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Editorial on the Research Topic

Pathogenesis, treatment, and future directions for rare T-Cell leukemias
Mature T-cell leukemias represent rare, but increasingly recognized diseases of

which, compared to their B-cell counterparts, comparatively little is established on

their pathogenesis, diagnosis, and treatment. These leukemic post-thymic T-cell

neoplasms range from the spectrum of chronic, sometimes debilitating disorders such

as T-large granular lymphocytic leukemia (T-LGLL), and related leukemias such as NK-

LGLL, to more aggressive malignancies such as T- prolymphocytic leukemia (T-PLL). In

this series, entitled ‘Pathogenesis, Treatment, and Future Directions for Rare T-cell

Leukemias’ we review the current state of the science of these important T-cell neoplasms

to inform on their treatment, diagnosis, and pathophysiology.

First, in the review by El-Sharkawi et al., the diagnosis of T-cell leukemias is appraised

in detail, with a practical guide to the spectrum of T-cell leukemias. Subsequently, the

series can be divided between different reports on T-PLL and T-LGLL, with one paper by

Yin et al., evaluating the prognostic importance of genomic mutations in patients with

(immature) T-cell acute lymphoblastic leukemia.

Two papers review our current understanding of the pathogenesis and management

of T-PLL. In the review by Braun et al., the authors summarize the known pathogenetic

data of T-PLL and propose an intriguing model using the key molecular drivers of T-PLL

to inform future translational approaches. In the second review by Varadarajan and

Ballen, the authors describe the current state of cellular therapies, including allogeneic
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stem cell transplantation and emerging novel strategies to treat

T-PLL that will guide clinicians as they seek to provide curative

therapies for these patients.

A key focus of this series is on T-LGLL in which 7 papers,

ranging from original data and cases series to cross-disciplinary

reviews, provide a perspective on the current understanding of

this disease. Drillet et al., review recent data on the diagnosis of

NK-LGL, and provide a classification system that will likely serve

as the standard for categorizing this rare leukemia for future

investigations. Cytokines are integral in the biology of T-LGLL,

and Isabelle et al., provide the most comprehensive review of

cytokines and their contribution to T-LGLL pathogenesis to

date. T-LGLL often overlaps with autoimmune disorders, such

as rheumatoid arthritis (RA), hence, providing a fascinating

opportunity to explore the intersection between cancer and

autoimmunity, with important implications for the

management of both. In the review by Couette et al., the

authors evaluate the pathogenesis of T-LGLL, particularly as it

relates to cytokines and key molecular pathways in a broad array

of autoimmune diseases. In a focused review evaluating the

intersection between RA and LGLL, Moosic et al., outline the

current understanding of the mechanistic links between RA and

LGLL. In two reports by Pflug et al., and Schreiber et al., the

authors present illustrative case catalogues of T-LGLL, with a

focus on diagnosis and cross-disciplinary management of these

often complex patients, with a review of current treatment

strategies. Finally, in an original report by Braunstein et al.,

the authors present the largest series of patients with

concomitant plasma cell dyscrasias and T-cell malignancies,

including T-LGLL to date, raising awareness of these co-

incident disorders, with important recommendations on the

management of these diseases.

This Research Topic represents the current state-of-the art

understanding of mature T-cell leukemias, with a focus on T-

PLL and T-LGLL. The knowledge gained from recent

investigations into these diseases has led to increased interest

not only amongst lab-based and clinical researchers, but also

among pharmaceutical companies to address these rare

malignancies. In T-PLL, this has manifested in the work of the

T-PLL International Study Group (TPLL-ISG), that is leading

the development of novel clinical trials based on the current

understanding of the pathogenesis of T-PLL, as outlined in the

review by Braun et al. This group has recently published

consensus criteria on the diagnosis and treatment responses

for this disease, an important step in developing trials for T-PLL

(1). In fact, several trials are currently enrolling for patients with

T-PLL and target the pathways described in the review by Braun

et al., (NCT04496349, NCT03989466). Similarly, in T-LGLL,

there has been renewed interest in developing novel

therapeutics, given the modest efficacy of current immune-

suppressive therapies. In particular, research has targeted the

cytokine IL-15, as this is thought to be the central cytokine that
Frontiers in Oncology 02
6

drives the pathogenesis of T-LGL as was elegantly outlined in the

reviews by Isabelle et al. and Couette et al. A recently completed

phase I/II study utilized the selective cytokine inhibiting peptide

BNZ-1 in T-LGLL patients, and reported clinical efficacy and

near-universal apoptosis of in vivo T-LGLL cells, demonstrating

the cytokine dependence of T-LGLL (2). Further, using an

alternate approach targeting IL-15, the only currently enrolling

prospective trial in the United States (NCT05141682) uses the

hypomethylating agent CC-486 to treat patients with T-LGLL

based on data demonstrating its efficacy in decreasing IL-15 (3).

Using these approaches and others, we hope that significant

progress can be made in treating this rare disease.

Finally, the editors wish to thank all who contributed to this

important Research Topic. It is our sincere hope that this

Research Topic will help to educate and inspire the

development of innovative treatment approaches in these rare

diseases that will impact patient outcomes.
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T-cell prolymphocytic leukemia (T-PLL) is the most common mature T-cell leukemia. It is a
typically aggressively growing and chemotherapy-resistant malignancy with a poor
prognosis. T-PLL cells resemble activated, post-thymic T-lymphocytes with memory-
type effector functions. Constitutive transcriptional activation of genes of the T-cell
leukemia 1 (TCL1) family based on genomic inversions/translocations is recognized as
a key event in T-PLL’s pathogenesis. TCL1’s multiple effector pathways include the
enhancement of T-cell receptor (TCR) signals. New molecular dependencies around
responses to DNA damage, including repair and apoptosis regulation, as well as
alterations of cytokine and non-TCR activation signaling were identified as perturbed
hallmark pathways within the past years. We currently witness these vulnerabilities to be
interrogated in first pre-clinical concepts and initial clinical testing in relapsed/refractory T-
PLL patients. We summarize here the current knowledge on the molecular understanding
of T-PLL’s pathobiology and critically assess the true translational progress around this to
help appraisal by caregivers and patients. Overall, the contemporary concepts on T-PLL’s
pathobiology are condensed in a comprehensive mechanistic disease model and
promising interventional strategies derived from it are highlighted.

Keywords: T-PLL, clonal evolution, pathogenesis, TCL1A, ATM
INTRODUCTION

T-cell prolymphocytic leukemia (T-PLL) is an aggressive peripheral T-cell malignancy (1) and
represents the most commonmature T-cell leukemia inWestern countries (incidence ≈ 2.0/million/
year) (2). Patients suffering from T-PLL typically present with exponentially rising white blood cell
counts, (hepato-) splenomegaly, and small-node lymphadenopathy. CNS involvement has been
described as a severe clinical manifestation in a minority of T-PLL (<5% of cases) (3, 4). The rapidly
expanding and chemotherapy-refractory course is reflected by a median overall survival from
diagnosis of less than 3 years (5, 6). Up to now, the humanized CD52-antibody alemtuzumab is the
only substance that induces acceptably high response rates, (in >80% of patients at first line).
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Notably, nearly all patients relapse within 2 years after
alemtuzumab, with very limited options to salvage (4, 7).

First described in 1973 (8), the diagnosis of T-PLL was mainly
based on cytomorphological characteristics (6). In the following
decades, the pathogenetic concept of T-PLL was centered around
cytogenetic abnormalities. Inversions or translocations of the
TCL1A locus are the most common chromosomal aberrations
and are central in establishing the diagnosis of T-PLL (9). Within
the last 5-7 years, genomic and epigenomic studies have
remarkably expanded our pathogenetic understanding of T-
PLL. More recently, molecular hallmarks around perturbed
responses to DNA damage, including repair and apoptosis, as
well as alterations of cytokine signaling and epigenetic
deregulations, were identified as exploitable dependencies.
Here, we condense these novel advances in a comprehensive
mechanistic disease concept and highlight promising
interventional strategies that are being derived from it.
CELL OF ORIGIN CONCEPTS

In >95% of T-PLL, aberrant constitutive expression of the proto-
oncogenes TCL1A or MTCP1 by inversions or translocations are
observed that juxtapose the TCL1A (at 14q32.1) or MTCP1 (at
Xq28) loci to the 14q11.2 locus and by that under control of highly
active TRA gene enhancer elements. This prevents physiological
downregulation of TCL1A orMTCP1 and is considered the initial
event of T-PLL’s leukemogenesis (10). Both oncogenes have
shown their oncogenic potential in transgenic mouse models
(11–13). Under physiological conditions, expression of the
TCL1A oncogene is silenced in CD4/CD8 double-positive (dp)
thymocytes (14, 15). At this stage, rearrangements of the TRA
locus, encoding for the T-cell receptor (TCR) a-chain, take place
(16). Whole-genome sequencing and breakpoint analyses
identified that all T-PLL had a breakpoint involving
recombination signal sequences (RSS) of the J region of the TRA
locus. On the opposite side of the inversion/translocation,
breakpoints were more variable, but also involved classical or
cryptic RSS (17). In accordance with the finding that virtually all
T-PLL express the surface TCR complex (18), the other allele of
the analyzed T-PLL cases showed legitimate TRA rearrangements,
leading to the expression of a functional TCR (17). Together, these
findings suggest, that the aberrant TRA-TCL1A/MTCP1
rearrangements occur during the opening of the TRA locus at
the CD4/CD8 dp thymocyte stage in a RAG1/2 dependent manner
(17), followed by legitimate recombination of the locus on the
other allele. High TCL1A expression is associated with genomic
instability (19), thereby forming the basis for additional genomic
hits driving oncogenesis (9, 10). However, whether the illegitimate
rearrangement is the first hit in the pathogenesis of T-PLL is
uncertain. A preceding mono-allelic deletion or mutation of ATM,
which are highly recurrent in T-PLL cells, is possible as well. This
is supported by a high incidence of T-PLL in patients with
germline ATM defects as well as its involvement in the
regulation of monoallelic cleavage and genomic stability during
TRA recombination (20).
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STRUCTURAL GENOMIC ABERRATIONS

Complex karyotypes (≥3 structural or numerical cytogenetic
aberrations) are seen in ~70% of T-PLL and were associated
with a poorer prognosis (21). T-PLL genomes usually show
complex somatic DNA copy number alterations (CNA) in
array-based profiling (10, 21, 22). Generally, losses of
chromosomal regions are more frequent than gains. These
somatic CNA usually affect hundreds of genes in a patient and
are not closely associated with altered expression of the
respective genes, indicating additional modes of transcriptional
dysregulation beyond CNA. Besides the above-described
aberrations affecting genes of the TCL1 family, genomic losses
of chromosome 11q and gains of chromosome 8q are most
recurrently observed. Losses affecting chromosome 11 involve
the tumor suppressor ATM (11q22.3) as the minimally deleted
region (6, 10, 19, 21–30). This is implicated in T-PLL
development by dysregulation of proper DNA damage repair
as highlighted by more complex karyotypes in ATM deleted cases
(10). The genomic region encoding for the downstream effector
of ATM, p53, is only disrupted in a minority of T-PLL (10).
Gains of chromosome 8q can mainly be attributed to a trisomy of
8q, resul t ing from isochromosomes (8)(q10) (29) .
Overexpression of the proto-oncogene MYC (8q24.21) is not
strictly associated with the presence of 8q gains and vice versa.
Other genes like AGO2 at 8q24.3 are more frequently involved in
these 8q amplifications. Overexpression of AGO2, which
centrally regulates RNA interference, may additionally
contribute to T-PLL development (10).

At lower frequencies, genomic losses of chromosomes 6q, 8p,
12p, 13q, and 22q as well as genomic amplifications of 6p and
22q are observed in T-PLL cells (10, 21–23, 27). Up to now, the
underlying target genes of these structural aberrations and their
functional contributions have not been fully revealed. First
promising concepts could derive from a systems biology
approach (31). Genome-wide gene expression and copy
number profiles of T-PLL patients could be utilized to learn a
T-PLL specific gene regulatory network (32). Such a network
would allow to predict potential impacts of individual CNA on
known cellular signaling pathways or treatment response
signatures by network propagation (32), as demonstrated for
oligodendrogliomas (33) and prostate carcinomas (34). Thus,
more intensified efforts on integrating available genome-wide
data could help to identify new potential driver candidates and
their downstream targets in T-PLL.
THE MUTATIONAL PROFILE OF T-PLL

Besides the highly prevalent structural lesions involving the
oncogenes TCL1A, AGO2, and MYC, as well as in the tumor
suppressor ATM, various single-nucleotide variants (SNVs) were
linked to the molecular pathogenesis of T-PLL cells (10, 26, 35,
36). Generally, SNVs occur at similar rates in T-PLL as in other
hematologic and solid tumors (10). Most of these primarily somatic
SNVs seem to accumulate during T-PLL’s leukemogenesis in the
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context of high levels of oxidative damage and in the absence of
efficient repair mechanisms to counteract these hazards (10).
Fittingly, ATM, the central apical regulator of DNA integrity,
shows high rates of damaging SNVs, in addition to the above-
described partial inactivation by mono-allelic losses (10, 24, 26, 35–
38). These missense, nonsense, or frameshift mutations of ATM
mainly cluster within its FAT or PI3K domains (10).

Other frequently mutated genes in T-PLL are CHEK2,
SAMHD1, and MSH, which are also involved in DNA damage
repair mechanisms, which further supports a concept of T-PLL’s
incompetence in safeguarding mechanisms of repair or cell death
execution (10, 26, 35, 36). Remarkably, SAMHD1 and ATM
belong to the small fraction of genes, whose mutations show
variant allele fractions (VAFs) of more than 80% (10, 35),
suggesting acquisition of these lesions early in leukemogenesis.

Within the last decade, genomic aberrations affecting the
JAK/STAT signaling pathway emerged as an additional hallmark
of T-PLL (10, 26, 35, 36, 38–42). The JAK3 gene shows the
highest frequency of such gain-of-function mutations, followed
by STAT5 and JAK1 (43). These primarily missense mutations
target the conserved pseudokinase (JAK1, JAK3) or SH2 domains
(STAT5) in most T-PLL cases. Notably, SNVs affecting
components of the JAK/STAT signaling pathway occur at
relatively low VAFs, indicating their rather sub-clonal
character (10). However, the central role of deregulated JAK/
STAT signaling is substantiated by genomic losses of genes that
encode for negative regulators of this pathway (e.g.DUSP4, SOCS
genes) (43). Together with the high frequency of JAK/STAT gene
mutations, basal phosphorylation of distal STAT5 is observed in
virtually every T-PLL case (10, 43). In addition, the WNT as well
as the Notch signaling pathways, are disturbed by SNVs in a
minority of T-PLL cases (10, 26). Rare mutations further involve
cell cycle regulation (e.g. CDC27) and apoptosis regulation (e.g.
BCLAF1) (10).
THE TRANSCRIPTOMIC LANDSCAPE

Analyses of the transcriptome of T-PLL cells have been
performed intensively in bulk RNA samples, either by gene
expression arrays or by RNA sequencing (RNA-seq). In line
with rearrangements of the chromosome 14q, TCL1A was the
most upregulated gene in virtually every cohort (10, 35, 42, 44).
The other TCL1 family members, TCL1B and MTCP1, showed
additional overexpression, although to a lower extent (10). In
agreement with the gains at chromosome 8q, the proto-oncogene
MYC as well as the miR-processing regulator AGO2 showed
overexpression on mRNA level (10, 42). Highlighting the
importance of deregulated JAK/STAT signaling in T-PLL,
downstream targets of this pathway (e.g. BCL2L1) showed a
significant upregulation (42).

Among the genes with the most significantly altered
expression were those involved in TCR/cytokine signaling.
Prominent examples are downregulated CTLA4 and SLAMF6.
They are central mediators of immune signal transduction and
regulation of lymphocyte activation and we implicate their loss in
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the activated T-cell phenotype of the T-PLL cell (10, 18, 22).
Moreover, potential underlying causes for the inability of T-PLL
cells to undergo cell death upon DNA damage were identified in
their altered transcriptome: Pro-apoptotic genes (e.g. GIMAP5,
various Caspases) were significantly downregulated (10, 22).
Transcriptome studies can also be utilized to identify
individualized treatment options for T-PLL patients. In a first
case study, RNA-seq data were integrated with exome-seq and ex
vivo single-drug sensitivities, establishing a customized platform on
individual predictions of responses to drug combinations (39).
THE MIR-OME OF T-PLL CELLS

Recently, the miR-ome of T-PLL cells was analyzed by small
RNA-seq in two independent cohorts (44, 45). T-PLL cells
showed a global miR expression signature of ~35 significantly
deregulated miRs, resembling the miR expression profile of TCR-
activated healthy T-cells (45). By combining the small RNA-seq
with transcriptome sequencing data, regulatory networks
involving cell survival signaling and DNA repair pathways
were uncovered. In both cohorts, the miR-141/200c cluster
showed the strongest upregulation among all miRs and
separated T-PLL cases into two major subgroups with normal
vs. upregulated expression. Preliminary data revealed a role of
this cluster in TGF-b signaling (44) as well as in cell cycle
regulation (45). Further perturbations of miR expression
include overexpression of miR-223-3p and miR-181a/miR-181
as well as downregulation of the miR-21 and the miR-29 cluster.
The functional consequences of these deregulations have yet to
be demonstrated in T-PLL. Nevertheless, based on the expression
of miR-200a-3p, miR-223-3p, and miR-424-5p, a first overall
survival score for T-PLL (miROS-TPLL) was established and
might improve clinical stratifications (45).
EPIGENETIC ALTERATIONS

Gene set enrichment analyses of T-PLL transcriptomes identified
pathways of epigenetic regulation as significantly altered (10).
These findings were additionally highlighted by a high incidence
of mutations in epigenetic modifiers (e.g. EZH2, TET2, KMTs)
(10, 26, 35, 36). However, systematic analyses of DNA-
methylation, profiles of histone modifications, and states of
chromatin accessibility have not yet been published. First data
in a small cohort of T-PLL implicate massive epigenetic
reprogramming, as shown by genome-wide alterations of
chromatin states at promoters and active enhancers identified
via H3K4me3 and H3K27ac ChIP-seq (46). These alterations
correlated with changes in expression of frequently deregulated
genes (e.g. TCL1A, MYC, EZH2, AGO2), presenting additional
ways of their deregulation beyond the described genomic
aberrations. Vice versa, a role of TCL1A/MTCP1 activation
and/or ATM inactivation in epigenetic disturbances is also
conceivable (47, 48).
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THE MICROENVIRONMENT OF
T-PLL CELLS

Besides (epi)genetic changes, the dependence of leukemic cells
on signals from microenvironmental sources for proliferation
and survival has been shown for various entities, including T-cell
neoplasms (49). Such interactions are mediated by adhesion
molecules, cell surface ligands, chemokines, cytokines, and
their respective receptors (50). So far, little is known about the
(specific) micromilieu of T-PLL cells and how they shape it.
Upregulation of cytokines (e.g. TNF, IL-8), cytokine receptors
(e.g. CD25 (IL-2Ra), CD122 (IL-2Rb), CD124, or CD127), as
well as of chemokine receptors (e.g. CCR3 and CCR4) provide
first hints of a deregulated crosstalk between T-PLL and
bystander cells (18). Furthermore, mutations of chemokine
receptors (e.g. CXCR3) are described (10). The potential
proactive role of the micromilieu in T-PLL’s leukemogenesis is
further implicated by the secretion of the Th1-associated
cytokines IFN-g, IL-2, IL-10, TNF-a/b, and IL-8 of T-PLL cells
upon TCR stimulation (18). Mechanistic proof for an
involvement of CCR7 in the sustenance of T-PLL cell survival
derives from studies with CCR7-blocking antibodies. They
impaired survival signaling pathways in T-PLL cells in vitro
and increased the survival of mice transplanted with the T-PLL-
like cell line SUP-T11 (51). More work is required to study the
composition of T-PLL’s microenvironment (i.e. cell types and
humoral factors) and the involved molecular interactions.
ROLE OF THE T-CELL RECEPTOR

TCR signaling is the major growth regulatory system of T-cells. It
shapes their maturation, differentiation, and activation, hence their
effector and tolerogenic capacity (52, 53). Amplification of TCR
signaling represents a feature of many T-cell malignancies, although
generated by distinct mechanisms (54): (i) decreased input
thresholds for continuous exogeneous TCR activation, (ii)
autonomous activation of TCR-signaling intermediates, (iii)
downregulation of inhibitory coregulators, or (iv) stand-ins for
TCR signals, such as strong cytokine-inputs or their mimics, e.g.
via the ALK oncogene. T-PLL cells usually express at least one
surface component of the TCR/coreceptor complex and show
robust TCR-signal competence when stimulated ex vivo (9, 18).
Their gene expression profiles show prominent signatures of TCR
activation (10). Notably, TCL1A acts as a physically engaging
coactivator of TCR-kinases such as AKT, ZAP70, or ERK, and by
that is a TCR-signal enhancer, hence, a sensitizer towards low-
abundance signals. That places T-PLL into model (i) of the TCR-
centric pathogenetic view of T-cell neoplasms (18, 54).

Enhanced TCR signaling is further established in T-PLL cells
by impaired control mechanisms [model (iii)], e.g. by
downregulation of negative coregulators such as SLAMFs or
checkpoint molecules such as CTLA4 (10). The resulting
activated phenotype of T-PLL cells is additionally accompanied
by a TCL1A-mediated inability to execute FAS-mediated and
activation-induced cell death (18).
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In line with their TCR signaling competence, T-PLL cells
reveal a phenotype of mature, antigen-experienced, non-
conventional memory T-cells (18). As an underlying principle,
it is tempting to speculate that through enhanced TCR signaling,
the transition of naïve T-cells into an expanding pool of memory
T-cells is accelerated. The lack of a common TCR clonotype
across cases would indicate that not a specific antigen drives
TCR-mediated outgrowth in T-PLL (18, 55). More likely is an
MHC-dependent TCR activation through various low-avidity
(auto)antigens or antigen-independent tonic signals at place,
either MHC-driven or via TCR self-activation in enabled
memory T-cells. Although treatment strategies that target TCR
signaling intermediates have shown promising potential (56), the
TCR dependence of T-PLL cells at the overt leukemic stage is not
conclusively clarified.
DISCUSSION

Model of Clonal Evolution of T-PLL Cells
Recent advances in omics technologies over the last decade have
elevated the molecular understanding of T-PLL to another level
(Figure 1, Supplementary Table 1). Translocations and
inversions of chromosome 14q at the dp thymocyte stage are
perceived to initiate T-PLL’s leukemogenesis (10, 17). These
genomic aberrations lead to overexpression of the proto-
oncogenes TCL1A and MTCP1 and result in apoptotic
resistance and genomic instability (19). TCL1 family-activating
lesions form a functionally perturbing cooperation with
(preceding or subsequent) lesions that impair the tumor
suppressor ATM, which further incapacitate the T-PLL cell to
execute safeguarding responses (10). Likely, additional
perturbations are operational for this TCL1up/ATMdef leukemic
precursor to finally escape T-cell homeostatic control. These are
acquired by lesions that activate JAK/STAT signaling (43), by
miR (processing) deregulations (44, 45), by MYC amplification
(6, 10), and by deregulated epigenetic mechanisms (10, 36). To a
lesser degree we understand, on which central functional levels,
such as TCR- or cytokine signaling or autocrine forward-feeding
loops, these (epi)genetic events have a direct or less
immediate impact.

Overall, many questions of T-PLL’s pathogenesis remain
unresolved, like (i) the role of pro-survival signals of T-PLL’s
bystander cells, (ii) the dependence of T-PLL cells on their TCR
in clonal sustenance, (iii) the nature of T-PLL’s epigenome, and
(iv) the mechanisms of disease progression and treatment
resistance. Especially the latter aspect calls for single-cell
resolved analyses to illustrate clonal oscillations.

Clinical Implications Derived From the
Current Disease Model
The identification of key drivers of the molecular pathogenesis of
T-PLL offers the possibility for the development of new drugs
that target its crucial pathways. Here, central pathogenetic
relevance is likely not equivalent to a major vulnerability,
which requires more thorough interrogations. However, there
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is sound reason to be optimistic that we will soon see novel
strategies against T-PLL cells to become the basis for future
combinatorial therapies. Exemplarily, agents targeting TCR
signaling or the JAK/STAT pathway (18, 56) show encouraging
results, preclinically and/or in first case reports (57, 58). In
addition, the inability of T-PLL cells to induce adequate
responses to DNA insults was translated into therapeutic
strategies to reactivate p53 via MDM2/MDMx inhibitors or
targeting BCL2 family members (e.g. Venetoclax) (10, 59, 60).
There are ongoing activities in the search for efficacious
combinations of the, as single agent clinically only moderately
active Venetoclax, with other classes of inhibitors in relapsed/
refractory (r/r) T-PLL (59–62). In addition, epigenetic
disturbances of T-PLL cells further emphasize hypomethylating
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agents (e.g. Cladribine) as well as inhibitors of deacetylating
enzymes (e.g. Romidepsin) as options (10, 63, 64). Combining
these drugs, which target molecular vulnerabilities of T-PLL cells,
with the current standard therapy of alemtuzumab represents
another promising approach. Another challenge to be addressed
is the ‘purposing’ of the innate or adaptive immune system to
specifically attack T-PLL cells (65).
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FIGURE 1 | Proposed model of clonal evolution of T-PLL cells. Schematic visualization explaining T-PLL’s leukemogenesis, based on recent genomic profiling series
and corresponding functional assessments. Timeline: Chronology of genomic events leading to the progression to an advanced state of (pre)malignant T-cell
development. Y-Axis: Percentage of all analyzed T-PLL patients presenting the respective genomic aberration. Each dot represents a prevalence, derived from
selected publications (Supplementary Table 1). The median, as well as standard deviation, out of these publications was calculated for each genomic event. The
variability between the studies can be attributed to the different methods and cohort sizes (for more information refer to Supplementary Table 1). The first ‘stage’
involves the double-negative (dn) thymocyte, carrying the pre-T cell receptor (pre-TCR) complex. Translocations (t) and inversions (inv) of chromosome 14q at the dp
thymocyte stage result in constitutive expression of the proto-oncogenes TCL1A or MTCP1 in a vast majority of T-PLL cases (9, 17). These hits impair the genomic
stability of the affected T-cell by reduced DNA repair capacities of DNA double-stranded breaks (DSB) or other (oxidative) insults (10). Deletions (del) and mutations
(mut) involving ATM lead to a functionally hypomorphic apical regulator of repair, cell fate, and cell cycle control of the T-PLL precursor. This pre-leukemic cell
becomes unable to execute such safeguarding mechanisms upon genotoxic stress (10). Among subsequent perturbations, TCL1A overexpression lowers TCR-
signaling thresholds (18), enabling the cell to sustain on low-level input, either by major histocompatibility complex (MHC)-dependent (auto) antigen-presenting cells
(APC), or by self-MHC drive only, or by autonomous TCR activation (*, not proven). A central distal node is the JAK/STAT transcriptional machinery. Besides major
growth pathways such as the TCR and cytokine-mediated cascades feeding into it, there also is a high prevalence of hyperactivating mutations that target JAK1,
JAK3, or STAT5B (18) and a high incidence of losses of JAK/STAT negative regulators (43). Further leukemic outgrowth and progression to an exponentially
proliferating T-PLL cell are likely mediated by additional aberrations, including copy number (CN) gains on chromosome 8q, leading to MYC amplification and AGO2
overexpression (10). Furthermore, deregulations of T-PLL’s miR-ome, exemplarily represented by the upregulation (upreg) of the miR-141/200c family (45), and of T-
PLL’s epigenome in virtually all patients as shown by altered chromatin states at promoters and active enhancers (46), potentially mediated by frequent mutations in
KMTs(▪), TET2 (⬟), and EZH2 (▲) (10), contribute to the final leukemic outgrowth of a transformed and activated T-cell (as shown by the T-cell activation marker
CD69) with memory-type effector functions (as shown by CD45RO surface expression) (18). The figure was created by the authors using Biorender.com.
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Large granular lymphocyte leukemia (LGLL) represents a rare group of diseases with
considerable difficulties in their correct diagnostic workup and therapy. The major
chal lenges l ie in their dist inct ion from react ive ( including autoimmune)
lymphoproliferations. Moreover, monoclonal LGL proliferative diseases are in fact a
heterogeneous group of disorders, as recognized by the three subtypes in the current
WHO classification. It distinguishes two chronic forms (the focus of this case series),
namely T-LGLL and chronic lymphoproliferative disorders of Natural Killer cells (CLPD-NK)
as well as aggressive NK-cell leukemia. In the clinical routine, the variable presentations
and phenotypes of T-LGLL and CLPD-NK are underappreciated. The relevant differential
diagnoses range from benign reactive T-cell expansions to other mature T-cell leukemias
to highly aggressive gd-lymphomas. T-LGLL or CLPD-NK patients suffer from a wide
variety of symptoms often including, but not limited to, cytopenias or classical
autoimmune phenomena. They receive treatments ranging from mere supportive
measures (e.g. antibiotics, growth factors, transfusions) over strategies of
immunosuppression up to anti-leukemic therapies. The diagnostic pitfalls range from
recognition of the subtle T-cell proliferation, repeated establishment of monoclonality,
assignment to a descript immunophenotypic pattern, and interpretations of molecular
aberrancies. Here, we report a series of selected cases to represent the spectrum of
LGLL. The purpose is to raise awareness among the scientifically or practically interested
readers of the wide variety of clinical, immunological, and phenotypic features of the
various forms of LGLL, e.g. of T-cell type, including its gd forms or those of NK-lineage. We
highlight the characteristics and courses of four unique cases from two academic centers,
including those from a prospective nationwide LGLL registry. Each case of this instructive
catalogue serves to transport a key message from the areas of (chronic inflammatory)
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contexts in which LGLL can arise as well as from the fields of differential diagnostics and of
various treatment options. Implications for optimization in these areas are discussed.
Keywords: LGL leukemia, STAT-3, immunosuppression, NK, TCR, CLPD-NK
INTRODUCTION

T-cell large granular lymphocyte leukemia (T-LGLL) is a rare
neoplasm, accounting for approximately 2-5% of chronic
lymphoproliferative diseases in Western countries. It is
characterized by clonal expansion of cytotoxic, often auto-
immune reactive, mature T-cells (1). Next to T-LGLL, the 2016
World Health Organization classification of mature T- and
Natural Killer (NK)-cell neoplasms, also lists the provisional
entity of chronic lymphoproliferative disorders of NK cells
(CLPD-NK) and aggressive NK-cell leukemia (ANKL) among
monoclonal LGL proliferative diseases (2). T-LGLL, an
expansion of CD3+ T-cell large granular lymphocytes (LGLs),
is the most frequent variant representing ~85% of LGL
proliferations and can further be subdivided into the common
ab-form and the rarer gd-variant. Among the coreceptors CD8+

is usually more commonly expressed than CD4+. Additionally,
mixed phenotype forms have been reported (3, 4). CLPD-NK
accounts for approximately 10% and ANKL for approximately
5% of LGL proliferations. This case series excludes ANKL due to
its clearly distinguished clinical and molecular features and
different treatment approaches. We focus here on T-LGLL and
CLPD-NK, both being referred to as LGLL.

The clinical presentation of LGLL is variable and typically
includes cytopenias (particularly neutropenia and anemia), but
often also symptoms of associated autoimmune disorders (mostly
rheumatoid arthritis (RA), but also connective tissue diseases or
vasculitis) (5). Furthermore, LGLL can be associated with secondary
neoplasms, especially clonal B-cell expansions, but also solid
cancers. The median patient age at diagnosis is 66 years, but
approximately 15% of patients are younger than 50 years with an
equal sex distribution (6, 7). Despite the course of LGLL being
described as ‘indolent’, it is far from low-symptomatic and still
associated with a shortened median overall survival (OS) of 9-10
years (8). Disease-related deaths are mainly due to severe infections.
Such complications of the cytopenias and the autoimmune
phenomena severely impair the quality of life of LGLL patients.

Diagnosis andmanagement of LGLL is a challenge even for large
academic centers. According to the WHO classification the
diagnosis of LGLL requires a persistent (>6 months) increase in
the number of peripheral blood (pB) LGL cells, usually 2-20 x 109/L,
without a clearly identified cause (2). Clonality is mandatory to be
established and usually done by T-cell receptor (TCR) gene
rearrangement studies (9, 10). In CLPD-NK monoclonality can
indirectly be assessed by a restricted pattern of killer-cell
immunoglobulin-like receptor (KIR) expression via flow-
cytometric immunophenotyping, which is only done in few
specialized laboratories. As a molecular hallmark, many LGLL
harbor a genomic lesion of the signal transducer and activator of
transcription 3 (STAT3). The gain-of-function STAT3 mutations
217
D661 and Y640 account for two-thirds of such variants (9).
Additionally, variants of STAT5B have been recognized in a
minority of T-LGLL cases. Both mutations cause constitutive
activation of the JAK/STAT signaling pathway (9, 11). While
former studies did not find a clear impact of these lesions on
clinical outcome (9, 11), a recent retrospective single-center analysis
of a large LGLL cohort found an independent association of STAT3
mutations with shorter OS (4). More recently, missense mutations
of the epigenetic regulator TET2 were identified as another major
genomic hallmark in CLPD-NK (12, 13).

Overall, the diagnostic pitfalls in LGLL range from recognition
of the subtle T-cell or NK-cell proliferation, repeated establishment
of their clonality, distinction of the LGLL clone from normal (T-)
lymphocytes by a unique immunophenotype as well as detection
and interpretation of molecular aberrancies in the context of a
commonly normal karyotype. Additional diagnostic challenges are
imposed by a coexisting RA or by laboratory findings of an
autoimmune hemolytic anemia (AIHA) or of a pure red cell
aplasia (PRCA) or of myelodysplasia. Problems in differential
diagnosis also expand to the differentiation from related
conditions such as Felty-syndrome or from other mature T-cell
leukemias/lymphomas such as T-cell prolymphocytic leukemia
(T-PLL) or hepato-splenic T-cell lymphoma (HSTL) (14).

With respect to its therapeutic management, LGLL is
considered incurable by currently available options, including
immunosuppressive agents and low-dose chemotherapy.
Treatment-defining prospective trials are hardly available. For
a summary of tested strategies see (15). Furthermore, there is a
great deal of uncertainty regarding the optimal timing of
treatment initiation.

Here we present four challenging and instructive cases of
LGLL that presented to our centers with typical as well as rare
features of this heterogeneous disease. This case catalogue serves
to emphasize numerous diagnostic pitfalls, unique clinical
scenarios, and various therapeutic modalities. Typical
characteristics and special features are presented in Table 1.
CASES

Patient 1
A 62-year-old Caucasian male presented in 2019 with weight
loss, transfusion-dependent anemia, and thrombocytopenia with
bleeding-stigmata. Three years prior to diagnosis he developed a
mild anemia without signs of hemolysis, but with detection of a
population of atypical NK cells in pB. Two subsequent bone
marrow (BM) examinations, however, did not show any signs of
a hematological disorder. The relevant medical history included
living kidney donation for his wife in 2012. Possible renal causes
for the anemia were excluded.
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In 2019, the repeated diagnostic work-up revealed
immunophenotypic evidence of the aberrant NK-cell population
(CD2+CD16+CD7+CD3-CD4-CD6-CD8-CD56-CD57-) both in pB
and in BM. Next generation sequencing (NGS) detected a
mutation in STAT3 (variant allele frequency [VAF] 12%, c.1847
A>G p.E616G). By PCR a clonal TRG rearrangement was detected
and cytogenetics showed a normal karyotype. Computed
tomography (CT) scans revealed a hepatosplenomegaly, but no
lymphadenopathy. All findings were consistent with the diagnosis
of NK-LGL. Treatment with cyclophosphamide at 100 mg/d was
initiated and after four weeks was reduced to 50 mg/d due
to neutropenia.

After six months of therapy platelet counts had improved to
70,000/µl (from 35,000/µl). Hemoglobin (Hb) levels normalized
after nine months of therapy. After 10 months both pB and BM
showed no signs of infiltration by NK-LGL cells. Additionally the
STAT3mutation could no longer be detected by NGS, implicating
a molecular complete remission (CR). A [18F] Fluordesoxyglukose-
positron emission tomography (PET-CT) confirmed a metabolic
CR with normal spleen size. The patient is still in CR at one year
after discontinuation of cyclophosphamide.

Patient 2
A 51-year-old Caucasian male presented with splenomegaly and
grade-4 neutropenia in December 2019. His medical history
included chronic urticaria, which was previously treated with
omalizumab, and a euthyroid Hashimoto thyroiditis.

Flow-cytometry of the BM aspirate showed an aberrant T-cell
population with a CD3+CD4-CD8-CD45RA+CD56+CD57+TCRgd+

phenotype. NGS revealed a mutation in STAT3 (VAF 26%,
p.G618R). Clonality of T-cells was demonstrated by consensus
PCR consistent with the diagnosis gd-T-LGLL.

The initial CT-staging revealed a splenomegaly without
lymphadenopathy. Therapy with cyclophosphamide 100mg/d
was initiated in January 2020, however, the dosage had to be
reduced to 50 mg/d after 2 weeks. This therapy had eventually to
be discontinued four months later due to worsening of
neutropenia and repeated infections. Treatment was switched to
cyclosporine with a targeted trough level of 150 ng/dl. Four weeks
after initiation of cyclosporine, the absolute neutrophil count
(ANC) started to increase and after two months on therapy a
sustained improvement to a moderate neutropenia was detected.

Due to neuromuscular symptoms and exacerbated arterial
hypertension, the targeted trough levels of cyclosporine were
reduced to 100 ng/ml, which improved tolerance of the therapy.
Six months after this the ANC had normalized. CT-based
imaging further showed a normalization of spleen size and
tapering of cyclosporine was started.

Flow cytometry of the BM aspirate at nine months after the
start of cyclosporine showed a residual fraction of the aberrant T-
cell population of 2.5% of the total lymphocyte count with the
residual finding of mutated STAT-3 at a VAF of 15%.

Patient 3
A 55-year-old Caucasian female was diagnosed with a follicular
lymphoma in 2002 that subsequently transformed into an
aggressive B-cell lymphoma. After several lines of therapy,
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including fludarabine + rituximab (R), dexaBEAM
(dexamethasone + BCNU+ etoposide + cytarabine + melphalan)
followed by autologous stem cell transplantation, R+bendamustine,
R-CHOP (cyclophosphamide + doxorubicin + vincristine +
prednisolone) as well as radiotherapy, she received an allogeneic
stem cell transplantation (alloHSCT) from a matched unrelated
donor in December 2006 after conditioning with fludarabine
and melphalan.

In November 2016 (10 years after alloHSCT), she developed
neutropenia without signs of relapse or graft failure or infectious
causes of myelosuppression. The underlying reasons could
initially not be classified despite a thorough diagnostic work-
up. Over the next two years she developed a transfusion
dependent anemia and the diagnostic work-up was repeated.
This time, flow cytometric analysis revealed an aberrant cell
population (82% of total lymphocyte count) with the phenotype
CD2+CD3-CD4-CD8+CD7+CD57dimCD16+CD56- suggestive of
a CLPD-NK. No mutations were found for ATM, STAT3,
STAT5b, or TP53 as per NGS studies. PCR analysis detected
clonal TRB gene rearrangements. From these samples a complete
donor chimerism was established, indicating the donor origin of
the CLPD-NK. Due to renal insufficiency and prior exposition to
cyclophosphamide, treatment with the JAK1/3 inhibitor
Tofacitinib 11 mg/day, instead of methotrexate (MTX), was
initiated. Under this therapy, the neutropenia improved from
severe to mild within six weeks and hemoglobin levels stabilized
above 10 mg/dl without further need of transfusions.

Patient 4
A 69-year-old Caucasian male presented with anemia in September
of 2005. Flow cytometry of pB showed a T-cell population with an
immunophenotype (CD3+CD4-CD8+CD16dimCD57dimTCRa/b+)
that was indicative of T-LGLL. Clonality of this aberrant T-cell
population was proven by PCR. Cytogenetics showed a normal
male karyotype and NGS revealed STAT3 to be in wildtype
configuration. His medical history included an IgG-lambda-
monoclonal gammopathy of undetermined significance, ulcerative
colitis, and coronary artery disease. Therapy with MTX (initially 10
mg, increased to 15 mg in March 2006) was initiated in 2006 due to
declining hemoglobin levels. In 2007 a complete remission (CR) was
documented, but the patient relapsed four months after
discontinuation of MTX. Further therapy with four courses of
fludarabine (25 mg/m2 day 1-3 every 28 days) was initiated and
resulted in a second CR, which lasted for seven years until January
2014. At that time, therapy with fludarabine was repeated and the
patient again achieved a clinical response that lasted until May 2019.

In June 2016, flow cytometry of pB revealed a second aberrant
T-cell population, accounting for 17% of lymphocytes and
presenting with the following phenotype: CD3+CD4-CD8-

CD16+TCRgd+. In 2019 the patient experienced another relapse
with a lymphocytosis of 5900/µl and by subsequently developing
symptomatic anemia. Another cycle offludarabine was initiated in
May 2020, but without improvement in hemoglobin levels. As
Coombs tests were positive, suggesting an autoimmune hemolytic
etiology of the anemia, a therapeutic attempt with prednisolone
(maximal dose 75 mg and subsequent tapering), followed by
initiation of tofacitinib for three months, was made, but neither
Frontiers in Oncology | www.frontiersin.org 419
resulted in improvements. The trephine BM biopsy showed an
isolated absence of erythropoiesis without detection of infiltration
of T-LGLL cells, fulfilling the criteria of a PRCA. Treatment with
cyclosporine and prednisolone was initiated in April 2021,
resulting in an ongoing clinical response with stable hemoglobin
levels and without further need for transfusions.
DISCUSSION

Here we present heterogeneous presentations of T-LGLL and
CLPD-NK that were seen in two academic institutions, with a
focus on their diagnostic and therapeutic challenges. Our patients
presented with unspecific symptoms, i.e. splenomegaly,
autoimmune-mediated findings, or symptoms of cytopenias
with a coincidental detection of LGL cells in flow cytometry.

In LGLL, often low-level lymphocyte infiltrations are
misinterpreted as reactive, which frequently delays the definitive
diagnosis. A thorough algorithm in the context of a fitting set of
clinical presentations should include cytomorphology/histology,
flow cytometry, a molecular clonality analysis, and gene-
sequencing studies (11, 14, 16, 17).

The most common phenotype of T-LGLL is CD3+CD4neg

CD5+/lowCD8+CD16+CD57dim. However, neither the described
immunophenotype nor the morphological features of LGLs are
entirely specific (14). Consequently, an accurate distinction from
othermature T-cell disorders, e.g. early-phase (low proliferative) T-
PLL, is highly relevant, prognostically and therapeutically, but can
sometimes be difficult and requires the incorporation of diagnostic
multi-parameter approaches. A prolymphocytic morphology is
only found in ~60% of T-PLL and the post-thymic pan-T
(CD2+CD3+CD5+CD7+) immunophenotype of T-PLL includes
in a small fraction of cases also the T-LGLL-like CD4-CD8+

pattern (14, 18). However, detection of a locus rearrangement
involving a TCL1 gene (either TCL1A at chromosome 14 [mostly
as an inv (14)] or MTCP1 at chromosome X) or proof of TCL1
protein expression in T-cells are established as unique major
diagnostic criteria for T-PLL (14, 19–21)

CLPD-NK typical ly shows a CD3-CD56+CD57+/-

immunoprofile. Cases of CD56- CLPD-NK, as displayed in
patients 1 and 3, have been described as well (22). CLPD-NK is
associated with rather indolent courses and less often symptomatic
than T-LGLL. Cytopenias and infections are characteristic as well
as a higher incidence of second neoplastic diseases, however, the
latter is observed across all subsets of LGLL.

