54%) 10 (47.62%)
47 (45.19%) 38 (47.50%) 0 (38.46%) 1 (52.38%)
30 (28.85%) 28 (35%) 0.260 2 (7.69%) 6 (28.57%)
6 (5.77%) 6 (7.5%) 5(19.23%) 4 (19.05%)
10 (9.62%) 4 (5%) 2 (7.69%) 2 (9.52%)
38 (36.54%) 20 (50%) 3 (50%) 5(23.81%)
20 (19.23%) 22 (27.5%) 4 (15.38%) 4 (19.05%)
5.06 £ 1.85 478 £1.79 0.296 4.83 +1.52 5.44 +2.70
12 (11.54%) 1(13.75%) 0.621 3 (11.54%) 3 (14.29%)
91 (87.50%) 69 (86.25%) 22 (84.62%) 18 (85.71%)
1 (0.96%) 0(0.0%) 1 (3.85%) 0(0.0%)
11 (10.58%) 10 (12.50%) 0.039* 3 (11.54%) 4 (19.05%)
51 (49.04%) 24 (30%) 1(42.31%) 6 (28.57%)
33 (31.73%) 31 (38.75%) 9 (34.62%) 7 (33.33%)
9 (8.65%) 15 (18.75%) 3 (11.54%) 4 (19.05%)
2 (1.92%) 1(1.25%) 0.909 2 (7.69%) 1(4.76%)
14 (13.46%) 13 (16.25%) 2 (7.69%) 3 (14.20%)
60 (57.69%) 43 (563.75%) 17 (65.38%) 7 (33.33%)
28 (26.92%) 23 (28.75%) 5 (19.23%) 10 (47.62%)
62 (59.62%) 39 (48.75%) 0.317 14 (53.85%) 1 (62.38%)
26 (25%) 27 (33.75%) 6 (23.08%) 6 (28.57%)
16 (15.38%) 4 (17.50%) 6 (23.08%) 4 (19.05%)
95 (91.35%) 65 (81.25%) 0.044* 23 (88.46%) 17 (80.95%)
9 (8.65%) 5 (18.75%) 3 (11.54%) 4 (19.05%)
57 (54.81%) 35 (43.75%) 0.137 16 (61.54%) 1 (52.38%)
47 (45.19%) 5 (56.25%) 10 (38.46%) 10 (47.62%)
92 (88.46%) 63 (78.75%) 0.073 20 (76.92%) 16 (76.19%)
2 (11.54%) 7 (21.25%) 6 (23.08%) 5 (23.81%)
91 (87.50%) 69 (86.25%) 0.803 23 (88.46%) 9 (90.48%)
13 (12.50%) 1(13.75%) 3 (11.54%) 2 (9.52%)

0.377

0.340

0.268

0.359

0.645

0.684

0.116

0.891

0.472

0.528

0.953

0.824

CEA, carcinoembryonic antigen; CA199, carbohydrate antigen-199; CA724, carbohydrate antigen-724. n, number; SD, standard deviation; *P < 0.05.
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Cancer Species

KIRC

KIRP

Variables

TNM-stage
MRSS
nomogram
TNM-stage
MRSS
nomogram

C-Index (95%Cl)

0.755 (0.729-0.781)
0.769 (0.750-0.787)
0.771 (0.753-0.790)
0573 (0.530-0.616)
0.758 (0.716-0.801)
0.842 (0.802-0.831)
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Variables

Age

Sex

T stage

N stage

M stage

Stage

Riskscore

Young
old
male
female
T

¥l

T3

T4

NO

N1

NX

MO

MX

Mi
Stage |
Stage Il
Stage Iil
Stage IV

Patient N (539)

250
289
353
186
278
179
7
BNl
241
16
282
428
31
8
272
59
123
83
537

aHR, hazard ratio; bCl, confidence interval. *p < 0.05.

