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Summary of the main statistically significant results comparing the network properties between eyes open and 

closed conditions. During eyes closed, the posterior cingulate significantly sends mostly alpha oscillations to all 

other regions. During eyes open, the anterior cingulate significantly sends mostly theta-alpha oscillations to the 

dorsolateral pre-frontal cortices. PCC, posterior cingulate cortex; ACC, anterior cingulate cortex; LIPL, RIPL, left and 

right inferior parietal lobule; LDLPFC, RDLPFC, left and right dorsolateral pre-frontal cortex.  

Image: Pascual-Marqui et al, 2014. 
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Editorial on the Research Topic

New Insights on Basic and Clinical Aspects of EEG and MEG connectome

Previous studies have shown that, in electroencephalography (EEG) and magnetoencephalography
(MEG), cortical oscillations in specific frequency bands (i.e., delta, theta, alpha, beta, and gamma)
are functionally related to cognitive processing and behavior, and that abnormal patterns correlate
with pathophysiological processes of neuropsychiatric disorders. Although these results have
provided useful insights for neural communication in the human brain, they appeared to be highly
speculative based on the level of EEG and MEG analyses performed (simple averaging method,
wavelet analysis on the sensor level, etc.). The development of new analysis methods for EEG and
MEG signals has allowed researchers to depict the information code of brain networks, by precisely
localizing sources of oscillatory activity related to brain functions or pathological processes.
However, this kind of approach, characterizing brain activity purely in terms of anatomically
segregated responses, is not sufficient to explain the pathophysiology of complex neuropsychiatric
disorders or the mechanisms underlying cognitive functions.

Recent advances in the neuroimaging field areas allow us to visualize the aggregate of neural
connections at the macroscopic level within the brain, the so-called “connectome.” In order
to promote the development of the neurophysiological investigation of connectome of brain
oscillations, this e-book aims at bringing together contributions from researchers in basic and
clinical neuroscience using EEG and MEG connectome analysis. The most important focal point
will be to address the functional roles of connectome of brain oscillations in contributing to
understandings of higher cognitive processes in normal subjects and pathophysiology of psychiatric
diseases.

The included papers can be roughly divided into three groups as follows: the first group
of papers both tried to expand the boundaries of brain connectome analysis by applying new
statistic solvers on exact low resolution electromagnetic tomography (eLORETA) analysis of EEG.
Pascual-Marqui et al. who founded LORETA himself, presented namely the “isolated effective
coherence” (iCoh) obtained from eLORETA, which consists of estimating the partial coherence
under a multivariate autoregressive model, followed by setting all irrelevant associations to zero,
other than the particular directional association of interest. They elucidated the direct directed
connection of alpha activity from the posterior cingulate to all other regions during eyes closed and
theta-alpha activity from the anterior cingulate to other frontal regions during eyes open in human

5
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brain. Aoki et al. applied eLORETA-ICA analysis to resting-state
EEG data in 80 healthy subjects using five frequency bands (delta,
theta, alpha, beta and gamma band) and found five resting-
state-independent-networks in alpha, beta and gamma frequency
bands. Thatcher et al. analyzed the phase shift and lock duration
of 3-dimensional current sources in 14 Brodmann areas located
in the DMN using LORETA in the delta frequency band by using
the Hilbert transform between all pairs of Brodmann areas. By
depicting an inverse relation of phase shift and lock durations
in an exponential way with distance between Brodmann areas,
they showed a tremendous view of anatomical hubs in the brain
behave like a “shutter” that opens and closes at specific durations
as nodes of brain network. These cutting-edge methodologies
were often applied in the recent publications and cited almost 60
times in these four years in total.

The application of these connectivity analysis for basic
cognitive studies was described in the following papers—
the focus of the second group. To examine the relationship
between functional connectivity and performance of brain-
machine interfaces (BMIs), Sugata et al. analyzed the correlation
coefficient between performance of neural decoding and
functional connectivity over the whole brain using. They suggest
that use of the strength of functional connectivity between M1
and motor association areas has the potential to improve the
performance of BMIs to perform real and imagined movements.
Asakawa et al. evaluated the effect of different anxiety states on
information processing as measured by EEG using emotional
stimuli on a smartphone. They found that the propagation
speed of the low anxiety group at the medial coronal for
resting stimuli for all time segments was higher than those
of high anxiety group and suggested that neural information
processes concerning emotional stimuli differ based on current
anxiety state. Ishii et al. used spatially filtered MEG and
permutation analysis to precisely localize cortical generators
of the magnetic counterpart of frontal midline theta rhythm
(Fmθ) and found the dorsal anterior cingulate and adjacent
medial prefrontal cortex as the generetors of Fmθ and gamma
event-related synchronization in right parietal regions subserving
basic numerical processing and number-based spatial attention.
They suggested that these multiple oscillatory activities might
interact each other to proceed these cognitive tasks in the
brain. Leiken et al. reported high-frequency brain signals in

the developing brain using time-frequency analysis along with
beamforming methods on MEG data. They suggested that
the developing brain generates high-frequency signals that can
be detected with the non-invasive technique of MEG. These
studies showed several type of connectivity among certain brain
areas in multiple frequency bands such as theta, alpha, beta,
gamma bands related to various types of cognitive process and
behavior.

The third group contains the new research proposal from
Ibanez et al. assessing the combination of basal resting state
influences together with the ongoing activity during a task and its
evoked neural response to characterize brain dynamics changes
related to preclinical Alzheimer’s disease and the review article
from Miki and Kakigi introducing their own three studies that
focused on facial movements.

In summary, this ebook presented novel methodologies
and various applications of neurophysiological connectome
analysis. As a result, these papers were cited more than
120 times in these 4 years in total and threw light and
impact on new directions for investigating the connectome of
human brain.
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Functional connectivity is of central importance in understanding brain function. For this
purpose, multiple time series of electric cortical activity can be used for assessing the
properties of a network: the strength, directionality, and spectral characteristics (i.e.,
which oscillations are preferentially transmitted) of the connections. The partial directed
coherence (PDC) of Baccala and Sameshima (2001) is a widely used method for this
problem. The three aims of this study are: (1) To show that the PDC can misrepresent the
frequency response under plausible realistic conditions, thus defeating the main purpose
for which the measure was developed; (2) To provide a solution to this problem, namely the
“isolated effective coherence” (iCoh), which consists of estimating the partial coherence
under a multivariate autoregressive model, followed by setting all irrelevant associations
to zero, other than the particular directional association of interest; and (3) To show that
adequate iCoh estimators can be obtained from non-invasively computed cortical signals
based on exact low resolution electromagnetic tomography (eLORETA) applied to scalp
EEG recordings. To illustrate the severity of the problem with the PDC, and the solution
achieved by the iCoh, three examples are given, based on: (1) Simulated time series
with known dynamics; (2) Simulated cortical sources with known dynamics, used for
generating EEG recordings, which are then used for estimating (with eLORETA) the source
signals for the final connectivity assessment; and (3) EEG recordings in rats. Lastly, real
human recordings are analyzed, where the iCoh between six cortical regions of interest are
calculated and compared under eyes open and closed conditions, using 61-channel EEG
recordings from 109 subjects. During eyes closed, the posterior cingulate sends alpha
activity to all other regions. During eyes open, the anterior cingulate sends theta-alpha
activity to other frontal regions.

Keywords: causal intracortical connectivity, LORETA, isolated effective coherence, resting state electriphysiological

connectivity, alpha oscillation connectivity

INTRODUCTION
The type of problem that we are interested in can best be under-
stood with an informal hypothetical example.

Consider time series of local electric potential differences mea-
sured at five sites (i.e., nodes) on the cortex (electrocorticogram,
ECoG). Before connecting the five nodes, each one in isolation has
its distinct activity. For instance, node 1 oscillates at 28 Hz, node 2
at 16 Hz, and nodes 3, 4, and 5 at 23 Hz. In the next construction
step, some causal direct and directional connections with measur-
able time lags are established: node 1 sends to node 2; and node 2
sends identically to nodes 3, 4, and 5. The resulting connectivity
graph is shown in Figure 1.

Instantaneous connections, as considered, e.g., by Faes et al.
(2013), are not considered in this hypothetical example, i.e.,
ephaptic conduction is assumed to be absent, see e.g., Weiss et al.
(2013).

Note the distinction between “direct” and “indirect” connec-
tion paths. Examples in this hypothetical network are: (A) The
direct connection path from node 1 to node 2; (B) The indirect
connection path from node 1 to node 3 mediated by node 2.

Time series measurements from this hypothetical network
can be generated by means of a multivariate autoregressive
model, as will be shown in a quantitatively precise manner below
(Equations 1, 13).
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FIGURE 1 | Direct causal directed connections between nodes,

corresponding to the toy example defined by the multivariate

autoregressive model in Equation 13.

Given only the time series measurements, the problem of
interest here is to recover the detailed properties of the network
consisting of all the activity properties at each node, and the
nature of the direct causal connections, i.e., their strength, direc-
tion, and spectral characteristics of the oscillations that are being
transmitted.

This study is limited to this type of problem.
Moreover, this rather narrow and simple problem is, to this

date, of great interest, as can be seen, for instance, in a recent pub-
lication by Plomp et al. (2014), which provides a brief review of
methods and offers some benchmark data which will later be used
in this present study.

Upon reviewing the history and state of the art in frequency
domain causal connectivity studies, there are at least two note-
worthy contributions to this field:

1. The noise contribution ratio (NCR) of Akaike (1968). This
work has apparently gone unnoticed by most researchers in
this field. It has been extensively used and published under
other names, in particular by Saito and Harashima (1981),
Kaminski and Blinowska (1991), and Baccala et al. (1998).
Akaike’s NCR method discovers connections (direct and indi-
rect, without distinction), their directionality, and their spec-
tral characteristics.

2. The partial directed coherence (PDC) of Baccala and
Sameshima (2001), which is a measure designed to quan-
tify direct connections which are not confounded by indirect
paths, their directionality and their spectral characteristics.
This is a very widely used measure (cited 672 times at the
time of this writing according to “Google-Scholar”), prac-
tically considered the “golden standard” when all network
properties (and not just part of them) are of interest.

Recently, the PDC has been critically studied by Schelter et al.
(2009). They pointed out that the normalization used in the PDC,
i.e., the denominator in the PDC formula (see details below), con-
tains influences from the sender node of interest to all receiver
nodes, and as a consequence, the PDC decreases in the pres-
ence of many nodes, even if the relationship between a sender

and receiver of particular interest remains unchanged. The solu-
tion to this problem was given in the form of a renormalization
of the PDC, using the statistical variance of the strength of the
connection.

In this present study, rather the aiming at a re-normalization
of the PDC, such as that successfully achieved by Schelter et al.
(2009), we reformulate the problem from scratch, estimating the
partial coherence under a multivariate autoregressive model, fol-
lowed by setting all irrelevant associations to zero, other than
the particular directional association of interest. This procedure
is akin to Pearl’s “surgical intervention” for studying causality
(Pearl, 2000). This approach gives the isolated effective coherence
(iCoh) (Pascual-Marqui et al., 2014).

In the original Baccala and Sameshima paper (Baccala and
Sameshima, 2001), a number of simple toy examples were
designed to illustrate the superiority of the PDC as compared to
other competing methods. Following the same style, we here pro-
vide a new simple toy example, which compellingly shows how
the PDC can give incorrect information about the strength of a
connection, and incorrect information on its spectral character-
istics. And we show how the iCoh solves this problem.

To further illustrate the shortcomings of PDC as pointed out
by Schelter et al. (2009), both PDC and iCoh are compared below
in the analysis of publicly available benchmark data, consisting
of somatosensory responses in rats, measured on 15 skull elec-
trodes. The two methods produce dramatically different results,
with much reduced PDC values in some cases, consistent with the
observation made by Schelter et al. (2009), as discussed above.

In order to test the new iCoh measure as compared to the
PDC under more adverse realistic conditions, the following sim-
ulation was performed. Five time series with known dynamics
were generated, and used as the electrical activity assigned to
5 cortical sites. EEG recordings were computed by solving the
forward equations (see e.g., Fuchs et al., 2002; Gomez-Herrero
et al., 2008) at 19 scalp electrodes from these sources. The EEG
was then given to an inverse solver, namely eLORETA [exact low
resolution electromagnetic tomography (Pascual-Marqui, 2007,
2009; Pascual-Marqui et al., 2011)], producing estimated corti-
cal signals which were then used to compute iCoh and PDC. As
predicted and as will be shown below, iCoh recovers adequately
all the information about the network, whereas PDC also does so,
but reporting false results.

In a final example, real human recordings are analyzed, where
the iCoh between six cortical regions of interest (ROIs) are calcu-
lated and compared under eyes open and closed conditions, using
61-channel EEG recordings from 109 subjects (EEGs from public
data base, see Goldberger et al., 2000; Schalk et al., 2004). The
ROIs consist of the anterior and posterior cingulate cortices, the
inferior parietal lobules, and the dorsolateral pre-frontal cortices.
Statistical comparisons for every pair of ROIs, and for every dis-
crete frequency were based on non-parametric randomization of
the maximum-statistic (see e.g., Nichols and Holmes, 2002), thus
ensuring correction for multiple testing. During eyes closed, the
posterior cingulate significantly sends alpha activity to all other
regions. During eyes open, the anterior cingulate significantly
sends theta-alpha activity to the dorsolateral pre-frontal cortices.

For the sake of reproducible research, the software code imple-
menting the methods discussed here (using lazarus free-pascal
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“www.lazarus.freepascal.org”), including test data as a sim-
ple text file, are freely available at: https://sites.google.com/site/
pascualmarqui/home/icoh-isolated-effective-coherence.

METHODS
THE MULTIVARIATE AUTOREGRESSIVE MODEL
As described above, the definition of the iCoh is based on for-
mulating a multivariate autoregressive model, and calculating
the corresponding partial coherences after setting all irrelevant
connections to zero. All technical details can be found in Pascual-
Marqui et al. (2014). For the sake of completeness, a brief pre-
sentation is included here. General background and notation on
multivariate autoregressive models, frequency domain causality,
and spectral density matrices can be found, for instance, in Akaike
(1968) and Yamashita et al. (2005).

A stable, stationary multivariate autoregressive model of order
p ≥ 1, for q ≥ 2 time series X (t) ∈ R

q× 1, is written as:

X(t) =
p∑

k= 1

A(k) X(t − k)+ ε(t) (1)

where A(k) ∈ R
q×q are the autoregressive coefficients, ε(t) ∈

R
q×1 is the innovations (noise) vector, and t denotes discrete

time.
In general, the autoregressive coefficients [A(k)]ij, i.e., the ele-

ment
(
i, j

)
of the matrices A(k), quantify the direct causal influ-

ence for j→ i. This corresponds to Granger causality (Granger,
1969; Lütkepohl, 2007; Valdes-Sosa et al., 2011).

Given data sampled in discrete time, and given an
autoregressive order p ≥ 1, the autoregressive coefficients
and the innovation covariance matrix can be estimated by any
number of methods, one of which is least squares (see e.g.,
Akaike, 1968). The model order p can be estimated by means of
Akaike’s information criterion AIC (Akaike, 1974).

The frequency domain representation is:

X(ω) = A(ω) X (ω)+ ε(ω) (2)

where X (ω) ∈ C
q×1, A (ω) ∈ C

q×q, ε (ω) ∈ C
q×1 are the discrete

Fourier transforms, and where ω denotes discrete frequency.
From Equation 2, the Hermitian covariance, i.e., the spectral

density matrix, is:

Sx(ω) = (
Ă(ω)

)−1
Sε

(
Ă∗(ω)

)−1
(3)

with :
Ă(ω) = I− A(ω) (4)

where the superscript “∗” denotes matrix transpose and complex
conjugate, the superscript “−1” denotes matrix inversion, I is the
identity matrix, and Sε ∈ R

q×q is the noise covariance.

THE ISOLATED EFFECTIVE COHERENCE (ICoH)
From the spectral density matrix (Equation 3), the partial coher-
ences (see e.g., Brillinger, 2001) between any pair of nodes

(
i, j

)

can be calculated. The significance of the partial coherence in a
very general setting can be found in Radhakrishna Rao (1981).
In simple terms, the partial coherence is a measure of association
between two complex valued random variables after removing the
effect of other measured variables.

The full general equation for the partial coherence as a func-
tion of all the autoregressive coefficients contains information on
all possible connection paths. Technical details can be found in
Equations 8, 9 within Pascual-Marqui et al. (2014). However, in
order to “isolate” the direct and directional parts of a connec-
tion, all other possible paths must be severed. This is a procedure
commonly used in causality analysis, metaphorically known as
performing a “surgical intervention” (see e.g., Pearl, 2000).

For this reason, the isolated effective coherence (iCoh) for
j→ i is defined under the condition that the only non-zero
association between the time series is due to

[
Ă (ω)

]
ij �= 0. This

requires that all other possible associations be set to zero, i.e.,:

[A(ω)]kl ≡ 0 , for all (k, l) such that

(k, l) �= (
i, j

)
and k �= l (5)

and :
[Sε]kl ≡ 0 , for all (k, l) such that k �= l (6)

Note that the diagonal elements of Sε and A (ω) remain unmodi-
fied, since they do not “associate” different nodes.

Emphasis must be placed on the fact that this procedure
is meaningful only if the new system with a single association
remains stable and stationary.

When the constraints in Equations 5, 6 are applied to the gen-
eral partial coherence, we obtain the isolated effective coherence
(iCoh). In particular, iCoh for j→ i is defined as the squared
modulus of the partial coherence between i and j under the
constraints given by Equations 5, 6:

κi←j (ω) =
[Sε]−1

ii

∣∣∣[Ă (ω)
]

ij

∣∣∣2

[Sε]−1
ii

∣∣∣[Ă(ω)
]

ij

∣∣∣2 + [Sε]−1
jj

∣∣∣[Ă (ω)
]

jj

∣∣∣2
(7)

which clearly satisfies:

0 ≤ κi←j (ω) ≤ 1 (8)

The detailed, step by step derivations are shown in Pascual-
Marqui et al. (2014).

The iCoh can be described as the answer to the following
question:

“Given a dynamic linear system characterized by its autore-
gressive parameters, what would be the equation for the partial
coherence if all connections are severed, except for the single one
of interest?”

Note that the algorithm for computing the iCoh requires:

(1) The estimation of the full, joint, multivariate autoregressive
model (Equation 1). This step is performed only once.
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(2) For any given pair of nodes and any direction such as j→ i,
compute Equation 7 using the parameters from step (1).

THE PARTIAL DIRECTED COHERENCE (PDC) AND THE GENERALIZED
PARTIAL DIRECTED COHERENCE (gPDC)
These definitions are replicated here for the sake of completeness.

The PDC is:

∣∣π̄ij (ω)
∣∣2 =

∣∣∣[Ă(ω)
]

ij

∣∣∣2

[
Ă∗(ω) Ă(ω)

]
jj

=
∣∣∣[Ă (ω)

]
ij

∣∣∣2

q∑
k= 1

∣∣∣[Ă(ω)
]

kj

∣∣∣2
(9)

which corresponds to Baccala and Sameshima (2001), Equation
18 therein.

The gPDC is:

∣∣∣πw
ij (ω)

∣∣∣2 =
[Sε]−1

ii

∣∣∣[Ă(ω)
]

ij

∣∣∣2

q∑
k= 1

[Sε]−1
kk

∣∣∣[Ă(ω)
]

kj

∣∣∣2
(10)

which corresponds to Baccalá et al. (2007), Equation 11 therein.
Note that these measures are not proper partial coherences.

The squared modulus of a proper coherence or partial coherence
has a value between zero and one, and they do not have a column
or row sum value of 1.

STATISTICS
In some instances, results will be presented simply as the esti-
mated values of connectivities, without performing an actual
statistical test. This type of result is akin to showing the effect size.

In other cases, where specified, statistical tests are carried out
based on the method of non-parametric randomization of the
maximum-statistic, which has the advantage of correcting for
multiple testing, and of not relying on Gaussianity (Blair and
Karniski, 1994; Karniski et al., 1994; Nichols and Holmes, 2002;
Nichols, 2012).

A brief description of the multivariate non-parametric ran-
domization method follows. Technical details are not included
here because they can found in the specialized literature, see
e.g., Nichols and Holmes (2002) and the cited literature therein.
Consider an example where the data is represented as Xcki, con-
sisting of i = 1 . . . R variables, measured on k = 1 . . . N subjects,
under two conditions c = 1 and c = 2. The variables may corre-
spond to cortical spectral power at each voxel and each frequency,
or to direct and directed connection strength between each pair
of regions of interest and each frequency.

In this example, the aim is the discovery of the variables that
are significantly different between the two conditions. For this
purpose, the simple variable-by-variable t-statistic can be used
as a statistical measure of “distance” between the two conditions.
Other choices of statistics are equally valid. From the set of “R”
t-statistics (one for each variable), the absolute maximum is cho-
sen. Then its empirical probability distribution is estimated by
repeatedly randomizing the conditions “c,” and recalculation the
maximum-t’s under the null hypothesis. This empirical proba-
bility gives the threshold with correction for multiple (“R” tests)

testing, as explained in Nichols and Holmes (2002). The cor-
rection is exact (in the sense of Fisher’s exact test) for a large
number of randomizations, regardless of the original probability
distribution of the variables.

EEG: FORWARD AND INVERSE PROBLEMS
The equation of electrodynamics that links current density in
the brain to scalp electric potential differences is known as the
“forward” equation of EEG. This forward problem, which has a
well-defined solution, is typically solved with numerical methods.

Simulated EEG is easily created by placing sources of time
varying electric neuronal activity at any number of cortical sites,
and calculating the electric potential differences on scalp elec-
trodes, by means of the forward equation.

Formally, the forward equation of EEG in discrete form at time
instant “t” can be written as:

�t = KJt (11)

where �t ∈ R
NE × 1 denotes the instantaneous scalp electric

potential at NE electrodes, Jt ∈ R(3NV )×1 is the instantaneous cur-
rent density vector field at NV cortical voxels (consisting of three
components at each voxel), and K ∈ R

NE × (3NV ) is the lead field.
The inverse problem, which consists of estimating the corti-

cal activity (current density vector field) from measured scalp
EEG, is known to have no unique solution (see e.g., Helmholtz,
1853; Pascual-Marqui, 2009). This is the reason for the existence
of many different inverse solutions found in the literature. In
this study, the method known as exact low resolution electro-
magnetic tomography (eLORETA; Pascual-Marqui, 2007, 2009;
Pascual-Marqui et al., 2011) is used for estimating sources in
both simulated EEG and for real human EEG measurements. The
eLORETA solution has the following generic form:

Ĵt = T�t (12)

where T ∈ R(3NV )×NE is the eLORETA pseudoinverse (Pascual-
Marqui, 2007; Pascual-Marqui et al., 2011).

In the current implementation of eLORETA, computations
are made in a realistic head model (Fuchs et al., 2002), using
the MNI152 template (Mazziotta et al., 2001), with the three-
dimensional solution space restricted to cortical gray matter, as
determined by the probabilistic Talairach atlas (Lancaster et al.,
2000). The standard electrode positions on the MNI152 scalp
were taken from Jurcak et al. (2007). A total of 6239 cortical gray
matter voxels at 5 mm spatial resolution constitute the solution
space.

The estimated time varying electric neuronal activity at each
cortical voxel (given by Ĵt in Equation 12) consists of three time
series, one for each moment component of the current density
vector (i.e., dipole). In practice, this can be reduced to a sin-
gle time series, due to the fact that the current density vector is
anatomically constrained to have an orientation orthogonal to the
cortical surface (see e.g., Baillet et al., 2001). Under this assump-
tion, the 3× 3 covariance matrix for the current density vector
at each voxel must have rank 1, with the dipole orientation given
by its largest eigenvector (Mosher et al., 1992; Mosher and Leahy,
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1998). This procedure is applied in this study for the estimation of
single time series of electric neuronal activity at each voxel. Note
that this estimator for the current density vector field orientation
is a maximum variance estimator.

MATERIALS
A TOY EXAMPLE: FIVE TIME SERIES
Simulated recordings from five time series were generated from
the following stable, stationary multivariate autoregressive model
of order 2:

A(1) =

⎛
⎜⎜⎜⎜⎜⎝

1.5 −0.25 0 0 0
−0.2 1.8 0 0 0

0 0.9 1.65 0 0
0 0.9 0 1.65 0
0 0.9 0 0 1.65

⎞
⎟⎟⎟⎟⎟⎠
;

A(2) =

⎛
⎜⎜⎜⎜⎜⎝

−0.95 0 0 0 0
0 −0.96 0 0 0
0 −0.8 −0.95 0 0
0 −0.8 0 −0.95 0
0 −0.8 0 0 −0.95

⎞
⎟⎟⎟⎟⎟⎠
;

Sε = I (13)

The direct causal directed connections between nodes are illus-
trated as arrows in Figure 1.

Assuming a Gaussian distribution for the noise (zero mean,
unit variance, as shown in Equation 13), 25600 time samples were
generated (after discarding the first 1000 time samples) and used
for all estimation procedures.

Assuming that the times series are sampled at 256 Hz, the
main spectral properties of this network, by construction, are the
following:

(1) Node 1 in isolation oscillates at peak frequency 28 Hz.
(2) Node 2 in isolation oscillates at peak frequency 16 Hz.
(3) Nodes 3, 4, and 5 in isolation oscillate at peak frequency

28 Hz.
(4) Nodes 3, 4, and 5 are receiving identical information from

node 2.

SIMULATED EEG
In a different setting, the five time series generated in the previ-
ous subsection were used as the time varying electric neuronal
activities at the following cortical locations:

(1) Superior frontal gyrus (left), BA 10: X = −25, Y = 65,
Z = −5

(2) Middle Occipital Gyrus (right), BA 18: X = 20, Y = −100,
Z = 5

(3) Post-central Gyrus (left), BA 3: X = −50, Y = −20, Z = 60
(4) Middle Temporal Gyrus (left), BA 21: X = −65, Y = −15,

Z = −15
(5) Middle Temporal Gyrus (right), BA 21: X = 70, Y = −20,

Z = −10

FIGURE 2 | Schematic representation of the anatomical locations of

five cortical point sources used for generating EEG.

where (X, Y, Z) denotes the MNI coordinates in millimeters, and
BA denotes Brodmann area.

Figure 2 illustrates the five cortical locations.
Use was made of the forward equations previously explained

for generating EEG recordings at 19 scalp electrodes, correspond-
ing to the 10/20 electrode placement system. In this generation
process, two relatively large sources of noise were added:

(1) Biological noise, where independent and identically dis-
tributed uniform [0, 0.2] random values were assigned to the
current density at each cortical voxel and at each time sample.

(2) Measurement noise, where independent and identically dis-
tributed uniform [0, 0.2] random values were multiplied by
the potential at each electrode and time sample, and added to
potential.

RAT EEG
EEG recorded at 2 kHz sampling rate from 15 electrodes placed
directly onto the skull of rats, during a somatosensory experi-
ment, are publicly available from Plomp et al. (2014). A single
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recording from their repository, the data from the file named
“RN060915A2_STIMD,” was taken for analysis. This corresponds
to the average evoked response for one particular animal, with
unilateral whisker stimulation. The recording starts at −60 ms
relative to stimulus onset, and has a total duration of 180 ms.

HUMAN EEG RECORDINGS
Real human EEG recordings under eyes open and closed condi-
tions, using 64-channel EEG recordings from 109 subjects, are
publicly available from Goldberger et al. (2000), Schalk et al.
(2004). Each recording (218 in total) consists of 1 min. EEG, sam-
pled at 160 Hz. Three electrodes (T9, T10, and Iz) were discarded
for analysis, because they were spatial outliers relative to the other
61 electrodes that cover the scalp in an approximate uniformly
distributed manner.

RESULTS
A TOY EXAMPLE: FIVE TIME SERIES
Figure 3 shows the iCoh (Equation 7) and the gPDC (Equation
10) calculated for the network in Figure 1. In both cases, the
same estimated multivariate autoregressive model of order p = 3
was used. The results were essentially identical for autoregressive
order p = 2.

Of importance to note in Figure 3: the two methods give very
different results with respect to node #2 as sender (column 2).

SIMULATED EEG
The simulated EEG time series for 19 scalp electrodes, using as
generators the five cortical locations described in the materials

section (Figure 2), with time dynamics from the previous
example, were analyzed with eLORETA. We emphasize that this
EEG was corrupted with relatively large amounts of additive
biological and measurement noise. eLORETA was computed at
all 6239 cortical voxels. However, connectivity computations are
presented for the estimated electrical activities at the same cor-
tical sites as in Figure 2. Figure 4 shows the estimated iCoh and
gPDC. In both cases, the same estimated multivariate autoregres-
sive model of order p = 3 was used. The results were essentially
identical for autoregressive order p = 2.

Of importance to note in Figure 4:

(1) Ideally, Figure 4 should be identical to Figure 3. This is the
case to a very good approximation from a qualitative point
of view, despite the use of estimated signals using eLORETA,
from as few as 19 electrodes, and corrupted with relative high
levels of biological and measurement noise.

(2) The two methods give very different results with respect to
node #2 as sender (column 2).

RAT EEG
The average somatosensory evoked response for one rat was ana-
lyzed with a multivariate autoregressive model of order p = 8,
based on the model order determined in the original publication.
Although this data is clearly not stationary, it was analyzed as such
in the original publication (Plomp et al., 2014), using a recursive
least squares (RLS) algorithm with a forgetting factor, in order to
implement a time varying version of the autoregressive model.

FIGURE 3 | Estimated connectivity properties for the network in

Figure 1. Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Overlap of
both curves is shown in BLACK. Vertical axis: 0 to 1. Frequency axis: 1 to

127 Hz. Columns are senders, rows are receivers. Coherence peak in column
1 occurs at 28 Hz. Coherence peak for iCoh in column 2 occurs at 16 Hz.
Coherence peak for gPDC in column 2, row 1 occurs at 1 Hz; and Coherence
peak for gPDC in column 2, rows 3, 4, and 5 occur at 23 Hz.

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 448
12

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pascual-Marqui et al. Effective intracortical oscillatory information flow

FIGURE 4 | Estimated connectivity properties for simulated EEG signals

(see Figure 2). Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Vertical axis: 0
to 1. Frequency axis: 1 to 127 Hz. Columns are senders, rows are receivers.

Coherence peak in column 1 occurs at 28 Hz. Coherence peak for iCoh in
column 2 occurs at 16 Hz. Coherence peak for gPDC in column 2, row 1
occurs at 1 Hz; and Coherence peak for gPDC in column 2, rows 3, 4, and 5
occur at 23 Hz.

The only particular and differentiating feature in this current
study is that there is no forgetting factor.

But regardless of these considerations, the sole purpose of this
rat data analysis is to show the extreme differences in network
properties estimated by iCoh and gPDC, as shown in Figure 5.

Of importance to note in Figure 5: the extremely low connec-
tivity values produced by gPDC as compared to iCoh, and the
number of missing spectral peaks in gPDC as compared to iCoh.

HUMAN EEG RECORDINGS
EEGs recorded from 109 subjects under eyes open and eyes closed
conditions were analyzed. Resting state, awake, eyes closed EEG is
characterized by the presence of alpha rhythm, as compared to the
eyes open condition.

In a first analysis step, the spectral density of electric neuronal
activity throughout the cortex was calculated with eLORETA at
all 6239 cortical voxels. The technical details on calculating cor-
tical activity spectra can be found in Frei et al. (2001). A voxel
by voxel, frequency by frequency comparison between eyes open
and closed conditions was performed. Figure 6 shows the three
main statistically significant results. Eyes open is characterized by
significantly stronger activity in frontal cortical regions oscillating
at 3 Hz and in the beta band 23–28 Hz. Eyes closed is character-
ized by significantly stronger activity in occipital cortical regions
oscillating at 10 Hz.

In a second analysis step, time series of electric neuronal activ-
ity were estimated with eLORETA at 6239 cortical voxels, from
which six cortical regions of interest were used for the connec-
tivity analyses. This procedure was applied to the EEGs recorded

in 109 subjects, under eyes open and eyes closed conditions. The
regions of interest are:

(1) Anterior Cingulate, BA 32: X = 0, Y = 45, Z = 10
(2) Posterior Cingulate, Precuneus, BAs 23, 31: X = 0, Y = −50,

Z = 30
(3) Inferior Parietal Lobule (left), BA 40: X = −45, Y = −45,

Z = 50
(4) Inferior Parietal Lobule (right), BA 40: X = 45, Y = −45,

Z = 50
(5) Dorsolateral Pre-frontal (left), BA 10: X = −40, Y = 40,

Z = 25
(6) Dorsolateral Pre-frontal (right), BA 10: X = 40, Y = 40,

Z = 25

iCoh was estimated for the six time series, in the 218 recordings,
using an autoregressive order p = 7, which corresponds to the
median order for all EEG recordings based on Akaike’s AIC (see
subsection “The multivariate autoregressive model”). A statisti-
cal comparison between eyes open and eyes closed conditions was
carried out, for each frequency, for each pair of regions of interest,
and for each direction of connection. The significant differences
at probability 0.05 with correction for multiple testing, are shown
in Figure 7.

Figure 8 summarizes the main statistically significant results.
During eyes closed, the posterior cingulate significantly sends
activity to all other regions. During eyes open, the anterior cin-
gulate significantly sends activity to the dorsolateral pre-frontal
cortices.
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FIGURE 5 | Estimated connectivity properties for rat EEG recordings from 15 skull electrodes. Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Vertical axis: 0 to 1. Frequency axis: 7.8 to 250 Hz. Columns are senders, rows are receivers.

DISCUSSION
The results corresponding to the toy example with five time
series demonstrate very clearly a major problem with the par-
tial directed coherence (PDC; Baccala and Sameshima, 2001) as
well as with its generalized version (gPDC; Baccalá et al., 2007).
By construction, node 2 sends identical information to nodes 3, 4,
and 5. And yet the gPDC gives very different results. Moreover, the
frequency responses of the gPDC are incorrect, with one missing
spectral peak and other peaks at incorrect frequencies.

This type of problem was already pointed out by Schelter et al.
(2009), and here we show a compelling example of how severe it
can be.

In contrast, the isolated effective coherence (iCoh) introduced
in this study recovers and reports correctly all the network prop-
erties for the toy example.