There is a known association of LGLL with autoimmune
conditions (23). Approximately one third of patients with LGLL
suffer from rheumatoid arthritis (24) and less frequently from
other autoimmune diseases like systemic lupus erythematosus,
Sjögren syndrome, or autoimmune thyroid disorders (5). This
association seems to be far less present in CLPD-NK (25).
Consistent with the literature, patient 2 of our series had a
history of chronic skin allergies and thyreoiditis while patient 4
suffered from ulcerative colitis.

Interestingly, one of our two CLPD-NK cases (patient 3)
arose after an alloHSCT and the tumor cells were of donor origin.
Self-limiting proliferations of LGLs after alloHSCT without
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clinical relevance have been described previously (26, 27), but
aggressive forms of LGLL from donor cells were reported only in
single case-reports (28–30) and in a series of four patients (31).

Of note, in both cases of CLPD-NK presented here, clonal
TCR gene rearrangements were detected by PCR. This may seem
contradictory, however, an analysis of KIR-restricted CLPD-NKs
revealed TCR rearrangements in 50% of patients at first
diagnosis (32).

We further presented a case of gd T-LGLL (patient 2) and a
case (patient 4) with a mixed phenotype of ab/gd LGLL.
Interestingly, patient 4 developed the gd clone during the course
of the disease. In a recently published series of LGLL, the gd variant
accounted for approximately 15% of cases (4). Cases of ab/gd
mixed phenotype are extremely rare and have so far been reported
only as isolated cases or in very small series (3, 4). The diagnosis of
gd T-LGLL can be challenging; especially the differentiation from
HSTL, which is often of gd type and typically shows a low-level
leukemic presentation. Particularly difficult are LGLL cases with
absent or very low counts of clonal LGLL cells in pB and/or with a
CD4-/CD8- phenotype (33). Detection of cytogenetic aberrations
(isochromosome 7q or trisomy 8), described in >50% of HSTL
(34), but atypical for T-LGLL, can be of assistance. HSTL affects
predominantly younger men typically in the context of (medical)
immunosuppression, often for a pre-existing autoimmune disease,
yet the HSTL itself has not been associated with autoimmune
phenomena. Nevertheless, the invariably aggressive course of
HSTL sets it well apart from LGLL.

Another challenge is to define the cause(s) of cytopenias in
LGLL, especially when these can also be caused by the therapeutic
strategies. Patient 4 presented with anemia and underwent
treatment with MTX and fludarabine. After becoming refractory
to this treatment, further diagnostic workup was necessary to
discriminate between therapy-related BM toxicity, AIHA, and
PRCA, and eventually the diagnosis of PRCA was made. The
association of LGLL with both AIHA (1, 17, 35) and PRCA (36)
has been described and the accurate discrimination of those
entities is necessary for the choice of an effective therapy (37, 38).

Although most LGLL patients do not require treatment at
presentation, in 2/3 of cases therapy needs to be initiated at a
later stage, especially due to severe neutropenias and subsequent
infections, transfusion-dependent anemias, or thrombocytopenias
(24). The current treatment options in LGLL are extremely limited.
Standard approaches are based on supportive measures (e.g.
transfusions, hematopoietic growth factors, antibiotics) and
immunosuppressive therapies like MTX, cyclophosphamide, or
cyclosporine (16) with limited evidence. The optimal sequence of
MTX and cyclophosphamide is yet to be determined (ongoing
trial NCT01976182).

Cyclophosphamide seems to show better efficacy in the
control of symptoms and cytopenias as compared to MTX, but
due to associated late toxicities it should not be administered for
more than 12 months (39). Both agents need a minimum of 6-12
weeks before definite response assessments (17) and they both
have treatment-associated cytopenias as side effects. In our case
series, cyclophosphamide was administered in two patients and
proved to be an active treatment option even for a living kidney
Frontiers in Oncology | www.frontiersin.org 520
donor. Reports on responses to other substances, like rituximab
(40, 41) or the JAK1/3 inhibitors tofacitinib (42) and the JAK 2
inhibitor ruxolitinib (39) are sporadic and limited to small series.
Generally, the treatment responses in LGLL are usually
dissatisfactory being frequently incomplete and/or short-lived.

Another relevant aspect is the disease-inherent and
treatment-related immunosuppression, which is of particular
focus in current contexts of the COVID-19 pandemic.
Although here not represented with a particular case, it has
been repeatedly shown that patients with hematologic
malignancies have a higher risk of severe or fatal COVID-19
infections (43–45). A single center retrospective analysis of 835
patients hospitalized with COVID-19, recently showed a
significantly increased mortality of patients previously
receiving immunosuppressive therapies (46). However, due to
the rarity of LGLL, the exact morbidity and mortality risks
related to COVID-19 infections in LGLL patients are
unknown. Moreover, we do not know how disease and
immunosuppressive therapies influence the effectivity of anti-
COVID-19 vaccinations in LGLL patients. In other lymphatic
malignancies, such as chronic lymphocytic leukemia (CLL),
responses to vaccination are influenced by disease activity,
current treatments, and previous therapies, especially regarding
anti-CD20-antibodies (47, 48). A pragmatic strategy might
be to adopt vaccination strategies from other hematologic
malignancies like CLL, but not to neglect complex aspects of
both humoral and cellular immunity specific for LGLL (49).

In summary, LGLL is a heterogenous group of diseases
ranging from asymptomatic presentations over cases with
severe impairments of quality of life, but long survival, to cases
with significantly shortened life expectancy. In this series of
selected cases with unique features, we illustrate pitfalls in the
diagnosis, management, and treatment of LGLL of T-cell and
NK-cell nature. In agreement with the literature, the uniqueness
of the individual presentations and courses seems to override
potential associations of clinical features, treatment responses, or
outcomes with phenotype (ab vs. gd or T vs. NK) or genotype.
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Large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized
by a clonal expansion of T-lineage lymphocyte or natural killer (NK) cells in 85 and 15% of
cases respectively. T and NK large granular leukemia share common pathophysiology,
clinical and biological presentation. The disease is characterized by cytopenia and a
frequent association with autoimmune manifestations. Despite an indolent course allowing
a watch and wait attitude in the majority of patients at diagnosis, two third of the patient will
eventually need a treatment during the course of the disease. Unlike T lymphocyte, NK
cells do not express T cell receptor making the proof of clonality difficult. Indeed, the
distinction between clonal and reactive NK-cell expansion observed in several situations
such as autoimmune diseases and viral infections is challenging. Advances in our
understanding of the pathogenesis with the recent identification of recurrent mutations
provide new tools to prove the clonality. In this review, we will discuss the pathophysiology
of NK large granular leukemia, the recent advances in the diagnosis and
therapeutic strategies.

Keywords: chronic lymphoproliferative disorders of NK cells, NK cells, KIR phenotype, STAT3, large granular
lymphocyte leukemia
INTRODUCTION

Large granular lymphocytic (LGL) leukemia is a rare disease that accounts for 2 to 5% of chronic
lymphoproliferative disorders (1). Its incidence is probably underestimated in view of its indolent
and often asymptomatic course and diagnostic difficulties. LGL leukemia is mainly characterized by
cytopenia, primarily neutropenia predisposing to infections and is frequently associated with an
array of autoimmune diseases, in particular rheumatoid arthritis. There are two main subtypes of
LGL leukemia, respectively with a T or NK phenotype and a respective incidence of 85 and 15%. A
provisional entity so-called chronic lymphoproliferative disorders of NK cells, or CLPD-NK, was
included in the last WHO classification in 2016 (2) as a means of distinguishing it from EBV
induced aggressive NK-LGL leukemia whose prognosis is quite poor.

LGL leukemia needs to be distinguished from reactive LGL proliferation, which is frequent,
particularly in the context of viral infections, autoimmune diseases, after splenectomy or in post-
transplant patients. Diagnosis of LGL leukemia is based on two mandatory criteria which help to
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differentiate it from reactive LGL lymphocytosis: cytological
identification of lymphocytes with granules > 0.5 G/L observed
at least over 6 months and proof of clonality. T-LGL clonality is
easily demonstrated by TCR rearrangement. On the other hand,
NK-LGL clonality is far more complex to identify, as NK cells do
not express CD3 on their surface and lack the T cell antigen
receptor (TCR). In this review, we develop advances in the
pathophysiology and understanding of NK-LGL leukemia. We
review recent progresses in the development of tools for clonality
diagnosis that can help to optimize nosological classification of
chronic NK proliferations before finally considering
therapeutic strategies.
NK CELL: A LYMPHOCYTE WITH
CYTOTOXIC CAPABILITIES AND WITH
COMPLEX ACTIVATION MODALITIES

NK cells have a cytotoxic and cytokinic activity close to that of
the CD8+ cytotoxic T lymphocyte directed against aberrant
autologous cells (infected, tumoral ou stressed) giving them
antiviral and anti-tumoral functions. In contrast to T cells, NK
cells do not express the TCR-CD3 complex on their surface. On
the other hand, they do express the CD16a molecule, a low
affinity type IIIA immunoglobulin constant fragment receptor,
which enables them to bind and opsonized cells. NK cells also
express CD56, or neural cell adhesion molecule (NCAM), which
is more broadly expressed by other extra-hematopoietic cell
types, and by a minority of activated cytotoxic T cells. They
are also routinely included in CD2+/CD5-/CD7+ lymphocyte
flow cytometry analysis panels (3).

Two types of NK cells with different functions have been
historically identified through differential expression of CD56,
CD16 in flow cytometry (4).

1) CD56high CD16low NK cells are mainly cytokine-
producing NK cells such as interferon gamma. The production
of interferon gamma by NK cells is stimulated by IL-12 and IL-18
in synergy with IL-2 and IL-15, which promote NK cell
activation more broadly (5).

2) CD56low CD16high NK cells have a mainly cytotoxic
function. These lymphocytes are the main agent of antibody-
dependent cell-mediated cytotoxicity (ADCC) via CD16. After
activation of the NK cell, targeted cells apoptosis can be mediated
by two NK cell cytotoxicity mechanisms, also used by T cells,
namely the perforin-granzyme pathway and the Fas/Fas ligand
pathway. The perforin released by exocytosis from NK cells
create pores in the plasma membrane of the targeted cell
enabling granzymes entry. Granzyme B leads to the activation
of the caspase cascade (6) while granzyme A induces cell death by
a mitochondrial caspase-independent mechanism (7). The FAS/
FASL complex or TRAIL/TRAIL-Rs induce apoptosis by
pathways similar to granzyme B.

NK lymphocyte can still be considered as part of innate
immunity since it uses a repertoire of surface receptors, is
germline-encoded, and able to recognize stressed cells, without
the need for prior sensitization and to act immediately. NK
Frontiers in Oncology | www.frontiersin.org 224
lymphocytes recognize not only MHC class I or MHC class I
mimicking molecules, but also other molecules. Ligand
specificity is to a variable extent dependent on the type of
receptor. These receptors can induce activating or inhibitory
signals to the NK and are not specific to them since they are also
expressed by T lymphocytes (8).

Among the receptors that recognize the classical MHC class I
(HLA-A, B, C), are the Killer Immunoglobulin-like Receptors
(KIR), each of which recognizes an HLA subtype with a relatively
high specificity. Every single NK lymphocyte expresses a few KIR
receptors among the existing KIR, coded by 15 genes on
chromosome 19, with a high polymorphism, frequent
chromosomal recombinations and alternative splicing (9, 10).
KIRs can induce either an inhibitory or an activating signal. The
lectin-like receptors of the CD94-NKG2 heterodimer are another
large NK receptor family. CD94-NKG2A induce an inhibitory
signal through the non-classical MHC class I (HLA-E), which
has a more restricted polymorphism than the classical MHC type
I (11). Natural Cytotoxicity Receptors (NCRs), mainly
represented by NKp46, NKp30, and NKp44, recognize non-
MHC molecules on the cell-surface or secreted by tumoral or
virus-infected cells. They also have an activating role for NK
lymphocytes (12).

NK cell activation is more complex than TCR/BCR antigenic
activation, which are present on T cells and B cells respectively.
NK cell activation is determined by the integration of multiple
signals from these different surface receptors and is only possible
when the sum of activating signals exceeds that of inhibiting
signals. Activation depends on the number of receptors, their
affinity and the inhibitory threshold of the cell.
PATHOPHYSIOLOGY OF
NK-LGL LEUKEMIA

The cytotoxic function, characteristic of both T and NK cells
explains the common pathophysiological basis of T- and NK-
LGL leukemia. The development of LGL leukemia is probably
secondary to a chronic stimulation induced by a viral infection or
a public antigen. Autocrine and paracrine interleukin 15 plays a
central role in the proliferation of NK cells (13), which is initially
polyclonal and then switches to monoclonal proliferation
through selection of an NK clone with an activated KIR profile
contrasting with the mainly inhibitory profile of KIRs observed
in physiological situations (14, 15). The development of leukemia
is also the consequence of dysregulated activation of several anti-
apoptotic signaling and cell survival pathways (Figure 1). The
JAK/STAT pathway plays a central role in the pathophysiology
of NK-LGL leukemia. Constitutive activation of STAT3 was
initially reported in 2001 (16) and an activating mutation of
STAT3 was identified in the SH2 domain on two predominant
hotspots (D661 and Y640) in LGL leukemia (17), as well as in
NK/T and ATLL lymphomas (18). This mutation induces
constitutive phosphorylation and STAT3 unit dimerization
leading to the transcription of anti-apoptotic genes such as
Mcl-1 belonging to the Bcl-2 family. The STAT3 mutation is
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found in 30% of NK-LGL leukemia as well as in 30-40% of T-
LGL leukemia, linking the two entities (17, 19). The introduction
of the in vitro STAT3 inhibitor AG-490 or STAT3 antisense
oligonucleotide treatment shows restoration of apoptosis of
clonal NK LGLs apoptosis (16). A significant proportion of
unmutated STAT3 LGL leukemia cases also features
hyperactivation of the JAK/STAT pathway by two mechanisms
(19); i) underexpression of the SOCS3 (suppressor of cytokine
signaling-3) gene, ii) excess autocrine production of interleukin-
6 by NK-LGLs. Deleterious mutations of the JAK/STAT pathway
were described by whole exome sequencing, such as PTK2/
FAK1, PIK3R1 (20, 21), FLT3 and CD40 ligand (22).
Constitutive activation of STAT3 and production of IL6 induce
an increase in the transcription and expression of Fas ligand in
LGL leukemia. However, NK-LGL leukemic cells show resistance
to the pro-apoptotic signal of the Fas ligand (23–25) without any
gene mutation being identified. Clonal LGL-NKs produce a
soluble variant FAS, thought to act as a soluble FAS receptor,
blocking the FAS-ligand (26). Moreover, there is a certain
correlation between the soluble Fas ligand concentration and
the depth of neutropenia in LGL leukemia, suggesting that the
soluble Fas ligand plays a role in neutrophil apoptosis (27). The
Frontiers in Oncology | www.frontiersin.org 325
MAP kinase pathway also participates in the dysregulation of the
balance between survival and apoptosis in NK-LGL leukemia
(28). Suppression of ERK (extracellular signal-regulated kinase)
activity by a MEK inhibitor reduces NK-LGL survival. The same
phenomenon is observed with the inhibition of Ras, reported to
be constitutively activated in NK-LGL leukemia patients. KRAS,
NOTCH1 and PTEN mutations were found in different cohorts
(20, 21, 29). The PI3K-Akt complex, which can be activated by
Ras and inhibited by PTEN, is also deregulated in LGL leukemia
(30). Akt has numerous downstream targets involved in the cell
cycle, including mTOR. Mutations in PIK3R1, PIK3CD and
PIK3AP1 genes have been also identified for instance (21, 31).
Another recurrent mutation affecting TNFAIP3 (tumor necrosis
factor alpha–induced protein 3) was identified in 5% of LGL
leukemia patients (31). This mutation results in negative
regulation of NFkB signaling. The A20 protein encoded by
TNFAIP3 inhibits NFB by ubiquitination mechanism. NFkB is
constitutively activated in LGL leukemia (32). Downstream of
the PI3K-Akt pathway, NFkB causes an increase in the anti-
apoptotic factor Mcl-1, independently of STAT3. PDGF-b
(Platelet-derived growth factor subunit Beta) produced in
excess by clonal LGLs, forms an anti-apoptotic autocrine loop,
FIGURE 1 | Signaling pathways and mutations involved in NK-LGL leukemia pathogenesis. STAT3, RAS/MAPK and PI3K/AKT pathways are constitutionally
activated in NK-LGL leukemia. The PI3K/AKT pathway leads to the activation of m-TOR and NFkB. STAT3 and NFkB promote the transcription of anti-apoptotic
genes such as bcl-2 ou mcl-1. TNFAIP3 can undergo an inactivating mutation of the A20 protein that negatively regulates NFkB. LGLs are resistant to Fas mediated
apoptosis. A TET2 loss-of-function mutation is found in 34% of NK-LGLs. The gene encoding the chemokine CCL22 is mutated in 20% of NK-LGLs. Fas, First
Apoptosis Signal; FasL, FasLigand; IL, interleukin; IL-R, interleukin-receptor; Jak, Janus Kinase; STAT3, Signal transducer and activator of transcription 3; PDGF-BB,
platelet-derived growth factor BB; MEK, mitogen activated protein kinase; ERK, extracellular-signal-regulated kinase; PI3K, phosphatidyl Inositol 3-Kinase; mTOR,
mammalian target of rapamycin; NFkB, nuclear factor kappa B; Mcl1, Myeloid cell leukemia1; Bcl, B-cell lymphoma 2; CCL22, C-C Motif Chemokine Ligand 22; 5-
mc, 5-methylcytosin; 5hmc, 5-hydroxymethylcytosin; TET2, Ten-eleven-translocation 2.
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activating the signaling pathways mentioned above, PI3K-AKT,
RAS/MEK1/ERK, and JAK/STAT. Its inhibition by a
neutralizing antibody in vitro leads to a decrease in AKT
phosphorylation (33). We recall the role of IL-15 and its
receptor produced in excess in LGL-NK leukemias (34).
Transgenic mice overexpressing IL-15 by post-transcriptional
regulation defect developed NK lymphocyte proliferation and
secondary aggressive LGL-NK leukemia rapidly lethal (35, 36).
More recently, mutations in the CCL22 gene have been described
in 20% of LGL-NK leukemia, and are specific to the NK subtype
and exclusive of other mutations (37). The CCL2 mutation
induces in vitro increased CCL2 chemotaxis and decreased
internalization of its Th2 T cell receptor CCR4. CCL2-mutated
NK LGLs show higher CD56 expression than non-mutated
ones (38).

Finally, epigenetic modifications in NK-LGL leukemia were
discovered more recently. A TET2 mutation was identified
in approximately 30% of patients with NK-LGL leukemia in
three successive series (21, 29, 31). In Olson’s 7-patient cohort,
5 times more methylated regions were observed in clonal
NK-LGLs than in normal NK cells in reduced-representation
bisulfite sequencing data (31), involving over a hundred RNA
polymerase transcription factors or target regulatory regions.
Interestingly, the gene coding for PTPRD (protein tyrosine
phosphatase receptor type delta), a STAT3 inhibitor, was
found to be hypermethylated compared to non-mutant TET2
NK-LGL or normal NK cells.

TET2 mutations are common in both myeloid blood
malignancies (acute myeloid leukemia/myelodysplastic
syndrome, chronic myelomonocytic leukemia) and T-cell
lymphoma, particularly in angioimmunoblastic T-cell
lymphoma, which raises questions as to the original cell that
underwent the TET2 mutation in NK-LGL leukemia. In whole
exome sequencing studies in 3 out of 6 patients analyzed, we
showed that TET2 was mutated not only in NK cells but also in
myeloid precursors, suggesting a potential driver role of TET2
mutation (29). This may explain cases of LGL leukemia
association with a myelodysplastic syndrome or acute myeloid
leukemia (39).
CLINICAL CHARACTERISTICS OF
NK-LGL LEUKEMIA

T-LGL and NK-LGL leukemia share both pathophysiology,
clinical and biological presentation (Table 1). The median age of
LGL leukemia onset is 60 years with a sex ratio of 1:1. Its course is
indolent with an overall 10-year survival rate of 70% (1). Massive
hepatosplenic and bone marrow infiltration of NK-LGLs and
rapidly progressive NK cell blood lymphocytosis, is related to
aggressive NK cell leukemia, a rare and distinct entity with a poor
prognosis (42). Symptoms are mainly due to infections (mouth
ulcers, ENT or lung infections, severe sepsis) secondary to severe
neutropenia which is the most common cytopenia. Neutropenia is
less frequently observed in the NK subtype (29% in T LGL
leukemia, as compared to 61% in NK LGL leukemia) (29, 40).
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Infectious complications are responsible for the majority of
disease-related deaths (3-7%) (29, 40). Opportunistic infections
are rare and secondary to immunosuppressive therapy. Twenty
percent of patients are transfusion dependent. Thrombocytopenia
is rare and moderate. LGL leukemia can be complicated by
pure red cell aplasia or bone marrow aplasia. On clinical
examination, splenomegaly is observed in 25% of cases (41),
whereas hepatomegaly is slightly less frequent and peripheral
adenopathies are rare.

LGL leukemia may be associated with autoimmune diseases,
such as connective tissue disorders or vasculitis. Rheumatoid
arthritis is the most common condition seen in individuals with
LGL leukemia, although slightly less frequent in NK-LGL
leukemia (40, 41). These diseases can precede diagnosis of
LGL leukemia. In autoimmune disease settings, reactive NK
cell proliferations may also be observed. Moreover, some
connective tissue disorders such as lupus and Gougerot-Sjögren
syndrome can have overlapping clinical characteristics such as
neutropenia, pure red cell aplasia and splenomegaly that can
make the diagnosis of LGL leukemia difficult. Biological markers
of autoimmunity such as polyclonal hypergammaglobulinemia
and presence of positive rheumatoid factors are common and
the signs of a chronic antigenic stimulation mechanism
(40). Moreover, there have been reports of LGL leukemia
concomitant with another hematological malignancies, either
of myeloid or lymphoid origin. MGUS is more common than
in the general population (16%) (40, 43). LDH and beta-2
microglobulin levels are high in 36 and 66% of cases
respectively (40). Concomitant association with solid cancers
has also been described (44).
TABLE 1 | Comparison of clinical characteristics between T-LGL and NK-LGL
leukemia.

NK-LGL leukemia T-LGL leukemia
Poullot (n=70)
[Ref: (40)]

Bareau (n=201)
[Ref: (41)]

Lymphocytes > 4G/L 56% 51%
Median LGL (G/L) 2.1 1.71
LGL <1G/L 29% 55%
LGL > 7G/L 7% 4%
Neutrophils < 1.5G/L 29% 61%
Neutrophils < 0.5% 9% 26%
Anemia < 11g/dL 18% 24%
Anemia < 8g/dL 9% 6.6%
Thrombocytopenia <150G/L 20% 19%
Thrombocytopenia < 50G/L 4% 1%
Autoimmune diseases 24% 33%
Rheumatoid arthritis 7% 17%
Seronegative arthritis 14% 8%
Polymyositis 3% 0%
Autoimmune hemolytic anemia 6% <7%
Idiopathic thrombocytopenic purpura 7% <7%
Vasculitis 4% 3%
Solid cancers 13% 5%
Associated blood disorder 11% 8%
B-cell lymphoma 3% –

Myelodysplastic syndrome 3% –

Acute myeloid leukemia 3% –

Myeloproliferative syndrome 4% –
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THE CONTRIBUTION OF FLOW
CYTOMETRY AND BONE MARROW
BIOPSY TO THE DIAGNOSIS OF
NK-LGL LEUKEMIA

The vast majority of NK-LGL leukemia cases harbored a
cytotoxic CD16highCD56lowCD57+/- profile (29). Therefore,
NK leukemic cells most often display a uniform CD16high

profile whereas normal NK cells are characterized by
heterogeneous CD16 expression due to the coexistence of
different NK subtypes. High CD16 expression is not sufficient
to affirm NK clonality but provides an invaluable clue in the
diagnostic procedure. CD56 is expressed by some activated T
cells and in T-LGL leukemia and is therefore not a good marker
of NK clonality. CD57 is positive in the majority of cases,
associated with a memory profile (29, 31).

While normal NK cells display a CD2+/CD5-/CD7+
phenotype, clonal NK LGLs are frequently CD5dim/CD7dim.
NK-LGL leukemic cells partially express CD8 with an intensity
that is markedly lower than in T-LGL leukemia. However, CD8
cannot be used to distinguish NK-LGL leukemia from normal
NK cells which exhibit low CD8 expression levels (3, 45). KIR
phenotyping represents a major advance in NK-LGL leukemia
diagnosis. However, this multiparameter analysis is complex and
requires an expertise only available in some reference centers.
NK-LGL leukemic cells show a restricted activated KIRs
expression (15). Thus, inhibitory CD158a, CD158b and NKB1,
expressed ubiquitously in normal NK cells, are very rarely
expressed in NK-LGL leukemia (45). NK-LGL monoclonal
proliferations express CD94 lectin with inhibitory NKG2A (15,
45), forming the CD94/NKG2A heterodimer, with a markedly
higher MFI than that observed in normal or reactive NK cells. To
a lesser extent, underexpression of CD161 (3) and natural
cytotoxicity receptors (15), in particular NKp30 and NKp44, is
more often found in NK-LGL leukemia than in NK-LGL
polyclonal proliferations.

Bone marrow biopsy may contribute to ascertain the diagnosis
in atypical presentations, specifically with a low LGL count (< 1G/
L), an irrelevant phenotype, a marrow hypoplasia or pure cell
aplasia. In paraffin sections, diffuse interstitial medullary
infiltration by LGLs is found in more than 90% of cases, with a
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TiA1 and granzyme immunostaining. It is noteworthy that CD3
can sometimes be positive in immunofluorescence staining
because of the presence of a CD3delta subunit on the NK cells,
which binds to paraffin on immunolabeling. Moreover, LGLs are
grouped into clusters of at least 8 TIA-1+ lymphocytes or at least 6
granzyme B+ lymphocytes. These LGL clusters may be associated
with nodules of B cells surrounded by non-clonal CD4+ T cells.
Intrasinusoidally, LGLs dysplay a linear TIA1+/granzyme B/+
network in close contact with antigen-presenting cells (46, 47)
CONTRIBUTION OF GENOMIC
ANALYSIS. PROPOSAL FOR AN
NK-CELL CLONALITY SCORE

Identification of recurrent mutations in T- and NK-LGL
leukemia provided strong arguments for NK clonality, and
ultimately enabled true NK-LGL leukemia to be distinguished
from reactive NK-LGL proliferations. Mutational screening is
more accurate than KIR receptor repertoire analysis. The
frequencies of the different mutations are shown in Table 2.

The first major recurrent mutation initially identified in T-
LGL leukemia was a STAT3 function gain mutation found in 27-
33% of NK-LGL leukemia cases (29, 31, 48). The STAT3
mutations are located in the SH2 domain within exon 20 and
21, Y640F and D661V accounting for two-thirds of mutations
(17). The STAT5B mutation is less common, present in 5% of
LGL leukemia cases (29, 49). The TNFA1P3 mutation is
particularly observed in cases of LGL leukemia associated with
rheumatoid arthritis, and in 5-10% of NK-LGL leukemia cases
(21, 31, 48).

In 2021, using high-throughput sequencing we and others
have identified a TET2 mutation in 28 to 34% of NK-LGL
leukemia cases, constituting a new strong diagnostic marker
(29, 31). TET2 and STAT3 mutations are generally exclusive
and appear to be associated with two different NK phenotypic
and functional profiles: the STAT3mutation is more often found
in CD16high/CD57low, or cytotoxic memory NK-LGLs, while
the TET2 mutation is more commonly associated with the
CD16low, or regulatory cytokine profile. The transcriptome
expression profiles analyzed by C. Pastoret et al. in STAT3-
TABLE 2 | Phenotypic and mutational profiles of NK-LGL leukemia in the French cohort and USA cohort.

French cohort n=46 LGL and 68 Reactive NK [Ref: (29)] USA cohort n=63 [Ref: (31)]

Training set N=28 LGL Validation set N=18 LGL Reactive NK N=68

NK count >1G/L 68% 83% 19% NA
KIR restricted
phenotype

86% 78% 6% NA

CD94/NKG2Ahi 68% 61% 15% NA
STAT3 26% 28% 0% 29%
STAT5b 8% 0% 0% 0%
TNFAIP3 9% 11% 0% 10%
TET2 35% 33% 8% 28%
CCL2 NA NA NA 22%
February 2022
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and TET2-mutated patients are quite distinct, confirming the
existence of two different subgroups. Moreover, a genotype/
phenotype correlation was observed, reflecting the strong
impact of these mutations in the pathophysiology of LGL
leukemia; STAT3-mutated patients have a higher incidence of
neutropenia (25, 37, 48) while TET2 mutant patients have a
higher incidence of thrombocytopenia (29, 31). STAT5B N642H
mutated patients develop more aggressive disease (50).

However, TET2 mutation is not restricted to LGL leukemia
and has been identified in angioimmunoblastic lymphoma and
other T-cell lymphomas. Overall, in two-thirds of NK-LGL
leukemia cases, a recurrent mutation contribute to the
diagnosis. In routine practice, a high-throughput sequencing
panel for T-cell lymphoma including screening for STAT3,
STAT5B, TNFAIP3, CCL22 and TET2 mutations can thus be
used for the diagnosis of NK-LGL proliferations. We proposed a
prognostic score based on biological criteria ranging from 0 (low
probability of clonality) to 7 (high probability of clonality) in
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settings suggestive of LGL leukemia (36). The criteria yielding
two points each were as follows: i) NK cell count > 1G/L, ii) KIR
receptor restriction defined by a low expression of at least two
KIR receptors (CD158A < 9% of NK cells, CD158B < 12%, and/
or NKB1 < 4%), and iii) presence of a somatic mutation of
STAT3, STAT5b, TET2 or TNFAIP3. A high expression of CD94
or NKG2A (>77%) carries an additional point. A score higher
than or equal to 4 has a sensitivity of 83% and a specificity of 96%
for NK-LGL diagnosis and a score of under 2 discounts the
diagnosis with a negative predictive value of 95%. This score was
validated on a cohort of 38 patients (18 LGL and 20 reactive
conditions), yielding a positive predictive value of 100%. Only
one LGL according conventional criteria was reclassified as
reactive condition according the NK score (Table 2). Finally,
mutations in the CCL22 gene are also described in 20% of LGL-
NK leukemias, specific to the NK subtype, and exclusive of other
mutations (38). A diagnostic algorithm for LGL-NK leukemias is
proposed in Figure 2.
FIGURE 2 | Diagnosis algorithm for NK-LGL leukemia. A large granular lymphocyte count greater than 0.5G/L is the first element mandatory for the diagnosis of
NK-LGL leukemia. T and NK-cell LGL are distinguished based on the expression of CD3. The proof of clonality is often challenging in NK-cell LGL. In these
conditions, the proposed diagnostic score assigns 2 points for a restrictive KIR phenotypic profile, 1 point for CD94/NKG2A hyperexpression, 2 points for STAT3,
STAT5b, TET2, TNFAIP3, or CCL22 mutations. These three elements represent the most compelling arguments for clonality. In case of a score higher than 4, the
diagnosis of LGL-NK leukemia can be confirmed. A score between 2 and 3 should prompt discussion of the evaluation of other NK markers such as low CD161 or
low NKp30 and 44. In this situation, a bone marrow biopsy is recommended. LGL, large granular lymphocyte leukemia; KIR, Killer-cell Immunoglobulin-like receptors;
STAT3, Signal transducer and activator of transcription 3; TET2, Ten-eleven-translocation 2; TNFAIP3, Tumor Necrosing Factor Alpha Induced Protein 3; CCL22, C-
C Motif Chemokine Ligand 22.
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THERAPEUTIC APPROACHES IN
NK-LGL LEUKEMIA

The indolent course of LGL leukemia allows a watch and wait
attitude at initial diagnosis in one third of patients. However, two
thirds of patients will be eventually treated mainly due to
neutropenia related infections or symptomatic anemia. The
treatment indication can also be discussed in case of associated
and symptomatic disease. It should be noted that there are no
studies evaluating specific treatment of the NK-LGL leukemia
subtype, as patients with NK-LGL leukemia were included with
T-LGL patients with no distinction made. Immunosuppressive
drugs such as methotrexate, cyclophosphamide and ciclosporin
constitute the backbone of first-line treatments. Complete
response rates at 4 months are low (around 16%). A
prospective randomized study of first-line therapy (51),
comparing methotrexate with cyclophosphamide, is currently
underway. Relapse is frequent, occurring within a median time of
9 to 29 months (51, 52). Ciclosporin is more readily used in
aplastic forms or pure red cell aplasia. Treatment must be
maintained for at least one year in order to prevent early relapse.

In frequent cases of LGL leukemia that are refractory to
immunosuppressive agents or in early relapse, alemtuzumab, an
anti-CD52 antibody, alemtuzumab, which is also the treatment
of choice for T-cell prolymphocytic leukemia, was tested in LGL
leukemia with several response cases (53–55). A gamma chain
inhibitor of the cytokine receptors IL2 and 15, BNZ-1 (56), was
shown to induce in vitro a reduction in STAT3 and ERK
phosphorylation in NK- and T-LGLs, and to induce apoptosis
of T-LGLs. A phase I/II is underway (57). The use of therapies
targeting the JAK/STAT pathway constitutively activated in
LGLs appears promising. For example, remission was achieved
with tofacitinib in a small number of refractory T LGL leukemia
Frontiers in Oncology | www.frontiersin.org 729
patients (53–55, 58), and likewise with ruxolitinib. No…..e
remission rates induced with demethylating agents in cases of
TET2 mutated angioimmunoblastic lymphoma (59) should
prompt an assessment of their efficacy in LGL leukemia
bearing the TET2 mutation.
CONCLUSION

It is now possible to propose a more precise classification of NK-
LGL leukemia and discard the term chronic NK lymphocytosis.
Proof of clonality of NK-LGL leukemia is crucial given the
frequency of reactive NK-LGL proliferations. The identification
of a phenotypic restriction in KIRs combined with identification
of a STAT3, STAT5B, TET2, TNFAIP3, and CCL2 mutations
constitute strong arguments to confirm NK clonality in most
cases. Targeted JAK/STAT pathway therapies and demethylating
agents in the case of TET2 mutation represent promising
therapies that warrant assessment in prospective studies in
order to reduce the relapses frequently reported after
immunosuppressive therapy.
AUTHOR CONTRIBUTIONS

GD, TL, and TM wrote the manuscript. All authors contributed
to the article and approved the submitted version.
FUNDING

TM is supported by the “Association pour le Développement de
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INTRODUCTION

Large granular lymphocytic leukemia (LGLL) is an indolent and rare lymphoproliferative disorder
of mature cytotoxic T-cells or Natural Killer (NK)-cells accounting for 2-5% of chronic
lymphoproliferative disorders in North America and Europe (1, 2).

LGLL is associated in up to 15-40% with autoimmune disorders, with rheumatoid arthritis (RA)
being the most common (10-18%). Rheumatoid factor (RF) and antinuclear antibody (ANA) are
detected in about half of the patients (1). As symptoms are nonspecific, diagnosis can be delayed. A
close collaboration with a specialist in hematology is recommended.

According to the WHO classification 2017 (3), LGLL is divided into T-LGL leukemia (T-LGLL,
85%), chronic lymphoproliferative disorder of NK-cells (CLPD-NK, 10%) and the more aggressive
NK-LGL leukemia (ANKL, 5%). T-LGLL and CLPD-NK have a median age of 60 years and tend to
have an indolent course, whereas aggressive NK-LGL leukemia more often affects younger patients
and is highly associated with EBV (3–6).

LGL leukemia (LGLL) should be considered in patients with marked neutropenia,
lymphocytosis, recurrent infections, anemia and autoimmune disorders. Typical “B” symptoms
are seen in only 20-30% of LGLL patients (7). Most patients with T-LGLL present with chronic
neutropenia resulting in recurrent infections but courses without any infections are possible (1, 8, 9).
Lymphocytosis is observed in about 50%, thrombocytopenia in < 25% and anemia in 10-30% of LGL
patients. Splenomegaly is seen in about a quarter of patients, whereas hepatomegaly and
lymphadenopathy are rare (1, 2, 8, 10).

Diagnosis is based on cytology (blood smear), flow cytometry of peripheral blood and detection
of clonality of T-cell receptor (TCR) rearrangement (see Figure 1).

Large granular lymphocytes represent a morphological subtype that are larger (15-18µm) than
most circulating lymphocytes (7-10µm). LGL cells show an abundant cytoplasm containing
prominent azurophilic granules and a round or reniform nucleus with mature chromatin (see
Figure 1) (9).

Most patients present with a persistent increased number of circulating LGL ranging from 1-6 G/
L. According to the 2017 WHO classification (12), a threshold of > 2 G/L (normal: <0.3 G/L)
persistent circulating LGLs for more than 6 months is mandatory. However, numerous patients
have a lower number of clonal LGLs, typically presenting with other clinical or hematologic features
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such as RA or cytopenia. Accordingly, cases with LGL counts
of <2 G/L meeting all other criteria are consistent with diagnosis
as well (13).

The majority of T-LGL cells are CD3+, CD8+, CD16+,
CD57+, CD45RA+, TCRab+, and CD4-, CD56-, CD27-,
CD45R0-, CD28-, CD62L-, CD5dim and/or CD7dim. Rarely
LGLL is CD4+ with or without coexpression of CD8. NK-LGL
leukemia and NK-LGL lymphocytosis are characterized by the
following phenotype: CD2+, CD3−, CD3ϵ+, TCRab−,CD4−,
CD8+, CD16+, CD56+, CD57+/- (1).

Diagnosis is confirmed by detection of TCR rearrangement by
PCR allowing distinguishing reactive LGL proliferation from real
leukemic proliferation. The majority are ab variants, while 10%
are gd variants (14). Clonality can also be assessed by flow
cytometry for different TCR chain domains (Vb, Vg, Vd) using
various antibodies. The current Vb mAbs panel covers 65% of
the Vb spectrum (15). Detection of gdTCR and its subtypes (Vd1
and Vd2) at protein level by flow cytometry represents a fast
practical method for determining the clonality of gd T-cells (16).
As NK-LGL do not express TCR, restricted expression of
activating isoforms of killer immunoglobulin-like receptor
(KIR) can be used (17).

Bone marrow aspirate and/or biopsy with immunohistochemistry
is not routinely recommended but can support the diagnosis in
uncertain cases. Typical features observed in case of bone marrow
infiltration of LGLL are hypercellularity with individual or small
clusters of LGLs localized primarily in sinusoids. Often, reactive,
predominantly CD20+ B-lymphoid aggregates are seen with
peripherally accentuated CD3+ T-cells. Expression of cytotoxic
markers TiA1, granzyme B and granzyme M are considered
characteristic histopathologic findings of LGLL (18–21).

As T-LGLL can mimic other T-cell lymphoid malignancies,
careful differentiation from lymphomatous and leukemic
disorders affecting T-cells e.g. CLPD-NK, ANKL and from
conditions with reactive LGL expansions, is required. Several
conditions can lead to the development of reactive LGL
proliferation, including viral infections (e.g. HIV, CMV, EBV,
HBV and HCV), hemophagocytic syndrome, immune
thrombocytopenia (ITP), non-Hodgkin lymphoma (NHL),
solid tumors, splenectomy. These are typically poly- or
oligoclonal (2, 7).

Furthermore, differentiation from Felty syndrome with
typical triad of rheumatoid arthritis, neutropenia and
splenomegaly might be difficult (1, 19, 20, 22, 23).

The etiology of T-LGL leukemia is still unknown. It is
believed that the initial step relies on chronic antigen exposure
leading to dysregulation of apoptosis, mainly due to
dysregulation of the JAK/STAT pathway (1). Constitutive
activation of STAT3 is often related to STAT3 gain of function
mutations in 30-40% of T-LGLL (24, 25). STAT5b mutation is
less frequent (2%) but highly prevalent in the rare subset of
CD4+ T-LGL (1, 26–29). Therefore, mutations in STAT3 and
STAT5b were included in the 2017 WHO classification of LGL
disease (3, 12). In addition, proinflammatory cytokines such as
platelet-derived growth factor and IL-6, IL-12, IL-15 contribute
to leukemic LGL persistence and proliferation (30). Interestingly,
Felty syndrome might be associated with somatic STAT3
Frontiers in Oncology | www.frontiersin.org 233
mutations indicating a potential common pathogenesis (23).
STAT3 and STAT5b mutation might have an impact on
clinical outcome, as STAT3 mutation is associated with
symptomatic disease and a specific phenotype: CD16+, CD56-,
CD8+, Tgd. Additionally, the immunophenotypic signature
CD56neg/dim/CD16+/CD57- in CLPD-NK patients is associated
with a more symptomatic disease and the presence of STAT3
mutation (31). T-LGLL harboring a STAT5bmutation and being
CD3+, CD8+, CD56+, CD16– and CD57– shows a more
aggressive course with poor prognosis, whereas expression of
CD4 and CD56 antigens as well as CD56, CD3, Tgd-LGLL are
often associated with a more indolent course (11, 27).

To illustrate our proposed algorithm (see Figure 1), we will
further discuss two clinical cases of LGL-Leukemia.
CASE REPORTS

Indolent Course of a gd T-LGL-Leukemia
A 42 year-old-male was seen by a rheumatologist for joint pain.
However, no rheumatologic disease was found. Due to a
leukocytosis of 17.7 G/l (3.9-10.2 G/L), the patient was referred
to our clinic. B-symptoms or recurrent infections were denied.
Past medical history included diabetes type 2, hypertension
and obesity. The physical examination was unremarkable and
the ultrasound showed neither lymphadenopathy nor
hepatosplenomegaly. Laboratory findings revealed an increase
FIGURE 1 | Algorithm for the evaluation of LGL Leukemia. Adapted from
Lamy et al. and Teramo et al. (1, 11). Rheumatoid arthritis (RA), Non-Hodgkin
Lymphoma (NHL), immune thrombocytopenia (ITP).
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of absolute lymphocytes (7.1 G/L) without neutropenia, anemia
or thrombocytopenia. Serologic examination showed no viral
infection or autoimmune disorder (RF, ANA negative).
Peripheral blood smears demonstrated an increase of
predominantly mature lymphocytes occasionally with
cytoplasmic azurophilic granules. Flow cytometry revealed an
increase in gd T-cells with a CD2+, CD3+, CD16+, CD56+,
CD5+, CD7+ and CD4-/CD8- phenotype, which constituted
approximately 45% (2.1 G/L) of T-cells. Cytogenetic study
showed a normal male karyotype and a T-cell receptor gd gene
rearrangement. In the bone marrow biopsy, a diffuse interstitial
and intrasinusoidal infiltration of atypical CD3+, CD5+ T-
lymphocytes with expression of cytotoxic molecules TiA1 and
Granzyme B was observed. STAT3 mutation was not detected.
An asymptomatic course of T-LGLL was diagnosed, prompting a
watch and wait strategy with laboratory and clinical controls
every 3-6 months. After three years, the patient is in continuous
observation without any symptoms.

gd T-LGL-Leukemia Presenting With
Immune Thrombocytopenia and Pure
Red Cell Aplasia
A 70 year old patient presented with severe normochromic
normocytic anemia with hemoglobin of 2.6 g/dL (13.5-17.2 g/
dL), thrombocytopenia of 50 G/L (150-370 G/L) and normal
total leukocyte and lymphocyte count. Past medical history
encompassed stage II gastric carcinoma 12 years ago that was
treated with gastrectomy and splenectomy, as well as
perioperative chemotherapy. Thirteen months earlier to this
presentation he had been admitted to the gastroenterology
department due to microcytic hypochromic anemia
(hemoglobin 7.5 g/dL) and thrombocytopenia (36 G/L).
Bleeding as well as local recurrence were excluded by gastro-,
colon- and capsule- endoscopy. Additionally, lab results showed
a chronic kidney disease (CKD) with creatinine 2.31 (0.67-1.17 g/
dl) and GFR 27.7 ml/min (>90 ml/min) with a concomitant iron
deficiency assuming a renal anemia with substrate deficiency.
The patient had received iron supplementation plus s.c.
erythropoietin and had been discharged to outpatient care.