Univariate Analysis

Multivariate Analysis

HRa [95% CI]

1
1.802 [1.315,2.468]
1
1.075 [0.788,1.465]
1
1,515 (0.908,2.526]
3.354 [2.373,4.742)
10.829 [5.467,21.451]
1
3.565 [1.895,6.705]
0.818 [0.601,1.114]
1
0.828 [0.262,2.615]
4.400 [3.219,6.014]
1
1.210 (0.652,2.247)
2711 [1.804,4.073)
6782 [4.633,9.929)
2718 [2.207,3.217)

<0.001*

0.648

012
<0.001*
<0.001*

<0.001*
0.203

0.748
<0.001*

0.546
<0.001*
<0.001*
<0.001*

HR [95% Clb]

0.992 [0.679,1.452]

0.341(0.104,1.120]
0.483(0.181,1.316]
0.519(0.166,1.620]

1.320 [0.579,3.010]
0.773(0.562,1.063]

0.495 [0.124,1.967)
0.417 [0.112,1.555)

2739 [0.715,10.494)
1.888 [0.593,6.013)
4.894 [0.872,27.448)
2663 [1.739,4.079]

0.969

0.076
0.156
0.259

0510
0.113

0.193
0318

0.142

0.282

0.071
<0.001*
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Group

IL41
MTHFD2
RRM2
ACOX2
AGXT2
ALDH6A1
ALDH4A1
ADH6
AOX1
GLDC
HOGA1
RDH12
ATPEVOA4
DAO
EPHX2
ETNK2
HAO2
LDHD

PC

PCK1
PCK2
PRODH2

Tendency

Up
Up

DSS p-value

p=0.143
.001
p=0002
p <0001
p <0001
p <0.001
p=0048
p =0.001
p <0001
p=0.001
.009
p <0.001
p = 0505
p <0.001
p <0001
p <0001
p <0001
p <0001
p=0098
p <0001
p <0001

0S p-value

p=0264
p=0002
p=0002
p=0005
p <0001
p <0001
p=005
p=0002
p <0001
p=0001
p=0002
p=0.001
p=0604
p <0001
p <0001
p <0001
p <0001
p <0001
p=0289
p <0001
p <0001
0 =0.054

PFI p-value

p=0107
p < 0.001
p =0.002
P < 0.001
p < 0.001
p < 0.001
p=0245
p =0.001
p =0.058
p =0.001
p =0.024
p =0.006

p=0.009
p <0001
p=0015
p < 0.001
p <0001
p=0123
p < 0.001
p=0.003
p=0272
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Case 1

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Site

2R lymph nodes
Cardia lymph nodes

17 lymph nodes

Normal mucosa

Primary esophageal cancer

2R lymph nodes
16 lymph nodes

7 lymph nodes

Carda lymph node

1 L cardia lymph node
Normal mucosa

110 lymph nodes

Primary esophageal cancer

Left parapharyngeal lymph node
7 lymph nodes

Primary esophageal cancer

1 L lymph nodes

Normal mucosa

Right parapharyngeal lymph node
7 lymph nodes

Normal mucosa

Left parapharyngeal lymph node
Primary esophageal cancer

17 lymph nodes

Cardia lymph node
2R cardia lymph node
Normal mucosa

Primary esophageal cancer

8M cardia lymph node
Primary esophageal cancer

Left parapharyngeal lymph node
Normal mucosa

Primary esophageal cancer

Sample type

FFPE
FFPE
Frozen tissue
FFPE
FFPE

FFPE
FFPE
FFPE
FFPE
Frozen tissue
FFPE
FFPE
FFPE

FFPE
FFPE
Frozen tissue
Frozen tissue
FFPE

FFPE
FFPE
FFPE
FFPE
Frozen tissue
Frozen tissue

FFPE
Frozen tissue
FFPE
FFPE

FFPE
Frozen tissue
Frozen tissue
FFPE
FFPE

Sample number

P1_2R
P1_cardia
P1_17
P1_normal
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P27

P2_ cardia
P21L
P2_normal
P2_110
P2_primary

P3_left
P3_7
P3_primary
Pa_1L
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P4_right
P47
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P4_left
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P4_17

P5_ cardia
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P6_left
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Marker Position Anchor Anchor (CR) Repeat Length
Bat25 chr4:55598012-55598436 TTTGA(T+GAGAA TTCTC(A+TCAAA 25
Bat26 chr2:47641360-47641786 CAGGT(A+)GGGTT AACCC(T+ACCTG 27
Mono27 chr2:39536490-39536916 CAGGA(T+GAGGC GCCTC(A+TCCTG 27
NR21 chr14:23652147-23652567 TTGCT(A+)GGCCA TGGCC(T+AGCAA 21
NR24 chr2:95849162-95849585 TCCTA(T+)GTGAG CTCAC(A+HTAGGA 23
NR27 chr11:102193309-102193734 CTGGT(A+)GCCAC GTGGC(T+ACCAG 26
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Number of Samples MSI-L MSI-H Total

