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Editorial on the Research Topic 
Spatial modelling and failure analysis of natural and engineering disasters through data-based methods

Numerous natural and engineering disasters are observed frequently due to the climate change and the human engineering activities. In recent years, a large number of tunnels, metros and underground spaces were constructed to reduce congestion and store potential resources with the development of infrastructure construction (Font-Capoet al., 2011; Liu and Zou 2022). A respective example in China is that the length of constructed, under constructing, and planning railway tunnels were up to 15,781 km, 8,200 km, and 12,800 km, as reported by Guo (2018). The rapid construction caused significant challenges of engineering disasters when encountering the unfavorable conditions, e.g., karst, fault, and weathered slot (Høien and Nilsen, 2014; Liu et al., 2018a, b; Golian et al., 2021). As shown in Figure 1, main engineering disasters related to the engineering construction include the water and mud inrush, soil/rock collapse, erosion, surface subsidence and crack (Liu et al., 2019, 2022; Zhang et al., 2019). These disasters may induce the serious influences on the hydraulic-geological-ecological environment (e.g., groundwater decline) and usually cause the stoppages for the projects, huge property damages, and deaths to the constructors and surface residents (Hayashi et al., 2009; Wang et al., 2019). Thus, it is necessary to establish the effective model or method to predict these disasters and their related influences on the ground and surface environment.
[image: Figure 1]FIGURE 1 | Typical unfavorable ground and the related geological disaster induced by tunnel construction.
Considering this practical demand, a special topic, entitled “Spatial Modelling and Failure Analysis of Natural and Engineering Disasters through Data-based Methods” was initiated with several editors to process the timely peer-review and publication of relevant manuscript by 12 March 2021. The main objective of this Research Topic is to provide a set of peer-reviewed publications that propose innovative data-based methods and techniques such as machine/deep learning and advanced numerical methods to investigate the various engineering and natural disasters. In this Research Topic, 41 manuscripts were accepted in total, indicating the acute need for the engineers and scholars to understand the aspects of engineering and natural disasters.
During the published papers, many machine learning methods were applied into the analysis of various engineering and natural disasters. For example, Wang et al. used an advanced gradient boosting algorithms to analysis the slope stability under the seismic effect. Zhu and Guan developed an improved machine model to predict the size of water-conducting region which was the key to prevent the roof water disasters during coal engineering. Liu et al. proposed an integrated model by considering the generative adversarial network and support vector machine, aiming to identify the seismic events more accurately. Also, some new numerical techniques as well as the theoretical models were proposed for many geological disasters, such as rockburst and large deformation in tunnel, deformation and stability in pile, and slope failure and rockfall (Fu et al.; Liang et al.; Zheng et al.). For example, Fan et al. analyzed the tunnel rockburst based on a field case (i.e., Jinping hydropower station) and they discussed the prediction method of rockburst based on the Hoek-Brown strength criterion and the energy release process. Zhou et al. implemented the discrete element method (DEM) to investigate the landslide failure process. Hu et al. developed a theoretical model to evaluate the large deformation of tunnel when tunnel constructed in a soft ground.
The studies in current Research Topic reflect the substantial improvements in the data-based methods and techniques in the analysis of the various engineering and natural disasters, which may provide the important references for the prediction and prevention of these disasters.
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Thixotropy is a hot topic in the field of rheology of dispersed systems. Studying the quantitative index and evaluation method for thixotropy of clay is of great significance to evaluate the safety of foundation under long-term load. To explore the index system and classification methods for the thixotropy of clay, unconfined compressive strength tests were carried out on three groups of undisturbed soil and remolded soil that were cured at different times after remodeling of the Zhanjiang Formation in China to obtain the unconfined compressive strength values of the samples and establish the relationship between unconfined compressive strength and curing time of the remodeled soil. The concept of thixotropic sensitivity is introduced to reflect the relationship between thixotropy and structure. According to the relationship between thixotropy sensitivity and curing time and its logarithmic value, two indexes of structural recovery coefficient K and structural recovery index Ke were established to evaluate the thixotropy of structural clay in the Zhanjiang Formation. Following the structural classification method of soil, the boundary values of structural recovery coefficients KI and KII are calculated to classify the thixotropy of soil. When the value of K is less than that of KI, the thixotropy of soil is weak. When the value of K is greater than that of K but less than that of KII, the thixotropy of soil is moderate. When the value of K is greater than that of KII, the thixotropy of soil is strong. The method is used to discuss the thixotropy of soil in the literature, and the rationality of the method is verified. Results show that this method can be used to preliminary classify the thixotropy of soil.

Keywords: clay, thixotropy, structure, thixotropy index, method for thixotropy evaluation


INTRODUCTION

Thixotropy of clay refers to the phenomenon that when soil is disturbed its original structure is destructed and its mechanical strength drops sharply. After the disturbance stopped, part of the mechanical strength of soil gradually recovers with lapsing time (Mitchell, 1961; Díaz-Rodríguez and Santamarina, 1999; Feng et al., 2004; Li et al., 2010). Boswell (1948) found that thixotropy was widely present in sedimentary deposits, except for clean sand, through investigation of a large amount of sedimentary deposits. Further studies by Kruyt (1952) indicated that thixotropy generally exists in clay-water systems. Under the influence of the thixotropy of soil, the strength and deformation characteristics of soil show strong time dependence (Shahriar and Jadid, 2018; Shahriar et al., 2018; Al-Janabi and Aubeny, 2019; Kamil and Aljorany, 2019; Ruge et al., 2019; Alam et al., 2020). Thixotropic evaluation of soil is one of the key problems in safety evaluation of foundation engineering under long-term load.

The thixotropy of clay is generally measured by studying the variation rule in yield stress (Landrou et al., 2018), strength (Chan, 2015), viscosity (Jeong et al., 2015), and ratio of strength (Zhang et al., 2014b; Wang et al., 2015; Al-Rubaiee and Al Salami, 2020) with time after clay has been disturbed to reflect thixotropy. Du et al. (2020) proposed a model to explain the effect of ionic strength on the thixotropy and yield stress of sodium montmorillonite gel by reflecting the thixotropic behavior of sodium montmorillonite through change in yield stress increment with time. Shahriar et al. (2016) studied the variation law in the shear strength of clay with time and found that the thixotropy of soil was not obvious when water content was above the liquid limit, and that the strength of clay increased significantly with time when water content was below the liquid limit. Larson and Wei (2019) reviewed the research progress in thixotropy and accompanying rheological phenomenon and pointed out that the change in viscosity with time can reflect the strength of thixotropy. Zhang et al. (2017b) defined the thixotropic strength ratio of clay as the ratio between the strength at time t after disturbance and the strength at time 0 after disturbance, and compared the thixotropic strength ratio of clay in different regions. These studies have established the indicators to reflect the thixotropy of clay, which has laid a foundation for quantitative description and evaluation of thixotropy. However, these studies have not discussed how to compare the thixotropy of different types of soil with different degrees of thixotropy, and there is a lack of classification methods for different types of soil with different degrees of thixotropy.

The thixotropy of clay has a great influence on engineering practice (Kul'chitskii, 1975; Lutenegger, 2017; Al-Janabi and Aubeny, 2019). Engineering problems such as strength growth of filling soil (Chan, 2015; Tsugawa et al., 2017), bearing capacity of pile foundation in clay layer (Shen et al., 2005; Abu-Farsakh et al., 2015; Rosti, 2016; Karlsson et al., 2019; Gong et al., 2020), and time effect of anchoring force of anchor bolt (Zhang N. et al., 2017) are closely related to the thixotropy of soil. For soil with strong thixotropy, strength recovery is quite obvious after resting. If the influence of thixotropy is ignored, the calculation results of bearing capacity and settlement would have a large deviation from measured value, and the applicability of traditional experience and theory would become a problem. The establishment of thixotropy evaluation method can provide a basis for solving practical engineering problems. The clay in the Zhanjiang Formation features strong structural property (Shen et al., 2013b), high plasticity (Zhang et al., 2014a), micro permeability (Zhang et al., 2012), strong acidity due to oxidation hydrolysis (Zhang et al., 2017a), spatial distribution difference (Shen et al., 2013a), creep property (Kong et al., 2012), thixotropy (Zhang et al., 2017b), etc., and it is an extremely abnormal type of soil with special properties resulting in rare engineering characteristics. At present, there is no classification method to measure the thixotropy of Zhanjiang Formation clay, and the engineering circle cannot determine the impact of clay thixotropy in the engineering practice. To explore the index system and classification methods for evaluating the thixotropy of Zhanjiang Formation clay, unconfined compressive strength tests were carried out on three groups of undisturbed soil and remolded soil that were cured at different times after remodeling of the Zhanjiang Formation in China to obtain the unconfined compressive strength values of the samples and establish the relationship between the unconfined compressive strength and the curing time of the remodeled soil. According to the relationship between unconfined compressive strength and curing time, an index to evaluate the thixotropy of clay was proposed, and a method to evaluate the thixotropy of clay was established using the index. Based on the results of unconfined compressive strength tests, the relatively preliminary evaluation method proposed in this study provides a reference for comparison and classification of different types of soil with different thixotropic properties.



UNCONFINED COMPRESSIVE STRENGTH TEST

Through existing regional geological data and engineering geological surveys, typical strata are selected for investigation, drilling, and sampling. Three groups of undisturbed soil samples, 1, 2, and 3, from Zhanjiang Formation clay were obtained from Baosteel Zhanjiang Iron and Steel Base, which is located in Donghai island, Zhanjiang City, Guangdong province, China. The thixotropy of soil at different depths is different (Li et al., 2010). To obtain soil samples with different thixotropy degrees, different depths were selected for sampling. The depth for soil sampling for sample groups 1, 2, and 3 is 2–3, 6–9, and 19.25–20.05 m, respectively. Sampling was carried out using a stainless steel open thin-walled sampler with an inner diameter of 100 mm, wall thickness of 2 mm, cutting edge angle of 60°, and length of 300 mm. The upper end of the sampler was connected with a drill stem by screws and was provided with an exhaust (drain) hole and a spherical valve to release air and water pressure during sampling, prevent water from reentering, and maintain a vacuum above the soil sample during lifting. Basic physical properties, such as natural moisture content, natural density, and specific gravity of structural clay from the Zhanjiang Formation were tested by drying, ring knife, and specific gravity flask methods. The test methods were based on the relevant provisions of Articles 5.2, 6.2, and 7.2 of “Standard for Geotechnical Test Methods” (GB/T50123-2019, China), and the test results are shown in Table 1.


Table 1. Physical properties test results.

[image: Table 1]

The undisturbed soil was dried and crushed using a 0.5-mm sieve. Then, according to the density and moisture content of the undisturbed soil, a cylindrical remolded soil sample with a diameter of 39.1 mm and a height of 80 mm was prepared by taking the soil samples with a particle size of <0.5 mm. For sample preparation, water requirement is calculated according to the moisture content of undisturbed soil and dry soil, and the moisture content of the soil samples is configured into the moisture content of undisturbed soil. Then, according to the density of the undisturbed soil and the volume of the samples, the mass of the soil required for a sample was calculated. Weigh the required soil for a sample and put it into a cylindrical sample preparation with a diameter of 39.1 mm and rammed the soil to a height of 80 mm. According to this method, remolded soil samples with density and moisture content same as those of the undisturbed soil were obtained by compaction. The sample preparation method shall refer to the relevant provisions of Articles 4.3.1 and 4.4.2 of “Standard for Geotechnical Test Methods” (GB/T50123-2019, China). After the completion of sample preparation, two samples from each group were taken. The mass of the samples were weighed. The density of the samples was calculated according to mass and volume. The moisture content of the samples was tested by drying method. The density and moisture content of the samples were averaged. The results are shown in Table 2.


Table 2. Test results of physical properties of remolded samples.

[image: Table 2]

It can be seen from Table 2 that the moisture content and density of the remolded samples are basically the same as those of the undisturbed soil. To keep the moisture content constant, the samples were wrapped using a preservative film and placed in PVC tubes. Lids were put on the tubes. The tubes were sealed with wax and then stored in an airtight moisturizing jar for curing. Room temperature was controlled at 25 ± 2°C. As suggested in research studies that soil strength recovery is fast at the initial stage and slow at the later stage (Feng et al., 2004; Li et al., 2010), we set the curing time at 0, 1, 7, 30, and 60 days. Unconfined compressive strength tests were carried out on undisturbed soil samples and remolded soil samples with different curing times. The test method was according to the relevant provisions of Article 20 of “Standard for Geotechnical Test Methods” (GB/T50123-2019, China). The curves of relationship between axial strain and axial stress of the samples are shown in Figure 1.


[image: Figure 1]
FIGURE 1. The curve of relationship between axial strain and axial stress of the samples. (A) Curve of relationship between axial strain and axial stress of soil sample 1. (B) Curve of relationship between axial strain and axial stress of soil sample 2. (C) Curve of relationship between axial strain and axial stress of soil sample 3.


In Figure 1, the peak stress of the three groups of undisturbed soil samples and stress resulting in 15% strain of remolded soil samples is the unconfined compressive strength of undisturbed soil samples and remolded soil samples, as shown in Table 3. The curve of relationship between unconfined compressive strength and curing time of remolded soil samples is established, as shown in Figure 2.


Table 3. Unconfined compressive strength of undisturbed soil samples and remolded soil samples.

[image: Table 3]


[image: Figure 2]
FIGURE 2. Curve of relationship between unconfined compressive strength and curing time of remolded soil samples.


As can be seen from Table 3, the mechanical properties of soil samples changed remarkably before and after remodeling, which was caused by structural destruction o and abrupt reduction in strength of the soil. According to the ratio of unconfined compressive strength of undisturbed soil samples to remolded soil samples curing for 0 day, the sensitivity value for groups 1, 2, and 3 was 4.52, 5.96, and 4.93, respectively. The three sets of soil were highly sensitive and had strong structural properties. With the lapsing of curing time, the unconfined compressive strength of the remolded soil samples gradually increased. When the remolded soil samples were cured for 0–60 days, the unconfined compressive strength of remolded soil sample 1 increased by 6.4 from 27.24 to 33.64 kPa, the increment of which was 23.49% of that of 0 day. The unconfined compressive strength of remolded soil sample 2 increased by 10.7 from 26.06 to 36.76 kPa, the increment of which was 41.09% of that of 0 day. The unconfined compressive strength of remolded soil sample 3 increased by 13.81 from 28.04 to 41.85 kPa, the increment of which was 49.25% of that of 0 day. This shows that Zhanjiang Formation clay has strong thixotropy. Zhang et al. (2014b) reported an increase in the unconfined compressive strength of remolded clay for 500 days. After 500 days, the strength of the soil was 2.89 times the initial strength, as shown in Figure 3.


[image: Figure 3]
FIGURE 3. Curve of relationship between unconfined compressive strength and curing time of remolded soil samples [modified from Zhang et al. (2014b)].


It can be seen from Figures 2, 3 that the influence of thixotropy can make the strength of soil recover to a certain extent after structural failure. It can be seen from Figure 2 that the unconfined compressive strength of remolded soil samples increased rapidly in the period of 0–7 days, slowed down in 7–30 days, and tended to be stable in 30–60 days. The thixotropy of Zhanjiang Formation clay suggested that thixotropic recovery was faster in the early stage, and slowed down and turned stable in the later stage. Natural soil strength loss after disturbance and the strength recovery process caused by thixotropy after standing is a process in which the initial structure is destroyed into a dispersed one, and the structure tends to flocculate because of change in the force field of interaction between attractive and repulsive forces in particles. This process requires the movement of particles, water, and ions in a time-dependent manner. In reference Zhang et al. (2017b), the relationship between energy and grain spacing in the thixotropic process is given, as shown in Figure 4.


[image: Figure 4]
FIGURE 4. Energy–distance curves for thixotropic soil [modified from Mitchell (1961)]: (A) at initial, undisturbed configuration, ER = EA, flocculation structure, (B) during remolding, ER > EA, repulsive energy barrier prevents flocculation, and (C) at rest in the thixotropy, ER < EA, particles attempt to flocculate.


The interaction in soil–water–electrolyte system resulted in the formation of double electric layers on the surface of clay particles. When the two particles were close to each other to a certain distance, the double electric layers overlapped each other to produce an interactive force field. As shown in Figure 4, curve ER represents the increase in repulsive energy when two particles get close to each other. The curve EA shows how attractive energy changes. With repulsion as positive and attraction as negative, curve ET represents the relation between total potential energy and particle spacing. When particles are far apart, the attraction is dominant, the curve is below the horizontal axis, and the total potential energy is negative. As the distance between particles gets closer, the repulsive force takes effect, and the total potential energy rises to a positive value. When it reaches a certain distance, the total potential energy reaches its maximum, and an energy peak EMAX appears. The rise of potential energy means that the two particles cannot get any closer, or they will separate after getting closer. When the peak energy EMAX is passed, the potential energy drops rapidly, which means that the particles flocculate. It can be seen from Figure 4A that the intergranular attraction and repulsion of the undisturbed clay are in an equilibrium and stable state. When the soil is disturbed, external energy is applied to the soil system. Disturbance energy from the outside makes the initial structure of the soil break and the flaky clay disperse, which means that the repulsion between the particles resulting from the internal forces of the double electric layer and the external energy help the structure to disperse. Due to the effect of external forces, the force energy between particles is at a high level, the ions in the adsorption water layer and double electric layer will redistribute, and the microstructure will be reorganized. However, once the disturbance stops, the energy from the outside that causes the internal repulsion between particles to form a dispersed structure is consumed, so the repulsion between particles decreases, and the structure adaptively adjusts to adapt to the new force field, and particles shift and get close to each other. When the attractive force exceeds the repulsive force (Figure 4C) and the intergranular force exceeds the energy peak EMAX, the particles will flocculate. If the particles close to each other consume part of the energy and fail to cross the energy peak, the interaction between the soil particles will also reach a new inter-particle equilibrium. At this time, the structure will try to adjust to a new state of lower energy, and the structure will gradually develop from dispersed to flocculated one, and the strength of the soil will also gradually increase with time.



THE THIXOTROPY INDEXES OF CLAY

It can be seen from the above tests that the strength of soil varies with time while its structure changes with time during the thixotropic process. The index reflecting soil structure is sensitivity St, which is a constant value for a kind of soil, and the sensitivity St cannot describe the change in soil structure with time. To do so, the concept of thixotropic sensitivity is introduced, and that of soil is defined as

[image: image]

where St(t) is the thixotropic sensitivity, dimensionless; qu is the unconfined compressive strength of the undisturbed soil sample in kPa; [image: image] is the unconfined compressive strength of the remolded soil sample at the curing time t in kPa.

It can be seen from Formula (1) that the value of thixotropic sensitivity at 0 day after remolding is equal to the value of sensitivity, namely,

[image: image]

The thixotropic sensitivity of soil reflects the change in soil structure with time after disturbance. qu is constant, the larger [image: image] (the closer to qu), the smaller the thixotropic sensitivity St(t), and consequently the greater the structural recovery of the disturbed soil. According to Table 3, the value St(t) of each curing time can be calculated, and the relationship curve of thixotropic sensitivity and curing time is established, as shown in Figure 5.


[image: Figure 5]
FIGURE 5. Curve of relationship between thixotropic sensitivity and curing time.


As shown in Figure 5, the thixotropic sensitivity decreases with lapsing of the curing time. In the period 0–7 days, the thixotropic sensitivity decreases rapidly; in the period 7–30 days, the decrease in speed slows down; and in the period 30–60 days, the thixotropic sensitivity tends to be stable. The same trend can be obtained from the data in the literature (Zhang et al., 2014b), as shown in Figure 6.


[image: Figure 6]
FIGURE 6. Curve of relationship between thixotropic sensitivity and curing time [modified from Zhang et al. (2014b)].


The shape of the St(t) − t relationship curve may vary with different clays. The steeper the curve, the more obvious the reduction of thixotropic sensitivity within the same period, and therefore the stronger the thixotropy of the soil; conversely, the more stable the curve, the weaker the thixotropy of the soil. Therefore, the tangent slope at any point on the curve represents the intensity degree of the thixotropy of the soil at the corresponding time t, namely,

[image: image]

where K is the structural recovery coefficient of soil in days−1. The minus sign indicates that thixotropic sensitivity decreases with increase in curing time. The greater the value of K, the stronger the thixotropy of soil, and conversely, the weaker the thixotropy of soil. Since the tangent slope at each point on the St(t) − t curve is different, the secant slope at certain periods t1and t2 can be chosen to measure the thixotropy intensity degree of soil, namely,

[image: image]

where K is the structural recovery coefficient of soil in days−1; t1 and t2 are the curing times in days; St(t1) and St(t2) are the thixotropic sensitivity corresponding to t1 and t2, dimensionless.

It can also be seen from Figure 4 that the thixotropic recovery of Zhanjiang Formation clay tends to be stable at a curing time of 60 days. t1 = 1 day and t2 = 60 days are taken as substitution into Formula (4) to calculate the structural recovery coefficient K1, K2, and K3 of groups 1, 2, and 3, which are 0.0143, 0.0289, and 0.0271 day−1, respectively, and then

[image: image]

It can be determined that the thixotropy of soil sample 2 is stronger than that of soil samples 1 and 3. The thixotropy of soil sample 3 is stronger than that of soil sample 1, so the structural recovery coefficient K can be used to measure the thixotropy intensity degree of soil.

In order to further explore the change in thixotropic sensitivity of Zhanjiang Formation clay with time, the thixotropic sensitivity St(t) and the curing time t were studied in the semi-logarithmic coordinate, and the relation of St(t) − logt was curve fitted by selecting logt as the basic function. Since logt is meaningless at 0, and, according to Table 3, the calculated values of St(0) and St(1) of the three groups of the soil samples have little change, the error between these two can be ignored. Therefore, the data with the curing time of 1, 7, 30, and 60 days are chosen for fitting, and the results are shown in Figure 7. The same process was performed for the data of the literature (Zhang et al., 2014b), as shown in Figure 8.


[image: Figure 7]
FIGURE 7. Relationship between thixotropic sensitivity St(t) and logt.



[image: Figure 8]
FIGURE 8. Relationship between thixotropic sensitivity St(t) and logt [modified from Zhang et al. (2014b)].


As shown in Figures 7, 8, the R2 of the three groups of soil are close to 1, indicating a good fitting degree. Thixotropic sensitivity St(t) decreases with increase in logt, and there is a linear relationship between them:

[image: image]

where Ke is defined as the structural recovery index of soil, dimensionless, representing the change in thixotropic sensitivity caused by every one logarithmic period (10 times) of change in curing time; St(1) is the thixotropic sensitivity of curing time of 1 day, dimensionless.

[image: image]

Similar to the structural recovery coefficient K, the greater the value of Ke, the stronger the thixotropy of the soil will be, and conversely, the weaker the thixotropy of the soil will be. Supposing Ke1, Ke2, and Ke3 correspond to the structural recovery index of soil samples 1, 2, and 3, respectively, according to the fitting results (as shown in Figure 7), the values of Ke1, Ke2, and Ke3 are 0.4321, 0.9753, and 0.9109, respectively, then

[image: image]

Therefore, it can be determined that the thixotropy of soil sample 2 is stronger than that of soil samples 1 and 3 and that the thixotropy of soil sample 3 is stronger than that of soil sample 1, so the structural recovery index Ke can be used to measure the thixotropy intensity degree of soil. From the above discussion, it can be seen that the structures of soil samples 1, 3, and 2 are enhanced in turn. The stronger the structure of soil is, the higher the attractive energy between particles is. After disturbance, particles are more likely to form a flocculating structure, and strength recovery is more obvious than in soil with lower sensitivity.

By discussing the differences and similarities between the two indexes, we can see that, after the introduction of the concept of thixotropic sensitivity St(t), the structural recovery coefficient K has been defined as the secant slope of the St(t) − t relationship curve, which is determined by selecting a certain period [t1, t2] to evaluate thixotropy, and the value of the recovery coefficient K is related to the selected time period, while the structural recovery index Ke is the slope of the straight line St(t) − logt, obtained by curve fitting through the data of unconfined compressive strength tests of the Zhanjiang Formation clay. For the same kind of Zhanjiang Formation clay, the value of Ke is fixed and independent of time. Both of them can be used to measure the thixotropy intensity degree of Zhanjiang Formation clay.



EVALUATION METHOD OF THIXOTROPY

Studies have shown that soil thixotropy is closely related to structure, and highly structural soil tends to have strong thixotropy (Zhang et al., 2020), and that thixotropic recovery is usually faster in the early stage, slower in the later stage, and finally tends to be stable (Feng et al., 2004; Li et al., 2010). According to the classification method of structure of clay, the thixotropy grading method was established. When considering thixotropy classification, the time interval [0, t] of thixotropy index should be selected from 0 to a certain resting time t of thixotropy stability. According to the above definitions of thixotropic sensitivity St(t) and structural recovery coefficient K, if t1 = 0 day, t2 = t, then

[image: image]

where K is the structural recovery coefficient of soil in days−1; t1 and t2 are the resting times in days; St(t2) and St(t2) are the thixotropic sensitivity corresponding to t1and t2, dimensionless; t is a certain curing time of thixotropic stability, the upper limit of the evaluation interval [0, t] in days; St(0) and St(t) are thixotropic sensitivity corresponding to 0 day and t, dimensionless.

According to Equation (7), for the same kind of soil, the structural recovery coefficient K and the sensitivity St are one-to-one corresponding in the evaluation interval [0, t]. Therefore, thixotropy of soil can be classified by referring to the classification method of structure of clay. In engineering practice, according to sensitivity, the structure of clay can be divided into three categories: low sensitivity (1 ≤ St ≤ 2), medium sensitivity (2 < St ≤ 4), and high sensitivity (4 < St), among which the limit value of sensitivity St is 2 and 4. Referring to the above classification method, K and KII are set as the limit value of the structural recovery coefficient K for the classification of thixotropy. According to Equation (7), we get

[image: image]
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where KIis the value of the structural recovery coefficient K when St = 2, dimensionless; t is the upper limit of the evaluation interval [0, t] in days; St(t) is the thixotropic sensitivity corresponding to t, dimensionless; and KIIis the value of the structural recovery coefficient K when St = 4, dimensionless.

The classification method of soil thixotropy intensity degree is shown in Table 4.


Table 4. Classification standard of clay thixotropy.

[image: Table 4]

To verify the rationality of the thixotropy classification method, the thixotropy of soil was discussed by referring to the data of literature, as shown in Table 5.


Table 5. Classification of thixotropy of clays in different regions.

[image: Table 5]

It can be seen from Table 5 that this method can preliminary classify the thixotropy of soil, which can provide reference for the thixotropy classification of soil. However, this method is only a preliminary classification of thixotropy of soil from the perspective of macroscopic strength, and it considers only a single parameter and does not discuss the classification of soil from the aspect of microscopic mechanism of thixotropy, so it still needs further exploration and verification.



CONCLUSION

In this study, unconfined compressive strength tests were carried out on three groups of undisturbed soil and remolded soil that were cured at different times after remolding of the Zhanjiang Formation in China to get the unconfined compressive strength values of the samples and establish the relationship between the unconfined compressive strength and curing time of remodeled soil. The thixotropy of clay in the Zhanjiang Formation can be measured by structural recovery coefficient and structural recovery index, and a classification method of thixotropy is given.

(1) The Zhanjiang Formation clay has obvious thixotropy. After 60 days of curing, the strength recovery of the remolded soil in the three groups accounts for 23.49, 49.25, and 41.09% of the initial strength, respectively.

(2) The thixotropy of soil can make the strength of soil recover somewhat after structural failure, but this strength recovery is relatively limited. Therefore, for the foundation soil with high sensitivity and strong structure, the engineering disaster caused by the strength loss caused by construction disturbance should not be ignored.

(3) The thixotropy of structural clay in the Zhanjiang Formation can be measured by the structural recovery coefficient K and the structural recovery index Ke. The larger the structural recovery coefficient K and the structural recovery index Ke are, the stronger the thixotropy of soil will be, and vice versa.

(4) Following the method of the structural classification method of soil, the boundary values of structural recovery coefficient KIand KII are calculated to classify the thixotropy of soil. When the value of K is less than that of KI, the thixotropy of soil is weak. When the value of K is greater than that of KI and less than that of KII, the thixotropy of soil is moderate. When the value of K is greater than KII, the thixotropy of soil is strong.
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Investigating the soil-water characteristics of calcareous soil has a great significance for preventing geological disasters on island-reefs as well as maintaining the foundation stability of hydraulic-filled island-reefs. In this study, calcareous silty sands with different fines contents and dry densities were studied to reveal their effects on the soil-water characteristics of calcareous soil on hydraulic-filled island-reefs. The soil-water characteristic curve (SWCC) of the calcareous silty sand was measured using a pressure plate apparatus. Taking into account the porous meso-structure, the effects of fines content and dry density on the SWCC of calcareous silty sand were analyzed, and the applicability of existing SWCC models to calcareous silty sand was verified. A SWCC model suitable for assessing soil-water characteristic of calcareous silty sand was proposed. Results of this study provide some reference for quantifying the water-holding capacity of calcareous silty sand.
Keywords: coral reef, calcareous silty sand, fines content, dry density, soil-water characteristic curve
HIGHLIGHTS

Soil-water characteristic curves of calcareous silty sands under different conditions were measured.
Applicability of the classical models to calcareous silty sand was analyzed.
A model suitable for simulating the SWCC of calcareous silty sand was proposed.
INTRODUCTION
When coral polyps die, their organic remains gradually calcify, eventually forming coral reefs that can be partially exposed above sea level. Calcareous sand is a unique geomaterial, formed by the organic remains of hermatypic corals and other marine organisms, such as algae and shells, through physical, chemical, and biological process (Chen and Hu, 2020; Shen J. H. et al., 2020, Shen et al., 2020 J.; Wang et al., 2021; He and Ye, 2021). Generally, the calcium carbonate content in calcareous sand is greater than 50%, and calcareous sand is widely distributed along continental shelves and coastlines within N30°–S30° latitude (Anggraini et al., 2017; Nurul et al., 2019). Calcareous sand has been discovered on coral reefs in the South China Sea (Shen et al., 2017; Ye et al., 2019; Yu et al., 2020). Recently, a large-scale reclamation of island-reefs has been carried out using calcareous sands as the filling material (Wang et al., 2019a; 2019b). Geological disasters such as landslides, rockfalls, rainstorms, and earthquakes frequently occur on and around islands in the South China Sea. These geological hazards are closely related to the energy and quantity of water in calcareous sand (or the water-holding capacity of calcareous sand). The soil-water characteristic curve (SWCC) illustrates the relationship between the energy (i.e., matric suction) and quantity (i.e., water content) of water in geomaterials. Therefore, investigating the SWCC of calcareous sand is of vital importance to understanding and preventing geological disasters as well as maintaining the foundation stability of hydraulic-filled island-reefs.
Thus far, numerous studies have been carried out on the SWCCs of geomaterials. In terms of theoretical research, empirical formulas have been proposed to simulate the SWCCs of geomaterials based on different hypotheses by Gardner (1957), Brooks and Corey (1964), Van Genutchen (1980), Willams et al. (1983), Fredlund and Xing (1994), Houston et al. (1994), Kawai et al. (2000), Pham (2005), Stange and Hom (2005), Zhou et al. (2012), and Zhou et al. (2014). These formulas have been widely applied in engineering projects; however, none of them can be used to predict the SWCCs of different geotechnical materials under any possible conditions. Therefore, in order to establish an empirical formula suitable for simulating the SWCC of calcareous sand, it is necessary to conduct SWCC tests on calcareous sand and theoretically analyze the test data. In addition, predecessors have long realized the importance of studying the SWCCs of geomaterials using experiments. For example, Ng and Pang (2000) used a conventional volumetric pressure-plate extractor to explore the effects of initial dry density and water content, drying and wetting histories, soil structure, and stress state on SWCC properties of volcanic ash and found that under the same initial dry density and water content, the desorption and adsorption rates of natural samples were less than those of recompressed samples. Vanapalli et al. (2001) conducted soil-water characteristic tests on unsaturated soil and considered that the initial water content had a significant influence on the structure of unsaturated soil, and then affected the soil-water characteristics. Gallage and Uchimura (2010) measured the SWCCs of sandy soil with different dry densities and particle size distributions as well as pointed out that samples with higher-compactness commonly have greater air entry values and that the SWCCs of samples with a more uniform particle size distribution tend to have less hysteresis. Song (2014) tested the suction stress in silica sand with different relative densities using an automated SWCC apparatus and determined that the air entry value of silica sand decreases with increasing relative density, which is similar to the findings of Gallage and Uchimura (2010). Zhou et al. (2016) used different software computing methods to determine the volumetric water contents of geomaterials and assessed the accuracy of different empirical models in simulating the SWCCs of geomaterials. Jiang et al. (2020) carried out soil-water characteristic tests on ten groups of unsaturated soil samples with different fines contents using a pressure-membrane apparatus and found that the water-holding capacity of the soil gradually decreased as fines content increased when the fines content was between 10 and 60%; otherwise, the water-holding capacity of the soil increased.
Numerous studies have been conducted on the SWCCs of geomaterials using different testing techniques; however, most studies are focused on terrigenous deposits such as silica sand, silt, and clay. Studies on the SWCC of calcareous sand is rare. Due to its special marine biogenesis, the physical and mechanical properties of calcareous sand are significantly different from those of terrigenous deposits, including high void ratio (Shen J. H. et al., 2020; Wang et al., 2020a), irregular particle shape (Wei et al., 2019; Wang et al., 2020b), susceptibility to particle breakage (Xiao et al., 2017; Wu et al., 2020), and cementation (Xiao et al., 2019; Li et al., 2021). Therefore, the soil-water characteristics of calcareous sand might be distinguishable from those of terrigenous sediments, and an in-depth study is still needed.
During hydraulic reclamation, coarse-grained calcareous soil tends to accumulate in the vicinity of the hydraulic reclamation mouth due to hydraulic screening and particle weight, while fine-grained calcareous soil is carried downstream and deposited by flowing water. Between hydraulic reclamation stages, coarse-grained calcareous soil accumulated in the vicinity of the hydraulic reclamation mouth is pushed downstream, and the next stage of hydraulic reclamation is conducted after site leveling (Wang et al., 2020c). Hence, the particle size distribution of calcareous sand is extremely non-uniform in the reclaimed layers. In addition, due to the complexity of marine depositional environments, the compactness of calcareous sand in superficial layers also varies significantly from one location to another. In view of this, a series of soil-water characteristic tests was conducted to explore the effects of fines content and dry density on the soil-water characteristics of calcareous silty sand. By fitting the SWCC of calcareous silty sand using the Fredlund-Xing model (Fredlund and Xing, 1994), Van Genutchen model (Van Genutchen, 1980), and Zhong Fangjie model (Zhong, 2007), the ability of these models to assess the soil-water characteristics of calcareous silty sand was analyzed. An analytical model suitable for simulating the SWCC of calcareous silty sand was proposed. Results of this study provide some reference for assessing the water-holding capacity of calcareous silty sand on hydraulic-filled island-reefs.
TEST OVERVIEW
Test Materials
The calcareous sand used in this study was collected from a reclaimed island-reef in the South China Sea (Figure 1). Calcareous coarse particles and fine particles are mixed together at the sampling site, and the particle size distribution is extremely non-uniform (Figure 1C).
[image: Figure 1]FIGURE 1 | Location of the study area (A): location of Nansha Islands; (B): site of hydraulic reclamation; (C): sampling site).
Considering the weak water-holding capacity of coarse-grained calcareous sand (Hu et al., 2019), only calcareous sand with a particle size less than 0.25 mm was used to observe the water desorption phenomenon in this study. The calcareous soil particles in the sample are classified as coarse particles or fine particles. In this paper, particles 0.075–0.25 mm in size served as the skeleton of the sample and are called coarse particles; particle less than 0.075 in size are called fine particles. To study the effect of fines content on the soil-water characteristics of calcareous sand, calcareous sand samples with fines contents (CF) of 0, 10, 20, 30, 40, and 50% were prepared by adjusting the mass percentage of the fines. According to the Chinese National Standard of Soil Test Method (SL237, 2019), samples in which the mass of coarse particles above 0.075 mm in size accounts for no less than 50% of the total sample are defined as silty sand. Therefore, all the samples used in this study, with fines contents of 0, 10, 20, 30, 40, and 50%, were calcareous silty sand. For convenience, calcareous silty sand samples with fines contents of 0, 10, 20, 30, 40, and 50% were named CSS1, CSS2, CSS3, CSS4, CSS5, and CSS6, respectively. According to the Chinese National Standard of Soil Test Method (SL237, 2019), the hydrometer method was used to measure the size distribution of particles less than 0.075 mm in size. The particle size distributions of the samples are shown in Figure 2, and physical parameters of calcareous silty sand with different fines contents are listed in Table 1.
[image: Figure 2]FIGURE 2 | Particle size distribution curves of calcareous silty sand.
TABLE 1 | Physical parameters of calcareous silty sand.
[image: Table 1]According to Figure 2 and Table 1, it is found that 1) Only the non-uniformity coefficient (Cu) and curvature coefficient (Cc) of CSS5 can simultaneously satisfy Cu > 5.0 and 1.0 < Cc < 3.0; therefore, the particle size distribution of CSS5 is good, while the particle size distributions of the other samples are poor. 2) The specific gravities of calcareous silty sand samples are uniformly 2.73. The samples were collected from the same marine environment with identical mineral compositions and proportions; hence, they have the same specific gravity.
Test Apparatus and Measurement Principle
A 1500F1 15 bar diaphragm pressure plate apparatus, manufactured by Soilmoisture Equipment Corp., was used in this study to measure the change in volumetric water content of a sample with matric suction ranging from 0 to 1,500 kPa (Tao et al., 2018). The pressure plate apparatus is primarily composed of six parts, i.e., nitrogen cylinder, pressure reducing valve, regulating valve, pressure chamber, porous ceramic plate, and water container (Figure 3). The nitrogen cylinder is used to continuously provide air compression stress to the pressure chamber, and the pressure reducing valve and the regulating valve are used to adjust the air compression stress to the designed value. The size of the pressure chamber is 10 cm in internal depth and 30 cm in diameter. Within the pressure chamber is a porous ceramic plate where the sample is placed during the test. Small pores are densely distributed on the ceramic plates. After the ceramic plate is immersed in water and saturated, a layer of shrinking film emerges on the surface of small pores due to surface tension, allowing for the passage of water but preventing air to enter the small pores. A stress difference forms between the inside and outside of the shrink film, and the water in the sample penetrates the pores in the ceramic plate and converges into the water container. When the mass of the water drained from the sample changes at a rate less than 0.1 g/24 h (Pham, 2005), the matric suction in the sample and the air compression stress in the pressure chamber reach an equilibrium state, and the matric suction in the sample is equal to the air compression stress. This means that, under equilibrium conditions, the change in the matric suction of a sample during water desorption can be assessed through the real-time monitoring of the air compression stress in the pressure chamber. In this study, calcareous silty sands with different fines contents took 4–5 days to reach an equilibrium state under different air compression stresses. During the test, the water drained by the sample is completely collected by the water container, and the sample volume is assumed to remain constant during the test. By monitoring the amount of water in the container under each level of air compression stress in a real-time, this study obtained the relationship between volumetric water content and matric suction, i.e., SWCC.
[image: Figure 3]FIGURE 3 | Schematic diagram of the pressure plate apparatus.
Test Program
Water desorption tests were carried out on the samples with different fines contents. In general, the interlocking strength of calcareous silty sand is low, and under a low dry density, it is difficult for samples to take shape when saturated. In this study, the samples with different fines contents were tested at a dry density of 1.52 g/cm3 (As shown in the Table 2). To clarify the effect of dry density on the SWCC of calcareous silty sand, calcareous silty sands with dry densities of 1.44 g/cm3, 1.57 g/cm3, and 1.63 g/cm3 were tested with a fines content of 20%, and the samples were named as CSS7, CSS8, and CSS9, respectively (As shown in the Table 2).
TABLE 2 | Experimental design scheme of water desorption tests.
[image: Table 2]The calcareous sand collected from the sampling site was first dried at 105°C and then cooled to room temperature (i.e., 25°C). Sieving was carried out to obtain the fine particles (d＜0.075 mm) and coarse particles (d = 0.075–0.25 mm). The sample mass was determined based on the dry density and size of the sample (i.e., diameter 61.8 mm, height 20 mm). Combined with the sample mass and the fines content (CF), the mass of coarse particles (d = 0.075–0.25 mm) and fine particles (d＜0.075 mm) in the sample was determined, respectively. The coarse and fine particles in the sample were evenly mixed, and the sample was formed into cutting ring shape through compression. Samples with different fines contents (CF) and dry densities (ρd) were prepared, and the individual samples were 61.8 mm in diameter by 20 mm in height. Samples were fixed on a saturator and saturated via immersion saturation and vacuum saturation (i.e., saturation degree ≥95%). Each saturated sample was weighed. The mass water content (ω) and volumetric water content (θ) of a saturated sample can be calculated using Eqs 1, 2:
[image: image]
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where mω is the mass of water in the saturated sample; md and ms are the mass of the dry and saturated sample, respectively; ρd and ρω are the dry density of the sample and the density of water at 4°C.
The porous ceramic plate was immersed in distilled water and vacuum saturated for at least 3 h. The plate was then horizontally placed in the pressure chamber after the water on the surface was dried and the drainage line was connected. Then, the saturated sample was placed on the porous ceramic plate, and the pressure chamber was sealed after the sample was placed in close contact with the porous ceramic plate.
During testing, the air compression stress in the pressure chamber was regulated to be 0, 5, 10, 20, 35, 70, 120, 300, and 750 kPa using the axial translation technique (Li et al., 2016). Due to the air compression stress, the water in the saturated sample was drained into the water container, and the mass of the water in the water container was measured using a balance with precision of 0.001 g, three to five times a day. When the daily change in the mass of the drained water was less than 0.1 g, the sample was determined to have reached an equilibrium state under the current air compression stress. The air pressure stress was gradually applied to the sample until the sample reached equilibrium under the air pressure stress of 750 kPa.
After testing, the sample was taken out of the pressure chamber, and the water content of the sample was measured to obtain the mass of water in the sample. The mass of water drained from the sample under each air compression stress level is subtracted from the mass of water in the saturated sample before testing (mω). The calculated value for the mass of water in sample after test is obtained and compared with the corresponding measured value, and the correctness of test data is rechecked. The mass of the saturated sample before testing (ms) and the mass of the water drained from the sample under each air compression stress level were used to calculate the total mass of the sample under each air compression stress level (ml). The volumetric water content of the sample under each air compression stress level (θl) can be calculated using Eq. 3:
[image: image]
The Classical Soil-Water Characteristic Curve Models
Many SWCC models have been proposed based on experimental results and various hypotheses. Among them, the Fredlund-Xing model, Van Genutchen model, and Zhong Fangjie model have been widely applied in geotechnical engineering. The Fredlund-Xing model (Fredlund and Xing, 1994) was developed based on the relationship between SWCC, the capillary model, and the pore distribution function, which is expressed as follows:
[image: image]
where θs is the saturated volumetric water content; ψ is the matric suction; exp is a constant with a value of 2.718; a, b, and c, are fitting parameters, where a is related to air entry value, and the greater the a value, the greater the air entry value; b is a parameter related to the slope of SWCC in the transition stage. As b increases, the turning near the point corresponding to the air entry value on SWCC increases as well. c is a parameter related to the matric suction in the residual stage, and the smaller the c value, the gentler the SWCC in the residual stage (Fredlund and Xing, 1994).
The SWCC model proposed by Van Genutchen (1980) based on Mualem’s theory is expressed as:
[image: image]
where θr is the residual volumetric water content; a1, b1, and c1 are fitting parameters.
Zhong (2007) proposed a SWCC model based on the results of soil-water characteristic tests on silica sand, expressed as follows:
[image: image]
where a2, b2, c2, and d are fitting parameters.
In this study, the SWCC of calcareous silty sand was fit using these classical theories to check their applicability for describing the soil-water characteristics of calcareous sand.
RESULTS AND DISCUSSION
Effect of Fines Content
As shown in Figure 4, the SWCCs of calcareous silty sands with varying fines content show the same trend as those of SWCCs of terrigenous unsaturated fine-grained soil (Rao and Singh, 2010; Ma et al., 2015; Han et al., 2017). Depending on the air entry value and residual volumetric water content, the SWCC can be divided into three stages, i.e., the boundary effect stage (ψ ≈ 0–5 kPa), transition stage (ψ ≈ 5–10 kPa), and residual stage (ψ ≈ 10–750 kPa) (Figure 5).
[image: Figure 4]FIGURE 4 | Volumetric water content versus matric suction for calcareous silty sands with different fines contents.
[image: Figure 5]FIGURE 5 | Schematic diagram of SWCC.
The SWCCs of calcareous silty sands with different fines contents varied significantly from each other in the boundary effect stage (ψ ≈ 0–5 kPa). A statistical quantity δi-j was defined to characterize the declining amplitude of the volumetric water content of calcareous silty sand during the gradual increase of matric suction from i to j, as expressed below:
[image: image]
where θi and θj are the volumetric water contents corresponding to matric suctions i and j, respectively. It’s worth noting that volumetric water content (θi or θj) and statistical quantity (δi-j) are dimensionless. In order to realize the dimensionless formula, the matric suction (i or j) is divided by standard atmospheric pressure stress. Pa is the standard atmospheric pressure stress, i.e., 101.3 kPa. Through statistical analysis of δ0-5 of the samples with varying fines contents (CSS1, CSS2, CSS3, CSS4, CSS5, and CSS6) in the boundary effect stage, the δ0-5 of the samples were determined to be 122.13, 107.12, 96.33, 71.42, 37.05, and 19.63%, respectively. [image: image] of the sample decreased with increasing fines content. In the boundary effect stage, the reduction of volumetric water content of calcareous silty sand with increasing matric suction further decreased with increasing fines content. The boundary effect stage corresponded to the low matric suction state, and the quantity and distribution characteristics of large pores containing free water were primary factors controlling the sample water-holding capacity within this stage. The large pores with higher fines content were effectively filled by the fine particles, causing the [image: image] of the sample to decrease.
In the transition stage (ψ ≈ 5–10 kPa), the volumetric water contents of calcareous silty sands with varying fines contents decreased abruptly with increasing matric suction, showing a high sensitivity. When the SWCC in the transition state was extended upwards to intersect with the horizontal line corresponding to the initial volumetric water content, the abscissa (i.e., matric suction) of the intersection point represents the air entry value of the sample (Figure 5). The air entry values of the samples were obtained in this way, i.e., 7.42, 7.80, 7.74, 7.85, 7.87, and 7.97 kPa, respectively. The air entry value of calcareous silty sand increased with increasing fines content except at certain discrete points. For samples with a fines content not exceeding 50%, the air entry values ranged from 7.42 to 7.97 kPa. Because air entry value characterizes the matric suction taken for the sample transforming from a quasi-saturated state to an unsaturated state (Pasha et al., 2015), a higher air entry value of samples with higher fines content suggests that the water-holding capacity of the samples improved by the increasing fines content, making the transition of the sample from a quasi-saturated state to an unsaturated state more difficult. However, the difference in the air entry values of the samples is limited, and the contribution of a higher fines content to the improvement of water-holding capacity is limited.
In the early residual stage (ψ ≈ 10–70 kPa), the SWCCs of the samples varied significantly from each other, and the higher the fines content, the higher the volumetric water content of the sample. For instance, under a matric suction of 20 kPa, the volumetric water contents of CSS1 and CSS6 were 13.25 and 24.27%, respectively. In the residual stage, the samples have been already transitioned from an unsaturated state to a quasi-dry state, and the water drained by the sample was capillary water and bound water (Wu et al., 2020). The fines particles in the samples improved the water-holding capacity, especially the capacity to adsorb capillary water (or weakly bonded water) within the calcareous silty sand. During the early residual stage, the water drained from the sample was predominantly capillary water; however, the porous structure of the samples could provide sufficient adsorption space for bound water even in the absence of fine particles, such that bound water can be firmly adsorbed onto particle surfaces (Wu et al., 2020). Therefore, the SWCCs of the samples approximately overlapped with each other in the late residual stage (ψ ≈ 70–750 kPa). The residual volumetric water contents of CSS1, CSS2, CSS3, CSS4, CSS5, and CSS6 were 16.80, 17.83, 17.96, 18.19, 18.22, and 16.48%, respectively. Except for some individual scattered points, the residual volumetric water content of calcareous silty sand increased with increasing fines content, indicating that the quantity of small pores containing capillary water and bound water inside the samples increased with increasing fines content and the water-holding capacity of the calcareous silty sand increased. However, for a fines content not exceeding 50%, the differences in residual volumetric water content between the samples were extremely small, and the maximum deviation among them is 1.74%, indicating that increasing fines content could only improve the water-holding capacity of calcareous silty sand to a limited degree, which is consistent with the conclusions of existing studies (Al-Badran and Schanz, 2009; Dolinar, 2015; Jiang et al., 2020). Additionally, the small size deviation between coarse and fine particles may also be the main reason for this phenomenon.
Figure 4 also shows that the initial volume water contents of calcareous silty sands with varying fines content have little difference; however, with the increasing fines content, the initial volume water content of calcareous silty sand presents a downward trend. This experimental phenomenon can be explained by the microscopic structure of calcareous silty sand. Soil is made up of solid, liquid and gas. When calcareous silty sand is in a saturated state, there are only solid and liquid two phase material inside. At this time, pore water exists in the pores of calcareous silty sands in the form of bound water, capillary water and free water. Among them, free water accounts for a large proportion in pore water and mainly exists in large pores; the proportion of bound water and capillary water in pore water is small, which mainly exists in small pores (Wu et al., 2020). With the increasing fines content, the large pores decrease and small pores increase in calcareous silty sand. Accordingly, the free water content decreases, while the combined water and capillary water content increases. With the increasing fines content, the decrease of free water content is greater than the increase of the content of bound water and capillary water, resulting in the volume water content of calcareous silty sand in saturated state (i.e., initial volume water contents) does not increase with the increasing fines content.
Effect of Initial dry Density
Figure 6 shows the SWCCs of calcareous silty sand with a fines content of 20% under different dry densities (CSS3, CSS7, CSS8, and CSS9). The SWCCs of the samples differ from each other primarily in the boundary effect stage (ψ ≈ 0–5 kPa) and the residual stage (ψ ≈ 10–750 kPa). In contrast, in the transition stage (ψ ≈ 5–10 kPa), the SWCCs of the samples approximately overlapped with each other.
[image: Figure 6]FIGURE 6 | Volumetric water content versus matric suction for calcareous silty sands with different dry densities.
In the boundary effect stage (ψ ≈ 0–5 kPa), the δ0-5 of CSS7, CSS3, CSS8, and CSS9 were 145.79%, 96,33, 48.28, and 36.15%, respectively. The δi-j of calcareous silty sand with the same fines content decreased with increasing dry density, suggesting that the declining amplitude of the volumetric water content of calcareous silty sand with increasing matric suction further decreased with increasing dry density due to the amount of large pores containing free water being reduced with increasing dry density.
In the transition stage (ψ ≈ 5–10 kPa), the air entry values of CSS7, CSS3, CSS8, and CSS9, were 7.43, 7.74, 7.86, and 7.92 kPa, respectively. The higher the dry density of calcareous silty sand, the greater the air entry value of the sample. Samples with higher dry density experience more difficulty evolving from a quasi-saturated state to an unsaturated state. The quantity of the larger pores containing free water in the samples with higher dry density is fewer, and the water connectivity is poorer; hence, it is more difficult for water to drain out of the sample. As a result, a larger matric suction would be required for the sample to evolve from a quasi-saturated state to an unsaturated state.
In the residual stage (ψ ≈ 10–750 kPa), the residual volumetric water contents of the samples were 16.19, 17.96, 17.82, and 19.89%, respectively, indicating that the residual volumetric water content of the sample increases with increasing dry density. As discussed above, the water drained by the sample in the residual stage was capillary water and bound water. There are more soil particles in the samples with higher dry density, which could provide more adsorption space (such as pores on the surface of particles and small pores between particles) for capillary water and bound water (Wu et al., 2020).
Applicability of Classical Models
The SWCC of calcareous silty sand under different test conditions was fit using the models described above. It is found that these models are all applicable to describe the SWCC of calcareous silty sand in terms of the general trend. Among them, the fitting result of the Fredlund-Xing model to the SWCC of the samples is the best. When the Zhong Fangjie model was used to fit the experimental results of the samples, the SWCC was approximately horizontal in the residual stage, which is contradictory to the measured result that the volumetric water content of calcareous silty sand presented a decreasing trend with increasing matric suction in the residual stage (Figure 7). The developmental trend of SWCC is related to the size and quantity of pores in the sample (Alves et al., 2020; Daneshian et al., 2021). The Zhong Fangjie model (Zhong, 2007) is proposed based on the measured results of soil-water characteristic of silica sand. There are almost no inner pores in silica sand particles and only a few outer pores on the surface of silica sand particles, so the change in the SWCC of silica sand in the residual stage is subject to the pores between particles. In contrast, for calcareous sand, both the outer pores distributed on the surfaces of the particles and the inner pores inside the particles are abundant, and these pores, in which water could reside, improve the water-holding capacity of calcareous sand. In addition, due to the decomposition of calcium carbonate, calcareous sand also carries a certain quantity of mineral ions, which have a strong ability to adsorb the water within the sample in the residual stage (Wu et al., 2020). Therefore, the soil-water characteristics of calcareous sand differs from that of silica sand in the residual stage, and the fitting result of Zhong Fangjie model (Zhong, 2007) is not satisfactory compared to the other models.
[image: Figure 7]FIGURE 7 | Fitting results for SWCC of CSS5 by different models.
Table 3 provides the values of the parameters of the Fredlund-Xing model fitting for the SWCCs of calcareous silty sands with different fines contents. According to Table 3, 1) a increased with increasing fines content, which is consistent with the above measured air entry values of calcareous silty sands with different fines contents. 2) b decreased abruptly with increasing fines content, indicating that with increasing fines content, the slope of the SWCC of calcareous silty sand declined gradually, and the SWCC became gentler in the transition stage. The range of matric suction corresponding to the SWCC of the transition stage widened due to increasing fines content, indicating that the matric suction for the sample transit to the residual stage increased. 3) c increased with increasing fines content, and the SWCCs of the samples in the residual stage became steeper, which conforms to the change of the SWCCs of the samples in the early residual stage (Figure 4). The number of small pores and the water-holding capacity of the sample increases with increasing fines content; hence, making it more difficult for calcareous silty sand to reach an absolutely dry state. 4) In the transition stage and late residual stage, the SWCCs of the samples approximately overlapped with each other, suggesting that the values of b and c were highly sensitive to variations in the SWCC (Figure 4). The variation ranges of the three parameters also indicated that b was more sensitive to the change in fines content.
TABLE 3 | Parameters of the Fredlund-Xing model fitting the SWCCs of calcareous silty sands with different fines contents.
[image: Table 3]Table 4 shows the parameter values of the Fredlund-Xing model when used to fit the SWCCs of calcareous silty sands with different dry densities. It is found that 1) a increased with increasing dry density, which is consistent with the above measured result that the air entry value of calcareous silty sand increased with increasing dry density. 2) b did not show any obvious regularity with increasing dry density. However, among the three parameters, b changed most significantly with increasing dry density. 3) c changed only slightly with the change in dry density, which conforms to the observation that the SWCCs of calcareous silty sands with different dry densities were approximately parallel in the residual stage (Figure 6).
TABLE 4 | Parameters of the Fredlund-Xing model fitting the SWCCs of calcareous silty sands with different dry densities.
[image: Table 4]Soil-Water Characteristic Curve Model of Calcareous Silty Sand
By analyzing the data in Table 3, the relationship between a, b, and c and fines content (CF) is shown in Figure 8 and can be expressed as follows:
[image: image]
where y1, A1, and B1 are fitting parameters.
[image: Figure 8]FIGURE 8 | Relationship between simulation parameters of SWCC and fines content: (A)a versus CF; (B)b versus CF; (C)c versus CF.
Figure 9 shows the relationship between dry density (ρd) and the parameter a, which is expressed as follows:
[image: image]
where y2, A2, and B2 are fitting parameters.
[image: Figure 9]FIGURE 9 | Relationship between simulation parameter of SWCC (A) and dry density.
By combining Eqs 8, 9, the following parameter calculation formulas are obtained for the Fredlund-Xing model, which is suitable for assessing the soil-water characteristics of calcareous silty sands with different fines contents and dry densities:
[image: image]
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By fitting the saturated volumetric water contents (θs) and fines contents (CF) of calcareous silty sands with different fines contents (Figure 10A), the following equation is acquired to calculate the saturated volumetric water content (θs) of calcareous silty sand based on fines content:
[image: image]
[image: Figure 10]FIGURE 10 | The relationship among saturated volumetric water content, fines content and dry density: (A) saturated volumetric water content versus fines content; (B) saturated volumetric water content versus dry density.
Similarly, by fitting the saturated volumetric water contents (θs) and dry densities (ρd) of calcareous silty sands with different dry densities (Figure 10B), the following equation is acquired to calculate the saturated volumetric water content (θs) of calcareous silty sand based on dry density:
[image: image]
Combining Eqs 13, 14 give the relational expression among saturated volumetric water content (θs), fines content (CF), and dry density (ρd):
[image: image]
By substituting Eqs 10–12, 15 into Eq. 5, the following formula is acquired to calculate the volumetric water content (θ) of calcareous silty sands with different matric suctions (ψ) based on fines content and dry density:
[image: image]
where [image: image] and [image: image] are the expressions containing dry density (ρd) and fine content (CF), respectively. [image: image] and [image: image] are the expressions containing fine content (CF), respectively.
The proposed SWCC model was used to calculate the volumetric water content of calcareous silty sands with different fines contents and dry densities under different matric suctions, and the applicability of the model to characterize the SWCC of calcareous silty sand was assessed using the ratio between the calculated and measured values (Table 5). The values calculated from Eq. 16 were close to the measured results, and the ratio between the calculated and measured results ranges from 0.43 to 1.22, indicating that proposed model could fit the SWCC of calcareous sand. Particle shape, pressure loading mode, and numerous other factors also affect the soil-water characteristics of calcareous silty sand. Regarding the mathematical basis on which the equations are developed to calculate the volumetric water content of calcareous silty sand, it is also necessary to explore its change laws with various parameters as well as their mathematical correlations. Related research should be carried out to lay a solid theoretical foundation to develop an empirical formula universally applicable to assessing the SWCCs for various types of calcareous sands.
TABLE 5 | The comparison between the calculated and measured values for volumetric water content.
[image: Table 5]CONCLUSION
A series of soil-water characteristic tests was carried out to explore the effects of fines content and dry density on the soil-water characteristics of calcareous silty sand. The applicability of three SWCC models for calcareous silty sand was verified, and a SWCC model for calcareous silty sand considering fines content and dry density was proposed based on the measured results.
In the boundary effect stage, the quantity of large pores in calcareous silty sand decreases significantly with increasing fines content; therefore, the SWCCs of the samples differ significantly. For samples with a fines content not exceeding 50%, the air entry values ranged from 7.42 to 7.97 kPa. In the early residual stage, the higher the fines content, the larger the volumetric water content of the samples as the quantity of small pores in the calcareous silty sand increased. However, in the late residual stage, the difference in the SWCCs of the samples is insignificant, which might primarily be attributed to the porous meso-structure of calcareous silty sand.
The quantity of large pores in the calcareous silty sand decreased significantly with increasing dry density. Consequently, the declining amplitude of the volumetric water content of high-dry density calcareous silty sand with increasing matric suction dropped in the boundary effect stage. For calcareous silty sand with a dry density of 1.44–1.63 g/cm3, the air entry values increased with increasing dry density and ranged from 7.43 to 7.92 kPa. The adsorption spaces for capillary water and bound water in the sample increased with increasing dry density, causing the water-holding capacity of the sample in the residual stage to improve.
Among the three classical SWCC models, the Fredlund-Xing model best fit the SWCC of calcareous silty sand. In the Fredlund-Xing model, parameter b is most sensitive to changes in fines content and dry density.
Based on the Fredlund-Xing model and the measured results, a SWCC model considering the effect of fines content and dry density was proposed. This new model can be used to describe the soil-water characteristics of calcareous silty sands with different fines contents and dry densities.
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In this study, a large-scale model test was performed to investigate the effect of the single-row and double-row micropiles on the landside stabilization. For two different testing configuration settings, the bending moment along the micropiles, failure mode, and force condition were captured and compared. It is found that the landslide thrust on piles was distributed in a triangular shape. The piles in the front row carried greater pressure than the piles in the rear row. The resistance of the sliding body behind the pile was distributed in a parabolic shape, and mainly concentrated on the middle of the pile. The piles were destroyed due to the combined shearing and bending impact applied near the slipping surface. The boundary of the failure zone was from the position of two times the pile diameter under the slipping surface to the position of two and a half times the pile diameter above the slipping surface. Under the action of the landslide, each row of piles deformed at the same time. The capability of landslide stabilization for double-row piles was better than that of a single-row pile. The sections of the pile above slide surface were mainly subjected to negative bending moments and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface. The pile body of the embedded section located in the range of ten times the pile diameter below the sliding surface was subjected to a positive bending moment.
Keywords: micropiles, landslide stabilization, experimental testing, anti-sliding, failure mode
INTRODUCTION
Micropiles are defined as small-diameter, drilled piles composed of injected grout with some form of steel reinforcement placed in the center of grout to resist the load (Bruce et al., 1995; Bruce and Juran, 1997; Sun et al., 2013). The central reinforcing element is either a high-strength steel bar or a tube that is secured in the grout injected under high pressure to improve bonding with the surrounding soil. Micropiles can be virtually installed at any ground condition and at any inclination (William and Howe, 2010). Micropiles have been widely used in many applications of ground improvement to increase the bearing capacity and to reduce the settlement, particularly in strengthening existing foundations (Meyerhof and Division, 1976; FHWA, 2005). Micropiles have numerous advantages compared with the other ground improvement method, especially for the emergency risk-elimination and construction projects, including the rapid construction process, flexible configuration settings, and limited disturbance to the improved structures (Alnuaim et al., 2016). Therefore, the applications of micropiles have been rapidly increasing over the past few decades.
Recently, micropiles were used to reduce the probability of landslides or to prevent them. One of the major concern was to evaluate the lateral loads acting on the micropiles, which will provide crucial information for the design in practice. Commonly, the stability of reinforced by micropiles was analyzed through analytical and numerical methods by incorporating the stability of slopes without reinforcement with the resisting force provided by the stabilizing piles (Bransby and Springman, 1999; Mokwa and Duncan, 2001; Shahrour and Ata, 2002; Rollins Kyle et al., 2003; Richards and Rothbauer, 2004; Alnuaim et al., 2015). However, these methods can only provide the ultimate state, without the development of pile resistance with the soil movement. Thus, an in situ field model test was one of the important methods to better understand the micropile–slope movement reaction. For instance, Watanabe et al. (2017) and Hwang et al. (2017) performed a series of model test to study the bearing capacity of a micropile raft on slope stabilization. Still, more case studies relating to the slope stabilization with micropiles are interesting to the geotechnical community.
Because of a relatively large length–diameter ratio compared with that of traditional piles, the pattern of stress distribution and breaking mechanisms of the micropiles under the influence of a lateral force derived from a landslide sliding movement are also different from that of the traditional piles (Salgado et al., 2014; Han et al., 2015; Gianpiero, 2016). For landslide stabilization, the micropiles are mostly designed and constructed in rows of different layout configurations. Some other works have illustrated the stress distributions within a landslide or a foundation reinforced by micropiles (Yan et al., 2011; Bai et al., 2016; Zeng et al., 2020). However, the sliding force on the micropile or micropile group was still unclear. Thus, the stress distribution and failure mechanisms of an individual micropile in comparison with rows of micropile were further investigated in this research.
In this study, to further advance the current understanding on the bearing strength, improvement performance, and failure mechanism of the micropiles with different configuration settings, a large-scale physical model experiment was conducted to test the interaction between micropiles and landslide under a multistage loading process. The landslide model is made of loess, and the sliding surface was produced artificially so that the applied micropiles could play a critical contribution in the anti-sliding mechanism. For two different testing configuration settings, the distribution of bending resistance along the instrumented micropile, destruction occurrence on the body of micropile, and the improved performance of the landslide were captured and compared.
TESTING SITE CHARACTERIZATION AND MICROPILES FOR REMEDIATION
Testing Site Characterization
The landslide model is mainly established by using the loess materials from Xi’an city, Shannxi Province, which is located on the Loess Plateau in China. Table 1 shows the basic physical and mechanical properties of the loess. The loess was compacted layer by layer to a target value with a density of 1.81 g/cm3 and the moisture content of approximately 15%. For each layer’s construction, the penetration test was performed after compaction to ensure that the relative density of landslide materials reached the design criterion; after the slope was filled, the slope surface was made according to the designed shape, and the excess soil was removed. In order to reduce the boundary effect, three through grooves were designed in the sliding body and filled with sand. Figure 1 shows the photo of the preparing stage of field experimentally.
TABLE 1 | Basic physical and mechanical properties of the loess.
[image: Table 1][image: Figure 1]FIGURE 1 | Manufacturing process of the sliding body: (A) layered filling of soil, (B) removing excess soil, and (C) the completed test model.
Slipping surface is an important issue in the model establishment to allow the inserted micropiles as anti-sliding stiffer elements to function appropriately to prevent the large deformation of the landslide model. The shape of the slipping surface is arc-shaped. After the completion of slipping bed, the slipping surface was made by covering the artificially made arc-shaped slipping bed with double layers of plastic membrane. On the basis of the no-pile test, we determined the load and the landslide thrust when the sliding body was in the ultimate equilibrium state using the reverse calculation: c = 3.5 kPa and φ ＝ 16°.
The micropiles used in this study were made of concrete columns and reinforced with steel bars. The strength grade of the concrete columns and cement is C25 and 421-5R, respectively, based on the Chinese National Code. The total length of the concrete column is 4 m, and its diameter is 60 mm, corresponding to the length and diameter of 12 m and 180 mm in field, respectively. The strain gauge was then glued onto the micropile. During the backfill process, the soil among the inserted concrete columns should be compacted appropriately so that the installed earth pressure gauges can measure the earth pressure changes effectively.
Note that the model test was designed based on the similarity theory in comparison with the full-scale field test (Luo and Ge, 2008), with a geometric similarity ratio of 3 and the elastic modulus similarity ratio of 1. Hence, the similarity ratio of linear load on the pile body and concentrated force on the pile body were 3 and 9, respectively. Accordingly, the similarity ratio of stress and strain of the pile body was 1. The similarity ratio for the cross-sectional area of the pile body was 9.
Micropiles for Remediation
The cross sections and plan view for double rows model test are shown in Figures 2, 3, respectively. In the model, the micropiles were installed in the front part of the landslide. Two testing cases corresponding to single and double rows of the micropile setup were performed. For the single-row configuration (Case A), the distance between each micropile was 0.48 m, and totally, seven piles were installed. The top of the micropiles were connected together by using a steel bar. For further analysis, seven piles were labeled as D1 to D7 from the right to left. For the double-row configuration (Case B), totally seven piles were installed in two rows, and the distance among the pile in each row is 0.96 m. The vertical distance between the rows is 0.36 m. In each row, the piles were connected together using a steel bar. For further analysis, seven piles were also labeled as S1 to S7 from the right to the left.
[image: Figure 2]FIGURE 2 | Cross sections of the models for two configurations: single row and double rows (unit: mm).
[image: Figure 3]FIGURE 3 | Plain view of the models for two configurations: single row and double rows (unit: mm).
INSTRUMENTATIONS AND LOAD APPLICATIONS
Pressure Measurements for the Installed Piles
The pressure gauges were the vibrating string earth pressure cell. To measure the earth pressure acting on the pile in different cases, for Case A (single-row configuration), pile D4 which is located in the middle of the landslide model was selected as the testing pile. Nine soil pressure gauges were applied along the pile depth in the vertical direction in the front and after the pile. For Case B (double-row configuration), piles S4 and S5 were selected as the testing piles, and nine soil pressure gauges were applied in the same manner as described in Case A. The layout of the pressure gauges in the model is depicted in Figure 4.
[image: Figure 4]FIGURE 4 | Layout of the pressure gauges in the model: (A) distribution of the pressure gauges in the vertical direction along the pile in a single-row model, (B) distribution of the pressure gauges in the vertical direction along the pile in a double-row model, (C) distribution of the pressure gauges in a plain view, and (D) embedded pressure gauges.
Strain Measurements of the Micropiles
To test the bending moment of the micropile, strain gauges were pasted in pairs before and after the longitudinal bar of the tested piles. The spacing of the strain gauges is 10 cm. After measuring the strains of different parts of the micropile, the bending moments can be obtained by Eq 1:
[image: image]
In the formula, M is the bending moment, N m; EI is the flexural rigidity of the micropile, N m2; [image: image] and [image: image] are the tensile and compressive strains of each measuring point, respectively; and h is the distance of the tensile and compressive strain gauges at the same section, m.
Displacement Measurements
In both cases, multiple displacement gauges were placed on the top of the piles as well as at the sliding surface. The displacement gauges were placed perpendicular to the sliding direction of the landslide, fixed with a steel beam anchored to the soil (Bian et al., 2019; Bian et al., 2020). The purpose is to observe the displacement of the pile group and slope deformation.
Load Applications
The layers of sandbags used as the multistage loading were placed on the top of the landslide model. To normalize the effect of the loading area, the load presented herein was expressed as load/area. Hence, the unit of load reported was expressed as kN/m2, that is, kPa. Each loading increment is 8 kPa, and the total loading is 40 kPa. Therefore, five stages of load were applied on the top of the landslide. It is important to note that before applying the next loading increment, the measurements of earth pressure, stress conditions of the piles, and displacement at various measuring position should remain stable under the current loading condition.
RESULTS AND DISCUSSIONS
Failure Mechanisms of the Micropiles
Figures 5, 6 depicts the damage of micropile in single- and double-row configurations, respectively. Through excavation, it was found that the landslides slide along the artificially made slipping surface, and no other shear cracks were found inside the sliding body. The failure mechanisms for all tested piles were basically the same, and the major breakage all occurred in the pile segment near the slipping surface. The other part of the piles remains with the good integrity and vertical. For most testing piles, the broken segment was from 9 cm below the slipping surface to 15 cm above the slipping surface. Within this range, the piles were bended, and large cracks could be observed. The failure mechanism is the combination of shearing and bending failure. Especially for pile D5, the pile was mainly sheared to failure, and shearing deformation that occurred at the slipping surface was about 5 mm for the pile. For double-row pile configuration, the piles in the front rows were destroyed more severely than the piles in the rear row. To conclude the failure mechanisms of the row piles for the anti-sliding measure, for the same ratio of reinforcing bars, both the individual pile and piles in group could potentially fail by shearing and bending that occurred near the slipping surface.
[image: Figure 5]FIGURE 5 | The damage of piles in single-row configuration: (A) overall damage of pile D6, (B) breakage of pile D6 near the slipping surface, (C) overall damage of pile D5, and (D) breakage of pile D5 near the slipping surface.
[image: Figure 6]FIGURE 6 | The damage of piles in double-row configuration: (A) overall damage of the piles in the front row, (B) breakage of the pile near the slipping surface in the front row, (C) overall damage of the piles in the rear row, and (D) breakage of the pile near the slipping surface in the rear row.
Variation of Earth Pressure
Figure 7 shows the horizontal earth pressure variations over time measured in the soil before and after pile D4, which is in the middle of the single row test. Figure 8 shows the distribution of earth pressure on pile D4. The section of the pile above the slipping surface was regarded as the anti-sliding segment. The section of the pile under the slipping surface was regarded as the anchoring section. Therefore, the earth pressure variation over time can be interpreted depending on the measuring positions and micropile configuration, such as 1) in front of the anti-sliding segment of the pile, 2) behind the anti-sliding segment of the pile, 3) in front of the anchoring section of the pile, and 4) behind the anchoring segment of the pile.
1) Distribution of the landslide thrust force on pile D4
[image: Figure 7]FIGURE 7 | Earth pressure measured in front of and behind pile D4: (A) earth pressure in front of the anti-sliding segment of pile D4, (B) earth pressure behind the anti-sliding segment of pile D4, (C) earth pressure in front of the anchoring segment of pile D4, and (D) Earth pressure behind the anchoring segment of pile D4.
[image: Figure 8]FIGURE 8 | Distribution of the earth pressure on pile D4.
Distribution of the landslide thrust force on pile D4 is shown in Figures 7A,8, including measuring points 1-1-1, 1-1-2, 1-1-3, 1-1-4, and 1-1-5. After the toe of the landslide was excavated, the earth pressure value at the positions of 0.15 m (1-1-5) and 1.75 m (1-1-1) above the slipping surface started increasing and decreasing, respectively, which indicated that the pressure acting on the pile changed and certain deformations occurred to the piles. After loading was applied on the top of the landslide, gradual increases were observed from the measurements of earth pressure gauges placed at the position of 0.15 m above the slipping surface (1-1-5). This was caused by the compression of the soil in front of the pile near the sliding surface with the deformation of the micropile. During the loading process, the earth pressure values at the positions of 0.5 m (1-1-4) and 0.78 m (1-1-4) above the slipping surface increased slightly. The earth pressure value at the position of 1.75 m above the slipping surface continued decreasing in the loading process and approached to 0 when the total loading reached 32 kPa. No significant variations were made to the earth pressure at the position of 1.25 m (1-1-2) above the slipping surface during the loading process. Finally, the landslide thrust was distributed approximately in a triangular shape, and the earth pressure near the sliding surface was relatively large.
2) Resistance from the sliding body behind pile D4
Resistance from the sliding body behind pile D4 is shown in Figures 7B,14, including measuring points 1-2-1, 1-2-2, 1-2-3, 1-2-4, and 1-2-5. After excavating the toe of the landslide, the earth pressure of all measurement points decreased, which clearly indicated that the piles started to carry sliding pressure, and appeared to be deformed. After loading was applied on the top of the landslide, the earth pressure at the positions of 0.5 m above the slipping surface (1-2-4) remained approximately stable, and slightly increased when loading exceeded 32 kPa. At the position of 0.78 m above the slipping surface (1-2-3), the earth pressure gradually increased, which indicated that the pile deformed and compressed the soil in the rear. At the position of 1.25 m above the slipping surface (1-2-2), the earth pressure reduced gradually and basically reduced to zero when loading achieved 32 kPa. The earth pressure at the measuring point of 1.75 m above the sliding surface (1-2-1) was always close to zero. Overall, earth pressures measured in the soil close to the middle of loading segment were significant and varied largely during the loading process and were very small in the soil near the slipping surface and the pile top. The resistance of the sliding body behind the pile can be regarded as a parabolic distribution.
3) Resistance from the sliding bed in front of the pile D4
Resistance from the sliding bed in front of the pile D4 is shown in Figures 7C,14, including measuring points 1-1-6, 1-1-7, 1-1-8, and 1-1-9. After the slope toe excavation was completed, earth pressures increased at the positions of 0.45 m under the slipping surface (1-1-7) and decreased at the other three depths. After load was being applied, the earth pressure continuously increased at the depths of 0.45 m under the slipping surface, and remained roughly unchanged for the other three measuring depths. Under the action of loading, the landslide deformed, driving the pile body in the anti-sliding segment to deform along the sliding direction. In the early stage of loading, the micropile can be regarded as an elastic rod. Therefore, the pile body near 0.45 m below the sliding surface squeezed the sliding bed against the front edge, which caused the earth pressure at the position to increase. When the loading reached 32 kPa, the earth pressure at the depths of 0.45 m under the slipping surface suddenly reduced. It indicated that the micropile damaged at this time, and the deformation of pile recovered.
4) Resistance from the sliding bed behind pile D4
Resistance from the sliding bed behind pile D4 is shown in Figures 7D,14, including measuring points 1-2-6, 1-2-7, 1-2-8, and 1-2-9. The earth pressure measured at the position of 0.1 m below the slipping surface (1-2-6) intensively increased with the landslide toe excavation, and indicated the pile in the anchoring segment started deformation to compress the soil in the back under the sliding force. After the loading was applied, the earth pressure at 0.1 m below the sliding surface continued to increase until the loading reached 32 kPa and then it began to decrease rapidly. This indicated failure of the pile; accordingly, the earth pressure also reduced due to the rebounding influences. At the other positions (1-2-7, 1-2-8, and 1-2-9) along the depth, earth pressure values were much smaller and remained stable during the loading process. The resistance from the sliding bed behind the pile was concentrated mainly near the sliding surface.
As shown in Figures 9–12, pile S5 and pile S4 behaved in a similar way as pile D4. This earth pressure on the piles can be summarized as follows:
[image: Figure 9]FIGURE 9 | Earth pressure measured in front of and behind pile S5: (A) earth pressure in front of the anti-sliding segment of pile S5, (B) earth pressure behind the anti-sliding segment of pile S5, (C) earth pressure in front of the anchoring segment of pile S5, and (D) earth pressure behind the anchoring segment of pile S5.
[image: Figure 10]FIGURE 10 | Distribution of the earth pressure on pile S5.
[image: Figure 11]FIGURE 11 | Earth pressure measured in front of and behind pile S4: (A) earth pressure in front of the anti-sliding segment of pile S4, (B) earth pressure behind the anti-sliding segment of pile S4, (C) earth pressure in front of the anchoring segment of pile S4, and (D) earth pressure behind the anchoring segment of the pile S4.
[image: Figure 12]FIGURE 12 | Distribution of the earth pressure on pile S4.

1) The landslide thrust on the micropiles was in an approximate triangular distribution, and the earth pressure near the sliding surface was larger. The landslide thrust on the pile of front row (pile S5) was larger than that on the pile of the rear row (pile S4).
2) The resistance of the sliding body behind the pile can be regarded as a parabolic distribution and mainly concentrated in the middle of the pile. The resistance of the sliding body behind the front pile was larger than that behind the rear pile.
3) The resistance of the sliding bed in front of the pile was relatively small, mainly located near 0.45 m under the sliding surface.
4) The resistance from anterior sliding bed was distributed mainly near the sliding surface. The earth pressure near the sliding surface varied greatly, whereas the earth pressure at the other measurement points varied slightly.
5) The earth pressure curves of the two rows of piles had the same change with time, which indicated that the two rows of piles deformed by pressure at the same time.
Variation of Displacement at Measurement Points
Figure 13 shows the displacement evolution during loading. The displacement at the top of pile and the toe of landslide increased slowly in the early stage of loading. As the load increased, the displacement changed faster. After each load, the displacement showed the law of rapid growth first and then gradually stabilized. The displacement at the toe of the landslide was greater than that at the top of the pile in two cases. Under the same load conditions, the displacement at the top of double-row piles was smaller than that at the top of a single-row pile, indicating that the anti-sliding effect of double-row piles was better than that of a single-row pile.
[image: Figure 13]FIGURE 13 | Displacement variation at the monitoring points.
Bending Moment of Pile
Based on strain gauge data, the bending moment distribution of each row of piles was obtained as shown in Figure 14.
[image: Figure 14]FIGURE 14 | Bending moment of micropiles: (A) bending moment of pile D4, (B) bending moment of pile S5, and (C) bending moment of pile S4.
Although the bending moments of each row of piles were slightly different, the variation mode along the pile was the same. The anti-sliding sections of the pile body were mainly subjected to negative bending moments (positive tension on the sliding side and negative tension on the back side) and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface (ten times the diameter of the pile). The maximum negative bending moment was at 0.3 m above the sliding surface (about five times the diameter of the pile). The pile body of the embedded section located in the range of 0.6 m below the sliding surface was subjected to a positive bending moment. The maximum positive bending moment occurred at 0.2 m below the sliding surface (about three times the diameter of the pile). The pile body from 0.6 m below the sliding surface to the bottom of the pile was subjected to a negative bending moment, while the pile body from 0.6 m above the sliding surface to the top of the pile was subjected to a positive bending moment, with a small magnitude.
Discussion