Endoscopies showed no evidence of bleeding. Next, the patient
was referred to our hematology department. Neither “B”
symptoms nor recurrent infections were reported. Serology
revealed antibodies against glycoprotein IIb/IIa, Ib/IX
confirming chronic ITP and cortisone therapy was initialized.
Peripheral blood smear examination identified a slightly increased
number of circulating LGL (0,985 G/L). Flow cytometry revealed
an abnormal population of gd T-cells with CD3+, CD16-,
CD57mid, CD56dim, CD8dim and representing 42% of T
lymphocytes. A bone marrow biopsy demonstrated selective
pure red cell aplasia (PRCA), signs of dysmegakaryopoiesis, and
a discrete proliferation of partially intrasinusoidal localized CD8+
CD3+ and TiA1+ T-cells. Granulocytopoiesis was largely regular.
Cytogenetic and fluorescence in situ hybridization evaluation
showed a normal karyotype (46, XY) and no chromosomal or
genetic aberrations ruling out other hematological malignancies
e.g. myelodysplastic syndrome. No viral (Parvovirus B19, HBV,
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HCV, EBV, CMV) or serological (ANA, ANCA, RF) positivity
were found at the initial laboratory workup. Chest and abdominal
computed tomography ruled out the presence of thymoma and
other malignancies. Although STAT3 mutation was not detected,
TCR gene rearrangement showed a clonal pattern of the TCRgd.
These findings were consistent with the diagnosis of T LGL-
associated PRCA. Immunosuppressive therapy was indicated
because of autoimmune mediated thrombocytopenia and blood
cell (RBC) transfusion dependency (every 1-2 weeks). Due to the
patient’s CKD, Cyclophosphamide (CP) p.o. with a dose of 50mg
daily was started with careful monitoring of complete blood count
to avoid myelotoxicity and prednisone therapy was continued.
Erythropoietin injections were stopped. In addition, the patient
received intravenous iron chelation therapy due to high ferritin
levels (> 3800 mg/l). Platelet count and transfusion dependency
improved and the patient is still on CP treatment. Treatment
duration is planned for 6-12 months.

Treatment Considerations and Discussion
As most patients with T-LGLL have an indolent course, only half
of patients require systemic treatment at the time of diagnosis and
overall survival at 10 years is 70%. In asymptomatic patients, a
watch and wait strategy with laboratory and clinical controls every
6 months is suggested. Treatment is only indicated in case of
symptomatic disease or impaired blood values as follows: Severe
neutropenia ANC <0.5 G/L or neutropenia-associated infections,
anemia hemoglobin <10 g/dL or need for RBC transfusion,
thrombocytopenia with platelets <50 G/L, symptomatic
autoimmune diseases, symptomatic splenomegaly, and severe B-
symptoms. The main goal of treatment is relief of symptoms,
reduction of infections and transfusion independence. Disease
related deaths are primarily related to severe infections occurring
in <10% of patients. However LGLL is not curable by conventional
treatment (1, 22, 32).

Immunosuppressive therapy such as methotrexate (MTX),
cyclophosphamide (CP), and cyclosporine (CsA) either alone or
in combination with prednisone remains the backbone of the
treatment for LGL leukemia (1, 22). Initial response might be
quicker when adding prednisone but has no impact on
eradication of LGL clones (4). As therapy responses might be
delayed, patients should be treated for at least 4 months before
response assessment (1, 22). Whether MTX or CP should be
given as first line therapy is not clear. To clarify this situation, a
phase II randomized trial comparing first-line MTX versus CP
(NCT01976182) is ongoing (26).

MTX is often preferred in the setting of neutropenia and/or
rheumatoid arthritis. It is used p.o. or i.v. weekly in a dose of 10
mg/m (2) and can be continued indefinitely if tolerated.
Response is achieved in approximately 55% with time to
response ranging from 2 to 12 weeks and a median duration of
response ranging from 2 to 4 years. In case of severe neutropenia,
oral prednisone (1 mg/kg per day) is administered in addition to
MTX for the first month and tapered off by the end of the second
month (22).

For CP, in a dose of 50-100 mg/m (2), response rates 55–66%
are described. Treatment is limited to no more than 12 months
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(33). Case series demonstrated response rates to CP ranging from
60-100% in LGLL-associated PRCA (34).

If primary therapy is ineffective, a switch between MTX and
CP is suggested (1). Analysis of a French cohort with 229 patients
of LGL showed in 11/15 cases a clinical response with CP failed
treatment of MTX (4). CsA is mostly reserved for the treatment
of resistant disease (24). Dose ranges from 2–10 mg/kg/day,
mostly 3 mg/kg/day and it shows an ORR of 56% and maintained
as long as is it reasonably tolerated (4, 22, 24).

Other second-line agents are bendamustine, purine analogs
and alemtuzumab (25, 32). Alemtuzumab, an anti-CD52
monoclonal antibody, demonstrated an ORR of 74% in a small
phase II trial. However, due to toxicity, its use is limited to
refractory cases and prophylactic antibiotics and CMV
monitoring are necessary (1, 22, 35). Purine analogs (e.g. 2-
chlorodeoxyadenosine, pentostatin and fludarabine) display a
high ORR of 80% with a short period of treatment (1-3 courses)
and the potential of inducing durable remission. However, data is
limited and based on small case series and case reports (22, 33,
36–39).

There is no consensus regarding clinical management of
aggressive forms of LGLL. Clinical behavior is close to
aggressive leukemia and some clinicians propose a CHOP-like
based or cytosine arabinoside-containing polychemotherapy,
followed by autologous or allogeneic hematopoietic cell
transplantation (1, 32, 40).

Considering the pathogenesis of LGL leukemia, various
specific inhibitors were evaluated in T-LGLL. Tofacitinib, a
JAK3-specific inhibitor, showed in T-LGLL patients an
improvement of RA symptoms and a hematological response
in 6/9 (67%) cases (26, 41). BNZ-1 a multi-cytokine inhibitor
that inhibits interleukin (IL)-2, IL-15 and IL-9 signaling showed
promising results in reducing cytokine mediated cell survival
being investigated in a phase I/II trial (42). However, results are
pending. The histone deacetylase (HDAC) inhibitor Belinostat
has recently demonstrated a marked activity in refractory T-LGL
(43). Interestingly, anti-CD20 MoAb Rituximab showed
promising response in RA-associated LGL-leukemia (44).

Our first patient had a rare subtype of T-LGL with a specific
phenotype: CD3+, CD16+, CD56+ and CD5+ but CD4-/CD8-.
Regarding differential diagnoses, CD4-/CD8- T-LGL displays an
immunophenotype and clinical pattern overlapping with the
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aggressive lymphoma hepatosplenic T-cell lymphoma
(HSTCL). (45) (p4)As HSTCL is usually CD5 and CD57
negative, it is helpful in distinguishing it from Tgd-LGLL (46).
Moreover, in contrast to described cases in literature, our patient
showed an asymptomatic course without splenomegaly or
autoimmune cytopenia (11, 27, 47). A STAT3 mutation was
not detected. According to Teramo et al., CD3+, CD56+ and
Tgd- LGLL seems to correlate with an indolent presentation,
which is compatible with the immunophenotypic profile and
indolent course of our patient (11).

Our second patient with a gd-T cell subpopulation being
CD3+, CD16-, CD57mid, CD56dim gd-T cells showed a
symptomatic course with ITP and PRCA. T-LGL is seen in
15% to 20% of patients with PRCA (48). Frequent red blood cell
transfusions caused iron overload. Treatment with cortisone and
CP resulted in transfusion independence and further confirmed
the therapeutic potential of CP for T-LGLL combined with
PRCA. The precise underlying mechanism of CP in LGLL-
associated PRCA is still not known. It is suspected to work by
reducing cytotoxic T-lymphocytes that damage antibody-bound
erythroblasts directly (49).

In conclusion, LGL is a rare disease and prospective data are
scarce. Diagnosis of LGL is complex and oligosymptomatic
clinical presentation can delay diagnosis. Patients with LGL
cells as described above should prompt a careful workup to
rule out reactive LGL expansion from clonal LGL leukemia.
Differential blood count, blood smear, immunophenotyping and
TCR-rearrangement analysis are mandatory. If diagnosis of
LGLL is confirmed, close controls depending on severity of
either symptoms or lab findings are necessary for patients
requiring therapy. However, the majority of cases are indolent
and close monitoring is necessary.
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T-cell prolymphocytic leukemia (T-PLL) is a rare, aggressive hematologic malignancy with
a poor prognosis. Alemtuzumab (Campath) remains the cornerstone for treatment, with
an 80% complete response (CR). Hematopoietic stem cell transplant (HSCT) is
considered the standard of care as consolidative therapy in eligible patients. However,
allogeneic stem cell transplant is also complicated by increased rates of infections from
chemotherapy, acute graft-versus-host disease (GVHD), and chronic GVHD. This review
aims to report the available literature on the efficacy and complications of consolidative
HSCT. It also discusses the importance of patient selection and pre- and post-transplant
complications including atypical infections and GVHD.

Keywords: T-PLL, CART cell, allogeneic stem cell transplant, CMV reactivation, autologous stem cell
INTRODUCTION

T-cell prolymphocytic leukemia (T-PLL) is a rare aggressive malignancy originating from the
mature post-thymic T cell. Although the incidence of this malignancy is only 2.0/million/year in
Western countries, it is considered as one of the most commonmature T-cell leukemias (1). Patients
usually present with a steep increase in lymphocyte counts, organomegaly, lymphadenopathy, and
occasional skin lesions (2–4). Diagnosis is most often established by the presence of characteristic
mature post-thymic T-cell immunophenotype on flow cytometry, that is, TdT−, CD1a−, CD2+,
CD5+, and CD7+ positive (2). High expression of CD52 provides an effective therapeutic approach
for these patients with Campath (alemtuzumab), an anti-CD52 monoclonal antibody that has
robust activity in newly diagnosed and recurrent T-PLL (5, 6). Despite achieving impressive
response rates of up to 80%, the median overall survival (OS) is only 10–16 months, as most patients
relapse at 12 months. Very few options are available for salvage therapy after relapse (7, 8).

Single-gene sequencing has provided deep insight into the pathophysiology of this disease,
thereby creating several potential therapeutic targets. Recent studies have discovered that the loss of
ataxia telangiectasia mutated gene (ATM) and activation of T-cell leukemia/lymphoma gene play a
pivotal role in oncogenesis (9). Targeted therapy with inhibition of HiDAC (Histone Deacetylase),
BCL2 (B-Cell Lymphoma-2), and JAK-STAT (Janus Kinases, Signal Transducer and Activator of
Transcription proteins) have shown to be very promising in Phase I and preclinical studies (9, 10).
Despite multiple therapeutic options that are currently being studied, the current standard of care is
a consolidative allogeneic stem cell transplant following induction therapy with Campath in
transplant-eligible patients (11–13). Further collaborative studies combining these therapeutic
modalities are needed to improve prognosis and OS.
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ROLE OF INDUCTION AGENTS IN T-CELL
PROLYMPHOCYTIC LEUKEMIA

Alemtuzumab remains the cornerstone agent for active T-PLL. It
is a fully humanized anti-CD52 antibody that induces antibody-
dependent cell lysis, apoptosis, and complement activation (14).
Campath has shown overall responses (ORs) of up to 90% or
higher when compared with traditional chemotherapy-based
combinations (6, 7). Complete response (CR) rate at induction
was not improved when used in combination with other
conventional agents (15). In a pivotal study by Dearden et al.,
intravenous Campath resulted in an OR rate (ORR) of 91% and
CR of 81%. These outcomes were superior to those of
subcutaneous Campath, which showed a 33% CR, establishing
intravenous Campath as the standard induction regimen (7, 8).
Despite a high ORR, the duration of remission is short-lived,
with most patients relapsing within 12 months, necessitating
further consolidative therapy. Alemtuzumab can have a lasting
impact, as its clearance decreases with repeated dosing, due to
progressive loss of CD52 receptors from the destruction of
malignant and normal T cells. This results in a 7-fold increase
in concentration after 12 weeks of therapy (16). CD52 is a
glycoprotein that is expressed on the cell surface of various
hematopoietic cells. It is primarily expressed on the cell surface
of mature lymphocytes, natural killer cells, eosinophils,
neutrophils, monocytes macrophages, and dendritic cells (17).
Hence, Campath treatment can have a lasting impact on the
function of host and donor T cells, thereby influencing outcomes
of consolidative transplant.
ROLE OF HEMATOPOIETIC STEM
CELL TRANSPLANT

Hematopoietic stem cell transplant (HSCT) is an effective form
of consolidation for T-PLL. Both autologous (Auto-HSCT) and
allogeneic stem cell transplants (Allo-HSCT) prolong OS and
progression-free survival (PFS) when compared with no
consolidation therapy after induction Campath (11).
Allogeneic stem cell transplantation is currently the only
available potential curative option for T-PLL. Recommendation
for consolidative stem cell transplant is primarily made from case
reports and retrospective studies (11–13, 18–21).
CONSOLIDATIVE TRANSPLANT
VERSUS OBSERVATION

Krishnan et al. performed a multicenter retrospective analysis of
28 patients treated between 1996 and 2008 with either a
consolidative autologous stem cell transplant (N = 15) or an
allogeneic SCT (N = 13). OS and PFS were compared with those
of 23 patients who were treated with Campath alone as first-line
or second-line therapy. The patients in the non-transplant arm
had achieved CR and survived for at least 6 months after the last
Frontiers in Oncology | www.frontiersin.org 239
dose of Campath. Among 15 patients who underwent autologous
transplant, 11 patients were in CR1, 2 in CR2, and 2 in PR at the
time of transplant.

All patients in this arm achieved a CR following an
autologous transplant. Nine of these patients relapsed at a
median of 15 months (5–56 months). There was 1 case of
treatment-related mortality (TRM) secondary to pneumonitis.
The median survival of patients receiving an autograft was 52
months. Among patients receiving allogeneic transplants, 9 were
in CR1 and 4 in partial response (PR).

The allogeneic arm had 30% TRM that was attributed to
fungal infection, refractory graft-versus-host disease (GVHD),
pseudomonal sepsis, and Epstein–Barr virus (EBV)-associated
post-transplant lymphoproliferative disorder (PTLD). Median
OS was 33 months. The study showed a median OS of 48 months
in patients receiving consolidative stem cell transplants (either
auto or allo), which was more than the median survival in the
non-transplant arm (20 months). The patients in the non-
transplant arm were well-matched in patient characteristics to
the transplant arm. This study showed that consolidation with
HSCT after induction Campath was more beneficial than
induction Campath alone. Even though patients had a median
OS of 52 months with an Auto-HSCT and 33 months with an
Allo-HSCT, the survival was not statistically different between
these groups (p = 0.2). Patients undergoing allogeneic
transplants had a high TRM of 30.7%, but survivors had long-
term CR at a median follow-up of 6 years. The autologous arm,
unfortunately, had a 60% relapse rate (RR), and all patients who
relapsed died of progressive disease. This TRM may be reduced
in the modern era with the introduction of reduced-
intensity conditioning.
ROLE OF ALLOGENEIC STEM
CELL TRANSPLANT

Currently available recommendations are based on retrospective
studies from international and national research organizations.
There are a few prospective studies; however, no interventional
study has been reported. Given the incidence of this disease, it
would be very arduous to design such a study.

A retrospective study from the Center for International Blood
and Marrow Transplant Research (CIBMTR) reported 47
patients who underwent an Allo-HSCT for PLL from 1995
through 2005; 77% of the patients received matched unrelated
donors. Twelve patients in this group received partially matched
or single allele mismatch. Median PFS at 1 year was 33% (95% CI
of 20%–47%), and 1-year OS was 48% (95% CI of 33–62 months)
with a median OS of 11.2 months. In this study, 46% of the
patients had refractory PLL when they had an allogeneic stem
cell transplant. Of the patients, 52% (95% CI 38–66) developed
grade 2–4 GVHD, and the 1-year incidence of chronic GVHD
was 42% (95% CI 28–57). Factors such as age, conditioning
intensity, T- or B-PLL, CR after single or multiple lines of
therapy (CR1 vs. CR2), and presence of acute or chronic
GVHD were not shown to influence OS. Due to the size of the
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study and the heterogeneity in the patient population, the
authors were unable to identify factors influencing outcomes
with Allo-HSCT (12).

The European Society for Blood and Marrow Transplantation
(EBMT) database has reported outcomes of 41 patients with T-
PLL who underwent an allogeneic stem cell transplant from 1995
to 2006. Patients had received allografts from either a matched
sibling donor (51%) or a matched unrelated donor. At a median
follow-up of 36 months, this study reported a 3-year relapse-free
survival of 19% and an OS of 21%. Three-year non-relapse
mortality (NRM) and relapse incidence were 41%. Multivariate
analysis showed that conditioning regimens containing total
body irradiation (TBI) and a shorter interval between diagnosis
and HSCT were associated with favorable relapse-free survival.
No other recipient or donor-related factors had an impact on OS
or PFS (13). Hence, this study further indicated that early referral
to HSCT is associated with favorable outcomes.

The French registry reported a 36% (95% CI −17 to 54) 3-year
OS and 26% PFS (95% CI 14–45) in 27 patients. Ten patients
received HLA identical sibling allograft and 18 matched
unrelated donors (one patient received a second Allo-SCT).
Notably, this study only had 11% of patients who had
refractory disease; the other patients were in complete
remission or at least in a PR. With a median follow-up of 33
months, the estimated 3-year OS was 36% (95% CI −17 to 54%),
and PFS was 26% (95% CI 14–45%). There were no factors
associated with OS in the univariate analysis, and a trend for
improved OS was seen in patients who received TBI in the
conditioning regimen (21).

Most recently, EBMT has reported a prospective
observational study of patients receiving an allogeneic stem cell
transplantation for T-PLL from 2007 to 2012. A total of 54
patients were screened for this study. The study excluded
patients with non-confirmed T-PLL diagnosis by a central
laboratory, age ≥ 65 years, refractory disease at Allo-HSCT,
cord, and mismatched unrelated donor transplants.

Thirty-seven patients were evaluable for the study endpoints;
44% of the patients received a transplant in CR1.

Most patients in the study had been treated with Campath
before stem cell transplant, and the median time interval between
the last dose of Campath and Allo-HSCT was 75 days; 30% of
these patients received TBI doses of 6 Gy or higher. This study
had a median follow-up of 50 months (12–78 months), the
4-year OS was 42% (25%–59%), and PFS was 30% (14%–46%).
The median OS was 27.8 months, and PFS was 19.2 months. No
factors were noted to have an impact on the outcome in
multivariate analysis (22).

Single-center retrospective studies have reported a 4-year OS
of 56%, NRM of 34%, a 4-year RR of 21%, a median PFS of 15
months (95% CI 12–99), and OS of 56 months [95% CI 15–56;
(23)]. Sellner et al., in their case series of 10 patients, studied the
utility of T-cell receptor (TCR)-based minimal residual disease
(MRD) quantification for monitoring disease status in T-PLL.
They reported a cumulative OS and PFS of 20%, an RR of 50%,
and an NRM of 30% in the median follow-up period of 58
months (3–92 months). This interesting study aimed to correlate
Frontiers in Oncology | www.frontiersin.org 340
quantitative MRD monitoring by clone-specific real-time PCR
of TCR rearrangements and the TCR repertoire diversity by
next-generation sequencing (NGS). Patients who achieved
MRD negativity with immunological interventions had a
corresponding increase in the poly-clonality of their T cells (24).

Table 1 summarizes the abovementioned studies and
highlights important data including nature of transplant,
disease status prior to transplant, OS, and TRM.

Newly diagnosed T-PLL patients who need to be treated
should be induced with intravenous Campath, preferably in
experienced centers. All patients must be referred promptly to
the Bone Marrow Transplant Team during induction. Based on
the above-published retrospective studies, the National
Comprehensive Cancer Network (NCCN) recommends that
patients who obtain a CR or PR after initial therapy should be
considered for a consolidative allogeneic stem cell transplant.

However, Allo-HSCT is associated with significant treatment-
related mortality and morbidity. Patient’s performance status,
donor availability, disease status at the time of HSCT, presence of
atypical infections occurring secondary to Campath, and other
general medical comorbidities play a crucial role in determining
the risk versus benefit of proceeding with an allogeneic stem cell
transplantation. The hematopoietic cell transplantation (HCT)-
specific comorbidity index (HCT CI) published and validated by
Sorror et al. includes a comprehensive pre-transplant assessment
of preexisting comorbidities. A score of 3 or more in this
assessment predicts 41% 2-year NRM (25). Autologous stem
cell transplant as consolidative therapy can be considered in
patients whose risk of undergoing an allogeneic stem cell
transplant outweighs the potential benefit of cure. Although
autologous stem cell transplant does not have the potential of
cure, Krishna et al. reported an OS of 52 months in the Auto-
SCT arm vs. 20 months in the non-transplant arm. Consolidative
HSCT is preferred over observation after obtaining an optimal
response to alemtuzumab. Prospective randomized trials with
novel induction agents are crucially needed to improve
outcomes; however, the rarity of this disease poses a significant
challenge to the feasibility of such a study.
NON-RELAPSE MORTALITY FOR
ALLOGENEIC HEMATOPOIETIC STEM
CELL TRANSPLANTATION

Most published data have reported 30%–40% treatment-related
mortality; however, Allo-HSCT offers a potential long-term
survival benefit for some patients. The main contributors to
NRM are GVHD and infections. A retrospective analysis from
the CIBMTR and EBMT did not show any association between
age and mortality (12, 13). Recent advances in reduced-intensity
conditioning regimens have reduced TRM in other diseases
needing consolidative HSCT (26). Hence, it is hoped that the
introduction of reduced-intensity conditioning regimens for
T-PLL would result in improved TRM with longer follow-up.

In a single-center experience of treating more than 80 PLL
patients, almost half of those achieving remission have proceeded
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to either an autologous or an allogeneic stem cell transplant.
Most centers provide a “washout period” of 6 weeks to 3 months
from completion of induction Campath to allogeneic stem cell
transplant (Insert). This is thought to reduce the risk of failure of
engraftment and reduce the risk of ongoing infection. In a case
series reported by Shumilov et al., they noted that 5/10 patients
succumbed to NRM. This was primarily attributed to post-
transplant infectious complications. Cytomegalovirus (CMV)
reactivation was observed in 60% of patients with 1 lethal
infection. It is to be noted that no letermovir prophylaxis was
given to these patients, and hence, the rates of reactivation may
be lower in the letermovir era (27, 28).
Frontiers in Oncology | www.frontiersin.org 441
Routine monitoring for CMV reactivation, anti-infective
prophylaxis for herpes virus, and Pneumocystis jiroveci
pneumonia are recommended for all patients even during
induction with alemtuzumab-based regimens and must be
continued during and post Allo-HSCT. These patients should
be considered for letermovir prophylaxis if they have
undetectable CMV DNA prior to transplant (28). It is
advisable to screen these patients for fungal colonization with
imaging and to consider further workup and treatment prior to
stem cell therapy (29). Infectious screening for Strongyloides
should be performed especially in patients originating from
endemic regions, with the help of Serological testing and stool
TABLE 1 | Studies of Stem cell transplant for PLL.

Study Auto- vs.
Allo-SCT

Status at
transplant

Conditioning
regimen

Donor
status

OS (median),
months

Relapse
rate

Acute GVHD
grade 2–4

Chronic GVHD
—1 year

Treatment-
related
mortality

Krishan et al. Auto CR1 and CR2, PR 84% TBI based 52 60% at
1 year

– – 6.6%

Allo CR1, PR MAC—33%
All TBI based
RIC—67%
Flu/Mel

MUD
58%

MRD—
42%

33 30.7% at
1 year

23% – 30.7%

Kalaycio et al. Allo CR, PR
46% refractory
disease

MAC—40%
>500 cGy or >9

mg/kg Bu
RIC—30%

<500 cGy or <9
mg/kg Bu

Neither—30%

MRD—
23%

MUD—
49%

MMUD
—25%
Ukn—
2%

11.2 39% at
1 year

52% 42% 28%

Wiktor-Jedrzejczak
et al.

Allo CR, PR 50%
refractory disease

TBI based 54%
Chemo based—

32%
Unknown—14%

MRD—
51%

MUD—
49%

12 41% at
3 years

39% 44% 41% at
3 years

Guillaume et al. Allo CR, PR, 11%
refractory disease

MAC—41%
RIC—59%
TBI based—

56%
Chemo—44%

MRD—
37%

MUD—
63%

26 47% at
3 years

51% 40% 31% at
3 years

Wiktor-Jedrzejczak
et al., 2019

Allo CR, PR MAC—35%
(>6 Gy)

RIC—65%
(<6 Gy)

Only TBI based

MRD—
43%

MUD—
57%

27.8 38% at
4 years

19% 43% 32% at
4 years

Dholaria et al. Allo CR, PR MAC—73%
Flu/Bu
Pen/Bu

RIC—27%
Flu, Cy TBI
Flu, Mel

MRD—
46%

MUD—
27%

MMUD
—18%
Cord—
9%

56 23% at
4 years

28% 54% 32% at
4 years

Sellner et al. Allo CR, PR Flu Cy—40%
Flu/TBI—60%

MRD—
40%

MUD—
40%

MMUD
—10%
Haplo-
10%

10 50% at
58 months

– – 30% at
58 months
February 2022
 | Volume 12 | A
Allo, allogeneic; Auto, autologous; CR1, complete response 1; CR2, complete response 2; PR, partial response; TBI, total body irradiation; MAC, myeloablative conditioning; RIC,
reduced-intensity conditioning; Flu, fludarabine; Mel, melphalan; Bu, busulfan; Pen, pentostatin; Cy, cyclophosphamide; MRD, matched related donor; MUD, matched unrelated donor;
MMUD, mismatched unrelated donor; Haplo, haplo-identical; Cord, cord blood; Ukn, Unknown.
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specimens. These patients can be treated with Ivermectin
before transplant.

Screening for latent tuberculosis using QuantiFERON or
Tuberculin skin test must be performed in these patients
before stem cell transplant, and patients should be treated for
latent tuberculosis infection (LTBI) concomitantly pre- and post-
transplant (30).

Retrospective and prospective studies report an incidence
of grade 2–4 acute GVHD ranging from 19% to 52%, with a
40%–55% incidence of chronic GVHD. The graft versus
leukemia activity in T-PLL has been shown by correlating
minimal residual kinetics (by TCR-based MRD quantification)
with the TCR diversity alterations in patients receiving
immunomodulation such as immunosuppression or donor
lymphocyte infusions after an allogeneic transplant (24).
Despite a washout period of 6 weeks from Campath, robust
donor T-cell graft versus leukemia activity was noted in the
study. Hence, early recognition and aggressive management of
grade 2–4 GVHD play a pivotal role in improving treatment-
related mortality. Therapeutic advancements and investigative
trials in acute and chronic GVHD have led to the Food and Drug
Administration (FDA) approval of agents like ruxolitinib,
ibrutinib, and belumosudil (31–33). These recent advances
should indeed contribute to decreasing treatment-related
mortality in the upcoming years.
RECENT ADVANCES IN CELLULAR
THERAPY FOR T-CELL
PROLYMPHOCYTIC LEUKEMIA

A recent case report has suggested acceptable toxicity to
intrathecal (IT) Campath for refractory leptomeningeal
prolymphocytic leukemia. IT Campath was also successful in
the eradication of the leptomeningeal disease, which is resistant
to triple IT chemotherapy and total brain irradiation (34). There
are no published data on the efficacy of a consolidative allogeneic
transplant in reducing the risk of central nervous system (CNS)
relapse in T-PLL. CD30 is one of the cell surface proteins that is
expressed on T cells, becoming an apt target against which
chimeric antigen receptor-T (CAR-T) cel ls can be
manufactured. However, targeting pan T-cell antigens not only
would lead to severe T-cell immunosuppression but also would
lead to autologous CAR-T destruction (35, 36).

CAR T-cell therapy has also been based on the TCR beta
chain constant (TRBC) locus clonality; this technique may be
more applicable in T-cell malignancies. Normal T-cell
populations have a mixture of both TRBC 1- and TRBC 2-
positive cells, while malignant T cells express only one beta
chain. Hence, CAR T cells targeting the TRBC of the malignant
clone would specifically target the malignant T-PLL cells and
spare the normal T cells (37). The complementarity determining
region 3 (CDR-3) is a hypervariable region of the TCR, which is
responsible for binding the antigen. This would also be a
potentially interesting target against which CAR T-cells can be
manufactured (38).
Frontiers in Oncology | www.frontiersin.org 542
There is a paucity of clinical trials for this uncommon disease.
Several agents that have been implicated in the biology of T-PLL
are currently being studied in phase 1 and preclinical studies.
These include HiDAC, JAK-STAT, and BCL2 inhibitors (39–41).
A combination of these novel agents with stem cell
transplantation is also currently being studied in the form of
post-transplant maintenance to reduce RRs (NCT02512497).
CONCLUSION

1. Anti-CD52 antibody, Campath, as a single agent given
intravenously remains the standard of care for induction
therapy in T-PLL. Despite high ORRs, the CR is short-lived;
and stem cell consolidation therapy is essential to provide an
opportunity for cure (6).

2. Early referral to stem cell transplantation for patients
receiving induction Campath is crucial for improving OS
(13). All patients younger than 75 years should be referred for
consideration of consolidative HSCT.

3. Allogeneic transplant is considered for patients who are
younger than <75 years, with Eastern Cooperative Oncology
Group (ECOG) <2, and with minimal comorbidities, as
assessed by the HCT CI.

4. Response to Campath, availability of suitable donors, patient
compliance, and adequate social support are some of the
other important factors taken into consideration for patient’s
suitability for Allo-HSCT.

5. Autologous HSCT can be considered in patients for whom
the risk of an allogeneic transplant can outweigh the benefit,
or in patients lacking suitable donors.

6. Adequate washout period of at least 6–12 weeks from
Campath induction is preferred before proceeding with an
allogeneic or autologous transplant.

7. Thorough investigation and treatment of underlying
infections pre- and post-transplant play an important role
in the reduction of mortality.

8. Reduced-intensity conditioning regimens, prophylactic
antiviral agents such as letermovir, and the recent increase
in the availability of multiple FDA-approved agents for acute
and chronic GVHD are hoped to reduce TRM (26, 33).

This is an extremely exciting era for T-PLL, as deep insight
into the intracellular mechanisms has led to the application of
various agents to achieve an improved response.

The combinat ion of these agents wi th ce l lu lar
immunotherapy will elicit deep responses and improve RRs,
thereby improving OS in this rare but fatal disease.
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Background: Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous
malignant tumor with poor prognosis. However, accurate prognostic stratification factors
are still unclear.

Methods: Data from 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/
LBL) patients were collected. The association of gene mutations detected by next-
generation sequencing and clinical characteristics with the outcomes of T-ALL/LBL
patients were retrospectively analyzed to build three novel risk stratification models
through Cox proportional hazards model.

Results: Forty-seven mutated genes were identified. Here, 73.3% of patients had at least
one mutation, and 36.7% had ≥3 mutations. The genes with higher mutation frequency
were NOTCH1, FBXW7, and DNMT3A. The most frequently altered signaling pathways
were NOTCH pathway, transcriptional regulation pathway, and DNA methylation
pathway. Age (45 years old), platelet (PLT) (50 G/L), actate dehydrogenase (LDH) (600
U/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations,
and hematopoietic stem cell transplantation (HSCT) were integrated into a risk
stratification model of event-free survival (EFS). Age (45 years old), white blood cell
(WBC) count (30 G/L), response in D19-BMR detection, TP53 and cell cycle signaling
pathway alterations, and HSCT were integrated into a risk stratification model of overall
survival (OS). According to our risk stratification models, the 1-year EFS and OS rates in
the low-risk group were significantly higher than those in the high-risk group.

Conclusions: Our risk stratification models exhibited good prognostic roles in adult T-
ALL/LBL patients and might guide individualized treatment and ultimately improve their
outcomes.

Keywords: T-cell acute lymphoblastic leukemia/lymphoma, next-generation sequencing, mutations, clinical
characteristics, risk stratification
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INTRODUCTION

T-cell acute lymphoblastic leukemia (T-ALL) in adults is an
aggressive and heterogeneous hematopoietic malignancy caused
by the clonal proliferation and abnormal differentiation of T
lymphoid progenitor cells. Nowadays, due to the standard
frontline intensive chemotherapy, 85% of T-ALL patients have
achieved complete remission (CR) (1, 2). However, there is still up
to 40% of adults who relapse after intensive chemotherapy, with 5-
year overall survival (OS) less than 7% (3). Therefore, finding new
therapeutic targets and using precisely targeted drugs are of great
significance to improve the therapeutic efficacy of T-ALL.

Currently, the intensity of T-ALL treatment is based on the risk
stratification using a combination of age, white blood cell (WBC)
count, and extramedullary infiltration, cytogenetic, and early response
to induction chemotherapy. However, it is still difficult to accurately
predict theprognosisof adultT-ALLpatients according topresent risk
stratificationmodels.With the rapid development of next-generation
sequencing (NGS) in recent years, the genomic analyses of T-ALL
havebeenextensively exploredandvariousgeneticmarkers associated
with T-ALL pathogenesis were identified (4–7). It has been indicated
that genomicanalyses could systematically identify genetic risk loci for
T-ALL susceptibility (8) and support prenatal origin (9, 10). A latest
study demonstrated that the mutated gene profile of adult T-ALL
patients differed from that of pediatric patients and indicated an
association with age in T-ALL patients (11). Furthermore, genomic
analysis is conducive to comprehend the genetic basis of clonal
evolution and relapse in T-ALL (12–14). A recent study also
revealed that the genomic analyses can early predict the relapse of
adult T-ALL driven by mutated genes and may guide clinical
decisions (15). In addition, gene mutations and signaling pathway
alterations based on genomic analyses are important predictors of
clinical outcome inadultALL (16).Up-to-date risk stratificationofT-
ALL patients based on the genome analyses showed that gene
mutations had impacts on prognosis and were conducive to
subdivide cases into different risk groups (17). Therefore,
integration of gene mutations into current risk stratification criteria
maybebeneficial to improveprognosis identificationand therapeutic
efficacy. However, relative data are mostly lacking in adult T-ALL.

In this study,we simultaneously collectedgenemutationprofiles by
NGS and clinical characteristics in 90 adult T-cell acute lymphoblastic
leukemia/lymphoma (T-ALL/LBL) patients. Statistical analysis
identified that some gene mutations were significantly correlated
with clinical prognostic indicators including CR, minimal residual
disease (MRD), event-free survival (EFS), relapse-free survival (RFS),
and OS. Based on these prognosis-related gene mutations and clinical
characteristics, we established threeT-ALL risk stratificationmodels to
predict long-term prognosis and guide individualized regimens.
PATIENTS AND METHODS

Patients and Treatment Protocol
A retrospective analysis had been conducted on 90 T-ALL/LBL
patients hospitalized in Wuhan Union Hospital from June 2016 to
June 2021. All patients, who were diagnosed as T-ALL/LBL according
to the 2016 World Health Organization (WHO) diagnostic criteria,
Frontiers in Oncology | www.frontiersin.org 246
underwent bonemarrow (BM) examinations such as cell morphology,
immunophenotype, fluorescence in situ hybridization (FISH), fusion
gene, cytogenetics, and molecular genetics (namely, NGS).

According to the Chinese guidelines (2021 version), all patients in
our study received induction and intensive chemotherapy
[daunorubicin, vincristine, cyclophosphamide, l-asparaginase, and
prednisone (DVCLP), daunorubicin, vincristine, l-asparaginase, and
prednisone (DVLP), hyper-fractionated cyclophosphamide,
vincristine, doxorubicin, and dexamethasone/methotrexate,
cytarabine (Hyper-CVAD/MA)]. Some T-ALL/LBL patients with
suitable transplantation donors accepted hematopoietic stem cell
transplantation (HSCT) after remission (if age ≤55 years old). This
study has been approved by the Ethics Committee of Tongji Medical
College of Huazhong University of Science and Technology and
followed the principles of the Declaration of Helsinki.

Flow Cytometry
In accordance with WHO’s guidelines, all 90 cases were
diagnosed as T-ALL/LBL by particular immunophenotypic
markers (usually TdT positive, usually expressing cCD3 and
CD7, variably expressing CD1a, CD2, CD3, CD4, CD5, CD7,
and CD8). T-ALL/LBL was further classified into pro-T-ALL,
pre-T-ALL, cortical T-ALL, and medullary T-ALL according to
the European Group for the Immunological Characterization of
Leukemias (EGIL) classification standard (2, 18).

Cytogenetic Analysis
Clonal karyotypes in mitotic phases were detected by G-banding
chromosome analysis under microscope and were described
according to the International System for Human Cytogenetic
Nomenclature (ISCN, 2013).

Next-Generation Sequencing
The mononuclear cells isolated from the newly diagnosed
patients’ BM were later used for whole genome DNA (gDNA)
extraction, and then NGS technology was applied to determine
the type, location, and frequency of each gene mutation using a
predesigned hematopoietic tumor-related hotspot gene panel
(Further details of gene panels are available in the
Supplementary Appendix). Detailed methodology was
described below. The gDNA concentration was required to
be ≥10 ng/ml, OD260/OD280 = 1.7–1.9, and the total
mass ≥1,000 ng. The Illumina standard library (Illumina, Inc.)
was then constructed and Agilent 2100 (Agilent, Inc.) was used
to assess the spectrum of DNA fragments in the library, and the
main peak size of the library was about 350 bp. The Roche
NimbleGen liquid phase hybridization capture chip was used to
target capture 214 genes with 445k in size (Roche, Inc.). QPCR
quantification was carried out to measure the library
concentration; the concentration of each library should be ≥10
nmol/L. PE75 sequencing was performed on Illumina Nextseq
550AR (Illumina, Inc.) after completion of the library control.
Sequencing data were analyzed using the following methods: the
in-house developed quality control tools were firstly used to
initiate the preprocessing and quality control analysis of the raw
sequencing data, followed by using the Burrows-Wheeler
Alignment (BWA) algorithm to compare the processed
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sequencing data with the reference human genome (version:
GRCh37/hg19). Picard was chosen for PCR duplication labeling,
and GATK’s BaseRecalibrator was used for quality value
correction of sequence alignment results. Based on the cosmic
database, we used a self-built Panel of Normals (PON) with a
large sample to exclude germline mutations and common single
nucleotide polymorphisms (SNPs) and filter output of the
variants manually. Based on the paired samples, the MuTect2
software was used for single-nucleotide variation (SNV) and
Insertion/Deletion (INDEL) mutation detection, and the self-
built method was used for internal tandem duplication (ITD)
and protein transduction domain (PTD) mutation detection.
Detection limit of NGS was set to 0.5%. Variants were annotated
using Annovar software for all tests, and to ensure data quality,
the average effective depth of each sample captured in the target
area was required to be ≥1,000x, and it was required that all reads
that support mutant types have a quality and base quality higher
than 30.

Statistical Methods
The follow-up was carried out until June 2021. OS was calculated
from the date of diagnosis of T-ALL/LBL to the date of death for
patients who died or the last follow-up date for those who were
alive at the time of the analysis. EFS was calculated from the
beginning of treatment until the date of induction failure, first
relapse, or death. Response in BM was evaluated on the 19th day
(D19-BMR) during induction treatment and was categorized as
M1 (lymphoblasts <5%), M2 (5%–25%), and M3 (≥25%).
Univariate and multivariate analyses were performed to
identify potential prognostic factors. The chi-square (X2) test
and Fisher’s exact test were applied to identify pairwise
relationships between genetic alterations. The variables with
P < 0.1 in univariate analysis were incorporated into the Cox
proportional hazards model for multivariate analysis. CR, MRD,
EFS, RFS, and OS were calculated by the Kaplan–Meier method,
and then differences between groups were compared by the log-
rank test.

The candidate risk factors were included into the Cox
proportional hazards model and filtered by least absolute
shrinkage and selection operator (LASSO) regularization. The
models were checked by variance inflation factor (VIF) and C-
index. All analyses were performed by R statistical software 4.0.1.
A two-sided P < 0.05 indicated that the difference was
statistically significant.
RESULTS

Gene Mutational Analysis Based on Next-
Generation Sequencing
Gene Mutation Profiles
Among the 90 newly diagnosed T-ALL/LBL patients, 66 cases
(73.3%) had at least 1 mutation and 33 cases (36.7%) had more
than 3 mutations. There were even 2 cases with 6 mutations. The
gene with the highest mutational frequency was NOTCH1 30.0%
(27/90), followed by FBXW7 16.7% (15/90), DNMT3A 14.4%
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(13/90), PHF6 12.2% (11/90), RUNX1 11.1% (10/90), JAK3
10.0% (9/90), and IDH2 7.8% (7/90) (Table S1 and
Supplementary Figure S1). Pairwise correlations of these gene
mutations in our dataset were visually depicted by Circos plots
(Figures 1A–H).

Mutated genes are grouped by signaling pathways. The
mutational landscapes of 90 adult T-ALL/LBL patients were
described in Figure 1I. Signaling pathway analyses were
further performed, and the most frequently altered pathway
was the NOTCH pathway (34.4%, 31/90), followed by the
transcriptional regulation pathway (24.4%, 22/90), DNA
methylation pathway (18.9%, 17/90), Janus kinase/signal
transducer and activator of transcription (JAK/STAT) pathway
(18.9%, 17/90), lymphoid differentiation and development
pathway (15.6%, 14/90), histone methylation pathway (14.4%,
13/90), RAS signal pathway (11.1%, 10/90), TP53 and cell cycle
pathway (6.7%, 6/90), phosphatidylinositol 3-kinase/protein
kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR)
pathway (6.7%, 6/90), and Wnt/b-catenin pathway (2.2%, 2/90)
(Table S1, Supplementary Figure S1). The frequency of other
mutated genes and altered signaling pathways were shown in
Supplementary Table S1 and Figure S1.