Training set 9 0 9

Validation set 92 9 101
Test set 65 3 68
Total 166 12 178
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Classifier Subtype Precision Recall F1-score Overall Accuracy

MLP TNBC 0.813 0.520 0.634 0.735
HR+/HER2~ 0.771 0.661 0.712
HER2+ 0.704 0.852 0.771

GPC TNBC 0.692 0.360 0.474 0.623
HR+/HER2— 0.628 0.482 0.545
HER2+ 0.613 0.802 0.695

LDA TNBC 0.714 0.400 0.513 0.642
HR+/HER2~ 0.674 0.518 0.586
HER2+ 0.619 0.802 0.699

SVM TNBC 0.778 0.280 0.412 0.623
HR+/HER2~ 0.697 0.411 0.517
HER2+ 0.592 0.877 0.707

RF TNBC 0.625 0.400 0.488 0.636
HR+/HER2— 0.628 0.482 0.545
HER2+ 0.641 0.815 0.718

LR TNBC 0.733 0.440 0.550 0.679
HR+/HER2— 0.700 0.625 0.660
HER2+ 0.660 0.790 0.719

SVM, Support Vector Machine (radlial bias function); RF, Random Forest; LR, Logistic Regression; LDA, Linear Discriminant Analysis; GPC, Gaussian Process Classifier; MLP, Multilayer

Perceptron; TNBC, triple-negative breast cancer; HR, hormone receptor: HER2, human epidermal growth factor receptor-2.
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Classifier AUC (95% CI) ACC (%) SEN (%) SPE (%) NPV (%) PPV (%)

MLP 0.907 (0.851-0.947) 85.8 85.6 86.7 57.8 96.6
LDA 0.880 (0.820-0.926) 815 79.6 90.0 50.0 97.2
SVM 0.852 (0.788-0.903) 85.8 87.9 76.7 59.0 94.3
GNB 0.881 (0.821-0.927) 80.9 80.3 83.3 49.0 95.5
RF 0.905 (0.849-0.945) 82.1 79.6 93.3 50.9 98.1
LR 0.888 (0.829-0.932) 86.4 88.6 76.7 60.5 94.4

SVM, Support Vector Machine (radial bias function); RF, Random Forest; LR, Logistic Regression; MLP, Multilayer Perceptron; GNB, Gaussian Naive Bayes; LDA, Linear Discriminant
Analysis; AUC, the area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity: NPV, negative predictive value; PPV, positive predictive value; AR, androgen receptor.
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Scanning parameter TR/TE PD Fov Ms SL SR ST

T1-DCE 4.32/1.57 446 380x380 448x448 144 0.848x0.848 1.0
FS-T2wI 4330/61 319 380x380 320x320 38-42 1.188x1.188 3.0
ADC map 6300/74 2083 380x380 160x160 24-32 2.375x2.375 4.0

TR/TE, repeat time/echo time (ms); PD, Pixel bandwidth; FOV, field of view (mm); MS, Matrix size; SL, Slicer layer; SR, Spatial resolution (mm?); ST, Slice thickness (mm); T1-DCE, T1-
weighted dynamic contrast-enhancement imaging; FS-T2WI, Fat suppression T2-weighted imaging; ADC map, apparent diffusion coefficient map.
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Characteristics AR <10% (n = 30) AR >10% (n = 132) p-value

Age (years)* 45.30 + 11.04 47.27 £ 9.85 0.335

Menopausal Status 0.043
Premenopausal 10 (33.3%) 71 (563.8%)
Postmenopausal 20 (66.7%) 61 (46.2%)

Histologic type 0.353
IDC 30 (100.0%) 124 (93.9%)
Other 0 (0.0%) 8(6.1%)

Clinical stage 0.377
I 13 (43.3%) 69 (562.3%)
i 17 (56.7%) 63 (47.7%)

Clinical T stage 0.873
cT2 20 (66.7%) 90 (68.2%)
cT3-4 10 (33.3%) 42 (31.8%)

Clinical N stage 0.412
cNO 5 (16.7%) 18 (13.6%)
cN1 12 (40.0%) 70 (53.0%)
cN2-3 13 (43.3%) 44 (33.3%)