1) The effect of micropiles on the stability of slide slope: based on the Bishop method, the safety factor of the designed slope was 1 without the micropile when no surcharge was applied on the top of the slope. Once the double-row micropiles were implemented, the safety factor of the slope increased significantly. Table 2 shows the change in the safety factor of the slope at different surcharges. It can be observed that the safety factor of the slope increased about 20% when double-row micropiles were introduced without surcharge. When surcharge increased, the safety factor obviously decreased. At surcharge = 24 kPa, the safety factor declined to 1.0, corresponding to the critical state. This indicated that when double-row micropiles were implemented, the slope sustained 24 kPa surcharge by reinforcement with double-row micropiles. When the surcharge exceeded 24 kPa, the slope was unsafe with the safety factor lower than 1, showing a large displacement as shown in Figure 13. These findings confirmed that the influence of the micropile on landslide stabilization was significant and efficient.
2) Failure of micropiles: as shown in Figures 11,12,14, the failure mode of micropiles induced by landsides was mainly due to the coupled effect of bending and shearing near the shear surface. Hence, to increase the anti-bend and anti-shear stability of micropiles by adding more strengthened tendons near the slide surface was one of the efficient method to improve the safety factor of the slope in the design of micropiles on landslide stabilization. As illustrated in Figure 14, the area of reinforcement should be in the vicinity of eight times the micropile diameter around the slide surface.
3) Stress states of micropiles during landslide: during the design of micropiles, the determination of stress states was one of most important steps. Based on this model test, the landslide thrust on the micropiles was almost triangular distribution, while the anti-sliding force of micropiles distributed to be a parabolic curve. Hence, it is recommended to design the micropile based on these stress states in the field.
TABLE 2 | hange in the safety factor of the slope at different surcharges.
[image: Table 2]CONCLUSION
In this study, the large-scale model test was performed to evaluate the single-row and double-row micropiles as anti-sliding measurements of a typical landslide. Following major conclusions can be made:
1) The safety factor of the slope increases from 1.0 to 1.21, when the double rows of micropiles are implemented. Moreover, the slope reinforced by a micropile can sustain 24 kPa surcharge on the top. This indicates that using micropiles to stabilize landslides is efficient.
2) The landslide thrust on piles was distributed in a triangular shape, and the earth pressure near the sliding surface was relatively large. The piles in the front row carried greater pressure than piles in the rear row.
3) The anti-sliding sections of the pile body were mainly subjected to negative bending moments and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface. Hence, it is recommended to design the micropiles based on these stress states.
4) The failure mode of micropiles induced by landsides was mainly due to the coupled effect of bending and shearing near the shear surface in the vicinity of eight times the micropile diameter around the slide surface.
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The Taihongcun landslide, which was a remarkable geological disaster triggered by the 2008 Wenchuan earthquake, had a volume of about 2 × 106 m3 and killed about 23 people. Through detailed field investigations, basic information of topography, geological structure and stratigraphy for the landslide were acquired and key kinetic characteristics of the landslide were identified. On the basis of filed investigations, 2D numerical models with discrete element method (DEM) were established to simulate the kinematics and failure process of the landslide. To ensure the validity of the dynamic calculations, the free-field boundary condition was developed and introduced intro the DEM models. According to filed investigations and DEM simulations, the dynamic processes of the Taihongcun landslide can be divided into four phases: fragmentation, projection motion, scraping, and granular debris flow and accumulation. In addition, the parameter analysis showed that the particle bond strength had a significant influence on the runout distance and landslide debris morphology. Finally, the possible mechanism of the Taihongcun landslide was determined: a rock mass of poor quality provided the lithological basis for this landslide formation; a joint set J1 in the back scarp and a weak interlayer of carbonaceous slate and shale between the upper sliding mass and the bedrock formed the rupture boundaries of the upper source area; a strong seismic ground motion was the external excitation that triggered the destructive landslide event; additionally, hypermobility was caused by the high elevation and topographical conditions of the landslide.
Keywords: Taihongcun landslide, field investigation, discrete element method, dynamic process, formation mechanism
INTRODUCTION
On May 12, 2008, a magnitude Mw 7.9 earthquake occurred in the Longmenshan Mountains tectonic zone of Sichuan Province, China. The earthquake’s epicenter was located at Yingxiu Town, Wenchuan County (31.0°N and 103.4°E), and the hypocenter was at a depth of approximately 19 km. Surface displacements produced by the fault rupture reached several meters, propagating from the epicenter for approximately 240 km along the mountain range (Fan et al., 2018). According to the statistical data provided by the Chinese government, this earthquake claimed the lives of more than 87,000 people and injured approximately 459,000 others (Qi et al., 2010). More than 60,000 rock avalanches and landslides were triggered by the 2008 Wenchuan earthquake (Gorum et al., 2011; Wang et al., 2014), and several hundred landslide dams were formed.
Landslides triggered by strong earthquakes have always been a popular topic of discussion. The dynamics and failure mechanisms of earthquake-induced landslides are critical to elucidate for improving hazard prevention and mitigation measures. Field investigations indicate that the kinematic processes of earthquake-induced landslides are characterized by high speeds, long runouts, and high mobilities (Wang et al., 2009; Yin et al., 2009; Chigira et al., 2010; Dai et al., 2011; Gorum et al., 2011; Tang et al., 2011; Huang et al., 2012; Zhang and Yin, 2013; Zhang et al., 2016). Considerable kinetic energy, high toe to rupture surface elevations, elastic energy release due to grain fragmentation, and high excessive pore water pressure generated by undrained loading were underscored as the principal controlling factors for the long travel distance, high speed, and high mobility (Wang et al., 2009; Chigira et al., 2010; Zhang and Yin, 2013; Wang et al., 2014). It was concluded that the occurrence of an earthquake-induced landslide is controlled mainly by seismic, terrain, and geological factors (Huang et al., 2012). Strong ground motion generated by the earthquake and topographic amplification of seismic waves due to features of the terrain were emphasized as the main triggers of rock avalanches and landslides (Havenith et al., 2003; Murphy, 2006; Bourdeau and Havenith, 2008; Yin et al., 2009; Huang et al., 2012; Zhou et al., 2013).
Field investigation and numerical simulation are two fundamental techniques for analyzing the dynamics and revealing the possible mechanism of individual landslides induced by strong earthquakes. Through field investigation, detailed information about a single landslide can be obtained, such as its geological and topographical features (Has and Nozaki 2014; Wang et al., 2014; Zhang et al., 2016; Zhuang et al., 2018). Furthermore, field investigation can provide evidence of the dynamic processes for landslides (Zhang et al., 2011, Zhang et al., 2016; Xu et al., 2013). Numerical simulation is an important approach for modelling the dynamic process of rock avalanches and exploring the formation mechanism of earthquake-triggered landslides. At present, numerical simulation methods for the seismic response analysis of rock or soil slopes are mainly divided into two categories. The first category is composed of traditional continuum methods, including the finite element method (FEM) (Charatpangoon et al., 2014; Che et al., 2016) and finite difference method (FDM) (Bouckovalas and Papadimitriou, 2005; Bourdeau and Havenith, 2008; Zhou et al., 2013). The continuous simulation methods are based on the assumption of small deformation and displacement; therefore, using this type of approach, it is difficult to describe large displacements along discontinuities and rotations of blocks in a jointed rock mass under seismic loading. The second category consists of discontinuum methods such as discontinuous deformation analysis (DDA) (Wu and Chen, 2011; Zhang et al., 2015; Huang et al., 2016; Fu et al., 2019) and the discrete element method (DEM). With an explicit scheme-based force balance solution, the DEM exhibits a high computational efficiency in the seismic analysis of large-scale rock mass engineering. In the DEM, blocks or particles resulting from different discretizations of the domain of interest can lead to different approaches. The most popular block-based DEMs are the commercialized UDEC and 3DEC for solving two- and three-dimensional (2D and 3D) problems; these programs have been extensively used in seismic response analyses for rock engineering (Kveldsvik et al., 2009; Cui et al., 2016; Song et al., 2018). The particle-based DEM method introduced by Cundall and Strack (1979) simulates the mechanical behavior of a material by representing it as an assemblage of discs (2D) and spheres (3D). The DEM was originally used to investigate granular materials such as soils/sands and was eventually implemented in a commercial code, i.e., Particle Flow Code (PFC) (Itasca Consulting Group Inc., 2008). To solve problems related to a rock mass, a bonded particle model (BPM), in which intact rocks are represented as assemblages of cemented rigid particles, was developed (Potyondy and Cundall, 2004), and a smooth joint contact model (SJCM) was proposed to model the joints (Ivars et al., 2011).
As previously documented, many earthquake-triggered landslides are characterized by flow-like movement, and the sliding material disintegrates into fragments during the high-speed movement, ultimately forming a granular deposit. The particle-based DEM method simulates the geomaterial as assemblies of rigid discs (in 2D) or spheres (in 3D) bonded at their contacts and allows finite displacements, rotations and separations of the discrete particles. The failure process in the synthetic material can be represented by the breakage of bonds and propagation and coalescence of these microcracks. Therefore, the particle-based DEM is more appropriate than DDA or the continuum methods for simulating the dynamic failure process and kinematic characteristics of landslides triggered by earthquakes. Huang et al. (2012), Tang et al. (2013), Zhou et al. (2013), Yuan et al. (2014), and Deng et al. (2017) developed 2D DEM models to simulate the dynamic process of landslides triggered by earthquakes and explore their seismic failure mechanism. In their simulations, the sliding surface and bedrock were represented by wall elements, and the seismic ground motion histories were applied to the wall boundaries. One drawback of this approach is that the wall boundaries cannot absorb the scattering waves from the upper sliding body, and the radiation of waves from the sliding mass into the bedrock cannot be modeled. Therefore, nonreflecting boundary conditions instead of wall boundaries are required to simulate the failure process of earthquake-induced landslides.
In this study, detailed geological and geomorphological surveys were conducted for the catastrophic Taihongcun landslide triggered by the 2008 Wenchuan earthquake; this landslide is located in Chenjiaba town, Beichuan County, Sichuan Province, China. From the detailed field investigation, the main characteristics of the Taihongcun landslide were identified. Subsequently, 2D DEM models were established to simulate the kinematic and failure processes of the Taihongcun landslide through the PFC2D code. To ensure the validity of the dynamic calculations, the free-field boundary condition was developed and introduced into the DEM models. The effects of the vertical and horizontal seismic forces on the dynamic failure process of this landslide were considered. Finally, based on field investigations and numerical simulations, we discussed the possible mechanism contributing to this landslide event.
GEOMORPHOLOGICAL AND GEOLOGICAL SETTINGS
The catastrophic Taihongcun landslide occurred on the east-facing slope of Shuijingyan Mountain (31°58′25.4″N, 104°35′55.6″E, see Figures 1, 2), which is located northeast of Taihong Village, Chenjiaba Town, Beichuan County in Sichuan Province, China. The landslide, triggered by the 2008 Wenchuan earthquake, killed approximately 23 people, destroyed one village, and blocked the Duba River. The Taihongcun landslide lies on the right bank of the Duba River, originating from the north-south trending ridge of the Shuijingyan mountain (Figure 2B). Due to the long-term river erosion, the west bank is concave, causing the slope near the bank to be unstable (Figure 2A). The geomorphology of the Taihongcun coseismic landslide is chair-shaped and can be divided into two parts by the existence of a notable cliff on the edge of the upper sliding bed (Figure 3A). The upper source area is between 960 and 1,300 m in elevation, with an estimated volume of 1.5 million m3, and the original slope was between 20° and 30° (Figure 3). The back scarp of the upper source area is 170 m wide, 200 m high and has an average slope of approximately 70°. The northern flank (Figure 4C) is approximately 79 m high and approximately 134 m long, with a strike of 90° and a slope of approximately 52°. The southern flank is approximately 42 m high and approximately 200 m long, with a strike of 120° and a slope of approximately 33°. A flat sliding bed can be seen in the middle of the landslide. This flat section is covered with landslide deposits with an average thickness of 40 m; the deposits are gray, with moderately weathered slate fragments present at the surface. The lower cliff induced by the secondary landslide is between 780 and 960 m in elevation and 400 m in width, with an average slope of approximately 50°. Field investigations show that the Yingxiu-Beicuan fault is located at the toe of the landslide (Figure 3). The floodplain of the Duba River is below the lower cliff, and the depth from the bottom of the river to the bank is 35–41 m. The main sliding direction along line I-I′ in Figure 3B is 110°.
[image: Figure 1]FIGURE 1 | Location of the Taihongcun landslide in Beichuan County, Sichuan Province (modified from Dai et al., 2011).
[image: Figure 2]FIGURE 2 | (A) Pre-sliding image from Google Earth taken on April 2, 2005; (B) Post-sliding image from Google Earth taken on January 22, 2011.
[image: Figure 3]FIGURE 3 | (A) Photograph of Taihongcun coseismic landslide, which was taken on July 3, 2008 and the landslide dam had already been breached artificially. (B) Plane view of the Taihongcun landslide. (C) Geological longitudinal section through the main slding direction I-I′ for the Taihongcun landslide.
[image: Figure 4]FIGURE 4 | Photographs of different parts of the upper source area, which are taken on December 3, 2012. (A) Back scarp. (B) Rock mass of the lower part of back scarp and the photo location are shown as the red circle A in Figure 4A. (C ) Northern flank of the upper source. (D) Sourthern flank of the upper source area.
Figure 3C displays the geological longitudinal section through the main slding direction I-I′ for the Taihongcun landslide. According to field investigations, the Taihongcun slope consists of the Cambrian Qiujiahe Formation (Єq), Cambrian Youfang Formation (Єy) and Silurian Hanjiadian Formation (Sh). The Cambrian Qiujiahe Formation is mainly composed of carbonaceous and siliceous slate (Figure 5D); the Cambrian Youfang Formation is composed of extensively jointed sandstone (Figure 5E); and the Silurian Hanjiadian Formation is composed of thin layers of argillaceous slate. The Cambrian Qiujiahe Formation outcrop, in which the slate is strongly weathered, is observed at the top of the back scarp, with a thickness of approximately 96 m. A 0.4 m wide tension crack is found at the top of the back scarp (Figure 4A). The lower part of the back scarp consists of the Cambrian Youfang Formation, in which the sandstone is intercalated with limestone (Figure 4B), with a thickness of approximately 80 m. Karst erosion has developed along the preexisting fissures in the limestone, weakening the stability of the back scarp. The bedding planes of the strata around the back scarp of the slope gently dip away from the slope surface at an angle of approximately 10°. Two dominant and steep joint sets (J1, J2) are widely developed in the back scarp (Figure 4B). Set J1 dips away from the back scarp surface at an angle of approximately 80° and controls the surface deformation of the back scarp.
[image: Figure 5]FIGURE 5 | Strata in the upper source area. (A) Sliding surface on the location spot B shown in Figure 4A. (B) Sliding surface on the location spot C shown in Figure 4D. (C) Sliding surface on the location spot D shown in Figure 4D. (D) Carbonaceous and siliceous slate of Cambrian Qiujiahe Formation. (E) Sandstone intercalated with limestone of Cambrian Youfang Formation.
The displaced material covering the sliding bed of the upper source area is mainly composed of gray slate blocks and fragments, as observed on the surface. The bedrock of the upper source is the extensively jointed sandstone of the Cambrian Youfang Formation (Figure 5E). Several gullies incised into the deposit by rainfall runoff enabled the internal structure of the deposit and sliding surface to be examined and sampled. As shown in Figures 5A–C, according to observations from a gully, a weak interlayer of carbonaceous slate and shale exists between the landslide deposits and the bedrock, with a dip angle ranging from 17° to 23°. The thickness of this layer is approximately 0.2–1.5 m. An obvious sliding surface can be seen between the displaced material and carbonaceous shale (Figures 5A–C). Therefore, the carbonaceous shale is the strata on top of which the sliding surface occurred. The lower cliff was determined to have formed after the Wenchuan earthquake by comparing Figures 2A,B; this area was subsequently covered by Quaternary colluvial and eluvial deposits with an average thickness of 70 m. The basement rock of the cliff consists of the carbonaceous and siliceous slate of the Cambrian Qiujiahe Formation and sandstone of the Cambrian Youfang Formation. Based on the field observations, the strata in the shallow part of the cliff are highly weathered. Due to the long-term strong tectonic activities of the Yingxiu-Beicuan fault, which lies across the foot of the cliff, the rock mass of the entire slope is fractured and is vulnerable to weathering. Thus, the strength of the slope rock mass is low. The Yingxiu-Beicuan fault is the interface between the Cambrian strata (in the hanging wall) and Silurian strata (in the footwall) (Figure 3).
KINEMATIC CHARACTERISTICS OF TAIHONGCUN LANDSLIDE
As shown in Figure 3, the study area can be divided into three regions: the upper source area, the secondary landslide area, and the debris deposit area. The elevation difference between the toe and the crest of the slope in the upper source area is 260 m, and the corresponding horizontal distance is 460 m. The original slope of the upper source area failed due to the substantial seismic forces. After the landslide initiation in this area, the source mass detached from the parent rock mass and slid along the sliding surface at an increasing speed. High-temperature carbonization observed near the sliding surface indicates that a high-speed shearing effect between the sliding body and the sliding surface was produced during the high-speed movement of the displaced mass (Figures 5A–C). The initial velocity was obtained when the upper sliding body slid in front of the toe of the sliding surface and was projected into the air. After the failed rock mass was projected into the air from the toe of the upper sliding surface, this mass would exhibit a parabolic airborne course, and the gravitational potential energy would be converted into kinetic energy in the falling stage. The secondary landslide area is characterized by the cliff below the upper source area. A large elevation difference of 200 m between the toe of the sliding surface and the cliff base allowed the airborne rock mass from the upper source area to acquire considerable momentum and thus to scrape the preexisting deposit overlaying the cliff. The loose deposit material was entrained by the rock debris due to the impact and pushed downwards with it.
In the deposit area, the granular debris flow reached the valley bottom below the 180 m high cliff, blocked the Duba River, and climbed the opposite bank of the river (Figure 6A). The horizontal travel distance was approximately 1,200 m, and the vertical fall height was approximately 550 m. The thickness of landslide deposits is affected by terrain. The deposits in the gullies and rivers are thickest, and the average thickness is approximately 50 m. Specifically, the deposits are the thickest at the landslide dam, with a thickness of up to approximately 95 m. The thickness of the debris flow deposits along the river course is generally approximately 30 m, while the thickness at the edge of the accumulation area is only 2–5 m. Field investigations show that the deposits are composed mostly of highly fragmented sandstone and shale; the grain size is in the range of sand, gravel, and cobble, with some large boulder-sized blocks (Figure 6C). The main grain size is gravel and cobble, and the majority of the deposits are subangular to angular. As shown in Figure 6B, in the front of the deposits on the opposite bank, wheat stalks were pushed down and arranged in radial lines by the powerful air blast induced by the displaced material, indicating the high-speed movement of the granular debris flow.
[image: Figure 6]FIGURE 6 | Deposition area of the Taihongcun landslide. (A) Granular debris covered the Duba rive and the farmlands (the landslide dam had already been breached artificially). (B) Air wave blew down the wheat due to granular debris on the location shown as the red circle B in Figure 6A. (C) Compact landslide deposits composed of angular fragments on the location shown as the red circle A in Figure 6A.
DISCRETE ELEMENT METHOD MODELING
The dynamic processes of landslides under seismic loading conditions are very complicated. The DEM is well suited for simulating the cracks and subsequent large displacements of catastrophic landslides or rock avalanches and is therefore a useful tool for analyzing their complex kinematics and failure mechanisms. In this section, based on the two-dimensional code PFC2D, DEM models were used to investigate the kinematical process and failure mechanism of the Taihongcun landslide triggered by the 2008 Wenchuan earthquake.
Free-Field Boundary Condition for Discrete Element Method
In a numerical analysis of the seismic response of rock slopes, earthquake waves such as plane body waves are usually applied at the bottom of the model and propagate upward. The boundary conditions at the sides of the model should account for the free-field motion that would exist in the absence of a structure, such as a slope or a tunnel. The free-field boundary algorithm proposed by Zienkiewicz et al. (1989) is selected to “enforce” the free-field motion in such a way that the boundaries retain their nonreflecting properties (i.e., outward waves originating from the structure are properly absorbed). In this approach, the lateral boundaries of the main grid domain are coupled to the free-field domain by viscous dashpots to simulate an absorbing boundary, and the unbalanced forces from the free-field grid are applied to the main grid boundary. The free-field grid is solved in parallel with the main grid. For a lateral boundary of the main grid domain with its normal in the direction of the x-axis, the free-field boundary condition for 2D problems can be expressed as follows:
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where [image: image] and [image: image] are the normal and shear components of the traction applied to the lateral boundary, respectively; [image: image] and [image: image] are the x and y components of the main grid point velocity at the lateral boundary; [image: image] and [image: image] are the x and y components of the velocity of the grid point in the free-field domain; and [image: image] and [image: image] are the tractions contributed from the free-field grid in the x and y directions.
Eqs 1, 2 are defined based on the continuum condition. To apply the free-field boundary condition in the DEM models, Eqs 1, 2 need to be discretized. For regular packing geometries, it may be possible to develop analytical expressions of the equivalent discrete free-field boundary condition based on Eqs 1, 2. For a square array of disks (each particle has four neighbors) of unit thickness in 2D, the particles in the assemblies have a common diameter Db. The regular square packing is subjected to an unconfined compression test. The axial stress, [image: image], is related to the axial force, [image: image], as follows:
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Substituting Eq. 3 into Eqs 1, 2, the free-field boundary condition for the DEM in 2D is obtained by
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where [image: image] and [image: image] are the normal and shear components of the force applied to the particles at the lateral boundaries of the main grid domain; [image: image] and [image: image] are the forces of a particle in the free-field domain in the x and y directions; and [image: image] and [image: image] are the nondimensional calibration factors for optimum wave absorption.
Numerical Model
Figure 7A shows the 2D DEM model of the Taihongcun landslide, constructed based on the geological longitudinal section shown in Figure 3C. The sliding mass in the upper source area can be detailed in Figure 7B, and the secondary landslide area in the model is shown in Figure 7C. To capture the main features of the large rock avalanche, the following assumptions were made:
1. The sliding mass in the source area is cut by two sets of discontinuities, including joint set J1 and the bedding planes.
2. Given the radius difference between the bedrock and the sliding mass, an 8 m thick transition layer is produced between the bedrock and sliding mass (see the enlarged view in the box in Figure 7B).
3. The rupture surface, including the back scarp and the sliding surface, is preset along the interface between the transition layer and sliding mass.
4. The bedrock below the sliding surface is considered homogeneous.
5. To avoid a large computational burden, the bedrock under the riverbed and east bank are simulated by wall elements. The seismic ground motion of the wall elements is in accordance with the movements of disk A (see Figure 7D).
[image: Figure 7]FIGURE 7 | DEM model of the Taihongcun landslide. (A) Part I is the free-field domain I (FFD-I), part II is the free-field domain II (FFD-II), part III is the free-field domain III (FFD-III), and part IV is the free-field domain IV (FFD-IV). (B) Upper sliding mass and bedrock. (C) Secondary landslide area. (D) Dynamic boundary setting and locations of monitoring disks for the landslide.
The sliding mass in the upper source area is composed of slate and sandstone (see Figure 7B). In PFC2D, a joint is identified as a contact between particles lying on opposite sides of the joint plane. Joint plane contacts follow a contact model with properties that are different from those assigned to particle contacts elsewhere in the rock mass.
The most commonly used method for the generation of rock joints is to set the bond strengths of the joint plane contacts to low values (or zero for the lowest shear strength) (Kulatilake et al., 2001; Wang et al., 2003; Huang et al., 2015). The shortcomings of this method are that the surface of a generated joint has an inherent microscale roughness that is due to the circular shape and the nonuniform size and distribution of the particles (Bahaaddini et al., 2015). Therefore, it is difficult for the particles to slide along the discontinuities, especially along the sliding surface. To solve this problem, the smooth joint contact model (SJCM) was developed and introduced into PFC to simulate joints on a mesoscopic scale (Ivars et al., 2011). The SJCM simulates the behavior of an interface regardless of the local particle contact orientations along the interface. The behavior of a frictional or bonded joint can be modeled by assigning the SJCM to all contacts between particles that lie on opposite sides of a joint. With this approach, the shear behavior and mechanisms of rock joints under direct shear tests were studied in detail (Bahaaddini et al., 2013, 2015; Gutiérrez-Ch et al., 2018). In this study, the J1 joint set, bedding planes, sliding surface and back scarp are modeled with the SJCM (Figure 7B). Thus, the sliding mass in the upper source area can slide or separate along the sliding surface and back scarp.
The dynamic boundary conditions and monitoring disks for the DEM model are shown in Figure 7D. To absorb outward propagating waves and avoid plane waves propagating upward from being distorted at the lateral boundaries of the model, the free-field boundary conditions described in Free-Field Boundary Condition for Discrete Element Method are applied to the model. To ensure that the free-field domain has the same elastic behavior as the main grid domain, the microscale properties of the free-field domains are the same as those of the bedrock. The free-field domain is composed of four soil columns. The soil columns FFD-I and FFD-II are located on the left of the main grid domain, and the soil columns FFD-III and FFD-IV are located on the right. Note that only a seismic P-wave is applied on the bottom boundaries of soil columns FFD-I and FFD-IV and that only a seismic S-wave is applied on the bottom boundaries of soil columns FFD-II and FFD-III, while seismic P- and S-waves are applied to the bottom boundary of the main grid domain. When only an S-wave (or a P-wave) is required as input for the model, the free-field domain is merely composed of soil columns FFD-II and FFD-III (or FFD-I and FFD-IV). Viscous boundary conditions are applied to the bottom boundary of the main grid and free-field domains.
Model Parameters and Seismic Input
PFC2D simulates the intact material as an assembly of circular particles bonded at their contacts with the contact bond model or parallel-bond model and is thus referred to as a bonded particle model (BPM) (Potyondy and Cundall, 2004). The macroscopic mechanical behavior of the synthetic material depends on the microscopic parameters of the particles and bonds between particles. However, the microscopic parameters cannot, in general, be related directly to a set of relevant material properties (Itasca Consulting Group Inc., 2008). In general, the microscopic parameters can be obtained by means of a calibration process in which a series of numerical tests are performed to reproduce the desired macroscopic properties measured in laboratory experiments. In this study, numerical uniaxial compressive strength tests are carried out on BPMs to calibrate microscopic parameters against the uniaxial compressive strength UCS, elastic modulus E and Poisson’s ratio v. The derived microscopic parameters of the BPMs for the landslide are listed in Table 1. A comparison of the macroscopic properties between the BPMs and laboratory experiments is conducted. The results from the BPMs are very close to those from the laboratory experiments.
TABLE 1 | Micro-parameters for different types of material used in the DEM models.
[image: Table 1]Numerical direct shear tests under constant normal stress are employed to determine the strength and stiffness parameters of the SJCM interfaces. The SJCM is applied to the contacts between particles that lie on opposite sides of the shear plane. To simulate the direct shear tests, the lower block is kept stationary during the tests, and a horizontal velocity V, which is low enough to ensure that the sample remains in quasistatic equilibrium, is applied to upper walls. The normal stress is applied vertically to the upper block, and this normal stress is kept constant during the tests by using a servo-control mechanism (Itasca Consulting Group Inc., 2008). The shear and normal displacements are obtained by tracing the horizontal and vertical displacements of the upper block, respectively, and the shear stress is calculated by dividing the average force reaction on the upper left and lower right walls by the joint length. The calibrated SJCM parameters for the sliding surface, bedding planes and joint set J1 are listed in Table 2.
TABLE 2 | Calibrated parameters for smooth joint contact model (SJCM).
[image: Table 2]Because no strong motion station is present at the landslide site, records of the Wenchuan earthquake waves from the strong motion station Qingping, which is close to the seismogenic Yingxiu-Beicuan fault and is 40 km away from the landslide, are chosen as the seismic loading inputs. The peak ground accelerations (PGAs) of the original seismic records at the Qingping station are 824.12 cm/s2 in the east-west direction, 802.7103 cm/s2 in the north-south direction, and 622.91 cm/s2 in the vertical direction. Because the 2D DEM models (Figure 7) are constructed based on a geological longitudinal section (Figure 3C), it is necessary to project the horizontal acceleration records in the east-west and north-south directions into the main sliding direction of the landslide using the following equation:
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where [image: image] is the acceleration in the main sliding direction, [image: image] is the acceleration in the east-west direction, [image: image] is the acceleration in the north-south direction, and 110° is the azimuth of the main sliding direction.
The ultimate acceleration histories after filtering and baseline correction are shown in Figure 8. The velocity time-history records are transformed into force time-history records and applied to the bottom boundaries of the main grid and free-field domains.
[image: Figure 8]FIGURE 8 | Input horizontal and vertical ground acceleration records after filtering and baseline correction.
To effectively dissipate the kinetic energy of the assembly system, numerical damping must be used in the simulations. Local damping and viscous damping are available in DEM models to dissipate kinetic energy. Local damping applies a damping force, with a magnitude proportional to the unbalanced force, to each particle, while viscous damping adds normal and shear dashpots at each contact. Local damping is not applicable for landslide simulation (Deng et al., 2017). Therefore, viscous damping is used in the simulations. The parameters of viscous damping can have a significant impact on the results, but they cannot be explicitly related to any physical mechanism. The parameters of viscous damping in DEM models can also influence the grain motion and reflect energy dissipation during collision. The damping parameters are correlated with the coefficients of restitution, which can be measured in the laboratory or field. The results of field restitution coefficient tests conducted by Giani (1992) are used to define the damping parameters. The values of the normal and shear damping coefficients are thus set to 0.4 and 0.2, respectively, (Deng et al., 2017).
NUMERICAL SIMULATION RESULTS AND ANALYSIS
The dynamic process of the Taihongcun rock avalanche can be classified into four stages: upper sliding mass fragmentation, projection of the upper displaced mass, scraping of the upper sliding mass toward the Quaternary colluvial and eluvial deposit, and granular debris flow and accumulation. Each of the stages is discussed in detail in Upper Sliding Mass Fragmentation–Granular Debris Flow and Accumulation. The numerical parameter of internal bonding strength is the most crucial factor influencing landslide transport and deposition in the DEM model (Zhang et al., 2017). Therefore, the influence of the parallel-bond strength on the runout distance and deposition patterns is investigated in Influence of the Bond Strength on the Runout Distance and Deposition Patterns.
Upper Sliding Mass Fragmentation
Figure 9 shows the progressive fragmentation of the upper sliding body under the combined horizontal and vertical seismic loadings; the cluster plots indicate fractured blocks (Itasca Consulting Group Inc., 2008). In the static gravity equilibrium situation (Figure 9A), damage can be observed in the rock mass near the scarp and sliding surface and on the top part of the slope. Cracks or fissures develop along the bedding planes and joint set J1 in the damaged regions, and the rock mass is broken into small blocks. The entire model can be brought to equilibrium under gravity so that the slope is stable before the earthquake. After the seismic force is applied to the base of the model, the slope is not stable (Figures 9E–H). In the initial stage of the Taihongcun rock avalanche, a rock slide occurred, and an obvious settlement is observed near the top of the slope when the shear stress at the sliding surface reaches the shear strength (Figure 9B). The development of cracks or fissures in the rock mass, induced by the shaking and sliding, is observed (Figures 9E–H). The high-speed shearing effect between the sliding body and the sliding bed resulted in fragmentation of the rock blocks into small particles (Figures 9B,C). The jointed rock blocks in the slope begin falling and fragment into smaller sizes as a result of the internal forces exceeding the bonding strength (Figures 9E–H). Under strong seismic loadings, tensile cracks develop in the rear part of the sliding body, forming a tensile stress concentration zone (Figures 9E–D). Then, the cracks widened laterally and propagated vertically to the intersection between the scarp and the sliding surface, generating horizontal and vertical displacements. The large elevation difference between the slope and the slip plane facilitated the rockslide, triggered by the violent quaking.
[image: Figure 9]FIGURE 9 | Progressive fragmentation of the upper sliding mass during earthquake.
Projectile Motion of the Upper Displaced Mass
Under seismic and gravity forces, the upper sliding mass achieved a high initial speed of approximately 40 m/s over a short period as it slid away from the toe of the sliding surface (Figure 10A). There is sufficient open space in the movement direction of the landslide, allowing the upper sliding mass to run out from the top of the 180 m cliff at a high speed, along a parabolic path (Figures 9E–G, Figure 10A). After the upper sliding mass was projected into the air, the speed increased rapidly during the vertical drop from the toe of the sliding surface to the valley bottom. The high initial velocity, high elevation of the toe of the sliding surface and sufficient open space in the movement direction induced projectile motion.
[image: Figure 10]FIGURE 10 | (A) Projectile motion: the toe of the sliding surface projects the upper sliding mass into the air. (B) Scraping action of the upper sliding mass toward the Quaternary colluvial and eluvial deposit covering the lower cliff.
Scraping of the Upper Sliding Mass
Figure 10B shows the scraping of the upper sliding mass into the Quaternary colluvial and eluvial deposit on the lower cliff. As the gravitational potential energy would be converted into kinetic energy in the falling stage, with a substantial kinetic energy, the thrown upper sliding mass collided with and intensely scraped off the Quaternary deposit, completely entraining and removing the deposits. The bedrock below the Quaternary deposits was completely exposed after the event, and the lower cliff formed. The lower part of the landslide was triggered into a secondary failure due to the earthquake activity and the effects from the upper part of the landslide.
Granular Debris Flow and Accumulation
Figure 11 shows the velocity histories of the monitoring particles at different locations in the upper sliding mass and the lower Quaternary deposit (shown in Figure 7D). As shown in Figure 11A, the maximum velocity of the monitoring particles is approximately 60 m/s, which was recorded at point 5, and the peaks of the recorded velocities decrease from the front of the upper sliding mass to the rear. Particles in the rear of the upper sliding mass (particles 1, 2, and 3) start moving slowly, and their movement continues for a short time. However, particles in the front of the upper sliding mass (particles 4 and 5) start moving quickly, and their movement continues for a longer period. The peaks in the recorded velocities in the front of the upper sliding mass (particles 4 and 5) appear later than those in the rear of the upper sliding mass (particles 1, 2, and 3). The seismic response of the upper sliding mass is most intensive at t = 6–50 s, and the direct cause of the landslide is the earthquake. As illustrated in Figure 11B, monitoring particle 6 in the top of the lower Quaternary deposit was displaced by the thrown upper sliding mass at approximately 13 s. The particles in the top of the lower Quaternary deposit were displaced earlier and farther than those in the bottom. Therefore, the velocity peaks of the monitoring particles decrease from the top of the lower Quaternary deposit to the bottom. The speeds of the monitoring particles in the lower Quaternary deposit peaked at approximately 30 s, then gradually decreased, and reached zero at approximately 43 s.
[image: Figure 11]FIGURE 11 | Time-history curves of horizontal velocity for monitoring points. (A) Velocities of monitoring points in the upper source area. (B) Velocities of monitoring points in the Quaternary colluvial and eluvial deposit.
The upper sliding mass was disintegrated into fragments due to the strong vibration, intensive collision, and violent scraping action. Then, the fragmented geomaterial transformed into granular debris with a rapid, flow-like motion. The lower Quaternary deposit was entrained due to the rock debris collision on the slope surface. The topography after sliding is shown in Figure 12A, which indicates that there are two deposition zones of the Taihongcun landslide: the first is in the upper source area, where fragmented rock debris accumulates on the sliding surface; the second is in the valley of the Duba River. In the first deposition zone (Figure 12B), the average thickness of the deposit is approximately 40 m, which is in accordance with the field observations, and the deposit can be divided into two layers: an upper layer of slate and a lower layer of sandstone. In the second deposition zone, the granular debris flow reached the valley bottom below the 180 m high cliff, blocked the Duba River, and climbed over the opposite bank of the river (Figure 12C). The second deposition zone has a maximum thickness of approximately 35 m on the opposite bank, and the greatest height of the landslide dam in the Duba River valley is approximately 95 m. The landslide deposit in the second deposition zone is mainly composed of sandstone and Quaternary deposits. The Quaternary deposits are covered by sandstone debris. The distance between the summit of the mountain before the earthquake and the edge of the deposit on the opposite bank is approximately 1,200 m in the horizontal direction, and the vertical height from the summit of the mountain to the bottom of the Duba River is approximately 600 m.
[image: Figure 12]FIGURE 12 | Ultimate landslide deposit accumulation. (A) Entire model. (B) Deposits in the upper source area. (C) Deposits in the valley of the Duba River.
Influence of the Bond Strength on the Runout Distance and Deposition Patterns
Some researchers noted that the basal friction coefficient and the internal bonding strength were the most crucial factors influencing landslide transport and deposition in PFC2D models (Tang et al., 2009; Deng et al., 2017; Zhang et al., 2017). The influence of the basal friction coefficient on the runout distance and deposition patterns can be understood easily. However, the influence of the internal bonding strength on the runout distance and deposition patterns is disputed and poorly understood. A series of numerical simulations that were performed to investigate the runout distance and deposition area of the Taihongcun landslide in relation to internal bond strength are presented in this section. Three cases for the parallel-bond normal strength of the particles are used in the numerical simulations:
Case 1. The parallel-bond normal strength for sandstone is 4 MPa, and the parallel-bond normal strength for slate is 1.6 MPa.
Case 2. The parallel-bond normal strength for sandstone is 12.5 MPa, and the parallel-bond normal strength for slate is 5 MPa.
Case 3. The parallel-bond normal strength for sandstone is 25 MPa, and the parallel-bond normal strength for slate is 10 MPa.
Figures 13A–C shows the final topography of the first deposition zone for the three cases, and Figures 13D–F shows the final topography of the second deposition zone for the three cases. As depicted in Figure 13, the final topography of the deposits in the simulations indicate that the internal bonding significantly influences the resultant runout distance and debris flow avalanche deposit. Figure 13 show that Case 1 results in the minimum thickness of the first deposition zone, the maximum thickness of the second deposition zone, and the longest runout distance, while Case 3 results in the maximum thickness of the first deposition zone, the minimum thickness of the second deposition zone and the shortest runout distance. Moreover, the deposits for Case 1 are the densest of the three cases. The series of simulation results indicates that a lower bond strength enables the upper sliding mass to more easily fragment (Figure 13A), while a high bond strength will cause the main body mass to behave as a rigid block, thus hindering fragmentation (Figure 13C). With respect to the back analysis of the runout distance and debris accumulation topography, Case 2 provides the best simulation results for the Taihongcun landslide dynamics process.
[image: Figure 13]FIGURE 13 | (A–C) Influence of bonding strength on the landslide deposit accumulation in the upper source area. (D–F) Influence of bonding strength on the landslide deposit accumulation in the valley of the Duba River.
FORMATION MECHANISM ANALYSIS
Based on field investigations and discrete element simulations, we conclude that the occurrence of the Taihongcun landslide is the result of a combination of seismic, terrain, and geological factors. The formation mechanism of the Taihongcun landslide will be discussed in this section.
Weak Rock in the Slope
Rock mass quality is the basis for the stability of rock slopes. The strength and deformation modulus of a rock mass with a good quality are high, which is beneficial to the slope stability, while that with a poor quality are low, which challenges slope stability. The rock mass in the study area was of poor quality due to the shearing and brecciation associated with past fault movement, rendering the rock slopes prone to failure and contributing to the high degree of disintegration of the failed rock mass. The strength of the Cambrian sandstone and slate in the upper source area is low, and the rocks are vulnerable to weathering, leading to fracturing of the upper sliding mass. The weak rock mass of the slope is the lithological basis for this landslide formation.
Unfavorable Geological Structure
Based on the field investigations, there exists a group of joints J1, which steeply dip outward, in the residual slope of the upper source area, and the back scarp developed along this joint set. As observed in the outcrop (Figure 5), a weak interlayer composed of carbonaceous slate and shale is present. Under strong ground motion induced by earthquakes, the slope is easily shears along the weak interlayer, and a large-displacement slide can occur. The joint set J1 and the weak interlayer formed the rupture surfaces of the upper source area.
Strong Seismic Ground Motion
The seismic intensity in the study area is more than X (Chinese seismic intensity) (Huang and Li 2009), and the seismogenic Yingxiu-Beicuan fault passes through the foot of the valley slope. The original PGA in the area is greater than 600 Gal, a seismic intensity greater than X (Li et al., 2008). Furthermore, the main source area is located in the hanging wall of the fault, and the hanging wall effect in the near-fault ground motion (Li et al., 2008; Huang and Li, 2009) may be obvious in the study area. The strong seismic ground motion is an external excitation that triggers the destructive landslide event.
High Elevation and Topographical Conditions
The vertical distance from the toe of the upper sliding surface to the valley bottom is approximately 300 m. Therefore, the upper sliding mass can gain substantial kinetic energy, transformed from the gravity potential energy, in the falling stage. There is enough transport space downslope to facilitate the projection of the upper sliding mass into the air. Three faces of the Shuijingyan mountain, where the landslide originated, are free, and the terrain is steep, high and convex. The topographic amplification effect on seismic waves is strong at or near ridge crests in this kind of topography, which favors slope failure. The high elevation and topographical conditions provided the basis for hypermobility.
CONCLUSION
This paper focuses on the dynamic process and formation mechanism of the catastrophic Taihongcun landslide triggered by the 2008 Wenchuan earthquake. Through detailed field surveys, basic information of the topography, geological structure and stratigraphy for the landslide was acquired, and key kinetic characteristics of the landslide were identified. Based on field investigations, 2D DEM models were established to simulate the kinematics and failure process of the landslide. To ensure the validity of the dynamic calculations, the free-field boundary condition was developed and introduced into the DEM models. The modeled scenario had a reasonably good fit to the actual topography, adding credibility to the modeling results.
Based on the field investigations and numerical simulations, the dynamic processes of the Taihongcun landslide was divided into four phases: upper sliding mass fragmentation, projection of the upper displaced mass, scraping of the upper sliding mass toward the Quaternary colluvial and eluvial deposit, and granular debris flow and accumulation. The progressive fragmentation and projectile motion of the upper sliding body under the combined horizontal and vertical seismic loadings were effectively simulated. The mechanism of the Quaternary deposit on the lower cliff scraped by the upper sliding mass was revealed through these simulations. In addition, a parameter analysis showed that the internal bond strength of the particles had a significant influence on the runout distance and landslide debris morphology.
According to field investigations and numerical simulations, a possible mechanism of the Taihongcun landslide was determined: the rock mass in the study area was of poor quality and was vulnerable to weathering, which provided the lithological basis for this landslide formation; the joint set J1, which steeply dips outward in the residual slope, and the weak interlayer, which was comprised of carbonaceous slate and shale, formed the rupture boundary of the upper source area; the strong seismic ground motion was an external excitation that triggered the destructive landslide event; additionally, the high elevation and topographical conditions provided the bases for hypermobility.
Notably, the seismogenic Yingxiu-Beicuan fault that ruptured during the Wenchuan earthquake lay across the foot of the valley slope. The role of oblique-thrust faulting in the initiation of earthquake-induced landslides needs to be quantitatively assessed. However, it is difficult to account for oblique-thrust faulting in our simulations at present. Therefore, further research is needed to consider the effects of oblique thrusting on the initiation of near-fault landslides in such simulations.
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The geometric properties of rock mass discontinuities are essential for the evaluation of the safety of rock masses. Numerous studies have recently been performed on the extraction of discontinuity information. However, most methods are characterized by poor data collection and processing efficiency. This paper presents a UAV-based methodology for the accurate and complete acquisition of rock surface data, as well as the automatic extraction of discontinuity information. Moreover, a program called Random Sample Consensus (RANSAC) Discontinuity Detection (RDD) is developed to extract discontinuity information based on the proposed method. The conclusions of this research are as follows. 1) RANSAC Discontinuity Detection (RDD) can identify the feature point set of discontinuities from a raw point cloud, and can calculate the discontinuity orientation. 2) The boundary of a discontinuity can be precisely depicted using the improved Graham scan algorithm. 3) The orientations of marked discontinuities extracted by RDD are compared with those extracted by the three-point method in CloudCompare. The differences in the orientations extracted by the two methods are found to be less than 3° for flat discontinuities and only about 4.87° for rough discontinuities, which are within a reasonable error range in practical engineering applications. Therefore, the feasibility of the proposed method is verified.
Keywords: UAV technique, point cloud, automatic extraction, discontinuity, RANSAC algorithm
INTRODUCTION
Research indicates that discontinuities are an intrinsic characteristic of rock masses (Umili et al., 2013), and they have significant influences on rock mass deformation and stability (Kong et al., 2020). Therefore, the accurate and comprehensive extraction of rock mass discontinuity information is critical for the assessment of the safety of rock masses.
Traditional surveys are conducted via a window method or a line-scanning method (Gigli and Casagli, 2010; Zhang et al., 2018; Kong et al., 2020), and require physical contact with the rock surface (Gigli and Casagli, 2010; Umili et al., 2013); however, this is time-consuming (Zhang et al., 2018; Kong et al., 2020) and subject to the expertise of the operator (Kong et al., 2020). With the advancement of measurement techniques, new non-contact surveying methods have been developed to acquire three-dimensional (3D) rock mass data, and include the total station method (Feng et al., 2001), close-range photogrammetry (De et al., 2012; Kaufmann, 2012; Francioni et al., 2019), and 3D laser scanning (Deliormanli et al., 2014; Monsalve et al., 2019; Wichmann et al., 2019; Jiang et al., 2020). These techniques have been rapidly utilized in slope monitoring (Kromer et al., 2019; Giacomini et al., 2020), rock mechanics and stability analysis (Firpo et al., 2011; Assali et al., 2014), and geomorphology (Brodie et al., 2015; Boothroyd et al., 2016), as well as the geological and geotechnical research fields (Giordan et al., 2018). While 3D laser scanning and close-range photogrammetry have made great development progress, these two survey means are characterized by the following disadvantages: 1) under unique and complex terrain conditions, it is difficult to find a suitable observation point at which to set up instruments; 2) scanning devices are expensive, and the prices of mainstream scanners on the market are more than 1 million yuan; 3) some rock mass data will inevitably be missing due to the scanning direction. Due to the conspicuous cost reduction of vehicles and sensors, as well as the recent progress in data processing software over the past decade (Manfreda et al., 2018), the application of unmanned aerial vehicles (UAVs) in the collection of rock mass information has been ensured. UAV photogrammetry has many benefits, such as light and flexible equipment, strong adaptability to various terrains, and wide coverage (Wang et al., 2020). In addition, a multi-rotor UAV can take images from different positions and in different directions, thereby avoiding possible shadows or vertical deviations in high and inaccessible rock surfaces (Salvini et al., 2020). Therefore, the use of a light and small UAV to acquire rock mass information is superior to 3D laser scanning and close-range photogrammetry in terms of the equipment cost, portability, efficiency, and integrity of data collection.
The UAV technique has been applied in slope monitoring (Rodriguez et al., 2020; Wang et al., 2020), the failure mechanism analysis of landslides (Xu et al., 2017; Zhang et al., 2018), photogrammetric inspection (Zhang et al., 2020), and topographic reconstruction (Agüera-Vega et al., 2018). However, it is rarely utilized in the extraction of rock mass discontinuity information. Yathunanthan et al. (2014) conducted the imaging analysis of a data set generated from UAV photography to map geological structures, after which the 3D feature coordinates corresponding to the pixel coordinates of two-dimensional (2D) feature points were calculated from the digital elevation model (DEM), and the best-fit plane coefficients were computed. Finally, the discontinuity orientation was extracted (Yathunanthan et al., 2014). However, in this method, the geological analysis of the images requires the acute intuition and deductive and inductive reasoning of interpreters. Jia et al. (2018) manually selected the exposed discontinuities from a 3D point cloud generated from UAV images, and then extracted discontinuity information using the least-squares plane-fitting algorithm (Jia et al., 2018). It is evident that the degree of automation of these methods remains to be increased.
To overcome the low efficiency of the existing methods for rock mass data acquisition and the low degree of automation in discontinuity identification, a UAV-based approach for the automatic identification of rock mass discontinuities is proposed in this paper. Efficient and comprehensive image acquisition can be realized by employing a multi-rotor UAV, and images collected by the UAV can be converted to a point cloud model of the rock mass via 3D model reconstruction. Moreover, rock mass discontinuities can be automatically recognized based on an improved random sample consensus (RANSAC) algorithm. The proposed method includes the following steps: 1) 3D model reconstruction; 2) Normal vector calculation; 3) Discontinuity extraction; 4) Boundary delineation; 5) Discontinuity orientation calculation.
UNMANNED AERIAL VEHICLES MEASUREMENT SYSTEM AND WORKFLOW
The survey was conducted using a four-rotor DJI Phantom 3 Professional UAV (Figure 1), which is equipped with a 20-mm low-distortion wide-angle camera, a GPS/GLONASS dual-mode system, and an automatic return function. Moreover, the aircraft supports 4 K video capture at 30 frames per second, and the two photo formats of JPG and Raw. In addition, the aircraft has the ability to capture smooth and stable video pictures, and can actively record all the details of each flight, including the course, flight time, and other information. The specific parameters of the UAV are listed in Table 1.
[image: Figure 1]FIGURE 1 | The phantom 3 professional UAV.
TABLE 1 | The parameters of the Phantom 3 Professional UAV.
[image: Table 1]A scene survey is the foremost step of, and lays a solid foundation for, data acquisition. After surveying the site conditions, the measurement range was determined, and the easily measured discontinuities were selected and marked. The DJI GO App, a mobile route-planning software, was used to plan the route. The flight path should exceed the survey range to shoot the whole area. The flying height was selected to be beyond the highest obstacle in the flying area to avoid a collision. It should be noted that it is necessary to balance the flying height with the flight time, as the battery consumption caused by an excessive flying height will exceed the battery capacity. Ultimately, the slope was photographed from left to right and from top to bottom. The flight speed was selected as the maximum value, and the camera angle was set to 45°. To maintain the integrity of the measured data, some overlaps were maintained between the images. An overlap of 80% and a side-lap of 50% were respectively used. After the field investigation, a 3D point cloud was generated from the photos taken by the UAV.
MATERIALS AND METHODS
The proposed method is divided into five steps, as illuminated in the flowchart in Figure 2.
[image: Figure 2]FIGURE 2 | The flowchart of the proposed method.
3-Dimensional Model Reconstruction
Feature Point Extraction
Due to the strong distortion of photos taken by UAVs, it is difficult to effectively apply the traditional extraction method based on geometric and texture features to extract feature points. The scale-invariant feature transform (SIFT) algorithm is characterized by the three properties of scaling, rotation, and affine invariance, via which it is capable of resisting certain illumination changes and viewpoint transformation. Hence, the SIFT algorithm is adopted for feature point extraction in the proposed method. The main concept of the SIFT algorithm is that the scale-space representation of UAV aerial images is established, after which the extreme points of images are searched in the scale space and extracted as feature points.
Image Matching
Image matching is conducted to reconstruct 3D information from multiple 2D images. However, the process of image matching using only SIFT feature points is slow. The location data of GPS coordinates in the images collected by the UAV and the attitude angle data provided by the inertial measurement unit (IMU) can assist in the construction of the topological structure between images. Next, the nearest-neighbor method is utilized to find the corresponding relationships between the feature points of images and establish a set of matching feature points that meet the geometric constraints. A large number of coordinate points constitutes a 3D point cloud of the target object in space.
Structure From Motion
The image points in the photo are projected into spatial coordinates according to the principle of camera imaging. The error function is defined as the sum of squares of the reprojection errors. The objective function is defined as follows:
[image: image]
where [image: image] are camera parameters, [image: image] are the coordinates of space points, the variable [image: image] represents the visibility of space point [image: image] in camera [image: image], n is the number of images, m is the number of feature points obtained by precise matching, and the function [image: image] represents the projection error of point [image: image] in camera [image: image].
Finally, sparse beam adjustment is used for step-by-step iteration to minimize the reprojection error between the projected points and the points on the observed images, thereby calculating coordinates of the 3D point cloud in an optimal camera pose and camera scene.
Normal Vector Calculation
Considering that normal vector calculation is a necessary process for the extraction of discontinuities, the next step after obtaining the point cloud is to calculate the normal vector.
The normal vector calculation method consists of two key steps, namely 1) finding the k-nearest neighbors of each point Pi and creating the point set Qi (Figure 3), and 2) conducting plane-fitting for each point set Qi and calculating the surface variation.
[image: Figure 3]FIGURE 3 | Qi is the subset of [image: image], and [image: image] is the normal vector of [image: image].
Nearest-Neighbor Search
A point cloud model commonly includes massive target points in a 3D region, and lacks topological information. Therefore, the principal problem of processing point cloud data is to establish a topological relationship among discrete points and realize the fast search of the nearest adjacent points.
A k-d tree (referred to as a k-dimensional tree) is a data structure that represents spatial partitions, and is mainly applied to search key data in multidimensional space (such as range searches and nearest-neighbor searches). In this study, the k-nearest neighbors are searched by the k-dimensional tree.
Surface Variation Calculation
The problem of determining the normal of a point on a surface is similar to the problem of estimating a section of a normal of a surface. Therefore, the problem can be transformed into one concerned with least-squares plane-fitting estimation. In this study, the surface normal is evaluated by analyzing the eigenvectors and eigenvalues (or principal component analysis, PCA) (Riquelme et al., 2014; Robson et al., 2016; Guo et al., 2017) of the covariance matrix created from the nearest points. The covariance matrix C corresponding to each point [image: image] can be defined as
[image: image]
where [image: image] is the number of the adjacent points of [image: image], [image: image] represents the 3D centroid of point sets, and [image: image] and [image: image] are the eigenvalue and eigenvector of the covariance matrix, respectively. The normal vector can be determined by the eigenvector that corresponds to its minimum eigenvalue. After all the normal vectors are obtained, the subsequent step is to extract rock mass discontinuities.
Rock Mass Discontinuity Extraction Based on the Improved Random Sample Consensus Algorithm
The RANSAC algorithm is an iterative computational algorithm, which determines the parameters of a predefined mathematical model by randomly selecting a subset sample, and then calculates the distance from all points to the model. A point is defined as an inlier if the distance between a point and the model is less than the threshold; otherwise, the point is regarded as an outlier. The number of inliers in each iteration is recorded, and the model with the largest number of inliers is considered as the optimal model (Uhercík et al., 2010). Figure 4 presents the simple application of the RANSAC algorithm to 2D data. Figure 4A displays a set of points that includes inliers and outliers, and in Figure 4B, the blue line is the generated mathematical model, and the inliers are indicated in red.
[image: Figure 4]FIGURE 4 | (A) Inliers and outliers are included in the two-dimensional point set. (B) The line extracted by RANSAC.
For rock discontinuity extraction (the mathematical model is a plane), the RANSAC algorithm has two advantages: 1) it can be directly applied to raw point cloud data without triangulation gridding, and 2) it has strong robustness and can process more than 50% of the outliers. Based on these advantages, the RANSAC algorithm has been studied for the extraction of planes or discontinuities (Wang et al., 2019). However, due to the large number of points of a rock mass, most approaches are inefficient. Therefore, an improved RANSAC algorithm is proposed to greatly improve the accuracy and speed of the original algorithm.
Overview of the Improved Random Sample Consensus Algorithm
Given a point cloud set [image: image] and the normal vector [image: image] of all points, the output result is a series of parameters [image: image] of the plane model. In this paper, local sampling is proposed to acquire new candidate planes in each iteration. The RANSAC algorithm is then applied to determine the parameters of the plane model with the highest score (i.e., the largest number of inliers). All the candidate planes are placed in the set [image: image], and a new evaluation method is used to calculate the score m of the best plane. Moreover, [image: image] is the number of points in a candidate plane, [image: image] is the number of candidate planes, and [image: image] is the probability of ignoring the planes with a higher score. When [image: image] is large enough, the extracted plane is the best, and the remaining points will be used for the subsequent iteration. When [image: image] is sufficiently large, the iteration process is terminated. Finally, [image: image] (default) is the number of minimum points on a plane.
Probability Calculation
Consider a point cloud with [image: image] points and a plane with n points, and [image: image] is the number of points in the minimum point cloud set that determines a plane. Provided that any subset with [image: image] points will generate a plane model, then the probability of detecting the plane model in one iteration is as follows.
[image: image]
When s candidate planes are detected, the probability of detecting the plane Ψ is as follows.
[image: image]
The threshold value [image: image] is artificially set. The number of planes [image: image] that meet the requirement [image: image] can then be obtained by solving s, as follows.
[image: image]
Because the value of [image: image] is commonly small, its logarithm [image: image] can be expanded by its Taylor series: [image: image]. The substitution of [image: image] into Eq. 5 yields the following.
[image: image]
Sampling Method
The complexity of an algorithm is closely related to the sampling method. The sampling method used in this study is detailed as follows. Shape is a local phenomenon, and the closer two points are, the more likely they belong to the same plane. The sampling efficiency can be greatly improved by utilizing this characteristic. Research has revealed that it may be effective to increase the number of inliers within the model by utilizing the locality of the shape to the sample (Myatt et al., 2002). Generally, in random sampling, a circle with a given radius is used to randomly select sample points, but the radius needs to be determined in advance according to the density and distribution of the points. However, the density and distribution of outliers vary greatly for different models; even at different locations on the same model, the density of outliers can vary dramatically. Therefore, a method is presented in this paper to adapt to the density of outliers.
The octree structure is an effective method by which to establish spatial proximity between sampling points. First, the point [image: image] is chosen without restriction to create the candidate plane, and then a set [image: image] that includes [image: image] is randomly selected from the structural layers of the octree structure. Finally, the remaining [image: image] sample points are selected from the set [image: image]. The probability of finding the plane [image: image] containing [image: image] points in this manner can be calculated as follows:
[image: image]
where [image: image] is the first probability value, and the second probability value relies on the choice of the elements in the set [image: image]. The set [image: image] is considered to be an optimization if abundant points on the plane [image: image] are included in the set. Most points on a plane, excluding boundary points and edge points, have neighbors that belong to the plane. Generally speaking, although the adjacent points on a plane cannot be determined by the element set of the octree structure, the candidate plane model includes a large number of points to ensure that it is more representative of the actual data. Therefore, the number of these neighbors must be as large as the number of elements in the octree structure, excluding a few points. To facilitate the analysis, it is assumed that the set [image: image] embodies all points [image: image] on the plane [image: image][image: image], the number of all points on the plane [image: image] is half of the number of points in the set [image: image], and the other half of the points in the set [image: image] contains outliers or noise points. The probability of choosing a large set [image: image] is conservatively evaluated to be [image: image], where [image: image] refers to the depth of the octree structure. Therefore, the conditional probability of choosing points [image: image] and [image: image] from the set [image: image] set can be calculated by Eq. 8. Then, by introducing Eq. 8 into Eq. 7 and Eq. 9 can be obtained.
[image: image]
[image: image]
Evaluation Method
The evaluation function [image: image] is utilized to evaluate the extracted candidate plane model. This evaluation function mainly includes the following three aspects. 1) After the selected plane is created, the points whose distance to the plane is less than the distance threshold value [image: image] are regarded as the points on the candidate plane. 2) The points that meet the distance requirement will be further filtered. When the angles between the normal vectors of the detected points and the normal vectors of the candidate planes are less than the angle threshold value [image: image], these points will be selected as the points in the plane. 3) A new threshold value [image: image], which represents continuity, is added to the proposed method. For the points that have met the first two requirements, only those satisfying the continuity requirement can be selected as inliers on the plane.
In short, for a plane [image: image], its evaluation function [image: image] can be expressed as follows.
[image: image]
For example, points [image: image] on a plane model [image: image] can be defined in two steps:
[image: image]
[image: image]
where [image: image] is the Euclidean distance from point [image: image] to plane [image: image], [image: image] is the normal vector of point [image: image], [image: image] is the relationship between the normal vector of the plane model [image: image] and the projection of the normal vector of point [image: image] on the plane [image: image] refers to the point set where the projected points on the plane [image: image] can form the largest connected part.
Modified Graham Scan Algorithm
Rock mass discontinuities are generally not standard, and even very irregular planes. Hence, a new approach is presented to accurately depict the boundary of the discontinuities. Feature points of discontinuities extracted by the method in this paper are normally distributed on two sides of the vertical direction of extracted discontinuities. Thus, this 3D issue can be transformed into a problem of searching the optimal contour of a 2D point cloud by projecting points onto the fitting plane.
The Graham scan algorithm is a straightforward and efficient convex hull algorithm (Ferrada et al., 2020), the general concept of which is to remove points that are not part of the convex hull. Given a point cloud set [image: image], the point [image: image] is obtained from [image: image] with the minimum y-coordinate, and the points are then sorted counterclockwise. By scanning from [image: image], if [image: image], [image: image], and [image: image] are on the convex surfaces, they must meet the following property: [image: image] is on the left of the vector [image: image]; otherwise, [image: image] should be removed.
However, the disadvantage of the Graham scan algorithm is that the first boundary obtained by the algorithm is convex. Therefore, optimization should be conducted to tackle this issue. Given the boundary points [image: image] and non-boundary points [image: image], and provided that there are the two new lines [image: image] and [image: image], [image: image] will be regarded as a new boundary point if the triangle formed by the two new lines and [image: image] does not include the new boundary point and the angle formed by [image: image], and [image: image] conforms to the tolerance requirement of a concave angle. In addition, the two new sides can be used to calculate the new boundary points by utilizing a recursive algorithm. The results of the Graham scan algorithm and the modified Graham scan algorithm are respectively presented in Figures 5A,B.
[image: Figure 5]FIGURE 5 | Boundary detection with the (A) Graham scan algorithm and (B) modified Graham scan algorithm.
After calculation, all the boundary points with concave-convex features are acquired. Figure 6 displays the extraction results of a set of points; Figure 6A presents the result of the fitting plane, and Figure 6B depicts the boundary of the fitting plane detected by the improved Graham scan algorithm.
[image: Figure 6]FIGURE 6 | (A) The fitting plane result; (B) the boundary delineation of the fitting plane.
Discontinuity Orientation Calculation
Orientation Calculation
The discontinuity of a plane can be represented as follows.
[image: image]
The normal vector of the plane is as follows.
[image: image]
The orientation of the discontinuity can be calculated by the following equations.When [image: image],
[image: image]
If [image: image],
[image: image]
If [image: image],
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CASE STUDY
Data Description
The study site was a rock mass slope located in Guishan Park in Wuhan City, China. The first task was to investigate the field conditions to determine the survey range and mark the easily measured discontinuities. The course was then planned, and the slope was photographed. Ultimately, twenty-six consecutive images were collected. Each image taken by the UAV was attached with geotags to provide a geographic reference for the point cloud, thereby producing highly detailed landform information (Rodriguez et al., 2020).
Subsequently, images from the survey were used to generate a point cloud. The 3D model (Figure 7) and point cloud data of the slope were automatically generated via 3D reconstruction with Smart3D software. There were 52,639,008 points in the point cloud data, which rendered it difficult to extract discontinuities in the later step. The point cloud model of the slope was acquired (Figure 8) by setting the point spacing of 16 mm in CloudCompare to down-sample the numerous point clouds.
[image: Figure 7]FIGURE 7 | The 3D model of the slope.
[image: Figure 8]FIGURE 8 | The point cloud model of the slope.
Discontinuity Information Results
A new extraction procedure called RANSAC Discontinuity Detection (RDD) was developed to automatically extract rock mass discontinuity information. The dialog box of RDD is presented in Figure 9, where [image: image] is the distance from the point to the discontinuity, [image: image] is the angle between the normal vector of a point and the normal vector of the plane, and [image: image] is the distance between the points that make up a continuous plane.
[image: Figure 9]FIGURE 9 | A dialog box for the parameters of the RDD plug-in.
The slope point cloud presented in Data description Section was employed to analyze the extraction effect of RDD. Figure 9 exhibits the parameter settings when RDD is used to extract discontinuities information of rock mass from the slope point cloud. As shown in Figure 10, most relatively smooth rock mass discontinuities were entirely detected by RDD, as were some small and fragmented discontinuities, even when the surface was rough or there were too many crushed pieces. It should be noted that the colors of these discontinuities were randomly assigned by the plug-in.
[image: Figure 10]FIGURE 10 | The extraction result of slope discontinuities.
The results of the three-point method were compared with those of the proposed RDD to quantitatively analyze the effect of RDD in identifying discontinuities. Thirteen planes from the slope model were marked (Figure 11). Similarly, these 13 planes were marked in the calculation results of RDD (Figure 12). Table 2 reports the comparative results of the orientations extracted by the three-point method and RDD. As shown in the table, when the discontinuities were flat enough, the difference between the two methods was less than 3°. Moreover, even for the rough discontinuities (such as plane 12), the difference in orientation was only 4.87°, which is within the reasonable error range in practical engineering applications.
[image: Figure 11]FIGURE 11 | The discontinuities extracted using the three-point method.
[image: Figure 12]FIGURE 12 | The discontinuities extracted with RDD.
TABLE 2 | Comparison between the discontinuity orientation results of the three-point method and RDD.
[image: Table 2]CONCLUSION
In this paper, a UAV-based approach was proposed for the data acquisition of rock masses and the automatic extraction of discontinuity information, which increases the automation level of discontinuity extraction and overcomes the disadvantages of close-range photogrammetry and 3D laser scanning, such as insufficient data.
Via the proposed method, discontinuity information can be extracted from the raw point cloud data, and the discontinuity boundary can be described with high precision.
A new procedure, RDD, was also developed to realize the automatic extraction of rock mass discontinuities. The orientations of the marked discontinuities calculated by the three-point method and the proposed RDD were compared, and the experimental results demonstrate the following: 1) RDD can completely detect most relatively smooth discontinuities, and therefore exhibits a good discontinuity detection effect; 2) the difference in the values of orientations calculated by the RDD and the manual three-point method was less than 3° when the discontinuity was smooth enough. Even for relatively rough discontinuities, the error was within an acceptable range for practical engineering applications. Therefore, the practicability of the proposed method was proven.
Nonetheless, this research was characterized by some disadvantages. For example, the extraction results of rock mass discontinuity information do not include the discontinuity spacing, roughness, degree of weathering, etc. Therefore, future research will be conducted to systematize the information extraction of rock mass discontinuities.
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Integration of different models may improve the performance of landslide susceptibility assessment, but few studies have tested it. The present study aims at exploring the way to integrating different models and comparing the results among integrated and individual models. Our objective is to answer this question: Will the integrated model have higher accuracy compared with individual model? The Lvliang mountains area, a landslide-prone area in China, was taken as the study area, and ten factors were considered in the influencing factors system. Three basic machine learning models (the back propagation (BP), support vector machine (SVM), and random forest (RF) models) were integrated by an objective function where the weight coefficients among different models were computed by the gray wolf optimization (GWO) algorithm. 80 and 20% of the landslide data were randomly selected as the training and testing samples, respectively, and different landslide susceptibility maps were generated based on the GIS platform. The results illustrated that the accuracy expressed by the area under the receiver operating characteristic curve (AUC) of the BP-SVM-RF integrated model was the highest (0.7898), which was better than that of the BP (0.6929), SVM (0.6582), RF (0.7258), BP-SVM (0.7360), BP-RF (0.7569), and SVM-RF models (0.7298). The experimental results authenticated the effectiveness of the BP-SVM-RF method, which can be a reliable model for the regional landslide susceptibility assessment of the study area. Moreover, the proposed procedure can be a good option to integrate different models to seek an “optimal” result.
Keywords: landslide susceptibility, random forest, integrated model, causal factor, GIS
INTRODUCTION
Landslides are one of the most dangerous mass movements in mountainous areas, resulting in substantial loss of life and damage of property on a yearly basis (Petley, 2012; Chen et al., 2017a; Guo et al., 2018). Many potential landslides also bring severe challenges to the risk management of geological disasters (Klimešl et al., 2017). In addition, the demand for land is increasing with the acceleration of urban construction. However, the high risks caused by the uncertainty of landslide disaster seriously restrict land use planning in landslide-prone areas (Fell et al., 2008). Consequently, proper strategies or measures for landslide risk mitigation are increasingly attracting the attention of the academia, especially at this stage (Van Westen et al., 2008).
Landslide susceptibility evaluation is considered the first step to understand a basic concept of risk assessment and its influences (Van Westen et al., 2003; Fell et al., 2008). Its outputs called landslide susceptibility maps allow users to know the areas where landslides can easily initiate and propagate (Guzzetti et al., 1999; Guzzetti et al., 2006). Based on the division of evaluation units and the selection of environmental factors within study areas, selecting a suitable model is of importance to obtain effective results (Ahmed, 2015). According to previous literature, landslide susceptibility models can generally be divided into four categories: heuristic models, deterministic models, statistical statistics, and machine learning models (Huang et al., 2017; Sezer et al., 2017; Broeckx et al., 2018; Reichenbach et al., 2018; Medina et al., 2021). Among these models, heuristic models can be considered as knowledge-based models which depend much on the experts’ opinions on the geomorphology and historical landslides; thus they are highly subjective (CastellanosAbella and Van Westen, 2008). Deterministic models are normally physically based, which need accurate geotechnical parameters over large areas (Bueechi et al., 2019). However, these parameters are usually related with large uncertainties, and the computational time of these models can be long (Crippa et al., 2016; Tofani et al., 2017). Hence, statistically based models and machine learning models are the most commonly used techniques during the past decade (Reichenbach et al., 2018). Meanwhile, some comparative studies have confirmed that these models normally have better performances than other types of models when dealing with the same study areas (Goetz et al., 2015; Aditian et al., 2018; Huang et al., 2020).
As is known to all, in the process of regional landslide susceptibility modelling, it is common to analyze the relationship between the historical landslides and environmental factors. Because landslides are inherently complex nonlinear processes, various factors are selected by researchers to capture more information on the development of landslides. Compared with statistically based models, machine learning models normally have the advantages of higher accuracy in calculating the nonlinear relationship (Achour and Pourghasemi, 2020). They do not require the environmental factors to be normally distributed and are also suitable for large areas. Accordingly, at least dozens of machine learning models have been reported until now, such as the back propagation (BP) network, tree-based models, multilayer perceptron (MLP), support vector machine (SVM), extreme learning machine (ELM), clustering, random forest (RF), Bayesian network (BN), XGBoost models, and so on (Ermini et al., 2005; Catani et al., 2013; Bui et al., 2016; Chen et al., 2017b; Huang et al., 2017; Pham et al., 2017; Chen and Li, 2020; Can et al., 2021).
Although various machine learning models are available now, every single model has its own advantages and disadvantages. Hence, it is still important to compare the performances among different models for specific landslide susceptibility practices. Moreover, the integration of models provides another option, which may improve the model accuracy by combining the advantages of different models. Hence, it is highly encouraged to produce “optimal” susceptibility models by combining multiple models (Reichenbach et al., 2018). However, it is of difficulties to determine how to best integrate multiple forecasts to obtain better results Rossi et al. (2010), and limited attempts have been made on this issue, especially regarding the integration of machine learning models (Sevgen et al., 2019; Kocaman et al., 2020).
Hence, the present study aims at testing if the integrated machine learning model can obtain better results than individual models. In order to make more readers clear to the modelling process, three models that are commonly used were selected as the basic models, namely, the BP, SVM, and RF models. Our objective mainly focused on the way of integrating these models and the production of a better model. Specifically, the purposes of this study include (a) using the frequency ratio method to analyze the nonlinear relationship between the landslide inventory and causal factors in a region located at Lvliang mountains of China, (b) integrating different machine learning models where their connecting weights to susceptibility results were optimized by the GWO algorithm, and (c) applying different models to generate the regional landslide susceptibility maps and comparing their performances.
STUDY AREA
The study area (35°43′–38°43′ N, 110°22′–112°19′ E) is located in southwestern Shanxi Province and covers an area of approximately 21,140 km2. It includes four counties: Shilou, Yonghe, Ji, and Daning (Figure 1). Geomorphologically, the area belongs to the Lvliang mountains of Central China and is surrounded by moderately high and low mountains. Elevation varies from 399 m to 2,034 m above sea level and increases from west to east. Based on geological data, the area is characterized by Cambrian to Jurassic sedimentary rocks and quaternary deposits. Sandstone, mudstone, sandy mudstone, and quaternary loess strata outcrop extensively (Tang et al., 2020). The area has a warm temperate continental monsoon climate with long cold winters and hot summers. Data from the local meteorological station shows that the average annual temperature and precipitation are 7°C and 514.9 mm, respectively. More than 60% of the total annual precipitation falls in summer (June–September). There are many settlements in the territory, so it is highly populated in some parts of the area. During the urbanization, the original topography has been modified by engineering activities (e.g., the construction of transportation lines), which subsequently caused the slope deformation and instability.
[image: Figure 1]FIGURE 1 | Landslide spatial distribution map.
MATERIALS AND METHODS
Data Sources
The main software used in this study was ArcGIS 10.2. The first step was the data collection, which is the basis of landslide susceptibility analysis. The main data sources included the following (Table 1): (1) The digital elevation model (DEM) with a resolution of 25 m was provided by the China Geological Survey (Xi’an Center), which was subsequently used to generate other influencing factors, such as slope, aspect, and so on. (2) The geological map was used to extract information of soil and lithology. (3) The distribution map of landslides in the region was used to determine the landslide locations. (4) Remote sensing images obtained from Google Earth (https://www.google.com/earth/) were used to verify and calibrate the landslide location. (5) Landslide field survey reports were used to update the specific information of landslides (e.g., the date of occurrence, volume, material composition, and thickness of weak interlayer). (6) According to the monitoring data provided by the geological disaster management department, the local rainfall situation for many years was determined.
TABLE 1 | Detailed data and their sources used in this study.
[image: Table 1]Landslide Inventory Mapping
Landslide inventory map can reveal the spatial distribution of landslides and is a necessary means to analyze the relationship between the landslide points and inducing factors (Tian et al., 2019). The study area is a landslide-prone area, which suffered many landslide hazards with various scales in history (Wang et al., 2019; Tang et al., 2020). To obtain the updated information of landslides in the area, several filed surveys were conducted during 2016 and 2018. The location of each landslide expressed by the X and Y coordinates of the central point was recorded. Meanwhile, the landslide reports provide basic information on each landslide, including volume, area, materials, and occurrence time. During the next stage, these landslides were digitized into the GIS environment, with the characteristics saved in the attribute tables. After this, the remote sensing images from Google Earth were used to crosscheck the location of landslides. The method used was mainly the visual interpretation. The landslides were confirmed if evident deformation or scarps were observed.
Finally, there are total 466 landslides in the area revealed by the landslide inventory map, among which 234 are loess landslides and 232 are rockfalls (Tang et al., 2020). Given that the mechanisms of the two types of landslides are totally different, this study only deals with the issue associated with loess landslides. According to the landslide classification criteria (Cruden et al., 1996; Hungr et al., 2014), most loess landslides in the area are large slope failures and composite soil slide–debris flows. A small number of landslides are earth slides.
From the number perspective, Jixian County has the largest number of loess landslides (72) while the number of landslides in Yonghe County is relatively small (49). Regarding the triggering factors of the landslides, there are two main reasons that make the study area prone to landslides. One is the unique structural properties and water sensitivity of loess which distributes extensively in the Lvliang mountains (Derbyshire, 2001). Geohazards are easily induced under heavy rainfall due to such properties (Wang et al., 2014; Zhuang and Peng, 2014). The other one is human engineering activities. The slope instability occurs when the slope angle is relatively large and the external disturbance also exists (Chen et al., 2019). In addition, landslides appear to have clustered in moderate elevations. This fits with the results in some other study areas (Catani et al., 2013; Medina et al., 2021). On one side, topography in low elevations is generally flat. On the other side, there are very few people and human activities in high mountains; thus landslide is hardly to happen or be identified.
Selection of Evaluation Units
A key problem in the development of landslide susceptibility mapping is how to divide “evaluation units.” Common division methods mainly include (Ba et al., 2018) grid, natural slope, subbasin, homogeneous conditions, and administrative division units. Among them, grid and slope units are the most frequently used. Current slope division methods still have some defects in practical applications, such as low operability, being very dependent on manual correction, etc. (Chen et al., 2019). On the contrary, the grid unit method has the advantages of convenient rapid subdivision, regular shape, and so on. Hence, the grid was selected as the evaluation unit in this study.
Proposed Integrated Model
In the previous studies, individual BP, SVM, and RF models have shown good performances in the analysis of landslide susceptibility (Ermini et al., 2005; Catani et al., 2013; Bui et al., 2016; Chen et al., 2017b). However, it is evident that various machine learning models have their own advantages and disadvantages when they are designed. Hence, we are curious if the accuracy can be improved when different models are integrated into one model. Hence, the BP-SVM-RF model was proposed in this study to test this point. Considering the individual BP, SVM, and RF models have been widely used, we only introduced the principles on the integration of them. The details of these three models have been described and explained in literature (Ermini et al., 2005; Catani et al., 2013; Bui et al., 2016; Chen et al., 2017b).
Figure 2 illustrates the framework of the integrated method. The integrated model takes BP, SVM, and RF as benchmark models and trains them to solve the same problem (landslide susceptibility evaluation). Furthermore, three weighting factors ([image: image], [image: image], and [image: image]) are used to combine the output results of the three models to obtain better results. Assuming that the output results of BP, SVM, and RF are [image: image], [image: image], and [image: image], respectively, the output of the designed integrated model is (represented by [image: image]) as follows:
[image: image]
where[image: image], [image: image], and[image: image]are real numbers between 0 and 1.
[image: Figure 2]FIGURE 2 | Framework of integrated model.
To determine these three weighting factors ([image: image], [image: image], and [image: image]), the following cost function (objective function) is constructed with the root mean square error:
[image: image]
where [image: image] is the result of susceptibility evaluation (0 or 1), and N is the number of training samples. It should be noted that the [image: image] is not a calculated value but an observed value. For a specific cell in the training samples, this value is 1 if a landslide point is located here. If this is a nonlandslide point, the value of [image: image] is 0.
To minimize the cost function, a heuristic optimization algorithm is used to obtain the numerical solutions of w1, w2, and w3. Among the heuristic optimization algorithms, the gray wolf optimizer (GWO) is an algorithm with superior performance, which can avoid the premature convergence of the algorithm (Mirjalili et al., 2013). It has been successfully applied in the academe practices (Mirjalili, 2015; Guo et al., 2020). Therefore, the GWO algorithm was used in this study to obtain the optimal solution that minimizes the cost function. The [image: image], [image: image], and[image: image]calculation based on the GWO algorithm prognostics consists of six steps:
Step 1: The GWO algorithm parameters, including gray wolf population, maximum number of iterations, and the position [image: image]of each gray wolf are initialized. [image: image] is set.
Step 2: Three dominant wolves in the population are identified and named as [image: image], [image: image], and [image: image]in turn. These three wolves will lead the population to encircle, hunt, and attack prey (target solution).
Step 3: The convergence factor is calculated, and the coefficient vector is updated:
[image: image]
[image: image]
where [image: image]and [image: image]are random vectors between 0 and 1.
Step 4: The locations of these three best gray wolves are updated:
[image: image]
[image: image]
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Step 5: The individual position in population is updated:
[image: image]
Step 6: If the iteration of the algorithm is terminated, the optimal individual position in the population is output; otherwise, return to Step 2.
For the integrated model, our goal was to find the best-fit values for the three weights (w1, w2, and w3), whereas the results of the GWO were the optimized location of three dominant wolves (Qα, Qβ, and Qδ). Hence, the outputs obtained from the GWO were the results of the three weights. Users only need to input three initial values for the weights which should be between 0 and 1. Last, it should be mentioned that the present method is to integrate different models so it is a separated process from the landslide susceptibility map. In other words, other models can also be integrated by using this process.
Landslide Causal Factors
In the models for landslide susceptibility zonation, the environmental factors that affect the development of landslides are the input parameters of the model. Therefore, selecting the causal factors is an important step in this process. In the existing literature on this topic, several factors have been widely accepted (e.g., slope and lithology), while some other factors (e.g., curvature, soil map, and topographic wetness index (TWI)) remain controversial (Segoni et al., 2012; Arabameri et al., 2020). However, the performance of landslide susceptibility models is normally data-dependent, which means not only causal factors but also other data (e.g., the data availability and resolution) can affect the results (Catani et al., 2013). Hence, a causal factor may have different effects on landslides in different test occasions as the geological background of every area is unique (Tang et al., 2020). In view of this, several controversial but common factors in the literature were still selected in this paper.
To begin with, 15 causal factors, which have been widely used, including altitude, slope angle, aspect, plane curvature, curve curvature, relief degree, lithology, slope structure, land use, vegetation coverage, soil erosion intensity, TWI, distance from river, distance from highway, and rainfall, were identified as the initial database. Every factor was related with one aspect of landslide occurrence, including geomorphic characteristics, geological environment, environmental background, hydrological factors, and triggering factors. Several other factors are not selected due to the following reasons: Firstly, they do not occur frequently in the study area (such as earthquakes and freeze–thaw). Secondly, they have not been widely used before (such as soil properties and solar radiation). In the next stage, expert opinions on these factors were solicited. Five factors were suggested to be removed from the database, namely, the distance from the water system, distance from the highway, relief degree, slope structure, and topographic wetness index for the following reasons: 1) A certain overlap exists between the range of topography relief degree and curvature. 2) The TWI has a great relationship with debris flows, but almost no debris flow is observed in the study area. 3) The direction of the stratum is the same as that of the slope in this area, which has a negligible relationship with slope structure. 4) The distance from the water system and highways are related to rainfall accumulation because rivers and roads normally have low elevations. Hence, these two factors were also deleted to make the rainfall an independent variable in the factor system. Subsequently, the results of the correlation analysis among each factor supported the expert’s opinion: The five removed factors really had a correlation coefficient of more than 0.5 with a certain one or several factors, thus indicating they were not independent variables. Hence, it is reasonable to remove them from the influencing factors system, which can improve the conditional independence of the model (Pereira et al., 2012).
Finally, the evaluation factor system was established containing 10 factors. It should be stated that all the models used these 10 factors to generate landslide susceptibility maps. This is mainly because the main objective of this study is to compare the accuracy between individual and integrated model. Hence, besides the model used, the other settings should keep constant, specially the conditioning factors. These factors included both discrete and continuous variables, such that the continuous factors should be separated into several categories in a fixed manner when using the proposed model. However, no uniform standard exists for the number of intervals. Generally, 4–12 intervals are considered as suitable, because too many intervals will increase the model complexity while too few intervals cannot reflect enough information of factors (Chen et al., 2017c; Huang et al., 2020). Finally, all continuous factors were divided into 4–9 intervals in this study. Frequency ratio (FR) was used to measure the landslide density in each interval of the factor. This method can be expressed as the ratio of the percentage of landslide contained in each factor category to the percentage of area occupied by the corresponding category (Aditian et al., 2018). The results of FR analysis are showed in Table 2. The detailed preparations of each factor and reclassification are described as follows.
TABLE 2 | Frequency ratios of index factors.
[image: Table 2]Elevation (Figure 3A): Occurrence of landslides is closely related to the elevation as the environmental conditions of slopes, such as land coverage, climate, and human activities, vary with the elevation (Guo et al., 2019). The DEM showed that the altitude of the area ranged from 399 to 2,056 m asl. It was divided into four grades with 400 m intervals. Table 1 shows that the FR of the elevation in the range of 800–1,200 m is greater than 1, which indicates that this elevation interval has an important effect on landslide occurrence.
[image: Figure 3]FIGURE 3 | Causal factors used in landslide susceptibility modelling. The red dots represent landslide points in the study area: (A) elevation, (B) slope, (C) aspect, (D) rainfall, (E) land use, (F) lithology, (G) soil erosion intensity, (H) plan curvature, (I) profile curvature, and (J) vegetation coverage.
Slope (Figure 3B): Slope is an important factor to mirror the terrain, and it macroscopically reflects the fluctuation of the terrain. The higher the slope is, the more concentrated the shear stress is, and the more likely the landslides will occur. Moreover, the slope affects the erosion and erosion of surface runoff, vegetation coverage, and the supply and discharge of groundwater on the slope (Tang et al., 2020). The slope map was extracted from DEM using the GIS tool. The slope values in the region ranged from 0° to 60° and 10° intervals were used to divide them into five categories. The FR in the range of 10°–20° and 30°–40° were the largest, indicating that landslides mainly occur on moderate slopes.
Aspect (Figure 3C): This factor has an impact on the conditions on slopes, such as sunshine duration and solar radiation intensity, which can affect vegetation development, evaporation, weathering, and slope erosion (Youssef et al., 2015). At the same time, pore water pressure changes with temperature, such that slope stability and slope direction are also correlated. The map was also generated from DEM and was automatically recognized into nine main directions (interval 45°) in the GIS, where −1 was flat ground. The number of landslides and FR values in each class showed that the landslide density was higher when slopes were facing the north (0–90°, 270–360°).
Rainfall (Figure 3D): The main reasons to consider rainfall as a conditioning factor for landslide susceptibility in this study include the following: (i) The rainfall distribution in the study area has a spatial variability. (ii) This factor also has been considered in some previous studies (Catani et al., 2013). The influence of rainfall on slope stability is mainly manifested in three aspects (Guo et al., 2020; Medina et al., 2021): The first is the softening of rock and soil by rainfall infiltration, which weakens them. The second is the hydrostatic pressure and hydrodynamic pressure formed by rainfall infiltration, and its floating force constitutes an unfavorable factor for slope stability. The third is the erosion and destruction of slopes due to the erosion of runoff caused by rainfall. In this study, the daily rainfall of multiple rainfall monitoring stations was obtained first, which was used to generate the whole rainfall map by applying the Kriging interpolation tool in GIS. The map showed that the average annual rainfall in this area was between 440 and 540 mm, and it was divided into five categories at 20 mm intervals.
Land use (Figure 3E): Land use and its change can also trigger landslides (Shu et al., 2019). Various vegetation’s types show the difference in the degree of human disturbance and damage to the rock and soil; thus the probability of landslides is also different. Several land use types, such as forestry land, are conducive to slope consolidation and landslide reduction. Several land uses, such as cultivated land and residential land, can destabilize damage slopes. In this study, the land use map was generated from the Landsat TM image by using the object-oriented segmentation method. This step was completed in the recognition software, which segmented the image into different polygon objects automatically (Chen et al., 2019). Next, the attributes of on each land use type were captured and identified, mainly including geometrical and spectral features. To reclassify land use types, users need to (i) conduct field work to determine each land use type and corresponding features in RS images; (ii) select the training and testing samples from the segmented objects; (iii) reclassify the whole area into various land use types according to images features. The reclassification method used in recognition was the nearest neighbor method, and finally six types of land use maps were obtained: farmland, shrubs, grasslands, forests, young forests, and economic plants. The reason for distinguishing between forests and young forests is that forest coverage and density may change with age, leading to different landslide distributions. Economic plants were identified mainly because they may represent human activities with different intensities compared with other natural vegetation (Tang et al., 2020).
Lithology (Figure 3F): In this study, the stratigraphic lithological map was obtained from the regional geological map. The outcropping strata in the study area include Ordovician (o), Carboniferous (c), Permian (P), Triassic (T), Neogene (N), and Quaternary (Q) units. The Triassic and Quaternary strata cover most of the study area, such that they can be divided into several units according to age.
Soil erosion intensity (Figure 3G): Large amounts of soil resources have been eroded and destroyed, ravines have intensified, soil layers have become thinner, and large areas of land have been cut to pieces, which can easily cause geological disasters such as landslides and soil creep (Shrestha et al., 2004; Cuomo and Della Sala, 2015). In particular, the Loess Plateau has been suffering from loess landslides (Zhuang et al., 2018). In this study, the soil erosion intensity map was provided by the Shanxi Provincial Department of Surveying and Mapping, and six categories were classified.
Plane curvature (Figure 3H): It describes the characteristics of the terrain in the horizontal direction, which is equal to the change in the slope direction at a certain grid (Huang et al., 2017); thus, it can be obtained by deriving the slope direction in GIS.
Profile curvature (Figure 3I): It describes the complexity of the terrain, and it was also derived from the DEM, which was divided into five classes.
Vegetation coverage (VC) (Figure 3J): Vegetation can improve slope stability by strengthening soil and absorbing water. According to the field investigation, the area with less vegetation and low coverage in the Lvliang mountains has strong weathering erosion and serious soil erosion, which easily induce landslides. Thus, it is necessary to include the vegetation coverage map into the analysis. Two Landsat TM images were used to generate this map, namely, the images from July 20, 2018 (path 126, row 34), and July 30, 2018 (path 126, row 35), respectively. The multispectrum information in the images was used to calculate the vegetation coverage as follows (Chang et al., 2020):
[image: image]
where the P(NIR) and P(Red) are the spectral reflectance measured from the near infrared and visible red bands in the Landsat TM data.
Data Preprocessing
Machine learning models require sample data to conduct the landslide susceptibility modelling, because it is not possible to include the dataset of the entire area into the training process. The sample data includes the landslide samples and nonlandslide samples, where the number of landslide points is fixed (234). A certain number of sample data pieces of nonlandslide points need to be selected from the study area using random sampling methods to construct a binary classification model. Studies have shown that, in susceptibility assessment, the nonevent (nonlandslide points) sample size can be 2–10 times greater than the events (landslide points) (King and Zeng, 2001; Nam and Wang, 2019). After six experiments (the ratios of landslide and nonlandslide points were 1:5; 1:6; 1:7; 1:8; 1:9, and 1:10, respectively), the final ratio of landslide to nonlandslide was determined as 1:10; that is, 2,340 nonlandslide samples were selected. Then, the 500 m buffer areas around the landslide points, the reservoir, the downstream Yellow River, and its tributaries were taken as the nonlandslide areas, as these areas had very few historical landslides. Next, the random sampling tool was used to select the real “nonlandslide” samples as much as possible. A total of 2,340 samples are randomly selected from nonlandslide areas in the district as nonlandslide sample data. The X value of the sample data is an array containing the FR values of 10 influencing factors; y is a 1D data composed of all the samples selected, and the value is 0 or 1, where the landslide sample is 1 and the nonlandslide sample is 0. All the values of the 10 causal factors are normalized, in which the qualitative data are converted into numerical values before processing, to reduce the discreteness of data and the effect of different dimensions. The normalization formula is as follows:
[image: image]
where [image: image]represents the normalized causal factor; [image: image]represents the original data of the causal factor; [image: image] and [image: image] represent the minimum and maximum values in [image: image], respectively.
Model Performance Evaluation Indicator
For binary classification, the most commonly used evaluation indices are ROC curve and AUC values (Cantarino et al., 2019; Chen et al., 2019). The ROC curve obtains a series of different binary classification results by setting the probability threshold and then compares it with the actual results to calculate the true positives rate (the proportion of the pixels whose classification results are landslides and the actual number of landslides) and false positives rate (the ratio of the number of nonlandslide pixels divided into landslides to the number of all nonlandslide pixels). The curve drawn with the true positive rate on the ordinate and the false positive rate on the abscissa is the ROC curve. The point closest to the ROC curve in the upper left corner is the best threshold with the least errors, and the total number of false positives and false negatives is the least. The AUC value is the area under the ROC curve, which is used to measure the accuracy of model prediction. The higher the AUC value is, the higher the model accuracy is (Corsini and Mulas, 2017).
RESULTS
Model Integration Results
In the experiment process, the population size and maximum number of iterations were set to 20 and 100, respectively, to ensure that the GWO can iteratively converge. Figure 4 showed the distribution of gray wolf populations during the optimization of the weight factors of the GWO algorithm. It can be seen that the gray wolf population obtained the information related to the solution during the search and gradually gathered to the optimal solution area through encircling, hunting, and attacking operations. Considering the initial inputs for the three weights were the same while their outputs were evidently different, the GWO algorithm provided useful insight into the model optimal solution. In the experiment, the initial population of the GWO algorithm is randomly distributed in the analytical space. With the iteration of the population, the gray wolf gradually approaches the optimal solution. After 90 population iterations, the optimal solution of the model is found.
[image: Figure 4]FIGURE 4 | Distribution of gray wolf population in the GWO optimization process. (A) Initial population. (B) The sixtieth generation population. (C) The ninetieth generation population.
Subsequently, the ROC curve of the BP-SVM-RF model was generated. The ROC curves of every single model (BP, SVM, and RF) and integrated model of two models (BP-SVM, BP-RF, and SVM-RF) were also obtained for a comparison purpose (Figure 5). The AUC values were 0.7898 (BP-SVM-RF), 0.6929 (BP), 0.6582 (SVM), 0.7258 (RF), 0.7360 (BP-SVM), 0.7569 (BP-RF), and 0.7298 (SVM-RF), respectively. It can be seen that all the integrated models (BP-SVM-RF, BP-SVM, BP-RF, and SVM-RF) had a higher accuracy than that of individual model, and the BP-SVM-RF model was the best model. Hence, the integration of different machine learning models really improved the model performance.
[image: Figure 5]FIGURE 5 | ROC curves of various models’ prediction results.
Landslide Susceptibility Mapping
The largest index value of landslide susceptibility in every grid was taken as the final index value of this grid, so as to achieve the prediction of regional landslide susceptibility index. The susceptibility index maps calculated by the seven models were imported into the ArcGIS, and the susceptibility index was divided into five levels (very low, low, medium, high, and very high) by using the geometric interval method to generate the final susceptibility map of the study area (Figure 6). It can be seen that the created landslide susceptibility maps by using different models had similar spatial pattern. The areas with very low and low susceptibility levels were distributed in flakes as a whole, while the areas with very high and high susceptibility were mainly distributed in linear clusters, which was consistent with the characteristics of historical landslide distribution. Most high susceptibility areas were distributed in the places with moderate slopes, low vegetation coverage, and low elevations. Moreover, more than 60% landslides were located in the range of plane curvature −1.3 to 1.14, and lithological units with loose geotechnical structure can also promote slope instability (Table 1). In high susceptibility areas, several residential areas, garden plots, and road network dense areas were mostly distributed here; thus human activities were more frequent. Hence, the combined effect of natural conditions and human activities posted higher landslide risks in the study area.
[image: Figure 6]FIGURE 6 | Landslide susceptibility maps respectively produced by different models: (A) BP, (B) SVM, (C) RF, (D) BP-SVM, (E) BP-RF, (F) SVM-RF, and (G) integrated BP-SVM-RF.
The evaluation results of the model fitting ability and generalization ability indicated that the BP-SVM-RF integrated model had a good prediction accuracy, but this performance measurement cannot reflect the spatial distribution pattern of the susceptibility index. To make the statistical analysis on the landslide distribution, the number of landslides, landslide percentages, grid numbers, and grid percentages of each susceptibility level were counted and landslide density was determined (Table 3). The results showed that most of the study area (65.85%) had low or very low susceptibility levels. 64.53% of landslides occurred in very high and high susceptibility areas, which could be considered to meet the requirements of spatial distribution verification accuracy. In addition, the landslide density, defined as the ratio of landslide percentage to susceptibility grade percentage, reflected the distribution information of historical landslides per unit area. With the increase of susceptibility level, landslide density increased correspondingly, which indicated that the evaluation result of the BP-SVM-RF integrated model was reasonable.
TABLE 3 | Frequency ratios of five susceptibility classes assessed with the BP-SVM-RF model.
[image: Table 3]At last, all the sample data used in the modelling were reclassified into a binary of yes or no, and the results were shown as a confusion matrix (Table 4). All the models used 0.5 as the threshold of landslide susceptibility index. It can be seen that the performance of the BP-SVM-RF model was still the best. It has the highest TP and TN values, which indicated that the model accurately identified the most number of real landslide and nonlandslide points. In addition, the values of FP and FN of the BP-SVM-RF model were the lowest, thus showing its mis-reclassification was the lowest. Such analysis would be helpful for the decision making driven by management and allows the model to be compared to others that do a similar listing of results.
TABLE 4 | Confusion matrix for classification results of different models.
[image: Table 4]Based on the results of the landslide susceptibility assessment, some suggestions can be provided to reduce and mitigate landslide risks in the study area:
1) The landslide susceptibility maps showed that the areas with low vegetation coverage were more susceptible to landslides. Hence, extensive afforestation should be encouraged, which can effectively improve the slope stability due to the root cohesion.
2) In low elevation areas, the human activities are more common, and slope stability can be more affected. Both Fr analysis and landslide susceptibility map showed that low-moderate elevations and moderate slope angles had more historical landslides. Hence, sufficient attention should be paid to these areas.
3) Most landslides in the area are composed of loess, which normally has weak geotechnical properties (e.g., sensitivity to water, and collapsibility). Hence, both engineering and agricultural activities should treat these properties cautiously when dealing with loess.
DISCUSSION
Model Integration
Studies on generating regional landslide susceptibility maps based on the GIS platform are numerous and many of them have proposed suitable models for susceptibility assessment. A recent review stated that there were approximately 500 published papers which have used 70 models in the period of 2005–2016 (Pourghasemi et al., 2018). However, it should be noted that most studies were based on existing methods and tried to find better model by accuracy comparisons. Additionally, some studies so-called “integrated model” were not “real” integration of models. For example, Merghadi et al. (2020) used the convolutional neural network to extract features from landslide raw data and machine learning models were used to compute landslide susceptibility. Similar models and application procedures actually only used one model to achieve modelling. Hence, it is still highly encouraged to combine the outputs from different models to obtain “optimal” susceptibility maps for risk management and final decision making (Reichenbach et al., 2018). In fact, most available integrated models until now are related with different types of models, such as machine learning and statistical models. This is mainly because statistical techniques are normally required during the susceptibility modelling process, especially when analyzing the relationship between historical landslides and influencing factors (Fang et al., 2020). For instance, Guo et al. (2019) used weight of evidence method to analyze the effects of different factors on landslide occurrence and used the BP model to perform model training and prediction. Althuwaynee et al. (2016) applied the analytic hierarchy process to pairwise compare the CHAID terminal nodes to generate new landslide susceptibility maps. It can be seen that every single model was used to finish one specific task, which was not combined with other models.
In this study, all the three models were used to compute the landslide susceptibility index, and the final susceptibility for every cell contained three aspects. Hence, every single model directly affected the results, not only one specific step. The absolute value of the accuracy of the integrated model expressed by the ROC curve was not perfect, but it did improve the results compared with individual models. Such results supported the opinion that it is possible to combine different forecasts in an optimal prediction when multiple forecasts are available (Kocaman et al., 2020). This is mainly because the coupling model can combine the advantages of different models: The advantage of SVM is that high accuracy can be obtained on small sample training sets (Bui et al., 2016). The RF model can randomly select certain features as candidate features, and then the optimal features are selected. In this way, diversity of decision trees can be increased to improve the classification performance (Catani et al., 2013). The advantages of BP are the strong self-adaptive ability and good generalization (Guo et al., 2020). Last but not least, the three models were integrated by constructing an objective function in the present test. This can be also used for other machine learning models; thus the proposed procedure can be easily replicated into other case studies.
Selection of Causal Factors
As stated by Van Westen et al. (2006), one of the biggest difficulties in landslide susceptibility assessment is to find the best combination of environmental factors. In this study, we deleted five factors from the initial factor system based on expert’s opinion. This is a qualitative method which is subjective, but the subsequent test on the factor correlation showed that the correlations of the five factors with other factors were relatively high. Hence, the elimination of these factors made sense. However, the test on the model containing these factors would be still helpful, which was not available in the current analysis. Hence, it is recommended to use quantitative method to analyze the factor correlation and their contributions to the final results, such as forward (Pham et al., 2019) and backward elimination (Pham et al., 2016) methods and multicollinearity analysis (Lee et al., 2018).
Moreover, our objectives in the follow-up work also include the following:
i) More environmental factors should be considered into the analysis and more important factors should be selected for generating landslide susceptibility maps by calculating their importance quantitatively.
ii) The model application into other areas would be interesting. We will employ more machine learning models to verify the universality of the current procedure.
CONCLUSION
Various machine learning models are available for regional landslide susceptibility assessments, but few attempts have been made to integrate different models for better performances. In this study, three commonly used machine learning models (BP, SVM, and RF) were integrated into a model by constructing an objective function. The function computed the root mean square error between predicted and observed results, and the GWO algorithm was used to calculate the connecting weights among the three models. The test results in the Lvliang mountains of China showed that the integrated BP-SVM-RF model had a better accuracy with the AUC of 0.79, compared with every single model (AUC = 0.69 for BP, AUC = 0.67 for SVM, AUC = 0.73 for RF) and integrated model using two models (AUC = 0.74 for BP-SVM, AUC = 0.76 for BP-RF, AUC = 0.73 for SVM-RF). Hence, the proposed BP-SVM-RF model is an effective integrated model and suitable for landslide susceptibility assessment of the study area. Moreover, the GWO algorithm can be an option to integrate different models to seek “optimal” results.
Overall, the proposed procedure can be replicated into other landslide-prone areas, and different models can be selected as basic elements for the integrated model. Hence, the current results can guide the landslide risk mitigation of the study area, and they can also provide references for other case studies. The future work is to include more landslide-related influencing factors into the assessment and quantitatively express the importance of each factor.
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In Ganzhou City, China, a complex bedrock lithology and structure, diverse topography, frequent engineering works, and abundant rainfall generate frequent, sudden, small-scale landslides that are difficult to prevent and control. This study integrates evidence data from a field investigation of landslides with geological-engineering analogues to document the distribution and development of these geohazards in Ganzhou City. Based on the distribution of landslides across different types of bedrock and soil, we identify five lithological groups prone to slope failure: granite, metamorphics (slate and phyllite), red sedimentary layers, clastic sedimentary rocks with weak interlayers, and loose Quaternary deposits. Granite and metamorphic bedrock are the two lithologies most prone to landslides. Our analysis of the genesis and mode of slope failure suggests that most landslides in Ganzhou City originated from four modes of slope failure: scouring erosion collapse, steep slope collapse, rock sliding along a rock stratum, and wedge-shaped block sliding and caving. An in-situ model test and numerical simulations were used to explore the evolution of slope deformation and failure on the most landslide-prone lithological groups, and the accumulation of debris post-failure. This work provides a reference for the assessment of the risk from, and the management of, landslide geohazards in Ganzhou City and geologically similar regions.
Keywords: geohazards, landslides, landslide-prone rocks, slope failure mode, in-situ model test, numerical simulation
INTRODUCTION
Landslides, the most frequent geohazard in China, have attracted considerable research attention (Wang et al., 2011; Zhou and Zhao, 2013; Deng et al., 2021). Most of this research, however, has focused on large-scale landslides, involving rapid movement and large-scale destruction. In China, such landslides are primarily distributed in the Three Gorges Reservoir region (Gu et al., 2017; Zhang et al., 2018; Huang. et al., 2020a; Wang et al., 2021), southwestern China (Jiang et al., 2014; Gao and Sang 2017), and the northwestern Loess Plateau (Xu et al., 2017; Leng et al., 2018). Small-scale landslides are often overlooked, although they also, cause serious damage. For example, from 1998 to July 2019, there were 22,377 geohazard incidents in China’s Southern Jiangxi Province. In 2015, 2,196 landslide events that caused significant casualties and economic damage were reported (Ke et al., 2017). The southern Jiangxi region has a complex geological structure and bedrock lithology, diverse topography and geomorphology, widespread engineering works, and experiences heavy rainfall. For these reasons, landslides in this region tend to be sudden, frequent, and widespread, but relatively small in scale; therefore, they are extremely difficult to prevent and control (Ke et al., 2017). The steep morphological gradient formed by cutting into slopes to build houses and repair roads is the primary cause of frequent landslides in this region. When disasters occur, houses that are located too close to slopes often result in heavy losses (Figure 1). The mode of slope failure in the Southern Jiangxi Province, and the damage that this failure can incur, were poorly understood by the Ministry of Transport. This has resulted in a failure to provide effective guidelines for house construction and road repair. To facilitate the effective assessment of landslide risk and the management of current and future disasters, the study of slope failure and the dynamics of landslide in the Southern Jiangxi Province is, therefore, necessary (Huang et al., 2016; Huang et al., 2020b).
[image: Figure 1]FIGURE 1 | Structural damage to houses (A–D) and roads (E–G), caused by landslides in Ganzhou City.
As mentioned, previous studies of landslides in China have mainly focused on large-scale landslides, such as the Qianjiangping (Du et al., 2013; Yin et al., 2015), Daguangbao (Huang et al., 2012; Cui et al., 2018), and Shaziba (Shen et al., 2021) landslides. The occurrence and slope failure processes of these landslides have been explored through various methods, including high-resolution remote sensing, large-scale physical model tests, and on-site monitoring. In addition, the mode of slope failure and the dynamic run-out processes of these landslides have been investigated in detail (Youssef and Maerz, 2013; Ouyang et al., 2017). However, the methods and results of this research, are not directly applicable to the diverse lithology and small-scale landslides of Ganzhou City, and the mode of slope failure and other characteristics of the latter can be expected to differ significantly from those of large-scale landslides in other areas.
To address this issue, we conducted an extensive geo-engineering field survey of landslides in Ganzhou City. We systematically analysed the distribution, geomorphic and lithological characteristics, the slope failure mode of these geohazards, as well as the factors that influence their development on different lithologies. To further explore the damage caused by various modes of slope failure, we performed in situ model testing on a typical landslide in the city. Additionally, where in-situ experiments were difficult to conduct, we used numerical modelling to simulate the slope failure and accumulation of debris after failure. The insights into the landslide processes gained by these methods can underpin the prevention and control of landslides in Ganzhou City and similar geological settings elsewhere in the world.
SURVEY OF THE STUDY AREA AND LANDSLIDE-INFLUENCING FACTORS
Overview of the Study Area
Ganzhou City is located in a mountain basin in Southern Jiangxi Province, China. The topographical gradient spans from these mountains and their foothills to the centre of the basin (Ganzhou City) and from the south to the north. Undulating mountains and hills account for more than 80% of the total area. The bedrock, with many well-exposed outcrops, comprises Proterozoic to Cainozoic sedimentary and igneous lithologies, such as Sinian gneiss, phyllite, metasandstone, and quartzite; Cambrian feldspar-quartz metasandstone and carbonaceous slate; Ordovician sandstone, siltstone, and shale; Devonian feldspar-quartz sandstone and siltstone glutenite; Carboniferous limestone and dolomite; chert nodules; coal-bearing siliciclastics; Permian siliceous shale and limestone, and Cretaceous sandstone, glutenite siltstone, and strongly weathered multistage granite. The rich mineral resources in the mountains around Ganzhou originated from multistage orogenesis and igneous activity. The region has a subtropical, monsoonal climate, with distinct seasons and abundant rainfall (average annual rainfall: 1856.3 mm).
Factors Influencing Landslides in Ganzhou
From January 1998 to July 2019, a total of 22,377 incidents of slope failure (landslides, slope collapse, debris flows, ground collapse, etc.) occurred in Ganzhou City. Most of these incidents were landslides at a scale generally smaller than 10000 m3. An investigation identified 11,976 hidden geohazards in Ganzhou City (8,159 landslides, 3,592 sites of slope collapse, 181 sites of ground collapse, 43 debris flows, and 1 ground fissure), with landslide geohazard accounting for more than 98%.
In Ganzhou City, landslides occur on a broad range of slopes, which vary between different areas and bedrock. For instance, in the hilly areas, the landslide-prone slopes are mostly between 15° and 25°, and in mid- and low-altitude areas, these slopes are generally between 30° and 45°. Figures 2A,B based on the detailed, 1:50,000 geohazard map of Ganzhou City, show the frequency of landslides in different geomorphic settings: geohazards in Ganzhou City are mainly distributed on slopes with a gentle (15° < α ≤ 35°) and moderate (35° < α ≤ 55°) incline, in mountainous and hilly areas, where steep slopes are relatively small. No landslides occurred on the cliffs.
[image: Figure 2]FIGURE 2 | Landslides in Ganzhou City from 1998 to 2019 in relation to, (A) topography and geomorphology, (B) slope gradient, (C) lithology, and, (D) average monthly rainfall.
The geological structure of the Ganzhou City area is complex, with two groups of folds, four groups of deep faults, and joints. Structural faults, especially the deep Dayu-Nancheng fault, exercise greater influence on geohazards.
The two main internal factors that influence landslide geohazards in the region are topography and geological structure and composition, with lithology playing a key role. Landslides are frequent on granite and metamorphic bedrock and its soil mantle, and are relatively rare in other bedrock and soils. This is in line with the distribution of multiple geohazards in mountainous and hilly areas where granite and metamorphic bedrock are typically located. Metamorphic and granitic bedrock, the most disaster-prone lithological groups, accounted for 78% of all landslides from 1998 to 2019, followed by red siliciclastic sediments, clastic sediments with weak interlayers, and loose Quaternary deposits and soils (Figure 2C).
The main external factors that influence landslide geohazards in Ganzhou City are rainfall and engineering work. The rainy season in this region is mainly from March to August, with the highest rainfall in May and June (the wet period, accounting for 58.9% of the annual precipitation). The dry season, from November to January, accounts for about 10% of the annual precipitation. During the rest of the year, the precipitation is moderate. Landslides in Ganzhou City mainly occurred from May to June, during the local rainy season. With a maximum frequency in May, landslides lagged behind the maximum rainfall (Figure 2D). Furthermore, Ganzhou City is rich in mineral resources and has a long history of mining. Mining usually involves slope cutting, which makes the slope steeper, leading to frequent landslides under heavy rainfall.
In summary, bedrock lithology, geological structure, topography, and geomorphology are the main internal factors influencing landslide geohazards in Ganzhou, with bedrock lithology being the most important. Rainfall and artificially cut slopes are the main external factors.
MODE OF SLOPE FAILURE
Based on the distribution of landslides between 1998 and 2019 (*) and the conditions and geomechanical properties of bedrock and soil, five landslide-prone lithological groups were identified in the Ganzhou City area: granite, metamorphics (slate and phyllite), red siliciclastic sediments, clastic sedimentary rocks with weak interlayers, and loose Quaternary deposits. Granite and metamorphic bedrock are more prone to landslides than other lithological groups. Owing to the complexity and diversity of bedrock and soil, different degrees of weathering, and variations in slope form and scale, the same external conditions result in the type and scale of landslides across these lithological groups. on the on-site investigation of slope failure suggested that landslides in Ganzhou City primarily result from the following four genetic mechanisms: a) scouring erosion collapse, b) steep slope collapse, c) rock sliding along a rock stratum, and, d) wedge-shaped block sliding and caving.
Scouring Erosion Collapse
Scouring erosion collapse occurs mainly on Jurassic porphyritic two-cloud potassium feldspar granite with a thick weathering mantle, Baiyun monzonitic granite, Triassic porphyritic monzonitic potassium feldspar granite, and Cretaceous red sandstone–conglomerate. This type of slope collapse occurs under the conditions of a thick weathering mantle and sparse vegetation on the slope surface. The weathered soil has a loose structure, with a coarse particle size and poor sorting, zero to weak viscosity, and high permeability. Weathered soil of this type is easily washed away by water. The erosion collapse proceeds in three stages:
1) Under the action of rainfall, sheet flow on the slope surface, over the fully weathered soil, removes soil particles and forms rills locally (Figure 3A).
2) Erosion progresses from the previous stage: the sheet flow becomes strand flow, and surface erosion gradually evolves into linear, gully erosion through the gradual expansion of rills into gullies. As the gullies deepen and widen, collapse due to gravity becomes increasingly frequent (Figure 3B).
3) As the erosion grooves increase in size, water drops moving along the groove wall further erode the weathered soil at the bottom of the groove. With the gradual intensification of erosion and undermining of the soil by enlarging erosion cavities, the soil in the upper part of the slope collapses due to gravity. As collapse progresses, the mountain slope gradually reshapes, until it acquires a smooth, gentle incline (Figure 3C).
[image: Figure 3]FIGURE 3 | Schematic diagram of scouring erosion collapse: (A) First stage; (B) Second stage; (C) Third stage.
A characteristic site of scouring erosion collapse is the resettlement housing area of Chou Village, about 10 miles from Ganzhou City. The bedrock lithology was Triassic porphyritic granite. The entire slope was formed on fully weathered, poorly sorted, loose soil that essentially lacked cohesion. A steep, high landslide, with a height of approximately 10–15 m and a slope of approximately 60–70°, occurred due to the cutting of the slope. A retaining wall of approximately 3–4 m was present at the foot of the slope. The upper part of the retaining wall lacked protection or reinforcement (Figure 4A). Due to continuous, heavy rainfall, grooves and seepage pipes formed both internally and on the slope surface which contained loose, weathered sand (Figure 4A). This loose sand flowed along the slope surface and grooves, forming a sediment flow. Two soil pits (Figures 4C–E) and some fissures (Figure 4B) were present at the top of the landslide. Rainwater gathered in the pits and penetrated the soil, causing fine particles to flow from the large pores. Continuous scouring of the landslide surface by rainwater resulted in the formation of grooves, while unstable soils collapsed locally (Figures 4F–H).
[image: Figure 4]FIGURE 4 | Scouring erosion collapse in Zhifu village, Ganzhou City: (A) Erosion grooves on the slope face; (B) Fissures at the top of the slope; (C) Soil pit at the top of the slope; (D) Water in the pit; (E) Another soil pit at the top of the slope; (F) Slope collapse and damage, (G–H) Slope collapse.
Steep Slope Collapse
In the Ganzhou area, steep slope collapse is widespread on high and steep slopes on granite and metamorphic bedrock and their thick, cohesive weathering mantle. Three different modes of slope failure were distinguished on the basis of the thickness of the weathering mantle and the height and gradient of the slope: 1) small-scale collapse landslides, 2) flow-collapse landslides, and, 3) collapse landslides.
(1) Small-scale collapse landslides.
In the study area, small-scale collapse landslides occur primarily on steep slopes with a height of 3–5 m. The upper part of the slope is completely weathered, cohesive soil of medium permeability, while the lower part of the slope is relatively impermeable, or weakly permeable, bedrock. Slope failure occurs in two stages:
1) Owing to artificial slope cutting, the slope surface is unloaded and tension fissures appear (Figure 5A).
2) Under continuous rainfall, rainwater infiltrates the slope, and the weight of the soil increases. The softening of the soil decreases its shear strength, which causes the slope to slip along the underlying bedrock towards the free direction, eventually forming scattered deposits of collapsed soil (Figure 5B).
[image: Figure 5]FIGURE 5 | Small-scall collapse landslides: (A) First stage; (B) Second stage.
(2) Flow-collapse landslides.
In the study area, flow-collapse landslides occur mainly on fully weathered granite, slate and phyllite slopes. These slopes are steep, more than 15 m high, and formed on a thick weathering mantle with a loose, cohesive soil of low permeability. The slope failure mechanism is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Flow-collapse landslides.
Under continuous heavy rainfall, the soil reaches a state of supersaturation with water, and its shear strength is greatly reduced. The upper soil collapses and disintegrates, and the loose collapse debris mixes with water to form a debris flow. Soils slide rapidly down the steep slope, forming a flow landslide that travels at a distance of more than 50 m. Such collapse events can cause significant long-range damage.
(3) Collapse landslides.
In the Ganzhou area, collapse landslides mainly occur on steep slopes with a height of more than 5 m and a thick weathering mantle over the jointed bedrock. Landslides of this type involve three stages.
1) Unloading fissures appear on the surface of steeply inclined, natural or artificial slopes due to the decrease in soil weigh (Figure 7A).
2) As slope erosion progresses, unloading fissures link with structural joints (Figure 7B).
3) The fissured soil collapses under heavy rainfall. The collapsed soil impacts loose soil at the lower part of the slope, resulting in the sliding of the loose soil (Figure 7C).
[image: Figure 7]FIGURE 7 | Collapse sliding: (A) First stage; (B) Second stage; (C) Third stage.
Α small-scale collapse landslide was located behind the Tuniuxia residential house in Qixia Village, Ganzhou City. The bedrock was coarse-grained porphyritic biotite monzonitic granite, covered by an approximately 1–3-m-thick layer of cohesive soil. This soil underwent continuous deformation during the rainy season, and some of it collapsed (Figure 8A).
[image: Figure 8]FIGURE 8 | (A) Small-scale collapse landslide on a weathered granite slope behind a house in Qixia Village, Ganzhou City. (B) Collapse landslide on a steep slope on weathered granite, behind the Dinglong Village Committee House, Ganzhou City. (C,D) Steep, high slope on metamorphic rock next to the Kuantian County Road (Ganzhou City), which was damaged by a flow-collapse landslide.
A flow-collapse landslide was located near the X433 Kuantian County Road, in Ganzhou City. The bedrock is interbedded slate and phyllite (Z1) with a broken rock mass and thick weathering mantle. The slope is approximately 40–50° and approximately 150 m high. In July 2019, after continuous heavy rainfall, the slope soil slid downward, initiating a mudflow that destroyed the nearby highway. The trailing edge of the landslide was completely emptied, forming an approximately 15-m-high scarp. The mudflow spread over a distance of more than 400 m, and the fan-shaped debris accumulation at its lower part was approximately 40 m. This landslide affected approximately 30 m of the highway (Figures 8C,D).
A collapse landslide was located behind the village committee house in Dinglong Village, Ganzhou City. Here, the lithology is Lower Jurassic coarse-grained porphyritic biotite monzogranite, similar to that at the Qixia village site. The rock mass was jointed and draped with a thick weathering mantle which was also fissured. The slope was covered with yellow-brown, fully weathered soil. When the village committee building was constructed, the slope was cut and its gradient was steepened. On July 10, 2019, during a rainstorm, the slope suddenly failed, and the upper soil collapsed (Figure 8B).
Slope Failure Along a Bedrock Stratum
In the study area, landslides along a bedrock stratum developed on metamorphic bedrock with one or two dominant structural planes of weakness and a thin weathering mantle, and on clastic bedrock with weak interlayers. In both lithological groups, the structural plane of failure (a fracture or bedding plane) tends to dip in the same direction as the slope, at an angle of dip lower than that of the slope. This type of landslide progresses in three stages:
1) One or two groups of dominant structural planes (joints, fissures, bedding planes) were present in the bedrock, inclined in the same direction as the slope, at an inclination lower than that of the slope (Figure 9A).
2) As a result of artificial slope cutting, the structural plane(s) and unloading fissures propagated in the outer part of the slope. The length and width of the fissures expanded, and the fissured bedrock blocks detached from the parent rock body (Figure 9B).
3) The proliferation of fissures leads to an increase in permeability. Rainfall infiltration reduces the shear strength of the structural surface and increases the weight of the rock mass. As a result, the slope failed along the structural surface. The front and back sections of the unstable slope disintegrated, due to the lack of support and traction during sliding. Most of the collapsed debris accumulated at the toe (Figure 9C).
[image: Figure 9]FIGURE 9 | Rock sliding along a bedrock stratum: (A) First stage, (B) Second stage, (C) Third stage.
A rockslide along a bedrock stratum was located near the X824 County tunnel in Ganzhou City. Here, the bedrock is Upper Devonian, Zhongpeng Formation conglomerate (at the base) to feldspar quartz sandstone intercalated with shale. The landslide was located near a fault, and the bedrock was cut by dominant structural planes of tectonic origin. At this site, the weathering mantle slipped along such a structural plane after heavy rainfall (Figures 10A–C).
[image: Figure 10]FIGURE 10 | Rockslides along a bedrock stratum in Ganzhou City: (A–C) Slope failure along a bedding plane in sandstone, X824 County Road. (D) Metamorphic slope near the Xinwuxiacun Village road.
Another rockslide along a bedrock stratum is located near the Xinwuxia Village road, in Ganzhou City, on the bedrock of limestone and phyllite interbeds of the Upper Sinian Laohutang Formation. The artificial cutting of the slope enlarged the tectonic joints and fissures in the bedrock. The rock blocks also collapsed along the dominant structural plane (Figure 10D).
Wedge Block Sliding and Caving
In Ganzhou, wedge block sliding and caving occurs primarily on steep slopes of jointed and fractured, metamorphic, and clastic bedrock with weak layers and two or more dominant structural planes. Slope failure of this type progresses in three stages.
1) Multiple groups of structural planes in the bedrock intersect to form wedge blocks. These wedge blocks eventually slide in the direction of the slope (Figure 11A).
2) The erosion of steep, high slopes, exposes wedge blocks. Due to the unloading of the bedrock, fissures become wider and longer, rendering the wedge blocks potentially unstable (Figure 11B).
3) Rainfall infiltration weakens the structural plane(s), resulting in sliding or collapse of the unstable blocks (Figure 11C).
[image: Figure 11]FIGURE 11 | Wedge-shaped block sliding and caving: (A) First stage; (B) Second stage; (C) Third stage.
A site of wedge-shaped block sliding and caving is located in Kongmu Village, Ganzhou City. The bedrock is interbedded limestone and phyllite of the Upper Sinian Laohutang Formation, with developed joints and fractures, with there are two or more groups of dominant structural planes in the rock mass, and the rock mass is cut into wedge blocks. There is no protective measure for the slope, and the wedge block collapses under the action of rainfall (Figure 12).
[image: Figure 12]FIGURE 12 | Wedge-shaped block sliding on metamorphic rock on the Kongmu Village Highway, Ganzhou City: (A) Slope face; (B) Right side face of slope; (C–E) Left side of the slope; (F,G) Views of the wedge-shaped body.
EVOLUTION OF SLOPE DEFORMATION AND FAILURE UNDER RAINFALL
As mentioned in Factors Influencing Landslides in Ganzhou Section, in the Ganzhou City area, fully weathered granite and metamorphic bedrock were identified as especially prone to landslides from 1998 to 2019: 78% of all landslides occurred on the bedrock of these two lithologies. To further explore the evolution of deformation, failure, and post-failure accumulation on granite and metamorphic bedrock slopes under rainfall, we applied in-situ model testing and numerical simulation on four selected landslide sites with typical deformation characteristics in the Ganzhou City area.
In situ Model Test
Due to funding limitations, in-situ model testing was only conducted at one site: a slope on Tuniuxia Formation granite in Qixia Village, Ganzhou City. The original slope is shown in Figure 13A. The test slope, with a height of approximately 4 m, a gradient of approximately 60°, a length of approximately 5.3 m, and an upper platform width of approximately 2.5 m, was artificially excavated in coarse-grained porphyritic biotite monzogranite (Figure 13B), and physical and mechanical parameters of undisturbed soils were shown in Table 1. The model test, from the manual cutting of the slope (10 days), the installation of the test device (4 days), debugging (15 days), and slope failure (23 days from the onset of rainfall), lasted for approximately 2 months. The monitoring of slope deformation under rainfall showed that runoff occurred on the slope surface during the early stages of rainfall. Runoff was more intense on the left side of the slope (Figure 13C), where the soil was dense, making it difficult for rainwater to infiltrate. Under continuous rainfall, grooves developed and became enlarged on the left side of the slope (Figures 13D–G). However, water penetrated easily into the loose soil on the right side of the slope. The shallow soil in the upper part of the soil profile soon became saturated with water. This softened the soil and increased its weight, causing further expansion of the fissures and the formation of several soil blocks (Figure 13H). We found the upper slope was collapsed on the 22nd day of continuous rainfall (Figure 13I). The entire slope collapsed due to gravity on the 23rd day of continuous rainfall (Figure 13J). The slope failure mode conformed with small-scale landslides on a steep slope, described in Steep Slope Collapse Section.
[image: Figure 13]FIGURE 13 | Evolution of slope deformation in the in-situ model test in Qixia Village, Ganzhou City: (A) Original slope. (B) Test slope after artificial cutting. (C) Rainfall simulation. (D) Runoff erosion on the slope surface. (E) Grooves on the slope surface, formed on the third day of continuous rainfall. (F) Grooves at the foot of the slope, formed on the third day of continuous rainfall. (G) Slope toe groove, enlarged on the fifth day of continuous rainfall. (H) Abrupt fissuring in the upper part of the soil profile on the 13th day of continuous rainfall. (I) Collapse of the upper slope on the 22nd day of continuous rainfall. (J) Slope collapse on the 23rd day of continuous rainfall.
TABLE 1 | Physical and mechanical parameters of undisturbed soils.
[image: Table 1]Numerical Simulation
Based on on-site investigation, slope failure observations, geological engineering analogues, and the systematic analysis of the controls and occurrence of landslides, the following pattern of landslide distribution was identified in the Ganzhou City area: the granite slopes of Shuitou Village were prone to flow-collapse landslides; the metamorphic bedrock slopes adjacent to the highway in Xinwuxia Village were prone to landslides along a rock stratum; and the metamorphic bedrock slopes near the highway in Kongmu Village were prone to wedge-shaped block sliding and caving. The large-scale discrete element software MatDEM was used to simulate these types of slope failures. Software MatDEM is based on the principle of particle flow discrete element method, using the GPU matrix calculation method and three-dimensional contact algorithm, with high performance computing speed, to study the motion and interaction of granular materials. To ensure an accurate and effective simulation of the slope failure process, the parameters inputted in the discrete element model were the mechanical property parameters of strongly weathered soil, broken bedrock mass (slip mass), and bedrock on each actual slope measured through field sampling and laboratory tests (Table 2). The model used in the simulation test was a rock slope with a weak interlayer, a sliding body and bedrock. The sliding body was strongly weathered soil or broken rock. The mechanical parameters of the sliding body are listed in Table 3.
TABLE 2 | Lithology and main rock and soil-mechanical parameters of each slope.
[image: Table 2]TABLE 3 | Rock and soil-mechanical parameters of discrete elements in each slope.
[image: Table 3]The construction of the model included the creation of a thin shell model 1), assignment of material properties 2), and setting of the soft surface of the sliding zone 3). After the initial model of the slope was established, a gravity load was applied to all elements, and the dynamic evolution of the landslide was simulated by iterative calculation.
As shown in Figure 14, the strongly weathered soil (sliding body) slid in an arc along the weak structural plane. A small number of units jumped and slid further down. Soil sliding generated damping, fracturing, and friction heat. The total heat was higher than that of the rock mass. The sliding time was short; therefore, the sliding distance to the accumulation zone was relatively long (approximately 20 m), and the mass of accumulated debris was large. In addition, there was a clear gradient of increasing soil displacement from the soil’s interior to the slope surface, which mirrored the gradient of soil weathering (increasing towards the surface). The deformation characteristics conformed to those of the flow-collapse landslides.
[image: Figure 14]FIGURE 14 | Deformation and failure evolution of the granite slope in Shuitou Village, Ganzhou City: (A) First stage; (B) Second stage; (C) Third stage; (D) Fourth stage.
In Figure 15, the fractured bedrock mass (sliding body) slid along a plane of weakness in the bedrock. Owing to the high fracture force and friction resistance in the rock mass unit, most of the energy was consumed during sliding. When the rock mass reached the bottom of the slope, the energy had dissipated, and the rock mass had accumulated approximately 5 m from the foot of the slope. The high speed of the sliding mass, however, resulted in a strong collision on the bottom of the slope, which caused a small number of units in the accumulation area to slide further forward. The deformation and failure characteristics of this simulated landslide conformed to those of rock sliding along a rock stratum.
[image: Figure 15]FIGURE 15 | Deformation and failure evolution of the metamorphic bedrock slope on the Xinwuxia Village highway, Ganzhou City: (A) First stage; (B) Second stage; (C) Third stage; (D) Fourth stage.
In Figure 16, the wedge-shaped block cut in the slope face collapsed due to gravity along a structural plane of weakness. In the process of downward caving, friction and the degree of fracturing were low, resulting in low energy consumption. Most of the gravitational potential energy was converted into kinetic energy. Therefore, the collision with the rock mass at the bottom of the slope was the largest among the three simulations, causing many units to jump up or slide forward for approximately 15 m from the toe of the slope. The deformation, failure, and post-failure accumulation characteristics of this simulation conformed to those of wedge-shaped block sliding and caving.
[image: Figure 16]FIGURE 16 | Deformation and failure evolution of the metamorphic bedrock slope on the Kongmu Village highway, Ganzhou City: (A) First stage; (B) Second stage; (C) Third stage; (D) Fourth stage.
As the above results show, collapse-flow sliding led to a wide disaster range and a large amount of accumulated soil after failure; sliding along a rock stratum led to a narrow disaster range and a small amount of accumulated soil and rock after failure; finally, wedge-shaped block sliding and caving occurred suddenly and at a high speed, leading to a wide disaster range, but the amount of soil and rock accumulated after failure was small.
CONCLUSION
Landslide geohazards in Ganzhou City, China, are sudden, widespread, and mainly small-scale. Many landslide sites are concealed by vegetation cover. Landslide geohazards are primarily distributed on the gentle (15° < α ≤ 35°) and moderately steep (35° < α ≤ 55°) slopes of the mountains and hills surrounding the city. More than 78% of all landslides that occurred between 1998 and 2019 were situated on metamorphic and granite bedrock. Structural faulting, especially the Dayu-Nancheng deep fault, exercises an obvious control of landslide geohazards. In addition to internal factors, such as topography, bedrock lithology, and geological structure, landslide geohazards are also influenced by external factors such as rainfall and the frequent cutting of slopes for the construction of houses and roads.
Based on the development, distribution, and influencing factors of landslide geohazards in Ganzhou City, granite, metamorphic (slate and phyllite), and clastic bedrock with weak interlayers were identified as the main bedrock lithologies prone to landslides. A large number of on-site landslide/slope-collapse surveys, the analysis of the mechanism of slope failure suggested that the main types of slope failure in Ganzhou include scouring erosion collapse, steep slope collapse, landslides along a rock stratum, and wedge-shaped block sliding and caving. Among these, scouring erosion slope collapse mainly develops on Jurassic granite with a thick wreathing mantle; steep slope collapse is widespread on steep slopes on granite and metamorphic bedrock, and landslides along a rock stratum and wedge-shaped block sliding and caving mainly occur on metamorphic bedrock with weak structural planes and clastic bedrock with weak interlayers.
In-situ model testing and numerical simulation were deployed to explore the deformation and failure of granite and metamorphic bedrock slopes under rainfall. The field model test reproduced the deformation and failure of small-scale collapse landslides, while the numerical simulation accurately simulated the deformation, failure, and post-failure accumulation of flow-collapse, landslides along a rock stratum, and wedge-shaped block sliding and caving. The results of this study provide a reference for the assessment of the risk from, and the management of, landslide geohazards in the Ganzhou City area and other, similar geological settings.
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In the original article, there was a mistake in Table 3 “Rock and soil-mechanical parameters of discrete elements in each slope” as published.
TABLE 3 | Rock and soil-mechanical parameters of discrete elements in each slope.
[image: Table 3]The authors pasted duplicate data in Table 3, which caused the data in Table 3 and Table 2 to be duplicated. The corrected Table 3 Rock and soil-mechanical parameters of discrete elements in each slope appears below.
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This study aims to develop a logistic regression model of landslide susceptibility based on GeoDetector for dominant-factor screening and 10-fold cross validation for training sample optimization. First, Fengjie county, a typical mountainous area, was selected as the study area since it experienced 1,522 landslides from 2001 to 2016. Second, 22 factors were selected as the initial conditioning factors, and a geospatial database was established with a grid of 30 m precision. Factor detection of the geographic detector and the stepwise regression method included in logistic regression were used to screen out the dominant factors from the database. Then, based on the sample dataset with a 1:10 ratio of landslides and nonlandslides, 10-fold cross validation was used to select the optimized sample to train the logistic regression model of landslide susceptibility in the study area. Finally, the accuracy and efficiency of the two models before and after screening out the dominant factors were evaluated and compared. The results showed that the total accuracy of the two models was both more than 0.9, and the area under the curve value of the receiver operating characteristic curve was more than 0.8, indicating that the models before and after screening factor both had high reliability and good prediction ability. Besides, the screened factors had an active leading role in the geospatial distribution of the historical landslide, indicating that the screened dominant factors have individual rationality. Improving the geospatial agreement between landslide susceptibility and actual landslide-prone by the screening of dominant factors and the optimization of the training samples, a simple, efficient, and reliable logistic-regression–based landslide susceptibility model can be constructed.
Keywords: landslide susceptibility, GeoDetector, dominant-factor screening, logistic regression, 10-fold cross validation
HIGHLIGHTS