The Pairwise Relationship Between Genetic
Alterations
The pairwise analysis of all mutated genes and signal pathways
were shown inTables S2, S3. By integratedmutational analysis, we
found significant co-occurrence of NOTCH1 mutations and
FBXW7 mutations, NOTCH1 mutations and IL7R mutations,
FBXW7 mutations and IL7R mutations, PHF6 mutations and
NRAS mutations, and DNMT3A mutations and IDH2 mutations
(P < 0.05 for all comparisons) (Table S4). Results also disclosed
some frequently co-occurring signal pathways, including histone
methylation signaling pathway and lymphoid differentiation and
development signaling pathway, RAS signaling pathway and
lymphoid differentiation and development signaling pathway,
RAS signaling pathway and transcriptional regulation signaling
pathway, lymphoid differentiation and development signaling
pathway and transcriptional regulation signaling pathway, and
JAK/STAT signaling pathway and NOTCH signaling pathway
(P < 0.05 for all comparisons) (Table S4). No mutated genes or
altered signal pathwayswere foundmutually exclusive in our study.

Prognostic Value of Gene Mutations
We further analyzed the prognostic value of gene mutations
(Table S5) and found that FBXW7 mutations and PTEN
mutations were related to increased CR rate (P < 0.001 and P <
0.05, respectively), while DNMT3A mutations were related to
decreased CR rate (P < 0.05). However,NOTCH, PHF6, JAK3, and
IL7R mutations had no significant effect on CR. Patients with
FBXW7 mutations had a significantly increased MRD negative
rate (P = 0.006). However, no gene mutations had remarkable
effects on EFS in our study. Patients with WT1 mutations had
significantly decreased RFS (P < 0.001). The OS of patients with
TP53 or FLT3 mutations was significantly shortened (both P <
0.05), while NOTCH1, FBXW7, IL7R, IDH2, and DNMT3A
mutations had no remarkable effects on OS.
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Univariate analysis of signaling pathways (Table S6) showed
that DNA methylation pathway alterations, TP53 and cell cycle
pathway alterations, and lymphoid differentiation and
development pathway alterations were related to decreased CR
rate (all P < 0.05). DNA methylation signaling pathway
alterations and lymphoid differentiation and development
signaling pathway alterations were related to increased MRD
positive rate (P < 0.05, respectively). Patients with TP53 and cell
cycle signaling pathway alterations had significantly decreased
EFS (P < 0.001), while patients with JAK/STAT pathway
alterations had significantly increased EFS (P < 0.05). However,
no signaling pathways had effects on RFS in our study. Results
also indicated that the OS of patients with TP53 and cell cycle
signaling pathway alterations was significantly shortened (P =
0.001), while the OS of patients with JAK/STAT signaling
pathway alterations was significantly extended (P < 0.05).

Clinical Characteristics Analysis
Clinical Characteristics of Patients
Besides gene mutational analysis, we also summarized the
primary clinical characteristics of these 90 newly diagnosed
Frontiers in Oncology | www.frontiersin.org 448
T-ALL/LBL patients (Table S7). The median age was 27 years
(range from 14 to 70 years old). The median follow-up time was
6 months. Here, 85.6% of patients (77/90) were diagnosed as T-
ALL, while the other 13 patients were T-LBL. Additionally,
according to the immunophenotype of patients, 32 of them
were categorized as pro-T (35.6%), 36 as pre-T (40%), and 22
as cortical T subtype (24.4%). Furthermore, up to 46.7% cases in
our study (42/90) met criteria for early T-cell precursor (ETP)-
ALL according to the 2016 WHO (19). Moreover, 33 common
leukemia fusion genes in our study were detected by RT-PCR
(Further details of the 33 fusion genes are available in the
Supplementary Appendix.).

Univariate Analysis of Clinical Characteristics
The clinical characteristics associated with prognostic markers
including CR, MRD, EFS, RFS, and OS were screened out by
univariate analysis. As shown in Table S7, age, immunophenotype,
WT1expression, day 8prednisone response, andday 19 lymphoblast
percentage arepredictors of reachingCRrate andMRDnegative rate.
These and other clinical characteristics were predictors of EFS, RFS,
and OS as summarized inTable S7. The number of cases who had a
A B
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FIGURE 1 | (A–H) Circos plots visually depict the pairwise correlation of gene mutations in our dataset. (I) Mutated genes are grouped by signaling pathways. The
figure shows the mutational landscapes of 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients. Each column represents a patient, and each
row represents a gene. Each color indicates a type of mutation. Blended color square denotes more than two mutation types, which are represented by the
corresponding colors.
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certain gene fusion in our study was slightly less (14/90), and
univariate analysis showed that the fusion genes were not
associated with the prognosis of adult T-ALL/LBL patients, so that
fusion genes were not included in risk stratification.

Multivariate Analysis of Gene Mutations
and Clinical Characteristics
The statistically significant risk factors in gene mutations and
clinical characteristics from univariate analysis above were
chosen for further multivariate analysis. It revealed that
Hb >100 g/L and M1 in D19-BMR detection were independent
favorable prognostic factors for CR, while DNA methylation
signaling pathway alterations and ETP were independent
negative prognostic factors for CR. Cortical T and M1 in D19-
BMR detection were independent favorable prognostic factors
for MRD, while DNA methylation signaling pathway alterations
were independent negative prognostic factors for MRD. Age ≤45
years old, PLT >50 G/L, LDH ≤600 U/L, HSCT, and M1+M2 in
D19-BMR detection were independent favorable prognostic
factors for EFS, while TP53 and cell cycle signaling pathway
alterations were independent negative prognostic factors for EFS.
Age ≤45 years old, WBC count ≤30 G/L, HSCT, and M1+M2 in
D19-BMR detection were independent favorable prognostic
factors for OS, while TP53 and cell cycle signaling pathway
alterations were independent negative prognostic factors for OS.
However, risk factors for RFS by univariate analysis were too few
to carry out further multivariate analysis.

Risk Stratification Models of Overall
Survival in 90 Adult T-ALL/LBL Patients
Univariate and multivariate analyses showed that age (45 years
old), WBC count (30 G/L), response in D19-BMR detection,
TP53 and cell cycle signaling pathway alterations, and HSCT
were independent predictors for OS (Table 1). Then, the above
five independent predictors of OS were integrated into an OS rate
TABLE 1 | Univariate and multivariate analysis for OS in 90 adult T-ALL patients.

Variable Univariate

HR (95% CI) P

Age at diagnosis (45y) 4.868 (2.438-9.721) 9.55742E
WBC (30G/L) 1.88 (1.016-3.478) 0.041236
TP53 and cell cycle 4.28 (1.639-11.18) 0.001376
Response in D19-BMR detection (M1+M2/M3) 3.407 (1.823-6.367) 4.74972E
HSCT 0.1537 (0.07346-0.3218) 4.99E-0

TABLE 2 | Univariate and multivariate analysis for OS in 90 patients removing the impa

Variable Univariate

HR (95% CI) P

Age at diagnosis (45y) 7.087 (3.332-15.07) 3.66E-07
TP53 and cell cycle 4.464 (1.69-11.79) 2.53E-03
LDH (600U/L) 1.803 (0.8758-3.711) 0.11000
Response in D19-BMR detection (M1+M2/M3) 3.78 (1.814-7.877) 3.85E-04
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estimation nomogram (Figure 2A). The C-index of the
nomogram was 0.844 (Figures 2B–D). The calibration plots
showed good agreement between predictions and actual
observations in our study (Figures 2E–G). In order to well
evaluate the prognosis of patients, the receiver operating
characteristic (ROC) analysis was conducted and the area
under receiver operating characteristic curves (AUC) was
calculated. The Youden Index was used to determine the
optimal cutoff point that has the highest combination of
sensitivity and specificity to discriminate between low-risk and
high-risk patients. With the threshold score of 140 for OS
nomogram, 54 patients with total points ≥140 (AUC ≥86.4)
were defined as low-risk group and 36 patients <140
(AUC <86.4) as high-risk group. The 1-year OS rate of T-ALL/
LBL patients in the low-risk group was significantly higher than that
in the high-risk group [all patients: 70.4% vs. 30.6%, P < 0.0001;
hazard ratio (HR): 7.956, 95% CI: 3.915–16.17] (Figure 2H).

Of these 90 adult T-ALL/LBL patients, 39 patients received
HSCT after chemotherapy. The median follow-up time after
HSCT was 153 days (range from 23 to 1,200 days). Among them,
13 patients relapsed after HSCT. The cumulative incidence rate
(CIR) was 33.3% (13/39), and the non-relapse mortality (NRM)
was 3.8% (1/26) (Supplementary Figure S2). The median
follow-up time of leukemia-free survival was 233 days (range
from 23 to 1,200 days).

In order to remove the impact of HSCT on the prognosis for
patients, we adopted “censored data” to process the
transplantation data and then built a new risk stratification
model for OS in 90 adult patients. Univariate and multivariate
analyses showed that age (45 years old), LDH (600 U/L),
response in D19-BMR detection, and TP53 and cell cycle
signaling pathway alterations were independent predictors for
OS (Table 2). The new risk stratification model of OS was also
built into a nomogram (Figure 3A). The C-index of the
nomogram was 0.792 (Figures 3B–D). The calibration plots
Multivariate

HR (95% CI) P c-index vif nomo score

-07 3.1854 (1.41962-7.1476) 0.00496 0.844 1.266289 0/63
18 2.9731 (1.50880-5.8585) 0.00164 1.168878 0/40
429 3.0074 (1.12213-8.0603) 0.02859 1.017995 0/35
-05 2.1497 (1.10235-4.1923) 0.02471 1.093628 0/37
8 0.1764 (0.07721-0.4029) 3.84E-05 1.134547 0/100

ct of HSCT.

Multivariate

HR (95% CI) P c-index vif nomo score

8.018 (3.272-19.649) 5.32E-06 0.792 1.237466 0/100
4.294 (1.558-11.834) 0.00484 1.015417 0/51
3.630 (1.599-8.237) 0.00205 1.248115 0/42
3.185 (1.440-7.045) 0.00422 1.090931 0/48
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also showed good agreement between predictions and actual
observations in our study (Figure 3E). With the threshold score
of 170 for OS nomogram, 27 patients with total points ≥170
(AUC ≥78.5) was defined as low-risk groups and 63 patients <170
(AUC <78.5) as high-risk groups. The 1-year OS rate of T-ALL/
LBL patients in the low-risk group was significantly better than
that in the high-risk group (69.6% vs. 21.7%, P < 0.00019; HR: 3.8,
95% CI: 1.803–8.01) (Figure 3F).
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Risk Stratification Model of Event-Free
Survival in 90 Adult T-ALL/LBL Patients
Univariate and multivariate analyses showed that age (45 years
old), PLT (50 G/L), LDH (600 U/L), response in D19-BMR
detection, TP53 and cell cycle signaling pathway alterations,
and HSCT were independent predictors for EFS (Table S8).
Then, the above six independent predictors of EFS were
integrated into the nomogram of estimating EFS rate with the
A

B D

E F G

H

C

FIGURE 2 | (A) A nomogram predicts the half-year, 1-year, and 2-year overall survival (OS) of 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL)
patients. (B–D) The AUC of nomogram for the half-year, 1-year, and 2-year OS. (E–G) Calibration curves for predicting half-year, 1-year, and 2-year OS. (H) Kaplan–
Meier survival curves of OS. The diagonal gray lines could help to judge the agreement between predictions and actual observations in the AUC and calibration
curves. The dotted lines drawn on the Kaplan–Meier curves were used to reveal the median survival time of patients when 50% of patients had the event. The data
in the tables showed the number at risk and cumulative number of events at specific time points.
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C-index 0.844 (Supplementary Figures S3A–D). The
calibration plots also showed good consistency between
predictions and actual data (Supplementary Figures S3E–G).
With the threshold score of 150, 58 patients with total points
Frontiers in Oncology | www.frontiersin.org 751
≥150 (AUC ≥85.4) belonged to the low-risk group and 32
patients <150 (AUC <85.4) belonged to the high-risk group.
The 1-year EFS rate of T-ALL/LBL patients in the low-risk
group was significantly higher than that in the high-risk group
A

B

D E
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C

FIGURE 3 | (A) A nomogram predicts the half-year, 1-year, and 2-year overall survival (OS) of 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL)
patients while removing the impact of hematopoietic stem cell transplantation (HSCT). (B–D) The AUC of nomogram for the half-year, 1-year, and 2-year OS.
(E) Calibration curves for predicting 1-year OS. (F) Kaplan–Meier survival curves of OS.
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(allpatients: 67.2% vs. 25.0%, P < 0.0001; HR: 7.002, 95% CI:
3.642–13.46) (Supplementary Figure S3H).
DISCUSSION

To date, there is still a lack of universally accepted criteria
combining gene mutations with clinical characteristics for T-
ALL risk stratification. Therefore, in this study, we established
three novel risk stratification models by the combination of gene
mutations and clinical characteristics with EFS and OS to predict
therapeutic efficacy and prognosis in adult T-ALL/LBL patients,
which displayed favorable predictive efficacy. One latest study
involving genomic analyses of ALL by copy number alteration
(CNA) profiling indicated that 8 genes (IKZF1, CDKN2A/2B,
PAR1, BTG1, EBF1, PAX5, ETV6, and RB1) had potential to
serve as risk stratification markers (20), which partly overlapped
with our results about gene mutations, indicating the
applicability of our study.

TP53 is a typical tumor suppressor gene. TP53 mutation is
involved in the pathogenesis of various tumors, including T-
ALL. The frequency of TP53 mutations in newly diagnosed T-
ALL in our study was slightly higher than previously reported
(4.4% vs. 2%–3%) (21). In Pediatric Oncology Group protocol
POG8862, TP53 mutations usually occurred in relapsed T-ALL
children, who had a worse survival than children without TP53
mutations (22). In addition, TP53 mutations were found
associated with worse 5-year EFS and OS (23), which was
consistent with our results. In our study, TP53 pathway
alteration is an independent unfavorable risk factor for EFS
and OS. Besides, the OS in the patients with TP53 mutations
was significantly shortened, whose median survival time was
53 days.

DNMT3A mutations frequently occur in myeloid tumors but
are less common in lymphoid malignancies that are mainly
found in T-cell lineage diseases (24, 25). Besides, the mutation
frequency of DNMT3A increased with age and was extremely
rare in children and adolescents with T-ALL (25). Mutation
frequency ofDNMT3A in our study was 14.4%, which was higher
than previously reported, 9.1% (25), but lower than previously
reported, 17.8% (26). Previous studies demonstrated that
DNMT3A mutations were significantly associated with shorter
EFS and OS, which were independent prognostic factors for EFS
but not OS (25). Another study from MRC UKALL XII/ECOG
E2993 reported that DNMT3A was an independent prognostic
marker in adult T-ALL that might be useful for risk stratification
of high-risk early immature adult T-ALL (27). In our study, the
median times of reaching both CR and MRD in patients with
DNMT3A mutations are much longer than those of patients
without DNMT3A mutations. Furthermore, DNMT3A pathway
alteration is an independent unfavorable risk factor for CR and
MRD, which suggested that the patients with DNMT3A
mutations and DNA methylation signaling pathway alterations
have worse early response to chemotherapy. Decitabine, a DNA
hypomethylating agent, was reported to be a promising
therapeutic agent for relapsed ALL after HSCT (28). Besides, a
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patient with relapsed T-ALL after HSCT achieved an effective
response to the combined treatment of decitabine and venetoclax
(29). So, hypomethylating agent combined with chemotherapy
might be recommended for T-ALL patients with DNMT3A
mutations and DNMT3A pathway alterations to increase the
CR rate.

NOTCH1 was a class I transmembrane glycoprotein that
functions as a ligand-activated transcription factor, directly
transducing extracellular signals on the cell membrane and
triggering the expression of specific target genes in the nucleus
(30). Activation of NOTCH signaling pathway by NOTCH1 and/
or FBXW7 mutations was a prominent oncogenic event in the
hematopoietic system, also critical for the development of T cells
and the regulation of many important cellular processes. In our
study, the mutation frequency of NOTCH1 (30%) was lower than
the previously reported 45.8%–66% (16, 31–33). The mutation
frequency of FBXW7 was between the reported data 18% (31)
and 9.4% (32). The mutation frequency of NOTCH signaling
pathway was lower than reported data 59%–73.3% (27, 34–36).
The role of NOTCH1 mutations in T-ALL is still controversial.
Our study showed that NOTCH1 mutations have no significant
impact on CR, MRD, EFS, RFS, and OS, which was completely
consistent with results of some studies (31, 33, 35, 37). However,
some researchers reported that T-ALL patients with NOTCH1/
FBXW7mutations had better OS when compared with wild-type
cases (5, 27, 37), and NOTCH1mutations predicted a faster early
treatment response (38). Apart from the favorable role, Zhu et al.
(39) reported that NOTCH1 mutations were relevant to shorter
OS in T-ALL patients. Therefore, a larger sample size is needed
for the confirmation of the role of NOTCH1 mutations.

In this study, we also identified the pairwise relationship
between genetic alterations and found significant co-occurrence
of NOTCH1 mutations and FBXW7 mutations, NOTCH1
mutations and IL7R mutations, FBXW7 mutations and
IL7R mutations, PHF6 mutations and NRAS mutations, and
DNMT3A mutations and IDH2 mutations. Of note, T-ALL is a
genomically heterogeneous malignancy as discussed, and co-
occurrence of specific mutations could contribute to
leukemogenesis (13). Preclinical studies suggest that co-
occurring mutations may impact treatment responsiveness,
since the treatment response to docetaxel monotherapy in lung
tumors was markedly impaired when KRAS mutants co-
occurred with TP53 mutations (40). Furthermore, KRAS
mutations co-occurring with TP53 mutations are associated
with increased intratumoral T-cell infiltration, programmed
cell death protein (PD-1) expression, and prolonged clinical
benefit from anti-PD-1 immunotherapy in non-small cell lung
cancer (NSCLC) (41). Although IDH1 and IDH2 both regulate
DNA methylation, mutations to IDH1 and IDH2 are mutually
exclusive (42), which was also observed in our study.
Furthermore, it has been reported that IDH1 and IDH2
mutations are frequently co-occurring with DNMT3A
mutations in AML. In particular, the prognosis was
significantly worse for the co-occurrence of DNMT3A
mutations with IDH2 mutations (43). In addition, it has been
reported that DNMT3A, IDH1, and IDH2 mutations were
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uniquely present in the early immature adult T-ALL and conferred
worse prognosis in adult T-ALL (27), which is consistent with our
study. Some previous studies revealed that NOTCH1/FBXW7
mutations co-occurred (44) and were significant favorable
prognostic predictors for OS in adult T-ALL patients in the
absence of K/NRAS mutation or PTEN mutations (45).
Moreover, it has been demonstrated that JAK/STAT signaling
pathway alterations were co-occurring with alterations of NOTCH
signaling pathway (46, 47) and PHF6 mutations but not with K/
NRAS, and this population may not benefit from HSCT (46). It
has been demonstrated experimentally that PHF6 loss can
enhance the oncogenic activity of NOTCH1 mutations;
therefore, PHF6 and NOTCH1 co-mutation are more tightly
linked to T-ALL pathogenesis and leukemia-associated mortality
(48, 49). Several studies demonstrated that IL7Rmutations may be
oncogenic drivers in ETP-ALL (50, 51) and positively correlated
with PHF6 mutations in the development of T-ALL (52).
Interestingly, it has been observed that PTPN2 deletions were
co-occurring with alterations of IL7R/JAK-STAT signaling
pathway and inclined to associate with improved OS in
children, but not in adults in a large cohort of 430 adult T-ALL
patients (53). Hence, co-occurring mutations may account for the
limited activity of single targeted agent. Rational combination
therapies are of great promise to provide precise and effective long-
term disease control or remission.

The incidence of ETP-ALL gradually increased with age, which
was 5.5%–13% in children (54, 55) and 30%–50% in adults (56–
58). The incidence of adult ETP-ALL in our data was 46.7%. These
differences may attribute to ethnic variations and demographic
structure. The average age of ETP-ALL patients in this study was
37.5 years old, higher than 32 as previously reported (59). ETP-
ALL has been found related to unfavorable prognosis because of
poor response to chemotherapy and high relapse rate (54, 55, 60,
61). The 10-year OS for ETP-ALL was only 19% (54). However, a
recent research found that not all patients with ETP-ALL had
worse prognosis (62). It has been also reported that patients with
ETP-ALL seemed to have an intermediate risk outcome and might
have a similar prognosis compared with typical T-ALL patients if
receiving intense treatment (63). In this study, ETP-ALL was an
independent poor prognostic factor for CR and MRD but did not
impact long-term outcomes such as EFS, RFS, and OS, which
indicated that ETP-ALL was not the strictly independent factor for
all prognostic markers.

Some current pediatric risk stratification models include MRD
status of patients (64). In adult T-ALL, MRD ≥10−4 is associated
with higher recurrence rate and decreased OS, which has been
included in criteria for high-risk patients (16). In our study, T-ALL/
LBL patients with detectable MRD had worse EFS and OS. But we
found that MRD is not an independent risk factor for EFS and OS.
Actually, adult ALL patients show greater heterogeneity than
pediatric patients. Moreover, PCR- and flow cytometry-based
MRD assessment has limited sensitivity. Standardization of
methodologies and harmonization of terminology are still lacking
for MRD diagnostics. These are probably the reason why MRD
status has not been implemented in the risk stratification of adult T-
ALL/LBL. Hence, improved detection methods and larger sample
size are necessary for further validation.
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It is increasingly important to accurately stratify patients who
benefit from HSCT. A meta-analysis including 2,962 patients
have shown a survival benefit for HSCT for patients <35 years
old but not for those >35 years (65). In addition, 1,646 adults
diagnosed with standard-risk or high-risk ALL in the Medical
Research Council (MRC) UKALL XII/ECOG 2993 have shown
superiority of HSCT on the prognosis (66). The consensus from
the Chinese Society of Hematology has also recommended that
HSCT is the standard of care for adult ALL patients at either
standard risk or high risk who receive adult chemotherapy
regimens (67). In our study, the HSCT was an independent
favorable predictor for EFS and OS.

The independent risk factors we included in our risk
stratification models are different from all previous models
mainly because we emphasized gene mutations detected by NGS.
The integration of gene mutations and clinical characteristics of
adult T-ALL/LBL patients improved our understanding of their
clinicobiological features, optimized the current prognostic-related
risk stratification models, and provided a foundation for
formulating treatment regimens. However, its limitations also
deserve commentary. This was a non-randomized retrospective
analysiswith somepotential biases. In addition, the number of cases
in this study was slightly less, so that comprehensiveness of the
results is limited. Therefore, it is necessary to recruit more patients
andprolong follow-up time in the subsequentproject to confirm the
validity of our risk stratification models on adult T-ALL treatment
decisions and prognosis.
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T-cell clones can frequently be identified in peripheral blood. It can be difficult to
appreciate whether these are benign and transient or whether they signify a clonal
disorder. We review factors that aid in understanding the relevance of T-cell clones.
Conversely, obvious pathological T-cell clones can be detected in blood, but there is
uncertainty in how to categorize this clonal T cell population, thus, we adopt a
multidisciplinary review of the clinical features, diagnostic material and radiology before
making the diagnosis. In this review we shall discuss some of these challenges faced
when diagnosing mature T-cell leukemias.

Keywords: diagnostics, mature T and NK-cell neoplasms, T-PLL, T-cell prolymphocytic leukemia, large granular
lymphocyte (LGL) leukemia, adult T-cell leukemia/lymphoma (ATL), T cell lymphoma
INTRODUCTION

Mature T-cell neoplasms with leukemic involvement are rare and while many can present with
archetypal features that allow for easy diagnostic categorization, other cases can be more difficult to
sub-classify. Accurate and precise diagnosis requires integration of all the clinical findings along
with morphological assessment, immunophenotyping, cytogenetic and molecular analysis of the
peripheral blood, bone marrow and lymph node and radiology (1). A multi-disciplinary review of
these cases is paramount to avoid incorrect diagnosis, for example, a histopathologist reviewing a
lymph node biopsy may suggest a patient has nodal peripheral T-cell lymphoma in the absence of
information regarding the white cell count and clinical picture (2).

In this review, we shall discuss some of the features that aid in subclassifying the mature T-cell
leukemias and differentiating them from nodal peripheral T-cell lymphoma with leukemic
involvement. We shall highlight rare examples of these diseases in order to avoid potential
diagnostic pitfalls.
WHAT IS THE DIFFERENTIAL FOR A CLONAL T-CELL
POPULATION IDENTIFIED IN PERIPHERAL BLOOD?

Lymphocytosis due to an increase in T-lymphocytes can easily be distinguished from clonal B-cell
populations by basic flow cytometry methods. Once it has been established that the increase in
lymphocytes are T cells, and further characterizing the T-lymphocyte population by morphology,
immunophenotyping, cytogenetic and molecular analysis, an attempt to establish clonality is
March 2022 | Volume 12 | Article 777066157
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recommended, particularly in cases where the white cell count is
low. This can be performed by several methods, namely, PCR-
based methods, next generation sequencing (NGS) and flow
cytometry of the TCR-Vb repertoire (albeit limited use in
everyday practice) or more recently TRBC1 (3–7).

Persistent T-cell lymphocytosis and expansion of T-cell
populations can be seen in many cases of chronic infection, for
example HIV and CMV and indeed reactive to other
malignancies (8–10). Similarly immune dysregulation due to
primary immunodeficiencies or autoimmune conditions such
as autoimmune lymphoproliferative disorders (ALPS) can lead
to significant lymphoid proliferation and peripheral blood
involvement. Thus, even in the absence of clonal T-cell
expansion a persistent T-cell lymphocytosis may indicate
significant pathology that requires multi-disciplinary team
input both for both diagnosis and management. This
discussion is beyond the scope of this paper. One important
point to note is that many of these conditions in themselves
increase the risk of lymphoma.
REACTIVE VERSUS T-CELL NEOPLASM?

The identification of a T-cell clone is not synonymous with a
neoplasm. T-cell clones can be detected due to reactive causes,
infection and senescence and can be persistent in these cases
(11, 12). There is a spectrum of disorders both infective and
autoimmune that can be associated with polyclonal expansion of
T cells through to monoclonal expansion through to neoplastic
proliferations of T cells. This is especially the case with large
granular lymphocytic proliferations which can be seen in
autoimmune conditions, and Felty’s syndrome, but similarly it
is known that there is a strong link between Rheumatoid arthritis
and LGLL. Furthermore, the pathogenesis of lymphoproliferative
disorders, such as LGLL has been linked to chronic T cell
activation with viruses such as HTLV or EBV implicated (13).
This boundary and how we define these clones can be complex
and can change with time (14). Furthermore, with improvements
in diagnostics and also availability, there will be an increase in
individuals identified with persistent T-cell clones with normal
or even low lymphocyte counts. Interestingly, there is an
association between clonal hematopoiesis (CHIP), MDS and
clonal T-cell disorders. Not only do they share many of the same
recurrent mutations seen predominantly in epigenetic regulators
such as DNMT3A and TET2, suggestive that this may be early
mutations in common progenitors, but they also often co-exist and
there are numerous reports of co-existing MDS with LGLL or
angioimmunoblastic T-cell lymphoma (15, 16).

T-cell clones of uncertain significance may be detected by
molecular analysis solely, or there may be a small T-cell
population identified by flow cytometry often with a large
granular lymphocyte phenotype (as described below) (17, 18).
While there is no equivalent to monoclonal B-lymphocytosis,
many of these incidental clones can be considered as ‘T-cell
clones of uncertain significance’ if the criteria for diagnosis
of large granular lymphocytic leukemia (LGLL) or other
Frontiers in Oncology | www.frontiersin.org 258
mature T-cell leukemia are not met. However, the significance
of the T-cell clones in the context of cytopenias and therefore
how to manage them is not clear (19). It should also be noted that
large granular lymphocytic proliferations can be seen with other
hematological and non-hematological conditions, namely,
myelodysplasia, plasma cell dyscrasias, aplastic anaemia, post-
stem cell transplant, HIV infection and treatment with dasatinib
(20–24). The presence of mutations in STAT3 and STAT5b does
not immediately define a diagnosis of LGLL as these mutations
are not specific to this disease (14). Thus, if patients do not have
sufficient evidence for a positive diagnosis of a defined T-cell
leukemia, then we prefer to consider them as having T-cell clones
of uncertain significance. Akin to MGUS and monoclonal B cell
lymphocytosis of uncertain significance, these should however be
followed up as these clones may acquire secondary events that
drive progression and develop into malignancy (25). Our
preference depending on clinical situation is to monitor
patients every 6 months in the first instance and then annually
if no progression occurs.
ACUTE VERSUS MATURE
T-CELL NEOPLASM?

While distinguishing between T-lymphoblastic leukemia (T-ALL)
and mature T-cell neoplasms is usually very straightforward with
the presence of immaturemarkers such asCD1a, CD34, andTdT in
the former, there have been unusual cases of T-prolymphocytic
leukemia, T-PLL seen with lack of surface CD3 and CD45 that can
make thediagnosismoredifficult (26, 27). Similarly, therehavebeen
reports ofmatureT-cell neoplasms aberrantly expressing immature
markers, such as CD1a (28, 29).
MATURE T CELL LEUKEMIA WITH
NODAL/CUTANEOUS INVOLVEMENT
VERSUS NODAL/CUTANEOUS T CELL
LYMPHOMA WITH LEUKEMIC
INVOLVEMENT?

The mature T-cell leukemias are sufficiently diverse from one
another that they are usually readily discernible; however
distinguishing them from nodal or cutaneous lymphomas with
leukemic involvement can be challenging and thus requires
integration of all results before reaching a diagnosis,
occasionally this can require multiple biopsies and can take
time before a conclusion can be made (Table 1).
LARGE GRANULAR LYMPHOCYTIC
LEUKEMIA

Large granular lymphocytic leukemia (LGLL) typically presents
with cytopenias, most commonly neutropenia. Median age at
March 2022 | Volume 12 | Article 777066
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presentation is 66 years (30–32). There is a strong association
with autoimmune conditions, and approximately 15% of patients
with LGLL will also have rheumatoid arthritis.

Morphology
Typically there are no dysplastic features on the peripheral blood
unless there are co-existing conditions and the cytopenias are
evident. The large granular lymphocytes tend to be infrequent
but are characteristic large lymphocytes with abundant
cytoplasm and azurophilic granules. The distribution of the
lymphocytes is intrasinusoidal in the bone marrow trephine
that is otherwise normo- or hypercellular.

Immunophenotyping and
Molecular Analysis
The characteristic immunophenotypic profile of LGLL is that of
mature cytotoxic T cells most commonly abTCR, CD2, CD3,
CD8, CD56, and CD57 positive. Less commonly, LGLL can be
comprised of CD4 positive T-cells, NK cells (classified as chronic
lymphoproliferative disorder of NK cells in the most recent
WHO classification), or have a gdTCR (33). While these can
all be readily differentiated from T-LGLL by flow cytometry, it is
important to consider their differential diagnoses such as
aggressive NK cell leukemia or hepatosplenic T cell lymphoma,
especially if patents have a more aggressive clinical picture.

Clonality may be assessed by flow cytometry using TRBC1 or
more commonly by assessing for TCR gene rearrangements.
Molecular analysis of STAT3 and STAT5b can be helpful as
recurrent mutations in these genes have been identified in LGLL,
but are not specific.

Making the Diagnosis
The WHO diagnostic criteria for LGLL are defined as a persistent
(>6 months) increase in the number of peripheral blood large
granular lymphocytes, usually 2–20 × 109/L without a clearly
Frontiers in Oncology | www.frontiersin.org 359
defined cause (33). However, it is stated that LGL counts of less
than 2 × 109/L that otherwise meet the diagnosis are still consistent.

Hence, this diagnosis can only be made once persistence of
the clone has been demonstrated. Often the authors are asked to
review cases where patients have been investigated for cytopenias
and while there are persistent T-cell rearrangements identified by
molecular analysis, there is no associated lymphocyte population
with LGLL phenotype identified by flow cytometry or infiltrate
seen on bone marrow trephine. In these cases we would suggest
continued infrequent monitoring and reassessment if the clinical
situation changes but that this does not meet the diagnostic
criteria for LGLL (34).

We have seen cases with very high white count with
lymphocytes >100 × 109/L and so while low level clones are
more common, they are not a defining feature.

Similarly, rare patients have presented with a predominantly
nodal distribution of disease and this must not be assumed to be
PTCL NOS based on distribution alone.

Cases of LGLL with more unusual immunophenotypic
profiles such as gdTCR can lead to other differential diagnoses
such as gamma delta hepatosplenic T-cell lymphoma (35, 36).
However, by combining the clinical features such as generalized
symptoms, rapidity of onset of symptoms, presence of
hepatosplenomegaly, and bone marrow sinusoidal expansion
by lymphoma cells the two can be readily distinguished,
emphasizing that the pathologist cannot make the diagnosis in
isolation, without knowing the clinical picture.
T-PROLYMPHOCYTIC LEUKEMIA

T-prolymphocytic leukemia (T-PLL) characteristically presents
at a median age of 65 years. Patients with ataxia telangiectasia
have an increased risk of T-PLL and in these cases, the
presentation can be in their 20s. Often the illness presents
TABLE 1 | Summary of the defining features of the mature T cell leukemias.

T-PLL T-LGLL ATLL SS

Classic Clinical Features Rapidly progressive
High white cell count
Lymphadenopathy,
splenomegaly, skin involvement
effusions

Indolent
Often clone is
modest size <20 ×
109/L
Associated
cytopenias
Associated
autoimmune history

Presence of HTLV1
Variable involvement by skin, nodes,
blood, marrow and extranodal disease
Hypercalcemia

Erythroderma
Generalized lymphadenopathy
Pruritus

Morphology Basophilic prolymphocytes
with cytoplasmic blebbing
Small cell (20%) and Sezary (5%)
variants

Large granular
lymphocytes

Variable
“Flower cells”

Cerebriform cells

Typical
Immunophenotyping
(rare variations do exist
for all diagnoses)

CD2+, CD3+, CD5+, CD7++

CD4/8 variable
CD1a−, TdT−, CD25−/+

TCL1+

CD2+ CD3+ CD5+

CD8+

CD56+ CD57+

(NK and CD4+ and dg
cases also seen)

CD2+ CD3+ CD5+

CD4+ CD25+

CD7−

CD2+ CD3+ CD5+

CD4+

CD7− CD26−

Specific molecular or
cytogenetic aberration

t(14,14); inversion 14; t(X,14);
iso8q; complex cytogenetics

STAT3 and STAT5b
mutations

High frequency of mutations Non-specific and heterogeneous
pattern of translocations and mutations
Ma
Those listed in bold can be helpful in differentiating from each other as are quite specific to that disease category.
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rapidly, with a rapidly rising white cell count, with generalized
symptoms and also effusions, ascites, edema, and peri-orbital
edema and skin infiltration. However, T-PLL can have an
indolent pre-phase that is detected incidentally, when patients
will not have these symptoms and have smaller more stable
clones but with the characteristic phenotype as described below.

Morphology
The morphology can be variable with three characteristic
appearances described. These include the more typical
prolymphocytes with blebbing of the cytoplasm and single
nucleolus; small cell variant with cells displaying condensed
chromatin and nucleoli invisible by light microscopy; and
cerebriform variant with an irregular nuclear outline similar to
the lymphocytes seen in Sézary syndrome.

Immunophenotyping
The lymphocytes are post-thymic and express mature markers
positive for CD2, CD3, CD5 and CD7 and CD52. CD4+ CD8− is
most commonly seen, with rarer cases expressing only CD8 or
double positive. The latter is quite specific to T-PLL compared to
other mature T cell leukemias, and so can be helpful for making
the diagnosis. Similarly, TCL1 expression can be assessed by flow
cytometry and is specific to T-PLL.

Cytogenetics and Molecular Analysis
Changes involving chromosome 14 are the most common
genetic alteration, seen in over 90% of cases. Inv(14)(q11q32)
and t(14;14)(q11;q32) causes juxtaposition of TCRa and TCL1
or TCL1B leading to activation (37). This rearrangement can be
identified by FISH (karyotype has a lower sensitivity), and the
aberrant TCL1 protein expression can also be detected by flow
cytometry or immunohistochemistry (38). The translocation t
(X;14) is present in approximately 10–20% cases and involves the
rearrangement of the TCRa locus with the proto-oncogene
MTCP1 (39–41).

Other cytogenetic abnormalities are also commonly found,
namely, abnormalities of chromosome 8 which often results in
increased expression of MYC, deletions in 11q23, 12p, 22q, and
17 or abnormalities in chromosome 6 have also been identified
with the majority of patients exhibiting a complex karyotype (37,
40, 42–47). While molecular analysis is also performed, the
recurrent mutations in genes such as ATM, JAK3, and STAT5b
are not specific (40).

Making the Diagnosis
As well as assessing for TCL1 expression, in our center we will
also perform FISH to look for the characteristic inversion 14
(q11q32) or t(14;14)(q11q32), but importantly also perform
cytogenetics to look for other aberrations that are frequently
seen in T-PLL.

International consensus criteria have been recently published
to guide the diagnosis (48). When specific cytogenetic
aberrations or protein expression are detected, the diagnosis is
certain; however, there is a small subset of cases which have been
diagnosed elsewhere to have T-PLL on the basis of a leukemic
clonal T-cell population “compatible” with T-PLL by flow
Frontiers in Oncology | www.frontiersin.org 460
cytometry and with involvement by a “T-PLL specific site” that
on further investigation with a wider T-cell panel, has been
reclassified as PTCL-NOS due to lack of cytogenetic aberrations,
and features that would be more unusual for T-PLL such as
weak CD7.

Identification of CD4+ CD8+ double positive T-cell
populations, can be very suggestive of the diagnosis of T-PLL.
While ATLL is characteristically CD4+ CD25+, CD25 expression
can also be seen in T-PLL and so does not differentiate between
the two, HTLV analysis aids in differentiation of these cases.
Typically Sézary cells do not express CD7, which can help
diagnostically. A recent case that had been referred to our
center as possible T-PLL was in a patient with marked
erythroderma and a relatively modest lymphocytosis, in this
case the weak CD7 positivity pushed the referring center to this
diagnosis, however, the clinical history of the erythroderma
being significant for many years and the discrepancy of the
extent of cutaneous involvement and progression with lack of
progression of the leukemic component made the diagnosis of
T-PLL very unlikely. Skin biopsy showed evidence of a CD4
positive T-cell lymphoma infiltrate with small to intermediate
sized T-cell infiltrate with focal epidermotropism. This in
conjunction with the lack of any specific cytogenetic aberration
by FISH analysis for TCRAD break-apart allowed the regional
skin lymphoma unit and our center to conclude that this was
most in keeping with Sézary syndrome. This highlights the
importance of multidisciplinary involvement in difficult cases
such as these.

Similarly, cases can be seen where nodal lymphomas are
incorrectly diagnosed as T-PLL due to the leukemic
involvement or the converse when initially the patient presents
with lymphadenopathy but the lymphocytosis is not such a
feature or perhaps in a more indolent phase (49, 50).
ADULT T-CELL LEUKEMIA/
LYMPHOMA (ATLL)

Despite the marked heterogeneity of this disease, given the
knowledge of the etiological infectious agent, HTLV1,
differentiating this from other mature T cell neoplasms is
generally easier than other mature T cell leukemias. However,
HTLV1 serology should be undertaken in any case of cutaneous,
nodal or leukemic mature T-cell neoplasm in order not to miss
this diagnosis (51).

Morphology
Several morphological variants have been described with the
archetypal variant being medium to large sized “flower cells”
with nuclear indentations (33, 52).

Immunophenotype
Mature T-cell markers are expressed, namely, CD2, CD3, and
CD5, but usually lack CD7. The majority are CD4 positive and
CD8 negative but CD8 positive and double positive cases have
been described (33, 53). CD25 is strongly expressed in nearly all
cases. CD30 expression is variable.
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Cytogenetics and Molecular Analysis
The genomic landscape of ATLL is complex with a high
frequency of mutations with regional variations and variations
dependent on subtype of ATLL (54–56). Most frequently
mutated genes are PLCG1, PRKCB, VAV1, IRF4, FYN,
CARD11, and STAT3.

Sézary Syndrome
Sézary syndrome usually presents in patients in the older (60
years plus) age group. Symptoms most frequently include
erythroderma and generalized lymphadenopathy. The classical
triad of erythrodermic pruritic rash covering >80% of the body
surface area, lymphadenopathy and circulating Sézary cells can
aid in diagnosis (33, 57). The history is usually quite short, due to
the rapid progression, however a secondary Sézary syndrome
occurring following a more prolonged history with documented
preceding mycosis fungoides has also been defined (57).

Morphology
Sézary cells in the peripheral blood typically show cerebreiform
nuclei. Skin changes histologically are similar to mycosis
fungoides with less epidermotropism. Effacement of the lymph
nodes with dense monotonous infiltrates can be seen (33).

Immunophenotype
The immunophenotype of the cells usually are CD3 and CD4
positive and lack CD7 and CD26. Rarer phenotypes have been
seen such as loss of other T cell antigens, CD4 negative CD8
positive disease or double positive (57)

Cytogenetic and Molecular Analysis
The cytogenetic rearrangement seen are non-specific with
complex cytogenetics and numerous mutations identified in
studies exploring the molecular landscape (58, 59).

Making the Diagnosis
It is important to analyze all compartments (skin, peripheral
blood, lymph nodes) for possible involvement. Histological
changes in the skin can be non-specific and thus numerous
skin biopsies are frequently taken before a diagnosis is made.
Furthermore, many inflammatory skin conditions may lead to
reactive T cell clones in the peripheral blood which can
Frontiers in Oncology | www.frontiersin.org 561
complicate diagnosing the skin condition. This emphasizes the
importance of peripheral blood analysis which can help confirm
the diagnosis. Skin biopsy and peripheral blood show the same
TR gene rearrangements. The total Sezary count is greater than 1
×10°/L with an expanded CD4 positive population resulting in
CD4:CD8 ratio of greater than 10 with loss of CD7 being quite
characteristic (2, 33).

Nodal Lymphoma With Leukemic
Involvement
All nodal lymphomas have been reported to have leukemic
involvement in rare cases (60–62). The diagnosis of these
would not be performed on peripheral blood alone and would
need to be correlated with the bone marrow, lymph node
histology and any clinical information. We have had a number
of cases referred for second opinion on diagnosis with quite
marked T-lymphocytosis, who are ultimately classified as PTCL
NOS due to lack of defining markers to suggest an
alternative diagnosis.
CONCLUSIONS

Not all patients who present with mature T-cell leukamias have
easily classifiable disease, and in these cases, if they do not fulfil
the currently recognized diagnostic categories, by definition they
need to be considered as peripheral T cell lymphoma, not
otherwise specified. As our use of next generation sequencing,
and gene expression and methylation profiling increases, how we
define these neoplasms is likely to change and improve. In the
meantime, the integration of clinical, morphological, genetic and
histopathological features is paramount to ensure that optimal
management is employed to avoid under- or over-treatment of
the patient.
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Large granular lymphocytic leukemia (LGLL) is a lymphoproliferative disorder of older
adults characterized by the clonal expansion of cytotoxic T/natural killer cells due to
constitutive pro-survival signaling. In recent years, it has become clear that cytokines and
their receptors are aberrantly expressed in LGLL cells. The exact initiation process of
LGLL is unknown, although several cytokine-driven mechanisms have emerged. Elevated
levels of several cytokines, including interleukin-15 (IL-15) and platelet-derived growth
factor (PDGF), have been described in LGLL patients. Evidence from humans and animal
models has shown that cytokines may also contribute to the co-occurrence of a wide
range of autoimmune diseases seen in patients with LGLL. The goal of this review is to
provide a comprehensive analysis of the link between cytokines and pro-survival signaling
in LGLL and to discuss the various strategies and research approaches that are being
utilized to study this link. This review will also highlight the importance of cytokine-targeted
therapeutics in the treatment of LGLL.