ER status <0.001
Positive 8 (26.7%) 87 (65.9%)
Negative 22 (73.3%) 45 (34.1%)

PR status <0.001
Positive 4(13.3%) 79 (69.9%)
Negative 26 (86.7%) 53 (40.2%)

HER?2 status 0.015
Positive 9 (30.0%) 72 (64.6%)
Negative 21 (70.0%) 60 (45.5%)

Molecular subtype <0.001
HR+/HER2— 6 (20.0%) 50 (37.9%)
HER2+ 9 (30.0%) 72 (54.6%)
TNBC 15 (50.0%) 10 (7.6%)

Ki-67 0.006
<30% 6 (20.0%) 63 (47.7%)
>30% 24 (80.0%) 69 (52.3%)

Data are described as numbers of patients, with percentages in the parentheses. *Those
data are described as mean + standard deviation. AR, androgen receptor; IDC, invasive
ductal breast carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2,
human epidermal growth factor receptor-2; Ki-67, cellular proliferation index; HR,
hormone receptor: TNBC, triple-negative breast cancer.
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Characteristics Total patients Molecular subtypes p-value

HR+/HER2- HER2+ TNBC
Age (years)" 46.91 + 10.08 46.43 + 8.34 47.56 + 10.78 45.88 + 11.46 0.687
Menopausal Status
Premenopausal 81 (50.0%) 31 (65.4%) 40 (49.4%) 10 (40.0%) 0.437
Postmenopausal 81 (50.0%) 25 (44.6%) 41 (50.6%) 15 (60.0%)
Histologic type
IDC 154 (95.1%) 51(91.1%) 79 (97.5%) 24 (96.0%) 0.211
Other 8 (4.9%) 5 (8.9%) 2 (2.5%) 1 (4.0%)
Clinical stage
Il 82 (50.6%) 26 (46.4%) 47 (58.0%) 9 (36.0%) 0.116
n 80 (49.4%) 30 (53.6%) 34 (42.0%) 16 (64.0%)
Clinical T stage
cT2 110 (67.9%) 39 (69.6%) 57 (70.4%) 14 (66.0%) 0.381
cT3-4 52 (32.1%) 17 (30.4%) 24 (29.6%) 11 (44.0%)
Clinical N stage
cNO 23 (14.2%) 5 (8.9%) 15 (18.5%) 3(12.0%) 0622
oN1 82 (50.6%) 29 (51.8%) 40 (49.4%) 13 (52.0%)
cN2-3 57 (35.2%) 22 (39.3%) 26 (32.1%) 9 (36.0%)
AR
<10% 30 (18.5%) 6(10.7%) 9(11.1%) 15 (60.0%) <0.001
>10% 132 (81.5%) 50 (89.3%) 72 (88.9%) 10 (40.0%)
Ki-67
<30% 69 (42.6%) 28 (50.0%) 37 (45.7%) 4 (16.0%) 0.012
>30% 93 (57.4%) 28 (50.0%) 44 (54.3%) 21 (84.0%)

Data are described as numbers of patients, with percentages in the parentheses. *Those data are described as mean + standard deviation. AR, androgen receptor; IDC, invasive ductal
breast carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2; Ki-67, cellular proliferation index; HR, hormone receptor; TNBC,
triple-negative breast cancer.
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Classifier TNBC vs. non-TNBC HR+/HER2- vs. Others HER2+ vs. HER2—- micro-AUC macro-AUC

AUC ACC (%) AuC ACC (%) AuC ACC (%)
MLP 0.965 92.6 0.860 82.1 0.840 79.0 0.896 0.888
GPC 0.832 87.7 0.645 64.2 0.675 66.7 0.757 0.717
LDA 0.953 88.9 0.764 67.9 0.745 7.6 0.840 0.821
SVM 0913 87.7 0.792 772 0.811 76.5 0.865 0.839
RF 0.897 78.4 0.726 753 0.714 67.9 0.812 0.779
LR 0.960 89.5 0.833 80.9 0.807 75.9 0.881 0.867

SVM, Support Vector Machine (radlial bias function); RF, Random Forest; LR, Logistic Regression; LDA, Linear Discriminant Analysis; GPC, Gaussian Process Classifier; MLP, Multilayer
Perceptron; AUC, the area under curve; ACC, accuracy; TNBC, triple-negative breast cancer; HR, hormone receptor; HER2, human epidermal growth factor receptor-2.
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Training Data from TCGA