•A hybrid optimal LR model by GeoDetector dominant-factor screening and an optimal sample
•Improved accuracy of the LR-based LSM model by hybrid optimization
•Optimized LSM agreed well with the geospatial distribution of historical and new landslide events
INTRODUCTION
Among many types of geological disasters, such as land subsidence and mudslides, landslides are the most common ones (Abedi Gheshlaghi and Feizizadeh, 2021). Because they are frequent, destructive, and widespread, every country attaches great importance to the monitoring and prevention of landslides (Naemitabar and Zanganeh Asadi, 2021). About two-thirds of China’s area is a mountainous region, where landslides are most prone to occur (Gautam et al., 2021). From 2007 to 2019, it is conservatively estimated that the number of deaths/missing caused by landslides exceeded 7,900, with an average of more than 600 per year. According to statistics from the China Geological Environment Information Site, the economic loss is about 610 million dollars each year.
The evaluation of landslide susceptibility is an important part of the whole process of landslide risk management, which has achieved the effect of preventing and reducing landslide losses (Feizizadeh et al., 2014). With the development of geographic information science (GIS) technology, scholars have actively explored landslide susceptibility mapping (LSM) methods (Li et al., 2019; Zhao et al., 2021). So far, dozens of landslide susceptibility mapping (LSM) methods have been developed, which can be divided into several categories, including statistical methods, expert-based methods, and data mining methods (Kalantar et al., 2018; Ma and Xu, 2019). Huang et al. (2020), Wubalem (2021), Huangfu et al. (2021), and Soma et al. (2019) used semisupervised multiple-layer perceptron, information value, a multiple logistic regression algorithm, frequency ratio (FR), and logistic regression (LR) models to produce LSM. Among these different evaluation methods, the most common and reliable one is logistic regression (Ayalew and Yamagishi, 2005; Kalantar et al., 2018; Shan et al., 2020). Some scholars have discovered that the longitude of LRM can be improved by changing the parameters or models that optimize LRM. Feby et al. (2020) optimized the logistic regression model by spatially integrated evidential belief function. The ROC-AUC value of the optimized model is 0.935, which is more satisfactory than the traditional model. The results of LSM research are not only affected by the selected model but also closely related to the choice of conditioning factors (Xie et al., 2021). Reichenbach et al. (2018) found that a total of 596 conditioning factors were considered in the existing work, with an average of nine condition factors in each model. In the existing research, the selection of condition factors is mostly determined by expert experience, which is very subjective (Bourenane et al., 2015; Morales et al., 2021; Zhao et al., 2021). The current research lacks a general framework to objectively select the condition factors. Therefore, how to screen out dominant factors more objectively and quickly and then build a more stable and reliable model is the focus of current research.
Among the methods for factor screening in existing research, GeoDetector is a very common one (Zhou et al., 2021). Chi et al. (2021) analyzed the influence of specific geographical factors on the spatial distribution of terrestrial mammalian richness using the GeoDetector model. Wang et al. (2021) used GeoDetector to identify spatial relationships among the influencing factors about soil heavy metal As. Sun et al. (2021c) constructed the LSM model in Fengjie County by selected fundamental influencing factors, which are screened by GeoDetector and recursive feature elimination. Although the logistic regression model has a large number of applications in the field of LSM, due to the limitation of the model itself, it has limitations in dealing with a large number of conditioning factors with multicollinearity (Sun et al., 2021b). In addition, in the existing research, there is no article about the combining usage of GeoDetectors and logistic regression.
Based on previous researches, this paper aims to propose an optimized landslide susceptibility evaluation model. This study takes Fengjie County as the study area, systematically considers the formation conditions of the landslide, and selects the conditioning factors as comprehensively as possible when conditions permit. Then, through the combination of GeoDetector and the stepwise regression method, the characteristic disaster conditioning factors are screened. Then, the 10-fold cross-validation method is used to select the best training sample. After training, an optimized logistic regression model of landslide sensitivity is obtained, and finally, the optimized model is evaluated through GIS software in the study area.
MATERIALS
Study Area
Fengjie County of Chongqing, with typical mountainous landforms, is located in the east of the Sichuan Basin, the upper reaches of the Yangtze River (Figure 1). It is the junction of the Dabashan arc fold fault zone and east Sichuan arc concave fold zone, with the sophisticated structural stress field. The range of elevation is 87–2,125 m, which is higher in the terrain in the north than that in the south in general. It is located in the subtropical monsoon climate zone, with an annual average precipitation of 1,132 mm in many years.
[image: Figure 1]FIGURE 1 | Location of the study area.
Data
The data of landslides in Fengjie County were obtained from the Chongqing Geological Environment Monitoring Station. Its attributes contained the landslide name, coordinates, elevation, and time of occurrence. The 1:200,000/1:50,000 geological map of the China Geological Information Library (available online: http://ngac.org.cn/) provides a reference basis for the site investigation of landslides in terms of regional geological environment, geological structure, and stratigraphic lithology. The data of Chongqing points of interest (POI) were obtained using a python program or foot written according to certain rules that can automatically capture World Wide Web information. These activity points are standard for various types of commercial and educational activities that can represent human engineering activities, such as hospitals, primary and secondary schools, business centers, parks and squares, and so on. Also, the time range was consistent with the historical landslides. Other primary data information is shown in Table 1.
TABLE 1 | Data and data sources.
[image: Table 1]METHODOLOGY
Study Flowchart
In this study, Fengjie County, a typical mountainous county in the Three Gorges Reservoir area of China, was chosen as a test site to carry out the research. The methodological flowchart is shown in Figure 2. Firstly, we selected 22 factors as the initial conditioning factors for LSM, which were derived from a satellite image, a DEM, geological data including lithology and faults, and other multisource data. Secondly, a geospatial database was established based on all data (including landslides and nonlandslides). By including geographic factor detection into a stepwise logistic regression (LR) procedure, screening out the dominant factors was then performed. Then, 10-fold cross validation was used to select the optimized training sample to generate the LSM in the study area. Then, a stable LR model with dominant factors was applied for higher accuracy and stability. Finally, the accuracy of the two models before and after optimization was evaluated and used for LSM.
[image: Figure 2]FIGURE 2 | Methodological flowchart used in this study.
Logistic Regression Model
Logistic regression (LR) is a generalized linear regression analysis method suitable for multivariable control. Different from the general linear regression model, the logical regression model restricts the output value to the interval [0,1] through the sigmoid function. Therefore, f(z), representing the probability of landslide susceptibility, can be expressed by the following equation:
[image: image]
where z = w1x1+ w2x2+…+wMxM + b is a weighted linear combination model. b is a constant number, which is the intercept of a function. wM (M = 1,2,3,…,22) is the correlation coefficient of the function. The independent variable xM (M = 1,2,3,…,22) represents 22 landslide conditioning factors. When the f(z) value is 1, it means that a landslide will surely occur, and when it is 0, it means no landslide will occur (Kalantar et al., 2018).
The LR model includes the stepwise regression method to screen and eliminate the variables, thus eliminating multicollinearity and obtained significant factors. The stepwise regression is of three steps. The first step is introducing variables into the model one by one. Second, an F test is performed after introducing each explanatory variable. The final step is to perform a t-test on the explanatory variables already in the model. Once the newly added explanatory variable causes the previous explanatory variable to be no longer significant, it shall be eliminated to ensure that only essential variables are included in the regression equation before introducing each new variable.
GeoDetector
The GeoDetector is a statistical method proposed by Wang in 2010 (Wang et al., 2010), which is used to detect spatial differentiation, revealing its driving force based on four detectors: differentiation and factor detection, interaction detection, risk-area detection, and ecological detection. This method can work both on numerical and qualitative data. In this study, to improving geospatial agreement between landslide and its conditioning factors, the factor detection function was used to screen the landslide dominant factor.
The general assumption of landslide factors screening using the GeoDetector can be expressed as follows: if a conditioning factor controls or contributes to a landslide, the geospatial distribution should be similar to a certain extent between the conditioning factor and the landslide. The similarity between the two is determined by the local and global variance (Luo and Liu, 2018). Let X be a layer of data representing the impact factors (e.g., lithology or slope) of our interests and the binary variable Y quantitatively represent the spatial distribution of the landslide. X needs to be either a category layer (for example, lithology) or can be transformed into a category zone (for example, a continuous slope can be divided into three areas: gentle, moderate, and steep). Overlaying Y and X layers subdivide Y according to the area of X.
If the factor X is related to Y, then Y will exhibit a spatial distribution similar to that of X. In the perfect case, factor X thoroughly explains the pattern of Y, the value of Y is uniform in each region of X, and the spatial variance of Y in all regions is 0. In reality, the degree of spatial correspondence between X and Y is measured by the degree of interpretation of factor X, which is defined as
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where m = 1,…, S is the layering of variable Y or factor X, that is, classification or partition; Nm and N are the layer m and the number of units in the whole area; and [image: image] and [image: image]are the layer m and the variance of the Y value for the entire region, respectively. Within Sum of Squares (WSS) is the sum of the variances within the stratum, and the Total Sum of Squares (TSS) is the total variance of the entire region. Ym, i is the value of Y in the ith unit of layer m, and[image: image] is the average value of variable Y in layer m. [image: image] is the Y value of the jth unit of the whole study area, and [image: image] is the total average of the variable Y in the whole study area. The range of q is [0, 1].
10-Fold Cross Validation
10-fold cross validation, used to test the accuracy of the algorithm, is a common test method. The dataset was divided into ten parts, nine of which were used as training data and one as test data in turn.
The correct rate (or error rate) will be obtained for each test. The average value of the accuracy of the results 10 times is used as the estimation of the accuracy of the algorithm. Generally, multiple 10-fold cross validations (for example, 10-fold cross validation) are needed, and then, the average value is calculated as the estimation of the accuracy of the algorithm.
MODELING PROCESS
Geospatial Database
The landslide’s occurrence is affected by both the internal geographical environmental factors and external disturbance environmental factors (Tsangaratos et al., 2017). The internal factors include topographic and geological conditions, while the external factors include human engineering activities, rainfall, and reservoir water level changes. Based on comprehensive consideration of various factors and the actual conditions of the study area, 22 factors were selected as the initial conditioning factors including topography (elevation, slope, degree of relief, aspect, slope position, landforms, curvature, profile curvature, plan curvature, terrain roughness index (TRI), topographic wetness index (TWI), sediment transport index (STI), and stream power index (SPI)), geology (lithology, distance from fault, and combination reclassification of the stratum dip direction and slope aspect (CRDS)), environmental conditions (normalized vegetation index (NDVI), distance from hydrographic net, annual average rainfall, and land cover), and human activities (distance from roads and POI kernel density). All the 22 conditioning factors mentioned above were used to create the geospatial database with GIS software (Sun et al., 2021c).
Here, slope, degree of relief, aspect, slope position, landforms, curvature, profile curvature, plan curvature, terrain roughness index (TRI) (Althuwaynee et al., 2014), topographic wetness index (TWI) (Yilmaz 2009; Hong et al., 2016), sediment transport index (STI) (Pourghasemi et al., 2012), and stream power index (SPI) (Moore and Wilson, 1992) were based on the processing of the DEM with 30 m resolution. Lithology and faults were extracted by geological maps with scales of 1:50,000–1:200,000. The distances from faults, hydrographic nets, and roads were generated after buffering the faults, river networks, and roads, respectively. The selection of buffer distance was based on field surveys, imagery resolution, and previous research (Xie et al., 2018; Sun et al., 2021a). CRDS (Sun et al., 2021b) was generated by subtraction and reclassification of aspect and tendency. NDVI was calculated using landsat8 OLI data with a resolution of 30 m. Annual average rainfall was generated by the spatial interpolation method from the original data. POI kernel density was generated by kernel density calculation of POI point data, which refers to any nongeographical meaningful points on the map (Sun et al., 2021b).
Moreover, to reduce the disadvantageous effects on the model caused by data discretization, reclassification was performed for the 13 continuous variables, including elevation, slope, degree of relief, curvature, profile curvature, plan curvature, TRI, TWI, STI, SPI, NDVI, annual average rainfall, and POI kernel density. Here, based on research experiences, the reclassification threshold value of each factor obtained by the natural breakpoint method was followed to slightly adjust by counting the number of historical landslide points under each category to agree with the actual situation as much as possible. The other nine factors, which were originally classified, could directly be processed. A classification scheme used was established for each continuous factor. To sum up, a spatial database of landslide conditioning factors after reclassification was constructed in a 30 m resolution grid cell. The thematic map of landslide influencing factors is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Thematic map of landslide influencing factors: (A) aspect; (B) CRDS; (C) curvature; (D) elevation; (E) distance from faults; (F) distance from hydrographic net; (G) landcover; (H) microlandform; (I) lithology; (J) NDVI; (K) plan curvature; (L) POI; (M) profile curvature; (N) relief; (O) annual average rainfall; (P) slope; (Q) slope position; (R) SPI; (S) STI; (T) TRI; (U) TWI; and (V) distance from roads.
To reduce the affection of the logistic regression model by factor data discreteness, all the 22 factors after reclassification were normalized to [0,1] by the following equation:
[image: image]
where X* is the normalized data; X is the original data; Xmin is the minimum value of data; and Xmax is the maximum value of data.
Preparation of the Sample Dataset
In the study, landslide cells (positive cells) and no-landslide cells (negative cells) made up all datasets. Landslide cells consisted of 1,522 historical landslide events, each of which was regarded as a single cell. Because of the geometric effect, all landslide cells were excluded by setting a 500 m buffer zone for all the 1,522 landslide points, and the remaining areas were regarded as the no-landslide areas (Xie et al., 2018). Researchers have different opinions on the ratio between landslide and nonlandslide cells, but the most widely used ratios are 1: 1, 1: 5, and 1:10 between landslide and no-landslide cells, and the last ratio of 1:10 was selected by this study after many experiments. 15,220 nonlandslide cells were randomly extracted from the no-landslide area.
Model Optimization
Dominant-Factor Screening and Preliminary Training
The process of preliminary training: according to a 7: 3 ratio, all sample datasets were divided into a training dataset (11,720) and a test dataset (5,022). The training dataset was used for LR model training, and the test dataset was used for testing.
1) The stepwise regression method included in the LR: 22 initial conditioning factors were subjected to stepwise regression training of the LRa model (ordinary model). The conditioning factors were introduced into the equation one by one. All conditioning factors in the equation were tested one by one, and the insignificant conditioning factors were removed from the equation one by one. In the final equation, some conditioning factors that had a significant influence on the Y value of the landslide remained, and others that had no significant influence on the Y value of the landslide were omitted. Also, 11 factors were preliminarily selected by passing the test of the significance level of 0.05, which are topographic (elevation, degree of relief, slope, SRI, and SPI), geological conditions (lithology, distance from fault, and CRDS), environmental conditions (land cover), and human activities (distance from roads and POI kernel density).
2) The factor detection method of the GeoDetector: based on the R language, we used the GeoDetector to detect all datasets, including 22 initial conditioning factors. The results are shown in Table 2. The p value represents the significance level, and the q value represents the explanatory factor power, i.e., the influence degree of conditioning factors on the landslide. We found that SPI and STI failed the significance test (p > 0.05). Therefore, we eliminated these two nonsignificant and least explanatory factors directly. The remaining 20 factors passed the significance test (p = 0.000) and can be so in subsequent experiments.
TABLE 2 | Factor detector results.
[image: Table 2]Figure 4 shows the factor detection results of the significant factors in descending order of q value. In conjunction with Table 2, we found that the annual average rainfall and elevation were two important control factors for the spatial differentiation of Y values of landslides. Their q values (the ability to explain factors) were all greater than 0.075. The q values of the topographical conditions (except elevation), part of geological conditions (distance from fault, CRDS), and environmental conditions (NDVI) were less than or equal to 0.01. From the slope of the curve in Figure 4, the slope after distance from fault is almost 0, which means that the following 13 factors explain the spatial differentiation of landslides very little and can be ignored and eliminated directly. Therefore, the seven dominant factors (annual average rainfall, elevation, lithology, POI kernel density, distance from road, land cover, and distance from hydrographic net) were selected and placed in the LRb model (the model optimized by the GeoDetector). Moreover, we use these seven factors for stepwise regression training included in LR. All factors were retained, which means the dominant factors screened by the GeoDetector had vast differences from each other.
[image: Figure 4]FIGURE 4 | Factor detector results.
Optimal Training Sample Based on 10-Fold Cross Validation
To reduce the influence of a single sampling on results, the 10-fold cross-validation method was used to select the training sample and test sample. The 10-fold cross-validation method divided the sample dataset (1,522 positive cells and 15,220 negative cells) into ten disjoint subsets randomly and averagely. One subset was tested each time, and the rest subsets were used for model training.
Based on the R language, we build two LR models of whether to use the GeoDetector (LRa was not used and LRb was used). Table 3 shows the accuracy of the 10-fold cross validation of the two models. The average accuracy of the training dataset and test dataset of the LRa model was 0.908 and 0.910, while the average accuracy of both the training dataset and test dataset of the LRb model was 0.910. Thus, from the average accuracy, we found that the model using the GeoDetector to screen dominant factors can maintain high accuracy and high stability. For the test dataset, the accuracy of sample No.1 (0.916) of the LRa model and sample No.4 (0.929) of the LRb model was relatively higher. Therefore, we decided to use the two samples as the optimal training samples to get the final models (LRao and LRbo), which were based on dominant-factor screening and the optimal training samples.
TABLE 3 | The accuracy of 10-fold cross validation of the two models.
[image: Table 3]Final Optimal Models
The two final models (LRao and LRbo) were different. Specifically, the former is an LR model that only performed a stepwise regression on 22 initial conditioning factors to remove insignificant factors, while the latter used the GeoDetector to screen out seven dominant factors first and then performed stepwise regression. The correlation coefficients and function intercept values of the factors of the two final models are shown in Tables 4, 5.
TABLE 4 | The correlation coefficients and function intercept values of LRao.
[image: Table 4]TABLE 5 | The correlation coefficients and function intercept values of LRbo.
[image: Table 5]Finally, the two linear models are shown as follows:
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Model Performance and Validation
Any landslide susceptibility assessment will have no scientific significance without validation, so it is necessary to evaluate the validity of the models used. The landslide is prone to a typical binary classification problem, and the confusion matrix can be used to analyze the accuracy further. Instances are divided into positive and negative categories. That is to say, if the sample point is a landslide, it is positive, and if the sample point is a nonlandslide, it is negative. We predicted that four situations will occur in results: 1) an instance status is “landslide” and also predicted as “landslide,” recorded as True Positive (TP); 2) “nonlandslide” but predicted as “landslide,” recorded as False Positive (FP); 3) an instance status “nonlandslide” and predicted as “nonlandslide,” and it is recorded as True Negative (TN); and 4) “landslide” but predicted as “nonlandslide,” recorded as False Negative class (FN). Furthermore, we used the “OptimalCutoff” function of the “InformationValue” package of R language to find the optimal threshold for partitioning the prediction results of the model. If the predicted value is greater than the threshold, a landslide will occur. Otherwise, the landslide will not occur.
Based on the confusion matrix, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are commonly used to comprehensively test and evaluate model accuracy (Naghibi and Moradi Dashtpagerdi, 2016). When the AUC value is more significant than 0.5 and the closer it is to 1, the higher the accuracy of the model prediction.
RESULTS
Comparison of Models
The optimal thresholds of LRao and LRbo models were very similar, which were 0.534 and 0.592 (Table 6). The accuracy, precision, and recall of the LRao and the LRbo were almost the same. The total accuracy of the two models had little difference, which was 0.911 and 0.910, respectively. Nevertheless, the accuracy of landslide and nonlandslide of the LRao model (nonlandslide: 0.914; landslide 0.611) was slightly higher than that of the LRbo model (nonlandslide: 0.911; landslide 0.595). The two models had extremely high recall rates for nonlandslide, and the LRao (0.996) is slightly lower than the LRbo (0.998). However, for landslides, the recall rate was lower, and the LRao (0.065) was slightly higher than the LRbo (0.031). The difference between the two models was insignificant, and both had exceptional reliability.
TABLE 6 | Confusion matrix between observed and predicted values under optimal threshold conditions for LRao and LRbo models.
[image: Table 6]The AUC values of the ROC curves of the training dataset of the two models were 0.843 and 0.835, the test dataset were 0.834 and 0.840, and all datasets were 0.842 and 0.835 (Figure 5), indicating that the LR model before and after optimization in this study both had high reliability and good prediction ability.
[image: Figure 5]FIGURE 5 | ROC curve of the LRao and the LRbo models.
Validity of the Optimized Model
Compared with the LRao, the LRbo (the optimized model) had absolute stability and high accuracy. So, we applied the LRbo to the entire case study area for LSM. Expert empirical methods and dynamic setting threshold methods were used to select the appropriate division-level threshold. The selection of the optimal threshold should minimize the density of historical landslides in the low-susceptibility region and maximize the density of historical landslides in the high-susceptibility region. After repeated trials and errors, five susceptibility levels were finally divided (very-low–susceptibility region with p < 0.05 vs. low-susceptibility region with 0.05 ≤ P < 0.10 vs. moderate-susceptibility region with 0.10 ≤ P< 0.17 vs. high-susceptibility region with 0.17 ≤ P < 0.28 vs. very-high–susceptibility region with p>=0.28) (Figure 6). It shows the very-low– and low-susceptibility regions were concentrated in the south and southeast of Fengjie County. Meanwhile, the high- and very-high–susceptibility regions, which agreed with the geospatial of the historical landslides prone to occurring, were concentrated on both sides of the Yangtze River and its tributaries, mainly in the northern and central parts of Fengjie County.
[image: Figure 6]FIGURE 6 | Landslide susceptibility mapping based on the LRbo model vs. the geospatial distribution of historical landslides.
Table 7 is the statistical result of landslide susceptibility at different levels. The proportion of historical landslides increased gradually with the increase of the susceptibility level, and the density of landslides was positively correlated with the susceptibility level. The area of very-low– and low-susceptibility regions accounted for 65.43% of the total area of the study area, while the number of historical landslides only accounted for 23.85% of the total landslides; the area of very-high– and high-susceptibility regions accounted for 20.51% of the total area, while the number of historical landslides accounted for 57.42% of the total landslides. This also shows the agreement of the geospatial between the high-susceptibility regions and the historical landslides occurred.
TABLE 7 | Statistical results of landslide susceptibility in different levels.
[image: Table 7]Distribution Characteristics of New Landslide Events
The historical landslide data used in this study were from 2001 to 2016. To verify the LSM results further, we also collected 61 new landslide data in the study area in 2017. All the new landslides were triggered by rainfall, which means that the main factor inducing landslides is rainfall in this study area. The geospatial distribution of the new landslides was overlaid to the LSM (Figure 7), and Table 7 shows the details including the location susceptibility level of all the new landslide events. 65% of the new landslide events were located in the high- and very-high–susceptibility regions, and 10% were in the moderate-susceptibility region in general. For case study purposes, we analyzed three typical landslides: Qulongxiaoxue landslide, Sujiawan landslide, and Tianjiadawu landslide. Qulongxiaoxue landslide was a medium-sized landslide, which was the largest of all new landslides, covering an affected area of 28.179 m2. Although the area and volume of the Sujiawan landslide were not significant, the number of people affected and the number of threats were second. Tianjiadawu landslide was a medium-sized landslide that occurred in northwestern Fengjie County in October 2017. These three landslides were located in the high-susceptibility region, indicating that the LSM has a good geospatial agreement with the actual landslide events and the model had a good prediction ability.
[image: Figure 7]FIGURE 7 | Landslide susceptibility mapping based on the LRbo model vs. the geospatial distribution of new landslides.
DISCUSSION
Comparing the results of factor screening of the two models (Figure 8), there are 10 main factors retained by the LRao model after stepwise regression. However, there are seven main factors retained by the LRbo model after GeoDetector and stepwise regression. Through comparative analysis, it is found that the same main factors retained both by the LRao model and the LRbo model include elevation, lithology, land cover, distance from roads, and POI kernel density. Among them, elevation and lithology represent the inoculation factors of landslides, which largely determine the stability of local slopes (Sivakumar and Ghosh, 2021; Tang et al., 2021). In the same way, the materials covered by the ground affect the slope surface, such as runoff and the accumulation of materials on the slope surface. Distance from roads and POI kernel density represent trigger factors caused by human activities. The abovementioned two factors change the natural stress on the originally stable slope, causing cracks inside the slope. Finally, that leads to landslides. Therefore, the dominant factors selected by stepwise regression and GeoDetector are quite reasonable and referential.
[image: Figure 8]FIGURE 8 | Ranking chart of the absolute value of the correlation coefficient of conditioning factors: (A) LRao model; (B) LRbo model.
In addition to the five common factors in the LRao model, another five main influencing factors are also retained including the degree of relief, slope, TRI, distance from the fault, and CRDS. These factors are all related to the incubation conditions of the landslide and describe the development environment of the landslide itself. While there are still two main conditioning factors that remained in the LRbo model except for the five same ones, they are the distance from the hydrographic net and annual average rainfall. In river valleys, high and steep slopes are usually formed under the erosion action of water currents, where the resistance ability of the slopes will be further reduced. Rainfall is one of the factors that cannot be ignored that affects and controls landslides. Throughout the world, judging from the reasons for many landslides (Fan et al., 2020; Yang et al., 2020; Van Tien et al., 2021a; Van Tien et al., 2021), the LRbo model retains some important trigger factors which are not retained by the LRao model. Although the relationship between landslides and faults cannot be ignored (Wang et al., 2021), most landslides are induced by rainfall in the study area, which does not have a strong relationship with faults. So, it is better not to retain the fault factor. Taken together, the dominant factor retained by the LRao model is not as strong as the explanatory power of the LRbo model. The LRbo model eliminates unreasonable factors based on the LRao model and retains a more dominant factor.
From the factor screening results of the LRbo model, four aspects have an important influence on the landslide, including topography, geological conditions, environmental conditions, and human activities. There are dominant factors in these four aspects, so in future research, these dominant factors can be considered as the research focus, while nondominant factors can be selectively excluded from the factor framework to reduce the workload. Meanwhile, there is an interaction between factors, which may increase or weaken the impact of a single factor on landslides. For example, if a slope is composed of permeable rock and impermeable rock, a water barrier will form naturally, and under the action of rainfall, the probability of landslide will be much higher than that of a slope composed of a single lithology. Therefore, the interaction between factors will be further studied in the follow-up work.
CONCLUSION
In this study, by taking a typical landslide-prone area as an example of application analysis, an optimized LR-based LSM model was proposed by using comprehensive methods of the GeoDetector, stepwise regression, and 10-fold cross validation, which improved the geospatial agreement between landslide susceptibility and actual landslide-prone.
1) The accuracy of the confusion matrix of the two models (LRao and LRbo) based on dominant-factor screening and optimal training sample was both more than 0.9. The AUC values of the ROC curves were significantly more than 0.8. The models had great prediction ability and high reliability no matter when tested before or after the screening factor.
2) The LRbo model based on the GeoDetector screening factor used only seven dominant factors but achieved the same prediction accuracy as the LRao model constructed with 20 factors. Moreover, the conditioning factors were more reasonable and stable than the LRao model. Based on the optimized LR model, the LSM in this study was in good agreement with the spatial distribution of historical landslides. Most of the new landslides in 2017 were in high-susceptibility regions. All show that the method proposed in this study using the GeoDetector, stepwise regression, and 10-fold cross validation is feasible and reliable.
3) The seven dominant factors, including elevation, lithology, distance from hydrographic net, annual average rainfall, land cover, distance from roads, and POI kernel density, covered four types of conditions of topographical, geological, environmental, and human activities, screened from 22 initial factors by the GeoDetector, indicating that each type has a dominant factor at least, which is more important than other factors of the same type.
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As a man-made engineering hazard, it is widely accepted that the rockbursts are the result of energy release. Previous studies have examined the unloading of in-situ stress resulting from deep tunnel excavation as a quasi-static process but the transient stress variation during excavation has received less attention. This research discusses rockbursts that happened during the construction of a diversion tunnel at Jinping II hydropower station. The brittle-ductile-plastic (BDP) transition property of Jinping marble was numerically described by the Hoek-Brown strength criterion, and the dynamic energy release process derived from the transient unloading of in-situ stress was studied using an index, local energy release rate. Studies have shown that, due to transient unloading, the strain energy of the surrounding rock mass goes through a dynamic process of decreasing at first, increasing second, then reducing before finally stabilizing. The first decrease of strain energy results from elastic unloading waves and does not cause brittle failure in rock masses, which is consistent with the elastic condition but the secondary reduction of strain energy is because the accumulated strain energy in rock masses exceeds the storage limit, which will inevitably trigger the brittle failure in the rock mass. Thus, the shorter the distance to the tunnel wall the bigger and more intense the energy release. Finally, a relationship between the average value of the local energy release rate and the rockburst intensity was established to assess the risk of rockburst induced by the blasting excavation of a deep tunnel.
Keywords: high in-situ stress, energy release, rockburst, transient unloading, deep tunnel
1 INTRODUCTION
To take full advantage of hydropower in Southwest China, a large number of hydropower stations have been constructed. However, restricted by the narrow terrain conditions in western China, most of these projects need a large-scale excavation of underground caverns to create space for the arrangement of hydraulic structures. Because of the large burial depth, the rock mass of the excavation area is characterized by high in-situ stress, after excavation, it may induce the damage and failure of the surrounding rock mass or even cause man-made engineering disasters, rockbursts (Cook, 1976; Kisslinger, 1976; Martino and Chandler, 2004; Read, 2004; Alija et al., 2013; Alija et al., 2014; Feng et al., 2018a; Feng et al., 2018b). A good deal of numerical studies, laboratory tests, and theoretical analyses have claimed that the damage or failure of rock masses after excavation is a comprehensive behaviour of energy dissipation and energy release. Among them, the damage of rock masses mainly results from energy dissipation, and the dynamic failure of rock masses and the rockburst are mainly induced by the energy release (Hodgson and Joughin, 1966; Toksöz and Kehrer, 1972; Singh, 1988; Mikhalyuk and Zakharov, 1997; Wang and Park, 2001; He et al., 2010; Su et al., 2017; Su et al., 2018; Chen et al., 2019). Thus, exploring the energy release regularities of the rock mass around the excavation boundary derived from the tunnel excavation is crucial for revealing the evolution mechanism of underground engineering hazards such as rockbursts.
As early as 1966, a new index, energy release rate, was proposed to solve rockburst problems in a South African gold mine (Cook et al., 1966). It was not until 1977 that Walsh systematically completed the description of variation regularities of the surrounding rock mass energy under the action of excavation (Walsh, 1977). Afterwards, Brady and Brown studied the internal connection of the energy variation and the stability of the surrounding rock mass after excavation by using the boundary element method (Brady and Brown, 1981). During the tunnel excavation, the energy system is composed of five parts under elastic and continuous conditions. The energy consumed by external and body forces, the energy consumed by support or backfill, the energy released during excavation, the energy of the excavated rock mass, the increased energy of the surrounding rock mass (Salamon, 1983). Moreover, these five parts in the above energy system can be transformed into each other under the influence of excavation disturbance (Salamon, 1984). On this basis, the energy change regularity during the expansion of the explosion gas in the complex structural surface and the energy release regularity due to mining under different excavation footage were studied (Napier, 1991; Mitri et al., 1999). To better explain the energy change behaviour of rock masses during tunnel excavation, the concepts of energy flow line and energy flow vector were proposed by Kramarenko and Revuzhenko to analyze the energy change regularity induced by tunnel excavation (Kramarenko and Revuzhenko, 1998). After that, Revuzhenko and Klishin found that the characteristic of the energy flow line is mainly affected by the excavation boundary (Revuzhenkor and Klishin, 2009). Due to the tunnel excavation, the energy transmits with the energy flow line from the external boundary to the excavation boundary, which will cause the energy accumulation near the excavation boundary (Lindin and Lobanova, 2013).
The above studies revealed the variation regularity of the rock mass energy resulted from tunnel excavation. However, most of these studies posited that the tunnel excavation induced in-situ stress unloading under the deeply buried depth as a process of final quasi-static stress distribution. Recent studies have shown that the duration of the stress unloading process on the excavation boundary is within only a few milliseconds by analyzing the broken process of the rock mass in the excavation area and monitoring the stress change path of the rock mass around the excavation surface. During this short and rapid process, the tunnel excavation induced in-situ stress unloading and cannot be regarded as a process of final quasi-static stress distribution but a transient and dynamic process, and the dynamic effect induced by the transient stress unloading will cause different stress and energy variation behaviours in the surrounding rock mass, which should not be ignored in the analysis (Lu et al., 2012; Li et al., 2014; Zhu et al., 2014; Fan et al., 2015; Yang et al., 2016; Yang et al., 2018; Fan et al., 2021). This research aims to reveal the regularity of energy release derived from the transient stress unloading and set up an association of the energy release and the rockburst intensity for deep tunnels during blasting excavation. To accomplish this goal, the rockbursts that took place in the No.2 diversion tunnel of Jinping II hydropower station during blasting excavation are first introduced. The special mechanical properties of Jinping marble were simulated by employing Hoek-Brown strength criterion in Fast Lagrangian Analysis of Continua 3D (FLAC 3D), and a BDP model of Jinping marble was established. Using the BDP model. We then studied the dynamic process of the energy release caused by the blasting excavation induced transient unloading of a deep-buried tunnel. Finally, a relationship between the average value of the local energy release rate and the rockburst intensity was established to predict the rockburst risk.
2 ROCKBURSTS IN THE DIVERSION TUNNEL OF JINPING II HYDROPOWER STATION DURING BLASTING EXCAVATION
2.1 Geological Conditions
Jinping II hydropower station was constructed on the lower half of the Yalong River bend in Sichuan Province, China. It is one of the most important cascade hydropower stations on the mainstream of Yalong River (Figure 1A). To utilize the highly natural drop for power generation, the river bend with a length of 150 km is cut by several underground tunnels. Among them, the length of the diversion tunnel is about 17 km, and the buried depth of the overlying rock mass reaches 1,500–2000 m. The circular section designed with a diameter of 12.4 m was adopted for the construction of No. 1 and No. 3 diversion tunnels using a tunnel boring machine (TBM), and a horseshoe section designed with a diameter of 13.0 m was used for the construction of No. 2 and No. 4 diversion tunnels by employing blasting. To avoid construction interference, a 60 m parallel interval between each diversion tunnel was designed as shown in Figure 1A.
1) Stratigraphic Lithology
[image: Figure 1]FIGURE 1 | Geological Conditions. (A) Location of the diversion tunnels at Jinping II hydropower, (B) Geologic section of the diversion tunnels at Jinping II hydropower project, (C)In-situ stress fields of the diversion tunnels at Jinping II hydropower project.
Along the diversion tunnels, the main lithology of the strata is marble, slate, sandstone, and limestone. Along the reverse water flow direction of the diversion tunnels, they are Yantang Formation (T2y), Baishan Formation (T2b), Triassic Upper Series (T3), Zagunao Formation (T2z), and Triassic Lower Series (T1), respectively (Figure 1B). Among them, the Yantang Formation (T2y) mainly distributes in the Dashuigou area, and the core of the Laozhuangzi anticline is composed of marble and argillaceous limestone. The marble of the Baishan Formation (T2b) mainly distributes in the middle of the project area, which forms the main part of the Jinping Mountains. The Baishan marble (T2b) is stable and compact, and the thickness of the whole layer is 750–2,270 m. The Upper Triassic (T3) mainly distributes in the main watershed, and its lithology is sandstone and slate. The Lower Triassic (T1) stratum mainly distributes in the western part of the tunnel area, and its lithology is complex, which is composed of biotite chlorite schist, metamorphic medium-fine sandstone with thin-bedded marble, gravel or banded marble, etc.
2) Geological structure
In the project area, the folds are extremely developed and complicated, and most of them are dense folds extending near the SN direction (NNE). Generally, these folds are composed of three belts: east, middle, and west. Through the geological survey, it is revealed that compression bedding and NE-trending thrust faults are the main structural planes in the project area. Based on different structural features and distribution orientations, these planes are classified into four tectonic groups: NNW, NNE, NW∼NWW, and NE∼NEE. The main faults that the diversion tunnel passed through are F5, F6, F25, and F27, which are shown in Figure 1B. The attitude of F5 fault is N10°∼30°E, NW∠70°, with an affecting width of 5–10 m. The occurrence of the fault F6 is N20°∼50°E, NW or SE∠60°∼87°with the bandwidth of 1–4.2 m. The attitude of the F27 fault tends to the N30∼40°W direction, which is located in the middle of the Ganhaizi Formation and distributes in the Baishan Formation (T2b). The attitude of the fault F25 is N20°E, SE∠70°with a crushing bandwidth of 1–2 m.
3) In-situ stress fields
Because of the complex geological conditions and large burial depth, the in-situ stress at the construction area of four diversion tunnels is relatively high. Using the hydraulic fracturing method, the in-situ stress field at the construction area was measured (see Figure 1C). From Figure 1C, the maximum principal stress (σmax) reaches 72 MPa with a dip angle of 6.45–75.4°. The middle principal stress (σmid) reaches 34 MPa with a dip angle of 25°and is approximately perpendicular to the tunnel axis. For the minimum principal stress (σmin), it reaches about 29 MPa in the vertical direction with a dip angle of 65°.
2.2 Rockburst Characteristics Occurred at No. 2 Diversion Tunnel
In the tunnel area, the lithology of the rock mass is mostly pure and brittle marble with high strength. Due to the large burial depth, the rock mass is endowed with high in-situ stress. These two factors constitute the basic conditions for the occurrence of rockbursts. Subsequently, influenced by the blasting excavation induced disturbance, the rockburst occurred frequently (Figure 2).
[image: Figure 2]FIGURE 2 | Rockburst occurred during excavation of diversion tunnels at Jinping II hydropower project. (A) At No. 1 diversion tunnel, (B) At No. 2 diversion tunnel.
To analyze the evolution mechanism of rockbursts induced by blasting excavation, the rockbursts that occurred at No. 2 diversion tunnel from stake number K10+600 to K17+000 were observed and recorded, as shown in Table 1. Otherwise, the rockburst intensity at the No.2 diversion tunnel and the rockburst frequency around the tunnel cross-section is given in Figure 3. According to Figure 3, there were 75 rockbursts during the blasting excavation of No. 2 diversion tunnel from stake number K10+600 to K17+000, and the majority of the rockbursts forms were exfoliation, lump flick, and peeling. From the field observation, the surface of the rockburst crater is fresh, showing the characteristics of "shallow pit", "deep pit" and "V-shape". The crater length of the rockburst at the No.2 diversion tunnel ranges from 1 m to 72 m, and the crater depth of the strongest rockburst reached 1.5∼3.0 m. According to the length and depth of the rockburst crater, the rockburst intensity is mainly divided into four grades: slight rockburst (I), medium rockburst (II), intense rockburst (III), and drastic rockburst (IV). Among these four grades, the different rockburst grades correspond to the different sizes of rock fragments. In general, the higher the rockburst grade means the deeper crater, the larger size of rock fragments, the farther the ejection distance of rock fragments caused by rockbursts, and the louder the sound produced by rockbursts.
TABLE 1 | Rockbursts occurred at No. 2 diversion tunnel from stake number K10+600 to K17+000.
[image: Table 1][image: Figure 3]FIGURE 3 | Rockburst grade along the tunnel axis and rockburst frequency at the tunnel cross-section.
Combined with Table 1, Figures 1B,C and Figure 3, the frequency and intensity of the rockbursts that took place near the stake number K11+000 were more drastic than those that took place near stake number K16+000, which indicates that rockbursts tend to occur around the tunnel cross-section with high in-situ stress and buried depth. Since No. 2 diversion tunnel was excavated by the upper and lower step method, almost all of the rockbursts happened at the upper section of the tunnel. Among the total frequency of the rockbursts that happened at the No.2 diversion tunnel, 35 rockbursts took place at the right spandrel, and 17 rockbursts occurred at the left spandrel. In addition, 12, 8, and 3 rockbursts happened at the right side, top and left side of the tunnel cross-sections, respectively.
From Figures 1B,C and Figure 3, we can also find that from stake number K16+000 to K11+000, the intensity, frequency, and rockburst grade enlarge with the increase of burial depth. Furthermore, it can also be seen from the figures that the burial depth is not the only influencing factor. There is a close correspondence between the rockburst frequency and the geological structure (syncline, anticline) along the tunnel axis, which indicates that the impact of geological structures on the in-situ stress field is another important factor that induces rockbursts. To facilitate the classification of rockbursts, we regarded the sporadic rockburst and continuous rockburst as the low-grade rockburst and high-grade rockburst, respectively. Generally, the intensity and grade of rockbursts are closely related to the level of in-situ stress.
When excavating No. 2 diversion tunnel by blasting, rockbursts happened frequently, which caused work stoppage more than once and increased the lining and support costs. As a man-made engineering disaster, rockbursts are not only harmful to the stability of the rock mass near the excavation area, they also threaten the security of workers and mechanical equipment near the occurrence area. Thus, it is crucial to evaluate the rockburst risk during excavation of a deep tunnel by blasting. High in-situ stress inevitably endows high strain energy to the rock mass, which may be released in some forms by the rock mass after blasting excavation. Many studies have reported that the rockburst is a mechanical failure phenomenon caused by the energy release of the rock mass (Wang and Park, 2001; He et al., 2010; Su, et al., 2017; Su, et al., 2018; Chen, et al., 2019). Thus, the key to revealing the evolution mechanism of rockbursts is to explore the energy release regularities that result from blasting excavation of a deep-buried tunnel.
3 POST-PEAK MECHANICAL PROPERTY OF JINPING MARBLE AND ITS NUMERICAL DESCRIPTION
3.1 Post-peak Mechanical Property of Marble
Because rockbursts are the brittle failure induced behaviour of rock masses, the mechanical property, especially the post-peak mechanical characteristic of Jinping marble should be first studied to investigate the evolution mechanism of the rockburst that took place during the blasting excavation of No. 2 diversion tunnel. Previous research has reported that the stress-strain response and the yield form of the marble do not present as a single pattern under the action of compressive stress, but are closely associated with the value of confining pressure. For instance, in the case of low confining pressure, the stress-strain curve of the marble drops rapidly after reaching peak strength. This shows that the marble presents brittle characteristics like granite under low confining pressure. Accompanied with the continuous rise of confining pressure, it shows that the stress-strain curve slowly declines and the marble after the peak has a definite bearing capacity. While the confining pressure increases to a high level, the stress-strain curve of the marble after the peak does not decline and the residual strength of the marble still stays constant, presenting perfectly plastic characteristics. Therefore, the marble after the peak presents the brittle-ductile-plastic (BDP) transition characteristic during the rising process of confining pressure (Wawersik and Fairhurst, 1970). This particular mechanical property leads to the marble after the peak, which still has a high bearing capacity under the high confining pressure and stores a large amount of strain energy, which may be abruptly released and cause rockbursts under the disturbance of the tunnel excavation. Hence, studying and describing the BDP transition characteristics of Jinping marble is not only important for revealing the energy release regularities resulting from the transient stress unloading on the excavation boundary, but also are helpful for further understanding the evolution mechanism of the rockburst that happened during the construction of No. 2 diversion tunnel.
Aiming at investigating the special mechanical properties of Jinping marble, marble samples with a burial depth of 2000 m were drilled and obtained at the east end of the auxiliary tunnel for testing (Chu, 2009). Using the MTS pressure test equipment, a triaxial compression test was performed (see Figure 4). The test result in Figure 4 indicates that the Jinping marble sample shows significantly brittle characteristics after reaching peak strength under low confining pressure (2 MPa). While the confining pressure rises to the level of 2∼8 MPa, the residual strength of the marble sample drops a little and retains a high value after the peak. It shows that the marble sample starts presenting ductility features. As the confining pressure rises to a level of 40 MPa, the residual strength of the marble sample after the peak does not reduce and shows perfectly plastic characteristics.
[image: Figure 4]FIGURE 4 | Triaxial compression tests of Jinping T2b marble samples.
3.2 Numerical Description Method of the Post-peak Mechanical Properties for Jinping Marble
To reveal the energy release regularity derived from the transient stress unloading during the tunnel excavation of the Jinping II hydropower project, first and foremost, the post-peak mechanical property of Jinping marble needs to be described. In the Hoek-Brown strength criterion, the mechanical parameters mb, s, a, etc. can be changed with the increase of plastic strain [image: image] after the material yielding. Therefore, the hardening and softening behaviour of Jinping marble after the peak can be described by the Hoek-Brown strength criterion. In this research, the Hoek-Brown strength criterion in FLAC3D was employed to simulate the brittle-ductility-plastic (BDP) transition characteristic of Jinping marble. The yield equation is (Cundall et al., 2003):
[image: image]
here, mb, s, and a are strength parameters relating to the quality evaluation of the rock mass GSI, the material parameters of the rock mass mi; σ1, σ3, and σci are the first principal stress, third principal stress, and uniaxial compressive strength of the material, respectively.
In the above strength criterion, the rule is assumed that the maximum plastic strain increment [image: image] and the minimum plastic strain increment [image: image] satisfy the following relationship:
[image: image]
here, γ is the factor associated with the stress level, and its value is updated in each calculation step with the increment of plastic strain. According to the yield stress level, four kinds of flow rules can be achieved by the Hoek-Brown strength criterion.
1) Associated flow rule
The rule for associated flow:
[image: image]
Substituting Eq. 1 and Eq. 2 into Eq. 3, the associated flow factor γaf can be obtained by the following formula:
[image: image]
The associated flow rule is employed for the description of yield characteristics under the low confining pressure condition.
2) Isovolumetric flow rule
In the case of the higher confining pressure ([image: image]), the loading process will not terminate, and the volume of rock mass remains invariant in the subsequent loading process. Therefore, for the case of high confining pressure, this rule can describe the yield characteristic. The mathematical expression of this rule is:
[image: image]
here, γif is the isovolumetric flow factor.
3) Radial flow rule
The rule is written by:
[image: image]
here, γrf is the radial flow factor.
The radial flow rule can describe the tensile failure of rock masses under the action of the tensile stress.
4) Combination flow rule
When the confining pressure ranges from 0 to [image: image], the flow rule of the rock mass after yielding should be between the associated flow rule and the isovolumetric flow rule. Hence, a combination flow rule can be used to describe the yield characteristic:
[image: image]
here, γcf is the combination flow factor.
Only the above four kinds of flow rules are still insufficient to describe the BDP transition characteristic of Jinping marble. To solve this issue, a scaling factor μ associated with the minimum principal stress σ3 was proposed by Cundall et al. (2003) to simulate the softening and hardening characteristic of the rock mass after yielding. By adjusting the value of the factor μ, it can be used to describe the variation characteristic of the strength parameters mb, s, a, etc. changing with the plastic strain under the different confining pressure conditions. Using the scaling factor μ, the brittle failure of granite was successfully described by Diederichs, on this basis, the "V-shape" failure was reproduced at the Canadian underground research laboratory (Diederichs, 2007). To describe the BDP transition characteristic of Jinping marble, the scaling factor μ and 8 parameters including 4 peak intensity parameters and 4 residual strength parameters should be first determined (Zhang et al., 2010). By triaxial compression test, the peak and residual strength parameters were acquired, which are given in Table 2 and Table 3. As for the determination of scaling factor μ, in this paper, the comparison method of the numerical simulation and the actual measured result of damage zones was adopted. For example, various conditions corresponding to different scaling factors μ were assumed, and then the in-situ stress unloading caused stress change path and damage zones of the surrounding rock mass were simulated using the assumed scaling factor μ. If the low stress distribution region and the extent of damage zones obtained by numerical simulation are consistent with the range of the low velocity distribution belt in the surrounding rock mass measured by the field acoustic wave test, it means that the right scaling factor μ has been found. Due to the troublesome process, here only two assumed conditions are introduced (Table 4).
TABLE 2 | Hoek-Brown mechanical parameters and in-situ stress field at K11+105 cross section.
[image: Table 2]TABLE 3 | Strength parameters of rock mass change with the plastic strain.
[image: Table 3]TABLE 4 | Scaling factor changes with the minimum principal stress.
[image: Table 4]Condition one: the rock mass presents the brittle characteristic at the low confining pressure (0–2 MPa). The mechanical property transition of ductile-plastic occurs with the confining pressure reaching the level of 16 MPa.
Condition two: the ductile-plastic transition happens when confining pressure reaches 25 MPa.
Adopting the parameters given in Table 2, Table 3 and Table 4, taking the blasting excavation of No.2 diversion tunnel as an instance, the stress change path of the rock mass at a certain position of the surrounding rock mass under the disturbance of transient stress unloading on the excavation boundary was simulated, as shown in Figure 5. During the numerical modelling, the non-reflecting boundary condition was adopted, the stress dynamic adjustment processes of the rock mass elements which have a 30°angle with the x-axis (hole 4#) and have 1.0, 1.5, 2.0, 2.5, 3.0 m distance from the excavation boundary were recorded (Figure 5). In Figure 5, the fitting curve of peak strength and residual strength is also drawn. Figure 5A also presents that when the confining pressure reaches 16 MPa, the fitting curve of peak strength intersects the fitting curve of residual strength for condition one. It indicates that the confining pressure of the ductility-plastic transition is 16 MPa. While for condition two, the confining pressure of the ductility-plastic transition is 25 MPa (Figure 5B).
[image: Figure 5]FIGURE 5 | Stress path of surrounding rock masses induced by excavation. (A) Condition one, (B) Condition two.
In Figure 5, when the stress path curve intersects the fitting curve of peak strength, it means that the rock mass element is damaged, and the larger falling of the stress path curve means there is worse damage to the surrounding rock mass. For condition one, the stress paths of the surrounding rock mass elements with the distances of 1.0 and 1.5 m from the excavation boundary both have a significant drop after reaching the fitting curve of peak strength, but the stress path of the surrounding rock mass element with 2.0 m distance from the excavation boundary does not fall. Therefore, the damage depth of the surrounding rock mass has a 30°angle with the x-axis (hole 4#) can be determined as 2.0 m. While for condition two, the stress path curve of the surrounding rock mass element with a distance of 2.0 m from the excavation boundary only has a slight drop after reaching the fitting curve of peak strength. The stress path curve of the surrounding rock mass element with a 2.5 m distance from the excavation boundary does not reach the fitting curve of peak strength, it means that the extent of damage to the surrounding rock mass is within 2.0∼2.5 m. By further drawing the stress path curve of the rock mass element with a 2.0∼2.5 m distance from the excavation boundary, it was found that the damage depth was 2.3 m at this location.
More simply, a square model (1 × 1 × 1 m) was set up to simulate the rock sample, and the numerical stress-strain curve in several confining pressure conditions was performed (Figure 6). As can be seen from Figure 6, the confining pressure plays a critical role in the mechanical characteristic of the marble after the peak. When the confining pressure is low (0∼2 MPa), the stress-strain curve falls quickly after the peak and presents the obviously brittle characteristic like granite, and there is still a significant difference between the peak strength and the residual strength. However, this difference continually declines with the rise of the confining pressure. While the confining pressure exceeds 10 MPa, the stress-strain curve does not fall quickly after yielding and shows a significantly ductile characteristic. When the numerical rock sample is under high confining pressure, the stress-strain curve does not decline after the peak and shows an ideally plastic characteristic. For condition one, the confining pressure 16 MPa is the ductility-plastic transition threshold. While for condition two, the confining pressure 25 MPa is the ductility-plastic transition threshold. Both conditions one and two can describe the BDP transition property of the marble. To deduce which condition is right, a verification using the field acoustic wave test needs to be performed.
[image: Figure 6]FIGURE 6 | Axial stress-strain curves under different conditions.
The field acoustic wave test result of the cross-section K11+105 is given in Figure 7. From Figure 7, the damage depth of the surrounding rock mass which has a 30°angle with the x-axis (hole 4#) is 2.0 m. It can be found that the test result is consistent with the numerical simulation result of condition one in Figure 5A. On this basis, using the parameters of condition one, the damage zone of the surrounding rock mass resulting from tunnel excavation was simulated (see Figure 7). In Figure 7, we can find that except for hole 2#, there is little difference between the damage extent of simulation results and the damage extent of field test results, which proves that the simulation method adopted in this paper is correct. Because the indoor test presented in Figure 4 is hard to reproduce the real loading and unloading stress path of the surrounding rock mass, it may lead to the numerical axial stress-strain curves in Figure 6 being inaccurate. This is why the axial stress-strain curves of simulation results in Figure 6 are different from that of indoor test results in Figure 4, but the simulation result of the damage zone is the same as the field test result.
[image: Figure 7]FIGURE 7 | Field test results of acoustic wave and excavation induced damage zone at K11+105 cross section.
4 ENERGY VARIATION AND RELEASE PROCESS OF THE SURROUNDING ROCK MASS AROSE FROM STRESS UNLOADING
4.1 Energy Accumulation Process of the Surrounding Rock Mass and Its Energy Storage Limit
A simple assumption was made that an infinite-long tunnel is excavated with a radius of R in the initial hydrostatic stress field P0. Then, the stress adjustment process of the surrounding rock mass due to the quasi-static unloading of in-situ stress can be calculated by Eq. 8:
[image: image]
here, r is the distance between the rock mass and the excavation centre, σθ and σr are the circumferential stress and radial stress, respectively, and σ1, σ2, σ3 are the principal stresses.
After the calculation of principal stresses, the density of elastic strain energy can be counted by Eq. 9 (Solecki and Conant, 2003):
[image: image]
here, υ is the Poisson’s ratio, E0 is the elastic modulus, and U is the elastic strain energy density of the rock mass at a certain location.
Before tunnel excavation (σ1=σ2=σ3=P0), the initial rock mass is intact and its strain energy density is counted by:
[image: image]
here, U0 is the initial strain energy density of rock masses before the tunnel excavation.
When the unloading process is completed, the strain energy density of the surrounding rock mass can be obtained by substituting Eq. 8 into Eq. 9:
[image: image]
here, UA is the strain energy density of the surrounding rock mass at a certain position after stress unloading.
Comparing Eq. 10 and Eq. 11, it is not difficult to find that after the in-situ stress unloading induced by tunnel excavation, the strain energy density of the surrounding rock mass increases.
It is generally acknowledged that as a brittle material, there is a limit for the strain energy storage capacity of the rock mass. Based on the hydrostatic compressive pressure field considered in this research, the energy storage limit of the rock mass Uc for the case of three-dimensional pressure can be calculated by Eq. 12 (Xie et al., 2005):
[image: image]
Under the condition of the quasi-static unloading, Uc is acquired by substituting Eq. 8 into Eq. 12:
[image: image]
From Eq. 13 and Eq. 11, it can be found that the shorter distance to the excavation centre, the weaker the energy storage capacity of the rock mass, and the more the strain energy will accumulate in the rock mass. Consequently, when it is close to the excavation boundary, the strain energy aggregated in the surrounding rock mass can easily exceed the storage limit, which will inevitably lead to the energy release and cause damage, even failure in the surrounding rock mass.
When the blasting excavation method is employed, the stress unloading process on the excavation face is rapid and transient but not a quasi-static process (Lu et al., 2012; Li et al., 2014; Zhu et al., 2014; Fan et al., 2015). The transient stress unloading induced stress field in the surrounding rock mass can be calculated by employing inversion integral, contour integration, and Laplace transform (Fan et al., 2016):
[image: image]
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here:
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here, Cp is the P-waves velocity, t and t0 is the time and unloading time, respectively, σθ(r, t) and σr(r, t) is the dynamically circumferential stress and radial stress of the surrounding rock mass induced by transient unloading, respectively, η is the integral path, G is the Lame constant, J0, J1, Y0, and Y1 are the Bessel functions.
After calculation, the dynamically circumferential stress and radial stress of the surrounding rock mass are drawn in Figure 8A. From Figure 8A, compared with quasi-static unloading, transient unloading will enlarge the effect of radial unloading and circumferential loading in the surrounding rock mass, and result in a larger difference between the first and third principal stress. Combining this dynamic adjustment process with Eq. 12, the transient stress unloading will reduce the energy storage limit and tends to result in energy release.
[image: Figure 8]FIGURE 8 | Dynamic response induced by transient unloading of in-situ stress. (A) Dynamic stress of surrounding rock masses induced by transient unloading of in-situ stress (r = 2R), (B) Variation process of strain energy density and energy storage limit induced by transient unloading of in-situ stress.
Substituting the dynamic stress field of Figure 8A into Eq. 9, the strain energy density of the surrounding rock mass Uw(r, t) under the transient stress unloading can be calculated. To show the variation process of strain energy intuitively, the ratios of the strain energy density Uw(r, t) and energy storage limit Uc(r, t) to the initial strain energy density U0 of the surrounding rock mass at 1.0R, 1.2R, 1.4R, and 2.0R are drawn in Figure 8B. As can be seen from Figure 8B, the strain energy experiences a dynamic variation process like declining at first, raising second and stabilizing at last. In fact, before the strain energy reaches the peak value of the elastic change curve as shown in Figure 8B, it will exceed the energy storage limit and result in energy release. Obviously, under elastic conditions, the subsequent curve after the strain energy density curve intersecting with the energy storage limit curve is not the actual energy adjustment process.
4.2 Description Indicators of Energy Release
On the purpose of evaluating the rockburst intensity, Cook proposed a new index, energy release rate (ERR), which can be counted by Eq. 16:
[image: image]
here, Es is the total value of released energy; Ee and Ve are the total strain energy and volume of the excavated rock mass, respectively.
Since the energy release rate (ERR) cannot reflect the intensity and location of the energy release in the surrounding rock mass, it fails to identify the occurrence position of the rockburst. To achieve this goal, an index of local energy release rate (LERR) was proposed by Jiang et al. (2010) for describing the energy release resulting from the tunnel excavation. This index is acquired by counting the difference value between the strain energy density before the material failure and the strain energy density after the material failure:
[image: image]
here, LERRi is LERR of the rock mass element; Uipeak is the peak value of strain energy density of the rock mass element before the brittle failure; Uitrough is the trough value of strain energy density of the rock mass element after the brittle failure; i is the number of the rock mass element; Uipeak and Uitrough are counted by Eq. 9.
From Figure 8B, it can also be seen that the residual value of strain energy density may be higher than the trough value of strain energy density under the elastic condition after the brittle failure occurring. Therefore, Eq. 17 should be corrected:
[image: image]
here, Uimax is the maximum value of strain energy density for the i-th rock mass element before the brittle failure happens; Uis is the final stable value or the residual value of strain energy density after the brittle failure.
4.3 Numerical Simulation
The same model (Figure 9A) and parameters in section 3.2 were adopted to analyze the energy release process due to excavation. Before excavation, adopting the ideal and elastic model, the initial in-situ stress field and strain energy of rock masses was calculated. Through a certain calculation time step, the balance was obtained and the simulation result is shown in Figure 9B. During the numerical simulation of the energy release process, the non-reflecting boundary condition, i.e. the energy absorption boundary condition mentioned in Section 3.2 was adopted. Then, based on the parameters in Table 2, Table 3, and Table 4 and the BDP model, the energy accumulation of the surrounding rock mass due to tunnel excavation was simulated as shown in Figure 9C. From the simulation result presented in Figure 9C, it was found that due to the low storage limit of the surrounding rock mass around the excavation boundary, the accumulated strain energy easily exceeds the energy storage limit. Subsequently, energy release happens and triggers off the failure of the surrounding rock mass. After the energy release process is complete, the strain energy stabilizes at the residual state, as in Figure 9D.
[image: Figure 9]FIGURE 9 | The variation of strain energy due to tunnel excavation (J/m3): (A) Calculation model, (B) Strain energy of initial rock masses before excavation, (C) Strain energy accumulation in surrounding rock masses, (D) residual state of strain energy in surrounding rock masses.
To reveal the dynamic process of energy release resulting from transient stress unloading, the strain energy density of the surrounding rock mass elements with the distances of 0.5, 1.0, 1.5, and 2.0 m from the excavation boundary (Figure 9A) were recorded, which is drawn in Figure 10.
[image: Figure 10]FIGURE 10 | Energy release process of surrounding rock masses induced by the transient unloading of in-situ stress: (A) Rock mass element with a distance of 0.5 m from the excavation boundary, (B) Rock mass element with a distance of 1.0 m from the excavation boundary, (C) Rock mass element with a distance of 1.5 m from the excavation boundary, (D) Rock mass element with a distance of 2.0 m from the excavation boundary.
Figure 10 shows that the strain energy adjustment curve has two significant amplitude values: the peak value and the trough value. For the rock mass element which is 0.5 m away from the excavation boundary (Figure 10A), the peak value of the strain energy density is smaller than its initial value. While for the rock mass element with distances of 1.0 and 1.5 m from the excavation boundary, the peak value of the strain energy density is greater than the initial value (see Figures 10B,C). This illustrates that due to transient stress unloading, the strain energy of the distant rock mass will flow to the excavation boundary and lead to the accumulated energy more easily exceeding the energy storage limit for the rock mass, which is near the excavation boundary. Thus, when the strain energy accumulates in the surrounding rock mass, it cannot reach the peak value like Figure 8B under the ideally elastic conditions, it can even be smaller than the initial value of the strain energy before excavation unloading. Therefore, it is inaccurate to use the difference value of the peak value and trough value (Eq. 17) when calculating the local energy release rate.
Figure 10 indicates that for the surrounding rock mass elements which are 0.5, 1.0, and 1.5 m away from the excavation boundary, the strain energy experiences a variation process of reducing firstly, raising secondly, then decreasing and finally stabilizing. Similar to the elastic conditions, the first reduction of strain energy will not trigger failures in the surrounding rock mass, because it is induced by the elastic unloading wave. However, the second decline of the strain energy results from the factor that the strain energy absorbed in the surrounding rock mass, which is greater than the storage limit, which will inevitably lead to the brittle failure of the surrounding rock mass. A further observation from Figure 10, it is not difficult to find that with the decrease of the distance between the rock mass and the excavation boundary, the energy release duration is shorter, and the local energy release rate is greater. These characteristics mean that the shorter distance from the rock mass to the final excavation boundary, the more violent energy release occurs.
4.4 Relationship Between Energy Release and Rockburst Intensity
For the deep tunnel excavation, the energy release is the inherent factor of the dynamic failure of the surrounding rock mass such as rockbursts (Hodgson and Joughin, 1966; Toksöz and Kehrer, 1972; Singh, 1988; Mikhalyuk and Zakharov, 1997; Wang and Park, 2001; He et al., 2010). Therefore, establishing a certain association of the energy release and the rockburst is crucial to predicting and controling the rockburst induced by the deep tunnel excavation. Based on the concept of LERR, the average value of the local energy release rate [image: image] is proposed, which can be written by:
[image: image]
here, Vf is the total volume of the failure elements in surrounding rock masses.
Based on the recorded rockbursts in Table 1, the average value of [image: image] was calculated. Afterwards, the relationship between the average value of [image: image] and rockburst intensity was set up as shown in Figure 11. Then, using the mechanical parameters in Table 2, Table 3, and Table 4 and the in-situ stress fields in Figure 1C, the failure extent and final energy distribution of the surrounding rock mass for different rockburst grades at several stake numbers were simulated (Figure 11), and the comparison of between the numerical simulation and the measured result for the stake number K11+006 (rockburst grade IV), 10+978 (rockburst grade III), 12+644 (rockburst grade II), and 15+288 (rockburst grade I) is given in Figure 11. From Figure 11, the simulation extent of the brittle failure is consistent with the crater depth of the rockburst that occurred at the same stake number in Table 1. The simulation location of the brittle failure is consistent with the rockburst occurrence location at the tunnel cross-section in Table 1. For instance, the simulation extent of the brittle failure at stake number K11+006 is 1.5∼3.0 m, mainly at the right side and spandrel. Similarly, the field observed rockburst at K11+006 has the same characteristic. This proves the accuracy of the numerical method employed in this paper.
[image: Figure 11]FIGURE 11 | Relationship between the average value of local energy release rate ([image: image]) and rockburst intensity.
Using the numerical simulation method proposed above, the average value of [image: image] was acquired. Then, the rockburst intensity can be predicted by the relationship curve in Figure 11. In addition, the residual state of strain energy was also simulated and drawn in Figure 11 in the form of a cloud chart to determine the location of the rockburst. After the energy release, the lowest residual value of the strain energy means the largest energy release rate and the most drastic rockburst occurred in the surrounding rock mass. Therefore, both the intensity and location of the rockburst can be predicted by employing the relationship curve in Figure 11 and the cloud chart of the residual strain energy.
The rockburst prediction is challenging work for researchers and engineers. Since the energy release plays a significant role in the formation of the rockburst, it has been the subject of much attention. The association between the rockburst intensity and the energy release rate (ERR) was developed by South African researchers, which can be expressed as:
[image: image]
The magnitude in Eq. 20 is significantly different from that in Figure 11. Considering a simple case, under the burial depth of 1,000∼2000 m, an underground tunnel is excavated with the in-situ stress of 27∼54 MPa (assumption: υ=0.25, E0=20∼50 GPa). On this basis, the initial strain energy density of the rock mass can be estimated by Eq. 10. After calculation, the initial strain energy density of the surrounding rock mass only reaches 10.9–109.4 kJ/m3, which is similar to the magnitude in Figure 11. From this point of view, the prediction method of rockbursts proposed in Figure 11 is better than that in Eq. 20.
The fault, structural plane, and excavation method were not considered in this paper but they also play a key role in the energy release and rockburst characteristics. Thus, the prediction method proposed for the rockburst (Figure 11) still requires verification. Despite these limitations, this research provides new insights to reveal energy variation regularity and assess the rockburst risk during the excavation of the deep tunnel by blasting.
5 CONCLUSION
Considering the special post-peak mechanical property of Jinping marble, the BDP transition property of Jinping marble was numerically simulated. Using the correct BDP model after verifications, we analyzed the transient stress unloading induced by the dynamic energy release process. Due to the transient unloading, the strain energy of the surrounding rock mass goes through a process of firstly decreasing, secondly increasing, next reducing, and finally stabilizing. Similar to the elastic conditions, the first decrease of strain energy results from the elastic unloading wave, which will not trigger the energy release and brittle failure. The second reduction of strain energy is owed to the factor that a quantity of strain energy accumulates in the surrounding rock mass and exceeds the storage limit of the surrounding rock mass, which inevitably causes the energy release and brittle failure of the surrounding rock mass. According to the theoretical calculation and numerical calculation, the shorter distance from the surrounding rock mass to the final excavation boundary means that the energy storage capacity of the surrounding rock mass is weaker, the intenser energy release, and the more drastic rockburst. Finally, to investigate the association of the energy release and rockburst due to the tunnel excavation, a numerical relationship between the average value of [image: image] and the rockburst intensity was established to assess the rockburst risk induced by blasting excavation of the deep tunnel.
This research only reveals the dynamic energy release process derived from transient stress unloading and established the relationship between the average value of [image: image] as well as the rockburst intensity for the rockburst prediction. Complex conditions such as structural planes and excavation methods were not considered. Therefore, further studies on the verification of the rockburst prediction method proposed in this paper under more complete working conditions will be performed in future work.
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The dynamic failure mechanism of horizontally layered dangerous rock during earthquakes is complex and only few studies have addressed the combination of particle flow code (PFC) meso-level failure mechanism and mechanical analysis. Based on fracture mechanics and material mechanics we establish a calculation method for the interlayer load and stability coefficient of horizontal layered dangerous rock during strong earthquakes. The method was applied for calculating the stability of a horizontally layered dangerous slope along a highway in the Sichuan Province (China) during earthquakes as a case study. Using a 3D particle flow simulation technology, a PFC3D model of horizontal layered dangerous rock was established. Its dynamic stability, failure mode and Hilbert-Huang 3D time-frequency characteristics are analyzed, and the results of the simulation are largely consistent with the time of the dangerous rock failure as estimated by our new calculation method. Our study documents that as the seismic acceleration gradually increases, the stability coefficient of the rock block fluctuates more violently and the stability coefficient gradually decreases. The stability coefficient of the rock block decreases fastest between 5 and 6 s and the reduction in the stability coefficient is between 0.12 and 0.25. Before the seismic acceleration reaches the maximum, the dangerous rock blocks on the two main controlling structures collapse and get destroyed. 25 s after the earthquake, the failure mode of the dangerous rock is collapse-slip-rotation. We show that earthquakes with frequencies of 0–10 and 250 Hz have the strongest destructive effect on the stability of the horizontally layered dangerous rocks.
Keywords: earthquake, dangerous rock, fracture mechanics, Newton’s second law, particle flow code, Hilbert–Huang transformation
INTRODUCTION
Seismic treatment of stratified dangerous rock slopes is a major geotechnical engineering challenge, frequently encountered in the construction of highways, railways, water conservancy, and other local infrastructure (Chen, 2001). A layered dangerous rock slope refers to a rock mass steep cliff or slope that is formed with multiple sets of weak and structural planes. The rock slope may become unstable or destroyed through gravity, earthquakes, and fracture water pressure. Like landslides, mudslides, land subsidence, desertification, karst, and other landscape shaping processes, dangerous rock collapses have become more prominent in recent years as one major type of geological disaster that poses a major threat to human life and property. In China dangerous rock collapses frequently occur at slopes along the Three Gorges Reservoir and along highways in seismic active zones of the Sichuan Province and other mountainous areas (Chen et al., 2015). However, the destruction of dangerous rock slopes is a global rock mechanics and geological hazard problem.
Horizontally layered rock slopes are the most common type of dangerous rock slopes and occur worldwide. They often contain a large number of horizontal and vertical joints that constitute zones of structural surfaces in the slope. Under the cutting of the dominant structure plane and the layer, the slope may be disrupted into many rock blocks, causing a more complex definition of the failure mode of such layered rock slope. The distribution and development of the structural planes and their mechanical properties control the strength, deformation, and stability of the slope. Due to the depth of the weathered rock cavity and the penetration of potential structural planes, earthquakes may cause collapse and destruction of dangerous rock masses. The damage caused by horizontally layered rock slopes was particularly significant in the 2008 Wenchuan earthquake. A magnitude 7.0 earthquake that occurred in 2017 in the Jiuzhaigou County (northern Sichuan Province) caused an economic loss of about 114.46 million through the destruction of dangerous rocks.
In recent years new models that combine fracture mechanics and material mechanics were developed to account for the complexity of rock masses. Chen et al. (2006) and Chen and Tang (2007) combined the rock mass structure theory with the limit equilibrium theory and considered different loading conditions, causing sliding, toppling, and falling rock slopes and established stability calculation methods for the three types of dangerous rock slopes. Based on fracture mechanics and material mechanics, Wang et al. (2017) established a calculation method for the interlayer load and stability coefficient of a complex gently inclined rock slope. However, the dynamic law and failure mode of horizontally layered dangerous rock slope during strong earthquakes was not considered in these studies. Alejandro et al. (2010) analyzed the failure mechanism of layered slopes based on engineering geological analysis and field investigations. Havaej and Stead (2016) considered the brittleness and damage characteristics of the rocks and analyzed the failure mechanism of the layered rock slope based on the method of numerical simulation. Aydan (2016) and Massey et al. (2017) determined the failure mode and mechanism of rock slopes under earthquake action through model tests and numerical simulations.
The particle flow code (PFC) enables the simulation of the behavior of dangerous rock slopes with complex mechanical models. Castro-Filgueira et al. (2020) used three-dimensional particle flow code (PFC3D) to study the triaxial test simulation of complete and cracked granite and calibrated the accuracy of the parameters. Salmi and Hosseinzadeh (2015) used empirical and numerical methods to jointly evaluate the stability of slopes. Based on the fracture mechanics theory, Chen et al. (2016) used the PFC2D method to evaluate the stability of crack propagation in a single dangerous rock. Tang et al. (2013) studied the mechanism of the Caoling large-scale landslide in 1941 based on two-dimensional particle flow code (PFC2D). He et al. (2016) studied the dynamic response and the instability process of dangerous rocks in Wangxia (Yangtze River, China), and successfully simulated the failure process of the slidable dangerous rocks using the PFC2D method, thus verifying its feasibility. Hu et al. (2017) applied the artificial synthetic rock mass technology of the PFC2D to study the failure mode of rock slopes with horizontal intermittent joints under different combinations of joint spacing length and joint spacing during earthquakes.
The simulation of the dynamic response of dangerous rocks to variable external forces (e.g., earthquakes) was limited to two dimensions, so far. However, the horizontally layered dangerous rock slope is a complex mechanical model, and the interaction between the longitudinal particles in the three-dimensional direction will directly affect the failure mechanism of the slope. Therefore, it is essential to use three-dimensional particle flow code (PFC3D) numerical simulations to study horizontally layered dangerous rocks (Potyondy and Cundall, 2004; Camones et al., 2013). In the present study we link fracture mechanics and Newton’s second law with the PFC3D method. The dynamic response of the horizontally layered dangerous rocks to external forces is further analyzed through the Hilbert–Huang transformation (HHT) for time-frequency characteristics. The results of HHT can directly reflect the time, sequence, and dynamic process of rock collapse. In addition, the dynamic failure mechanism and dynamic response of horizontally stratified rock slope under strong earthquakes can be observed. Our study documents the feasibility and advantage of 3D discrete element simulation over 2D models to characterize the dynamic failure of horizontally stratified rock slopes.
METHODS AND CASE STUDY
Mechanical Mechanism Analysis
Influence of Seismic Wave Direction
Seismic destruction of dangerous rocks is frequently considered to result from horizontal seismic forces of transverse waves (Yuan et al., 2018). However, the propagation velocities of seismic transverse waves and longitudinal waves are related, and they have different effects on the stability of dangerous rock slopes under different degrees of weathering. The seismic forces influence the stability of dangerous rocks and the failure mode under the coupling of shear and longitudinal waves has amplifying effect on the stability with the probability of both acting at the same point being limited (Zhang et al., 2014; Huang et al., 2017). According to the “Code for Seismic Resistance of Highway Engineering” (China Communications Road and Bridge Technology Co., Ltd, 2013), seismic activity in the Sichuan Province is characterized by the influence of longitudinal wave vertical earthquakes. Based on a specification on dangerous rock slope of the Sichuan Duwen Highway, the transverse and longitudinal waves are divided, and combined with the equation for calculating the stability of the dangerous rock (Chen et al., 2009a). In the slope consisting of sandstone on the top and mudstone at the base that is exposed along the highway (Figure 1) as a case study for our new model. The slope model shows a rock cavity at the base with a length of 10.31 m (the penetration rate is 62.5%) that is caused by weathering (Figure 1). According to the specification of Chen et al. (2009a), the studied slope of dangerous rock is ascribed to the falling damage group. The stability calculation method of different weathering degree of dangerous rock with seismic transverse and longitudinal waves is obtained to judge the effective seismic wave corresponding to different models.
[image: Figure 1]FIGURE 1 | Horizontally layered dangerous rock slope model.
The calculation model for falling dangerous rocks under shear waves is shown in Figure 2A. Px is the seismic inertial force in the x direction (kN), Py is the seismic inertial force in the y direction (kN), Gw is the weight of the dangerous rock mass (kN), Q is the water pressure on the rock fissure (kN), and AB is the length of the structural surface, h0 is the vertical distance from the center of gravity to the bottom of the model (m). The stability factor is defined as:
[image: image]
In Eq. 1m is the mass of the rock block (kg); γw is the bulk density of fissure water (kN/m3); ax is the shear wave seismic acceleration (m/s2); c is the cohesion of dangerous rock (MPa); φ is the angle of internal friction (°) and β (°) the inclination angle, e is the depth of the cracks that have been destroyed (m); H is the vertical height of the rock mass (m).
[image: Figure 2]FIGURE 2 | Slope calculation model.
The calculation model of dangerous rock under longitudinal wave seismic force is shown in Figure 2B. The equation for the stability coefficient of dangerous rock under longitudinal wave vertical seismic force is similar to Eq. 1 but with ay as longitudinal wave seismic acceleration (m/s2):
[image: image]
In the following we integrate the data of the horizontally layered dangerous rock slope of Sichuan Duwen Highway into the equation of the stability coefficient under the action of transverse and longitudinal waves. The effective value of seismic acceleration is calculated by taking the maximum value in the first 25 s of the measured longitudinal U-D wave seismic acceleration time history curve of the Wolong Wenchuan (Sichuan) earthquake in 2008 (Figure 3). The calculation parameters are summarized in Table 1 with flk as the standard value of tensile strength of sandstone (MPa) and fok as the standard value of tensile strength of mudstone (MPa).
[image: Figure 3]FIGURE 3 | Longitudinal U-D wave curve of the 2008 Wolong Wenchuan earthquake.
TABLE 1 | Model calculation parameters.
[image: Table 1]The calculation indicates a stability coefficient of 1.80 under shear waves and a stability coefficient of 0.92 under longitudinal waves for the studied slope. The lower coefficient documents that the longitudinal seismic wave is the main factor for the failure of the slope. Consequently, our new model predominantly considers the effect of the longitudinal waves. Since longitudinal waves are the main effect in earthquakes, it is assumed that the model only considers the effects of longitudinal waves. The finding of the longitudinal waves as main factor for slope failure is fundamental for the subsequent simulation of the seismic action combined with particle flow and therefore improves the efficiency of the modelling.
Derivation of Seismic Stability Coefficient Equation
Multiple sets of joints may occur in complex dangerous horizontal layered rock slope, and each set of joints is formed by the combined action of multiple micro-chains and macro-chains. The slope is fragmented into rock blocks by vertical structural planes and lateral rock layers, making the failure mode of complex layered rock slopes different from that of single rock slopes with only one set of joints. Based on our conclusion from the stability coefficient calculation, we focus on the effect of longitudinal seismic waves to analyze the stability of horizontally layered dangerous rocks under earthquakes.
We follow the equation for dangerous rock of Tian et al. (2020a) that defines a dangerous rock model with n macroscopic chains and m rock layers. Linking this equation with constraints from fracture mechanics, material mechanics, and dynamics calculation methods (Chen et al., 2009b), we define the time history equation of the stability coefficient of the mn# rock block under the continuous earthquake action as follows:
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[image: image]
[image: image]
In Eq. 3KIC(t) is the fracture toughness of the structural plane and K’‘emn(t) is the joint stress intensity factor under the longitudinal seismic wave. In Eq. 4, Eq. 5 θ’‘0mn(t) is the fracture angle under the longitudinal seismic wave, K″Ⅰmn the type I stress intensity factor under the longitudinal seismic wave and K’‘Iimn the type II stress intensity factor under the longitudinal seismic wave.
Interlayer Load Under Earthquake Action
As observed in most layered rock slopes, we postulate in our model that adjacent rock layers are in contact with each other. Considering that each layer of rock interacts with each other, the mth layer of rock mass is used for analysis. In the rock layer contact geometry model (Figure 4) Hm is the layer height of the rock block m in the y direction, and Lm is the width of the rock block m in the x direction. Adjacent layers m-1 and m+1 are defined analogously. Am and Am-1 are contact points between the individual blocks and τ is the friction between individual layers.
[image: Figure 4]FIGURE 4 | Geometric model of interlayer interaction in a rock mass.
According to the deflection equation, the total deflection of a layer rock m under the action of its own weight as well as upper and lower rock masses is defined as:
[image: image]
The friction between layers is defined as:
[image: image]
In Eq. 6, y″m1 is the deflection of layer m under the action of weight, earthquake and pressure of the overlying layer m+1; y″m2 is the deflection of the rock layer m supported by the underlying rock layer m-1; M is the bending moment of the adjacent rock block; q″m+1 is the interlayer load, γ is the bulk density of the fractured water, m is the mass of the rock block, ay(t) is the longitudinal seismic acceleration, E is the elastic modulus, and Im is the moment of inertia.
According to the principle of equal deflection of the contact section of adjacent rock layers, it follows for a number i of rock layers:
[image: image]
The interlayer load can be obtained by Eq. 6, Eq. 7, Eq. 8
Case Study
We selected a slope of dangerous rocks near the Provincial Highway 205 in Beichuan County (Sichuan Province, China) as a case study (Figure 5A) for testing our new model. The slope is dominated by sandstone overlying mudstone at the base of the sequence and comprises four rock layers and two vertical structural planes. Following to the chain law in the China Academy of Aviation (1981) we define the outer rock chain as No. 1 chain, and the inner rock chain as No. 2 chain (Figures 1, Figure 5B). Like in the calculation of the stability coefficients, we selected the maximum value in the first 25 s of the measured longitudinal U-D wave seismic acceleration time history curve of the Wenchuan earthquake (Figure 3).
[image: Figure 5]FIGURE 5 | (A) Photograph of the studied slope at the Provincial Highway 205 and (B) geometry of model four slope.
Implementing Eq. 6, Eq. 7, Eq. 8, the deflection equation is constrained as:
[image: image]
Simplifying Eq. 9 yields:
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The load between each layer is:
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Among them:
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Applying the data from Table 2 in the dangerous rock Eq. 10 and considering the interlayer load, the time history curve of the stability coefficient of the dangerous rock block is calculated (Figure 6). The structural plane of the rock block is fractured for stability coefficients <1.0 (critical red line in Figure 6). We here consider the effect of earthquake time history. Due to the large seismic fluctuations, seismic forces in the opposite direction will affect the rock block, resulting in an instantaneous increase in the stability of the rock block. Different from the law of stability decay under statics, this fluctuation phenomenon will speed up the expansion of the main control structure. Considering the earthquake as a dynamic load, the interlayer load also becomes a dynamic interlayer load after initiation of the earthquake. The time history curves indicate that each rock block will fluctuate with the fluctuation of the longitudinal seismic wave during the earthquake (Figure 6). The shape of the fluctuation curve of the stability coefficient is similar for the rock blocks, but the caving time is different (Figures 6A–H). At the beginning of the earthquake the stability coefficient of the dangerous rock fluctuates rather widely. From the perspective of attenuation, the stability coefficient of each rock block gradually decreases with time (Figure 6I). The maximum fluctuation range of the stability coefficient of the dangerous rock overlaps with the maximum acceleration between 5–15 s of the Wenchuan earthquake wave (Figure 3). The highest stability coefficient calculated by our new method is at 10.95 s after the beginning of the earthquake. The minimum stability coefficient increases from bottom to top of the slope (rock block 1–1: 0.745, rock block 1–2: 0.788, rock block 2–1: 0.798, rock block 2–2: 0.807, rock block 3–1: 0.993, rock block 3–2: 0.945, rock block 4–1: 0.987, rock block 4–2: 0.962). The data indicate that the rock block 1–1 in the bottom layer has the greatest vulnerability of failure whereas the third layer rock block 3–1 is most resistant. Considering the interlayer load effect and seismic dynamics, the systematic of the failure of each dangerous rock is obviously different and depends on the position of the respective block in the slope. The timing of the intersection between the stability coefficient and the critical line is variable but most rock blocks collapse before reaching the maximum vibration acceleration.
TABLE 2 | Field slope calculation parameters.
[image: Table 2][image: Figure 6]FIGURE 6 | (A–H) Time-history curve of seismic stability coefficient (I) and attenuation.
Therefore, we extracted the lower sector (0–12 s) of the stability coefficient versus time curves from Figure 6A–H, and plotted the eight stability coefficient attenuation curves as shown in Figure 6I. The stability coefficient attenuation curves clearly illustrate the decreasing stability coefficient of the rock blocks from top to bottom of the slope and with elapsing time after beginning of the earthquake (caving time). The stability coefficient of rock block 1–1 falls below the critical value already after ca. 2 s, indicating that rock block 1–1 will be destroyed at first. Thereafter, rock block 1–2 will be destroyed after 3 s. The two rock blocks from the bottom are destroyed at first as supporting forces from underlying rocks are lacking (related to the geometry of the model). The internal rock blocks have the largest bending moment and the largest interlayer load. Consequently, rock blocks 2–1 and 2–2 the from the second layer will collapse after 4.7 and 4.8 s, respectively. The blocks from the first two layers will be destroyed sequentially from the outside (blocks 1–1 and 2–1) to the interior of the slope (blocks 1–2 and 2–2). The rock block 4–2 will fail after ca. 6 s, followed by rock block 3–2 that will collapse after ca. 8 s. The blocks of the uppermost two layers are destroyed in a way that the internal structural plane penetrates from top to bottom and from the interior to the outside. The rock blocks 4–1 and 3–1 will be destroyed after 9.5 and 10.9 s, respectively, subsequently to the destruction of adjacent internal rock blocks. The strongest decrease of the stability coefficient occurs between 5 and 6 s for all blocks, and the maximum attenuation value is 0.3 (distributed in rock block 4–2). Thereafter, all curves smoothly decline. The data document that at least the dangerous rock blocks of the 1st and 2nd chain have all been collapsed prior to the maximum of the seismic acceleration at ca. 12 s (Figure 3).
The results indicate that our refined calculation method for the stability coefficient of dangerous rock under the influence of interlayer load and seismic dynamics can reasonably characterize the failure mechanism and caving time of dangerous rock slopes.
RESULTS AND DISCUSSION
PFC Meso-parameter Calibration
In PFC, the Smooth-Joint Contact Model is used to simulate the contact model of the rock structure surface. The meso-parameters can be directly replaced and assigned by DFN (Discrete Fracture Network). A DFN is a collection of fractures. DFN is used as a structural plane simulation method that allows the estimation of mesoscopic parameters of the joint plane (Lei and Qing, 2015; Bian et al., 2018; Tian et al., 2020b). Through trial and adjustment, the sandstone and mudstone of the studied slope are calibrated, and the constrained meso parameters are summarized in Table 3.
TABLE 3 | Mesoscopic parameters.
[image: Table 3]PFC Dangerous Rock Failure Mode Results
Based on previous studies on stratified dangerous rock slopes, the horizontally stratified dangerous rock slope of Duwen Highway is used to establish a horizontally stratified dangerous rock slope model using PFC3D (Figure 7). In the PFC model artificial synthetic rock mass (SRM) technology is applied to establish the rock joint surface. The boundary condition of the seismic model adopts the viscous boundary, and integrates the seismic wave data of the Wenchuan earthquake (Figure 3).
[image: Figure 7]FIGURE 7 | 3D particle flow model.
According to on-site monitoring data, the model has a crack penetration rate of 62.5% in the main control structure and a rock cavity depth of 6 m (Figure 7). A 25 s earthquake longitudinal wave is again applied in the model. The modelled destruction process is shown in Figure 8. Within 0–2 s of the evolution the slope is relatively stable, without significant evidence for deformation and failure. After 2.5 s the structural surface of the 1–1 rock block breaks down and starts to collapse (Figure 8A). The caving failure time is between 2 and 2.5 s (the calculation result in the third section Case analysis is 2.1 s). After 3 s the structural surface of the adjacent rock block 1–2 becomes fractured (Figure 8B). However, due to compression through the overlying rock mass, the rock joint model has not been completely fractured (partial fracture), and block 1–2 does not collapse at this time. We here define, the fracture time of the structural plane as the caving time of the dangerous rock, and following this, the caving time of block 1–2 is ca. 3 s (the calculation result in the third section is 2.92 s, see below). After 5 s the 1–1 block collides with the mudstone base (Figure 8C). In addition, the 2–1 rock block becomes fragmented from the rock pile and starts to fall. At the same time, the adjacent block 2–2 suffered initial structural plane fracture (partial fracture). However, just like the 1–2 block, the block 2–2 does not collapsed at this time, and its structural surface forms a partial penetration surface with the stress being concentrated between the second layer and the third layer of the No. 2 inner macro chain. We here preliminarily estimate a caving time between 4 and 5 s for the blocks 2–1 and 2–2, and according to the movement of the blocks, it evident that the caving failure time of block 2–1 must predate that of block 2–2 (consistently the calculation result in the third section is 4.75 s for 2–1 and 4.84 s for 2–2). As the seismic force gradually increases, compression of blocks 2–2 and 1–2 at the bottom on the upper rock mass continued to increase. After 8 s, the tensile strength of the 4–2 and 3–2 rock mass structural surface contact reaches the maximum. As a result, the rock fractures and tends to slide downward (Figure 8D). At the same time, the falling 2–1 and 1–1 blocks collide. We conclude a caving failure time between ca. 6 and 8 s for the 4–2 and 3–2 blocks (the calculation result in the third section is 6.07s for 4–2 and 7.98 s for 3–2). After 11s, the 3–1 block starts to collapse (Figure 8E) with a caving failure time between 10 and 11 s (the calculation result in the third section is 10.9s). Within 11–25 s, the joint model of the top rock strata began to fracture (Figure 8F). The blocks 4–1 and 4–2 rotate and become destroyed. The downward pressure causes the blocks 1–2, 2–2, and 3–2 to follow the mudstone slope. The entire surface becomes affected by a sliding failure.
[image: Figure 8]FIGURE 8 | Diagram of the failure process of dangerous rocks.
In our simulation the interlayer load of the top rock mass during the earthquake is low, and the bottom rock mass has an upward stabilizing effect. The bending effect of the rock mass structural plane on the external macro chain No. 1 is small. Therefore, the 4–1 rock block did not fall in the PFC simulation, and its failure is controlled by the failure of the adjacent block 4–2.
To sum up, for the given penetration rate of 62.5% and a mudstone cavity depth of 6 m the horizontal layered dangerous rock slope is more severely damaged under the action of 25 s longitudinal earthquake wave. The destruction time is concentrated between 2 and 12 s, and the failure mode is fall-slip-rotation destruction.
Caving Time Analysis
The coordination number is defined in geotechnical engineering as the average contact number of particles (Jiang and Hu, 2010; Li and Wang, 2013), and is calculated as coordination number = 2 times the number of particles in contact/number of particles. Consequently, the coordination number reflects the physical properties such as the friction coefficient and elastic modulus of the contact model between particles. Based on the failure process (Figure 8), the specific caving sequence and strength attenuation of the rock block can be further refined by the coordination number. We monitor the particle coordination value of each model in the unit of rock block, and constrain the time history curve (Figure 9A). The modelled coordination values are between 6 and 11 (Figure 9A). The variation of the coordination number decreases with ongoing duration of the earthquake, as the stability of the slope gradually decreases. The slope model has a large attenuation of the coordination number in the anti-failure time period, and the coordination number largely fluctuates in the interval of strong earthquake intensity (8–15 s). The coordination value of each rock block tends to be stable prior to structural plane failure and again after the failure. Therefore, the structural plane attenuation of a rock mass during an earthquake is related to the intensity of the earthquake. The 2–1 rock block has the largest attenuation of the coordination number during the earthquake. Starting from 2 s, the coordination number decreases from 9.5 to 6.1. The decrease is related to large local fragmentation and destruction at ca. 5 s (Figure 8C). The coordination number decrease of the remaining rock blocks is between 0.6 and 2.5. The attenuation of the coordination number gets weakened with increasing elevation in the slope, with the uppermost rock blocks 4–1 and 4–2 yielding the lowest decreases of 0.6 and 1.2. The attenuation trend of the coordination number is consistent with the failure mode (Figure 8), thus confirming the specific caving time of each rock block in each model from the perspective of numerical simulation.
[image: Figure 9]FIGURE 9 | (A) Coordination number and (B) destruction time.
Combining fracture mechanics and Newton’s second law can completely obtain the dynamic stability of the dangerous rock and the caving time of the dangerous rock. In order to verify the reliability of the equation, and to affirm the rationality of the PFC method for this type of slope simulation, we compare the caving time of the dangerous rock obtained by the simulation with the value calculated from the seismic stability coefficient equation (Figure 9B). The diagram indicates an increase of the caving time from bottom to top in the slope. However, after a maximum defined by the 3–1 block the caving time generally decreases. The diagram documents that the caving time estimated from the PFC simulation is consistent with the data calculated from the stability coefficient equation, thus proving the rationality of the modelling and the numerical method.
Hilbert-Huang Time-Frequency Characteristic Analysis
Vibration Signal HHT Result
Hilbert-Huang Transform (HHT) is generally used to analyze the time-frequency characteristics of the acceleration histories obtained from the PFC3D simulations. Therefore, we apply HHT three-dimensional signal processing technology to analyze the slope vibration frequency during PFC simulation (Tian et al., 2020a). The HHT calculation results are obtained from the vibration acceleration during PFC simulation by the Hilbert transform. The steps are as follows:
1) Application of Empirical Mode Decomposition (EMD) to decompose complex signals into a finite number of intrinsic mode functions (IMF).
2) Calculation of Hilbert transformation on each intrinsic mode function component to obtain the instantaneous frequency and amplitude of each IMF component over time. The Hilbert transformation on the component c(t) is defined as:
[image: image]
c(t) is the modal component; H the Hilbert spectrum and p the Cauchy principal value.
The equation for the calculation of the analytical signal z(t) is:
[image: image]
The amplitude function can be obtained from the equation:
[image: image]
and the phase function from:
[image: image]
The instantaneous frequency is calculated from the equation:
[image: image]
After applying the Hilbert transformation to each IMF component H becomes:
[image: image]
where Re means take the real part. The Hilbert spectrum can be obtained by expressing the above equation as a function of time domain and frequency domain. The Hilbert energy spectrum is constrained by integrating the square of the amplitude against time:
[image: image]
where E is the Hilbert energy spectrum.
The Hilbert energy spectrum expresses the energy accumulated by each frequency in the entire time length.
We select the rock blocks of the internal macro chain No. 2 in the dangerous rock model (Figure 5B) as the vertical object in the calculation (1–2 block, 2–2 block, 3–2 block, 4–2 block). The basal blocks (1–1 block, 1–2 block) are used as the horizontal object. The HHT transform is used to obtain the HHT three-dimensional time-frequency diagram including time domain, frequency domain and amplitude (Figure 11). The instantaneous Fourier dominant frequency corresponding to the obtained maximum amplitude is extracted (Figure 10). The instantaneous dominant frequencies of the modelled rock blocks during the earthquake occur below 10 Hz. The main frequency is increasing from the external macro chain two to the internal macro chain 1, and as the elevation increases, the main frequency significantly increases from 1.3 to 8.3 Hz in the internal macro chain 2.
[image: Figure 10]FIGURE 10 | Instantaneous Fourier frequency change graph.
The comparison of the caving time calculated from the HHT main peak and the PFC caving time generally shows a close correspondence for each rock block (Figure 11A), documenting the applicability of the HHT three-dimensional time-frequency diagrams. Some minor variations of blocks 1–1 and 1–2 are related to collision between the rock blocks. In the 25 s seismic wave, the maximum vibration amplitude of the main peak of the bottom rock block 1–1 is 11.5 m/s2, and the maximum vibration amplitude of the main peak of the rock block 4–2 from the top of the slope is 33.2 m/s2 (Figures 11B–F). The data indicate an effect of the elevation on the maximum vibration amplitude of the main peak. The main frequency bands of rock blocks occur between 0 and 160 Hz. The frequency band increases from 0 to 30 Hz to 0–160 Hz from block 1–1 to block 4–2, indicating that also the width of the frequency band is related to the elevation of the block. Each rock mass exhibits high-frequency amplitude fluctuations, ranging from 0 to 12 m/s2. Multiple main peaks mainly occur in the 1–2 block (Figure 11C). The detected five main peaks indicate a large dynamic response of this block.
[image: Figure 11]FIGURE 11 | HHT Time-frequency spectra.
The diagrams indicate that during strong earthquakes, due to the existence of the elevation amplification effect, the dynamic response of the dangerous rock is intensified, the possibility of interaction increases, and the frequency bands of the dangerous rock slope will be widened. At the same time, high-frequency effects also appear, and the signal wave of the bottom rock layer will have multiple main peaks. Based on our new data we recommend that in earthquake disaster protection projects the structural surface cracks between individual rock blocks should be treated with more care to avoid amplitude energy fluctuation caused by the mutual vibration of the rock blocks. In addition, the stability control of the single dangerous rock should be strengthened. For a model with a crack penetration rate of 62.5% on the structural plane the resonance effect of 0–160 Hz should be considered during earthquakes. Especial attention should be paid to the impact of low-frequency (0–10 Hz) and high-frequency (250 Hz) earthquakes on the failure of slopes consting of horizontally layered dangerous rocks.
CONCLUSION
Based on fracture mechanics and material mechanics we have established a novel calculation method for the interlayer load and stability coefficient of horizontal layered dangerous rocks during strong earthquakes. The method can not only reveal the stability attenuation law of horizontally layered rock slopes, but also constrain the timing and the complete evolution of failure of individual rock blocks during earthquakes.
Application of the new method to the case study, a slope of dangerous horizontally layered rocks that is exposed along the Provincial Highway 205 in Sichaun (China), shows that with ongoing duration of the 2008 Wenchuan earthquake the stability coefficients of the individual rock blocks gradually decrease and the dangerous rock blocks already collapse prior to the maximum of the seismic acceleration.
A three-dimensional horizontal layered rock slope model, using PFC3D, was established to simulate the failure of the studied slope. The results of the simulation are basically consistent with the calculated data and document a fall-slip-rotation failure of the slope during the earthquake.
Based on our HHT three-dimensional time-frequency analysis, we recommend to treat structural surface cracks between the rock blocks with more care in earthquake disaster protection projects. Moreover, we propose to pay more attention to the impact of low- (0–10 Hz) and high-frequency (250 Hz) earthquakes on the destruction of slopes of dangerous rocks.
Our current simulations and calculations only consider the effects of longitudinal seismic waves. To simulate earthquake damages more precisely further refinement, implementing transversal waves, is required.
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Previous experiments indicated that infrared radiation temperature (IRT) was applied in monitoring rock stress or rock mass fracturing, and abnormal IRT phenomena preceding rock failure or tectonic earthquakes were frequently reported. However, the characteristics of IRT changing with rock fracturing and frictional sliding are not clear, which leaves much uncertainties of location and pattern identification of stress-produced IRT. In this study, we investigated carefully the localized IRT enhancement of rock compressively sheared to fracturing and sliding (named as CSFS) with marble and granite specimens. Infrared thermogram and visible photos were synchronously observed in the process of rock CSFS experiment. We revealed that localized IRT enhancement was determined by local stress locking, sheared fracturing, and frictional sliding, and the relations between the Kcv of IRT and the shear force are almost linear in wave length 3.7–4.8 μm. In the process of rock CSFS, the detected [image: image] which resulted from thermoelastic effect is 0.418 K, while the detected [image: image] resulted from friction effect reaches up to 10.372 K, which is about 25 times to the former. This study is of potential values for infrared detection of rock mass failure in engineering scale and satellite remote sensing of the seismogenic process in the regional scale.
Keywords: remote sensing rock mechanics (RSRM), infrared radiation temperature, localized IRT enhancement, compressively shearing to fracturing and sliding (CSFS), seismogenic process
HIGHLIGHTS:

1) Localized IRT enhancement of the rock specimen in the process of CSFS is determined by local stress locking, sheared fracturing, and frictional sliding.
2) The Kcv of IRT and shear force displays a linear relationship before and after the rock being compressively sheared to fracturing and frictional sliding.
3) In the process of rock CSFS, the detected IRT enhancement resulted from friction effect exceeded 10 K, being 25 times about that resulted from thermoelastic effect.
INTRODUCTION
Earthquake is one of the most unexpected and most serious natural disasters, which is mainly resulted from the local locking of crustal stress and the sudden fracturing of rock mass or tectonic faults (Liu et al., 2016; Huang et al., 2018). Since Gorny et al. (1988) observed thermal infrared radiation anomalies before some medium-to-strong earthquakes in Central Asia, satellite remote sensing has been applied, or tried to be used in earthquake monitoring and precursor analysis (Saraf et al., 2009; Piroddi et al., 2014; Bhardwaj et al., 2017). Although the geoscience community has devoted decades to study the mechanism of seismicity and to seek for methods to monitoring rock fracturing and seismogenic process (Freund, 2003; Scoville and Freund, 2021), reliable abnormity recognition from remote sensing signals and accurate precursor identification are still challenging problems in the world.
Referring to the pioneering work of Geng et al. (1992) and Wu et al. (2000) in remote sensing rock mechanics (RSRM), the IRT change of stressed rock was investigated by many scholars (Wu et al., 2006a, 2006b; Liu et al., 2006; Liu et al., 2018; 2021; Wang et al., 2016; Salami et al., 2017; Huang et al., 2018; Huang et al., 2021; Zhao et al., 2019; Zhou et al., 2019; Cao et al., 2020; Huang et al., 2021; Yang et al., 2021) and applied to explore the rock fracturing behavior and related abnormal phenomenon. Wu et al. (2006a, 2006b) discovered that strong IRT emerged at the moment of rock bursting, and the anomalies of IRT image could be used as a precursor of rock fracturing. Liu et al. (2006) indicated that the fracturing mode of loaded rock affects IRT variation greatly, and IRT features were related to loading conditions and failure modes. Liu et al. (2018) also studied IRT localized enhancement in the condition of water infiltration in mine tunnels, and revealed thermogram was greatly affected by rock moisture. Wang et al. (2016) discussed specific relationship between IRT and stress, Salami et al. (2017) and Zhao et al. (2019) revealed that IRT is localized enhancement on crack tips, and Yang et al. (2021) used IRT to investigate quantitatively crack initiation, propagation, and coalescence during rock fracturing. Zhou et al. (2019) indicated that the loading rate had some impacts on IR images, and Cao et al. (2020) proposed a quantitative index of energy dissipation with the IRT ratio to analyze and monitor rock failure and instability. Besides, Watson et al. (1975) used IRT images to identify the near-surface physical state of geologic materials, by using a quantitative theoretical model for geothermal mapping and thermal inertia mapping, and Schöpa et al. (2011) utilized IRT images to determine the vent locations by stress field modeling in a Vulcano island, Italy.
Being a universal physical parameter in the process of solid material loaded to fracturing, IRT is usually used for identifying unstable rock slope (Mineo et al., 2015) and geothermal basin (Heasler and Jaworowski, 2018). There are basically two mechanisms of IRT rise: 1) force-induced thermomechanical coupling effect (Harwood et al., 1991) and 2) friction thermal effect (Wu et al., 2004). Freund et al. (2006a, 2006b) discovered that rock positive charge (P-holes) could be activated by stress and stimulate also infrared emission on the rock surface. However, the characteristics and mechanisms of localized IRT enhancement related to rock stress and local fracturing are not carefully studied or clearly interpreted.
In this study, compressively sheared to fracturing and sliding (CSFS) experiments on marble and granite specimens are conducted. IRT-localized enhancements captured by an infrared image are carefully studied both in time and space aspects. The relation between IRT enhancement and shear force is revealed, and the mechanisms of localized IRT enhancement are discussed.
EXPERIMENT METHODOLOGY
Preparation of Rock Specimens
Homogeneous marble and granite are selected to make rock specimens to avoid the anisotropic influence of mineral particles of different compositions and varied sizes. The uniform size of the specimens is 150 mm × 150 mm × 150 mm. The marble and granite specimens are labeled from “MHS-1” to “MHS-7” and “GSD-1” to “GSD-7,” respectively. The marble specimen’s mineral compositions include dolomite (60–65%), tremolite (25–30%), and calcite (5–8%). The granite specimen is an intrusive and egg-white rock with fine grains and a micrographic texture, and contains plagioclase (35–50%), potash feldspar (25–30%), quartz (20–25%), hornblende (3–5%), and biotite (2–5%).
The specimen is of glassy luster from mineral grains such as hornblende, quartz, and biotite, which are capable of inhomogeneous specular reflection. To prevent the uncertain impact of inhomogeneous specular reflection on IRT images, the specimen surface to be IRT imaged was painted evenly with black ink and then doted randomly with white chalk beforehand, which assisted in achieving a homogenous infrared reflection background, enhance the optical visibility, and improved the local identification of shear fracturing (Figure 1A). Validation test shows that the black ink and chalk dots have no negative impact on IRT detection (Figure 1B).
[image: Figure 1]FIGURE 1 | Validation of IRT imaging (A) on rock surface whose four quarters are differently treated (B). (A: thin ink painted and random chalk doted. A’: IRT image of A; B: thin ink painted. B’: IRT image of B; C: heavy ink painted. C’: IRT image of C; D: original. D’: IRT image of D).
Boundary Conditions
The boundary conditions of tested rock specimens are shown in Figure 2. The shearing plane is the place where sheared fracturing and frictional sliding will happen. The active loading boundaries are composed of a normal force boundary at the up side and a shear loading boundary at the upper left side; oppositely, both the down side and lower right side act as passive loading boundaries. With both the upper right side and lower left side remaining free, the shear loading boundary provides horizontal load as shearing force, while the normal force boundary provides vertical load as normal stress.
[image: Figure 2]FIGURE 2 | Rock specimen and its boundary conditions for IRT imaging test in the process of CSFS experiment. (A) Back view of original specimen; (B), front view of sheared specimen).
Laboratory Equipment
The experimental system (Figure 3) comprises a loading system (RLW-3000, China), an infrared imaging system (InfraTec 8,325, Germany), and a CCD camera (Pike F-421, Germany). The setup of the laboratory equipment should be consistent to guarantee the conformity of experiment data of different rock specimens (Ishida et al., 2017). The various components of the whole systems are set as follows:
1) Loading system: The vertical moving of loader along the axial direction is set as force control, and the loading rate is set as 1 kN/s. The horizontal moving of loader along shear direction is controlled by displacements, and the moving rate is set as 0.15 mm/min.
2) Infrared imaging system: The spectral range is 3.7–4.8 μm. The spatial resolution and sampling rate of the infrared monitoring system are set as 640 pixels × 512 pixels and 80 P/s, respectively. The accuracy of IRT measurement is set as ±0.1 K.
3) CCD camera: The spatial resolution and the sampling rate of CCD camera are set as 640 pixels × 512 pixels and 80 P/s, respectively.
[image: Figure 3]FIGURE 3 | Photos of experiment system in UCUST laboratory.
The spectral range of 3–5 μm, named usually as intermediate infrared, is sensitive to be applied detecting the brightness temperature variation of objects with normal to high physical temperature. The detecting spectral range of the infrared imaging system, InfraTec 8,325, is 3.7–4.8 μm, which falls in the range of intermediate infrared, is good for detecting the IR enhancement in the process of rock loaded to fracturing.
Room temperature is controlled at 25°C approximately by an air conditioner, with temperature fluctuation being ±0.5 K. Light-blocking curtains are used to cover the laboratory windows to block sunshine and to prevent solar disturbance from outside in daytime. Furthermore, to reduce the disturbance of environmental radiation from walls and objects in the laboratory, several paper boards are set aside the rock specimen on the back, right, and left, leaving only the front side open to the infrared imaging system, as in Figure 3.
Data Analysis
Three indicators representing the variation of IRT, being AIRT, [image: image], and [image: image] of IRT, are selected for data analysis. AIRT is the average IRT of all the pixels inside a selected area and reflects the global or local energy input of mechanical force and the energy dissipation in the manner of infrared radiation (Wu et al., 2006a; 2006b). [image: image] reflects the absolute discrete degree of IRT inside the selected area of an IR image. [image: image] is a relative value used to represent the discrete level of IRT inside the selected area. The computations of these indicators are as following:
[image: image]
[image: image]
[image: image]
RESULTS
The Process of Rock Fracturing
Normal force and shear force are applied gradually with a preset rate to reach the sheared fracturing and frictional sliding. The process of CSFS of a rock specimen is depicted in Figure 4 with some typical moments in time sequence.
[image: Figure 4]FIGURE 4 | Visible pictures (left) and infrared thermogram (right) of the fracturing process of GSD-1 specimen in the CSFS process. (a) 0s; b) 747.17s; c) 1,106.10s; d) 1819.74s. V and T denote fracturing lines in visible and infrared, respectively, and P denotes fracturing points with localized IRT enhancement).
In the initial state (0s, Figure 4A), the rock specimen displayed homogeneous visible picture and infrared thermogram without structured differentiation; at 747.17s (Figure 4B), the visible picture displayed a small crack (V1), corresponding to T1 differentiation in thermogram; at 1,106.10s (Figure 4C), the visible picture appeared two cracks with V2 developing to be the shearing plane across the specimen and V3 occurred to the left end of the specimen, corresponding to T2 and T3 differentiations in thermogram. Besides, thermogram also exhibited two points (P1) of high IRT to the left end of the shearing plane along T2. At 1819.74s (Figure 4D), the visible picture displayed some fragment ejections (V6) corresponding to two low IRT zones (T6) occurred in thermogram, while several localized IRT enhancement points (P2) occurred notably along T2, which shows the undergoing compressive sliding behavior clearly.
Relationship Between Infrared Radiation Temperature and Shear Force
The relationship between IRT and shear force is beneficial to investigate IRT enhancement in the CSFS process. Accordingly, during the loading process, [image: image] of IRT also exhibits approximate variation as shear force. As in Figure 5 with marble specimen MHS-1 and granite specimen GSD-1 being examples, the mechanical process is divided into three stages, compressively loaded (stage I), compressively shearing loaded (stage II), and frictional sliding process (stage III).
1) Stage I, compressively loaded: the shear force of both marble and granite specimens kept an initial value, and the [image: image] curves of IRT manifest a small fluctuation.
2) Stage II, compressively shearing loaded: [image: image] and shear force increase at an accelerating rate with the constantly moving loader. The shear force curve of MHS-1 is slightly concaved, hinting a plastic deformation happens, while the shear force curve of GSD-1 is almost linear, hinting the elastic deformation happens and the granite is brittle.
3) Stage III, frictional sliding process: the curves of [image: image] and shear force change differently, both manifesting an uncertain variation. However, the curves of MHS-1 are more complex than those of GSD-1, for example, the alternate rising and falling in MHS-1 (Figure 5A), and the up and phase step-up in GSD-1 (Figure 5B).
[image: Figure 5]FIGURE 5 | Variation of shear force Fs and IRT [image: image] with time during CSFS experiments. (a, MHS-1, b, GSD-1; I: compressively loaded; II: compressively shearing loaded; III: frictional sliding process).
Furthermore, the shear force curves also include a transition point of stress change, such as TM of specimen MHS-1 (Figure 5A) and TG of specimen GSD-1 (Figure 5B), where the elastic phase and yield phase can be distinguished. The [image: image] curves manifest monotonic linear rise at the elastic phase, and transform into a complex changing at the yield phase.
Previous studies on the changes of IRT and rock stress had confirmed the linear relations between IRT and uniaxial compressive stress (Wu et al., 2006c; Xu et al., 2015). Here, the distribution of fitting lines and the data points of IRT Kcv and shear force of MHS-1 and GSD-1 are shown in Figure 6. It shows that the relations between IRT Kcv and shear force of MHS-1 and GSD-1 before being sheared to fracturing are similar in a rising trend, while the relations between IRT Kcv and shear force of MHS-1 and GSD-1 after sheared to fracturing are different. The difference should be owing to the mechanical properties of marble with plastic deformation and granite with brittle fracturing. The correlation between IRT and shear force Fs before being sheared to fracturing and after being sheared to fracturing is represented by a regression model [image: image]. The maximum residual modulus during the process before being sheared to fracturing is [image: image], and that during the process after being sheared to fracturing is [image: image]. IRT change and stress variation are highly correlated, and the fitting effect of Kcv and Fs is ideal, which indicates that IRT is closely related with shearing stress.
[image: Figure 6]FIGURE 6 | Change of IRT Kcv with shear force Fs before and after sheared to fracturing. (a, MHS-1; b, GSD-1).
The statistical results of all marble and granite specimens are shown in Table 1.
TABLE 1 | Statistical information of shear force Fs and Kcv.
[image: Table 1]Localized Infrared Radiation Temperature Enhancement
In this study, the IRT enhancement, [image: image], is computed as follows:
[image: image]
where [image: image] represents the zone of lifted shear stress, [image: image] means the value of IRT in zone i, and [image: image] is the global value of IRT in a standard reference zone with shear stress unchanged.
[image: image]
where [image: image] represents the ratio of localized IRT enhancement in zone i.
1) Localized IRT enhancement from thermoelastic effect
As for MHS-1 in period 1,237.91s–1373.04s, the core zone of sheared fracturing increased significantly and experienced shearing stress accumulating, local locking, and delocking in sequence (Figure 7). Zone C is the stress locking region, and zone R is applied as a reference region. The IRT data obtained from the thermogram, as in Figure 7, are statistically shown in Table 2. The maximum IR enhancement occurred in the stress locking state, the value of IR enhancement is [image: image], and the changing ratio [image: image] is up to +0.136%.
2) Localized IRT enhancement from friction sliding
[image: Figure 7]FIGURE 7 | Localized IRT enhancement of MHS-1 with stress change.
TABLE 2 | Statistical information of IRT localized enhancement by thermoelastic effect.
[image: Table 2]Different kinds of stress or fracturing states (Figures 8–10) have different IRT localized enhancement forms (Table 3), for example, the pre-cracking zones on crack tip have a point-like form (X in Figure 8), the shear fracturing zones are in the form of continuous flecks (P1, P2, and P3 in Figure 9), and the sliding friction zones are ribbon-like (P1, P2, P3, P4, and P5 in Figure 10). The maximum IR enhancement appears at the moment of sliding fracturing; when [image: image] is up to 10.372K, [image: image] is 3.441%.
[image: Figure 8]FIGURE 8 | Temperature increase caused by shear concentration. (a. MHS-1; b. GSD-1).
[image: Figure 9]FIGURE 9 | IRT of MHS-4 related with a sliding action.
[image: Figure 10]FIGURE 10 | IRT of GSD-1 related with a sliding action.
TABLE 3 | Statistical information of IRT localized enhancement by friction effect.
[image: Table 3]In Figures 9, 10, the mechanisms of IRT localized enhancements in shearing plane all belong to the friction effect, including frictional heat production (Wu et al., 2004) and emissivity lift (Wu et al., 2018). “L” is the time of local stress focus, and then intergranular dislocation is generated. The mechanism of IRT localized enhancement belongs to frictional heat production; “M” is the time of local stress concentration, and then macroscopic cracks are found. The mechanism of IRT localized enhancement is the friction effect; it includes Td increased by frictional heat production and emissivity lift by surface fracturing and grinding behavior; “R” is the time of stress relaxation status, and local stress focus does not exist. The mechanism of IRT localized enhancement is only emissivity lift.
Therefore, the IRT enhancement mechanism and its proportion are calculated as in Table 3, for example, X1 in Figure 8 and L in Figures 9, 10 only belong to frictional heat production, [image: image] and [image: image]; R in Figures 9, 10 only belong to emissivity lift, [image: image] and [image: image]; M in Figures 9, 10 have two mechanisms, its proportion on each mechanism calculates by Eq. 6, and (7) as follows:
[image: image]
[image: image]
where [image: image] is [image: image] in M status; [image: image] is [image: image] in R status.
DISCUSSION
Infrared Radiation Enhancement in the Process of Compressively Sheared to Fracturing and Sliding
According to infrared detection principles (Rees, 2001), the rock IRT, also called infrared brightness temperature as an index of infrared radiation energy detected by an infrared sensor with particular photoelectric system, is determined by both rock surface emissivity [image: image] and physical temperature [image: image]:
[image: image]
It illustrates that both the variation of emissivity ([image: image]) and the variation of physical temperature ([image: image]) could change the detected IRT of rock specimen as follows:
[image: image]
Accordingly, if [image: image] is less than 0.5 K or could be ignored, [image: image] is to be computed approximately as (Wu et al., 2018) follows:
[image: image]
For example, if IRT = 300 K, [image: image] = 0.93, and [image: image], the [image: image] will be +2.4 K.
Since thermoelastic effect and friction thermal effect are able to cause local rise of [image: image], and the surface fracturing and grinding behavior along shearing plane are able to cause local lift of [image: image]; all will contribute to localized IRT enhancement. There are many possibilities of [image: image] rise related with stress, that is, thermoelastic effect, friction thermal effect, and others such as phase transmission (Figure 11). Localized IRT enhancement will occur in some places if one or more than the above mechanisms get functioning in the process of CSFS. The dynamic change of rock surface IRT could be attributed to eight possible situations of stress that happened here and there: overall deformation increasing [image: image], stress accumulating [image: image], stress locking [image: image], stress relaxation [image: image], pre-cracking zone on crack tip [image: image], shear fracturing zone [image: image], sliding fraction zone [image: image], and others [image: image].
[image: Figure 11]FIGURE 11 | Correlation between IRT changing and deformation or fracturing or stress distributions on rock surface during the CSFS process.
According to Eq. 6, the IR enhancement, [image: image], caused by [image: image] and [image: image] changes during the CSFS experiments, could be expressed as follows:
[image: image]
where [image: image] represents [image: image] change and [image: image] is [image: image] change. I is the compressively loaded phase, II is the compressively shearing loaded phase, and III is the frictional sliding phase.
Significance of the Localized Infrared Radiation Enhancement
Localized IRT enhancement is related to the stress concentration phenomenon in space–time aspects, and the different enhancement mechanisms corresponds to different IR enhancement forms. Thermoelastic effect is often expressed as a regional type of IRT enhancement, for example, elliptic or circular type (C in Figure 7). Friction thermal effect is expressed as a point-like form (X in Figure 8), a continuous fleck form (P1, P2, and P3 in Figure 9), or a ribbon-like form (P1, P2, P3, P4, and P5 in Figure 10) of IRT enhancement. In our research, [image: image] caused by the thermoelastic effect is 0.418K, and [image: image] caused by the friction effect, which is a coupling of frictional heat production and emissivity lift, reaches up to 10.372K.
Generally, an earthquake results from tectonic motion or crustal stress field alteration (Liao et al., 2003; Yohei et al., 2010), and the satellite infrared observation has been proven effective to monitor seismicity and the seismogenous process. The features of IR localized enhancement revealed in this study have at least two aspects relevant to satellite observation on crustal stress field alteration and the seismogenous process: 1) time aspect: [image: image] of IRT represents the stress evolutions, and 2) space aspect: the location of localized IRT enhancement tells the place of stress concentration. Different types of localized IRT enhancement correspond to different stress patterns, which could be identified from IRT monitoring, for instance, the area C of MHS-1 (Figure 7); areas P1, P2, and P3 of marble MHS-4 (Figure 9); and areas P1, P2, P3, P4, and P5 in granite GSD-1 (Figure 10).
Nevertheless, the localized IRT enhancement of a ground target would be affected by multiple environmental factors, such as sunlight reflecting, surface moisture, geoidal heights, viewing angle, and vegetation cover. Further experimental studies for different surface situations are demanded, even including different wavelength of electromagnetic wave for satellite observations. Detecting the infrared radiation anomaly related to earthquakes remains to be conquered due to multiple influencing factors. It is possible to extract the localized IR enhancement caused by crustal stress alteration from satellite observations, but it is especially challenging.
CONCLUSION