Keywords: interleukins, growth factors, cytokines, LGLL, therapy
INTRODUCTION

Large granular lymphocytic leukemia (LGLL) is a lymphoproliferative disorder of older adults
characterized by the clonal expansion of effector cytotoxic T cells or natural killer (NK) cells. The
WHO classifies LGLL into T-cell LGLL (~85% of all cases) and chronic NK-cell lymphoproliferative
disorder (NK-CLPD also known as NK-LGLL) (~10% of all cases) (1). Although sometimes
included in the LGLL family, aggressive NK-cell leukemia (ANKL) is a distinct neoplasm of NK cells
that is nearly always associated with Epstein–Barr virus (EBV) infection and has a very poor
prognosis (2). While T-LGLL and NK-LGLL are classified as separate disorders, their pathogenesis
is essentially identical and therefore will be considered together in this review.

The exact cause of LGLL is unknown. To date, studies examining the biology of LGLL have
identified several altered growth factors signaling pathways in these leukemic cells, which induce
molecular aberrancies believed to play a role in the development of LGLL and in its clinical and
laboratory manifestations. This review aims to provide an overview of the role of cytokines in the
development of LGLL.
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OVERVIEW OF LARGE GRANULAR
LYMPHOCYTIC LEUKEMIA
DEVELOPMENT

The importance of cytokine dysregulation in LGLL pathogenesis
has been well established (3). LGLL represents an expansion of
activated cytotoxic lymphocytes that persist after antigenic
stimulation. LGLL is initiated by an unknown pathogenic
trigger or triggers to activate the initial immune cell reaction
and increase the production of pro-inflammatory cytokines by
LGL cells (4–7). This causes polyclonal reactive cell expansion.
However, unlike the normal T-cell LGL expansions in response
to antigen, which are controlled and resolved through T-cell
apoptosis or differentiation into the memory T-cell pool, LGLL
cells begin to clonally proliferate (6, 8). This dysregulated clonal
expansion is currently attributed to alterations of multiple pro-
survival and anti-apoptotic signaling pathways, especially
constitutively active cytokine signaling (9). The major cytokine
factors and their interactions with oncogenic signaling pathways
in LGLL will be reviewed here.
ABERRANTLY EXPRESSED CYTOKINES
IN LARGE GRANULAR LYMPHOCYTIC
LEUKEMIA

During disease development, LGLL cells may acquire the ability
to sustain proliferative signaling by producing growth
factors and their cognate receptors themselves, resulting in
chronic autocrine proliferative stimulations (10, 11). LGLL
cells can also respond to soluble growth factors present in the
pro-inflammatory microenvironment (12). The cytokines that
have emerged as major players in LGLL pathogenesis are
presented below.

Interleukin-15
Interleukin-15 (IL-15) is a 15-kDa, four-helix bundle cytokine that
plays a crucial role in the development of innate immunity (13). It
is central to NK cell and NK-T cell development and activation.
IL-15 was discovered in 1994 as a T-cell proliferation factor that
shared the interleukin-2 (IL-2) receptor bc and gC subunits (14).
Signaling occurs through the IL-15Rabg heterotrimeric receptor
complex that includes the shared bc and gC chains, as well as a
private a receptor (15). The IL-15 gene consists of 9 exons
spanning approximately 34 kb on chromosome 4q31 in humans
and chromosome 8 in mice, with 73% conservation between
species (13, 16). Both mice and humans have an alternatively
spliced isoform of IL-15 that also encodes the mature IL-15
protein with potentially different secretion capacity (17). IL-15
has wide tissue distribution and is typically expressed by stromal
cells, epithelial cells, and monocytes. However, it is not typically
expressed by T cells. Expression of IL-15 by LGLL cells is
abnormal and promotes LGLL cell survival (10). The role of
IL-15 in the pathogenesis of LGLL has been well documented
(3, 10, 18–20). IL-15 normally regulates T- and NK-cell activation,
proliferation, and cytotoxicity. Zambello et al. (20) established
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that LGLL isolated from patients constitutively express all three
of the IL-15 receptor components: IL-15Ra, bc, and ɣc.
The proliferation of LGLL cells constitutively expressing IL-15
receptors is enhanced by the addition of exogenous IL-15 in vitro
and showed enhanced cytotoxic activity (20). LGLL cells have
increased membrane-bound IL-15 on their surface as compared to
healthy controls (21). Typically, IL-15 is presented in trans- to NK
and T cells that express IL-2/15Rbɣ. It is therefore interesting that
Chen et al. (18) demonstrated increased levels of soluble IL-15Ra
(sIL-15Ra) in the serum of patients with LGLL as well as
upregulated levels of IL-15Ra mRNA in patient peripheral
blood mononuclear cells (PBMCs). They speculate that this
increased sIL-15Ra in LGLL patient serum could be a product
of increased enzymatic cleavage from cell surfaces or due to
alternative splicing resulting in the soluble isoform. Chen et al.
(18) also showed increased IFNɣmRNA in PBMCs from T-LGLL
patients, which is known to induce expression of IL-15Ra
in monocytes. IL-15 signaling contributes to LGLL pathogenesis
through several mechanisms including hypermethylating
DNA, altering microRNA expression, and activating several
oncogenic pathways such as Jak/STAT, Ras, PI3K, and NF-kB
(10). Through these mechanisms, as further detailed in
subsequent sections of this review, IL-15 promotes pro-survival
and anti-apoptosis signaling in LGLL as a key player in the
immunopathogenesis of this disease.
Platelet-Derived Growth Factors
Platelet-derived growth factors (PDGFs) are produced by many
different cell types, such as fibroblasts, endothelial cells, and
macrophages. Overproduction of these factors is a known
contributor to many types of cancer and disease (22, 23). The
PDGFs are dimeric growth factors ranging in size from
approximately 27 to 30 kDa. They activate two related
transmembrane tyrosine kinase receptors, PDGF-a and PDGF-
b, leading to downstream effects (22, 23). The five PDGF
isoforms are PDGF-AA, PDGF-BB, PDGF-AB, PDGF-CC, and
PDGF-DD. All ligands except PDGF-DD activate PDGF-a
receptor dimerization in the cell. Similarly, all ligands except
the PDGF-AA can activate the a and b receptors in cells (22).

Network modeling of LGLL survival pathways by Zhang et al.
(3) identified PDGF as a central contributing driver of LGLL
pathogenesis in addition to IL-15 (3). This network analysis
indicated that after T-cell activation, constitutive IL-15 and
intermittent PDGF signaling were sufficient to reproduce
known dysregulations in T-LGLL. Supporting these findings,
Zhang et al . (3) found patients with T-LGLL had
increased circulating levels of PDGF-BB. With the use of
immunohistochemical staining, PDGF-BB protein was
confirmed to be located on LGLL cells. Yang et al. (11) showed
that LGLL cells have increased levels of PDGF-b receptor mRNA
as compared to healthy donor cells. Treating LGLL cell lines with
exogenous PDGF or serum from LGLL patients led to increased
LGLL cell proliferation, which was abrogated by PI3K inhibitor
(11). The authors also demonstrate that downstream targets of
PDGF signaling, PI3K and Akt/ERK, are constitutively active in
LGLL (11). Pharmacologic disruption of this pathway in an
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LGLL cell line (NKL) and primary patient samples with anti-
PDGF-BB antibody led to decreases in downstream targets and
increased LGLL cell apoptosis (3, 11). These findings establish
PDGF as part of an autocrine loop in LGLL allowing tumor
cell survival.

Interleukin-2
Interleukin-2 (IL-2) is a 16-kDa four alpha-helix bundle cytokine
in the same family as IL-15 (24). Mainly produced by activated T
cells, IL-2 drives T-cell growth and differentiation via interaction
with its heterotrimeric receptor consisting of three subunits a, b,
and gC (25). IL-2R has been shown to be increased in LGLL cells
(26). Yang et al. (27) investigated the link between antigen
activation, IL-2, and Fas-driven death pathways in T-LGLL.
Normally, IL-2 helps to initially activate T cells but then drives
the cell toward apoptosis via activation-induced cell death
(AICD). While it has been established that despite high Fas-
FasL expression LGLL cells are resistant to Fas-mediated
apoptosis, the connection to IL-2 signaling is not completely
understood (27, 28). LGLL cells treated with exogenous IL-2 in
vitro had restored Fas-signaling, but there was no change in c-
FLIP, a protein that inhibits the formation of the death-inducing
signaling complex (DISC) machinery, compared with LGLL cells
untreated with IL-2. This suggests intact functioning of this
pathway and, instead, a possible disruption in regulation (27). c-
FLIP has been found to be overexpressed in LGLL patients,
which may contribute to the cells’ resistance to Fas-induced
apoptosis (27). Additionally, IL-2 signaling can activate NF-kB,
Jak/STAT, and MAPK pathways, all of which can drive cell
proliferation and survival (29).

Interleukin-6
Interleukin-6 (IL-6) is a well-known pro-inflammatory, four
alpha-helical, cytokine secreted by many cell types including
monocytes and T cells (30). IL-6 induces Jak/STAT and Ras/Erk
signaling through interactions with a unique IL-6R and
membrane-bound gp130 subunits of its receptor (31). Similar
to IL-15, IL-6R can be both cis- and trans-presented to the gp130
receptor subunits, which dimerize to trigger intracellular
downstream signaling (30). Analyses by Teramo et al. (12)
revealed that the non-leukemic cell population in patients with
LGLL is more prone to producing IL-6 than the healthy
counterpart. It was also shown that the high levels of IL-6 that
were observed in patients with LGLL were associated with the
persistent stimulation of STAT3. Inhibiting this signaling with
anti-IL-6 or anti-IL-6Ra antibodies led to decreased
phosphorylated STAT3 and reduced LGL survival (12).
Recently, Kim et al. (32) investigated IL-6 in the plasma of T-
LGLL patients (n = 9) by STAT3 mutational status as compared
to healthy donors (n = 8). They demonstrated widely upregulated
cytokine profiles in the LGLL patients, specifically greatly
increased IL-6 and IL-15RA, regardless of STAT3 mutation (32).

Miscellaneous Others
Interleukin-12
Early studies showed that interleukin-12 (IL-12) can act as a co-
stimulatory cytokine in concert with the activation of CD3 to
Frontiers in Oncology | www.frontiersin.org 366
increase the proliferation of LGL cells via Jak/STAT
signaling (33).

Interleukin-17 and Interleukin-23
Interleukin-17 (IL-17) production defines helper T cells (TH) and
is a central pro-inflammatory driver in the immune response
(34). IL-17 signaling leads to increases in granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-6,
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory protein (MIP-2), and other inflammatory
cytokines (34). Outlined by Zawit et al. (35), there may be
potential for immunotherapeutic targeting of the IL-17/-23
signaling axis as a treatment strategy in LGLL. Interleukin-23
(IL-23) signaling through Jak/STAT receptors in TH17 cells can
drive these cells to produce IL-17 and further perpetuate the
production of pro-inflammatory cytokines (36).

sIL-2R, Interleukin-6, TNF-alpha, Interleukin-8, and
Interleukin-10
sIL-2R, Interleukin-6, TNF-alpha, Interleukin-8, and
Interleukin-10 were increased in the supernatant of LGLL
primary sample cultures compared to controls (26). These
cytokines can inhibit hematopoiesis, and IL-8 has been shown
to lead to neutrophil extravasation. This may contribute to the
neutropenia that these patients experience in addition to other
autoimmune diseases (37).

RANTES, Interleukin-8, MIP-1 Alpha and Beta,
Interleukin-10, Interleukin-18, IFNɣ, and IL1Ra
RANTES, Interleukin-8, MIP-1 alpha and beta, Interleukin-10,
Interleukin-18, IFNɣ, and IL1Ra all have elevated mRNA
transcripts in the PBMCs of LGL patients (38). The sera of
LGLL patients demonstrated elevated levels of RANTES
(Regulated upon Activation, Normal T-cell Expressed and
presumably Secreted), MIP-1b, and IL-18, all of which can
activate the PI3K pathway (38). Further elucidation of the
mechanisms that trigger the transition from the reactive
lymphoproliferation to the extreme monoclonal process and
subsequent leukemogenesis revealed various phenotypic
differences between the healthy and leukemic T-LGL cells.
These differences include the up-modulation of various genes
(IL-8, IL-18, and IFNɣ) and the presence of chemokines (MCP-1
and IP-10/CXXL10) (39). The overexpression of these
chemokines and receptors (including CXCL2, hepatitis A virus
cellular receptor 1, IL-18, and CCR2) in T-LGL cells are
associated with viral infections. These findings support the
concept that viral infections can lead to the development of T-
LGL cells. Interestingly, upregulated cytokines are those typically
produced by CD8+ T cells in response to viral infection, lending
evidence to the idea that a virus may be triggering or
perpetuating insult contributing to LGLL cell pathogenesis.

Epidermal Growth Factor, IP-10/CXCL10,
Granulocyte Colony-Stimulating Factor
Recent serum analysis of LGLL patients by Olson et al. (40)
found reduced epidermal growth factor (EGF) and increased
levels of interferon gamma-induced protein 10 (IP-10) and
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granulocyte colony-stimulating factor (G-CSF) in LGLL serum
compared to that of healthy donor controls. The authors also
compared cytokine profiles between T-LGLL and NK-LGLL,
which they found to be largely similar between the subtypes.
They state that the reason for lowered EGF in LGLL patients is
unknown but conclude increased IP-10 and G-CSF, which
recruit lymphocytes and stimulate the bone marrow
respectively, both fit with the clinical neutropenic context of
the disease.
CYTOKINE-DRIVEN ONCOGENIC
PATHWAYS IN LARGE GRANULAR
LYMPHOCYTIC LEUKEMIA

The interactions of cytokines and the downstream oncogenic
signaling drivers active in LGLL are summarized below and
in Figure 1.

Jak/STAT
There is abundant evidence for dysregulated STAT signaling in
LGLL. First described in 2001 by Epling-Burnette et al.,
constitutive STAT3 activation is one of the defining features of
the pathogenesis of LGLL (41). Approximately 40% of T-LGLL
patients have gain-of-function STAT3 mutations and STAT5b
variants have also been identified in LGLL subtypes (42, 43).
Frontiers in Oncology | www.frontiersin.org 467
Y640F and D661Y are the most common STAT3 alterations,
accounting for roughly 60% of cases (44). These mutations are
typically found in the Src homology 2 (SH2) dimerization and
activation domains of STAT3 gene (43). The gain-of-function
mutations result in stabilized dimerization, enhanced
transcriptional activity, and eventually increased production of
pro-survival proteins (43). In Y640F, the hydrophobic alteration
to the sequence allows independent homodimerization of the
protein (40). When activated, the pSTAT3 complex can then
translocate to the nucleus and enhance the transcription of
oncogenic driver genes such as c-MYC, BCL-xL, andMCL1 (44).

Jerez et al. (45) linked STAT3 mutation status to patient
outcomes and clinical features showing that patients with
somatic STAT3 mutations were significantly more likely to
manifest symptoms at the time of diagnosis (p < 0.001). These
patients also typically required more treatments over the course
of their disease and had a shorter “time-to-treatment-failure”
than those who did not harbor STAT3 mutations (45). The
prevalence of autoimmune conditions, such as rheumatoid
arthritis (RA) and autoimmune hemolytic anemia, was also
higher in the STAT3 mutated cohort. Recently, Barilà et al.
(46) provided the first evidence that the presence of a STAT3
mutation can negatively affect the survival rate of patients with
LGLL (46).

To further define these clinical differences, Olson et al. (40)
investigated variations in red blood cell parameters in LGLL
patients grouped by STAT3 mutation type. They found that
males with D661Y STAT3 mutations had significantly higher
mean corpuscular volumes (MCVs) and lower hemoglobin levels
as compared to either the Y604F group or healthy donor controls
(40). This has potential implications for STAT3mutational status
screening of LGLL patients who may present with macrocytic
anemia (40). STAT5b mutations, N642H and Y665F, have also
been found to be gain-of-function mutations in the SH2 domain
and were initially discovered in a small percentage of clinically
aggressive CD8+ T-LGLL (47). However, STAT5b mutations
have subsequently also been identified in CD4+ T-LGLL
patients, with incidence ranging from 15.2% to 55% reported
(42, 46, 48). Clinically, these CD4+ T-LGLL patients are most
often asymptomatic, without any impact on survival outcomes
(46, 48). Interestingly, a recent investigation into somatic
mutations of 57 NK-LGLL patients specifically showed that
few (9%) had STAT3 mutations and no STAT5b mutations
were found (49). However, in patients negative for STAT3
mutations, the authors observed mutations in many other
genes related to cancer pathogenesis, including those related to
Ras/MAPK and PI3K/Akt signaling, as well as TET2, which plays
a role in epigenetic modification (49). STAT3 mutations have
also been identified in ~43% of patients with Felty syndrome (FS;
a rare disease that shares many clinical similarities with LGLL),
as well as significant increases in ten cytokines common to both
LGLL and FS (50). IL-15Ra, IL-6, MIP-1a, CXCL10, and CSF-1,
as well as oncostatin-M, TNFRSF9, PD-L1, CDCP1, and HGF,
were those notably upregulated in both FS and LGLL, further
emphasizing the link between cytokine and STAT3 dysregulation
and disease pathogenesis (50). These differences in mutational
FIGURE 1 | Contribution of critical cytokine signaling to large granular
lymphocytic leukemia (LGLL) immunopathogenesis. Interleukin (IL)-15,
platelet-derived growth factor (PDGF), IL-2, and IL-6 are all central players in
the immunopathogenesis of LGLL. Dysregulation of these cytokines leads to
constitutive activation of their downstream signaling pathways such as PI3K,
JAK/STAT, Ras/MAPK, and NF-kB. This leads to increased transcription of
oncogenic driver genes such as c-MYC, cyclin D1, and BCL-xL, ultimately
leading to increased malignant cell proliferation and survival. Figure made with
BioRender.com.
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landscape delineated by the immunophenotype of the malignant
cells are interesting to consider and may have future applications
with regard to disease screening or treatment strategy in the age
of precision medicine.

Regardless of mutational status, all LGLL patients have
constitutively upregulated STAT3 activity, in large part due to
pro-inflammatory cytokine drivers. As previously discussed, IL-
15 and IL-6 are both increased in LGLL patients and are known
activators of Jak/STAT signaling. There is evidence for IL-15 as a
central pathogenic driver in LGLL initiation and progression
through Jak/STAT signaling (3, 10). Physiologically, it is
important to note that while short-term exposure to IL-15
increases proliferation, survival, and cytotoxic activities of LGL
cells, long-term chronic activation of STAT by IL-15 has been
shown to be leukemogenic (10). As described in Fehninger et al.
(51), mice that were engineered to overexpress IL-15 develop
spontaneous fatal LGLL. However, it is interesting to note that
STAT3 mutations alone are not sufficient to induce LGLL in a
mouse model, suggesting that cytokine signaling and other
pathway dysregulations are critical for oncogenesis (52).

Ras-Raf-1-MEK1-ERK/MAPK
IL-2, IL-6, IL-15, and PDGF can all activate the Ras-Raf-1-
MEK1-ERK/MAPK signaling pathway. Ras and ERK have been
found to be constitutively active in NK-LGLL. The aggressive
LGLL cell line, PLT-2, has a G12A KRAS mutation (53, 54).
Mizutani et al. (54) postulated that it is the KRAS mutation that
allows the PLT-2 cell line to grow independently from any
exogenous IL-2 stimulation, unlike MOTN-1, a chronic T-
LGLL line, which requires IL-2 and IL-15 cytokine stimulation
for survival . Inhibi t ing Ras in LGLL cel ls with a
farnesyltransferase inhibitor, FTI2153, caused ERK inhibition
and induced apoptosis via Fas signaling and independently of
Fas (53). Inhibition of MEK1 also reduced the survival of NK-
LGLL cells (53). All of this suggests that dysregulation of this
pathway may have both pro-growth and anti-apoptotic
influences on LGLL cell pathogenesis. The exact mechanisms
by which MEK/ERK signaling are driving LGLL cell survival are
not yet fully defined. However, it has been established that
activated MAPK is capable of regulating anti-apoptotic
proteins. For example, Bcl-2, BAD, and p-ERK can
phosphorylate proto-oncogenic transcription factors in the
nucleus such as Fos and Jun (53, 55). The Ras cascade also has
the ability to crosstalk with PI3K/Akt signaling, further affecting
downstream signaling in LGLL pathogenesis (56).

PI3K/Akt
Activated by Ras signaling, and PDGF, as well as IL-18,
RANTES, and MIP-1, the PI3K/Akt signaling pathway is a
major driver of pro-survival signaling in LGLL (3, 38).
Compared to healthy donors, T-LGLL cells have increased
PI3K/Akt activity, as indicated by higher levels of p-Akt, which
contributes to downstream resistance to apoptosis (56). p-Akt
can activate mTOR, a major driver of cell growth and
proliferation (57). Schade et al. (58) show that Src family
kinases can lead to constitutive activation of the PI3K pathway
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in LGLL, eventually leading to anti-apoptotic signaling via
disruption of DISC formation. This effect was abrogated using
a PI3K inhibitor, LY294002, which restored apoptosis and
showed a reduction in ERK expression, reinforcing the concept
of crosstalk between these two pathways (58).

Akt can also interfere with the regulation of transcription
factor NF-kB by blocking its inhibition. This leads to increased
NF-kB activity and enhanced transcription of oncogenic genes
(59). Administration of the PI3K inhibitor LY294002 also
resulted in significantly decreased NF-kB activity in T-LGLL
cells as well as cell apoptosis, and one of two LGLL patients
treated on a phase I study of the dual PI3K d/g inhibitor duvelisib
had a prolonged partial response (3, 60).

NF-kB
NF-kB is a transcription factor that regulates the survival of
immune cells and can be activated by IL-15, Ras, and Akt/PI3K.
It can translocate to the nucleus, activating the transcription of
pro-survival and anti-apoptotic genes, such as cyclin D1, c-MYC,
BCL-2, and MCL-1, and can induce the production of IL-2 (41,
61–63). Zhang et al. (3) compared nuclear extracts of T-LGLL
cells to nuclear extracts of healthy donor PBMCs and found that
c-Rel, an NF-kB family protein, is increased and constitutively
active in T-LGLL. When NF-kB was inhibited, the T-LGLL cells
had significantly induced apoptosis that was not observed in
normal healthy donor PBMCs (p < 0.009) (3). Interestingly, the
authors also showed that the Mcl-1-driven pathogenic effect of
NF-kB in T-LGLL can occur independently of STAT3 signaling,
adding another facet of possible signal compensation to this
complicated disease picture. Recently, Olson et al. (64) identified
missense mutations in TNFAIP3, a negative regulator and target
of NF-kB, in 8% of a cohort of 39 LGLL patients (64, 65).
TNFAIP3 expression has been previously shown to be
upregulated in LGLL samples, further emphasizing the
importance of NF-kB signaling in LGLL pathogenesis (65, 66).
Yang et al. (67) established a link between the cytokine TRAIL
(Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand)
and NF-kB in LGLL by demonstrating increased TRAIL
mRNA and protein in LGLL cells as well as increased soluble
TRAIL in sera from LGLL patients compared to healthy controls
(67). TRAIL can bind death receptors to induce apoptosis in
tumor cells as well as activate the NF-kB pathway. The LGLL
cells express the TRAIL receptor DcR2, and activation of this
receptor by TRAIL leads to increases in NF-kB signaling.
Through this mechanism, NF-kB’s pro-survival and anti-
apoptotic activities are further driven by cytokine signaling
in LGLL.
INTERACTION OF ONCOGENIC DRIVERS
AND CYTOKINE SIGNALING PATHWAYS

The frequent co-existence of dysregulated cytokine signaling and
oncogenic mutations has been described in LGLL. The TNFAIP3
missense mutations in NF-kB signaling observed by Johansson
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et al. (66) were significantly associated with STAT3 mutations in
LGLL patient samples, a combination also seen in other
lymphomas (66). Coppe et al. (68) identified CD40LG as a
mutated receptor in LGLL patient samples. CD40LG is
involved in STAT3 signaling, as well as MAPK-Ras-Erk, and
the IL-15 pathways. Interestingly, CD40LG mutations were also
seen as functionally related to TNFAIP3 in the analysis, meaning
that there is also a potential link to NF-kB signaling dysfunction.
In addition to CD40LG lesions, the authors identified activating
mutations in FLT3 receptor tyrosine kinase, which has
implications for Ras, Jak/STAT, and PI3K/Akt signaling (68).

It has been established that increased IL-15 can affect the
expression of Bcl-2 family genes. However, Hodge et al. (19)
further elucidated a mechanism by which IL-15 may be driving
anti-apoptotic signaling in LGLL pathogenesis. The authors
demonstrate that IL-15 causes upregulation of HDM2, a p53-
E3 ligase, which can drive proteasomal degradation of Bid, a
protein that is essential for cell apoptosis (19). Through this
mechanism, IL-15 can reduce Bid in T-LGLL and NK-LGLL
samples. Inhibiting IL-15 or the proteasome degradation
pathway in these samples restored Bid levels and showed
increased cell death (19).

Previous work from Mishra et al. (10) demonstrates how
chronic IL-15 exposure can initiate LGLL through NF-kB
signaling and Myc induction in tumor cells. In normal wild-
type mouse LGL cells treated with IL-15, this cytokine induces
Myc expression via the NF-kB pathway. Myc was then shown to
mediate increases in aurora kinases A and B. Elevation of
AURKA, AURKB, and MYC was confirmed in primary LGLL
patient samples, and Myc knockdown in mouse LGL cells
showed reduced AurkA and AurkB. The increased aurora
kinases led to centrosome aberrations and result in
chromosomal aneuploidy, which is a consistent finding in
patient LGLL cells. This chromosomal instability helps drive
leukemic oncogenesis. Concurrent to aurora kinase upregulation,
the IL-15-driven induction of Myc, NF-kB, and Hdac-1 results in
the reduction of miR-29b when these repressor proteins bind to
its promotor. Indeed, miR-29b levels were demonstrated to be
significantly decreased in LGLL patients (p < 0.0009) as well as
healthy donor LGL cells exposed to IL-15 (p < 0.003).Mir-29b, in
turn, typically negatively regulates Dnmt3b, a DNA
methyltransferase, with the expression of DNMT3B found to
be elevated in primary LGLL patient cells. Thus, the increased
Dnmt3b in LGLL results in DNA hypermethylation, leading to
further chromosomal instability as well as possible silencing of
tumor suppressor genes (10). Mishra et al. (10) further
demonstrated increased global DNA methylation in primary
samples from LGLL patients, as well as healthy LGL cells
treated with IL-15 in vitro to support this. Through these
mechanisms, it is clear that IL-15 has a critical role in the
pathogenesis of LGLL.

In addition to miR-29b, another miRNA has recently been
implicated in the pathology of LGLL. Mariotti et al. (69)
identified reduced expression of miR-146b in CD8+ T-LGLL
due to miR-146b promotor hypermethylation. This observed
repression of miR-146b expression was dependent on STAT3
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activation, likely via the action of DNMT1, and could be
experimentally reversed in CD8+ T-LGLL cells by inhibiting
STAT3 (69). Interestingly, the authors also demonstrate how
miR-146b may contribute to the development of neutropenia
in LGLL via interaction with Fas-ligand signaling. Absolute
levels of neutrophils in LGLL patients correlated with miR-
146b levels and are inversely correlated with the amount of
soluble Fas-ligand (FasL) (69). The authors posit that miR-146b-
target protein HuR is increased in CD8+ T-LGLL, which serves
to stabilize the translation of FasL, ultimately leading to
increased levels of FasL in this disease and a mechanism
for the resultant neutropenia. In this way, cytokine drivers of
STAT3 activation can further alter miRNA levels to drive
LGLL pathogenesis.

The loss of suppressor of cytokine signaling-3 (SOCS3) may
also be contributing to the pathogenic potential of IL-6 signaling
in LGLL. SOCS3 is typically induced by IL-6 via p-STAT3.
However, despite the upregulated levels of IL-6 and STAT3
observed in LGLL, Teramo et al. (12) found a decreased
amount of SOCS3 mRNA and protein in LGLL patient
samples compared to healthy donors. Typically, SOCS3 is
responsible for negatively regulating Jak/STAT signaling. The
authors demonstrated that SOCS3 does not respond
appropriately to p-STAT3/IL-6 messaging in the LGLL cells,
which may further drive dysregulated STAT signaling. However,
after treating the LGLL cells with decitabine, a demethylating
compound, appropriate IL-6-driven increases of SOCS3 mRNA
and protein were observed (12). This treatment also correlated
with decreased p-STAT3, decreased Mcl-1, and increased LGLL
apoptosis. Decitabine’s effective mechanism of action,
demethylation, lends support to the conclusion that epigenetic
changes may be silencing normal SOCS3 responses in LGLL.
However, abnormal methylation changes to the SOCS3
promoter were not seen, leading the authors to conclude that
epigenetic modification occurs elsewhere (12). In this way, IL-6
and loss of the SOCS3 regulator work together to further drive
Jak/STAT signaling and LGLL pathogenesis.

Olson et al. (64) recently investigated epigenetic changes in
NK-LGLL patient samples. Methylation of TET2 promoter
sequences as well as hypermethylation of negative regulators of
STAT3, PTPRD, and PTPRN was observed. TET2 typically
contributes to DNA demethylation. This study also identified
loss-of-function mutations in this gene in 28% of their observed
NK-LGLL patients (n = 58). These patients had significantly
increased global methylation compared to healthy controls (64).
Thus, in addition to driving increased STAT activation,
epigenetic modification may also be facilitating further
enhanced methylation of the genome in LGLL. Another study
analyzed the TET2 mutational hierarchy in NK-CLPD by
performing whole-exome sequencing of different hematopoietic
cells (70). It revealed that the TET2 alteration was shared by NK-
LGLL and cells of the myeloid compartments. This study
concluded that the multi-hit model could explain the
emergence of TET2 mutations during the early stages of
hematopoietic progenitors (70). TET2 mutations were also
associated with the CD16low phenotype in NK-LGLL (70).
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Kim et al. (32) recently demonstrated how cytokine and
epigenetic changes in LGLL can be regulated by STAT3
activity. This study demonstrated that IL-15 mRNA expression
levels are significantly higher in STAT3 mutated LGLL.
Additionally, T-LGLL patient samples with STAT3 mutations
had high STAT3 levels and increased pSTAT3 compared to
healthy controls. Additionally, increased DNMT1, DNMT3,
EZH2, and MYC protein were seen in T-LGLL compared to
controls. DNMT1, DNMT3, and EZH2 are methyltransferase
enzymes that can affect epigenetic modifications. These findings
were recapitulated in KAI3 NK cells with STAT3Y640F or
STAT3G618R mutations, and increased p65, a subunit of NF-kB,
highlighting the crosstalk potential between these signaling
pathways. Treatment of healthy donor CD8+ T cells with IL-6,
IL-15, and MCP-1 cytokines led to enhanced phosphorylation of
STAT3 and increased DNMT1, DNMT3B, and EZH2 protein.
This further defines a mechanistic link between cytokine
signaling and regulators of epigenetic modification. This study
also observed direct binding of mutated STAT3 to DNMT1 and
EZH2 protein, further defining the mechanism of action of this
pathway. Treating STAT3-mutated LGLL cells with
hypomethylating agent 5-azacytidine led to reduced cell
viability, STAT3 phosphorylation, and DNMT1 (32, 71).
Through these results, the authors define how cytokine
signaling and STAT3 mutations in LGLL can directly drive
epigenetic changes in this disease, clarifying new targets for
further investigation and potential therapeutic intervention.
MECHANISMS OF CYTOKINE
DYSREGULATION IN LARGE GRANULAR
LYMPHOCYTIC LEUKEMIA

While it is established that cytokine signaling is involved in LGLL
initiation and maintenance, how the cytokines involved become
upregulated is not well characterized. The working theory for the
initiation of LGLL involves an antigenic insult that triggers an
inflammatory state and immune cell reactivity that gets
inappropriately perpetuated through a variety of signaling and
genetic mechanisms (9). It is likely that to some degree, the
hyperactivation of signaling pathways such as Jak/STAT, Ras-Raf-
Mek-Erk, PI3K, and NF-kB further drives cytokine production,
release, and response in a feed-forward loop. However, exact details
have not been thoroughly elucidated. IL-6 signaling, for example,
induces STAT3, which has the ability to promote IL-6 gene
expression in an autocrine feed-forward loop, but this has yet to
be demonstrated conclusively in LGLL (72, 73).

In addition to signaling deficiencies, mutations and epigenetic
changes may also contribute to cytokine dysregulation in LGLL.
Previous work has shown some evidence for hypermethylation of
the IL-15 promotor in LGLL patient samples compared to
healthy donor cells (71). Mishra et al. (74) have previously
shown increased IL-15 promoter methylation in cutaneous T-
cell lymphoma (CTCL), another T-cell malignancy largely driven
by IL-15 pathogenes is . In the case of CTCL, the
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hypermethylation prevents repressor protein binding and
results in aberrantly increased IL-15 expression. In LGLL cell
line samples, treatment with 5-azacytidine (a hypomethylating
agent) resulted in decreased IL-15 gene expression and decreased
cell viability, lending evidence to epigenetic changes contributing
to IL-15 overexpression in LGLL (71).

PDGF and PDGFR genetic and epigenetic alterations have
been described previously in other hematologic malignancies but
have yet to be characterized in LGLL (75, 76). Changes to PDGF
receptor proteins may allow for ligand-independent activation
and escape from inhibitory mechanisms or degradation
pathways. Possible changes to this pathway need further
investigation in the setting of LGLL, given the central role of
PDGF signaling in disease pathogenesis (3).

There is clear evidence that overproduction of cytokines can
lead to the development of LGLL and various types of cytopenia
in patients with LGLL. The challenge in treating patients with a
heterogeneous disease like LGLL is to identify patients who may
benefit most from blocking the activity of cytokines. The use of
targeted approaches for the neutralization of oncogenic or
immunosuppressive cytokines could provide new opportunities
to develop effective therapeutic strategies for LGLL patients.
CYTOKINE-DRIVEN ANIMAL MODELS
OF LARGE GRANULAR LYMPHOCYTIC
LEUKEMIA

The use of animal models of LGLL has greatly enriched our
understanding of the pathogenesis of LGLL and provided the
opportunity to test novel therapeutics in the disease context.
Fehniger et al. (51) developed a transgenic mouse that
overexpressed IL-15 by removing posttranscriptional
checkpoint inhibitors, allowing for more efficient translation
and secretion. These mice developed fatal lymphocytic
leukemia between 12 and 30 weeks of age with an NK-T
signature of CD3+TCRB+DX5+ markers (51). Phenotypically,
the mice developed alopecia, hepatosplenomegaly, weight loss,
and extreme clonal lymphocyte expansion in blood, spleen, and
bone marrow. The authors described a “blast morphology” of
these lymphocytes, which infiltrated many organ systems (77).
This model best recapitulates the aggressive T and NK variants of
LGLL. This chronic upregulation of IL-15 can induce oncogenic
signaling pathways to drive the development of LGLL (10).

Klein et al. (78) described a mouse model that expresses the
human STAT5BN642H mutation, which goes on to develop CD8+
T-cell leukemia (78, 79). This stands in contrast to a study by
Dutta et al. (52), which demonstrated that activating STAT3
mutations in mice was not sufficient to induce LGLL. The
STAT5BN642H lesion is a gain-of-function mutation in the SH2
domain. Similar to the IL-15 transgenic mice, both models have
leukemic immunophenotypes positive for CD122, NKp46, and
DX5, mirroring CD3+NK1.1+ T-LGL cells (77, 78). The authors
also showed that these STAT5BN642H mutation mice could be
successfully treated with ruxolitinib, a JAK inhibitor, further
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emphasizing the central role of dysregulated STAT signaling in
LGLL pathogenesis (78).
THERAPEUTIC BLOCKING OF CYTOKINE
SIGNALING IN LARGE GRANULAR
LYMPHOCYTIC LEUKEMIA TREATMENT

Currently, LGLL is not a curable disease, and the mainstay of
treatment remains general immunosuppressive therapy.
Frontline agents include methotrexate, cyclophosphamide, and
cyclosporine, whose efficacy is typically limited to partial
remissions (60). However, with new insights into LGLL
pathogenesis, researchers have brought novel targets of clinical
interest into pharmaceutical development. Of particular interest
is those targeting cytokine signaling, which are outlined in
Table 1 and summarized in Figure 2.

Cytokine-directed therapeutic agents that have been tested
against LGLL in vivo include Hu-Mikb1, BNZ-1, and 5-
azacytidine. Hu-Mikb1 is a monoclonal antibody against
CD122, the shared b-chain receptor for IL-2 and IL-15 (80,
88). In a phase I clinical trial of Hu-Mikb1 in LGLL patients,
Waldmann et al. (80) observed that Hu-Mikb1 blocked the trans
presentation of IL-15 to T cells but did not affect cis signaling.
The authors demonstrated the safe use of Hu-Mikb1 but did not
find any clinical efficacy in LGLL patients (80).
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BNZ-1 is a peptide that binds the common gamma-chain
receptor CD132 and prevents IL-2, IL-9, and IL-15 signaling
(81). Wang et al. (81) treated LGLL cell lines and primary patient
samples with BNZ-1 and showed that in both cases tumor cell
viability decreased and apoptosis increased. Additionally, BNZ-1
blockage of IL-2 and IL-15 signaling led to reductions in
downstream mediators of these cytokine pathways such as p-
STAT, p-Akt, and p-ERK targets (81). In vivo, inhibition of IL-15
using BNZ-1, as part of a phase-I/II cl inical tr ial
(NCT03239393), resulted in apoptosis of LGLL cells in nearly
all patients within 24 h of administration and clinical responses
in 20% of patients, clearly demonstrating the crucial role of this
cytokine to LGLL pathogenesis and potential clinical value of this
therapy (82, 83).

5-Azacytidine is a hypomethylating agent that decreased IL-
15 expression and reduced cell viability in the MOTN-1 LGLL
cell line (71). This evidence further implicates hypermethylation
as a central driver of IL-15 and LGLL pathogenesis. The oral
formulation of this potential treatment is currently being
investigated in phase I/II clinical trial (NCT05141682) in LGLL
patients (71).

Potential therapeutics that have yet to be tested in humans but
have shown efficacy in vitro are siltuximab and tocilizumab.
Siltuximab and tocilizumab are monoclonal antibodies against IL-
6 and IL-6R, respectively. Currently approved for the treatment of
RA, they inhibit JAK pathway signaling. Treating LGLL patients’
PBMCs with anti-IL-6 antibodies led to malignant cell apoptosis
(12). The co-occurrence of some LGLL patients with RA or RA-like
TABLE 1 | Therapies targeting cytokine signaling in Large Granular Lymphocytic Leukemia.

Therapeutic
agent

Mechanism/findings Reference

Agents tested against LGLL in vivo

Hu-Mikb1 Anti-CD122 (shared IL-2 and IL-15 receptor b-chain) monoclonal antibody. Blocks trans presentation of IL-15 to T cells. In a phase I
study in LGLL, the drug was safe but showed no clinical efficacy.

(80)

BNZ-1 Multi-cytokine inhibitor that prevents IL-2, IL-9, and IL-15 from interacting with the gamma receptor subunit CD132. Wang et al. (81)
demonstrated that treating T-LGLL cell lines and primary patient samples with BNZ-1 led to reduced tumor cell viability, decreased
downstream signaling, and increased apoptosis. Additionally, Brammer et al. (83) showed apoptosis of LGLL cells in patients treated
with BNZ-1 within 24 h of treatment. A phase I/II clinical trial (NCT03239392) showed a 90% decline in T and NK cells by day 15 of
treatment (82).

(81–83)

5-azacytidine Hypomethylating agent: treatment of the LGLL cell line MOTN-1 cells with 5-azacytidine resulted in decreased IL-15 expression;
implicating IL-15 promoter hypermethylation as a key driver of IL-15 induced LGLL. Decreasing IL-15 production by demethylating
the promoter is being explored in a phase I clinical trial (NCT05141682) evaluating an oral 5-azacytidine formulation (CC-486) in patients
with LGLL.

(71)

Agents tested against LGLL in vitro

Siltuximab
and
tocilizumab

Anti-IL-6 and anti-IL-6R, monoclonal antibodies currently approved for treatment of rheumatoid arthritis by inhibiting JAK pathway
signaling. In vitro anti-IL-6 antibody treatment of LGLL patients’ PBMCs led to malignant cell apoptosis (12).

(12, 84)

Agents of interest in LGLL

Imatinib
mesylate
(STI-571)

A receptor tyrosine kinase inhibitor that can target PDGF receptors. (85)

Secukinumab
and
ixekizumab

Anti-IL-17 monoclonal antibodies that prevent IL-17 receptor binding and downstream JAK/STAT and NFkB signaling. Currently,
FDA-approved for ankylosing spondylitis and psoriatic arthritis treatment.

(86)

Risankizumab Anti-IL-23 humanized monoclonal antibody binds the p19 subunit of IL-23 to block signaling. Currently, FDA-approved for plaque
psoriasis treatment.

(87)
March 2022 | Volume 12 | Art
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icle 849917

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Isabelle et al. Cytokines in LGLL
symptoms may especially make this line of treatment inquiry
worthwhile for further investigation.