Cancer Type Amount Percent
Breast invasive carcinoma (BRCA) 1,056 13.68%
Kidney renal papillary cell carcinoma (KIRC) 526 6.81%
Uterine corpus endometrial carcinoma (UCEC) 516 6.68%
Thyroid carcinoma (THCA) 500 6.48%
Lung adenocarcinoma (LUAD) 486 6.29%
Head and neck squamous cell carcinoma (HNSC) 480 6.22%
Colon adenocarcinoma (COAD) 451 5.84%
Brain lower-grade glioma (LGG) 439 5.69%
Stomach adenocarcinoma (STAD) 415 5.37%
Prostate adenocarcinoma (PRAD) 379 4.91%
Bladder urothelial carcinoma (BLCA) 301 3.90%
Liver hepatocellular carcinoma (LTHC) 294 3.81%
Ovarian serous cystadenocarcinoma (OV) 261 3.38%
Squamous cell carcinoma and endocervical 258 3.34%

adenocarcinoma (CESC)

Kidney renal clear cell carcinoma (KIRP) 222 2.88%
Acute myeloid leukemia (LAML) 173 2.24%
Glioblastoma multiforme (GBM) 153 1.98%
Rectum adenocarcinoma (READ) 153 1.98%
Pancreatic adenocarcinoma (PAAD) 142 1.84%
Skin cutaneous melanoma (SKCM) 80 1.04%
Unknown cancer 430 5.57%

Testing Data from GEO

Cancer Type Amount Percent
PRAD 44 38.60%
BRCA 25 45.61%
LUAD 1 00.88%

ov 17 14.91%
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High TAM RORs

Low TAM RORs

Training cohort (N = 117)
Recurrence and metastasis
Disease progression-free
Test cohort (N = 139)
Recurrence and metastasis
Disease progression-free
Sensitivity

Specificity

75 (64.10%, 75/117)
42 (56.00%, 42/75)
33 (44.00%, 33/75)
80 (57.55%, 80/139)
52 (65.00%, 52/80)
28 (35.00%, 28/80)

42 (35.90%, 42/117)
7 (16.67%, 7/42)
35 (83.33%, 35/42)
59 (42.45%, 59/139)
8 (13.56%, 8/59)
51 (86.44%, 51/59)
86.67% (52/52 + 8)
64.56% (51/51 + 28)

TAM RORs, tamoxifen risk-of-recurrence score.
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Friedman’s test

r df p

TAM RORs 0.23864 2 0.8875

TAM RORs, tamoxifen risk-of-recurrence score.





OPS/images/fonc.2022.904304/fonc-12-904304-g004.jpg
>

I I‘\’ \Ifl ’H \Il

M ”IH
Illll”l

[T
|I IIIIHIII|

'
i '|n'|

i

Wil
Wit
|

!

I IMI ||

llﬂihlll‘

\h

4

[t}

i

’”\ IHI

i
L ||,mn||3¥

extracellular structure organization
extracellular matrix organization

muscle system process

collagen-containing extracellular matrix
exteral side of plasma membrane

contractile fiber part

extracellular matrix structural constituent
glycosaminoglycan binding
heparin binding

Focal adhesion
Dilated cardiomyopathy

ECM-receptor interaction

R0

0.04 0.06 0.08 0.10 0.12

GeneRatio

p.adjust

2.0e-08
1.5e-08
1.0e-08
5.0e-09

Counts

Q s
[OR)





OPS/images/fonc.2022.904304/fonc-12-904304-g003.jpg
Age

Gender

Grade

Stage

riskScore

Age

Gender

Grade

Stage

riskScore

pvalue

0.001

0.563

0.252

0.025

<0.001

pvalue

<0.001

0.902

0711

0.017

<0.001

Hazard ratio

1.048(1.019-1.079)

1.170(0.688-1.989)

1.336(0.814-2.195)

1.431(1.045-1.958)

1.990(1.562-2.536)

Hazard ratio

1.060(1.032-1.088)

1.035(0.601-1.782)

1.110(0.638-1.931)

1.586(1.086-2.317)

2.330(1.742-3.116)

-

.