1) Localized IRT enhancement of rock specimen in the process of CSFS develops with stress variations, for example, a big bright spot reflects local stress locking, a point-like form and continuous flecks reflect the sheared fracturing, and a ribbon-like form reflects the frictional sliding.
2) The Kcv of IRT and shear force displays a linear relationship before and after the rock being compressively sheared to fracturing. There exists a close correspondence between IRT and stress in wave length 3.7–4.8 μm.
3) Different mechanisms lead to different IRT enhancement ([image: image]) in quantity in the process of rock CSFS. By the thermoelastic effect, [image: image] and [image: image], while by the friction effect, [image: image] and [image: image], which is about 25 times to the former.
This experimental study provides new evidence and physical interpretation for imaging monitoring rock fracturing in the engineering scale and satellite remote sensing crustal stress field alteration in the regional scale with detection of infrared radiation brightness temperature. There are still some difficulties and challenges in the field of crustal stress monitoring by satellite infrared; further investigations are encouraged.
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Geotechnical hazards such as debris flows, rock falls in slopes, rock collapse, and rockburst in underground mining or caverns are tightly correlated to the mechanical behavior of natural rock mass stability. Strength and failure mode of the natural rock mass are governed by the presented fissures. In this paper, samples containing T-shaped fissures with different geometry were prepared by rock-like materials and tested under varying uniaxial cyclic loading compression. The effect of T-shaped fissures with different geometry and the strain rate and loading frequency on the strength of tested samples were studied, and the failure mode of the samples containing T-shaped cross fissures under different working conditions was observed. The results show that the function of the minor fissures was not completely negative, and the strength of T-shaped fissure samples containing a major fissure with different inclination angles presented a varying trend with the increasing included angle between the major and minor fissures. Moreover, the strength of the cracked samples increased with the increase of the strain rate and loading frequency, and the larger the included angles between the major and minor fissures, the more sensitive the T-shaped fissure sample was to the change of frequency, but without a noticeable linear correlation relationship between the strength of the sample and the included angles between the major and minor fissures. In addition, the existence of the minor fissures had a significant impact on the failure mode of the sample, and the failure mode of the samples containing T-shaped cross fissures of the same geometry under the uniaxial compression and the uniaxial cyclic load was equivalent.
Keywords: crack, T-shaped, cyclic load, strength, failure mode
INTRODUCTION
Geotechnical hazards indicate geological or environmental processes, phenomena, and conditions that are potentially dangerous or pose a level of threat to human life, health, and property, or to the environment. Geotechnical hazards such as debris flows, rock falls in slopes, rock collapse, and rockburst in underground mining or caverns are tightly correlated to the mechanical behavior of rock mass stability (e.g., Huang et al., 2020; Huang et al., 2021). A better understanding of the rock mass behavior will greatly reduce damages by geotechnical hazards. It is generally known that most rock masses in nature are composed of rocks containing different types of structural planes (e.g., He et al., 2019a; He et al., 2019b). The location and distribution of the internal fissures of jointed rock mass have an essential effect on the strength, deformation, and failure mode of the rock mass (e.g., Park and Bobet, 2009; Janeiro and Einstein, 2010; Huang D. et al., 2016; Cui et al., 2021). Since the last century, a number of investigations have been done by researchers on the mechanical properties and failure modes of jointed rock mass such as single fissure samples (e.g., Park and Bobet, 2010; Haeri et al., 2014; Liu et al., 2019) and multiple fissures samples (e.g., Wong and Einstein, 2009a; Huang Y.-H. et al., 2016; Wang et al., 2018). Meanwhile, some researchers have prepared rock-like samples by cement mortar or gypsum (e.g., Bobet and Einstein, 1998; Wang et al., 2018), other researchers cut the required fissures on real rock to get closer to the real rock mass (e.g., Ingraffea and Heuze, 1980; Huang et al., 1990; Liu et al., 2019).
The failure modes of gypsum and sandstone samples with prefabricated fissures were investigated (e.g., Bobet and Einstein (1998); Parkt and Bobet, 2010; Wong and Chau, 1998). Secondary cracks at the tip of the prefabricated fissure were observed by both of them. Wong and Chau. (1998) found that secondary cracks can be divided into quasi-coplanar secondary cracks and oblique secondary cracks. Petit and Barquins. (1998) and Haeri et al. (2014) investigated the failure modes of rock samples with a single fissure, and some basic laws on the initiation and propagation of prefabricated cracks were concluded. The following conclusion was obtained by Lajtai (e.g., Lajtai 1969; Lajtai 1974) based on the investigation on the failure mode of cracked rock mass under uniaxial compression: two types of cracks occurred in fractured rock mass under uniaxial compression, i.e., wing cracks caused by tension and secondary cracks brought out by shear. Wing cracks caused by tension were generated at the tip of the preformed fissure and extended to the direction of compressive stress rapidly after initiation. Secondary cracks generated by shear also initiated at the tip of the preformed fissure, the propagation direction of quasi-coplanar secondary cracks and oblique secondary cracks was opposite to that of the preformed fissure and wing crack, respectively. Braceet Bombolakis, (1963) and Hoek Bieniawski, (1965) conducted unconfined compression and biaxial compression tests on flat glass samples containing a single fissure, and the Griffith fracture mechanics theory was applied to explain the mechanism of crack initiation and propagation in single fissure samples.
In the natural world, there exists more than one fissure in the real jointed rock mass. Bobet and Einstein (1998) investigated the failure modes of samples containing two fissures under different confining pressures. The failure mode of the cracked sample is mainly affected by the confining pressure and geometric characteristics of two fissures inside the sample, and the generated location of the wing crack moves from the end of the prefabricated fissure to the middle of the prefabricated fissure as the confining pressure increases. The cracking characteristics of shear crack under different confining pressures were investigated by Bobet (2000), the result showed that the shear crack generated under high confining pressure could not cause destruction to the sample. Moreover, the effects of fissure geometry and materials on the cracking process of specimens were investigated, and nine crack coalescence categories with different crack types and trajectories were identified (e.g., Sagong and Bobet, 2002; Wong and Einstein, 2009a; Wong and Einstein, 2009b). It was found that although both tensile wing cracks and anti-wing cracks initiated at the tip of the prefabricated fissures, the propagation direction was opposite. Unconfined and biaxial compression tests on samples containing multiple fissures were conducted by Lin et al. (2000), the results showed that the failure mode and peak strength of the cracked sample were diverse due to the variation of the number and length of prefabricated fissures and the length of rock bridge and the size of lateral pressure, respectively. A comparative study on samples containing two and three fissures under uniaxial compression has been carried out by Tang et al. (2001). The comparison indicated that the cracking behavior of samples containing three fissures was analogous to that of samples with two fissures. Furthermore, the investigation on the failure mode of samples owning two and sixteen fissures (Sagong and Bobet 2002) showed that the failure mode of the sample containing multiple fissures was analogous to that of samples with two fissures under the same loading conditions, which further confirmed the conclusions of Lin et al. (2000).
Most joints and fissures with different lengths in the natural world are intersected with each other, whereas existing studies on this aspect remain rare. In this paper, T-shaped cracked samples containing different geometric fissures were prepared. The purpose of this work was to explore the effect of strain rate, loading frequency, and geometric characteristics of T-shaped fissures on the strength and failure mode of the samples, which can be applied as a guide in practical application of rock engineering.
TEST MATERIALS AND TEST METHODS
Test Equipment
The test equipment used was the WDT-1500 Rock Test System (He et al., 2019; He et al., 2018) with a load capacity of 1,500 kN and frequency capacity of 10 Hz (see Figure 1). The test machine consists of five parts: an axial loading system, confining pressure loading system, transverse shearing system, acoustic wave detection system, and computer control and measurement system. The molds used in the test are shown in Figure 2.
[image: Figure 1]FIGURE 1 | WDT-1500 testing machine.
[image: Figure 2]FIGURE 2 | Molds used in the test.
Sample Preparation
Uniaxial compressive tests (UCS) were carried out by Wang et al. (2018) to investigate the influence of prefabricated cracks with different geometric characteristic (various dip angles, lengths, widths, and numbers) on the mechanical properties and deformation failure modes of low-strength rock samples. The results showed that the mechanical properties of the cracked samples were primarily affected by the fissure dip angle, fissure number, and fissure length. The failure modes mainly involved the fissure dip angle and the fissure number. The dip angle of the prefabricated fissure was a key factor affecting the mechanical properties and failure mode of the samples under the same loading condition (Wang et al., 2018). In order to facilitate the analysis of the influence of the crossed cracks with different lengths and various inclination angles on the mechanical properties and failure mode of the samples, T-shaped was taken as the referent geometry, and the fissure geometry of the tested rock-like material sample is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Schematic diagram of the crack samples produced by the test.
The crack geometry of the prefabricated fissures is described as follows: in order to distinguish the two fissures in the T-shaped cracked samples, the longer one was defined as the major fissure and the shorter one as the minor fissure, and the thickness of the major and minor fissures were taken at a constant of 0.3 mm. The fissure width of the single fissure samples with the inclination angle of 0°, 45°, and 90° to the horizontal was 20 mm. For the T-shaped cracked samples, the width of the major fissure was 20 mm, and the inclination angles to the horizontal was 0°, 45°, and 90°, respectively. The width of the minor fissure was 10 mm, and the included angles between the major and minor fissures were 30°, 60°, and 90°, respectively. Moreover, the prefabricated fissures were located in the middle of the specimens to minimize the influences of end friction on the tested sample.
In this paper, due to the homogeneity and the similar mechanical properties to natural rock, cement mortar material was chosen to prepare samples containing different geometrical fissures (e.g., Wasantha et al., 2012; Zhuang et al., 2014). It is easier to prefabricate open fissures in rock-like materials compared with natural rock. The mechanical behavior of the cement mortar material has been tested: its Poisson’s ratio is 0.27 and its deformation modulus is about 11.8 GPa.
The procedure for the fabricating the cracked samples is as follows:
1) We fabricated the cracked samples by compounding C32.5 cement, fine sand (the fineness modulus μf of sand is 1.8, and the particle size is less than 0.315 mm), and water at a mass ratio of 1.0:2.0:0.45 by weight.
2) Before pouring the mixed material, the mold was oiled and a copper sheet was added to facilitate the demoulding of the sample and the formation of the preformed fissures. It is easy to create open fissures by inserting a copper sheet with a thickness of 0.3 mm, certain rigidity, and stable property into the groove of the mold before pouring in the mixed materials, and pulling them out before complete solidification.
3) After being thoroughly blended, the homogeneous materials were poured into the fabricated mold (Figure 2). The mold was released after 24 h; hardened samples were placed in a curing box (20°C, humidity 90%) for 28 days, and then taken out to dry naturally. According to the method proposed by the International Society for Rock Mechanics, all kinds of cracked samples are cylinders with a diameter of 50 mm and a height of 100 mm.
4) Finally, both the two ends of the cracked samples were polished smoothly using a rock-grinding machine. The T-shaped cracked samples were named by two angles, one was the dip angle of the major fissure, the other was the included angle between the major and minor fissures. For example, a T-shaped fissure sample of 0°–90° means that the dip angle of the major fissure is 0° and the included angle between the major and minor fissures is 90°.
Test Methods
Two types of loading tests were conducted on each type of cracked sample, including uniaxial monotonic compression tests and multi-level single cyclic loading tests with different strain rates and frequency. The uniaxial monotonic compression tests adopted the loading mode of displacement control with a constant rate of 0.5 mm/min until the cracked samples were damaged. For the multi-level single cyclic loading tests (see Figure 4), at the beginning, the cracked samples were loaded to the upper limit of an initial cycle displacement of 0.2 mm, which was similar to the uniaxial monotonic compression tests, then the multi-level single cyclic loading tests were conducted. The loading waveform was the cosine waveform which has already been found to have a stronger dynamic effect than the triangle waveform (Bagde and Petros, 2005). Moreover, during the test, the lower limit of displacement was prescribed at 0.05 mm, and the upper limit of displacement was increased by 0.05 mm in each cycle which was greater than the former one until the test samples failed. Last but not least, to investigate the effect of strain rate on the strength and failure mode of the cracked samples, both the loading and unloading velocity of the platform were transferred by 0.05, 0.2, 0.5, and 1.0 mm/min (corresponding strain rate varied from 0.5*10–3 min−1 to 10–2 min−1) for applying cyclic loads. For the effect of loading frequency, cyclic loading was performed with the given frequencies of 0.05, 0.25, and 0.5 Hz separately (the corresponding cycle periods were 20, 4, and 2 s), because the period of each cycle at the same loading frequency was equal. This meant that the loading rate of the latter cycle was greater than that of the previous one by combining with the stress path of the cycle loading. As the loading frequency heightened, the corresponding loading rate of the latter cycle heightened. The specific experimental scheme can be presented in Table 1.
[image: Figure 4]FIGURE 4 | Schematic diagram of cyclic loading.
TABLE 1 | Testing parameters of rock-like material specimens containing fissures of different geometric forms.
[image: Table 1]In order to distinguish the strength of the cracked samples under different working conditions, the strength under uniaxial monotonic compression was defined as static strength, and the strength under multi-level single cyclic loading tests was defined as dynamic strength.
ANALYSIS OF TEST RESULTS
In order to ensure the accuracy of the test results, three parallel tests were carried out on the cracked samples of the same type under the same experimental condition, and the test results were required to meet the following two criteria:
1) Under the same experimental conditions, the failure mode of the same type of the cracked sample is basically identical.
2) The stress-strain curve of the sample is similar, and the peak strength deviation is within 10%.
Besides, at least two samples can satisfy the criteria simultaneously, if necessary, additional test samples can be used for repeatability testing.
Strength Characteristics
Strength Characteristics Under Uniaxial Compression
In this experiment, for a single fissure, the angle between the major and minor fissures was 0°, i.e., the minor fissure coincided with the major fissure, hence, the included angels between the major and minor fissures were 0°, 30°, 60°, and 90°, respectively. Figures 5, 6 show that the existence of fissures reduces the sample strength. The strength of the cracked samples was equivalent to 41.3–91.2% of the intact sample when the single fissure dip angle increased from 0° to 90°. The strength of the cracked samples increased with the increase of crack dip angles. This conclusion is consistent with the investigation by Qin et al. (2018) on the strength of rock-like samples containing a single fissure with different inclination angles.
[image: Figure 5]FIGURE 5 | Stress-strain curve of intact samples under uniaxial compression.
[image: Figure 6]FIGURE 6 | Single fissure samples with different inclination angles.
From Figures 7B,C, at the major fissure dip angle of 45° and 90°, the existence of the minor fissures further reduced the strength of samples. Due to the increase of internal defects and the enhancement of fissure structure effect inside the samples caused by the minor fissures, the bearing capacity of the sample was mitigated (Wang et al., 2018). Moreover, with the increase of the included angle between the major and minor fissures, the strength of T-shaped fissure samples firstly decreased and then increased. However, the existence of the minor fissures enhanced the strength of the samples at the major fissure dip angle of 0° (see Figure 7A). Because the major fissure dip angle of 0° perpendicular to the direction of axial stress controls the failure of the sample (see Figures 12E–G) and destroys the integrity of the sample, the increase in strength of the cracked samples stems from the existence of the minor fissures which shares the stress field borne by the major fissure.
[image: Figure 7]FIGURE 7 | Relationship between the strength of all T-shaped cracked samples and the included angle between major and minor fissures. (A) T-shaped cracked sample containing the major fissure inclination angle of 0°, (B) T-shaped crack sample containing the major fissure inclination angle of 45°, (C) T-shaped crack sample containing the major fissure inclination angle of 90°.
From the above analysis, the existence of the minor fissures was soundly associated to the peak strength of the cracked sample, and the function of the minor fissures was not completely negative. Moreover, the strength of T-shaped fissure samples containing major fissures with different inclination angles had varying responses to the increasing included angle between the major and minor fissures.
Strength Characteristics Under Different Strain Rates
Figure 8 shows the effect of the strain rate on the strength of different types of cracked samples under cyclic loading. From Figure 8A, for the single fissure samples, when the strain rate increased from 0.05 mm/min to 1.00 mm/min, the 0° single fissure sample had the smallest strength increment of 2.18 MPa and the 90° single fissure sample corresponded to the largest strength increment of 8.52 MPa. Nevertheless, the strength increment of the cracked samples changed due to the existence of the minor fissure. In Figure 8B, for the major fissure inclination angle of 0°, the included angle between the major and minor fissures of 90° corresponded to the largest strength increment of 6.56 MPa. From Figures 8C,D, with the increase of the strain rate, the existence of the minor fissure had little influence on the strength increment at the major fissure inclination angle of 45°, for the major fissure inclination angle of 90°, the minor fissures reduced the strength increment of the cracked samples compared with the 90° single fissure sample. For the strain rate at the stage of 0.05 mm/min to 0.2 mm/min, the strength increment of 0°–30° and 45°–30° T-shaped cracked samples was larger, the strength increment subsequently tended to be stable with the continuous increase of the strain rate, indicating that the two samples were more sensitive to the strain rate at the stage 0.05 mm/min to 0.2 mm/min. This might be induced by the larger concentrated stress at the tip of the prefabricated fissures due to the smaller angle between the major and minor fissures. The effect of the concentrated stress was weakened with the increase of strain rate.
[image: Figure 8]FIGURE 8 | The relationship between the strength of cracked samples and strain rate. (A) Single crack samples with different inclination angles, (B) T-shaped crack samples containing the major fissure inclination angle of 0°, (C) T-shaped crack samples containing the major fissure inclination angle of 45°, (D) T-shaped crack samples containing the major fissure inclination angle of 90°.
From Figure 9, the ratio of dynamic strength to static strength increased with the increase of the strain rate. It is noted that the ratio of dynamic strength to static strength means the strength deterioration of the rock, depicting the mechanical characteristic of the rock with the dynamic load. Figure 9A shows that when the strain rate of cyclic loading was 0.05 mm/min, the dynamic strength of some samples was lower than its static strength, i.e., σs/σc < 1 (σs is the peak strength of the sample under cyclic loading, σc is the peak strength of the sample under uniaxial monotonic compression), such as the 45° single fissure samples. From Figures 9C,D, for the T-shaped fissure samples of 45°–30° and 90°–60°, although the existence of the minor fissures made their dynamic strength lower than their static strength at the strain rate of 0.05 mm/min, the growth rate of their dynamic strength was the largest and increased by 26.2 and 16.8% when the strain Figure 9A rate reached 1 mm/min, respectively. For the major fissure inclination angle of 0° (see Figure 9B), the existence of the minor fissures made their dynamic strength lower than their static strength at the strain rate of 0.05 mm/min. This is mainly due to the fact that the micro-cracks inside the sample have sufficient time for initiation and propagation when the strain rate is smaller and the damage of the sample is larger (Luo and Zhao, 2018). From the above analysis, the existence of the fissures with different geometries affected the strength Figure 9C increment of samples. The dynamic strength of the sample was sensitive to the change of the included angle between major and minor fissures without a noticeable linear correlation relationship.
[image: Figure 9]FIGURE 9 | The relationship between the ratio of dynamic strength to static strength and the strain rate, (A) Single crack samples with different inclination angles, (B) T-shaped crack samples containing the major fissure inclination angle of 0°, (C) T-shaped crack samples containing the major fissure inclination angle of 45°, (D) T-shaped crack samples containing the major fissure inclination angle of 90°.
Strength Characteristics Under Different Frequencies
Figure 10 shows the effect of the frequency on the strength of samples with different geometrical fissures under cyclic loading. From Figure 10A, as the loading frequency increased, the existence of the single fissure with varying inclination inside the sample reduced the strength increment of the samples, especially for the 45° single fissure sample, the strength only increased by 3.45 MPa when the loading frequency increased from 0.05 to 0.5 Hz. For the T-shaped fissure samples, the existence of the minor fissures changed the response characteristics of the sample to frequency. As shown in Figures 10C,D, at the major fissure inclination angles of 0° and 90°, when the loading frequency increased from 0.05 to 0.5 Hz, the strength increment of the T-shaped fissure samples of 0°–90° and 90°–90° was the largest and increased by 6.1 and 11.93 MPa, respectively. This indicates that the two samples were more sensitive to the change of frequency due to the existence of the 90° minor fissure. For the major fissure inclination angle of 45° (see Figure 10C), as the loading frequency increased, the existence of the minor fissures enhanced the dynamic strength increment of samples compared with the 45° single crack sample. Thus it can be concluded that the dynamic strength of T-shaped crack samples containing a major fissure of 45° are more sensitive to cyclic loading compared with a 45° single fissure sample. From the above analysis, it is concluded that the dynamic strength of the T-shaped crack samples exhibits high frequency dependence. In addition, at the same stage of frequency ranging from 0.05 to 0.5 Hz, due to the existence of the fissures with different geometries inside the sample, with the increase of the frequency, different types of the cracked samples have different micro-crack densities, and the bite force between the particles and friction force on the shear surface are also varied, which lead to the different degrees of damage evolution in different types of the cracked samples (e.g., Li et al., 2001; Li et al., 2003). Therefore, the dynamic strength of samples depicts distinct characteristic with varying minor fissures.
[image: Figure 10]FIGURE 10 | The relationship between strength of cracked samples and frequency. (A) Single crack samples with different inclination angles, (B) T-shaped crack samples containing the major fissure inclination angle of 0°, (C) T-shaped crack samples containing the major fissure inclination angle of 45°, (D) T-shaped crack samples containing the major fissure inclination angle of 90°.
The relationship between the ratio of dynamic strength to static strength and the loading frequencies is shown in Figure 11. With the increase of the frequency, the ratio of the dynamic and static strength of the samples raised. At the lower loading frequency of 0.05 Hz, the dynamic strength of all cracked samples were lower than their static strength, except for the T-shaped fissure samples of 0°–90° and 45°–90° (see Figures 11B,C). Because of the working condition of lower frequency and the cycle period is longer than the hysteresis time (e.g., Chen et al., 2004; Wan and Xi. 2009), the strain has sufficient reaction time. When the loading frequency reached 0.5 Hz, the dynamic strength growth ratio of the 0° single fissure sample was the largest and increased by 22.4% compared to its static strength (Figure 11A). For the T-shaped fissure samples with the major fissure of 0°, the growth rate of the dynamic strength was the largest when the angle between the major and minor fissures was 90° and increased by 26.6% compared to its static strength (Figure 11B). For the T-shaped fissure sample containing the major fissure of 90° (see Figure 11D), the growth rate of the dynamic strength was the largest when the included angle between the major and minor fissures was 60°, and its dynamic strength was increased by 18.2% compared to its static strength. From the above analysis, although the strength of the T-shaped crack sample increased as the frequency increased, it was found that the larger the included angles between the major and minor fissures, the more sensitive the T-shaped fissure sample was to the change of frequency. Therefore, rock masses containing larger included angles between the major and minor fissures under dynamic loading conditions should be paid more attention to.
[image: Figure 11]FIGURE 11 | The relationship between the ratio of dynamic strength to static strength and the frequency, (A) single crack samples with different inclination, (B) T-shaped crack samples containing a primary crack inclination angle of 0°, (C) T-shaped crack samples containing a primary crack inclination angle of 45°, (D) T-shaped crack samples containing a primary crack inclination angle of 90°.
Failure Mode
Since the prefabricated cracks in this paper were penetration-type cracks, the cracking modes on both sides of the sample were basically the same, and the failure mode on one-side of the samples was selected for analysis.
Figure 12 shows the failure mode of the intact sample. As shown in Figure 12, the tensile failure surface that formed by the upward and downward propagation of the tensile crack was generated in the middle of the sample. The crack extended to the upper part of the sample and propagated to the direction inclined to the compressive stress due to the hoop effect. When the direction of compressive stress was perpendicular or parallel to the pre-existing fissure, the tensile failure occurred, such as in the 0° single crack sample (Figure 13A) and 90° single crack sample (Figure 13B). Otherwise, shear-slip failure occurred, such as in the 45° single crack sample (Figure 13C). The failure of the 0° single fissure sample was mainly caused by the tension wing cracks generated at the left and right tip of the pre-existing fissure. The tension wing cracks expanded upward and downward to the top and bottom boundary of the test sample, respectively, showing significant tensile failure.
[image: Figure 12]FIGURE 12 | Failure mode of the cracked samples for intact sample.
[image: Figure 13]FIGURE 13 | Failure mode of the cracked samples for (A) 0° single fissure sample, (B) 45° fissure crack sample, (C) 90° single fissure sample.
When the single fissure angle was 45°, firstly, a shear wing crack and tensile wing crack were initiated at the upper and lower tips of the pre-existing fissure and expanded upward and downward to the top and bottom boundary of the test sample, respectively. But then the shear wing crack stopped propagating after extending about 12 mm and turned into a tensile crack expanding to the sample boundary quickly. Finally, the samples slipped along the prefabricated crack surface when the axial compressive stress increased to the limit and exhibited the failure of tensile-shear composite. When the single fissure dip angle equaled 90°, in the initial stage, tensile cracks were initiated at the upper and lower tips of the pre-existing fissure, subsequently, the cracks gradually expanded upward and downward in the axial direction, respectively, and the sample was split into two vertical parts. The overall result was tensile failure, supplemented by shear failure in the lower part of the sample, and the samples failed as soon as the tensile cracks appeared.
Comparing Figure 13A and Figures 14A–C, the fracture modes of the T-shaped crack sample containing 0° major fissure were similar to that of the 0° single fissure sample: the propagation of the tension wing cracks were generated at one tip of the 0° major fissure, and all of them exhibited tensile failure. From Figure 14C, it can be seen that the failure mode of the T-shaped fissure sample of 0°–30° was rather special, coalescence occurred due to the propagation of the tensile crack initiating from the tip of the 0° major fissure toward the tip of the 30° minor fissure. This further confirms the result of Lee and Jeon (2011) who found that coalescence occurs mainly through tensile cracks. And tensile failure surface running through the sample usually appears on the side of the sample that the minor fissure lies in, however, due to the heterogeneity of rock-like materials, tensile failure surface running through the sample usually appears on one side of T-shaped fissure sample of 0°–90°. From the above analysis, at the dip angle of major fissure of 0°, the failure mode was controlled by the major fissure. With the increase of the included angle between the major and minor fissures, the effect of the minor fissure on the failure mode was gradually weakened.
[image: Figure 14]FIGURE 14 | Failure mode of the cracked samples for (A) T-shaped cracked sample of 0°–30°, (B) T-shaped cracked sample of 0°–60°, (C) T-shaped cracked sample of 0°–90°.
[image: Figure 15]FIGURE 15 | Failure mode of the cracked samples for (A) T-shaped cracked sample of 45°–30°, (B) T-shaped cracked sample of 45°–60°, (C) T-shaped cracked sample of 45°–90°.
When the major fissure dip angle was equal to 45° (see Figures 14A–C), the cracks slipped along the surface of the pre-existing fissure, which was mainly because of the small difference of the sample fissure inclination and internal friction under this condition. For the T-shaped fissure sample of 45°–90°, a tensile wing crack initiated at the minor fissure and a shear wing crack generated at the upper tip of the major fissure occurred simultaneously. However, the expansion speed of the crack at the tip of the major fissure was significantly faster than that at the tip of the minor fissure as the compressive stress increased. In addition, for the T-shaped fissure sample of 45°–60°, no crack sprouted at the end of the minor fissure. The existence of minor fissures with included angles of 60° and 90° to the major fissure had little effect on the fracture mode of samples. The failure mode of the two types of T-shaped fissure samples were similar to that of the 45° single fissure sample.
In Figure 14A, the existence of a 30° minor fissure had a significant effect on the failure mode of the sample. A tensile wing crack initiated at the minor fissure expanding upward to the top boundary of the sample, and the failure mode of the upper half of the sample was similar to that of the 90° single fissure sample. The tensile-shear composite crack and tensile crack that initiated at the upper and lower end of the major fissure expanded downward to the bottom boundary of the sample. The overall result was tensile failure, but locally shear failure occurred. At the dip angle of the major fissure of 45°, with the increase of the included angle between the major and minor fissures, the evolution of the failure mode of samples gradually changed from tensile failure to shear-slip failure.
Figures 16A–C show the failure mode of T-shaped fissure samples containing a 90° major fissure. For the T-shaped fissure samples of 90°–30° and 90°–60°, tensile wing cracks at the tip of pre-existing fissure propagated to the top and bottom of the sample, resulting in the destruction of the sample. At the initial stage, a shear wing crack was generated at the tip of the 30° and 60° minor fissures and propagated a short distance of about 2–3 mm, subsequently. Lee and Jeon (2011) studied the crack propagation on granite specimens under uniaxial compression, their results indicated that tensile cracks initiate from shear cracks, which is in good agreement with the findings in this paper.
[image: Figure 16]FIGURE 16 | Failure mode of the cracked samples for (A) T-shaped cracked sample of 90°–30°, (B) T-shaped cracked sample of 90°–60°, (C) T-shaped cracked sample of 90°–90°.
From Figure 16C, the failure mode of the T-shaped fissure sample of 90°–90° was similar to that of the 0° single fissure sample. Although the length of the major fissure was twice that of the minor fissure, no cracks sprouted at the upper and lower tip of the major fissure. During the process of loading, tensile wing cracks that generated at the tip of the minor fissure expanded upward and downward to the top and the bottom boundary of the sample respectively, showing the failure of tensile significantly. Briefly speaking, at the dip angle of the major fissure of 90°, with the increase of the included angle between the major and minor fissures, the evolution of the failure mode of samples gradually changed from tensile failure to supplemented shear failure, and the effect of the minor fissure on the failure mode was gradually strengthened.
From Figures 12–16, some features of crack initiation and failure modes in pre-fissured samples can be summarized as follows. According to the classification of crack types (e.g., Sagong and Bobet, 2002; Wong and Einstein, 2009a; Wong and Einstein, 2009b), three cracks types are concluded in the present study, i.e., tensile wing crack, shear wing cracks, and anti-wing crack. Wing crack initiate at the tips of the pre-existing fissure and propagate towards the direction of compressive stress in a stable manner (e.g., Park and Bobet 2010; Cao et al., 2015), and tensile wing cracks initiate from shear cracks (Lee and Jeon 2011). Furthermore, the propagation direction of anti-wing cracks is opposite to that of wing cracks (Yang and Jing 2011). For the failure mode of the T-shaped fissure samples, for the inclined or horizontal major fissures, with the decrease of the included angle between the major and minor fissures, the effect of the minor fissure was gradually strengthened. But there was a special case, at the dip angle of the major fissure of 90° which was parallel to the direction of compressive stress, the effect of the minor fissure was strengthened with the increase of the included angle between the major and minor fissures, and the failure of the sample was controlled directly by the minor fissure at the included angle between the major and minor fissures of 90°. At last, by observing the failure mode of the fissure sample of the same type under different experimental conditions, it was found that the failure mode of the samples with the same fissure geometry was very similar. Due to the change of the test conditions and heterogeneity effect of the rock-like materials, there were some minor differences among them with the same fissure geometry, i.e., the failure mode of the samples containing prefabricated fissures under uniaxial monotonic compression and equivalent multi-level single cyclic loading.
CONCLUSION
In this paper, uniaxial monotonic compression tests and multi-level single cyclic loading tests with different strain rate and frequency were carried out for samples containing cracks with different geometry. The test results indicate that the existence of the minor fissures exerted apparent effects on the strength. The existence of the minor fissures also had an impact on the failure mode of the cracked samples significantly, even in some cracked samples, where the minor fissure controlled the failure of the samples.
The existence of the minor fissures was soundly associated with the peak strength of the cracked sample, and the function of the minor fissures was not negative overall. For the T-shaped fissure samples containing the major fissure inclination angle of 0°, the strength of the samples increased with the increase of the included angle between the major and minor fissures. At the major fissure inclination angle of 45° and 90°, with the increase of the angle between the major and minor fissures, the strength of T-shaped crack samples decreased first and then increased.
The strength of the cracked samples increased with the increase of the strain rate and loading frequency. Under cycle loading with different strain rates, the dynamic strength of the sample was sensitive to the included angle between major and minor fissures, but without a noticeable linear correlation relationship. Under cycle loading with different loading frequencies, if the angles between the major and minor fissures were larger, the strength of the T-shaped crack sample was more sensitive to the change of frequency.
The failure mode of the samples containing cracks of the same geometry under the uniaxial compression and the uniaxial cyclic load was equivalent. For the inclined or horizontal major fissure, the minor fissure had a significant effect on the failure mode of the sample, and the effect was strengthened with the decrease of the angle between the major and minor fissures. At the major fissure inclination angle of 90°, the effect of the minor fissures on the failure mode of the sample was strengthened with the increase of the angle between the major and minor fissures.
Finally, in order to deeply understand the characteristics of T-shaped cracked samples, strength of the samples with different fissure geometry at the same strain amplitude under multi-level single cyclic loading with different strain rate and frequency, and some other mechanical properties of the fissure samples will be investigated in the subsequent work.
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Rockfall geologic hazards are widely distributed. Due to their concealed nature, rockfalls are difficult to investigate using traditional contact survey methods, and the hazards they pose affect major projects and people’s safety. Reproducing methods, including scene survey and movement process analysis, are primary tasks used to prevent these hazards; however, few reconstruction methods can directly apply the parameters of the rockfall geologic hazards obtained by the scene survey to evaluate the movement process. To address this problem, a method of reproduction based on oblique photography and three-dimensional discontinuous deformation analysis (3D-DDA) is proposed; the method consists of three key techniques (oblique photography, 3D rock block system modeling, and 3D rock block system analysis). First, geometric characteristic parameters of the terrain, rockfall, and discontinuities are extracted based on oblique photography using an unmanned aerial vehicle (UAV). Second, the block system model of rockfall is reconstructed by using 3D computational geometry theory and taking these geometric characteristic parameters as an input. Finally, the whole evolution process of rockfall geologic hazard, including initiation, movement, and accumulation, is simulated by the 3D-DDA method. To verify the practicability of this reproduction method, a typical rockfall geologic hazard, located in the K8 + 050 section of the Gaohai expressway, Yunnan, China, is studied. In addition, the characteristics of 19 dangerous rock masses in the survey area are clarified, and the geometric features of the discontinuities in the rock masses are extracted based on oblique photography using an UAV. The block system model of a potential rockfall is reconstructed, the movement trajectory is simulated by the 3D-DDA method, and the evolution process of velocity and kinetic energy of the rockfall verifies that the spatial layout of the current three-level passive protective nets system is reasonable. The case study indicates that the proposed method provides a geological and mechanical model for the risk assessment of rockfall geologic hazards.
Keywords: rockfall geologic hazard, reproduction method, oblique photography, modeling technology, dda
INTRODUCTION
After complex geological processes, geological discontinuities with different sizes and properties, such as faults, joints, and fissures, are widely distributed in rock masses. These deterministic or random discontinuities cut the rock masses into rock blocks with different shapes, sizes, and compositions. Under the action of environmental factors (earthquakes, precipitation, and inter alia) and engineering-induced disturbance (excavation, blasting, etc.), these rock blocks readily induce geological hazards such as rockfalls (Finlay et al., 1997; Keefer, 2002; Zhang et al., 2012; Wang et al., 2014; Fu et al., 2020; Yang et al., 2020). At present, rockfall geologic hazards are widely distributed, seriously affecting major projects such as hydropower, transportation, and mining, and endangering people’s property safety (Sättele et al., 2016). Their prevention has become a major demand on ensuring the project safety and economic development.
The reconstruction method of modeling of rockfall geologic hazards is the primary task in their prevention, and scene survey and movement process analyses are two important aspects of reconstruction. In terms of the scene survey, rockfall geologic hazards are often distributed in poor natural conditions, such as at high, hard-to-reach positions, under concealment from other surface materials, and in inclement environmental conditions, which leads to the limited use of traditional survey methods with contact and single-point characteristics. In recent years, many noncontact measurement technologies, such as oblique photography using unmanned aerial vehicle (UAV), interferometric synthetic aperture radar (InSAR), and laser Doppler velocimetry (LDV), have developed rapidly. Fruneau et al. (1996)first proved that DInSAR can be used to monitor the deformations associated with small-scale landslides. Then many scholars successively investigated the applications of DInSAR in landslide monitoring to good effect (Wasowski and Bovenga, 2014; Costantini et al., 2017; Fan et al., 2017; Vecchioli, 2017). Mutar and Biswajeet (2018) proposed a comprehensive method of evaluation of rockfall disasters based on UAV and high-resolution laser scanning data. Du et al. (2020) proposed a dangerous rock mass identification method based on LDV, which can distinguish dangerous rock from a stable rock mass through two indices of natural vibration frequency and vibration amplitude. Considering the characteristics of different measurement technologies, Xu et al. (2019) integrated a multisource space–air–ground observation system, including InSAR, LIDAR, and UAV, and slope surface observations. Many case studies prove that noncontact measurement techniques play an important role in determining the characteristic parameters of rock falls, and the efficiency and accuracy of identification of hazards have been improved.
Various simulation models or techniques have been proposed to analyze movement processes of the rockfall geologic hazards since the 1960s (Dorren, 2003; Volkwein et al., 2011). Based on these simulation models or techniques, some practical programs, such as STONE (Guzzetti et al., 2002), HY-STONE (Crosta and Agliardi, 2004), Rockyfor3-D (Dorren et al., 2004), and RAMMS: Rockfall (Christen et al., 2007), have been developed. Many commercial software packages have also been applied to the rockfall simulation, for example, Rocfall software based on an interactional model between the rockfall and the slope surface (Alejano et al., 2007; Ahmad et al., 2013; Yan et al., 2020), discrete element method software (PFC, UDEC, and 3DEC) based on the discontinuous medium theory (Lin et al., 2012; Thoeni et al., 2014; Jiang et al., 2015; Gao and Meguid, 2018; Wu et al., 2018; Liu et al., 2020; Liu et al., 2021; Zheng et al., 2021). In addition, some rock block analysis methods, such as the key block theory (Goodman and Shi, 1985; Fu et al., 2019a) and discontinuous deformation analysis (DDA) (Shi, 1988; Wu et al., 2013; Fu et al., 2017a; Peng et al., 2018), have also developed rapidly. Ohnishi et al. (1996) first applied two-dimensional DDA (2D-DDA) to assess the rockfall movement. Chen (2003) and Ma et al. (2011) also conducted numerical simulations of typical cases of rockfall geologic hazards using 2D-DDA; because 2D-DDA is limited to simulation of lateral movements and impacts, which are closely related to the 3D shape of both the rock block and slope surface, the three-dimensional discontinuous deformation analysis (3D-DDA) theory proposed by Shi (2001) can overcome these limitations. Using the 3D-DDA codes developed by Shi (2001), much research into the movement and underlying mechanisms of rockfall geologic hazards has been carried out (Yang et al., 2004; Chen et al., 2013; Zheng et al., 2014; Wang et al., 2017; Liu et al., 2019). These results show that the 3D-DDA method can simulate not only the free falling, sliding, rolling, and rebound of rockfall, but also the spatial effect of the interaction between a rockfall and the slope surface.
Scholars have carried out much research into two important aspects of reconstruction of rockfall geologic hazards; however, few methods of reconstruction can directly apply the parameters of the rockfall geologic hazards obtained by a scene survey to assess the movement process (Lan et al., 2010), which restricts the development of prevention techniques against such hazards. To address this problem, a method of reproduction based on oblique photography and 3D-DDA is demonstrated. In this article, A Brief of the Reproduction Method presents a brief of the reproduction method; Background of a Rockfall Geologic Hazard Case introduces a case of rockfall geologic hazard; in Basic Data Extracted Using Oblique Photography, 3D Rock Block System Modeling, and Movement Process Analysis of the Rockfall Geologic Hazard, three key techniques used in the reproduction method, including oblique photography, 3D rock block system modeling, and 3D rock block system analysis, are described and verified by the way of a case study.
A BRIEF OF THE REPRODUCTION METHOD
To combine the measurement data with the movement process analysis, a method of reproduction of rockfall geologic hazard based on oblique photography and 3D-DDA is proposed; this method mainly includes the following steps:
a) UAV is used to take photographs of the hazard scene from multiple perspectives, the panoramic high-precision 3D model is constructed based on oblique photography, and geometric characteristic parameters of the terrain, rockfall, and discontinuities are extracted.
b) The 3D surface triangular grid of hazard scene is reconstructed through surface contouring of the terrain, and then the sliding bed block model is established using the 3D surface triangular grid.
c) For a single rockfall, the geometric surfaces that comprise the rock block are regarded as polygonal surfaces surrounded by a series of vertices. These polygonal surfaces form the rockfall block.
d) For the block system of the rock collapse, taking the triangular grid of geometric contours of rock collapse as the boundary constraint, the geometric characteristic parameters of random discontinuities are used to generate a 3D random joint network, and a 3D block-cutting algorithm is used to construct the block system.
e) These different types of rock blocks adopt the same topological description and are integrated into a 3D rock block system that can be used for the computational analysis.
f) The physico-mechanical parameters of different types of rock blocks, and the calculation parameters required for the 3D-DDA method are input.
g) The movement process of a rockfall geologic hazard is divided into multiple real-time steps. In each time step, the 3D-DDA method is used to simulate various movement modes of rockfall, including the sliding, rolling, collision, bouncing, and free movement in the air.
h) The rock block system simulation results in each real-time step are combined to reproduce the rockfall geologic hazard scene.
Using the proposed method, the evolution of a rockfall geologic hazard can be reproduced. This method of reproduction consists of three key techniques, including oblique photography in step (a), 3D rock block system modeling in steps (b)–(e) and 3D rock block system analysis in steps (f)–(h). The three techniques will now be described and applied to a case study involving a rockfall event.
BACKGROUND OF A ROCKFALL GEOLOGIC HAZARD CASE
As shown in Figure 1A, the study area is located at chainage K8 + 050 on the Gaohai expressway in Yunnan Province, China (longitude 102°38′57″and latitude 24°56′00″). The rockfall geologic hazard is distributed along Dianchi Lake at the northwest edge of the Dianchi fault basin and is classified as a collapse accumulation landform.
[image: Figure 1]FIGURE 1 | (A) Location of the study area. (B) Typical rockfall geologic hazard location and photographs of the rockfall used as a case study.
The site is composed of Palaeozoic strata, gently sloping in the east and steeping in the west; a high, linear fault cliff is apparent on the west side. The highest point is the peak of Xishan, with an altitude of 2,511 m, and the lowest point is the water surface of Dianchi Lake, at an altitude of 1886 m. The lower part of the slope is gentle with a gradient of 40°–50° and is covered with residual diluvial and colluvial silty clay and rubble. The middle and upper parts of the slope are steep with a gradient of 70°–90°, the rock mass is mainly dolomite of the Weining formation (c2w) of the Middle Carboniferous system and is broken due to the development of many joints groups.
Since the opening of the Gaohai expressway in December 2006, the slope has collapsed and fallen many times due to seismic events and intense rainfall. For example, on September 8, 2016, the natural slope collapsed, and the collapsed rock mass rolled down the hillside, washing away the passive protective nets and isolation fence of the expressway, hitting the road pavement and blocking the traffic (Figure 1B). Therefore, due to the steep terrain and the development of rock mass joints, triggered by rainfall, earthquakes, and other factors, there is the possibility of a recurrence of such rockfall events, which may pose significant potential hazards to the expressway at the foot of the slope and the passing pedestrians or vehicles, and the tasks investigating and evaluating such rockfall geologic hazards are very important.
BASIC DATA EXTRACTED USING OBLIQUE PHOTOGRAPHY
Panoramic High-Precision 3D Model
To establish a panoramic, high-precision, 3D model, the basic data pertaining to rockfall geologic hazards must be obtained by a UAV equipped with a high-definition camera. Through the field investigation of the rockfall geologic hazard, the flight altitude, camera exposure interval, flight speed, aerial landing, and other parameters are determined. After planning the flight route, ultralow altitude flights are undertaken, and the high-resolution photographs of the overall terrain and local rockfall from different vertical and oblique angles are obtained.
Then, the high-resolution photos are imported into professional post-processing software, such as Smart3D software. Through a series of operations, for example, aerial triangulation, geometric processing, multiview matching, triangulation, and automatic texturing, the panoramic high-precision 3D model can be established. Figure 2 shows the process of construction of the 3D model using oblique photography data. As illustrated in Figure 3, the panoramic high-precision 3D model of the rockfall case is established; the rockfall case can be divided into three districts (A, B, and C). The corresponding highway lengths within these districts are 320, 180, and 220 m, respectively. The rock masses in each district exhibit different structural characteristics due to different geologic processes or engineering activities therein.
[image: Figure 2]FIGURE 2 | (A) Point cloud generation. (B) Spatial white model building. (C) Triangulation. (D) Automatic texturing. Construction of the 3D model using oblique photography data.
[image: Figure 3]FIGURE 3 | Panoramic high-precision 3D model of the rockfall used as a case study.
Extraction of Structural Features of Rock Masses
In the panoramic high-precision 3D model, the spatial point coordinate parameters (X, Y, and Z-coordinates) of any position can be obtained by the use of post-processing software. Not only can the control points of terrain contours but also the vertices that enclose the outline of the rockfall can be extracted. In addition, for the discontinuities in rock mass, by measuring the point coordinate parameters, the occurrence of each structural plane can be calculated. A structural plane can be expressed by the dip angle α, dip direction β, and the three-dimensional coordinates of a point in the plane (xj, yj, and zj), and the equation of the plane can be written as follows:
[image: image]
where sin α sin β, sin α cos β, and cos α is the unit normal vector of the plane and D represents the location of the plane as determined from (xj, yj, and zj). The coordinates of three different points on each structural plane are measured and substituted into Eq. 1: the unknowns, including the dip angle, dip direction, and D, can be obtained by solving the resulting equations. Conducting the statistical analysis on all measured discontinuities, the dip angle, the dip direction, and development density of each group of joints can be obtained. Table 1 displays statistics pertaining to results from the joint groups, there are six groups of joints (J1–J6) in District A, three groups of joints (J7–J9) in District B, and four groups of joints (J10–J13) in District C. Photographs of typical joints groups in each district are given in Figure 4.
TABLE 1 | Statistics pertaining to joint groups and dangerous rock masses in different districts.
[image: Table 1][image: Figure 4]FIGURE 4 | (A) Joint group J4 in District A. (B) Joint groups from J7 to J9 in District B. (C) Joint group J12 in photographs of typical joint groups in different districts.
Distribution of the Dangerous Rock Masses
According to the statistical results of joints groups in Districts A, B, and C, the inverted and near-vertical structural plane are relatively well-developed, which may cut the rock into many independent blocks. According to the formation conditions leading to rock collapse in the Code for Highway Engineering Geological Investigation of China (2011), if there are two groups of joints (X-shaped joints) oblique to the slope trend in the rock mass, a wedge inclined to the slope toe is easy to form, and the rockfall geologic hazards are prone to be induced. The rock masses in Districts A, B, and C meet the conditions for the development of rockfall geologic hazards.
The panoramic high-precision 3D model is used to identify the dangerous rock masses in the survey area, and the characteristic parameters such as block size and spatial distribution of each dangerous rock mass are obtained. As shown in Table 1, there are four dangerous rock masses (1#–4#) in District A, three dangerous rock masses (5#–7#) in District B, and 12 dangerous rock masses (8#–19#) in District C. The spatial distributions of these dangerous rock masses are marked in Figure 3. Most of these dangerous rock masses are irregular massive and columnar, and a few are massive. In terms of altitude distribution, there are three dangerous rock masses at 1950–2000 m, nine at 2000–2,100 m, and seven above 2,100 m. Among the 19 dangerous rock masses in the survey area, there are no large collapses (i.e., those with a volume >5,000 m3), 12 medium collapses (500 < volume ≤5,000 m3), and seven small collapses (volume ≤500 m3). There are four medium-sized collapses in District A, three in District B, and four small collapses and eight medium-sized collapses in District C.
3D ROCK BLOCK SYSTEM MODELING
Topological Representation of a Rock Block
The block system of a rockfall geologic hazard is composed of many blocks, including the sliding bed block and many independent rockfall blocks. To integrate these different types of rock blocks for movement process analysis, a reasonable data structure accurately describing a rock block is necessary. In the present work, each rock block is assumed to meet the characteristics of simply connected regions, the basic data structure of a rock block is defined as oriented body→oriented face→oriented edge→vertex (Figure 5A). Wherein, vertex is the basic geometric element, and it is expressed by the three-dimensional coordinate; oriented edge is defined as two vertices associated with an edge and the orientation of the edge; oriented face consists of an ordered and closed set of oriented edges, where each oriented face is a polygonal loop with a specified orientation; each oriented body consists of a closed set of oriented faces, and the orientation of each oriented face should point to the outside of the oriented body. In this definition, it is no longer necessary to distinguish between convex and concave polyhedra.
[image: Figure 5]FIGURE 5 | (A) Basic data structure. (B) Typical example of a labeled rock block topological representation of a rock block.
In Figure 5B, the oriented body can be defined with six oriented faces, including Face 1 (loop adhea), Face 2 (loop baefb), Face 3 (loop cbfgc), Face 4 (loop dcghd), Face 5 (loop hgfeh), and Face 6 (loop abcda); according to the right hand rule, each face contains four oriented edges, for example, Face 1 contains ad, dh, he, and ea; all oriented edges consist of eight vertices (a–h).
3D Sliding Bed Block Model
The establishment of a 3D sliding bed block model includes the following two steps: surface triangular grid reconstruction and sliding bed block modeling (Figure 6).
[image: Figure 6]FIGURE 6 | Implementation of the sliding bed rock block model.
In the process of surface triangular grid reconstruction, all the control points of terrain contour, measured by oblique photography, are used to form the surface triangular grids, and the implementation process is as follows:
a) All control points of terrain contour are placed in a point set.
b) Three control points from the point set are read to form a point pair. If all point pairs are used, go to Step (f).
c) The point pair is used to form a triangular grid, and its circumscribed circle radius and center are calculated.
d) Whether the other control points of the point set are within the circle is judged. If they are outside the circle, the triangular grid is a part describing the surface, otherwise go to Step (b).
e) The point pair is stored as a triangular grid and return to Step (b).
f) End.
In the process of sliding bed block modeling, by projecting 3D surface triangular grids into the plane of the X–Y coordinate system, the analysis range of rockfall geologic hazard is calculated, and the bottom elevation of the sliding bed block model is also determined by reducing a certain elevation of the minimum value in the Z-direction of the 3D surface triangular grids. The sliding bed block is regarded as an approximate hexahedron. Following the topological representation described of a rock block in Topological Representation of a Rock Block, five oriented faces of the hexahedron, including the bottom, front, back, left, and right oriented faces, can be generated using the boundary control points and the bottom elevation. The top oriented face, that is, the ground surface can be regarded as a collection of triangular oriented faces, and each triangular oriented face is a 3D surface triangular grid. The 3D sliding bed block model of the rockfall taken as a case study can be established using the surface digital elevation model obtained by oblique photography technology (Figure 7A), and top oriented face of the sliding bed block model is composed of 79,743 surface triangular grids (Figure 7B).
[image: Figure 7]FIGURE 7 | (A) Surface digital elevation model (B) 3D surface triangular grids sliding bed rock block model.
Block System Model of the Dangerous Rock Masses
The modeling of dangerous rock masses includes the following two types: the modeling of a single block of the rockfall, for which the modeling is relatively simple. Following the topological representation of rock block described in the Topological Representation of a Rock Block, the geometric surfaces that make up the rockfall are regarded as oriented faces surrounded by a series of vertices, and these oriented faces form a rock block (Figure 8). The sliding bed block model is a local part of the panoramic, high-precision 3D model, and the rockfall block is quasi-cuboidal with a volume of 115.47 m3.
[image: Figure 8]FIGURE 8 | A rockfall block model.
The second type is the modeling of block system of the rock collapse, and the implementation flow mainly has two steps: in the first step, the statistical data pertaining to joint groups obtained by oblique photography are input, and effective random structural planes within the range of the rock collapse are reproduced using a 3D joint network generation algorithm. In the second step, geometric boundaries of the rock collapse, deterministic discontinuities, and random structural planes are input and the rock block system model is formed using a block-cutting algorithm. The 3D joint network generation algorithm and the block-cutting algorithm are detailed by Fu et al. (2019b). Figure 9A shows the reproduced random structural planes of a rock collapse in District C of the rockfall case, and Figure 9B illustrates the corresponding rock block system model, wherein there are 638 blocks, and the total volume of the rock that collapsed is 3,840 m3.
[image: Figure 9]FIGURE 9 | (A) Reproduced random structural planes. (B) Rock block system model rock block system model of a rock collapse.
MOVEMENT PROCESS ANALYSIS OF THE ROCKFALL GEOLOGIC HAZARD
A Brief of the 3D-DDA Method
Conducting the techniques in the 3D Rock Block System Modeling, the 3D rock block system model is formed, and then the movement process of rockfall geologic hazard can be analyzed using the 3D-DDA method. In the DDA method, each discrete deformable block is a basic unit. To represent the displacement of block-i in the 3D plane with the first-order approximation, twelve mechanical variables with a clear physical meaning are chosen, which are as follows:
[image: image]
where (u0, v0, and w0) is the block centroid for the rigid body translation; (rx, ry, and rz) is the rotation angle around the block centroid; (εx, εy, and εz) is the normal strain of the block deformation and (γyz, γzx, and γxy) is the shear strain of the block deformation.
In DDA, the Newmark integration method is used, and the discontinuous displacement of the block system is simulated with real-time steps. The displacement of any point (x, y, z) of block i in the current time step is expressed as follows:
[image: image]
where 
[image: image]
is the shape function matrix and (x0, y0, and z0) is the centroid of block i. Thus, the large displacements are the accumulation of the small displacements of steps, and {ΔDi} is the displacement solution of the block in one time-step.
During the DDA calculation, it is necessary to set the physical and mechanical parameters of each rock block, including rock density, Young’s modulus, and Poisson’s ratio, as well as the strength parameters of each contact face. Since DDA is solved with real-time steps, the calculation parameters (Fu et al., 2017b), e.g., calculation steps, interval of time step, dynamic coefficient, maximum ratio of step displacement, and spring stiffness, need to be input. Individual blocks are connected and form the block system by the boundary conditions, such as the contacts, the displacement constraint, and the load boundary. Assuming there are n blocks in the defined block system, with the principle of minimum potential energy, the total equilibrium equations are written as follows:
[image: image]
where [Kjl] is a stiffness sub-matrix with a 12 × 12 order; and {Fj} is a load sub-vector with a 12 × 1 order; j, l = 1,2,…,n.
After the total equilibrium equations are solved by satisfying their convergences, two other convergences, including the convergence of open–close iterations for all contacts and the convergence of the maximum displacement for static computations (Shi, 2009), should be checked. If all the convergences are satisfied, the stress and displacement fields can be obtained.
Analysis of the Movement Process of a Typical Rockfall
The panoramic, high-precision 3D model of the rockfall case shows that the slope surface is not only relatively concentrated within the block system of rock collapse, but also sporadically distributed across more independent rockfalls. Field investigation indicates that, in history, many rockfalls moved along the slope surface after losing stability, finally falling into Dianchi Lake next to the Gaohai expressway (Figure 10A).
[image: Figure 10]FIGURE 10 | (A) Rockfalls around Dianchi Lake. (B) A dangerous rock mass in District C field investigation of the rockfall used as a case study.
To reproduce the typical movement process of rockfall (Figure 10B), a dangerous rock mass in District C is selected for simulation. Using the proposed modeling method based on oblique photography, a 3D model of the selected dangerous rock mass is reconstructed (Figure 11A), and the volume of each rock block is 4 m3. The 3D-DDA method is used to simulate the movement process of the rock block. The physico-mechanical parameters of the rock and contact face are listed in Table 2. In terms of calculation parameters setting, interval of time step is 0.0025 s, and the maximum ratio of the step displacement is 0.001. Figure 11 demonstrates the simulation results at different times, and the moving processes of the rock block, including initiation, along the slope (friction, rolling, collision, and bouncing), and free movement in the air, are presented. After leaving the slope, the rock block falls into the expressway area and hits the pavement, finally entering Dianchi Lake. The simulation results are basically consistent with the field survey data.
[image: Figure 11]FIGURE 11 | (A) 0 s. (B) 8.66 s. (C) 10.58 s. (D) 13.48 s. (E) 15.40 s. (F) 17.33 s. Simulated results of the movement process of the rockfall at different times.
TABLE 2 | Physico-mechanical parameters of the rock and contact face.
[image: Table 2]Figure 12 illustrates the movement trajectory of the rock block, showing obvious 3D spatial effects, suggesting that the trajectory is affected by the terrain. In fact, in the formation of a rockfall geologic hazard, there is not only vertical movement in the Z-direction, but lateral movement in the X–Y plane perpendicular to the elevation. This phenomenon is difficult to reproduce in 2d simulations, but is critical to design of the layout of protective structures.
[image: Figure 12]FIGURE 12 | Movement trajectory of the rock block.
Figure 13 demonstrates simulated velocity in the Z-direction and the kinetic energy of the rock block. The overall trend of the kinetic energy is increasing, but there are many falls, which is caused by collisions between the rock block and the sloping surface. The temporal variation of the velocity in the Z-direction shows that, before each collision, the velocity vector of the rock block points downslope; when a collision occurs, the velocity of the rock block suddenly changes to upslope, reducing the kinetic energy; after the collision, the rock block moves freely in the air, the velocity recovers its downward direction along the slope, and the kinetic energy also increases. When the rock block reaches the expressway, the velocity in the Z-direction is about 10 m/s and the kinetic energy is about 7,000 kJ (posing a very serious hazard).
[image: Figure 13]FIGURE 13 | Temporal variation of velocity in the Z-direction and kinetic energy of the rock block.
To prevent such high-energy rockfall geologic hazards, the combined protective structures based on the idea of cascade energy dissipation should be adopted (Peila et al., 1998; Tran et al., 2013). As shown in Figures 10A,B, a three-level passive protective net system has been arranged on site. When reaching the 1#, 2#, and 3# passive protective nets, the kinetic energy of the rock block is 437, 1,150, and 5,672 kJ, respectively, the first passive protective net is arranged at the stage when the kinetic energy begins to increase, and the second passive protective net is sited beyond the original point of collision (i.e., where the kinetic energy temporarily decreases). These two passive protective nets can help to prevent rockfall geologic hazards arising before the kinetic energy of the rock block has reached too high a level. The third net is arranged near the expressway, as a last resort; therefore, the relationship between the location of the combined protective structures and the evolution of kinetic energy of the rock block proves that the spatial layout of the three-level passive protective net system is reasonable.
CONCLUSION
To prevent rockfall geologic hazards, a practical method of their reproduction is crucial. Scene survey and movement process analyses are two key steps therein; however, at present, they are difficult to integrate with engineering design protocols, which means that the parameters pertinent to such rockfall geologic hazards obtained by a scene survey cannot be used to elucidate the movement process directly. In the present work, a method of reproduction based on oblique photography and 3D-DDA is presented to address the existing shortcomings, and three key techniques invoked in the proposed method of reproduction are described. A typical rockfall case, located at chainage K8 + 050 on the Gaohai expressway, Yunnan Province, China, is employed to test the practicability of the method. The main conclusions are as follows:
a) The proposed method of reproduction is implemented using the UAV and 3D-DDA and includes three key techniques: oblique photography, 3D rock block system modeling, and 3D rock block system analysis. When applying this method, using UAV, geometric characteristic parameters of the terrain, rockfall, and discontinuities are first extracted using oblique photography. Then, the block system model of rockfall is established through reconstructing the sliding bed block and block system of the dangerous rock masses. Last, the interaction behaviors between rock blocks, including friction, rolling, collisions, and bouncing, are calculated by invoking the 3D-DDA method, and the evolution of rockfall geologic hazard, including initiation, movement, and accumulation, is simulated.
b) Based on oblique photography by UAV, the panoramic, high-precision 3D model of a typical rockfall event is built: the parameters relating to the occurrence of rock mass discontinuities in different districts are extracted, and the distribution of dangerous rock masses is studied. The movement trajectory of a representative rockfall is simulated by the 3D-DDA method, and the simulation results are consistent with field investigation data. The case study shows that the proposed method has many advantages, such as advanced technology, complete theory, and simple operation; it integrates the data arising from measurement, modeling, and calculation to reproduce the evolution of rockfall geologic hazards, providing a geomechanical model for the risk assessment of rockfall geologic hazards.
c) Compared with the 2d simulation method, the 3D-DDA method can better reproduce the spatial effects of rockfall movement as affected by the local terrain. The analysis of the evolution of the velocity and kinetic energy in the case study indicates that the kinetic energy tends to increase; however, due to collisions between the rockfall and the slope surface, the velocity vector suddenly changes from pointing downslope to upslope, and the kinetic energy shows several sudden drops; when the rockfall reaches the road surface, its kinetic energy is about 7,000 kJ.
d) The rationality of a three-level passive protective net system is assessed by analyzing the relationship between the spatial layout of the combined protective structures and the evolution of the kinetic energy of the rockfall. The first two nets prevent the development of a more serious geologic hazard (acting before the kinetic energy of the rockfall can become excessive). The third net is arranged near the highway and is the last resort in rockfall geologic hazard prevention. The current three-level passive protective net system satisfies the idea of cascade energy dissipation, and the spatial layout thereof is deemed reasonable.
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Considering the deep foundation pit of a car dumper room close to the Beijing–Baotou railway, the countermeasures of the foundation pit design are analyzed according to the surrounding environment and stratum conditions. Through Midas GTS software as well as field measured results, the construction effect on the adjacent railway subgrade is discussed. Therefore, the deformation characteristics of the foundation pit as well as the retaining structure, including the railway subgrade, caused by the excavation process, are revealed. The results show that the five-sided water-stop structure formed by cement piles around and at the bottom of the pit avoids the consolidation settlement of the adjacent railway subgrade caused by deep dewatering and also reduces the lateral displacement (i.e., in a horizontal direction) and the heave of the pit bottom. As a result, the lateral displacement near the railway side is larger than that of the retaining structure on the other side due to the subgrade on the pit side. The cross-lot bracing across the foundation pit will transfer the bias pressure of the subgrade to the retaining structure far away from the railway, while the transfer effect of the knee bracing is not obvious. The deformation of the railway subgrade and its evolution rate caused by the removal of internal bracing is significantly greater than the subgrade deformation and the change rate of deformation caused by excavation. The research results provide useful guidance for the deep foundation pit design.
Keywords: railway subgrade, numerical analysis, deformation, retaining structure, foundation pit
INTRODUCTION
With the increased development of urbanization construction, there are increasing foundation pit projects near the existing structures in recent years (Seong et al., 2011; Zhang et al., 2018; Li et al., 2020). Due to complicated environmental factors, including external applied force (Guo et al., 2019; Rashidi and Shahir, 2019), soil microstructure, and temperature application due to external environments (Bai, 2013; Bai et al., 2019a), the building environment around the deep foundation pit causes soil disturbance (Li et al., 2019; Pathirana et al., 2019). However, the ability of roads to resist differential settlement is limited. Once the deformation of buildings adjacent to the foundation pit exceeds the limit value, differential settlement occurs. In serious cases, distortion deformation occurs, resulting in the destruction of the buildings close to the deep foundation pit (Wang et al., 2016). Meanwhile, the existing railway subgrade and dynamic load on the stratum near the foundation pit result in an asymmetric load on the retaining structure on both sides, leading to an obvious increase in the applied stresses and corresponding deformation and settlement of the retaining structure (Ying et al., 2011).
Many tests have been carried out given the influencing factors of foundation pit construction on the adjacent railway subgrade, including the dynamic impact on the existing lines (Luo and Lei, 2010; Li et al., 2011), the influence of building overload on the deformation of the retaining structure (Bai et al., 2021a), the response of the retaining structure due to train dynamic load (Zhang et al., 2012), and the tests on soil temperature and seepage (Bai et al., 2017; Bai and Shi, 2017). Shi and Yang (2011) analyzed the deformation characteristics and internal stress evolution of the foundation pit adjacent to the railway under complicated pressure by field measurements. Shen et al. (2014) accomplished many orthogonal tests on the influencing factors of the foundation pit support near the previous line and suggested that the excavation process near the deep foundation pit should be carried out under the condition of isolating groundwater. Lin et al. (2010) studied the stress state and deformation behavior of the excavation and also the retaining structure of foundation pits under eccentric loads from different angles. Xu et al. (2013) and Xu et al. (2014) carried out similar problems and also discussed the corresponding design measures. Huo et al. (2011) and Huo and Zhou (2014) proposed the calculation method of earth pressure between retaining walls of pits and analyzed the displacement responses of the retaining structure in the renowned pit of the Shanghai Natural History Museum, combined with engineering measurements.
Numerical calculation is an effective means to analyze the influence of complicated foundation pit excavation on the engineering environment (Nogueira et al., 2011; Li et al., 2015; Szepesházi et al., 2016). Based on the classical elastic–plastic theory, many scholars (Bai et al., 2014; Houston, 2019) have elaborated the hydraulic characteristics of soil layers and also coupled thermo–hydro–mechanical responses (Bai, 2006; Bai and Su, 2012). These discussions even covered the influence of the irreversible compression process during the changes in the water content on mechanical responses. Zhou et al. (2010) utilized the 3-D finite-difference calculation through a field pumping test and inversion permeability parameters to consider the environmental hazards of the foundation pit dewatering process on the existing subgrade. Fang et al. (2017) discussed the influence of four factors, namely, the foundation pit dewatering scheme, pit bottom reinforcement, retaining structure insertion ratio, and spacing between the different foundation pit and subgrade toe, on the deformation of an existing high-speed railway foundation by the finite element method, considering that there is a critical value related to the insertion ratio on the retaining structure. Gao (2018) inquired into the influence of deep foundation pit construction on the settlement of an existing high-speed railway subgrade and then analyzed the deformation law of a high-speed railway subgrade under each construction step. Recently, increasing attention has been given to the establishment of the constitutive relationship of soil under the coupled action of hot water and force based on thermodynamic theory (Bai et al., 2018; Bai et al., 2019b; Bai et al., 2020). Wang et al. (2018a) and Wang et al. (2018b) investigated the effects of water level and loading cycle on the accumulative settlement by laboratory tests and a full-scale testing model for the construction of high-speed railways, which is very meaningful for the assessment of permanent deformation.
The current research results have not yet put forward reasonable safety measures for special construction conditions, which cannot guide engineering practice. Although many research results have been obtained, there are still uncertainties. Few researchers carried out systematic studies on the deformation evolution process and safety evaluation of deep foundation pit construction on the existing railway subgrade under special engineering geological conditions.
In view of the foundation pit of a car dumper room close to the Beijing–Baotou railway, this study analyzes the countermeasures of the foundation pit design according to the surrounding environment and stratigraphic conditions. For this, the research analyzes the influence of excavation and retaining processes on the deformation and safety of adjacent railway subgrades through LIZHENG 6.5 software (Beijing Lizheng software Co., Ltd., Beijing, China) and MIDAS GTS software (MIDAS Information Technology Co., Ltd., Beijing, China). According to the field measurement results, the deformation responses of the railway subgrade and the foundation pit in the process of excavation are analyzed. Finally, some suggestions are made for the design and construction, which provides valuable experience and reference for foundation pit engineering under similar conditions.
ENGINEERING BACKGROUND
The foundation pit of the car dumper room is 60.2 m in length along the east direction to the west direction (parallel to the railway; Figure 1) and 25.1 m in width from north direction to south direction, with a large excavation depth (i.e., 15.5–18.5 m). The foundation pit of the tubular belt conveyor tunnel on the east side connected to the car dumper room is 76.1 m in length and 11.4 m in width, respectively, with an excavation depth of 5.8–15.5 m. Thus, the excavation area of the deep foundation pit is approximately 2363.7 m2 with a perimeter of 320 m, which belongs to a complex large foundation pit.
[image: Figure 1]FIGURE 1 | Surrounding environment of the foundation pit.
The north-side retaining structure of the excavation foundation pit is adjacent to Weisi Road, and the south-side retaining structure is adjacent to the Beijing–Baotou railway. The excavation sideline is approximately 16–18.18 m from the mainline of the Beijing–Baotou heavy-duty freight railway, approximately 40 m away from the mainline of the Beijing–Baotou passenger dedicated line and approximately 19.3 m from Weisi Road. The Beijing–Baotou heavy-duty freight railway, the main railway line to the northwestern region of China, is a Class I double-track electrified railway, and its designed speed can reach 160 km/h. On the other hand, the Beijing–Baotou passenger dedicated line has a higher designed speed of 200 km/h in the Hohhot–Baotou section.
The west-side retaining structure of the foundation pit close to an office building under construction is approximately 2.5 m from the excavation edge, with a cast-in-place pile foundation. The east side is an open space. The railway subgrade is approximately 2.0 m higher than that of the excavation surface. Table 1 provides the detailed physical/mechanical parameters of the soil layers.
TABLE 1 | Physical and mechanical characteristics of the soil layers.
[image: Table 1]The burial depth of the groundwater level is approximately 2.6–4.6 m, mainly in the fine sand layer of the unit (layer 5-1). The groundwater table is recharged by atmospheric precipitation and the Yellow River and has a close hydraulic connection with the Yellow River 1.5 km away. The permeability coefficient is 7.2 m/d, and the radius of influence is 90 m.
DESIGN OF RETAINING AND PROTECTION STRUCTURE
The surrounding environment and construction condition of the deep foundation pit is relatively severe from an engineering point of view (Figure 1). For this, the deformation values of the retaining structure and the settlement values of the railway subgrade with 18 m is required to strictly control within the design range. The safety control target of the foundation pit includes the deformation limit of the adopted retaining structure (Huang et al., 2020a; Huang et al., 2021), ground surface settlement, subgrade settlement, track smoothness, groundwater seepage (Zhang et al., 2016; Huier and Shoude, 2020; Bai et al., 2021b), foundation pit or side slope safety (Yang and Bai, 2019; Huang et al., 2020b; Bian et al., 2021), etc.
Difficulties and Countermeasures
In view of the engineering geological conditions and the foundation pit feature, as well as the surrounding environment (Figure 1), the key problem to the success/failure of the foundation pit design is to control the subgrade deformation/settlement of the adjacent Beijing–Baotou railway. To strictly restrict the deformation and settlement of the adjacent railway, it is of importance to control the change of groundwater due to the excavation of the foundation pit, as well as the deformation values of the retaining structure.
The groundwater level of the site is shallow from the Earth’s surface. The stratum within the excavation extent of the foundation pit is mainly a five-unit fine sand layer in depth, which has a relatively large permeability coefficient and radius of influence of dewatering. If the groundwater table is reduced from 2.6 to 19.0 m (0.5 m below the deepest foundation base) by dewatering, additional settlement will occur on the railway subgrade adjacent to the foundation pit due to the increase in effective stress in the stratum. The settlement of the subgrade will be approximately 78 mm. Sand streaking and leakage on each side of the installed retaining structure as well as the pit bottom will increase the deformation and even endanger the safety of the installed retaining structure. Therefore, the groundwater control of foundation pits is the key problem to the success/failure of foundation pit design projects.
After comprehensive consideration, groundwater control adopts the scheme of a surrounding vertical water resistance barrier plus full reinforcement at the pit bottom (forming a five-sided water-stop structure) and a small number of pressure relief wells in the pit. The water resistance barrier formed by 30-m long three-axis mixed piles is constructed near the excavated foundation pit, and the pile end enters the 5-2a silty clay layer as a relatively waterproof layer. A reinforced water resistance barrier of double-row three-axis mixing piles is set near the railway side to reduce the possibility of leakage from the sidewall of the foundation pit close to the railway. Because the thickness of the 5-2a layer of silty clay varies within the excavation area and is missing in some sections, the foundation base is fully reinforced with 5 m thick triaxial mixing piles, which form a five-sided water-stop the structure with the water resistance barrier on the side of the pit. The water resistance barrier extends the groundwater seepage path, thereby controlling the groundwater drawdown within the railway area and the settlement of the subgrade caused by precipitation. A kind of high pressure jet grouting technology is utilized to solidify the soil layer between the soldier piles, controlling the settlement of the soil layer between all the piles, and strengthen the blockage of groundwater at the sidewalls of the foundation pit. There are seven pressure relief wells in the pit, and the well depth is controlled at 2 m approximately above the top interface of layer 5-2a. The pressure relief reduces the pressure of the groundwater in the enclosed space formed between the bottom and the side water resistance barrier and the 5-2a silty clay, which effectively controls the heave of the pit bottom and reduces the impact of dewatering in the pit on the side subgrade.
The deformation and settlement of the retaining structure as well as the heave of the pit bottom are the key points of the deep deformation safety control of the foundation pit. Excessive deformation or settlement will aggravate the settlement of adjacent railway subgrades (Figure 2). To effectively restrict the deformation or settlement of the retaining structure, a comprehensive retaining and protection system of a soldier pile wall plus three-layer cross-lot bracing with reinforced concrete plus water resistance barrier plus foundation reinforcement is comprehensively adopted at the soil layers of the deep foundation pit bottom. For the design of the foundation pit, the importance level of pit excavation is taken as class I, the railway load is taken as 80 kPa, and the highway load is taken as 25 kPa. The pile diameter of the car dumper room section is set to 1.2 m, the pile spacing is set to 1.5 m, and the pile length is set to 31 m. According to the different excavation depths of the conveyor tunnel section, the pile diameters are 0.9, 1, and 1.2 m, corresponding to the pile spacing 1.2, 1.3, 1.5 m, and the pile length is in the range of 12–27 m. A layer of shotcrete reinforced with wire mesh is used between the piles. The columns are set up in the middle of the internal bracing, the lower part of the column adopts bored piles, and the upper part adopts a steel-spaced column. To limit the lateral displacement (i.e., horizontal direction) of the retaining structure and control the heave of the pit bottom, the passive side of the soil layer at the bottom location of the foundation pit is reinforced with Φ850@600 mm × 5.0 m three-axis mixing piles. In accordance to simulation calculation, the heave of the pit bottom after reinforcement is reduced from 61.2 mm to less than 20 mm. This result can meet the limited requirements for safety.
[image: Figure 2]FIGURE 2 | Arrangement of the monitoring points around the car dumper room (size unit: mm).
Influence of Foundation Pit Excavation on Railway Subgrade
To determine the possible damage during foundation pit excavation on the operational safety of the Beijing–Baotou freight railway and Beijing–Baotou passenger dedicated line, LIZHENG deep foundation pit design software, and MIDAS GTS (a geotechnical analysis software) were utilized to discuss the deformation of the subgrade.
The shortest distances between the excavation sideline of the car dumper room and the conveyor tunnel foundation pit from the mainline of the Beijing–Baotou railway are 18.18 and 26.18 m, respectively. Besides, the excavation depth of the conveyor tunnel has gradually reduced, and the impact factors of the excavation on the environment have also gradually decreased. The ground settlement from the excavation sideline to the mainline of the Beijing–Baotou railway is shown in Figure 3. For comparison, these results are calculated by the LIZHENG software through the so-called triangle method, the proponent method, as well as the parabola method. The three assumptions give different forms of surface settlement (i.e., triangular, exponential and parabolic distributions). As a result, the settlement at 18.18 m near the foundation pit excavation sideline (i.e., the mainline of the Beijing–Baotou freight railway) is less than 6 mm according to the three calculation methods, which satisfies the control requirements of safety assessment in Table 2.
[image: Figure 3]FIGURE 3 | Ground settlement distributions away from pit side.
TABLE 2 | Soil parameters used in the numerical calculation.
[image: Table 2]For a numerical calculation, the length, the width, and the height of the model are taken as 200 × 60 × 50 m (Figure 4). In the calculation, the soil layers are considered horizontally distributed, and the same soil layer is isotropic. The bottom surface is set to be restricted in every direction. The top ground surface is set to a free surface without restriction. The four sides have only normal constraints, and the other directions are free and unconstrained. HS-small strain constitutive model is adopted for the soil. The soil layers below the groundwater level are calculated according to the effective shear strength parameters. Table 2 provides the soil parameters used in the calculation.
[image: Figure 4]FIGURE 4 | Numerical model and calculation mesh.
During the simulation, the calculation is carried out according to the steps of original stress balance: construction of soldier piles and first layer of internal bracing, excavation of first layer, construction of second layer of internal bracing (i.e., excavation to 6 m), excavation of second layer, construction of third layer of internal bracing (i.e., excavation to 12 m), and excavation of third layer (i.e., excavation to foundation pit bottom). Thus, the vertical settlement and the additional horizontal deformation of the subgrade at each stage of the construction are shown in Figures 5, 6, and the locations of points 1, 2, 3, 4, and 5 are indicated in Figure 2.
[image: Figure 5]FIGURE 5 | Cumulative settlement of the subgrade.
[image: Figure 6]FIGURE 6 | Cumulative lateral horizontal deformation of the subgrade.
Figure 5 makes it clear that the additional vertical deformation of the Beijing–Baotou railway owing to the construction of soldier piles, the excavation of the first soil layer, then the excavation of the second soil layer, and the excavation of the third soil layer is −0.6 to 3.5 mm, which meets the limit value of 6 mm under the static regular maintenance conditions. Figure 5 also indicates that the vertical deformation of the railway subgrade gradually increases with increasing excavation depth, and the subgrade deformation corresponding to the center part of the foundation pit is actually the largest and gradually decreases to both sides. The deformation at point 1 of the subgrade corresponding to 20 m outside the excavation sideline on the west side of the dumper room is approximately zero, while the settlement at point 5 on the east side owing to the narrowing of the excavation surface of the conveyor tunnel foundation pit is also rapidly reduced.
Figure 6 indicates that the additional horizontal deformation (vertical to the long-side) of the Beijing–Baotou railway caused by construction is −2.9–0.5 mm, which meets the limit value of 6 mm under the conditions of regular maintenance. In the meantime, the deeper the excavation depth of the foundation pit is, the larger the lateral deformation (i.e., horizontal direction) of the subgrade. The lateral deformation of the subgrade corresponding to the center of the dumper room is the largest and gradually decreases.
FIELD MEASUREMENT ANALYSIS
Arrangement of the Deformation Monitoring Points
Figure 2 also gives the locations of the field monitoring points. During the pit excavation, the following items are measured: the horizontal displacement and vertical settlement of the pile top, the axial force of the cross-lot struts, the horizontal deformation of lower part, the settlement of the column piles, and the settlement of the railway subgrade.
The Beijing–Baotou railway line is a low subgrade section within the construction range, and the difference in height between the subgrade and the ground is approximately 2.0 m. To avoid affecting the traffic safety of the existing lines, the subgrade settlement monitoring points are arranged close to the outside of the railway protective net, approximately 4.0 m away from the railway mainline, and a monitoring point is arranged every 9–18 m in the excavation-affected section. The displacement of the lower part of the soldier pile wall is measured by an inclinometer, the settlement of the soldier pile top is measured by leveling.
Deformation of Retaining Structure
Figure 7 indicates the evolution process of the horizontal displacement of the pile top over time on the north and south sides of the car dumper room. The locations of the testing site can be seen in Figure 2. With increasing the excavation depth, the horizontal displacement of the pile top increases. However, its horizontal displacement increases rapidly during the excavation of the second soil layer (case 3), while the increase in the displacement of the pile top is relatively slow when the third layer is excavated (case 4). The displacement of the pile top roughly remains steady after digging to the foundation pit bottom. The displacement of the pile tends to decrease after the second layer of cross-lot bracing is removed (case 7). When the third soil layer was excavated, the horizontal displacement of point ZS01 into the pit was significantly reduced due to water leakage and sand streak at the corresponding position during excavation, which induces the reduction of wall back resistance and the displacement of the soldier piles to the outside of the pit. Actually after the leakage is solved, the horizontal displacement at the top of the pile returns to the normal state.
[image: Figure 7]FIGURE 7 | Horizontal deformation of soldier pile top.
On the same vertical railway profile, the displacement near the railway side is much greater than the displacement far away from the railway side (ZS01 corresponds to ZS16, ZS02 corresponds to ZS15), and the maximum displacement at the top of the pile in the horizontal direction is approximately 7.6 mm. Due to the large rigidity of the three cross-lot struts in the middle part of the foundation pit, the difference in displacement between the north and south sides (ZS02, ZS15) of the middle of the foundation pit is very small (approximately 0.3 mm). The displacement difference between the two sides of the foundation pit with only the knee bracing is relatively large (i.e., 2.87 mm).
Figure 8 shows the settlement comparison of the pile tops on the north side and south side of the car dumper room (herein, the negative value is settlement; the positive value is heave). In the process of the foundation pit excavation (cases 2, 3, 4), the pile top deformation was dominated by settlement, and with increasing the depth of excavation, the pile top settlement gradually increased, and the maximum settlement was approximately 5 mm. With the accomplishment of the foundation bottom (case 5), the settlement of the pile top has gradually decreased. After the third layer of cross-lot bracing is removed (case 6), the vertical deformation of the pile top is transformed into heave. At this time, the maximum heave is approximately 5 mm. Besides, the settlement of the pile top close to the railway (i.e., the south side of the foundation pit) is apparently smaller than the settlement of the pile top of the side far from the railway, which is exactly the opposite of the change in the lateral displacement.
[image: Figure 8]FIGURE 8 | Vertical deformation of soldier pile top.
Figure 9 shows the comparison of the retaining structure deformation on the north and south sides of the car dumper room (positive value is displacement inward and negative value is displacement outward). The locations of the testing site can be seen in Figure 2. Figure 9 also indicates that the deformation of the retaining structure is generally small at both ends and large at the middle part, and the deformation measured near the railway is larger than the deformation measured far away from the railway. With increasing the excavation depth, the deformation increases, gradually. In this way, the deformation of the retaining structure is smaller when the first layer and second layer of soil are excavated, but its deformation increases significantly when the third soil layer is excavated. As a result, the maximum deformation of the railway side retaining structure is only 6.3–7.1 mm, and the displacement away from the railway side is 4.5–5.5 mm.
[image: Figure 9]FIGURE 9 | Horizontal deformation of retaining structure: (A) SS02, (B) SS15, (C) SS01, and (D) SS16.
Three cross-lot struts are installed in the central part of the foundation pit of the car dumper. When the excavation depth is small, the bias pressure effect of the railway on the foundation pit is not obvious. However, after the excavation to the base, the retaining structure shows similar deformation characteristics (at the SS2 and SS15 monitoring points) as the results of Shi and Yang (2011): as the excavation progresses, the upper part of the retaining structure located at the side away from the railway is deformed out of the pit, while the middle and lower sections are deformed into the pit. However, the deformation characteristics of railway bias pressure are not shown in the part where only knee bracing is set in the foundation pit (at the section of monitoring points SS1 and SS16).
Subgrade Settlement Analysis
Figure 10 shows the variation in subgrade settlement with time, which shows that the settlement of the subgrade on the side of the excavated foundation pit gradually increases when the excavation depth gradually increases. The settlement rate and settlement amount during the excavation stage (cases 2, 3, 4) are relatively small. When the excavation process is completed, the settlement amount of the monitoring points near the dumper room is approximately 2.1–3.7 mm. However, the settlement rate and amount of subgrade in the stage of cross-lot bracing removal (cases 6 and 7) are relatively large. After the third cross-lot bracing replacement, the settlement of the corresponding monitoring points is 3.7–7.0 mm. The excavation depth remains at 7.5 m after the backfill outside the structure of the car dumper room, and the settlement is basically stable at 3.9–7.1 mm on each side of the excavated foundation pit.
[image: Figure 10]FIGURE 10 | Subgrade settlement variation with time.
Figure 10 expresses the settlement changes of the vertical section of the subgrade at different construction stages. This result indicates that the settlement of each point on the longitudinal section of the entire subgrade is almost the same. The settlement of the monitoring point of the subgrade, after excavation to the base, is less than 3.7 mm; however, after the internal bracing is removed, the subgrade settlement of the corresponding part of the foundation pit has increased significantly, forming two settlement troughs. That is, the two ends are smaller and the middle is larger. Moreover, their settlements are bounded by the center of the car dumper room. This phenomenon reflects that the deformation influence dies to foundation pit excavation on the subgrade settlement in the cross-lot bracing removal stage is greater than the influence of the deformation on the settlement of the subgrade in the excavation stage.
The positions of subgrade settlements of points 1, 2, 3, 4, and 5 (Figure 2) are extracted by numerical simulation, which basically correspond to the positions of subgrade settlement monitoring points TC14, TC12, TC9, TC6, and TC5 (Figure 2). In the simulation, the settlements of points 1, 2, 3, 4, and 5 after excavation to the basement are 0.1, 2.1, 3.5, 3.0, and 1.8 mm, respectively, while the measured settlements of the corresponding positions are 3.0, 2.5, 2.1, 3.1, and 3.7 mm. The maximum settlement is basically the same, but the location of the maximum settlement is different.
Figure 11 also shows the results at the TC15 and TC16 (Figure 2) monitoring points, which are more than 40 m away from the west side of the foundation pit. In fact, the settlement of the subgrade after the removal of the second layer or cross-lot bracing is greater than 3 mm, showing that the impact of foundation pit excavation on the subgrade settlement is almost three times the excavation depth. Overall, the measured results of the vertical settlement of the subgrade (Figure 11) are slightly larger than the previous calculation results (Figure 5), but the maximum value is about 4–7 mm which meets the needs of the engineering calculation.
[image: Figure 11]FIGURE 11 | Subgrade settlement changes in longitudinal section.
Discussion
For deep foundation pit with settlement-sensitive structures, such as railway subgrade close to the foundation pit, the groundwater control scheme with a five-sided water-stop structure and appropriate pressure relief wells in the pit, it can not only effectively avoid the impact of great depth dewatering on the settlement of adjacent subgrades but also determine the deformation properties of the retaining structure and reduce the heave of the bottom of the pit. In this way, the influence of dewatering and retaining structure deformation on the settlement of sensitive structures is controlled.
The reinforcement at the foundation pit bottom effectively determines the horizontal displacement of the installed retaining structure, the heave of the hole bottom, and the leakage of groundwater at the pit bottom. However, when piles using deep cement mixing are applied to enhance the pit bottom soil, the upwelling of the cement slurry will cause a large amount of cement to be mixed in the soil above the pit bottom, resulting in a high strength of the pit core soil, which will cause greater difficulties to the subsequent excavation construction of the pit core soil. Therefore, the pit bottom reinforcement design should adopt the method of pilot hole plus high-pressure jet grouting piles and only spray the cement slurry below the pit bottom, which not only effectively utilizes the cement but also reduces the difficulty of excavating the pit core soil.
Since the net distance between the soldier piles is very small, some necessary measures should be taken to control the diameter and height of the soldier piles, otherwise, the construction will damage the reinforcement cages of adjacent piles and have harmful influences on the stress of the soldier pile. At the same time, the inclination and diameter expansion of the supporting piles will also affect the construction of the high-pressure jet grouting piles between the piles, which will damage the effect of the water-resistance barrier on the pit side.
CONCLUSION
For the deep foundation pit close to the existing railway lines, the five-sided water-stop structure formed by cement-soil piles around and at the bottom of the pit can effectively reduce the subgrade consolidation settlement caused by deep dewatering, and the water resistance barrier at the bottom of the pit can be effective in reducing the lateral displacement (i.e., in the horizontal direction) of the installed retaining structure and the upward heave of the pit bottom.
For retaining structures, the lateral displacement near the railway sides is obviously larger than the lateral displacement on the other side due to the bias pressure of the subgrade on the pit side. The cross-lot struts across the foundation pit will transfer the bias pressure of the subgrade to the retaining structure far away from the railway, while the transfer effect of the knee bracing is not obvious.
For the deep foundation pit adjacent to the existing railway lines, one should pay enough attention to the amount of subgrade deformation. Moreover, the deformation rate caused by the removal of internal bracing is significantly obvious than the deformation of the foundation pit on the settlement of the subgrade caused by the excavation.
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A landslide susceptibility map (LSM) is the basis of hazard and risk assessment, guiding land planning and utilization, early warning of disaster, etc. Researchers are often overly keen on hybridizing state-of-the-art models or exploring new mathematical susceptibility models to improve the accuracy of the susceptibility map in terms of a receiver operator characteristic curve. Correlation analysis of the causal factors is a necessary routine process before susceptibility modeling to ensure that the overall correlation among all factors is low. However, this overall correlation analysis is insufficient to detect a high local correlation among the causal factor classes. The objective of this study is to answer three questions: 1) Is there a high correlation between causal factors in some parts locally? 2) Does it affect the accuracy of landslide susceptibility assessment? and 3) How can this influence be eliminated? To this aim, Wanzhou County was taken as the test site, where landslide susceptibility assessment based on 12 causal factors has been previously performed using the frequency ratio (FR) model and random forest (RF) model. In this work, we conducted a local spatial correlation analysis of the “altitude” and “rivers” factors and found a sizeable spatial overlap between altitude-class-1 and rivers-class-1. The “altitude” and “rivers” factors were reclassified, and then the FR model and RF model were used to reevaluate the susceptibility and analyze the accuracy loss caused by the local spatial correlation of the two factors. The results demonstrated that the accuracy of LSMs was markedly enhanced after reclassification of “altitude” and “rivers,” especially for the RF model–based LSM. This research shed new light on the local correlation of causal factors arising from a particular geomorphology and their impact on susceptibility.
Keywords: landslide susceptibility, altitude and rivers, local correlation, reclassification of causal factors, accuracy of landslide susceptibility map
INTRODUCTION
The landslide susceptibility map represents the spatial probability of landslide occurrence, is the basis for landslide hazard and risk assessment (Fell et al., 2008; Pellicani et al., 2017), and is used in practice for land planning (Cascini 2008; Chen et al., 2019), quantitative risk analysis (Chen et al., 2016; Yan et al., 2020), early warning systems (Segoni et al., 2018; Rosi et al., 2021), etc. In the past several decades, hazard susceptibility assessment has always been a hot spot for research on all kinds of regional scales, including local-scale (Yang J. et al., 2019), basin-scale (Bueechi et al., 2019; Huang et al., 2021a), and national-scale (Bălteanu et al., 2020). The relationship between existing landslides and their causal factors is modeled to obtain the landslide probability for the whole study area, which is the basic framework of landslide susceptibility. The internal geological and external environmental factors are the main incentives of landslides, characterized by altitude, slope, aspect, lithology, curvature, human engineering activities, rivers, traffic, etc. (Xiao et al., 2019). In recent years, to improve the accuracy of susceptibility evaluation, lots of new statistical (Segoni et al., 2016; Reichenbach et al., 2018) and machine learning methods (Catani et al., 2013; Lagomarsino et al., 2017; Huang et al., 2020), or multiple mixed-matching models (Rossi et al., 2010; Shirzadi et al., 2017; Huang et al., 2021b), have been introduced in susceptibility mapping.
After the susceptibility calculation, a receiver operator characteristic (ROC) curve is always required for accurate analysis (Xiao et al., 2020). The model with the highest AUC is considered the best model suitable for this test site (Canavesi et al., 2020; Sun et al., 2020) and, at the same time, provides a reference for other research areas. Researchers are overly keen on hybridizing state-of-the-art models (Schicker and Moon, 2012; Kornejady et al., 2018; Luo and Liu, 2018) or exploring new mathematical susceptibility models (Chen et al., 2017; Yang Y. et al., 2019; Paryani et al., 2020; Wu et al., 2020), often ignoring the interrelationships between causal factors. It is a well-known fact that each study area has its specific geomorphological features. By analyzing the correlation of the causal factors, factors with high overall correlation were excluded (Liu et al., 2019; Mind'je et al., 2020; Zhao and Chen, 2020). However, the remaining causal factors may be highly correlated in some micro-topography parts, which cannot be detected by the overall correlation analysis and have not been mentioned in the literature. Given this, several issues need to be discussed: Is there a high correlation between causal factors in some parts locally? Does it affect the accuracy of landslide susceptibility assessment? How can this influence be eliminated?
In Wanzhou County, Chongqing, China, the Yangtze River flows through the entire area from southwest to northeast, causing many landslides along both sides of the Yangtze River (Yang et al., 2017; Wang et al., 2019; Huang et al., 2021; Wang et al., 2021). Both sides of the Yangtze River are highly susceptible to landslides, and the region is characterized by low elevation and proximity to rivers (Yang et al., 2018; Deng et al., 2021; Hu et al., 2021; Wang et al., 2021). Therefore, it is necessary to explore whether “altitude” and “rivers” factors are highly correlated in the region and their influence on susceptibility mapping.
This study aims to show that local spatial correlation on causal factors could exist and reduce the accuracy of susceptibility mapping. We conducted a local spatial correlation analysis on the “altitude” and “rivers” in the study area to discuss their valid contribution to susceptibility, taking Wanzhou County as an example. The “altitude” and “rivers” were reclassified; then, the frequency ratio (FR) model and random forest (RF) model were used to reevaluate the susceptibility and analyze the accuracy loss caused by the local spatial correlation of these factors. The results shed new light on local correlations of factors arising from a particular geomorphology and their impact on susceptibility.
TEST SITE DESCRIPTION
Wanzhou County is located in the Three Gorges Area of the Yangtze River basin (Chongqing Municipality, southwestern China) between 107° 55′ 22″–108° 53′ 25″ E and 30° 24′ 25″–31° 14′ 58″ N, covering an area of approximately 3,457 km2 (Figure 1).
[image: Figure 1]FIGURE 1 | Location of study area (the coordinate system used is Xi'an 80). (A) Location of Wanzhou County, Chongqing, in China; (B) the topography map and landslide distribution in Wanzhou County.
The study area extends into the subtropical humid monsoon zone and features a mild climate with abundant sunshine and mean annual precipitation of 1,191.3 mm, mainly concentrated from May to September (about 90% of the yearly rainfall). During summer, the rain is characterized by short and intense rainstorms (up to 100 mm/day). The Yangtze River runs throughout the study area from southwest to northeast, and 93 large and small streams form a complex surface runoff network. The elevation gradually decreases from east to west, forming a hilly landscape, with an overall step-like morphology formed by multilevel fluvial terraces, which resulted from the combination of repeated tectonic uplift stages and the Yangtze River erosion. According to the information provided by Chongqing Natural Resources Bureau, more than 600 landslides were identified in the study area. Since the impoundment of the Three Gorges Reservoir in 2003, many dormant landslides have been reactivated, mainly triggered by water level fluctuation and rainfall. The well-known Anlesi Landslide, Caojiezi Landslide, and Taibaiyan Landslide are all ancient landslides with a volume of more than 10 million cubic meters, and they all developed in subhorizontally dipping sandstone and mudstone interbedded strata.
The bedrock lithology encompasses sandstones, mudstones, shales, and limestones (Table 1), with nearly horizontal stratifications. Extending from both sides of the Yangtze River, the outcropping bedrock mainly increases in age from Triassic to Jurassic (2.3–137 Ma), with sporadic Permian (299–252 Ma) and Quaternary bedrock (from 2.5 Ma). The middle Jurassic Shaximiao Group, consisting of alternating layers of sandstone and mudstone, is the most widely distributed geological unit.
TABLE 1 | Lithology and stratigraphic system in the study area.
[image: Table 1]INPUT DATA AND METHODOLOGY
Modeling Algorithms
1) Frequency ratio (FR) model.
The frequency ratio model is a relatively simple statistical model (Kumar and Anbalagan, 2015). Each factor is classified according to a specific method, and the contribution degree of each factor category is calculated based on statistical analysis. The contribution degree set of all factors is the Landslide Susceptibility Index (LSI), and the formula is
[image: image]
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where S1 is the landslide area within the classification, S is the area within the classification, A1 is the total landslide area of the study area, and A is the total area of the study area.
2) Random forest (RF) model.
The random forest model is a nonparametric multivariate technology based on ensemble learning algorithm. This technology was proposed by Breiman and was widely used in various research fields because of its excellent performance, including landslide disaster susceptibility evaluation (Breiman, 1996a, 1996b; Breiman, 2001). Random forest model is considered to be a relatively effective method in classification, regression, and unsupervised learning. It contains some classification numbers for prediction, and this classification tree is randomly generated by using “bagging” to generate multiple independent training sets. The main advantages of this model are as follows: It is suitable for analyzing nonlinear variables without considering multicollinearity and has strong robustness to outliers; it can deal with high-dimensional data, take into account discrete data and continuous data, and has no fixed standardization requirements for the input data set; the data processing speed is fast and can obtain the variable importance sorting; and compared with other models, it has a strong anti-noise ability.
Input Data and Methodology
Twelve landslide susceptibility causal factors of Wanzhou County and two models, namely, frequency ratio (FR) and random forest (RF), are used in this research. The selected 12 causal factors are altitude, slope, aspect, plan curvature, profile curvature, Stream Power Index (SPI), bedding structure, lithology, land use, geological structure, rivers, and roads. In the past, we have done many studies on susceptibility assessment, including the susceptibility mapping of Wanzhou County based on these two models and 12 factors (for more details, see the article by Xiao et al., 2019). The classification and frequency ratio contribution of the factors are shown in Table 2. The receiver operator characteristic (ROC) curves were used to test the accuracy of the susceptibility results, with 72.8 and 79.9% accuracy under the FR model and RF model, respectively.
TABLE 2 | Classification and frequency ratio of the causal factors used in landslide susceptibity.
[image: Table 2]In the study area, massive landslides were induced by the Yangtze River, heavily skewing the landslide distribution toward lower altitudes. The altitude range of the study area is 120–1,656 m, divided into six classes: 120–350, 350–500, 500–700, 700–900, 900–1,100, and 1,100–1,656 m (Table 3). According to their scale, the water systems were divided into three types: I) the main stem of the Yangtze River, II) secondary tributaries of the Yangtze River, and III) seasonal streams. The influence of the river on landslide development is related to the type of river and the distance from the slope to the river. The rivers factor was divided into five classes by distance to each water system shown in Table 4.
TABLE 3 | Classification of altitudes.
[image: Table 3]TABLE 4 | Classification of rivers.
[image: Table 4]In the previous susceptibility evaluation, the Spearman correlation coefficient between altitude and rivers was only −0.14 (Table 5), indicating that overall the correlation between these two factors was low. The altitude-class-1 zone (less than 350 m) has the highest frequency ratio contribution (Table 2), attributed to the rivers’ effect in the initial analysis. The water level of the Yangtze River reservoir fluctuates between 145 and 175 m, affecting slopes mostly below 350 m, thus exhibiting a tendency for landslides to be distributed at different altitudes. After in-depth consideration of the causal factors in the study area, it was found that river development is highly related to topographic elevation, so there may be a considerable spatial overlap between the altitude-class-1 zone and rivers-class-1 zone.
TABLE 5 | Spearman correlation coefficients of causal factors.
[image: Table 5]Therefore, there are three possible issues: Is there a high correlation between altitude-class-1 and rivers-class-1 zones; Does it affect the accuracy of landslide susceptibility assessment; and How can this influence be eliminated? Exploring and answering the three issues are the main research objectives of this study. The research idea includes the following steps:
- First, altitude-class-1 and rivers-class-1 were divided into three zones: a, b, and c. As shown in Figure 2, “a” is the common area for altitude-class-1 and rivers-class-1, and “b” and “c” are separate areas for altitude-class-1 and rivers-class-1, respectively. The frequency ratios of landslides in zones a, b, and c were counted and compared with altitude-class-1 and rivers-class-1 to reflect the actual contribution of the two factors. This step can answer the question of whether there is a high correlation between altitude-class-1 and rivers-class-1 regions.
- The altitude and rivers factors were reclassified, and then the susceptibility of Wanzhou County was re-evaluated. The altitude was divided into seven classes, where classes-2 to 6 remained the same, and class-1 was split into class-1a and class-1b. The rivers factor was divided into six classes, where classes-2 to 5 were left as they were, and class-1 was split into class-1a and class-1c. Altitude-class-1a and rivers-class-1a are, spatially, the exact same area. Susceptibility was reassessed using FR and RF models based on reclassified altitude and rivers and the original ten other causal factors. This step can be considered a preliminary stage to directly illustrate the impact on the accuracy of the susceptibility evaluation while providing quantitative data for analysis in a further step.
- Quantitative and pixel-by-pixel analysis of susceptibility maps: The receiver operator characteristic (ROC) curve was used to verify the accuracy of the susceptibility results, and pixel-by-pixel for going through where the susceptibility map changed after factor reclassification.
[image: Figure 2]FIGURE 2 | Reclassification of altitude-class-1 and rivers-class-1.
RESULTS
Figure 3 presents a visual inspection that clearly exemplifies the distribution of landslides in altitude-class-1 and rivers-class-1 areas. The dark gray “a” zone represents the common area for altitude-class-1 and rivers-class-1, while the blue “c” and orange “b” are the separate areas for altitude-class-1 and rivers-class-1, respectively. All landslides in the study area are superimposed on the map in black rasters, showing the differential distribution of landslides in areas a, b, and c. We can see at a glance that the landslides in the gray area are less than those in the dark gray and the blue areas. As a quantitative comparison, landslide frequency ratio statistics were performed for each a, b, or c area (Table 6). The data show that the frequency of landslide distribution in areas a, b, and c varies greatly. The landslide frequency ratio in the common area a is 2.72, the landslide frequency ratio in altitude-class-1 rises from 2.98 to 3.49 after removing area a, and the landslide frequency ratio in rivers-class-1 plummets from 1.41 to 0.46 after removing area a. It can be tentatively inferred that the common area of altitude-class-1 and rivers-class-1 to some extent influences the judgment of the actual contribution of altitude and rivers factors to landslide development. That is, the initially calculated landslide frequency ratios of altitude and rivers are not entirely reliable.
[image: Figure 3]FIGURE 3 | Spatial distribution of altitude-class-1 and rivers-class-1.
TABLE 6 | Frequency ratios of altitude-class-1 and rivers-class-1.
[image: Table 6]“Altitude-class-1” was reclassified into “altitude-class-1a” and “altitude-class-1b,” while “rivers-class-1” was divided into “rivers-class-1a” and “rivers-class-1c.” Table 7 shows the original classes and new classes, concluding the percentage of domain in the total domain and frequency ratio contribution of each class. At the same time, a Coxcomb chart (Figure 4) clearly expressed all the information in Table 7. The arc of the sector represents the PDTD of each class, and its radius stands for the FR value. The red stripes represent the original class-1, and the reclassified areas 1a and 1b (1c) are indicated in blue and green, respectively, to reflect the contribution of each area to landslide development by the length of the sector radius.
TABLE 7 | Reclassification of the altitude and distance to rivers factors.
[image: Table 7][image: Figure 4]FIGURE 4 | Coxcomb chart of PDTD and FR. (A) Altitude; (B) rivers.
It is evident from Figure 4 that the landslide frequency distribution in class-1 is not uniform, especially for the “rivers-class-1” area: “Rivers-class-1a” far exceeds the average contribution of “rivers-class-1.” In contrast, the true gift of “rivers-class-1c” is minimal. It follows that a reclassification of the area was absolutely necessary to better reflect the contribution of causal factors to landslides. To verify the effects of reclassifying “altitude-class-1” and “rivers-class-1,” the 12 causal factor system of the previous susceptibility assessment in Table 2 was used in the landslide susceptibility assessment in this test. Except for altitude and rivers, the remaining ten causal factors continued the previous classification.
The LSM of Wanzhou County was recalculated using the FR model and RF model based on improved factors; then, the area under the receiver operating characteristic (ROC) curve (AUC) was applied to evaluate the accuracy of each result. The ROC curve mainly reflects the change of the number of landslides in each susceptibility interval from high to low. As shown in Figure 5, after reclassification of altitude-class-1 and rivers-class-1, the accuracy of LSM based on the FR model was improved by 0.5% (72.8–73.3%), and the accuracy of LSM based on the RF model was significantly improved by 5.1% (79.9–85.0%).
[image: Figure 5]FIGURE 5 | Accuracy analysis of susceptibility assessment.
The LSM was divided into 10 zones with 10% spacing according to the susceptibility value (i.e., the landslide probability of occurrence), and pixel-by-pixel counted the number of landslide pixels and all pixels in each region, respectively. It is evident that the number of landslide points is directly proportional to the susceptibility value (Figure 6A). For the two models, the percentages of landslides in the range of the top 20% interval of the occurrence probability were improved 8.1% (FR model, 18.10–26.2%) and 24.87% (RF model, 24.2–48.98%), respectively. In contrast, pixels were primarily located in zones with susceptibility value below 40% (Figure 6B).
[image: Figure 6]FIGURE 6 | Distribution of points versus the landslide probability of occurrence. (A) Landslide points; (B) all pixels in the domain.
The susceptibility value was divided into five zones by equal interval: very low (0–20%), low (20–40%), moderate (40–60%), high (60–80%), and very high (80–100%). The landslide statistics of different susceptibility levels are shown in Table 8 and Figure 7. The frequency ratio value for the very high susceptibility areas varied considerably. The frequency ratio value based on the FR model increased from 4.09 to 4.64, and the value based on the RF model increased from 4.10 to 7.23.
TABLE 8 | Accuracy statistics for each suscepbitity level.
[image: Table 8][image: Figure 7]FIGURE 7 | Landslide frequency ratio for each susceptibility level.
The above results demonstrated that the accuracy of the very high susceptibility zone was markedly enhanced after reclassification of “altitude-class-1” and “rivers-class-1,” especially for the RF model–based LSM.
DISCUSSION
The two LSMs based on the RF model are shown in Figure 8. Although the improved LSM has a 5.9% higher AUC, it is not easy to see the difference when comparing these two graphs with the naked eye. A visual comparison of the two maps was made, and their values were subtracted to define their differences (Figure 9). Since the raster value of each susceptibility map is between 0 and 1, the value of the comparison map could potentially range from − 1 to 1. A simple visual inspection of Figure 9 reveals that there are apparent differences between the two susceptibility maps. The value range of Figure 9 is −0.9731–0.9482, with pure blue representing −1, pure red representing 1, and a gradual blue–yellow–red transition between −1 and 1. Most importantly, the differences between the two LSMs are not evenly distributed, and some spatial patterns of rivers can be recognized in the comparison map.
[image: Figure 8]FIGURE 8 | Landslide susceptibility map. (A) RF model (before); (B) RF model (after).
[image: Figure 9]FIGURE 9 | Comparison map of original and improved LSM based on the RF model.
Concerning the method proposed by Xiao et al. (2020) for understanding and interpreting the different results of LSM, the values of the comparison map were interrupted at ±0.5 and divided into three classes, namely, “underestimation” (UN), “approximation” (APR), and “overestimation” (OV). Table 9 shows the range of values and percentages for each classification. 97.13% of the comparison map pixels are located in the APR region, and only scattering pixels are UN or OV.
TABLE 9 | Classification of comparison map.
[image: Table 9]To explore the critical class of the rivers factor that led to differences between susceptibility maps, a simple count of the UN and OV points for each class of rivers was performed (Table 10). In the statistics of Table 10, rivers-class-1a only accounts for 9.68% of the total area, but it contains 26.53% of UN pixels. Meanwhile, rivers-class-1c accounts for only 13.27% of the total area, but it has 38.16% OV pixels.
TABLE 10 | Simple statistical properties of UN/APR/OV pixel distribution across each class of the rivers factor.
[image: Table 10]In the original RF model–based susceptibility assessment, rivers-class-1 was not differentiated into area 1a and area 1c. This statistical result indicates that the susceptibility value in rivers-class-1a is underestimated, and rivers-class-1c is overestimated in the original LSM. The deviation of the susceptibility results is exactly the same as that in the factor contribution analysis (Table 7; Figure 4B). The landslide contribution in the rivers-class-1a area was underestimated, where the calculated susceptibility values were underestimated. For rivers-class-1c, both landslide contribution and susceptibility value were overestimated. After reclassifying the rivers factor, the RF model improved the LSM accuracy in the rivers-class-1 area, thus improving the accuracy in the high susceptibility area and the whole area.
Rivers-classes-1a and 1c are visually inspected and explicitly represented in Figure 10 concerning the UN or OV pixels. In Figure 10A, the rivers-class-1a area is marked in yellow, the rivers-class-1c area is indicated in blue, and the other classes are uniformly noted in light gray. UN and OV pixels are displayed in black and red, respectively, scattered sporadically throughout the study area. Zooming in on the two regions of Figures 10B,C, one can clearly see that the red OV pixels tend to be distributed on class-1c, again in agreement with the statistical properties of Table 10.
[image: Figure 10]FIGURE 10 | Spatial location of underestimations and overestimations in relation to rivers-class-1. (A) Whole study area; (B) typical region; (C) typical region.
Previous studies of landslide susceptibility have included correlation analysis of the causal factors, but only for each causal factor as a whole. The study in this work demonstrated the existence of a high local correlation between classifications of altitude and rivers. In other words, the high local correlation of factor classifications cannot be detected by the overall correlation analysis. In this study, the conjecture about altitude and rivers comes entirely from the in-depth knowledge of the topography and river system in the study area. On the basis of this conjecture, a local correlation analysis and a quantitative study of its effect on the accuracy of LSM were performed. The results show that the high local correlation of altitude and rivers factors does exist and truly affects the accuracy of LSM. Meanwhile, a simple reclassification of factors can eliminate this effect and improve the accuracy of LSM.
CONCLUSION
This study shows that the local correlation of causal factors could exist and reduce the accuracy of susceptibility assessment. A simple method of factor reclassification was proposed to improve the accuracy of LSM effectively. Taking Wanzhou County as the test site, where landslide susceptibility assessment was based on 12 causal factors, the FR model and RF model were previously completed. In this work, we conducted a local spatial correlation analysis of the “altitude” and “rivers” factors and found a large spatial overlap between altitude-class-1 and rivers-class-1. “Altitude-class-1” was reclassified into “altitude-class-1a” and “altitude-class-1b,” while “rivers-class-1” was divided into “rivers-class-1a” and “rivers-class-1c,” where “altitude-class-1a” was spatially identical to the “rivers-class-1a” area. The FR model and RF model were used to reevaluate the susceptibility. The area under the receiver operating characteristic curve (AUC) was applied to evaluate the accuracy of each LSM. The results demonstrated that the accuracy of LSMs was markedly enhanced after reclassification of “altitude-class-1” and “rivers-class-1,” especially for the RF model–based LSM. A pixel-by-pixel comparison of the two LSMs based on the RF model was performed and visually inspected with rivers-class-1. In previous susceptibility mapping, the calculated susceptibility value in the rivers-class-1a area tends to be underestimated, and the opposite is seen for the rivers-class-1c area. This research shed new light on the local correlation of causal factors arising from a particular geomorphology and their impact on susceptibility.
Finally, the following points can be summarized for the cases in this study.
- The overall correlation between the altitude and rivers factor is low, but there is a considerable spatial overlap between altitude-class-1 and rivers-class-1. The presence of this common overlap area has led to the underestimation and overestimation of the contribution of altitude-class-1 and rivers-class-1 to landslides, respectively, in previous susceptibility assessments.
- The accuracy of the LSMs was improved by 0.5% (FR model) and 5.1% (RF model) after reclassification of “altitude-class-1” and “rivers-class-1,” respectively, especially for the accuracy of the very high susceptibility zone of the RF model–based LSM.
- Since the FR model does not consider the weight coefficients of the causal factors, the FR model–based LSM is not sensitive enough to the reclassification of the altitude and rivers factors. The RF model performs better not only in modeling the relationship between causal factors and landslides but also in distinguishing the differences of each factor class.
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Embankments are widespread throughout the world and their safety under seismic conditions is a primary concern in the geotechnical engineering community since the failure events may lead to disastrous consequences. This study proposes an efficient seismic slope stability analysis approach by introducing advanced gradient boosting algorithms, namely Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost). A database consisting of 600 datasets is prepared for model calibration and evaluation, where the factor of safety (FS) is regarded as the output and four influential factors are selected as the inputs. For each dataset, the FS corresponding to the four inputs is evaluated using the commercial geotechnical software of Slide2. As an illustration, the proposed approach is applied to the seismic stability analysis of a hypothetical embankment example subjected to water level changes. For comparison, the predictive performance of CatBoost, LightGBM, and XGBoost is investigated. Moreover, the Shapley additive explanations (SHAP) method is used in this study to explore the relative importance of the four features. Results show that all the three gradient boosting algorithms (i.e., CatBoost, LightGBM, and XGBoost) perform well in the prediction of FS for both the training dataset and testing dataset. Among the four influencing factors, the friction angle φ is the most important feature variable, followed by horizontal seismic coefficient Kh, cohesion c, and saturated permeability ks.
Keywords: machine learning, seismic slope stability, embankment, CatBoost, LightGBM, XGBoost
INTRODUCTION
The embankment is one of the most important infrastructures distributed around the world and has gained increasing attention in geotechnical and hydrogeological communities because its failure may induce disastrous consequences (e.g., Hicks and Li, 2018; Wang et al., 2018; Gordan et al., 2021). Rational stability assessment of embankments is a prerequisite for disaster prevention and reduction, and the index of the factor of safety (FS) obtained from deterministic slope stability analysis methods (e.g., limit equilibrium method and finite element method) is frequently applied to measure the slope stability due to its conceptual simplicity. It is well recognized that the embankment slope stability is significantly affected by the combined effects of several internal factors (e.g., shear strength parameters and hydraulic parameters) and external factors (e.g., earthquakes, water level fluctuations, and rainfall). Under such circumstances, slope stability prediction can offer a fast estimation of the stability status and further provide a scientific basis for decision-making in disaster mitigation (Qi and Tang, 2018).
In the past few decades, many researchers have contributed to slope stability prediction and significant progress has been achieved in landslide disaster prevention (e.g., Sakellariou and Ferentinou, 2005; Gordan et al., 2016; Mahdiyar et al., 2017; Mojtahedi et al., 2019; Bui et al., 2020; Wang et al., 2020c, Wang L. et al., 2021; Zeng et al., 2021; Zhuang and Xing, 2021). For example, Sakellariou and Ferentinou (2005) introduced neural networks to predict slope stability. The geotechnical and geometrical parameters were taken as inputs and the FS or stability status was considered as output in their study. Gordan et al. (2016) developed a hybrid prediction model for predicting the FS of homogeneous slopes through combining the particle swarm optimization (PSO) algorithm and artificial neural network (ANN). They found that the proposed PSO-ANN method performs better than the ANN model in the prediction of FS. Mahdiyar et al. (2017) employed Monte Carlo (MC) technique to predict the FS of slopes under seismic conditions based on the five important input parameters, including slope height, slope angle, cohesion, angle of internal friction, and peak ground acceleration. Results showed that the MC-based approach is able to predict the FS appropriately. Qi and Tang (2018) compared the predictive performance of six machine learning algorithms (i.e., logistic regression, decision tree, random forest, gradient boosting machine, support vector machine, and multilayer perceptron neural network), and concluded that integrated artificial intelligence techniques had great potential in the prediction of slope stability.
Recently, Koopialipoor et al. (2019) compared the performance of four hybrid intelligent models in the stability prediction of slopes under static and dynamic conditions, namely imperialist competitive algorithm (ICA)-ANN, genetic algorithm (GA)-ANN, particle swarm optimization (PSO)-ANN, and artificial bee colony (ABC)-ANN. It was observed that the PSO-ANN model was superior to the remaining three hybrid intelligent models in predicting the FS of slopes. Mojtahedi et al. (2019) proposed an MC-based probabilistic approach for forecasting the FS of slopes and found that the internal friction angle was the most influential factor among the four inputs through conducting sensitivity analysis. Zhou et al. (2019) applied a gradient boosting machine (GBM) approach to predict the stability status of slopes based on an updated database that records a total of 221 historical cases gathered from the literature. They found that the proposed GBM classifier can accurately capture the nonlinear relationship between slope stability status and the six influential factors. Bui et al. (2020) presented an optimized ANN model for predicting the FS of slopes by introducing the Levenberg–Marquardt backpropagation technique. Luo et al. (2021) proposed a new hybrid intelligent model to analyze the slope stability in open-pit mines by combining the PSO and cubist algorithm (CA), and results indicated that the proposed PSO-CA model was able to provide satisfactory performance in the prediction of FS. Zeng et al. (2021) investigated the predictive performance of three hybrid least squares support vector machine (LSSVM) models and found that both the gravitational search algorithm (GSA) and whale optimization algorithm (WOA) could improve the predictive accuracy.
It can be observed that previous research focused more on geometric parameters, shear strength parameters, and seismic coefficients. In contrast, hydraulic parameters (e.g., saturated permeability) are rarely considered in slope stability prediction. In engineering practice, embankments are usually subjected to water level changes, which may pose potentially destabilizing effects on the embankment slope stability. Generally, the hydraulic parameters play an indispensable role in the seepage analysis and slope stability analysis, and thus it is necessary to take the hydraulic parameters into account in the slope stability prediction of embankments. Benefited from the rapid development of artificial intelligence, many machine learning algorithms have been proposed, and they are served as a promising tool for tackling geotechnical-related topics, such as tunnels (Zheng et al., 2019; Zhang et al., 2020; Zhu et al., 2021), embankments (Wang et al., 2020a,b), landslides (Huang et al., 2020; Wang H. et al., 2021; Liu et al., 2021; Xiao et al., 2021), and other issues (Atangana Njock et al., 2021; Jamei et al., 2021; Shen et al., 2021).
This study aims to develop an efficient seismic slope stability analysis approach by introducing three advanced machine learning algorithms, namely Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost). The four influential factors (i.e., cohesion, friction angle, horizontal seismic coefficient, and saturated permeability) are selected as the inputs and the FS is regarded as the output. The remainder of this paper starts with the introduction of CatBoost, LightGBM, and XGBoost, followed by a description of the associated implementation procedures. Then, the proposed approach is applied to the seismic stability analysis of a hypothetical embankment example subjected to water level changes. A database consisting of 600 datasets is compiled for model calibration and evaluation, where the four influential factors are selected as the inputs and the factor of safety (FS) is regarded as the output. Finally, the performance of CatBoost, LightGBM, and XGBoost in the prediction of FS is investigated, and the relative importance of features is ranked using the Shapley additive explanations (SHAP) method.
METHODOLOGIES
Categorical Boosting
CatBoost is a new open-source library shared by the Yandex company, which aims to handle the categorical features and prediction shift problems in machine learning (Dorogush et al., 2018; Prokhorenkova et al., 2018). Besides numerical features, categorical features are also frequently encountered in the application of machine learning, which contains a discrete set of values that are not necessarily comparable with each other. It is evident that such categorical features can not be identified in the binary decision trees and requires to be converted to numerical features through encoding techniques. As a widely used encoding technique, the one-hot encoding may cause the curse of dimensionality in tackling the high cardinality features and tends to be more efficient in handling the low-cardinality features. To address this issue, CatBoost uses the target statistics (TS) as new numerical features to deal with the categorical features, which has been proved to be the most efficient method with minimum information loss (Prokhorenkova et al., 2018). It generates a random permutation of the dataset and then calculates the average label value of the training examples with the same category in the permutation. Following Prokhorenkova et al. (2018), if [image: image] is a permutation, the category [image: image] can be substituted with the average label value [image: image]:
[image: image]
where [image: image] is a prior value; [image: image] is the weight of the prior; [image: image] is a label value; [image: image] denotes the Iverson bracket, namely [image: image] equals 1 if [image: image], and otherwise, it is equal to 0.
Traditional gradient boosting decision tree algorithms generally suffer from an inevitable problem of gradient bias, which will eventually lead to prediction shift. Although the ordered boosting algorithm can avoid the prediction shift, it may be infeasible in practical applications due to the computational complexity and memory requirements in the process of training a larger number of supporting models. In such a case, CatBoost uses a modification of the ordered boosting algorithm in which the gradient boosting algorithm with decision trees are taken as base predictors. Furthermore, CatBoost also has superiority in the aspects of fast scorer and fast training on GPU. Interested readers are referred to Prokhorenkova et al. (2018) and Dorogush et al. (2018) for more details about the CatBoost.
Light Gradient Boosting Machine
LightGBM is a novel member of the histogram-based gradient boosting decision tree (GBDT) developed by Microsoft in 2017 for tackling the problems with big data and a large number of features (Ke et al., 2017). Conventional GBDT models require scanning all the data to evaluate the information gain of all the possible split points for each feature, indicating that the computational efforts may become prohibitively expensive when the data size is large and the feature dimension is high. To address this issue, LightGBM introduces two advanced techniques called Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce the number of the data instances and features in a rational manner.
The gradient of data instance generally poses a significant effect on the evaluation of information gain. Compared with the data instances with larger gradients, the data instances with small gradients contribute less to the estimation of information gain. In other words, more attention should be paid to the data instances with larger gradients. Inspires by this thought, GOSS reduces the number of data instances by excluding the data instances with small gradients and simply using the rest to calculate the information gain. Moreover, many features may be mutually exclusive in a sparse feature space, and these mutually exclusive features are unable to take nonzero values simultaneously. The basic idea of EFB is to reduce the number of features by bundling mutually exclusive features. These two novel techniques (i.e., GOSS and EFB) enable the LightGBM to achieve excellent performance in terms of computational efficiency and memory consumption. More detailed explanations of the LightGBM can refer to Ke et al. (2017).
Extreme Gradient Boosting
XGBoost is a scalable end-to-end tree boosting method developed by Chen and Guestrin (2016), which has gained increasing attention in the famous Kaggle machine learning competitions due to its advantages of high efficiency and sufficient flexibility. The main idea of XGBoost is to build classification or regression trees one by one in an additive manner, and each tree learns from its predecessors and updates the residual errors in the estimated values (Zhang W. et al., 2021). Specifically, the prediction result of the gradient boosting tree model can be evaluated by integrating the values calculated from all the previously trained trees. The depth and number of trees play a significant role in the XGBoost model construction, which affect the predictive accuracy directly and can be determined by optimizing the objective function. Inspired by Chen and Guestrin (2016), the objective function [image: image] is expressed as:
[image: image]
where [image: image] is the actual value; [image: image] is the predicted value; [image: image] is the loss function describing that how well the model fits training data; [image: image] is a regularization term to penalize model complexity and avoid potential over-fitting problems. For more detailed information about the XGBoost algorithm, interested readers can refer to Chen and Guestrin (2016).
IMPLEMENTATION PROCEDURE
Figure 1 shows the implementation procedures of seismic stability analysis of embankment slopes using gradient boosting algorithms. Firstly, the database used for model calibration should be prepared, which contains the necessary information about the input parameters (e.g., shear strength parameters), and output quantity of interest (e.g., FS). Then, divide the database into the training dataset and testing dataset according to a rational ratio. Thereafter, the three variants of the gradient boosting algorithms, namely CatBoost, LightGBM, and XGBoost, are used to construct the machine learning models, where the associated hyper-parameters can be determined by optimization techniques (e.g., Bayesian optimization). Finally, the predictive performance of these constructed machine learning models can be quantitatively measured using statistical indicators (e.g., the coefficient of determination R2). For illustration, the proposed approach is applied to the seismic stability analysis of a hypothetical embankment case in the next section.
[image: Figure 1]FIGURE 1 | Implementation procedure of the proposed method.
ILLUSTRATIVE EXAMPLE
For illustration, a hypothetical embankment example with a height of 12 m and a slope of 27° is used in this study for illustration, as shown in Figure 2. It is situated on a foundation of 100 m. Due to the fact that the embankments suffer from water level changes frequently, and thus a constant total head equal to the upstream water level is applied to the embankment below the water level. For the foundation, a zero flux boundary is assigned to both sides and the bottom. In this example, the 2D limit equilibrium slope stability software Slide2 (Rocscience Inc., 2018) is applied to perform seepage and slope stability analysis of the embankment example under combined effects of seismic loading and water level changes. The water level is assumed to rise uniformly from the initial water level (i.e., 17 m) to the highest water level (i.e., 19 m) after 8 days. Table 1 tabulates the mean values of the four main influential factors the govern the stability of embankment slopes, including the cohesion c, friction angle φ, horizontal seismic coefficient Kh, and saturated permeability ks. Based on these mean values, the simplified Bishop method embedded in the Slide2 software can be applied to calculate the FS of the downstream slope. Figures 3A,B plot the FS values of embankment slope example at the initial state and 50 days, respectively. The FS at 50 days reaches a steady-state, and it is used as a baseline in the following database preparation.
[image: Figure 2]FIGURE 2 | Geometry and boundary conditions of the embankment example.
TABLE 1 | Statistical properties of parameters used in this example.
[image: Table 1][image: Figure 3]FIGURE 3 | The FS values of the embankment example at different times: (A) FS at the initial state; (B) FS at the 50 days.
Database Preparation for Model Calibration
A database containing the four input parameters (i.e., c, φ, Kh, and ks) and the corresponding output of FS should be prepared for calibrating the machine learning models. Inspired by previous research (e.g., Cho, 2012; Li et al., 2015; Zhang W. G. et al., 2021), the four input parameters are assumed to follow lognormal distributions, so as to avoid possible negative values that may be physically meaningless. Based on the mean values, coefficients of variation (COVs), and probability distributions tabulated in Table 1, a total of 600 groups of data are generated using the Latin hypercube sampling method. Figure 4A–D plot the histogram of the cohesion c, friction angle φ, horizontal seismic coefficient Kh, and saturated permeability ks, respectively. The possible ranges for c, φ, Kh, and ks are [3.74 kPa, 17.66 kPa] [17.29°, 45.08°] [0.04, 0.25], and [1.73 × 10−7, 5.69 × 10−6], respectively. Each data group containing the c, φ, Kh, and ks is used as input in the Slide2 software for calculating the FS of the embankment slope example. With the aid of Slide2 software, all the FS values corresponding to the 600 groups of data can be evaluated. As plotted in Figure 4E, the FS values range from 0.747 to 1.507. These input parameters and output consequences constitute a database with a total of 600 datasets and each dataset consists of four input parameters (i.e., c, φ, Kh, and ks) associated with the corresponding FS value. Although the Slide2 software is used in this study to perform seismic stability analyses of the 600 groups of data, other geotechnical commercial software of interest can also be applied.
[image: Figure 4]FIGURE 4 | Histogram of the four influential factors and factor of safety: (A) c; (B) φ; (C) Kh; (D) ks; (E) FS.
The compiled database can be divided into training dataset and testing dataset for model construction and evaluation. In this study, 400 groups of data are used as the training dataset and 200 groups of data are regarded as the testing dataset. Then, the three gradient boosting algorithms (i.e., CatBoost, LightGBM, and XGBoost) are used to construct the machine learning models. The performance of different machine models in the prediction of FS can be evaluated using statistical indicators.
Predictive Performance of Different Models
Figure 5A compares the FS values obtained from the established CatBoost model and actual values calculated from the Slide2 software for all the 600 groups of data. It can be observed that the predicted FS values obtained from the established CatBoost model agree well with those calculated from the Slide2 software for both the training dataset (i.e., 400 groups of data) and testing dataset (i.e., 200 groups of data). To quantitatively evaluate the model performance, the frequently used index of the coefficient of determination (R2) is used in this study. As shown in Figure 5A, the R2 values of training dataset and testing dataset are larger than 0.90, indicating that the established CatBoost model is able to predict the FS of the embankment slope example with satisfactory accuracy. Likewise, Figure 5B compares the FS values predicted from the constructed LightGBM model and actual values calculated from the Slide2 software. Both the training dataset and testing dataset can achieve a relatively high R2 value, illustrating the excellent capability of LightGBM model in predicting the FS. Furthermore, Figure 5C compares the prediction results of XGBoost model and actual values calculated from the Slide2 software. It is shown that most of the points gather around the reference line (i.e., 1:1 line), and the corresponding R2 values of training dataset and testing dataset are also relatively high. This implies that the XGBoost model performs well in the prediction of FS. In general, it can be concluded that all the three machine learning models (i.e., CatBoost, LightGBM, and XGBoost model) are able to provide satisfactory performance in the prediction of FS for the embankment slope example, which offers a promising approach for seismic stability analysis by introducing advanced gradient boosting algorithms.
[image: Figure 5]FIGURE 5 | Predictive performance of the three gradient boosting algorithms: (A) CatBoost model; (B) LightGBM model; (C) XGBoost model.
Feature Importance Analysis
To investigate the relative importance of features on the predictive performance of machine learning models, the Shapley additive explanations (SHAP) method is used in this study due to its fast implementation for tree-based models. It uses the Shapley values to quantify the contribution of each feature to the prediction based on the coalitional game theory (Lundberg and Lee, 2017; Guo et al., 2021). Generally, the features with higher positive SHAP values tend to pose a more significant influence on the final prediction. Figure 6 plots the SHAP values of the four features calculated from the CatBoost model. Each scattered point on the figure represents one sample, and the points with red colors indicate that the associated feature values are high. On the other hand, the blue colors imply that the feature values are low. For the friction angle φ, it can be observed that many sample points with red colors gather around the zone with positive SHAP values, indicating that the friction angle affects the FS of the embankment slopes significantly, and the larger value of friction angle will enhance the embankment slope stability. In contrast, for the horizontal seismic coefficient Kh, a large number of sample points with red colors locate in the zone with negative SHAP values. This means that the horizontal seismic coefficient will weaken the embankment slope stability.
[image: Figure 6]FIGURE 6 | SHAP values of features calculated from the CatBoost model.
In general, the friction angle φ has the most significant influence on the prediction of FS, followed by horizontal seismic coefficient Kh, cohesion c, and saturated permeability ks. Among the four features, the shear strength parameters (i.e., φ and c) have positive influences on the embankment slope stability, while the increasing Kh and ks will destabilize the embankment slope stability. Furthermore, Figure 7 ranks feature importance of the four features. The arrangement of these four features from bottom to top is based on their relative importance. Similarly, it can be found that the friction angle φ has the most significant influence on the prediction of FS, followed by Kh, c, ks. This finding is consistent with that observed in Figure 6, further validating the significance of shear strength parameters (i.e., φ and c) and seismic coefficient (i.e., Kh) in the seismic stability evaluation of embankment slopes.
[image: Figure 7]FIGURE 7 | Relative importance of features calculated from the CatBoost model.
SUMMARY AND CONCLUSION
This paper developed a gradient boosting algorithm-based approach for seismic stability analysis of embankment slopes. Three advanced gradient boosting algorithms, namely Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), were calibrated and evaluated in this study using a well-established database that contains a total of 600 datasets. Each dataset records the four features (i.e., the cohesion, friction angle, horizontal seismic coefficient, and saturated permeability) associated with the factor of safety (FS). For illustration, the proposed approach was applied to the seismic stability analysis of a hypothetical embankment example subjected to water level changes. The predictive performance of CatBoost, LightGBM, and XGBoost were compared, and the relative importance of features on the prediction was also quantified by the Shapley additive explanations (SHAP) method.
Results showed that all the coefficient of determination (R2) values of the three gradient boosting algorithms (i.e., CatBoost, LightGBM, and XGBoost) were larger than 0.90 for both the training dataset and testing dataset, indicating that the proposed approach is able to predict the FS of embankment slopes with satisfactory accuracy. Among the four influencing factors, the friction angle φ had the most significant influence on the prediction of FS, followed by horizontal seismic coefficient Kh, cohesion c, and saturated permeability ks. Different from the shear strength parameters (i.e., φ and c) that had positive influences on the embankment slope stability, the increasing Kh and ks tended to destabilize the embankment slope stability. The proposed approach making the best use of advanced gradient boosting algorithms can serve as a useful tool for geotechnical practitioners to grasp the stability status of slopes accurately and fastly, and further provides a scientific basis for decision making in disaster prevention and mitigation. Besides the above four influential factors, other geometric and geotechnical parameters of interest can also be considered in future studies. This study provided a preliminary exploration of the machine learning-aided seismic stability analysis of embankment slopes subjected to water level changes, and a practical engineering case considering more influential factors warrants further research.
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The main purpose of this study is to establish an effective landslide susceptibility zoning model and test whether underground mined areas and ground collapse in coal mine areas seriously affect the occurrence of landslides. Taking the Fenxi Coal Mine Area of Shanxi Province in China as the research area, landslide data has been investigated by the Shanxi Geological Environment Monitoring Center; adopting the 5-fold cross-validation method, and through Geostatistics analysis means the datasets of all non-landslides and landslides were divided into 80:20 proportions randomly for training and validating models. A set of 15 condition factors including terrain, geological, hydrological, land cover, and human engineering activity factors (distance to road, distance to mined area, ground collapse density) were selected as the evaluation indices to construct the susceptibility assessment model. Three machine learning algorithms for landslide susceptibility prediction (LSP) including C5.0 Decision Tree (C5.0), Random Forest (RF), and Support Vector Machine (SVM) have been selected and compared through the Areas under the Receiver Operating Characteristics (ROC) Curves (AUC), and several statistical estimates. The study revealed that for these three models the value range of prediction accuracies vary from 83.49 to 99.29% (in the training stage), and 62.26–73.58% (in the validation stage). In the two stages, AUCs are between 0.92 to 0.99 and 0.71 to 0.80 respectively. Using Jenks Natural Breaks algorithm, three LSPs levels are established as very low, low, medium, high, and very high probability of landslide by dividing the indices of the LSP. Compared with RF and SVM, C5.0 is considered better in five categories according to quantities and distribution of the landslides and their area percentage for different LSP zones. Four factors such as distance to road, lithology, profile curvature, and ground collapse density are the most suitable condition factors for LSP. The distance to mine area factor has a medium contribution and plays an obvious role in the occurrence of landslides in all the models. The result reveals that C5.0 possesses better prediction efficiency than RF and SVM, and underground mined area and ground collapse sifnigicantly affect significantly the occurrence of landslides in the Fenxi Coal Mine Area.
Keywords: Landslide susceptibility zoning, C5.0, RF, SVM, condition factors, Fenxi Coal Mine Area, Shanxi Province
1 INTRODUCTION
Mine geological hazards are a kind of man-made geological hazard and caused by geological processes and human engineering activities. Shanxi Province is a famous coal-producing area in China. Due to the overexploitation of coal resources in the area and the special topography of the environment, Shanxi Province has become one of the most developed/mined underground areas leading to frequent ground collapse, which often induced landslides. The geological hazards have the characteristics of wide distribution, significant influence, and prominent potential hazards (Uitto and Shaw, 2016; Su et al., 2020). It is very valuable to recognize and map those areas where landslides have a high probability of occurrence for land use plans and hazard controls (Su et al., 2017a; Huang et al., 2020a), and landslide susceptibility prediction (LSP) can efficiently achieve this purpose (Borrelli et al., 2018; Huang et al., 2021b). An LSP involves some important issues including the extraction of landslide-related environmental factors and the selection of the LSP model (Tien et al., 2015).
A lot of models such as types of expert-based models, statistical models, physically-based models, and machine learning models have been proposed for LSP (Guzzetti et al., 1999; Huang et al., 2017; Sezer et al., 2017; Reichenbach et al., 2018; Medina et al., 2021), and it is a crucial step to select an appropriate model (Marjanović et al., 2011; Tien et al., 2015; Huang et al., 2020b). Huang et al. (2020c) have compared these types of models and found that machine learning models can more accurately reflect the nonlinear relationships between landslide susceptibility indices; they ignore the complex physical processes involved in landslide initiation, and have been considered more accurate than other approaches. For the machine learning models, (Niu et al., 2012; Chang et al., 2020; Li et al., 2020) have used Support Vector Machine (SVM) to quantitatively predict landslide susceptibility and revealed SVM possesses better prediction efficiency, Li et al. (2014) has applied Random Forest (RF) to the analysis and evaluation of the susceptibility of regional landslides and believed that the method has a low sensitivity to noise and has good accuracy and stability. Nefeslioglu et al. (2010) have assessed the LSP of the metropolitan area in Istanbul, Turkey, by a decision tree; (Guo et al., 2021) present a C5.0 Decision Tree (C5.0) to generate regional landslide sensitivity map, and found the prediction accuracy of C5.0 is higher than that of traditional models.
Most of the existing studies have selected some condition factors closely related to landslide risk for susceptibility evaluation based on expert experience (Oliveira et al., 2015; Guo et al., 2021). The condition factors can be divided into terrain, geological, hydrological, land cover, and human engineering activity factors (Qin et al., 2013). To human engineering activity factors, Lee S, et al. (Lee et al., 2004; Ayalew and Yamagishi, 2005) have also quantified some human activity factors as distance to road, road network density, residential area, and building density. For geological hazards in coal mine areas, Su et al. (2017) has constructed the distance to mined area factor as a special human engineering activity factor, and compared several other methods in the evaluation of landslide sensitivity in the Huoxi Coal Mine Area, and found that SVM has higher prediction accuracy and the mining disturbance behavior has little contribution to all models (Su et al., 2017a).
It is very important to quantitatively compare the application results of various models for specific test areas and select the optimal model and appropriate factors for landslide sensitivity zoning (Martha et al., 2013; Chen et al., 2019; Huang et al., 2020a). In order to reveal whether the RF and C5.0 is more fit in a coal mine area, and better evaluate the impact of coal mining on landslides, and whether the mining disturbance such as the underground mined area and ground collapses have some contribution to the occurrence of mine geological hazards, this paper takes the Fenxi Coal Mining Area as the research area and uses three machine learning methods: RF, SVM, and C5.0 to model landslide sensitivity. Following this, a landslide sensitivity map of the Fenxi Coal Mine Area was drawn. ROC and AUC are used to evaluate and compare which model is more accurate and reliable for LSP. The study can provide decision support for mine geological hazards monitoring.
2 RESEARCH DATA
2.1 Study Area
The Fenxi Coal Mine Area (36°41′20″–37°17′12″N, 111°22′08″–112°21′26″E) belongs to the Huoxi Coalfield andcovers approximately 2,800 km2 of land, located in the northern area of the Huoxi Coalfield in Shanxi province, China (Figure 1). The Huoxi Coalfield is one of the six large coalfields (Datong, Ningwu, Hedong, Xishan, Huoxi, Qinshui) of Shanxi province (Su et al., 2017a), which includes the Fenxi Coal Mine Area and Huozhou Coal Mine Area. The landform in the Fenxi Coal Mine Area is complex. The western part of Fenxi is a low mountain area on the east wing of Luliang Mountain. The western demarcate boundaries reach Shuangchi and the Nanyang borderline. The eastern part of Fenxi is the foothills of Huoshan Mountain, bounded by the Huoshan fault. The north part is the Jinzhong rift basin, the north boundaries reach the south of Fenyang City, and the southern border is the Shilin fault and the Fenhe River Valley with flat terrain passes through the middle of the research area. The Fenxi Coal Mine Area belongs to a warm temperate semi-arid continental monsoon climate, with an annual average temperature of 8.6°C and about 180 days in the frost-free period (Su et al., 2017a). Because it is located in the central inland area, the continental climate is relatively obvious, and the temperature difference between day and night is larger (Liu, 2015). The average annual precipitation is 634 mm and rainfall is often in July and August. Slope failures are triggered chiefly by intense and prolonged rainfall in this period (Su et al., 2017a).
[image: Figure 1]FIGURE 1 | Location and geological hazards sites distribution of the study area.
The Fenxi Coal Mine Area is on the east margin of the Qi-Lv-He epsilon-type structure arc-fold and different forms of folds compose coal-bearing strata which belong to the Taiyuan Formation (Upper-Carboniferous System) and the Shanxi formation (Lower-Permian System). The average thicknesses of the Taiyuan and Shanxi Formations are about 90 m and 50 m, respectively, which are 810 m and 760 m below ground, respectively. There are abundant coal resources in the study area. The Fenxi Coal Mine Area is in underground mining regions, with blasting and so on. Due to over-exploitation, underground goaf is formed in the mining area, which can easily cause surface damage and form geological hazards. Mine slag includes coal gangue, waste slag, fly ash, and tailings, which damages the geological environment of the mining area and often induces mine geological hazards.
2.2 Data Sources
In the research, the main data materials collected are 1) Digital elevation model (ASTER-GDEM), 2) Remote Sensing (RS) images, 3) Geology hazards inventory, 4) Peak earthquake acceleration, 5) Average annual rainfall, 6) Geology map, 7) Road map, 8) Mine area map. Detailed information about the data materials is listed below in Table 1.
TABLE 1 | The source and characteristics of the data materials.
[image: Table 1]2.3 Landslides Inventory
Landslides are the movement of a mass of rock, debris, or Earth (soil) down a slope (Wu et al., 2012). The landslide in its widest sense includes colluvial landslides, rock and colluvial collapse, and debris flow, causing gravity erosion of the slope and valley (Qiu, 2012; Wang, 2012; Wu et al., 2012). The formation conditions, inducing factors and movement mechanisms of generalized landslides are diverse, changeable, and complex (Duan, 2010). These kinds of geological hazards are commonly linked in time and space in an interdependent whole, and have the characteristics of chain generation (Ma, 2011). Therefore, the evaluation of these hazards can be represented by a unified whole, and the generalized landslide concept is adopted in the landslide sensitivity evaluation of this paper.
In the Fenxi Coal Mine Area there are 639 geological hazards which include ground collapse (371), unstable slopes (132), colluvial landslides (69), rock and colluvial collapses (36), debris flows (28), ground fissures 2) and land subsidence 1) respectively, obtained from the Geological Environment Monitoring Center of Shanxi Provincial Natural Resources Department. All seven kinds of geological hazards data are converted into certain data formats and finally generate spatial point site data, and shown In Figure 1. The X, Y coordinates of the central point of the geological hazards represent their sites.
According to the definition of landslides mentioned previously, landslides in this paper are including colluvial landslides, rock and colluvial collapses, and debris flows. Unstable slope is a kind of geological hazard site that is prone to landslides. Thus the spatial distribution of landslides in the Fenxi Coal Mine Area with a total of 265 landslide sites has been mapped by applying the remote sensing (RS), geographic information system (GIS), and spatial data analysis method.
2.4 Condition Factors
Geological hazards destroy the ecological environment, and their occurrence is affected by various internal and external dynamic forces. According to the geological, topographical and survey data of the Fenxi Coal Mine Area, as well as the existing expert experience (Chau et al., 2004; Peart et al., 2005; Domínguez-Cuesta et al., 2007; Xiang et al., 2010), the condition influence factors of landslide hazards including topography, geology, hydrology, land cover, and human engineering activities (Youssef and Pourghasemi, 2021) were selected to explore the mechanism and characteristics in the Fenxi Coal Mine Area. Topography factors are expressed by terrain factors: elevation, slope, aspect, and curvature (plane and profile curvature). ASTER-GDEM with 30 × 30 m spatial resolution was used to extract terrain factors. Geological structural factors include stratigraphic lithology, distance to fault, and peak earthquake acceleration. Many scholars have analyzed the influence of geological structure on the sensitivity of geological hazards and explored it. They believe that strata and strata lithology play a more significant role in ground hazards, and the distance to the fault also directly or indirectly affects them. Stratum lithology is the basis of geological hazards, and some geological hazards occur directly on the stratum. The Hydrology factors contain average annual rainfall and distance to river factors, while land cover factors involve land use type and NDVI. The three human engineering activities factors include distance to road, distance to mined area, and ground collapse density. In the Fenxi Coal Mine Area, the mining area accounts for 55.57% of the total area of the district, and the average density of ground collapse geological hazards points in the Fenxi Coal Mine Area is 0.07 (place/km2), so it is very necessary to construct distance to mined area and ground collapse density factors for the LSP. Through the condition factors and the comprehensive analysis of ArcGIS software, the relationship between landslide hazards and the geological ecological environment was studied, and its sensitivity was classified and evaluated. In the Fenxi Coal Mine Area the whole landslides condition factors involved are described and mapped below:
2.4.1 Elevation
The east and west sides of the Fenxi Coal Mine Area are the Huoshan and Luliang Mountain Uplift Belt, and the middle is the Jinzhong rift basin, which is dominated by hills and low mountains. The middle and south sections are relatively flat, while the east and west sides are high mountains, which incline toward the Fenhe River Valley. The overall terrain is low in the middle and high on both sides of the east and west part, with great relief (Liu, 2015). According to ASTER GDEM with the resolution of 30 m, based on ArcGIS platform statistics, the elevation of the Fenxi Coal Mine Area is 625–1951m, with an average value of 987 m, as shown in Figure 2A.
[image: Figure 2]FIGURE 2 | Landslide condition factors. (A) Elevation, (B) Slope angle, (C) Slope aspect, (D) Plan curvature, (E) Profile curvature, (F) Stratum lithology, (G) Distance to fault, (H) The seismic peak acceleration, (I) Distance to river, (J) Rainfall, (K) Land-use type, (L) NDVI, (M) Distance to road, (N) Distance to mined area, (O) Ground collapse density.
2.4.2 Slope
Slope is an important breeding factor of geological hazards in mining areas, which reflects the degree of slope inclination (Li et al., 2018; Huang et al., 2021a). On the one hand, with the increase of slope, the component force of gravity on the slope also increases. On the other hand, the greater the slope, the stronger the anti-weathering ability of slope rock (Guo, 2014). Using DEM data, extract the slope of the Fenxi Coal Mine Area to generate a slope map, as shown in Figure 2B.
2.4.3 Aspect
Aspect is an important factor affecting the surface distribution of solar radiation (Alghamdi and Abdel-Mottaleb, 2021). The eastern, southern, southeastern, and southwestern sections in the northern hemisphere are sunny slopes, while the shady slopes are the western, northern, northeastern, and northwestern sections. Slope aspect affects regional surface evaporation, weathering degree of weathering crust, vegetation soil, and slope erosion. Based on the ArcGIS platform, the thematic map of aspect is generated through DEM, and the aspect is divided into nine levels: flat, true east, true west, true north, true south, northeast, southeast, northwest, and southwest, shown in Figure 2C.
2.4.4 Curvature
The unevenness of the slope is reflected by the curvature of the surface. The greater the unevenness, the more uneven the force of the slope, and the more likely to occur geological hazards. Curvature is the second derivative of the surface. If the curvature is greater than zero, the pixel is convex upward; if the curvature is less than zero, the pixel is concave upward; if the curvature value is zero, the pixel is flat. Surface curvature can be divided into two types: 1) profile curvature, and 2) plane curvature. The former is the slope along the direction of the maximum slope, and the latter is the value perpendicular to the direction of the maximum slope. These two curvature maps of the Fenxi Coal Mine Area are extracted, as shown in Figures 2D,E.
2.4.5 Stratum Lithology
Xiang et al. (2010) believe that the type of rock and the structure of the rock layer are significant factors that determine the Land slope stability. Lithology principally is reflected in the mechanical composition of the land surface weathering layer and sediments. We vectorized the 1:50,000 geological map of Shanxi province by counties, and reclassified it according to stratum age and the mechanical composition of the surface weathering layer, and divide the lithology of the Fenxi Coal Mine Area into 10 categories, respectively: 1) massive rock mass, 2) sandy shale, 3) limestone sandstone, 4) dolomite, 5) coal shale, 6) mudstone, 7) clay, 8) clay, 9) sub-sand, (10) sand. The formation lithology factor of the Fenxi Coal Mine Area is constructed, as shown in Figure 2F.
2.4.6 Distance to Fault
Faults significantly affect the stability of the surface of the mining area, and fault structures control the distribution, number, and scale of geological hazards. Based on the ArcGIS platform, the geological structure map of the 1:50,000 coal mine area in Shanxi Province is vectorized, and after correction, clipping, and stitching, the fault cites map is obtained. The fault cites map of the Fenxi Coal Mine Area is shown in Figure 2G.
2.4.7 Peak Earthquake Acceleration
The seismic peak acceleration represents the maximum absolute value of the acceleration of the Earth’s surface particle motion in the process of earthquake shaking. The larger the intensity of seismic peak acceleration, the easier the damage to the land surface. The seismic peak acceleration data is obtained from the Geological Environment Monitoring Center of Shanxi Provincial Natural Resources Department. The seismic peak acceleration factor constructed using ArcGIS is shown in Figure 2H.
2.4.8 Distance to the River
Drainage networks were aquired from ASTER-GDEM with 30 × 30 m spatial resolution. The river system also has a great impact on the occurrence of surface hazards, mainly in that different water systems can weaken the resistance of rock fronts and increase the free face, thus affecting the stability of the surface slope. Based on DEM, the river network of the Fenxi Coal Mine Area is extracted, and the 1:50,000 river system map of Shanxi Province is vectorized. After correction, splicing, and cutting, the water system distribution map of Fenxi Coal Mine Area is obtained by combining the two methods, Figure 2I.
2.4.9 Average Annual Rainfall
The results show that the ground deformation tends to be stable during a certain period of time after completion in the mine area under natural conditions, and the occurrence of landslides is significantly affected by average annual rainfall. According to the precipitation of ground stations in Shanxi Province within the past 30 years, the precipitation distribution map was obtained by using the ArcGIS platform and is shown in Figure 2J.
2.4.10 Land-Use Type
The area of mining disturbance in the Fenxi Coal Mine Area accounts for 37.31% of the total region. On the one hand, mining disturbance does great damage to the surface, affecting the occurrence of landslide hazards; and on the other hand, single land use modes, or the reuse of land and light maintenance, gradually reduces the land-use rate, accumulates over time, and part of the land is barren and bare, which provides certain conditions for the occurrence of geological hazards. In this paper, according to the second national land survey land classification (with 12 new categories), there were found 12 first class and 56 s class norms. Land-use types were interpreted, based on the Landsat TM images, and shown in Figure 2K.
2.4.11 NDVI
Land subsidence damages the land cover and the habitat of forest and grassland vegetation. NDVI (normalized vegetation indices) are important indices reflecting the distribution of regional surface vegetation, which reflects the sensitivity of geological hazards. NDVI is calculated by using Landsat remote sensing images. The value of NDVI is distributed in (−1, 1). Zero represents rock or bare soil; negative value means water; a positive value means vegetation, and the larger the NDVI value, the higher the vegetation coverage (Su et al., 2017a; Huang et al., 2020c). The NDVI of the Fenxi Coal Mine Area is shown in Figure 2L.
2.4.12 Distance to Road
The construction of road networks destroys surface morphology and stability, which is closely related to geological hazards and ecological environment sensitivity in mining areas. There are many Earth filling and excavation and culvert projects caused by road network construction, which easily leads to geological hazards. The 1:50,000 road traffic map of Shanxi Province is vectored, and the road distribution map is obtained through data processing. The distance from each landslide cites to its nearest road is extracted, and the road network density factor is constructed, as shown in Figure 2M.
2.4.13 Distance to Mined Area
Human mining engineering activities cause great disturbance and damage to the land surface. Based on the ArcGIS platform, the distance from the landslide sites to the mining area can be calculated. If the point falls inside the mined area, the distance is zero. The smaller the distance, the more vulnerable it is to mining area disturbance; on the contrary, the greater the distance the less it affected by mining disturbance. It can be shown in Figure 2N.
2.4.14 Ground Collapse Density
The density of ground collapse theoretically plays a decisive role in the occurrence of geological hazards. Ground collapse significantly affects the stability of the surface of the mining area. Based on the ArcGIS platform, the ground collapse density factor is obtained and shown in Fig. 2o.
3 METHODOLOGY
3.1 Random Forest Model
RF is the most commonly used machine learning algorithm. It is a combined model that integrates multiple decision trees. By combining multiple weak classifiers, the final result is voted or averaged, which makes the result an overall model with high accuracy and generalization performance (Maxwell et al., 2020). The working principle of RF is shown in Figure 3. RF involves two concepts: 1) random sampling of data points; 2) Segmentation of nodes based on feature subsets. Random sampling: Each tree is trained on a sample of data points drawn at random. These samples are drawn repeatedly; random subset of features: At each node, the decision tree will consider segmentation based on a part of the feature, and the number of this part of the feature is the square root of all of the elements features. The best conditions for predictors are given by log2 (M+1), where M represents the number of inputs to the algorithm, and the mean square error is given by (Sevgen et al., 2019):
[image: image]
[image: Figure 3]FIGURE 3 | The working principle of RF.
Among them, [image: image] represents the mean square error, V1 is the variable of the observation data, and V2 is the result variable (Sevgen et al., 2019). The calculation formula of the mean is:
[image: image]
In the formula, S is any forest prediction value, while K is used to a single tree in RF, V2 is the result variable too. Through this algorithm, on the basis of determining the simple tree set and random predictor variables (Band et al., 2020), edge functions are defined.
3.2 C5.0 Decision Tree Model
C5.0 is a decision tree generation algorithm (Tobi and Duncan, 2019). It divides the sample data in the light of the field that provides the maximum attribute of information gain rate as a critical method to determine the arithmetic performance, at the same time cuts and merges the leaf nodes of the decision tree to raise the classification accuracy, ultimately determine the optimal threshold for every leaf. The core of the C5.0 algorithm is to select the characteristic variables of each branch by using the speed of information entropy reduction (Guo et al., 2021). The calculation formula of information entropy is as follows (Liu et al., 2017):
[image: image]
In the formula, ui (i = 1,2, …r) represents information, and P (ui) represents the probability of occurrence of information ui (i = 1,2, …r). When encountering too much or insufficient sample data, the C5.0 will automatically eliminate and adjust the weights to obtain an optimal decision tree model. C5.0 possess the advantages of high reliability, fast running speed, small memory usage, and high fault tolerance (Tobi and Ducan, 2019; Guo et al., 2021).
3.3 Support Vector Machine Model
On the basis of the structural risk minimization principle and VC dimension theory of statistical learning theory, Vapnik et al. developed another machine learning method: SVM. The SVM model is based on a variety of basic functions to transform linearly inseparable data into high-dimensional space, and find hyperplanes in that high-dimensional space to realize linearly separable data patterns (Chen et al., 2016; Su et al., 2017b; Liu et al., 2017). SVM is able to turn a nonlinear problem into a linear one in a high-dimensional space by nonlinear transformation, and then find the optimal classification surface in the transformed high-dimensional space (Su et al., 2017a). SVM skillfully solves the problem of mapping from low dimensional input space to high dimensional feature space by introducing kernel function (Huang et al., 2018; Guo et al., 2021). In this paper, the kernel function of the Radial basis function (RBF) is used, and the algorithm formula is as below:
[image: image]
Among them, the γ of the kernel function is a parameter, which needs to be optimized when building the model to increase the fitting accuracy.
3.4 Modelling Procedure
After determining the landslide inventory map and influencing factor maps (Guo et al., 2021), RF, SVM, and C5.0 algorithms were integrated to generate the final landslide susceptibility map. The Fenxi Coal Mine Area has a total of 265 landslides, which equaled to non-landslide sites that were built, and changed to pixels according to (Su et al., 2017a), for the sake of offering the essential knowledge about stable or unfavorable conditions of landslide occurrence (Guo et al., 2021). Through the Geostatistics analysis means the pixels are separated entirely into two parts in a random manner: 1) The first part contains 80% of the data, participated in the model training stage; 2) The second part is the validation data set, including the remaining 20% of the data adopted to verify these three models and confirm their accuracy.
The three measures of Accuracy, Specificity, and Sensitivity were adopted to evaluate the performance after applying a dataset of 5-fold cross-validation. Also, the Receiver Operating Characteristics (ROC) of each model were plotted, and the Areas Under the ROC Curves (AUC) of every model were obtained. An SLP map has the ability to predict future landslide sites. RF, SVM, and C5.0 are used to model and verify in the two (training and verification) phases, which can be adopted to obtain the landslide sensitivity of all pixels in the Fenxi Coal Mine Area. Jenks Natural Breaks algorithm was used to divide the probability range of landslide into five grades: very low, low, medium, high, and very high, and the three landslide susceptibility maps were obtained. Two aspects are listed below in which the landslide sensitivity zoning performance is able to be illustrated: 1) the surveyed landslide sites mainly scatter in the very high and high LSP zone, and it shows that the performance accuracy of the LSP zone is relatively higher; 2) the sites in the very high and high sensitivity zone in all the surveys ought to account for lower portion correspondingly, which can effectively reduce the redundancy and improve the LSP accuracy (Gokceoglu et al., 2005; Su et al., 2017a).
4 EVALUATION RESULTS
4.1 Factor Correlation Test
In this paper, a total of 15 condition factors–slope, elevation, aspect, curvature (plane curvature, profile curvature), lithology, distance to fault, peak earthquake acceleration, land use type, NDVI, distance to river, annual average rainfall, distance to road, distance to mined area and ground collapse density—were selected as the susceptibility evaluation indices. In order to ensure the objectivity and independence of the evaluation indices, we adopted the Pearson correlation analysis method to analyze the correlation among the 15 indicators. The SPSS software was used to import the matrix of 15 indices factors, and the correlation analysis was carried out. The correlation between condition factors is displayed in Table 2, and Table 2 indicates that all indices condition factors meet the requirements of independence. Combined with the actual situation of the Fenxi Coal Mine Area, we use these 15 condition factors as the evaluation indices of LSP in the study area.
TABLE 2 | The correlation between 15 condition factors.
[image: Table 2](In Table 2 the 15 Landslide condition factors (elevation, slope, aspect, plan curvature, profile curvature, lithology, distance to fault, peak earthquake acceleration, distance to river, annual average rainfall, land use type, NDVI, distance to road, distance to mined area and ground collapse density) are shorted and represented by Elev, Slop, Aspe, Pl-c, Pr-c, Lith, Faul, Peak, Rive, Rain, Land, Ndvi, Road, Mine and Coll, respectively).
4.2 Model Accuracy Evaluation
For the use of the three models, the input and output variables, the training and testing data are all determined as shown in Section 2.4. Cross-validation estimation of the predictive performance of a model is a crucial step in predictive modeling, and spatial cross-validation is recommended for spatial data, which may be subject to spatial autocorrelation (Su et al., 2017a), so the 5-fold cross-validation mean is adopted to calculate these LSP indices. In the training process of C5.0, the redundant nodes of the tree are pruned along with the tree growth, and the child nodes are created 10 times (Huang et al., 2020c), and the other model parameters are given as default. During the training process of RF, the maximum number of nodes is selected as 10,000, the maximum tree depth is set to 10, and the Minimum node size is 5. The model will stop building when the accuracy is no longer improved. All the parameters of SVM, Epsilon is 0.1, cost constant is 10, and RBF-γ, γ, and degree is 0.1, 3, respectively. Through cross-validation of the model, the confusion matrix was obtained, and based on this, the fitting accuracy is calculated and shown in Table 3.
TABLE 3 | Accuracy of cross-validation of the three LSP models.
[image: Table 3]Table 3 indicates that the average accuracy rates of C5.0, RF, and SVM in the training stage are 97.36, 93.87, and 84.24%, respectively. The standard deviation of C5.0, RF, and SVM in the training stage is 2.85, 3.11, and 0.81. C5.0 has the highest accuracy and lowest standard deviation in the training stage, so C5.0 performs better in the training stage. In the validating phase, their average accuracy rates were 69.81, 65.47, and 67.17%, respectively. Therefore, C5.0 has the highest accuracy rate in the verification phase, followed by the SVM accuracy rate, and the RF accuracy rate is the lowest. Their standard deviations in the validating phase are 3.34, 2.17, and 3.97, respectively. Obviously, RF has the lowest standard deviation in the verification phase, the standard deviation of C5.0 is the second, and the standard deviation of SVM is the highest.
4.3 AUC and ROC Analysis
Using a 5-fold cross-validation dataset for C5.0, RF, and SVM algorithms the ROC curves and their corresponding AUC values of the LSP are illustrated in Figure 4. The results of AUC in the training stage are shown in Figure 4A. The estimation of the training set is always too optimistic (Brenning, 2005; Su et al., 2017a). In accordance with AUC obtained from the training stage, wholly, the AUC indices values are indeed much higher than 0.9, indicating that C5.0, RF, and SVM algorithms completely obtain a successful performance. C5.0 has much better prediction results (0.99), compared with RF (0.96) and SVM (0.92). Prominently, C5.0 is much more successful than RF and SVM in the training stage. This means that the current three models (C5.0, RF, and SVM) are all capable of solving complex questions.
[image: Figure 4]FIGURE 4 | ROC and AUC for the three landslide susceptibility models in different models stages. (A) Training stage (B) Validating stage.
In the validating stage, the values of AUC correspondingly are illustrated in Figure 4B. The values of AUC range from 0.71 to 0.80 in the validating stage, the same as in the training stage, C5.0 is the highest one with 0.80, followed by RF, and SVM which both have the performance of 0.71. With an AUC value of more than 0.7, all the three models are capable of modeling the LSP in Fenxi Coal Mine Area in this study. Nonetheless, C5.0 appears to be more accurate and promising than RF and SVM.
4.4 Relative Contributions of Condition Factors
The same as the fact that different models have different performances, different condition factors cannot make equal contributions to the evolution of regional landslides (Chen et al., 2018; Guo et al., 2021). The contributions of condition factors in the Fenxi Coal Mine Area are determined through calculating the mean value of relative contributions of each condition factor under all the three different models (Guo et al., 2021), and the contributions of each cross variable condition factors of these fitting algorithms are shown in Figure 5. Figure 5 mainly shows that the median contributions of the condition factors of the variables are classified as distance to road, lithology, profile curvature, ground collapse density, land use type, average annual rainfall, slope, distance to mined area, NDVI, aspect, peak earthquake acceleration, distance to river, and so on in descending contribution order, from highest to lowest. Hence, it is obvious that distance to road, stratum lithology, profile curvature, and ground collapse density are principal condition factors in the Fenxi Coal Mine Area for the evolutions of landslides. The distance to mined area factor has a medium contribution, and the ground collapse density factor plays an obvious role in the occurrence of geological hazards.
[image: Figure 5]FIGURE 5 | Contributions of each condition factors under different models.
4.5 Susceptibility Map Analysis
The study area contains 3,597,447 pixels, converted into point type and mapped by ArcGIS platform. Using Jenks Natural Breaks algorithm, the three landslide susceptibility indices were reclassified into five susceptibility levels, shown in Table 4.
TABLE 4 | Landslide susceptibility classification standards in Fenxi Mine Area.
[image: Table 4]In accordance with the Classification standard for susceptibility of landslides in the Fenxi Coal Mine Area, Three landslide sensitivity maps are obtained and converted into a grid format, and the three LSP maps using the three models are plotted in Figure 6. Figure 6 indicates that the three algorithms consistently have given the northern zone in the Fenxi Coal Mine Area a low or moderate record score of LSP. It is realistic that this zone has a lower elevation, and rarely slope instabilities generate in Jinzhong Basin. On the contrary, areas with the value of ground collapse density increasing was given higher scores in LSP in the Fenxi Coal Mine Area.
[image: Figure 6]FIGURE 6 | Landslide susceptibility maps using the three models. (A) C5. 0 (B) RF (C) SVM.
In order to compare the three spatial LSP indices, the characteristics of landslides distribution and their area percentage under each susceptibility range are shown in Table 5.
TABLE 5 | Distributions of landslides and area percentage under different susceptibility standards.
[image: Table 5]It is obvious from Table 5 that regions with high and very high landslide sensitivity degrees possess 193, 173, and 176 landslide sites, when considering the area percentage, they also possess 17.55, 23.45, and 23.44% for the three models for C5.0, RF and SVM respectively in the Fenxi Coal Mine Area. Because the surveyed landslide hazard sites are mostly distributed in the regions with high landslide sensitivity, and in all the surveys, the sites with high sensitivity grades account for a very low portion (Gokceoglu et al., 2005; Su et al., 2017a). Therefore, C5.0 is the best one of all the models for the LSP algorithms.
5 DISCUSSION
5.1 Analysis of Model Building
The three typical models are widely used in many studies and can well embody the basic features of their corresponding model types (Huang et al., 2020c; Guo et al., 2021). RF has the advantages of fewer restrictions on variables involved in the evaluation, no need to consider the data scale and data distribution, high computational efficiency, high precision, and low debugging cost compared with other deep learning models (Su et al., 2017b; Huang et al., 2018). SVM is capable of solving some matters with nonlinearity, small samples, over-learning, dimensionality curse, and local minima, and has strong generalization ability. But for many types of problems, SVM is not efficient (Wu et al., 2014). C5.0 possesses some superiorities in modeling the SLP (Alkhasawneh et al., 2014; Park and Lee, 2014; Wu et al., 2014). C5.0 is a good model which is easy to understand and explain, training needs less data, and the modeling processes includes tree nodes grown, tree nodes pruning, feature selection, and so on. The other machine learning models usually need the advantages of data normalization, but the results of C5 are easy to overfit. Hence, through the comparison of these algorithms, C5.0 can be understood to have the ability to overcome the shortcomings that the traditional machine learning models possessed. The C5.0 is the best performing model of all machine learning algorithms.
5.2 Analysis of Accuracy Comparison
The accuracy of the LSP model is decided by the algorithm selected (Su et al., 2017a; Huang et al., 2020c). The average precision of C5.0, RF, and SVM in the training stage is 97.36, 93.87, and 84.24% respectively, and their accuracy in the validating stage is 69.81, 65.47, and 67.17%. The standard deviation represents the stability of the model, and the higher the accuracy is, the more unstable the algorithm is. The standard deviation of C5.0, RF, and SVM is 2.85, 3.11, and 0.81 in the training stage, and is 3.34, 2.17, and 3.97 in the validating stage respectively. Therefore, C5.0 is more moderate for LSP in this study. The algorithms which have a high AUC value usually possess higher and more successful prediction indices (Huang et al., 2020c). The ROC curves of the three models suggest that in the training stage C5.0 has a much higher prediction index (0.99) than that of RF (0.96) and SVM (0.92), while in the validating stage C5.0 has the highest AUC with 0.80, followed by RF (0.71) and SVM (0.71), the same as the performance in the modeling process. Therefore, considering the fitting accuracy, ROC curve, and AUC value of C5.0, RF, and SVM, C5.0 is more moderate than the other two algorithms.
5.3 Analysis of Landslide Susceptibility Zone
The attribute data in Fenxi Coal Mine Area is introduced into the C5.0, RF, and SVM to obtain the landslide susceptibility indices. Taking ArcGIS as the sensitivity indices, Jenks Natural Breaks algorithm is adopted to divide the probability indices of landslide into five levels that are very low, low, medium, high, and very high in indices ascending order, and three landslide sensitivity maps are obtained respectively. The results indicated C5.0, RF, and SVM have 193, 173 and 176 landslide sites in the high and very high areas respectively, and the high and very highly prone areas account for 17.55, 23.45, and 23.44% of the study area. Because the surveyed landslide hazard sites are mostly scattered in which the high and very high landslide sensitivity levels are distributed, while in the whole process, the landslide sites with high sensitivity levels account for a low proportion (Su et al., 2017a). Therefore, C5.0 is the best of all the models. These three models also predict that the landslide sensitivity of the Jinzhong basin is low or moderate, and predict that the landslide sensitivity of the mountains lies in the central section, the northeast part, and the east part of the Fenxi Coal Mine Area and increases with the value of ground collapse density.
5.4 Analysis of Condition Factors
Generally, the factors such as Topography, Hydrology, Geology, land use type, and so on are extensively accepted as condition factors in many LSP models (Su et al., 2017a). Distance to road and lithology factors are the two important factors. The highest contribution of distance to the road may be that the road constructions have changed the slope, formed an escarpment, and led to slope instability. On the mechanical properties, the lithology factor can affect the slope instability, it has been proved that the hard and dense rock mass hardly has any sensitivity to slope instability (Huang et al., 2020a).
Profile curvature and ground collapse density are relatively important factors too. The curvature factors represent the unevenness of the land surface. The greater the unevenness, the more uneven the force of the slope, and the more likely geological hazards are to occur (Su et al., 2017a). The ground collapse density theoretically plays an obvious role in the occurrence of geological hazards. Ground collapse significantly affects the stability of the surface of the mining area. Abundant ground collapse destroys the surface morphology and stability, which is closely related to geological hazards and ecological environment sensitivity in mining areas.
Then the factor contribution importance of the land use type, average annual rainfall, slope, distance to mined area, NDVI, Aspect, peak earthquake acceleration, and so on are listed in descending order of contribution. It is obvious that the distance to mined area factor has a medium contribution to all the models.
In the Fenxi Coal Mine Area the mining area accounts for 55.57% of the total area of the district, and the average density of ground collapse geological hazards points is 0.07 (place/km2). Mining disturbance has great damage to the surface, and ground collapse density affected the occurrence of geological hazards. Thus the mining disturbance such as the underground mined area and ground collapse have prominently affected the slope instability of the Fenxi Coal Mine Area.
6 CONCLUSION
This current research has contributed to comparison and evaluation of three machine learning methods (C5.0, RF, and SVM) for landslide susceptibility zoning in the Fenxi Coal Mine Area, so as to reveal whether the RF and C5.0 is more fit in a coal mine area, and better evaluate the impact of Mine on landslides, and whether the mining disturbance activities such as the underground mined area and ground collapses have some contribution to the occurrence of mine geological hazards. The Fenxi Coal Mine Area is used as the study area with 265 recorded landslides and 15 condition factors, the LSP maps of the Fenxi Coal Mine Area are zoned and plotted by the C5.0, RF, and SVM algorithms, respectively. The results show that C5.0 is more suitable for landslide susceptibility evaluation in Fenxi Coal Mining Area, through the analysis of AUC accuracy and landslides distribution features. Of all the 15 condition factors, the four factors including distance to road, lithology, profile curvature, and ground collapse density are the most suitable condition factors for LSP. The distance to mined area factor has a medium contribution to the three algorithms and plays an obvious role in the occurrence of geological hazards. Hence the mining disturbance activities have prominently affected the slope instability in Fenxi Coal Mine Area. In the zoning of LSP, landslides often include different types of sub-landslides as colluvial landslides, rock and colluvial collapse, debris flow, and unstable slope. To the characteristics of the different types of sub-landslides, further consideration is needed to reflect their different characteristics in the landslide susceptibility zones.
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Soil slopes, located near rivers or the sea, often get damaged dramatically under seismic action due to the high groundwater level. To determine the failure mechanism, this study proposed an analytical method for a composite critical slip surface of a multi-layer slope considering the effects of the excess pore water pressure using the Newmark’s method and variational principle. Based on this, a method for evaluating the effects of the excess pore water pressure on the permanent displacement of the slope under seismic action was established, and influence mechanisms of the excess pore water pressure on failure modes of the multi-layer bank slope at different groundwater levels were studied. The research results show that slip surfaces basically have same shapes at different groundwater levels; however, with the rise of the groundwater level, soil above a seepage line is not affected by the excess pore water pressure, and its sliding scale slightly changes. For soil below the seepage line influenced by the excess pore water pressure, the slip surface constantly extends to the interior of the slope, resulting in the increase in the sliding scale. Due to the cumulative increase in the excess pore water pressure, the bank slope at different groundwater levels is generally manifested as shear sliding at the slope toe and tensile fracture at the top. Finally, based on the shaking table test, the proposed method was verified to be reasonable and accurate. This research provides a simple and reliable method for slope engineering technicians to evaluate the stability of water-rich soil slopes.
Keywords: multi-layer slope, composite critical slip surface, excess pore water pressure, permanent displacement, shaking table test
INTRODUCTION
With the advancement of construction goals of “the Belt and Road Initiative” and “Maritime Silk Road,” a large number of marine engineering projects are developing far out in the sea of China and most of the water transportation projects are located in strong earthquake areas. Bank slopes are widely involved in water transportation engineering (Zhang et al., 2020). Different from general road slopes, one side of a bank slope is immersed in water all year round and the internal groundwater level is higher. The excess pore water pressure can be produced under seismic action so that the slope is very likely to slide and collapse (Wang and Sassa, 2009; Huang et al., 2018). For example, during an earthquake in Miyagi Prefecture, Japan, in July 2003, a lot of river bank slopes were seriously damaged, most of which were caused by the principal earthquake (Ms = 6.2). There was a settlement of about 3 m at the top of a bank slope and the slope toe protruded to the road outside the slope for 3–5 m as shown in Figure 1. Therefore, coastal or riverside slopes are more prone to sliding and collapse under seismic action due to a high water content. Determining the seismic stability of such slopes to take engineering protective measures for technical reinforcement and prevent engineering accidents in time is of great significance.
[image: Figure 1]FIGURE 1 | Sliding failure of a river bank slope during the earthquake. (A) Groundwater level after landslide. (B) The slope toe sliding.
For seismic stability analysis of a slope, the design methods recommended in specifications (American Society of Civil Engineers, 2014; JTS146-2012, 2012; Faccioli et al., 2005) in the world mainly include the quasi-static method, time history analysis method, and Newmark’s sliding block displacement method. Of them, the quasi-static method is relatively simple and practical and easy to master by engineering designers, so at present, it has been widely used in specifications of various nations in the world. However, this method only provides one stability index (safety factor) and cannot offer displacement information related to failure surfaces, so it fails to determine the initial sliding position and sliding surface of the slope. The time history analysis method is a nonlinear analysis method, which inputs the seismic acceleration record in the basic motion equation of the structure and performs the integral operation to obtain the seismic effects of the structure in the whole-time history. However, due to large calculation workload, this method is difficult for general engineering designers to master quickly and is not practical in actual engineering. The Newmark’s sliding block displacement method integrates the advantages of the above two methods. It can consider the time cumulative effects of the earthquake, more specifically describe deformation information of sliding blocks, and determine a critical sliding surface of the slope. When the Newmark’s sliding block displacement method is used to analyze the seismic stability of a slope, it is necessary to solve two problems: one is to determine the critical slip surface and the other is to calculate the permanent displacement. At present, slip surfaces of soil slopes are mostly assumed to be circular arcs and logarithmic spirals. Leshchinsky et al. (2016) pointed out that the shape of the logarithmic spiral slip surface obtained by Baker and Garber (1978) based on variational principle is consistent with those obtained by the supremum theorem and proposed the permanent deformation analysis method combined with the Newmark’s method. Based on the Newmark’s method, Huang et al. (2014) considered the slip surface of a homogeneous soil slope as a logarithmic spiral slip surface and put forward a simplified calculation method for the permanent displacement of the slope, considering effects of earthquake-induced excess pore water pressure. Through a Newmark’s rigid-plastic sliding block model, Wang et al. (2016) derived calculation equations for the yield acceleration and permanent displacement of the slope with the logarithmic spiral linear slip surface. Moreover, the calculation model for the permanent displacement of the slope under seismic action was optimized and solved. However, the slope is mostly assumed as homogeneous in seismic stability analysis of the slope using the Newmark’s method in previous studies. This is mainly because the composite critical slip surface of the multi-layer slope cannot be represented by a single logarithmic spiral and it is difficult to carry out analytical calculation.
Furthermore, for a bank slope, the excess pore water pressure is the main factor that causes its destruction under earthquake aciton (Du and Chen, 2018; Cao et al., 2019; Huang et al., 2020). In the seismic stability analysis of the slope with the Newmark’s method, how the excess pore water pressure affects the critical slip surface and permanent displacement, especially for the multi-layer slope, is another important problem to be solved in this study. There have been many studies on cumulative development of the excess pore water pressure under seismic action (Chiaradonna et al., 2020; Carey et al., 2017; Hidemasa et al., 2018; Fattah et al., 2016). However, most of the previous studies have been carried out through indoor tests and numerical simulation (Gordan et al., 2016) and mainly focus on changes of the excess pore water pressure of soil under seismic action and its influences on the slope stability. Although physical modeling is an effective way to investigate the seismic behaviors of soil slopes with the influence of the excess pore water pressure, it is unrealistic for engineers to apply the approach in practical engineering. By far, most engineers still adopt the limit equilibrium method with which they are more familiar. These methods are widely documented in geotechnical literatures and use principles of static equilibrium to evaluate the balance of driving and resisting forces. These methods will not consider the excess pore water pressure (Ishii et al., 2012).
To sum up, the Newmark’s method for analyzing the seismic stability of the slope has been widely used. However, for calculation of the permeant deformation of multi-layer slopes, especially slopes with a high groundwater level, how to determine the composite critical slip surface and what is the effect of excess pore water pressure on multi-layer slope are problems urgent to be solved. Based on this, the method for determining the composite critical slip surface of the multi-layer slope was proposed based on the Newmark method and variational principle. By combining with the proposed simplified calculation method of the earthquake-induced excess pore water pressure (Huang et al., 2021), this research put forward the method for calculating the permanent displacement of the multi-layer slope considering effects of the excess pore water pressure. On this basis, influence mechanisms of the excess pore water pressure on failure of the bank slope at different groundwater levels were analyzed. Moreover, the method was verified to be reasonable and accurate through the shaking table test.
CALCULATION METHOD FOR THE PERMANENT DISPLACEMENT OF THE MULTI-LAYER SLOPE
There are many methods to calculate the logarithmic spiral critical slip surface of the slope in the Newmark’s method, among which the calculation method based on variational principle is widely recognized. Before introducing the proposed calculation method for the critical slip surface of the multi-layer slope, this study first introduced the calculation process of the logarithmic spiral critical slip surface of a homogeneous slope based on the variational principle, as shown in Figure 2.
[image: Figure 2]FIGURE 2 | Calculation diagram of the critical slip surface of a homogeneous slope.
As displayed in Figure 2, a sliding body is simplified as a rigid body in the calculation of the logarithmic spiral slip surface of the homogeneous slope, and its resisting moment and down-sliding moment relative to the center of rotation satisfy Eq. 1 of rotational equilibrium,
[image: image]
where [image: image] represents the frictional resisting moment of the slip surface, [image: image]indicates the sliding moment and is the sum of the sliding moment MDV formed by the dead weight and the sliding moment MDH formed by the inertia force of the soil block on the slip surface, and H is the slope height.
According to the standardized coordinate system based on the slope height H in Figure 2, calculation methods for different rotational moments can be obtained from Eqs 2–4 by taking the slope toe as the coordinate origin,
[image: image]
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where Xi, Yi, and [image: image] are the x and y coordinates of the slip surface standardized by the slope height H; [image: image]and Fs are the tangential shear stress of the slip surface and the safety factor of the slope stability, respectively; [image: image] indicates the slope of coordinate [image: image]of the critical slip surface shown in Eq. 5; C, [image: image], and [image: image]are the cohesion, vertical stress, and internal friction angle of the slip surface, respectively; [image: image] and [image: image] separately indicate the standardized cohesion and internal friction angle in Eq. 6, respectively; and [image: image]and [image: image] stand for the average weight per unit volume of soil on the slip surface and seismic acceleration acting on the soil block in the [image: image] interval, respectively.
The groundwater level in the bank slope is a factor that cannot be ignored. Under seismic action, the coupling effect of earthquake and groundwater can also produce the excess pore water pressure. Therefore, it is necessary to consider the effects of sliding force of the sliding body induced by the pore water pressure in Eq. 1 of rotational equilibrium. The effects of the excess pore water pressure are mainly obtained through use of a simplified calculation method proposed in the existing study (Huang et al., 2021), as demonstrated in
[image: image]
where [image: image] represents a correction coefficient and [image: image], [image: image], and [image: image]indicate the shear dilatancy and shrinkage coefficients, respectively. For sandy soil, [image: image], and for homogeneous elastic materials, [image: image], thus obtaining [image: image]. [image: image], [image: image], [image: image], and [image: image]denote the maximum acceleration of the surface, gravitational acceleration, overburden load at the depth of Z, and thickness of the soil layer, respectively.
Through Eqs. 7 and 8, the pore water pressure on the critical slip surface can be determined as follows:
[image: image]
Eq. 1 for rotational equilibrium can be changed into
[image: image]
where [image: image]represents the rotational moment produced by the pore water pressure, which is calculated according to
[image: image]
For the shape of the logarithmic spiral critical slip surface, Eqs 11 and 12 can be used for calculation,
[image: image]
[image: image]
where XC and YC indicate the polar coordinates of a logarithmic spiral and A and β represent the constant of the logarithmic spiral and the angle relating to the position of the inclined plane, respectively. Here, β is the angle of counterclockwise rotation around the polar coordinates of the logarithmic spiral from the vertical direction to the point (X, Y) on the slip surface. The yield acceleration asy can be calculated by substituting the safety factor Fs of 1.0 of slope stability in Eq. 2 into equilibrium Eq. 1. Furthermore, for the critical slip surfaces of the multi-layer slopes with different soil strengths, they cannot be expressed by a single logarithmic spiral. Therefore, the research refers to variational solutions to slopes with discontinuous soil strength proposed by Baker and Garber (1978), namely, the slip surfaces of each layer in the multi-layer slope are logarithmic spirals, that is, the slip surfaces are same in shape. Based on the above analysis, although the logarithmic spiral slip surfaces have different constants, their polar coordinates in various layers of the slope are same.
In conclusion, the shapes of logarithmic spirals of slip surfaces in each layer can be obtained by
[image: image]
[image: image]
where ψmj and Aj separately represent the standardized internal friction angle and constant of the logarithmic spiral of the jth layer, respectively.
To determine the shapes of logarithmic spirals in each layer of the slope, it is necessary to set unified polar coordinates, constants of logarithmic spirals, boundaries of each layer, and polar coordinates β of the upper or lower end of the slip surface, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Calculation diagram of shape of the logarithmic spiral slip surface of the multi-layer slope.
It is assumed that the number of layers in the slope is N and the polar coordinates are XC and YC. There are N constants of the logarithmic spiral in each layer, which means that there are N boundaries and β for the lower or upper end of the slip surface, so 2N+2 unknowns need to be solved. On the boundary of the adjacent layer, because the slip surfaces in two layers are consistent in Figure 3, the continuity conditions of sliding lines are established, thus obtaining 2(N-1) equations with continuity conditions. In the polar coordinate system of the slip surface, considering the lower or upper end of the slip surface, there are 2N-2 unknowns, which can be solved according to continuity conditions of layer boundaries. The specific calculation process is shown as follows.
First, because the depth of the boundary of adjacent layers is known, the Y coordinate of the slip surface on the boundary is also known. In this way, since the values of Y coordinates of the slip surfaces in the two adjacent layers are the same, the relationships of constants Aj+1 and Aj of logarithmic spirals in the upper and lower layers, standardized internal friction angles [image: image] and [image: image] in the two layers, and [image: image]on the boundary shown in Eq. 15 can be obtained. Here, Aj and[image: image]are unknown. To calculate the unknowns, first, it is necessary to assume the polar coordinates of the slip surface, position of the lower end of the whole slip surface, and the constant of the logarithmic spiral of the layer containing this position. After that, taking the lower end of the slip surface as the starting point, the logarithmic spiral [image: image]at the intersection of the layer containing the lower end and the upper boundary is calculated. In this case, the value on the left-hand side of Eq. 16 should be equal to that on the right-hand side. The equation of the Y coordinate of the slip surface on layer boundaries in Eq. 12 is expressed as a function including [image: image]and other parts excluding [image: image]. [image: image]can be calculated by the dichotomy. By substituting [image: image]and the previously set constant of logarithmic spirals into Eq. 15, the constant Aj+1 of the logarithmic spiral of the layer above the layer containing the lower end of the slip surface can be calculated through the above method. In accordance with Eq. 16, [image: image]of the layer and the upper boundary can be calculated. By repeating this operation, the shapes of the logarithmic spirals in each layer can be determined as
[image: image]
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where Aj+1 and Aj represent the constants of logarithmic spirals of the upper and lower layers, respectively; [image: image] denotes the polar coordinate at boundaries in different soil layers; and [image: image]and [image: image]denote the standardized internal friction angles of the jth and j+1st layers, respectively.
After determining the composite critical slip surface of the multi-layer slope, the permanent displacement is calculated by using the Newmark’s method, like previous studies. First, as shown in Eq. 17, the excess of sliding moment MD relative to resisting moment MR of the soil block on the slip surface is calculated (hereinafter referred to as excess sliding moment). The soil block on the slip surface slides all the time in the period from a positive sliding moment (ΔM ≥ 0) to a negative rotational speed [image: image]. In this period, the motion mode of the soil block on the slip surface can be obtained by the equilibrium between excess sliding moment and inertial moment, specifically shown in Eq. 18. The inertial moment of the soil block is calculated by multiplying the rotational speed [image: image]at the center of gravity by the inertial mass [image: image] and least square R2cg of the distance from the polar coordinate of the slip surface to the center of gravity. Each moment in the motion equations on the standard coordinate system shown in Eq. 19 are displayed on an actual coordinate system. The rotational acceleration is solved by Eq. 20. Then, the motion of the soil block can be evaluated through integration,
[image: image]
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CASE ANALYSIS
Calculation Model and Selection of Seismic Waves
By taking a bank slope as a research object, the proposed method for determining the composite critical slip surface under seismic action was used to determine the critical slip surface of the bank slope. Moreover, the seismic deformation behaviors of the bank slope were analyzed and compared with the actual seismic deformation. The bank slope slid and collapsed in an earthquake and a lot of river bank slopes were seriously damaged, most of which were caused by the principal earthquake, as shown in Figure 4. After the earthquake, there was a settlement of about 3 m at the top of the bank slope, and the slope toe protruded to the road outside of the slope for 3–5 m. The large sliding displacement of the bank slope is due to the rise of the groundwater level in the bank slope caused by the rainfall before the earthquake, and the stacking of new sandy soil at the top of the original clay bank slope is also an important influence factor leading to the landslide.
[image: Figure 4]FIGURE 4 | Schematic diagram of the bank slope failure.
The position of the slip surface and permanent deformation of the bank slope after the earthquake are shown in Figure 5A–D. Based on the geological survey report, the borehole information and shear wave velocity along the depth of the formation of the bank slope were obtained, as displayed in Figure 5E.
[image: Figure 5]FIGURE 5 | Sliding and other formation information of the bank slope after the earthquake. (A) Top cracks. (E) Borehole diagram. (B) Top slip. (C) Permanent displacement. (D) Slope toe sliding.
The Ms6.2 earthquake with the epicentral distance of 12 km was recorded at MYG011 and occurred at 38.405°N, 141.170°E and the maximum peak acceleration was recorded as 367.6 Gal. The river bank slope was located in Miyagi Prefecture, Japan. The time-history information of the recorded ground motion is demonstrated in Figure 6.
[image: Figure 6]FIGURE 6 | Record of ground motion.
Considering that the left side of the slope was protected through a bank protection structure, the left side is more stable relative to the right side, which is the reason why the left bank slope was not damaged, but the right slope slid and collapsed in the earthquake. Therefore, the stability of the right side of the slope was mainly analyzed. Considering that a simpler slope model can eliminate the interference of other factors on analysis results and the obtained results are more universal, a generalized model of the bank slope was built, as shown in Figure 7. The right slope of the generalized model is 10 m in height and the slope angle is 45°. Six soil layers are distributed from the top to the bottom: ① sandy soil layer, ② clay soil layer, ③ sandy soil layer, ④ clay soil layer, ⑤ sandy soil layer, and ⑥ clay soil layer.
[image: Figure 7]FIGURE 7 | Generalized model of the slope.
The physical and mechanical parameters of different soil layers of the slope were mainly selected based on geological survey reports and geotechnical design manuals, as listed in Table 1.
TABLE 1 | Physical and mechanical parameters of different soil layers.
[image: Table 1]Slip Surface Shapes Analysis of the Bank Slope at Different Groundwater Levels”
Considering the rainfall before the earthquake, the groundwater level on one side of the bank slope rises, and the excess pore water pressure generated in the slope is the main influence factor of sliding failure. Based on this, the shapes of the slip surface of the slope under the earthquake were studied at different groundwater levels by setting the groundwater level on the left side of the slope as 2, 4, 6, and 8 m. To determine the reasonability of the proposed method in evaluating the critical slip surface of the multi-layer slope, the yield acceleration of the slope can be obtained by substituting the safety factor Fs = 1 in Eq. 2 into Eq. 1 of rotational equilibrium, as shown in Table 2.
TABLE 2 | Yield acceleration of the bank slope at different groundwater levels.
[image: Table 2]In Table 2, the critical yield acceleration gradually decreases with the increase in the groundwater level and its minimum is 2.4 m/s2, which is about 31% lower than the yield acceleration obtained at the groundwater level of 2 m. This indicates that the excess pore water pressure under the seismic action is the main factor influencing the slope stability, and the higher the groundwater level is, the more significant the influences. Through analytical methods of Eqs 15, 16, the critical slip surfaces of the slope at different groundwater levels are determined in Figure 8.
[image: Figure 8]FIGURE 8 | Shape of the critical slip surface.
As displayed in Figure 8, different groundwater levels on the left side of the bank slope result in a large difference in the fracture position of the slope under seismic action, while the shapes of the slip surface are basically consistent. In other words, the sliding failure in the form of logarithmic spirals is shown in soil in both the upper and lower layers of the slope. The failure mode of the bank slope at different groundwater levels is manifested as shear slip at the slope toe and tensile fracture at the top overall. Furthermore, the height of the seepage line in the slope constantly rises with the increase in the groundwater level, and the slip surface of soil above the seepage line slightly extends inside the slope. However, the slip surface of the slope below the seepage line extends more apparently inside the slope. This suggests that as the groundwater level rises, soil above the seepage line is not affected by the excess pore water pressure and the sliding scale of the sliding body slightly changes under seismic action. While for soil below the seepage line that is influenced by the excess pore water pressure, the sliding scale increases at a growing amplitude with the gradual rise of the water depth because the slip surface continues to extend into the slope and its sliding scale rises obviously. For instance, when the groundwater level rises from 2 to 4 m, the extension of the slip surface to the interior of the slope is significantly less than that when the groundwater level increases from 6 to 8 m. Under the coupling effects of the earthquake and groundwater at the slope toe, the excess pore water pressure rapidly accumulatively increases so that the slope toe is most likely to become the shear crack of slip.
Permanent Displacement Analysis of the Bank Slope at Different Groundwater Levels
The influences of different groundwater levels on shapes of the critical slip surface of the slope were analyzed in the previous section. This section mainly analyzed influences of different groundwater levels on the permanent displacement of the slope. First, by using the calculation method for the permanent displacement proposed in this research, the excess pore water pressure of the slope toe and permanent displacements of the slope at the groundwater levels of 2, 4, 6, and 8 m were analyzed, as shown in Figure 9.
[image: Figure 9]FIGURE 9 | Permanent displacements of the slope under different strengths. (A) Excess pore water pressure of slope toe. (B) Permanent displacement.
Figure 9A shows the excess pore water pressure of the slope toe under different water levels, and the excess pore water pressure cumulative increases with the earthquake action in different time. The higher the water level, the greater the excess pore water pressure. Therefore, the water level 8 m has more influence on slope deformation. Figure 9B shows cumulative changes of the permanent displacement of the multi-layer slope at different groundwater levels. At different groundwater levels, the vertical permanent displacement of sliding body of the slope gradually accumulatively increases. First, when the groundwater level is 6 m, the permanent displacement of the slope is calculated as 2.9 m, which is close to the actual vertical displacement of 3 m recorded in the actual disaster, with the error within 10%. Therefore, this further indicates that the calculation method for the permanent displacement considering the excess pore water pressure is reasonable and reliable. At the groundwater level of 2 m, the yield acceleration of the slope is 3.15 m/s2 and the cumulative permanent displacement is 2.5 m. As the groundwater level is 4 m, the cumulative permanent displacement is 2.7 m, which increases by about 8% compared with that at the groundwater level of 2 m. When the groundwater level is 8 m, the permanent displacement reaches 3.25 m, which rises by about 30% compared with that at the groundwater level of 2 m. Therefore, the bank slope experiences a large sliding displacement under seismic action. This is mainly because the rainfall raises the groundwater level of the river, which indirectly increases the groundwater level in the slope and produces the excess pore water pressure under seismic action, thus leading to a large scale of landslide.
COMPARATIVE ANALYSIS BASED ON SHAKING TABLE TESTS
Test Model
To verify the accuracy of the evaluation method for the composite slip surface of the multi-layer slope proposed in this study, shaking table tests were conducted in the laboratory. The shaking table equipment included a hydraulic table controller, an oil pump station, and a horizontal shaking table, as demonstrated in Figure 10. Through use of the test table, the horizontal constant-frequency vibration test and swept-frequency vibration test with sine waveform were performed on the structure sample with the weight less than 5,000 kg in the laboratory under the frequency of 1–40 Hz and acceleration of 0–20 m/s2. Moreover, various types of time-history seismic waves could be applied.
[image: Figure 10]FIGURE 10 | Shaking table system. (A) Shaking table. (B) Hydraulic driving system.
To obtain seismic dynamic response data of a test model, it is necessary to collect and test the multi-channel structural data, so a multi-channel data acquisition system and a vibration test and analysis system were equipped. This system can collect dynamic response data of the slope (acceleration, displacement and dynamic pore water pressure), as displayed in Figure 11.
[image: Figure 11]FIGURE 11 | Monitoring system. (A) Operation table. (B) Monitoring system.
Considering that the groundwater level in the slope is high, the excess pore water pressure produced by seismic action is a main factor influencing the permanent displacement. Therefore, four dynamic pore water pressure sensors were set at positions where sliding shear is most likely to occur, as shown in Figure 12. The attributes of the sensors are listed in Table 3.
[image: Figure 12]FIGURE 12 | Schematic diagram for the layout of sensors.
TABLE 3 | Attributes of sensors.
[image: Table 3]Considering the limitation of test conditions, it is impossible to simulate a full-scale model, so it is necessary to make a reduced-scale model for test based on the similarity law. According to the theory of similarity law, the dynamic similarity conditions of the prototype slope and model slope are shown as follows: similar values of various parameters should be used in the two dynamic physical processes, and similarity criteria composed of these values are equal. For the slope, the prototype and model are required to meet the similarity of single values under seismic action (Guo et al., 2003).
When building the model, the filling density and water content of the model should be controlled as consistent with the prototype as possible, that is, the dimensionless coefficients [image: image] of the model material and the prototype are approximately equal, namely, [image: image]. Therefore, the main similarity constant of the model can be simplified. The similarity rate of the slope for the model made based on the prototype materials is only related to [image: image]and [image: image]. [image: image] is affected by the lateral pressure coefficient, slope height, and soil strength. Based on the above principles and assumptions, the geometric similarity ratio [image: image]of the model is 20 considering the limit of the dimensions of the equipment in the test (the dimensions of the model box are 1 m × 2 m). The coefficient of Earth pressure at rest is [image: image], in which [image: image] represents Poisson’s ratio and dimensionless index [image: image]. The dynamic shear modulus and damping ratio of soil in different layers of the slope determined through dynamic triaxial tests are shown in Figure 13. Based on similarity ratios of the above main physical quantities, the similarity relationships of other physical quantities can be derived, as listed in Table 4.
[image: Figure 13]FIGURE 13 | Dynamic shear modulus and damping ratio. (A) Sandy soil. (B) Clay soil.
TABLE 4 | Similarity relationship of physical quantities of the test model.
[image: Table 4]In this test, the model box was made of steel plates and organic glass. The lateral boundary waves were absorbed by flexible clay materials on the inner wall of the model box to simulate the boundary of soil. Before piling up the sandy slope, to keep sand as uniform as possible, the sand was stirred repeatedly by using a spade. According to the similarity law, the slope height is 0.5 m and the slope angle is 45°, as shown in Figure 14. A water pipe was connected to one side of the slope for water injection so that the groundwater level was controlled at a fixed depth to simulate the groundwater level on one side. In this test, the case with an actual groundwater level Hw = 6 m in Figure 7 was selected for simulation and the groundwater level in the test was 0.3 m. A water tap at the lower part of the other side of the corresponding model box was turned on (the water tap was connected to a hose that was fixed at the same height as the slope toe to simulate the principle of a connector so that the groundwater water was always controlled at the height of the slope toe). After injecting water for a long time to form a stable seepage field in the slope, seismic excitation began to be applied.
[image: Figure 14]FIGURE 14 | Test model of the slope. (A) Initial model. (B) Protection structure. (C) Simulation of the groundwater level. (D) Connection with an outside drainage pipe.
Comparative Analysis of Slip Surfaces
The seismic action further enhances the interaction between groundwater and soil so that the pore water pressure increases abruptly, which greatly affects the stability of the slope. At first, the dynamic pore water pressures at four monitoring points K1, K2, K3, and K4 of the slope were compared at the groundwater level of 0.3 m, as shown in Figure 15.
[image: Figure 15]FIGURE 15 | Cumulative development of dynamic pore water pressures in the slope.
It can be seen from Figure 15 that the dynamic pore water pressure at the slope toe is obviously greater than that at other positions under the seismic action. Through analysis, the dynamic pore water pressure at the slope toe rises suddenly because of the joint effect of the seismic action and the seepage force inside the slope, and then it gradually stabilizes as the groundwater seeps out of the ground surface. On this basis, the formation process of the progressive slip surface in the slope under the seismic excitation in Miyagi Prefecture in the test was analyzed at first, as shown in Figure 16. The whole process was recorded in the test, while only some of the pictures are displayed.
[image: Figure 16]FIGURE 16 | Formation process of the critical slip surface at the slope toe. (A) Shear failure at the slope toe. (B) Formation of a critical slip surface. (C) Sliding and stacking of a cracked sliding body at the slope toe.
As displayed in Figure 16, the pore water pressure inside the slope rises all of a sudden under the seismic action so that the effective stress of the slope reduces and cracks occur to the slope toe at first. Then, with the cumulative growth of the earthquake-induced excess pore water pressure, cracks at the slope toe further expand, accompanied by local slip, which is consistent with the abrupt increase in the pore water pressure at the slope toe in Figure 16. Afterward, the slope top is vibrated more intensely under the sustaining seismic action than the lower part due to the magnification effect of the ground motion acceleration, so the slope top is cracked. Because of numerous cracks at the slope toe, the support force at the bottom of the slope reduces gradually so that the landslide happens there finally under the joint effect of the earthquake and the gravitational force of the top soil. The shape of the slip surface can be clearly seen from Figure 16B after the slope slides, which matches well with that of the critical slip surface determined by the proposed method in Figure 8 on the whole, whereas certain discrepancy also exists. This is because the test model is a reduced-scale model, whose fabrication may incur certain errors so that certain discrepancy is present on the slip surface, which is however acceptable. Moreover, the failure law of the slope obtained in the research agrees with the practical failure law of the slope during the earthquake in Miyagi Prefecture. Even low slopes of bank may also be damaged by the earthquake-induced excess pore water pressure if the foundation or filling body is water-rich sand formation or weak viscous formation. This further verifies reasonability of the test model established in the research.
Comparative Analysis of Permanent Deformation
By arranging displacement transducers at different locations in the test, the cumulative permanent displacement of the slope in the earthquake process was well measured. In addition, the whole slip process of the slope was recorded by a camera. The permanent displacements of the slope at groundwater levels of 0.1, 0.2, 0.3, and 0.4 m were taken, as displayed in Figure 17.
[image: Figure 17]FIGURE 17 | Permanent displacements of the slope. (A) Groundwater level of 0.1 m. (B) Groundwater level of 0.2 m. (C) Groundwater level of 0.3 m. (D) Groundwater level of 0.4 m.
As displayed in Figure 17, the permanent displacement of the slope constantly increases with the rise of the groundwater level, accompanied by an increase trend of the collapse and sliding scale. The failure mode of the slope remains basically consistent at different groundwater levels: that is, the slope toe collapses at first; then cracks occur at the slope top; the slope toe slides and shows shear failure under the sustaining seismic action. The permanent displacement of the slope is maximum (about 12.5 cm) at the groundwater level of 0.4 m.
To further verify reliability of the proposed method, the test model was taken as the computing object, whose permanent displacement was calculated using the proposed method. The calculation results were then compared with the results of the shaking table testing, as shown in Figure 18.
[image: Figure 18]FIGURE 18 | Comparison of the test value with the calculation results using the proposed method. (A) Comparison of permanent displacements. (B) Deviation from the test value.
It can be seen from Figure 18 that the permanent displacement of the slope calculated using the proposed method coincides well with the test results, with the maximum deviation of about 14%. The deviation occurs mainly because the slip surface in the multi-layer slope is simplified by the proposed method as the accumulation of multiple logarithmic spirals, which differs to some extent from the actual shape of the slip surface. However, the error of the permanent displacement calculated using the proposed method with the test results is within the engineering allowance range. Furthermore, the test also shows that a deposit is formed after the initial slip and collapse of the slope, which keeps a new equilibrium. The slope will be at a stable state if the sliding body is removed. The safety factor of the slope is lower than one at the initial slip and fluctuates up and down around one under the sustaining seismic action, while the permanent displacement accumulates constantly. Therefore, it is more reliable and economical to judge stability of the slope further according to the permanent displacement after the slip and then taking corresponding reinforcing measures.
In summary, the proposed method is applicable to evaluation of the stability and permanent deformation of multi-layer water-bearing slopes. By setting certain assumptions, the research proposed the calculation method for permanent deformation of the multi-layer slope under influences of earthquake-induced excess pore water pressure and used logarithmic spirals to consider collapse and slip forms of such slope. It means that it is very important to determine whether the slip and collapse mechanism of the slope is within the application scope of the proposed method to ensure the accurate prediction of the permanent deformation of the slope during an earthquake.
CONCLUSION
Based on the Newmark’s method, the analysis method for stability of the slope under seismic action considering influences of the excess pore water pressure was put forward. In addition, the influences of the excess pore water pressure on the seismic stability of the slope at different groundwater levels were analyzed. In this way, the following main conclusions are obtained:
1) The analytical method for the composite critical slip surface in the multi-layer water-bearing slope considering influences of the earthquake-induced excess pore water pressure was proposed based on the Newmark’s method. On this basis, the evaluation method for influences of the excess pore water pressure on the permanent displacement of the slope under the seismic action was established. Finally, the shape of the slip surface and permanent displacement of the test model attained in the shaking table testing match well with the calculation results of the proposed method. It indicates that the proposed method is applicable to the evaluation of the stability and permanent deformation of multi-layer slopes, and it provides a simple and convenient method for evaluating stability of water-bearing slopes for engineering technicians of slopes.
2) The slip surface at different groundwater levels is found to show a basically consistent shape by analyzing influences of the excess pore water pressure under the condition on the formation of the composite critical slip surface in multi-layer bank slopes using the proposed method. However, the slip surface of the soil mass above the seepage line extends to the interior of the slope less apparently compared with that below the line. It suggests that soil mass above the seepage line is not influenced by the excess pore water pressure as the groundwater level rises, and the sliding body there exhibits small changes in the sliding scale under the seismic action. The soil mass below the seepage line is affected by the excess pore water pressure, so the slip surface extends constantly toward the inside of the slope, leading to the increasing sliding scale.
3) Based on the shaking table testing of a reduced-scale model, the progressive slip process of the bank slope was reproduced, and the composite critical slip surface and the cumulative changes of the permanent displacement of the test model were determined. It reveals that the bank slope is influenced by the excess pore water pressure, showing tensile cracks at the slope toe at first and then slip and collapse of the upper soil layer under the joint effect of the earthquake and the dead weight. Because the slope toe is at a location under the coupling effect of the earthquake and groundwater, the excess pore water pressure there abruptly accumulates and rises. As a result, the slope toe is most likely to become the shear crack of slip and the failure mode of the bank slope at different groundwater levels is manifested as shear sliding at the toe and tensile fracture at the top as a whole.
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In recent years, earthquake rockfalls have occurred frequently all over the world, resulting in heavy casualties and property losses. Unfortunately, research on rockfall dynamics upon earthquake events is still rare due to limited field and experimental data, and restricted to numerical simulations of only two dimensions. In order to primarily reveal the role of earthquakes on rockfall, this study focused on the stability of rock blocks on an inclined slope, and following rockfall dynamics by three-dimensional discontinuous deformation analysis (3-D DDA). First, earthquake input methods were discussed and implemented for the triangulated regular network (TRN) in 3-D DDA. The effectiveness was verified by comparison with analytical solution results of a single block on the inclined slope under seismic loads. Further, by discussing the variations of the boundary chart of failure modes, it indicated that the block was more prone to slide even with a large friction angle, became instability under seismic conditions. Moreover, a regular dodecahedron rock block was released on a stochastic roughness slope with two platforms through parallel realizations. The indices of the movement characteristics of the block, such as runout distance, lateral displacement range, and resting position, were investigated. The results showed that the maximum runout distance was not sensitive to seismic load, but the lateral displacement range was significantly sensitive to seismic load and increased appreciably. Through the 3D-DDA numerical simulations, both rock stability and rockfall behaviors under earthquake conditions could be better understood. Furthermore, it will be helpful to by analyzing trajectories and kinetic energies predict earthquake rockfall disasters and design reasonable protective countermeasures under earthquake scenarios.
Keywords: rockfall, earthquake, stability, movement characteristics, 3-D DDA
1 INTRODUCTION
Dangerous rock refers to a rock mass cut into by multiply sets of joints, generally in an unstable state or a state of limited equilibrium under the action of gravity, an earthquake, rainfall, or other external forces (Chen et al., 2003). It is usually located on a high and steep slope or cliff, suddenly loses its stability, and forms a rockfall or even a rock avalanche. After one or more combinations of falling, rebound, jumping, rolling, or sliding, the falling rock masses move rapidly downward, finally coming to rest in relatively flat areas or being stopped by an obstacle. Dangerous rocks are difficult to identify, although the 3S technologies and AI algorithms that have been developed aid substantially (Huang et al., 2017a; Huang et al., 2021a; Huang et al., 2021b) due to the small volume and uncertain occurrences (Dorren, 2003). In addition, Due to the high-altitude and extremely energetic characteristics, rockfalls usually have destructive characteristics (Volkwein et al., 2011), which can pose a serious threat to roads, railways, buildings, and other structures by means of impact and burial (He et al., 2014; Yuan and Pei, 2014; Hou et al., 2010).
Among the external forces triggering instability, earthquake is one of the major causes of rockfall. In recent years, rockfall and collapse disasters caused by earthquakes have occurred frequently all over the world, resulting in heavy casualties and property losses. There were co-seismic and post-seismic disasters in the recent 2008 Ms 8.0 Wenchuan earthquake (Yin et al., 2009; Li and Kong, 2011; Su et al., 2012; Cheng and Su, 2014), 2013 Ms 7.0 Lushan earthquake (Chen et al., 2013a; Pei and Huang, 2013; Cheng and Zheng, 2014; Li et al., 2014), 2014 Ms 6.5 Ludian earthquake, and 2017 Ms 7.0 Jiuzhaigou earthquake (Cheng et al., 2018). The effect of an earthquake on rockfall is manifested as showing large scale, huge quantity, and tremendous destructiveness, occurring even with small slope angles under small magnitudes (Qiu et al., 2009). For example, there were 1884 new potential rockfalls after the Wenchuan earthquake, more than triple those that were revealed before 2008. Rockfalls comprise an even larger proportion of the secondary geo-hazards induced by the Lushan earthquake (Li and Kong, 2014). Meanwhile, statistical data shows that there were 15 typical earthquakes (magnitude greater than 5.0) that occurred in Southwest China (Wang, 2019) within the last 10 years. More than 100 earthquakes with a magnitude greater than 3.0 occurred in Sichuan Province within 2020. Therefore, it is undoubtedly of great theoretical significance and engineering application value to study the failure mechanism of dangerous rock masses and the following rockfall dynamics under earthquakes.
Marzorati et al. (2002) investigated the earthquake-induced collapsed boulders in Umbria and Marche, Italy in 1997, and studied the relationship between the frequency of rockfalls and the environment and seismic parameters by using mathematical statistics. Li et al. (Pei et al., 2011) investigated the extremely long-runout rock avalanches and rockfalls induced by the Wenchuan earthquake, and pointed out that under the action of seismic force, the collapsed rock mass was thrown out at a certain initial speed, which is different from the ones induced by gravity only. The former has high initial speed, large kinetic energy, and a wide influence range of rockfalls. Unfortunately, research on rockfall dynamics upon earthquake events was still rare involved due to the long recurrence period and limited field data on rockfalls during earthquakes.
Laboratory experiments were also rare or missing in the literature. Huang et al. (2019) obtained the rockfall data under earthquake by the shaking table test and proposed a prediction model based on an improved KNN algorithm.
Stability analysis and trajectory modeling using the discrete numerical methods (the distinct element methods, UDEC, PFC, and et al.; Discontinuous deformation analysis, DDA) have the advantage of representing the physical details of dangerous rock masses and following rockfalls, especially under the seismic scenario.
Based on UDEC, Teng et al. (2013) investigated the influence of seismic intensity on the stability of a rock slope with two groups of joints. An actual seismic recording was implemented. Gao (Gao, 2015) used UDEC to reproduce the collapse process of dangerous rock mass under different terrain, geology, and seismic input conditions. The results were summarized to describe the influence of seismic input on the collapse mode and time. Xue (Xue, 2016) used UDEC to establish a simplified model of two-dimensional expressway high rock slope, discussed the failure mechanism of high rock slope under seismic load. The rockfall dynamics after the collapse were recorded and analyzed. In addition, the impact force to the retaining wall was calculated according to the law of conservation of momentum.
Hatzor and Feintuch (Hatzor and Feintuch, 2001) applied different forms of sine wave horizontal acceleration to an inclined slope in 2001 and studied the sliding characteristics of blocks on the slope, and proved that DDA can simulate earthquake rock collapses and rockfalls; in 2004 (Hatzor et al., 2004), a two-dimensional DDA method was proposed to add time-varying acceleration as a physical force to each block. This method can accurately predict the failure mode of key blocks of jointed rock slopes. Kamai and Hatzor (Kamai and Hatzor, 2008) established a two-dimensional slider model, inputting the displacement time history to the bedrock, studied the dynamic characteristics of the bedrock underlying earthquakes, and obtained the numerical results which are in good agreement with the theoretical solution. Zhang (Zhang, 2011) focused on the collapses developed along a highway during the Wenchuan earthquake as a research object, used the 2-D DDA to study the failure mechanism of rockfalls and rock avalanches under strong earthquakes. Huang et al. (Huang et al., 2016) focused on that the friction coefficient should be gradually reduced in the numerical simulation of seismic rockfall. Based on this, an improved two-dimensional DDA method was proposed. Chen and Wei (Chen and Wei, 2017) analyzed the phenomenon of collapse and rockfalls caused by the failure of dangerous rock mass due to earthquake by 2-D DDA, studied the rockfall dynamics and put forward protection suggestions. Huang et al. (Huang et al., 2017b) studied the influence of seismic load on the rockfall dynamics after the collapse of dangerous rock mass using the 2-D DDA method. The results implied that the influence of vertical seismic load on collapsing blocks is even greater than that of horizontal seismic load. Zhou et al. (2021) simulated the rockfall dynamics of an actual potential rockfall site, and evidenced the special thrown out phenomenon under seismic conditions.
The previous investigation of earthquake rockfall was mostly limited to 2-D numerical simulation. The important lateral displacement could not be obtained. In addition, the stochastic random nature of rockfall was also ignored.
Beyabanaki et al. (2009) compared the block displacement solution obtained by the 3-D DDA method with the analytical solution under dynamic load to verify the effectiveness of the three-dimensional DDA method. Chen et al. (2013b) compared the differences in the prediction of rockfall dynamics between 2-D and 3-D DDA simulations and proposed a TRN (triangulated regular network) in 3-D DDA, which could be feasibly used to demonstrate the random roughness of slope surface by disturbing the elevation of each gridpoint. Based on the above, this paper implemented a virtual depth to TRN and conducted acceleration wave on its cells to develop a new rockfall simulator based on 3-D DDA. The algorithms were first validated based on comparison to the theoretical solution of block stability on an inclined slope. The variation of failure mode was also used to demonstrate the influence of seismic loading on the stability of the dangerous rock masses. The role of an earthquake on rockfall dynamics was then discussed especially in terms of runout distance and lateral displacement.
2 METHODS
2.1 Fundamental Theory of 3-D DDA
2.1.1 Block Displacements and Deformations
For a 3-D DDA formulation, the linear system has twelve degrees of freedom for each individual block with an arbitrary polyhedral shape:
[image: image]
where (u0, v0, w0) are the rigid body translations of a specific point (x0, y0, z0) of Block i, (rx, ry, rz) are the rigid body rotations of Block i with the center of rotation at (x0, y0, z0), and (ɛx, ɛy, ɛz), and (γyz, γzx, γxy) are the normal and shear strains on Block i, respectively. The displacement of an arbitrary point (x, y, z) in Block i is:
[image: image]
where [Ti (x, y, z)]is the formula for the displacement function of Block i, which is given by:
[image: image]
2.1.2 Equations of Motion
The total potential energy is the summation of all of the potential energy sources from the block stiffness, the initial stress, the point loads, the body loads, the inertia forces, the constraint springs of fixed points or measured displacements, and the contact forces between the blocks.
The equations of motion for a system of n blocks is derived by minimizing the total potential energy:
[image: image]
where Kij and Fi are 12 × 12 stiffness submatrices and 12 × 1 loading vectors, respectively. The submatrices Kii depend on the material properties of Block i, and Kij (i ≠ j) is defined by the contacts between Blocks i and j. For additional details, the interested reader is referred to Shi (Shi, 1988; Shi, 2001).
2.2 Description of Seismic Input
2.2.1 Triangulated Regular Network for the Terrain of a Slope
Kinematic analyses of rockslides only consider the kinematic behavior of the displaced rocks, and the slope merely serves as the boundary for these rocks to interact with. Moreover, the ground motion and deformation that are induced by the rockslide are neglected due to their small values; for example, the velocities induced by a 2.5 × 106 m3 rockslide are on the order of 10−6 m/s (Favreau et al., 2010). Therefore, it is not necessary to generate a slope as blocks. A simpler slope model for the terrain of a slope, such as a triangulated regular network (TRN), can play a similar role as the boundary of the blocky slope.
The terrain of the slope in the raster format is represented mathematically by a set of elevation points in the form of an m × n matrix (where m and n are the rows and columns of the matrix, respectively) of elevations. The faces in 3-D DDA are defined as plane polygons. Therefore, it is necessary to divide each cell into two triangles (Figure 1). For the special contact treatment and the corresponding validations, the interested reader is referred to Wang et al. (2017).
[image: Figure 1]FIGURE 1 | Scheme of the sloping topography described by the TRN map. (A) example of slope surface raster, (B) example of TRN generated from the raster dataset.
2.2.2 Basic Assumptions of Seismic Input and DDA Implementation
The DDA can consider seismic loading in three forms: acceleration, velocity, and displacement time histories. Loading of time-dependent acceleration is widely used by many researchers to conduct earthquake analysis (Hatzor and Feintuch, 2001; Sasaki et al., 2004; Favreau et al., 2010; Wu; Ning and Zhao, 2013). In practice, acceleration loading is usually used to the failure rockfall (method 1) or the slope (method 2) as volume forces.
When the rockfall mass travels over the slope, method 1 could generate the wrong displacement (Wu). In 2-D, method 1 is more suitable for the pseudo-static analysis for the stability problem of dangerous rock; method 2 has been validated to be more adaptable for rock avalanche and rockfall problems (Zhang et al., 2013; Zhou et al., 2021).
However, the TRN only performs the rigid boundary without density. It is difficult to generate volume forces by acceleration loadings. Hence, a virtual depth of 1 m was set for each TRN cell. In order to simulate the main features of 3-D rockfall, This paper quotes some basic assumptions proposed by Zhang et al. (2013):
(1) Blocks are treated as 3D polyhedrons;
(2) Rockfall masses could be divided into smaller blocks by pre-existing joints;
(3) Geometry of the slope model is presented by TRN with a virtual depth of 1 m;
(4) Earthquake forces only act on the TRN cells.
(5) Density of TRN cells is assumed as 105 times to avoid the influences of gravity and the impact of falling blocks.
(6) Gravity acceleration acting to TRN is set to zero to make up-down free vibrations.
A TRN slope with virtual depth was then constructed based on the raster data shown in Figure 1A. The real seismic acceleration record (Figure 2A) from MZQP stations during the Wenchuan earthquake was horizontally-vertically loaded to the TRN virtual blocks. Relative displacement time histories are also shown in Figure 2B. The 3-D DDA results are notably consistent with the theoretical integration results.
[image: Figure 2]FIGURE 2 | Example of the input displacement time history using TRN with virtual depth. (A) acceleration input at grid-point, (B) displacement out at grid-point.
3 VALIDATION BY STABILITY ANALYSIS OF SINGLE BLOCK ON AN INCLINED PLANE
3.1 State Boundary
A block on an incline (Figure 3) has four different possible states: ① static stability, ② downslope sliding, ③ toppling, and ④ toppling and sliding simultaneously. Its state is controlled by the geometry of both the block and the inclined plane, and the frictional resistance of the interface between them, the three of which are defined by three angles as follows (Figure 3): [image: image], the block aspect angle defined by the ratio of the block width and height; [image: image], the inclination angle of the slope; and [image: image], the friction angle of the interface between the slope and the block.
[image: Figure 3]FIGURE 3 | 2-D schematic representation of verification model.
Define the pseudo-static force [image: image] acting on the block center, and [image: image]. The state chart of the block using limit equilibrium analysis is given as follows:
① the critical angle between stability and sliding:
[image: image]
② the one between stability and toppling:
[image: image]
③ the one between sliding and sliding + toppling:
[image: image]
④ the one between toppling and sliding + toppling:
[image: image]
if [image: image] defined by the shape of the block is given, the four boundaries can be obtained (Figure 4). The detailed derivation could be found in Yang (2018) (Yang, 2018).
[image: Figure 4]FIGURE 4 | Boundary of single block state under horizontal seismic load [image: image].
3.2 Verification of the Boundaries With DDA
To directly compare with the theoretical solution results, method 1 was adopted here to validate the dynamic accuracy of 3-D DDA with TRN.
The numerical control parameters used in the DDA verification are provided in Table 1.
TABLE 1 | Numerical and physical parameters used for 3-D DDA verification study.
[image: Table 1]Then 3d-DDA stability analysis of a single block under the same horizontal seismic load was conducted. By taking [image: image] as an example, the state of the block when [image: image] are listed in Table 2.
TABLE 2 | 3-D DDA results of the state of a single block on the inclined slope.
[image: Table 2]3.3 Influence of Seismic Load
Compared with the condition of only gravity, the total boundary figure remains similar, but there is a translation determined by both the size [image: image] and direction of the pseudo-static earthquake force as shown in Figure 5.
[image: Figure 5]FIGURE 5 | Comparison of instability modes of a single block ([image: image], [image: image]).
In the figure, the black lines BA, BO, BG, and BH are the boundaries with gravity only, and the red lines CD, CE, CF and CH are the boundaries with horizontal pseudo-static force. When the boundary moves a unit to the left, the stable region decreases significantly, and the sliding region increases by the area of ABCD, indicating that the original stable state changed into sliding after adding seismic load, that is, the block was more prone to slide. The toppling region decreases by the area of BGFI, indicating that the original toppling state was transformed into a toppling + sliding state under seismic conditions. The original stable state was transformed into toppling after adding seismic load as shown in the CIOR region. The calculated BGFI area is greater than CIOE, indicating that the proportion of toppling was reduced. The area where sliding and toppling occur simultaneously increases the area of the CBGF part, indicating that the application of horizontal seismic force had a great influence, and the stability was significantly decreased.
Assuming that the seismic acceleration was 0.2 g, [image: image] [image: image], [image: image] varied from 20° to 50°. The instability mode maps with only gravity and seismic load were drawn in Figure 6. Where the green shadow depicts the area of sliding increase [image: image], the orange shadow describes the area of toppling decrease [image: image], and the blue shadow demonstrates the area of toppling increase [image: image].
[image: Figure 6]FIGURE 6 | Comparison of instability modes of a single block (F = 0.2 mg). (A) [image: image] =20°, (B) [image: image] =30°, (C) [image: image] =40°, (D) [image: image] =50°.
The change of the sliding part is listed in Table 3. It implies the area increased after the seismic load was applied, while the rate shows an increasing trend with the increase of friction angle.
TABLE 3 | Sliding part change varies angle of friction under seismic load 0.2 g.
[image: Table 3]The variation of the toppling area is demonstrated in Table 4. It indicates [image: image] was always greater than [image: image] after applying seismic load. The difference was a constant, only related to acceleration value, manifested by a small rate of change.
TABLE 4 | Toppling part change varies angle of friction under seismic load 0.2 g.
[image: Table 4]The results indicate that under the action of seismic load, the block on the inclined slope was more prone to slide, losing its stability.
4 INVESTIGATION OF ROCKFALL DYNAMICS
4.1 Model Establishment
The TRN grid size was 2 m. The height of the slope was 30 m with a slope ratio of 1:1. In order to quickly dissipate the kinetic energy of the falling rock under gravity, two 10 m wide platforms were set at 6–16 m and 22–32 m, respectively. After several trial experiments, the width of the slope was determined as 40 m while the total length of the model was 60 m (Figure 7).
[image: Figure 7]FIGURE 7 | Numerical experiment design.
To represent the apparent randomness during the impact-rebound, a stochastic roughness was applied to the slope surface. The roughness parameter R was defined based on the concept proposed by Romkens and Wang (Romkens and Wang, 1986). R was 1/4 to generate significant stochastic rockfall dynamics. The implement can be found in Chen (2018) (Chen, 2018). It was achieved by applying grid-point elevation variations which obeyed normal distributions with expectation μ = 0, standard deviation σ = 200 mm.
The simulations were performed using a regular dodecahedron rock block (volume of 1 m3) initially located 2.5 m (center) above the top of the slope. The numerical procedure began with releasing the rock to the slope, generating an initial velocity. The rock then bounced, rolled over the slope. It ended when the rock finally stopped.
4.2 Parameter Setting
The TRN cell with virtual depth was rigid here with only friction angles. According to the field experiment conducted by the Japan Road Association in 2000, a friction coefficient of 0.11–0.20 was adopted, which is equivalent to an average dynamic friction angle of 10°, and its standard deviation was set at about 0.05.
To achieve energy dissipation during impact, the post-modification proposed by Chen (Chen et al., 2013b) was adopted in this paper. The rebound velocity (Vx, Vy, Vz) (the velocity when contact between rock block and surface TRN ends) was DDA simulated and then modified to be not greater than Rv times of incident velocity [image: image] (the velocity recorded when block-TRN contact occurs).
[image: image]
Rv value was assigned due to the surface material of each TRN cell.
Considering that Rv is obviously dependent on both the modulus and incident angle of v in the normal direction, the Rv (scaled) proposed by Tetsuya et al. (2009) was utilized. The Rv (scaled) was 0.95, the standard deviation was 0.05, and K was 12 m/s.
[image: image]
[image: image]
The volume of falling rock was 1 m3. The density was 2.0 × 103 kg/m3, the Young’s modulus was 1.0 × 104 MPa and the Poisson’s ratio was 0.2.
The values of physical parameters of falling rock and control parameters for DDA simulations are listed in Table 5.
TABLE 5 | DDA control parameters.
[image: Table 5]4.3 The Number of Simulations
Considering the uncertainty raised by the nature of such a stochastic model, a limited number of observations will amplify the random fluctuations in rockfall dynamics. To avoid this, the model must to be performed with a number of parallel realizations. The procedure under gravity conditions was repeated until the relative error of each observation variable (runout distance, velocity, jumping height, lateral displacement, and platform resistance no.) was less than 1%. As the no. of realization increased, the relative error of lateral displacement decreased greatly, and the one of each other variable also decreased (Figure 8).
[image: Figure 8]FIGURE 8 | Relationship between relative error and No. of experiments.
The simulations were performed; each block was released 250 times and all realizations were drawn to extract for the distribution of each variable. The modeled maximum value was used to estimate the uncertainty representing the variability in the stochastic results. Although there may still be a potential undersampling, it found that the statistics data (maximum value and distribution) from 250 parallel realizations could present the stochastic rockfall dynamics.
4.4 Earthquake Input
The control parameters of the earthquake are acceleration and frequency using a sine wave. The orthogonal test simulation was carried out by control variables. The duration was 25 s. Condition 1 was the reference group without seismic load. The calculation conditions are shown in Table 6.
TABLE 6 | Calculation condition.
[image: Table 6]4.5 Results and Discussions
Figure 9 depicts the rockfall trajectories without seismic load (C1). Figures 10–12 demonstrate the rockfall trajectories under different seismic load conditions (C2-C4).
[image: Figure 9]FIGURE 9 | Rockfall trajectories without seismic load (C1).
[image: Figure 10]FIGURE 10 | Rockfall trajectories under seismic load, sine wave, 0.5 g, 5 Hz, 25 s (C2).
[image: Figure 11]FIGURE 11 | Rockfall trajectories under seismic load, sine wave, 0.5 g, 2 Hz, 25 s (C3).
[image: Figure 12]FIGURE 12 | Rockfall trajectories under seismic load, sine wave, 1.0 g, 2 Hz, 25 s (C4).
It can be seen from Figure 9 and Figure 12 that by comparing with the case without seismic load, the maximum runout distance was not sensitive to seismic load, but the lateral displacement range increased largely. When the seismic frequency was 2 Hz, as acceleration increased, the maximum runout distance changed little, even showing a decrease by 1.59%; but the lateral displacement range increased significantly, by 38.92%. When acceleration was 0.5 g, with the increase of seismic frequency, the maximum runout distance and lateral displacement range decreased by 4.42 and 17.70%, respectively. The results indicate the strong earthquake not only provided large initial velocities to falling rocks but also increased their kinetic energy during the travelling stage.
5 CONCLUSION
In this paper, we first reviewed the basic theory of 3-D DDA, including block displacements, deformations, and equations of motion. Then we discussed the TRN in 3-D DDA simulation for stochastic rockfall analysis and proposed a realization of seismic load input in terms of acceleration for it by introducing a virtual depth.
On this basis, the failure mode chart boundary of a single block under seismic load was first analyzed by 3-D DDA and compared to an analytical solution to verify the accuracy. The results from 3-DDA with TRN showed a good agreement with theoretical ones. The influence of seismic loading on the stability of the block was further discussed. It implies that the block was more prone to sliding even if the friction angle was significantly large that it decreased its stability under seismic loading.
Finally, we used the 3-D DDA with scholastic TRN to simulate and analyze the rockfall dynamics under seismic waves. Compared with the case without seismic load, the maximum runout distance was not sensitive to seismic load, but the lateral displacement range was significantly sensitive to seismic load and increased appreciably. 2) Strong earthquakes not only provided a large initial velocity for rockfall but also increased the kinetic energy of rockfall in the traveling stage. Through the 3D-DDA numerical simulations, rockfall phenomena and behaviors could be better understood. It is helpful for the prediction of rockfall disasters and the reasonable design of protective countermeasures.
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The guided wave technique is applied to slope stability monitoring to overcome the high attenuation characteristics of acoustic emission propagation in rock and soil materials. The shear tests of “guided wave meter” (GWM) with different deformation rates were carried out, and the effects of the material and particle size of the coupling medium and the diameter of the waveguide rod on the flexural guided wave ring down count were studied, and the relationship between the deformation rate of the slope and the flexural guided wave parameters was analyzed. The results show that the flexural guided wave ring down count rate increases with the increase of deformation in the loading process. The GWM filled with quartz sand particles produces more flexural guided wave ring down counts than those filled with gravel particles. From the twelve groups of GWM shear tests, it can be seen that the GWM with the combination of 16 mm waveguide rod and 4–8 mm quartz sand produces the highest cumulative flexural guided wave ring down counts. The combination is used as an optimized GWM. By applying different deformation rates to the optimized GWM, it was found that the flexural guided wave ring down count rate at different deformation rates tended to increase and was distributed in a fan shape. The cumulative flexural guided wave ring down count has an excellent linear correlation with the deformation. The slope of the cumulative ring down count curves and the deformation curves are obtained separately, which shows that the deformation rate has an excellent linear relationship with the slope of the cumulative ring down count curve, and the slope of the cumulative ring down count curve increases with the increase of the deformation rate. It provides theoretical guidance for quantifying the slope deformation rate using the flexural guided waves.
Keywords: bedding slope, guided wave meter, flexural guided wave, ring down count, deformation rate
1 INTRODUCTION
Major mining, hydropower, and transportation projects involve excavating rock slopes, which often face different types and scales of slope instability problems. Bedding rock slopes are widely distributed, and the weak structural surface within the slope is the same as the slope tendency (Lu et al., 2011); with the poor mechanical effect of itself (Li et al., 2014), it is prone to cause sudden landslides under strong disturbance from outside. Landslides generated by such slopes have become one of the most frequent geological hazards, seriously threatening people’s lives and property safety and affecting engineering construction and operation (Liao et al., 2014).
Most landslides are progressive and go through three stages from eruption to damage (Chandler, 1984; Petley et al., 2005; Hungr et al., 2014; Hu et al., 2018): primary deformation (AB section), steady deformation (BC section), and accelerating deformation (CD section), as shown in Figure 1. In the accelerating deformation stage, the slope may be suddenly damaged, and the sharp increase of deformation rate may be an apparent early warning indicator of critical sliding. The acoustic emission monitoring technique qualitatively responds to the degree of slope deformation by capturing and measuring the elastic waves generated during the slope deformation. The deformation behavior of geotechnical slopes and the mechanism of acoustic emission generation are different. In soil slopes, acoustic emission is usually caused by particle motion and mutual friction between particles (Koerner et al., 1975; Irfan et al., 2017). In rocks, it is caused by micro-fracture development, expansion, and penetration (Feng and Zhang, 2021). In general, the rock acoustic emission ring down count rate shows a significant increasing trend with an increasing strain rate (Zhao et al., 2021).
[image: Figure 1]FIGURE 1 | Three stages of landslide deformation.
Due to the high attenuation characteristics of acoustic emission during propagation in soil and rock (Pollard, 1977; Koerner et al., 1981; Hardy, 2003), Dixon et al. (2003) in 2003 proposed to use a waveguide rod to provide a low attenuation path for acoustic emission signals and to use a waveguide rod, a coupling medium, and an acoustic emission instrument to form an “active waveguide system” to monitor a coastal slope in northern England. The guided wave signal is mainly generated by the waveguide element’s deformation and the filling medium’s interaction with the waveguide rod. In 2007, Dixon and Spriggs (2007) also performed compression tests on waveguide models by applying different orders of magnitude of displacement rates. This test demonstrated a good correlation between the deformation rate and the acoustic emission rate for the first time. In 2011, Cheon et al. (2011) conducted laboratory shear and bending tests with beam-type specimens cast with cement mortar and waveguide rods. Damage degree evaluation criteria were established based on the trends of acoustic emission parameters, b-values from the indoor tests. Codeglia et al. (2017) conducted a 5-year (2010–2015) guided-wave monitoring of cut slopes in northeastern Italy and found that the internal stress changes in the rock mass caused by the water table were consistent with the trends of acoustic emission. From 2014 to 2015, Codeglia et al. conducted 1.5 years of field monitoring at a pilot project on the Alpine Railway to reduce the risk of damage to tracks and trains due to rockfall or landslides and provide a low-cost alternative to expensive rockfall barriers. Results from both cases suggest that the use of intensive waveguide monitoring can be used to detect and differentiate a range of rock slope deformation mechanisms. In 2017, Smith et al. (2017) developed a shear model consisting of two concrete blocks to examine the early warning potential of an active waveguide system under shear surface formation and accelerated deformation phases and found that the acoustic emission rate increased proportionally with increasing shear displacement of the fill. In 2018, Berg et al. (2018) showed that the measured acoustic emission magnitude was closely related to the displacement rate measured by Shape Accel Array (SAA) in the Peace River region of Canada.
The backfilled granular soil column is also deformed when the monitored geotechnical body is deformed. The acoustic signals, excited from the frictional collision between the particles and the waveguide rod, propagates along the waveguide rod, which provides a low attenuation path for the signal propagation. The guided wave monitoring system is simple and includes waveguide rods, backfill particles, transducers, amplifiers, signal processing and storage, and power supply. These factors will reduce monitoring costs, maintenance costs, and complexity. Fiber optic, laser, and digital image technologies, although more accurate, are expensive and only suitable for specific areas, such as mines, highways, and dangerous hillsides next to important buildings. The guided wave technique presents good monitoring performance, and a more attractive price makes it more universal in some underdeveloped areas.
However, most of the studies only qualitatively describe the acoustic characteristics of the damage process without establishing the quantitative relationship between the guided wave parameters and the slope deformation rate. In this paper, we start from the composition of the “guided wave meter” (GWM), study the influence of the coupling medium material, particle size, and waveguide rod diameter on the flexural guided wave parameters, and optimize the composition of the GWM. Then the dynamic shear test of the GMW is carried out, and the relationship between the slope deformation rate and the flexural guided wave signal parameters is established based on the characteristic analysis of the flexural guided wave signal parameters. Based on the shear test of the GWM, which represents the landslide of bedding rock slopes, the guided wave monitoring of the deformation rate of cascading rocky slopes is realized.
2 EXPERIMENTAL DESIGN AND TEST METHODS
2.1 “Guided Wave Meter” Shear Tests
Guide wave monitoring is a process of burying a waveguide rod inside a cascading rocky slope, which passes through the potential slip surface and then filling the coupling medium between the rod and the rock. Combining a waveguide rod and a coupling medium is defined as a “guided wave meter” (GWM). When the cascade slope slides along the slip surface, the coupling medium in the GWM interacts with the waveguide, and the resulting acoustic emission signals propagate along the waveguide in the form of guided waves. Guided waves are elastic waves that propagate in a specific boundary condition, which can be the surface of natural waveguide structures such as thin plates, rods, tubes, and multilayer materials (Joseph, 2014). The guided waves are reflected back and forth between the surfaces, and each reflection has a mode transition between longitudinal and transverse waves. Longitudinal, Flexural, and Torsional guided wave modes exist in metallic cylindrical rods. The propagation of the longitudinal guided wave will cause the vibration and deformation of the rod end face, and the propagation of the flexural guided wave will cause the vibration and deformation of the rod side, as shown in Figure 2.
[image: Figure 2]FIGURE 2 | Wave propagation modes in a waveguide.
Since the GWM is affected by the shear mechanism during a landslide, an indoor shear model of the GWM was designed. The model consists of two base supports, a shear fixture, and a GWM. In order to fix the probe, the sensor probe is attached to the upper position of the side of the waveguide rod to collect the flexural guided wave signals, and the main view and section of the design scheme are shown in Figure 3.
[image: Figure 3]FIGURE 3 | Shear test of “guided wave meter”.
2.2 Components of “Guided Wave Meter”
The GWM consists of a waveguide rod and a coupling medium. Studies have shown (Smith et al., 2014) that the material and diameter of the waveguide affect the attenuation of guided waves. The coupling medium is usually sand or gravel, which is used to backfill the gap between the waveguide and the borehole and as a signal “generator”. In the fine-grained soil slope, due to the poor acoustic properties of the matrix material, the amplitude of the generated guided waves is low, and the attenuation is significant, so it is difficult to monitor the guided wave signals without adding a coupling medium, which is easy to generate “noise”. The coupling medium’s material and particle size also affect the guided wave signals.
For the tests, a solid waveguide rod made of 304 steel with a length of 700 mm and diameters of 16 mm, 20 mm, and 24 mm were used. Four materials were selected as the coupling media, including 4–8 mm gravel, 4–8 mm quartz sand, 8–16 mm gravel, and 8–16 mm quartz sand, as shown in Figure 4. The density of the coupling media filled in each test is the same, 1,570 kg/m3. To ensure that coupling media of the GWM are evenly distributed, and in a moderately compacted state, the coupling media are thoroughly mixed when the GWM is filled. The gravel and quartz sand parameters are shown in Table 1 to investigate the effect of different materials and different particle sizes of the coupling medium on the guided wave signals.
[image: Figure 4]FIGURE 4 | Photographs of the backfill materials.
TABLE 1 | Physical parameters of the Gravel and Quartz sand.
[image: Table 1]2.3 Test Equipment and Process
The test loading equipment is the RMT-150C rock mechanics system, with a custom shear fixture and support base designed to fit the loading space of the press. The two bases are made of welded cast steel and have a concave shape to match the cylindrical GWM. The GWM is a 90 mm diameter flexible rubber tube (2 mm thick silicone) that represents the borehole in the slope and supports the waveguide. Steel rings with screw retainers at both ends are used to restrain the backfill material. The assembled GWM is placed horizontally on the support base, and a force to the center of the shear fixture can induce the formation of two shear surfaces. The laboratory test system is shown in Figure 5.
[image: Figure 5]FIGURE 5 | Experimental systems and devices.
Signal monitoring is performed using a PCI-2 acoustic emission system manufactured by PAC, which consists of sensors, preamplifiers, A/D converters, a computer, and data processing and analysis software. During the loading process, the coupling medium and the waveguide rod rub against each other to produce a signal source captured by the UT-1000 sensor, and then the signals pass through a 40 dB amplifier to improve the signal-to-noise ratio. After that, the electrical signals are converted to digital signals, and the data is processed and stored by computer and acoustic emission software. The test acquisition threshold is 35 dB, the sampling frequency is 1 M/S, and the sampling length is 1 k.
The loading of the press is controlled by stroke, and the maximum loading displacement is set to 10 mm to avoid damage to the rubber tube caused by excessive loading displacement. Three loading rates of 0.01, 0.02, and 0.05 mm/s were selected to simulate the deformation rate of the slope when instability occurred, and 12 groups of GWMs were loaded at a uniform speed. The loading stroke of the press is used to represent the degree of slope instability deformation, and the guided wave signals and the displacement data of the press were collected during the test.
In this paper, two aspects are studied. The effect of different materials and particle sizes of the coupling medium and different diameter of waveguide rods on the guided wave parameters during the loading process, and optimization of the GWM material; By controlling the deformation rate of the shear model, the relationship between the deformation rate and the guided wave ring down count is analyzed.
3 RESULTS AND ANALYSIS
3.1 Effect of Waveguide Rod Diameter, Coupling Medium Material and Particle Size on Flexural Guided Wave Ring Down Count Rate
The previous study (Deng et al., 2019) showed that the amplitude, root-mean-square and average signal level values of the guided wave signals are not closely related to the deformation and velocity during slope instability. At the same time, the ring down count rate is responsive to the evolutionary process of slope instability. Guided wave ring down count is the number of times the guided wave signal’s amplitude crosses the preset threshold voltage in a period. Guided wave ring down count rate is the sum of guided wave ring down count per unit time, and the guided wave ring down count rate can reflect the change characteristics of the guided wave signal source per second.
Figure 6 shows the flexural guided wave ring down count rate obtained from 12 groups of GWMs at a loading rate of 0.01 mm/s. During the test, the flexural guided wave ring down count rate collected from each GWM group shows an increasing trend as the deformation degree gradually increases. Under the force of the press, the loose coupling medium in the GWM is firstly compressed and deformed, and the overall flexural guided wave ring count rate is at a relatively low level in the first 300 s. Then, the concentrated medium particles interact with the waveguide rod in the center of the GWM to generate the flexural guided wave signals, and as the deformation of the GWM increases, the flexural guided wave signals appear more frequently.
[image: Figure 6]FIGURE 6 | Flexural guided wave ring down count rate versus time.
In a GWM with the same diameter of the waveguide rod, quartz sand-filled coupling media particles produce more flexural guided wave ring down count rate and a more significant upward trend than gravel-filled media particles. The conclusions obtained by Kousteni (2002) in 2002 showed that for a given deformation, quartz sand produces more guided wave events. The size of the filled coupling media particles: 4–8 mm and 8–16 mm does not affect the overall trend of the flexural guided wave ring down count rate. However, it will affect the degree of oscillation of the guided wave ring down count rate. The flexural guided wave ring down count rate, obtained from the GWM with particle size variation range of 8–16 mm, is highly variable, and the data is more scattered, with more evident up and down oscillations. This phenomenon is because the relatively large size particles are crushed during the compression process, instantly generating violent bending guided wave signals. And guided wave ring count rate was more concentrated in the GWM with the particle size range of 4–8 mm. Filled with the identical media particles and changing the diameter of the waveguide rod, it was found that the small change effect of rod diameter on the flexural guided wave ring down count rate is not significant.
3.2 Effect of Waveguide Rod Diameter, Coupling Medium Material and Particle Size on the Cumulative Ring Down Count of Flexural Guided Waves
The cumulative ring down count is the accumulative superposition of the ring down count over a period, which reflects the change of the total data of the guided wave signals over a certain period. Figure 7 shows the curves of flexural guided wave ring down count obtained by the GWM at the loading rate of 0.01 mm/s. The cumulative ring down count of flexural guided waves with different rod diameters and coupling media shows an increasing trend, and the curves change smoothly without obvious abrupt change points.
[image: Figure 7]FIGURE 7 | Flexural guided wave cumulative ring down count versus time.
In Figure 7, the cumulative ring down count of the 4–8 mm quartz sand-filled GWM increases the most, and the cumulative ring down count collected at the end of the stroke is the highest. The more grains required to fill the same volume of GWM with quartz sand of smaller particle size, the more mediums are in contact with the waveguide rod, and the more cumulative ring down count is generated. At the bottom of the curves is the gravel-filled GWM, where the cumulative ring down count obtained for 4–8 mm and 8–16 mm gravel materials are not significantly different; This is because the ring down count rate of the gravel-filled GWM is at a low level, as shown in Figure 6. Although small gravel particles produce more ring down count than large grains, it is also very limited. In the compression process, the gravel particles of relatively large size are crushed, which instantly produces strong flexural guided wave signals and affects the overall level, resulting in a less differentiated cumulative ring down count curve for gravel particles of different sizes.
With the increase of deformation, the accumulated ring down count, obtained from the GWM composed of 4–8 mm quartz sand and 16 mm waveguide rod, is much larger than those from the GWM composed of other coupling media and waveguide rods, and the fluctuation of the ring down count rate is smaller than others. Therefore, the GWM composed of 4–8 mm quartz sand and 16 mm waveguide rod is used as an optimized combination, and the effect of loading rate on the flexural guided wave signals of the optimized GWM is further discussed.
3.3 Effect of Deformation Rate on Flexural Guided Wave Ring Down Count
Figure 8 shows the variation curves of the ring down count rate of the optimized GWM at different deformation rates. The flexural guided wave ring down count rate obtained for each group of deformation rates shows an increasing trend, and the ring down count rate corresponding to different deformation rates is in the fan shape. When the deformation rate increases from 0.01 mm/s to 0.05 mm/s, the ring down count rate increases significantly. In Figure 8, the ring down count rate with deformation rate 0.01 mm/s is at the bottom of the image, followed by the ring down count rate with deformation rate 0.02 mm/s, which is at the middle of the image; the top curve of the image is the deformation rate of 0.05 mm/s. The ring down count rate at the end of the stroke fluctuates and shows a decreasing trend; this is because the interaction between the particles and the waveguide rod inside the rubber tube requires a certain amount of dislocation space to produce rich guided wave signals. In the process of continuous loading, the internal gap gradually decreases, resulting in a gradual increase in the number of particles interacting with the waveguide rod, and the number of the ring down count per unit of time increases; in the late stage of the stroke, there will also be insufficient dislocation space, and the force between the particles gradually reaches equilibrium, and no longer occurs in the slight misalignment, while the small increase in external loading is not enough to break the mutual “locking” between the particles, resulting in the GWM being bent, and the guided wave signal source no longer increases or even decreases.
[image: Figure 8]FIGURE 8 | Variation curve of flexural guided wave ring down count rate with different deformation rate.
The influence of the deformation rate on the acoustic emission during rock deformation damage depends mainly on the internal friction intensity of the rock, which is determined by the friction area (related to the fracture) and the friction rate (depending on the strain rate) (Gao et al., 2018). In the GWM, the faster the deformation rate, the wider the range of particle displacement, and the more the number of particles rubbing and colliding with the waveguide rod per unit time, resulting in more ring down count crossing a preset threshold.
3.4 The Relationship Between Deformation Rate and Cumulative Flexural Guided Wave Ring Down Count
From Figure 9, it can be seen that there is a significant linear correlation between the cumulative flexural guided wave ring down count and the deformation of the optimized GWM at different deformation rates. According to the characteristics of the curves, the change of cumulative ring down count can be divided into two stages. Before the deformation reaches 3 mm, the growth of the cumulative ring down count curve is small, with an average slope of 2.486 × 10e6, and the correlation coefficient reaches more than 0.97; when the deformation reaches the end of 10 mm, the slope of the fitted curve increases significantly, with an average slope of 5.561 × 10e6. During the whole deformation process, the guided wave ring down count generated by the interaction between the particles and the waveguide rod become more and more intense as the deformation increases, so the cumulative ring down count of the GWM increases with the increase of deformation.
[image: Figure 9]FIGURE 9 | Linear relationship between cumulative ring down count and deformation of “guided wave meter” with different deformation rates.
As shown in Figure 10, there is a significant difference in the temporal characteristics of the cumulative ring down count obtained at different deformation rates. The slope of the fitted curve is approximated as the slope of the cumulative ring down count curve by linear fitting of the cumulative ring down count curve with time. With the deformation rate of 0.05 mm/s, the slope of the curve was the largest, and the average slope for the three tests is 2.13 × 10e5. There is a significantly reduced average slope of 1.07 × 10e5 with the deformation rate 0.02 mm/s, and the slightest average slope of 0.53 × 10e5 is for the deformation rate of 0.01 mm/s. There was an apparent correspondence between the deformation rate and the cumulative ring down count curve slope. Previous studies (Deng et al., 2019) also showed a good correlation between the rate and the acoustic emission rate.
[image: Figure 10]FIGURE 10 | Cumulative flexural guided wave ring down count versus time with different deformation rates.
With the deformation rate as the horizontal coordinate and the slope of the cumulative ring down count curve as the vertical coordinate, the slopes of the cumulative ring down count curves obtained from different deformation rates correspond one by one, and the positions of several test data points are marked, as shown in Figure 11. The slope of the cumulative ring down count curve obtained from the same deformation rate is concentrated, and the deviation is slight, and the scattered points of these data are fitted. From Figure 11, it can be seen that there is an excellent linear correlation between the deformation rates and the slope of the cumulative ring down count curve, with the correlation coefficient reaching 0.977. The slope of the cumulative ring down count curve increases with the increase of the deformation rate, and this is consistent with the previous study (Smith and Dixon, 2015). The change in the slope of the cumulative ring down count curve can quantify the deformation rate of continuous landslides, which provides theoretical guidance for flexural guided wave monitoring of slope deformation rates.
[image: Figure 11]FIGURE 11 | Linear relationship between deformation rate and slope of cumulative ring down count.
4 CONCLUSION
In this study, the relationship between the deformation rate of a slope and the flexural guided wave ring down count is investigated by controlling the deformation rate of a shear model of the GWM and collecting the flexural guided wave signals. The main findings are as follows.
(1) In the process of deformation loading, the flexural guided wave ring down count rate of GWM increases with the increase of deformation. The flexural guided wave ring down count rate generated by quartz sand-filled media particles is more than that of gravel-filled media particles, and the magnitude of the rising trend is also greater.
(2) The cumulative ring down count of the flexural guided wave can further distinguish the effect of the composition of the GWMs on the signals. The cumulative ring down count from the twelve sets of tests shows that the combination of 16 mm waveguide rod and 4–8 mm quartz sand coupling material as the optimized GWM can collect the strong guided wave signals.
(3) The flexural guided wave ring down count rate collected by the optimized GWM shows an increasing trend at different deformation rates, and the ring down count rate obtained at different deformation rates is distributed in the fan shape. The slope of the cumulative ring down count curve is approximated by linear fitting of the cumulative ring down count curve with time to quantify the deformation rate of the rocky slope. The results show an excellent linear relationship between different deformation rates and the slope of the cumulative ring down count curve, and the slope of the cumulative ring down count curve increases with the increase of deformation rates.
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Safe and effective mining of phosphate rock plays an important role in the sustainable development of phosphorus resources. The mechanical properties and failure process of phosphate rock under different mining rates remain unclear, further restricting the safe and efficient mining of phosphate rock. In this paper, infrared radiation and uniaxial compression tests of phosphate rock under different loading rates, e.g., 0.0005, 0.001, 0.005, and 0.01 mm/s, were conducted to investigate the failure process of phosphate rock. Energy evolution and infrared radiation characteristics of the phosphate rock damage process were analyzed using nondestructive, real-time, and noncontact infrared thermal imaging technology. The results show that the higher the loading rate of phosphate rock, the more obvious the high-temperature zone and high-temperature point of phosphate rock in the loading process. At failure, the friction and slippage between internal cracks are intense, showing that the infrared radiation temperature difference increases with the increase of loading rate. As loading rate increases, the energy release time of phosphate rock before damage is reduced, resulting in more energy stored in the rock as evinced by its infrared radiation characteristics, finally resulting in greater damage. The increase of loading rate reduces the dissipation energy of phosphate rock before failure so that more energy remains in the rock mass through the weak surface of the grain boundary. The results of this work will be helpful in enhancing theoretical support for prevention and control of dynamic disasters in phosphate mines.
Keywords: phosphate rock, loading rate, failure process, mechanical properties, infrared radiation
1 INTRODUCTION
Phosphate rock, as a nonrenewable resource (Vaccari and Strigul, 2011), is an important nonmetallic mineral resource, mainly distributed in Africa, North America, South America, Asia, and the Middle East. In recent years, global phosphate rock production driven by demand has been increased year on year. According to statistics, 90% of the world's phosphate rock is used to produce phosphate fertilizer. Based on the current global phosphate rock production capacity and the amount of retained resources, the available period of resources is a further 99 years. Due to insufficient rich ore reserves in China and the gradual depletion of shallow phosphate resources, deep phosphate must be mined. Because the phosphate deposit is inclined layered, which contains geological structures such as faults and folds, the stress environment around mining areas is complex. With the increase of mining depth, rockbursts in deep phosphate rock frequently occur, which seriously threaten the safety of underground mining. The identification of rockburst precursors is of great significance to the safe mining of phosphorus resources and deep engineering (Guang-Liang et al., 2015a; Guang-Liang et al., 2019a; Guang-Liang et al., 2021).
It is a common phenomenon for rock to produce the thermal effect and infrared radiation change due to rock stress. As a nondestructive testing method, infrared thermal imaging technology is widely used in the field of damage detection of rock and other materials. Wu et al. (Li-Xin and Jin-Zhuang, 1998) proposed that under uniaxial compression, the average infrared radiation temperature (AIRT) had three precursory characteristics, and the infrared thermal image could reflect the form and position of rock before fracture. Zhang et al. (Yan-Bo et al., 2020) used a uniaxial loading system and an infrared thermal imager to study the spatiotemporal evolution characteristics of thermal radiation during the stress and fracture process of granite specimens. Huang et al. (Fu-Run et al., 2021) fitted and analyzed the average infrared radiation temperature of, and stress in gneiss, and found that there was a strong correlation between them. Huo et al. (Meng-Zhe et al., 2020) studied the influences of different gradient stresses on the evolution characteristics of the infrared temperature field leading up to rockburst. It was found that the fracture of the specimens was accompanied by the abnormal infrared radiation temperature, and the abnormal phenomenon can predict the location of the rockburst. Tian et al. (Bao-Zhu et al., 2016) simulated the rockburst process of granite surrounding rock roadway by two-way loading test and found that the spatiotemporal evolution of infrared radiation in the rockburst process of granite has good synchronization with the occurrence of a rockburst. Wu et al. (Xian-Zhen et al., 2015) explored the mutations of infrared temperature field in the process of rock failure and instability by infrared monitoring test of the high-temperature water-immersed siltstone loading process. Other scholars studied the infrared radiation characteristics of rock fracture from the perspectives of spatiotemporal changes and their evolution (Da-Jun et al., 2019; Li-Qiang et al., 2019).
The loading rate applied during engineering construction has a significant effect on the mechanical properties of the rock encountered therein (Guang-Liang et al., 2015b; Guang-Liang et al., 2019b; Guang-Liang et al., 2020; Zhang et al., 2021). The stress distribution and evolution of the working face and surrounding rock are affected by the rate of tunnel excavation and mining operation. Therefore, the loading rate applied in engineering construction has often been studied; however, the mechanical properties and failure process of phosphate rock under different loading rates are unclear. As mentioned earlier, infrared thermal imaging technology has the advantages of fast response, noncontact, all-weather use with no visible light compared with the widely used acoustic emission detection technique. The infrared radiation characteristics of phosphate rock under different loading rates are rarely investigated. In this paper, through the uniaxial loading test of phosphate rock specimens under different loading rates, the infrared radiation characteristics of phosphate rock under failure are observed using an infrared thermal imager. The stress–strain curves, visible light photos, infrared radiation information, and the energy change of the whole loading process were compared and analyzed. The results will provide theoretical support for the prevention and early warning of rockburst disasters in phosphate mines.
2 EXPERIMENTAL WORK
Due to the room and pillar method usually being used in underground phosphate mining, the empty pillar bears the stress caused by the rock mass. In the mining process, the loading rate of axial force of underground pillar also changes owing to the effects of excavation disturbance and limits to excavation conditions. Therefore, the uniaxial compression testing of phosphate rock under different loading rates was performed in the laboratory. The axial equal displacement control method was used to load phosphate rock specimens at rates of 0.0005, 0.001, 0.005, and 0.01 mm/s, with three replicates in each group. The infrared radiation changes were captured and recorded using an infrared thermal camera and high-speed camera system to further determine the infrared radiation characteristics of phosphate rock under the action of nonworking conditions.
2.1 Phosphate Rock Specimens
The phosphate rock was sampled from a mine in Hubei Province, China. The phosphate layer occurs in the sedimentary phosphate rock of the second member of the Doushantuo Formation of the upper Sinian system. The deposit is a gently inclined thin-to-medium-thick ore body. Some rockbursts occurred during mining under the influences of tectonic stress and excavation disturbance. With the increase of mining rate, the rockbursts of the excavation face become more intense and the severity and extent of the ensuing damage increase. A typical rockburst is shown in Figure 1.
[image: Figure 1]FIGURE 1 | A typical rockburst in mine.
To explore the causes of rockburst difference, an in-situ infrared inspection was conducted on the face of the mining area, and it was found that there were differences in infrared thermal images in different areas of the face. Therefore, infrared spectrum analysis and stress analysis of phosphate rock were conducted. The phosphate rock at different positions in the mining area (area 1#, 2#, 3#, and 4#, as shown in Figure 1) was assessed by Fourier infrared spectrometer (Barra et al., 2021; Enders et al., 2021). The infrared spectrum analysis results of ore rock at different positions are shown in Figure 2. The infrared spectra of phosphate rocks in four different regions are the same, and the main absorption ranges are 400–2,000 and 2,500–3,700 cm−1. The infrared spectra of phosphate rocks in four regions all exhibit sharp multiple bands at 400–600 cm−1, indicating that the composition of phosphate rocks is relatively simple but with many types of elements. The spectral analysis of phosphate rocks in different locations indicated that the difference in composition is not the main reason for the difference in infrared thermal images; therefore, the mechanical experiments of phosphate rock under different loading rates were conducted, and the whole loading process was observed by infrared thermal imager to ascertain the reasons for the observed in-situ differences.
[image: Figure 2]FIGURE 2 | Infrared spectrum of phosphate rock specimens. (A) Phosphate rock in area 1#, (B) Phosphate rock area 2#, (C) Phosphate rock in area 3#, (D) Phosphate rock in area 4#.
The typical phosphate rock in the phosphate rock mining site was sampled and processed, and the phosphate rock in the natural state was processed into a standard cylinder with a diameter of 50 mm and a height of 100 mm. The specimens were carefully polished at both ends of the loading to make the surface non-parallelism less than 0.02 mm and divided into four groups, with three specimens in each group.
2.2 Test Equipment
The infrared thermal imager used herein was developed by the Wuhan Institute of Technology. The detector resolution is 384 × 288 pixels, the spectral range is 8–14 μm, and the temperature sensitivity is less than 0.05°C. The uniaxial compression test was carried out by RMT-301 rock and a concrete mechanics experimental loading device. The test process was recorded using a high-speed camera system. An infrared thermal imager and digital fast camera were installed at 1.0 m in front of the specimen. The display time of each computer was calibrated before the test so that the press, infrared thermal imager, and digital fast camera could synchronously collect data. The loading system is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Loading system diagram.
2.3 Test Procedure
To ensure the complete contact between the phosphate rock specimen and the loading surface, the specimen was preloaded, then loaded to failure at a constant rate; because the infrared thermal imager was more sensitive to the reaction, a black shading cloth was used to cover the loading system and the monitoring system during the test, the indoor doors and windows were closed, and the personnel was prohibited from moving around. We reduce the airflow at the test site as much as possible to ensure better test results.
After the specimen was placed, the temperature was monitored, and the test was started when the surface temperature of the specimen was uniform. To avoid the influences of uncontrollable factors on the temperature of the specimen in the test site, before the test, the phosphate rock specimen with the same properties was placed next to the phosphate rock specimen to be loaded as a reference, and the temperature change of the phosphate rock specimen under loading was compared and analyzed to compensate for the temperature error during the test, as illustrated in Figure 4. The uniaxial loading tests of phosphate rock specimens at loading rates of 0.0005, 0.001, 0.005, and 0.01 mm/s were conducted, and the test results were analyzed.
[image: Figure 4]FIGURE 4 | Comparison of loading phosphorite specimens and reference material.
3 TEST RESULTS AND ANALYSIS
3.1 Macroscopic Failure Analysis of Specimens
The failure mode of rock is not only related to internal crystalline particles and initial defects but also has a great correlation with the loading rate. The degree of rock fragmentation and failure mode can reflect the stress on the rock to a certain extent. The macroscopic failure of phosphate rock specimens under different loading rates is depicted in Figure 5. Figure 5A shows the failure diagram of the phosphate rock specimen at the loading rate of 0.0005 mm/s: the surface of the specimen is broken and accompanied by surrounding debris shedding, but the integrity of the specimen remains good. Figures 5B,C are the failure diagrams of the specimens at loading rates of 0.001 and 0.005 mm/s, which exhibit local failure and instability dominated by the middle part failing and the splitting along the direction parallel to the axial stress. As shown using red labels in Figure 5B, the damaged specimens maintained their integrity. Figure 5D demonstrates the failure of a specimen at a loading rate of 0.01 mm/s. The specimen is crushed into multiple blocks of different sizes at failure, which cannot maintain its integrity: the degree of crushing of phosphate rock increases with the increase of loading rate, and many particles are crushed at a higher loading rate.
[image: Figure 5]FIGURE 5 | Failure of specimens under different loading rates. (A) 0.0005 mm/s loading, (B) 0.001 mm/s loading, (C) 0.005 mm/s loading, (D) 0.01 mm/s loading.
The residual parent body of phosphate rock specimen tested at a loading rate of 0.01 mm/s can be observed, and the surface is found to exhibit obvious failure mode of step-shaped and cone-shaped combination, as shown in Figures 6A,B. According to the analysis, because the diagenesis of phosphate rock is affected by sedimentary evolution, its internal structural plane is obvious, so under loading, the dominant structure plays a leading role in the formation of internal steps of rock mass, and thus shows obvious stepped failure characteristics (Peng and Mei-Feng, 2021). However, for the rock mass between structural planes, the rock mass is mainly affected by cementation and is subjected to shear under load. More micro-cracks are found to form, expand, and penetrate, then form a macroscopic conical fracture surface. The higher the loading rate of the phosphate rock specimen, the more obvious the macroscopic fracture surface and the more damaged fragments there are.
[image: Figure 6]FIGURE 6 | Local failure diagram of specimen. (A) Conical rupture, (B) Stepped failure.
3.2 Energy Evolution During the Damage to Phosphate Rock
3.2.1 Analysis of Stress–Strain Curves
The stress–strain curves of rock mass are important responses to the mechanical properties of the rock mass. The stress–strain curves of phosphate rock specimens under four loading rates are shown in Figure 7. There are obvious differences in stress–strain curves of phosphate rock specimens under loading rates of 0.0005, 0.001, 0.005, and 0.01 mm/s, but there are staged characteristics, which can be divided into five stages.
I) In the initial compaction stage, because there are many pores and cracks in the phosphate rock, the cracks and pores in the specimen are compacted at the beginning of loading. With the increase of the loading rate, the slope of the stress–strain curves increases, as shown in sections A-A1, B-B1, C-C1, and D-D1 (Figure 8);
II) Linear elastic stage: linear elastic deformation occurs in the specimen, such as D1 < C1 < B1 < A1 (Figure 7); the greater the loading rate, the earlier the specimen enters the linear elastic stage;
III) Plastic stage: plastic deformation occurs in the rock, the stress–strain curves of the specimens under four loading rates are step-like en route to the peak stress, and an obvious convexity is seen, indicating that the stress–strain curves under four loading rates all include a plastic strain stage, and the plastic strain stage is the longest under a loading rate of 0.0005 mm/s.
IV) Near the instability point: the specimen reaches the peak stress, such as A3, B3, C3, or D3 (Figure 8): the compressive strength values of specimens with different loading rates are 111.332 MPa (0.0005 mm/s), 152.820 MPa (0.001 mm/s), 171.357 MPa (0.005 mm/s), and 186.324 MPa (0.01 mm/s), respectively. When the loading rate is increased from 0.0005 to 0.01 mm/s, the compressive strength increases by approximately 40.2%. This indicates that the greater the loading rate, the greater the compressive strength of the specimen.
V) Post-peak weakening stage: Under loading at 0.0005 mm/s, the specimen underwent significant residual deformation, and an obvious “climbing tooth” feature appeared in the weakening stage, as shown in Figure 7, from A3 to the end. The stress–strain curves at 0.005 mm/s, and 0.01 mm/s exhibit a quasi-vertical drop after experiencing plastic strain, and the extent of the drop increases with the increase of loading rate. As shown in Figure 7 in D3 to the end, C3 to the end, and B3 to the end, the higher the loading rate, the faster the specimen weakens.
[image: Figure 7]FIGURE 7 | Stress–strain curves of specimens under load.
[image: Figure 8]FIGURE 8 | Stress–strain curves of specimens in initial compaction stage.
The test results of 12 specimens are summarized in Table 1: With the increase of loading rate, the compressive strength of phosphate rock specimens and the elastic modulus at two-thirds of the compressive strength gradually increase. The error in specimen A3 is caused by factors such as instrument error and cracks in the rock mass.
TABLE 1 | Test parameters of specimens under different loading rates.
[image: Table 1]In summary, as the loading rate increases, the time from the compaction stage to the elastic stage of the phosphate rock specimen decreases, the compression deformation stage of the specimen is shorter, and the slope of the stress–strain curves increases, which is manifested by the increases of elastic modulus and compressive strength. The mechanical properties of the phosphate rock specimen show a pseudo-enhanced state; that is, as the loading rate increases, the compressive strength of the phosphate rock specimen is enhanced, and the weakening of the specimen in the post-peak stage increases.
3.2.2 Energy Evolution Process