The results corresponding to the evoked response recordings
from an animal experiment (Plomp et al., 2014) demonstrate that
gPDC and iCoh can give very different results with real exper-
imental data. Because of the complex biological nature of the
data, the ground truth is not unambiguously known. Regardless,
this demonstrates that when there are many nodes (15 in this
case), the gPDC can give very low connectivity values and almost
featureless spectral properties as compared to iCoh.

By its very nature and definition, the gPDC does not report
information on a particular direct directed connection. Instead,
it is affected by many other connections, in such a way that it
can report incorrect values and spectral properties of the “sender-
receiver” pair of interest. The iCoh solves this problem, by its very
nature and definition (Pascual-Marqui et al., 2014).

In the neurosciences, one of the most interesting applications
of a method such as the iCoh is the elucidation of effective cortical

connections based on measurements of electric neuronal activity.
However, these are extremely invasive measurements. In order to
solve this problem non-invasively, one possible approach is to use
scalp EEG measurements, and to estimate with an inverse solution
the electric neuronal activity at any number of cortical locations.
It is then very important to prove that the estimated time series
are of sufficient quality to calculate iCoh reliably.

This was the aim of the experiment with simulated EEG.
Cortical signals were used for computing EEG, which was then
analyzed with the eLORETA inverse solution (which has no prior
information about the locations or about the dynamics of the
actual sources). Despite the low spatial resolution of eLORETA,
and despite the use of only 19 scalp electrodes, iCoh was esti-
mated very reliably. This is partly due to the fact that a measure
such as iCoh separates rather well instantaneous and lagged con-
nections, especially if the instantaneous connections are mediated
by the noise covariances, which explicitly do not affect iCoh (see
Equations 6, 7). However, the low spatial resolution of eLORETA
will mix the autoregressive coefficients, as is shown in Gomez-
Herrero et al. (2008). Both Gomez-Herrero et al. (2008) and Faes
et al. (2013) propose solutions to this problem, which can be
applied also to eLORETA signals.

Finally, an eLORETA-iCoh study was performed on real
human EEG which is available from a public repository
(Goldberger et al., 2000; Schalk et al., 2004). The research aim
here was to search for differences in brain function between two
resting states, namely eyes open and eyes closed. Two aspects of
brain function were explored:

1. The cortical location of the generators of different oscillatory
activity (functional localization).
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FIGURE 6 | Comparison of electric neuronal activity (eLORETA)

between eyes open and closed conditions. A Log-F-ratio statistic
with correction for multiple testing was used, with corrected
p = 0.05 at LogF = 0.91. Eyes open is characterized by significantly

stronger activity in frontal cortical regions oscillating at 3 Hz (A)

and in the beta band 23–28 Hz (C). Eyes closed is characterized
by significantly stronger activity in occipital cortical regions oscillating
at 10 Hz (B).

2. The network properties among a group of six very important
cortical sites (functional “effective” connectivity).

This type of study is of interest in understanding the resting state
of the brain. In particular, in understanding the functional role
of the alpha rhythm (Knyazev et al., 2011; Klimesch, 2012; Sigala
et al., 2014), and in understanding the functional changes during
the eyes open condition (Jao et al., 2013). The results show that
eyes closed alpha activity was localized to occipital areas, while
delta and beta activities were located in frontal cortical regions.

With respect to the network properties, the iCoh analysis demon-
strated that the posterior cingulate cortex is a major sender of
mainly alpha oscillations to all other regions. Interestingly, during
eyes open, this function is turned off, and the anterior cingu-
late activates as a sender of mainly theta-alpha oscillations to the
dorsolateral pre-frontal cortices.

OUTLOOK AND LIMITATIONS
The iCoh method can be extended to other conditions,
different from the particular ones considered here. For instance,
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FIGURE 7 | t-Statistics comparing eyes open minus eyes closed iCoh

for 109 subjects, in six regions of interest: anterior cingulate,

posterior cingulate, left and right inferior parietal, and left and right

dorsolateral pre-frontal cortices. Frequency axis: 1 to 30 Hz. Corrected
p = 0.05 was at t-threshold = 4.3, with vertical axis: −7 to +7. Blue

color denotes eyes closed significantly larger, red color denotes eyes
open significantly larger. The three numbers indicate the frequencies (Hz)
for the significant results: start, end, and the most significant oscillation
indicated with a superscript “∗.” Columns are senders (prefix “s”), rows
are receivers (prefix “r”).

instantaneous connections such as those considered in the gen-
eralized autoregressive model of Faes et al. (2013) can be directly
applied to iCoh. Moreover, since iCoh solely depends on the esti-
mated autoregressive coefficients and the noise variances, these
parameters can be estimated under non-stationary, time-varying
conditions, as for example in Plomp et al. (2014).

However, if the actual dynamics are non-linear or simply
do not follow a linear autoregressive model, then iCoh might
be invalid. Non-linear causality measures have been reviewed
in Marinazzo et al. (2011), where a novel method is pro-
posed: “kernel Granger causality.” Another method is the phase
slope index (Nolte et al., 2008), which is of a more non-
parametric nature, not relying on the parametric form of the
linear autoregression. However, these two alternative methods
do not distinguish the direct or indirect nature of the connec-
tions.

Interestingly, a very recent book entitled “Directed
Information Measures in Neuroscience” (Wibral et al., 2014)
barely deals with methods that reveal all properties of a neural
network, namely the spectral content of information flow, the
direct or indirect nature of the connections, and the actual
direction. One exception is a single chapter that refers to the
PDC of Baccala and Sameshima (2001), and to Geweke’s method
(Geweke, 1984) (which is based on the predictive approach of
Granger).

In our present study, the method of Geweke was not stud-
ied, and certainly deserves more attention in future research.
However, we note that Geweke’s method has been criticized

elsewhere (Chen et al., 2006) because it often produces negative
connectivity values that render it meaningless.

It is important to emphasize that the EEG simulation example
presented here is very limited, and only constitutes a “proof of
principle,” since the cortical signals used for analysis were close to
the actual locations of the sources. The effect of the choice of the
number of regions of interest and of their locations relative to the
actual unknown active network requires further study.

One common problem in all models that depend on fitting
a multivariate autoregressive model is the curse of dimension-
ality: for a large number of nodes and for a high autoregressive
order, the number of parameters to be estimated can be too large
to produce reliable estimators. One possible solution is the esti-
mation of sparse multivariate autoregressions as developed by
Valdes-Sosa et al. (2005). Alternatively, stable high dimensional
autoregressive models can be successfully estimated under spatio-
temporal constraints, such as those considered by Jiménez et al.
(1995).

The eLORETA method was used in this study. Other inverse
solutions can be used. The only requirement is that the selected
method needs to be capable of correct estimation of the neu-
ronal current density. This was the reason for choosing eLORETA,
because it is an improvement over the previous related tomo-
graphies known as LORETA (Pascual-Marqui et al., 1994) and
sLORETA (Pascual-Marqui, 2002), which have received consid-
erable and substantial validation (Pascual-Marqui et al., 2011).
We note that all these techniques can equally be applied to MEG
measurements as well.
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FIGURE 8 | Summary of the main statistically significant results

comparing the network properties between eyes open and closed

conditions. During eyes closed, the posterior cingulate significantly sends
mostly alpha oscillations to all other regions. During eyes open, the anterior
cingulate significantly sends mostly theta-alpha oscillations to the
dorsolateral pre-frontal cortices. PCC, posterior cingulate cortex; ACC,
anterior cingulate cortex; LIPL, RIPL, left and right inferior parietal lobule;
LDLPFC, RDLPFC, left and right dorsolateral pre-frontal cortex.

There is a severe limitation in the use and interpretation of
all connectivity measures (including iCoh) if they are applied to
scalp EEG signals. In this case, the results should never be inter-
preted as representing cortical connections. The reason is that
cortical activity does not project radially onto the scalp (see e.g.,
Lehmann et al., 2006, 2012). This problem applies to all EEG anal-
yses that naively map scalp measurements and features onto the
underlying cortex, which in general produce incorrect results.

In conclusion, iCoh is most certainly not intended as the gen-
eral solution to the problem of identifying network properties.
It is a very simple and particular measure for correctly assessing
direct connections that causally transmit oscillatory information
between nodes, under the assumption of a linear autoregres-
sive model. It is distinct from the PDC method of Baccala and
Sameshima (2001); Baccalá et al. (2007), which can produce
incorrect results.
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Recent functional magnetic resonance imaging (fMRI) studies have shown that
functional networks can be extracted even from resting state data, the so called
“Resting State independent Networks” (RS-independent-Ns) by applying independent
component analysis (ICA). However, compared to fMRI, electroencephalography (EEG)
and magnetoencephalography (MEG) have much higher temporal resolution and provide
a direct estimation of cortical activity. To date, MEG studies have applied ICA for separate
frequency bands only, disregarding cross-frequency couplings. In this study, we aimed to
detect EEG-RS-independent-Ns and their interactions in all frequency bands. We applied
exact low resolution brain electromagnetic tomography-ICA (eLORETA-ICA) to resting-
state EEG data in 80 healthy subjects using five frequency bands (delta, theta, alpha, beta
and gamma band) and found five RS-independent-Ns in alpha, beta and gamma frequency
bands. Next, taking into account previous neuroimaging findings, five RS-independent-Ns
were identified: (1) the visual network in alpha frequency band, (2) dual-process of visual
perception network, characterized by a negative correlation between the right ventral visual
pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway
(DVP) in alpha frequency band, (3) self-referential processing network, characterized by
a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency
band and right temporoparietal junction (TPJ) in alpha frequency band, (4) dual-process
of memory perception network, functionally related to a negative correlation between the
left VVP and the precuneus in alpha frequency band; and (5) sensorimotor network in beta
and gamma frequency bands. We selected eLORETA-ICA which has many advantages
over the other network visualization methods and overall findings indicate that eLORETA-
ICA with EEG data can identify five RS-independent-Ns in their intrinsic frequency bands,
and correct correlations within RS-independent-Ns.

Keywords: eLORETA-ICA, LORETA, resting state network, independent component analysis, ICA, EEG

INTRODUCTION
The brain intrinsically interacts between distant regions, building
cortical networks during motor and cognitive tasks. Interestingly,
one network enhances its activity in no-task resting state. In
particular, the so called default mode network (DMN) is known to
be active during resting and attenuates during task performance.
However, recent findings suggest that the DMN is also involved
in internally focused processes such as self-referential thoughts,
envisioning one’s future and autobiographical memory retrieval
(Raichle et al., 2001; Buckner et al., 2008). Furthermore, it has
been reported that several cortical networks cooperate with each
other positively or negatively during performance of complex

cognitive tasks (Spreng and Schacter, 2012). These functional
networks have been investigated by lesional and anatomical
studies and during functional tasks with functional magnetic
resonance imaging (fMRI), which measures regional cerebral
blood flow (rCBF) changes. However, one mathematical method
called independent component analysis (ICA) have received
growing attention (Bell and Sejnowski, 1995; Hyvärinen and
Oja, 2000). ICA is a mathematical decomposing method which
separates mixture of signals like electroencephalography (EEG),
magnetoencephalography (MEG) and fMRI data into a set of
statistical independent components (ICs) that are artifact signals
and physiological signals. In addition, it should be noted that
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using ICA these task positive or negative functional networks
can be extracted from “resting state” fMRI data and MEG data
(Beckmann et al., 2005; Allen et al., 2011; Brookes et al., 2011).
These led to the concept of “Resting State independent Network”
(RS-independent-N). Also, there are some other methods used
for the discovery of interactions in the brain which are seed-
based correlation analyses. These analyses has extracted Resting
State correlated Networks (RS-correlated-Ns) from resting state
fMRI data or MEG data (Biswal et al., 1995; Vincent et al.,
2008; Brookes et al., 2011; Raichle, 2011; Hipp et al., 2012).
In this way, ICA and seed-based correlation analyses with
fMRI data has identified several RS-independent-Ns and RS-
correlated-Ns, including the basal ganglia network, auditory
network, sensorimotor network, visual network, DMN, ventral
and dorsal visual pathway (VVP and DVP), and the frontal
network (Biswal et al., 1995; Allen et al., 2011; Joel et al., 2011;
Raichle, 2011; Meyer et al., 2013). However, correlation analysis
has a problem of an implicit assumption of Gaussianity of the
signal where fMRI signals are approximately Gaussian (Hlinka
et al., 2011) but EEG and MEG signals are non-Gaussian (Stam,
2005). Thus, RS-correlated-Ns derived from correlation analysis
of EEG and MEG data are not independent with each other
in a precise sense because of non- Gaussianity of EEG and
MEG data (Hyvärinen and Oja, 2000; Stam, 2005). In addition,
correlation analyses emphasize the special role of some pre-
selected brain region. However, unlike the seed-based methods,
ICA is appropriate for the discovery of distributed networks,
giving equal importance to all brain voxels (Joel et al., 2011).
Furthermore, ICA can remove artifacts such as electromyogram
or base line shift by separating out artifact components (Custo
et al., 2014).

Unlike fMRI, which measures hemodynamic changes that
occur in response to cortical activity, neurophysiological
techniques, such as EEG and MEG measure cortical
electrical/magnetic activity directly and noninvasively with a
high temporal resolution (1–2 ms) (Canuet et al., 2011). Thus,
EEG has been widely used in clinical practice to support clinical
diagnosis and management of neuropsychiatric diseases such as
epilepsy, disturbance of consciousness and dementia, and also
in neuroscience to investigate cortical electrical activities and
functions (Ishii et al., 1999; Canuet et al., 2011; Kurimoto et al.,
2012; Aoki et al., 2013a,b).

Recent findings of EEG and MEG analyses indicate that
electromagnetic oscillatory activity of the functional networks
varies its frequency from lower sensory areas to higher-order
control areas. For instance, intra-cortical investigations using
depth electrodes with syllable auditory task reported that cortical
electrical activity of auditory area changed from evoked activity
(phase-locked to the stimulus) to induced activity (non-phase-
locked to the stimulus) and also its frequency changed from theta
and low gamma to beta and high gamma, as activity shifted from
primary auditory cortices to associative auditory cortex (Morillon
et al., 2012). Another MEG study using a visuospatial attentional
task found that the cortical electrical activity of the DVP changed
from alpha evoked activity to beta induced activity as it shifted
from early visual areas to prefrontal control areas (Siegel et al.,
2008). And recent fMRI and MEG studies using decomposing

methods have repeatedly shown that these functional networks
can also be seen during resting state with changing its power
of activity (Smith et al., 2009; Grady et al., 2010; Brookes
et al., 2011). From these accumulating evidences, we can assume
that RS-independent-Ns are associated with several frequency
bands of electromagnetic activity depending on the function
subserved by the different cortical regions. In support of this
notion, a simultaneous fMRI and EEG study showed that blood
oxygenation level dependent (BOLD) signals of RS-independent-
Ns correlated with EEG waveforms in several frequency bands
(Mantini et al., 2007). In addition, Jonmohamadi et al. (2014)
and Mantini et al. (2011) showed that ICA decomposition of
EEG and MEG data becomes more correct in localization and
more robust to artifacts when applied after source reconstruction.
Taken together, in order to visualize RS-independent-Ns across
several frequency bands, we consider appropriate to apply ICA
to cortical electrical activity reconstructed from EEG or MEG
data, analyzing all frequency bands. To our knowledge, there is
one previous EEG-RS-independent-N study. However, ICA was
applied to scalp recorded EEG data in the time domain, followed
by a second step using a sLORETA source reconstruction on
the ICA-scalp topographies; in contrast, we apply ICA directly
to the reconstructed cortical electrical activity by eLORETA in
the frequency domain. And the results of cortical electrical
distributions of ICs were rather different from known functional
networks (Chen et al., 2013). Also there is a few previous MEG-
RS-independent-N studies. In their studies, ICA was applied
to cortical electrical activity reconstructed from MEG data,
however, in separate frequency bands, disregarding possible
cross-frequency coupling. Furthermore, sample sizes of these
studies were small (Brookes et al., 2011, 2012; Luckhoo et al.,
2012).

Also, ICA of EEG data has been widely used for various
purposes, such as artifact rejection by separating out artifact
components (Custo et al., 2014) and examination of the EEG
resting states (infra-slow EEG fluctuations and EEG microstates).
For instance, Hiltunen et al. (2014), found correlations between
the filtered ICA time series (using ultra-low frequencies) of the
EEG with BOLD time series in specific fMRI RS-independent-
Ns. And Yuan et al. (2012), performing ICA on EEG microstates
to decompose into ICs (independent microstates), found that
each fMRI RS-independent-N was characterized by one to a
combination of several independent microstates.

Exact low resolution brain electromagnetic tomography
(eLORETA) is a linear inverse solution method that can
reconstruct cortical electrical activity with correct localization
from the scalp EEG data (Pascual-Marqui et al., 2011; Aoki
et al., 2013a). The implementation of ICA in the eLORETA
software with EEG data allows for decomposition of cortical
electrical activity which is non-Gaussian into ICs in different
frequency bands (Pascual-Marqui and Biscay-Lirio, 2011). Other
decomposing methods (e.g., principal component analysis or
correlation analysis) with EEG data cannot strictly to do so
(Bell and Sejnowski, 1997; Hyvärinen and Oja, 2000; Mantini
et al., 2011). Furthermore, electromagnetic tomography-ICA
(eLORETA-ICA) uses all frequency information of EEG data in
analysis. In this study, we selected eLORETA-ICA which has many
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advantages over the other network visualization methods as we
explained above and applied it to EEG data to obtain complete
set of EEG-RS-independent-Ns across several frequency bands for
the first time.

METHODS
SUBJECTS
We recruited 306 healthy elderly subjects who had no history
of neurological or psychiatric disorders. Elderly subjects over 60
years old underwent clinical tests to ensure that memory and
other cognitive functions were within normal limits (MMSE >
24, CDR = 0). From the participants, 146 subjects were healthy
volunteers, and the remaining 160 subjects were ascertained from
an epidemiological study among inhabitants in Tone, Ibaraki,
Japan. This study was approved by the Ethics Committee of Osaka
University Hospital and followed the Declaration of Helsinki.
Written informed consent was obtained from the subjects.

EEG RECORDING AND DATA ACQUISITION
Subjects underwent EEG recordings in a resting state, eyes closed
condition for about 5 min. Subjects were instructed to keep
their eyes closed while staying awake during the recordings.
Spontaneous cortical electrical activity was recorded with a
19-channel EEG system (EEG-1000/EEG-1200, Nihon Kohden,
Inc., Tokyo, Japan), filtered through a 0.53–120 Hz band-pass
filter, and sampled at 500 Hz. EEG was recorded with the
electrodes positioned according to the International 10–20 system
(i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, T6, Fz, Cz, Pz) using a linked ears reference. Electrode
impedances were kept below 5 kΩ. For each subject, 120-s
artifact-free, resting-awake segments were manually selected
by visual inspection using Neuroworkbench software (Nihon
Kohden, Inc., Tokyo, Japan).

EEG-SOURCE RECONSTRUCTION METHOD
We used eLORETA (exact low resolution brain electromagnetic
tomography) to compute the cortical electrical distribution
from the scalp electrical potentials measured at the electrode
sites (Pascual-Marqui et al., 2011). The eLORETA method is a
weighted minimum norm inverse solution, where the weights
are unique and endow the inverse solution with the property of
exact localization for any point source in the brain. Thus, due
to the principles of linearity and superposition, any arbitrary
distribution will be correctly localized, albeit with low spatial
resolution. In the current eLORETA version, the solution space
consists of 6239 cortical gray matter voxels at 5 mm spatial
resolution, in a realistic head model (Fuchs et al., 2002), using
the MNI152 template (Mazziotta et al., 2001). The LORETA
method has been previously used and validated with real human
data during diverse sensory stimulation and in neuropsychiatric
patients (Dierks et al., 2000; Vitacco et al., 2002; Pascual-Marqui
et al., 2011; Aoki et al., 2013a). A further property of eLORETA is
that it has correct localization even in the presence of structured
noise (Pascual-Marqui et al., 2011). In this sense, eLORETA is
an improvement over previously related versions of LORETA
(Pascual-Marqui et al., 1994) and sLORETA (Pascual-Marqui,
2002). eLORETA images of spectral density were computed for

five frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (30–60 Hz) (Canuet et al.,
2012).

FUNCTIONAL ICA
In most of the resting state network (RSN) literature, ICA is the
method most widely used for the discovery of sets of regions
that work together as networks. There are numerous different
processing strategies that are being used in the RS-independent-
N literature, as reviewed by Calhoun (Calhoun et al., 2009).
For instance, in typical fMRI group studies for the discovery of
RS-independent-Ns, the time series images for each subject are
first heavily pre-processed (see Calhoun et al., 2009 for details),
and then all subjects’ time series images are concatenated. This
produces a matrix, where one dimension consists of “space” (i.e.,
the brain voxels), and the other dimension consists of time.
Finally, an ICA algorithm is applied to this matrix, which will
produce a set of spatial components (i.e., images), where each
“component image” consists of a so-called “network”. In order
to interpret a network image, one must threshold its values
appropriately, displaying the brain regions that have highest
loadings. This post-processing is achieved by z-transforming the
component network image, and using an empirical threshold, as
in for example (McKeown et al., 1998; Calhoun et al., 2004; Kelly
et al., 2010; Agcaoglu et al., 2014). In this way, each network image
will display areas whose activities are tightly linked (i.e., they work
together as a network).

In contrast to relatively slow hemodynamic images, high
time resolution images of electrical neuronal activity can be
computed using eLORETA applied to EEG recordings. In an
implicit manner, these images contain an additional dimension
of frequency. Whereas fMRI images have their spectrum
concentrated below 0.1 Hz, EEG contain a wealth of differential
functional information in the classical range from 2 to 60 Hz.
In order to take into account this additional dimension of
information, the classical ICA as applied in fMRI was generalized.
All the technical details can be found in Pascual-Marqui and
Biscay-Lirio (2011).

For the sake of completeness, a brief description follows.
The EEG recording of each subject is first transformed to the
frequency domain, using the discrete Fourier transform. This will
produce a set of cross-spectral EEG matrices, for each frequency
of interest, such as those described above. This information is then
used for calculating the spectral density for each cortical voxel
and for each frequency band, using the methodology described
in detail in Frei et al. (2001). With this initial procedure, each
subject contributes five eLORETA images of cortical spectral
density (one for each frequency band: delta, theta, alpha, beta,
and gamma). From the point of view of mathematics, these data
correspond to a “function” of space (cortical voxel) and frequency.
In the next step, the data from each subject is concatenated, thus
producing a matrix where one dimension corresponds to the
different subjects, and the other dimension corresponds jointly to
space-frequency. This approach is common in a relatively young
field of statistics known as functional data analysis (Ramsay and
Silverman, 2005). When ICs analysis is applied to this matrix, a
more general form of networks are discovered, and the method
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FIGURE 1 | eLORETA-ICA component 4 (IC4). IC4 corresponds to the occipital visual network in alpha frequency band. In the color–coded maps, red and blue
colors represent power increase and decrease with increasing IC coefficient, respectively.

is described as functional ICA, given its origin in the field of
functional data analysis. Each functional network consists of a
set of five images, one for each frequency, because space and
frequency and all their possible interactions are now jointly
expressed. In contrast to a classical fMRI network image which
corresponds to brain regions that “work” together over time, an
EEG-eLORETA based functional network corresponds to brain
regions and frequencies that “work” together across a population
of subjects. This allows not only for the discovery of regions
that work together, but also for the discovery of cross-frequency
coupling.

In this paper, the number of ICs (networks) is estimated
by sphericity test (Bartlett, 1954). In the eLORETA-ICA
algorithm, ICs were obtained by maximizing the independence
between components which was measured by non-Gaussianity.
In particular, non-Gaussianity was calculated by fourth-order
cumulant (Cardoso, 1989; Cichocki and Amari, 2002). Then, ICs
were ranked according to total EEG power and color coded with
a z-score threshold of 3.0, in complete analogy to the methods
used in practice in fMRI-ICA networks (as explained in detail
above). In the color–coded maps, red and blue colors represent
power increase and decrease with increasing IC coefficient which
indicates activity of IC, respectively.

RESULTS
Artifact-free 120-s epochs were obtained in 80 out of 306 healthy
subjects. The age distribution of the 80 healthy subjects (57
men and 23 women) was as follows: 18–29 years (25 men
and 2 women), 30–49 years (15 men and 4 women), 50–69
years (14 men and 11 women) and 70–87 years (3 men and 6
women) (44 ± 20 (mean ± standard deviation)). The median
of MMSE scores over 60 years old was 30 (interquartile range;
29–30). It can be seen an overall male predominance, which
may reflect a bias of our healthy volunteers, and the female
predominance in the 70–87 years group, which may reflect a
delay of age-related cognitive decline in female. The number of
ICs estimated by the sphericity test was 12.0. Subsequently, we

applied eLORETA-ICA as the number of components varied from
11 to 13. Then, 11 ICs were most consistent with physiological
assumption that is topography and frequency of some known
networks and artifacts such as electromyogram is at frontal or
temporal cortex in gamma frequency band, therefore we selected
11 as the number of components. Next, we identified, based
on spatial distributions of power and frequency ranges, IC4,
IC5, IC6, IC9 and IC10 as RS-independent-Ns (Figures 1–5);
IC1, IC2, IC3, IC7, IC8 and IC11 as artifacts of frontal and
temporal electromyogram or frontal and occipital baseline shifts
(Figure 6).

When identifying the different ICs derived from our analyses,
we found that IC4 corresponded to the occipital visual network
in alpha frequency band (Figure 1). IC5 consisted of the right
VVP, corresponding to the right occipitotemporal cortex and
the right ventral prefrontal cortex (vPFC), and the left posterior
DVP. The right VVP linked right occipitotemporal cortex in
alpha frequency band to the right vPFC in beta frequency
band. The left posterior DVP, comprised the ipsilateral posterior
occipito-parietal cortex, caudal intraparietal sulcus (cIPS) and
posterior end of middle temporal gyrus (MT+) in alpha frequency
band, which correlated negatively with the areas of the right
VVP (Figure 2). IC6 was formed by the medial PFC (mPFC)
in beta frequency band and the right temporoparietal junction
(TPJ) in alpha frequency band, which showed negative correlation
(Figure 3). IC9 comprised the precuneus in alpha frequency
band and the left VVP in alpha frequency band, which also
showed negative correlation (Figure 4). IC10 comprised the
medial postcentral regions (Brodmann area 5 and 7 (BA 5–7))
in beta frequency band and the pre supplementary motor area
(pre-SMA) in gamma frequency band, which showed positive
correlation (Figure 5).

DISCUSSION
In this study, using eLORETA-ICA, we could identify five RS-
independent-Ns corresponding to (1) the occipital visual network
in alpha frequency band (IC4), (2) the right VVP in alpha and
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FIGURE 2 | eLORETA-ICA component 5 (IC5). Left IC5 regions (the
left posterior occipito-parietal cortex, caudal intraparietal sulcus (caudal
IPS) and middle temporal + (MT+)) corresponds to left posterior dorsal
visual pathway (DVP). Right IC5 regions (the right occipitotemporal
cortex, temporoparietal junction (TPJ), parahippocampal gyrus,

fusiform gyrus and ventral prefrontal cortex (vPFC)) corresponds to
right ventral visual pathway (VVP). The right VVP links right
occipitotemporal cortex in alpha frequency band to the right vPFC in
beta frequency band. The left posterior DVP correlates negatively with
the areas of the right VVP.

beta frequency bands and left posterior DVP in alpha frequency
band (IC5), (3) the mPFC in beta frequency band and right TPJ
in alpha frequency band (IC6), (4) the precuneus and left VVP
in alpha frequency band (IC9); and (5) the medial postcentral
regions in beta frequency band and the pre-SMA in gamma
frequency band (IC10).

INDEPENDENT COMPONENT 4
IC4 was found at the occipital cortex in alpha frequency band
(Figure 1). It is well known that the occipital cortex is involved
in visual perception processing. Consistent with this fact and
with our result, previous neurophysiological studies found that
visual processing related activity in the occipital regions occurred
in the alpha frequency band. In particular, alpha oscillation in
the occipital regions is enhanced during no expectation of visual

stimulus and is reduced during expectation and presentation of
visual stimulus (Klimesch et al., 1998).

INDEPENDENT COMPONENT 5
IC5 was found at the right occipitotemporal cortex in alpha
frequency band and at the right vPFC in beta frequency band with
left posterior occipito-parietal cortex, cIPS and MT+ in alpha
frequency band (Figure 2). Left IC5 regions (the left posterior
occipito-parietal cortex, cIPS and MT+) corresponds to left
posterior DVP and right IC5 regions (the right occipitotemporal
cortex, TPJ, parahippocampal gyrus, fusiform gyrus and vPFC)
corresponds to right VVP. DVP is a functional network involved
in automatic visual guidance of spatial movements. Within this
network cIPS and MT+ is linked to action-relevant features of
objects such as shape and orientation from visual information
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FIGURE 3 | eLORETA-ICA component 6 (IC6). IC6 is formed by the medial PFC (mPFC) in beta frequency band and the right TPJ in alpha frequency band,
which shows negative correlation.

processed in the occipital lobe. Right VVP is a visual recognition
network where visual information that has flowed from the
occipital lobe is compared to visual/spatial memory in right
temporal cortex then identified in right temporal cortex or
right vPFC (Fairhall and Ishai, 2007; Kravitz et al., 2011,
2013; Milner, 2012). Taking into account these findings, IC5
corresponds to a network that activity of the right VVP correlated
negatively with left posterior DVP activity. Previous accumulating
studies revealed that function of DVP is“online” “unconsciously
occurred (automatic)” visual perception of spatial components
to guide spatial movements, while function of VVP is “off-
line” “conscious” visual perception and recognition of feature
components (Kravitz et al., 2011, 2013; Harvey and Rossit,
2012; Milner, 2012). Therefore, we can assume IC5 as dual-
process of visual perception: the left posterior DVP for automatic
visual perception to guide spatial movements and right VVP for

detailed perception and recognition of visual input. Our result of
negative correlation between right VVP and left posterior DVP
is consistent with dual-process of visual perception. In addition,
our result of emergence of VVP only on the right side also
fit with the fact that right dominant engagement of VVP in
visuospatial search and recognition (Corbetta et al., 2005). This
negative correlation was also seen in visuospatial neglect patients,
who injured right VVP area, enhanced left posterior DVP activity
(not whole DVP) at acute stage and attenuated its activity with
clinical recovery (Corbetta et al., 2005; He et al., 2007; Rossit et al.,
2012).

INDEPENDENT COMPONENT 6
IC6 was found at the mPFC in beta frequency band and right TPJ
in alpha frequency band (Figure 3). Medial PFC is anterior hub
of the DMN and right TPJ is a hub of the right VAN (Corbetta

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 31
24

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Aoki et al. EEG-resting state networks by LORETA-ICA method

FIGURE 4 | eLORETA-ICA component 9 (IC9). IC9 comprises the precuneus in alpha frequency band and the left VVP in alpha frequency band, which shows
negative correlation.

and Shulman, 2002; Buckner et al., 2008). Connectivity analysis
of resting fMRI data has showed that mPFC has maximal positive
connectivity with right posterior TPJ (Mars et al., 2012; Kubit and
Jack, 2013). Taking into account these findings, IC6 corresponds
to a network that activity of anterior hub of DMN (mPFC)
positively correlated with that of right VVP. The DMN enhance
its activity in autobiographical memory retrieval (Cabeza et al.,
2004). However autobiographical memory retrieval involves
both self-referential processing and memory retrieval process.
So, Kim (2012), by subtracting fMRI activity in laboratory-based
memory retrieval from autobiographical memory retrieval,
found that self-referential processing was related to mPFC, right
parahippocampal cortex and posterior cingulate cortex (PCC).
So, we can speculate IC6 as self-referential processing. In support
to this notion, there is a case report of a patient with loss of
the sense of self-ownership who also showed hypometabolism
in the right inferior temporal cortex as well as in the right
parietooccipital junction and precentral cortex (Zahn et al., 2008).

INDEPENDENT COMPONENT 9
IC9 was found at the precuneus and left VVP in alpha
frequency band (Figure 4). The precuneus is dominantly related
to familiarity of the memory (Yonelinas et al., 2005) and
left VVP is memory recognition area whose activation reflects
retrieval and identification of memory (Cabeza, 2008; Ravizza
et al., 2011; Angel et al., 2013). IC9 showed the precuneus was
negatively correlated with left VVP in alpha frequency band.
Consistent with our result, EEG study using sLORETA showed
the same correlation between decreasing alpha power in the
precuneus and increasing alpha power in the left temporal
cortex with WM load during WM retention period in some
healthy subjects (Michels et al., 2008). Dual-process models of
memory recognition have been proposed by many researchers
which suggest memory has two separate systems: familiarity of
the memory (sense of knowing) and recollection (Yonelinas,
2002). In memory retrieval, the precuneus engages in familiarity,
while left VVP regions (left TPJ, parahippocampal cortex and
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FIGURE 5 | eLORETA-ICA component 10 (IC10). IC10 comprises the medial postcentral regions (Brodmann area 5 and 7) in beta frequency band and the pre
supplementary motor area (pre-SMA) in gamma frequency band, which shows positive correlation.

hippocampal formation) engage in episodic memory retrieval
(Yonelinas et al., 2005; Sestieri et al., 2011). Familiarity is a
working memory which is a sense of knowing temporarily
occurred (several tens of seconds) after encoding. That is,
familiarity is “unconsciously occurred (automatic)” “online”
“sensory component” of short-term memory to be manipulated
in multiple cognitive processes (working memory). On the
other hand, episodic memory retrieval is a “conscious” “off-
line” “detailed” perception and recognition of long-term episodic
memory (Baddeley and Hitch, 1974; Huijbers et al., 2010,
2012). Therefore, we can conclude that familiarity and episodic
memory have properties of the DVP and the VVP, respectively
(please refer to the discussion of IC5). In fact, the precuneus
showed strong coherence with DVP by fMRI connectivity analysis

(Huijbers et al., 2012). Taken together, we can speculate that
IC9 reflects dual-process of memory perception: the precuneus
for automatic sensory component of the memory to guide
multiple cognitive processes in memory domain and left VVP
for detailed perception and recognition of episodic memory. Our
results elucidated that similarity of perception and recognition
between vision (IC5) and memory (IC9). Lesion studies also
presented a case of neglect in memory domain analogous to
visuospatial neglect: patients who had bilateral TPJ lesions
showed a deficit in detailed memory retrieval in free recall
(subserved by the left VVP), although they can access to
these memories when guided by probe questions (function
subserved by the precuneus; Berryhill et al., 2007; Cabeza,
2008).
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FIGURE 6 | eLORETA-ICA component 1, 2, 3, 7, 8 and 11 in above
written frequency bands. These components correspond to artifacts of
electromyogram or baseline shifts, based on spatial distributions of power
and frequency ranges.