Agents of interest in LGLL that have yet to be tested in this
disease but align with known LGLL pathogenic mechanisms are
imatinib mesylate (STI-571), secukinumab and ixekizumab, and
risankizumab. Imatinib mesylate (STI-571) is a receptor tyrosine
kinase inhibitor that can target the PDGF receptor to inhibit
signaling (85). While typically used in chronic myelogenous
leukemia (CML), the known pathogenic role of PDGF signaling
in LGLL warrants further investigation into the usefulness of
targeting this cytokine pathway (3). Secukinumab and ixekizumab
are both monoclonal antibodies that prevent IL-17 receptor binding
and limit downstream JAK/STAT and NFkB signaling (86). Given
the role of IL-17 as a pro-inflammatory chemoattractant implicated
in the pathology of various autoimmune conditions (which afflict a
subset of LGLL patients), blocking IL-17 signaling is a strategy
worth exploring in the setting of LGLL. Similarly, IL-23 can signal
through Jak/STAT receptors in TH17 cells to drive these cells to
produce IL-17, thereby further perpetuating the inflammatory
milieu (36). Risankizumab is a monoclonal antibody against IL-23
that binds the p19 subunit of IL-23 to block signaling (87). The IL-
17/IL-23 signaling axis constitutes an intriguing target of therapeutic
intervention for LGLL based on its known role in driving
inflammation and autoimmune conditions. In summary, there are
several novel cytokine-related treatment strategies worth further
investigation in LGLL.
Frontiers in Oncology | www.frontiersin.org 972
CONCLUSION

Aberrant cytokine expression and signaling are important
components of LGLL pathogenesis. It is not yet clear how
effective interventions that target inflammation will be in
preventing the onset and/or progression of LGLL.
Understanding these cytokine signaling pathways and their
various components will help develop novel therapeutic agents
and treatment strategies. The re-establishment of cytokine
homeostasis in LGLL could benefit patients who suffer from this
disease, especially those refractory to current therapeutic options.
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T-Cell malignancies are a group of heterogeneous disorders composed of primary
cutaneous T-cell lymphomas (CTCLs), peripheral T-cell lymphomas (PTCLs), and T-cell
leukemias, including T-cell large granular lymphocytic leukemia (T-LGLL). Cases of
patients with combined T-cell malignancies and plasma cell dyscrasias (PCD) are
reported in the literature, but these are mostly limited to case reports or small case
series with <10 patients. Here, we described the clinical course of 26 patients and report
baseline characteristics and clinical outcomes including overall survival (OS), progression-
free survival (PFS), and objective response rates (ORRs) in this unique population. There
was no survival difference in patients with CTCL or T-LGLL and concomitant PCD when
treated with standard therapy directed at the T-cell malignancy when compared to
historical controls. However, patients with PTCL and concomitant PCD had significantly
inferior outcomes with rapid progression and worse OS and PFS at 1.7 years (p=0.006)
and 4.8 months (p=0.08), respectively, when compared to historical controls for patients
with PTCL, although the limited number of patients included in this analysis precludes
drawing definitive conclusions. Treatment directed at the T-cell malignancy resulted in the
eradication of the PCD clone in multiple patients (15.4%) including one with multiple
myeloma (MM) who experienced a complete response after starting therapy directed at
the T-cell malignancy. For patients with T-cell malignancies and concomitant PCD,
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treatment with standard T-cell-directed therapies is recommended based on this analysis
with continued follow-up and monitoring of the concomitant PCD. Further studies are
needed to definitively elucidate the increased risk of relapse in patients with PTCL and
concomitant PCD, and larger, multi-center cohorts are needed to validate these findings
across T-cell malignancies and PCDs.
Keywords: T cell, CTCL, T-LGL, PTCL, MGUS, multiple myeloma, plasma cell dyscrasia, survival
INTRODUCTION

T-Cell malignancies are a group of heterogeneous disorders,
including cutaneous T-cell lymphomas (CTCLs), peripheral
T-cell lymphomas (PTCLs), and T-cell leukemias, such as
T-cell large granular lymphocytic leukemia (T-LGLL). T-LGLL
is an incurable mature T-cell leukemia characterized by the
abnormal clonal proliferation of CD3+/CD5/DimCD8+/CD57+
T cells (cytotoxic T-lymphocytes, CTLs) which can result in
severe neutropenia, transfusion-dependent anemia, and marrow
failure. Patients require frequent therapy, with recurrent relapses
and overall response rates (ORRs) approximately 40% (1),
although overall survival is >10 years in most patients (2–4).
PTCL, of which the primary subtypes include anaplastic large
cell lymphoma (ALCL) (25%), angioimmunoblastic T-cell
lymphoma (33%), and PTCL-NOS (40%), are aggressive
lymphomas with poor long-term survival of 35% at 5 years
outside of ALK+ ALCL (5–7). CTCL, of which the most common
variety is mycosis fungoides (MF), is a chronic dermatological
condition that often requires frequent, sequential therapies (8). A
deeper understanding of these disorders and associated
prognostic and contributing factors is essential to improve
outcomes in these rare diseases.

Sporadic cases of patients with combined T-cell malignancies
and plasma cell dyscrasias (PCD) have been reported in the
literature. These include small series and case reports of patients
with T-cell lymphomas or T-LGLL with concomitant multiple
myeloma (MM), monoclonal gammopathy of undetermined
significance (MGUS), and other PCDs (9–12). While the most
commonly observed association is with T-LGLL, there are case
reports of other T-cell malignancies including AITL and PTCL-
NOS with MM. Due to the rarity of these diseases, little is known
about the pathophysiology, or clinical significance of these
findings, and whether clinical or disease-related outcomes are
impacted. Most commonly, T-LGLL with concomitant PCD or
MM has been described. These include a few singular case studies
of patients that have concomitant T-LGLL and PCD, including
MM and even amyloidosis (9–15). There is only one case series
with >10 patients, which is mainly descriptive in nature (16),
while another study with six patients is also descriptive but does
start to explore the potential link between the two diseases (17).
The exact mechanism of interrelation between these disorders is
not well known, but there are some postulations about how they
link together, particularly in the newly describe T-follicular
helper-type (TFH) lymphomas, as TFH cells regulate B cells,
and there is a clear association with B-cell activation in these
lymphomas, including plasma cells (18, 19). Furthermore, the
277
clinical significance, including response and survival outcomes,
of these coincident disorders remains unknown.

The purpose of this study was to explore the prognostic
factors and outcomes of patients who have concomitant TCL
or T-LGLL and PCD. Specifically, we investigated survival
outcomes in patients with concomitant T-cell malignancies
and PCD and evaluate the prognostic impact on treatment
response and survival in this unique population.
PATIENTS AND METHODS

Patients
This study is a retrospective review of all patients diagnosed at
the OSU James Cancer Center (OSUCCC) with a concomitant
T-cell malignancy and PCD between January 1, 2011 and
October 1, 2021. Patients were identified from The Ohio State
University (OSU) lymphoma database, OSU MM database, and
OSU T-LGLL registry. This study was approved by the
Institutional Review Board at OSU.

Diagnosis of T-Cell Malignancies
All diagnoses for T-cell malignancies were made based on the 2016
World Health Organization (WHO) criteria. Given the difficulty
in diagnosing T-LGLL, we included specific criteria for the
diagnosis of T-LGLL, adapted from the 2016 WHO criteria,
recently utilized in the ECOG5998 trial and recent studies (4,
20, 21). T-LGLL diagnosis required the presence of a monoclonal
T-cell receptor (TCR) and a CD3+CD8+ population on flow
cytometry ≥500 cells/mm (3). A monoclonal T-cell receptor was
positive if detected by TCR polymerase chain reaction (PCR) or by
restriction of TCR Vbeta noted on flow cytometry. For patients
diagnosed with a clonal TCR by flow cytometry, a panel of 30 TCR
Vbeta rearrangements was used with positivity considered if one
or more clone was detected in 10% of events or greater as
previously described (22).

Diagnosis of Plasma Cell Dyscrasias
The diagnoses for PCD were made based on the 2016 WHO
criteria or the revised International Myeloma Working Group
(IMWG) criteria. The diagnosis of MGUS was made if a patient
had the presence of a monoclonal protein, <10% clonal plasma
cells on bone marrow biopsy, and no other features of MM, such
as anemia, renal dysfunction, or bone disease (23). The diagnosis
of MM was made in patients with the presence of a monoclonal
protein and an abnormal free light chain ratio, and clinical
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features of MM including anemia, renal dysfunction, and/or
bone disease or a myeloma defining event such as ≥60% clonal
plasma cells on bone marrow examination, more than one focal
lesion on MRI ≥ 5mm, or serum-free light chain ration ≥100
(24, 25).

Follow-up and Response Assessment
All patients with T-LGLL/TCL were followed from 1998 to 2018
in the T-cell malignancy clinic at the OSUCCC, staffed by a
dedicated T-cell physician. The workflow, diagnostic, and
treatment approach were thus standardized over time. On
treatment, patients were typically seen in the clinic every 2–3
months. Patients off treatment, or on observation, were typically
followed every 6 months to 1 year. Treatment regimens varied by
patient based upon the clinical scenario. Patients were also seen
by a dedicated plasma cell physician in the Plasma Cell Clinic at
the OSUCCC. Patients with no high-risk features were typically
seen annually for MGUS. Patients with smoldering disease were
seen every 3–4 months depending on clinical characteristics, and
patients with active myeloma are seen monthly or sooner as
needed. Treatment regimens were varied based on the clinical
scenario. For patients with nodal PTCL, responses were
determined via Lugano criteria (26). For patients with T-LGLL,
responses were based off of the modified ECOG5998 criteria, as
reported in a recent study (4) and a recent prospective trial in T-
LGLL (27), and were assessed by the investigators. At least 4
months of treatment were needed to assess for response
(Supplementary Table S1). For patients with CTCL, response
was determined based on the criteria for consensus statement of
Olsen et al. (28) For patients with MM, response criteria were
determined by the International Myeloma Working Group
Uniform Response Criteria for CR, namely, very good partial
response (VGPR), PR, stable disease (SD), and no response (NR)
(25, 29).

Statistical Analysis
Baseline demographics and clinical characteristics were reported
using summary statistics for the overall sample and by the type of
malignancy. Overall survival (OS) was assessed as time from T-cell
malignancy diagnosis until death or censoring. Progression-free
survival (PFS) was assessed as the time from T-cell malignancy
diagnosis until progression, death, or censoring. Patients without
OS or PFS events were censored at last follow-up. Median OS and
median PFS, along with the 95% confidence intervals, were
calculated using Kaplan–Meier methods for the overall sample
and by malignancy type. Survival curves were compared among
the type of monoclonal protein using the log-rank test. Response
to treatment was also reported for the overall sample and by
malignancy type. All analyses were performed using SAS version
9.4 (SAS Institute Inc., Cary, NC, USA).
RESULTS

Entire Cohort
A total of 26 patients with confirmed concomitant T-cell
malignancy and PCD were included in this analysis.
Frontiers in Oncology | www.frontiersin.org 378
Full patient baseline characteristics are seen in Table 1. The
median age at T-cell malignancy diagnosis was 63 (range, 39–82;
SD, 10.9) years, and the median age at PCD diagnosis was 64
(30–82, 12.3) years; 65% (n = 17) of patients were male, and 96%
(n = 25) were Caucasian. Ten (39%) of the patients presented
with their T-cell malignancy first, and 10 (39%) presented with
their PCD first, while 19% (n = 5) had a concurrent diagnosis,
and for one patient (4%), this was unknown. The most common
concurrent T-cell malignancy was T-LGLL (n = 14, 54%),
followed by CTCL (n = 6, 23%) and PTCL (n = 6, 23%). The
most common PCD was MGUS (n = 13, 50%), followed by MM
(n = 8, 31%) and plasmacytosis (n = 2, 8%). Plasmacytoma,
lymphoplasmacytic lymphoma (LPL), and a kappa light chain-
predominant plasma cell proliferation were seen in one patient
(4%) each. The plasmacytosis diagnosis and kappa light chain-
predominant plasma cell proliferation diagnosis was given to the
patients by their treating physician and included as such in this
study. On review, based on IMWG criteria, these patients would
likely meet diagnostic criteria for MGUS. Overall, 16/26 (62%)
patients were treated for their T-cell malignancy frontline, while
9/26 (35%) were treated for their PCD frontline, and one patient
(4%) did not receive treatment for either disease.

T-LGLL Patients and Treatment Response
Fourteen patients had T-LGLL with the median age at T-LGLL
diagnosis of 63 (39–82; SD, 10.1) years, and the median age at
PCD diagnosis was 64 (48–82; SD, 9.3) years. Nine patients (64%)
were male, and 13 (93%) were Caucasian. Baseline characteristics
for these patients are in Table 2. Among the T-LGLL patients,
eight (57%) hadMGUS as their PCD, while four (29%) (n = 4) and
two (14%) had MM and plasmacytosis, respectively. At the time of
T-LGLL diagnosis, seven patients (50%) presented with anemia
[hemoglobin (Hgb) < 12 g/dl], one (7%) presented with
neutropenia [absolute neutrophil count (ANC) < 1,500/mm3],
three (21%) presented with both anemia and neutropenia (two
having ANC <500 and one with ANC <1,500), and three (21%)
were unknown. Of the four total patients that had neutropenia at
presentation, three had severe neutropenia with an ANC <500/
mm3. Nine patients (64%) were found to have a concomitant
autoimmune disease including five (36%) with rheumatoid
arthritis and one each (7%) with immune thrombocytopenic
purpura, anti-MAG neuropathy, ANCA-associated vasculitis,
and cryoglobulinemia. For patients in the T-LGLL cohort, at the
time of PCD diagnosis, nine patients (64%) had anemia (Hgb <12
g/dl), and two patients (14%) had bone disease. Six patients (43%)
had a serum creatinine (Cr) <1 mg/dl, while six (43%) had a Cr
between 1 and 2 mg/dl, one (7%) had a Cr >3 mg/dl, and one (7%)
was unknown. No clear preponderance of any particular
monoclonal protein-light chain was observed (Table 2). Among
patients with T-LGLL, 10 (71%) were treated for T-LGLL
frontline, while 3 (21%) were treated for their PCD frontline.
The most common frontline therapy for T-LGLL was
methotrexate n=5 (36%), followed by cyclosporine (CsA) n=3
(21%). One patient (7.1%) received cyclophosphamide (Cy) and
one received Cy, Doxorubicin, Vincristine, and Prednisone
(CHOP). For patients that had initial treatment for their PCD
(n=3), two (14%) received Bortezomib/Lenalidomide/
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Dexamethasone, and one (7.1%) received Cy/Bortezomib/
Dexamethasone (CyBorD). Using strict E5998 criteria for
response, the frontline ORR among T-LGLL patients was 2/12
(16.7%), with 8.3% (1/12) with PR and 8.3% (1/12) achieving a CR
(Figure 3). The median time to response was 2.5 months with a
median duration of response of 8.5 months. Five additional
patients would go on to have a response (4 PR, 1 CR) with
further lines of therapy for an overall response rate of 58% (7/12)
for any line of therapy. There were no patients who had clearance
of their T-LGLL clone with treatment of their concomitant PCD.

T-Cell Lymphoma Patients and Treatment
Response
Twelve patients had TCL with a median age at TCL diagnosis of
64 (range, 41–80; SD, 11.9) years. Eight (67%) of the patients
were male, and all of these were Caucasian. Baseline
characteristics for these patients are in Table 3. Six patients
(50%) had PTCL, and six patients (50%) had CTCL. Of the PTCL
patients, four had PTCL-NOS and two had AITL. Four (33%) of
the patients had MGUS as their PCD, while five (42%) had MM,
and one patient (8.3%) had each of plasmacytosis,
plasmacytoma, and Kappa light chain-predominant plasma cell
proliferation. For patients with PTCL, using Ann Arbor staging,
one (16.7%) patient had stage I disease, one (16.7%) had stage II
disease, two (33%) had stage III disease, and two (33%) had stage
IV disease. For patients with CTCL, four (66.7%) had stage I
disease, and one (16.7) patient had stage IV disease, while for one
patient, this was unknown. Five patients (42%) had CD30+
disease. At the time of PCD diagnosis, eight patients (67%)
had anemia (Hgb <12), and six patients (50%) had bone disease.
The most common monoclonal protein-light chain that was seen
was immunoglobulin G (IgG)-kappa, seen in six patients (50%).
Among patients receiving frontline treatment for their PTCL, the
therapies were CHOP (n = 2, 16.7%) and Etoposide, Prednisone,
Vincristine, Cyclophosphamide, Doxorubicin (EPOCH) (n = 2,
16.7%). Using Lugano criteria, the ORR to frontline treatment
for PTCL was 3/6 (50%), with two (33%) CR and one PR (17%),
while three (50%) had progressive disease (Figure 3). The
median time to response was 4.5 months. For two (16.7%)
patients, the initial treatment was for CTCL with skin-directed
therapy including one patient receiving topical steroids and one
patient receiving bexarotene/extracorporeal photopheresis. Of
the six total patients that had CTCL, four received treatment,
with an ORR of 75% with 3/4 having a response (2 CR and 1 PR).
Two patients were on observation only for their CTCL.
TABLE 1 | Baseline characteristics for all patients.

Variable Total (%) (n=26)

Age at T-cell diagnosis, mean (SD) 63.2 (10.9)
Age at PCD diagnosis, mean (SD) 63.7 (12.3)
Sex
Male 17 (65.4)
Female 9 (34.6)
Race
Caucasian 25 (96.2)
African American 1 (3.8)
Primary Presenting Malignancy
T-Cell Malignancy 10 (38.5)
PCD 10 (38.5)
Concurrent Diagnosis 5 (19.2)
Unknown 1 (3.8)
T-Cell Malignancy
T-LGLL 14 (53.8)
PTCL 6 (23.1)
-PTCL-NOS 4 (15.4)
-AITL 2 (7.7)

CTCL 6 (23.1)
Plasma Cell Dyscrasia
MGUS 13 (50.0)
MM 8 (30.1)
Plasmacytosis 2 (7.7)
Plasmacytoma 1 (3.8)
LPL 1 (3.8)
kappa light chain-predominant plasma cell proliferation 1 (3.8)
Monoclonal Protein-Light Chain
IgA-L 1 (3.8)
IgA-Unk 3 (11.5)
IgG-K 8 (30.8)
IgG-L 3 (11.5)
IgM-K 2 (7.7)
IgM-L 2 (7.7)
N/A-K 2 (7.7)
N/A-L 2 (7.7)
None Detected 2 (7.7)
Unknown 1 (3.8)
Percent bone marrow plasma cells at PCD diagnosis,
median (SD; range)

5 (23.0; 0.5–80.0)

M-protein quantity at diagnosis (mg/dl), median (SD;
range)

533 (1,564; 15.0–
6,042.0)

Serum free light chain ratio at PCD diagnosis, median (SD;
range)

7.1 (38.2; 1.1–
130.7)

ISS Staging For PCD
1 4 (15.4)
2 2 (7.7)
3 3 (11.5)
N/A 17 (65.4)
First-Line T-Cell Malignancy Therapy 16/26* (61.5)
Methotrexate 5 (31.3)
Cyclophosphamide 1 (6.3)
Cyclosporine 3 (18.8)
CHOP 3 (18.8)
EPOCH 2 (12.5)
Skin Directed Therapy 2 (12.5)
First-Line PCD Therapy 9/26* (34.6)
Bortezomib/Lenalidomide/Dexamethasone 4 (44.4)
Bortezomib/Dexamethasone 1 (11.1)
Cyclophosphamide/Bortezomib/Dexamethasone 1 (11.1)
Doxorubicin/Vincristine/Dexamethasone 1 (11.1)
Daratumumab/Lenalidomide 1 (11.1)
IFRT 1 (11.1)
*One patient has not received treatment for either disease.
AITL, angioimmunoblastic T-cell lymphoma; Alk Phos, alkaline phosphatase; CHOEP,
Cyclophosphamide, Doxorubicin, Vincristine, Etoposide, Prednisone; CHOP,
Cyclophosphamide, Doxorubicin, Vincristine, Prednisone; CTCL, cutaneous T-cell
lymphoma; EPOCH, Etoposide, Prednisone, Vincristine, Cyclophosphamide,
Doxorubicin; IFRT, involved field radiation therapy; LDH, lactate dehydrogenase; LPL,
lymphoplasmacytic lymphoma; MGUS, monoclonal gammopathy of undetermined
significance; MM, multiple myeloma; PCD, plasma cell dyscrasia; PTCL-NOS,
peripheral T-cell lymphoma-not otherwise specified; R-CHOP, Rituximab–
Cyclophosphamide, Doxorubicin, Vincristine, Prednisone; R-CVP, Rituximab–
Cyclophosphamide, Vincristine, Prednisone; T-LGLL, T-cell large granular lymphocytic
leukemia.
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Patients Presenting with PCD Frontline
Nine (35%) patients were treated initially for their PCD. Three
(33%) patients had T-LGLL, two (22%) had PTCL, and four
(44%) had CTCL. Seven (78%) patients had MM, one (11%)
patient had MGUS [decision was made to treat this patient with
CyBorD due to the patient being in acute renal failure for
suspected monoclonal gammopathy of renal significance
(MGRS) and when the patient stabilized, and it if was
determined that the patient had MGUS, then treatment was
stopped), and one (11%) patient had a solitary plasmacytoma.
Four (44%) patients were treated with Bortezomib/
Lenalidomide/Dexamethasone, and one (11%) patient each was
treated with Bortezomib/Dexamethasone , CyBorD,
Doxorubicin/Vincristine/Dexamethasone, and Daratumumab/
Lenalidomide, and involved field radiation therapy (IFRT) of
50 Gy. Nine patients received frontline treatment for their PCD,
with two (22%) achieving VGPR, three (33%) achieving PR,
three (33%) achieving SD, and one (11%) with unknown
response to frontline therapy. Six patients would go on to
receive treatment for their T-cell malignancy, with four (66%)
achieving CR, one (17%) achieving PR, and one (17%) with NR.
Two patients had high-dose Melphalan with autologous stem cell
transplant (HDM-ASCT) after their first line of treatment, and
one patient had HDM-ASCT after their second line treatment.
Three of the nine (33%) patients in this group would achieve
clearance of their PCD clone with T-cell directed therapy, but no
patients in the group would achieve clearance of their T-cell
clone at any point.

Clearance of Concomitant PCD Clone in
Patients Treated for T-Cell Malignancies
We next evaluated whether patient’s concomitant neoplasm
responded to treatment of the primary disease. At our
institution, the eradication of the clone is evaluated by bone
biopsy with aspirate and protein electrophoresis/free light chain
assay in the serum or the urine of the patients. This is in
accordance with IMWG criteria. None of our patients had
MRD assessment, which was performed by ClonoSEQ assay
(Adaptive Biotechnologies Corporation, Seattle, USA), and none
were evaluated with high-sensitivity flow cytometry. Within the
TABLE 2 | Baseline characteristics for patients with T-LGLL.

Variable Total (%) (n=14)

Age at T-LGLL, mean (SD) 62.8 (10.1)
Age at PCD diagnosis, mean (SD) 63.6 (9.3)
Sex
Male 9 (64.3)
Female 5 (35.7)
Race
Caucasian 13 (92.9)
African American 1 (7.1)
Plasma Cell Dyscrasia
MGUS 8 (57.1)
MM 4 (28.6)
Plasmacytosis 2 (14.3)
Presenting Cytopenia at T-LGLL Diagnosis
Neutropenia (ANC <1500) 1 (7.1)
Anemia (Hgb <12) 7 (50.0)
Both 3 (21.4)
Unknown 3 (21.4)
TCR V-Beta Positive at T-LGLL Diagnosis
Yes 8 (57.1)
No 4 (28.6)
Unknown 2 (14.3)
LGL Count (CD3CD8+) at Diagnosis
<1,500 6 (42.9)
≥1,500 5 (35.7)
Unknown 3 (21.4)
LDH at T-LGLL Diagnosis
≤190 10 (71.4)
>190 3 (21.4)
Unknown 1 (7.1)
Splenomegaly
Yes 4 (28.6)
No 10 (71.4)
Associated Autoimmune Disease
Rheumatoid arthritis 5 (35.7)
ITP 1 (7.1)
Anti-MAG neuropathy 1 (7.1)
ANCA-associated vasculitis 1 (7.1)
Cryoglobulinemia 1 (7.1)
Anemia (Hgb <12) at PCD Diagnosis
Yes 9 (64.3)
No 4 (28.6)
Unknown 1 (7.1)
Bone Disease at PCD Diagnosis
Yes 2 (14.3)
No 6 (42.9)
Unknown 6 (42.9)
Creatinine at PCD Diagnosis
<1.0 6 (42.9)
1.0–1.5 4 (28.6)
1.5–2.0 2 (14.3)
2.0–2.5 0 (0.0)
2.5–3.0 0 (0.0)
>3.0 1 (7.1)
Unknown 1 (7.1)
Monoclonal Protein-Light Chain
IgA-Unk 1 (7.1)
IgG-K 2 (14.3)
IgG-L 3 (21.4)
IgM-K 2 (14.3)
IgM-L 1 (7.1)
N/A-K 1 (7.1)
N/A-L 2 (14.3)
None detected 2 (14.3)

(Continued)
TABLE 2 | Continued

Variable Total (%) (n=14)

ISS Staging For PCD
1 2 (14.3)
2 1 (7.1)
3 1 (7.1)
N/A 10 (71.4)
First-Line LGL Therapy 10/14* (71.4)
Methotrexate 5 (35.7)
Cyclophosphamide 1 (7.1)
Cyclosporine 3 (21.4)
CHOP 1 (7.1)
First-Line PCD Therapy* 3/14* (21.4)
Bortezomib/Lenalidomide/Dexamethasone 2 (14.3)
Cyclophosphamide/Dexamethasone/Bortezomib 1 (7.1)
April 2022 | Volume 12
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entire cohort (n=26), 8/26 had clearance of their PCD clone. Of
these patients, four were treated for both diseases, three were
treated for only their T-cell malignancy, and one was treated for
only their PCD. Full breakdown can be seen in Table 5. Of the
patients who received treatment for their T-cell malignancy
frontline, 31.3% (5/16) patients had clearance of their PCD clone.

Four (50%) of the patients had their clone clear after starting
treatment for their T-cell malignancy, including two (25%) who
never received PCD-directed therapy. The treatments included
Cy (one patient), Bexarotene (one patient), and MTX (two
patients; one with prednisone and one without prednisone).
An additional patient has an unknown initial T-LGLL
treatment date, but they were on CsA (for kidney transplant),
a known T-LGLL treatment, at the time of the resolution of their
PCD clone. Of the patients who received initial frontline
treatment for their PCD, 33.3% (3/9) had clearance of
their PCD clone. This included two patients with clearance
after treatment for MM and one after treatment for a
plasmacytoma. The treatments leading to resolution included
Azacitidine/Bortezomib/Dexamethasone for MM (and MDS);
Bortezomib, Lenalidomide/Dexamethasone for MM; and
Bortezomib/Dexamethasone for plasmacytoma.
TABLE 3 | Baseline characteristics for patients with T-cell lymphoma (TCL).

Variable Total (%) (n=12)

Age at TCL diagnosis, mean (SD) 63.8 (11.9)
Age at PCD diagnosis, mean (SD) 63.9 (15.1)
Sex
Male 8 (66.7)
Female 4 (33.3)
Race
Caucasian 12 (100.0)
African American 0 (0.0)
T-Cell Lymphoma
PTCL 6 (50.0)
-PTCL-NOS 4 (33.3)
-AITL 2 (16.7)

CTCL 6 (50.0)
Plasma Cell Dyscrasia
MGUS 4 (33.3)
MM 5 (41.7)
Plasmacytosis 1 (8.3)
Plasmacytoma 1 (8.3)
kappa light chain-predominant plasma cell proliferation 1 (8.3)
Presenting Cytopenia at TCL Diagnosis
Neutropenia (ANC <1500) 1 (8.3)
Anemia (Hgb <12) 5 (41.7)
Neither 3 (25.0)
Unknown 3 (25.0)
Stage at PTCL Diagnosis N=6
I 1 (16.7)
II 1 (16.7)
III 2 (33.3)
IV 2 (33.3)
Stage at CTCL Diagnosis N=6
I 1 (16.7)
II 0 (0.0)
III 0 (0.0)
IV 4 (66.7)
Unknown 1 (16.7)
LDH at TCL Diagnosis
≤190 2 (16.7)
>190 6 (50.0)
Unknown 4 (33.3)
CD30+ at TCL Diagnosis
Yes 5 (41.7)
No 3 (25.0)
Unknown 4 (33.3)
HIV Positive at TCL Diagnosis
Yes 0 (0.0)
No 8 (66.7)
Unknown 4 (33.3)
HTLV-1 Positive at TCL Diagnosis
Yes 1 (8.3)
No 3 (25.0)
Unknown 8 (66.7)
Splenomegaly
Yes 1 (8.3)
No 9 (75.0)
Unknown 2 (16.7)
Associated Autoimmune Disease
Autoimmune Hemolytic Anemia 2 (16.7)
None 10 (83.3)
Anemia (Hgb <12) at PCD Diagnosis
Yes 8 (66.7)
No 3 (25.0)
Unknown 1 (8.3)

(Continued)
TABLE 3 | Continued

Variable Total (%) (n=12)

Bone Disease at PCD Diagnosis
Yes 6 (50.0)
No 4 (33.3)
Unknown 2 (16.7)
Creatinine at PCD Diagnosis
<1.0 6 (50.0)
1.0-1.5 4 (33.3)
1.5-2.0 1 (8.3)
2.0-2.5 0 (0.0)
2.5-3.0 0 (0.0)
>3.0 0 (0.0)
Unknown 1 (8.3)
Monoclonal Protein-Light Chain
IgA-L 1 (8.3)
IgA-Unk 2 (16.7)
IgG-K 6 (50.0)
IgM-L 1 (8.3)
N/A-K 1 (8.3)
Unknown 1 (8.3)
ISS Staging For PCD
1 2 (16.7)
2 1 (8.3)
3 2 (16.7)
N/A 7 (58.3)
First-Line TCL Therapy 6/12 (50)
CHOP 2 (16.7)
EPOCH 2 (16.7)
Skin Directed Therapy 2 (16.7)
First-Line PCD Therapy 6/12 (50)
Bortezomib/Lenalidomide/Dexamethasone 2 (16.7)
Bortezomib/Dexamethasone 1 (8.3)
Daratumumab/Lenalidomide 1 (8.3)
Docetaxel/Vincristine/Dexamethasone 1 (8.3)
IFRT 1 (8.3)
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Of patients who received treatment for their T-LGLL, 41.7%
(5/12) had clearance of their PCD clone, and neither of the two
patients that were on observation for their T-LGLL had clearance
of their PCD clone. No patient had clearance of their T-cell clone
due to treatment of their PCD.

Survival Outcomes
With a median follow-up time of 1.8 years (range, 3 weeks–12.8
years), the median OS across all patients was 4.1 years (Figure 1).
The median follow-up time for patients with T-LGLL was 1.9
years (range, 7 weeks–12.7 years), and for patients with TCL, it
was 1.21 years (3 weeks–12.4 years). For full progression and
Frontiers in Oncology | www.frontiersin.org 782
survival outcomes, see Tables 4A, B. The median OS for
patients with T-LGLL was not reached (Figure 2), while the
median OS for pat i ent s wi th TCL was 3 .4 years
(Supplementary Figure S1). When TCL is broken down by
disease, the median OS for PTCL was 1.7 years, and the median
OS for CTCL was 12.4 years. In total, 42.3% of patients had
progression of their T-cell malignancy. Six of the 12 (50%)
patients with T-LGLL and 4/6 (67%) of patients with PTCL had
refractory disease, while 0% with CTCL had progression (on
frontline treatment). Median overall PFS was 3.21 years. For
patients with T-LGLL, the median leukemia-free survival was
11 months (Figure 2), and for patients with TCL, the median
FIGURE 1 | Overall Survival and Progression Free Survival for Entire Cohort.
TABLE 4A | Progression and survival outcomes.

Outcome All T-Cell Lymphoma T-LGLL

Progression 11/26 (42.3%) 4/12 (33.3%) 7/14 (50.0%)
Death 7/26 (26.9%) 5/12 (41.7%) 2/14 (14.3%)
Progression or death 15/26 (57.7%) 7/12 (58.3%) 8/14 (57.1%)
Median OS years (95% CI)* 4.06 (2.41-NR) 3.43 (0.65-NR) NR (2.41-NR)
Median PFS years (95% CI)* 3.21 (0.38-9.28) 3.21 (0.28-NR) 0.92 (0.22-NR)
April 2022 | Volume 12 |
*One T-cell lymphoma patient was excluded from time-to-event statistics due to unknown diagnosis date.
TABLE 4B | Progression and survival outcomes.

Outcome All PTCL CTCL T-LGLL

Progression 11/26 (42.3%) 4/6 (66.7%) 0/6 (0%) 7/14 (50.0%)
Death 7/26 (26.9%) 3/6 (50.0%) 2/6 (33.3%) 2/14 (14.3%)
Progression or death 15/26 (57.7%) 5/6 (83.3%) 2/6 (33.3%) 8/14 (57.1%)
Median OS years (95% CI)* 4.06 (2.41-NR) 1.66 (0.65-NR) 12.37 (3.21-NR) NR (2.41-NR)
Median PFS years (95% CI)* 3.21 (0.38-9.28) 0.40 (0.28-NR) 12.37 (3.21-NR) 0.92 (0.22-NR)
*One CTCL patient excluded from time-to-event statistics due to unknown diagnosis date.
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PFS was 3.21 years (Supplementary Figure S1). When broken
down by type of TCL (PTCL or CTCL, the median PFS among
CTCL patients was 12.37 years, and the median PFS for PTCL
patients was only 4.8 months. Full progression and response
per patient are seen in Figure 3 with treatment regimens in
Supplementary Table S2. Of the patients who received
treatment for their T-cell malignancy, 40% (8/20) had a
response (3 PR and 5 CR). Of the patients who received
treatment for their PCD, 60% (6/10) had a response (3 PR
Frontiers in Oncology | www.frontiersin.org 883
and 3 VGPR). For patients who had MM (n=8), the median PFS
was 3.4 years, and the OS was 7.9 years. Full response rates by
disease are seen in Supplementary Table S1.
DISCUSSION

In the present study, we present the largest cohort of patients with
concomitant T-cell malignancies and PCD to date, with a focus on
survival and treatment outcomes. For the first time, we present
treatment response and survival outcomes and demonstrate that
treatmentof theunderlyingT-cellmalignancycanalso eradicate the
concomitant PCD clone, which has implications into the
pathogenesis of these diseases.

It is important to compare the results observed in this study
with the established long-term survival literature for each
individual disease. While an imperfect comparison, this helps
to provide important, initial insights into the prognostic impact
of concomitant PCD with T-cell malignancies. In the patients
with T-LGLL in our cohort, the median PFS was 11 months, and
OS was not reached (Figure 2). The OS is consistent with the
established literature, as patients with T-LGLL are known to have
a prolonged OS, with the ECOG 5998 study also having an OS
not reached and Braunstein et al. showed a 5-year OS of 72%
(4, 20, 30). Among CTCL patients, the observed median PFS of
12.4 years is similar to expected survival rates previously
published for CTCL (31). Based upon our results, for patients
with CTCL and T-LGLL, the survival outcomes are as expected
per published literature for the respective disease types,
suggesting that these patients should be treated for the first
diagnosed, underlying disorder. The six patients with PTCL had
a median OS of 1.7 years and a median PFS of 4.8 months. All of
these patients were newly diagnosed patients with IPI scores
ranging from 0 to 4. In the paper by Vose et al., median OS was
nearly 2.5 years for PTCL-NOS, and AITL showed a median OS
FIGURE 2 | Overall Survival and Progression Free Survival for Patients with T-LGLL.
FIGURE 3 | Swimmer's Plot for Entire Cohort. Swimmer's Plot showing all
patients in relation of time of diagnosis of T-Cell Lymphoma (TCL). Patients
are split by whether they were diagnosed with T-cell Malignancy or PCD first.
Lines on the solid color bars represent concurrent diagnosis. Legend
describes when patients had progression or death.
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of approximately 2.2 years. The results in our series among PTCL
patients are worse than expected/known outcomes for these
lymphomas, suggesting that patients with a concomitant PCD
may have more aggressive or chemo-resistant disease (Figure 3).
The exact reason why these patients may be experiencing worse
outcomes is not known. Of the six patients with PTCL, two had
AITL, and four were PTCL-NOS. AITL is a lymphoma of T-
follicular helper (TFH)-derived T-lymphocytes, and over the
past 10 years, some patients with previously unclassified PTCL
(PTCL-NOS) have been reclassified as TFH under 2016 WHO
guidelines (32). These patients often present with inflammatory
symptoms (skin rash, edema, and arthralgias) c/w the B-cell
regulatory function of these cells. Furthermore, it is likely that
patients who have lymphomas derived from TFH cells are more
likely to have concomitant PCD, as they are inherent
malignancies of regulatory T-cells, and in these cases, the T-
cell process likely drives the PCD (33). Frequently, these patients
have complex pathological characteristics, and with the
concomitant PCD, diagnosis is often protracted and delayed,
which may delay treatment initiation. This highlights the
importance of considering T-cell malignancies in the
differential for patients with atypical PCD. While our
population of PTCL patients is small (n=6), this concerning
trend will need to be evaluated in a larger population of patients
with additional studies for confirmation and suggests that
aggressive treatment is needed for this population. Finally, we
also observed patients who had resolution of their PCD clone
after being treated with only T-cell-directed therapy (two
patients with T-LGLL and one patient with CTCL).
Furthermore, two patients had resolution of their PCD clone
only after starting treatment for their T-cell malignancy (one
patient with a CR for MM and one patient with resolution of
their plasmacytosis; both had T-LGLL) (Table 5). This is an
important finding, as it shows that the T-cell malignancy may be
driving the monoclonal plasma cell spike and suggests that the
Frontiers in Oncology | www.frontiersin.org 984
underlying pathophysiology may be driven by the T-cell process.
There is support that T-regulatory cells may maintain plasma
cells, but the exact mechanism is unknown (34).

T-LGLL patients represented the largest type of T-cell
malignancy in our series with 14/26 (54%) of patients with
T-LGLL. Only 50% of patients with T-LGLL had progression
of their disease, and only 14% died. The median OS was not
reached in this group, suggesting that there is no deleterious
effect of the concomitant PCD process in these patients.
Interestingly, 36% of T-LGLL patients in this population had
eradication of their plasma cell clone with T-LGLL directed
treatment, including three patients with MM whose PCD clone
was not fully eradicated with frontline myeloma-directed therapy
but resolved after T-LGLL-directed treatment. This provides
further evidence that the T-cell process may be driving the
PCD, and treatment of the underlying T-cell malignancy,
especially T-LGLL, can potentiate the eradication of the PCD
clone. It has been suggested that treating the PCD clone may
suppress the T-LGLL clone (16), but in our cohort, 38% of the
patients who had eventual eradication of their PCD clone had
treatment only for their T-cell malignancy. This does make
rational sense, as patients who received T-cell-directed
therapies often receive therapeutics that are known to be
effective against PCD, such as cyclophosphamide. Sidiqui et al.
described patients with concurrent T-LGLL and PCD, and in
their study, a majority (82%) of patients developed T-LGLL after
their PCD or concurrently, whereas in our study, a majority
(58%) were diagnosed with their T-cell malignancy first or both
malignancies at the same time (16). The variability between these
two studies could simply be due to the limited sample size in both
studies or earlier detection of the T-LGLL in the present series.
Whatever the explanation, further studies are needed to verify
the relationship between these two diseases.

It has been hypothesized that B-cell expansion can potentially
result due to B-cell dysfunction in the setting of T-LGLL (35),
TABLE 5 | Patients with clearance of PCD clone.

Patient
Number

T-Cell
Malignancy

T-cell treatment or
PCD treatment

first?*

First Line T-Cell
Treatment

T-Cell
Progression?

PCD First Line PCD
Treatment

PCD Progression
After First Line
Treatment?

PCD Clearance
after T-Cell
Treatment?

3 T-LGLL Only T-cell MTX Yes Plasmacytosis None No Undetermined*
4 PTCL PCD CHOEP No Plasmacytoma IFRT Yes No
5 T-LGLL T-cell Cyclosporine No MM Bortezomib/

Lenalidomide/
Dexamethasone

Yes Yes

11 T-LGLL T-cell Methotrexate No MM Cyclophosphamide/
Dexamethasone

Yes Yes

13 T-LGLL PCD Cyclophosphamide No MM Bortezomib/
Lenalidomide/
Dexamethasone

No No

15 T-LGLL Only T-cell Cyclophosphamide Yes MGUS None No Yes
18 CTCL Only PCD None No MM Daratumumab/

Lenalidomide
Yes No

24 CTCL Only T-cell Bexarotene/
Extracorporeal
Photopheresis

No MGUS None No Yes
April 2022 | Volume
Frontline treatment information for patients that had clearance of their PCD cline and whether they received initial treatment for their T-Cell disease or PCD and whether they had
progression to front line treatments.
*Exact start date for T-cell malignancy is unknown, but the patient was on Cyclosporine (Known T-LGLL treatment) at the time of PCD clone clearance.
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and this relationship has been seen with AITL and plasma cell
proliferation as well (36). We show for the first time that treating
the patient’s T-cell malignancy may eradicate the PCD clone,
especially if the patient has T-LGLL. We even see eradication of
the plasma cell clone in 50% of patients with MM in this cohort.
The T-LGLL may be driving the expansion of B cells as described
above, leading to the development of a plasma cell clone. When
the T-LGLL is treated, this clonal expansion resolves. It remains
unknown whether the PCD drives the T-cell disorder or vice
versa. To date, the exact pathophysiological mechanisms of
concurrent PCD and T-cell malignancy are unknown. In MM,
about one-third of patients can develop TCR-b rearrangements
that share a similar immunophenotype to T-LGLL (37).
Furthermore, given that T-LGLL is a disorder of terminal
effector T-lymphocytes, it is possible that this induces the
development of a reactive clonal expansion due to the
underlying PCD or monoclonal gammopathy (38). This could
be from an enhanced clonal expansion due to the chronic
immune response that was initially due to the PCD (39).

This study has limitations that are inherent to all
retrospective, single-center studies. The study encompassed a
long period of time, during which treatment strategies changed
and new agents became available. Additionally, analysis of
clinical outcomes to treatment must be interpreted with
caution, given low patient numbers, and only analyzing for
initial progression or death. Furthermore, due to the multiple
different diseases, the first-line treatment for the patients in this
cohort varied extensively. It is difficult to correlate clearance of
the PCD clone with survival, as only a small portion of patients
had their clone resolve; it was nearly evenly split between patients
who received treatment for both their T-cell malignancy and
their PCD, or just treatment for the T-cell malignancy. Despite
these limitations inherent to retrospective analyses, this study
provides the largest dataset of patients with concomitant T-cell
malignancies and PCD to date, providing a robust insight into
this likely underdiagnosed population. A large multicenter
retrospective review is needed to further characterize this
population and definitively identify the clinical significance of
these concomitant disorders. We show that treating the patient’s
T-cell malignancy has similar OS and PFS as compared to
established baselines for T-LGLL and CTCL and may even
have the potential to eradicate the PCD clone. However, for
patients with PTCL (PTCL-NOS and AITL), outcomes appear
worse, with similar ORR, but worse PFS, suggesting that the
presence of a concomitant PCD may increase the overall risk in
these patients.
CONCLUSION

We present the largest study to date on patients who have
concomitant T-cell malignancies and plasma cell dyscrasias. In
our analysis, we found that there was no survival difference in
patients that have concomitant CTCL and T-LGLL and PCD
when treated with standard T-cell-directed therapy. However,
Frontiers in Oncology | www.frontiersin.org 1085
patients with concomitant PCD and PTCL had significantly
inferior outcomes, with rapid progression, and worse OS and
PFS highlighting the need to further evaluate these patients in a
large, multi-center setting. For patients with T-cell malignancies
as the primary diagnosis with concomitant PCD, treatment with
standard T-cell-directed therapies is recommended with
continued follow-up and monitoring of the concomitant PCD.
There is the potential that treating a patient’s T-cell malignancy
may lead to resolution of their PCD clone, even without therapy
directed at the PCD. Larger, multi-center studies are needed to
validate these findings, and definitively describe the effect of
concomitant T-cell malignancies and PCD.
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Large granular lymphocyte (LGL) leukemia, a rare hematologic malignancy, has long been
associated with rheumatoid arthritis (RA), and the diseases share numerous common
features. This review aims to outline the parallels and comparisons between the diseases
as well as discuss the potential mechanisms for the relationship between LGL leukemia
and RA. RA alone and in conjunction with LGL leukemia exhibits cytotoxic T-cell (CTL)
expansions, HLA-DR4 enrichment, RA-associated autoantibodies, female bias, and
unknown antigen specificity of associated T-cell expansions. Three possible
mechanistic links between the pathogenesis of LGL leukemia and RA have been
proposed, including LGL leukemia a) as a result of longstanding RA, b) as a
consequence of RA treatment, or c) as a driver of RA. Several lines of evidence point
towards LGL as a driver of RA. CTL involvement in RA pathogenesis is evidenced by
citrullination and granzyme B cleavage that modifies the repertoire of self-protein antigens
in target cells, particularly neutrophils, killed by the CTLs. Further investigations of the
relationship between LGL leukemia and RA are warranted to better understand causal
pathways and target antigens in order to improve the mechanistic understanding and to
devise targeted therapeutic approaches for both disorders.