(1) Energy calculation principle
According to thermodynamics, the destruction of rock materials is the result of energy conversion. The energy in the rock material per unit volume is assumed to cause deformation under external force in a closed system; according to the first law of thermodynamics, energy conversion is defined as:
[image: image]
where [image: image] represents total input strain energy, [image: image] is the elastic strain energy, and [image: image]is the dissipated energy.
The total strain energy accumulated by rock elements in principal stress space is:
[image: image]
where: [image: image], [image: image], and [image: image] denote the first, second, and third principal stresses on the rock mass; [image: image], [image: image], and [image: image] represent the strains corresponding to the principal stresses, respectively. Under uniaxial compression, [image: image] = [image: image] = 0. Eq. 2 can be rewritten as:
[image: image]
The relationship between elastic strain energy and loss energy of rock specimen under uniaxial compression is depicted in Figure 9. The blank area under the stress–strain curves represents the dissipation energy caused by internal damage and irreversible plastic deformation of rock [image: image]. The triangular shaded region denotes the stored elastic strain energy in the rock specimen [image: image] (Lei et al., 2021; Zhi-Chao et al., 2021).
(2) Analysis of the energy evolution process
[image: Figure 9]FIGURE 9 | Quantitative relationship between elastic strain energy and damage dissipation energy.
The energy evolution of phosphate rock specimens under uniaxial compression can be divided into four stages: initial compaction, a linear elastic stage, plastic stage, and a post-peak weakening stage, as shown in Figure 10.
[image: Figure 10]FIGURE 10 | Energy evolution in phosphate rock during damage under different loading rates. (A) 0.0005 mm/s loading, (B) 0.001 mm/s loading, (C) 0.005 mm/s loading, and (D) 0.01 mm/s loading.
3.2.2.1 Initial Compaction Stage
With the increase of stress, the primary cracks in the specimen are gradually compressed and closed. The total energy input shows a nonlinear growth trend with deformation. The closure of microcracks and friction in the rock mass dissipates most of the energy. Therefore, at this stage, the difference between the dissipated energy and the elastic deformation energy is not large, but there remains a small accumulation of elastic strain energy.
3.2.2.2 Linear Elastic Stage
With the increase of strain, the total energy and elastic strain energy increase approximately linearly. At this time, the specimen after compaction is in an elastic state, and new cracks have not yet been initiated. The energy input by an external force is continuously transformed into the elastic strain energy inside the specimen, and the increase in energy dissipation is small.
3.2.2.3 Plastic Stage
The external load gradually approaches the compressive strength, the specimen undergoes plastic deformation, and micro-failure develops continuously, gradually forming more widespread damage and friction between cracks. The internal elastic strain energy is thus released, part of the external input energy is dissipated by the change of the internal structure, and the dissipation of energy fluctuates.
3.2.2.4 Post-Peak Weakening Stage
After reaching the peak strength, the rock specimen begins to be damaged, and the elastic strain energy accumulated in the rock specimen is released rapidly, and the plastic deformation shows a significant increase. At a low loading rate, the micro-fractures inside the rock specimen become fully developed, and the cracks are fully expanded and penetrated. The rock specimen loses its bearing capacity, and the dissipation of energy increases rapidly, whereas the elastic strain energy decreases. Under a high loading rate, the cracks in the rock mass have not fully expanded and collapsed, resulting in a continuous increase of elastic strain and a decrease in the dissipation of energy.
Under different loading rates, the change of elastic strain energy in the failure stage leads to the difference in the severity of damage to phosphate rock specimens when they are broken. At low loading rates, the specimens are close to being damaged, and the elastic strain energy decreases. Therefore, damage to the specimen is only manifest as the surrounding debris shedding and local failure instability, as shown in Figure 10A. At a high loading rate, the elastic strain energy still increases, so the specimen damage is characterized by severe damage being crushed into multiple blocks of different sizes, which cannot maintain its integrity.
3.3 Infrared Radiation Characteristic Analysis
3.3.1 Infrared Thermal Image Enhancement Principle
Infrared thermography can observe the distribution and variation characteristics of the surface thermal field of rock specimens during loading in real-time; however, due to the influences of the experimental environment and the resolution of the instrument, there is often noise in the thermal image, which affects the experimental analysis. Histogram equalization is a method to enhance image contrast by stretching the pixel intensity distribution. In this paper, the original infrared thermal image is subject to histogram equalization using MATLAB, and one such image is shown in Figure 11. The image histogram is completely uniformly distributed, the image entropy is the largest, and the image contrast is the largest (Farhadian, 2021; Shan et al., 2021; Zaghloul and Hiary, 2021). The transformation function to improve image contrast needs to meet the following conditions:
(1) [image: image] monotonically increasing at 0 ≤ x ≤ L − 1 (no strict monotonicity of increase is required), where L represents the gray level (L = 256);
(2) The range of [image: image] is [0, L − 1].
[image: Figure 11]FIGURE 11 | Histogram equalization for phosphate rock specimens under different loading rates. (A) 0.0005 mm/s loading and (B) 0.01 mm/s loading.
Therefore, ideally, the histogram of the image can be uniformly distributed after the transformation. The function satisfying the condition is expressed as:
[image: image]
where [image: image] represents the probability density function; in discrete images, the probability of each gray level of a histogram arising (in an image, the gray level can be regarded as a random variable, and the histogram is the probability density function of the random variable). From the knowledge of probability theory, the transform function [image: image] is actually the distribution function of a continuous random variable [image: image]; histogram indicates the number of times each color appears in the image; the histogram represents the number of occurrences of each color in the image. Figure 11 displays the histogram of the image before and after treatment. The number of points of the gray value of the histogram after equalization is more evenly distributed, and the gray values are more concentrated. Histogram equalization can enhance the contrast of a thermal image to a certain extent, as can be seen from Figure 11.
3.3.2 Analysis of Infrared Thermal Image Changes in Specimens
Figures 12, 13 show the results of infrared thermal images with typical loading rates after histogram equalization. During the fracturing of phosphate rock loaded at 0.0005 mm/s, there is an obvious high-temperature zone in the upper left part of the specimen. The damage of the specimen begins from the high-temperature zone after gradual evolution. After fracturing, the integrity of residual rock remains good. The residual rock emits radiation consistent with an orange high-temperature zone, and there is no red high-temperature point seen throughout the process (Figure 12E). At a load rate of 0.01 mm/s, there are many red high-temperature points seen on thermal images recorded in the fracture process of the specimen, and the high-temperature area gradually evolves and finally presents overall collapse at failure. The specimen is broken and fell in many places, and the residual rock mass is scattered in the form of red high-temperature points, as shown in Figure 13E.
[image: Figure 12]FIGURE 12 | Equalization treatment: compression of phosphate rock specimens loaded at 0.0005 mm/s. (A) 110 s, (B) 365 s, (C) 815 s, (D) 925 s, and (E) 1034 s.
[image: Figure 13]FIGURE 13 | Equalization treatment: compression of phosphate rock specimens loaded at 0.01 mm/s. (A) 86 s, (B) 215 s, (C) 300 s, (D) 534 s, and (E) 550 s.
The phosphate rock specimen is taken from the phosphate rock forming the cemented structure around the mining area, so the failure and cracking of the specimen occur mostly at the contact grain boundaries of the phosphate rock and dolomite. Figure 14 shows the scanning electron microscope micrograph of the specimen loaded to failure on a cross-section magnified 3,000 times. This grain boundary is the grain boundary weak plane in the microstructure of the phosphate rock; therefore, with the increase of loading rate, the stress on the weak surface of grain boundary in a rock mass cannot be fully transferred and transmitted, and the weak surface is damaged, which accelerates the development of cracks. The greater the loading rate, the greater the energy accumulation inside the phosphate rock specimen, and the energy is suddenly released during a rockburst. The cracks formed by the residual energy rupture through the weak surface of the rock grain boundary are manifest in the form of high-temperature points. Under the small loading rate, the stress in the rock mass is fully adjusted and transferred, and the energy distribution is more uniform. Only a small part of the weak crystal interface appears damaged by the release of energy, and most of the other energy is distributed throughout the residual rock mass in the form of a high-temperature zone.
[image: Figure 14]FIGURE 14 | SEM images of specimen fragments under different loading rates (grain boundary weakness).
3.3.3 Analysis of Infrared Radiation Temperature Variation of Specimens
The AIRT refers to the average value of the infrared radiation temperature corresponding to all the pixels on the infrared thermal image of the target surface at a certain time. The AIRT on the rock surface is an effective indicator used to characterize the total energy change of thermal infrared radiation under load (Athar and Osama, 2018; Qing-Qing et al., 2019). Characteristics of infrared radiation temperature on the target surface could be studied on the whole by comparing the temperature change of the phosphorus rock specimen under loading using the method that places the reference material of the phosphorus rock specimen with the same properties next to the phosphorus rock specimen under load and measuring the difference between them.
The time–history curves of the temperature difference between the specimen and the reference at different loading rates are captured (Figure 15): y1 represents the temperature difference corresponding to the temperature rise precursor before specimen fracture, and y2 is the initial temperature difference between the specimen and the reference object. With increasing load, the difference of infrared radiation temperature between the phosphorite specimen and the reference generally shows a fluctuating upward trend. In the early stage of failure, the temperature difference increases sharply, and the temperature difference reaches a maximum before the stress reaches the peak. After the failure of the phosphate rock specimen, the temperature decreases with the decrease of stress. Under the loading at 0.01 mm/s, the temperature difference between the specimen and the reference material demonstrates a steep downward trend in the weakening thereof, whereas the temperature difference between the target and the reference material exhibits a fluctuating downward trend in the weakening process under loading at 0.0005 mm/s.
[image: Figure 15]FIGURE 15 | Temperature difference between specimen and reference with loading time. (A) 0.0005 mm/s and (B) 0.01 mm/s.
Before fracturing, the temperature difference between the phosphorite specimen and the reference material under loading at 0.0005 mm/s increases to its maximum value, and the temperature difference is around 0.2°C, and the temperature rise is close to 0.8°C at the moment of fracture, as shown in Figure 15A. Before fracturing, the temperature difference between the phosphorite specimen and the reference material loaded at 0.01 mm/s shows a sharp increase resulting in a temperature difference of around 0.4°C and one of around 1.2°C at the moment of fracture (Figure 15B). Before the specimen ruptures, there are obvious precursors in the form of temperature rises, and there are double peaks, as shown in Figure 15; these double peaks provide some basis for on-site rockburst warning, but the relationship between the causes of double peaks and the structural components of phosphate rock remains to be clarified.
The temperature difference between the phosphate rock specimen and the reference under loading at 0.01 mm/s is greater than that at 0.0005 mm/s. Due to the fracturing of the specimen, the mechanical deformation characteristics between particles are different, and friction and slippage occur, resulting in infrared radiation from low-speed energy and load transmission. The greater the loading rate, the faster and more severe the internal friction and sliding of the rock mass, leading to a larger temperature difference between the phosphorite specimen and the reference substance.
Under different loading rates, the difference in the change of dissipated energy in the failure stage leads to the difference in the infrared radiation characteristics of the specimen. At low loading rates, the dissipated energy increases upon the onset of damage, and the input energy is dissipated due to the change of the structure. A small part of the energy remains in the rock mass as evinced by the infrared radiation characteristics; therefore, at low loading rates, the average infrared radiation temperature of the specimen before the damage of the specimen changes slowly, and there is no red high-temperature point in the infrared thermal image. At a high loading rate, near the damage, the dissipation energy decreases, and more energy remains in the rock mass as evinced by the infrared radiation characteristics. Therefore, at a high loading rate, the average infrared radiation temperature of the specimen before damage changes significantly, and the infrared thermal image shows obvious red high-temperature points.
4 CONCLUSION
To ascertain the reasons for the difference in infrared thermal images of phosphate rock in the field, uniaxial compression tests of phosphate rock under four different loading rates were conducted. An infrared thermal imager was used to monitor the whole loading process of the specimens. The stress–strain curves, visible light photographs, infrared radiation information, and the energy changes throughout the loading process were compared and analyzed. The result indicated that the change of loading rate affects the failure mode of phosphate rock specimens. The higher the loading rate, the greater the damage to the phosphate rock specimens. The failure mode of the phosphate rock specimens changes from local failure and instability to comprehensive failure and instability. The specimens show obvious conical failure under loading at 0.01 mm/s. The mechanical properties of the phosphate rock change with loading rate. The variation of elastic strain energy in the failure stage is the fundamental reason for the difference in time to failure. The increase of loading rate makes the mechanical properties of phosphate rock specimens show a pseudo-enhanced state. The elastic modulus and compressive strength of phosphate rock specimens increase in the elastoplastic stage, and the weakening of specimens is greater in the post-peak stage, which is in good agreement with the weakening stage of the infrared radiation average temperature difference curves.
The influence of loading rate on infrared thermography of phosphate rock specimens is mainly reflected in the high-temperature zone and high-temperature points. The greater the loading rate applied to the phosphate rock specimens, the faster and more intense the internal friction and slip of the rock mass, resulting in an increase in the average infrared radiation temperature amplitude and an obvious high-temperature point in the infrared thermal image; the increase of loading rate reduces the time to release of energy in the loading of phosphate rock, and the dissipation of energy decreases before failure so that more energy remains in the rock mass and the grain boundary weak surface formed by cementation is characterized by increased infrared radiation. This study will be helpful in guiding engineers responsible for safety in phosphate mining operations.
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To study the energy evolution and acoustic emission characteristics of layered sandstone under anchorage in the process of deformation and failure, the sandstone samples from Chuxiong Yi Autonomous Prefecture, Yunnan Province were selected for uniaxial compression testing. The energy evolution in the process of sandstone failure and the spatial fractal characteristics of acoustic emission events in the process of deformation and failure were investigated. Research results show that anchoring can make layered sandstone store more energy, the stored energy first increases, then decreases with the increase of bedding angle; the B value of sandstone under anchorage is generally higher than that of unanchored sandstone in the whole deformation and failure process, and the continuous decline in B value can be used to indicate a precursor to instability and failure; under the action of anchoring, the D value of sandstone (its fractal dimension) also increases, then decreases with the increase of bedding angle. The D value changes within [2, 3]. At a given bedding angle, the D value of anchored sandstone is greater than that of unanchored sandstone, the D value of 30° anchored sandstone increased the most (by 12.33%); the maximum D value occurred in 45° anchored sandstone (reaching 2.72) and the spatial distribution of acoustic emission events and damage of sandstone under anchorage is also more uniform; under increasing stress, the number of acoustic emission events is less widely distributed in the early stage and more densely distributed in the later stage. The growth rate of the D value varies across different peak stress ranges, which is more significant under the action of anchorage. The acoustic emission event counts grow evenly and slowly in the space, and the toughness of sandstone is improved to a certain extent under the action of anchorage.
Keywords: rock anchorage, bedding sandstone, energy evolution, acoustic emission, b value, spatial fractal
INTRODUCTION
China’s infrastructure is developing apace and the demand for traffic efficiency between cities is also increasing. Therefore, tunnels are often needed to be built in mountainous areas to shorten journeys. Various tunnel projects are planned, are under construction, and have been built (Feng et al., 2015; Feng et al., 2022; Yu et al., 2021). Tunnels often cross layered rock mass with obvious layered structure and significant anisotropy (Song et al., 2020; Yan et al., 2020), and the internal cracks of layered rock mass are further developed under the action of vibration and other external loads during tunnel construction, resulting in the continuous accumulation of internal damage and rock failure. For complex layered rock mass, anchoring technology is often used to strengthen the rock mass. Therefore, it is of great significance to evaluate the stability of layered sandstone and provide precursory information before the failure of layered sandstone by studying the energy evolution law and acoustic emission characteristics of underlying sandstone in the process of deformation and failure (Li, 2017; Li et al., 2020; Li et al., 2021a; Li et al., 2021b). It is necessary to study the energy evolution and acoustic emission variation characteristics of sandstone with different bedding planes during deformation and failure under anchorage.
Many scholars at home and abroad have done a lot of research on the anchorage mechanism of layered rock mass (Kang 2014; Cai et al., 2015; Zhang et al., 2016). Through theoretical analysis, indoor simulation test and in-situ support test, they have conducted a lot of research on the bolt load transfer mechanism and bolt anchorage effect in layered rock mass and accumulated rich experience. To a certain extent, it deepens the understanding of anchorage mechanism to the reinforcement mechanism of layered rock mass. At present, scholars have investigated the evolution of internal energy dissipation and transfer during different types of rock deformation and failure under different stress paths (Ma et al., 2020; Zhang et al., 2021; Yang et al., 2019). The research shows that the rock exchanges material and energy with the outside world all the time during its deformation and failure, which is embodied in an energy dissipation evolution process. The internal relationship between energy dissipation, energy release, and rock strength in the process of rock deformation and failure was studied by energy theory (Gao et al., 2020). The energy mechanism of rock damage was explored based on the triaxial cyclic compression test. The damage variable used to describe the damage evolution process of rock was established through the study of the increment of dissipated energy (Geng and Cao, 2020; Wu et al., 2019). With the local deformation and damage of rock, the phenomenon of energy release and propagation in the form of elastic waves was called acoustic emission. The location information of acoustic emission events in rock was obtained through the reception and processing of elastic wave data by an acoustic emission monitoring system, and the characteristics of acoustic emission parameters in the process of rock failure were used to study the internal damage evolution in rock (Meng et al., 2019; Chen et al., 2021; Liu et al., 2021). Through the monitoring and analysis of the evolution and development of internal micro-cracks and macro-cracks based on the characteristics of acoustic emission parameters in the process of rock failure, the strain-concentration area was found to mainly accumulate and expand on both sides of the crack (Tang et al., 2020; Wang et al., 2020). Through uniaxial or triaxial compression tests of different kinds of rocks, supplemented by acoustic emission monitoring system, the spatial damage distribution and deformation and failure characteristics of rocks were investigated, and their progressive failure characteristics were explored in cyclic loading and unloading tests (He et al., 2021; Li et al., 2021; Zhang et al., 2021).
To sum up, the above research mainly focuses on the research of mechanical anchorage mechanism, energy evolution law and acoustic emission parameters in the deformation and failure process of layered rock. There are few studies on the evaluation of layered rock mass stability under the action of anchor and the precursory information before the failure of layered sandstone, and the disasters caused by bedding structure to engineering rock mass are still common. Therefore, based on the uniaxial compression test, a comparative study of anchored sandstone and unanchored sandstone was investigated, and the energy evolution, acoustic emission characteristics, and spatial fractal characteristics of acoustic emission events in the deformation and failure process of sandstone with five bedding angles of 0°, 30°, 45°, 60°, and 90° were explored. This study has important application value for revealing the damage and instability mechanism of layered rock mass with similar properties in practical engineering and providing the precursory information and failure characteristics of underlying sandstone before failure.
TEST PREPARATION AND TEST SCHEME
Rock Sample Preparation and Bolt Selection
The yellow sandstone samples selected for the test were taken from Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. As shown in Figure 1, the bedding angles of 0°, 30°, 45°, 60°, and 90° were drilled on site; according to the method suggested by the International Society for Rock Mechanics, the rock sample was made into a cylindrical sample with a height of 100 mm and a diameter of 50 mm. Both ends and sides of the rock sample were polished to ensure that the unevenness and non-perpendicularity were less than 0.02 mm. After the preparation of rock samples, ZT802 non-metallic ultrasonic testing analyzer (Figure 2) was used to measure the wave velocity of each rock sample three times at different positions at both ends of each sample, before taking the average value, having eliminated outliers.
[image: Figure 1]FIGURE 1 | Schematic diagram of rock sample preparation.
[image: Figure 2]FIGURE 2 | ZT802 non-metal ultrasonic testing analyzer.
The bolt material is 45 steel with similar mechanical parameters to an engineering bolt, which is processed into a screw with strength grade of 8.8. The comparison results between the mechanical parameters and the engineering bolt are listed in Table 1.
TABLE 1 | Mechanical parameters of 45 steel bolt and an engineering bolt.
[image: Table 1]Referring to the design parameters such as bolt diameter of 16–25 mm and row spacing of 0.5–1.0 m in the actual engineering bolt support design, a bolt setting with a diameter of 30 mm at a row spacing of 0.6 m was selected for physical simulation. Laboratory tests were applied to bolts with a diameter of 3 mm, the bolt distance from the two end faces is 20 mm and the inter-row distance is 60 mm for purposes of simulation. The geometric similarity ratio of bolt diameter and bolt spacing is 10:1. The schematic diagram of anchored rock sample and bolt position is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Schematic diagram of anchor rock sample and anchor bolt position.
Test Equipment and Test Scheme
The energy evolution and acoustic emission characteristics of bedding sandstone under anchorage were measured by conventional uniaxial compression. Rock samples were divided into unanchored and anchored at both ends. When installing the anchor rod, a hole with a diameter of 4 mm in combination with the position was drilled, as shown in Figure 3. After verifying that there was no debris in the hole, we injected an anchoring agent, and then slowly inserted the bolt (with its nut) into the hole and used a torque wrench to apply a 0.5-kN preload to the nut. After the preparation of anchored sandstone, a ZT802 non-metallic ultrasonic testing analyzer was used to measure the same wave velocity of each rock sample, and outliers were eliminated. During the test, three groups of parallel tests were conducted for each rock sample to improve the authenticity of the test data.
The conventional uniaxial compression test adopts the ZTRE-210 microcomputer-controlled rock triaxial test system, accompanied by the 8-channel Micro-II Express Digital AE System acoustic emission monitoring system to collect the acoustic emission information during compression loading of the rock specimens. The schematic diagram of the test equipment is shown in Figure 4, and the layout position of the acoustic emission sensor on the rock sample is illustrated in Figure 5. The tests were load-controlled at a rate of 0.5 kN/s until the rock sample had been damaged. Through the test, the average values of the key parameters of the rock samples are listed (Tables 2, 3).
[image: Figure 4]FIGURE 4 | Schematic diagram of the test equipment.
[image: Figure 5]FIGURE 5 | Layout of an acoustic emission probe.
TABLE 2 | Average value of key parameters of unanchored rock samples.
[image: Table 2]TABLE 3 | Average value of key parameters of anchored rock samples.
[image: Table 3]ANALYSIS OF ENERGY EVOLUTION IN ROCK SPECIMENS
Energy Calculation
The study of energy theory shows that the essence of rock deformation and failure process is the dissipation and release of internal energy under external load. Instability failure will occur when the internal energy is suddenly released. The internal stored energy before rock failure corresponds to the total input energy W of the uniaxial compression test press, During uniaxial loading, part of the energy stored in the rock will be stored in the form of elastic strain, which is called releasing elastic strain energy Ws, and the other part is mainly dissipated in the form of irreversible plastic deformation and damage to the rock, which is called dissipative strain energy Wd. Assuming that the experimental system has no energy exchange with the outside world and ignores the kinetic energy loss during instability failure, the relationships between total input strain energy W, releasable elastic strain energy Ws and dissipated strain energy Wd are given by:
[image: image]
[image: image]
[image: image]
where W = the total input energy; Ws = the elastic strain energy; Wd = the dissipative strain energy; [image: image] = the strain value at [image: image]; [image: image] = the residual strain when the unloading stress is 0; E = the modulus of elasticity.
Analysis of Energy Dissipation and Transfer in Rock Specimens
According to Formulae 1, 2, 3, the relationship curves of input strain energy, elastic strain energy, dissipated strain energy, and the ratio of dissipated energy to elastic energy of unanchored and anchored layered sandstone were calculated (Figures 6, 7): Because the test was load-controlled and the rock was brittle rock, there was no post-peak stage, so the pre-peak stage of rock sample was selected for energy calculation in the present work. Limited by the length of the article, we only analyzed the energy dissipation and transfer in layered sandstone at 45° and 90° in anchored and unanchored conditions (other layered sandstone samples show similar energy evolution trends).
[image: Figure 6]FIGURE 6 | Energy evolution in layered sandstone without an anchor: (A) No anchor 45°; (B) No anchor 90°.
[image: Figure 7]FIGURE 7 | Energy evolution in layered sandstone with an anchor: (A) Anchor 45°; (B) Anchor 90°.
According to the energy evolution curves of rock samples in Figures 6, 7: Throughout the uniaxial compression process, the total strain energy input by the press to the rock is mainly stored in the rock as elastic strain energy. In the initial compaction stage, the internal micro-cracks of the rock sample are gradually compacted and closed, and the friction damage of the micro-cracks leads to the internal energy of the rock sample dominated by the dissipated energy. In the process of fracture closure, the rate of growth of the dissipated energy gradually decreases, and the elastic energy gradually exceeds the dissipated energy after fracture closure; with the continuous increase of stress, the rock sample enters the elastic stage. When the Wd/Ws ratio decreases to about 0.4, the growth of dissipated energy basically stops. Since then, the dissipated energy of 45° rock samples remains unchanged at the peak level, and the dissipated energy of 90° rock samples gradually decreases after reaching the peak, indicating that the 45° bedding sandstone is more stable than 90° bedding sandstone, and the internal fracture development is relatively slow during compression. The energy evolution curve of the rock sample shows a growth stage in which the growth rate of the dissipated energy increases gradually compared with the elastic stage. The internal cracks in the rock bifurcate and develop rapidly, then resulting in local shear failure until the cracks penetrate and the fracture surface is damaged.
The energy calculation results of sandstone with five bedding angles during failure show that: In the sandstone with the same bedding angle, the anchored sandstone generally stores more total input strain energy, elastic strain energy and dissipation energy than the unanchored sandstone. In unanchored and anchored layered sandstone, the total input strain energy, elastic strain energy and dissipation energy of rock samples basically increase first and then decrease with the increase of bedding angle, but increase will occur in 90° bedding sandstone. It can be seen from Formula 2 that the stored energy of rock is related to the peak stress of rock and the corresponding strain at the peak stress. Although the compressive strength of 90° bedding sandstone is slightly lower than that of 60° bedding sandstone, the strain at failure is greater than that of 60° bedding sandstone, resulting in the increase of total input strain energy of 90° bedding sandstone compared with 60° bedding sandstone. In the case of unanchored specimens, the layered sandstone slides along the weak bedding plane in the elastic stage, making the local shear fracture zones gradually cross-connect until failure occurs. In the energy evolution process, the dissipative energy will exhibit dense fluctuations in a localized area during the elastic stage. After the dissipative energy fluctuation is completed, the dissipative energy will increase sharply, and then the rock sample will be damaged. Under the action of anchoring, there is no sharp fluctuation in dissipated energy in the elastic stage, indicating that the anchor can increase the stability and compressive strength of bedded sandstone.
CHARACTERISTICS OF ACOUSTIC EMISSION DURING ROCK SAMPLE FAILURE
Acoustic Emission Parameter Analysis
The common characteristic parameters of acoustic emission include event count, energy, amplitude, and duration. According to the acoustic emission count (cumulative count) and energy (cumulative energy) in the process of rock failure, we studied the degree of occurrence and development of cracks in the rock to through failure and the intensity of accompanying acoustic emission events (Guo and Wong, 2020; Jiang et al., 2020; Meng et al., 2021). Here, we list the test results of 60° bedding specimens as an example.
The changes of acoustic emission parameters during loading, deformation and failure of anchored rock are shown in Figures 8, 9. In the initial stage of loading, the two rock samples are in the compaction stage, and the acoustic emission counting rate and energy are at a low level and fluctuate within a small range. At that time, the specimen is undergoing closure of primary joints and micro-fractures in the rock. During this period, it can be seen from the enlarged drawing of Zone I that there is a small wave peak in the acoustic emission counting rate. After the wave peak, the acoustic emission counting rate and energy rate will enter a stable period for a certain time when, the rock sample enters the elastic stage, and there are few new cracks (a quiet period in AE terms), in which the anchoring effect is small; with increasing load, the acoustic emission count rate of rock will increase gradually. The count rate and energy remain low and irreversible plastic deformation and new cracks occur in the rock sample, and the sandstone particles continue to slip between the same bedding plane, resulting in an upward acoustic emission count rate (an AE transition period). At the initial stage of this stage, the acoustic emission count rate of anchored rock will increase and decrease sharply within a small range compared with that in the calm period, indicating that the anchor rod has inhibited the development of primary fractures in the rock sample. In the middle and late plastic stage, the acoustic emission counting rate shows an upward trend, and the count rate will increase sharply in a short time. At this time, the internal crack of the rock sample rapidly develops into a through-crack, forms a fracture surface, and immediately destroys the rock (the so-called active period of acoustic emission). In this stage, the peak stress, internal cumulative energy and cumulative count of the anchored rock are significantly greater than those of the unanchored rock sample. At the same time, the high count-rate and high energy-release range of the anchored rock in the active period are longer than those of the unanchored rock, showing that the anchored rock is more stable. After the rock sample has been damaged, the acoustic emission count rate of rock samples with or without anchors decreases sharply and disappears rapidly (the so-called acoustic emission attenuation period). There is obvious shear failure of rock with or without anchorage. Other bedding angles in the rock specimens show similar AE characteristics in the process of uniaxial compression deformation and failure.
[image: Figure 8]FIGURE 8 | Relationship between acoustic emission energy and cumulative energy of rock sample and stress: (A) Unanchored bedding sandstone; (B) Anchored bedding sandstone.
[image: Figure 9]FIGURE 9 | Relationship between acoustic emission counting and cumulative counting of rock samples and stress: (A) Unanchored bedding sandstone; (B) Anchored bedding sandstone.
Acoustic Emission B-Value Characteristics
The B value represents the parameter of seismic magnitude frequency relationship. At present, research into the B value is not limited to seismic analysis. In rock, the acoustic emission event generated in the process of deformation and failure can be regarded as microseismic activity, and the event amplitude can be regarded as the seismic grade. By studying the variation of acoustic emission B value, the precursory characteristics of sandstone instability and failure at different bedding angles under anchorage were revealed (Liu et al., 2020).
[image: image]
where a and b are constants, N represents the number of microseismic events, and m is the magnitude. The calculation of n is based on the statistics pertaining to a large number of data, and two statistical methods can be used: differential frequency and cumulative frequency. In the differential frequency, N is the earthquake frequency with magnitude in the interval [m − ∆m, m + ∆m]. In the calculation of the acoustic emission B value, the acoustic emission amplitude A (dB) is divided by 20 to replace the magnitude m, i.e., m = A/20. In the study of acoustic emission events, the B value can be used as the characteristic parameter indicative of rock damage propagation state and range to detect imminent dynamic disasters in the rock mass.
Acoustic emission events will produce large fluctuations in the process of rock compression, so a given number of events can be selected for each window, and the B value is calculated by sliding grouping, so as to increase the statistical validity of data pertaining to the number of events, and the maximum likelihood estimation method is used to calculate the B value (Amitrano, 2003):
[image: image]
where [image: image] = the amplitude; [image: image] = the amplitude equal to [image: image] acoustic emission energy; [image: image] = the minimum amplitude value in the calculation object; n = the total number of acoustic emission events used to calculate the value; e = a natural number.
The time-normalized coordinate system is used to represent the variation relationship between B and amplitude of events in sandstone with different bedding angles under anchorage (Figure 10). In the initial compaction stage of loading, there are few acoustic emission events in the rock sample, the cracking scale of primary joints and micro-fractures in the rock is small, and B is high. The initial B value at this time reflects the state of B value when there is only small fracture activity in the initial compaction stage, and can also be used as a reference value for the change of B value in the whole process. With the increase of B value, the small cracks increase continuously, and the B value is less than the initial b value at the final failure. With increasing stress, the B value of sandstone shows an upward trend in the elastic stage and the distribution of micro-cracks and acoustic emission events in sandstone is relatively uniform, and sandstone is stable. When the time reaches about 0.7, as the sandstone changes from the elastic stage to the plastic stage, due to the large collection of micro-cracks in sandstone, large cracks are formed. In the locally damaged area, the stress-drop in the corresponding sandstone specimen occurs many times, accompanied by high-amplitude, high-energy events, and B continues to decline. Finally, the large cracks in the sandstone are connected and unstable failure occurs whereupon, the B value reaches a minimum.
[image: Figure 10]FIGURE 10 | Relationship between b value and amplitude of layered sandstone: (A) 0° sandstone; (B) 30° sandstone; (C) 45° sandstone; (D) 60° sandstone; (E) 90° sandstone.
It can be seen from Figure 10 that the B value of anchored layered sandstone first increases, then decreases throughout the uniaxial compression deformation process. For sandstone at a given bedding angle, the number of acoustic emission events of anchored sandstone exceeded that of unanchored sandstone, and the B value is generally higher than that of unanchored sandstone in different stages, indicating that the development of internal fractures under the action of anchorage can be effectively restrained, the compressive strength of rock can be improved, and the toughness of the sandstone can be improved. The continuous decrease of B value can be regarded as precursory information before the failure of anchored and unanchored layered sandstone.
Analysis of Spatial Fractal Evolution of Acoustic Emission Events
The fractal dimension of acoustic emission events in rock failure process is a measure of the disorder of micro-cracks in rock, which can reflect the tendency of micro-damage evolution to macro-cracks (Liu et al., 2019; Ma et al., 2021; Zhao et al., 2021). Xie et al. (2011) proposed a sphere-covering method and column-covering method to predict the spatial fractal distribution of rock acoustic emission events (Figure 11). The sphere-covering method mainly covers the central area, which cannot reflect the damage to the areas at both ends of the specimen, therefore, according to the geometry of the cylindrical rock specimens, the cylinder-covering method and calculation model could be adopted to calculate the spatial fractal dimension of sandstone with different bedding angles under the action of anchorage.
[image: Figure 11]FIGURE 11 | Sphere and cylinder-covering methods.
In the cylinder-covering method, the fractal dimension model in the space of acoustic emission events follows the volume distribution, as given by (Xie, 1996):
[image: image]
where, the radius R and height h change in the same proportion ([image: image]), then Formula 6 gives:
[image: image]
According to fractal theory, the relationship between the spatial distribution number of acoustic emission events and the radius r of the micro-cylinder can be expressed as:
[image: image]
Taking the logarithm of both sides:
[image: image]
where r = the radius of the micro-cylinder (the radii selected herein are 5, 10, 15, 20, and 25); N(r) = the number of acoustic emission events in a micro-cylinder with radius r; D = fractal dimension; C = a constant (taken herein as 0.25).
According to the fractal dimension calculation principle, the double logarithmic coordinates of the spatial distribution number N(r) of acoustic emission events of sandstone with different bedding angles and the corresponding spatial radius under the action of anchorage were made. The linear correlation of [image: image] is directly proportional to the fractal characteristics of events, and its relationship is shown in Figure 12.
[image: Figure 12]FIGURE 12 | Fractal dimension fitting line of layered sandstone: (A) 0° sandstone; (B) 30° sandstone; (C) 45° sandstone; (D) 60° sandstone; (E) 90° sandstone.
Through the linear analysis of fractal dimension fitting between anchored and unanchored sandstones with different bedding angles (Figure 12), the acoustic emission events of sandstone in the failure process were found to have fractal characteristics in space, and the range of variation of fractal dimension D is within [2, 3]. The increase of D value indicates that the spatial distribution of events in sandstone is more uniform, that is, the damage is evenly distributed in sandstone, on the contrary, the smaller the D value, the more the acoustic emission events are intensively distributed in space, indicating that the rock is locally severely damaged. The fractal dimension D of sandstone first increases, then decreases with the increase of bedding angle (Figure 13). The D value shows a positive correlation with the compressive strength of sandstone. The fractal dimension D of anchored sandstone is greater than that of unanchored sandstone, the growth rate of 30° bedding anchored sandstone (in terms of D value) is the largest (reaching 12.33%), and the largest D value occurs in 45° bedding anchored sandstone (reaching 2.72). The increase in D shows that the distribution of internal cracks in sandstone can become uniform when anchored, and the degree of stress concentration therein can be reduced. Figure 14 shows the time distribution of the height of acoustic emission events of anchored and unanchored sandstone in different bedding orientations. The acoustic emission events increase with the increase of time under compression. The number of acoustic emission events of sandstone increases under the action of anchorage. The distribution of damage to the rock can be seen more intuitively through the range of distribution of acoustic emission events. In the 30° bedding sandstone, the acoustic emission time of unanchored sandstone is mainly concentrated in the height range of 0–40 mm wherein, many acoustic emission events have occurred in the initial stage of loading, cracks appear in the sandstone, local damage occurs, finally developing into through-cracks, resulting in instability and failure. The acoustic emission events in anchored sandstone are evenly distributed over the height of the specimens. A small number of acoustic emission events occur in anchored specimens in the early stage and these are evenly distributed, thus avoiding sudden damage to the rock due to local stress concentration. Therefore, the fractal dimension D can reflect the severity of the damage and its distribution in the rock. The lower the D value, the more concentrated the damage, and the greater the D value, the more uniform and widespread the damage.
[image: Figure 13]FIGURE 13 | Relationship between D value and bedding angle of anchored and unanchored sandstone.
[image: Figure 14]FIGURE 14 | Distribution of acoustic emission event height with time in layered sandstone: (A) 0° sandstone; (B) 30° sandstone; (C) 45° sandstone; (D) 60° sandstone; (E) 90° sandstone.
From the relationship between acoustic emission event spatial fractal dimension D and relative peak stress in Figure 15, it can be seen that with the continuous increase of stress, acoustic emission spatial fractal dimension D tends to increase, and the D value of anchored sandstone is generally greater than that of unanchored sandstone throughout the process. Before the stress reaches 0.3 [image: image], the growth of D is rapid. In this stage, the acoustic emission events are generated at a high rate due to the compaction and closure of micro-fractures and primary joints in the rock sample. Figure 14 shows that acoustic emission events gradually increase with time, so the early D value is low, indicating that there are few acoustic emission events in sandstone, which are densely distributed in local parts; With the continuous increase of stress, the change in D is slow when the stress is between 0.3 [image: image] and 0.6 [image: image]. In this stage, the sandstone undergoes elastic deformation, the rock is relatively stable, there are few acoustic emission events, and these have little effect on D; once the stress reaches 0.6 [image: image], D increases and irreversible plastic deformation occurs in the rock sample. At the same time, not only do new fractures appear in the rock sample, but new micro-fractures develop rapidly in the elastic stage, locally concentrated damage occurs, and finally the through-fracture surface is formed, resulting in sudden damage to the sandstone.
[image: Figure 15]FIGURE 15 | Relationship between acoustic emission event spatial fractal dimension and stress: (A) 0° sandstone; (B) 30° sandstone; (C) 45° sandstone; (D) 60° sandstone; (E) 90° sandstone.
It can be seen from Formula 8 that the number of acoustic emission events has a positive proportional exponential growth relationship with D. in the initial stage, there are few acoustic emission events, and the value of D in the same space is small. In the magnitude and change rate of D value under different stresses in uniaxial compression, the former can represent the number of acoustic emission events to a certain extent, and the latter can represent the growth rate of acoustic emission events in the process of compression. For 60° bedding sandstone, obvious shear failure occurs along the bedding plane at the weak anchorage during deformation and failure, and the D value changes little, showing a linear change from the plastic stage to final failure, indicating significant brittleness: the effect of the anchor bolt on improving the toughness of this bedding rock sample is insignificant. At other bedding angles, the D value tends to be stable in the process of plastic deformation and failure. At this time, although the sandstone has produced a wide spatial range of damage, the acoustic emission events increase evenly and slowly in the space near the point of failure. This phenomenon is more obvious than that of unanchored sandstone, therefore, the bolt can improve the toughness of sandstone to a certain extent. Therefore, in engineering practice, using anchor bolts to anchor layered sandstone can improve the strength and stability of the surrounding rock.
CONCLUSION