INDEPENDENT COMPONENT 10
IC10 was found at the medial postcentral regions (BA5–7) in beta
frequency band, and at the pre-SMA in gamma frequency band
(Figure 5). Beta activity in medial sensory regions is known as
Rolandic beta rhythm, which is typically observed in resting state
and suppressed by voluntary movements (Pfurtscheller, 1981).
This beta oscillation is thought as an idling rhythm of sensory
regions (Ritter et al., 2009). From our result, gamma oscillation in
the pre-SMA can also be assumed as idling rhythm of pre-SMA. In
support of this notion, the gamma oscillation in the pre-SMA was
suppressed by voluntary movements (Hosaka et al., 2014). Taking
into account these findings, we identified IC10 as sensorimotor
network.

Overall, topographies of alpha and beta frequency bands is
consistent with their roles: alpha oscillation for inhibition of
the visual pathway (Snyder and Foxe, 2010; Capotosto et al.,
2012; Capilla et al., 2014), beta oscillation in PFC for higher
cognitive functions such as evaluation and prediction (Arnal et al.,
2011; Hanslmayr et al., 2011; Buschman et al., 2012; Aoki et al.,
2013b; Kawasaki and Yamaguchi, 2013) and beta oscillation in
sensorimotor area for motor control (Engel and Fries, 2010).

This is the first study presenting ICs using eLORETA-ICA with
resting state EEG data, and more importantly, which highlight the

differences in some aspects from the previous RS-independent-
Ns using ICA with resting state fMRI data. First, eLORETA-
ICA of EEG data presented right and left VVP separately,
strikingly different from ICA results of fMRI data showing VVP
bilaterally. However, de Pasquale et al. (2010) using correlation
analysis showed that MEG has greater correlations between intra-
hemispheric nodes than inter-hemispheric nodes in RSNs. They
elucidated that this difference stemmed from the difference of
temporal resolution: EEG and MEG have much higher temporal
resolution (1–2 ms) of cortical activity than fMRI, which has
2 s temporal resolution. These findings indicate that only
EEG and MEG, which have millisecond temporal resolution,
combined with ICA can detect the correct ICs of cortical activity.
Furthermore, our result of right and left separation of VVP is
consistent with previous findings that left lateralized activation
of VVP during episodic memory retrieval and right lateralized
activation of VVP during visual target detection (Corbetta et al.,
2005; Daselaar et al., 2006; Angel et al., 2013). Second, our
results were restricted to cortical areas whereas RSNs derived
from fMRI data included deep brain structures such as basal
ganglia, hippocampus and cingulate cortex. This caused from the
fact that EEG cannot detect electrical activity of the deep brain
because electrical potential drastically attenuated by conduction
from deep brain to the surface of the head. Therefore, for instance,
we cannot determine the PCC is involved in IC6 or IC9, although
controversy exists whether the PCC should be involved in self-
referential processing or episodic memory retrieval (Kim, 2012;
Angel et al., 2013).

Although the fact is known that cortical electrical activity
reconstructed from EEG data using sLORETA showed several
topographic distributions somewhat similar to RS-independent-
Ns for a short period (microstate; Musso et al., 2010), no
one could extracted independent sets of cortical electrical
activity (EEG-RS-independent-Ns). And there are some other
decomposing methods such as principal component analysis and
correlation analysis, they cannot decompose cortical electrical
activity into ICs in a precise sense because cortical electrical
activity is non-Gaussian (Bell and Sejnowski, 1997; Hyvärinen
and Oja, 2000; Stam, 2005; Mantini et al., 2011). Therefore, we
selected eLORETA-ICA to detect EEG-RS-independent-Ns.

Our results should be interpreted with caution based on the
following limitations. First, relative small number of electrodes
(19 electrodes) and realistic head model in eLORETA may affect
the source localization results. However, the good localization
property of the LORETA tomography was validated in several
studies as we mentioned in the Methods section and our
source localization results of eLORETA-ICA are consistent
with neuroimaging findings of RSNs. Second, low spatial
resolution of eLORETA, which blur the cortical sources, may
cause non-detection of the low-electrical-activity cortical
sources. Thus, subsequent ICA may have missed some low
activity RS-independent-Ns. Third, our present study has
made use of the hypothesis that healthy subjects have common
RS-independent-Ns which are consistent throughout a very
wide age range, thus aging-related changes are restricted to
activities of RS-independent-Ns (IC coefficients). However, we
confirmed that occipital basic oscillations of all subjects were
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in the alpha frequency band by visual inspection and almost all
the RS-independent-N results did not change even excluding 9
subjects aged 70 years or more from eLORETA-ICA. In addition,
our source localization results of eLORETA-ICA are consistent
with neuroimaging findings of RSNs. Fourth, we supposed
correspondences between RS-independent-Ns and functional
networks. However, these correspondences should be confirmed
by comparing the activities of RS-independent-Ns with cognitive
test scores in the future study.

CONCLUSION
We selected eLORETA-ICA which has many advantages over
the other network visualization methods and overall findings
indicate that eLORETA-ICA with EEG data can identify five
RS-independent-Ns with their intrinsic oscillatory activities, as
well as functional correlations within these networks, while
conventional methods used to examine RSNs such as fMRI
with functional tasks or fMRI with ICA have not been shown
to do so. Moreover, once RS-independent-Ns are determined
by eLORETA-ICA, this method can accurately identify activity
of each RS-independent-N from EEG data as it removes EEG
artifacts by separating artifact components. Therefore, eLORETA-
ICA with EEG data may represent a useful and powerful tool
to assess activities of RS-independent-Ns, which correspond to
specific functions, in patients with neuropsychiatric disease such
as dementia and depression.
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Objectives: The purpose of this study was to explore phase reset of 3-dimensional current
sources in Brodmann areas located in the human default mode network (DMN) using Low
Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram
(EEG).

Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects
ranging in age from 13 to 20 years. A time point by time point computation of LORETA
current sources were computed for 14 Brodmann areas comprising the DMN in the delta
frequency band. The Hilbert transform of the LORETA time series was used to compute
the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and
lock durations were calculated based on the 1st and 2nd derivatives of the time series of
phase differences.

Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms,
(2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and
(2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an
exponential change with distance between Brodmann areas.

Conclusions: The results are explained by local neural packing density of network hubs
and an exponential decrease in connections with distance from a hub. The results are
consistent with a discrete temporal model of brain function where anatomical hubs behave
like a “shutter” that opens and closes at specific durations as nodes of a network giving
rise to temporarily phase locked clusters of neurons for specific durations.

Keywords: LORETA, EEG phase reset, phase lock, phase shift, chaos, stability, self-organized criticality

INTRODUCTION
When one is at rest and not engaged in a task and absorbed in
a ruminating self-narrative about the past and future then it is
during these reflective moments that the default mode network
(DMN) is activated and the attention network is anti-correlated
or reciprocally deactivated (Raichle et al., 2001; Raichle, 2010).
The insula appears to function as a switch that is correlated with
phase shifting of the attention and default networks activation
vs. suppression (Bressler and Menon, 2010). Petersen and Posner
(2012) review the functional MRI (fMRI) studies of the atten-
tion network and the DMN in attention deficit disorders that are
characterized by the intrusion of the self-narrative in academic
situations resulting in poor grades. The reciprocal relationship
between the DMN related to an ongoing internal self-narrative
and the attention network focused on the external world is an
important dynamic, however, fMRI has a limited temporal res-
olution and is unable to resolve millisecond periods of phase
lock and phase shift of neurons located in network nodes and
functional connections that comprise the DMN.

The EEG has slightly less spatial resolution than fMRI, but ade-
quate spatial resolution to measure the average current density
of Brodmann areas at 2 cm3 to about 3 cm3 volumes in the mil-
lisecond time domain (Pascual-Marqui, 1999; Vitacco et al., 2002;
Mulert et al., 2004; Grech et al., 2011).

There are changes in the synaptic synchrony of millions of
neurons connected at varying time delays and frequencies in
the DMN. The “DMN” is constituted primarily by the cingu-
late gyrus, hippocampus, medial frontal lobes, temporal lobes
and parietal lobes with approximately five times the number of
synaptic connections than any other cortical network (Buckner
et al., 2008; Hagmann et al., 2008). Activation of the DMN signif-
icantly increases demand on blood glucose and oxygen as well as
changes in the synchrony of synaptic potentials on the dendrites
and cell bodies of cortical pyramidal neurons as measured in the
human EEG using 3-dimensional electrical neuroimaging meth-
ods (Pascual-Marqui et al., 1994; Pascual-Marqui, 1999; Michel
et al., 2009) also referred to as EEG Tomography (tEEG) (Cannon
et al., 2009; Thatcher, 2011; Thatcher et al., 2011) or Brain
Electromagnetic Tomography (BET) (Valdés-Sosa et al., 1992;
Bosch-Bayard et al., 2001; Hernandez-Gonzalez et al., 2011).

Hughes and Crunelli (2007) and Buzsaki (2006) review how
action potentials occur when neurons are in-phase with respect to
the local field potentials (LFPs) and how action potentials are sup-
pressed when neurons are shifted anti-phase with respect to the
LFP where phase shift is a high speed switch for large collections
of neurons to functionally synchronize with sub-sets of neurons
in different network nodes in the millisecond time domain. The
human EEG is the summation of LFPs arising from pyramidal

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 529

HUMAN NEUROSCIENCE

31

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2014.00529/abstract
http://community.frontiersin.org/people/u/153288
mailto:rwthatcher2@yahoo.com
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Thatcher et al. Phase reset between Brodmann areas

neuron synapses. The process of phase shift and phase lock of
the EEG between different scalp locations has been shown to be
correlated with a range of functional conditions. For example,
measures of EEG phase reset (PR) have been correlated to vari-
ous frequency bands during cognitive tasks (Tesche and Karhu,
2000; Kirschfeld, 2005; Kahana, 2006), working memory (John,
1968; Damasio, 1989; Tallon-Baudry et al., 2001; Rizzuto et al.,
2003), sensory-motor interactions (Vaadia et al., 1995; Roelfsema
et al., 1997), hippocampal long-term potentiation (McCartney
et al., 2004), brain development (Thatcher et al., 2008b), autism
(Thatcher et al., 2009b), and consciousness (Varela et al., 2001;
John, 2002, 2005; Cosmelli et al., 2004).

These studies indicate that measures of phase shift duration
and phase lock duration between groups of neurons measured
at the scalp EEG must also be capable of being measured at the
level of the 3-dimensional sources of the EEG using inverse meth-
ods. The initiation of in-phase to anti-phase dynamics of neurons
is modeled by long distant excitatory inputs on dendrites where
phase shift duration is dependent on the density of neurons in
local loops and phase lock duration is determined by the reaction
to the short duration excitatory inputs producing long duration
inhibitory synaptic potentials (van Drongelen et al., 2004; Ko and
Ermentrout, 2007; Tiesinga and Sejnowski, 2010; Li and Zhou,
2011). These studies suggest that phase shift duration is directly
proportional to the temporal compactness or density of activated
synapses, because, bursting of in-phase action potentials results
in an average synaptic potential shift in the frequency of neurons
and consequently phase shift duration is expected to be inversely
related to neural density, that is, the higher the packing den-
sity then the shorter the phase shift duration. This is like local
neighbors quickly communicating whereas long distance cousins
take more time and effort to synchronize (i.e., long phase shift
durations).

A series of EEG PR studies by Lehmann et al. (2006) and
Thatcher et al. (2008a, 2009a,b) are consistent with physiologi-
cal models of EEG PR and have added to earlier studies by Varela
(1995), Breakspear (2002, 2004), Freeman (2003), and Freeman
et al. (2003) by measuring discontinuities of electrical potentials
and current sources of the two main physiological processes that
underlie PR, namely, phase shift followed by phase lock. Lehmann
et al. (2006) and Thatcher et al. (2007) demonstrated tempo-
ral discontinuities of EEG current sources of about 40–250 ms.
Thatcher et al. (2009a) studied the development of scalp electrode
distance and PR times by measuring phase shift durations (range
of about 30–70 ms) and phase lock durations (100–800 ms) from
birth to 16 years of age where short distance inter-electrode pair-
ing (6 cm) exhibited shorter phase shift duration and longer
phase lock duration than longer distance inter-electrode parings
(18–24 cm). Furthermore, it has been shown that phase shift
duration is positively related to intelligence while phase lock dura-
tion is negatively related to intelligence measured by WISC-R
I.Q. test (Thatcher et al., 2008a). The findings of Thatcher et al.
(2008a, 2009a) and Lehmann et al. (2006) are consistent with the
hypothesis that phase shift is a process involved in the recruit-
ment of available neurons at a given moment of time and phase
lock duration is the binding or synchrony of groups of neu-
rons that simultaneously mediate different functions in different

brain regions (i.e., sustained commitment of neurons). It is also
possible that phase lock reflects the inhibition of billions of “irrel-
evant” neurons that are excluded or restricted resulting in the
“protection” of a small subset of neural loops that mediate a mul-
tidimensional sub-network. That is, the large spatial inhibition
isolates a spatially smaller subset of synchronized neurons that
are masked or invisible to the scalp recorded EEG. The present
study is a further exploration of the scalp surface EEG studies of
phase shift and phase lock duration by applying 4-dimensional
neuroimaging (tEEG) of current sources using Low Resolution
Electromagnetic Tomography (LORETA) using the time series of
the center voxel of each of 88 Brodmann areas that comprise
the DMN (Pascual-Marqui et al., 1994; Pascual-Marqui, 1999;
Lehmann et al., 2006; Canuet et al., 2011; Langer et al., 2011).
The present study is designed to explore the nature of sudden
phase shifts followed by phase lock in small 3-dimensional vol-
umes of EEG current density located in the center of Brodmann
areas that constitute the DMN (Buckner et al., 2008). Because of
the large number of possible network combinations and frequen-
cies, we limited this study to the delta frequency band (1–4 Hz)
and the DMN. Analyses of different frequency bands and loca-
tions show similar basic time domain measures with evidence of
spatial-frequency “preferences.” These analyses will be published
in the future.

METHODS
SUBJECTS
A total of 70 subjects ranging in age from 13.01 to 19.98 years
(males = 41) were included in this study. The subjects in the
study were recruited using newspaper advertisements in rural and
urban Maryland (Thatcher et al., 1987, 2003, 2007). The inclu-
sion/exclusion criteria were no history of neurological disorders
such as epilepsy, head injuries and reported normal develop-
ment and successful school performance. None of the subjects
had taken medication of any kind at least 24 h before testing.
All of the subjects were within the normal range of intelligence
as measured by the WISC-R and were performing at grade level
in reading, spelling and arithmetic as measured by the WRAT
and none were classified as learning disabled nor were any of
the school aged children in special education classes. All subjects
were given an eight-item “laterality” test consisting of three tasks
to determine eye dominance, two tasks to determine foot dom-
inance, and three tasks to determine hand dominance. Scores
ranged from −8 (representing strong sinistral preference or left
handedness), to +8 (representing strong dextral preference or
right handedness). Dextral dominant children were defined as
having a laterality score of ≥2 and sinistral dominant children
were defined as having a laterality score of ≤ −2. Only 9% of the
subjects had laterality scores ≤ −2 and 87% of the subjects had
laterality scores ≥2 and thus the majority of subjects were right
side dominant.

EEG RECORDING
The EEG was recorded from 19 scalp locations based on the
International 10/20 system of electrode placement, using linked
ears as a reference. Eye movement electrodes were applied to
the inner and outer canthus to monitor artifact and all EEG
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records were visually inspected and manually edited to remove
any visible artifact. Two 5 min of EEG was recorded in the eyes
closed and in the eyes open condition. The order of record-
ing for the eyes open followed by closed conditions and vice
versa was counter-balanced across subjects. Each EEG record was
plotted and visually examined and split-half reliability and test–
retest reliability measures of the artifacted data were computed
using the Neuroguide software program (NeuroGuide, v2.6.9).
The amplifier bandwidths were nominally 1.0–30 Hz, the outputs
being 3 db down at these frequencies and the EEG was digitized
at 100 Hz. Analyses were performed on 58 s to 2 min 17 s seg-
ments of EEG. Split-half reliability tests were conducted on the
edited EEG segments and only records with >90% reliability were
entered into the spectral analyses. Phase shift and lock duration
were computed only on contiguous EEG segments.

LORETA TIME DOMAIN COMPUTATION
The standard procedures for the computation of LORETA
were followed according to Pascual-Marqui et al. (1994, 2001),
Pascual-Marqui (1999), Gomez and Thatcher (2001), Thatcher
et al. (2005a,b). Numerous studies have demonstrated that 19
scalp electrodes are sufficient in number to measure intracra-
nial sources including from the hippocampus (see the listing
of 795 publications at: http://www.uzh.ch/keyinst/NewLORETA/
QuoteLORETA/PapersThatQuoteLORETA05.htm).

The Talairach Atlas coordinates of the Montreal Neurological
Institute’s MRI average of 305 brains (Pascual-Marqui, 1999;
Lancaster et al., 2000) was used and the linkage to the standard
anatomical 7× 7× 7 mm voxels each with a distinct Talairach
Atlas Coordinate. Groups of voxels are also defined by the clear
anatomical landmarks established by Brodmann in 1909 and
referred to as Brodmann areas. The time series of current source
vectors in the x, y, and z directions were computed at the center
voxel of each of 14 Brodmann area that comprises the DMN. In
addition to the x, y, and z time series from each voxel the resultant
vector was computed as the square root of the sum of the squares
for the x, y, and z source moments.

HILBERT TRANSFORM AND COMPLEX DEMODULATION
The Hilbert transform of the LORETA time series was computed
using complex demodulation to compute instantaneous coher-
ence and phase-differences between each pair of the Brodmann
area time series with Talaraich atlas coordinates described in
Table 1 (Granger and Hatanka, 1964; Otnes and Enochson, 1978;
Bloomfield, 2000). A total of 91 pairs of the LORETA Brodmann
area time series were used to compute “instantaneous” phase dif-
ferences. This method is an analytic linear shift-invariant trans-
form that first multiplies a time series by the complex function
of a sine and cosine at a specific center frequency (Center fre-
quency= 2.5 Hz) followed by a low pass filter (6th order low-pass
Butterworth, bandwidth = 1–4 Hz) which removes all but very
low frequencies (shifts frequency to 0) and transforms the time
series into instantaneous amplitude and phase and an “instanta-
neous” spectrum (Bloomfield, 2000). We place quotations around
the term “instantaneous” to emphasize that there is always a
trade-off between time resolution and frequency resolution. The
broader the band width the higher the time resolution but the

Table 1 | List of the Brodmann areas of the Default Mode Network

(DMN) based on Buckner et al. (2008).

Brodmann area center voxel coordinates

Left x y z Right x y z

Frontal 8 −51 12 39 8 52 12 39

9 −45 5 33 9 46 5 33

10 −24 64 −2 10 25 64 −2

Temporal 21 −51 2 −23 21 52 2 −23

28 −24 −12 −28 28 25 −12 −28

36 −24 −6 −34 36 25 −6 −34

Post. cingulate 23 −10 −71 11 23 11 −71 11

24 −3 23 −6 24 4 23 −6

Ani. cingulate 32 −10 44 −1 32 11 44 −1

Hippocampus 29 −51 −30 15 29 4 −44 16

30 −24 −51 3 30 18 −31 −3

31 −17 −64 17 31 18 −64 17

Parietal 39 −45 −71 17 39 46 −71 17

40 −65 −23 21 40 66 −23 21

The Key Institute’s Talairach atlas coordinates in the x, y, and z directions from

Lancaster et al. (2000) and Pascual-Marqui (2004). These coordinate values were

used to calculate the Euclidean Distances as applied to Equation (1) and in

Figure 5.

lower the frequency resolution and vice versa. Mathematical
details are in Thatcher et al. (2008a).

COMPUTATION OF THE 1ST AND 2ND DERIVATIVES OF THE TIME
SERIES OF PHASE DIFFERENCES
The 1st and 2nd derivatives of the time series of instantaneous
phase-differences was calculated for all pair wise combinations of
DMN voxels in the x, y, and z direction in order to detect instan-
taneous advancements and reductions of phase-differences. The
same mathematical procedures published for measuring phase
shift and phase lock duration of the scalp surface EEG were used
for the computation of PR of the LORETA time series (Thatcher
et al., 2008a, 2009a,b).

PR is composed of two events: (1) a phase shift of a finite dura-
tion (SD) and (2) followed by an extended period of phase locking
as measured by the phase lock duration (LD) and PR= SD+ LD.
Phase Shift duration (SD) is the interval of time from the onset
of a phase shift to the termination of phase shift (5◦ thresh-
old) where the termination is defined by two conditions: (1) a
peak in the 1st derivative (i.e., 1st derivative changes sign from
positive to zero to negative) and (2) a peak in the 2nd deriva-
tive or inflection on the declining side of the time series of first
derivatives. The peak of the 2nd derivative marked the end of
the phase shift period. Phase shift duration is the difference in
time between phase shift onset and phase shift offset or SD(t) =
S(t)onset − S(t)offset. Phase lock duration (LD) was defined as the
interval of time between the end of a significant phase shift (i.e.,
peak of the 2nd derivative) and the beginning of a subsequent
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FIGURE 1 | Example of phase reset of LORETA current density time

series from one subject. Top are the LORETA EEG phase differences with
respect to the left Hemisphere Brodmann area (BA) 8 time series. The last
four traces are the phase difference (degrees) for BA8L–BA28L, BA8–BA35L,

BA8L–BA36L, and BA8L–BA37L. Bottom are the 1st derivatives of the phase
differences in the top traces in degrees/centiseconds. A 1st derivative
≥ 5◦/cs marked the onset of a phase shift and an interval of time following
the phase shift where the 1st derivative ∼0 defined the phase lock duration.

significant phase shift, i.e., marked by the peak of the 2nd deriva-
tive and the presence of a peak in the 1st derivative or LD(t) =
S(t)offset − S(t)onset. In summary, two measures of phase dynam-
ics were computed: (1) Phase shift duration (ms) (SD) and, (2)
Phase lock duration (ms) (LD). Given the range of epoch sizes
from 58 s to 2 min the range of PRs per subject was 66 to 457.
Figure 1 shows an example of the computation of PR metrics in a
single subject.

DEFAULT MODE NETWORK (DMN)
Complex Demodulation was used to compute the Hilbert trans-
form of the current source density time series from 14 left and
14 right hemisphere Brodmann areas were selected based on
the review of the human DMN by Buckner et al. (2008). The
mathematical description of the equivalence of complex demodu-
lation and the Hilbert transform is by Bloomfield (2000). Table 1
shows a listing of the nearest Brodmann area fit to the center
of the Brodmann areas comprising the DMN to the LORETA
Talairach Atlas coordinates (Pascual-Marqui, 1999; Lancaster
et al., 2000) and the linkage to the standard anatomical 7×
7× 7 mm voxels in the approximate center of each Brodmann
areas. All pair wise combinations of the 14 DMN Brodmann areas
produced 91 pairs from the left and 91 pairs from the right hemi-
sphere. Only intra-hemisphere analyses of the delta frequency
band (1–4 Hz) were included in this study. Different frequen-
cies and cross-hemisphere combinations will be analyzed in a
future study. Table 1 shows the Brodmann areas and Talairach

Atlas coordinates of the voxels in the present study which are
used to calculate distances between Brodmann area center vox-
els including the computation of the Euclidean distance between
Brodmann areas: D = √

x2 + y2 + z2.
Figure 2 shows the LORETA saggital, coronal and horizontal

sections of the DMN voxels used in this study.

RESULTS
VARIMAX FACTOR ANALYSIS
A principal components analysis followed by a varimax rotation
were computed for the 91 left and 91 right intra-hemisphere
Brodmann area combinations that comprised the DMN for both
phase shift and phase lock duration. A varimax rotation was used
because it uses a min/max method to maximize loadings on a
given component. Table 2 shows that with an eigenvalue cutoff
of 1.0 that phase shift involved more factors than did phase lock
duration and that the same number of factors were involved for
the left and right hemispheres. The results of the factor analysis
also demonstrated well ordered orthogonality or independent
clusters of phase shift and phase lock duration where the variable
loadings were essentially the same in the x, y, z directions and for
the resultant vector within each hemisphere.

DISCRETE TEMPORAL FRAMES OR “QUANTA” OF PHASE SHIFT
DURATION
Examination of the variables in the factor analyses showed that
there are three main “modes” or time frames of duration for
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FIGURE 2 | The locations of the six Default Mode Networks as summarized by Buckner et al. (2008) and represented by the Key Institute LORETA

voxels (Lancaster et al., 2000; Pascual-Marqui, 2004).

Table 2 | Number of factors that had Eigenvalues of 1.0 or greater for

LORETA phase reset in 91 combinations of Brodmann areas for phase

shift and lock in the 3-dimensions (x, y, z) and also the resultant

vector R =
√

x2 + y2 + z2 in the left and right hemispheres.

Number of factors phase shift and phase lock

Phase shift Phase lock

Left Right Left Right

X 18 20 11 11

Y 19 17 12 13

Z 19 19 12 13

R 18 18 12 13

Average 18.5 18.5 11.75 12.5

phase shift duration. Figure 3 shows phase shift duration in
the x-axis and the percentage of subjects in the study showing
specific phase shift durations on the y-axis. The x, y, and z direc-
tions all showed essentially the same phase shift duration modes.
The three duration modes or “quanta” for phase shift using the
resultant vector for both the eyes closed and eyes open condi-
tions demonstrated that discrete durations are present and that
there is no or minimal overlap between modes. It can be seen in

Figure 3 that the subjects clustered in three different and discrete
time frames or modes. Mode 1 showed a peak phase shift dura-
tion of approximately 25 ms, Mode 2 was approximately 50 ms
and Mode 3 was approximately 65 ms. There was little overlap
between phase duration modes and all variables exhibited only
one of the three modes which demonstrates discrete time frames
of phase shift duration in specific groups of Brodmann areas that
comprise the DMN.

DISCRETE TEMPORAL FRAMES OR “QUANTA” OF PHASE LOCK
DURATION
Examination of the factor analyses showed that there are two
main “modes” or time frames of duration for phase lock duration.
The x, y, and z directions all showed essentially the same duration
modes and Figure 4 shows the two duration frames for phase lock
using the resultant vector for both the eyes closed and eyes open
conditions. The x-axis is phase lock duration in milliseconds and
the y-axis are the percent of subjects (N = 70) in both the eyes
closed and open conditions. It can be seen in Figure 4 that the
subjects clustered in two different and discrete time frames or
modes. Mode 1 showed a peak phase lock duration of approx-
imately 250 ms and Mode 2 was approximately 425 ms. There
was a minor mode at approximately 800 ms which was much
smaller than modes 1 and 2. There was little overlap between
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FIGURE 3 | Phase shift durations between Brodmann areas in the x, y, z

LORETA time series directions and the resultant vector in the lower right

where R =
√

x2 + y+z2. The x-axis is phase shift duration in milliseconds
and the y-axis is the percent of subjects that exhibited a given phase shift
duration for different Brodmann area pairs. The solid line is the eyes closed
condition and the dashed line is the eyes open condition. All of the subjects

are represented within each curve. For example, 100% of the subjects
exhibited a phase shift duration between 18 and 35 ms for Brodmann areas 8
and 9 (upper left panel x-shift) and similarly for each Brodmann area pair. The
finding of discrete phase shift durations with none or little overlap of data
points under each phase shift duration curve was a dominant feature of
phase shift duration and demonstrates discrete “temporal quanta.”

phase duration modes and all variables exhibited only one of the
two modes with no bi-modal distributions which demonstrates
discrete time frames of phase lock duration in specific groups of
Brodmann areas that comprise the DMN.

SHORT vs. LONG DISTANCE CONNECTIONS AND LORETA PHASE RESET
The finding of discrete time frames or modes was explored fur-
ther by correlating the Euclidean distance of the Talarich atlas
coordinates of the DMN (i.e., square root of the sum of squares
of x + y + z) with phase shift and lock duration. Figure 5 are
the results of regression analyses in which statistically significant
inverse relationships were present between phase shift vs. phase
lock duration. That is, phase shift duration tended to be short
when Brodmann areas were closer together and lengthened as the
distance between Brodmann areas increased. In contrast, phase
lock duration tended to be long when Brodmann areas were closer
together and short when Brodmann areas were more distant.

These analyses showed that both a non-linear relationship
involving “modes” or discrete time frames were present if a small
number of Brodmann areas are compared as well as a relatively
smooth exponential decline as a function of distance between
Brodmann areas when all 91 Brodmann areas are examined.

In order to further explore both the general and discrete aspect
of the findings we evaluated each combination of Brodmann areas
by fitting an exponential equation to the data points. Exponentials
provided the best fit of the data, for example, the red line is the
evaluation of the equation:

T = b1 + e
b2+

(
b3/d

)

(1)

where T = duration (ms), d = distance between Brodmann areas
(millimeters) and b1, b2, and b3 are coefficients. The coefficients
were derived using Data Desk statistical package (Velleman,
1997). The regression to Equation (1) was statistically significant
but in opposite directions for phase shift vs. phase lock duration.
Brodmann area pairs that exhibited short phase shift durations
also exhibited long phase lock durations while Brodmann areas
that exhibited long phase shift durations exhibited short phase
lock durations as shown in Figure 5. The coefficients of the equa-
tion are in Table 3. The coefficients in Table 3 allow one to test the
hypotheses in this study by simply entering Talairach Euclidian
distances between voxels of the brain into an Excel worksheet and
then compute the predicted phase lock and phase shift durations.
Shifts in the intercept b1 will result in shifts in the starting point
of the function.
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FIGURE 4 | Phase lock durations between Brodmann areas in the x, y, z

LORETA time series directions and the resultant vector in the lower right

where R =
√

x2 + y+z2. The x-axis is phase lock duration in milliseconds and
the y-axis is the percent of subjects that exhibited a given phase lock duration
for different Brodmann area pairs. The solid line is the eyes closed condition
and the dashed line is the eyes open condition. All of the subjects are

represented within each curve. For example, 100% of the subjects exhibited
a phase shift duration between 250 and 500 ms for Brodmann areas 8 and 10
(upper left panel x-lock) and similarly for each Brodmann area pair. The finding
of discrete phase lock durations with none or little overlap of data points
under each phase lock duration curve was a dominant feature of phase lock
duration and demonstrates discrete “temporal quanta.”

These data show that nearest neighbors exhibit short phase
shift and long phase lock durations while long distance rela-
tions exhibit long phase shift and short phase lock durations.
This is analogous to every day life where one quickly engages
and maintains communication with a local neighbor but it
takes longer to engage and remain connected to a long distance
neighbor.

EYES OPEN vs. EYES CLOSED CONDITIONS AND LEFT vs. RIGHT
HEMISPHERE
The eyes open condition was an independent replication of the
eyes closed condition because the eye conditions were recorded at
different times and the order of recording was counter balanced
across subjects. Multivariate analysis of variance (MANOVA) with
Bonferroni correction was performed where eyes open and eyes
closed conditions and left vs. right hemisphere as factors for all 91
Brodmann area combinations. The MANOVA was used because
it controls for the intercorrelation between the dependent and
between the independent variables. Table 4 shows the results of
these analyses which showed that eyes open vs. eyes closed con-
ditions were not statistically significantly different in the x, y, z

directions and resultant vector for phase shift duration. However,
eyes open vs. closed conditions were statistically significant for
phase lock duration in the x and z directions and for the resul-
tant vector. In all cases, phase lock duration in the eyes closed
condition was longer than in the eyes open condition (mean
difference= 9.52 ms).

As seen in Table 4, there were no statistically significant differ-
ences between left vs. right hemisphere in phase shift duration,
however, there were statistically significant differences in phase
lock duration in the x and y directions. In all cases, phase lock
duration was longer in the right hemisphere than in the left
hemisphere (mean= 11.05 ms).

VOLUME CONDUCTION TEST
Finally, the role of volume conduction is important to evalu-
ate. Volume conduction is the propagation of an electomagnetic
field at the speed of light or 3× 1010 cm/s (Feynman et al.,
1963; Malmivuo and Plonsey, 1995). For the distance of the
order of centimeters the delay is approximately 3.3× 10−9 s
which is a delay that is extremely small and therefore approx-
imates zero phase difference at all points in a volume. Phase
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FIGURE 5 | The x-axis is the Euclidean distance between the center

voxels that comprise the DMN Brodmann areas as described in Table 1.

The y-axis is phase shift duration (Top) and phase lock duration (Bottom) of
the Brodmann areas described in Table 1. The left row are the left
hemisphere Brodmann areas and the right row are the right hemisphere
Brodmann areas. The red line is the fit of an exponential equation

T = b1 + eb2+(b3/d) where T = duration time (ms), d = distance between
Brodmann areas (mm) and b1, b2, and b3 are coefficients. R = regression
correlation and p = statistical probability. Phase shift and phase lock are
inversely related where Brodmann areas with short phase shift duration
exhibit long phase lock durations while Brodmann areas with short phase lock
durations exhibit long phase shift durations.

difference is measured by the “imaginary number” component of
the cross-spectrum and PR is the 1st derivative of the “imaginary
number” that by definition is not volume conduction if a phase
difference is greater than zero. A test of the possible influence of
volume conduction involved measuring the absolute phase differ-
ence between Brodmann areas and then determining if the phase
difference was greater than zero and how phase difference changes
with distance. If greater than zero then the phase lock measures
cannot be explained by volume conduction. Further, because
connection density decreases as a function of distance and con-
duction delays linearly accumulate with distance then if there is
an increase in phase differences as a function of distance than
this also cannot be explained by volume conduction. If absolute
phase differences are significantly greater than zero and increase

as a function of distance than this is consistent with physiological
connections between connected parts of a network in which con-
duction velocity, synaptic rise times and synaptic delays produce
accumulative time delays.