——

LU P S —
00 05 10 15 20 25
Hazard ratio

o

'
'
:
'
'
'

——

— Tt 11

0.0 05 10 15 20 25 30
Hazard ratio

Age

Gender

Grade

Stage

riskScore

D

Age

Gender

Grade

Stage

riskScore

pvalue

0.480

0.287

0.119

<0.001

0.010

pvalue

0.090

0423

0.142

<0.001

0.014

Hazard ratio

1.008(0.986-1.031)

1.318(0.793-2.191)

1.454(0.908-2.327)

1.648(1.235-2.199)

1.285(1.063-1.554)

Hazard ratio

1.022(0.997-1.047)

1.233(0.738-2.060)

1.441(0.885-2.347)

1.710(1.265-2.312)

1.302(1.055-1.607)

0.0

0.0

05

0.5

s

——
10 15 20
Hazard ratio
'
'
'
'
"
'
1
!
T —
1
1
—_—

——
10 15

Hazard ratio

20





OPS/images/fonc.2022.946552/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.904304/fonc-12-904304-g002.jpg
>
w
10

°
= = = ® Dead
R e £ e Alve
£ £ s = : ° N
S -
% v .g Ead o % . RIS
a ¢ " ".-' q.,r. R x.v e
. o
° ° Jee S i) Qn" "
0 50 100 150 0 50 100 150
Patients (increasing risk socre) Patients (increasing risk socre)

* High risk

® High risk

Risk score
Risk score

TR \III:I:III |n)||un1|\| T ﬁH‘% f*Wi‘
“ '“l’u i ”m M HH' fu'+ = I | "lﬂ'| T4 LI AN "I'H"

|n l |'H|\|Q||| | 1|\| ' I"" E’“I nnl\ lﬂ" Ol P l z""’
| |||| lhu ol |'f 1”| \ =
|\”r M\ { n |‘l|1 lm r I | ." g

Risk == High risk = Low risk

Risk == High risk == Low risk

G H
150 100
2z
Z o5 g o
a2 ®
[4 E-
8 S
5 050 5 o050
3 oz @ 0%
0.00 0.00
5 1 :z 3 4 5 6 7 & § 10

Time(years)

%Hohrsk{ 88 49 16 7 3 2 1 0 0 0 0 grohriskjs2 50 20 9 5 4 2 0
& Lwtrisk1 % o 3 16 10 4 3 2 2 o2 q @iowisklo4 68 28 15 5 4 1

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 x 8 9 10

Time(years)

oa
oa
o
°






OPS/images/fonc.2022.935694/table4.jpg
TP53wt by TP53mut by NGS (n =20) Total

NGS(n = 50)
POLE- MSI- TP53mut
ultramutated H
pS3wt 49 3 2 0
by THC
p53abn 1 5 0 10
by THC
Total 50 8 2 10 70

TP53mut, TP53 pathogenic mutation; TP53wt, TP53 wild type; p53wt, p53 protein
present; p53abn, p53 protein abnormal.
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n (%)

POLE pathogenic mutations

p-P286R 10 (50)
p.V411L 7 (35)
p.Y473C and P286R 1 (10)
p-A456P or p.P436R 2 (10)
MSI-H by NGS 2 (10)
MMR pathogenic mutations by NGS 7 (35)
MMRd by THC 1(5)
TP53 pathogenic mutations by NGS 7 (35)
p53abn by IHC 6 (30)

MSI-H, high microsatellite instability; MMRd, MMR proteins deficient; p53abn, p53
abnormal.
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11-gene NGS panel TotalN (%)

POLE MSI-H NSMP TP53mut

[HC POLE 20 0 0 0 20 (28.6)
MMRd 0 26 0 0 26 (37.1)

NSMP 0 1 13 0 14 (20)

p53abn 0 0 0 10 10/14.3

Total, N (%) 20 (28.6) 27 (38.6) 13 (18.6) 10 (14.3) 70 (100)
PTENmut, N (%) 14 (60) 17 (63) 5(38.5) 2 (20) 38 (54.3)
TP53mut, N (%) 7 (35) 3(1L.1) 0(0) 10 (100) 20 (28.6)
PIK3CAmut, N (%) 6 (30) 4 (14.8) 2(15.4) 4 (40) 16 (22.9)
CTNNB1mut, N (%) 1(5) 0 (0) 2(15.4) 1 (10) 4 (5.7)
KRASmut, N (%) 2 (10) 3(11.5) 3(23.1) 1 (10) 9 (12.9)