1) In the process of uniaxial compression, the total input strain energy of the press to the sandstone is mainly stored as elastic strain energy. Among them, 45° bedding sandstone stores the most energy, and anchored sandstone stores more energy than unanchored sandstone. The release of energy increases continuously in the compaction stage of sandstone, remaining quasi-stable in the elastic stage until the release of energy in the plastic stage increases exponentially until instability failure of the sandstone occurs.
2) The high count and high energy of acoustic emission mainly occur in the stage of plastic damage. In the compaction stage, the acoustic emission count and energy of anchored and unanchored sandstone exhibit low peaks. With the increase of pressure, the anchored sandstone shows a higher count and energy earlier than the unanchored sandstone, and the duration thereof is longer than in unanchored specimens. The sandstone has higher stability under the action of anchorage.
3) The B values of anchored and unanchored sandstones with different bedding angles first increase, then decrease during the process leading to eventual failure. The B value of anchored sandstone is generally higher than that of unanchored sandstone throughout the compression process. The anchoring effect can inhibit the development of internal fractures and improve the compressive strength and toughness of sandstone. At failure, B decreases continuously and rapidly which can be regarded as precursory information warning of the imminent failure of anchored and unanchored sandstone masses.
4) The acoustic emission events in the failure process of anchored and unanchored layered sandstone have fractal characteristics in space, and the range of fractal dimension D is [2, 3]. With the increase of bedding angle, D first increases, then decreases, which is consistent with the changes in energy storage and compressive strength. At the same bedding angle, the D value of anchored sandstone is greater than that of unanchored sandstone; D increases with the relative peak stress, showing a process of rapid growth and then slow growth which then repeats. The acoustic emission event counts grow uniformly and slowly in space, and the toughness and stability of sandstone are improved to a certain extent.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
Methodology, YY; investigation, D-CZ and H-SG; resources, D-XG and G-LF; writing—Original draft preparation, YY and D-CZ; writing—Review and editing, G-LF, and D-XG; supervision, G-LF. All authors have read and agreed to the published version of the manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ACKNOWLEDGMENTS
The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos 42177156, 51969007), the Fund of Jiangxi Department of Science and Technology (No. 20202ACBL214016), the Open Fund of Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University) (No. 2020KJZ03), and the Science and Technology Project of Jiangxi Provincial Department of Transportation (No. 2021Z0004).
REFERENCES
 Amitrano, D. (2003). Brittle-ductile Transition and Associated Seismicity: Experimental and Numerical Studies and Relationship with the B Value. J. Geophys. Res. Solid Earth 108 (B1), 2044. doi:10.1029/2001jb000680
 Cai, Y., Jiang, Y., Djamaluddin, I., Iura, T., and Esaki, T. (2015). An Analytical Model Considering Interaction Behavior of Grouted Rock Bolts for Convergence-Confinement Method in Tunneling Design. Int. J. Rock Mech. Mining Sci. 76, 112–126. doi:10.1016/j.ijrmms.2015.03.006
 Chen, Z., Xu, L., and Shang, Y. (2021). Influence of Joint Angle on the Acoustic Emission Evolution Characteristics and Energy Dissipation Rule of Rock Mass. Geotechnical Geol. Eng. 39 (4), 1621–1635. doi:10.1007/s10706-020-01581-2
 Feng, G.-L., Feng, X.-T., Chen, B.-R., Xiao, Y.-X., and Yu, Y. (2015). A Microseismic Method for Dynamic Warning of Rockburst Development Processes in Tunnels. Rock Mech. Rock Eng. 48 (5), 2061–2076. doi:10.1007/s00603-014-0689-3
 Feng, G.-L., Chen, B.-R., Xiao, Y.-X., Jiang, Q., Li, P.-X., Zheng, H., et al. (2022). Microseismic Characteristics of Rockburst Development in Deep TBM Tunnels with Alternating Soft -Hard Strata and Application to Rockburst Warning: A Case Study of the Neelum -Jhelum Hydropower Project. Tunn. Undergr. Sp. Tech. 122, 104398. doi:10.1016/j.tust.2022.104398
 Gao, L., Gao, F., Zhang, Z., and Xing, Y. (2020). Research on the Energy Evolution Characteristics and the Failure Intensity of Rocks. Int. J. Mining Sci. Tech. 30 (5), 705–713. doi:10.1016/j.ijmst.2020.06.006
 Geng, J., and Cao, L. (2020). Failure Analysis of Water-Bearing sandstone Using Acoustic Emission and Energy Dissipation. Eng. Fracture Mech. 231, 107021. doi:10.1016/j.engfracmech.2020.107021
 Guo, T. Y., and Wong, L. N. Y. (2020). Microcracking Behavior of Three Granites under Mode I Loading: Insights from Acoustic Emission. Eng. Geology. 278, 105823. doi:10.1016/j.enggeo.2020.105823
 He, M., Zhang, Z., Zhu, J., and Li, N. (2021). Correlation between the Constant Mi of Hoek-Brown Criterion and Porosity of Intact Rock. Rock Mech. Rock Eng. doi:10.1007/s00603-021-02718-2
 Jiang, Z., Li, Q., Hu, Q., Liang, Y., Xu, Y., Liu, L., et al. (2020). Acoustic Emission Characteristics in Hydraulic Fracturing of Stratified Rocks: A Laboratory Study. Powder Tech. 371, 267–276. doi:10.1016/j.powtec.2020.05.050
 Kang, H. (2014). Support Technologies for Deep and Complex Roadways in Underground Coal Mines: a Review. Int. J. Coal Sci. Technol. 1 (3), 261–277. doi:10.1007/s40789-014-0043-0
 Li, C., Liu, N., Liu, W., and Feng, R. (2021). Study on Characteristics of Energy Storage and Acoustic Emission of Rock under Different Moisture Content. Sustainability 13 (3), 1041. doi:10.3390/su13031041
 Li, H. R., He, M. C., and Shen, R. X. (2021a). Acoustic Emission Waveform Analysis of sandstone Failure with Different Water Content. Geofluids , 5290076.
 Li, H. (2017). Mechanical Properties and Acoustic Emission Characteristics of Thick Hard Roof sandstone in Shendong Coal Field. Int. J. Coal Sci. Technol. 4 (2), 147–158. doi:10.1007/s40789-017-0163-4
 Li, H., Qiao, Y., Shen, R., He, M., Cheng, T., Xiao, Y., et al. (2021b). Effect of Water on Mechanical Behavior and Acoustic Emission Response of sandstone during Loading Process: Phenomenon and Mechanism. Eng. Geology. 294, 106386. doi:10.1016/j.enggeo.2021.106386
 Li, H., Shen, R., Wang, E., Li, D., Li, T., Chen, T., et al. (2020). Effect of Water on the Time-Frequency Characteristics of Electromagnetic Radiation during sandstone Deformation and Fracturing. Eng. Geology. 265, 105451. doi:10.1016/j.enggeo.2019.105451
 Liu, W., Ma, L., Sun, H., and Muhammad Khan, N. (2021). An Experimental Study on Infrared Radiation and Acoustic Emission Characteristics during Crack Evolution Process of Loading Rock. Infrared Phys. Tech. 118, 103864. doi:10.1016/j.infrared.2021.103864
 Liu, X., Han, M., and He, W. (2020). A New B Value Estimation Method in Rock Acoustic Emission Testing. J. Geophys. Res. Solid Earth 125 (12). doi:10.1029/2020jb019658
 Liu, Y., Lu, C.-P., Zhang, H., and Wang, H.-Y. (2019). Numerical Investigation of Slip and Fracture Instability Mechanism of Coal- Rock Parting-Coal Structure (CRCS). J. Struct. Geology. 118, 265–278. doi:10.1016/j.jsg.2018.11.001
 Ma, L. H., Jiang, X., and Chen, J. (2021). Analysis of Damages in Layered Surrounding Rocks Induced by Blasting during Tunnel Construction. Int. J. Struct. Stab. Dyn. 21 (7), 2150089. doi:10.1142/s0219455421500899
 Ma, Q., Tan, Y., Liu, X., Gu, Q., and Li, X. (2020). Effect of Coal Thicknesses on Energy Evolution Characteristics of Roof Rock-Coal-Floor Rock sandwich Composite Structure and its Damage Constitutive Model. Composites B: Eng. 198 (1), 108086. doi:10.1016/j.compositesb.2020.108086
 Meng, F. Z., Wong, L. N. Y., and Zhou, H. (2019). Asperity Degradation Characteristics of Soft Rock-like Fractures under Shearing Based on Acoustic Emission Monitoring. Eng. Geology. 266, 105392. 
 Meng, Y., Jing, H., Liu, X., Yin, Q., and Wei, X. (2021). Experimental and Numerical Investigation on the Effects of Bedding Plane Properties on the Mechanical and Acoustic Emission Characteristics of sandy Mudstone. Eng. Fracture Mech. 245 (10), 107582. doi:10.1016/j.engfracmech.2021.107582
 Song, H., Zhao, Y., and Elsworth, D. (2020). Anisotropy of Acoustic Emission in Coal under the Uniaxial Loading Condition. Chaos, Solitons & Fractals , 130. doi:10.1016/j.chaos.2019.109465
 Tang, J.-H., Chen, X.-D., and Dai, F. (2020). Experimental Study on the Crack Propagation and Acoustic Emission Characteristics of Notched Rock Beams under post-peak Cyclic Loading. Eng. Fracture Mech. 226 (6), 106890. doi:10.1016/j.engfracmech.2020.106890
 Wang, Y., Wang, N., Wang, Z., Chen, Y., Wang, Y., and Zhao, H. (2020). Experimental Study on Ae Characteristics of Granite under Uniaxial Tension at Different Strain Rates. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35 (4), 691–698. doi:10.1007/s11595-020-2309-2
 Wu, H., Zhao, G., and Liang, W. (2019). Investigation of Cracking Behavior and Mechanism of sandstone Specimens with a Hole under Compression. Int. J. Mech. Sci. 163, 105084. doi:10.1016/j.ijmecsci.2019.105084
 Xie, H. P. (1996). Fractals-Introduction to Rock Mechanics[M]. Beijing: Science Press. 
 Xie, H. P., Liu, J. F., Ju, Y., Li, J., and Xie, L. Z. (2011). Fractal Property of Spatial Distribution of Acoustic Emissions during the Failure Process of Bedded Rock Salt. Int. J. Rock Mech. Mining Sci. 48 (8), 1344–1351. doi:10.1016/j.ijrmms.2011.09.014
 Yan, B., Wang, P., and Ren, F. (2020). A Review of Mechanical Properties and Constitutive Theory of Rock Mass Anisotropy. Arabian J. Geosciences 13 (12), 1–16. doi:10.1007/s12517-020-05536-y
 Yang, J. M., Qiao, L., and Yuan, L. I. (2019). Effect of Bedding Dip on Energy Evolution and Rockburst Tendency of Loaded Phyllite. Chin. J. Eng. 41 (10), 1258–1265. 
 Yu, Y., Feng, G. L., Xu, C. J., Chen, B.-R., Geng, D.-X., and Zhu, B.-T. (2022). Quantitative Threshold of Energy Fractal Dimension for Immediate Rock-Burst Warning in Deep Tunnel: A Case Study. Lithosphere , 1699273. doi:10.2113/2021/1699273
 Zhang, B., Li, S., Xia, K., Yang, X., Zhang, D., Wang, S., et al. (2016). Reinforcement of Rock Mass with Cross-Flaws Using Rock Bolt. Tunnelling Underground Space Tech. 51, 346–353. doi:10.1016/j.tust.2015.10.007
 Zhang, L., Cong, Y., Meng, F., Wang, Z., Zhang, P., and Gao, S. (2021). Energy Evolution Analysis and Failure Criteria for Rock under Different Stress Paths. Acta Geotech. 16, 569–580. doi:10.1007/s11440-020-01028-1
 Zhao, Z., Jing, H., Fu, G., Yin, Q., Shi, X., and Gao, Y. (2021). Experimental and Numerical Studies on Permeability Properties of Thermal Damaged Red Sandstone under Different Confining Pressures. Geofluids 2021 (3), 1–13. doi:10.1155/2021/6693768
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Yu, Zhao, Feng, Geng and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 14 February 2022
doi: 10.3389/feart.2022.846616


[image: image2]
New Arm-Stretching-Type Anti-Slide Pile Design and Verification
Guangfu Chen1,2, Guodong Zhang1,2, Fei Guo1,2*, Li Wang1,2, Qinghua Zhan1,2 and Xiaohu Huang1,2
1National Field Observation and Research Station of Landslides in Three Gorges Reservoir Area of Yangtze River, Yichang, China
2College of Civil Engineering and Architecture, China Three Gorges University, Yichang, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Lin Li, Chang’an University, China
Lulu Liu, China University of Mining and Technology, China
Baleshwar Singh, Indian Institute of Technology Guwahati, India
Shivanand Mali, Savitribai Phule Pune University, India
* Correspondence: Fei Guo, ybbnui.2008@163.com
Specialty section: This article was submitted to Geohazards and Georisks, a section of the journal Frontiers in Earth Science
Received: 31 December 2021
Accepted: 24 January 2022
Published: 14 February 2022
Citation: Chen G, Zhang G, Guo F, Wang L, Zhan Q and Huang X (2022) New Arm-Stretching-Type Anti-Slide Pile Design and Verification. Front. Earth Sci. 10:846616. doi: 10.3389/feart.2022.846616