Figure 6 shows the results of this test in which mean phase dif-
ferences were not equal to zero and instead varied as a function
of distance which is what is expected in a network of connections
and cannot be explained by volume conduction. In fact, phase
difference values were many times greater than zero and even the
most close or nearby neighbor Brodmann areas 8 and 9 differed
by 2–4◦ and therefore also cannot be explained solely by vol-
ume conduction. Further, phase lock duration is maximal at short
distances and declines with distance that also cannot be explained
by volume conduction because a sustained phase difference over
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time must be maintained which is consistent with the known
physiology of local and distant loop iteration that can extend for
many milliseconds (Beste and Dinse, 2013).

DISCUSSION
This study extends the investigation of the spatial and temporal
properties of the scalp surface EEG PR to the current sources
of the EEG. There was an approximate seven year age range of

Table 3 | Coefficients of equation (1) (b1, b2, and b3) for the resultant

vector for phase lock and phase shift durations in the left and right

hemispheres used in Figure 5.

b1 b2 b3

PHASE SHIFT DURATION

Left −65.0023 4.9086 −3.2892
Right −49.7859 4.7859 −3.7078

PHASE LOCK DURATION

Left −781.9091 6.8430 5.9441
Right −1521.5681 7.4068 4.5508

Table 4 | The results of the MANOVA for eyes closed vs. eyes open

conditions and hemisphere for phase lock and phase shift durations.

Phase SHIFT Phase LOCK

F -ratio P-value F -ratio P-value

EC vs. EO

X 0.2335 ns 11.8840 0.0006
Y 1.3148 ns 2.7337 ns
Z 0.0623 ns 3.8381 0.0501
R 0.0123 ns 9.8722 0.0017

LEFT vs. RIGHT

X 0.4029 ns 24.0740 0.0001
Y 0.3493 ns 8.2249 0.0041
Z 0.7527 ns 1.5469 ns
R 2.9703 ns 2.9038 ns

subjects in this study, however, no significant correlations with
age were present. A new finding is discrete temporal modes of
phase shift and phase lock duration that are unique for different
Brodmann area associations of the DMN. A second finding is sig-
nificantly greater complexity and higher dimensionality of phase
shift duration in comparison to phase lock duration, i.e., a tempo-
ral dimension reduction from phase shift to phase lock duration.
A third finding is an inverse relationship between spatial distance
between Brodmann areas and PR metrics where short distances
are exponentially related to long phase lock durations and short
phase shift duration, whereas, long distances are exponentially
related to long phase shift durations and short phase lock dura-
tion. Overall, the findings are consistent with previous studies
demonstrating that temporal “frames” or “chunks” are discrete
and different for different Brodmann areas of the human brain.
The results can be explained by a local vs. distant connection
model which is unique for different Brodmann areas and thereby
accounting for discrete temporal quanta while also exhibiting an
exponential decrease in the number of connections with distance
that corresponds to exponential changes in PR as a function of
distance. Furthermore, the data indicate that discrete peaks in
PR duration reflect a different or unique ratio of long vs. short
distance connection densities within different Brodmann areas.

Studies by Ko and Ermentrout (2007) and Tiesinga and
Sejnowski (2010) use mathematical models that best explain the
onset of a phase shift to be initiated by cortico-cortical long dis-
tant excitatory dendritic synapses. The mathematical models and
experiments fit the physiological facts that local distance con-
nections are exponentially more numerous and exhibit temporal
compactness while distant connections are less numerous and
exhibit temporal dispersion. Therefore, the ratio of local to dis-
tant connections determines the duration of phase shift and this
ratio varies as an exponential function of distance between a given
Brodmann area. This conclusion is consistent with studies show-
ing anti-phase shifts are related to neural packing density (Li
and Zhou, 2011) and with the surface EEG PR where increased
local packing density was hypothesized to explain the difference
between PR in the posterior-to-anterior direction (e.g., O1-P3)
vs. the anterior-to-posterior directions (e.g., Fp1-F3) because of

FIGURE 6 | Test of volume conduction. The y-axis is the mean absolute phase differences (degrees) of the resultant vector between Brodmann areas. The
x-axis is the Euclidian distance (mm) between all Brodmann area pairs. The left graph is from the left hemisphere and the right graph is from the right hemisphere.
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increased packing density in the posterior cortex as compared to
frontal cortex (Thatcher et al., 2009a). The results of the present
study are also consistent with the hypothesis that phase shift is
related to recruitment of neurons and phase lock duration is
directly related to synchrony or binding of neurons as an expo-
nential function of packing density and inter-node (Brodmann
area) distance.

LIMITATIONS OF THIS STUDY
One limitation is the sample rate used where 100 Hz sample
rates limit analyses to 10 ms resolution and therefore phase shift
durations at shorter durations may be present but were missed.
However, the time resolutions appears to be due more to phys-
iology than the speed of computer measurement because we
have measured phase shift and lock duration at sample rates
of 512 Hz (1.95 ms resolution) and find the same minimum
phase shift durations of about 20 ms as reported in this study.
Mathematically the limiting relationship is between distance and
time as described by Equation (1) that can be evaluated using
the coefficients in Table 3. If d = 0 then duration = infinity. If
d = infinity then duration = 0. The values between zero and
infinity are a good fit of how packing density of neurons as a
function of distance are related to PR duration. Higher sam-
ple rates should be used to further test the temporal synchrony
limits as reported in this study. Another limitation are analyses
only of the delta frequency band. Because of the large volume
of data and limitations of publication space it was necessary to
limit the analyses to a single frequency band, i.e., the delta fre-
quency band (1–4 Hz). Different relations are present at different
frequency bands as well as cross-frequency band coupling and
these relations have been measured and will be the subject of
future publications. Another limitation is the use of a center
frequency of a narrow band that is necessary with the Hilbert
transform. The Gabor transform is independent of a center fre-
quency and provides optimal time frequency resolution (Witte
and Schack, 2003) and higher temporal-spatial resolution and can
yield more detailed time-frequency information than Complex
Demodulation. While cross-frequency phase shift and phase lock
measurements is important, however, because of page limitations
this topic will be also presented in future studies.

DISCRETE DURATIONS AND THE DEFAULT MODE NETWORK
Shallace (1964), Efron (1967, 1970a,b), Allport (1968), and oth-
ers (Sanford, 1971; Varela, 1995; Varela et al., 2001) have shown a
minimum perceptual frame from approximately 40 ms for audi-
tory stimuli to 140 ms for visual stimuli that are durations that
temporally distinguish events as being successive in time where
duration is defined at T1 – T2 = 0, i.e., simultaneity where there
is no perceived time difference between two distinct events. These
studies as well as others show that learning-dependent changes in
neural networks is not a continuous process but rather a discon-
tinuous sequencing of narrow time windows (Thatcher and John,
1977; John, 2005; Lehmann et al., 2006; Thatcher et al., 2007,
2008b, 2009a). Thatcher et al. (2009a) indicated a linkage between
spontaneous and ongoing perceptual frames and event related
desynchronization (ERD) by considering phase shift duration and

phase lock duration as elemental “atoms” that underlie the dura-
tion of perceptual frames and ERD. For example, in Thatcher
et al. (2009a) the mode of scalp surface EEG PR was tempo-
rally bounded with a minimal phase shift duration of about 45 ms
and a maximum phase shift duration of about 70 ms. Phase shift
was followed by phase lock that was temporally bounded from
about 150 ms to about 800 ms with the most frequent phase lock-
ing intervals between 200 and 450 ms (Thatcher et al., 2009a).
The findings in the present study are consistent with the ear-
lier surface EEG analyses and indicate that 3-dimensional current
source phase shift and phase lock are ongoing spontaneous pro-
cesses that occur between network nodes and that discrete phase
shift durations (i.e., discrete quanta of time) operate at higher
temporal-spatial precision than the surface EEG. Network nodes
are defined as clusters of neurons connected to other clusters
(nodes) and the present study shows that a fundamental prop-
erty of nodes or clusters is to operate like temporal “shutters”
that open and close at specific durations. Each Brodmann area
maintains a different ratio of local vs. distant connections but
nonetheless follows the general rule of an exponential decrease in
local connections as a function of distance. This anatomical fact
may explain the findings of discrete phase shift and lock duration
due to unique local vs. distant excitatory connection densities in
different Brodmann areas (Sporns, 2011).

Figure 7 illustrates an hypothesis to explain the findings in this
study by fitting the data to a single exponential model based on
the ratio of local and distant excitatory dendritic synapses. Table 3
provides the coefficients of Equation (1) to allow one to experi-
ment with different Talariach distances, e.g., enter the x, y, and z
Euclidean distance between Hagmann et al. (2008) Modules in
millimeters into Equation (1) and then calculate the predicted
LORETA phase shift and phase lock duration.

The EEG is the summation of LFPs therefore phase shifts are
necessarily related to connection density. However, the arrival of
distant synaptic action potentials exhibits temporal dispersion
whereas local excitatory connections are higher in number and
temporally compact. Therefore, it is hypothesized that the ratio of
distant to local connections varies as a function of distance from
any Brodmann area and as a consequence longer phase shift dura-
tion occurs as the ratio shifts toward distant excitatory inputs. It
is hypothesized that phase lock is inversely proportional to phase
shift duration based on the spatial-temporal GABA connections
and delays between excitatory neurotransmitter EPSPs (and exci-
tatory neuromodulators) in local and long distance loops. It is
also hypothesized that the physiological differences in the gene-
sis of phase shift vs. phase lock is related to the “Gap” of time
between distant and local EPSP excitation that produce the phase
shift followed by long duration inhibitory synaptic potentials that
contribute to phase lock duration. The collective resonance of
the rebound from local inhibition and the arrival of long distant
EPSPs contribute to the onset of the PR process.

Whether or not the phase shift and phase lock are time
correlated to a task is irrelevant since “self-organized critical-
ity” is an ongoing background emergent process that on the
average produces an approximately 20–80 ms period of phase
shift or “uncertainty” or approximate duration of “chaos” fol-
lowed on the average by a 200–800 ms period of phase locking
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FIGURE 7 | (A) (Top) is an example of discrete durations or “temporal
quanta” of phase shift duration in different Brodmann areas of the DMN. The
eyes vs. eyes closed shift to longer durations are due to increased functional
connectivity with increased input that is like a “shutter” whose duration is
proportional to the number of recruited neurons. The discontinuities are due
to different packing densities in different Brodmann areas. The bottom plot
(B) is the evaluation of Equation (1) using the mean LORETA phase shift and
lock duration for both eyes closed and open conditions for the 91 Brodmann
area combinations: T = b1 + eb2+(b3/ d) The link between EEG phase shift
and neural packing density is the physiological observation of action potential
bursts when in-phase to LFPs vs. suppression of action potentials when
ant-phase to LFPs Hughes and Crunelli (2007). EEG is the summation of
LFPs therefore phase shifts are necessarily related to neural packing density,
i.e., the higher the packing density than the longer the phase shift as a
property of summation. It is hypothesized that the increased shift duration

between eyes closed vs. eyes open is due to increased arousal and
increased depolarization resulting in increased functional connectivity
(increased neural resource). Phase lock is inversely proportional to phase shift
duration based on the spatial-temporal GABA connections and delays
between excitatory neurotransmitter EPSPs in local and long distance loops.
The physiological differences in the genesis of phase shift vs. phase lock is
related to the “Gap” of time which is a transition time between local EPSP
excitation and re-enterant long distance EPSPs that produce the phase shift
followed by long duration inhibitory synaptic potentials that contribute to
phaselock duration. The rebound from inhibition and arrival of EPSPs starts
the phase reset process. Predicted phase shift and lock durations can be
evaluated by using the coefficients in Table 3. For example, the distance
between Module1 and Module2 from Hagmann et al. (2008) and Thatcher
et al. (2011, Table 3) is 43.4 mm which that predicts a phase shift duration =
56 ms and phase lock duration = 300 ms based on Equation (1).

or “stability.” This process represent a continuous sequence of
meta-stable states (Rabinovich et al., 2012). The loop network
background process includes “blank” periods when large assem-
blies of neurons are in a PR mode (i.e., phase shift and phase
locking) and otherwise not available to participate in loops which

represents an approximate average 135 ms “Gap” or period of
time between when neurons recruited by a phase shift are fol-
lowed by phase lock onset. This gap is a statistical region with an
average and range between the end of a phase shift and the begin-
ning of a subsequent phase lock. This appears to be a fundamental
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“unconscious” transition time that is near to the flicker fusion fre-
quency and may be why TV viewers rely upon instant replay to
confirm a touch down in football or a replay in baseball, etc. (i.e.,
human time frames are too long and require higher speed instant
replay to determine the reality of an event under question). The
“gap” interval of about 135 ms is spatially distributed and tempo-
rally averaged across billions of loops in the brain and results in a
continuous or smooth appearance of reality.

Another type of “refractory” period or “gap” is when phase
locked neurons are unavailable for allocation by a different clus-
ter of neurons at a different moment of time. Long distance phase
locking of local clusters of neurons can result in a reduction in
the amplitude of the surface EEG because phase locking occurs
over long distances and thus reduces the size of the number
of synchronized local cluster of neurons by spatial differentia-
tion. This is consistent with studies of schizophrenia that show
hyperconnectivity in local frontal and parietal regions associated
with increased local current density (Canuet et al., 2011). The
hypothesis of linking PR during the background spontaneous
EEG provides a new definition of the term “desynchronization”
used to describe ERD and the waxing and waning of the spon-
taneous EEG. That is desynchronization is actually “spatially
differentiated phase reset” or “micro bonding” of local clusters
of neurons connected across long distances to other local clusters
for brief periods of time (Thatcher et al., 2009a).

EYES OPEN vs. CLOSED AND LEFT vs. RIGHT HEMISPHERE
The eyes closed vs. eyes open conditions were measured at differ-
ent times with a pause between recordings and thus are within
subject replications. Both conditions exhibited significant fits
to the exponential Equation (1) and there were no significant
differences between eyes open and eyes closed phase shift dura-
tion (see Table 4). The eyes closed condition did exhibit a small
but significantly longer phase lock duration which may reflect
the relatively small differences in neural excitability between these
two states. The lack of a large difference between resting eyes
closed and eyes open states is consistent with fMRI studies of
the DMN that is evident in the resting state (Raichle, 2010). This
is because the resting state is characterized by quiet repose with
either eyes closed or eyes open and with or without visual fixation.
During the resting state subjects typically experience an ongoing
state of conscious awareness filled with “stimulus-independent
thoughts” (SITs; Antrobus, 1968) or more commonly, day dream-
ing or mind wandering (Mason et al., 2007). Internal thoughts,
self-awareness and rumination commonly dominate the resting
state as opposed to active task engagement (Sridharan et al., 2009;
Raichle, 2010). The right hemisphere exhibited longer phase lock
durations than the left hemisphere (see Table 4) which is con-
sistent with the findings of lower packing density in the right
hemisphere in comparison to the left, especially in the planum
temporale (Gur et al., 1980; Buchell et al., 2004).
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Brain signals recorded from the primary motor cortex (M1) are known to serve a significant
role in coding the information brain–machine interfaces (BMIs) need to perform real and
imagined movements, and also to form several functional networks with motor association
areas. However, whether functional networks between M1 and other brain regions, such
as these motor association areas, are related to the performance of BMIs is unclear. To
examine the relationship between functional connectivity and performance of BMIs, we
analyzed the correlation coefficient between performance of neural decoding and functional
connectivity over the whole brain using magnetoencephalography.Ten healthy participants
were instructed to execute or imagine three simple right upper limb movements. To
decode the movement type, we extracted 40 virtual channels in the left M1 via the beam
forming approach, and used them as a decoding feature. In addition, seed-based functional
connectivities of activities in the alpha band during real and imagined movements were
calculated using imaginary coherence. Seed voxels were set as the same virtual channels
in M1. After calculating the imaginary coherence in individuals, the correlation coefficient
between decoding accuracy and strength of imaginary coherence was calculated over
the whole brain. The significant correlations were distributed mainly to motor association
areas for both real and imagined movements. These regions largely overlapped with brain
regions that had significant connectivity to M1. Our results suggest that use of the strength
of functional connectivity between M1 and motor association areas has the potential to
improve the performance of BMIs to perform real and imagined movements.

Keywords: brain–machine interfaces, functional connectivity, alpha band, real movement, imagined movement,

magnetoencephalography, primary motor area, motor association area

INTRODUCTION
The brain signals recorded from the primary motor cortex (M1)
are known to serve a significant role in providing the information
necessary for brain–machine interfaces (BMIs). This technology
is expected to offer patients who have lost control of voluntary
movements, including those with amyotrophic lateral sclero-
sis (ALS) and spinal cord injury, greater independence, and a
higher quality of life by enabling them to control external devices
to communicate with others and to manipulate their environ-
ment at will (Wolpaw et al., 2002; Birbaumer, 2006; Hirata et al.,
2012; Hochberg et al., 2012; Collinger et al., 2013). Recently,
many studies reported the importance of M1 signals in provid-
ing the information necessary for BMIs using various types of
signal platforms to execute real and imagined movements; for
example, electroencephalography (EEG; Bradberry et al., 2010;
Shindo et al., 2011), magnetoencephalography (MEG; Mellinger
et al., 2007; Buch et al., 2008; Waldert et al., 2008; Wang et al.,
2010; Sugata et al., 2012a), and electrocorticography (ECoG;
Leuthardt et al., 2004; Schalk et al., 2007; Yanagisawa et al., 2011,
2012a).

In electrophysiological studies, particular ranges of neural
oscillations, which are usually classified into alpha (8–13 Hz), beta
(14–25 Hz) and gamma (30–90 Hz), were shown to be associated
with motor control (Lopes da Silva, 2013), and their applications
to BMIs have been investigated (Wolpaw and McFarland, 2004;
Birbaumer, 2006; Yanagisawa et al., 2011). Rhythmic activity in
the alpha range observed over the region of the Rolandic fissure is
typically not in the form of a sinusoidal curve (Pfurtscheller and
Neuper, 1997) and variably referred to as mu rhythm (Gastaut,
1952). It can be observed along with beta band activity during
movement (Pfurtscheller and Aranibar, 1977; Cheyne, 2013) and
tactile stimulation (Gaetz and Cheyne, 2006). Since modeling of
non-sinusoidal waveforms requires the use of higher frequency
harmonic components in addition to a fundamental frequency,
beta rhythm activity associated with mu rhythm might result
from the non-sinusoidal nature of mu rhythms, rather than an
independent physiological processes (Jurgens et al., 1995). In addi-
tion, the gamma band has been shown to correlate with the firing
activities of neurons representing neural information (Ray et al.,
2008; Quian Quiroga and Panzeri, 2009). These frequency bands
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compose task-specific spatial connectivity patterns in movement
related neural networks such as those involving the M1, premo-
tor cortex (PMC), and supplementary motor area (SMA; Herz
et al., 2012). Among these frequency bands, recently, functional
connectivity within the range of alpha band between the sensori-
motor area and motor association area was shown to be relevant
to post-stroke recovery potential (Westlake et al., 2012). In this
study, neural oscillations of the alpha band were used to calcu-
late functional connectivity because of the higher signal-to-noise
ratio compared to oscillations in other frequency bands (e.g.,
theta, beta) and because they play an important role in control-
ling cortical excitability. In addition, alpha oscillations are also
relevant in the controlling of motor execution through the mod-
ulation of gamma-band activity (Yanagisawa et al., 2012b). This
alpha oscillation in the sensorimotor cortex, i.e., mu rhythm, has
been observed in relation to not only motor execution (Salmelin
and Hari, 1994; Leocani et al., 2001) but also motor prepara-
tion (Pfurtscheller et al., 1997; Pineda, 2005) and motor imagery
(Pfurtscheller et al., 2006; Llanos et al., 2013) as well as beta oscil-
lations, and is considered a mechanism for improving information
processing during these tasks (Basar et al., 2001; Palva and Palva,
2007; Sabate et al., 2012). Furthermore, functional connectivities
within the range of alpha band activity are suggested to be related
to physical and mental fitness (Douw et al., 2014). Such neuro-
physiological aspects have also been proposed as useful markers of
impaired brain states, such as schizophrenia (Hinkley et al., 2011),
Alzheimer’s disease (Canuet et al., 2012), and multiple sclerosis
(Cover et al., 2006). However, in the field of BMIs, there have
been few studies focusing on the relationship between functional
connectivity within the range of alpha band activities and the
performance of BMIs. Based on the above findings, we hypothe-
sized that alpha band activity is a key component to revealing the
relationship between the functional connectivity of M1 and per-
formance of BMIs in decoding real and imagined movements. We
further hypothesized that brain regions possessing strong alpha
functional connectivity with M1 contribute to the performance of
BMIs.

The aim of this study was to clarify the relationship between
alpha functional connectivity and the performance of BMIs.
For this purpose, we used MEG to examine the relationship
between the performance of neural decoding, which has been
also termed “decoding accuracy” in several studies (Waldert et al.,
2008; Bradberry et al., 2010; Yanagisawa et al., 2011), and func-
tional connectivity of activities within the alpha band (8–13 Hz).
MEG has several advantages for analyzing functional connectiv-
ity compared with EEG and fMRI. MEG has a higher spatial
resolution than EEG, and can record a direct correlate of neu-
ral activity with high temporal resolution compared with fMRI.
We extracted 40 virtual channels in the left M1 using a beam
forming approach and used them as a decoding feature. In
addition, we calculated seed-based functional connectivity over
the whole brain using alpha band activity. Seed voxels corre-
sponded to the same locations as the 40 virtual channels set in
the left M1. We then computed the task-related functional con-
nectivity instead of that during the resting state because previous
studies using MEG (Bardouille and Boe, 2012) and fMRI (New-
ton et al., 2007; Treserras et al., 2009) showed that functional

connectivity during motor tasks is greater than that in the resting
state. After calculating the task-related functional connectiv-
ity, the correlation coefficients between decoding accuracy and
strength of functional connectivity were calculated over the whole
brain.

MATERIALS AND METHODS
PARTICIPANTS
Ten healthy volunteers participated in this study (five males and
five females; mean age 29.8 ± 13.2 years). All participants were
confirmed to be right-handed using the Edinburgh Handedness
Inventory (Oldfield, 1971; all participants had a score of 100),
had no history of neurological or psychiatric diseases, and had
normal vision. The protocol of this study was approved by the
ethics committee of Osaka University Hospital and all participants
provided informed, written consent.

TASKS
The experimental paradigm is shown in Figure 1A. We prepared
two tasks: a real movement task and an imagined movement task.
We have previously shown the contribution of M1 signals in clas-
sifying movement types using these motor tasks based on ECoG
(Yanagisawa et al., 2009) and MEG (Sugata et al., 2012b). An epoch
started with a 4-s rest phase, and a black fixation cross (+) was pre-
sented to fix the participant’s eyes on the screen. Then, a Japanese
word representing one of the three right upper limb movements
(grasping, pinching, or elbow flexion) was presented for 1 s to
instruct the participant which movement to perform or imag-
ine after the appearance of the execution cue. Two timing cues,
“> <” and “> <,” were then sequentially presented for 1 s each to
enable the participants to prepare the execution of the real or imag-
ined movements. In the real movement task, the participants were
instructed to perform the instructed movement presented on the
display immediately after the appearance of the execution cue (×).
In the imagined movement task, the participants were instructed to
imagine performing the movement immediately after the appear-
ance of the execution cue. Each of the three types of movements
was performed 60 times during the real movement trials, and the
movement in any given epoch was selected randomly. Then the
imagined movement trials were conducted in the same manner.

MEG MEASUREMENTS
Neuromagnetic activity was recorded in a magnetically shielded
room using a 160-channel whole-head MEG system equipped
with coaxial type gradiometers (MEG vision NEO; Yokogawa Elec-
tric Corporation, Kanazawa, Japan). The participant lay on a
bed in the supine position with their head centered. The head
position was measured before and after recording using five coils
placed on the face (the external meatus of each ear and three
points on the forehead). Visual stimuli were displayed on a pro-
jection screen positioned 325 mm from the participant’s eyes
using a visual presentation system (Presentation; Neurobehavioral
Systems, Albany, CA, USA) and a liquid crystal projector (LVP-
HC6800; Mitsubishi Electric, Tokyo, Japan). Data were sampled
at a rate of 1000 Hz with an online low-pass filter at 200 Hz. To
reduce contamination from muscle activity and eye movements,
we instructed the participants to rest their elbows on a cushion to
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FIGURE 1 |Task design and analysis procedure. (A) Task design.
Participants performed a real movement task and an imagined movement
task following the same task paradigm. Each trial consisted of four
phases: a rest phase, an instruction phase, a preparation phase, and an
execution phase. In the rest phase, participants fixed their eyes on a
black fixation cross “+” presented for 4 s. A Japanese word representing
one of three movements was then presented for 1 s during the
instruction phase. Then, two timing cues, “> <” and “> <,” were
presented during the preparation phase to enable the participants to
prepare the execution of real or imagined movements. Finally, the

participants performed the movement or imagined performing the
movement presented during the instruction phase. Each of the three
movements was performed 60 times. (B) Analysis procedure. The beam
forming approach was used to extract 40 virtual channels from the left
M1, and decoding accuracy was calculated using these channels.
Seed-based functional connectivity of activities within the alpha band
between M1 virtual channels and target voxels over the rest of the whole
brain was calculated using imaginary coherence (IC) in individual
participants. Then, the correlation coefficient between decoding accuracy
and IC was calculated over the participants.

avoid shoulder movements, and to watch the center of the display
without ocular movements and blinking. In addition, to moni-
tor unwanted muscular artifacts, electromyograms (EMG) were
simultaneously recorded with electrodes on the flexor pollicis bre-
vis, flexor digitorum superficialis, and biceps brachii muscles during
the tasks.

After data acquisition, a 60-Hz notch filter was applied to
eliminate the AC line noise, and eye blink artifacts were rejected
applying the signal-space projection (SSP), one of the approaches
implanted in Brainstorm1 to reject external disturbances (Tadel

1http://neuroimage.usc.edu/brainstorm
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et al., 2011). In addition, to align the MEG data with individual
MRI data, three-dimensional data of facial surfaces obtained by
laser scanning were superimposed on the anatomical facial surface
provided by the individual MRI data with an anatomical accuracy
<1 mm.

VIRTUAL CHANNELS AND PREPROCESSING
To extract M1 signals from the MEG sensor, we used an adaptive,
spatial filtering beamforming technique (Sekihara et al., 2002).
This approach is used to estimate the temporal course of neural
activity at a particular site in the brain marked by an imaging voxel,
such as that derived from MRI. The output of such a spatial filter
is termed a virtual channel or virtual sensor (Robinson and Vrba,
1999). The beamformer is constructed to project signals exclu-
sively from the targeted voxels, while removing residual noise to
suppress signals from other parts of the brain. Thus, virtual chan-
nels provide data concerning neural activity at target voxels with
a considerably higher signal-to-noise ratio than that of raw MEG
data (Robinson and Vrba, 1999).

The target location of the virtual channels for the present study
was the left M1 gyrus. Forty virtual channels were selected in the
M1 with an approximately 2.5 mm inter-sensor spacing using the
Montreal Neurological Institute (MNI) coordinates (Figure 1B).
Then, the virtual channel location coordinates on individual MRIs
were extracted utilizing MNI coordinates and warping parameters
calculated by Statistical Parametric Mapping 8 (SPM8; Wellcome
Department of Imaging Neuroscience, London, UK) using an
MRI-T1 template and individual MRI-T1 images. A tomographic
reconstruction of the data was created by generating a single-
sphere head model based on the head shape obtained from the
structural MRIs of each individual participant.

Presentation of the execution cue was defined as the onset of
real and imagined movements (0 ms), and all time windows were
relative to this time. Epochs from –4000 to 500 ms were analyzed.
The baseline was set from –4000 to –3500 ms, during the resting
phase. Data from each epoch were normalized by subtracting the
mean and then dividing by the SD of the baseline values.

FUNCTIONAL CONNECTIVITY ANALYSIS
The MEG sensor data were reconstructed in source space with
the same beamformer approach described above with 5-mm
voxel spacing over the whole brain. The frequency component
of the alpha band was chosen to calculate source-space, and
seed-based functional connectivity. The functional connectivity
at 0–500 ms was calculated with imaginary coherence (IC), one of
the connectivity analysis approaches that can reduce overestima-
tion biases in EEG/MEG data generated from common references,
cross-talk, and volume conduction (Nolte et al., 2004; Guggis-
berg et al., 2008; Hinkley et al., 2011). IC rules out real parts of
coherence containing similarities with zero time lag, and uses
imaginary parts of coherence which contains similarities with a
certain time lag, because phase similarities with zero time delay
among time series are likely to be caused by crosstalk or vol-
ume conduction. Using this method, we can evaluate the “true”
interactions between brain areas occurring with a certain time
lag. Seed voxels were set at the 40 virtual channels in the left
M1 at the same locations described above, and the targets were

set as voxels over the remaining whole brain (i.e., except the
left M1). The connectivity at each voxel was estimated by aver-
aging across all its Fisher’s Z-transformed connections (Nolte
et al., 2004; Guggisberg et al., 2008; Hinkley et al., 2011). All ICs
calculated from 40 seed voxels were averaged and used as the
strength of functional connectivity between M1 and the target
voxel.

Group statistical maps were generated to reveal the brain
regions with significant ICs during real and imagined movements.
The statistical significance of IC across participants was tested
with SPM8. The functional images were normalized using the
MNI template in SPM8. A one-sample t-test at the voxel level was
performed using a t-statistic incorporating variance smoothing
with an 8-mm Gaussian kernel. Voxels with differences at p < 0.01
(familywise error rate, FWER) were considered statistically sig-
nificant, and were superimposed on the template of the inflated
cortical surface brain extracted by FreeSurfer2.

DECODING ANALYSES
Several studies reported that the amplitudes of brain waveforms
yield higher performances for BMIs than their power spectrums,
such as alpha, beta, and gamma bands (Schalk et al., 2007; Waldert
et al., 2008; Yanagisawa et al., 2009). In addition, although the high
gamma band activity of ECoG signals is also known to provide
high BMI performance (Leuthardt et al., 2004; Yanagisawa et al.,
2011), it is difficult for MEG to record high gamma band activity
and to obtain high BMI performances. With this in mind, we chose
a low frequency component to decode the movement types. The
normalized amplitude of the signal recorded at each M1 virtual
channel from 0 to 500 ms was resampled over an average 100-ms
time window, sliding by 50 ms (9 time points) and then used as
a decoding feature. In our preliminary analysis, we also examined
other features based on the power spectra of the 40 virtual channels
(theta; 4–8 Hz, alpha; 8–13 Hz, beta; 13–25 Hz, low-gamma;
25–50 Hz), but such features did not outperform the normalized
amplitudes. Thus, we focused on the decoding results obtained
from the low frequency component of the normalized amplitudes.

To examine decoding accuracy, we used a support vector
machine (SVM) operating on MATLAB 2013a software (Math-
Works, Natick, MA, USA), which was extended to discriminate
multiple movements (Kamitani and Tong, 2005; Figure 1B).
Decoding accuracy was evaluated using 10-fold cross-validation.
Each dataset was divided into 10 parts; the classifiers were deter-
mined from 90% of the dataset (training set) and tested on the
remaining 10% so that the testing dataset was independent from
the training dataset for each time point. This procedure was then
repeated 10 times. The averaged decoding accuracy over all runs
was used as a measure of decoder performance. The binomial test
was used to confirm that the decoding performance significantly
exceeded chance levels.

CORRELATION BETWEEN IC AND DECODING ACCURACY
To examine whether functional connectivity is associated with
decoding accuracy, we calculated the correlation coefficient

2http://freesurfer.net/
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between the IC and the decoding accuracy among the ten partic-
ipants using the Spearman’s rank correlation test over the whole
brain (Figure 1B). All correlation analyses were corrected for mul-
tiple comparisons with a false discovery rate (FDR). Voxels with
differences at p < 0.05 were considered statistically significant, and
were superimposed on the template of the inflated cortical surface
brain extracted by FreeSurfer.

RESULTS
FUNCTIONAL CONNECTIVITY DURING REAL AND IMAGINED
MOVEMENTS
During real movements, statistically significant ICs were observed
in the bilateral superior and middle frontal gyri, including the
SMA and PMC, in the left parietal lobe and the temporal lobe, and
in the right sensorimotor area (Figure 2 left and Table 1). During
imagined movements, statistically significant ICs were localized
only in the left hemisphere, including the left inferior and superior
parietal lobules (IPL, SPL), the superior and middle frontal gyri,
and the postcentral gyrus (Figure 2 right and Table 2).

DECODING ACCURACY FOR REAL AND IMAGINED MOVEMENTS
For the real movements, the averaged decoding accuracy among
all participants was 67.1± 12.5% (mean± SD), which was signifi-
cantly higher than chance level (binomial test, p < 0.05; Figure 3).
For the imagined movements, decoding accuracy was also sig-
nificantly higher than chance level (48.7 ± 8.7%; binomial test,
p < 0.05), although it was lower than that for the real movements.

CORRELATION OF IC AND DECODING ACCURACY FOR REAL AND
IMAGINED MOVEMENTS
After calculating the ICs in individuals, we examined the correla-
tion coefficient between strength of IC and decoding accuracy
among all participants during real and imagined movements.

Figure 4 depicts the distribution of significant correlations
between IC and decoding accuracy over the whole brain during
real movements (p < 0.05, FDR-corrected). Significant correla-
tions were localized mainly to the left PMC, postcentral gyrus, and
right sensorimotor area (Figure 4 upper panel and Table 3). On
the other hand, significant correlations between IC and decoding
accuracy for imagined movements were more widely distributed
than those of the real movements (Figure 4 lower panel). In par-
ticular, large clusters were observed in the left IPL and SPL and the
right inferior frontal gyrus (IFG). Other significant correlations
were observed in the left prefrontal cortex (including dorsolateral
prefrontal cortex; DLPFC) and right sensorimotor area (Figure 4
lower panel and Table 4).

Figure 5 depicts the overlay map of the distribution of
significant correlations between strength of IC and decoding
accuracy and significant IC during real and imagined move-
ments. The significant correlations were mainly distributed in
or around the brain regions that exhibited significant IC during
real and imagined movements. No overlap between correlations
and IC was observed in the right hemisphere during imagined
movements.