Keywords: rheumatoid arthritis, cytotoxic T lymphocyte (CTL), citrullination, neutropenia, STAT3 (signal transducer
and activator of transcription 3), Felty syndrome
LGL LEUKEMIA CLINICAL PRESENTATION
AND EPIDEMIOLOGY

Large granular lymphocyte (LGL) leukemia, is a rare hematologic malignancy accounting for 2-5%
of lymphoproliferative disorders in North America and Europe (1). Recent population-based
studies place the incidence of LGL leukemia between 0.2-0.72 per million people (2, 3). There are
three major subtypes of disease that exhibit T-cell or natural killer (NK) cell phenotypic markers;
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85% of cases are categorized as T-LGL, 10-15% as a chronic
lymphoproliferative disorder of natural killer cells (CLPD-NK),
and rare cases are described as aggressive NK cell leukemia (4).
The median age of diagnosis is roughly 65 years (2–4).

Approximately 45-60% of patients with LGL leukemia require
treatment upon presentation, with neutropenia and anemia as
the main indica t ions for t rea tment . S ing le agent
immunosuppressive agents that are utilized include
methotrexate, cyclophosphamide, and cyclosporine (1, 3). A
“watch-and-wait” approach is appropriate in many indolent
LGL leukemia patients. Unfortunately, most patients will
eventually require treatment, and despite initial response,
many will relapse or need life-long therapy, thus highlighting a
need for continued research and new therapeutics. Reports vary
in terms of survival with one of the largest population-based
studies suggesting a median 9-year overall survival (3) and others
indicating that overall survival is similar to control populations
(2, 5). In patients requiring treatment, survival differed between
symptom type, with those affected by anemia showing a median
overall survival of 5.75 years and those with neutropenia
Frontiers in Oncology | www.frontiersin.org 289
exhibiting a median overall survival not yet reached 13 years
after initiation of the study (6). Together, these reports
demonstrate the heterogeneity of the patient population and
the relatively indolent nature of the disease.

T-LGL leukemia pathogenesis is likely initiated by antigenic
stimulation of cytotoxic T-cell expansion followed by somatic
mutational events that activate survival pathways, subvert
activation induced cell death, and drive clonal expansion
(summarized in Figure 1). An abundance of reported genetic
modifications and signaling changes point to a reliance on
inflammatory and JAK/STAT signaling in LGL leukemia. In
fact, nearly all patients show an increase in STAT3 activation (7–
9), suggesting a stimulatory role for cytokine signaling pathways.
The JAK/STAT signaling cascade is first initiated by cytokines
such as IL-6, IL-2, and IL-15 and following activation, leads to
transcription of STAT responsive genes that impact survival,
proliferation, and immune activation (10).

Furthermore, STAT3 somatic activating mutations are the
hallmark genetic lesion of LGL leukemia. Mutations were
initially reported in roughly 30-40% of patients (9, 11). The
FIGURE 1 | Overview of LGL leukemia pathogenesis and clinical presentation. 1. T-cell LGL leukemia is presumed to arise following antigenic stimulation of normal
T-cells. 2. Upon oligoclonal expansion of antigen reactive T-cells, somatic mutations are acquired in genes regulating key T-cell survival pathways as well as
epigenetic regulators. 3. The leukemic expansion is characterized by clonal T-cell receptor rearrangements, somatic variants (especially somatic activating mutations
in the STAT3 gene), and an activated cytotoxic T-cell phenotype with secretion of inflammatory cytokines and chemokines, such as sFasL. 4. Leukemic LGLs are
resistant to Fas-induced apoptosis and are characterized by activated cell survival pathways. Cytopenias, especially neutropenia and anemia, are a common disease
feature and the main indicators for treatment. Leukemic LGLs also invade spleen, marrow and other organs where they contribute to cytopenias and autoimmune
diseases. Created with BioRender.com.
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majority of mutations occur in the SH2 domain, the region that
mediates dimerization and activation of the STAT3 protein.
However, recent publications report mutations in additional
regions of the protein, such as the coiled-coil domain, some of
which exhibit an activating phenotype. Their inclusion yields
an overall STAT3 somatic mutation rate of >50% in LGL
leukemia (12–14).

Cytopenias (neutropenia, anemia, and more rarely
thrombocytopenia), splenomegaly, and concomitant autoimmune
diseases are the most common clinical manifestations. One of the
most common symptoms of LGL leukemia is neutropenia. It is a
major health concern, putting patients at risk for infection,
pneumonia, or sepsis (11), especially in those with severe
neutropenia (<0.5 ×109/L) (15). Numbers vary between cohorts,
but as high as 80% of symptomatic patients suffer from a neutrophil
count lower than 1.5 × 109/L (16). Immune phenotype also
correlates with neutropenia, which is found almost exclusively in
CD8+ LGL leukemia (5). In one report, T-LGL leukemia patients
with a CD8+, CD3+, CD16+, CD56- phenotype were the most
likely to suffer from neutropenia (17). There have been several
mechanisms proposed to explain LGL leukemia symptomology
including: 1) LGL-secreted humoral factors, 2) LGL bone marrow
infiltration, and 3) LGL-mediated cytotoxicity (17). Mechanistic
drivers of neutropenia are discussed in more detail in later sections.
RHEUMATOID ARTHRITIS (RA)
ASSOCIATION WITH LGL LEUKEMIA

LGL leukemia is often associated with autoimmune disorders
including pure red cell aplasia, celiac disease, and others, but is
most commonly associated with rheumatoid arthritis (RA) (18–
20). LGL leukemia was first identified as a clonal disorder in 1985
(21). There were several descriptions of a few patients having RA
with LGL leukemia around this time; indeed one of the patients
in the original description of LGL leukemia was thought to have
Felty syndrome, which is characterized by RA, neutropenia, and
splenomegaly (22–24). RA is a systemic autoimmune disease
characterized by chronic inflammation of the synovial joints,
leading to pain, swelling, and destruction of the bone and
cartilage (25). RA most commonly becomes symptomatic
around 45–60 years of age, and women are two- to threefold
more likely to develop RA than men (26). As a standalone
clinical entity, RA occurs in ~1% of the world-wide
population. However, reports place the incidence of RA in
LGL leukemia patients as high as 36% (4, 18, 27). Of note, it is
much more commonly observed in patients with T-LGL
leukemia compared to those with NK-LGL leukemia (18). In
the majority of patients who manifest both T-LGL leukemia and
RA, the RA is diagnosed first. In a study of 56 patients with
concurrent T-LGL leukemia and RA from a single clinical center,
the median time that patients had RA prior to T-LGL leukemia
diagnosis was six years, with a range of 0-36 years (28). LGL
leukemia is rare in juvenile idiopathic arthritis (JIA) (29), likely
because JIA and RA are different pathogenic entities, and has not
be reported to have a relationship with late onset RA.
Frontiers in Oncology | www.frontiersin.org 390
Importantly, once a patient with RA is found to have LGL
leukemia, the patient is no longer classified as having RA.
Instead, the diagnosis and treatment are centered around the
LGL leukemia and the most serious complications associated
with the disease (i.e. neutropenia and anemia). In this situation,
the RA is considered associated with the LGL leukemia, rather
than a separate disease entity. There are no case series comparing
arthritis severity in canonical RA and LGL leukemia-associated
RA. However, based on case reports, the severity of the arthritis
in LGL leukemia appears to be similar to that occurring in
canonical RA. The joint damage in both diseases is
heterogeneous, with some individuals experiencing mild
symptoms, while others have severe erosive joint disease.

Systematic evaluation of the clinical, genetic, and
immunologic parallels between LGL leukemia and RA may
reveal common mechanisms responsible for the co-occurrence
of these two disorders.
PARALLELS AND COMPARISONS
BETWEEN T-LGL LEUKEMIA AND RA

Despite the striking association between T-LGL leukemia and
RA, the underlying mechanisms connecting the two disorders
remains unknown. There are numerous points of similarity
between the RA that develops in the presence and absence of
LGL leukemia including common genetic, serologic, and cellular
features. These features are discussed below and summarized
in Figure 2.

Cytotoxic T-Cells (CTLs) in LGL Leukemia
and RA
LGLs themselves are characterized by their large size, azurophilic
cytoplasmic granules, low nuclear to cytoplasmic ratio, and
round nucleus. In healthy populations, LGLs make up about
10-15% of peripheral blood mononuclear cells (PBMCs), but
patients with LGL leukemia can have levels as high as 2- to 40-
fold greater than their baseline (27). Diagnosis is supported by
increased cell counts of > 2×109/L or lower counts (0.4 – 2×109/L)
when the cells are clonal and the disease is paired with the
appropriate clinical features such as RA and hematological
parameters like cytopenias. Clonality assessment based upon T-
cell receptor (TCR) rearrangement in ab and gd TCR genes is used
to confirm diagnosis if the appropriate cell expansions are observed.
Histologically, bone marrow (BM) samples show interstitial
infiltrations of linear arrays of cytotoxic cells expressing CD8,
cytotoxic granules containing perforin and granzyme B, and/or
TIA-1 (30).

The T-LGL leukemia phenotype is typically CD3+, TCRab+,
CD8+, CD16+, CD45RA+, and CD57+, and cells are CD4−,
CD5dim, CD27−, CD28−, CD45RO−. Leukemic CD3+, CD8+
LGLs frequently exhibit relatively equal proportions of CD57-
and CD57+ cells, which are proposed to represent progenitor and
mature populations, respectively (31, 32). At the phenotypic and
transcriptional level, these cells resemble chronically stimulated
terminally differentiated cytotoxic T lymphocytes (CTLs), such as
May 2022 | Volume 12 | Article 869205
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those found in the setting of viral infection (33). Additionally,
granzymes A, B, H, and K have been shown to be upregulated in
LGL leukemia (34). The re-expression of CD45RA, as is observed
on T-LGLs, is a feature of a sub population of effector CD8s referred
to as “T effector memory cells re-expressing CD45RA” (TEMRA)
cells (35). While this suggests that leukemic T-LGLs may derive
from TEMRA cells (36), further comparisons using single cell
approaches are needed to precisely define this relationship.

Clonal CD8+ T cell expansions have also been observed in the
blood of RA patients, in the absence of known T-LGL leukemia,
more frequently than in healthy controls (45% vs. 25%,
respectively) (37), suggesting that antigen-driven expansion of
clonal CTL populations is occurring in RA. In fact, examination of
a large cohort of over 500 RA patients revealed clonal expansions
in 3.6% of patients. Only 42% of patients with clonal expansions
had counts above the threshold of 500 cells/µL typically considered
for initial diagnosis of LGL leukemia (38). However, most patients
with these clonal T-cell populations had previously been exposed
to antirheumatic immunosuppressive treatments (also common
treatments for LGL leukemia), which may blunt the progression
along a potential continuum between RA and LGL leukemia.
Given that over a million people in the US suffer from RA, these
findings suggest that clonal T-cell populations are more common
than the currently documented incidence of T-LGL leukemia.

As in T-LGL leukemia, the CTLs found in the synovium of
RA patients are classified as effector memory or TEMRA cells
(39). These cells are clonally expanded and express CD80, CD86,
PD-1, and Ki67, indicating an activated and chronically
stimulated phenotype (39, 40). They can persist in the joint for
years, and CD3+ CD57+ cells accumulate with disease duration
(41, 42). Moreover, similar to T-LGL leukemia, synovial CTLs in
Frontiers in Oncology | www.frontiersin.org 491
RA express perforin and granzymes (43). Indeed, an active role
of degranulating CTLs in RA pathogenesis is supported by the
findings that granzymes A, B and M are elevated in RA synovial
fluid (44, 45), and serum levels of granzyme B correlate with
disease activity and joint erosion (46). The accumulation of
antigen-experienced clonally expanded CTLs in the RA
synovium and evidence of active degranulation, implicates
these cells in the pathogenesis of RA, but their precise role
remains undefined.

Somatic Mutations in T-LGL
Leukemia and RA
STAT3 mutations are the predominant somatic variants in T-
LGL leukemia and have been associated with a variety of clinical
markers of disease pathogenesis and outcome. A 2019
retrospective study of one of the largest LGL leukemia cohorts
to date revealed that STAT3 mutations were associated with low
hemoglobin and lower overall survival, as well as severe
neutropenia (47). Another recent study confirmed higher rates
of neutropenia, severe neutropenia, and cases requiring
treatment in STAT3 mutated samples (48). STAT3 mutations
are generally found almost exclusively in CD8+ rather than
CD4+ patients (5), and more specifically, CD8+ CD16+ CD56-
T-LGL leukemia patients exhibit more STAT3 mutations (49).

Numerous studies have associated STAT3 mutations with
moderate and severe neutropenia in LGL leukemia (5, 9, 14, 48,
50, 51). STAT3 is a driver of soluble Fas ligand (sFasL)
expression in LGLs (52), and sFasL is present at high levels in
LGL leukemia patient serum (53). LGLs are resistant to FasL-
induced apoptosis due to widespread activation of a network of
survival signals (54). However, patient serum is sufficient to
FIGURE 2 | Mechanistic parallels between T-LGL leukemia/RA and canonical RA. (A) CD8+ T cell expansion: T-LGL leukemia-associated RA (T-LGLL/RA) and
canonical RA (RA) are characterized by the expansion of CD8+ T cells. The CD8+ T cell expansion is oligoclonal/monoclonal in T-LGLL/RA, whereas it is polyclonal in
canonical RA. (B) Proposed model for CTL-induced hypercitrullination: In this model, clonally expanded CD8+ T cells (CTLs) targeting neutrophils release cytotoxic
granules containing perforin and granzymes, inducing leukotoxic hypercitrullination (LTH). Perforin forms pores in the neutrophil membrane, allowing for calcium (Ca2
+) influx and activation of intracellular PAD enzymes, inducing neutrophil hypercitrullination. In parallel, granzyme B (GrB) cleavage of neutrophil antigens creates
neoepitopes. As a result of the disrupted cell membrane, the neutrophils lyse, releasing autoantigens, including citrullinated and GrB-cleaved proteins. Dendritic cells
(DCs) engulf these antigens and present them both to CD8+ and CD4+ T cells. The stimulated CD8+ T cells clonally expand and drive a feedforward cycle of
neutrophil damage. Stimulated CD4+ T cells provide B cell help, giving rise to antibody-secreting cells producing anti-citrullinated protein antibodies (ACPAs). (C)
Genetic predisposition to ACPA production: ACPA production is facilitated by the presentation of citrullinated antigens via HLA-DRs (e.g., HLA-DR4) encoded by RA-
associated HLA-DRB1 susceptibility alleles. The requirement of specific RA-associated HLA-DRs for ACPA production likely explains why, despite having CTL
expansion and neutrophil lysis, only a subset of patients with LGL leukemia develop RA. (D) Autoantibodies: Circulating APCAs are found in patients with T-LGLL/RA
and canonical RA providing a serological record of the breach of immunologic tolerance to citrullinated antigens in both diseases. Created with BioRender.com.
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activate cell death in normal neutrophils in vitro (Figure 1). A
blocking anti-Fas monoclonal antibody rescued neutrophils
from this fate (53). In addition, LGL patients with neutropenia
have higher sFasL levels when compared to either healthy donor
serum or serum from LGL leukemia patients with normal
neutrophil counts. Furthermore, successful treatment has been
associated with lower levels of sFasL (17), with methotrexate
specifically inducing lower sFasL, and relapsed patients
exhibiting increased sFasL (53). Thus, several lines of evidence
implicate sFasL as a humoral mediator of neutropenia in LGL
leukemia. Further discussion of direct LGL cytotoxic effects on
neutrophils is presented below.

Interestingly, T-LGL leukemia patients with STAT3
mutations are more likely to have RA than those without (9,
50, 55–58). Whole exome sequencing in a large T-LGL leukemia
cohort identified additional genes with recurrent somatic
variants as well as frequent co-mutations of chromatin
modifying genes in STAT3-mutant T-LGLs (14). Further
studies are needed to define additional molecular events that
correlate with RA co-occurrence in LGL leukemia.

Recent efforts identified 30 somatic mutations in clonally
expanded CTLs of a small cohort of RA patients who did not
have a diagnosis of T-LGL leukemia (40). Using a combination of
gene targeted and exome sequencing approaches, mutations were
identified in immune-related genes, proliferation-associated
genes, as well as in other genes (40). Notably, these mutations
were all found in clonally expanded CD8+ effector memory T cell
populations, suggesting that CD8+ T cells that acquire these
somatic mutations may clonally expand and play a pathogenic
role in RA. However, it is important to note that somatic
mutations were only found in 5/25 patients studied, and most
mutations were only found in a single patient. While these data
are intriguing, further studies on larger cohorts are needed to
identify whether CTL mutations in RA are causal or an effect of
the disease and to draw any meaningful parallels between the
mutational CTL landscapes in RA and T-LGL leukemia.

Sex Bias
Although LGL leukemia generally occurs equally in males and
females, with some studies showing a slightly increased incidence
in males (2), the development of RA in patients with T-LGL
leukemia is highly skewed toward females. One study of 56
patients with T-LGL leukemia and RA found that 73% were
female (28). This parallels what has been observed in canonical
RA for decades, a 3:1 female:male ratio (59, 60). While much
more needs to be learned about the mechanism behind this sex
bias, the increased risk of RA development in females with T-
LGL leukemia suggests parallel mechanisms with canonical RA.

Immunogenetic Associations
RA is associated with a specific group of HLA-DRB1 alleles
termed the “shared epitope” alleles, so named due to the presence
of a common amino acid motif (QKRAA) in the peptide binding
groove of the encoded protein (61). The HLA-DRB1 gene
encodes the HLA-DRb chain of the MHC class II molecule,
HLA-DR, which serve as scaffolds for antigen presenting cells to
display exogenously derived peptide antigens to CD4+ T helper
Frontiers in Oncology | www.frontiersin.org 592
cells. The HLA-DRB1 locus is highly polymorphic in humans
and confers the highest genetic risk for RA development (62).
While the risk for RA was initially attributed to HLA-DRB1*04
allelic variants (63), it was later appreciated that a larger group of
alleles encoding for the “shared epitope” are collectively
associated with RA (61). The most common RA-associated
shared epitope alleles include HLA-DRB1*01:01, 01:02, 04:01,
04:04, 04:05, 10:01, and 14:02 (64).

Patients with concurrent T-LGL leukemia and RA are also
enriched in HLA-DRB1*04 alleles associated with RA (65, 66).
One study showed that 9/10 patients (90%) with T-LGL
leukemia and RA expressed HLA-DRB1*04, whereas only 4/12
(33%) of patients with T-LGL leukemia alone expressed HLA-
DRB1*04 (66). Two important caveats of these studies are that
only HLA-DRB1*04 was evaluated, not other shared epitope
alleles, and that individual allelic variants of HLA-DRB1*04 were
not considered. This is important since some HLA-DRB1*04
variants are associated with RA (i.e. HLA-DRB1*04:01, 04:04,
and 04:05), while others have been found to be protective against
RA development and severity (i.e. HLA-DRB1*04:02). Although
additional studies are needed to precisely compare the
immunogenetic similarities between T-LGL leukemia and RA,
the enrichment of RA-associated HLA-DRB1*04 alleles in
patients with T-LGL leukemia who develop RA suggests the
presence of a shared immunogenetic scaffold.

Antigen Specificity
Despite the observed clonal expansion and antigen-experienced
phenotype, the antigen-specificity of the clonally expanded
TEMRA cells in T-LGL leukemia and canonical RA remains
largely unknown. One study observed close contact between LGL
cells and dendritic cells (DCs) in bone marrow biopsies from
patients with LGL leukemia (67). In ex vivo experiments, LGLs
could be stimulated to proliferate when cultured with autologous
bone marrow-derived, but not peripheral blood-derived, DCs,
suggesting that these cells are actively responding to an antigen
present in the bone marrow microenvironment. More recently,
seroreactivity to human T-cell leukemia virus (HTLV-1/2) and
human immunodeficiency virus (HIV-1) retroviral epitopes was
identified in a subset of LGL leukemia as well as the clinically
normal family members of reactive patients (68). There was no
evidence of retroviral infection in reactive patients. While this
viral seroreactivity has been identified in a subset of LGL
leukemia, no unifying antigenic driver has been identified, and
this represents a key knowledge gap in the disease.

In RA, one study has shown that RA patients have a
population of CTLs that are autoreactive against epitopes from
apoptotic cells that are cross-presented by dendritic cells, termed
“apoptotic epitopes.” These epitopes include those from
vimentin and actin (69). This is interesting given that
citrullinated vimentin and actin are both known targets of
anti-citrullinated protein antibodies (ACPAs) in patients with
RA (70, 71). In RA patients that do not respond to anti-TNF
therapy, these CTLs display a TEMRA phenotype and are able to
kill Tregs in vitro after stimulation with apoptotic epitopes, via a
NKG2D-dependent mechanism. In addition, immunofluorescence
imaging of the synovium of these patients has shown that CTLs
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interact with Tregs, some of which express cleaved caspase-3,
suggesting that these CTLs can kill Tregs in vivo (72). Much is
still unknown about the epitopes recognized by CTLs in T-LGL
leukemia and canonical RA. The definition of the target cells and
antigens in these diseases is critical for understanding
disease pathogenesis.

Serologic Profile
A hallmark feature of canonical RA is the formation of high titer
autoantibodies targeting a defined set of self-proteins, making
them powerful diagnostic biomarkers (73). There are two main
autoantibodies that are analyzed clinically: 1) autoantibodies
recognizing the Fc-portion of IgG, termed rheumatoid factor
(RF); and 2) autoantibodies targeting proteins containing the
post translational modification citrulline, termed anti-
citrullinated protein antibodies (ACPAs). Each antibody
specificity is present in approximately 70% of patients with RA
and can co-occur in the same patient as well as exist separately
(74). While both RF and ACPAs have high sensitivity for a
diagnosis of RA, ACPAs are more specific, suggesting
dysregulated protein citrullination and a breach of tolerance to
these antigens as key processes in RA. ACPAs are a collection of
antibodies targeting a diverse set of proteins in which arginine
residues have been post-translationally deiminated by the
peptidylarginine deiminase (PAD) enzymes, generating the
non-classical amino acid citrulline (75). These antibodies are
detected clinically using synthetic cyclic-citrullinated peptides
(CCP). In addition, the development of ACPAs is associated with
HLA-DRB1 shared epitope alleles (76), implicating this common
genetic scaffold in the development of immune responses to
citrullinated proteins.

Interestingly, RA-associated autoantibodies are also detected
at high levels in individuals with T-LGL leukemia. In a study of
27 patients with T-LGL, 15 (55.6%) were positive for RF, four of
whom did not have a diagnosis of RA (77). In a study of 56 T-
LGL leukemia and RA cases, 82% were RF positive and 88% were
positive for anti-CCP antibodies (28). In a small study
comparing ACPA positivity in T-LGL leukemia patients with
and without RA, 95% (18/19) of T-LGL leukemia patients with
RA had ACPAs, compared to none (0/15) of the patients without
RA (78). Importantly, while the data suggest that seropositivity
for classic RA autoantibodies may be higher in T-LGL leukemia
patients with RA compared to the general RA population, further
head-to-head studies are needed to define the serologic overlap
between the two disease entities. Together, these data highlight
the serological similarity between patients with RA in the
presence and absence of T-LGL leukemia, and support the
hypothesis that dysregulated protein citrullination is a key
pathogenic process both in RA and T-LGL leukemia/RA.

Treatment
Most patients with LGL leukemia eventually need treatment
because of severe or symptomatic neutropenia, anemia, or
associated autoimmune conditions. Because LGL leukemia is
such a rare disease, most clinical evidence for drug selection is
derived from retrospective studies that indicate the efficacy of
three main immunosuppressive treatments: methotrexate
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(MTX), cyclophosphamide, and cyclosporine A (27).
Interestingly, these therapies have significant parallels with
treatments for canonical RA. MTX is a first-line therapy for
RA, and oral cyclophosphamide and cyclosporine A are also
useful to control RA (79, 80), although the use of
cyclophosphamide is limited because of toxicity and
cyclosporine A is reserved for refractory RA. Therefore, LGL
leukemia with or without RA is usually treated as a single entity
without the need for using additional therapies to treat the
concomitant RA, unless joint symptoms persist. Importantly,
considering that LGL leukemia is the potential driver of RA in
this group of patients, in principle, any treatment controlling the
leukemia should be effective in controlling RA.

Similarly, therapies introduced to treat the RA in patients
with LGL leukemia have shown benefit in improving
hematological parameters associated with the leukemia,
including cytopenias and LGL expansion. In particular,
rituximab, a monoclonal antibody therapy targeting CD20, has
been shown to induce a remarkable 100% hematological
response rate (either complete or partial leukemia remission)
in small case series and case reports of refractory LGL leukemia
with RA (81–84), and in one case of refractory LGL leukemia
without RA (85). The JAK3 inhibitor tofacitinib has also been
shown to induce hematological improvement in some patients
with refractory LGL leukemia and RA (86). The finding that
similar therapies are useful in treating both canonical RA and
LGL leukemia supports the notion that these diseases share
common pathogenic pathways.
Interrelationship Amongst T-LGL
Leukemia, RA and Felty Syndrome
Felty Syndrome (FS) is a rare disorder occurring in 1-3% of RA
patients and is defined by the presence of splenomegaly and
neutropenia (87). Given its symptomatic overlap with LGL
leukemia, there is considerable debate about whether FS and
LGL leukemia are distinct or related entities. FS has long been
associated with LGL leukemia (88, 89), and LGL leukemia may
co-occur in as high as 40% of FS patients (18). Past reports have
also observed a high prevalence of HLA-DRB1*04 alleles in both
diseases (86.7% in FS; 82.8% in LGL leukemia/RA patients;
31.4% in LGL leukemia patients, which is similar to control
population rates) (66) as well as response to methotrexate
therapy in both diseases (90). Moreover, FS, LGL leukemia and
RA share elevated levels of the cytokines IL-6, HGF, CDCP1 and
CXCL10, and the latter correlates with more severe disease
activity in RA (91, 92).

Recent studies have applied advanced molecular analyses to
further define the relationship between the two diseases. A 2018
analysis of 14 FS patients found that 43% had STAT3 mutations
in the SH2 domain as detected by deep amplicon sequencing.
Regardless of mutational status, a majority of bone marrow
samples exhibited elevated phospho-STAT3 levels. Many of
these patients had a high percentage of lymphocytes, but this
did not necessarily equate to overall lymphocytosis. On average,
these FS patients had smaller clone sizes than the average T-LGL
leukemia patient (91). In 2021, Gorodetskiy et al. stratified FS
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patients by presence or absence of clonal T cell expansion,
classifying those patients with expansions as LGL leukemia/RA
(n=56) and the remainder as FS alone (n=25). Interestingly, in
contrast to patients with FS, LGL leukemia/RA patients exhibited
increased LGL counts >2 x 10e9/L (21% vs. 0% in FS) and STAT3
mutations (39% vs. 0% in FS) (28). This STAT3 mutation
prevalence in the LGL leukemia/RA group is similar to the
frequency in previously published studies in LGL leukemia
(9, 93). These data suggest that the extent of clonal T-cell
expansion may distinguish LGL leukemia/RA from FS. It
remains to be determined if FS patients classified in this
manner will later acquire somatic activating mutation in
STAT3 and/or progress to LGL leukemia/RA. LGL leukemia/
RA and FS both exhibited CD3+CD8+ T-cells with CD57, CD16
and CD5-/dim expression (28). Notably, T-cell clonality and
STAT3 mutations were detected more frequently in spleen
samples than peripheral blood or bone marrow from ten
atypical LGL leukemia/RA patients with lymphopenia, severe
neutropenia, and marked splenomegaly, emphasizing the
potential for LGL leukemia misdiagnosis as FS (94).

Further studies are needed to refine the diagnostic criteria to
distinguish between LGL leukemia and FS, if they are indeed
distinct diseases. However, substantial challenges remain to the
routine application of sensitive molecular methods to
uncommon specimens such as bone marrow and spleen
material. Increased utilization of T-cell clonality and STAT3
mutational profiling may lead to increased diagnosis of LGL
leukemia within RA and FS patient populations, yet these events
are likely detectable in all three diseases with ultrasensitive
detection methods.

In summary, canonical RA and the subset of patients with
LGL leukemia and RA exhibit an abundance of shared and
overlapping demographic, immunologic, serologic, and genetic
features. These parallels are unlikely to be fortuitous but evoke a
common mechanism for RA development. The following section
provides some considerations to explain the connection between
these two diseases.
PROPOSED MECHANISMS FOR THE
RELATIONSHIP BETWEEN T-LGL
LEUKEMIA AND RA

Different models have been proposed for the co-occurrence of T-
LGL leukemia and RA. Since RA is generally documented several
years before LGL leukemia is diagnosed, it has been questioned
whether T-LGL leukemia is a consequence of long-standing RA,
whether the leukemia develops as a consequence of RA treatment
(38), or whether the clonal expansion of pathogenic CTLs is
indeed the driver of RA in these patients. Evidence for these three
options will be discussed in detail below, and it is important to
note that there may be no single model that can explain all cases
of RA occurring in the setting of T-LGL leukemia.
Understanding the mechanistic relationship between RA and
T-LGL leukemia is critical for understanding disease
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pathogenesis and identifying effective preventive and treatment
strategies for both disorders.

LGL Leukemia as a Consequence
of RA
Clonal CD8+ T cell expansions have been observed in RA, which
is not surprising given the chronic autoantigen driven nature of
this disease. One possibility for the co-occurrence of RA and T-
LGL leukemia is that the clonal expansion of CD8+ T cells in RA
may result in the acquisition of STAT3 and other somatic
mutations, T cell transformation, and the development of
leukemia. While more frequent clonal CD8+ T cell expansions
have been observed in RA compared to healthy controls (45% vs.
25%, respectively), the same study found that the two groups had
a similar degree of clonality, and some individuals in both the RA
and healthy control groups exhibited expansions comprising
~40% of their CD8+ T cell pool (37). This suggests that
although CD8+ T cell expansions are common in RA, they
alone cannot explain the concomitant development of RA and
LGL leukemia. In addition, T-LGL leukemia can occur in the
absence of RA, demonstrating that RA is not a prerequisite for
the development of leukemic T-LGLs. Thus, while it may be
tempting to speculate that RA is the driver of T-LGL leukemia
based on the frequent diagnosis of RA before T-LGL leukemia, it
is equally likely that occult low frequency LGL clones initiate the
breach of immune tolerance to self-antigens prior to the
development of neutropenia and clinical discovery of T-LGL
leukemia (see “Pathogenic CTLs as the driver of RA” section).

LGL Leukemia as a Consequence of RA
Treatment
Another possible explanation for the co-occurrence of LGL
leukemia and RA is that LGL leukemia develops as a result of
the immunomodulating therapies used to treat RA, namely
treatment with tumor necrosis factor (TNF) inhibitors. In one
study, clonal expansions of LGL cells expressing CD3, CD56, and
gd TCRs were observed in 3.6% (19/529) of RA patients and were
found to positively correlate with exposure time to TNF blocking
agents (38). However, it is important to note that this
phenomenon is not unique to RA. Similar clonal expansions of
LGL cells with gd TCRs have been observed in association with
TNF inhibitor use in patients with ankylosing spondylitis (SpA)
and psoriatic arthritis (PsA) (95). In addition, a relationship
between anti-TNF use for the treatment of irritable bowel disease
and the development of hepatosplenic T-cell lymphoma
(HSTCL) (96), has been suggested by a literature review study
that found 11% (22/200) of HSTCL cases reported in the
literature were associated with IBD treatment (97). It remains
to be determined if such LGL cell clonal expansions are
associated with progression to LGL leukemia in any of the
individuals in whom they were detected, and whether
treatment may drive or expand an existing pathogenic LGL
pool present in these patients. Regardless of the mechanism for
their development, the lack of specificity of these clonally
expanded LGL cells for RA or LGL leukemia suggests that
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anti-TNF inhibitor therapy is not likely to be the mechanistic
link between RA and T-LGL leukemia.

LGL Leukemia as the Driver of RA
While not all factors contributing to RA development are known,
accumulating evidence suggests a central role for CTLs in RA
pathogenesis, both as effectors perpetuating tissue damage and as
generators of RA autoantigens (Figure 2). This latter role may be
the key to linking T-LGL leukemia to RA development. We
postulate that, in people with T-LGL leukemia and concomitant
RA, the resulting autoimmunity represents a paraneoplastic
syndrome caused by the expanded T-LGL clones. Moreover,
parallel CTL-driven mechanisms may contribute to the
development of RA in people without T-LGL leukemia.

This hypothesis is supported by the finding that a subset of
RA patients have evidence of killer cell pathway activation in
their joints in association with a form of lytic neutrophil cell
death, termed leukotoxic hypercitrullination (LTH) (98, 99).
LTH has been found to be unique among cell death and
activation stimuli tested to date in its ability to hyperactivate
the intracellular calcium-dependent peptidyl arginine deiminase
(PAD) enzymes, leading to widespread protein citrullination in a
pattern similar to that found in cells of the RA joint. LTH can be
triggered by both host and pathogen-derived pore forming
proteins, which allow the influx of extracellular calcium into
the cell and hyperactivation of the intracellular PAD enzymes
(98–100). In the subset of RA patients with LTH-associated
hypercitrullination in the joint, the pore forming protein
perforin was identified as the causative factor in the ability of
killer cells to induce hypercitrullination in target neutrophils
(98). The physiologic role of perforin is to form pores in the
membrane of target cells to facilitate the delivery of granzymes,
which subsequently cleave intracellular proteins, including
caspases, to induce apoptosis via the extrinsic pathway. The
observation that hypercitrullination was found in synovial fluid
cells from a subset of patients with activation of the extrinsic
apoptosis pathway, implicates CTL killing of neutrophils in the
generation of citrullinated autoantigens in a subset of
individuals (98).

A recent study on target cells engineered to express PAD2 or
PAD4, two key citrullinating enzymes strongly implicated in RA
pathogenesis and highly expressed by neutrophils, demonstrated
a combinatorial effect of perforin and granzymes on the creation
of autoantigens recognized by sera from RA patients (101). It has
been hypothesized that a potential consequence of granzyme-
mediated cleavage of self-proteins during the induction of target
cell apoptosis is the generation of neoepitopes that may lead to
the breach of immunologic tolerance and development of
autoimmunity (102). The serine protease granzyme B has been
most heavily studied in this regard after it was shown that the
majority of autoantigens targeted across the spectrum of
systemic autoimmune diseases are substrates for this protease.
It was observed that a different pattern of protein fragments was
generated when these antigens were cleaved by granzyme B
compared to the effector caspase, caspase 8, which has a
similar preference for cleaving substrates after aspartic acid
residues (103). Together, these studies suggest that CTLs have
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the potential to modify the autoantigen pool in target cells, both
by inducing hypercitrullination in PAD-expressing cells and by
granzyme B-mediated cleavage of target cell proteins.

A review of granzyme B-cleaved autoantigens in systemic
autoimmunity further revealed that granzyme B cleavage sites
and autoreactive B and/or T cell epitopes tend to co-cluster
within proteins, suggesting a causal relationship (104). This was
demonstrated experimentally for PAD4, which is both a
citrullinating enzyme and a target autoantigen in a subset of
RA patients with the most destructive joint disease (105–108). In
this study, cleavage of PAD4 by granzyme B was found to induce
discrete changes in the PAD4 protein structure in regions
adjacent to and remote from the granzyme B cleavage site
(109). These structural changes were associated with increased
presentation of peptide epitopes derived from these regions by an
RA-associated HLA-DR allele. Furthermore, the granzyme B-
enhanced epitopes were able to stimulate CD4+ T cell responses
in patients with RA, suggesting that this process may occur in
vivo. The findings that citrullination and granzyme B cleavage
have the capacity to modify the repertoire of self-proteins present
in target cells killed by CTLs coupled with the longstanding
observation that RA is present in a subset of patients with T-LGL
leukemia, supports the model that T-LGLs are drivers of RA
development in individuals with concurrent leukemia and RA.
UNANSWERED QUESTIONS AND FUTURE
RESEARCH DIRECTIONS

As detailed above, there are numerous clinical, genetic, and
therapeutic overlaps between LGL leukemia and RA
(Figure 2). It remains to be determined if the clonal CTL
expansions detected in a subset of RA patients represent the
early stages of a continuum between RA and LGL leukemia. If so,
they may represent a biomarker of leukemic risk that warrants
increased testing and monitoring. In addition, the cause of the
classically observed neutropenia that is prominent in T-LGL
leukemia remains unknown, but one hypothesis is the active
killing of neutrophils by pathogenic CTL clones. It will be
important to determine if direct CTL killing of neutrophils is a
uniting feature of both disorders, as it could be responsible for
the neutropenia observed in LGL leukemia and be a potent
inducer of citrullinated and granzyme B-cleaved autoantigens in
both diseases. Future study on the mechanistic parallels between
T-LGL leukemia and RA will be critical to elucidate causal
pathways and target antigens, in order to develop novel
mechanism-guided treatments for these related disorders.
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A complex relationship exists between rheumatic diseases and cancer. This delicate
balance between chronic inflammation and malignant cell transformation in hematologic
neoplasms has been observed, but is not well defined. Large Granular Lymphocyte (LGL)
leukemia is at the intersection of a clonal lymphoproliferative disease, chronic
inflammation, and autoimmunity. The association between rheumatoid arthritis (RA) and
the spectrum of Felty’s Syndrome is well-known. Other rheumatic disorders have been
reported including systemic lupus erythematosus (SLE), Sjogren’s Syndrome (SS),
vasculitis, Behcet’s Disease (BD) and systemic sclerosis. The association between T-
LGLL and rheumatic disease pathogenesis has been hypothesized, but has not yet been
fully understood. Components of a shared pathogenesis includes chronic antigen
stimulation, JAK-STAT pathway activation and overlap of various cytokines. We will
summarize current knowledge on the molecular understanding between T-LGLL and
rheumatic disease. There are many potential areas of research to help meet this need and
lead to development of targeted therapeutic options.

Keywords: LGL, rheumatology, pathogenesis, T-LGLL, SLE (or Lupus), Behcet disease, Scleroderma (or systemic
sclerosis), vasculitic, Sjogren's syndrome
INTRODUCTION

A complex relationship exists between rheumatic diseases and cancer. This delicate balance between
chronic inflammation and malignant cell transformation in hematologic neoplasms has been
observed, but is not well defined. Large Granular Lymphocytic (LGL) leukemia is at the intersection
of clonal lymphoproliferative disease, chronic inflammation, and autoimmunity (1). LGL leukemia
is a rare type of mature T cell and NK cell neoplasm that was first characterized by McKenna et al. in
1977 (2). It was given its current name following discovery of lymphocyte clonality by Loughran
et al. in 1985 (3). In 1989, the French–American–British cooperative group identified LGLL as a
distinct entity among T cell leukemias (4). Based on theWHO classification, this clonal proliferation
can be divided into three distinct conditions: T-LGLL, chronic lymphoproliferative disorder of NK-
cells (CLPD-NK or NK-LGLL), and aggressive NK-cell leukemia, of which T-LGLL is the most
common accounting for 85% of cases (5). T-LGLL is frequently described in patients with
June 2022 | Volume 12 | Article 8544991100
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rheumatologic disease (6). 15-40% of LGL leukemia patients
have concomitant rheumatoid arthritis (RA) with Felty’s
Syndrome representing the most well-known association (7).

Other concomitant rheumatic disorders with LGLL have been
reported including systemic lupus erythematosus (SLE),
Sjogren’s Syndrome (SS), vasculitis, Behcet’s Disease (BD) and
systemic sclerosis (SSc), but the true frequency is difficult to
assess due to the rarity of T-LGLL. There is a link in the
pathogenesis between T-LGLL and rheumatic disease though
the exact pathobiology underlying this has yet to be fully
elucidated. Further, concomitant T-LGLL with rheumatic
disease is likely underreported, as flow cytometry and testing
for the T-cell receptor (TCR) are not currently standard of care
for patients with rheumatic diseases. Currently, it is thought that
chronic T cell activation in the setting of an antigen trigger,
dysregulation of apoptosis and hyperactivation of Janus kinase
(JAK) signal transducer activator of transcription (STAT)
pathway as well as other molecular survival pathways (1, 8)
drives the development of T-LGLL. Typical disease features of T-
LGLL include splenomegaly, and cytopenias, most commonly
neutropenia with increased susceptibility to infection, and
anemia, often with transfusion dependence. Large granular
lymphocytes bear CD3+CD8+CD57+ surface phenotypes on T
cells with clonal rearrangement of TCR genes (9). These LGLs
have antibody-dependent and natural killer cell-mediated
cytotoxicity and make up 5-10% of total lymphocytes in
healthy patients (10). Currently, treatment is based on
immunosuppressive therapies, which may produce an
insufficient long-term response, and make targeted therapies
an ideal next step for treatment (11). Due to the rarity of
T-LGLL, a significant knowledge gap exists regarding the
pathogenesis and management options of T-LGLL in the
setting of rheumatic disease.