Anti-slide piles play an important role in landslide control. However, owing to a limitation in the slide–resist design concept, large landslides are difficult to control. Moreover, the displacements of controlled projects are significant. In this paper, we propose an improved anti-slide pile design concept that develops and utilizes the landslide body. On this basis, we also design an arm-stretching-type anti-slide pile structure. We establish formulas for calculating the internal forces of this structure. The results of a case study indicate that the maximum shear force and bending moment of the arm-stretching-type anti-slide pile body were reduced by 43.6% and 25.4%, respectively, compared with those of a conventional single pile. Furthermore, the results of numerical modeling indicate that the arm-stretching-type anti-slide pile could significantly reduce landslide displacement. Thus, the proposed design is expected to solve the problems encountered when using conventional anti-slide piles for landslide control and can thereby become widely applicable in practice.
Keywords: anti-slide pile, design concept, landslide body development and utilization, arm-stretching-type anti-slide pile, design and calculation
INTRODUCTION
For the control of both artificial (i.e., cut and fill) and natural slopes, anti-slide retaining measures are often adopted. These measures mainly include retaining walls and anti-slide piles (Li et al., 2016; Li et al., 2019; Chen et al., 2020; Liu et al., 2021). A retaining wall is primarily used for the control of small, shallow landslides (Trandafir et al., 2009; Jiang and Towhata, 2013; Muraro et al., 2015), and its construction process has a significant impact on landslide stability. Furthermore, the cost of constructing retaining walls is significantly higher than that of constructing anti-slide piles. Consequently, anti-slide piles have been widely utilized for landslide control (Zhang et al., 2018; Liu et al., 2020; Lei et al., 2021).
Owing to the widespread use of anti-slide piles, various pile structures have been developed, ranging from the single pile to the anchor cable anti-slide pile, the prestressed anti-slide pile, the h-type pile, the door-type pile, and the other combined piles (Bo et al., 2017; Xu et al., 2020). However, the slide–resist concept, which is the design principle for various anti-slide pile structures, has remained unchanged. In other words, the landslide body continues to be regarded only as the source of sliding failure thrust, which is directly resisted by the anti-slide pile (Chow, 1996). Methods for calculating the landslide thrust acting on anti-slide piles embody the slide–resist concept of the anti-slide pile design (Ausilio et al., 2001; He et al., 2015; Wang et al., 2020). Smethurst and Powrie (2007) reported a railway embankment control project that was intended to achieve a high design safety factor; the load transferred to the 0.6-m-diameter anti-slide pile was calculated to be 60 kN using the limit equilibrium method.
According to the slide–resist design concept, the cross-section of an anti-slide pile must be designed to be particularly large; however, because of this, it becomes difficult to control large-scale landslides (Xie et al., 2021). Moreover, defects in the cantilever structure of anti-slide piles can result in substantial deformation under a large thrust (Wang et al., 2020b). Consequently, the use of anti-slide piles is challenging in projects with stringent displacement control requirements. These two factors limit the application of anti-slide piles in landslide control and thus restrict their further development. Notably, both these factors stem from the limitation of the existing design concept of anti-slide piles.
To address this issue, an improved design concept for anti-slide piles is proposed herein, which involves developing and utilizing the landslide body in the anti-slide pile design. Based on this improved design concept, the force of the landslide body can be leveraged in a positive manner. Accordingly, the contradictory relationship between the anti-slide pile and the landslide body can be changed, while shifting away from the view that the landslide body is only a hazard. Based on the proposed concept, a new type of anti-slide pile with stretching arms—the arm-stretching-type anti-slide pile—is designed. At the same time, calculation formulas for determining the internal forces of the pile are established. Furthermore, in addition to numerical simulations, the proposed design is employed for a case study. The results indicate that the novel pile can fulfill the proposed design concept of developing and utilizing the landslide body advantageously. The application of this novel anti-slide pile is expected to address the problems that are encountered when using conventional anti-slide piles.
METHODOLOGY
Pile Design Concept
The design concept of an anti-slide pile determines its structure, and this structure, in turn, determines the effectiveness of the pile in landslide control. The various anti-slide piles developed to date are based on a single design concept, i.e., the slide–resist concept. In this concept, the landslide body is regarded as a hazard, and the landslide body and the anti-slide pile are perceived to be two opposing forces; this limits further development and application of anti-slide piles.
To improve the design concept of anti-slide piles, it is thus necessary to determine whether the landslide body can be employed in the control mechanism. If that is, the case, the manner in which it can be applied must be elucidated.
Herein, we propose developing and utilizing the landslide body with the aid of stretching arms. When a stretching arm is situated at the back of the pile, it is called the back branch. When the back branch stretches horizontally, it divides the landslide body and unload. The landslide body is carried by this branch, such that the soil pressure underneath is reduced, and the overturning moment decreases accordingly. Simultaneously, the landslide body on the branch generates a reverse moment that counteracts the moment generated by the landslide body. This helps distribute the internal force in the pile. When a stretching arm is situated at the front of the pile, it is called the front branch. When the front branch stretches horizontally, it provides a supporting force. In this case, the branch utilizes the reaction force of the soil beneath it. Thus, the disadvantage of the insufficient bending resistance of a cantilever pile is alleviated. The structure of the proposed arm-stretching-type anti-slide pile is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Arm-stretching-type anti-slide pile.
Pile Calculation
Based on the elastic foundation theory (Wang et al., 2021), we calculated the internal forces of the arm-stretching-type anti-slide pile. The shear force and bending moment were determined using the cantilever pile method (Conte et al., 2017). Herein, we consider a single stratum as an example.
Load-Bearing Segment
Considering a resistance support in front of the pile, as shown in Figure 2, the following expressions are obtained:
[image: image]
[image: image]
where [image: image] is the shear force at the sliding surface, [image: image] is the bending moment at the sliding surface, [image: image] denotes the landslide thrust acting on the back of the pile, [image: image] represents the landslide thrust per meter of the pile setting site, and [image: image] denotes the residual anti-slide resistance acting on the front of the pile. Furthermore, [image: image] is the residual anti-slide resistance at the front of the pile, [image: image] represents the distance between the center gravity of the residual anti-slide resistance distribution diagram and the sliding surface, [image: image] denotes the pile spacing, and [image: image] denotes the distance between the center gravity of the landslide thrust distribution diagram and the sliding surface. Moreover, [image: image] is the soil volume weight, [image: image] represents the length of the pile back stretching arm, [image: image] denotes the distance between the ground and the back stretching arm, [image: image] denotes the pile calculation width, and [image: image] is the pile height.
[image: Figure 2]FIGURE 2 | Simple representation of load-bearing segment calculation.
Anchorage Segment
The internal forces in the anchorage segment vary according to the conditions of the stratum below the sliding surface. In this study, the internal force of the rigid pile was calculated with the considerations that the pile body is buried in a uniform stratum with the same foundation coefficient of K, and that the bottom of the pile is free.
When [image: image] and [image: image] act on the pile, a rotation through an angle [image: image] is generated; the distance between the rotation center and the sliding surface is [image: image]. The calculation process for the anchorage segment is illustrated in Figure 3.
[image: Figure 3]FIGURE 3 | Simple diagram representing the anchorage segment calculation.
When [image: image], the displacement is
[image: image]
As the value of [image: image] is extremely low, [image: image] is approximately equal to [image: image]. Hence,
[image: image]
The lateral force is
[image: image]
The shear force is
[image: image]
This can further be expressed as
[image: image]
In addition, the bending moment is
[image: image]
Thus,
[image: image]
When [image: image], the displacement is
[image: image]
Similarly, we have
[image: image]
[image: image]
The shear force is
[image: image]
Furthermore,
[image: image]
The bending moment is
[image: image]
Thus,
[image: image]
According to the static balance equation,
[image: image]
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We thus obtain
[image: image]
[image: image]
Upon solving the two equations, we obtain
[image: image]
[image: image]
COMPARATIVE RESEARCH THROUGH A CASE STUDY
One of the objectives of designing and applying the proposed arm-stretching-type anti-slide pile is to reduce the need for a large cross-section of piles, which will help control large-scale landslides. For a given application, if the internal force of the arm-stretching-type anti-slide pile is less than that of the conventional single pile, the cross-section of the pile can be reduced to realize control over large landslides. This section presents a comparative study of project control.
Project Data
Above its sliding surface, a landslide is primarily composed of sandy conglomerate and mudstone (The Second Survey and Design Institute of the Ministry of Railways, 1983). These materials are highly weathered and almost soil-like, and they are also uniformly deformed throughout their height. In this case, [image: image] is [image: image] and [image: image] is [image: image]. Below the sliding surface, slightly weathered mudstones and shales are present, which can be considered a hard soil layer.
The thicknesses of the landslide body before and after the anti-slide pile are similar. The landslide thrust, [image: image], is [image: image], and the residual anti-sliding resistance in front of the pile, [image: image], is [image: image]. The foundation coefficient, [image: image], below the sliding surface is [image: image], while the allowable compressive strength of the sidewall [image: image] is [image: image].
Pile Design
The length of the pile is 15 m, the load-bearing segment [image: image] is 10 m, and the anchorage segment [image: image] is 5 m. The other parameters are as follows:
Pile spacing [image: image] is 6 m.
Pile cross-sectional area: [image: image]
Pile section inertia moment: [image: image]
Pile section modulus: [image: image].
Pile elastic modulus (concrete 200): [image: image].
Pile flexural rigidity: [image: image].
Pile calculation width: [image: image].
Pile deformation coefficient: [image: image].
Pile calculation depth: [image: image], which implies that a rigid pile or an elastic pile can be considered for the calculation. In this case, the calculation is based on a rigid pile. The bottom of the pile is considered as a free end.
External Force Calculation
The landslide thrust acting on each pile is
[image: image]
According to the rectangular distribution, we obtain
[image: image]
The passive earth pressure in front of the pile can be expressed as
[image: image]
and
[image: image]
Therefore, the residual sliding resistance is considered the stratum resistance acting at the front of the pile.
The residual anti-sliding resistance of each pile is expressed as follows:
[image: image]
According to the rectangular distribution, we obtain
[image: image]
Conventional Single Pile
The calculation model is presented in Figure 4.
[image: Figure 4]FIGURE 4 | Force diagram of the conventional single pile.
Load-Bearing Segment
The shear force is expressed as
[image: image]
The bending moment is
[image: image]
The calculation results for each section are presented in Table 1.
TABLE 1 | Internal force of load-bearing segment.
[image: Table 1]Anchorage Segment
The distance between the sliding surface and the rotation center of the pile—denoted as [image: image] —and the rotation angle [image: image] were calculated to be 2.778 m and 0.0023 rad, respectively. The maximum side stress is generated at [image: image] on the sliding surface, and it equals [image: image].
The maximum side stress, [image: image], is lower than the allowable compressive strength of the sidewall, which is [image: image]. Thus, the requirements are fulfilled.
The shear force and bending moment of the pile body are calculated using the following formula:
[image: image]
[image: image]
The calculated internal force and side stress of the anchorage segment are listed in Table 2.
TABLE 2 | Internal force and side stress of anchorage segment.
[image: Table 2]Arm-Stretching-Type Anti-Slide Pile
The calculation model is illustrated in Figure 5.
[image: Figure 5]FIGURE 5 | Force diagram of the arm-stretching-type anti-slide pile.
Load-Bearing Segment
The shear force is
[image: image]
When [image: image], the bending moment is
[image: image]
Moreover, when [image: image], the bending moment is
[image: image]
The calculation results for each section are presented in Table 3.
TABLE 3 | Internal force of load-bearing segment.
[image: Table 3]Anchorage Segment
The distance between the sliding surface and the rotation center of the pile according to Eq. 22 is
[image: image]
The rotation angle of the pile according to Eq. 21 is
[image: image]
The side stress of the pile according to Eq. 5 or Eq. 12 is
[image: image]
The maximum side stress occurs at [image: image] on the sliding surface, and it equals [image: image]. Moreover, the maximum side stress [image: image] is less than the allowable compressive strength of the sidewall, which is [image: image]. Thus, the requirements are fulfilled.
The pile body shear force according to Eq. 7 or Eq. 14 is
[image: image]
The pile body bending moment according to Eq. 9 or Eq. 16 is
[image: image]
The calculated internal force and side stress of the anchorage segment are listed in Table 4.
TABLE 4 | Internal force and side stress of anchorage segment.
[image: Table 4]By comparing the calculated internal forces of the conventional single pile and the proposed arm-stretching-type anti-slide pile, it can be concluded that the stretching arms improve the internal force distribution in the pile body and reduce the shear force and bending moment. In the anchorage segment of the pile, the maximum shear force decreases from 4256.2 kN to 2,400 kN, while the maximum bending moment decreases from 12643.1 kN m to 3613.1281 kN m. Thus, the effect of the stretching arms is significant.
COMPARATIVE RESEARCH THROUGH NUMERICAL SIMULATIONS
Another objective of designing and applying the proposed arm-stretching-type anti-slide pile is to alleviate the impact of defects in the cantilever structure of anti-slide piles. Such defects can result in large displacements under the landslide thrust action. In this regard, a comparative simulation study in terms of project control was conducted.
Model Parameters
To verify the engineering applicability of the proposed arm-stretching-type anti-slide pile, the conventional single pile and the proposed pile type were applied in the same project to perform numerical analyses (Shooshpasha and Amirdehi, 2015; Han et al., 2019). A typical three-dimensional landslide anti-slide pile control model was established using ABAQUS (Muraro et al., 2014; Tang et al., 2018; Li and Du, 2021). The mechanical parameters of the landslide and the anti-slide pile are listed in Table 5.
TABLE 5 | Model parameters of the anti-slide pile and the landslide used in the simulation.
[image: Table 5]Figure 6A presents the geometrical parameters of the landslide and the pile. The main pile body has a length of 22 m, width of 1.5 m, and height of 2 m. The stretching arm has a length of 3 m, width of 1.5 m, and height of 1 m. In the numerical simulation, the shaded half-pile model shown in Figure 6B was analyzed on the basis of symmetry (Cai and Ugai, 2000; Li et al., 2015; Yamin et al., 2020; Chen et al., 2021).
[image: Figure 6]FIGURE 6 | Model parameters: (A) longitudinal section and (B) horizontal section.
The Mohr–Coulomb criterion was applied to the landslide during the analysis, and the pile is an isotropic elastic material. The C3D8 unit was used for modeling both the landslide and the pile. The surface-to-surface contact type was adopted to simulate the pile-soil interaction. The pile around and the pile bottom were defined as two surface sets, accordingly, surrounding the soil surfaces were defined. For the normal interaction property, hard contact was used, while the tangential interaction property is defined by the friction coefficient (Liang et al., 2010). Normal constraints were applied to the front, rear, left side, and right side of the model, while the bottom was constrained as fixed.
Result Analysis
The landslide safety factor is 0.922, when the calculation is terminated based on the strength reduction method. Figure 7 shows a cloud map of the plastic strain.
[image: Figure 7]FIGURE 7 | Landslide plastic strain cloud map.
The safety factor of the controlled project increased to 1.159 and 1.638 following the conventional single pile treatment and the arm-stretching-type anti-slide pile treatment, respectively. Figure 8 shows the relationship between the safety factor and the horizontal displacement at the slope toe node; this relationship was determined by adopting the two types of piles individually to control the landslide. As shown in Figure 8, regardless of whether the non-convergence of the calculation or the displacement inflection point was employed as the safety factor evaluation criterion, the controlled project safety factor of the arm-stretching-type anti-slide pile is larger than that of the conventional single pile. Furthermore, under the same safety factor, the landslide displacement when using the arm-stretching-type anti-slide pile is significantly smaller than that when using the conventional single pile. Therefore, the new arm-stretching-type anti-slide pile is highly suitable for railway embankments and other projects with stringent requirements in terms of displacement control.
[image: Figure 8]FIGURE 8 | Relationship between safety factor and horizontal displacement at the slope toe node.
Figure 9 shows the incremental displacement of the landslide when the calculation is terminated. The figure indicates a difference between the sliding surfaces when using the respective conventional single pile and the arm-stretching-type anti-slide pile. This suggests that the stretching arms can alter the distribution of the landslide forces, and the landslide body can thereby be developed and utilized.
[image: Figure 9]FIGURE 9 | Landslide body incremental displacement cloud map: (A) conventional single pile and (B) arm-stretching-type anti-slide pile.
Figure 10 shows the shear force and the bending moment of the pile when the strength reduction analysis step is terminated. It is evident that the shear force and bending moment of the arm-stretching-type anti-slide pile decrease significantly along the main pile body. The great improvement could be result of the synergistic action of the front branch’s supporting effect and the back branch’s unloading effect. The shear force decreases from a maximum of 1,250 kN–482 kN, whereas the bending moment decreases from a maximum of 8,570 kN m–1,290 kN m.
[image: Figure 10]FIGURE 10 | Internal forces of conventional single pile and arm-stretching-type anti-slide pile: (A) shear force and (B) bending moment.
SUMMARY AND CONCLUSION
The present study aimed to address the disadvantages of the existing slide–resist concept for designing anti-slide piles: 1) under the existing concept, it is difficult to control large landslides, and 2) this concept is not suited to projects with strict displacement control requirements. To resolve these issues, an improvement to the present single design concept of anti-slide piles was proposed. The new concept addresses the limitation of the slide–resist concept, which deems the landslide body as only a hazard and considers the pile and landslide body to be opposing entities. The proposed concept, in contrast, serves to develop and utilize the landslide body. In accordance with this design concept, the following steps were performed:
(1) An arm-stretching-type anti-slide pile that can realize the proposed design concept of an anti-slide pile was designed, and formulas for calculating the internal forces of the pile body were established.
(2) The internal forces in the conventional single pile and the arm-stretching-type anti-slide pile were investigated and compared through a case study. The results indicated that compared with the maximum shear force of the conventional single pile, that of the arm-stretching-type anti-slide pile decreased by 43.6%, while the maximum bending moment decreased by 25.4%. The cross-section of the arm-stretching-type anti-slide pile can be reduced to less than that of the conventional single pile, which can enable control of large landslides.
(3) Numerical simulations revealed that compared with the internal force of the conventional single pile, that of the arm-stretching-type anti-slide pile is lower and more uniformly distributed. Furthermore, the safety factor of the control project is increased, and the displacement decreases significantly under the same safety factor. The arm-stretching-type anti-slide pile can be adopted for projects with stringent displacement control requirements.
On the basis of these findings, the arm-stretching-type anti-slide pile shows significant potential for practical applications. Considering construction processes, this new type of pile is expected to be particularly suitable for treating filled slopes.
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Identifying appropriate seismic events is the primary precondition for conducting meaningful analysis in seismological research. The successful creation of a method to automatically identify earthquakes from large amounts of data has become increasingly vital, especially with the construction of seismic stations, the collection of extensive seismic data, and the development of earthquake early warning (EEW) systems. To accurately identify seismic events, a combined model based on a generative adversarial network (GAN) and a support vector machine (SVM) is proposed to distinguish between earthquakes and microtremors. We first use 52,537 strong ground motion records from Japan to train a GAN and extract the characteristics of P waves and then use an SVM to discriminate seismic events in the testing set, thereby transforming the complex seismic event identification into a simpler binary classification of earthquakes and microtremors. The results illustrate that the combined model can achieve accuracies of 99.74% for P waves and 99.93% for microtremors, which represents an increase in accuracy of 14.13% compared with the traditional short-term averaging/long-term averaging (STA/LTA) method. Additionally, 98% of the local seismic events in the Great East Japan earthquake were identified. Therefore, the combined model has a wide range of applications in EEW and earthquake monitoring.
Keywords: generative adversarial network, support vector machine, seismic event identification, earthquake early warning, classification
INTRODUCTION
Seismic event identification is the primary precondition for conducting meaningful analysis in seismological research, especially in earthquake monitoring and earthquake early warning (EEW). At present, the characterization of seismo-acoustic sources and the identification of earthquakes is predominantly performed by human analysts trained to cross-link diverse types of information, especially for microtremors, namely, weak nonearthquake-induced vibrations that occur perpetually at the Earth’s surface. They are uninterrupted and imperceptible ambient vibrations at a given site due to disturbances caused by natural factors (rain, wind, ocean waves, and meteorological perturbations, etc.) and human activity (transportation, machinery operation, etc.) (You et al., 2021). With the evolution and growing density of geophysical monitoring networks, the number of events that need to be analyzed has been increasing rapidly, making it impractical to fully rely on human analysts. Therefore, efficient, high-precision, and universal automatic seismic detection algorithms are desirable. Such algorithms could improve the critical decision-making process of an EEW service. This is crucial to inform society about an unraveling geophysical hazard in a timely and correct manner.
Substantial progress in the automatic identification of seismic events has been achieved with traditional seismic detection algorithms, including the STA/LTA detection method (Allen, 1978), the AR-AIC picker (Sleeman and Van Eck, 1999), and the PAI-S/K method (Saragiotis et al., 2002). However, since only some of the waveform characteristics are used in the picking process, the identification accuracy is often lower than that of manual processing. Alternatively, the waveform autocorrelation method (Brown et al., 2008) and the template matching method (Peng and Zhao, 2009), proposed based on waveform similarity, have a high detection accuracy, but detection accuracy depends on the number of templates used. Although a majority of elaborating methods try to reduce the number of templates by principal component analysis (Benz et al., 2015) or locality-sensitive hashing (Yoon et al., 2015), they are still restricted by the detection of repetitive signals, making it difficult to use these algorithms in real-time processing of seismic data.
Recently, artificial intelligence (AI) and methods such as machine learning (ML) and deep learning (DL) have become increasingly popular. Their successful application in several geophysical contexts has demonstrated great potential, including the identification of seismic events (Kong et al., 2016; Li et al., 2018; Ross et al., 2018; Mousavi et al., 2020; Yang et al., 2021). Compared with traditional earthquake detection algorithms, ML can extract features that are more closely related to the essence of the data. Li et al. (2018) combined a generative adversarial network (GAN) with a random forest (RF) classifier to distinguish P waves from impulsive noise, successfully recognizing 99.2% of P waves and 98.4% of noise. Based on the different characteristics of human behavior and seismic events, Kong et al. (2016) used an artificial neural network (ANN) to identify 98% of the seismic records within 10 km of the Myshake system, thereby efficiently and accurately identifying earthquakes (Kong et al., 2016). Zhu and Beroza (2019) trained the PhaseNet model using 780,000 waveforms from the Northern California Seismic Network (NCSN) based on the U-Net (Ronneberger et al., 2015), detecting earthquakes and picking P-wave arrivals with high precision and generalization (Huang et al., 2020). Majstorović et al. (2021) developed a deep learning pipeline for earthquake detection, localization, and characterization using only one station’s raw data, and the robust pipeline is detecting the earthquakes among the random noise with the accuracy of 97%. It is able to determine the events that are close to the station (<10 km) with 94% accuracy as well as identify their belonging to four magnitude classes with a 68% accuracy. Such approaches may allow EEW algorithms to be triggered only by waveforms exhibiting the general characteristics of direct seismic body waves rather than any impulsive signal (Meier et al., 2019).
To identify seismic events, we transform the complex seismic identification problem into a simple binary classification problem, and a combined model is proposed to distinguish earthquakes from microtremors in an EEW context. It is based on a GAN and a support vector machine (SVM). A GAN is an unsupervised ML algto a simple binary classification problem, and a combined model is proposed to distinguish earthquakes from microtremors in an EEW context. It is based on a GAN and a support vector machine (SVM). A GAN is an unsupervised ML algorithm (Goodfellow et al., 2014) that can automatically extract waveform features and simplify the training process. An SVM serves as a linear classifier with the largest interval defined in the feature space (Webb, 2003) that can use the features extracted by the GAN to distinguish between earthquakes and microtremors and improve the accuracy of the results. The results of this combined model show that this algorithm can accurately identify 99.74% of P-waves and 99.93% of microtremors. Compared with the traditional STA/LTA (short-term averaging/long-term averaging) method, the accuracy is improved by 14.13%. It also provided perfect performance at local stations of the Great East Japan earthquake. Therefore, the proposed combined model can achieve state-of-the-art performance in the identification of seismic events for EEW.
DATA
2In this paper, we use 79,762 vertical strong-motion records from the Kyoshin Network (K-NET) and the Kiban Kyoshin Network (KiK-net) (39,097 and 40,665 records, respectively) for magnitude (M) ranges between 3 and 8 ([image: image]) throughout Japan, from October 2007 to September 2017 to build the training set. All the data are complete waveforms with a duration from 60 s (a few) to 120 s (most). The sample rate of most data is 100 Hz, and a small part is 200 Hz. After automatically picking P-wave arrivals based on the detection algorithm of Allen (1978), we choose P waves whose epicentral distances are within 800 km and whose signal-to-noise ratios (SNRs) are larger than 5, where the SNR is defined as the signal power ratio within a 2-s window before and after the picked arrival. Furthermore, it is required that the standard deviation of the amplitude of the 1-s waveform after the P-wave arrival be greater than it was before (Li et al., 2018). Before the training of the GAN, we apply the following preprocessing scheme to the dataset: 1) remove the prearrival mean; 2) apply a second-order causal Butterworth high-pass filter with a corner frequency of 0.075 Hz; 3) cut the waveform from 1 s before to 3 s after the P-wave arrival to isolate earthquake P waves; 4) cut the waveforms from the beginning of the record to the P wave arrival and randomly select 4 s waveforms to obtain microtremor signals; 5) normalize each waveform by its absolute maximum amplitude. After this procedure, there are 52,537 4-s P-wave records (Supplementary Table S1) (see the example in Figure 1A) and 52,537 microtremors (to keep the data balanced, we randomly selected the same number of microtremors) (see the example in Figure 1B). The locations of the stations and epicenters are shown in Figures 2A,B, respectively. We randomly select one-sixth of the training set as validation samples and adopt the model with the lowest validation loss. The magnitude and epicentral distance distributions are depicted in Figure 3A.
[image: Figure 1]FIGURE 1 | Examples of 4-s waveform data used in this study: (A) a P wave; (B) a microtremor. The point where the abscissa is 0 is the time of the P-wave arrival. The data in Figure 1 have been normalized.
[image: Figure 2]FIGURE 2 | (A) Locations of the stations in the training set in this study. (B) Locations of the epicenters (open circles, size in proportion to magnitude) in the training set. (C) Locations of the stations in the testing set. (D) Locations of the epicenters in the testing set.
[image: Figure 3]FIGURE 3 | (A) Magnitude and epicentral distance distribution of the training set; (B) Magnitude and epicentral distance distribution of the testing set.
The testing set is different from the abovementioned data, which includes 7,774 K-NET vertical ground motion records throughout Japan from January 2020 to June 2020. All the data are complete waveforms with a sample rate of 100 Hz. The duration of most data is 120 s, and a small part is 60 s. After applying the same selection and preprocessing scheme, we obtain a testing set consisting of 5,373 P waves (Supplementary Table S2) and 5,373 microtremors. The locations of the corresponding stations and epicenters are shown in Figures 2C,D, respectively, and the magnitude and epicentral distance distributions are depicted in Figure 3B.
In addition, to verify the results of the combined model for practical applications, we chose the Great East Japan earthquake as an earthquake example, which occurred in the northeastern region of Japan on 11 March 2011 with a magnitude of 9.0 (Aoki et al., 2012). This earthquake was one of the largest earthquakes in Japan’s history. It caused substantial damage, killing tens of thousands of people and damaging hundreds of thousands of houses. Due to the large magnitude of this earthquake and the broad extent over which it was felt, researchers often use it as an earthquake example. We select 701 K-NET records and 525 KiK-net records during the earthquake, and the epicentral distances are from 120.83 to 1,336.74 km. After applying the same selection and preprocessing scheme for P waves, we obtain a testing dataset with 692 vertical-component records (Supplementary Table S3).
MATERIALS AND METHODS
Training the Generative Adversarial Network
A GAN is an unsupervised ML algorithm proposed by Goodfellow et al. (2014); it consists of a generator (G) and a discriminator (D) (Goodfellow et al., 2014). Figure 4 shows the basic training process of a GAN. The black dotted line is the real data ([image: image]). The green solid lines are the generative distribution ([image: image]). The blue dashed line is the discriminative distribution. The lower horizontal line denotes latent samples ([image: image]). The upper horizontal line is part of the domain of [image: image]. G contracts in regions with a high [image: image] density and expands in regions with a low [image: image] density. At the beginning of training (see Figure 4A), [image: image] is similar to [image: image], and D is a partially accurate classifier. As the training continues, D is trained to discriminate samples according to [image: image] from the real data in the inner loop of the algorithm (Figure 4B) and guide G to flow toward regions that are more similar to the real data (Figure 4C). After several steps of training, when G and D have enough capacity ([image: image]) (Goodfellow et al., 2014), the training is over (Figure 4D). Currently, [image: image].
[image: Figure 4]FIGURE 4 | The basic GAN training process, which is reprinted with permission from Goodfellow et al. (2014). (A) The beginning of training GANs; (B,C) The training is in progress; (D) The end of training.
In this study, the flowchart depicting the training of a GAN is shown in Figure 5A. G takes the input of a 50-element vector drawn from a normal distribution and outputs a 4-s generated waveform (see the left box in Figure 5A). G is composed of two fully connected (FC) layers, in which there are 128 and 400 neurons. FC layers can map the distributed feature representation learned by a GAN to the space of sample labeling. In other words, the neurons in an FC can fit the distribution of real data, and the multilayer FC layers can solve the problem of nonlinear fitting. Every FC layer is followed by a leaky rectified linear unit (leaky ReLU), and the activation function of the last FC layer is given by a tanh function. Both tanh and leaky ReLU are activation functions. Because the output of neurons is the weighted sum of all inputs, the neural network is a linear model. The activation function increases the nonlinearity of the model; if the output of each neuron is passed through an activation function, the neural network can fit various distributions. The difference between the two layers is that a leaky ReLU is a nonsaturated activation function, which can effectively prevent problems such as gradient disappearance or gradient explosion, so it is often used in the hidden layer of neural networks. The output of tanh can be normalized to (-1, 1), which is convenient for input to D, so it is often used in the last layer. Additionally, we add a Reshape layer at the end of G to ensure that the generated data are acceptable for D. For D, the input is a 4-s waveform (either real data or generated data), and the output is the probability of the input waveform being a real record, as shown in the right box in Figure 5A. If the input waveform is from a real ground motion, the output is 1; if the input waveform is a generated waveform, the output is 0 (Li et al., 2018).
[image: Figure 5]FIGURE 5 | The training process of the combined model in this paper. (A) The training of GANs; (B) The identification of seismic events.
D consists of a convolutional (Conv) layer, an average pooling (AvePool) layer, and two FC layers. The Conv layer can extract waveform features through the forward propagation of convolution filters, which is the key to classification with D. Because forward propagation includes translation and flipping of convolution filters, it will produce a large number of training parameters. The AvePool layer can compress the input features, which not only simplifies the calculation complexity but also facilitates the extraction of the main features. The Conv layer has 16 filters, and the parameters of the other layers follow the default settings. The first FC layer has 128 neurons, followed by a leaky ReLU. The second FC layer has only 1 neuron to output the probability, and has a sigmoid activation function. The advantage of the sigmoid is that the output is between 0 and 1, which can serve as the probability of the output layer. Therefore, this function can not only predict the classification but also provide an approximate probability. We summarize these training settings in Table 1 and Table 2.
TABLE 1 | Summary of the parameters of the G.
[image: Table 1]TABLE 2 | Summary of the parameters of the D.
[image: Table 2]Moreover, we utilize Adam with learning rates of G and D of 0.0001 and 0.0002, respectively, thereby maintaining the balance of the data during training. Adam is a simple, computationally efficient, and low-memory optimizer that is used to update and calculate the parameters to minimize the loss function. In the training process of machine learning models, massive datasets often cannot be input into the model all at once, so researchers often input data in batches. In addition, it is usually not sufficient to train the model only once, and the epoch is the number of times the model is trained. In our study, training stopped when validation loss did not improve for 100 consecutive epochs and a batch size of 64; thus, G had 58,128 parameters and D had 203,073 parameters. These are all trainable parameters. Additionally, to achieve the purpose of classification, the loss functions of G and D are both binary cross entropy. We found that when D is trained for 5 iterations for each G iteration, the learning process achieves balance. These parameters are inherited from other GANs (Arjovsky et al., 2017) and are explored in this study to produce stable results. We select the model with the smallest validation loss as our final neural network model.
Identification of Seismic Events
Because the input of the GAN consists solely of real ground motions, the trained D can only distinguish between real data and generated waveforms. Therefore, we only use the GAN to extract P wave features and then use an SVM to identify P waves. An SVM is a binary classification model; its basic model is a linear classifier with the largest interval in the feature space (Webb, 2003). In other words, the principle of an SVM is to use a line or a manifold to divide various types, and the largest boundary is the optimal solution of the model. These characteristics make an SVM among the most powerful ML algorithms available today. When combined with a GAN, it can make full use of the P wave features extracted by the GAN for classification. Moreover, as the input to the SVM, microtremors can participate in the training of the combined model. Using the SVM as a classifier, rather than D itself, not only makes up for the shortcoming that microtremors cannot serve as input into the GAN but also leads to a much higher classification performance.
After the GAN training is complete, we remove the last FC layer of D and form the remaining part into a P-wave feature extractor, as shown in the red circle in Figure 5A. Assuming that after an extended period of training, D acquires the ability to distinguish real seismic waves, and the P-wave feature extractor serves to extract the key features of real earthquakes (Creswell et al., 2018). In this way, we can extract 105,074 waveform features, including 52,537 training P waves and 52,537 training microtremors, and input these into the SVM for classification, as shown in Figure 5B. It should be noted that the wave feature is a 128-dimensional vector. After the training of the SVM, the combined model can obtain the final classification results; that is, if the input is a P wave, the output is 1; if the input is a microtremor, the output is 0. We followed the initial settings in Scikit-learn for the training process of the SVM (Pedregosa et al., 2011). In addition, the parameter “model.predict_proba” of the Keras module in Python is used to provide an output probability (Pedregosa et al., 2011) serving to reflect the confidence in the decisions and thus assess the performance of the combined model.
RESULTS
The Testing Set
After training, the well-trained model successfully identifies 5,359 P waves and 5,369 microtremors from the dual sample sets compromised of 5,373 records each. In other words, the combined model can achieve 99.74% accuracy for P waves and 99.93% accuracy for microtremors on the testing set. Table 3 shows the identification results, and Figure 6 shows examples of these four classifications, where the meanings of the four labels are as follows:
• A true positive indicates that a P wave is predicted to be a P wave.
• A true negative indicates that a microtremor is predicted to be a microtremor.
• A false positive indicates that a microtremor is mistaken as a P wave, which is a false alert in EEW.
• A false negative indicates that a P wave is mistaken as a microtremor, which is a missed alert in EEW.
TABLE 3 | Identification of results on the testing set.
[image: Table 3][image: Figure 6]FIGURE 6 | Examples of the 4 classifications. (A) True positive; (B) False negative; (C) True negative; (D) False positive. The point where the abscissa is 0 is the P-wave arrival. The data in Figure 6 have been normalized.
We can see that D is highly accurate for classifying P waves and microtremors. In Figure 6, the misclassified P waves generally have either relatively peculiar waveform shapes or nonsignificant onsets. In comparison, the misclassified microtremors have a relatively enduring wave train, which is similar to authentic P waves. Moreover, because the percentage of false positives in Table 3 is 0.07%, it is confirmed that this algorithm can effectively reduce the number of false alerts caused by microtremors. We go on to provide an output probability to analyze how confident the combined model is in the results. The output probability is a probability between 0 and 1, where 1 represents a P wave and 0 represents a microtremor. Therefore, the closer the output probability is to 1, the more likely it is that the testing data is a P wave. We count all the percentages of the test size with output probabilities in each interval (intervals are set to 0.1). Figure 7A shows the relationship between the output probabilities and the percentages of the testing data. The values at the two ends of the curves can evaluate the robustness of the identification ability of the algorithm. As shown in Figure 7A, 99.52% of microtremors and 99.37% of P waves in the testing set are concentrated on the two ends of the probability proxy, indicating that the combined model exhibits extremely high confidence in the results. Conventionally, probabilities of 0.1 and 0.9 are chosen as the decision boundary in this study; this threshold can be tuned at individual EEW stations (Li et al., 2018).
[image: Figure 7]FIGURE 7 | (A) The relationship between the percentage and output probability for the testing set. The earthquake data are concentrated in the 0.9–1.0 interval, and the microtremor data are concentrated in the 0–0.1 interval. Note that only half of the ordinate values are marked in the figure, including microtremor data with an output probability of 0–0.5 and seismic data with an output probability of 0.5–1.0. (B) The relationship between the epicentral distances and magnitudes of true positive records and false negative records with an epicentral distance ≤200 km for the testing set. The blue dots represent true positive records, and the red crosses represent false negative records.
Since most research on EEW is particularly interested in local earthquakes, we further analyze the discrimination performance for records whose epicentral distances are within 200 km, which is actually the distribution of true positives and false negatives on the epicentral distance. There are 5,373 P waves in the testing set; among them, 5,241 records have an epicentral distance of no more than 200 km. After training, 12 records are mistaken as microtremor signals. In other words, the proposed model can achieve 99.77% accuracy for local earthquakes. Figure 7B shows the relationship between the epicentral distances and magnitudes of the 12 mistaken records. The performance for small and medium earthquakes may be better than that for large events. Test data are more abundant for events with small magnitudes, but the mistaken waveforms are comparable to those of large earthquakes, indicating that the proposed model is more accurate in identifying small and medium earthquakes. This may be because the number of these earthquakes in the training set is relatively large, which gives the model more opportunities to extract features and make decisions.
To further explore the sensitivity of the combined model to different earthquake magnitudes, we next analyze the dependence of the identification performance on the magnitude, as shown in Figure 8A. The accuracy for all earthquakes is over 97%, and the performance for other magnitudes is surprisingly more than 99% except for those with [image: image]. Then, we focus on the identification performance of these earthquakes. There are 263 earthquakes with [image: image], and Figure 8A shows that the classification accuracy is 97.72%; that is, the combined model misidentifies 6 earthquakes as microtremor signals with [image: image]. Table 4 shows the information of these 6 earthquakes, and the red crosses in Figure 8B reflect the relationship between their epicentral distances and magnitudes. The epicentral distances of these records all exceed 100 km, and 3 of them exceed 200 km. Since most studies in EEW focus on local earthquakes, the misclassifications of these 6 records are all allowable. Consequently, this algorithm can maintain a desirable result of local records in identifying seismic events.
[image: Figure 8]FIGURE 8 | (A) Dependence of the performance on earthquake magnitudes. The colors of the columns are the number of test waveforms in the bins. (B) The relationship between the epicenter distances and magnitudes of earthquakes with [image: image] for the testing set. The blue points are the true positives, and the red crosses are the false negatives.
TABLE 4 | Information about the misclassified earthquakes (false negative) for the testing set.
[image: Table 4]The Great East Earthquake
For the Great East earthquake, we input the dataset into the combined model and analyze the identification performance. Unfortunately, the well-trained model can only identify 287 records, corresponding to a considerably low accuracy of 41.47%. However, an examination of epicentral distances reveals that most misclassified waveforms are from regional stations (that is, epicentral distances over 200 km). Figure 9A shows the dependence of the identification performance on the epicentral distance, illustrating that the main reason why the accuracy is low is because of the poor performance for regional records; in contrast, the accuracy for local records (that is, epicentral distances within 200 km) is 98%. Therefore, for the purpose of EEW, we focus on analyzing the performance for local earthquakes. Among the 692 records in the dataset, only 50 records have an epicentral distance within 200 km. Figure 9B presents a schematic diagram of the discrimination results for these 50 records, revealing that only 1 local record is mistaken. Combined with Figure 9A, this finding demonstrates that although the overall performance of the proposed model drops considerably, the poor performance is predominantly due to regional records, whereas the performance for local stations is satisfactory. In other words, the proposed model can maintain perfect performance for local records during large events.
[image: Figure 9]FIGURE 9 | (A) Dependence of the combined model performance on the magnitudes for the Great East Japan earthquake dataset. (B) Locations of the true positive and false negative records with epicentral distances ≤200 km in the Great East Japan earthquake dataset. The red star represents the epicenter, and the triangles represent the locations of the triggered stations. Black indicates a true positive, and red indicates a false negative.
Comparison With the Short-Term Averaging/Long-Term Averaging Method
To highlight the superiority of this algorithm over traditional methods in identifying seismic events, we compare it with the STA/LTA method, which is currently the most widely used P-wave arrival picking algorithm. It is an energy method proposed by Allen (1978), which mainly uses the long-short-time ratio of the P-wave phase characteristic function to pick up the first arrival. The calculation formula used in this article is as follows.
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Here, i is the sampling time. “Long” represents the length of the long-time window, “short” represents the length of the short time window, and λ is the trigger threshold. CF(j) is the P wave phase characteristic function (Allen, 1978; Allen, 1982), which characterizes the amplitude and energy changes of the data:
[image: image]
After P wave arrivals, the amplitude of the record will change greatly. This algorithm continuously calculates the average values of the absolute amplitude of a seismic signal in two consecutive moving-time windows. The short time window (STA) is sensitive to seismic events, while the long-time window (LTA) provides information about the temporal amplitude of the seismic noise at the site. When the ratio of both exceeds a preset value, an event is said to be “declared”; at this time, the data are recorded in a file (Trnkoczy, 2009). In this article, we used time windows of 0.5 and 30 s for the STA and LTA, respectively, and λ was set to 6. The parameters of the STA/LTA technique were selected to maximize the results.
Due to the relatively long-time window of 30 s, the calculation process of the STA/LTA method requires at least 30 s of ground motion records. As a result, we do not cut the input waveform for this method. In other words, we only perform the first three steps of preprocessing here. Moreover, this method does not require a training process, so we only need to input the test data into the STA/LTA method to obtain the final result. Because the output is the exact times of P-wave arrivals, not the results of the binary classification problem, we mark the result within 1 s before to 3 s after the actual P-wave arrival time as an earthquake identification success (that is, the output is 1). The remaining times are identification failures (that is, the output is 0).
Table 5 shows the comparison results of the two algorithms. Among 5,373 test earthquakes, the STA/LTA method can accurately identify 4,600 records. In other words, it can identify 85.61% of the test data. Compared with this traditional method, the combined model in this paper demonstrates a 14.13% increase in the identification accuracy of seismic events, indicating that our model is an accurate and reliable algorithm for seismic event identification. Nevertheless, due to the massive dataset, the combined model requires a long training and testing time, so it is slightly inferior to the STA/LTA method in terms of computational efficiency. In the future, we will continue to optimize the model to improve training efficiency and shorten the training and testing times.
TABLE 5 | Comparison of the results with the STA/LTA method.
[image: Table 5]DISCUSSION
With the goal of identifying seismic events from microtremors, we propose a new identification algorithm based on a combined ML model. We train a GAN based on 52,537 vertical strong ground motions from Japan and use a P-wave feature extractor to identify P waves from microtremors. After an SVM classifies the features to obtain a final result, we successfully transform the complex problem of identifying earthquakes into a simple binary classification problem of earthquakes and microtremors. The test results illustrate that the well-trained model can achieve accuracies of 99.74% for P waves and 99.93% for microtremors, which represents an improvement in accuracy of 14.13% compared with the traditional STA/LTA method. The results confirm that this algorithm can achieve state-of-the-art performance in discriminating between earthquakes and microtremors for EEW. Verification using a dataset from the Great East Japan earthquake indicates that the combined model can maintain a robust performance for local records at large magnitudes. Compared with manually labeling specific features associated with P waves, the algorithm can automatically extract the features that characterize P waves, thereby simplifying the training process and saving training costs.
Idea of Transformation
The main ideological innovation of this paper is to transform the identification procedure of seismic events into a binary classification problem between earthquakes and microtremors. The identification of seismic events is a very complex problem, and is made especially challenging due to a low SNR caused by the monitoring situation interfering with natural and anthropogenic seismicity activity, which can partially coincide in terms of magnitude, space, and time (Yang et al., 2021). However, ML methods can transform this issue into a binary classification problem. As a result, the combined model in this paper is confined to handling data in the feature space, which requires precise maneuvers and abundant field knowledge to construct a feature descriptor that can convert the raw data into a suitable representation. Subsequent machine learning then provides raw data for a model to automatically detect some unique features adopted for recognition. These approaches divide the identification process into two steps: 1) feature extraction and 2) classification. For our paper, although the GAN only uses a certain type of data as input, it can fully capture the statistical distribution of P waves, thereby automatically extracting those detailed features that can highly represent the data. In other words, the GAN can judge whether the data is a P wave. The SVM is a very practical binary classification model that can further purify the output of the GAN, thereby facilitating even more accurate judgments. Through this transformation, the problem of seismic event identification becomes simple and obvious and will not be affected by low SNRs. Consequently, the practicality of the algorithm has been enhanced, while the accuracy remains satisfactory.
Role of the Generative Adversarial Network and Support Vector Machine
A key purpose for using a GAN is to find an implicit or explicit representation of real data (Creswell et al., 2018). Specifically, the GAN captures the statistical distribution of P waves. D defines some form of similarity metric, and training narrows the gap between the generated and real data. Therefore, a well-trained GAN can grasp the key features of the real data. However, we did not directly use D to distinguish between P waves and microtremors because the microtremor data do not participate in the training of the GAN, and the classification results may not be convincing. Therefore, D is transformed into a P-wave feature extractor to extract specific patterns, which then allows for an SVM to identify seismic events. In this way, the microtremor data, which are part of the input to the SVM, also participate in the training process of the combined model. After a large amount of training, the SVM can automatically learn the differences in the waveform characteristics of the two types of data, allowing it to accurately distinguish between P waves and microtremor signals.
Performance on Specific Earthquakes
According to the performance of the model for local records and large earthquakes, it is evident that the combined model achieves a higher accuracy in identifying small and moderate earthquakes with magnitudes less than 6. One possible reason is that there is a high frequency of small and medium earthquakes, so the larger sample size helps the model extract features and make decisions. However, although the performance for large earthquakes is inferior to those of small and moderate magnitudes, it is still highly skillful. This could be caused by large earthquakes exhibiting longer-lasting waveforms and richer long-period components, so the combined model is still able to maintain high accuracy. Moreover, the results of local records are much more desirable than those of regional records, which coincides with EEW research. When we apply to the Great East Japan earthquake dataset, the performance is deemed sufficient for local records, indicating that the proposed algorithm is extremely robust for local stations.
Limitations
Although the proposed algorithm can accurately distinguish between earthquakes and microtremors, it still suffers from many shortcomings. First, the proposed algorithm pertains only to microtremors, and thus, further research must be performed to develop a method such as that of Li et al. (2018) that is capable of distinguishing between earthquakes and other types of noise. Second, the training of this algorithm is relatively complicated. Compared with other machine learning algorithms, such as convolutional neural network (CNN), it can only achieve the purpose of identifying seismic events. Hence, this algorithm needs to be combined with an automatic detection algorithm, such as Allen (1978), to accurately identify earthquakes. Integrating earthquake detection, localization, and characterization is our future work, such as Majstorović et al. (2021). Moreover, the dataset we used for this study is highly selective (only composed of strong ground motion and clean, pre-P microtremors), so this is a proof-of-concept test of machine learning for identifying P waves. The current training and testing times are long, further illustrating that the training efficiency needs to be improved. Finally, as a byproduct (Creswell et al., 2018), the simulated waveform generated by G participates in the internal loop of the training of the GAN and has not yet been specifically applied. We are not sure whether the generated waveform can truly reflect the characteristics of real earthquakes. We will continue to improve the combined model identification performance and data optimization, as we expect that the idea of transforming identification problems into binary classification can enjoy broad applications that are beyond the scope of this study.
CONCLUSION
In this study, we propose a new identification algorithm based on a combined model of a GAN and SVM, which transforms the complex problem of identifying earthquakes into a simple binary classification problem of earthquakes and microtremors. With the proper training parameters, our well-trained model can achieve accuracies of 99.74% for P waves and 99.93% for microtremors, which is an increase in accuracy of 14.13% compared with the traditional STA/LTA method, confirming that the proposed algorithm can achieve state-of-the-art performance for EEW seismic event identification. The results obtained for waveform records from the Great East Japan earthquake show that the proposed model can achieve a robust result for local records of large earthquakes. Hence, the proposed algorithm could have broad applications in EEW and earthquake monitoring.
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Considering engineering problems such as complicated stress and the difficulty in controlling large deformation while a tunnel passes through a soft rock stratum, a theoretical prediction model of convergence deformation of tunnel-surrounding rock is proposed. Based on the longitudinal displacement profile curve reflecting the “space effect” of the excavation surface, the Hoek formula with better applicability was introduced to analyze and theoretically deduct the “time–space effect comprehensively.” By taking the influence of the “time effect” coefficient into account, an improved Nishihara model was established to derive the analytical equation of the viscoelastic–viscoplastic convergence of surrounding rock. Taking the Dingxi Tunnel of Wujing Expressway in Hunan Province, the physical and mechanical parameters of surrounding rock in the tunnel were firstly determined then they were used to calculate and predict the vault down of three typical sections with the scoping equation of surrounding rock deformation. Based on the calculation results, the causes of the differences between the measured and theoretical values were analyzed; moreover, it is indicated that the minimum root-mean-square error is 1.68, the minimum average error is 1.3%, and the correlation coefficient is 0.99. The comparison shows that the theoretical prediction results agree well with the corresponding field test results. The improved Nishihara model can accurately predict the final deformation of the surrounding rock. Simultaneously, it is also proved that the relevant parameters and the hypothesis and correlation of the nonlinear viscosity coefficient equation are reasonable, with particular effectiveness and applicability in practical engineering. This study is significant for further studying the tunnel-surrounding rock’s stability and accumulating theoretical and practical experience to develop rheological theory.
Keywords: tunnel, deformation of surrounding rock, time effect, viscoelastic–viscoplastic, space effect
1 INTRODUCTION
In China, the center of tunnel construction is gradually shifting to the southwest and northwest. The construction difficulties are also shifting to high-stress areas with complex geology. Among them, carbonaceous shale is widely distributed in the strata of Southwest China. Because carbonaceous shale has the characteristics of obvious bedding development, low strength, and soft and easy disintegration, it has prominent rheological characteristics under a high-stress environment. Rheology is one of the important mechanical properties of rock, which is closely related to the long-term stability of rock mass engineering. Soft rock has distinct rheological properties. When tunnels cross such a layer, engineering problems, such as the complicated force and difficulty to control large deformation, are usually accompanied, severely restricting the construction and affecting the support’s long-term stability (Sun, 2007; Li et al., 2018). Therefore, scientific evaluation and prediction of surrounding rock deformation and stability according to the rheological characteristics of tunnel-surrounding rock are essential to guide on-site construction and feedback design and a necessary condition to ensure tunnel construction safety. At present, the rock rheological constitutive models used to describe the tunnel rock mass under excavation conditions mainly include (Song et al., 2018) the Kelvin, Bingham, Maxwell, Burgers, and Nishihara models. Among them, the Nishihara model can consider the viscoelastic characteristics of surrounding rock and the important characteristic of viscoplastic deformation. Therefore, the Nishihara model can describe the deformation of rock masses in tunnel engineering, such as sandstone, limestone, sandy shale, clay shale, and carbonaceous shale. To sum up, it is important to conduct further research on the deformation the mechanism of tunnel-surrounding rock under complex geological conditions, explore new methods for surrounding rock stability analysis, and establish a scientific prediction model, which can facilitate predictions of tunnel-surrounding rock deformation.
Some scholars have established constitutive creep models considering various effects by introducing different variables based on the Nishihara model (Shen et al., 2014; Li et al., 2014; Zhang et al., 2015; Li Z. Q. et al., 2017; Zhang J. X. et al., 2019). However, these models only consider the influence of a single variable and ignore the impact of time. At the same time, an improved Nishihara model was established based on the Nishihara model by considering different influencing factors, and it was also verified through the application. In the above aspects, a lot of important research work has been done to put forward many modified models for specific rock strata (Liu et al., 2017; Cao et al., 2017; Wang et al., 2018; Zhu et al., 2019; Jin et al., 2019; Wang et al., 2019; Li et al., 2020; Zhang L. et al., 2020). However, their general applicability is limited to a certain extent. In addition, based on the traditional Nishihara model, some scholars use a nonlinear viscoplastic body or clay tank to replace clay tank and viscoplastic body or use the series element method to establish the improved Nishihara model (Xu et al., 2015; Zhang et al., 2016; Ou and fang, 2017; Li Y. G. et al., 2017; Pu et al., 2017; Zhang Z. et al., 2020; Lin et al., 2020). Nonlinear improvements have been made to the existing models, but no research has been conducted on the time effects under nonlinear conditions. Considering the influence of time and stress on creep, some scholars established a nonlinear creep damage model and the corresponding constitutive equation (Feng et al., 2020; Liu W. et al., 2020; Yan et al., 2020; Liu Y. et al., 2020). However, they did not study the influence of this model on the damage and deformation of surrounding rocks.
Some scholars use the Nishihara model to study tunnel-surrounding rock deformation and deduce the analytical expression of tunnel-surrounding rock deformation based on the improved Nishihara model (Zhang, 2016; Xiao et al., 2017; Yu, X.Y. et al., 2018; Yu et al., 2019; Zhang B. et al., 2019, Zhang J.-Z. et al., 2019; Yu et al., 2020; Yu et al., 2019). In recent years, the prevalent artificial intelligence method (Huang et al., 2017; Zhou et al., 2017; Chen et al., 2019; Huang et al., 2020; Zhang K. et al., 2020; Zhu et al., 2020) provides a more potential development direction for tunnel construction deformation prediction. Combined with the application of deep learning algorithms and nonlinear theory, research on the multi-factor tunnel excavation system in complex geological environments shows excellent advantages (Melis et al., 2002; Huang et al., 2021; Huang et al., 2022). However, it is necessary to further combine the constitutive rock mass model and the viscoelastic plastic mechanics theory to give full play to this advantage.
In summary, previous scientific research achievements have made significant contributions to the optimization and improvement of the Nishihara model and the development of the prediction theory of tunnel-surrounding rock deformation, but there are still some shortcomings. In tunnel excavation, the surrounding rock will carry out stress redistribution from two dimensions of time and space. The time–space effect is an essential factor that must be considered in tunnel-surrounding rock deformation prediction. Therefore, based on the advantages of previous prediction methods, combined with the LDP curve reflecting the “spatial effect” of the excavation face, this study introduces the Hoek formula (Hoek, 2001) with better applicability to comprehensively analyze and theoretically deduce the “time–space effect”. Considering the time-space effect of the plastic viscosity coefficient, an improved Nishihara model is established to study the deformation process of surrounding rock in the process of tunnel excavation and support. The theoretical model is then established by rheological theory, and the convergence calculation formula of surrounding rock deformation is deduced. Finally, a comparative study is carried out combined with engineering cases to provide theoretical support and technical reference for the design and construction of tunnel engineering.
2 VISCOELASTIC–VISCOPLASTIC MODEL
According to the previous engineering projects and indoor experimental research, the weak rheological properties surrounding rock with dissolution crack development, weak interlayer, gob, fault, and fracture zone are significant. Rheological properties of the weak surrounding rock are more susceptible to external forces, exhibiting nonlinear characteristics. The influence of viscous coefficients is not negligible, and it is closely related to the stress-strain state of surrounding rock. This study derived the analytical equation of the viscoelastic–viscoplastic convergence of surrounding rock based on the improved Nishihara model with the Matlab software.
2.1 Improved Nishihara Model
The traditional Nishihara model (Nishihara, 1957; Zhou et al., 2010) is composed of a Hooke body, Kelvin body, and Bingham body, as shown in Figure 1.
[image: Figure 1]FIGURE 1 | Nishihara model.
The viscosity coefficient [image: image] in the traditional Nishihara model is replaced by the nonlinear viscoplastic coefficient [image: image] related to time, so the model becomes an unsteady Nishihara model. This study divides the model into two parts: the generalized Kelvin model and the nonlinear Bingham model. The viscoelastic and viscoplastic regions of the surrounding rock are analyzed. The improved Nishihara model is shown in Figure 2:where [image: image], [image: image], and [image: image] represent the coefficients of viscosity. [image: image] and [image: image] indicate the elastic modulus. [image: image] stands for the ultimate frictional resistance of St. Venant’s body.
[image: Figure 2]FIGURE 2 | Improved Nishihara model.
2.2 Basic Assumption
In this study, the calculation model assumes that the surrounding rock is a continuous isotropic rock mass mechanics model and does not consider the action of groundwater, and when the lateral pressure coefficient is λ(t), the viscoelastic plastic problem of stress and deformation of surrounding rock of a circular tunnel is assumed, and the original rock stress field is axisymmetric along the vertical direction. The viscoelastic–plastic surrounding rock mechanical model is shown in Figure 3. The radius of excavated tunnels is R1, R1-R2, and R2-R3, representing ranges of the crack zone and plastic zone, while the elastic deformation zone should be from R3 to infinity in theory.
[image: Figure 3]FIGURE 3 | Viscoelastic-plastic surrounding rock mechanic model.
In addition, many scholars have made theoretical assumptions and derivations based on experiments for the research on the expression of the nonlinear viscosity coefficient (Xiong et al., 2010; Yan et al., 2010). However, the results do not have universal adaptability. According to the nonlinear viscosity coefficient characteristics, this experiment is firstly expressed as Eq. 1: (whether it is a reasonable hypothesis, rationality will be verified in the sixth part of this study.)
[image: image]
where A and B are constants related to the surrounding rock properties, which can be obtained from experimental data.
3 VISCOELASTIC DEFORMATION ANALYSIS
3.1 Generalized Kelvin Constitutive Equation
Based on the derivation method of the tunnel lining displacement in the Zhao et al. (2016), the theory and the relationship between “spatial effects” were improved by combining LDP curves, in which Hoek’s formula (Nishihara, 1957) was also introduced to conduct a comprehensive analysis and theoretical derivation of “space-time effects.”
The generalized Kelvin body analyzes the viscoelastic deformation. Considering that the shape changes only when the geometry undergoes elastoplastic deformation, it can be calculated because the volume deformation is almost negligible. According to the elastic mechanics, in the cylindrical coordinate system [image: image], due to the axial symmetry of the tunnel calculation model, all stress components are independent of the coordinate [image: image], and the stress-strain is only a function of r, u. Therefore, the relationship between strain and displacement along the [image: image] plane is as follows:
[image: image]
[image: image]
then,
[image: image]
where [image: image] is a function of time, and substituting Eq. 4 into Eq. 2 yields:
[image: image]
The generalized Kelvin constitutive equation is transformed into a stress bias form, and the boundary condition, [image: image] when [image: image], is considered, and the axisymmetric condition can be expressed as follows:
[image: image]
where [image: image], [image: image], [image: image]—radial, circumferential, average stress;
[image: image], [image: image]—radial strain and circumferential strain;
[image: image], [image: image], [image: image]—instantaneous, viscous elastic modulus, and viscosity coefficient.
For the periphery of the tunnel, the “equivalent initial geo-stress” [image: image] corresponding to the displacement was introduced and substituted into Eq. 6 in the form of [image: image]. Considering the boundary condition of [image: image], the following relationship can be obtained:
[image: image]
where [image: image] is geo-stress.
3.2 Space Effect
To facilitate the study of the “space effects” of the working surface, we first consider the effects of elastic media. The “space effect” of the excavation surface is directly reflected in the radial displacement of the tunnel along the tunneling direction. This distribution curve is the longitudinal deformation profile curve, which is regarded as the LDP curve. At present, many scholars have made in-depth studies on LDP curves within the scope of “space effect.” Panet (1995) summarized the following approximate expressions by applying the finite-element analysis method of elasticity theory and combining the relationship between the measured radial displacement around the tunnel and the distance between the driving faces:
[image: image]
where R is the radius of the tunnel cave and x is the distance between the calculation section and the excavation face.
Hoek (1999) analyzed and fitted the field monitoring data of the Mingtam underground cavern project and summarized the following empirical expressions by using the related theory analysis method:
[image: image]
For the applicability of the above two formulas, Sun (2007) thinks that the Panet method overestimates the radial displacement of the tunnel, making it is easy to underestimate the supporting load in practical engineering and inducing the design unsafety. The result of the Hoek method agrees with the numerical analysis in the tunnel vault, waist, sidewall, and other parts, which shows that Hoek’s formula has stronger applicability and can better describe the “space effect” of the tunnel excavation surface. The radial displacement described by Hoek’s formula varies with the excavation surface, as shown in Figure 4.
[image: Figure 4]FIGURE 4 | Diagram of radial displacement described by Hoek formula changing with face excavation.
Therefore, this study transformed Hoek’s empirical formula:
Let [image: image], substitution Eq. 9:
The relationship between the radial displacement [image: image] measured around the tunnel and the cross-section distance x measured at a distance from the working face is as follows:
[image: image]
There is a relationship between [image: image] and constants [image: image] as shown in Figure 5 below:
[image: Figure 5]FIGURE 5 | Radial displacement changes with the advancement of the tunneling surface.
Since the radial free displacement [image: image] of surrounding rock had been generated before the excavation entry surface reached the cross-section of the survey point, the total displacement should be calculated as follows:
[image: image]
If the equivalent initial geo-stress is [image: image], the relationship between displacement and equivalent initial geo-stress can be expressed as follows:
[image: image]
Therefore, the above displacement should be proportional to the initial geo-stress, and Eq. 12 should be rewritten as follows:
[image: image]
where T is a constant relating to the characteristics of surrounding rock and the radius of the tunnel; Y is dimensionless.
Because [image: image], then [image: image], after substituting Eq. 13 into Eq. 11:
[image: image]
Let [image: image], as shown by Eq. 9, when [image: image], then [image: image]. Then Eq. 14 can be simplified as:
[image: image]
According to Hoek’s empirical formula, the value of [image: image] is 0.3078. According to the symmetry and continuity of Figure 5, we can see that:
[image: image]
3.3 Time Effect
Considering the influence of rock rheology, which has been neglected before, the Hoek formula is used to comprehensively analyze the “space effect” caused by the working face’s excavation and the “time effect” caused by the viscous effect of the surrounding rock. Assuming that the tunnel is driven forward at a continuous and uniform speed, and the driving speed is [image: image], the simultaneous Eqs 15, 16 show that:
[image: image]
When [image: image], the above [image: image] expression is introduced into Eq. 7 to solve differential equations.
[image: image]
From the above formula, it can be seen that the displacement around the tunnel is [image: image]; by taking into account [image: image], Eq. 18 can be transformed into:
[image: image]
According to Eq. 19, when [image: image], the limit displacement around the tunnel is [image: image] by calculating the upper limit. During the tunnel’s excavation, the surrounding rock in front of the working face is affected by the construction disturbance, promoting the redistribution of the stress in the surrounding rock, thus causing the initial displacement [image: image] of the surrounding rock ahead.
To study the initial displacement, we should first discuss the case when [image: image].
Equation 17 shows that when [image: image], [image: image]; when [image: image], [image: image], so we can obtain:
[image: image]
Because [image: image], when t = 0, there is:
[image: image]
Equation 21 shows that excavation speed directly affects the initial displacement [image: image]. If the tunneling speed is plodding, the viscous stress and strain of the surrounding rock will have enough time to be fully released. So, it can be concluded that as [image: image], [image: image]. Then transform Eq. 21, then [image: image], When [image: image], [image: image].
On the contrary, if the tunneling face is speedy, it is instantaneously annoying from infinity to the study’s monitoring section. The viscous stress-strain of the surrounding rock does not have sufficient time to release completely, and only the elastic deformation is emancipated. At this point, let us say: [image: image], then [image: image], so there is [image: image]. According to the above analysis, the initial displacement [image: image] of the surrounding rock expressed by Eq. 20 is between the two extremes, namely:
[image: image]
Let [image: image], the upper form is transformed into:
[image: image]
Therefore, the viscoelastic deformation of the tunnel is [image: image].
4 VISCOELASTIC–VISCOPLASTIC DEFORMATION ANALYSIS
4.1 Viscoplastic Deformation Analysis
In the process of tunnel excavation, besides the instantaneous elastic deformation released from the working face, the secondary stress generated by the stress redistribution of surrounding rock exceeds the yielding stress of the rock mass at that point, which results in the viscoplastic state that the deformation of surrounding rock increases with time. The “time effect” of rock rheology is related to viscoplastic flow in surrounding rock mass (Sun, 2007). This kind of viscous flow usually occurs in the weak surrounding rock with high stress, especially for the surrounding rock with well-developed joints and fissures and dissolution. It is also found that the nonlinear Bingham model is suitable for the rheological study of this kind of surrounding rock.
Considering that only when geo-materials undergo plastic deformation and volume deformation, the change of shape can be neglected, it is assumed that the volume of the plastic zone is constant, that is, the volume strain is zero. Then there are:
[image: image]
thus,
[image: image]
So the Bingham viscoplastic constitutive equation can be rewritten into the form of stress deviation. Furthermore, the boundary conditions are considered when [image: image], [image: image] and the axisymmetric state can be expressed as follows:
when [image: image],
[image: image]
Because there is no creep and stress relaxation in this case, we only analyze the second case
When [image: image],
[image: image]
When [image: image], the [image: image], [image: image] and axisymmetric conditions are substituted into Eq. 27, so [image: image] is calculated in the form of [image: image]:
[image: image]
When [image: image], the tunnel has not been excavated to the monitoring section, and the viscoplastic deformation of the surrounding rock of the section is minimal, which can be almost ignored. Therefore, it is only necessary to study the deformation after excavation. when [image: image], [image: image] is substituted into Eq. 28 to get:
[image: image]
The above Eq. 29 is solved to obtain the expression [image: image] as follows:
[image: image]
[image: image] is substituted into Eq. 30 can be obtained:
[image: image]
When [image: image], [image: image].
Therefore, the viscoplastic deformation of the tunnel is [image: image].
4.2 Viscoelastic–Viscoplastic Deformation Analysis
The viscoelastic theoretical solution of surrounding rock deformation mentioned above can be considered as the stress redistribution of surrounding rock after tunnel excavation is completed instantaneously with the elastic or elastic-plastic wave’s propagation velocity. The viscoelastic convergence expression of surrounding rock is [image: image], and the viscoplastic convergence expression is [image: image]. Therefore, the analytical formula of viscoelastic–viscoplastic convergence of surrounding rock is developed as follows:
[image: image]
where [image: image] is the yield stress; [image: image]; [image: image] is the viscosity coefficients; A and B are constants relating to the properties of the surrounding rock, and C is a constant.
In Eq. 32, excavation speed [image: image] cannot approach infinity in tunnel engineering; the elastic deformation cannot be completed instantaneously in actual engineering, and the initial deformation [image: image] can hardly be measured. Therefore, in order to make the calculated value more in line with the field monitored data, the above expression is simplified as [image: image] for calculation.
5 CASE ANALYSIS
According to the above analysis, if the initial stress state and mechanical parameters of surrounding rock before tunneling are given out, the deformation of the surrounding rock can be calculated according to the theoretical formula. This study verifies the rationality of theoretical derivation through the example of the Dingxi tunnel monitoring project of Wujing Expressway in Hunan Province and predicts the final deformation of surrounding rock.
5.1 Project Overview
The Dingxi tunnel of the Wujing Expressway in Hunan Province is located in Huaihua City. The tunnel area is in a low mountainous landform with large terrain fluctuations, where the midline elevation is 510–648 m and the maximum height difference is about 148 m, as shown in Figure 6. The starting pile number of the left tunnel is ZK66 + 940-ZK68 + 066, with a length of 1,126 m, while the right tunnel is K66 + 926-K67 + 999 with a length of 1,073 m.
[image: Figure 6]FIGURE 6 | Geological profile of the left line of Dingxi tunnel. (A) Import side. (B) Exit side
In this case, three typical sections of ZK67 + 220 (Grade V), ZK67 + 500 (Grade VI), and ZK67 + 900 (Grade V) on the left line of the Dingxi tunnel are selected for research. The detailed geological evaluation is as follows:
(1) ZK67 + 220 section: the surrounding rock is the intensely weathered sandy slate, with a small amount of moderately weathered sandy slate. The joints and fissures of the rock mass are well developed, and the rock mass is broken.
(2) ZK67 + 500 section: the surrounding rock is the intensely weathered sandy slate, with developed joints and fissures, hard rock, and fragmented rock mass.
(3) ZK67 + 900 section: the wall rocks are primarily distributed in the fault fracture zone, and they were intensely weathered sandy slates.
5.2 Field Monitoring Test Scheme
The Layout of Measuring Points
According to the type of surrounding rock, the tunnel’s depth, and the excavation method, measuring points were arranged in the tunnel wall along the longitudinal direction. The arrangement of measuring points and baselines was adjusted according to the specific construction scheme, and the distribution of measuring points should be set in the section where surrounding rock grades generally change.
The spacing distance between measuring points is 5–10 m. The layout of measuring points is shown in Figure 7.
[image: Figure 7]FIGURE 7 | Arrangement of measuring points for vault subsidence.
Measurement Frequency
The monitoring frequency in the experiment is to measure the data once a day.
Instruments and Equipment
The measuring base point is buried in the area outside the tunnel excavation longitudinal and transverse (3–5) times of tunnel diameter. According to the standard benchmark embedding method, two base points are buried for the mutual check. Therefore, the base point should be connected with the nearby benchmark to obtain the original elevation. A high-precision level observes the arch crown’s settlement, and the “four fixed principles” must be observed. In other words, it is necessary to refer to the following requirements: fixed construction personnel, fixed station position, fixed measurement duration, and fixed construction sequence, to ensure that the measurement accuracy meets the specification requirements. When the measuring points of the convergence measurement section are buried, the distance between the measuring points and the excavation surface should be less than 2 m. The first measurement should be carried out within 24 h after the last blasting. According to the relevant measurement frequency requirements, considering the influence of the ambient temperature, the data is read three times to ensure accuracy. The testing instruments and equipment are shown in Table 1.
TABLE 1 | Testing instruments and equipment.
[image: Table 1]5.3 Mechanical Parameters
Because the hydraulic fracturing method is simple and easy to operate in the testing process without needing to drill rock core samples or using exact electronic instruments, the testing depth can reach more than 5,000 m. Therefore, this study applies it to the initial in situ stress test of tunnel-surrounding rock.
The principle of the hydraulic fracturing method is to make the excellent wall break by increasing the water pressure based on the designed measurement depth of the hydraulic pump, then to determine the pressure and fracture direction of the characteristic point in the fracturing process, and calculate the initial stress state of the rock mass at the measurement point. Hydraulic fracturing is a two-dimensional testing method that can determine the maximum principal stress’s magnitude and direction and the minimum principal stress perpendicular from the borehole plane. Figure 8 illustrates hydraulic fracturing test device.
[image: Figure 8]FIGURE 8 | Schematic diagram of testing device for hydraulic fracturing method. 1-recorder, 2-high pressure pump, 3-flowmeter, 4-pressure gauge, 5-high pressure hose, 7-pressure gauge, 8-pump, 9-packer, 10-fracturing section.
According to the geological engineering report of the Dingxi tunnel, the in situ stress of three representative sections, ZK67 + 220, ZK67 + 500, and ZK67 + 900 on the left line, was measured with the hydraulic fracturing method. The self-weight stress value was calculated according to the designed thickness of overlying strata ([image: image], rock bulk density [image: image]). The test results are shown in Table 2.
TABLE 2 | Measured values of initial in situ stress in Dingxi Tunnel.
[image: Table 2]Because the surrounding rock in this study area is intensely weathered sandy slate, it is suitable for the viscoelastic–viscoplastic rheological model. The mechanical parameters of the surrounding rock of the Dingxi tunnel are shown in Table 3. The model parameters in Table 3 were derived from the creep data under the corresponding stress by the formula [image: image], [image: image] and [image: image].
TABLE 3 | Rheological mechanics parameters of surrounding rock of Dingxi Tunnel.
[image: Table 3]Because the design of the Dingxi tunnel is a three-center circular section, in order to ensure the accuracy of a theoretical calculation, it is necessary to convert the circular radius of the tunnel used in theoretical calculation into the equivalent circle radius using Eq. 33.
[image: image]
The equivalent radius of the Dingxi tunnel section is [image: image] m, which was calculated by substituting b = 12.68 m and H = 10.08 m for the upper formula.
5.4 Calculation and Analysis
The vault settlement of ZK67 + 220, ZK67 + 500, and ZK67 + 900 sections was calculated by the analytic equation group [image: image] and compared with the measured results.
The simultaneous Eq. 32 was used to calculate all the parameters into the equation group [image: image], and the displacement expressions [image: image] and ultimate displacement expressions [image: image] of surrounding rock deformation can be obtained as follows:
[image: image]
[image: image]
The Section of ZK67 + 220
The surrounding rock grade in this section is V, taking [image: image], [image: image], and the movement speed of the working face was [image: image]. Monitoring can be started only when the driving distance of the working face exceeds 2 m of the cross-section of the measuring point. Therefore, when [image: image], it can be calculated using the formula [image: image] (when [image: image]). The theoretical final settlement calculated by Eq. 35 is [image: image] 49.30 mm. However, due to the secondary lining of the section when [image: image], the final actual settlement measured in the field was [image: image] 48.97 mm. The comparison between the measured and theoretical values of the ZK67 + 220 section is shown in Figure 9.
[image: Figure 9]FIGURE 9 | Comparison of the measured and theoretical values for section ZK67 + 220.
The Section of ZK67 + 500
The surrounding rock grade for this section is IV, taking [image: image], [image: image], and the movement speed of the working face is [image: image]. Monitoring can be started only when the driving distance of the working face exceeds 2 m of the cross-section of the measuring point. Therefore, when [image: image], it can be calculated using the [image: image] (when [image: image]). The theoretical final settlement value calculated by Eq. 35 was [image: image] 36.77 mm. However, due to the secondary lining of the section when [image: image], the final actual settlement measured in the field was [image: image] 36.69 mm. The comparison between the measured and theoretical values of the ZK67 + 220 section is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Comparison of the measured and theoretical values for section ZK67 + 500.
The Section of ZK67 + 900
The surrounding rock grade for this section is V, taking [image: image], [image: image], and the movement speed of the working face is [image: image]. Monitoring can be started only when the driving distance of the working face exceeds 2 m of the cross-section of the measuring point. Therefore, when [image: image], it can be calculated using the formula [image: image] (when [image: image]). The theoretical final settlement value calculated using Eq. 35 was [image: image] 53.70 mm. However, due to the secondary lining of the section when [image: image], the final actual settlement measured in the field was [image: image] 53.31 mm. The comparison between the measured and theoretical values of the ZK67 + 220 section is shown in Figure 11.
[image: Figure 11]FIGURE 11 | Comparison of the measured and theoretical values for section ZK67 + 900.
6 DISCUSSION
In practical tunnel engineering, the instability and failure of surrounding rocks are closely related to the rheological properties of the rock mass, and the reasonable constitutive model is the key to studying the rheological properties. A new and improved Nishihara rheological model was presented, based on which the convergence formula of tunnel deformation was derived (Eq. 34) to be applied to the actual tunnel engineering. In this study, based on the residual calculation results, the RMSE and the Mean Error (RE) were calculated using the residual formula to evaluate the consistency of theoretical calculation results with real results and its calculation accuracy. The smaller the test standard value is, the more accurate the prediction result is, and the closer the theoretical calculation value is to the measured value. If the average error tends to “0,” the estimation is considered unbiased. The closer the correlation coefficient R2 is to “1,” the higher the linear correlation between the theoretical and measured curves.
The following results are remarkable according to the comparative analysis of relevant parameters in Table 4 and Table 5. As shown in Table 4, the three sections’ final theoretical calculated values were all larger than the measured values, with a difference smaller than 0.73%, which can be considered very consistent. It can be seen from Table 5 that the root-mean-square error of the dislocation-time curves of the three sections was 7.26 mm, the maximum mean error was 5.01%, and the minimum correlation coefficient was 0.86. It was analyzed that firstly, in the field monitoring process, the secondary lining was applied on all three sections when T = 20 d, so the residual surrounding rock deformation cannot be effectively measured. The final measured settlement value was less than the final settlement value calculated by theory. Secondly, it was assumed that the surrounding rock’s elastic deformation is completed immediately after excavating the surrounding rock in the theoretical derivation of the model. However, due to the “time effect,” the viscoplastic deformation occurred slowly. “time effect” is also the fundamental reason for the massive difference in the settlement values at 12 d in Figures 10, 11. Thirdly, the faster driving speed of the section in Figure 9 and the shallower buried depth of the section in Figure 11 are also important reasons for the massive difference. Fourth, the existence of groundwater is significant to the stability of surrounding rock. The theoretical model in this paper does not consider the effect of groundwater, but there is gushing water in the tunnel during tunnel excavation. Fifth, the local variation of the excavation method and the uncertainty of construction disturbance are also factors that can not be ignored. In conclusion, the above accuracy evaluation indicates that the improved rheological model proposed in this study can provide a reference and theoretical basis for analyzing the stability of surrounding rock under similar conditions in other places.
TABLE 4 | Comparison between the measured and theoretical values.
[image: Table 4]TABLE 5 | Precision evaluation.
[image: Table 5]However, there are some limitations in this study to be further discussed. Firstly, due to the limited testing time and the number of test samples, this model’s validation was performed only by testing the deformation of the Dingxi tunnel. Therefore, some creep tests should be carried out on the rock mass of different tunnels in subsequent studies to verify the proposed improved rheological model. Secondly, rock mass fractures, groundwater, blasting, and other related factors were not considered in calculating the selected tunnel section. Considering these factors to make the improved rheological theory possible, it is a subject worthy of further study. Thirdly, the theoretical calculation results can only have particular reference significance in the tunnel’s surrounding rock with relatively single lithology, stable rock structure, and good integrity. However, in engineering practice, the deformation, instability, and failure of surrounding rock are complex processes controlled by several interrelated factors. To evaluate and predict the qualitative risk of the stable surrounding rock, the improved Nishihara model should further consider the coupling effect of many factors, such as joints and fractures in the rock mass, groundwater, lithologic differences, blasting, and lousy geology.
7 CONCLUSION
Based on the monitorization and measurement of the Dingxi Tunnel on Wujing Highway in Hunan Province, this study establishes an improved Nishihara model to forecast the surrounding rock deformation of the Dingxi Tunnel. The conclusions are as follows:
(1) Model establishment and theoretical derivation. By simultaneously considering the “time effect” of plastic viscosity coefficient and the “time-space effect” of the Hoek formula, an improved Nishihara model was established, and the viscoelastic–viscoplastic convergence analytical equation of surrounding rocks was derived.
(2) Application of the model. The comparison and verification show that the improved Nishihara model can accurately predict the final deformation of surrounding rock and further validate the assumptions and correlations of nonlinear viscosity coefficient equations. The correctness of the parameters indicates that this theoretical model has absolute validity and applicability in practical engineering.
(3) Limitations and prospecting of the model. The model is affected by excavation speed and buried depth under different geological conditions, and the forecast accuracy has certain limitations. Therefore, the critical point of research in the future is to deeply excavate and improve the model by combining in-depth learning and other methods.
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In an open-pit mine in Xinjiang, part of the stripped area is covered by burnt rock. Due to the low strength and fragility of burnt rock, dust is more easily generated during blasting. Taking the mining area as the research background, the mechanical property parameters of burnt rock were tested, and the blasting parameter design of on-site operation was understood. The blasting numerical simulation of burnt rock step was carried out by using a numerical simulation software (LS-DYNA). From the angle of stress on rock, the stress cloud and stress curve of numerical simulation are analyzed, and it is concluded that the fundamental reason for the large dust production in blasting operation is that the burnt rock is crushed excessively after the action of explosion wave, and the explosive energy is too large, which is converted into kinetic energy to drive the dust to escape. In order to improve the utilization rate of explosives and reduce the output of blasting dust, the original blasting parameters were optimized as 8-m hole spacing, 6.5-m row spacing, 0.21-kg/m³ unit explosive consumption, 1-m interval charge, and 55-ms short-delay blasting through numerical simulation and orthogonal experiment. In the mining area, the measures of dustproof and dust reduction by blasting protection blanket and dust absorption cotton are adopted. Combined with the optimized blasting parameters, the field test proves that the dust removal efficiency is up to 82.4%.
Keywords: open-pit mine, blasting dust, blasting parameter optimization, short-delay blasting, charge constitution, dust suppression measures
1 INTRODUCTION
In recent years, open-pit mines have developed rapidly with advantages such as high production efficiency, low input cost, and good safety. However, with the development of open-pit mines toward green, elaborate, and intelligentization, environmental pollution has become the biggest disadvantage of open-pit mines (Gao and Liu, 2010; Xie, 2014; Song et al., 2016; Song, 2020). In an open-pit mine, the dust in the pit is not easy to disperse due to the influence of natural conditions and geographical environment, which negatively impacts the operation efficiency, health, and safety of the workers (Gen, 2010; Bai et al., 2013; Gao, 2013).
Continuous and semi-continuous mining technologies are often used in the development of an open-pit mine. From drilling, blasting, mining, and loading, transportation to discharge, constitute an orderly and interrelated production overall. Dust is produced in all links during operation, but the link with the largest dust production is the blasting operation before mining (Yan and Xue, 2004). According to the field measurements performed in this study, the instantaneous dust concentration during blasting must be as high as 4,000 mg/m3, exceeding the maximum allowable concentration of mine dust (10 mg/m3) (Kissell., 2003; Barnewold and Lottermoser, 2020). The stress that explosion imposes on rock is far greater than the ultimate tensile strength of rock due to the low hardness and poor stability of burnt rock, resulting in excessive crushing of rock, which in turn produces a large amount of dust in the blasting process.
Numerical simulation is a method that can effectively replace field and laboratory blasting experiments. Numerical simulation has high accuracy, lower costs, covers a wide experimental range, and poses no risks compared with field experiments. Many studies investigated the application of numerical simulation in blasting engineering and achieved excellent results. Minchinton and Nagarajan developed MBM (mechanistic blasting model) simulation software combining finite element and block discrete element in ICI, which is applied to the analysis of blasting-induced rock damage, fracture and crushing process, blasting fragmentation, and throwing process (Minchinton and Lynch, 1997; Nagarajan et al., 2015). Taylor and Preece developed the DMC (Distinct Motion Code) as well as the analysis of the formation process of the explosion heap, which is a discrete element simulation software for modeling the open-pit mine blasting effect (Preece, 1990; Preece and Knudsen, 1991; Esen and Nagarajan, 2015; Preece et al., 2015). The main functions of this software include simulating the throwing and stacking process, predicting the shape of the blasting heap and the effect of pre-rock separation blasting, among others (Battison et al., 2015; Goswami et al., 2015). The most simple and direct method to evaluate and optimize blasting effect is to measure the size of rock fragmentation after blasting. Majid evaluated and measured all influential parameters in blast fragmentation. For this purpose, experimenting upon intact rock samples and measuring P-wave velocity (Vp) in 1,771 m of seismic profiles in Choghart, Chadormalu, and Sechahun mines are done. Finally, the influence of mentioned parameters on blast fragmentation was investigated (Akbari et al., 2015; Leng et al., 2020; Sobolev et al., 2020).
Currently, the backpropagation (BP) neural network is the most commonly used method for blasting parameter optimization (Xie and Lu, 2008; Han et al., 2019; Liang, 2019; Zhou et al., 2021). Most of the studies on the current blasting technologies take the degree of rock fragmentation as the evaluation index of the blasting effect. The degree of rock fragmentation can be controlled by changing blasting parameters. Rock blasting is mainly studied by numerical simulation (Huang et al., 2017a; Huang et al., 2017b; Huang et al., 2021a; Huang et al., 2021b). Paramonov discusses the influence of explosive charge diameter and type of explosive substance on the generation of fine dust. Sample calculation of dust and gas pollution according to the proposed procedure is given with consideration of gas dynamic processes in blasthole charging pocket, blasting and drilling parameters, properties of explosive substances and rock massif, including results of commercial approbation in open-pit mines of building materials (Paramonov and Kovalevskyi, 2017; Zhou et al., 2021). Huang used the gas–solid two-phase flow theory and explosion mechanics theory to conduct real-time simulation of blasting dust pollution in an open-pit mine through numerical simulation and field test of the Fluent software. Based on the law of dust pollution, this paper provides a basis for the design of reasonable parameters of dustproof net and related parameters of remote mist emitter (Huang et al., 2019a; Zhang et al., 2021a). Based on the blasting theory and empirical formula, the parameters of presplitting blasting such as the hole diameter, hole spacing, charge decoupling coefficient, and line charge density were determined, and field tests of conventional pre-splitting blasting and presplitting blasting with precise delay and hole-by-hole initiation were carried out on the west slope of Buzhaoba (Mussa et al., 2017; Mussa et al., 2018; Ma et al., 2021).
In addition, in terms of rock fragmentation modeling of bench blasting, many experts have also done corresponding research. Alireza developed the ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (K80) of Golgohar iron mine of Sirjan, Iran (Karami and Afiuni-Zadeh, 2012; Karami and Afiuni-Zadeh, 2013, Wang et al, 2021a; Zhang et al., 2021b). Some experts and scholars use numerical simulation or laboratory experiments to analyze and summarize dust migration rules and provide theoretical basis for dust control (Bhandari et al., 2004; Huang et al., 2019b; Jia et al., 2021). Santosh turbulent kinetic energy (TKE) and velocity vector path of dust–air mixture and dust-free air were simulated to understand their effects on coal dust dispersion (Ray et al., 2020; Sobolev et al., 2020). For the dust control methods in the blasting process of open-pit mines, many experts have put forward novel and efficient dust suppression methods. Wang proposes a new dust reduction method based on water infusion blasting in open-pit mines, such as water seal blasting method, blasting water fog method and so on (Welideniya, 2005; Wang et al., 2021b). Wang raising blasting dust is often controlled by using certain physical and chemical methods, but the study of blasting dust control by means of numerical simulation is lacking (Raj, 2015; Abdollahisharif et al., 2016; Shaocheng et al., 2017).
Therefore, this study uses LS-DYNA numerical simulation software to simulate the rock blasting with rock crushing degree as the evaluation index of producing dust capacity, degree of rock crushing, and the indicator of producing dust capacity, based on the blasting parameters (drill space, row spacing, explosive consumption, charge constitution, short-delay blasting). The results are used to optimize and control the degree of rock crushing, and reduce the amount of producing dust.
2 MECHANISM AND LITHOLOGY TEST OF BLASTING DUST
2.1 Analysis of Dust Generation Mechanism in Blasting Process
There are many hypotheses on the mechanism of rock breakage in blasting, such as the theory of explosion gas expansion pressure destruction, the theory of reflected tension stress wave destruction, and the theory of reflection tension stress wave and explosion gas pressure interaction. Bench blasting in an open-pit mine is an internal blasting mechanism.
2.1.1 The Internal Blasting Action of an Explosive
The use of explosives in mining engineering results in coal rock destruction, loosening, vibration, compression, or throwing phenomena (Hagan, 1980; Kononenko and Khomenko, 2021). When the cartridge explodes in an infinite medium, the explosive is transformed into the explosive product of gas state through a chemical reaction instantly. Due to the expansion effect, the volume increases 100 or even thousands of times, and the static pressure does not decline below 15,000 MPa. At the same time, shock waves with temperatures as high as 1,500°C –4,500°C and speed as high as thousands of meters per second are generated. In this short time, stress waves formed by detonation spread from the center of the charge package, namely, the explosion center, to the surrounding areas, including the crushing zone, fracture zone, and vibration zone, formed around the explosion source.
2.1.2 Mechanism of Blasting Rock Breaking and Dust Producing
When the charge explodes, it produces a high peak pulse pressure on the surrounding rock and a strong shock wave in the area immediately adjacent to the charge. Under the action of ultra-high pressure of shock wave, the rock structure is seriously damaged and crushed into fine particles, thus, forming the crushing circle, which is the main source of the dust in blasting operations. Although the radius of the action circle is very small, plastic deformation or shear failure occurs because the medium is strongly crushed, and the energy consumption is very large (Fourney, 2016).
2.1.3 Dust Produced by Blasting Action
In mine blasting, the enormous explosive forces generated by the sudden expansion of high-temperature and high-pressure gas formed after explosive detonation imposes pressure and shear force on the borehole wall and the ore rock within its action radius (Bhandari,2013; Murr et al., 2015). The rock in the compression ring, is crushed, compressed, and broken in an instant due to the action of the largest forces in this area, where the highest degree of powdering is observed. Although the explosive force is absorbed and weakened in the center of destruction or throwing zone of the rocks, there still remains enough force to destroy the hard ore-bearing rock as well as the relay in the ore-bearing rock and throw it out. The pulverized rock fills the blast zone with high velocity and escapes to nearby areas as a result of the blast wave.
2.2 Special Rock—Fire Rock
2.2.1 Lithology Introduction
Fire rock is a special type of rock mass formed by spontaneous combustion of coal seam and the “metamorphism” of surrounding rock. Fire rock is typically developed in Jurassic coal measure strata. The intense solar radiation, high sunshine intensity, low rainfall, dry climate, and other natural phenomena, loosen the surrounding rock structure, increase the permeability, decrease the strength, and increase the dust content in the rock stratum. The dust concentration in the blasting process is higher than that in the conventional rock bench blasting. The properties of rock strata change after being affected by the fire. The fire rock can be divided into a lava-like zone, burnt rock zone, and baked rock zone.
(1) Lava-like (Figure 1A) zone: The combustion of thick–extra thick coal seam releases huge heat, which changes the structure of surrounding rock, forming a slag like “lava.” The molten rock mixes with the collapsed rock, creating a hybrid type of rock known as “migmatite.” The color is purple-gray, manganese-gray, purple, and also observed in other colors. The rock structure is not clear, cracks and pores are particularly developed, the surface is rough, the texture is firm and brittle with sharp edges and corners.
(2) Burnt rock (Figure 1B) zone: Spontaneous combustion of coal seam changes the structure of surrounding rock slightly. The degree of rock combustion is inferior in comparison with the “lava-like” zone. Generally, the color is light red, brick red, manganese gray, and gray (iron-free rock) mudstone. Siltstone bedding is clear and sandstone bedding is not clear. The structure changes slightly, and the texture is firm brittle with cracks. Mudstone and siltstone are similar to clay, and claystone is generally like a porcelain plate.
(3) Baked rock (Figure 1C) zone: The surrounding rock is far from the spontaneous combustion coal seam, and the rock is only baked, generally colored as light red and light brick red. The rock bedding is clear, the structure does not change, and hardness increases slightly with relatively more cracks found. The rock mass is rarely collapsed, and normal surrounding rocks undergo a phase transition.
[image: Figure 1]FIGURE 1 | Rock types. (A) Lava-like rock. (B) Burnt rock. (C) Baking rock.
2.2.2 Lithology Test
The rock mass fissures of burnt rock are well developed, and their physical and mechanical properties are significantly different from the original rock. These rocks have high water absorption, poor frost resistance, and disintegration resistance. Under the action of the atmospheric environment with large temperature differences, freezing–thawing alternation, and groundwater, the burnt rocks rapidly disintegrate and flake, leading to the destruction of the rock mass. Therefore, the physical and mechanical properties of lava sample rock, burnt rock, and burnt rock in burnt zone were investigated in the laboratory. For each parameter shown in Table 1, the average values of three types of rocks are taken as material parameters or blasting simulation.
TABLE 1 | Summary of rock property tests.
[image: Table 1]3 NUMERICAL SIMULATION STUDY
Because of the special lithology of burnt rock, the effect of conventional blasting parameters is weak, so it is necessary to optimize the blasting operation. According to Griffith’s strength theory, rock breaks when the stress is greater than the ultimate tensile strength of rock. Thus, the stress cloud and stress curve are used to assess the failure of the bench rock (Welideniya, 2005).
3.1 LS-DYNA Numerical Simulation Software
The Altair HyperMesh (14.0) software has a good interface with the LS-DYNA (R11.1) software, so it was used to conduct modeling, mesh division, and keyword definition, and LS-DYNA solver was used to complete the modeling, meshing, and running the numerical simulation. LS-Prepost (R11.1) and HyperView (14.0) are used for post-processing the results and to obtain the stress cloud map and stress curve in d3plot file after the completion of the simulation. The modeling and simulation workflows are shown in Figure 2.
[image: Figure 2]FIGURE 2 | Procedure of blasting simulation.
3.2 Build the Model
3.2.1 Modeling and Grid Partitioning
3D modeling of burnt rock was carried out (Figure 3A) according to geological data of an open-pit mine in Xinjiang. The model is 42 m long, 13.5 m wide at the top, and 17.1 m wide at the bottom, 10.5 m height (H) of the bench (including 0.5 m super depth), and the slope angle (α) of the bench is 70°.
[image: Figure 3]FIGURE 3 | Model design. (A) 3D modeling. (B) Hole location.
The section drawing of the blasting model contains two rows of holes; each row has six holes, chassis resistance line (Wd) is 6.1 m, hole spacing 1) is 6 m, row spacing 2) is 5 m, hole diameter 4) is 150 mm, hole depth (L) is 10.5 m, and charge height (H1) is 6.5 m. The bench blasting model has a filling length (H2) of 4 m and explosive unit consumption (q) of 0.23 kg/m3. The firing method is simultaneous detonating.
The geometry was cut at the middle of the model (plane of symmetry) and symmetry constraint was applied on the plane. The remaining half of the geometry was used for simulation; in this way, the accuracy of the simulation is improved, and the computation efficiency increases. Figure 3B shows the symmetric constraints of the blasting model and the grid patterns divided.
Mesh division has a great influence on the calculation process. Too large mesh is easy to reduce the calculation accuracy. Too small mesh leads to too much mesh to make the calculation time too long and greatly reduce the calculation efficiency. Since the blast hole diameter is small, and the rock model is relatively large, if the mesh is divided according to the mesh at the blast hole to ensure uniformity, the number of mesh may be more. However, if all the grids are divided according to the mesh at the rock, it may be difficult to divide the blast hole. Therefore, we use a part of the transition region of the mesh at the blast hole to slowly expand the mesh to the mesh size of the rock, which ensures the accuracy and makes the mesh number appropriate. The mesh size at the hole is 2.5 cm × 2.5 cm × 10 cm, and the mesh size at the rock is 25 cm × 25 cm × 10 cm. The mesh size at the intermediate transition is larger than that at the hole and smaller than that at the final rock.
3.2.2 Materials for the Numerical Simulation Model

(1) Rock material
According to the physical and mechanical tests of fire rock, the tensile strength limit, compressive strength limit, and shear modulus of burnt rock are small, so the conglomerate is a plastic follow-up model in the simulation process (*MAT_PLSETIC_KINEMATIC). The rock parameters set include density of 2,169 kg/m³, elasticity of 7.11 × 106 Pa, Poisson’s ratio of 0.2434, strength of extension of 6.56 × 106 Pa, and compressive strength of 5.126 × 107 Pa.
(2) Explosive material
The high-performance explosive material model (* MAT _ HIGH _ EXPLOSIVE _ BURN) in LS-DYNA material library was used to describe the physical and chemical properties of explosives. After the initiation of high-performance explosives, the transfer behavior of detonation products will lead to changes in the internal pressure and volume of the explosive unit. The JWL state equation was introduced to measure the relationship between the internal physical quantities of the system after detonation. This equation can accurately describe the process of the expansion drive of detonation products.
[image: image]
where P is the detonation pressure (GPa), A, B, R1, R2, and ω are the characteristic parameters of explosives, V is the volume change, and E0 is the initial internal energy (Gpa). The explosive density is 1,100 kg/m³, velocity is 4,500 m/s, and pressure is 5.6 GPa.
(3) Spacer material
Air was used as spacer material and is described by the Gruneisen equation of state:
[image: image]
where P is the gas pressure, C0∼C6 are the material characteristic parameters, and μ is the dynamic viscosity coefficient; [image: image], where V is the volume change, and E is the internal energy per unit volume of the medium. Air was defined as an ideal gas model, and its corresponding specific parameters are shown in Table 2.
(4) Tamping plug materials
TABLE 2 | Air material parameters.
[image: Table 2]The hole is filled with mortar, and the keyword is MAT_SOIL_AND_FOAM. The specific parameters of mortar are shown in Table 3.
TABLE 3 | Tamping plug material parameters.
[image: Table 3]3.3 Initial Blasting Scheme Simulation
Excessive crushing of rock in blasting operation is one of the sources of blasting dust, so the purpose of this study is to avoid excessive crushing of rock and reduce the amount of blasting dust while ensuring reasonable destruction of bench rock is achieved.
In order to analyze the stress state of rock bench in blasting simulation, three representative monitoring points were selected from the model. A measuring point −H2451369, is located at the bottom of the bench slope; B measuring point H1469530 is located at the midpoint of two adjacent gun holes; and C Measuring point −H1426887 is at the outermost edge of the bench upper panel (see Figure 4).
[image: Figure 4]FIGURE 4 | Layout of monitoring points.
3.3.1 Blasting Stress Propagation of Rock Bench
It can be seen in Figure 5 that at 0.0035 s after the explosion, the stress wave was first transmitted to some rocks on the bench slope. When the time reaches 0.005 s, the stress wave continues transmission and affects the rock in the upper wall of the bench. At this point, the stress of some rocks on the bench slope is much greater than the ultimate tensile strength of rock, while the stress of rocks on the upper wall of the bench is less than the ultimate tensile strength of rock, indicating that the rock on the bench slope first begins to be destroyed, resulting in a rapid increase in the concentration of blasting dust. When the time reaches 0.01 s, the stress of the rock on the whole bench surface exceeds the ultimate tensile strength of the rock, and the rock is seriously damaged. From 0.01 to 0.055 s, the stress wave continues the destruction. From 0.055 to 0.1 s, the stress on the rock gradually decreases. When the stress is less than the ultimate tensile strength of the rock, the rock on the bench surface is no longer damaged.
[image: Figure 5]FIGURE 5 | Cloud diagram of initial stress distribution at the specified time steps.
3.3.2 Analysis of Simulation Results
Post-processing software LS-PREPOST was used for analysis, by which the stress curves of monitoring points A, B, and C were obtained (Figure 6). In the stress graph, a positive stress curve indicates a state of tensile stress, and a negative stress curve indicates a state of compressive stress.
[image: Figure 6]FIGURE 6 | Stress diagram of the monitoring points.
The explosion can be transmitted from the gun hole to the monitoring point A (red curve) for a period, which causes the rock at the monitoring point to be subjected to stress. The stress soon exceeds the limit of the tensile strength of the rock and continues to increase to the peak value, resulting in excessive crushing of the rock. Since the bench slope is set with no reflection boundary in the simulation, the stress is transmitted to measurement point A without reflection. In addition, there are multiple free surfaces because there are multiple holes in the bench, causing the stress curve to oscillate repeatedly. The conclusion is consistent with that obtained from the stress cloud map.
3.4 Numerical Simulation of Short-Delay Blasting
3.4.1 Blasting Stress Propagation of Rock Bench
The stress cloud map shows that the explosion process in the first 0.0055 s is similar to the conventional blasting process, where the stress on the rock at the bench slope is far greater than the ultimate tensile strength of the rock (Figure 7). At 0.056 s, the blast energy of the first row of holes gradually spreads to the surface of the bench, where the back half of the rock bench is broken. At 0.065 s, the explosion can spread to the bench slope, and the crushing degree of bench rock is more significant through the superposition of blasting stresses. Compared with the simultaneous initiation, the micro-differential initiation triggers secondary damage to the rock, improves the blasting quality, improves the blasting effect, and reduces dust production.
[image: Figure 7]FIGURE 7 | Cloud diagram of short-delay blasting stress distribution.
3.4.2 Analysis of Simulation Results
As can be seen from the stress curve illustrated in Figure 8, when the short-delay blasting is adopted, the stress peaks at two monitoring points A and C are both higher than the tensile strength of rock, and the degree of rock crushing increases after two explosions. The stress at B monitoring site is small, but the stress action time is long. Although this situation is beneficial to rock crushing, it is still necessary to adjust the single explosive consumption and pore network parameters, otherwise, the rock crushing degree will remain high, which will directly affect the amount of blasting dust.
[image: Figure 8]FIGURE 8 | Stress diagram of the monitoring points.
3.5 Numerical Simulation of Spaced Loading
3.5.1 Blasting Tress Propagation of Rock Bench
It can be seen from Figure 9 that at 0.0035 s, stress wave is transmitted to some rocks on the bench slope and the upper wall of the bench, such that the rocks in that zone are subjected to stress at the same time, and the stress is near the tensile strength limit of the rock. At 0.01 s after the explosion, the whole surface of the bench is affected by the detonation wave, and the stress of all the rocks on the surface of the bench reaches the ultimate tensile strength of the rock. During the period of 0.01– 0.039 s, the rock on the surface of the whole bench is continuously damaged by stress waves, resulting in excessive rock crushing. From 0.039 s to the end of blasting, the stress on the rock surface is less than the ultimate tensile strength of the rock, and the rock on the bench surface is no longer damaged. When the continuous charging structure is adopted, the stress wave is transmitted to the segment of the rock on the bench slope first, and then to the rock segment on the bench upper wall. However, when the spacing charging structure is changed, the explosion energy will be transmitted to the rock on the bench slope and the rock on the bench upper wall at the same time, leading to the evident change in stress distribution. The simulation proves that the interval charging structure can reduce the duration at which the whole bench surface is subjected to stress levels exceeding the ultimate tensile strength of rock.
[image: Figure 9]FIGURE 9 | Cloud diagram of spaced loading blasting stress distribution.
3.5.2 Analysis of Simulation Results
It can be seen from the stress curves depicted in Figure 10 that the stress received by the three monitoring points is significantly reduced compared with that in the continuous charging structure. However, in the case of the original blasting parameters, the stress peaks are far greater than the tensile strength of the rock, resulting in the increase in dust production after the excessive crushing of the rock. Therefore, it is still necessary to optimize the blasting hole network parameters. Due to the simple air spacing, the second strain wave is formed and the action time of the stress wave is prolonged, so the rock stress changes drastically, especially between two rows of holes. It shows that by prolonging the action time of stress wave, interval charge can reduce the peak stress of explosion shock wave, improve the blasting effect, and reduce the excessive crushing of rock.
[image: Figure 10]FIGURE 10 | Stress diagram at the monitoring points.
The abovementioned discussions imply that it is not reasonable to adopt conventional blasting parameters and methods in burning rock areas. In order to improve the blasting effect, the amount of explosive dust in the burning area should be reduced and the dust production from the source should be controlled, the hole network parameters should be optimized, and the method of detonation and charge constitution should be modified.
4 OPTIMIZATION OF BLASTING PARAMETERS
4.1 Orthogonal Experiment to Optimize Blasting Parameters
4.1.1 Experimental Purpose
Through numerical simulation analysis, it is concluded that the charging structure and initiation mode strongly affect dust production. In addition, the parameters of the blasting hole network and the unit consumption of explosives significantly influence the blasting operation. Thus, the influencing factors should be considered comprehensively. Therefore, the optimal combination of various factors was obtained by orthogonal experiment, and the goal of reducing dust production was ultimately achieved in this way.
4.1.2 Calculate the Factor Level Table

(1) Hole spacing
After a large number of mine blasting tests, the concept of hole density coefficient m is put forward, and the hole distance can be calculated according to the following formula:
[image: image]
where Wd is the bottom burden.
Generally, increasing m value will improve the blasting effect. The value of m ranges from 0.9 to 1.3, the selection range of hole spacing is 5.9–8.6 m. Therefore, three levels are selected, namely, 6, 7, and 8 m.
(2) Row spacing
The row spacing formula is as follows:
[image: image]
The selection range of row spacing B is 3.9–6.6 m, so three levels are selected, namely, 6, 6.5, and 7 m, respectively.
(3) Short-delay blasting
The time needed to form a new free surface is used to determine the micro-difference interval between rows, which can be calculated by the following formula:
[image: image]
In the bench blasting operation of open pit mine, K is generally within the value range of 8–15 ms/m. When the rock hardness is high, K takes a large value, and when the rock hardness is low, K takes a small value. According to the calculation, the selection range of the micro-difference time between rows is 40–75 ms. Due to the large number of designed experiments, the appropriate value of this variable is directly set as 55 ms, no longer at the design level.
(4) Explosive consumption
The current unit explosive consumption of the open-pit mine is 0.23 kg/m3. On the basis of known data, three levels were selected for optimization, which were 0.21, 0.23, and 0.25 kg/m3.
(5) Spaced loading
In the blasting operation of open-pit mine, when the blasting structure of the hole adopts two stages of charging, the distance between charging is generally 1–2 m, and the amount of explosive used under the hole is 17%–35% of the total charging amount. When the rock’s Pratt coefficient is large, the maximum charge value is taken. When the general coefficient value of burnt rock is small, the small value of charge quantity under the hole is 25%. Due to the restriction relationship between the spacing distance of charging and the packing length, when the spacing charging structure is adopted, the maximum spacing length is 1 m. Now, the spacing distance is set at three levels of 0, 0.5, and 1 m. The factor level table is set as shown in Table 4.
TABLE 4 | Factor level table.
[image: Table 4]According to orthogonal table L27 (313), the design results of the blasting experiment scheme are shown in Table 5.
TABLE 5 | Experimental scheme design.
[image: Table 5]According to Table 5, a 3D model was established, and numerical simulation was carried out. In the numerical simulation results, the stress peaks of rock at three monitoring points were calculated for each scheme. The statistical results are shown in Table 6.
TABLE 6 | Rock stress value.
[image: Table 6]4.1.3 Scheme and Results
The tensile stress at each measuring point of each scheme was subtracted from the tensile strength of rock, and the calculation results were calculated and summed in absolute value. The values obtained by each scheme are summarized in Table 7.
TABLE 7 | Rock stress value.
[image: Table 7]4.1.4 Determination of the Optimal Scheme
The smaller the stress that exceeds the ultimate tensile strength of the rock, the smaller is the dust concentration during the blasting operation. Therefore, the optimal scheme is the one combined with the minimum K value of each factor. Therefore, the minimum combination scheme of K is A3B3C2D1.
An optimal scheme A3B3C3D1 and A3B3C2D1 are selected from the scheme table for comparison. By comparing their numerical simulation results (Table 8), it is concluded that the force of A3B3C3D1 over the tensile strength of rock is small on the slope of the bench, and the force over the limit of the tensile strength of rock is large on the wall of the bench. Finally, the optimal scheme is determined as A3B3C3D1, and the optimized blasting parameters are shown in Table 9.
TABLE 8 | Contrast of tensile strength.
[image: Table 8]TABLE 9 | After optimization, blasting parameters.
[image: Table 9]4.2 Analysis of Blasting Effect After Optimization
Numerical simulation was performed using the optimized blasting parameters. A group of representative stress distribution clouds with significant stress changes are captured.
4.2.1 Blasting Stress Propagation of Rock Bench
It can be seen from Figure 11 that the explosion process is the same as in previous cases. However, the time of the explosion stress acting on the rock is different. After adopting the optimized scheme, it is found that the limit stress time of bench rock is 0.0255 s, which is far less than the limit stress time of 0.039 s before optimization. Therefore, the optimized scheme can significantly improve the stress distribution of rock.
[image: Figure 11]FIGURE 11 | Stress diagram.
4.2.2 Analysis of Simulation Results
From Figure 12, it can be seen that the stress values of the three monitoring points decreased significantly after the optimization of blasting parameters. The stress wave acts in rock for a long time. Under the repeated action of stress, the fracture of the outermost rock can be guaranteed, the utilization rate of explosives is improved, and the single consumption of explosives is reduced as well. In other words, the degree of pulverization of burnt rock is controlled, the output of dust is reduced, and the cost of blasting operation is also minimized.
[image: Figure 12]FIGURE 12 | Stress curve after optimization at monitoring points.
5 BLASTING DUST SUPPRESSION MEASURES
The dust suppression method during blasting is one of the important means of controlling the dust quantity. Commonly used dust control measures include water injection in advance, water sealing blasting, and blasting dust protection layer technology in the blasting area. Most of the dust-suppression measures are difficult in the implementation process due to the unique lithology of fire rock. Therefore, the method of covering the blast area with dust absorbent cotton and a protective blanket was selected to control and reduce the dust production.
5.1 Dust Prevention and Reduction Measures
The essence of covering dust suppression measure is “filtering” dust particles. Blasting protection blanket + vacuuming cotton (Figure 13) is laid above the blast area, through which explosive gas flows out of the gap of the protective blanket. Dust absorbent cotton filters the dust in the gas, reduces the concentration of dust escape, and inhibits the generation of dust at the source of blasting.
[image: Figure 13]FIGURE 13 | Blasting dust suppression material. (A) Protective blanket. (B) Vacuuming cotton.
The protective blanket can fix the dust-absorbing cotton and resist the flying stone, which can reduce the dust and improve the blasting safety factor. The material comes from waste tires, waste transport belts, etc., and is made of several warp strips and weft strips. In order to facilitate laying, a lifting ring or hook can be added to the edge of the protective blanket. Protective blankets can be recycled to reduce blasting costs and protect the environment. Vacuuming cotton is a filter material, mainly composed of PET (polyester fiber) and PP (polypropylene fiber), belonging to disposable items.
5.2 Field Industrial Test
5.2.1 Field Blasting Test
In order to verify the rationality of the optimized blasting parameters and the actual effect of the blasting dust suppression scheme, an industrial blasting test was carried out in a burning area of an open-pit coal mine in Xinjiang. The test area and the test comparison area are arranged on the same bench. The direct reading dust sampler is placed 30 m upwind of the blasting area to test the blasting concentration (see Figure 14 for the layout position).
[image: Figure 14]FIGURE 14 | Layout of test area and comparison area.
The original blasting scheme was adopted in the comparison area, the optimized blasting parameters were adopted in the test area, and the dust absorbent cotton and protective blanket were added in the test area. The hole was covered with a layer of vacuum-absorbing cotton and the blasting protection blanket (See Figure 15 for the material layout).
[image: Figure 15]FIGURE 15 | Site test layout diagram.
5.2.2 Effect Analysis
The diffusion of dust can be observed clearly from the viewing spots shown in Figures 16, 17. By comparison of the blasting dust diffusion depicted in these figures, it is found that there is no dust escaping from the bench hanging plate in the test area, and only a small amount of dust escapes from the bench slope with a low concentration. In addition, the rock fragmentation of the bench is more uniform, which meets the requirements of loose blasting. Therefore, the reliability and accuracy of the blasting parameters are verified by the field test.
[image: Figure 16]FIGURE 16 | Contrast area blasting dust diffusion diagram. (A) t = 5 s. (B) t = 15 s. (C) t = 30 s.
[image: Figure 17]FIGURE 17 | Dustproof and dust reduction effect of blasting in the test area. (A) t = 5 s. (B) t = 15 s. (C) t = 30 s.
The dust concentration measured by the dust sampler in the blasting site is 727.6 mg/m3 in the test area and 3,017 mg/m3 in the comparison area. The dust concentration in the test area is far less than the measured dust concentration of 4,221 mg/m3 before optimization, and the dust removal efficiency can reach 82.4%.
After blasting, the positions of the protective blanket and the vacuuming cotton did not change (Figure 18) and are relatively intact. The interspaces of the vacuuming cotton are filled with dust. It can be seen that vacuuming cotton plays a significant role in suppressing the blasting dust. Vacuuming cotton loses its refiltration function, while intact protective blankets can be reused.
[image: Figure 18]FIGURE 18 | Site map of test area after blasting. (A) Aspiration cotton. (B) Protective blanket.
After the field test, according to the test results, the laying technology of protective blanket and dustproof cotton is improved. The gap of the protective blanket is increased to 3 cm × 3 cm, the width of the woven tape is 3–4 cm, and the weight is about 10 kg after improvement. Vacuuming cotton covers the whole blasting area, and protective blankets are laid over the hole. In this way, not only does it reduce the overflow of the disc dust in the blasting process but also decreases the weight and quantity of the protective blanket, making it easier for operators to lay out the protective blanket.
6 CONCLUSION