DISCUSSION
To explore the contribution of functional connectivity to the
performance of BMIs, we examined the relationship between neu-
ral decoding and alpha band IC with the left M1 during real
and imagined movements. The brain regions with significant
functional connectivity with M1 during both real and imag-
ined movements were distributed mainly in motor association
areas, including the SMA, PMC, and parietal area. In addition,
the significant correlations between decoding accuracy and IC
strength were distributed in or around the brain regions with
significant IC. These results indicate that functional connectivity

FIGURE 2 | Cortical connectivity maps during real and imagined

movements. Group (N = 10 participants) results of anatomically
constrained imaginary coherence (IC) visualized on the inflated cortical

surface during real and imagined movements. The brain regions with
significant IC with the left M1 are represented in blue (p < 0.01,
FWER-corrected).
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Table 1 | Brain regions showing significant IC with the left M1 during

real movements.

Brain region Hemisphere MNI coordinates t -value

x y z

Superior frontal gyrus Right 6 −2 70 21.5

Precentral gyrus Right 24 −19 77 20.5

Cingulate gyrus Left −4 −20 42 19.4

Medial frontal gyrus Left −2 −6 58 19.2

Precentral gyrus Right 14 −28 82 18.5

Superior parietal lobule Left −36 −70 52 17.6

Middle temporal gyrus Left −58 −68 6 17.1

Middle occipital gyrus Left −28 −88 16 17.1

Superior temporal gyrus Left −50 −30 12 16.0

Superior frontal gyrus Left −20 40 40 15.5

Inferior parietal lobule Left −38 −56 40 15.5

Angular gyrus Left −32 −62 34 15.5

Precuneus Left −30 −74 40 15.2

Middle frontal gyrus Left −36 30 40 14.5

Superior frontal gyrus Left −34 28 50 13.7

Postcentral gyrus Left −51 −29 50 11.8

IC, imaginary coherence; M1, primary motor cortex; MNI, Montreal Neurological
Institute template.

Table 2 | Brain regions showing significant IC with the left M1 during

imagined movements.

Brain region Hemisphere MNI coordinates t -value

x y z

Supramarginal gyrus Left −54 −50 28 20.8

Superior temporal gyrus Left −52 −32 12 20.3

Inferior parietal lobule Left −60 −40 26 18.6

Superior frontal gyrus Left −26 56 26 20.6

Superior parietal lobule Left −26 −72 64 19.1

Middle frontal gyrus Left −44 50 24 17.7

Inferior frontal gyrus Left −44 40 16 16.0

Postcentral gyrus Left −40 −30 54 10.9

IC, imaginary coherence; M1, primary motor cortex; MNI, Montreal Neurological
Institute template.

of alpha band activity between M1 and the motor associa-
tion area is involved in neural decoding of real and imagined
movements.

FUNCTIONAL CONNECTIVITY IN THE ALPHA BAND DURING REAL AND
IMAGINED MOVEMENTS
Recent studies have suggested that fluctuations in alpha band
oscillations facilitate processing in task-relevant cortical regions
or suppress processing distracting input in task-irrelevant regions

FIGURE 3 | Averaged decoding accuracies over participants for real and

imagined movements. Significantly high decoding accuracies were
obtained for both real and imagined movements (error bar = SD, N = 10).
The two horizontal lines indicate decoding accuracy at chance level (33.3%,
solid line), and at p = 0.05 (dashed line, binomial test).

to improve task performance (Palva and Palva, 2007; Mazaheri
and Jensen, 2010; Gould et al., 2011; Haegens et al., 2011a,b).
By holding and releasing high gamma activity during a move-
ment task, we previously demonstrated a functional role of alpha
band activity in movement that modulates motor representation
in the sensorimotor cortex (Yanagisawa et al., 2012b). Because the
main body of alpha band activity recorded over the sensorimo-
tor area is thought to be due to the mu rhythm (Salmelin and
Hari, 1994; Leocani et al., 2001), fluctuations in the mu rhythm
may play a significant role in controlling the cortical excitability
in M1. In fact, it has been demonstrated that data processing
improves when the phase of the mu rhythm is modified, and
data processing is inhibited when its phase is unlocked (Sabate
et al., 2012). Furthermore, the power of the mu rhythm in the
sensorimotor area was recently demonstrated to play an impor-
tant role in cortico-cortical connectivity (Ronnqvist et al., 2013).
In the present study, we calculated seed-based functional con-
nectivity from alpha band activity over the whole brain during
real and imagined movements. Seed voxels were set as 40 vir-
tual channels in M1. The significant functional connectivity was
distributed to the motor association area over frontal and pari-
etal areas during real and imagined movements. The results were
mostly concordant with previous studies using fMRI (Solodkin
et al., 2004; Gao et al., 2011). Given that these motor association
areas have been shown to play important roles in movement plan-
ning (Nachev et al., 2008; Andersen and Cui, 2009), movement
preparation (Desmurget et al., 2009), and movement intention
(Desmurget et al., 2009) by collaborating with M1, the functional
connectivity observed in this study may represent the cortical net-
works of the mu rhythm related to controls of M1 activity during
real and imagined movements.

On the other hand, during imagined movements, no sig-
nificant functional connectivity was observed between the SMA
and M1, whereas previous studies reported functional connec-
tivity between these two regions during both imagined and real
movements (Solodkin et al., 2004; Chen et al., 2009; Gao et al.,
2011). These studies mainly used complex or sequential motor
tasks to calculate functional connectivity, while we used three
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FIGURE 4 | Spatial distributions of significant correlations between

decoding accuracy and connectivity during real and imagined

movements. Correlation coefficients between decoding accuracy and

imaginary coherence with the left M1 during real and imagined movements
were calculated over the whole brain. Brain regions with significant
correlations are represented in orange (p < 0.05, FDR-corrected).

Table 3 | Coordinates of significant correlation coefficients between

decoding accuracy and strength of IC during real movements.

Brain region Hemisphere MNI coordinates r

x y z

Precentral gyrus Right 30 −22 74 0.82

Middle frontal gyrus Left −38 8 57 0.76

Precentral gyrus Left −52 −16 44 0.73

Postcentral gyrus Left −50 −20 42 0.71

Postcentral gyrus Right 24 −30 58 0.69

simple right upper limb movements for both real and imag-
ined movements. Because the SMA has been shown to be more
sensitive to complex and sequential actions than to simple ones
(Nachev et al., 2008), it may be reasonable to expect that we
would not observe significant functional connectivity between
the SMA and M1 during imagined movements. Furthermore,
several studies suggested that the network involved in real move-
ments has a positive influence from SMA on M1, and during
imagined movements, the SMA exerts a suppressive influence on
M1 (Solodkin et al., 2004; Kasess et al., 2008). These results indi-
cate that the functional connectivity between the SMA and M1
has different characteristics for information processing of real and
imagined movements.

RELATIONSHIP BETWEEN DECODING ACCURACY AND FUNCTIONAL
CONNECTIVITY
As described above, the importance of M1 signals for decod-
ing movement types or movement directions has been previ-
ously demonstrated using amplitude of waveforms or low fre-
quency components (Waldert et al., 2008; Yanagisawa et al., 2009),

Table 4 | Coordinates of significant correlations between decoding

accuracy and strength of IC during imagined movements.

Brain region Hemisphere MNI coordinates r

x y z

Postcentral gyrus Left −66 −18 30 0.9

Supra marginal gyrus Left −66 −22 34 0.9

Inferior parietal lobule Left −50 −28 46 0.87

Middle cingulate gyrus Right 14 −26 46 0.86

Middle frontal gyrus Right 52 46 8 0.82

Precentral gyrus Right 26 −22 64 0.81

Inferior frontal gyrus Right 54 42 8 0.81

Postcentral gyrus Right 30 −27 70 0.77

Insula Right 32 24 12 0.76

Middle frontal gyrus Left −46 30 34 0.75

Angular gyrus Left −40 −58 48 0.75

Superior Parietal lobule Left −30 −62 68 0.73

sensorimotor rhythm (Mellinger et al., 2007), and high gamma
power (Yanagisawa et al., 2012a). An MEG study by Waldert et al.
(2008) showed that the low frequency components of neuromag-
netic signals are more important for obtaining high decoding
accuracy than either alpha-beta or gamma power. We also showed
that the fluctuations in the amplitude of low frequency MEG sig-
nals carry enough information about hand and arm movements to
decode movement kinematics (Sugata et al., 2012b). In the present
study, we obtained significantly high decoding accuracy for both
real and imagined movements using smoothed M1 signals from
40 virtual channels. Given that the amplitudes of waveforms or
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FIGURE 5 | Overlay of imaginary coherence (IC) and correlation

coefficient results for real and imagined movements. Most of the
significant correlations (orange) were located in or around brain regions
(white dotted circles) with significant IC (blue). For imagined movements,
there was no co-localization between significant correlations and

significant IC in the right hemisphere due to the lack of significant IC
there. The lower panels indicate magnified figures with brain regions
shown using white dotted lines and with corresponding letters on the
upper panels. Black dotted lines in the lower panel indicate the central
sulcus.

the low frequency components of the signals have higher signal-
to-noise ratios than the high frequency components, the decoding
feature used in this study may be suited for classifying unilateral
upper limb movements with single trial MEG signals, even though
MEG is inferior to invasive cortical recordings with respect to the
sensitivity in weak signals in the high frequency band.

Significant correlations between strength of functional con-
nectivity and decoding accuracy during real movements were
observed in motor association areas, such as the left postcentral
gyrus and PMC, and the right sensorimotor area. These regions
largely overlapped with or were located close to the brain regions
with significant IC. Several previous studies reported that the
activities of such motor association areas modulate M1 activ-
ity by integrating sensory-motor information and transforming
the sensory information into motor representation (Luppino and
Rizzolatti, 2000; Solodkin et al., 2004; Hoshi and Tanji, 2007;
Kantak et al., 2012; Xu et al., 2014). In addition, activity of the
PMC during real movement was shown to resemble the activity of
M1 neurons, suggesting that the PMC is directly relevant to motor
execution (Lee and van Donkelaar, 2006). Thus, the representation
of motor information in M1 during real movement may depend

on the intensity of sensory-motor integration and activity of the
PMC. Furthermore, regarding the correlation in the right senso-
rimotor area, it is possible that interhemispheric communication
between the bilateral M1s, which contribute to controlling the
cortico-spinal output from M1 (Avanzino et al., 2007; Lee et al.,
2007), was relevant to the representation of motor information
in M1.

Significant correlations between functional connectivity and
decoding accuracy were observed at the left prefrontal cortex
(including DLPFC), IPL, SPL, right IFG, and sensorimotor area
during imagined movements. In the left hemisphere, signifi-
cant correlations around the DLPFC and parietal area overlapped
with the brain regions with significant functional connectivity
observed in the group analysis. Previous studies showed that
the DLPFC and parietal areas were more activated during imag-
ined movement than during real movement (Vry et al., 2012) and
play an important role in working memory (Smith and Jonides,
1999; Baddeley, 2003). Motor imagery, which involves simulat-
ing movement through the manipulation of visual and kinesthetic
information, is a cognitive process that requires working mem-
ory (Munzert et al., 2009). Thus, these regions are thought to
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play a significant role in generating clear motor imagery using
working memory. Actually, deactivation of DLPFC was shown to
decrease information processing during imagined movement in
Parkinson’s disease (Jahanshahi et al., 1995; Samuel et al., 1997,
2001). Furthermore, previous studies reported that the pari-
etal area is associated with accuracy of the imagined movement
(Hanakawa et al., 2003) and that lesions to this area reduce motor
imagery abilities (Jackson et al., 2001; Lotze and Halsband, 2006;
Mulder, 2007). Considering that our results showed that these
brain regions are functionally connected with M1 and exhibit sig-
nificant correlations between decoding accuracy and strength of
functional connectivity, it is possible that the DLPFC and pari-
etal area modulate the M1 activity related to the representation of
motor information by interacting with the M1 during imagined
movement.

In the right hemisphere, significant correlation between
decoding accuracy and strength of functional connectivity was
observed in the IFG during imagined movement but there
was no spatial overlap with significant functional connectiv-
ity. The right IFG, but not the left, is relevant to the sup-
pression of movement (Aron et al., 2004; Coxon et al., 2009),
and impairment in this region resulted in a loss of suppres-
sion of movements in the inhibitory control task (Aron et al.,
2004). In addition, a recent study suggested that activation
of the right IFG during imagined movement may be rele-
vant to an active inhibition process in the prevention of actual
movement (Fleming et al., 2010). Furthermore, the right IFG
was reported to be more activated in good imagers than in
poor imagers for imagined sequential finger movements (Guil-
lot et al., 2008). More recently, Gaetz et al. (2013) successfully
demonstrated that gamma-band activity from the right IFG is
observed for tasks involving response interference. Because our
results showed that participants with strong functional connec-
tivity between left M1 and right IFG exhibited high decoding
accuracy, such inhibition processes in the IFG may work to gen-
erate the clear imagery of the movement necessary to decode
the imagined movements. Nevertheless, no significant func-
tional connectivity was observed between M1 and IFC in the
group analysis, suggesting that connectivity between the two
regions is not necessarily required for imagined movement and
that the strategy for imagined movement may vary between
individuals.

The significant correlation between decoding accuracy and
strength of functional connectivity during imagined movement
was also distributed to the right sensorimotor area, although
there was no spatial overlap with significant functional con-
nectivity. Previous studies reported that the sensorimotor area
was activated on not only the contralateral side, but also the
ipsilateral side during imagined movement (Kim et al., 1993;
Porro et al., 2000). In addition, interhemispheric communi-
cation between the bilateral M1s was recently shown during
imagined movement as well as real movement, suggesting that
bilateral interactions of M1 play a crucial role in the modu-
lation of the motor system during imagined movement (Liang
et al., 2014). On the basis of these findings, our results suggest
that the strength of functional connectivity between bilateral sen-
sorimotor areas observed in this study may contribute to the

modulation of interhemispheric communication between the two
regions, and that the subjects with strong connectivity may cre-
ate more vivid motor imagery related to motor information than
the subjects with low connectivity. However, as there was no
significant functional connectivity between the bilateral senso-
rimotor areas in the group analysis, that connectivity may be
not an essential component of imagined movement, but rather
may be an additive one to generate the M1 activity similar to real
movement.

Several studies reported anatomical and functional connec-
tivities between the SMA and M1 (Muakkassa and Strick, 1979;
Solodkin et al., 2004; Matsumoto et al., 2007; Nachev et al., 2008).
This region was shown to play an important role in move-
ment preparation and movement intention (Lau et al., 2004;
Nachev et al., 2008). However, our results showed that there is no
significant correlation between decoding accuracy and functional
connectivity over the SMA for either real or imagined movements.
As described above, the SMA is more sensitive to complex and
sequential actions, while the task used in this study was a sim-
ple, unilateral, upper limb movement, so that the strength of
functional connectivity between M1 and SMA may not have con-
tributed to the decoding performance. It is possible that we can
observe the contribution of functional connectivity between M1
and SMA to decoding performance if a more complex task is used.
Further studies are needed to clarify this speculation.

IMPLICATIONS FOR CLINICAL NON-INVASIVE BMIs
To date, many researchers have tried to apply BMIs to patients
with severe motor dysfunction using invasive methods, such
as ECoG and local field potentials. When we put these inva-
sive BMIs into clinical use, it is indispensable to perform a
pre-operative, non-invasive evaluation to determine whether an
invasive BMI would be effective. In addition, considering that
BMIs are likely to be practically applied to patients with severe
motor dysfunction, it is important to improve the performance
of decoding accuracy for imagined movements. Recently, several
studies reported predictors for the performance of BMIs using
sensorimotor rhythm (Blankertz et al., 2010; Hammer et al., 2012),
near-infrared spectroscopy activity (Fazli et al., 2012), high theta
and low alpha powers (Ahn et al., 2013b), and gamma band activ-
ity (Ahn et al., 2013a) during real and imagined movements. In
the present study, we focused on the relationship between alpha
band functional connectivity and the decoding accuracy of real
and imagined movements. As a result, significant correlations
between these two aspects were mainly obtained in motor associ-
ation areas, such as the PMC, sensorimotor areas, and the parietal
area. This result suggests that we may be able to predict and
improve decoding accuracy by evaluating and enhancing the func-
tional connectivity between M1 and these brain regions, perhaps
using neurofeedback methods as previously reported (Shibata
et al., 2011; Koush et al., 2013). In particular, for imagined move-
ment, because the strength of functional connectivity observed in
this study may be relevant to generation of a vivid imagined move-
ment for decoding movement types, enhancing these networks are
important for improving the performance of imagery-based BMIs.
Although we used brain signals extracted from the M1 gyrus in the
present study, M1 signals from the central sulcus provides a rich
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source of information representing movement types (Yanagisawa
et al., 2009) and have a better signal-to-noise ratio for MEG record-
ings. They may contribute more to performance of imagery-based
BMIs. Also, since the activities of sub-cortical regions as well as
the cerebellum are also associated with the generation of volun-
tary movement (Shibasaki and Hallett, 2006), further investigation
of whether functional connectivity between M1 and sub-cortical
regions or the cerebellum can be detected and if they are related
to the performance of BMIs using this method is thought to be
necessary. Additional investigation may lead to the establishment
a method for pre-operative evaluation or for the application of the
present findings to clinical tools such as neurorehabilitation.

CONCLUSION
In this study, we examined the relationship between decoding
accuracy and alpha functional connectivity during real and imag-
ined movements. The significant correlations between decoding
accuracy and the strength of alpha functional connectivity were
mainly distributed to motor association areas. Our results indi-
cate that alpha functional connectivity between M1 and the motor
association area is important for the improved neural decoding
of real and imagined movements. Further investigation may lead
to the establishment of a method for pre-operative evaluation or
for the application of the present findings to clinical tools such as
neurorehabilitation.
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The current study evaluated the effect of different anxiety states on information
processing as measured by an electroencephalography (EEG) using emotional stimuli on
a smartphone. Twenty-three healthy subjects were assessed for their anxiety states using
The State Trait Anxiety Inventory (STAI) and divided into two groups: low anxiety (I, II)
or high anxiety (III and IV, V). An EEG was performed while the participant was presented
with emotionally laden audiovisual stimuli (resting, pleasant, and unpleasant sessions) and
emotionally laden sentence stimuli (pleasant sentence, unpleasant sentence sessions)
and EEG data was analyzed using propagation speed analysis. The propagation speed of
the low anxiety group at the medial coronal for resting stimuli for all time segments was
higher than those of high anxiety group. The low anxiety group propagation speeds at the
medial sagittal for unpleasant stimuli in the 0–30 and 60–150 s time frames were higher
than those of high anxiety group. The propagation speeds at 150 s for all stimuli in the low
anxiety group were significantly higher than the correspondent propagation speeds of the
high anxiety group. These events suggest that neural information processes concerning
emotional stimuli differ based on current anxiety state.

Keywords: EEG, smartphone, emotional stimuli, anxiety states, propagation speed

INTRODUCTION
The Ministry of Internal Affairs and Communications of Japan
has reported that the market penetration of mobile commu-
nication terminals such as cellular phones has increased from
0.3% in 1989 to 98.0% in 2012 (Ministry of Health, Labor and
Welfare, 2012) and it continues to grow. Recently, smartphones
have become popular as mobile communication terminals, acting
not only as telephones but as information and communication
terminals. The use of smartphones has been reported to pro-
duce new relationships over age, distance, and status (Ministry
of Health, Labor and Welfare, 2012). Use of the smartphone has
spread rapidly in recent years. Out of the world population, the
penetration rate of smartphones has reached 70%. For many, the
smartphone has become a necessity in private work and in daily
life (ITmedia, 2008; Nikkei BPnet, 2008). On the other hand,
smartphones are thought to be a cause of physical and men-
tal stress, and overdependence or overuse of smartphones has
been reported to cause depression, sleep disorders, and other
symptoms of stress (Thomée et al., 2011). Stress induced by
smartphone use has not been clarified and may be categorized as
a new type. Biological responses to emotional stress may be dif-
ferent from responses to emotional stress and may cause an as yet
undetermined condition (Krause et al., 1998).

The current study is based on emotional stress stimulation
using audiovisual stimuli which have been used in previous

studies (Hayashi et al., 2009; Mizuno-Matsumoto et al., 2011).
Researchers examined the effect of emotional stimuli on a spe-
cific emotional stress reaction within a living organism using
emotional stimuli on a smartphone. Although it is possible to
display images, video, voice, and words using audio-visual stim-
uli to stimulate an emotional stress response, the primary feature
of smartphones is logging in to e-mail and Web pages that com-
municate with friends and family, such as Facebook. Therefore,
using the smartphone differs from conventional emotional stim-
uli because others may provide stimuli in displayed text and
images.

Part of the current study included performing propagation
speed analysis between neighboring electrodes. Results were also
evaluated using power spectral analysis in EEG (Kamo et al.,
2013). There are two possible methods which can be used for
analysis between electrodes: coherence analysis and phase anal-
ysis. Propagation speed analysis is the primary analysis used
in the current study which evolved from phase analysis. It is
considered that high propagation speeds correlate with fast infor-
mation processing. In previous studies, information propagation
analysis has not been used for the evaluation of EEGs (elec-
troencephalography) using emotional stimuli and differentiating
between differences in anxiety state. The effect of anxiety states
on information processing as measured using propagation speed
analysis has not been previously studied.
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The purpose of the current study is to evaluate the rela-
tionship between different anxiety states and neural information
processing using emotional stimuli on a smartphone.

MATERIALS AND METHODS
PARTICIPANTS
The subjects included 23 healthy adults (9 males and 14 females)
aged 22–45 years old (mean ages 25.5 ± 1.2 years). Written
informed consent was obtained from all subjects before the start
of the experiments. They had no history of neurological or psy-
chiatric illness. The Ethical Committee of the University of Hyogo
approved this investigation and informed consent was obtained
according to the Declaration of Helsinki.

PSYCHOLOGICAL TEST
Prior to the start of experiments, psychological tests were con-
ducted to assess the anxiety conditions of the subjects. The State
Trait Anxiety Inventory (STAI), a psychological inventory based
on a 4-point Likert scale and consisting of 40 questions on a
self-report basis was used to assess subjects’ anxiety levels (Julian,
2011). The STAI measures two types of anxiety: state anxiety, or
anxiety about an event, and trait anxiety, or anxiety level as a per-
sonal characteristic. Higher scores are positively correlated with
higher levels of anxiety (Hidano et al., 2000; Ueno, 2003).

In this study, all participants were assessed for the presence of
anxiety states using the trait anxiety measurement of the STAI.
They were categorized into two categories: psychosomatically
healthy, comprising subjects with scores of I and II, and psycho-
somatically ill, comprising subjects with scores of III, IV, and V.
According to the results of the STAI, subjects were divided into
two groups. Subjects with scores I and II were classified as the
“low anxiety group” and those with scores III, IV, and V as the
“high anxiety group.” Then the emotional stimuli-related cerebral
activities of the two groups were compared.

EEG EXPERIMENT
After a brief instruction about the physiological test and the
attachment of electrodes, subjects were placed in a shielded room
(band cut filter of 0.5–500 MHz, attenuation of 40 dB) in a sitting
position.

As an objective physiological evaluation, an EEG was per-
formed for each subject. Electrooculogram (EOG) was recorded
for the removal of eye-movement artifacts. The Ag-AgCl EEG
electrodes were placed on 16 sites (Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6) according to the
International 10–20 System, which is recognized as a standard
in cranial landmarks. The linked earlobes (Aav) were adopted as
a reference. During recording, impedances of all electrodes were
kept below 10 k�. The EEG data was digitized at a sampling rate
of 500 Hz. Figure 2 shows a subject’s position during the sessions.

EXPERIMENT PROTOCOL
Each experiment consisted of a total of five sessions present-
ing emotional audio-visual and sentence stimuli using a smart-
phone. We performed Desire (HTC Co. Ltd.) of smartphone (see
Figure 1A). Before use, the SIM card of the smartphone used in
this study was unplugged so as not to cause artifacts.

Two different sessions using audio-visual stimuli was used:
pleasant and unpleasant. Similarly, sentence stimuli were sepa-
rated into pleasant and unpleasant sessions. The fifth condition
was a rest session using a neutral audiovisual stimulus. The sub-
jects were to follow the instructions that were displayed on the
smartphone. As shown in Figure 1B, the screen showed random
numbers during the audio-visual stimuli; the subjects selected
the maximum or minimum numbers. Emotional stimuli sessions
provided audio-visual stimuli of four types every 10 s for 40 s dur-
ing the stimulation. Figure 1C shows an example of e-mail on a
smartphone. At the same time, audio stimuli, sound effects, were
presented.

Participants viewed relaxing pictures such as landscapes in
the resting session, funny pictures such as animals in the pleas-
ant session, and terror pictures such as horror movies in the
unpleasant session. In the emotional sentence stimuli sessions,
participants viewed funny sentences found in e-mail as pleasant
sentence stimuli, and anxiety-provoking sentences from e-mail as
the unpleasant sentence stimuli.

Figure 2 shows that the procedure for a session consisted of
three steps. The first step was “Control,” in which the subject kept
a quiescent state with eyes closed for 180 s; this phase was defined
as a no-load state (Control). After the no-load state, the second
step was “Task,” in which the subject watched stimuli for 40 s.
The third step of a session was “Recalling,” in which the subject
recalled the contents of the emotionally stimuli with eyes closed
for 180 s. The second and third steps were performed three times
consecutively. Thereafter, this series was performed in two repli-
cates. This protocol was applied to each stimulus as 1 session,
and a total of 5 sessions were performed which included rest-
ing, pleasant, and unpleasant stimuli. EEG measurements were
performed continuously for 5 sessions. EEG results were ana-
lyzed in the “Recalling” phases. This study was designed based on
experimental designs of previous research (Hayashi et al., 2009;
Mizuno-Matsumoto et al., 2010; Miyagawa et al., 2013). Figure 3
shows a subject’s position during the sessions.

ANALYSIS
Propagation speed analysis between neighboring regions
Artifacts were removed from the EEG data with an IIR band-pass
filter of 2–50 Hz; large artifacts were manually removed from the
analysis periods.

FIGURE 1 | The smartphone using experimental design. (A) Desire (HTC
Co. Ltd.), (B) emotional audio-visual stimuli (resting stimuli), (C) emotional
sentence stimuli (pleasant sentence stimuli).
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FIGURE 2 | Experimental protocol using smartphone in EEG. Control: no-load state with eyes closed, Task: watching stimuli, Recalling: recalling the
contents of stimuli with eyes closed.

FIGURE 3 | Position of a subject during the tests.

Propagation speed analysis between the brain regions was con-
ducted to investigate the functional relationship between regions
in the EEG data. Our in-house programs in MATLAB ver.7.7 were
used for analysis.

The analysis epoch was 150 out of 180 s for recall. The number
of points for analysis was 2048 and the frequency resolution was
0.488 Hz. The propagation speed for 4.1 s per 1 analysis period

was calculated in 23 combinations between neighboring brain
regions.

Furthermore, the 150 s per task were divided into 5 time
windows (30 s per window), and propagation speeds for each
time window were calculated between each pair of regions.
We performed propagation speed in the α (8.0–14.0 Hz) band.
Propagation speeds were calculated for each of the 5 kinds
of tasks: resting, pleasant, unpleasant, pleasant sentence, and
unpleasant sentence stimuli.

The definition of propagation analysis
The definition of propagation analysis is as below (Saiwaki et al.,
1997; Mizuno-Matsumoto et al., 2000a). The Propagation analy-
sis is based on the coherence and phase analyses. This expression
used on cross-correlation Cxy(uptau), cross-spectral Sxy(ω), real
part Kxy(ω) and imaginary part Qxy(ω). The cross-correlation
Cxy(τ) of two time-series signals x(t) and y(t) was defined by
the following equation. In previous research, propagation speed
has been used for analysis of abnormal EEG epileptic activity.
It was able to capture propagation of abnormal EEG activity to
localize brain lesions (Mizuno-Matsumoto et al., 2000b). Overall,
propagation speed analysis is basically used to measure the prop-
agation of postsynaptic potentials between electrodes and their
abnormalities.

Cxy (τ) = lim
T→∞

1

2T

∫ T

−T
x (t) y (t + τ) dt

Here, τ was showed time interval. We performed the FFT of cross-
correlation function, and required the cross-spectral Sxy(ω) was
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FIGURE 4 | Evaluating regions of propagation speed. MS, medial
sagittal; LS, lateral sagittal; LC, lateral coronal; MC, medial coronal.

defined by the following equation.

Sxy (ω) =
∫ ∞

−∞
Cxy (τ) e−jωτdτ

ω was showed angular frequency. Sxy (ω)divided into real part
Kxy(ω) and imaginary part Qxy (ω). The phase by angular fre-
quency ω between two signals was defined by the following
equation.

θxy = tan−1
{

Qxy (ω)

Kxy (ω)

} (−π < θxy < π
)

Furthermore, time lag of frequency component ω was defined by
the following equation.

τ (ω) = θxy (ω)

ω

The propagation speed vp,q by distance rp,q between two elec-
trodes p and q was defined by the following equation.

vp,q [m/s] = rp,q [mm]

τ (ω) [ms]

Statistical analysis
We divided the analysis of propagation speeds between neighbor-
ing regions into four regions: medial sagittal, lateral sagittal, lat-
eral coronal, and medial coronal (see Figure 4). Statistical analysis
was used to measure the propagation speed between neighbor-
ing regions of each subject. The values between each region for
each stimulus, time course, and group were compared using a
Two-Way repeated-measures analysis of variance (ANOVA) with
the Bonferroni correction for multiple comparisons. IBM SPSS
Statistics ver. 21 was used for statistical analysis.

RESULTS
PSYCHOLOGICAL TESTS
Using the STAI, 7 subjects had a score of I and 6 subjects had a
score of II. Four subjects were categorized as score III, 5 subjects
scored as IV, and 1 subject had score V. Therefore, we divided
the subjects into two groups split at score II. Thus, 13 subjects
were categorized as Low anxiety group, and 10 subjects were
categorized as High anxiety group, respectively (see Table 1).

Table 1 | The number of the subjects and STAI.

STAI (score)

I II III IV V

Subject 7 6 4 5 1

Group Low anxiety group High anxiety group

Thirteen subjects were categorized as Low anxiety group, and 10 subjects were

categorized as High anxiety group, respectively.

PROPAGATION SPEED
Figures 5, 6 show a graphical representation of propagation
speeds between each region in each stimulus of time series in Low
anxiety group and High anxiety group, respectively. The thickness
and color of the lines displayed represent the propagation speed.
Bold red lines show a high level (greater than or equal to 0.5 [m/s]
and less than 25 [m/s]); green moderate-thickness lines show an
intermediate level (greater than or equal to 0.05 [m/s] and less
than 0.5 [m/s]), and blue thin lines represent a low level (more
than 0 [m/s] and less than 0.05 [m/s]).

The results show that propagation speeds in the inter-
hemisphere (Fp1-Fp2, F3-F4, C3-C4, P3-P4, O1-O2) of the low
anxiety group were fast propagation speeds from 0 to 150 s in
resting stimuli; from 0 to 90 and 120–150 s in pleasant stimuli;
or 30–150 s in unpleasant stimuli’ 0–150 s in pleasant sentence
stimuli; and 0–150 s in unpleasant sentence stimuli. The same
goes for both hemispheres of directions. Notably, all stimuli were
propagated in a sagittal direction in the low anxiety group. The
propagation speeds in the inter-hemisphere of the high anxi-
ety group from 0 to 30 s in unpleasant and unpleasant sentence
stimuli were faster than 30–150 s in those.

PROPAGATION SPEEDS STATICALLY ANALYSIS
Figure 7 shows the results of a Two-Way factorial ANOVA for the
propagation speed in all time intervals. The vertical axis shows
propagation speed and the horizontal axis shows each region
examined in each task.

In comparing the two groups, the propagation speeds in the
medial coronal region for the low anxiety group were significantly
higher than that in the high anxiety group (p < 0.05) during
resting and unpleasant sentence stimuli of 0–30 s. The high anx-
iety group showed significantly higher propagation speeds in the
medial coronal region for resting and unpleasant stimuli of 120–
150 s than that in Low anxiety group (p < 0.05). Apart from the
0–30 s interval for unpleasant stimuli and the 60–90 s interval for
unpleasant stimuli, the propagation speeds for resting, pleasant,
and unpleasant stimuli in all time intervals for the medial sagit-
tal region were significantly higher in the low anxiety group than
that in High anxiety group (p < 0.05).

In comparison between regions, apart from the 0–30 s interval
for resting stimuli and the 90–120 s interval for unpleasant stim-
uli in the high anxiety group between lateral coronal and medial
coronal (p < 0.05), the propagation speed of the medial sagittal
and medial coronal regions was significantly higher than the lat-
eral sagittal and lateral coronal regions in both groups in all time
intervals.
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FIGURE 5 | Propagation speeds between each region in each stimulus of

time series. Drawing propagation speeds between each region in each
stimulus of time series in Low anxiety group. And the thickness and color of

lines displayed represent the coherence value. Bold red lines show a high
level; green moderate-thickness lines show an intermediate level, and blue
thin lines represent a low level.

FIGURE 6 | Propagation speeds between each region in each stimulus of

time series. Drawing propagation speeds between each region in each
stimulus of time series in High anxiety group. And the thickness and color of

lines displayed represent the coherence value. Bold red lines show a high
level; green moderate-thickness lines show an intermediate level, and blue
thin lines represent a low level.
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FIGURE 7 | Regional propagation speed in each time. MS, medial sagittal; LS, lateral sagittal; LC, lateral coronal; MC, medial coronal. Two-Way factorial
ANOVA for the propagation speed in all time. The vertical axis shows propagation speed and the horizontal axis shows each region examined in each task.

DISCUSSION
The present study was designed to evaluate information pro-
cessing through EEG propagation speed analysis in the α

(8.0–14.0 Hz) band for emotional stress stimuli presented on
a smartphone. The difference in neural information pro-
cessing based on the anxiety state of the subject was then
extracted.

PROPAGATION ANALYSIS IN THE PRESENT STUDY
This study calculated propagation speeds between neighboring
electrodes by performing an EEG propagation speed analysis
using emotional stimuli presented using a smartphone. Previous
studies have shown that analysis between electrodes was coher-
ence analysis, phase-lock analysis, and phase synchronization
analysis, and methodology and clinical cases is almost (Mizuno-
Matsumoto et al., 2002, 2005; Cohen et al., 2009; Thatcher,
2012). Additionally, processing information related to word and
object encodings has been reported (Stein et al., 1999; Weiss

and Rappelsberger, 2000). Propagation speed analysis related to
emotion stimuli has not been used in previous studies. The prop-
agation speed analysis was developed based on delay analysis.
Govindan et al. (2006) reported that by using propagation speed
analysis, researchers could understand the nature of information
flow, and ascribe the direction of information flow between cen-
ters based on delay analysis. Thus, it can be used to establish
the connection and direction between the two signals using delay
analysis (Govindan et al., 2005).