MSI-H, high microsatellite instability; MMRd, MMR proteins deficient; NSMP, no specific molecular profile; TP53mut, TP53 pathogenic mutation; p53abn, p53 protein abnormal;
PTENmut, PTEN pathogenic mutation; PIK3CAmut, PIK3CA pathogenic mutation; CTNNB1mut, CTNNB1 pathogenic mutation; KRASmut, KRAS pathogenic mutation.
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Number of Patients
Age, years

<60

>60

Tumor size, cm

<2

2-5

25

Myometrial invasion
<50%

>50%

FIGO stage

/11

/v

Lymph node status
Negative

Positive

LVSI

Negative

Positive

Total
70

60 (85.71%)
0 (14.29%)

0 (14.29%)
43 (61.43%)
17 (24.29%)

37 (52.86%)
33 (47.14%)

43 (61.43%)
27 (38.57%)

50 (71.43%)
20 (28.57%)

42 (60%)
28 (40%)

POLE

20 (28.57%)

17 (85%)
3 (15%)

1 (5%)
15 (75%)
4 (20%)

9 (45%)
11 (55%)

14 (70%)
6 (30%)

18 (90%)
2 (10%)

12 (60%)
8 (40%)

MSI-H
26 (37.14%)

21 (80.77%)
5(19.23%)

3 (11.54%)
15 (57.69%)
8 (30.77%)

11 (42.31%)
15 (57.69%)

14 (53.85%)
12 (46.15%)

16 (61.54%)
10 (38.46%)

13 (50%)
13 (50%)

NSMP
14 (20%)

12 (85.71%)
2 (14.29%)

4 (28.57%)
7 (50%)
3 (21.43%)

8 (57.14%)
6 (42.86%)

9 (64.29%)
5(35.71%)

9 (64.29%)
5 (35.71%)

10 (71.43%)
4 (28.57%)

TP53mut
10 (14.29%)

10 (100%)
0 (0%)

2 (20%)
6 (60%)
2 (20%)

9 (90%)
1 (10%)

6 (60%)
4 (40%)

7 (70%)
3 (30%)

7 (70%)
3 (30%)

P-value

0.533

0.511

0.063

0.727

0.173

0.520
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Sample  Age Histological K- T N NAC DFS Metastatic

No. 67 stage stage  regimen  (month) sites
(%)

1 35 Right breast nonspecific type of invasive cancer grade i 40 T2 N3 TEC#2-NPs2 5 Brain
flap intravascular cancer thromboembolus (MP2)

2 46 Left breast invasive carcinoma (MP3) 40 T4d N3 TAC#3 5 Chest wall

3 60 Right breast nonspecific invasive ductal carcinoma (MP2) 80 Tda N2 TEx2—NP#5 7 Liver

4 44 Right breast nonspecific invasive ductal carcinoma grade 80 T2 N1 TE6 23 Liver
H(MP2)

5 38 Left breast nonspecific type of invasive cancer grade ll 90 T3 Nx TEC+3 13 Lung

6 52 Right breast nonspecific type of invasive cancer grade 50 T2 N1 EC-T=8 14 Multiple metastases (ymph
1MP2) nodes, two lungs, and bone)

TEC, docetaxel, epirubici, and cyclophosphamide; NP, vinorelbine and cisplatin/carboplatin; TAC, docetaxel, doxorubicin, and cyclophosphamide; TE, docetaxel and epirubici; EC-T,
epirubici/cyclophosphamide followed by paclitaxel.
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Clinicopathological variables Number of patients (n = 355) Metabolism_H Metabolism_L p-value
Age
<65 (n, %) 210 (59.2%) 78 (37.1%) 132 (62.9%)
>65 (n, %) 145 (40.8%) 36 (24.8%) 109 (75.2%) 0.015
Gender
Male (1, %) 239 (67.3%) 71(29.7%) 168 (53.7%)
Female (n, %) 116 (32.7%) 43 (37.1%) 73 (62.9%) 0.164
Histologic Grade
G1+G2 (n, %) 219 (61.7%) 50 (22.8%) 169 (77.2%)
G3+G4 (n, %) 131 (36.9%) 63 (48.1%) 68 (51.9%) <0.001
NA 5(1.4%)
TNM staging system
T1+T2 (n, %) 262 (73.8%) 70 (26.7%) 192 (73.3%)
T3+T4 (0, %) 91 (25.6%) 44 (48.4%) 47 (51.6%) <0.001
NA 2(0.6%)
NO (1, %) 244 (68.7%) 84 (34.4%) 160 (65.6%)
N1 (n, %) 2(0.6%) 1 (50.0%) 1(50.0%) <0.001
NA 109(30.7%)
MO (n, %) 256 (72.1%) 92 (35.9%) 164 (64.1%)
M1 (n, %) 4(1.1%) 2 (50.0%) 2 (50.0%) <0.001
NA 95(26.8%)
AJCC pathological stage
141l (n, %) 246 (69.3%) 65 (26.4%) 181 (73.6%)
WV (0, %) 88 (24.8%) 43 (48.9%) 45 (51.1%) <0.001
NA 21 (5.9%)