The pathogenesis of LGL leukemia is thought to be due to an
unknown chronic antigen trigger that leads to increased
activation of the JAK-STAT pathway and emergence of a
clonal population (1). Hyperactivation of the JAK-STAT
pathway can be due to STAT3 mutations that are present in
30-40% of LGL cases and mainly in patients affected by CD8+
T-LGLL subtype (12). STAT3 mutations have been reported in
patients with T-LGLL and RA (13). In a study by Rajala et al,
T-LGLL patients with one STAT3 mutation (23%) and multiple
STAT3 mutations (43%) had higher incidence of RA compared
to those without mutations (6%) (14). The JAK-STAT pathway is
known to play a role in the pathogenesis of other rheumatic
diseases as well as provide a target for new therapies. The
development of a monoclonal cytotoxic lymphocyte population
is the hallmark of T-LGLL and leads to production of
inflammatory cytokines resulting in disease manifestations
such as cytopenias (1). Some patients with LGL leukemia can
present with clinical features of rheumatic disease before the
diagnosis of leukemia. It is unclear if this manifestation is related
to the autoimmune disease itself or occurring as a secondary
lymphoproliferative process. This review will discuss the overlap
of pathogenic mechanisms and treatment between T-LGLL and
rheumatic diseases other than RA.
Frontiers in Oncology | www.frontiersin.org 2101
CHRONIC ANTIGENIC STIMULATION

LGL leukemia cells represent a population of cytotoxic effector
memory T cells, suggesting chronic antigen stimulation (15). The
role of Epstein Barr Virus (EBV), Human T-lymphotropic Virus
(HTLV-1) and Hepatitis C Virus (HCV) have been suggested (1,
16–18). As in T-LGLL, various rheumatic diseases are thought to
be the result of immune activation due to chronic antigen
stimulation. Studies link EBV infection with autoimmune
disease and some lymphoid malignancies (19). EBV has been
studied extensively in RA and SLE. In SLE, the hypothesis of
defective control of EBV infection in a genetically predisposed
individual leads to EBV-reactive T cells, autoantibody production
and resultant tissue damage (19). EBV has been found in salivary
glands of patients with Sjogren’s Syndrome and EBV infected
plasma cells have been shown to produce anti-Ro52 and anti-La
antibodies (20). Other viral syndromes including HTLV-1, human
immunodeficiency virus (HIV) and HCV share clinical features of
Sjogrens (21). Currently, there is no conclusive evidence LGLs are
activated by HCV, but the hypothesis of chronic self-antigen
stimulation is supported by immunohistochemical studies
showing LGL clusters in contact with dendritic cells in bone
marrow (22). Chronic antigen stimulation from HCV has been
extensively studied in the setting of cryoglobulinemia. The
hepatitis C E2 envelope glycoprotein interacts with CD81
expressed on lymphocytes (23) which has been shown to result
in increased T cell proliferation (24) and chronic B cell stimulation
resulting in clones that produce monoclonal IgM (23), underlying
the pathogenesis of cryoglobulinemia. In type II mixed
cryoglobulinemia, the evolution from polyclonal to oligoclonal B
cell expansion due to chronic antigen stimulation is considered to
be a transition between autoimmunity and neoplasia (25). It is
possible similar pathways are involved in the development of
lymphoma and cryoglobulinemia in Sjogren’s Syndrome (25).
LGL leukemia was associated with indolent B cell lymphoma in
two patients with HCV who were successfully treated with
antiviral therapy. In one case, LGL expansion correlated with
viral replication and anti-viral treatment controlled LGL leukemia
(26). In another example, a case of T-LGLL in a patient with
concomitant hepatitis B, C and HIV was successfully treated with
anti-viral therapy (27). In epidemiologic studies, HTLV-1 has
increased incidence in patients with Sjogren’s Syndrome and
HTLV-1 transgenic mice have shown rheumatic disease
manifestations (28). The role of HTLV-1 in LGL remains
unclear, but initial studies revealed HTLV seroreactivity in some
LGL leukemia patients (29). In other diseases such as vasculitis,
myositis and scleroderma the role of potential viral trigger is less
clear and other antigenic stimulation may be result of bacterial,
environmental or other triggers.
INHERITED SUSCEPTIBILITY/
HLA PREDISPOSITION

In rheumat ic d iseases , the human class I I major
histocompatibility complex (MHC) human leukocyte antigen
June 2022 | Volume 12 | Article 854499
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(HLA) plays an important role in predisposing an individual to
develop an autoimmune response. Most notable is the HLA-DR
region in RA, SS, SLE and vasculitis including Giant Cell Arteritis
(GCA) and anti-neutrophil cytoplasmic antibody (ANCA)
associated vasculitis (AAV) (30–32). In LGLL, the HLA-DR4
marker has been shown to be prevalent in patients with Felty’s/
RA, but the frequency in patients with LGL leukemia that is not
associated with RA is unknown (33, 34). In a small series of
patients with T-LGLL, HLA-DR4 was observed in 32% of
patients, in those with associated RA this was 90% (34). In
another series, HLA-DR4 was highly predictive of responsiveness
to cyclosporine in patients with T-LGLL supporting an
immunologic mechanism underlying cytopenias (35).
ACTIVATION OF THE
JAK-STAT PATHWAY

In T-LGLL and rheumatic disease mutations of the JAK-STAT
pathway play a vital role (Image 1). Gain of function mutations
have been associated with autoimmunity as well as hematologic
malignancies (36). In T-LGLL, mutation in STAT3 gene is
described most commonly leading to enhancement in anti-
apoptotic pathways (37). Inhibition of the JAK pathway has
been a therapeutic target for a variety of rheumatic diseases. JAK
inhibitors (JAKi) have been approved for use in RA, ankylosing
spondylitis (AS) and psoriatic arthritis (PsA), but studies are still
ongoing for use in other rheumatic diseases such as SLE,
vasculitis and SS. In T-LGLL, the JAK inhibitors ruxolitinib
and tofacitinib have been applied to patients with refractory
T-LGLL and related RA with some success. In a small cohort of
patients receiving tofacitinib, hematologic response was observed
in 67% of patients and 89% had improvement in RA symptoms
(38). This has not been evaluated in cases of T-LGLL and other
associated rheumatic diseases.

Systemic Lupus Erythematosus
The role of the JAK-STAT pathway in SLE has extensively been
studied with ongoing randomized controlled trials evaluating use
of JAK inhibition in the treatment of SLE (39–41).
(NCT03616912), (NCT03616964), (NCT03252587). It is well
known the interferon (IFN) signature plays a key role in SLE
pathogenesis and activation of the IFN-receptor leads to signal
transduction through the JAK-STAT pathway (42). Genes
including STAT4 have been associated with high levels of IFN-
alpha. This may predispose patients to SLE as overexpression of
IFN-alpha genes has been found to be elevated in serum of patients
with lupus (43–45). The proposed effect of STAT4 inhibition is
immune suppression and inhibition of Th1 cell differentiation
(42). T-LGLL is more commonly associated with STAT3 gain of
function mutation which is associated with early-onset
lymphoproliferation as well as autoimmunity (46). In lupus, the
role of STAT3 has been identified in the pathogenesis of lupus
nephritis. In a lupus murine model, STAT3 knockout mice had a
markedly reduced renal inflammatory infiltrate, as well as less
pronounced renal IgG and C3 deposition, compared to controls
(47). There has also been association of SLE development with
Frontiers in Oncology | www.frontiersin.org 3102
polymorphisms in TYK2, another member of the JAK family,
identified in a large Swedish and Finnish population (48). While
the relationship between T-LGLL and SLE remains unclear the
JAK-STAT pathway has been shown to play a role in the
pathogenesis of both disease entities and may represent a
potential treatment target.

Vasculitis
The JAK-STAT pathway has also been evaluated in various
vasculidites, and has been reported in patients with T-LGLL.
In a series of eleven patients with vasculitis, 91% of patients had
small vessel involvement presenting with purpura and histologic
evidence of leukocytoclastic vasculitis. Cryoglobulinemic
vasculitis was most frequently observed followed by ANCA
negative microscopic polyangiitis and one case of GCA. Biopsy
of the temporal artery and renal biopsy showed no LGL
infiltration (49). In this series, most cases of T-LGLL were
diagnosed simultaneously with vasculitis. Thus, screening for
LGL in patients with new diagnosis of vasculitis should
be considered.

In a study of patients with Behcets Disease (BD), total STAT3
expression was significantly higher compared to controls,
suggesting this signaling pathway is also activated (50). In a
Han Chinese population with BD, a significantly increased
frequency of the STAT3 polymorphism was also observed
suggesting susceptibility to BD (51). In LGLL patients, STAT3
mutations have been associated with gene alterations on
TNFAIP3 which is a gene responsible for encoding an NF-kB
s igna l ing inhib i tor ca l l ed A20 (52 , 53) . Notably ,
haploinsufficiency of A20 protein can also result in a BD
phenotype (54). Atas et al. hypothesized that there may be a
pathogenetic association between BD and T-LGLL, due to the
fact that upregulation of IL-18 and STAT3 pathways, along with
a reduction in A20 protein result in reduced NF-kB inhibition
(55). This overlap suggests IL-18, STAT3 and TNFAIP3 may
play important roles in the pathogenesis of both BD and
T-LGLL.

In large and medium vessel vasculidites, cytokine signaling
dependent on JAK1 and JAK3 has been shown to be critically
important in chronic inflammation (56, 57). In GCA and
Takayasu Arteritis (TAK), vessel wall inflammation is induced
by Th1 and Th17 cells (56). The cytokines released by these cells
are known to activate the JAK-STAT pathway (36). In mouse
models, temporal artery biopsy samples have shown
upregulation of STAT1 and STAT2 genes (57, 58). A cohort
study of patients with TAK revealed increased expression of
various genes related to the JAK-STAT pathway (59). There are
case reports of use of successful JAK inhibition in treatment of
refractory TAK (60, 61).

The relationship of T-LGLL and ANCA-Associated Vasculitis
(AAV) is unknown. In a cohort study of patients with AAV and
nephrotic syndrome, molecular profiling of tissue samples
revealed shared STAT1 activation identifying these two
histopathologically different diseases have a common molecular
pathway (62). Currently no clear association with STAT3
mutations has been described in AAV. There are many
unknowns for other types of vasculitis including polyarteritis
June 2022 | Volume 12 | Article 854499
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nodosa (PAN) and IgA vasculitis owing to the rarity of these
diseases. It is possible that advances in molecular profiling
technology will increase understanding of these disease
processes and identify future treatment targets.

Sjogren’s Syndrome
In Sjogren’s Syndrome (SS), studies of JAK-STAT profiling are
limited. STAT4 polymorphisms have been identified as a genetic
risk factor for SS development (63). In a study of monocytes from
patients with primary SS, increased expression of JAK3 and
STAT4 was detected by polymerase chain reaction (PCR)
compared to controls (64). In a cohort of patients with SS,
stimulation of peripheral blood monocytes by IL-6 revealed
increased activation of STAT3 (65). A phenotype of LGL that
has been described in association with SS represents the TemRA

subset, which can be seen in the setting of chronic inflammation,
but is classically associated with low cell proliferation and high
cell death rate compared to LGLs which have prolonged survival
due to STAT pathway activation (66). Overall, these findings
highlight overlap between chronic inflammation and
autoimmunity as well as the difficulty associated with
determining which process is the primary etiology. Further
studies are needed to better assess the role of the JAK-STAT
pathway in development of concomitant T-LGLL and SS. There
are ongoing clinical trials evaluating the use of JAK pathway
inhibition for treatment of sicca symptoms. (NCT04496960,
NCT05087589, NCT04916756, NCT03100942)

Systemic Sclerosis
Reports of T-LGLL and systemic sclerosis (SSc) are exceedingly
rare. In a small cohort of patients with T-LGLL and autoimmune
diseases, one patient with a diagnosis of systemic sclerosis was
described (67). Cytokine analysis on T-LGLL cells was
performed and showed increased levels of IL-6, IL-8, IL-10,
soluble IL-12 and TNF alpha suggesting role of cytokine
release related to the immune phenomena observed in LGLL
(67). The JAK-STAT pathway has been shown to play a crucial
role in differentiation of autoreactive cells and the extracellular
matrix remodeling that occurs in SSc (68). IL-6 is thought to
exert it profibrotic effect through JAK2/STAT3 signaling (69).
Skin biopsies from SSc patients have also shown abnormal IL6/
JAK/STAT3 and tofacitinib gene signatures (70). The role of JAK
inhibition is also ongoing in clinical trials for skin and lung
manifestations of SSc (NCT03274076, NCT04206644).
CYTOKINES

Many cytokines involved in the pathogenesis of rheumatic
disease and hematologic malignancies utilize the JAK-STAT
pathway to transduce intracellular signals. Increased levels of
cytokines are known to contribute to disease activity. Many
different cytokines have been evaluated in the pathogenesis of
T-LGLL and autoimmune disease. Leukemic LGL survival is
promoted by elevated levels of IL-6 resulting in activation of
STAT3 (12). Other cytokines including IL-2, IL-12, IL-15, IL-18,
Frontiers in Oncology | www.frontiersin.org 4103
EGF, IP-10, G-CSF have been identified (71, 72). IL-15 has been
shown to cause chromosomal instabili ty and DNA
hypermethylation acting as a key “activation switch” for
survival and expansion of LGLL in both humans and mice
(73). In rheumatologic disease, many cytokines use the Type 1
and 2 cytokine receptor family which has been implicated in
disease pathogenesis (74, 75). The PRECISE Systemic
Autoimmune Diseases (PRECISEADS) study identified a pro-
inflammatory cytokine network shared by four distinct
rheumatic diseases including SLE, SS, RA and SSc. Patients
were found to primarily have increases in CXCL10, IL-2, IL-6,
and tumor necrosis factor (TNF). The pro-inflammatory profile
was also characterized by an abnormal B cell distribution, a CD8
cytotoxic T cell signature, and more severe clinical features (76).
In vitro study suggested upregulation of this cytokine signature
associated with B cell enhancement of Th1 differentiation and
proliferation of activated naive T cells (76). While there is
overlap between certain cytokines involved in rheumatic
diseases as well as T-LGLL, whether these cytokine profiles
imply a causative role is still unknown. It may be inferred that
increased levels of these various cytokines support a cellular
immune mechanism in rheumatic diseases and an ongoing
expansion of T cells.
ROLE OF IL-15 IN T-LGLL AND
AUTOIMMUNE DISEASE

Interleukin-15 (IL-15) is a proinflammatory cytokine expressed
by a broad range of tissues and contributes to chronic
inflammation and autoimmunity (77). IL-15 has been
implicated in the pathogenesis of several autoimmune diseases
as well as LGLL. IL-15 is a member of the IL-2 family of
cytokines, which use receptor complexes containing the
common gamma-chain for signaling (77). IL-15 promotes
activation of T cells, NK-cells, neutrophils, macrophages, and
is critical to dendritic cell function (78). Importantly related to
development of autoimmune disease, IL-15 enhances activation
and maintenance of IL-17 producing T Cells (75). The role of IL-
15 in autoimmune disease comes extensively from studies of
rheumatoid arthritis. IL-15 has been evaluated in other
rheumatic diseases including SLE, SS, BD and SSc, but its exact
role remains obscure (See Table 1 and Supplement).

Clinical trials targeting IL-15 in rheumatic disease are scarce
and limited to RA. In a proof-of-concept study in rheumatoid
arthritis patients, the use of human IgG1 anti-IL-15 monoclonal
antibody (HuMaxIL15) showed suitable drug tolerability with no
significant effects on T lymphocyte subset and NK cell numbers.
By week eight, 63% of patients achieved an improvement of 20%
in both the number of tender and swollen joints (79). Following,
a phase II trial of the anti-IL 15 human monoclonal antibody,
AMG 714, for RA did not show efficacy (NCT00433875). AMG
714 has also been evaluated in other diseases with autoimmune
basis including psoriasis (NCT00443326) and celiac disease, but
failed to meet its primary endpoint (80).
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In T-LGLL, excess IL-15 is thought to play a part in the link
between inflammation and cancer. Initial clinical trials targeting
IL-15 had been unsuccessful (81, 82), but recent positive clinical
data from a phase 1/2 clinical study (NCT03239392) of BNZ-1, a
multi-cytokine inhibitor was presented at the 62nd American
Society of Hematology (ASH) Annual Meeting suggests that
IL-15 inhibition can induce clinical responses in patients with
T-LGLL, particularly those with transfusion dependence (83).
LINKING AUTOIMMUNITY AND CANCER:
IL-15 REGULATORY PATHWAYS

A common feature of CD8+ T cells and NK cells is their
dependence on IL-15 for homeostasis (84, 85). Zhou et al.
describe the deubiquitinase, Otub1 which was shown to be a key
regulator of IL-15R signaling. Otub1 deficiency was associated
with anti-cancer immunity and loss of self-tolerance (86). This
highlights the role of Otub1 as a potential novel checkpoint target
for cancer therapy. Other clinical trials using IL-15 in treatment of
cancer have shown increased activation of NK and CD8+ T cells,
but when administered as monotherapy have been ineffective (87).
This is thought to be due to the action of immunologic
checkpoints and there are ongoing trials evaluating the use of
IL-15 in combination with checkpoint inhibitors for patients with
metastatic solid cancers (NCT03388632). Combination therapy of
IL-15 with rituximab in a mouse model of lymphoma and
alemtuzumab in a model of adult T cell leukemia revealed that
IL-15 enhanced efficacy of both rituximab and alemtuzumab (88).
This led to development of the phase 1 trial of IL-15 combined
with alemtuzumab for patients with adult T cell leukemia
(NCT02689453) as well as ongoing trials in chronic lymphocytic
leukemia (NCT03759184, NCT03905135).
ROLE OF OTHER CYTOKINES IN T-LGLL
AND RHEUMATIC DISEASE

Systemic Lupus Erythematosus
SLE has been considered a dominant Th2 cytokine disease
though, increased levels of both Th1 and Th2 cytokines can be
seen (89). An association between IL-18, SLE and T-LGLL has
been proposed. IL-18 is a cofactor for Th1 cell development and
cytotoxic T cell induction (90). Ogata et al. describe a case of SLE
and T-LGLL with levels of IL-18 correlating with lupus
symptoms as well as the number of T-LGLs in serum
suggesting IL-18 may activate T-LGLL (91). In a study of 40
patients with SLE, plasma IL-18 and IL-12 concentrations were
significantly higher in SLE patients than in controls (92). In
mouse models, CD8+ cytotoxic T cells have been found to be
elevated in IL-18 transgenic mice and aberrant expression of IL-
18 resulted in the increased production of both Th1 and Th2
cytokines (90). The MRL/lpr mouse, used as a clinical model in
SLE, has been found to have higher serum levels of IL-18
compared to wild-type mice (93). In the same study, injections
Frontiers in Oncology | www.frontiersin.org 5104
of IL-18 lead to presentat ions of malar rash and
glomerulonephritis. This highlights the important role IL-18
plays in SLE and possibly the development of T-LGLL, but
also as a potential therapeutic target.

Sjogren’s Syndrome
Levels of different cytokines in association with T-LGLL and SS
have been evaluated in a series of 12 patients which revealed
significantly increased levels of soluble interleukin-2 receptor,
TNF-alpha, IL-6 and IL-8 compared with healthy controls (94).
This increase was common to LGL leukemia patients with or
without Sjogren’s syndrome.

Vasculitis
Cytokine profiles in vasculitis vary based on the specific
underlying diagnosis and the connection with T-LGLL is still
not clearly characterized. In large vessel vasculitis such as GCA,
key cytokines identified include IFN-gamma, IL-6, IL-12, IL-17,
IL-18 and IL-21 (56, 95) which promote Th1 and Th17 cell
differentiation (96). In patients with granulomatosis with
polyangiitis (GPA), monocytes have been shown to release
high levels of IL-12 leading to induction of Th1 cytokines
including TNF-alpha and IFN-gamma (97). In Behcet’s
Disease, most studies have shown evidence of a Th1
predominant response, but Th2 and Th17 involvement have
also been demonstrated (55). Levels of IL-2, IL-12, IL-18 and
IFN-g (Th1 proinflammatory cytokines) have been shown to be
increased in BD (98) and elevated levels of IL-18 have also been
linked with disease activity (99).

Systemic Sclerosis
Increased levels of IL-1, IL-2, IL-2R, IL-4, IL-8, IL-17, TNF-
alpha, interferon, and antibodies to IL-6 and IL-8 have been
found in sera of patients with SSc (100, 101). The role of IL-6 has
been highlighted as increased levels have been linked to more
severe skin and lung disease (102). The IL-6 inhibitor,
tocilizumab is approved for use in SSc related interstitial lung
disease. While a variety of cytokines are involved in
autoimmunity and malignancy the question of whether anti-
cytokine therapies may play a preventative role in T-LGLL is
unknown. Chronic stimulation by proinflammatory cytokines
including IL-6 is responsible for sustained LGL proliferation as
well as an important STAT3 activating factor (103). Studies have
revealed increased levels of IL-6 in plasma of patients with LGLL
compared to healthy controls (67, 104). IL-6 inhibitors are also
used as treatment for other rheumatic conditions including
GCA, RA and Castleman disease, but its role as use for
prevention or treatment of T-LGLL is lacking clinical data.
Based on the role of IL-6 in pathogenesis of LGLL, there has
been consideration to use of tocilizumab as salvage therapy in T-
LGLL (105). In addition to anti-cytokine therapies, similar
questions arise for the role of JAK-STAT inhibitors, as this
pathway plays a central role in LGLL pathogenesis. This class
of drugs is more commonly being used to treat inflammatory
arthritis, but due to lack of clinical data the role as preventative
therapy for T-LGLL is lacking and it is unknown if patients with
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inflammatory arthritis treated with these drugs are less likely to
develop LGLL.
ROLE OF SPHINGOLIPIDS IN T-LGLL AND
RHEUMATIC DISEASE

Sphingolipids have been shown to play a part in long term
survival of cytotoxic lymphocytes (106). Dysregulation of the
sphingolipid pathway in rheumatic diseases has rarely been
described. In SLE, a cohort study revealed clinical and renal
disease activity were associated with elevated levels of circulating
sphingolipids (107). In another study of patients with biopsy
proven lupus nephritis, serum levels of sphingolipids were higher
compared to controls (108). As dysregulation of pro-apoptotic
(ceramide, sphingosine) and pro-survival sphingolipids
(sphingosine-1-phosphate) has been shown to play a role in
T-LGLL (106, 109) it would be of interest to evaluate the value of
sphingolipids in patients with rheumatic disease.
TREATMENT:

JAK Inhibitors in the Management of
T-LGLL and Rheumatic Disease
The discovery of JAKs as targeted therapy led to improvements
in treating many rheumatic diseases including RA, polyarticular
juvenile idiopathic arthritis (JIA) and psoriatic arthritis. There
are currently three JAK inhibitors (JAKi) approved for use in
patients with rheumatic disease in the United States. Tofacitinib,
baracitinib and updacitinib are approved for use in active RA in
patients who have had inadequate response to methotrexate,
traditional disease modifying anti-rheumatic drugs (DMARDs)
and tumor necrosis factor inhibitors (TNFi). Tofacitinib is also
approved for use in polyarticular JIA, psoriatic arthritis and
ankylosing spondylitis. The pan-JAKi, Peficitinib is approved for
RA in Japan, South Korea, and Taiwan (110). Filgotinib, a Jak 1
inhibitor is approved for RA in Japan and Europe (111).

It can be speculated that due to improvements in earlier RA
diagnosis and initiation of treatment this may lead to an overall
decrease in clonal expansion and development of T-LGLL. Many
therapeutic options are available for RA, but their specific role in
driving clonal expansion is unknown. In a study of 529 patients
with RA, 19 (3.6%) patients exhibited T-LGL expansion. There
was a significant association with the T-LGL clone and duration
of TNF inhibitor use suggesting long term exposure may be
associated with increased clonal T-LGL cells in RA patients
(112). Similar results were demonstrated in a cross-sectional
analysis of patients with psoriatic arthritis and ankylosing
spondylitis (113). A variety of in vitro and murine studies have
shown mechanisms of potential benefit for use of JAK inhibition
in rheumatic diseases including SS, SLE, large vessel vasculitis,
dermatomyositis and SSc though overall data is limited. Most
clinical evidence comes from case reports however there are
ongoing randomized trials with a variety of JAKi for other
rheumatic disease indications.
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In Sjogren’s Syndrome, a phase II trial of filgotinib failed to
meet its primary endpoint (NCT03100942) and there are
ongoing trials evaluating the use of tofacitinib and baracitinib.
Notably in SLE, a phase 2 trial of baricitinib was successful in
patients with active skin and joint disease and phase 3 trials are
ongoing (41). Evidence for use of JAKi in vasculitis is scarce.
Most data from in vitro, murine models and clinical experience
suggest a pathogenic basis that JAKi may be beneficial, but
clinical trials are needed. Data has come primarily from studies
involving large vessel vasculitides such as GCA and TAK (36).
There are ongoing clinical trials evaluating the efficacy of JAK
inhibitors in both of these diseases (NCT04299971,
NCT03026504, NCT03725202, NCT04161898). In other
vasculitides such as Behcet’s and Polyarteritis Nodosa, JAKi
has been reported in cases of refractory disease with some
success (114). In a study of 13 patients with refractory BD,
patients who were treated with tofacitinib showed improvement
in vascular and joint symptoms (115). A pilot study of 10
patients with AAV treated with tofacitinib were found to have
improvements in clinical symptoms and reduction in steroid
requirements (116), but larger randomized trials are needed to
confirm these findings. There are also ongoing trials of use of
JAKi in SSc and dermatomyosi t i s (NCT03274076,
NCT03002649, NCT04966884, NCT04613219).

The role of JAK inhibitors as targeted therapy in T-LGLL
associated with rheumatic disease is not known. In a study of
nine patients with rheumatoid arthritis and refractory T-LGLL,
tofacitinib led to hematologic response in six patients and
improvement in synovitis in eight patients (38). This may
suggest a role for earlier use of JAKi in patients with
concomitant RA and T-LGLL, but larger studies are needed.
JAKi use in other rheumatic conditions associated with T-LGLL
have not been reported.

The use of JAKi in T-LGLL is currently being evaluated,
though early promising data from a Phase I basket study suggests
there may be some efficacy. Targeted therapy with Ruxolitinib, a
JAK 1 and 2 inhibitor, was evaluated in five cases of refractory
T-LGLL with partial response observed in two patients, and
improvement in cytopenias in 4 patients (117). There is an
ongoing trial of Ruxolitinib in relapsed or refractory T or NK
cell lymphoma (NCT02974647) and this study is being evaluated
in a multi-center phase II trial. Ruxolitinib safety, tolerability and
efficacy was also evaluated in a four-week trial in patients with
RA (NCT00550043), but there are no published results. Another
targeted therapy, BNZ-1, is a multi-cytokine inhibitor that
targets the gamma chain receptor subunits of IL-2, IL-9, and
IL-15 leading to reduction of cytokine-mediated cell survival
(118). First clinical data with BNZ-1 in LGL was completed in a
phase I/II trial with 20% ORR (3PR, 1 CR), particularly in
patients with transfusion-dependent anemia (83). In regard to
other autoimmune disease, there is a phase II trial ongoing for
alopecia, but no other active trials in rheumatic disease at this
time (NCT03532958).

While standard therapies used in symptomatic T-LGLL include
steroids, methotrexate, cyclosporine and cyclophosphamide, these
are effective in only 30-40% of cases (11, 119). No clear treatment
guidelines have been established due to a lack of clinical trial data.
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In patients with T-LGLL and associated rheumatic disease co-
management with a rheumatologist is key. Treating the underlying
rheumatic process may be the best initial step to alleviate T-LGLL.
While methotrexate is often a first line therapy in the setting of
inflammatory arthritis and other rheumatic diseases, initial
treatments used in T-LGLL including cyclophosphamide are
often reserved for severe organ or life-threatening manifestations
of rheumatic disease. There is a clear need to develop better
therapies for the treatment of T-LGLL and T-LGLL in the
setting of rheumatic disease.
SUMMARY

Chronic inflammation and immune activation are central to the
bidirectional relationship between cancer and rheumatic disease.
Components of a shared pathogenesis between T-LGLL and
rheumatic disease includes chronic antigen stimulation, JAK-
STAT pathway activation and overlap of various cytokines. Due
to the rarity of T-LGLL in the setting of rheumatic disease this
complex relationship remains difficult to define. It is important
to evaluate the presence of T-LGLL in patients with rheumatic
Frontiers in Oncology | www.frontiersin.org 7106
disorders, as T-LGLL is likely under-reported in this population.
While T-LGLL and rheumatic conditions may share clinical and
lab features, a complete history and examination by a
rheumatologist is key for appropriate serologic evaluation and
diagnosis of rheumatic disease. In the setting of cytopenia, early
evaluation with peripheral blood flow cytometry and TCR testing
would likely improve recognition and early detection of T-LGLL.
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and T-Cell Large Granular Lymphocytic Leukemia: Two Case Reports and a
Hypothesis on a Common Pathogenesis. Turkish J Immunol (2020) 8(2):94–
9. doi: 10.25002/tji.2020.1284

56. Weyand CM, Goronzy JJ. Immune Mechanisms in Medium and Large-
Vessel Vasculitis. Nat Rev Rheumatol (2013) 9(12):731–40. doi: 10.1038/
nrrheum.2013.161

57. Zhang H, Watanabe R, Berry GJ, Tian L, Goronzy JJ, Weyand CM.
Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune
June 2022 | Volume 12 | Article 854499

https://doi.org/10.1136/ard.56.3.167
https://doi.org/10.1136/ard.56.3.167
https://doi.org/10.1182/blood-2005-05-1972
https://doi.org/10.1155/2012/980942
https://doi.org/10.1002/1521-4141(200101)31:1%3C166::AID-IMMU166%3E3.0.CO;2-L
https://doi.org/10.1053/j.ajkd.2014.11.032
https://doi.org/10.3109/10428194.2012.752486
https://doi.org/10.1007/s00428-008-0716-4
https://doi.org/10.3389/fmicb.2020.00152
https://doi.org/10.1016/j.leukres.2004.08.010
https://doi.org/10.1038/sj.ejhg.5201827
https://doi.org/10.1002/art.11103
https://doi.org/10.1016/j.rdc.2017.04.003
https://doi.org/10.1002/art.1780370909
https://doi.org/10.1002/art.1780400406
https://doi.org/10.1046/j.1365-2141.2003.04613.x
https://doi.org/10.3389/fphar.2021.635663
https://doi.org/10.1056/NEJMoa1114885
https://doi.org/10.1038/leu.2015.280
https://doi.org/10.1038/leu.2015.280
https://doi.org/10.1038/s41467-021-23361-z
https://doi.org/10.1136/rmdopen-2020-001490
https://doi.org/10.1136/rmdopen-2020-001490
https://doi.org/10.1016/S0140-6736(18)31363-1
https://doi.org/10.3390/cells8080898
https://doi.org/10.1177/0961203311409963
https://doi.org/10.1136/annrheumdis-2017-212794
https://doi.org/10.4049/jimmunol.182.1.34
https://doi.org/10.1182/blood-2014-09-602763
https://doi.org/10.1182/blood-2014-09-602763
https://doi.org/10.4049/jimmunol.1502043
https://doi.org/10.1086/428480
https://doi.org/10.1016/j.semarthrit.2013.07.002
https://doi.org/10.1038/gene.2014.64
https://doi.org/10.1167/iovs.11-8440
https://doi.org/10.1002/ijc.29697
https://doi.org/10.3389/fonc.2020.00152
https://doi.org/10.1016/j.jaci.2017.10.039
https://doi.org/10.25002/tji.2020.1284
https://doi.org/10.1038/nrrheum.2013.161
https://doi.org/10.1038/nrrheum.2013.161
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Couette et al. Rheumatic Disease: T-LGLL Pathogenesis
Responses in Medium and Large Vessel Vasculitis. Circulation (2018) 137
(18):1934–48. doi: 10.1161/CIRCULATIONAHA.117.030423

58. Watanabe R, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Cellular
Signaling Pathways in Medium and Large Vessel Vasculitis. Front
Immunol (2020) 11:587089. doi: 10.3389/fimmu.2020.587089
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Disease. Surv Ophthalmol (2005) 50(4):297–350. doi: 10.1016/
j.survophthal.2005.04.009

99. Musabak U, Pay S, Erdem H, Simsek I, Pekel A, Dinc A, et al. Serum
interleukin-18 Levels in Patients With Behçet’s Disease. Is its expression
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Refractory Behçet’s Syndrome. Ann Rheum Dis (2020) 79(11):1517–20.
doi: 10.1136/annrheumdis-2020-217307

116. Liu Y, Ji Z, YuW,Wu S, Chen H, Ma L, et al. Tofacitinib for the Treatment of
Antineutrophil Cytoplasm Antibody-Associated Vasculitis: A Pilot Study.
Ann Rheum Dis (2021) 80(12):1631–3. doi: 10.1136/annrheumdis-2021-
220484

117. Moskowitz AJ, Ghione P, Jacobsen E, Ruan J, Schatz JH, Noor S, et al. A
Phase 2 Biomarker-Driven Study of Ruxolitinib Demonstrates Effectiveness
of JAK/STAT Targeting in T-cell Lymphomas. Blood (2021) 138(26):2828–
37. doi: 10.1182/blood.2021013379

118. Wang TT, Yang J, Zhang Y, Zhang M, Dubois S, Conlon KC, et al. IL-2 and
IL-15 Blockade by BNZ-1, an Inhibitor of Selective g-Chain Cytokines,
Decreases Leukemic T-cell Viability. Leukemia (2019) 33(5):1243–55.
doi: 10.1038/s41375-018-0290-y

119. Mohan SR, Maciejewski JP. Diagnosis and Therapy of Neutropenia in Large
Granular Lymphocyte Leukemia. Curr Opin Hematol (2009) 16(1):27–34.
doi: 10.1097/MOH.0b013e32831c8407
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Couette, Jarjour, Brammer and Simon Meara. This is an
open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2022 | Volume 12 | Article 854499

https://doi.org/10.4049/jimmunol.167.9.5338
https://doi.org/10.4049/jimmunol.167.9.5338
https://doi.org/10.1016/j.semarthrit.2005.07.001
https://doi.org/10.3389/fimmu.2018.00809
https://doi.org/10.1002/art.34327
https://doi.org/10.1002/art.34327
https://doi.org/10.1016/j.autrev.2017.12.002
https://doi.org/10.1016/j.autrev.2017.12.002
https://doi.org/10.1016/j.survophthal.2005.04.009
https://doi.org/10.1016/j.survophthal.2005.04.009
https://doi.org/10.1007/s00296-005-0029-8
https://doi.org/10.1002/art.1780350111
https://doi.org/10.1002/art.1780350814
https://doi.org/10.1136/annrheumdis-2011-200955
https://doi.org/10.1136/annrheumdis-2011-200955
https://doi.org/10.1016/j.beha.2019.06.006
https://doi.org/10.1182/blood-2012-07-441378
https://doi.org/10.3390/cancers13174418
https://doi.org/10.1182/blood-2007-11-121871
https://doi.org/10.1182/blood-2007-11-121871
https://doi.org/10.1177/0961203316686707
https://doi.org/10.1177/0961203316686707
https://doi.org/10.1016/j.prostaglandins.2019.106348
https://doi.org/10.1111/bjh.16530
https://doi.org/10.1007/s40744-021-00280-5
https://doi.org/10.1007/s40744-021-00280-5
https://doi.org/10.1136/annrheumdis-2021-221051
https://doi.org/10.1002/art.40654
https://doi.org/10.1007/s00296-021-04872-w
https://doi.org/10.1136/annrheumdis-2016-209330
https://doi.org/10.1136/annrheumdis-2020-217307
https://doi.org/10.1136/annrheumdis-2021-220484
https://doi.org/10.1136/annrheumdis-2021-220484
https://doi.org/10.1182/blood.2021013379
https://doi.org/10.1038/s41375-018-0290-y
https://doi.org/10.1097/MOH.0b013e32831c8407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Pathogenesis, Treatment, and Future Directions for Rare T-Cell Leukemias
	Table of Contents
	Editorial: Pathogenesis, Treatment, and Future Directions for Rare T-Cell Leukemias

	Author contributions
	Acknowledgments
	References

	Advanced Pathogenetic Concepts in T-Cell Prolymphocytic Leukemia and Their Translational Impact
	Introduction
	Cell of Origin Concepts
	Structural Genomic Aberrations
	The Mutational Profile of T-PLL
	The Transcriptomic Landscape
	The miR-ome of T-PLL Cells
	Epigenetic Alterations
	The Microenvironment of T-PLL Cells
	Role of the T-Cell Receptor
	Discussion
	Model of Clonal Evolution of T-PLL Cells
	Clinical Implications Derived From the Current Disease Model

	Author Contributions
	Funding
	Supplementary Material
	References

	Case Report: Large Granular Lymphocyte Leukemia (LGLL)—A Case Series of Challenging Presentations
	Introduction
	Cases
	Patient 1
	Patient 2
	Patient 3
	Patient 4

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Toward a Better Classification System for NK-LGL Disorders
	Introduction
	NK Cell: A Lymphocyte With Cytotoxic Capabilities and With Complex Activation Modalities
	Pathophysiology of NK-LGL Leukemia
	Clinical Characteristics of NK-LGL Leukemia
	The Contribution of Flow Cytometry and Bone Marrow Biopsy to the Diagnosis of NK-LGL Leukemia
	Contribution of Genomic analysis. Proposal for an NK-Cell Clonality Score
	Therapeutic Approaches in NK-LGL Leukemia
	Conclusion
	Author Contributions
	Funding
	References

	T-Cell Large Granular Lymphocyte Leukemia: An Interdisciplinary Issue?
	Introduction
	Case Reports
	Indolent Course of a &gamma;&delta; T-LGL-Leukemia
	&gamma;&delta; T-LGL-Leukemia Presenting With Immune Thrombocytopenia and Pure Red Cell Aplasia
	Treatment Considerations and Discussion

	Author Contributions
	References

	Advances in Cellular Therapy for T-Cell Prolymphocytic Leukemia
	Introduction
	Role of Induction Agents in T-Cell Prolymphocytic Leukemia
	Role of Hematopoietic Stem Cell Transplant
	Consolidative Transplant Versus Observation
	Role of Allogeneic Stem Cell Transplant
	Non-Relapse Mortality for Allogeneic Hematopoietic Stem Cell Transplantation
	Recent Advances in Cellular Therapy for T-Cell Prolymphocytic Leukemia
	Conclusion
	Author Contributions
	References

	Prognostic Significance of Comprehensive Gene Mutations and Clinical Characteristics in Adult T-Cell Acute Lymphoblastic Leukemia Based on Next-Generation Sequencing
	Introduction
	Patients and Methods
	Patients and Treatment Protocol
	Flow Cytometry
	Cytogenetic Analysis
	Next-Generation Sequencing
	Statistical Methods

	Results
	Gene Mutational Analysis Based on Next-Generation Sequencing
	Gene Mutation Profiles
	The Pairwise Relationship Between Genetic Alterations
	Prognostic Value of Gene Mutations

	Clinical Characteristics Analysis
	Clinical Characteristics of Patients
	Univariate Analysis of Clinical Characteristics

	Multivariate Analysis of Gene Mutations and Clinical Characteristics
	Risk Stratification Models of Overall Survival in 90 Adult T-ALL/LBL Patients
	Risk Stratification Model of Event-Free Survival in 90 Adult T-ALL/LBL Patients

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Mature T-Cell leukemias: Challenges in Diagnosis
	Introduction
	What is the Differential for a Clonal T-Cell Population Identified in Peripheral Blood?
	Reactive Versus T-Cell Neoplasm?
	Acute Versus Mature T-Cell Neoplasm?
	Mature T Cell Leukemia With Nodal/Cutaneous Involvement Versus Nodal/Cutaneous T Cell Lymphoma With Leukemic Involvement?
	Large Granular Lymphocytic Leukemia
	Morphology
	Immunophenotyping and Molecular Analysis
	Making the Diagnosis

	T-Prolymphocytic Leukemia
	Morphology
	Immunophenotyping
	Cytogenetics and Molecular Analysis
	Making the Diagnosis

	Adult T-Cell Leukemia/Lymphoma (ATLL)
	Morphology
	Immunophenotype
	Cytogenetics and Molecular Analysis
	S&eacute;zary Syndrome
	Morphology
	Immunophenotype
	Cytogenetic and Molecular Analysis
	Making the Diagnosis
	Nodal Lymphoma With Leukemic Involvement

	Conclusions
	Author Contributions
	References

	Cytokines in the Pathogenesis of Large Granular Lymphocytic Leukemia
	Introduction
	Overview of Large Granular Lymphocytic Leukemia Development
	Aberrantly Expressed Cytokines in Large Granular Lymphocytic Leukemia
	Interleukin-15
	Platelet-Derived Growth Factors
	Interleukin-2
	Interleukin-6
	Miscellaneous Others
	Interleukin-12
	Interleukin-17 and Interleukin-23
	sIL-2R, Interleukin-6, TNF-alpha, Interleukin-8, and Interleukin-10
	RANTES, Interleukin-8, MIP-1 Alpha and Beta, Interleukin-10, Interleukin-18, IFNɣ, and IL1Ra
	Epidermal Growth Factor, IP-10/CXCL10, Granulocyte Colony-Stimulating Factor


	Cytokine-Driven Oncogenic Pathways in Large Granular Lymphocytic Leukemia
	Jak/STAT
	Ras-Raf-1-MEK1-ERK/MAPK
	PI3K/Akt
	NF-kB

	Interaction of Oncogenic Drivers and Cytokine Signaling Pathways
	Mechanisms of Cytokine Dysregulation in Large Granular Lymphocytic Leukemia
	Cytokine-Driven Animal Models of Large Granular Lymphocytic Leukemia
	Therapeutic Blocking of Cytokine Signaling in Large Granular Lymphocytic Leukemia Treatment
	Conclusion
	Author Contributions
	Funding
	References

	Incidence, Treatment, and Survival of Patients With T-Cell Lymphoma, T-Cell Large Granular Leukemia, and Concomitant Plasma Cell Dyscrasias
	Introduction
	Patients and Methods
	Patients
	Diagnosis of T-Cell Malignancies
	Diagnosis of Plasma Cell Dyscrasias
	Follow-up and Response Assessment
	Statistical Analysis

	Results
	Entire Cohort
	T-LGLL Patients and Treatment Response
	T-Cell Lymphoma Patients and Treatment Response
	Patients Presenting with PCD Frontline
	Clearance of Concomitant PCD Clone in Patients Treated for T-Cell Malignancies
	Survival Outcomes

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Intersection Between Large Granular Lymphocyte Leukemia and Rheumatoid Arthritis
	LGL Leukemia Clinical Presentation and Epidemiology
	Rheumatoid Arthritis (RA) Association With LGL Leukemia
	Parallels and Comparisons Between T-LGL Leukemia and RA
	Cytotoxic T-Cells (CTLs) in LGL Leukemia and RA
	Somatic Mutations in T-LGL Leukemia and RA
	Sex Bias
	Immunogenetic Associations
	Antigen Specificity
	Serologic Profile
	Treatment
	Interrelationship Amongst T-LGL Leukemia, RA and Felty Syndrome

	Proposed Mechanisms for the Relationship Between T-LGL Leukemia and RA
	LGL Leukemia as a Consequence of RA
	LGL Leukemia as a Consequence of RA Treatment
	LGL Leukemia as the Driver of RA

	Unanswered Questions and Future Research Directions
	Author Contributions
	Acknowledgments
	References

	Pathogenesis and Treatment of T-Large Granular Lymphocytic Leukemia (T-LGLL) in the Setting of Rheumatic Disease
	Introduction
	Chronic Antigenic Stimulation
	Inherited Susceptibility/HLA Predisposition
	Activation of the JAK-STAT Pathway
	Systemic Lupus Erythematosus
	Vasculitis
	Sjogren’s Syndrome
	Systemic Sclerosis

	Cytokines
	Role of IL-15 in T-LGLL and Autoimmune Disease
	Linking Autoimmunity and Cancer: IL-15 Regulatory Pathways
	Role of Other Cytokines in T-LGLL and Rheumatic Disease
	Systemic Lupus Erythematosus
	Sjogren’s Syndrome
	Vasculitis
	Systemic Sclerosis

	Role of Sphingolipids in T-LGLL and Rheumatic Disease
	Treatment:
	JAK Inhibitors in the Management of T-LGLL and Rheumatic Disease

	Summary
	Author Contributions
	Supplementary Material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