EMOTION-RELATED PROPAGATION SPEED CHANGES IN ALPHA
ACTIVITY
Propagation speeds in α frequency were evaluated in relation to
the difference between anxiety states of subjects.

In generally, α band activity occurs in an arousal state with
resting eye close (Niedermeyer and Silva, 2005). And Knyazev
(2007) was reported that α frequency was related to the visual
identification function for emotion. However, it was noted that
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it increased by mental activity, internal activity, and short-term
memory such as mental calculation, image, and maintenance
of working memory (Kostyunina and Kulikov, 1996; Palva and
Palva, 2007). Further, Jensen et al. (2002) were reported that
α band activity increased in association with the maintenance
of simple memory. In addition, α band activity is reduced by
intense mental activity, including anxiety, vigilance, and attention
to the stimulus (Avram et al., 2010). Neurotic subjects manifest a
low appearance ratio of α frequency, which was associated with
anxiety (Markand, 1990). We previously reported that α band
activity in the non-stress group was significantly increased dur-
ing the presentation of unpleasant emotional stimuli, indicating
that brain functional activity influences stress resistance (Hayashi
et al., 2006).

The results show that propagation speeds for resting and
unpleasant sentence stimuli in the inter-hemisphere of the low
anxiety group were fast at 0–150 s for both stimuli. However,
those of the high anxiety group remained unchanged and showed
a low value of propagation speeds.

EMOTION-RELATED PROPAGATION SPEED CHANGES OF REGIONAL
PARTS
We divided the analysis of propagation speeds under emotional
stimuli between neighboring regions into four regions in this
study. The results of a Two-Way factorial ANOVA in Figure 7
shows that more significant differences were noted in medial
sagittal and medial coronal. In addition, propagation speeds were
high for inter-hemisphere (Fp1-Fp2, F3-F4, C3-C4, P3-P4, O1-
O2) and both hemispheres of directions (Fp1-F3, Fp2 -F4, F3-C3,
F4-C4, C3-P3, P3-P4, P3-O1, P4-O2) in Figures 5, 6. And the
direction of propagation speeds at alpha frequency in low anxi-
ety group under unpleasant and unpleasant sentence were from
left hemisphere to right hemisphere, that in high anxiety group,
by contrast, were from right to left.

The brain inputs emotional visual stimuli from the exter-
nal word, and performs simple visual processing in the occipital
area (Martin et al., 2002). Then, Vision Society of Japan (2001)
reported that information is propagated through the cerebral area
from the occipital area to the frontal area. Researchers have con-
sidered that the emergence of alpha frequency in the occipital
region was controlled by a thalamic pacemaker. The thalamic
pacemaker is mediated by sagittal nerve fibers that communicate
between the frontal and occipital regions in the cerebral hemi-
spheres, and suggested that the α frequency in the occipital region
was propagated to the frontal area. Therefore, Okuma (1999) sug-
gested that α frequency emerged from the frontal area. Previous
studies have shown a relationship with α frequency and emo-
tional stimuli (Asakawa et al., 2012; Kamo et al., 2013). Prior
research indicates that high anxiety subjects manifested reduced
information processing at inter-hemispheric region using threat-
ening images tasks (Compton et al., 2008). In addition, Weissman
and Banich (1999) hypothesized the callosum as a type of selec-
tive filter that can adaptively control information flow between
the hemispheres.

The current results of propagation speed may indicate that
subjects with high anxiety were not as responsive compared to
those with low anxiety. We have suggested that non-properly

information processing in the brain was performed by the anx-
iety state. Additionally, it seems that subjects with high anxiety
felt more disgust and anxiety in response to unpleasant stimuli.

These events suggest that information processing in the brain
for emotional stimuli differ based on the anxiety state of the
subject. In the future, smartphone manufacturers and providers
should be educated about the need to develop software and
hardware optimal for minimizing anxiety responses.
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Frontal midline theta rhythm (Fmθ) appears widely distributed over medial prefrontal areas
in EEG recordings, indicating focused attention. Although mental calculation is often used
as an attention-demanding task, little has been reported on calculation-related activation in
Fmθ experiments. In this study we used spatially filtered MEG and permutation analysis
to precisely localize cortical generators of the magnetic counterpart of Fmθ, as well as
other sources of oscillatory activity associated with mental calculation processing (i.e.,
arithmetic subtraction). Our results confirmed and extended earlier EEG/MEG studies
indicating that Fmθ during mental calculation is generated in the dorsal anterior cingulate
and adjacent medial prefrontal cortex. Mental subtraction was also associated with
gamma event-related synchronization, as an index of activation, in right parietal regions
subserving basic numerical processing and number-based spatial attention. Gamma event-
related desynchronization appeared in the right lateral prefrontal cortex, likely representing
a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task.

Keywords: frontal midline theta, focused attention, arithmetic calculation, gamma band,

magnetoencephalography (MEG), synthetic aperture magnetometry (SAM), beamformer, spatial filtering

INTRODUCTION
Frontal midline theta rhythm (Fmθ) is a distinct train of focal
5–7 Hz theta waves which appears over medial frontal areas in
the EEG of normal subjects when performing a broad range of
cognitive tasks demanding mental concentration (Ishihara and
Yoshi, 1972; Iramina et al., 1996; Sasaki et al., 1996; Ishii et al.,
1999). Thus, this brain activity is considered to reflect focused
attentional processing. Reports of enhanced Fmθ in the pre-shot
phase of rifle shooting (Doppelmayr et al., 2008), during car driv-
ing (Laukka et al., 1995) and in meditation states (Aftanas and
Golocheikine, 2001) provide support to this notion.

Since the first report of Fmθ made by Ishihara and Yoshi
(1972), Fmθ has been investigated in a number of neurophysi-
ological and neuroimaging studies. Earlier studies of Fmθ using
scalp EEG reported widespread distribution of this activity in
midfrontal sites, but an accurate identification of its cortical gen-
erators within the medial frontal cortex was lacking (Mizuki et al.,
1980; Laukka et al., 1995; Iramina et al., 1996). This is mainly
due to the low spatial resolution of EEG. To overcome this prob-
lem, a few studies looking at the anatomical correlates of Fmθ

used fMRI with simultaneous EEG recording. Despite the fact
that fMRI scanner noise may affect mental concentration in some
individuals when engaged in mental reasoning tasks (Pripfl et al.,
2006), these fMRI studies clearly visualized Fmθ activity localized

to the anteromedial frontal cortex (Gevins et al., 1997; Mizuhara
et al., 2004; Sammer et al., 2007).

In an attempt to visualize the magnetic counterpart of the
EEG-recorded Fmθ activity and clarify its cortical sources, we pre-
viously used MEG in four normal subjects and found that a large
area over the bilateral medial prefrontal cortex generated Fmθ

during continuous mental calculation (Ishii et al., 1999). Thus,
our findings provided further support for a specific role of the
prefrontal cortex in focused attentional processing. Findings from
another MEG study using different types of attention-demanding
tasks, including mental calculation, suggested that Fmθ reflects
alternative activation of the prefrontal and anterior cingulate cor-
tex (ACC) in the human brain (Asada et al., 1999). Overall,
neuroimaging MEG research taking advantage of the excellent
temporal resolution and higher spatial resolution of this tech-
nique compared to EEG, has shed some light on the generators
of Fmθ, and supported the concept that Fmθ reflects activation
of neural networks involved in allocation of attention related to
various types of cognitive stimuli.

To generate Fmθ and understand the neural correlates of atten-
tional processing, arithmetic calculation has often been used
as the attention demanding task (Mizuki et al., 1980; Iramina
et al., 1996; Sasaki et al., 1996; Asada et al., 1999; Ishii et al.,
1999). However, apart from attention-induced neural activity,
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little has been reported on activation patterns related to calcu-
lation itself in Fmθ experiments. Indeed, there have been few
attempts to identify whether source-power changes in frequency
bands other than theta also emerge when focusing attention on
mental calculation. Recent neurophysiological studies looking at
EEG event-related responses in mental addition and subtraction
using a calculation strategy approach have focused on theta and
alpha oscillatory activity (De Smedt et al., 2009; Grabner and De
Smedt, 2011). Evidence from neuropsychological and neuroimag-
ing studies indicate that several cortical areas across hemispheres
are implicated in arithmetic processing (Menon et al., 2000;
Gruber et al., 2001; Dehaene et al., 2003, 2004; Kong et al.,
2005; Fehr et al., 2007; Ischebeck et al., 2009). For instance,
multiplication operations, which require retrieval of arithmetic
facts stored in rote verbal memory (verbal number manipula-
tion) mainly induce activation of the left angular gyrus (Gruber
et al., 2001; Dehaene et al., 2003; Ischebeck et al., 2009). This
area is also implicated in complex arithmetic operations (Menon
et al., 2000; Dehaene et al., 2003; Grabner et al., 2007) along with
other regions such as the left inferior temporal gyrus (Gruber
et al., 2001; Kong et al., 2005) and the inferior and medial pari-
etal cortex (Chochon et al., 1999; Kong et al., 2005). In contrast,
addition and subtraction, which require genuine numerical cal-
culation (quantity representations), have often been reported
associated with activation of the parietal cortex (Chochon et al.,
1999; Menon et al., 2000; Dehaene et al., 2003, 2004; Fehr et al.,
2007). This indicates that the large variation in cortical sources
of arithmetic-induced activation across studies may be due to
the existence of sharp disassociations between arithmetic oper-
ations (i.e., addition, subtraction, multiplication, and division)
and calculation complexity.

Although substantial progress has been made toward charac-
terizing the anatomical correlates of arithmetic operations, the
underlying neural activity (i.e., oscillations in different frequency
bands) has been largely unexplored. Findings from EEG studies
on arithmetic processing suggested that engagement in simple
mental calculation may be associated particularly with oscillatory
activity power changes in the gamma band (Micheloyannis et al.,
2002). There is increasing evidence that gamma oscillations are
also involved in a variety of cognitive processes including visu-
ospatial focused attention (Kaiser and Lutzenberger, 2003), visual
perception, learning and memory (Kaiser and Lutzenberger,
2005). However, little has been reported on the possible impli-
cation of gamma oscillations in calculation-related attention or in
arithmetic operations. In fact, previous MEG investigations based
on mental calculation paradigms often used single dipole anal-
ysis to localize specifically theta activity sources (Iramina et al.,
1996; Sasaki et al., 1996; Asada et al., 1999). Because cognitive
processing is functionally related to serial and parallel activa-
tion of multiple brain regions (Ishii et al., 2009) as well as to
cortical oscillations in different frequency bands (Pfurtscheller
and Lopes da Silva, 1999), applying MEG-dipole models which
identify center of gravity rather than the volume of activation
(Herdman et al., 2003), and focusing exclusively in theta oscil-
lations, might not be sufficient to visualize the extended network
of sources related to focused attention and mental calculation in
the human brain. Hence, the application of methods which can

detect cognitive task-induced oscillatory response and localize the
underlying cortical sources may help elucidate the role of cortical
oscillations in mental arithmetic processing.

Considerable insight into the dynamics of oscillatory activity
across the cortex is provided by beamformer, owing to its action as
a spatially selective filter to MEG signals. This allows estimation of
the oscillatory activity coming from a given location in the brain
(Hillebrand et al., 2005). Furthermore, by applying beamformer
in both the active and control time windows (e.g., during and
prior to stimulation), task-related power changes in brain electric
or magnetic activity can be assessed, as well (Vrba and Robinson,
2001; Brookes et al., 2007). Synthetic aperture magnetometry
(SAM), a spatially filtering technique based on non-linear con-
strained minimum-variance beamformer, permits unambiguous
three-dimensional mapping of cortical power changes within spe-
cific frequency bands during task performance. The accuracy of
this map, however, relies on the correctness of the beamformer
assumptions for the given data set (Robinson and Vrba, 1998;
Ishii et al., 1999, 2009; Hillebrand et al., 2005). Using this method
along with permutation tests for statistical group analysis of MEG
data, we could accurately identify neural sources and underlying
oscillatory activity power changes that were functionally engaged
in auditory attention and memory updating process (Ishii et al.,
2009), cortical organization of sensorimotor areas (Ishii et al.,
2002), singing and vocalization (Gunji et al., 2007), and per-
ceptual information processing (Herdman et al., 2003; Doesburg
et al., 2013). Thus, SAM beamformer and permutation analysis
have proven to be useful methods to visualize sources of cognitive
task-induced oscillatory activity in the brain.

The purpose of this study was to use spatially filtered MEG
by SAM technique, and permutation analysis to precisely local-
ize cortical generators of the magnetic counterpart of Fmθ as well
as other sources of oscillatory activity associated with mental cal-
culation, particularly with arithmetic subtraction, as it requires
genuine numerical calculation or quantity representation.

METHODS
SUBJECTS
Eleven healthy volunteers, who were mainly researchers at Osaka
university (six males, aged 27–36 years, mean age 32 years), par-
ticipated in this study. The subjects had no specific education or
background that could facilitate mental calculation. All subjects
were right-handed, as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971). Informed consent was obtained from
all subjects prior to the experiments. The study was performed in
accordance with the Declaration of Helsinki, and approved by the
Ethics Committee of the Osaka University Hospital.

EXPERIMENTAL DESIGN
The experiment consisted of two conditions: (1) eye-closed rest-
ing state (control interval) and (2) mental arithmetic state (active
interval). During the mental arithmetic state, the subjects were
asked to serially subtract 7 from 1000, as fast as possible, with
their eyes closed, thereby generating Fmθ. This paradigm is also
assumed to elicit activation of cortical areas subserving genuine
numerical calculation or quantity manipulation, as subtraction
problems involve more quantity representation compared to
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division operations, multiplication tables and small exact addi-
tion facts, that can be stored in rote verbal memory (Menon
et al., 2000; Dehaene et al., 2003). When enhanced, rhythmic
theta oscillations lasting for at least 10 s. were visually identified
in the MEG recordings, a beeping sound was given to indicate
the end of the arithmetic state and the beginning of the resting
state for 10 s. (Figure 1). Thus, resting and mental calculation
states were alternately recorded on each subject for a total of 8
trials, each one of 20-s duration. The task was carried out purely
mentally to avoid movement-related artifacts. Subject’s perfor-
mance of mental arithmetic was not controlled during the MEG
recording. However, prior to the experiments, like in previous
functional neuroimaging studies using covert mental arithmetic
(Rueckert et al., 1996; Kawashima et al., 2004; Mizuhara et al.,
2004), practice sessions (serial subtractions) were performed. In
these sessions, the subjects provided answers orally, and the accu-
racy of the calculations was checked. This served as an index
of each subjects’ arithmetic proficiency. All study participants
showed an excellent performance in the practice trials.

MEG DATA ACQUISITION
MEG recordings were performed on all subjects in a magnet-
ically shielded room using a helmet-shaped whole-head array
of 64-channel SQUID sensor (NeuroSQUID Model 100, CTF
Systems Inc.). Each of the 64 primary sensors used a first-order
axial gradiometer flux transformer. Ambient magnetic noise was
reduced further by synthesizing third-order gradiometer response
in firmware using the reference SQUID sensor array (Vrba and
Robinson, 2001). This was especially effective at reducing low-
frequency noise. The data were recorded with the subject sitting
on a comfortable chair with the head positioned in the helmet-
shaped Dewar. A head position indicator with three small coils,
placed at the nasion and bilateral preauricular points, was fixed on
the scalp. MEG signals were digitized at a sample rate of 250 Hz,
and filtered using a 60 Hz notch filter and 100 Hz low pass filter.
The resulting data were recorded on disk and analyzed offline.

ANATOMICAL MRI
To convert the sources of MEG oscillatory activities into subjects’
brain images, magnetic resonance imaging (MRI) scans were
obtained for all subjects using a 1.0-T MRI system (Magneton
Impact, SIEMENS Inc., Germany) or a 1.5-T Siemens Magnetom

FIGURE 1 | Schematic representation of an MEG trial using a focused

attention paradigm. Each trial included a 10-s frontal midline theta activity
during focused attention on mental calculation (active state) followed by a
10-s non-arithmetic period (control state).

Vision plus system (Siemens, Erlangen, Germany). MRI data
consisted of T1-weighted axial anatomical images with an in-
plane resolution of 256 × 192 and 124 sagittal slices (1.4 mm
thickness). Anatomical landmarks (i.e., nasion and bilateral
preauricular points) were used to create an MEG head-based
three-dimensional coordinate system.

TIME FREQUENCY ANALYSIS
Brain Electrical Source Analysis (BESA 5.0, MEGIS Software
GmbH, Grafelfing, Germany) software was used to visualize time-
frequency representations for MEG sensors in each subject. The
BESA beamformer applies complex demodulation to transform
time-domain MEG data into time-frequency data (Hoechstetter
et al., 2004). This provides information on the envelope ampli-
tude and the phase of a specified frequency band as a function of
time. The complex demodulation consisted of a multiplication of
the time-domain signal by a complex periodic potential function
with a frequency equal to the frequency analyzed, followed by a
low-pass finite impulse response (FIR) filter of Gaussian shape.
This is equivalent to a wavelet transformation with constant
wavelet width across frequencies. In the resulting complex signal,
its magnitude corresponds to half the envelope amplitude of the
filtered frequency band and its phase to the compound phase at
that frequency. We analyzed the frequency range of 4–60 Hz in
2-Hz steps with a time sampling rate of 25 ms-steps. To obtain
power values, the time-series MEG data were squared and aver-
aged across all single trials under the respective conditions. From
this time-frequency transformation, event-related synchroniza-
tion (ERS) and event-related desynchronization (ERD) measures
are obtained. ERS was denoted as an increase in power of oscilla-
tory activity in a given frequency band during the mental arith-
metic state (active interval) relative to the mean power during
the resting state (control interval). The opposite phenomenon,
suppression of rhythmic brain activity during the mental task
compared to a rebound after the task, was denoted as ERD.

WITHIN-SUBJECT SOURCE LOCALIZATION ANALYSIS (SAM ANALYSIS)
The spatial distributions of ERS or ERD in different frequency
bands functionally related to focused attention on mental cal-
culation were estimated from the unaveraged MEG measure-
ments using Synthetic Aperture Magnetometry (SAM) analysis
(Robinson and Vrba, 1998; Ishii et al., 1999, 2009). The data were
first subjected to the following bandpass filters: 4–8 Hz (theta),
8–15 Hz (alpha), 15–30 Hz (beta), and 30–60 Hz (gamma). Then,
SAM was used to generate a 16 × 12 × 12 cm volumetric image of
root-mean squared (RMS) source activity from the filtered MEG
signals, with a 2.5 mm voxel resolution. As an adaptive beam-
former, SAM applies a spatial filter specific for each brain voxel,
to suppress the interference of unwanted signals from other loca-
tions including the environmental noise, thus estimating source
power with high spatial resolution (Robinson and Vrba, 1998).
The spatial filter at a given location is a linear projection operator
defined by a set of coefficients, with one coefficient for each sen-
sor, which is determined by minimizing the source power under
a constraint of unity gain at the location of interest. Finally, the
Student’s t statistic was computed, on a voxel-by-voxel basis, as
the difference between the estimated source power for the active
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(8 epochs of 10-s Fmθ during mental calculation) and the con-
trol (8 epochs of 10-s non-Fmθ during resting following mental
calculation) states, divided by their ensemble standard error that
included both instrumental (SQUID sensor) noise and exper-
imental variance. The resulting functional image represents a
Student’s t statistic parametric map, which was then fused with
the corresponding MRI, relating brain anatomy to function. The
optimum orientation for the spatial filter at location of interest
is determined by rotation of the source orientation in the tan-
gential plane; the orientation at which the pseudo-Z statistic is
maximized is then used as the optimum orientation for the source
strength estimate at each location. Details on SAM procedures are
described elsewhere (Robinson and Vrba, 1998; Ishii et al., 2009).

STATISTIC GROUP ANALYSIS (PERMUTATION TESTS)
For statistical analyses of the group data, the distribution of
each individual’s SAM image was transformed into a com-
mon anatomical space, the SPM T1 template space (Barnes and
Hillebrand, 2003). First, the SAM volumes of each subject were
co-registered with his/her three-dimensional anatomical MRI
based on fiducial positions measured during the MEG acqui-
sition. Transformation parameters that map the subject’s MRI
to the template space were then determined using SPM99 soft-
ware (Wellcome Department of Cognitive Neurology, London,
UK). The spatial normalized subject’s data were subsequently
obtained by applying the above transformation to the SAM vol-
umes. A non-parametric permutation technique was applied
to the normalized SAM results (SAM-permutation statistics) to
determine voxels with significant values by comparing the grand
mean pseudo t-value of a voxel and the distribution of permuted
pseudo t-values. This distribution was computed by randomly
rearranging the active and control conditions and averaging the
newly calculated pseudo t-values. The omnibus null hypothesis
of “no activation” anywhere in the brain was rejected if at least
one t-value was above the critical threshold for α < 0.05 deter-
mined by 1024 permutations, thus correcting for multiple testing.
Voxels with pseudo t-values above this critical 0.05 threshold were
deemed regions of activation, and the corresponding voxels were
then overlaid on a normalized structural MRI. For details of this
procedure see a study by Chau et al. (2004) and our previous
report (Ishii et al., 2013).

RESULTS
Focusing attention on mental calculation, specifically on serial
arithmetic subtraction, resulted in significant source-power
changes in theta and gamma frequency bands over different corti-
cal regions. There were no significant power changes in any of the
other frequency bands. Table 1 summarizes the cortical distribu-
tion of task-related activation, as indicated by SAM-permutation
analysis.

THETA POWER CHANGES: FRONTAL MIDLINE THETA (Fmθ) ACTIVITY
The visual inspection of the MEG recordings revealed increased
rhythmic theta activity at around 5–7 Hz when the subjects were
engaged in mental calculation compared to the resting condition.
This rhythmic theta activity appeared over the frontal regions
bilaterally (Figure 2). Figure 3 shows the results of SAM analysis

Table 1 | Cortical regions showing significant task-related activation

or deactivation in different frequency bands.

Cortical regions BAs Cluster Talairach Pseudo

size coordinates t-value

x y z

Theta ERS 148

Right medial prefrontal 9 3 37 33 1.62

Left medial prefrontal 8 −10 47 43 1.50

Right anterior cingulate 32 4 30 29 1.47

Gamma ERS

Right posterior parietal 40 31 50 39 57 1.92

Gamma ERD

Right inferior frontal 44 58 50 14 15 −1.63

ERS, Event-related synchronization; ERD, Event-related desynchronization; BAs,

Brodmann areas.

of the subjects (n = 8) with prominent theta waves in medial
frontal areas during the arithmetic task compared to the rest-
ing state. In addition to midfrontal theta oscillations seen in all
subjects, theta ERS was also seen in other cortical areas in some
subjects, with inter-subject variability. These areas included the
anterior temporal, orbitofrontal, and dorsolateral prefrontal cor-
tex (Figure 3). The permutation test results indicated a significant
increase in theta activity, or theta ERS, in the medial prefrontal
cortex (BAs 8 and 9) and the adjacent dorsal part of the ACC
(BA 32) during periods of focused attention on mental calcula-
tion (Figure 4). Table 1 summarizes the cortical distribution and
values of task-induced activation or deactivation, as indicated by
SAM-permutation analysis.

POWER CHANGES IN GAMMA FREQUENCY BAND
Focusing attention on mental calculation, specifically on serial
arithmetic subtraction, resulted in significant source-power
changes in gamma frequency bands over different cortical
regions. There were no significant power changes in any of the
other frequency bands. Time-frequency analysis for MEG chan-
nels in individual subjects showed a similar pattern of enhance-
ment and suppression of oscillatory activity in the gamma band
over parietal and frontal areas, respectively, predominantly in
the right hemisphere. The statistical group analysis provided by
SAM-permutation tests revealed that gamma activity (30–60 Hz)
exhibited both significant ERS and ERD during the mental calcu-
lation periods. Gamma ERS was observed in the right intrapari-
etal sulcus (IPS) and the adjacent posterosuperior and inferior
parietal lobules, whereas the ERD was observed over the infe-
rior frontal gyrus (BA 44) in the same hemisphere (Figure 5).
Calculation-related gamma ERS and ERD values are provided in
Table 1.

DISCUSSION
Using MEG and SAM-permutation analysis during continu-
ous mental calculation, we clearly identified pronounced theta
ERS, representing Fmθ, distributed over bilateral medial pre-
frontal regions and the dorsal area of the ACC (Figure 4). A
striking finding was the identification of significant gamma power
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FIGURE 2 | MEG waveforms during the active and control conditions.

The location of channels showing frontal theta enhancement are indicated
in red color on the MEG sensor map.

FIGURE 3 | Synthetic Aperture Magnetometry analysis of eight

subjects who had prominent medial frontal source power changes in

theta frequency band in individual analysis. Statistic parametric maps
(SPM) of the Frontal Midline Theta source-current density in individual
subjects are projected onto sagittal slices of the subject’s MRI. The color
bar represents t-values.

changes, in particular gamma ERS in the right IPS and adja-
cent cortex, and gamma ERD in the inferior frontal cortex that
appeared concomitantly with Fmθ (Figure 5). This clearly shows
that focusing attention on mental calculation results not only
in Fmθ generation but also in the activation of neural networks
involving the parietal and lateral prefrontal cortex, likely asso-
ciated with the arithmetic processing of the task, with power
changes in the gamma band representing the underlying neural
activity.

FRONTAL MIDLINE THETA SOURCES
Despite the body of information obtained from earlier EEG and
MEG studies, to date, a precise delineation of brain structures
involved in Fmθ generation has been difficult. This is due in part
to a lower spatial resolution of EEG compared to MEG, the use of
dipole modeling which can only detect center of gravity of acti-
vated regions rather than cortical volume of activation (Herdman
et al., 2003), and the limitation of the lack of group statisti-
cal analysis in previous MEG-SAM studies (Ishii et al., 1999).
In the present study, SAM-permutation analysis showed theta
ERS specifically over the dorsal part of the ACC and adjacent

FIGURE 4 | SAM-permutation images of source power changes

(event-related synchronization) in the theta (4–8 Hz) band. Responses
were calculated for the mental calculation (active state) vs. non-arithmetic
condition (control state). The color bar represents pseudo-t-values. L, Left;
R, Right; A, Anterior; P, Posterior.

medial prefrontal cortex bilaterally, when subjects were engaged
in continuous mental calculation (Figure 4).

The ACC encompasses numerous specialized subdivisions that
subserve a vast array of cognitive, emotional, executive, nocicep-
tive and visuospatial functions (Bush et al., 2000; Womelsdorf
et al., 2010; Ovaysikia et al., 2011). Interestingly, we noted that
within the ACC, significant increase in theta power was observed
particularly over the dorsal area (BA 32), which corresponds
to the cognitive subdivision of the ACC. Among other func-
tions such as control of motivation, error detection and working
memory processing, the dorsal part of the ACC is implicated in
modulation of attention, which is why this area is regarded as part
of a distributed attentional network (Bush et al., 2000). Conflict
resolution is another function traditionally associated with the
ACC. In the context of arithmetic subtraction, this ACC function
might be necessary to inhibit potential error responses during the
task. Thus, our results are consistent with and extend the findings
of previous investigations proposing the dorsal part or cognitive
subdivision of the ACC and adjacent medial prefrontal cortex
as the generators of Fmθ associated with focused attention and
other cognitive functions during mental calculation (Ishihara and
Yoshi, 1972; Sasaki et al., 1996; Asada et al., 1999; Ishii et al., 1999;
Enriquez-Geppert et al., 2013).

It is noteworthy that enhanced theta activity is thought to
reflect working memory processes, as well. For instance, frontal
theta ERS has been associated with working memory load and
attention demands in several neurophysiological studies (Gevins
et al., 1997; Kahana et al., 2001; Jensen and Tesche, 2002;
Onton et al., 2005). The simple subtraction task used in this
study requires working memory processing, in particular the
maintenance and manipulation of information, which is closely
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FIGURE 5 | SAM-permutation images of source power changes in the

gamma (30–60 Hz) band. Responses were calculated for the mental
calculation (active state) vs. non-arithmetic condition (control state).
Event-related synchronization was seen in the right posterior parietal
cortex, and event-related desynchronization in the right inferior frontal
gyrus. The color bar represents pseudo-t-values. L, Left; R, Right; A,
Anterior; P, Posterior.

associated with medial prefrontal cortex (i.e., Brodmann areas
8 and 9) function. Taking this into account, we believe that, in
addition to focused attention-related activation, the theta ERS
observed in our study might also reflect working memory process
associated with mental calculation.

In our study, three subjects out of eleven didn’t show any
prominent theta activity during the calculation task, even though
they carried out the task like other subjects. There are several
previous studies suggesting some influential parameters which
could affect the appearance rate of Fmθ among individuals, such
as anxiety level and personality traits (Inanaga, 1998). Although
we didn’t check the anxiety level and personality traits in this
study, some possible behavioral, structural and genetic factors
which might be associated with prominent theta activity can be
investigated as our future application.

PARIETAL CORTEX INVOLVEMENT IN NUMBER PROCESSING
Little has been reported on gamma band activity and arithmetic
processing in previous Fmθ experiments using mental calculation
as attention-demanding task. Indeed, several EEG/MEG stud-
ies on Fmθ induced by arithmetic tasks focused exclusively on
source localization of theta oscillations and did not analyze fast
frequencies, including the gamma band (Iramina et al., 1996;
Sasaki et al., 1996; Mizuhara et al., 2004; Missonnier et al., 2006;
Doppelmayr et al., 2008). Consistent with our findings of pro-
nounced gamma ERS in the right IPS (Figure 5), this cortical area
has been a major site of activation in neuroimaging studies on
number processing. Based on its systematic activation whenever
numbers are manipulated, regardless of number notation, the IPS

has been regarded as a potential substrate for quantity or numbers
representation common to all arithmetic tasks (Rueckert et al.,
1996; Simon et al., 2002; Dehaene et al., 2003, 2004; Kong et al.,
2005). Of note, subtraction operation, which was used for mental
arithmetic in this study, usually elicits greater IPS activation com-
pared to other arithmetic operations, in particular multiplication
and division. This is partly explained by the fact that multiplica-
tion tables, and even small addition facts, can be stored in rote
verbal memory, hence placing minimal requirements on quantity
manipulation, whereas subtraction problems are not learned by
rote and therefore require genuine quantity manipulation (Simon
et al., 2002; Dehaene et al., 2003).

We also noted significant gamma ERS in cortical areas adja-
cent to the IPS, namely the inferior and postero-superior parietal
(PSP) lobules, which have also been implicated in numerical
operations, including subtraction of two or more digits and
counting (Dehaene et al., 2003). However, unlike the IPS, the PSP
region is not specific to the number domain. Rather, it plays a
central role in a variety of visuospatial tasks including orienting
of attention, regardless of whether working memory process is
involved or not (Mitchell and Cusack, 2008; Olson and Berryhill,
2009). This suggests that PSP cortex activation mainly reflects the
processing of attended items. In this context it is interesting that
the so called internal “number line,” a quasispatial representa-
tion on which numbers are organized by their proximity, can be
likened to the core semantic representation of numerical quantity.
Thus, it is conceivable that the same process of covert attention
that operates to select locations in space can also be engaged when
attending to specific quantities on the “number line” during men-
tal calculation (Dehaene et al., 2003). This number-based spatial
attention hypothesis supports the involvement of the PSP lobule
not only in visuospatial processing, as previously reported, but
also in non-visual mental arithmetic tasks, as suggested by our
results.

GAMMA EVENT-RELATED SYNCHRONIZATION (ERS) IN COGNITIVE
PROCESSING
It is noteworthy that activation in areas subserving basic arith-
metic processing and number-based spatial attention in the pari-
etal lobe manifested specifically as an increase in power in the
gamma band (Figure 5). This supports previous observations
of sustained EEG gamma oscillations during high-level mental
activities, such as reading, learning, emotion and arithmetic sub-
traction (Fitzgibbon et al., 2004; Luo et al., 2013). Our finding is
consistent with evidence demonstrating that activation of cortical
regions induced by cognitive processes generally translates into
synchronization of rhythmic neural activity at frequencies above
40 Hz, the so-called gamma synchronization (Lachaux et al.,
2008). Induced gamma response has also been reported to reflect
activation of task modality-dependent networks or stimulus-
related sensory/cognitive function in primary or association areas
subserving the specific stimulus information processing (Jensen
et al., 2007). Furthermore, synchronized gamma activity is con-
sidered to be involved in object representation, including inter-
nally driven representations (Bertrand and Tallon-Baudry, 2000)
and in specific modalities of attention (Kaiser and Lutzenberger,
2003, 2005; Jensen et al., 2007). Taken together, our findings and
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those of earlier neuroimaging studies suggest that gamma band
synchronization underlies number-related cognitive processing.

A separate line of research indicates that theta phase can mod-
ulate gamma power in certain brain regions (Scheffer-Teixeira
et al., 2012). Kaplan et al. using MEG found that theta-gamma
phase-amplitude coupling between medial prefrontal areas and
medial temporal areas was linked to memory retrieval (Kaplan
et al., 2014). Based on these findings, it would be interesting
to explore in future studies whether theta and gamma phase-
amplitude coupling between the medial prefrontal and parietal
cortex, rather than activation of isolated cortical regions, might
play a role in arithmetic processing.

GAMMA EVENT-RELATED DESYNCHRONIZATION (ERD) IN COGNITIVE
PROCESSING
In contrast to a gamma ERS phenomenon in the parietal cor-
tex, as an index of stimulus-related local activation, the sig-
nificant power changes in the inferior frontal gyrus consisted
of gamma ERD (Figure 5). This speaks in favor of a func-
tional disassociation between prefrontal and parietal cortices
during arithmetic processing, as proposed by an fMRI study
by Menon et al. (2000). Although there is no clear explanation
for the existence of simultaneous gamma ERS and ERD dur-
ing focused attention on mental calculation, this finding is in
line with recent evidence indicating that performing attention-
demanding cognitive tasks require not only activation of specific
cortical regions but also deactivation of other regions that can
interfere with the ongoing cognitive task, either in low-level sen-
sory areas or high-level structures, such as the prefrontal cortex
(Lachaux et al., 2008).