NA, not available.
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Algorithm Build TAM RORs model

Input: Training dataset

Output: Trained model and performance of the model

1 for each one hyper-parameter set in hyper-parameters grid do

2 for 5-fold cross validation process do

3 select features in Random forest by the hyper-parameter set;

4 train logistic regression model;

5 compute AUC from ROC curve for one subset of cross validation
6 Add the new result to the result of this validation process

7 sort the performance of hyper-parameter set and store optimal set;
8 select the optimal hyper-parameter data set to be the hyper-parameter of model;
9 train the model with whole training data set;

10 final;

11 retum model and AUC value of ROC curve;

TAM RORs, tamoxifen risk-of-recurrence score.
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Number of Accuracy of XGB in Accuracy of XGB in Accuracy of MLP in Accuracy of MLP in

features training data testing data training data testing data
200 0.943393782383419 0.945990297099496 0.832642487 0.83364232
300 0.950647668393782 0.946705989675118 0.854015544 0.856544482
100 0.956865284974093 0.950883005411232 0.867098446 0.871523024
500 0.956476683937823 0.95160761304501 0.87992228 0.878871727
600 0.9610103626943 0.954631683702029 0.884455959 0.894136587
700 0.960621761658031 0.953910807953061 089119171 0.898887898
800 0.962046632124352 0.955923952480666 0894041451 0904075011
900 0.963730569948186 0.955063338378288 0.899093264 0.904507288
1,000 0.961917098445595 0.955207430597308 0.900906736 0.908686169

Bold values indicate the highest accuracy in each data set.
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Characteristic (N = 256) No. of Percentage

patients (%)

Age Median age,
years

<40 years 26 10.16% 48 years (25-76)
>40 years 230 89.84%
Menopause
Premenopause 146 57.03%
Postmenopause 110 42.97%
Tumor size
<2 cm 108 40.23%
>2 cm 163 59.77%
Tumor grade
L, 1~ 11 177 69.14%
[~111, 1 79 30.86%
Lymph node metastasis
Node-Negative 112 43.75%
<4 56 21.88%
>4 88 34.38%
ER status
<50% 48 18.75%
>50% 208 81.25%
PR status
<50% 102 39.84%
>50% 154 60.16%
Ki67 status
<20% 182 71.09%
20%~30% 46 17.97%
>30% 28 10.94%
HER2 status (IHC and
FISH)
— +; 2+ and FISH (-) 229 89.45%
3+ or FISH (+) 27 10.55%

ER, estrogen receptor; PR, progesterone receptor; FISH, fluorescence in situ
hybridization; IHC, immunohistochemistry.
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0.74

0.79
0.81
0.81
0.79
0.81
0.81
0.8
0.82
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Feature number selection

9

0.85
0.87
0.87
0.85
0.85
0.86
0.83
0.83
0.83

12

0.82
0.83
0.83
0.81
0.83
0.83
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15
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0.79
0.8
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KEGG  Description p-Value Genes Count

hsa04530 Tight junction 1.35E-04 MARVELD2, RAB8B, PCNA, PRKCI, ACTR3, RAP2C, PPP2R2A, CLDN7, CDC42, RAPGEF6, HSPA4, ARPC5, RAB13, 25
PPP2R2B, CLDN14, MARVELD3, MAPK10, CLDN15, CLDN3, MAPK9, SCRIB, PARD6A, TJAP1, ARHGEF2, PRKAAT

Note. KEGG, Kyoto Encyclopedia of Genes and Genomes: LUAD, king adenocarcinoma.
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