In this context, the gamma ERD found in the inferior frontal
cortex may indicate that this region was not directly involved in
the numerical processing. Rather, this region may play a more
supportive role, for instance in managing parallel processes that
might interfere with fast continuous subtractions, such as work-
ing memory-related processes or the speed of the calculation
without seriously compromising arithmetic performance(Menon
et al., 2000). Reports indicating that inhibitory control (inhibi-
tion of irrelevant information with working memory demands) is
associated with a distributed network, involving the right dorso-
lateral prefrontal cortex (Garavan et al., 1999; MacDonald et al.,
2000), ACC (Rubia et al., 2003), and the inferior parietal cortex
(MacDonald et al., 2000; Garavan et al., 2002) provide further
support to this argument.

In this study, we noted a right hemisphere laterality of the
gamma source-power changes. Interestingly, previous fMRI and
neuropsychological studies also found a predominant right hemi-
sphere activation of frontal and parietal regions in association
with mental subtraction (Fehr et al., 2007). Further, there is
evidence that engagement in simple arithmetic, in particular sub-
traction operation, activates a neural network predominantly
in the right hemisphere. This network is thought to serve as
a common basis to which more regions in the left hemisphere
are recruited for more difficult problems or different arithmetic
operations (Kong et al., 2005).

Our findings should be interpreted with caution based on the
limitation of the lack of behavioral performance data. This was

due to the use of a mental arithmetic task to avoid movement-
related artifacts during the MEG recordings. Previous neuroimag-
ing studies using fMRI or EEG have also used this paradigm
(Rueckert et al., 1996; Kawashima et al., 2004; Mizuhara et al.,
2004). However, prior to experiments, the subjects in this study
performed practice trials, during which answers were given orally
and the accuracy of the calculations was checked. This allowed
us to measure each subjects’ arithmetic proficiency and to ensure
that they were capable to perform well on the task. Despite the
use of a purely mental task, we found cortical activation, as indi-
cated by specific oscillatory power changes, in a frontal-parietal
network thought to be involved in focused attention (Ishihara and
Yoshi, 1972; Ishii et al., 1999) and numeric/quantity representa-
tions (Dehaene et al., 2003, 2004), concomitantly with Fmθ. This
strongly suggests that the subjects were actually performing the
arithmetic task during the recordings.

LATERALITY OF SOURCE-POWER CHANGES
Consistent with results of earlier studies, we found that Fmθ

appeared bilaterally over the medial prefrontal and ACC cor-
tex. This confirms the involvement of both hemispheres in
focused attentional processing. However, the gamma source-
power changes in number processing areas and the prefrontal cor-
tex, showed a unilateral distribution in the right hemisphere. This
is unlikely to be related to the limitation of SAM beamformer of
suppressing sources highly correlated in time across hemispheres
to reduce noise in the signal (Brookes et al., 2007, 2008) because
this effect generally applies to evoked-related responses which
are time-locked to the onset of a specific stimulus in each single
trial. Cognitive stimulus-induced oscillatory responses, however,
jitter in the long range of time window after the stimulus onset
from one trial to another (Pfurtscheller and Lopes da Silva, 1999;
Tallon-Baudry and Bertrand, 1999). Thus, SAM is appropriate
to reconstruct those task-related source-power changes in oscil-
latory activity or induced response, as it has been demonstrated
in several MEG studies (Herdman et al., 2003; Gunji et al., 2007;
Ishii et al., 2009).

A possible explanation for the right hemisphere laterality of
the gamma source-power changes in this study may be based on
the existence of sharp disassociations between arithmetic oper-
ations and calculation complexity (Menon et al., 2000; Gruber
et al., 2001; Dehaene et al., 2003, 2004; Kong et al., 2005; Fehr
et al., 2007; Ischebeck et al., 2009). As mentioned above, mul-
tiplication operations, which require arithmetic fact retrieval
and rote memory, induce activation mainly of the left angular
gyrus (Gruber et al., 2001; Dehaene et al., 2003, 2004; Ischebeck
et al., 2009). This area which is associated with verbal number
manipulation, appears to be also involved in complex arithmetic
operations (Menon et al., 2000; Dehaene et al., 2003, 2004; Fehr
et al., 2007; Grabner et al., 2007) along with the left inferior tem-
poral (Gruber et al., 2001; Kong et al., 2005) and inferior parietal
(Kong et al., 2005) cortex. Taking into account that we used sim-
ple subtraction as basic arithmetic operation, which is related to
genuine quantity manipulations (Menon et al., 2000; Dehaene
et al., 2003, 2004), it is not surprising that all those areas in the
left hemisphere showing operation-specific activation were not
found significantly activated in this study. Previous fMRI and
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neuropsychological reports suggesting a predominant right hemi-
sphere activation of frontal and parietal regions in association
with mental subtraction (Fehr et al., 2007) and with Arithmetical
Reasoning Test performance (Langdon and Warrington, 1997)
provide further support to our results.

Lesional studies have also provided evidence of right parietal
cortex involvement in arithmetic processing. Dehaene and Cohen
(1997) reported two acalculic patients who had structural lesions
in the left subcortical areas or the right parietal cortex. They
noted that the left lesional case had impaired rote arithmetic facts
processing with preserved knowledge of numerical quantities.
However, in line with our findings, the patient with right infe-
rior parietal lesion showed a specific impairment of quantitative
numerical knowledge, which was particularly remarkable for sub-
traction tasks (Dehaene and Cohen, 1997). Additionally, recent
reports of intraoperative cortical electrostimulation in patients
with brain tumors have confirmed an anatomofunctional orga-
nization for arithmetic processing within the right parietal cortex
(Della Puppa et al., 2013).

Consistent with our SAM-permutation results, Micheloyannis
et al. (2002) study using linear and non-linear EEG measures indi-
cated that right hemisphere activation during simple arithmetic is
manifested as increased power in the gamma band, while left or
bilateral theta and alpha responses appear to be associated with
the calculation strategy applied (De Smedt et al., 2009; Grabner
and De Smedt, 2011). Further, there is evidence suggesting that
engagement in simple arithmetic, in particular subtraction opera-
tion, activates a neural network predominantly in the right hemi-
sphere, which serves as a common basis to which more regions in
the left hemisphere are recruited for more difficult problems or
different arithmetic operations (Kong et al., 2005). Based on this
argument, we can speculate that the significant gamma synchro-
nization seen in our study represent activation and connectivity
of different brain areas, engaged in simple subtraction in the right
hemisphere (i.e., right parietal cortex), and contralateral cortical
areas could have been recruited if the complexity of the task was
manipulated or other arithmetic operations were used. Although
not directly tested in the current study, we suggest that MEG con-
nectome might be able to provide novel insights on the biological
mechanisms of higher cognitive functions and pathophysiology
of neuropsychiatric diseases.

CONCLUSION
The findings of this study should be interpreted in the context
of brain activation associated particularly with focused atten-
tion on mental arithmetic subtraction. Using MEG and SAM-
permutation analysis, our results confirm and extend those of
previous EEG and MEG studies indicating that Fmθ is gener-
ated in medial prefrontal cortex and dorsal ACC during cognitive
tasks requiring focused attention and working memory pro-
cess. Moreover, our results suggest that right parietal cortical
areas which subserve basic numerical processing and number-
based spatial attention, namely the IPS and the adjacent postero-
superior parietal lobule, respectively (Dehaene et al., 2003),
are activated during mental subtraction operations. The main
contribution of our work, however, is the identification of gamma
ERS as the underlying neural activity of this parietal sources. In

addition, gamma ERD occurred in the right lateral frontal cor-
tex during performance of the mental task, likely representing
a mechanism to interrupt transiently local neural communica-
tion in cortical regions not relevant to the ongoing cognitive task.
Overall, our findings demonstrate the feasibility of using MEG
and SAM-permutation analysis to determine cortical network of
sources related to focused attention or arithmetic calculation, and
their underlying neural activity.
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Increasing evidence from invasive intracranial recordings suggests that the matured brain
generates both physiological and pathological high-frequency signals. The present study
was designed to detect high-frequency brain signals in the developing brain using newly
developed magnetoencephalography (MEG) methods. Twenty healthy children were stud-
ied with a high-sampling rate MEG system. Functional high-frequency brain signals were
evoked by electrical stimulation applied to the index fingers. To determine if the high-
frequency neuromagnetic signals are true brain responses in high-frequency range, we
analyzed the MEG data using the conventional averaging as well as newly developed time-
frequency analysis along with beamforming.The data of healthy children showed that very
high-frequency brain signals (>1000 Hz) in the somatosensory cortex in the developing
brain could be detected and localized using MEG. The amplitude of very high-frequency
brain signals was significantly weaker than that of the low-frequency brain signals. Very
high-frequency brain signals showed a much earlier latency than those of a low-frequency.
Magnetic source imaging (MSI) revealed that a portion of the high-frequency signals was
from the somatosensory cortex, another portion of the high-frequency signals was prob-
ably from the thalamus. Our results provide evidence that the developing brain generates
high-frequency signals that can be detected with the non-invasive technique of MEG.
MEG detection of high-frequency brain signals may open a new window for the study
of developing brain function.

Keywords: magnetoencephalography, high-frequency oscillations, somatosensory cortex, wavelet, beamformer,
pediatrics

INTRODUCTION
Increasing evidence indicates that the brain generates both very
low- and very high-frequency brain signals (Bowyer et al., 2012;
Zijlmans et al., 2012; Haegelen et al., 2013). Low-frequency brain
signals are typically referred to as “direct current” or “infraslow
activity” (Bowyer et al., 2012). High-frequency brain signals are
also called “high-gammas” (Huo et al., 2010), “high-frequency
oscillations” (HFOs), “ripples,” or “fast ripples” (Worrell et al.,
2008; Engel et al., 2009; Gotman, 2010; Haegelen et al., 2013).
High-frequency brain signals are potential new biomarkers for the
study of brain function (Ozaki and Hashimoto, 2011).

In comparison with conventional low-frequency brain signals
(<70 Hz), high-frequency brain signals are typically very weak
(low in amplitude) (Worrell and Gotman, 2011). Neural signals
from the brain are the spatiotemporal summation of synchronous
firing from at least 10,000–50,000 neurons (Murakami and Okada,
2006). Therefore, it has been postulated that the functional orga-
nization of brain activity is encoded in multi-frequency ranges
of that neuronal activity (Lina et al., 2014). The detection and
recording of such high-frequency brain signals requires a high-
sampling rate. Therefore, how to handle the large datasets digitized

at a high-sampling rate has become an important issue for those
investigating these signals (Worrell et al., 2012). In particular, using
non-invasive techniques to detect and localize very high-frequency
brain signals is rapidly becoming a new technique in many areas of
research and clinical work (Miao et al., 2014; Rampp et al., 2014).

The most recognized HFOs are identified in the somatosensory
cortex (Kotecha et al., 2009b). Previous reports have shown that
the early portion of this activity is generated by action potentials
of thalamocortical fibers and the late somatosensory HFO burst
results from these action potentials arriving at the somatosen-
sory cortices; specifically Brodmann areas 3b and 1 (Ozaki and
Hashimoto, 2005). Though the exact range of HFOs remains
unclear, HFOs up to 2632 Hz are detectable from the human
somatosensory cortex with invasive recordings (Sakura et al.,
2009). Since these oscillations are very weak, previous studies
have required more than 1000 trials to obtain reliable results from
adults (Ozaki et al., 1998). However, modern magnetoencephalog-
raphy (MEG) systems have a whole-cortex sensor array, which can
capture the spatial information of brain activity from variety of
angles (Barkley and Baumgartner, 2003). This mechanism allows
HFOs to be detected and localized with a much smaller number of
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trials. Time-frequency analysis and spatial filtering (Kotecha et al.,
2009b), described in further detail below, can be used for HFO
investigations with MEG.

The objective of the present study was to assess high-frequency
brain signals in children using newly developed MEG meth-
ods. The present paper will detail the mathematic algorithms
of our new MEG analysis technique. Our central hypothesis
was that somatosensory HFOs can be non-invasively localized
using wavelet-based source localization. In comparison to pre-
vious reports on high-frequency brain signals (Jacobs et al., 2012),
the major innovation of the present study was the optimization
of MEG approaches for localizing very high-frequency neuromag-
netic signals (>1000 Hz) in the developing brain. We consider this
study of paramount importance because the development of reli-
able high-frequency signal detectors will likely have a significant
impact on future clinical applications of MEG, such as presurgical
brain mapping in those suffering from epilepsy (Gloss et al., 2014).

MATERIALS AND METHODS
SUBJECTS
Twenty healthy children (age range: 6–17 years, mean and SD:
12.3± 2.7 years, 10 girls and 10 boys) were recruited for this study.
Inclusion criteria were (1) healthy without a history of neuro-
logical disorders or brain injuries; (2) age-appropriate levels of
hearing, vision, and hand movement. Exclusion criteria were (1)
inability to remain still inside the MEG scanner; and (2) presence
of any non-removable metal device, such as a cochlear implant, a
pacemaker, or a neurostimulator containing electrical circuitry,
generating magnetic signals, or having other metal that could
produce visible magnetic noise in the MEG data; (3) visually iden-
tifiable magnetic noise in the subject’s recording (amplitude of
waveforms >6 Pt). Since head movement during MEG recording
could affect the accuracy of source estimation, data from a subject
with head movement larger than 5 mm would be excluded from
analysis. Written consents, formally approved by the Institutional
Review Board (IRB) at Cincinnati Children’s Hospital Medical
Center (CCHMC) or Nanjing Brain Hospital, were obtained from
each participant prior to testing.

STIMULUS
Two Digitimer Constant Current Stimulator model DS7A elec-
trical stimulation systems (Digitimer Ltd., Welwyn Garden City,
England) were used to stimulate the participant’s right and left
index fingers independently via Digital Ring Electrodes (Oxford
Instruments Medical, Hawthorne, NY, USA). One hundred stim-
uli were delivered to each finger. The duration of the electrical
stimulus was 0.3 ms (Kotecha et al., 2009b). The interval between
two stimuli was 1010–1030 ms as the electrical stimuli were ran-
domized by varying interstimulus intervals (10 ~ 30 ms) using
the software BrainX (Kotecha et al., 2009b). The stimuli were
adjusted to an intensity that delivered stimulation large enough
to be detected by the participant yet not cause pain, as determined
by previous studies (Kotecha et al., 2009b).

MEG RECORDINGS
Magnetoencephalography signals were recorded in a magnetically
shielded room using a whole head CTF 275-Channel MEG system

(VSM MedTech Systems Inc., Coquitlam, BC, Canada) in the MEG
Center at CCHMC and at Nanjing Brain Hospital. Before data
acquisition commenced, three electromagnetic coils were attached
to the nasion, left and right pre-auricular points of each subject.
These three coils were subsequently activated at different frequen-
cies for measuring each subject’s head position relative to the MEG
sensors. Each subject lay comfortably in the supine position with
his or her arms resting on either side, during the entire procedure.
For the study of somatosensory evoked magnetic fields (SEFs), 100
trials were recorded for each finger (200 trials for each subject).
The duration of each trial recording was 1000 ms (400 ms pre-
stimulation baseline and 600 ms post-stimulation time-window).
The sampling rate of the MEG recording was 6000 Hz per channel.
MEG data were recorded with a noise cancelation of third-order
gradients and without online filtering. To identify system and envi-
ronmental noise, we routinely recorded one MEG dataset without
a subject immediately prior to the experiment.

MAGNETIC RESONANCE IMAGING SCAN
Three-dimensional magnetization-prepared rapid acquisition
gradient echo (MP_RAGE) sequences were obtained for all sub-
jects with a 3-T scanner (Siemens Medical Solutions, Malvern, PA,
USA). Three fiducial points were placed in identical locations to
the positions of the three coils used in the MEG recordings, with
the aid of markers and digital photographs, to allow for an accurate
co-registration of the two data sets. Subsequently, all anatomi-
cal landmarks digitized in the MEG study were made identifiable
in the MR images. Pediatric brain templates developed by the
MEG Center at CCHMC were also used for data comparison and
visualization (Kotecha et al., 2009a).

WAVEFORM AND TIME-FREQUENCY ANALYSES
We visually inspected our MEG data and marked any possible arti-
facts over 6 Pt before data analyses. MEG waveforms evoked by 100
finger stimuli were averaged together over each finger for analyz-
ing neural response amplitude and latency. Since somatosensory
evoked activation has mainly been found in the range of 10–
120 ms (Kotecha et al., 2009b), our data analyses focused on this
latency range. To analyze high-frequency brain signals in wave-
forms, we performed conventional waveform filtering (Kotecha
et al., 2009b) with band-pass filters of 1–20, 20–500, 500–1000,
and 1000–2000 Hz. Since somatosensory evoked MEG data were
digitized at a sampling rate of 6000 Hz, a band-pass filter of 2000–
3000 Hz was also applied to the data. In this study, Butterworth
filters were used (the phase shift was 0; the slope was−24 dB/oct).

The analysis technique of Morlet continuous wavelet transform
was employed to transform time-domain data to time-frequency-
domain data. The Morlet wavelet was used because brain activity is
non-stationary and the wavelet is better suited for non-stationary
data (Ghuman et al., 2011). The Morlet wavelet is described by the
following equation:

G(t , f ) = C σπ
−

1
4 e−

1
2 t 2

(e iσt
− κσ) (1)

In the above formula, t indicates time and f indicates frequency
(or a scale in the wavelet mother function for a specific frequency).
Each wavelet transform has its own sigma value. κσ represents the

Frontiers in Human Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 969

76

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Leiken et al. High-frequency brain signals

admissibility and Cσ represents a normalized constant. If signals
appeared in the given time-sensitive (a small sigma value) and
frequency-sensitive (a large sigma value) ranges, they would be
enhanced.

FORWARD AND INVERSE SOLUTIONS
To detect MEG signals at source levels, a three-dimensional source
grid (3D grid) was developed. In the 3D grid, each grid node
represented a possible source. Differing from the conventional vol-
umetric source imaging or distributed source map, each grid node
consisted of multiple data items including the strength and fre-
quency of the source activity. Similar to previous reports (Mosher
and Leahy, 1998; Vrba and Robinson, 2001; De Gooijer-Van De
Groep et al., 2013), the sources of activity were determined with
following equations:

B = LQ + N (2)

In Eq. 2, B represents the MEG data, L represents the lead field,
Q represents the source strength, and N represents the noise.
For a given MEG dataset, B is known and L can be computed
for each node with a forward solution. The forward solution in
this study was computed according to Sarvas’ formula for outside
hemispherical conductors in Cartesian coordinates (Sarvas, 1987).

The determination of source strength and orientation of Q has
been a challenge as discussed in many previous reports (Mosher
et al., 1999; Huang et al., 2004; Robinson, 2004; De Munck and
Bijma, 2009; Ou et al., 2009). According to our tests, for a given
MEG dataset in multiple frequency ranges within a limited time
window, the positions of the sensor array and the 3D source grid
were fixed; consequently, lead fields could be computed once and
then used for both low- and high-frequency ranges. Under these
assumptions, we propose using single value decomposition (SVD)
to decompose the lead field as in the following:

L = USV T (3)

Where U∈Rmxm is an orthogonal (unitary in the complex case)
matrix. The columns of U are the left singular vectors of L.
V∈Rmxm is an orthogonal matrix. The columns of V are right
singular vectors of L. S= diag (σ1, σ2, . . . , σp) is an M ×N diago-
nal matrix with p=min (m, n) and σ1, σ2, . . . , σp are the singular
values of L. M indicates the number of sensors and N indicates
the number of source orientations. For a single source, σ is <=3.
The Moore–Penrose pseudo-inverse of L is given by:

L+ = V S+U T (4)

Where S+ is a diagonal formed by the multiplicative inverses of the
non-zero singular values of L. The correlation between measured
MEG data, B, and the lead field is defined by:

B = LQ = USV T Q (5)

Q = BL−1 (6)

By replacing L−1 in Eq. 6 with L+ in Eq. 4, the estimated moment
EQ can be computed with a SVD back substitution:

EQ = BV S+U T (7)

Of note, L+ could be computed once and used for the analysis
of data in all frequency ranges, which makes the computation of
source strength and probability more efficient. The probability
of source activity was assessed with the correlation t value that
was computed for the measured MEG signal and the computed
MEG signals with Eq. 7. The threshold for correlations was sta-
tistically established to be 0.6. The equation for computing the
statistical t is:

t = r
sqrt[(1−r2)/(N−2)]

(8)

Where r represents the correlation coefficients and N indicates
the number of samples. The parameters used for establishing the
threshold are (a) sample size; (b) alpha value (0.05); (c) two-tailed
test; and (d) type of correlation coefficient: Pearson’s correla-
tion. Of note, each voxel in our magnetic source imaging (MSI)
had multiple values, which included source strength and source
probability.

MAGNETIC SOURCE IMAGING
To go beyond localizing magnetic sources with aforementioned
algorithms, we also developed a new technique, accumulated
source imaging (ASI), to localize high-frequency signals. ASI was
based on the previous observation that an accumulated spectro-
gram of virtual sensors could reliably detect high-frequency signals
(Xiang et al., 2004, 2009a,b; Xiang and Xiao, 2009). ASI was defined
as the volumetric summation of source activity over a period of
time. In the present study of somatosensory evoked signals, ASI
was the summation of source activity of all electrical pulse trials
on each finger. ASI can be described as the following equation:

Asi(r , s) =
n∑

t=1

Q(r , t ) (9)

In Eq. 9, ASI represents accumulated source strength at location
r ; s indicates the time slice; t indicates time point of MEG data;
n indicates the number of trials; and Q indicates the source activ-
ity at source r and at a specific trial t. From a computer program
point of view, the use of computer memory and storage space by
Eq. 9 is dependent on the s for a fixed source imaging configura-
tion (e.g., spatial resolution and dimension). Even though n could
be infinitely increasing, the requirements for computer memory
and storage remain the same. Consequently, the approach auto-
matically avoided possible “overflow” or “out-of-space” problems
in a large number of trials. The basic principle of ASI was that
high-frequency MEG signals from the brain activity were locked
to a spatial location and certain frequency bands. By accumulating
all the source data computed for each location and each frequency
band from multi-trial recordings, noise in a random space and
frequency would be minimized and the signal-to-noise ratio in
source imaging would then be increased.

Since this method spatially accumulates the results of source
data, it is different from previously employed methods, which
compute a covariance matrix or kurtosis of sensor data for a
long recording. Specifically, using a covariance matrix or kurto-
sis for source localization is based on the assumption that the
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source was stationary during the long recording. Our approach,
on the other hand, did not make this assumption, thereby taking
into account minimal head movement typically found in pedi-
atric MEG recordings. Therefore, our approach had the capability
to detect both stationary and non-stationary source activity. Since
high-frequency signals are very weak, we implemented the algo-
rithms with C/C++ in double precision (64 bits). Therefore, the
combination of spatial accumulation and double precision com-
putation are well-suited to detect high-frequency signals over the
course of at least 100 trials.

STATISTICS
Statistical comparisons between different frequency bands were
performed using a Student’s t -test. The normality of MEG data
was tested with the Shapiro–Wilk test. For MEG data, which
not found to be normally distributed, Mann–Whitney tests were
used for comparisons. Statistical analyses were performed using
SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL, USA).
The threshold of statistical significance for differences was set at
p < 0.05. For multiple comparisons, a Bonferroni multiple com-
parisons correction was applied. Therefore, for the comparisons
of 4 frequency bands, the p value would need to decrease to 0.012
(0.05/4).

RESULTS
Somatosensory evoked magnetic fields were analyzed with both
band-pass filtering and time-frequency transforms as described
above. The amplitude and latency of neuromagnetic responses
are summarized in Table 1. We noted that the number of neu-
romagnetic responses in 500–1000 Hz was less than that in the
other four frequency ranges. Figure 1 shows examples of SEFs
in the frequency ranges of 1–20, 20–500, and 500–1000 Hz in
a healthy subject. Figure 2 shows examples of SEFs in 1000–
2000 and 2000–3000 Hz. The amplitude and latency of SEFs in
all healthy subjects are shown in Table 1. The result of statisti-
cal group analysis revealed that the amplitude of high-frequency
signals was significantly weaker (lower) than that of the low-
frequency signals (p < 0.001). In addition, low-frequency signals
appeared in a later latency while high-frequency signals appeared
in an earlier latency (p < 0.001). Figure 3 shows examples of
global spectrograms and spectral contour maps of MEG sig-
nals in 1–20, 20–500, and 500–1000 Hz for a healthy subject.
Figure 4 shows examples of global spectrograms and spectral
contour maps of MEG signals in 1000–2000 and 2000–3000 Hz
for a healthy subject. There was no statistically significant differ-
ence in amplitude and latency between the left- and right-finger
stimulations. We also did not find significant differences in ampli-
tude and latency between the two age groups of subjects (6–11 vs.
12–17 years).

To better understand the spatial distribution, the oscillation
covariance was computed for very high-frequency signals in all
sensors. The contour map of oscillation covariance showed that
very high-frequency signals among sensors over the somatosen-
sory cortex were well-correlated (0.71± 0.12, M ± SD), which
indicated that the signals at the sensors around the somatosensory
region were from the same source. Figure 4 shows the examples
of three-dimensional contour maps of the oscillation covariance.

Table 1 | Latency and amplitude of somatosensory elicited magnetic

fields in multi-frequency ranges (mean ± SD).

Subjects (%)a Latency (ms) Amplitude (ft)

Left stimulation

1–20 Hz 18 (90%) 49.3±3.7 395.6±133.8

20–500 Hz 18 (90%) 28.2±1.8* 168.7±54.3*

500–1000 Hz 9 (45%) 20.5±1.7** 98.3±19.7**

1000–2000 Hz 18 (90%) 19.6±1.4** 52.6±16.2**

2000–3000 Hz 18 (90%) 19.3±1.2** 10.2±6.7**,#

Right stimulation

1–20 Hz 18 (90%) 48.7±3.9 437.5±143.2

20–500 Hz 18 (90%) 27.6±1.7* 179.2±63.6*

500–1000 Hz 9 (45%) 20.8±1.6** 105.3±24.3**

1000–2000 Hz 18 (90%) 20.2±1.4** 62.7±21.5**

2000–3000 Hz 18 (90%) 19.7±1.3** 10.8±7.6**#

aNumber of subjects that showed a response (deflections).

*Compared with 1–20 Hz, p < 0.01.

**Compared with 1–20 Hz, p < 0.001.
#Compared with 1000–2000 Hz, p < 0.01.

We also noted that very high-frequency signals in the occipital
and frontal sensors were also partially correlated (0.61± 0.14,
M± SD), which implied deep brain activation (DA). The correla-
tion between the occipital and frontal regions was relatively weak
as compared with that in the somatosensory regions (Figure 4,
“DA” and “SEF”). Since the spectral power of vHFOs in the occip-
ital and frontal regions was very high, but the sensors in these
regions showed a weak correlation (0.13± 0.02), those very high-
frequency signals were considered to be noise or artifacts. In sum,
the data indicated that very high-frequency signals were from
the somatosensory cortex and deep brain regions, and may have
included some occipital artifacts.

Magnetic source imaging revealed MEG signals at 1–20 and 20–
500 Hz from the somatosensory cortex in 17 subjects (17/20, 85%),
MEG signals at 500–1000 Hz from the somatosensory cortex in 6
subjects (6/20, 30%), and MEG signals at 1000–2000 and 2000–
3000 Hz from the somatosensory in 18 subjects (18/20, 90%).
MEG signals within the range of 1000–2000 and 2000–3000 Hz
were also localized to the deep brain area, likely the thalamus, in 18
subjects (18/20, 90%) and 14 subjects (14/20, 70%), respectively.
The result of statistical group analysis revealed that the source
strength of MEG signals at 1–20 Hz was significantly stronger than
that of MEG signals at 2000–3000 Hz in the primary somatosen-
sory cortex (SI) for both left and right stimulation (p < 0.001). The
result of statistical group analysis did not reveal significantly dif-
ferent SI source coordinates for each of the frequency bands (1–20,
20–500, 500–1000, 1000–2000, and 2000–3000 Hz). However, the
source coordinates of the DA in 1000–2000 Hz was significantly
different from that of the SI activation (p < 0.001). Figure 5 shows
the source locations of MEG signals in all the frequency ranges for a
healthy subject. The sources of very high-frequency signals around
the occipital regions were localized to the posterior regions, which
were outside of the brain and were determined to be muscle arti-
facts. Figure 6 shows an example of one of these muscle artifacts
in the posterior regions.
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FIGURE 1 | Averaged waveforms and contour maps from a healthy
subject showing neuromagnetic activation in 1–1000 Hz evoked by left
finger stimulation. The three sets of waveforms are filtered by three
band-pass filters of 1–20, 20–500, and 500–1000 Hz, respectively. The
amplitude of neuromagnetic activation decreases with the increase of
frequency range. The latency of neuromagnetic activation shortens with the
increase of frequency range. The three sets of waveforms have the same
time (“5.3 ms”) and amplitude (“40.0 ft”) scales (the bottom). Waveforms in
the 20–500 Hz range and the 500–1000 Hz range reflect a full time scale, as
well as a “zoomed in” time scale from 10 to 30 ms to show the detailed
deflections. The color contour maps show the distributions of
neuromagnetic activation. All the contour maps have the same color scales.

DISCUSSION
The present study has demonstrated that the developing brain
generates high-frequency neuromagnetic signals. Though the
cerebral mechanisms underlying neuromagnetic high-frequency
signals remain unclear, we noted that stimulation-induced high-
frequency neuromagnetic signals were much weaker (lower ampli-
tude) as compared with corresponding low-frequency neuro-
magnetic signals. Previous literature shows that magnetic signals
detected by MEG are typically from ~10,000 to 50,000 synchro-
nously active neurons (Murakami and Okada, 2006). If we assume
that the 10,000–50,000 synchronously active neurons comprise

FIGURE 2 | Averaged waveforms and contour maps from one subject
showing neuromagnetic activation in 1000–3000 Hz evoked by left
finger stimulation. The latency of neuromagnetic activation does not
change with the increase of frequency range. However, the amplitude of
neuromagnetic activation significantly decreases with the increase of
frequency range (see the scales). Waveforms from 10 to 30 ms are
“zoomed in” to show the detailed deflections (oscillations) elicited by finger
stimulation.

a “dipolar source” that can generate a signal strong enough to
be recorded by MEG, then high-frequency neuromagnetic sig-
nals at the sensor level may be from multiple “dipolar sources.”
In other words, the frequency signature of neuromagnetic sig-
nals is not equal to the frequency signature of a single neuron
firing; instead, the frequency signature of neuromagnetic signals
may reflect the spatiotemporal and spectral patterns of multiple
sources.

The non-invasive detection of high-frequency brain signals is
still a new area of investigation (Gotman, 2010), the reliability
and accuracy of the new methods are of utmost concern. We have
been careful to eliminate artifacts in the present data. To elim-
inate possible artifacts, we routinely conducted noise tests just
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FIGURE 3 | Global spectrograms and contour maps from one subject showing neuromagnetic activation in 1–1000 Hz elicited by left finger
stimulation. High-frequency spectrograms show precise temporal information while low-frequency spectrograms show precise frequency information.

before each clinical and research MEG recording. In addition, the
patient’s head position was monitored with three coils and our
method volumetrically scanned the sources of the entire brain.
In particular, our method was able to localize muscle artifacts to
the occipital region. If the high-frequency signals obtained in the
present study were artifacts, they should also be localized to a ran-
dom place or out of the brain. Furthermore, we confirmed these
results with time-frequency data, oscillation covariance maps,
and MSI. Therefore, it is unlikely that the results reported here
are due to the measurement of artifacts. Building on the data

from multiple approaches, we conclude that the measurements we
have obtained are true neuromagnetic signals in high-frequency
ranges.

The finding of high-frequency signals in the somatosensory
cortex in the developing brain is consistent with previous reports
of HFOs found in the somatosensory cortex in adults (Urasaki
et al., 2002; Waterstraat et al., 2012). Compared with previ-
ous reports, there are several unique features in the present
study. First, previous reports on somatosensory evoked fields were
typically recorded by stimulating left and right median nerves
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FIGURE 4 | Global spectrograms, spectral contour maps, and
three-dimensional covariance contour maps showing neuromagnetic
activation in 1000–3000 Hz elicited by left finger stimulation. A dipolar
source can project signals to sensors to form a dipolar pattern.

Mathematically, signals in these “dipolar sensors” are well-correlated and
produce a strong oscillation covariance. “SEF” indicates somatosensory
evoked magnetic fields; “DA” indicates deep brain activation; “OA” indicates
occipital activation.

(Hashimoto et al., 1999). According to our clinical practice, the
finding of median nerves for children can be challenging due
to time constraints. Thus, the present study used finger stimu-
lation with 100 trials; a location and trial number more suitable
for children. Second, the present study used both the conven-
tional band-pass filters and the newer time-frequency analyses.
We demonstrated that the latency and amplitude of neuromag-
netic responses to finger stimulation changed with different filters.
Third, to our knowledge, this is the first study showing very high-
frequency evoked signals (>1000 Hz) from the somatosensory
cortex in the developing brain using MEG. Though the present
study showed that high-frequency signals could be identified
in the somatosensory cortex in children and adolescents, there
were no statistical differences between two age groups of subjects
(6–11 vs. 12–17 years). Thus, we assume that the developmen-
tal changes that occur between these two age groups are minor
and/or the number of subjects was not large enough for the dif-
ference to reach significance. However, the present results suggest
that future studies with a large number of subjects can employ
high-frequency MEG signals to study the development of brain
function.

The precise frequency ranges of high-frequency neuromag-
netic signals from the somatosensory cortex vary among subjects.
The cerebral mechanisms of individual variations among subjects
in terms of frequency ranges are not yet well understood. Gob-
bele et al. (2000) have found 600-Hz bursts in the SEFs. We also

identified activation in 20–500 and 500–1000 Hz. The percentage
of high-frequency bursts in 500–1000 Hz appeared to be lower
than that of the other frequency ranges. Though the exact cere-
bral mechanism remains unclear, we postulate that the stage of
brain development and the methodologies used (e.g., stimulation
paradigms, data analysis methods) play a role in these findings.
Since our results have demonstrated that the developing brain
generates high-frequency somatosensory evoked signals, it would
be very interesting to standardize MEG protocols for future high-
frequency brain signal investigations in children, adolescents, and
adults in the future.

Though the main activation was seen in the contralateral
somatosensory area (SII) following finger stimulation, we noted
deep source activation coming from the ipsilateral thalamus in
healthy subjects (see Figure 5, for example). Since the somatosen-
sory tracts are already decussated, the activation in the ipsi-
lateral thalamus might be related to the interhemispherical
interactivation of the somatosensory system. One possibility is
interhemispherical inhibition. Building on previous reports that
finger stimulation is associated with deactivation of the ipsilateral
SI (Hlushchuk and Hari, 2006), we postulate that the activation in
the ipsilateral thalamus in our data might be related to the ipsi-
lateral SI deactivation. In addition, we consider that activation in
the ipsilateral thalamus might be also involved in mediating the
activation of the secondary SII ipsilateral to the side of stimulation
(Stancak et al., 2002).
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FIGURE 5 | Magnetic source images showing the sources of brain
activation elicited by finger stimulation in a representative subject.
Note that, the somatosensory cortex generates signals in a wide

frequency range. Very high-frequency signals (1000–2000 and
2000–3000 Hz) may be also generated by the deep brain area, which is
possibly from the thalamus.

As pointed out by Benar et al. (2010), high-pass filtering of
waveforms for detection of oscillatory activity should be per-
formed with great care. We have therefore used both filters and
time-frequency analyses to verify the HFO findings in the devel-
oping brain. Our results from the two approaches strongly sug-
gest that HFOs in the somatosensory system are non-invasively
detectable. Of note, MEG HFOs can potentially be viewed as

new biomarkers of brain activity, and MEG detection of high-
frequency signals may open a new avenue for the study of the
brain.

One potential flaw of the present study is the number of stim-
uli (100). This number was much less that used in previous
studies [typically 3,000–5000 stimuli, e.g., Ozaki et al. (1998)].
This shorter paradigm was selected due to the fact that pediatric
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FIGURE 6 | Magnetic source images show the location of noise in
1000–2000 Hz in a healthy subject. The noise is from the occipital region
and is considered to result from muscle artifacts. Of note, the location of
the strongest noise is aligned with the neck and is outside of the brain. The
color bar indicates the strength of muscle activity, which is a statistical
value that does not have a specific unit.

populations tend to have shorter attention spans than the adults
in the previous studies. However, the benefit of the new method
(Morelet wavelet, source localization, and accumulated spectro-
gram) is that it is assumed to require much fewer trials in
order to detect high-frequency signals. We recognize the lower
trial number as a possible limitation of the present exploratory
study. The software and supplementary materials, which imple-
mented the aforementioned algorithms, are freely available from
the following website (https://sites.google.com/site/braincloudx/
home) for other researchers to test, reproduce, and improve
upon.

In summary, the results have demonstrated that somatosensory
high-frequency activation can be non-invasively detected with
MEG and advanced signal processing methodology. The proposed
method was further validated with previously established conven-
tional methods. MEG detection of high-frequency brain activity
may open a new avenue in the study of the human brain function
in the future.
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The classical amyloid cascade hypothesis
of Alzheimer’s disease (AD) has driven
research and clinical practice for sev-
eral decades. It states that the deposition
of the amyloid-β peptide in the brain
parenchyma initiates a sequence of events
that ultimately lead to atrophy and AD
dementia. This proposal stimulated the
study of specific brain regions mapped
along the neurodegeneration sequence
(e.g., hippocampus) and their associated
impaired functions (e.g., episodic mem-
ory). Although anticipated by Mesulam
more than 20 years ago (e.g., Mesulam
and Asuncion Moran, 1987), it was not
until recently that this view has started to
change, largely due to the disappointing
results of trials relying on the beta-amyloid
cascade hypothesis and its variants, e.g.,
the synaptic beta-amyloid hypothesis.

A new approach based on neuro-
plasticity of neural networks has shifted
the attention from one region to the
orchestration of several brain hubs. The
connectivity account would play an
important role in revealing the transneu-
ral spread of misfolded proteins through
neural networks in neurodegenerative
disease (Pievani et al., 2011; Ibanez and
Manes, 2012), and specifically in AD (Raj
et al., 2012). In line with this view, the
metabolism hypothesis (MH) has been
proposed, which suggests that changes
in the default mode network (DMN, the
ongoing low-frequency fluctuations dur-
ing resting state between the anterior

and posterior cingulate cortex as well
as the precuneus) stimulate an activity-
dependent or metabolism-dependent
cascade that promotes the development
of the AD pathology (Buckner et al.,
2005). Notably, hyperactive neurons are
observed near amyloid plaques in ani-
mal models (Busche et al., 2008) and in
humans, connectivity hubs overlap the
anatomy of A-β deposition (Buckner et al.,
2009). Abnormal DMN activity discrimi-
nates between Mild Cognitive Impairment
(MCI), AD and controls (Rombouts et al.,
2005; Petrella et al., 2011; Seo et al., 2013;
Wang et al., 2013b), and predicts AD
conversion (Pievani et al., 2011). Thus,
default connectivity seems to be a promis-
ing approach to reveal novel mechanisms
leading to AD.

However, the DMN seems to be affected
by many other diseases (Sonuga-Barke
and Castellanos, 2007; Whitfield-Gabrieli
and Ford, 2012). Moreover, although the
altered DMN might interrupt or affect the
brain dynamic in AD patients, it actually
reflects a resting state activity unlikely to
explain, on its own, profiles of cognitive
decline in AD. The combined analysis of
brain connectivity associated with specific
cognitive processes affected by AD early in
its course with resting DMN is an unex-
plored area that could help overcome these
limitations. This approach may reveal
markers for the early or even preclinical
detection of neurocognitive impairments
in AD. A potential strategy would be to

assess the neural connectivity associated
with episodic memory tasks (Wang et al.,
2013a). However, these tasks have only
detected AD-related changes in its pro-
dromal or clinical stages (Fields et al.,
2011). A recently developed methodol-
ogy, namely short-term memory binding
(STMB, Parra et al., 2009, 2010, 2011),
is intrinsically related to brain networks
activation, and appears to be more promis-
ing for the preclinical detection of AD.
Binding functions, as originally investi-
gated in perception, require a large-scale
network integration mechanism (Varela
et al., 2001). In AD research, emerging evi-
dence suggests that binding impairments
occur at the short term memory level.
STMB is a cognitive function responsi-
ble for retaining, on a temporary basis,
intra-item features thus contributing to
the formation of objects’ identity. It has
been recently assessed with a change detec-
tion tasks, which ask participants to judge
whether the content of two consecutive
arrays of shapes, colors or shape-color
combinations is the same or different.
STMB is impaired early in AD (Parra
et al., 2009) and also in preclinical famil-
ial AD (Parra et al., 2010, 2011), pre-
served in healthy aging (Brockmole et al.,
2008), and declines earlier in AD than in
other dementias (Della Sala et al., 2012).
Moreover, STMB seems to be indexing a
pre-hippocampal phase of AD (Reiman
et al., 2010) and recruits other regions
(Parra et al., 2014). Thus, a combination of
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both neural (DMN) and cognitive (STMB)
integration processes may contribute an
early and specific marker of AD pro-
gression. A new research agenda linking
resting brain dynamics (DMN) with an
active task which (1) relies on neural net-
work integration and (2) is highly spe-
cific and sensitive for AD, would represent
a powerful approach to the early detec-
tion of AD. Importantly, the resting and
active connectivity measures drawn from
this novel approach can be tracked both
with neuroimaging (fMRI) and electro-
magnetic methods (EEG and MEG).

STMB tasks are well suited to be tracked
with EEG or MEG measurement (Luria
and Vogel, 2011; Wilson et al., 2012).
Typically, the temporal dynamic of the
integrative functions assessed by this task
would be in the order of milliseconds.
These techniques can capture the evoked
responses and their neural connections
during the whole process of STMB. This
task also provides several advantages for
EEG/MEG procedures such as high num-
ber of trials, stimuli-evoked activity pre
and post memory binding process, tempo-
ral sequencing, and categories with differ-
ent levels of difficulty.

Notwithstanding the adequacy of the
task’s parameters for EEG/MEG record-
ings, the question of why techniques
with low spatial resolution should be
considered instead of neuroimaging meth-
ods stands out. Several factors support
this selection. First, high-density elec-
troencephalography (hd-EEG) and other
electromagnetic techniques permit an
easy, low-cost, non-invasive, and acces-
sible approach for large-scale multisite
studies around the world. Second, high
density EEG/MEG technologies have
provided an increased spatial resolu-
tion of fine temporal dynamics both at
the analytical (mathematical methods)
and technical (high number of chan-
nels, photometry methods, and individual
MRI co-recordings) level, making them
more suitable to investigate AD-related
changes. Third, EEG/MEG techniques
have proven useful for characterizing AD
and also for detecting changes in preclin-
ical familial AD and MCI (Jackson and
Snyder, 2008; Stam, 2010). For example,
source EEG functional network disrup-
tion in AD is associated with cognitive
decline (Gianotti et al., 2007; Ishii et al.,

2010) (see (Kurimoto et al., 2008; Hsiao
et al., 2013) for similar results in MCI),
APOE genotype (Canuet et al., 2012) and
differentiates between other dementias
(Babiloni et al., 2004). Moreover, loss of
interregional synchronization between dif-
ferent functional brain regions also reflects
cognitive decline in AD (De Haan et al.,
2012). Furthermore, the EEG/MEG based
connectivity analysis (EMCA) can also be
used to track the effect of medication on
AD (Babiloni et al., 2006; Gianotti et al.,
2008).

There are other direct advantages of
using EMCA. The theoretical frame of
interdependence between spontaneous
and evoked neuroelectric oscillations in
terms of frequency and phase reset has
been forwarded earlier (e.g., by Basar’
group in the eighties). Nevertheless, over
the last 10 years, a real increase in technical
and mathematical sophistication in EMCA
has produced new research possibilities
with practical applications (Basar et al.,
2013; Larson-Prior et al., 2013). Regarding
brain global properties, current graph
theoretical network studies of the brain
have shown a self-organized small-world
network characterized by a combination
of focal connectivity and long-distance
connections. Graph theory is one of the
most powerful forms of connectivity anal-
ysis for AD (Pievani et al., 2011; Tijms
et al., 2013), and it can be correctly imple-
mented with EEG/MEG signals (e.g., Stam
and Van Straaten, 2012; Barttfeld et al.,
2013). Regarding time dynamics, differ-
ent networks are orchestrated in our brain
in time windows of milliseconds and the
connectivity within and between them is
not a static process. Our brain has rapid
rhythms that allow for communication
between different regions at several fre-
quencies. The high time-resolution of
intracranial signals from EEG sources
can be quantified by coherence and phase
synchronization, two methods that have
proved informative in AD (Czigler et al.,
2006; Knyazeva et al., 2012). Moreover,
recent methods provide a better charac-
terization of the physiological signal with
better spatial location and provide solu-
tions for classical problems of volume
conduction (Pascual-Marqui et al., 2011).
They also permit the comparison of spon-
taneous and stimulus-induced activations
and the identification of commonalities

between them (Lehmann et al., 2010).
Moreover, oscillatory neuronal dynamics
in the human brain using connectivity
analysis of source estimated event-related
synchronization at different frequen-
cies is now an available method (Ishii
et al., 2013). Transient momentary events
(e.g., thoughts) in electromagnetic signals
might be incorporated in temporal chunks
of processing (10–100 ms) as quasi-stable
brain states (Lehmann et al., 2006). In
brief, EMCA can track the brain dynamic
of rapid fluctuations (Barttfeld et al., 2014)
and also of transient activity during very
short periods, especially those supporting
binding or transient integration.

Thus, assessing the combination of
basal resting state influences together with
the ongoing activity during a task and
its evoked neural response may allow
for investigation and characterization of
preclinical AD-related changes in brain
dynamics. This novel approach offers new
possibilities to better understand the cog-
nitive binding problem in the course of
AD as well as the dynamics of corti-
cal integration. This research proposal
also requires tackling several methodolog-
ical and empirical challenges. Although
promising, current methods for combin-
ing connectivity measures during ongo-
ing activity and evoked responses do not
yet fully capture the single trial dynamics.
The potential use of connectivity metrics
as predictor of patients’ clinical outcome
is not well understood at present. No
single study using EMCA to assess AD
or MCI patients has combined active
and resting recordings and the analysis
of source connectivity using individual
MRI. We believe this combined approach
would disclose unknown AD mechanisms.
The research growth in these domains
of cognitive neuroscience will offer sup-
port to key strategies such as combining
STMB and EMCA to provide a neurocog-
nitive marker for the preclinical detec-
tion of AD. In support to this proposal,
recent neuroimaging studies carried out
in cases of preclinical familial AD have
revealed a temporal proximity between
the onset or appearance of STMB deficits
and amyloid-β deposition. By the average
age at which amyloid-β depositions reach
a plateau (Fleisher et al., 2012), STMB
deficits become detectable behaviorally
(Parra et al., 2010). It is worth noticing
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that these mutation carriers would be
otherwise completely asymptomatic. This
evidence warrants investigation of the
hypothesis of a link between connectiv-
ity problems as assessed by STMB and
EMCA and neurodegenerative changes in
AD. Such research would shed further light
into the link, or lack thereof, between amy-
loid changes, cognition and AD.
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In this review, we introduced our three studies that focused on facial movements. In
the first study, we examined the temporal characteristics of neural responses elicited by
viewing mouth movements, and assessed differences between the responses to mouth
opening and closing movements and an averting eyes condition. Our results showed that
the occipitotemporal area, the human MT/V5 homologue, was active in the perception of
both mouth and eye motions. Viewing mouth and eye movements did not elicit significantly
different activity in the occipitotemporal area, which indicated that perception of the
movement of facial parts may be processed in the same manner, and this is different
from motion in general. In the second study, we investigated whether early activity in the
occipitotemporal region evoked by eye movements was influenced by the facial contour
and/or features such as the mouth. Our results revealed specific information processing
for eye movements in the occipitotemporal region, and this activity was significantly
influenced by whether movements appeared with the facial contour and/or features, in
other words, whether the eyes moved, even if the movement itself was the same. In
the third study, we examined the effects of inverting the facial contour (hair and chin) and
features (eyes, nose, and mouth) on processing for static and dynamic face perception.
Our results showed the following: (1) In static face perception, activity in the right fusiform
area was affected more by the inversion of features while that in the left fusiform area was
affected more by a disruption in the spatial relationship between the contour and features;
and (2) In dynamic face perception, activity in the right occipitotemporal area was affected
by the inversion of the facial contour.

Keywords: MEG, facial movements, MT/V5, fusiform area, occipitotemporal area

INTRODUCTION
The “Face” provides much important information in our daily
lives. Many studies on face perception that used microelectrodes
on monkeys and humans detected face-specific neurons in the
temporal cortex, mainly in the superior temporal sulcus (STS),
and convexity of the inferior temporal (IT) cortex. Face percep-
tion processes have been reported in psychological studies (e.g.,
Bruce and Young, 1986), and many studies have examined the
mechanisms underlying human face perception in detail using
neuroimaging methods, including electroencephalography (EEG)
recorded from the scalp (event-related potentials, ERPs) and cor-
tical surface (electrocorticography, ECoG), magnetoencephalog-
raphy (MEG), functional magnetic resonance imaging (fMRI),
and near infrared spectoroscopy (NIRS).

Two important factors for face perception are static face per-
ception and facial movement perception. The fusiform gyrus in
the IT area may be specific to static face perception. A negative
ERP component, being maximum at approximately 170 ms, is
evoked by face stimuli in the bilateral temporal area. This has
been referred to as N170. N170 is known to be larger for the face
than for other objects (for example, a car and chair), and this
reflects face perception (e.g., Rossion and Jacques, 2008). In ECoG
studies, a negative component (N200) was detected in the small

regions in the fusiform and IT gyrus evoked by faces but not by
other stimuli (Allison et al., 1994a,b). The ECoG can been used
to investigate the temporal and spatial aspects of the mechanisms
responsible for face in detail, but it is an invasive method. MEG
also has high temporal and spatial resolutions, and it is a non-
invasive method. Therefore, MEG is useful to investigate face
perception in normal volunteers. In MEG studies, a component
was found to be evoked by the face, M170, which corresponded
to N170 in EEG studies, and its activity was estimated to be
in the fusiform area (e.g., Watanabe et al., 1999; Halgren et al.,
2000). In fMRI studies with a very high spatial resolution, the
fusiform face area (FFA) was identified in the fusiform gyrus and
is selectively involved in the perception of faces (Kanwisher et al.,
1997).

Recognizing facial movements is very important in addition to
recognizing the static face, for example, in social communication
and non-language communication. In monkeys, a neuronal pop-
ulation in the anterior superior temporal polysensory area (STPa)
responded selectively to the motion of animate objects, including
bodies and faces (e.g., Oram and Perrett, 1994). In recent monkey
studies using fMRI, a different pattern was observed in the ante-
rior STS, which responded more to dynamic than static faces, but
was not sensitive to dot motion (Furl et al., 2012).
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Many human studies have been conducted on static face
perception, whereas a smaller number of studies have investi-
gated facial movement perception using non-invasive neuroimag-
ing methods. In fMRI studies, the STS in addition to MT/V5,
which is considered to play an important role in motion per-
ception, was activated when facial movement was viewed (Puce
et al., 1998; Schultz and Pilz, 2009). In ERP studies (Wheaton
et al., 2001; Thompson et al., 2002; Puce and Perrett, 2003;
Puce et al., 2003), the amplitude of N170 in the occipitotem-
poral area evoked by facial (mouth) movement with a line-
drawn face was larger than that evoked by general motion
with a spatially “scrambled” line-drawn face. In a recent event-
related spectral perturbations (ERSPs) study, occipitotemporal
beta and gamma activities differentiated between facial and
non-facial motion (Rossi et al., 2014). In our previous MEG
studies (Watanabe et al., 2001; Miki et al., 2004, 2007), the
activities by eyes and mouth movements of the occipitotempo-
ral area, corresponding to human MT/V5, was different from
movements in general. Consistent with our findings, a recent
MEG study reported that cortical responses to eye blinks were
clearly differently than expected on the basis of simple physi-
cal characteristics (Mandel et al., 2014). Moreover, Ulloa et al.
(2014) reported that the initial gaze change elicited a signifi-
cantly larger M170 under the deviated than mutual attention
scenario.

Based on previous studies, we determined (1) whether process-
ing of the perception of facial movements was specific and differ-
ent from motion in general; (2) what information within the face
was important to the processing of facial movement perception if
this processing was specific; and (3) whether the right hemisphere
played a more important role in facial movement perception
than the left. Since we previously studied brain activities evoked
by viewing various types of human facial movements based on

our hypothesis, we herein introduced three representative studies:
(a) Magnetoencephalographic study of occipitotemporal activ-
ity elicited by viewing mouth movements (Miki et al., 2004);
(b) Effects of face contour and features on early occipitotemporal
activity when viewing eye movement (Miki et al., 2007); and
(c) Effects of inverting contour and features on processing for
static and dynamic face perception: an MEG study (Miki et al.,
2011).

MAGNETOENCEPHALOGRAPHIC STUDY OF
OCCIPITOTEMPORAL ACTIVITY ELICITED BY VIEWING
MOUTH MOVEMENTS
Facial movements are useful for social communication in
humans. For example, the direction of the eye gaze is used to
assess the social attention of others, and moreover, it becomes
markedly easier to understand speech when we can see the mouth
movements of the speaker. In a previous MEG study (Watanabe
et al., 2001), a specific region for the perception of eye movements
was detected within the occipitotemporal area, corresponding to
human MT/V5, and this was different from motion in general. We
hypothesized that the perception of the movement of facial parts
may also be processed in a similar manner, which is different from
motion in general. Therefore, the main objectives of the first study
were to examine the temporal characteristics of the brain activity
elicited by viewing mouth movements (opening and closing), and
compare them to those of eye aversion movements and motion in
general.

Seventeen right-handed adults (4 females, 13 males: 24–43
(mean age 32.2) years) with normal or corrected visual acuity
participated in this study. We used apparent motion, in which the
first stimulus (S1) was replaced by a second stimulus (S2) with no
inter-stimulus interval as follows (Figure 1):

FIGURE 1 | Examples of the stimulus conditions. (1) M-OP: the mouth is opening, (2) M-CL: the mouth is closing, (3) EYES: the eyes are averted, and (4)
RADIAL: a radial stimulus moving inward (adopted from Miki et al., 2004).
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1. M-OP: The mouth is opening.
2. M-CL: The mouth is closing.
3. EYES: The eyes are averted.
4. RADIAL: A radial stimulus moving inward.

A large clear component, 1M, was elicited by all conditions
(M-OP, M-CL, EYES, and RADIAL) within 200 ms of the stim-
ulus onset (Figure 2). Concerning the peak latency of 1M, the
means and standard deviations were 159.8 ± 17.3, 161.9 ± 15.0,
161.2 ± 18.9, and 140.1 ± 18.0 ms for M-OP, M-CL, EYES
and RADIAL in the right hemisphere, respectively, and 162.4 ±

11.6, 160.9 ± 9.8, 164.6 ± 14.2, and 138.4 ± 9.0 ms for M-OP,
M-CL, EYES, and RADIAL in the left, respectively. The latency for
RADIAL was significantly shorter than that for the facial motion
conditions (p < 0.05). No significant differences were observed in
1M latency between M-OP, M-CL, or EYES.

We used a multi-dipole model, brain electric source anal-
ysis (BESA; Scherg and Buchner, 1993) (Neuroscan, McLean,
VA) computation of theoretical source generators in a three-
layer spherical head model, and estimated activity in the occip-
itotemporal area, the human MT/V5 area homologue, from
1M. The means and standard deviations of the dipole moment
of the estimated dipoles from 1M was 7.9 ± 1.9, 7.8 ± 3.2,
10.0 ± 6.8, and 13.8 ± 4.9 nAm for M-OP, M-CL, EYES,
and RADIAL in the right hemisphere, respectively, and 7.4 ±

2.8, 6.7 ± 3.0, 9.3 ± 4.3, and 13.6 ± 1.8 nAm for M-OP,

FIGURE 2 | Right hemisphere MEG activity shown in a 37-channel
superimposed display for all conditions in a representative subject
(adopted from Miki et al., 2004).

M-CL, EYES, and RADIAL in the left, respectively. No signifi-
cant differences were observed in the dipole moment (strength)
for M-OP, M-CL and EYES between either hemisphere. How-
ever, M-OP and M-CL were significantly smaller than RADIAL
(p < 0.05) in the right hemisphere and M-OP, M-CL, and
EYES were significantly smaller than RADIAL (p < 0.05) in
the left.

The results of the first study indicated that the occipitotem-
poral (human MT/V5) area was active in the perception of both
mouth and eye movement. Furthermore, viewing mouth and eye
movements did not elicit significantly different activity in the
occipitotemporal (human MT/V5) area, which suggested that the
perception of the movement of facial parts may be processed in
the same manner, and this is different from motion in general.

EFFECTS OF FACE CONTOUR AND FEATURES ON EARLY
OCCIPITOTEMPORAL ACTIVITY WHEN VIEWING EYE
MOVEMENT
The first study showed that the perception of the movement of
facial parts may be processed in the same manner, and this is
different from motion in general. However, the main factor(s)
causing differences in recognizing facial versus general movement
have yet to be elucidated in detail.

Many studies have investigated effect facial contour and fea-
tures using a static face. A previous study reported that it took
longer to recognize an eyes-only stimulus or only facial features
(eyes, nose, and mouth) than a full-face stimulus with a contour
(e.g., Watanabe et al., 1999), and the contour of the face is
important in static face recognition. However, to the best of our
knowledge, the effects of the facial contour and features on facial
movement recognition have not yet been investigated. Therefore,
the main objectives of the second study were to investigate the
effects of facial contour and features on early occipitotemporal
activity evoked by facial movement. We also used a schematic
face because a simple schematic drawing with a circle for a
contour, two dots for eyes, and a straight line for lips, was
recognized as a face even though each individual component of
the drawing by itself was not. Previous studies using a schematic
face showed that N170 was evoked by schematic faces as well as
photographs of real faces (Sagiv and Bentin, 2001; Latinus and
Taylor, 2006).

Thirteen right-handed adults (6 females, 7 males: 24–46
(means; 33.6) years) with normal or corrected visual acuity par-
ticipated in this study. We used apparent motion and presented
the following four conditions (Figure 3):

1. CDL: A schematic face consisting of a facial Contour, two Dots,
and a horizontal Line.

2. CD: The Contour and two Dots.
3. DL: Two Dots and a horizontal Line.
4. D: Two Dots only.

Subjects described the simple movement of dots for D, whereas
eye movement for CDL, CD, and DL, though movement modali-
ties were the same for all conditions. In source modeling, we used
a single equivalent current dipole (ECD) model (Hämäläinen
et al., 1993) within 145–220 ms of the stimulus onset.
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FIGURE 3 | Examples of the stimulus conditions. (1) CDL: schematic
face consisting of a Contour, two Dots, and a horizontal Line, (2) CD: the
Contour and two Dots, (3) DL: two Dots and a horizontal Line, and (4) D:
two Dots only (adopted from Miki et al., 2007).

Clear MEG responses were elicited in all conditions (CDL, CD,
DL, and D) at the sensors in the bilateral occipitotemporal area
(Figure 4). The means and standard deviations of the peak latency
of the estimated dipole was 179.3 ± 26.3, 183.0 ± 16.9, 180.9 ±

20.8, and 180.3 ± 23.7 ms for CDL, CD, DL, and D in the right
hemisphere, respectively, and 180.2 ± 14.9, 180.5 ± 24.8, 174.0 ±

24.9, and 177.7 ± 20.3 ms for CDL, CD, DL, and D in the left,
respectively. No significant differences were observed among any
condition.

The means and standard deviations of the dipole moment was
14.4 ± 6.2, 11.2 ± 7.9, 9.6 ± 6.5, and 10.3 ± 5.3 nAm for CDL,
CD, DL, and D in the right hemisphere, respectively, and 12.7 ±

6.7, 11.1 ± 6.1, 9.6 ± 5.4, and 8.9 ± 5.5 nAm for CDL, CD, DL,
and D in the left, respectively. The moment was significantly larger
for CDL than for CD (p < 0.05), DL (p < 0.01), and D(p < 0.01)
in the right hemisphere, and for CDL than for DL and D (p <

0.01) in the left hemisphere.
Our results in the second study demonstrated specific infor-

mation processing for eye movements, which was different from
motion in general, and activity in the occipitotemporal (human
MT/V5) area related to this processing was influenced by whether
movements appeared with the contour and/or features of the face.

EFFECTS OF INVERTING CONTOUR AND FEATURES ON
PROCESSING FOR STATIC AND DYNAMIC FACE
PERCEPTION: AN MEG STUDY
The second study showed that the activity evoked in the occip-
itotemporal area by eye movements was influenced by the exis-
tence of the contour and/or features of the face. However, it
remained unclear whether this activity was influenced by the
orientation of the contour and/or features of the face.

In static face perception, the N170 component was longer and
larger for an inverted face than for upright face (Bentin et al.,
1996; Sagiv and Bentin, 2001; Itier and Taylor, 2004; Latinus and
Taylor, 2006), which indicated that N170 was affected by inversion
of the face, i.e., the face inversion effect. In addition, the latency
of N170 was longer for scrambled features than for upright faces
(George et al., 1996; Latinus and Taylor, 2006), which confirmed
that N170 was affected by a disruption in the spatial relation
between the facial contour and features.

FIGURE 4 | The waveforms recorded from 204 gradiometers of a
representative subject following the S2 onset (eye movements) in the
CDL condition. R: representative waveforms at sensor R in the right
hemisphere of the upper image. L: representative waveforms at sensor L in
the left of the upper image. Black arrows are the S2 onset. White arrows
indicates the main response after the S2 onset (adopted from Miki et al.,
2007).

Based on the findings of previous N170 studies on static face
perception, we hypothesized that the perception of eye move-
ments may mainly be affected by information on the contour
and other facial features. Therefore, the main objectives of the
third study were to investigate the effects of inverting the facial
contour and features on the occipitotemporal (human MT/V5)
area related to a dynamic face and what information within
the face was important for processing dynamic face perception.
We also investigated the effects of inverting the facial contour
and features of the face on the fusiform area related static face
perception to compare with the occipitotemporal area.

We recruited 10 right-handed adults (3 females and 7 males:
24–47 (means; 30.6) years) with normal or corrected visual acuity.
We used apparent motion and presented the following three
conditions (Figure 5):
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FIGURE 5 | Examples of the stimulus conditions. (1) U&U: upright contour
(hair and chin) and Upright features (eyes, nose, and mouth), (2) U&I: upright

contour and Inverted features, and (3) I&I: inverted contour and Inverted
features (adopted from Miki et al., 2011).

1. U&U: Upright contour and Upright features.
2. U&I: Upright contour and Inverted features. In the U&I

condition, the spatial relationship between the facial contour
and features was disrupted, and this was different from U&U
condition.

3. I&I: Inverted contour and Inverted features. In the I&I con-
dition, the spatial relationship between the facial contour and
features was unchanged, which was also the case for the U&U
condition.

The eyes were averted to the right of the viewer under all
conditions.

As in the second study, we used a single ECD model
(Hämäläinen et al., 1993) and estimated the dipole within 105–
200 ms of the S1 onset (static face) and 115–210 ms of the S2
onset (eye movements).

In static face perception (S1 onset), ECDs were estimated to lie
in the fusiform area from MEG following S1 in all conditions.

The means and standard deviations of the peak latency in
activity in the fusiform area was 133.6 ± 18.5, 148.4 ± 22.4, and
151.4 ± 24.1 ms for U&U, U&I, and I&I in the right hemisphere,
respectively, and 143.2 ± 19.7, 162.2 ± 21.0, and 148.4 ± 13.6 ms
for U&U, U&I, and I&I in the left, respectively. Latency was
significantly longer for U&I (Upright contour and Inverted fea-
tures) (p < 0.05) and I&I (Inverted contour and Inverted features)

(p < 0.05) than for U&U in the right hemisphere, and also for
U&I than for U&U (p < 0.01) and I&I (p < 0.05) in the left
(Figure 6).

The means and standard deviations of the strength (the max-
imum of the dipole moment) of activity in the fusiform area was
28.6 ± 21.1, 35.5 ± 18.5, and 34.4 ± 18.5 nAm for U&U, U&I,
and I&I in the right hemisphere, respectively, and 21.9 ± 13.5,
20.3 ± 11.8, and 21.9 ± 14.5 nAm for U&U, U&I, and I&I in the
left, respectively. No significant differences were observed in the
maximum of the dipole moment among the three conditions.

In dynamic face perception (S2 onset), ECDs were estimated
to lie in the occipitotemporal area, the human MT/V5 area
homologue, from MEG following S2 in all conditions.

The means and standard deviations of the peak latency of
activity in the occipitotemporal area was 163.8 ± 31.3, 159.4 ±

22.3, and 159.7 ± 25.1 ms for U&U, U&I, and I&I in the right
hemisphere, respectively, and 151.6 ± 22.1, 157.8 ± 24.4, and
151.7 ± 23.8 ms for U&U, U&I, and I&I in the left, respectively.
No significant differences were observed in the peak latency
among the three conditions.

The means and standard deviations of the strength (the max-
imum of the dipole moment) of activity in the occipitotemporal
area was 11.3 ± 4.6, 11.5 ± 4.8, and 15.1 ± 5.9 nAm for U&U,
U&I, and I&I in the right hemisphere, respectively, and 9.6 ± 3.7,
10.0 ± 5.6, and 8.8 ± 4.6 nAm for U&U, U&I, and I&I in the left,

FIGURE 6 | Bar graphs of peak latency for all conditions after S1 onset in the right and left hemispheres. Error bars show the standard deviation (S.D.).

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 550
93

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Miki and Kakigi MEG study on facial movements

FIGURE 7 | Bar graphs of dipole moment for all conditions after S2 onset in the right and left hemispheres. Error bars show the standard deviation (S.D.).

respectively. The maximum of the dipole moment was larger for
I&I than for U&U and U&I in the right hemisphere (p < 0.01),
but not the left (Figure 7).

The results of the third study indicated the following: (a) con-
sidering the fusiform area related to static face perception, activity
was affected more by the inversion of features in the right hemi-
sphere while it was affected more by a disruption in the spatial
relationship between the facial contour and features in the left
hemisphere; and (b) considering the occipitotemporal (human
MT/V5) area related to dynamic face perception, activity was
affected by the inversion of the facial contour in the right, but not
in the left hemisphere.

SUMMARY AND CONCLUSION
In our three studies, we focused on activity in the occipitotem-
poral area, the human MT/V5 homologue, related to facial parts
movement. We summarized our results as followings: (1) viewing
mouth and eye movements did not elicit significantly different
activity in the occipitotemporal area; (2) neuronal activities in
the occipitotemporal area evoked by facial (eye) movements were
affected by whether the contour and/or features of the face were
in the stimulus; (3) the activity of the right occipitotemporal area
evoked by facial (eye) movements was affected by the inversion
of the facial contour, and these results indicated the following:
(1) processing of the perception on facial movements is specific
and is different from motion in general; (2) the existence of
the facial contour and face parts are important factors in the
perception of facial movements; (3) the orientation of the contour
and spatial relationship between the contour and facial parts are
also important; and (4) the right occiptiotemporal area is more
important in the perception of the facial movements than the
left. Based on the results of the three experiments, it still remains
unclear how the transmission of facial movement processing was
modulated by facial form information.

Connectivity models that modeled communication between
the ventral form and dorsal motion pathways were tested in a
recent fMRI study related to perception of dynamic faces (Furl
et al., 2014), and the findings obtained clearly showed that facial
form information modulated the transmission of motion from

V5 to the STS. Based on these findings, we hypothesized that
information on the facial contour and parts, transmitting via
FFA and/or OFA (occipital face area), may gate the transmis-
sion of information regarding facial motion via MT/V5, and
that facial form and motion information may have been inte-
grated in the STS. We consider these results and hypothesis to
be useful for investigating the functional roles of human brain
connectomes and also provide an insight into facial movement
processes.
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