(1) The key factors affecting the bench blasting effect in the burning area are explosive consumption, charge constitution, detonation way, and hole mesh parameters. The rock bench in the burning area of open-pit mine has special rock properties and low mechanical strength. In the process of blasting, the rock is seriously damaged by the explosion energy, and the crushing degree is too high. The excess explosive energy drives the fine dust particles to move outward, resulting in a large amount of dust production.
(2) The optimal blasting scheme is determined as 8-m drill space, 6.5-m row spacing, 0.21-kg/m³ explosive consumption, 1-m interval length, and 55-ms short-delay blasting after orthogonal experiment optimization.
(3) Field test verification in the mining area adopt the optimized blasting scheme and adopt the dust suppression mode wherein the upper layer of the explosion area is covered with vacuum cotton and blasting blanket. The test results show that this method has an obvious dust suppression effect, where the dust removal efficiency reaches 82.4% (Welideniya, 2005; Xie and Lu, 2008; Zhou et al., 2021; Huang et al., 2021b).
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The overlying strata of the Yima coalfield are ultrathick conglomerate. Aiming at the problem of frequent occurrence of rockburst events in the central Yima coalfield during 2006–2015, the characteristics of rockburst events, microseismic (MS) monitoring, and rockburst event-inducing factors were analyzed through data mining and field investigation methods. The results showed that the rockburst events in roadways mainly occurred during mining of the working face, and they occurred at a large buried depth and were within the influence of mining stress, accompanied by an abrupt energy release. The occurrence of rockburst in roadways was accompanied by a sudden release of energy. The ultrathick strata and the fault nearby were the key influence factors of rockburst events. The stress field of roadway surrounding rocks was changed because of the mining disturbance, roadway repair and maintenance, and blasting, which would change the regional stress fields in the surrounding rocks and induce roadway rockburst events. The characteristics of rockburst events were floor heave, sharp convergence of two side walls, severe damage of the supporting body, and even closure of the roadway. The occurrence of rockburst can be prevented by reducing the mining speed and injecting water into coal seam.
Keywords: rockburst, energy, microseismic monitoring (MS), mining roadway, coal seam
1 INTRODUCTION
Rockburst is an instantaneous release of elastic energy of an over-stressed coal and rock mass and has been recognized as one of the most critical dynamic failures in coal mines (Dai et al., 2021; Frith et al., 2020; Keneti and Sainsbury, 2018). The disaster poses a serious threat to the safe production of underground coal mining. It can destroy roadways with hundreds of meters instantaneously, causing injuries or deaths, damage to facilities, and leading to property losses. Complex and various geological conditions during tunneling and mining in coal mines lead to different causes and failure modes of rockbursts (Jiang et al., 2019; Wang et al., 2019). Coal mine safety production in many countries is seriously threatened by rockburst disaster, especially in countries such as South Africa, the United States, Russia, Australia, Czechia, Poland, and China (Ghorbani et al., 2020; Konicek et al., 2013; Małkowski and Niedbalski, 2020; Zhang et al., 2017). In China, because of the high-intensity mining of coal resources for a long time, coal mining is gradually transferred to the deep, and more than 170 coal mines have suffered rockbursts. So rockburst disasters have become a major problem in deep mining (Anderson, 2017; Ranjith et al., 2017).
When the large elastic energy accumulated in the surrounding rock of coal mine roadways is released abruptly, the blast waves produced acts on the surrounding rock, which may cause tensile shear deformation and damage of the surrounding rock, casualties, and equipment damage under the influence of deep high stress and complex geological environments (Mark and Gauna, 2021; Newman and Newman, 2021; Zhou et al., 2021). Such a rockburst is characterized by abruptness, serious damage, and complex inducements, and therefore, it has become one of the main current disasters in coal mines (Jiang et al., 2016; Pan et al., 2021; Wasilewski 2020). At present, the academic community has not formed a uniform theory to explain the occurrence mechanism of rockburst in mines. Through decades of theoretical research and investigation of causes of accidents, a series of classical theories have been proposed (Cao et al., 2019; Dai et al., 2021; Xuelong Li et al., 2021; Pang et al., 2016), such as the energy theory (Cook et al., 1966), strength theory, stiffness theory (Procházka, 2004), rockburst tendency theory (Gong et al., 2021; Tsirel' and Krotov, 2001), instability theory (Zhang 1987), and “three factors” theory (Qi and Dou, 2008). With the introduction of interdisciplinary disciplines such as mathematics and mechanics into this research field, the burst start-up theory (Pan et al., 2012), catastrophe theory, and chaos theory have been formed (Pan and Zhang 1992; Liu 2014). But there are some shortcomings of the corresponding theoretical explanation. For example, the energy theory does not give a good description of the properties of coal rocks in the equilibrium state and the coal rock rupture conditions. The strength theory only gives the sufficient conditions for rockburst but does not point out the actual conditions under which rockburst happens. The stiffness theory is only a necessary condition for the occurrence of rockburst and does not give a clear definition of the mine structure division and its composite systems (Xuelong Li et al., 2021). On the basis of these innovative theoretical results, corresponding technological measures have been formulated to provide guidance for the practical control of rockburst in roadways. However, the aforementioned studies mainly focus on theoretical analysis based on the characteristics of in situ rockburst. This study analyzes the main inducing factors of 108 rockburst events in the Yima coalfield from 2006 to 2015.
Yima coalfield (Yima City, Henan Province, China) is frequently subject to rockbursts in roadways and has ultrathick strata, which is its typical stratigraphic characteristic. On the basis of the elastic theory, Shi and Jiang (2006) analyzed the stress distribution in thick strata using a model of fixed beams considering gravity. The researcher also studied the roof stability and occurrence mechanism of abnormal pressure on an island working face under ultrathick conglomerate in Changcun coal mine, Yima coalfield. They found that thick overlying strata and hard roofs and floors are adverse geological conditions inducing rockburst, and the stress concentration during the mining of working faces will further increase the occurrence probability of rockburst. Therefore, a large number of coal pillars and large areas of suspended roof of goaf should be circumvented in the mining design.
Although coal mines in the Yima coalfield have taken various rockburst prevention measures, rockbursts still occur from time to time in roadways. According to the statistics, five coal mines (Yangcun, Gengcun, Qianqiu, Yuejin, and Changcun coal mines) in the center of the Yima coalfield had been accumulatively subject to 108 rockburst events in roadways from 2006 to 2015. These events have led to different degrees of damage to roadways, more than 11,000 m in length, dozens of casualties, and nearly 100 million yuan of direct economic losses. Therefore, based on the statistical analysis of rockburst in roadways in the Yima coalfield, the research investigated the characteristics and influencing factors of rockburst in roadways in coal seams under such conditions. The research findings can provide guidance for revealing the occurrence mechanism of rockburst in the coalfield.
2 RESEARCH AREA AND MATERIALS
Yima coalfield is located in Mianchi County, Yima City, in the west of Henan Province, in which five operating mines are distributed from west to east, namely, Yangcun, Gengcun, Qianqiu, Yuejin, and Changcun coal mines. As a whole, the Yima coalfield presents an asymmetrical syncline structure, with hidden coal outcrop in the north and F16 thrust fault in the south, and this fault occurs in all of the five coal mines. The overlying conglomerate of the Yima coalfield is tens to hundreds of meters thick, and the ultrathick strata with massive structure is mainly composed of quartzite and quartz sandstone with a gravel size of 2∼500 mm. About 200 m above the coal seam is conglomerate, whose cohesive force and internal friction angle is 13.5 MPa and 29.6°, respectively. The ultrathick strata are likely to store elastic energy, and with the mining of working faces and the enlargement of the goaf, the risk of rockburst in roadways rises correspondingly, which increases the difficulty for rockburst control in roadways (Li et al., 2014; Xu et al., 2015).
The minable seams of the Yima coalfield occur in the Yima Formation of the lower Middle Jurassic series and can be divided into two seams (2-1# and 2-3# coal seams) in the majority of areas, which are merged in the deep part and expressed as 2# coal seam for short. The average thickness of the coal seam is about 25.4 m whose uniaxial compressive strength is 18.7 MPa. The immediate roof and main roof of the 2# coal seam are separately shown as mudstone and ultrathick conglomerate, while the immediate floor is comprised of interbedded mudstone and carbonaceous mudstone. Through decades of mining, the mining activity of the five coal mines in the center of the Yima coalfield has shifted to the deep merged zone of seams, and the maximum mining depth has reached 1,060 m underground. At present, the mining depths are separately 400∼600 m, 600∼800 m, 750∼980 m, 650∼1,060 m, and 600∼800 m in Yangcun, Gengcun, Qianqiu, Yuejin, and Changcun coal mines, respectively. The geological profile of the Yima coalfield is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Geological profile of the Yima coalfield.
On the basis of site survey and data collection, the numbers of rockburst events in the roadways of the five coal mines in the center of the Yima coalfield from 2006 to 2015 are summarized in Table 1. As shown in Table 1, Qianqiu coal mine was subject to the most rockburst in roadways, up to 41 times, which accounted for 38.0% of the total number of rockburst events; it was followed by the Yuejin coal mine, which suffered from 34 rockburst events (31.5%); Meanwhile, the numbers of rockburst events in Gengcun and Changcun coal mines are similar. It can also be seen from the table that more rockburst events happened from 2010 to 2012, which was found to be the mining period of the 21,141 working face of the Qianqiu coal mine according to the site survey results and relevant data.
TABLE 1 | Number of rockburst events in the five coal mines in the center of the Yima coalfield (2006–2015).
[image: Table 1]3 RESEARCH METHODS
3.1 Data Mining of Rockburst Events
In accordance with the above analysis, the mining depths of Qianqiu and Yuejin coal mines are deeper than those of Gengcun and Changcun coal mines, and the Changcun coal mine is mined at a depth slightly deeper than the Gengcun coal mine. Figure 2A shows the statistics of rockburst events in roadways at different burial depths in the five coal mines from 2006 to 2015. As displayed in the figure, roadways at burial depths of 600∼700 m and deeper than 700 m were separately subjected to 46 and 44 rockburst events, which accounted for 42.6% and 40.7% of the total. It cannot be ignored that fewer mining works on deeper levels. It is evident that the burial depth of roadways directly influences the occurrence of rockburst.
[image: Figure 2]FIGURE 2 | Statistics of rockburst events in roadways of the Yima coalfield from 2006 to 2015. (A) Roadways at different burial depths. (B) Roadways in different periods.
Figure 2B illustrates a statistical bar chart of rockburst events in roadways in different periods and regions in the five coal mines from 2006 to 2015. As shown in the figure, the mining period witnessed the largest number of rockburst events (55) in roadways, followed by the tunneling period (44), which separately accounted for 50.9 and 40.7% of the total. Only nine rockburst events happened in the roadways within the coal pillar-affected area, being 8.4% of the total. Therefore, according to the field feedback, a relatively large number of rockburst events happened in the area 300 m ahead of the working face, particularly the region 150 m ahead, which was an area of high occurrence frequency of rockburst. There were also many rockburst events in the area 250 m behind the tunneling face, especially the area 125 m behind, which was also an area of high occurrence frequency of rockburst. Hence, mining disturbance is an important factor inducing rockburst in roadways.
By combining the above analysis, it is revealed that areas of the Yima coalfield under the combined effects of location in the affected zone of a thrust fault, thick conglomerate in the coal seam roof, large mining depth of working faces, and mining disturbances are subject to frequent rockbursts in roadways. Limited by length, three typical rockburst events in the roadway were selected to analyze their characteristics and key inducing factors.
3.2 Field Investigation
Among the rockburst events in the roadways of the Yima coalfield, three caused severe economic losses, namely, those on 3 November 2011, 27 March 2014, and 22 December 2015. The characteristics of these three events are analyzed as follows.
3.2.1 Roadway Tunneling and Fault
The designed length of the 21,221 working face in the Qianqiu coal mine and the length of the open-off cut are separately 1,520 and 180 m. The coal seam with an average thickness of 23 m exhibits a dip angle of 10°∼14°. The working face is the seventh one in the downhill west wing of the No. 21 mining area, with the goaf of 21,181 and 21,201 working faces to the north, coal to the south, mine boundary to the west, and protective coal pillars for the main roadways to the east. The layout plan of the working face is illustrated in Figure 3.
[image: Figure 3]FIGURE 3 | Layout plan of the working face.
The head entry of the 21,221 working face was tunneled along the coal seam floor and buried at about 760 m underground. The support combining cable anchors, 36U-shaped steel yieldable support, and large-scale props was used in the roadway with a cross-sectional area of 24 m2. Multiple rockburst prevention measures including deep-hole water infusion in coal seams, large-diameter pressure-relief boreholes, and deep-hole pressure-relief blasting for roof, and floor breaking were taken during tunneling.
A rockburst event happened at 19:18 p.m. on 3 November 2011, in the head entry of the 21,221 working face. According to the microseismic (MS) monitoring, 3.5 × 108 J of energy was released (ARAMIS), leading to a seismic magnitude of 4.1 (KZ-301). The event caused not only significant casualties and economic losses but also severe floor heave and deformation of the head entry. In some sections, the roadway height was only 0.5∼0.8 m, and lots of strengthened large-scale props skewed to the upper side, and the two side walls were deformed remarkably. The 36U steel yieldable support was distorted, with the legs of the shed support on the upper side sliding inward to the roadway. The minimum height of the roadway was less than 1.9 m, and the minimum width was only 2.3 m, and the roadway was closed in local sections. A site photograph of the rockburst in the local section of the roadway is shown in Figure 4.
[image: Figure 4]FIGURE 4 | Site photograph of rockburst in the head entry of the 21,221 working face.
When the rockburst event occurred, the tail entry and the head entry in the 21,221 working face were separately tunneled to 890 and 715 m, which were 382 and 73 m from the location of the rockburst. The rockburst was 98 m from the F16 thrust fault in the south. At the same time, the head entry was repaired and maintained at seven locations. Therefore, the rockburst event was mainly induced by roadway tunneling and roadway repair and maintenance, as well as the fault, which is also one of the possible inducements.
3.2.2 Coal Pillars and Tunneling Disturbance
The uphill return airway in the 21,032 working face of the Qianqiu coal mine had a designed length of 152 m and was tunneled horizontally for 28.5 m from the terminal of the diversion of the underground station. After encountering the floor of the 2# coal seam, it was tunneled upward with an inclination of +22° for a length of 48.3 m. The tunneling was turned on along the roof of the coal seam after exposing the roof.
The uphill return airway in the 21,032 working face was buried 497 m underground and supported by combining shotcreting with wire mesh, 36U-shaped steel yieldable support, and 36U strengthened pillars. The roadway had a cross-sectional area of 16.69 m2, and the slope change points were supported in combination with anchor cables, 36U-shaped steel yieldable support, and door-like scaffolds. The plan sketch of the roadway is shown in Figure 5. Rockburst prevention measures including deep-hole pressure-relief blasting and deep-hole water infusion were taken in the tunneling period.
[image: Figure 5]FIGURE 5 | Layout plan of the roadway.
At 11:18 am on 27 March 2014, a rockburst event happened in the uphill return airway of the 21,032 working face, for which it was measured through MS monitoring to have an energy release of 1.1 × 107 J (ARAMIS) and seismic magnitude of 1.9 (KZ-301). Apart from large casualties and economic losses, the rockburst event also caused distortion of the 36U steel yieldable support, and the two side walls of a 20 m roadway section upward from the lower slope change point were converged to different degrees, along with the floor heave. At the position 50 m from the lower slope change point, the roadway was closed, and there was only a space of 0.8 m around on the lower side. Most 36U strengthened pillars were bent. The two ventilation doors in the underground station were significantly damaged so that the gas concentration was as high as 9%. In addition, the No. 763 inclined belt conveyor roadway, the strong belt head chamber, and the hoist house in the No. 21 mining area nearby were also deformed to different degrees. Figure 6 shows a site photograph of the rockburst in the roadway.
[image: Figure 6]FIGURE 6 | Site photograph of rockburst in the uphill return airway.
When the rockburst event happened, the uphill return airway of the 21,032 working face was tunneled to a location 85 m from the return airway, and the station of the haulage roadway was tunneled to 45 m, which were separately 20 and 88 m from the location of the rockburst. The rockburst occurred at the roof at the position 80 m from the eastern F3-7 fault. Figure 6 depicts that there were many roadways around the tunneling face of the uphill return airway in the 21,032 working face, which was easily influenced by the stress-concentrated zone in the coal pillars. Besides, the tunneling of the station to the haulage roadway also exerted a certain disturbance on the uphill return airway. Hence, stress concentration around the coal pillars and the tunneling disturbance were the main triggers of the rockburst event.
3.2.3 Mining Disturbance
The 13,230 working face in the Gengcun coal mine extended eastward to its boundary with the Qianqiu coal mine, and it was back-to-back to the goaf of the 21,121 working face in the Qianqiu coal mine. To the north of the working face was the stopped goaf of five working faces including 13,210 and to the east and south was unmined coal, with the average burial depth of 622 m. The layout plan of the working face is shown in Figure 7. The cross section of the head entry of the 13,230 working face was supported by combining anchor cables and a 36U-shaped fully enclosed steel yieldable support, with a net cross-sectional area of 6,200 mm × 4,150 mm (width × height).
[image: Figure 7]FIGURE 7 | Layout plan of the working face in the Gengcun coal mine.
To avoid the occurrence of rockburst, many rockburst prevention measures and monitoring and early warning methods were used in the coal mine. Meanwhile, roadway support and hydraulic lift sheds were both used for advanced support of the tail entry and the head entry for 150 and 300 m separately from the working face.
A rockburst event occurred in the head entry during the mining period of the 13,230 working face of the Gengcun coal mine at 10:42 a.m. on 22 December 2015. It caused floor heave and reduction of the cross section of the head entry of 150 m long expected for the emergency exit. In addition, some electromechanical equipment, transportation facilities, and supports in the roadway were damaged or rolled over. The roadway in local areas was only 1.1 m high, and 30 of the total 35 hydraulic lift sheds were damaged. Figure 8 shows a site photograph of the rockburst.
[image: Figure 8]FIGURE 8 | Site photograph of rockburst in the head entry of the 13,230 working face.
At the moment when the rockburst happened, the 13,230 working face was advanced for 36.0 and 29.7 m in the tail entry and head entry, respectively, and the rockburst occurred within the affected area of the mining-induced stress. Because the working face was in the initial mining stage, the analysis indicates that the rockburst event was induced by factors related to the mining activities. In the geological environment, because of the induction of triggering events such as external disturbances, the regional stress field of the surrounding rock of the head entry of the 13,230 working face will be suddenly changed, and a large amount of elastic energy which is gathered in the body of coal will be suddenly released in the form of vibration, sound, and coal or rock mass burst which stands for an explosive power and seriously destroys the 150 m mining roadway from the working face (Liu et al., 2017).
The aforementioned analysis indicates that the rockburst in the roadways of the Yima coalfield was mainly characterized by remarkable floor heave, convergence of two side walls, and even closure of roadways in some sections. It was also accompanied by the deformation and damage of 36U-shaped steel supports and large-scale props. Factors including mining disturbance, roadway repair and maintenance, roof weighting, and faults may change the regional stress field in the surrounding rock of roadways, thus triggering the rockburst.
4 MICROSEISMIC MONITORED THE ENERGY CHARACTERISTICS OF TYPICAL ROCKBURST EVENTS
Rock is an anisotropic and heterogeneous material. During crack initiation, propagation, and coalescence, the energy stored in the rock mass is released in a stress wave form, which then triggers microseismic (MS) events (Konicek and Waclawik, 2018; Wang et al., 2018; Li et al., 2019; Niu et al., 2022). Similar to earthquakes, there is a complex activity process which is accompanied by the formation of microcracks and the release of elastic energy inside the rock mass before a rockburst (Li et al., 2016; Zhang et al., 2019; Huang et al., 2020; Huang et al., 2021). It is possible to capture precursory information by using MS monitoring equipment (Ma et al., 2018; Liang et al., 2020; Xiang Li et al., 2021; Xue et al., 2021).
Regarding to the monitoring and early warning, a local monitoring system consisting of the method of drilling, cuttings, and mine pressure observation was formed in various coal mines of the Yima coalfield. Besides, an electromagnetic radiometer, a KJ550 on-line stress monitoring system, a microseismic (MS) monitoring system, and a KZ-301 mining earthquake monitoring device were also used to capture rockburst information through multiple channels and means. In this way, a three-level early-warning system enabled by an all-around and stereoscopic monitoring network from the perspectives of coal mines, mining areas, and working faces was formed.
Monitoring data shows that when there is no rockburst of the roadway surrounding the rock, the fluctuation range of maximum MS monitoring energy is small, but each rockburst event is accompanied by a sharp increase of the MS monitoring energy. Taking the rockburst on 3 November 2011 in the Qianqiu coal mine as an example, the energy characteristics thereof through MS monitoring were analyzed. Figure 9 shows the MS-monitored energy and total frequency curves 10 days before the occurrence of the rockburst. It can be seen from the figure that before the occurrence of the rockburst, the MS monitored the maximum energy, and the total energy changed slightly, with the maximum energy of 3.5 × 107 J and its total frequency of 13, which happened on 21 October 2011. Then, 10 days before the occurrence of the rockburst, the total frequency curve of the maximum energy was found to have large fluctuations. On the day when the rockburst happened, the maximum energy increased abruptly to 3.5 × 108 J, although the total frequency was only 8.
[image: Figure 9]FIGURE 9 | Curves of the MS-monitored energy and its frequency. (A) MS-monitored energy. (B) Frequency.
According to the aforementioned research findings, abrupt energy release is induced, and rockburst is caused in a roadway within the affected zone of a fault under the disturbance of roadway tunneling and repair. If only low energy is released abruptly, it is shown as a low-energy event in the MS monitoring, during which the rockburst of the roadway is insignificant. If the energy is released slowly, it is shown as the deformation of the surrounding rock.
5 DISCUSSION
Based on the 108 rockburst events in the Yima coalfield during 2006–2015, the influence of buried depth, roadway driving, and working face mining on rockburst is obtained. There are ultrathick overlying strata in the Yima coalfield. After coal mining, the roof is not easy to collapse and accumulates a lot of elastic energy. Under the action of dynamic load factors such as mining disturbance, roadway repair, blasting within the roadway and so on, the stress field of the roadway surrounding rock will be changed, and the plastic zone of the roadway surrounding rock expands rapidly accompanied by the sudden releasing of accumulated elastic energy (Afraei et al., 2018; Duan et al., 2019; Hosseini et al., 2013). This burst dynamic disaster will lead to severe floor heave, convergence of two side walls, and severe damage of supporting body. Compared to the existing research, the research results of this study illustrate the mechanism of typical rockburst events in the Yima coalfield and provide support for the rockburst theory.
The inducing factors of roadway rockburst are not limited to the mentioned factors, faults, folds, and working face pressure may also induce rockburst (Sainoki and Mitri, 2014; Sainoki and Mitri, 2016; Zhao et al., 2018; He et al., 2022). Under the action of external high stress, coal near the roadway accumulates a large amount of elastic energy. After external disturbance, the regional stress field of the surrounding rock of the roadway changes suddenly, causing the elastic energy in the coal and rock to be released in the form of vibration, sound, and coal and rock throwing, and explosive dynamic failure phenomenon occurs, so the cases of stress rockburst cannot be completely ruled out in mines located in the Yima coalfield. Effective measures should be taken so as to prevent the occurrence of rockburst and promote the safe mining of rockburst mines. Many materials and equipment have been developed and used for the prevention of roadway rockbursts. In addition, to reduce elastic energy accumulation, coal seam properties can be changed by means of water injection and pressure relief by large-diameter boreholes. In order to reduce the disturbance effect, mining and roadway repair are not carried out simultaneously and lower the mining speed. The prevention and control mechanism of rockburst should be researched in the future research.
6 CONCLUSION
This study aimed to obtain the rockburst characteristics and influence factors of roadways in the Yima coalfield by analyzing the roadway rockburst events in the Yima coalfield during 2006–2015 and microseismic monitoring energy. Compared with the published literature, we mainly obtained the following conclusions:
(1) Under ultrathick strata, the Yima coalfield is affected by the thrust fault so that the roadways are located in a high-stress environment. In the study, factors including mining disturbance, roadway repair and maintenance, and blasting in roadways may change the regional stress fields in the surrounding rock and induce rockburst. The rockburst shows the following characteristics, including serious floor heave, remarkable convergence of two side walls, remarkable damage of support, and even closure of roadways.
(2) Rockburst in roadways mainly occurs in the mining period of working faces and at locations of large burial depths within the affected zone of mining-induced stress, accompanied by abrupt energy release.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.
FUNDING
This work was partially supported by the National Natural Science Foundation of China (Grant No. 52104126), the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (22IRTSTHN009), the Key Scientific Research Project of Higher Education Institutions of Henan Province (Grant No. 21A440001), and the Doctoral Cultivation Fund of Henan University of Engineering (Grant No. DKJ2019003).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Afraei, S., Shahriar, K., and Madani, S. H. (2018). Statistical Assessment of Rock Burst Potential and Contributions of Considered Predictor Variables in the Task. Tunnelling Underground Space Tech. 72 (11), 250–271. doi:10.1016/j.tust.2017.10.009
 Anderson, T. L. (2017). Fracture Mechanics Fundamentals and Applications. Fourth Edition. Boca Raton: Boca Raton CRC Press. 
 Cao, G. M., Hao, Z., Liu, H. T., Guo, L. F., Zhao, X. D., and Zhang, G. H. (2019). Impact Failure Mechanism of Mining Roadway under Ultra-thick Conglomerate. J. Mining Saf. Eng. 36 (2), 290–297. doi:10.13545/j.cnki.jmse.2019.02.010
 Cook, N. G. W., Hoek, E. P., Pretorius, J. P. G., Ortlepp, W. D., and Salamon, M. D. G. (1966). Rock Mechanics Applied to the Study of Rockbursts. J. South Afr. Inst. Mining Metall. 66 (10), 435–528. 
 Dai, L., Pan, Y., Li, Z., Wang, A., Xiao, Y., Liu, F., et al. (2021). Quantitative Mechanism of Roadway Rockbursts in Deep Extra-thick Coal Seams: Theory and Case Histories. Tunnelling Underground Space Tech. 111, 103861. doi:10.1016/j.tust.2021.103861
 Duan, K., Ji, Y., Wu, W., and Kwok, C. Y. (2019). Unloading-induced Failure of Brittle Rock and Implications for Excavation-Induced Strain Burst. Tunnelling Underground Space Tech. 84, 495–506. doi:10.1016/j.tust.2018.11.012
 Frith, R., Reed, G., and Jones, A. (2020). A Causation Mechanism for Coal Bursts during Roadway Development Based on the Major Horizontal Stress in Coal: Very Specific Structural Geology Causing a Localised Loss of Effective Coal Confinement and Newton's Second Lawfic Structural Geology Causing a Localised Loss of Effective Coal Confinement and Newton’s Second Law. Int. J. Mining Sci. Tech. 30, 39–47. doi:10.1016/j.ijmst.2019.12.018
 Ghorbani, M., Shahriar, K., Sharifzadeh, M., and Masoudi, R. (2020). A Critical Review on the Developments of Rock Support Systems in High Stress Ground Conditions. Int. J. Mining Sci. Tech. 30, 555–572. doi:10.1016/j.ijmst.2020.06.002
 Gong, F., Wang, Y., Wang, Z., Pan, J., and Luo, S. (2021). A New Criterion of Coal Burst Proneness Based on the Residual Elastic Energy index. Int. J. Mining Sci. Tech. 31, 553–563. doi:10.1016/j.ijmst.2021.04.001
 He, Z.-L., Lu, C.-P., Zhang, X.-F., Guo, Y., Wang, C., Zhang, H., et al. (2022). Research on Mechanisms and Precursors of Slip and Fracture of Coal-Rock Parting-Coal Structure. Rock Mech. Rock Eng . doi:10.1007/s00603-021-02724-4
 Hosseini, N., Oraee, K., Shahriar, K., and Goshtasbi, K. (2013). Studying the Stress Redistribution Around the Longwall Mining Panel Using Passive Seismic Velocity Tomography and Geostatistical Estimation. Arab J. Geosci. 6 (5), 1407–1416. doi:10.1007/s12517-011-0443-z
 Huang, F., Cao, Z., Jiang, S.-H., Zhou, C., Huang, J., and Guo, Z. (2020). Landslide Susceptibility Prediction Based on a Semi-supervised Multiple-Layer Perceptron Model. Landslides 17, 2919–2930. doi:10.1007/s10346-020-01473-9
 Huang, F., Tao, S., Chang, Z., Huang, J., Fan, X., Jiang, S.-H., et al. (2021). Efficient and Automatic Extraction of Slope Units Based on Multi-Scale Segmentation Method for Landslide Assessments. Landslides 18, 3715–3731. doi:10.1007/s10346-021-01756-9
 Jiang, L., Sainoki, A., Mitri, H. S., Ma, N., Liu, H., and Hao, Z. (2016). Influence of Fracture-Induced Weakening on Coal Mine Gateroad Stability. Int. J. Rock Mech. Mining Sci. 88, 307–317. doi:10.1016/j.ijrmms.2016.04.017
 Jiang, L., Wu, Q., Wu, Q., Wang, P., Xue, Y., Kong, P., et al. (2019). Fracture Failure Analysis of Hard and Thick Key Layer and its Dynamic Response Characteristics. Eng. Fail. Anal. 98, 118–130. doi:10.1016/j.engfailanal.2019.01.008
 Keneti, A., and Sainsbury, B.-A. (2018). Review of Published Rockburst Events and Their Contributing Factors. Engineering Geology. 246, 361–373. doi:10.1016/j.enggeo.2018.10.005
 Konicek, P., Soucek, K., Stas, L., and Singh, R. (2013). Long-hole Destress Blasting for Rockburst Control during Deep Underground Coal Mining. Int. J. Rock Mech. Mining Sci. 61, 141–153. doi:10.1016/j.ijrmms.2013.02.001
 Konicek, P., and Waclawik, P. (2018). Stress Changes and Seismicity Monitoring of Hard Coal Longwall Mining in High Rockburst Risk Areas. Tunnelling Underground Space Tech. 81, 237–251. doi:10.1016/j.tust.2018.07.019
 Li, B. F., Li, X. J., and Ren, Y. K. (2014). Experimental and Theoretical Study on Rock Burst Inducement by Movement of Super-thick Conglomerate Strata Overlying Working Face. J. China Coal Soc. 39 (S1), 31–37. doi:10.13225/j.cnki.jccs.2013.0050
 Li, Z.-l., Dou, L.-m., Cai, W., Wang, G.-f., Ding, Y.-l., and Kong, Y. (2016). Roadway Stagger Layout for Effective Control of Gob-Side Rock Bursts in the Longwall Mining of a Thick Coal Seam. Rock Mech. Rock Eng. 49 (2), 621–629. doi:10.1007/s00603-015-0746-6
 Li, P.-X., Feng, X.-T., Feng, G.-L., Xiao, Y.-X., and Chen, B.-R. (2019). Rockburst and Microseismic Characteristics Around Lithological Interfaces under Different Excavation Directions in Deep Tunnels. Eng. Geology. 260, 105209. doi:10.1016/j.enggeo.2019.105209
 Liang, Z., Xue, R., Xu, N., and Li, W. (2020). Characterizing Rockbursts and Analysis on Frequency-Spectrum Evolutionary Law of Rockburst Precursor Based on Microseismic Monitoring. Tunnelling Underground Space Tech. 105, 103564. doi:10.1016/j.tust.2020.103564
 Liu, H. T., Hao, Z., Wu, X. Y., Zhao, X. D., Guo, L. F., and Ma, Z. Y. (2017). Mechanism of Blast Disaster Induced by Instantaneous Malignant Expansion of Plastic Zone. J. China Coal Soc. 42 (6), 1392–1399. doi:10.13225/j.cnki.jccs.2016.1145
 Liu, S. H. (2014). Nonlinear Catastrophy Model and Chaotic Dynamic Mechanism of Compound Coal-Rock Unstable Failure under Coupled Static-Dynamic Loading. J. China Coal Soc. 39 (2), 292–300. doi:10.13225/j.cnki.jccs.2013
 Ma, T.-H., Tang, C.-A., Tang, S.-B., Kuang, L., Yu, Q., Kong, D.-Q., et al. (2018). Rockburst Mechanism and Prediction Based on Microseismic Monitoring. Int. J. Rock Mech. Mining Sci. 110, 177–188. doi:10.1016/j.ijrmms.2018.07.016
 Małkowski, P., and Niedbalski, Z. (2020). A Comprehensive Geomechanical Method for the Assessment of Rockburst Hazards in Underground Mining. Int. J. Mining Sci. Tech. 30, 345–355. doi:10.1016/j.ijmst.2020.04.009
 Mark, C., and Gauna, M. (2021). Pillar Design and Coal Burst Experience in Utah Book Cliffs Longwall Operations. Int. J. Mining Sci. Tech. 31, 33–41. doi:10.1016/j.ijmst.2020.12.008
 Newman, C., and Newman, D. (2021). Numerical Analysis for the Prediction of Bump Prone Conditions: A Southern Appalachian Pillar Coal Bump Case Study. Int. J. Mining Sci. Tech. 31, 75–81. doi:10.1016/j.ijmst.2020.12.020
 Niu, W., Feng, X.-T., Feng, G., Xiao, Y., Yao, Z., Zhang, W., et al. (2022). Selection and Characterization of Microseismic Information about Rock Mass Failure for Rockburst Warning in a Deep Tunnel. Eng. Fail. Anal. 131, 105910. doi:10.1016/j.engfailanal.2021.105910
 Pan, J. F., Ning, Y., Mao, D. B., Lan, H., Du, T. T., and Peng, Y. W. (2012). Theory of Rockburst Start-Up during Coal Mine. Chin. J. Rock Mech. Eng. 31 (3), 586–596. 
 Pan, Y. S., Dai, L. P., Li, G. Z., and Li, Z. H. (2021). Study on Compound Disaster of Rock Burst and Roof Falling in Coal Mines. J. China Coal Soc. 46 (1), 112–122. doi:10.13225/j.cnki.jccs.2020.0557
 Pan, Y. S., and Zhang, M. T. (1992). The Study of Coalburst by Catastrophic Theory. J. Fuxin Mining Inst. 11 (1), 12–18. 
 Pang, L. L., Xu, X. F., Si, L., Zhang, H., and Li, Z. K. (2016). Analysis of Prevention Mechanism of Upper Protective Seam Mining on Rock Rockburst Induced by Thick Conglomerate. Rock Soil Mech. 37 (S2), 120–128. doi:10.16285/j.rsm.2016.S2.014
 Procházka, P. P. (2004). Application of Discrete Element Methods to Fracture Mechanics of Rockbursts. Eng. Fracture Mechanic 71, 601–618. 
 Qi, Q. X., and Dou, L. M. (2008). Theory and Technology of Rockburst. Xuzhou: China University of Mining and Technology Press. 
 Ranjith, P. G., Zhao, J., Ju, M., De Silva, R. V. S., Rathnaweera, T. D., and Bandara, A. K. M. S. (2017). Opportunities and Challenges in Deep Mining: A Brief Review. Engineering 3, 546–551. doi:10.1016/j.eng.2017.04.024
 Sainoki, A., and Mitri, H. S. (2014). Dynamic Behaviour of Mining-Induced Fault Slip. Int. J. Rock Mech. Mining Sci. 66, 19–29. doi:10.1016/j.ijrmms.2013.12.003
 Sainoki, A., and Mitri, H. S. (2016). Dynamic Modelling of Fault Slip Induced by Stress Waves Due to Stope Production Blasts. Rock Mech. Rock Eng. 49 (1), 165–181. doi:10.1007/s00603-015-0721-2
 Shi, H., and Jiang, F. X. (2006). Analysis on Rupture of Hard and Massive Overlying Strata in Fully-Mechanized Sublevel Caving Face. Chin. J. Geotechnical Eng. 28 (4), 525–528. 
 Tsirel', S. V., and Krotov, N. V. (2001). Probability Interpretation of Indirect Risk Criteria and Estimate of Rock-Burst hazard in Mining Anthracite Seams. J. Mining Sci. 37 (3), 240–260. doi:10.1023/a:1013194110443
 Wang, Z., Ning, J., and Ren, H. (2018). Frequency Characteristics of the Released Stress Wave by Propagating Cracks in Brittle Materials. Theor. Appl. Fracture Mech. 96, 72–82. doi:10.1016/j.tafmec.2018.04.004
 Wang, G., Gong, S., Dou, L., Cai, W., Yuan, X., and Fan, C. (2019). Rockburst Mechanism and Control in Coal Seam with Both Syncline and Hard Strata. Saf. Sci. 115, 320–328. doi:10.1016/j.ssci.2019.02.020
 Wasilewski, S. (2020). Gas-dynamic Phenomena Caused by Rock Mass Tremors and Rock Bursts. Int. J. Mining Sci. Tech. 30, 413–420. doi:10.1016/j.ijmst.2020.03.012
 Xiang Li, X., Mao, H., Li, B., and Xu, N. (2021). Dynamic Early Warning of Rockburst Using Microseismic Multi-Parameters Based on Bayesian Network. Eng. Sci. Technol. Int. J. 24, 715–727. doi:10.1016/j.jestch.2020.10.002
 Xu, S. M., Li, S. Y., Li, D. X., Zhang, W. P., Lian, J., and Wei, Q. D. (2015). Geological Laws of Rock Burst Occurrence in Yima coalfield. J. China Coal Soc. 40 (9), 2015–2020. doi:10.13225/j.cnki.jccs.2015.0715
 Xue, R., Liang, Z., and Xu, N. (2021). Rockburst Prediction and Analysis of Activity Characteristics within Surrounding Rock Based on Microseismic Monitoring and Numerical Simulation. Int. J. Rock Mech. Mining Sci. 142, 104750. doi:10.1016/j.ijrmms.2021.104750
 Xuelong Li, X., Chen, S., Wang, E., and Li, Z. (2021). Rockburst Mechanism in Coal Rock with Structural Surface and the Microseismic (MS) and Electromagnetic Radiation (EMR) Response. Eng. Fail. Anal. 124, 105396. doi:10.1016/j.engfailanal.2021.105396
 Zhang, M. T. (1987). Instability Theory and Mathematical Model for Coal/rock Bursts. Chin. J. Rock Mech. Eng. 6 (3), 197–204. 
 Zhang, C., Canbulat, I., Hebblewhite, B., and Ward, C. R. (2017). Assessing Coal Burst Phenomena in Mining and Insights into Directions for Future Research. Int. J. Coal Geology. 179, 28–44. doi:10.1016/j.coal.2017.05.011
 Zhang, S., Li, Y., Shen, B., Sun, X., and Gao, L. (2019). Effective Evaluation of Pressure Relief Drilling for Reducing Rock Bursts and its Application in Underground Coal Mines. Int. J. Rock Mech. Mining Sci. 114, 7–16. doi:10.1016/j.ijrmms.2018.12.010
 Zhao, T.-b., Guo, W.-y., Tan, Y.-l., Yin, Y.-c., Cai, L.-s., and Pan, J.-f. (2018). Case Studies of Rock Bursts under Complicated Geological Conditions during Multi-Seam Mining at a Depth of 800 M. Rock Mech. Rock Eng. 51, 1539–1564. doi:10.1007/s00603-018-1411-7
 Zhou, J., Chen, C., Wang, M., and Khandelwal, M. (2021). Proposing a Novel Comprehensive Evaluation Model for the Coal Burst Liability in Underground Coal Mines Considering Uncertainty Factors. Int. J. Mining Sci. Tech. 31, 799–812. doi:10.1016/j.ijmst.2021.07.011
Conflict of Interest: Author GZ was employed by the company Henan Energy & Chemical Industry Group Co. Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Hao, Sun and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 24 February 2022
doi: 10.3389/feart.2022.843532


[image: image2]
Relationship Between Asperities and Velocity Pulse Generation Mechanism
Lu Han1, Zhengru Tao1*, Zelin Cao2 and Xiaxin Tao2,1
1Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin China
2School of Civil Engineering, Harbin Institute of Technology, Harbin, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Zengxi Ge, Peking University, China
Cesar Jimenez, National University of San Marcos, Peru
* Correspondence: Zhengru Tao, taozr@foxmail.com
Specialty section: This article was submitted to Geohazards and Georisks, a section of the journal Frontiers in Earth Science
Received: 26 December 2021
Accepted: 31 January 2022
Published: 24 February 2022
Citation: Han L, Tao Z, Cao Z and Tao X (2022) Relationship Between Asperities and Velocity Pulse Generation Mechanism. Front. Earth Sci. 10:843532. doi: 10.3389/feart.2022.843532

Near-fault ground motion records often capture instances of pulse-like behavior, where a burst of energy is expressed as large wave amplitude that occur over short time. The pulse-like ground motion can cause serious damage to long-period structures. Using numerical simulations of near-fault ground motions, we analyze the mechanisms involved in the generation of velocity pulses in the 1994 Northridge Earthquake and the 1979 Imperial Valley Earthquake. The degree to which the asperities affect the pulse generation process is investigated by identifying individual velocity pulses from the superposition process of sub-fault ground motions. Pulse indicators Ep and PGVp represent pulse characteristics in the ground motions at the stations located near the epicenter (near-epicenter stations) and the stations located along the forward rupture propagation direction of the asperity (rupture-direction stations), respectively. To observe the effects of the asperities and the spatial relationship between the pulse-like ground motion stations and the asperities, we determine the contribution of the sub-fault motions to the pulse amplitude. Furthermore, we analyze the pulse indicators and the frequency components using simulated ground motions from two different slip distributions. The near-epicenter station ground motions, produced by homogeneous slip distribution, exhibit higher pulse amplitude and more concentrated low-frequency energy than those generated by the inhomogeneous slip distribution. The rupture-direction station ground motions, produced by inhomogeneous slip distribution, present higher pulse amplitude and more concentrated low-frequency energy than those generated by the homogeneous slip distribution. Our analysis reveals that during the fault rupture process, the pulse energy and the pulse amplitude are influenced by both the slip distribution on the fault plane and the spatial relationship between the seismic station and the asperity.
Keywords: velocity pulse, asperity, near-fault ground motions, numerical simulation, mechanism
INTRODUCTION
Near-fault ground motions, which are distinctly different from far-field ground motions, are influenced by propagation media, site conditions, and the nature of seismic source. Velocity pulse is one of the main features in near-fault ground motions, which may cause serious damage to long-period structures. This feature has received significant attention since Heaton et al. (1995) first revealed that pulse-like ground motions from the 1994 Northridge Earthquake imparted significant damage to base-isolated frame buildings. In the last decade, researchers have begun using certain indicators to identify and classify ground motions as pulse-like or non-pulse-like. Many techniques were developed to extract velocity pulses, including mathematical models (e.g., sinusoidal velocity model, acceleration model, multi-parameter attenuate velocity pulse model) (Mavroeidis and Papageorgiou, 2003; Zhai et al., 2013; Chang et al., 2020), time-frequency analysis (Baker, 2007; Shahi and Baker, 2011; Mimoglou et al., 2014; Shahi and Baker, 2014; Whitney, 2019; Sharbati et al., 2020; Tang et al., 2021), and empirical mode decomposition (EMD) (Huang et al., 1998; Xu and Agrawal, 2010; Chen and Wang, 2020). Despite these investigations, the mechanisms and processes that ultimately result in velocity pulses are not well known. Generally, pulse-like ground motions are mainly caused by the directivity effect, which appear when the fault rupture propagates towards a seismic station and the rupture velocity is close to the shear wave velocity of the medium. In this scenario, the seismic intensities are higher than those propagating in the opposite direction. Furthermore, the velocity pulse is also produced by other factors such as the permanent displacement caused by the fling step effect and soil conditions. Liu (2005), while exploring the relationship between velocity pulses and seismic source parameters, proposed that the pulse period and the pulse amplitude depended on the depth of the fault, the rupture starting point, and the asperity locations. Mena and Mai (2011) found that directivity pulse was strongly related to the slip distribution on the fault plane and the location and size of the asperities. While Jiang and Bai (2016) analyzed the energy released by these pulse-like ground motions and found that this energy heavily influenced the velocity pulse period, Fayjaloun et al. (2017) demonstrated that the geometry of the fault and the rupture velocity were the main factors affecting the pulse period. With respect to the velocity pulse generation mechanisms, Poiata et al. (2017) found that for dip-slip faults, the directivity effect played a leading role at footwall stations. The focusing effect was found primarily responsible for the generation of the velocity pulses at hanging wall stations (Kagawa, 2009). Scala et al. (2018) simulated the ground motion in the 2009 L'Aquila Earthquake and found that the appearance and duration of the velocity pulses were dependent on the rise time of the source, the average rise time, the station location, the rupture velocity, and the fault depth. Using the three-dimensional finite difference method (Luo, 2019; Luo et al., 2020) and the F-K method (Lin et al., 2019) to simulate the pulse-like ground motions from the 1999 Chi-Chi Earthquake (Taiwan, China), and the 2018 Hualian Earthquake (Taiwan, China), previous studies indicated that the rise time of the asperity and the fault depth informed the velocity pulse shape, period, and amplitude. Lin et al. (2019) further proposed that site effect and the presence of sub-fault promote the generation of velocity pulses. Using the spectral element method, Tsuda (2020) simulated the ground motions in the 2016 Kumamoto Earthquake and found that the seismic source parameters played a significant role in the generation of the velocity pulses. By modeling the near-fault ground motions in the 1994 Northridge Earthquake and the 1979 Imperial Valley Earthquake using the F-K method, Cao (2020) discovered that different mechanisms were responsible for the generation of the forward-directivity pulses and the other non-directivity pulses. The directivity pulses were caused by large-amplitude waveforms in near-fault region or by the superposition of sub-fault ground motions in the forward rupture propagation direction, while the other non-directivity pulses were mainly attribute to the reflection of S waves produced by seismic source radiation.
In this study, we analyzed the influence of asperities on the velocity pulses by comparing the observed and simulated ground motions for both the 1994 Northridge Earthquake and the 1979 Imperial Valley Earthquake. Widely used methods, such as time-frequency analyses and empirical mode decomposition (EMD), may reduce calculation efficiency and suppress signal amplitude. Therefore, we categorized and characterized the pulse behavior using mathematical model to fit the shape of the observed velocity pulses. In the simulated waveforms, each time series is produced by the rupture of sub-faults, and the final ground motion waveform is the superposition of these individual ground motions with a certain time lag. We observed the pulse indicators during the superposition process and quantify the contribution of each sub-fault to the final pulse amplitude. We then compared the pulse indicators and the frequency components of the simulated near-fault ground motions produced by two different slip distributions. Lastly, we preliminarily confirmed that the relationship between site location and asperity exerts a significant influence on the pulse generation process.
DATA AND IDENTIFICATION METHOD
Observed Ground Motions and Identification Method
In this study, we examined ground motions from a dip-slip event (the 1994 Northridge Earthquake) and a strike-slip event (the 1979 Imperial Valley Earthquake) by collecting the EW and NS components of 384 acceleration records from the Pacific Earthquake Engineering Research Center (http://ngawest2.berkeley.edu). To identify the velocity pulses in these time series, we use the peak point method (PPM) (Zhai et al., 2013). PPM is an energy-based pulse identification and extraction method that uses a simplified mathematical model to fit velocity pulses. The pulse model proposed by Dickinson and Gavin (2011) is expressed as:
[image: image]
where Vp is the peak amplitude (cm/s), Tp is the period (s), Nc is the number of fitted pulses, φ is the phase parameter, and Tpk is the peak moment (s). The least-squares method is used to fit the pulse model to the original signal. To simplify the model, we set Nc = 1 and φ = 0. Tp is defined as the time interval between adjacent peak ground velocity (PGV) peaks or troughs. The pulse period Tp, the pulse amplitude Vp and the pulse peak moment Tpk are calculated by finding the pulse model that best fits the pulses in the observed records. Figure 1 shows an example of a velocity pulse extracted using PPM. Eqs. 2, 3 are used to calculate the relative cumulative energy of the velocity time series:
[image: image]
[image: image]
where v(τ) is the velocity time series, E(t) is the cumulative energy of the velocity time series, Ep is the relative energy of the identified pulses, and ts and te represent the starting point and ending point of the pulse, respectively. The threshold of the energy index Ep is set to 0.3 (Zhai et al., 2013). We also apply a criterion of PGV >30 cm/s to exclude low-amplitude ground motions from our analysis. We eliminate the effects of the seismometer orientation by rotating the acceleration histories from original EW and NS orientations to FP (Fault Parallel) and FN (Fault Normal) orientations. The two earthquakes yield a total of 27 records with FN orientations containing pulse-like ground motions (red triangles in Figure 2).
[image: Figure 1]FIGURE 1 | An example of pulse-like ground motion identified by PPM. The red dotted line represents the extracted pulse from the Northridge station in the Jensen Filter Plant Administrative Building.
[image: Figure 2]FIGURE 2 | Seismic stations and surficial fault projections of the Northridge Earthquake and the Imperial Valley Earthquake.
Simulating Ground Motions With the F-K Method
To address the role of asperity in the pulse generation process, we utilize the F-K method, which is a semi-analytical frequency-wavenumber Green’s function method (Zhu and Rivera, 2002; Hartzell et al., 2005; Hartzell et al., 2011; Cao et al., 2019). The F-K method relies on wave theory to solve the Green’s function in the frequency-wavenumber domain and, when combined with a finite-fault source model, can be used to simulate the bedrock ground motions that occur during seismic events. We simulate acceleration time series from the 1994 Northridge Earthquake (83 time series) and the 1979 Imperial Valley Earthquake (31 time series) using the F-K method. The 1D velocity models in the 1994 Northridge region and the 1979 Imperial Valley region are from Graves and Pitarka (2010) and listed in Table 1. The source parameters, such as the fault size, strike angle, dip angle, and slip distribution, are sourced from the inversion results of Hartzell and Heaton (1983) and Wald et al. (1996) (Table 2).
TABLE 1 | Imperial Valley and Northridge region 1-D velocity profiles
[image: Table 1]TABLE 2 | Source parameters used in the F-K method ground motion simulations.
[image: Table 2]The pseudo spectral accelerations (PSA) of the simulated FN components are compared to the records from the 1994 Northridge Earthquake and 1979 the Imperial Valley Earthquake (Figure 3). Overall, the PSAs of the simulated ground motions are consistent with those of the observed PSAs throughout the entire period range.
[image: Figure 3]FIGURE 3 | The simulated and observed response spectra produced by bedrock ground motion from (A) the Northridge Earthquake and (B) the Imperial Valley Earthquake.
For stations with complicated shear-wave velocity structure, we account for possible site effect such as sediment layer amplification. By inputting the upward wave of the simulated ground motions at bedrock (assuming a shear-wave velocity of 750 m/s), we use the Quarter-Wavelength method (QWL) proposed by Joyner et al. (1981) to model the frequency-dependent site effect. For example, the simulated, QWL, and observed spectral responses at four stations during the 1979 Imperial Valley Earthquake are shown in Figure 4. The shear-wave velocities of the soil layers at these stations are based on the values reported in Fumal et al. (1982) and Porcella (1984).
[image: Figure 4]FIGURE 4 | The simulated, observed, and QWL response spectra produced by ground motion at the bedrock and at the surface of four stations that recorded seismic data from the Imperial Valley Earthquake.
As shown in Figure 4, the response spectra of the surface ground motions are similar to those of the observed records at entire period. Of our 114 simulated ground motions, 27 motions contain pulse-like waveforms; however, several of the corresponding observed records are identified as non-pulse-like ground motions. We only select records where both the observed and simulated motions are identified as pulse-like motions for further analysis. The station information, pulse amplitude PGVp, pulse period Tp and relative cumulative energy Ep for these selected records are listed in Table 3.
TABLE 3 | Station information and pulse indicator values.
[image: Table 3]In the 1979 Imperial Valley Earthquake, the directivity effect causes the velocity pulses mostly appear in the FN component. However, in the 1994 Northridge Earthquake, most pulse-like ground motions occur at the hanging wall stations (Figure 2 and Table 3).
In Pulse Indicators in the Superposition of Sub-Fault Motions and Pulse Indicator Results, we use the PPM model to identify changes in the pulse indicators of the simulated pulse-like ground motions (listed in Table 3). Specifically, in the finite-fault source model, the fault plane is divided into NL and NW sub-faults in the along-strike and along-dip directions, respectively. From the rupture starting point, the sub-fault ground motions are superimposed sequentially in the time domain with an appropriate time delay, resulting in the final time series:
[image: image]
where a(t) represents the ground motion at a station and aij(t) is the ground motion produced by the rupture of sub-fault ij. The total time delay is the sum of Δt′ij and Δt′ij, which represent the rupture time of sub-fault ij and the propagation time from the starting point to sub-fault ij, respectively. At the relevant stations, we identify velocity pulses in each individual ground motion aij(t) to understand the influence exerted by the asperities by observing the time and position of the velocity pulses.
The Windowed Fourier Transform (WFT) of time-frequency analysis is conducted to express how the slip distribution affects the frequency components of the simulated ground motions in Pulse Indicator Results. The WFT applies an overlapping rectangular window of a certain time duration to each part of the time series and then calculates the Fourier transform of each windowed section in order to obtain the corresponding frequency spectrum. The relationship between the short-time Fourier window width (Tw) and the moment magnitude (Mw), investigated in the research of Mena and Mai (2011), is expressed as:
[image: image]
For our analysis, the window width of the 1994 Northridge Earthquake and 1979 Imperial Valley Earthquake is 4 s, with the sampling rate of 50 Hz. The PPM model for identification velocity pulse and the Windowed Fourier Transform for time-frequency analysis can investigate the effect of spatial relations between the stations and asperities on the velocity pulse generation.
EFFECT OF THE SUPERPOSITION OF SUB-FAULT MOTIONS ON THE GENERATION OF THE VELOCITY PULSE
Pulse Indicators in the Superposition of Sub-Fault Motions
An asperity is the area on a fault where the rupture is temporarily stuck and the slip value is significantly higher than the values on other parts of the fault. The consensus is that fault asperity exists when the resulting slip is about 1.5–2 times larger than the average slip on that fault plane. Previous investigations have focused on how the sizes and locations of the asperities affect the ground motions in the near-fault region. For example, Somerville et al. (1997); Somerville et al. (1999); Somerville, (2003) applied deterministic parameters to describe the properties of the slip models for fifteen crustal earthquakes by using the asperities and the wavenumber spectra to quantify the slip heterogeneity. They analyzed the relationship between slip model and seismic moment, demonstrated that slip distribution greatly affected near-fault ground motions, and stated that the energy released by asperities represented a significant contribution to the total energy and seismic moment of these crustal earthquakes. Furthermore, the asperity dimensions somewhat inform the distribution of the near-fault ground motions (Wang, 2004). Existing research on this topic mostly focused on the influence of rupture velocity, rupture mode, rise time, and the number and position of asperities on pulse-like ground motions. Miyake et al. (2001); Miyake et al. (2003) demonstrated that the near-fault ground motions in the 0.2–20 Hz frequency range were related to the area of the asperities. Cao (2020) proposed that the pulse amplitude was largely dictated by the asperity size and location, that short-period ground motions were affected by the seismic source time function, that long-period ground motions depended on the spatial slip distribution, and that site effect, wave propagation, and the superposition process may also result in pulse-like ground motions.
This section discusses the effect of the asperities on the velocity pulses that arise during the superposition process of sub-faults in the fault plane. The PPM model is applied to identify changes in the pulse indicators, which allow us to further highlight the role of asperity. The source model of the 1979 Imperial Valley Earthquake is defined by a single asperity that is located ∼20 km away from the rupture starting point on the fault plane; the sub-faults gradually rupture along the northwest direction. We divide the stations into two groups: the stations located near the epicenter (near-epicenter stations) and the stations located along the forward rupture propagation direction of the asperity (rupture-direction stations).
Pulse indicators Ep and PGVp that arise during the superposition process of the sub-fault motions are shown in Figure 5. In Figures 5, 6, the time axis of the horizontal scale refers to the time when the seismic waves generated by each sub-fault arrived at the site sequentially after the seismic wave generated by the rupture starting point arrive at the site firstly. The shadowed part represents the seismic waves generated by asperity ruptured have arrived at the site, we referred as during the rupture of the asperity in the following.
[image: Figure 5]FIGURE 5 | Ep values of final ground motions at (A) near-epicenter stations and (B) rupture-direction stations; and PGVp values of final ground motions at (C) near-epicenter stations and (D) rupture-direction stations during the Imperial Valley Earthquake.
[image: Figure 6]FIGURE 6 | Ep values of final ground motions at (A) near-epicenter stations and (B) rupture-direction stations, and PGVp values of final ground motions at (C) near-epicenter stations and (D) rupture-direction stations during the Northridge Earthquake.
In Figure 5A, at the near-epicenter stations, Ep varies during the initial rupture process and tends towards more constant values before and during the rupture of the asperity. In Figure 5B, at the rupture-direction stations, Ep exhibits an obvious upward trend during the asperity rupturing process as energy is released by the rupture of the asperity. The subsequent slightly downward of Ep at several stations may be related to adjustments in the pulse model. The PGVp values exhibit a clear upward trend that eventually flattens out as the rupture process slows. In Figure 5C, at near-epicenter stations, the behavior of the PGVp indicator is similar to that of Ep; after 3 s, the PGVp values are mostly constant. In Figure 5D, at the rupture-direction stations, PGVp increases throughout the asperity rupture process. As demonstrated, the spatial relationship between the asperity and the seismic station affects the timing of the pulse generation during rupturing on the sub-faults.
The slip distribution in the 1994 Northridge Earthquake is highly heterogeneous; it is modeled using one major asperity and one secondary asperity in the fault plane. The Ep and PGVp indicators for ten rupture-direction stations and one near-epicenter station are shown in Figure 6.
At most rupture-direction stations, the results are similar to those of the 1979 Imperial Valley Earthquake (Figure 5), where the rupture of the major asperity causes the PGVp values to increase and the Ep values to both rise and then fall slightly. At near-epicenter station RSN1086, which is located in the backward rupture propagation direction of the asperities, the PGVp values surpass the PGV identification threshold before the asperity ruptured.
Based on the results shown in Figures 5, 6, asperity significantly affects pulse indicators Ep and PGVp in both strike-slip and dip-slip events; as such, we conclude that asperity heavily influences the velocity pulse generation process. Because Ep is greater than 0.3 in the initial rupture process at most stations, we infer that PGVp is the indicator that controls the identification of the velocity pulses.
Contribution of Sub-fault Ground Motions
By forward modeling with the low-frequency numerical simulation method, Luo et al. (2020); Luo et al. (2021) modeled the pulse-like ground motions in the 1979 Imperial Valley Earthquake and the 1999 ChiChi Earthquake. In addition to discovering that the velocity pulses somewhat depend on the seismic moment and the distribution characteristics of the asperity in the source model, they also found that the velocity pulses were more heavily influenced by shallow asperities than they were by deep asperities. Lin et al. (2019) determined that the velocity pulse behavior in the 2018 Hualian Earthquake was mainly caused by motion on a local sub-fault of the Milun fault. Because the time series we analyze ultimately represent the superposition of individual sub-fault motions, we decide to break out the contribution of each sub-fault motion to the PGVp indicators observed in the final time series using Eq. 6:
[image: image]
where CPA is the contribution of each sub-fault to the PGVp (pulse amplitude) indicator of the final ground motion, pgvf refers to the peak amplitude of the final motions, and vsub(i) represents the PGVp value when the ground motion on sub-fault i is added to the previous superimposed ground motions. The CPA values for the 1979 Imperial Valley Earthquake (128 sub-faults) and the 1994 Northridge Earthquake (256 sub-faults) are shown in Figures 7A,B. In Figures 7A,B, the color of the squares represents the slip distribution, and the height of the bar graphs represents the CPA value for each sub-fault motion. Because the amplitude of the sub-fault ground motions can be positive or negative, CPA values can also be positive or negative. In this discussion, we focus on the absolute CPA value for each sub-fault motion.
[image: Figure 7]FIGURE 7 | Contributions of the various sub-fault motions to the pulse amplitude in the final time series of (A) the Imperial Valley Earthquake and (B) the Northridge Earthquake.
In Figure 7A, at the near-epicenter stations, the absolute CPA values are highest at the sub-faults closest to the rupture starting point; we attribute this observation to the large amount of energy released by the initial rupture of seismic source. Due to the proximity of the near-epicenter stations to the seismic source, the seismic waves arrive nearly instantaneously at the stations, resulting in velocity pulses that arrive early in the superposition process. At the rupture-direction stations, the magnitude of the final pulse amplitude is mainly composed of sub-fault ground motions at the asperity.
In Figure 7B, hanging-wall stations RSN982, RSN983, RSN1013, RSN1063, RSN1084, RSN1085, and RSN1050 are located close to the other asperity; as such, CPA values from these stations are mainly caused by the rupture of the secondary asperity. At the stations with epicentral distances less than 20 km, the velocity pulses appear before the rupture of the major asperity. Because stations RSN1044, RSN1045, and RSN1054 are near the surface projection of the fault and are in the forward rupture propagation direction, the CPA values at these stations come from the ground motion of several sub-faults after the rupture of the major asperity. At near-epicenter station RSN1086, sub-fault ground motions around the rupture initiation location contribute to the pulse amplitude. We also determine that the observed record at station RSN1087, which is located closest to the rupture initiation location, is a non-pulse-like ground motion. Site information from the USGS (http://www.usgs.gov) shows that Vs30 at RSN1087 is 257 m/s, by comparison, the Vs30 at pulse-like station RSN1086 is 495 m/s, which implies the softer site may absorb more energy.
Based on these results, we infer that pulse-like ground motion at the near-epicenter stations are mainly caused by the energy released during rupture initiation, while we attribute pulse-like ground motion at the rupture-direction stations to the rupture of the asperity; these observations are consistent with those of Poiata et al. (2017). Poiata et al. (2017) suggested that the seismic stations located in the forward fault rupture direction mainly affected the generation of pulse-like ground motions in the 2009 L’Aquila Earthquake (Italy). Overall, we conclude that the spatial relationship between the seismic stations and the asperities influences the pulse indicators produced during sub-fault ground motions, regardless of the fault type.
EFFECT OF SLIP DISTRIBUTION ON PULSE INDICATORS AND FREQUENCY COMPONENTS
To further investigate the influence exerted by the asperity on the pulse-like ground motions, we run two sets of simulations: a simulation with a homogeneous slip distribution (i.e., without asperity) and a simulation with an inhomogeneous slip distribution (i.e., with asperities).
Pulse Indicator Results
In general, the rise time is positively correlated with the slip distribution in the seismic source model, which means that the rise time of the sub-faults at the asperity is longer. The rise time controls the pulse waveform and the pulse period, while the slip distribution affects the pulse amplitude. The asperity affects both the pulse period and pulse amplitude.
We used the F-K method to simulate 21 pulse-like ground motions from two types of slip distribution in the 1994 Northridge Earthquake and the 1979 Imperial Valley Earthquake. The similarity analysis described in Pulse Indicators in the Superposition of Sub-Fault Motions is applied to two types of simulated motions. The Ep and PGVp results in the presence of these two types of slip distribution are shown in Figures 8, 9.
[image: Figure 8]FIGURE 8 | Ep values at (A) near-epicenter stations and (B) rupture-direction stations produced by homogenous and inhomogeneous slip distributions.
[image: Figure 9]FIGURE 9 | PGVp values at (A) near-epicenter stations and (B) rupture-direction stations produced by homogenous and inhomogeneous slip distributions.
For the near-epicenter stations shown in Figure 8A, the Ep values from the homogeneous slip distribution simulation are significantly higher than those generated by the simulation with an inhomogeneous slip distribution. At the rupture-direction stations (Figure 8B), the Ep values from the inhomogeneous slip distribution simulation are higher than those from the homogeneous slip distribution simulation after the ground motions of the sub-faults at asperity are superimposed; thus, these waveforms are affected by the rupture of asperity (Figure 8B).
At the near-epicenter stations shown in Figure 9A, the PGVp values from the homogeneous slip distribution simulation are higher than those of the inhomogeneous slip distribution model. However, at the rupture-direction stations (Figure 9B), the PGVp values from the inhomogeneous slip distribution model are higher than those of the homogeneous slip distribution simulation, especially after the asperities rupture.
Figure 9B shows the PGVp values for stations capturing time series. In the case of the 1994 Northridge Earthquake, the PGVp values from the homogeneous slip distribution case are both higher (during the first 3 s) and lower (after the asperity ruptured) than those of the inhomogeneous slip distribution case. The phenomenon is not observed in the PGVp values recorded during the 1979 Imperial Valley Earthquake. The PGVp results from the dip-slip event are more complicated than those from the strike-slip event, especially during rupture initiation. Generally, in the case with an inhomogeneous slip distribution, the asperity exerts a stronger influence on the velocity pulses recorded at the rupture-direction stations; the initial rupture process is responsible for the larger pulse indicator values at the near-epicenter stations in the homogeneous slip distribution case.
Frequency Component Analysis
Both the fling-step effect and the directivity effect contribute to the low-frequency components of these pulse-like ground motions (Wang et al., 2013). Analysis of the time histories and spectrograms from backward-directivity and forward-directivity stations reveals that the energy captured at these two types of stations have different frequency components (Mena and Mai, 2011). The energy signatures from the forward-directivity stations primarily occur over a short time period, while the energy signatures recorded at the backward-directivity stations occur over the entire period.
The Windowed Fourier Transform results for the time series of the 1979 Imperial Valley Earthquake captured at two near-epicenter stations and two rupture-direction stations are shown in the top row and the bottom row of Figure 10, respectively.
[image: Figure 10]FIGURE 10 | Velocity time histories and time-frequency spectra for (A) near-epicenter stations and (B) rupture direction stations. The red and the black lines represent the simulated velocity time histories from the inhomogeneous and homogeneous slip distributions, respectively. The diagram in the upper right-hand corner is the time-frequency analysis spectrum from a station with a time series generated by a homogeneous slip distribution and the diagram in the lower right-hand corner is the time-frequency analysis spectrum from a station with a time series generated by an inhomogeneous slip distribution. The color bar represents the amplitude of the Fourier spectra.
At near-epicenter stations RSN158 and RSN160, the low-frequency (0–1 Hz) energy of the ground motions generated by the homogeneous slip distribution is concentrated in a shorter time duration, and the Fourier spectral amplitude is higher than those produced by the inhomogeneous slip distribution. Furthermore, the PGV values from the homogeneous slip distribution case are higher than those generated by the inhomogeneous slip distribution scenario. At the rupture-direction stations RSN179 and RSN180, the low-frequency energy occupies shorter time duration than those from the inhomogeneous slip distribution and the PGV values produced by an inhomogeneous slip distribution are higher than those produced by the homogeneous slip distribution case. Our results suggest that at the near-epicenter stations, pulse indicators Ep and PGVp for a homogeneous slip distribution are higher than those generated by an inhomogeneous slip distribution; the low-frequency pulse energy components are more pronounced and tend to occur over shorter time duration. The PGV values from the homogeneous slip distribution are larger than those generated by the inhomogeneous slip distribution. At the rupture-direction stations, both before and after the asperity ruptures, pulse indicators Ep and PGVp have high values in the presence of an inhomogeneous slip distribution and pulse energy components that are composed of strong low frequency signals that occur over short time duration.
CONCLUSION
In this study, we investigate the generation mechanism of long-period velocity pulses. We simulate the near-fault ground motions in the 1979 Imperial Valley Earthquake (strike-slip event) and the 1994 Northridge Earthquake (dip-slip event) using the F-K method. To identify the velocity pulses in the time series produced by sub-fault ground motions, we apply the PPM model. By investigating the effect of the asperity, we demonstrate that pulse generation is related to the spatial relationship between the rupture starting point, the asperity, and the seismic station that captures the ground motion data. At the near-epicenter stations, pulse indicators Ep and PGVp surpass the pulse identification threshold before the asperity ruptures. This observation indicates that the velocity pulses are generated by the significant amounts of energy released during the rupture initiation process. At the rupture-direction stations, the energy released by the rupture of the asperity contributes to the upward trend of the Ep and PGVp values.
In both earthquakes, the pulse indicators increase when the asperity ruptures. By defining the contribution of each sub-fault ground motion to the pulse amplitude, we find that the amplitude of the velocity pulse at the near-epicenter stations largely consists of ground motion contributions from sub-faults located close to the rupture starting point. At the rupture-direction stations, in the case of a strike-slip fault, the pulse amplitude consists of ground motion contributions from sub-faults close to the asperity. In the case of a dip-slip fault, the pulse amplitude consists of ground motion contributions from sub-faults close to the major or secondary asperity after they rupture.
We also compare the pulse indicators and the frequency components in simulated ground motions from homogenous and inhomogeneous slip distributions. Our results suggest that, at near-epicenter stations, the pulse indicators produced by the homogeneous slip distribution are larger than those generated by the inhomogeneous slip distribution. Furthermore, the homogeneous slip distribution pulses mainly consist of low-frequency components that are emitted over short time duration. At the rupture-direction stations, the pulse indicators produced by an inhomogeneous slip distribution are larger than those generated by a homogeneous slip distribution. These inhomogeneous slip distribution pulses mainly consist of low-frequency components.
This investigation of the pulse generation mechanism and distribution characteristics can provide an analytical reference basis for the seismic design of engineering structures. In our future research, we will continue to explore other pulse identification methods and the mechanism of velocity pulses generation.
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To study the relationship between matrix suction and conductivity in unsaturated granite residual soil and realize the matrix suction prediction of soil slope based on conductivity, laboratory and field tests are carried out on undisturbed soil at different depths of the Yandou village landslide in Sanming City, Fujian Province, China. Through physical and chemical property analysis, soil-water characteristic curves and electric parameter matrix suction prediction models for unsaturated granite residual soil at different depths of the target area are obtained. Based on the proposed model, the matrix suction distribution of on-site soil slope is predicted and the dynamic response law under the influence of artificial rainfall is studied. The results show that: (1) The transverse conductivity, average structure factor, average shape factor, and anisotropy coefficient of unsaturated soil are related to the soil saturation degree. By considering the above parameters, the comprehensive structure parameter Re is introduced and its functional relationship with matrix suction is established. (2) Under artificial simulated rainfall, the saturation, hysteresis of the conductivity parameters, and matrix suction response of the slope occurs, which is controlled by soil depth, permeability and rainfall intensity. The matrix suction is distributed in layers on the profile and its recovery rate is slower than saturation. The suction contour map shows a parabola shape with the opening downward. (3) The relationship between the conductivity parameters of the residual soil slope and matrix suction is further revealed and a new method to indirectly measure matrix suction is proposed. Its feasibility is verified based on field tests, which is of great significance to landslide monitoring and early warning.
Keywords: electric conductivity, matrix suction, unsaturated soil, artificial rainfall, experimental investigation
1 INTRODUCTION
Unsaturated soil is widely distributed in nature and is involved in most of the geotechnical problems (Fredlund and Rahardjo, 1993; Lu and Likos, 2006). The suction of unsaturated soil is an important index to characterize its engineering properties (Zhang, et al., 2022). It is the basis and core concept of the unsaturated soil mechanics theory system (Van Genuchten, 1980; Lu and Griffiths, 2004). However, the quick and accurate measurement of soil suction is an urgent problem to be solved. Measurement of suction, based on laboratory tests, requires a high standard of operation, which is time-consuming, expensive, and complicated (Delage et al., 2008), and it is even harder to measure the field matrix suction.
Electrical conductivity is one of the inherent properties of soil. For unsaturated soils with similar particle composition and pore water chemical composition, the electrical conductivity mainly depends on the change of soil moisture content (Chen et al., 2006). Considering that the magnitude of suction also depends on the water content (Lu et al., 2014), there could be some connection between the matrix suction and the electrical conductivity of unsaturated soil. Previous studies have shown that certain functional relationships exist between matrix suction (or soil water potential) and electrical conductivity (or resistivity) for different unsaturated soils (Qin et al., 2020). Laboratory tests of shallow unsaturated landslide soil with volcanic ash deposits showed that there were two functional relationships among resistivity, water content, and matrix suction under different grain sizes. When the matrix suction is below 10 kPa, the matrix suction is linearly related to the electrical resistivity and thereafter exhibited a complex non-linear relationship (De Vita et al., 2012). The laboratory test of unsaturated compacted loess showed that the resistivity of the sample had a linear relationship with the matrix suction under different degrees of compaction (Zhu and Zhang, 2018). The laboratory test of unsaturated remolded kaolin showed that the relationship between resistivity of the sample with different porosity ratios and its matrix suction could be fitted with a power function and that the electrical resistivity is related to the air-entry value and the saturated state (Cardoso and Dias, 2017). The laboratory test of compacted granite residual soils showed that the resistivity value decreased with increasing water content and dry density and tended to constant at higher values (Kong, et al., 2017). However, most of the current research is performed based on remolded soil, the pore structure, and liquid phase composition of which are quite different from the in-situ soil (Zhou et al., 2009). As a result, whether the above model can accurately describe the matrix suction change law under the natural state of soil is still open to question. Therefore, it is necessary to carry out relevant tests to obtain the conductivity-matrix suction function model of in-situ soil.
Undisturbed soil samples maximize the integrity of the natural structure of the soil, so the results obtained from in-situ soil testing can reflect the properties of the in-situ soil in the field to the best extent. China is a country with frequent occurrence of landslides (Zhang, et al., 2021a; Huang, et al., 2021; Zhang Z et al., 2020; Lee, et al., 2021; Xu, et al., 2020), especially in the Fujian area where hills and mountains are developed, and granite residual soil is widely distributed. The climate in this area is humid and rainy. A large number of granite residual soil slopes fail during monsoon and rainstorm season every year, with the characteristics of sudden occurrence and wide distribution, causing a large amount of property loss and casualties (Liu, et al., 2021; Y.; Zhang et al., 2021; Shaunik and Singh, 2020; Huang and; Huang, et al., 2017; Karrech, et al., 2021; Zhang Z et al., 2020; Huang, et al., 2020; Huang F, et al., 2021). The change of matrix suction of shallow unsaturated soil slope is one of the important reasons for the instability and failure of shallow landslides (Huang F et al., 2017; McQuillan, et al., 2020; Li, et al., 2016; Raghuram and Basha, 2021). Under rainfall-induced conditions, the infiltration of rainwater leads to the reduction of matrix suction and shear strength (Zhang Y. et al., 2020; Zhang et al., 2021c), and the consequent reduction of stability coefficient, thus leading to slope instability (Bar, et al., 2020; Y.; Zhang et al., 2021b; J.; Zhang, et al., 2021; Dou, et al., 2014). Therefore, it is necessary to investigate the infiltration response and suction distribution of shallow unsaturated soil slope under rainfall conditions.
In this paper, artificial trench excavation is carried out on the landslide, artificial rainfall simulation equipment is arranged on the top edge of the trench, and the field prototype rainfall test is carried out. The relationship model between electric parameter and matrix suction is tested based on the laboratory test of undisturbed soil and the field data are used to verify and analyze the application. The dynamic response law of hydrology, conductivity and suction under shallow rainwater infiltration of unsaturated granite soil slope is obtained. The relationship between conductivity parameters and matrix suction is further revealed, and a new method for indirect measurement of matrix suction is proposed, and its feasibility is verified based on field tests. The research results are of great significance for landslide monitoring and early warning.
2 LABORATORY TEST
2.1 Test Material
The soil samples are taken from Yandou village landslide in Sanming City, Fujian province. The specific location is shown in Figure 1. The soil samples are granite residual soil, which is yellow brown. The samples are taken at different depths of the artificial trench, the specific depths are 0.5, 1.0, 1.5 and 2.0 m, respectively. The photographs of the field artificial trench is shown in Figure 2.
[image: Figure 1]FIGURE 1 | The address of test site and periphery of landslide. (A) The address of test site. (B) The periphery of landslide. 
[image: Figure 2]FIGURE 2 | In-situ artificially trench.
The basic physical properties of granite residual soil are listed in Table 1, and the mineral composition and physical and chemical properties are listed in Table 2. According to GBT 50123-2019 (China), the limit water content is determined by the liquid-plastic limit method. The instrument used is the GYS-2 liquid-plastic limit tester of Nanjing soil instrument factory (Li, et al., 2022). The saturated permeability coefficient is determined by the constant water head method. The instrument used is model TST-70 permeameter of the Nanjing soil instrument factory. The mineral composition is determined by Malvern Panalytical’s X'Pert³ X-ray diffractometer (Wang, et al., 2021; Ma, et al., 2021). The potential of hydrogen (pH) value is determined by the potential method. The organic content is determined by potassium dichromate method. The cation exchange capacity is determined by sodium acetate-flame photometry. The scanning electron microscope (SEM) is tested by Nova NanoSEM 230 (Fei Czech Republic S.R.O.) field emission scanning electron microscope.
TABLE 1 | Physical properties of residual soil.
[image: Table 1]TABLE 2 | Mineral composition and physicochemical analysis table of residual soil.
[image: Table 2]Figure 3 presents the SEM microstructure of granite residual soil at different depths. It reveals that most of the minerals in the residual soil are flake kaolinite and their arrangement varies with the soil depth. As shown in Figures 3A,B, at smaller depths (0.5 and 1.0 m), the flaky kaolin is in point-to-point contact and point-to-surface contact with dispersed structure and sheet frame structure. As shown in Figures 3C,D, the flaky kaolin is in surface-to-surface contact with dispersed structure and sheet frame structure. With increasing depth, the orientation of kaolin minerals is more obvious, and the structure of residual soil is better.
[image: Figure 3]FIGURE 3 | SEM micrographs of residual soil at different depths. (A) Depth=0.5 m. (B) Depth=1.0 m. (C) Depth=1.5 m. (D) Depth=2.0 m.
2.2 Test Method
In-situ soil samples are taken at different depth points of the artificial cutting slope using a circular thin-walled soil extractor. Great care is taken during the sampling process so that the soil sample is basically undisturbed. The TRUE TDR-310H sensor probe from Acclima is used to study the electrical conductivity of soil. The specification is shown in Figure 4. The electrical conductivity of pore water, soil dielectric constant, soil volumetric water content, and soil temperature can be measured simultaneously. It is worth noting that the electrical conductivity of soil measured by the sensor probe is the conductivity value of soil mass (including soil particles and pore water) between the two probes. When the probe direction is changed, the electrical conductivity in different directions can be measured. The details are shown in Figure 4. The data logger is CR-1000 from CAMPBELL SCIENTIFIC, United States.
[image: Figure 4]FIGURE 4 | TDR-310H instrument specification diagram and probe direction.
The conductivity values measured using the TDR-310H probe need to be corrected for temperature by the following formula:
[image: image]
where [image: image] is the electrical conductivity measured at temperature T, [image: image] is the electrical conductivity measured at temperature 25°C, T is the temperature, [image: image] is the temperature correction factor, which in this work is 0.0271°C−1.
The Filter paper method (Houston et al., 1994), the pressure plate method (Ma et al., 2016), the chilled mirror dewpoint method (Leong et al., 2003), and the GDS apparatus method (Gao et al., 2019) are often used to test the matrix suction of soil in the laboratory. In this work, to maintain the structure of in situ soil and obtain data over a high suction range (Raghuram, et al., 2021), the matrix suction of soil samples is tested by the filter paper method according to ASTM D5298-10. The specification of the cutting ring is Φ61.8 × 20 mm, the equilibrium time is 7 d, and the soil moisture content is controlled by the moisture absorption method. The filter paper is Whatman No. 42 from United States. The same batch of filter paper is used for soil test at different depths. Its standard calibration curve formula (Leong et al., 2003) is shown below:
[image: image]
where [image: image] = matrix suction, [image: image] = water content of filter paper.
2.3 Results Analysis
2.3.1 Analysis of Soil-Water Characteristic Curve
The relationship between suction and saturation (or volume water content) of unsaturated soil is called SWCC, which describes the water holding capacity of unsaturated soil under different suction conditions (Leong and Rahardjo, 1997). The SWCC of in situ soil at different depths are plotted in Figure 5.
[image: Figure 5]FIGURE 5 | Relationship between matrix suction and degree of saturation.
The VG model is an effective SWCC model for fitting the soil-water characteristic curve (Van Genuchten, 1980). Considering that the residual saturation or residual matrix suction of the residual soil is difficult to determine, the VG model is modified (Chin et al., 2010) in the following form:
[image: image]
where S is soil saturation, a, b and c are the fitting parameters. The experimental data are fitted by Eq. 3 and the fitting result is shown in Figure 5.
Figure 5 reveals that the SWCC curves of soil samples from different depths are not identical. This may be caused by the difference of stress, structure, and physical and chemical properties of soil. Combining with the analysis of Figure 3, with the increase of depth, the overlying soil stress increases, and the soil structure becomes more complete. The pore structure in soil has certain orientation, and the soil particles and clay minerals are arranged in a certain direction. As a result, the soil has an increasing air-entry value and an increasing water-holding capacity. The mineral composition of the soil varies at different depths. Combining with the analysis of Table 2, as the depth increases, the proportional content of quartz decreases and the proportional content of clay minerals increases. When the clay content increases, the water-holding capacity of the soil is stronger, and the dehumidification rate is smaller. This is in accordance with the experimental results in Figure 5. The above analysis confirms the reliability of the filter paper method for measuring matrix suction and the VG modified model.
2.3.2 Analysis of Conductivity-Related Structural Parameters
Figure 6 shows the experimental relationship between the horizontal electric conductivity and soil saturation. The following rules can be found from the diagram: (1) The horizontal electric conductivity of soil increases with the increase of saturation degree. (2) With increasing saturation, a smaller saturation increment can lead to a large increase in horizontal conductivity.
[image: Figure 6]FIGURE 6 | Relationship between horizontal electric conductivity and degree of saturation.
When the saturation reached a certain value (in this test, about 80%), the horizontal conductivity increased rapidly with the increase of the saturation. The direct consequence of the increase of soil saturation is the enhancement of the conductivity of soil pores. This results in an increase in the thickness of electric double layer on the surface of soil particles, which enhances the surface conductivity of soil particles. The increase of saturation can significantly improve the connectivity of pore water, which improves the electrical conductivity of soil pore water and thus increases the overall electrical conductivity. It shows that the change of soil structure has an effect on its electric conductivity. In addition, the values of the horizontal conductivity of the soil at different depths with same saturation are different. The electrical conductivity of the shallow soil (z = 0.5 m) is obviously larger than that of the deeper soil. Combined with the analysis of soil’s physical and chemical properties in Table 2, it suggests the development of shallow roots and the retention of plant nutrients may cause high soil organic matter content and cation exchange capacity, leading to the higher electrical conductivity of shallow soil.
Archie (1942) first applied the theory of electrical conductivity to the study of soil microstructure and proposed the concept of structure factor F to reflect the microstructure characteristics of soil (Archie, 1942). The structure factor F is defined as the ratio of the total resistivity of porous media to the resistivity of its pore liquid and the structure factor is mainly related to the porosity and pore structure. Based on Archie’s research results, three basic conductivity structure parameters by measuring the horizontal, vertical, and pore water conductivity were proposed (Arulanandan and Muraleetharan, 1988). The physical meaning of conductivity structure parameters were clearly defined.
The average structure factor [image: image] reflects the size of soil porosity, pore structure characteristics, and its specific formula is:
[image: image]
where [image: image] and [image: image] are the horizontal and vertical structure factor, respectively. The formula for calculating the horizontal (or vertical) structure factor is:
[image: image]
[image: image]
where [image: image] and [image: image] are the vertical and horizontal electrical conductivity of soil respectively, and [image: image] is the electrical conductivity of pore water.
The average shape factor [image: image] describes the shape of soil particles and reflects the degree of cementation between soil particles. The correlation between the average structure factor and the average shape factor of soil is as follows:
[image: image]
where n is the porosity of soil.
The anisotropy coefficient A reflects the anisotropy of soil and quantifies the directional arrangement of soil particles and its specific formula is:
[image: image]
Based on the results of laboratory tests and the above formulas, the conductivity-related structural parameters of in situ soil with different depth and saturation degree are calculated. The conductivity-related structural parameters include average structure factor [image: image], average shape factor [image: image], and anisotropy coefficient A. The relationship between the conductivity-related structural parameters and soil saturation are shown in Figure 7. There is a certain correlation between the three conductivity-related structural parameters and saturation. The average structure factor and the average shape factor decrease with the increase of saturation, while the anisotropy coefficient increases first and then stabilizes with the increase of saturation.
[image: Figure 7]FIGURE 7 | (A) Relationship between the conductivity-related structural parameters and soil saturation. (B) Relationship between average shape factor and degree of saturation. (C) Relationship between anisotropy index and degree of saturation.
2.3.3 Analysis of Conductivity-Matrix Suction Prediction Model
For unsaturated soil, the electrical conductivity and matrix suction are closely related to the soil saturation, which are the comprehensive reflection of the microstructure of unsaturated soil. Therefore, there must be an essential relationship between the conductivity-related structural parameters and its matrix suction. The conductivity-related structural parameters can be used to describe the suction of unsaturated soil and its change law. However, neither of them can individually and accurately describe the variation of matrix suction in soils. Matrix suction in unsaturated soils is the result of the combined effect of soil structure, particle composition, particle arrangement, saturation, and other factors. Zha et al. (2010) proposed a new method to characterize the matrix suction by the comprehensive structural parameter Re (Zha et al., 2010) and its formula is:
[image: image]
Figure 8 shows the relationship between comprehensive structural parameter and soil saturation. It can be seen from the diagram that there is a good correlation between the parameter Re and the saturation. When the soil saturation is high, the comprehensive parameter Re is small, and the influence of saturation it is minimal. When the saturation is low (<35%), the change of the saturation has a great influence on the comprehensive parameter. A slight decrease of saturation leads to a dramatic increase of the comprehensive parameter Re.
[image: Figure 8]FIGURE 8 | Relationship between comprehensive structural parameter and degree of saturation.
Figure 9 shows the relationship between comprehensive structural parameter and matrix suction. It indicates that there is a parabola relationship between the parameter Re and the matrix suction. The matrix suction of unsaturated soil increases with the increase of parameter Re. In this way, a simple parabola equation between matrix suction and comprehensive structural parameter (Re) can be established and the Re can be used to predict the matrix suction.
[image: Figure 9]FIGURE 9 | Relationship between comprehensive structural parameter and matrix suction.
Based on the test results in Figure 9, a general functional relationship between matrix suction and comprehensive structural parameter of unsaturated soils is established:
[image: image]
where [image: image] is matrix suction, [image: image] are model parameters that are related to the properties of soil. In this work, the model parameters of soil samples at different depths are shown in Table 3.
TABLE 3 | Parameters of matrix suction prediction model.
[image: Table 3]Finally, the matrix suction is obtained by this prediction model. The procedure of this method is summarized using a flowchart in Figure 10, which can be divided into five steps: (1) measurement of horizontal conductivity, vertical conductivity and pore water conductivity of unsaturated soil using TDR-310H sensor; (2) the temperature calibration of the electrical conductivity using Eq. 1; (3) calculation of the conductivity-related structural parameters ([image: image], [image: image] and A) using Eqs 4, 7, 8; (4) calculation of the comprehensive structural parameter using Eq. 9; (5) calculation of the matrix suction of unsaturated soil using Eq. 10. Therefore, the matrix suction can be predicted by testing the electrical conductivity. This solves the problem of matrix suction being difficult to be measured in a practical engineering application, especially for in situ soil.
[image: Figure 10]FIGURE 10 | Flowchart to obtain matrix suction using conductivity-matrix suction prediction model.
It should be noted that the prediction model is established in the condition that Re is in the range of 0–8 and the matrix suction is in the range of 0–800 kPa. The vertex of the quadratic function is about to be reached when Re = 8. There is a negative correlation between Re and matrix suction in the range of Re > 8. Accordingly, the prediction model may be invalid when Re > 8.
3 IN-SITU VERIFICATION
3.1 Test Scheme
3.1.1 In-situ Instrumentation
A conductivity-matrix suction prediction model was established for shallow unsaturated soil samples in laboratory tests. An artificially simulated rainfall test was carried out on Yandou landslide to verify this model. Once the model was proven to be effective, the response of matrix suction of soil samples at different slope depths to rainfall infiltration were investigated.
The height H of the artificial trench was 2.2 m, the width B was 2.8 m (see Figure 2). A monitoring point was arranged every 0.5 m on the trench surface, and a vertical monitoring line was formed by four monitoring points from top to bottom. Three monitoring lines were successively arranged on the trench surface, with an interval of 0.5 m for each line. The rainfall simulation device was arranged on the natural surface (trench edge). The length of device l was 2.4 m, the width b was 1.2 m, the distance between each rainfall nozzle d was 0.6 m, the average height of nozzle from ground h was 1.8 m. A PVC pipe was buried at the top of the edge of the trench as a runoff collecting trench. Water was stored in a water tank and supplied by a water pump. The flow valve was used to regulate the rainfall intensity. The monitoring instruments were TDR-310H sensor probe and WATERMARK-200SS matrix suction sensor probe (Irrometer Company). The data logger was CR-1000 from Campbell Scientific Company. The data collection interval was 10 min. For the problem of rainfall-induced shallow slope instability, the intensity of rainfall must be large enough and exceed the saturation permeability coefficient of the surface soil of the slope (De Vita et al., 2012). For this reason, the rainfall intensity I of 20 mm/h and the rainfall duration T of 6 h were selected for the site rainfall in this work. Simulated rainfall started at 8:00 a.m. The duration of data acquisition was 48 h. The detailed site diagram is shown in Figure 11.
[image: Figure 11]FIGURE 11 | In- situ simulated rainfall test schematic.
3.1.2 Calibration of Matrix Suction Sensor
WATERMARK-200SS matrix suction sensor is a granular matrix sensor. The resistance Rx of sensor is measured by a known built-in voltage divider circuit and the matrix suction of the soil is determined by the calibration equation. The default calibration equation for the sensor was developed by Clinton Shock in 1998 (Shock et al., 1998), as shown in Eq. 11:
[image: image]
where [image: image] matrix suction signal value of sensor output,Rx is the resistance of sensor, T is temp centigrade.
The calibration equation of Eq. 11 is only applicable in the range of 10–100 kPa matrix suction. Beyond this range, the sensor automatically uses linear extrapolation to determine matrix suction, resulting in calculation error. In addition, the calibration equation is proposed for Owyhee silt loam soil, and the characteristics of granite residual soil in this work are quite different, so the calibration equation itself may have a deviation. It is known that if the value of the matrix suction signal from the WATERMARK sensor is directly used as the final experimental result, it may result in large error. To reduce the experimental error and modify the calibration equation so that it can be applied to the soil sample in this test, the calibration test is carried out in the laboratory. The matrix suction measured by the filter paper method is used as the reference value in the calibration test. Six calibration points are selected, which are at 5.7, 10.9, 49.3, 96.2, 148.8 and 197.6 kPa, respectively. The matrix suction signal values at different calibration points are measured for the same batch of soil samples. The test results are shown in Figure 12.
[image: Figure 12]FIGURE 12 | WATERMARK sensor calibration curve after correction.
The calibration point of Figure 12 is fitted by linear equation and the calibration curve of the WATERMARK matrix suction sensor is obtained as follows:
[image: image]
3.2 Result Analysis
3.2.1 Accuracy Analysis of Prediction Model
The data collected by the WATERMARK matrix suction sensor and the data calculated by the prediction model are presented together in Figure 13. The former is the measured value and the latter is the predicted value.
[image: Figure 13]FIGURE 13 | Time-history curve of matrix suction.
In the moisture absorption stage, the relative error of the initial value is -5.83–2.67%. When the matrix suction begins to decline rapidly, the prediction model shows a high agreement. In the dehumidification stage, it can be found that the prediction model for matrix suction recovery is advanced. Compared with the measured values, the predicted matrix suction recovered earlier and the matrix suction at the same time point is larger. There may exist an hysteresis effect in the process of moisture absorption and dehumidification of unsaturated soil, which results in two kinds of soil-water characteristic curves (wetting curve and drying curve), and it shows that this model cannot reflect the hysteresis of suction recovery. However, as the dehumidification process continues, the matrix suction increases, the error caused by hysteresis decreases gradually, and the relative error can still be controlled within 10% in the late dehumidification stage. Overall, the relative error of the prediction model is controllable and the accuracy is good. The field test further proves the feasibility of indirectly measuring the matrix suction of unsaturated soil by the composite structure parameters of electrical conductivity.
3.2.2 Time-History Analysis of Infiltration Rate
During the simulated rainfall, the flow rate at the outlet of the runoff gathering pit was measured with a measuring cylinder. Testing was done every 10 min before the occurrence of slope runoff and every 30 min after the occurrence of slope runoff. Based on the inverse calculation of the infiltration rate, the calculated results are plotted as the infiltration rate time-history curve, as shown in Figure 14.
[image: Figure 14]FIGURE 14 | Time-history curve of infiltration rate.
Figure 14 indicates that during the first 20 min of rainfall, all the rainwater seeped into the soil, and the infiltration rate is equal to the rainfall intensity. With the development of rainfall, the rainfall cannot penetrate the slope completely because of the effect of rainwater dripping and the vegetation barrier, and part of it remains on the slope temporarily and cannot form runoff. At t = 1.32 h, the field observation found that stranded runoff started to appear on the slope. After that, the infiltration rate gradually decreased with the duration of rainfall. When t > 4h, the change of infiltration rate gradually slowed down and finally stabilized at about 3.26 mm/h, which is slightly larger than the permeability coefficient Ks = 7.2 × 10−5 cm/s = 2.592 mm/h.
3.2.3 Analysis of Time History Curve of Central Line
The central measurement line was selected as the main measurement line for this monitoring and the time variation curves of infiltration response of saturation, structural parameters, and matrix suction on the main measurement line are plotted sequentially in Figure 15.
[image: Figure 15]FIGURE 15 | (A) Time-history curve of the horizontal electric conductivity. (B) Time-history curve of the vertical electric conductivity. (C) Time-history curve of the conductivity of pore water. (D) Time-history curve of soil saturation. (E) Time-history curve of comprehensive structural parameters. (F) Time-history curve of matrix suction.
Figure 15A shows that the horizontal electric conductivity increases rapidly with the wetting front after rainfall. It illustrates that there is a positive correlation between the horizontal electric conductivity and saturation. Moreover, a similar trend of the vertical electric conductivity is shown in Figure 15B. The magnitude of the vertical electric conductivity is slightly larger than that of the horizontal electric conductivity. The penetrated channel in the vertical direction caused by rainwater during the rainfall may lead to the increase in the electric conductivity. Figure 15C is the time-history curve of the conductivity of pore water. It indicates that there is no consistent trend for the change of the conductivity of pore water. The conductivity of pore water fluctuated sharply in z < 1.5 m while is fluctuated slightly at z = 2.0 m.
Figure 15D illustrates that: (1) The initial saturation of soil shows an upward trend from top to bottom, which is 59.81, 52.57, 65.31 and 70.14%, respectively. At z = 0.5 m, the soil saturation is slightly higher. This may be attributed to the root reinforcement near the surface, which results in a higher water-holding capacity of the soil at this location. (2) Soil infiltration response has a lag that lasts longer at a larger depth. The response time of the wetting front from top to bottom is 1.74, 3.92, 5.68 and 9.50 h, respectively. At z = 2.0 m, the response is the slowest, the rising rate is the slowest, and the range of saturation is the smallest. A similar pattern is observed during the period of natural dehumidification after the rain stopped. (3) During 24 h < t < 36 h, the decrease trend of saturation is accelerated, and the trend is the most obvious at 0.5 m. This is because during daytime the temperature of slope surface rises under the sunlight and the evaporation rate speeds up, which leads to a larger water loss.
Figure 15E shows that the change trend of comprehensive structural parameter (Re) is opposite to the change trend of saturation (S). The Re decreases rapidly during the simulated rainfall period but increases slowly during the natural drying period. As can be seen from Figure 15F: (1) The initial matrix suction decreases from top to bottom, the shallow depth makes the suction larger, and the deep depth makes the suction smaller, which is 171.64, 163.95, 86.15 and 45.82 kPa, respectively. Combined with the analysis of Figure 15D, it can be concluded that in the initial stage, with the increase of depth, the soil saturation gradually increases, and the matrix suction gradually decreases. (2) The response time of matrix suction is synchronized with the hydrological response. When the wetting front reaches the corresponding depth, the matrix suction decreases rapidly to zero. The time to reach zero suction is 3.83, 5.16, 6.5 and 11.83 h, respectively, and the duration in the zero suction state is 5.33, 7.67, 7.00 and 8.33 h, respectively. (3) There is no significant correlation between the recovery rate of matrix suction and depth during natural drying period. During 24 h < t < 36 h, the recovery rate of matrix suction increased significantly at z = 0.5 m, which is related to the decrease of soil saturation. During the rest of the dehumidification period, the recovery rates are similar. At the end state (t = 48 h), the matrix suction distribution is the same as the original state, but the corresponding values have been decreased to 60.66, 44.17, 29.10 and 14.79 kPa, respectively. Compared with the monitoring results of the saturation in Figure 15D at the same time, the results show that although the saturation is almost the same as the initial state, the matrix suction decreases greatly. This indicates that the recovery of matrix suction has a greater lag than the saturation. Namely, the recovery time of matrix suction to the initial state is longer than that of saturation.
3.2.4 Analysis of Matrix Suction Distribution on Slope at Different Time
To analyze the distribution of substrate suction on the artificially cut slope more intuitively, the monitoring data at typical moments on the three measurement lines are selected and plotted as a substrate suction contour map (Figure 16). The data between the actual points are generated by interpolation of the cubic spline curve and extrapolated at the boundary to a range of 20 cm.
[image: Figure 16]FIGURE 16 | The isolines of matrix suction on section at different times. (A) t = 0 h (B) t = 6 h (C) t = 12 h (D) t = 24 h (E) t = 36 h (F) t = 48 h.
Figure 16 shows that at the initial state (t = 0 h), the overall matrix suction force on the slope is large on the top and small on the bottom, the suction force on the left side of the profile above 1.2 m is slightly larger than that on the right side, the suction force on the profile below 1.2 m is roughly distributed in horizontal layers, and the suction force value decreases layer by layer. At t = 6 h (when the simulated rainfall stops), the wetting front reaches about z = 1.1 m due to the lag of rainfall infiltration, and the depth range (z ≤ 1.1) is saturated, which shows the matrix suction [image: image] = 0 kPa. The remaining unsaturated area (1.2 m < z < 2.2 m) has a matrix suction roughly distributed between 20 and 60 kPa, with a higher suction area (>60 kPa) at the foot of the left slope. At t = 12 h, the rainfall has been fully infiltrated and most of the area within the slope has reached saturation, which shows that the matrix suction is 0 kPa. Since the left slope top has entered the drying state, the matrix suction has slightly recovered. At t = 24 h, the upper and middle part of the slope (z < 1.5 m) gradually dried and the matrix suction began to recover. The recovery rate on the center line is smaller and that on the left and right sides are larger. The lower part of the slope (z > 1.5 m) is still in the saturated zone and the matrix suction remained [image: image] = 0 kPa. At t = 36 h and t = 48 h, the matrix suction on the slope has started to rise gradually. The contour shape is a parabola with a downward opening and the contour shape is restored to 10–90 kPa, which is 27–35% of the initial state.
4 CONCLUSION
Laboratory and field tests on unsaturated undisturbed soil at different depths of Yandoucun landslide in Meilie District, Sanming City, Fujian Province were carried out in this paper. Through the use of physical and chemical property analysis, scanning electron microscope test, filter paper method test, comprehensive structural parameter test of electrical conductivity, in-situ simulated rainfall test, and SWCC curve, we obtained the electric parameter matrix suction prediction model for unsaturated granite residual soil at different depths in this area. The model is verified by the prototype rainfall experiment. Based on this model, the matrix suction distribution of in-situ artificial trench was predicted. The dynamic response law under the influence of artificial rainfall was studied. The following conclusions were obtained:
1) With the increase of depth within 2.0 m, the content of clay minerals in soil increases, the weathering decreases, the structure of soil particle is better, the content of organic matter decreases, the amount of cation exchange decreases, and the dehumidification rate is smaller.
2) There is a good correlation between the structural parameters of electrical conductivity and saturation of soil samples at different depths. The average structure factor ([image: image]) and the average shape factor ([image: image]) decrease with the increase of saturation, and the anisotropic coefficient (A) increases first and then stabilizes with the increase of saturation. A prediction model of matrix suction is established by using the comprehensive structural parameter (Re), and the corresponding model parameters are calculated to achieve a high precision prediction.
3) In-site verification test shows that the relative error of the model is -5.83–2.67% in the moisture absorption stage, the prediction accuracy of the model in the dehumidification stage is advanced, the relative error can be controlled within 10%, and the accuracy of the model is good and feasible.
4) The in-situ rainfall simulation test on cut slope shows that the infiltration rate decreases in hyperbolic shape with time, it gradually approaches the saturated permeability coefficient of soil at the later stage of rainfall, and the response of soil saturation and matrix suction has hysteresis that lasts longer at a larger depth. During the daytime, the natural dehumidification of saturation and the recovery of matrix suction are faster and it takes more time for matrix suction to recover to its initial state.
5) Initially, the overall distribution of matrix suction on the slope is stratified with a large top and a small bottom, the wetting front gradually moves down with rainfall, and the matrix suction drops to 0 in the saturation zone. The matrix suction gradually recovers during natural drying, the recovery rate is slow in the middle and fast on both sides, and the contour distribution shows a parabolic pattern with downward opening.
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The research aims to improve prediction accuracy for heights of fractured water-conducting zones (FWCZs) and effectively prevent and control roof water disasters, to ensure safe coal mining. For this purpose, the method that integrates the improved cuckoo search (ICS) algorithm and extreme learning machine (ELM) is used to predict heights of FWCZs. Based on an analysis of factors influencing FWCZs, the ICS algorithm is employed to optimize two key parameters of the ELM model, the input weight ѡ and the bias b of hidden elements, thus establishing the ICS–ELM model for predicting the height of the FWCZ. The ICS–ELM model is trained using 42 measured samples, and the trained model is employed to predict the remaining six sample data points. The obtained prediction results show a relative error of only 3.97% and are more consistent with the actual situation. To verify the effectiveness of the model, the prediction results are compared with those of the adaptive particle swarm optimization based least squares support vector machine (APSO–LSSVM) and particle swarm optimization (PSO) based backpropagation (PSO–BP) models. The average relative errors of the two models are 8.21 and 9.75%, respectively, which further proves that the ICS–ELM model improves the accuracy of prediction results for heights of FWCZs. The heights of FWCZs predicted using the model are accurate and reliable, and the accuracy meets the requirements of engineering practice.
Keywords: height of fractured water-conducting zone, improved cuckoo search algorithm, extreme learning machine, model comparison, improved cuckoo search based extreme learning machine
INTRODUCTION
With the advance of underground coal mining, the equilibrium of in-situ stress of strata overlying the roof of coal seams is broken, which causes caving, fracturing, and bending of the overlying strata, forming a caving zone, a fractured zone, and a bending subsidence zone (Dai et al., 2020). Therein, the caving zone and the fractured zone are collectively called a fractured water-conducting zone (FWCZ). If the FWCZ develops upwards to coalesce with an aquifer rich in water or meet surface water, the underground water inflow will increase abruptly, which poses threats to safe mining of coal mines, damages groundwater resources, and aggravates deterioration of the ecological environment in mining areas (He et al., 2021). The height of the water-conducting fracture zone also reflects the movement range of the overlying burden, which has certain guiding significance for the ground pressure behavior ((Zhu et al., 2022)). Therefore, determining the heights of FWCZs has become an important link in safe mining and ecological environmental protection (Bai et al., 2014; Bai and Li 2013; Bai et al., 2021; Bai et al., 2018).
Many studies have been conducted to predict the heights of FWCZs and the commonly used methods include theoretical calculation, empirical formulae, and in-situ measurement. These research findings are of certain theoretical and practical significance for predicting the heights of FWCZs formed due to coal mining. Based on the theory of plates and shells, (Zhu et al., 2020) predicted the heights of FWCZs and discussed the development process of an FWCZ in bedrock and loess strata. (Zhang et al., 2018) established a mechanical analysis model for the height of an FWCZ in overlying strata based on the elastic foundation beam theory. (Zhang 2019) used the fitted empirical formulas to predict height of the FWCZ. (Xu et al., 2012) developed a theoretical method for predicting the heights of FWCZs according to locations of key strata in overlying strata. (Wang et al., 2021) calculated the height of an FWCZ under influences of a fault using the mechanical model of beams and the numerical simulation. (Ti et al., 2021) built mechanics models for first fracture and periodic fracture of an elastic Winkler foundation beam based on the theory of key strata and investigated the failure and deformation processes in overlying strata. (Liu et al., 2020) observed the caving zone and fractured zone during failure of overlying strata in hydrogeological boreholes. (Yan 2015) adopted the observation method for losses of drilling fluid to observe the height of an FWCZ. Many researchers also used FLAC3D numerical simulation to determine height evolution of an FWCZ during mining of a working face (Liu et al., 2015; Liu, et al., 2021; Du and Gao 2017). They proposed a predictive method for the heights of FWCZs according to distribution of damaged zones in the model. (Liu et al., 2021) proposed an approach for detecting the damage height of overlying strata based on isotopic tracing. (He et al., 2020) established a non-linear predictive model for the height of FWCZs based on influencing factors, such as the height, through the multiple regression (MR) analysis. By building a mechanical model for damage evolution in overlying strata, (Guo et al., 2019a, Guo et al., 2019b) studied the mechanisms for first rock caving, breakage of overhung strata, and structural failure of rock blocks above coal seams. On this basis, they proposed a theoretical prediction method for the heights of FWCZs during fully-mechanized caving mining. (Chang et al., 2019) applied the transient electromagnetic (TEM) method to monitor the evolution of an FWCZ beneath a river after longwall mining. Among these methods, the in-situ measurement methods are accurate, while they are seldom used due to heavy workload, complex operation of equipment, and high cost. Methods based on empirical formulae involve few influencing factors, so they do not consider influences of other factors. Theoretical calculation assumes idealistic conditions, which does not tally with reality, so their results exhibit relatively large errors. The accuracy of numerical simulation is closely related to geological parameters of the established model, however, it is difficult to obtain these parameters accurately. As for geophysical exploration methods, such as electrical resistivity and microseismic monitoring, their accuracy is not high due to presence of multiple possible solutions, therefore, how to improve prediction accuracy is a difficulty in the height prediction of FWCZs (Bai and Shi 2017; Bai et al., 2020; Bai et al., 2019; Bai, Zhou, et al., 2021).
Machine learning has been applied to height prediction of FWCZs with the development of computer techniques. Meanwhile, numerous scholars have explored more accurate and efficient prediction models, in which predictive models based on support vector machine (SVM) and backpropagation neural network (BPNN) are most widely used. (Guo et al., 2014) established a model based on entropy weight attribute measure theory for predicting the heights of FWCZs. (Shao and Zhou 2018) built a prediction model for the heights of FWCZs based on a quantum genetic algorithm (QGA)–random forest regression (RFR) model. (Rezaei, 2018) developed an intelligent height prediction model for FWCZs based on the artificial neural network (ANN). (Yang et al., 2019) built a height prediction model for FWCZs based on the BPNN. (Hou et al., 2020) established such predictive models by combining the genetic algorithm (GA) and SVM. (Dai et al., 2020) proposed a predictive model for the heights of FWCZs based on MR model and BPNN. (Lou and Tan 2021) constructed a height-prediction model of FWCZs based on particle swarm optimization (PSO)–BPNN. (Chai et al., 2018) established a prediction model for the height of a FWCZ formed in overlying strata due to mining disturbance based on GA–support vector regression (SVR). Despite having strong non-linear identification ability, traditional ANN learning algorithms, including backpropagation (BP) network and SVM, also have shortcomings such as poor generalization, a slow learning rate, and a tendency to be trapped in local optima. Compared with traditional prediction models, including BPNN and SVM, the extreme learning machine (ELM) shows advantages such as fast learning, favorable generalization, and simple parameter selection (Guo et al., 2021; Huang et al., 2017).
When extreme learning machine deals with nonlinear problems, it is difficult to determine the network structure, which will lead to the problems of low algorithm accuracy and poor stability. In view of this, a predictive model for the heights of FWCZs based on the improved cuckoo search (ICS) algorithm–ELM is established to solve problems. By optimizing parameters of the ELM using the ICS, the research provides an effective method with which to predict heights of FWCZs.
FACTORS INFLUENCING THE HEIGHT OF AN FWCZ
Mining Depth
Burial depth of coal seams influences the original stress on the surrounding rocks. With the increase of burial depth within a certain range, the vertical and lateral stresses on the rock surrounding a working face increase as mining proceeds, which intensifies damage to the overlying strata of roofs and increases the height of the FWCZ. Beyond that range, fractures induced by mining are closed under the high in-situ stresses encountered at such depths, so that the height of the FWCZ decreases (Wang et al., 2018).
Dip Length of Working Faces
Geometrical parameters of a working face mainly refer to the strike length and dip length. Before coal mining reaches full subsidence under conditions of a fixed dip length, the heights of FWCZs constantly increase with the advance of working faces (until reaching their maximum subsidence). If the strike length is the same as the dip length, the height of a FWCZ is maximized and does not increase with the further advance of the working face. Under such conditions, the FWCZ forms a typical arch (Guo et al., 2019b).
Mining Thickness
Mining height of coal seams is a direct factor that influences development of FWCZs. Within a certain range, the overlying strata are gradually broken with further coal mining and the scope of plastic failure zones in the roof enlarges. As a result, the displacement and deformation of the roof increase and correspondingly the heights of FWCZs rise (Zhang et al., 2017).
Hard-Rock Lithology Proportional Coefficient
The uniaxial compressive strength and the structure type of roof strata both affect the heights of FWCZs. The two parameters are replaced with a new index, hard-rock lithology proportional coefficient, to characterize their relationship with the heights of FWCZs. Under conditions of similar mining thickness, the hard-rock lithology proportional coefficient shows an approximately linear increasing relationship with the heights of FWCZs (Chen and Zhu 2020).
PRINCIPLES OF ALGORITHMS
Cuckoo Search Algorithm
The cuckoo search (CS) algorithm is a mathematical model proposed based on the breeding mode of cuckoos in nature (Tang and Xue 2019). Cuckoos are brood parasitic birds that do not raise their offspring. When cuckoos reproduce, they do not build nests and hatch eggs, but look for a host with similar eating habits, shapes and colors and then they quickly lay eggs when the host goes out for food. Only one egg is laid in each nest. Cuckoo eggs are similar in shape and size to other birds, so they are not easy to be identified by other birds. Young cuckoos have an instinct to push young birds of the host out of nests, so they can enjoy the food of the host bird alone and survive well. When the host bird finds the cuckoo offspring in its nest, it will abandon the nest or the cuckoo offspring.
The CS algorithm is based on three idealized assumptions (Gandomi et al., 2013):
(1) Each cuckoo lays only one egg at a time and randomly puts the egg into a nest;
(2) The best nest will be reserved for the next generation;
(3) The probability of cuckoo being found by the host is [image: image] ∈[0, 1]
Based thereon, the formula used to represent a cuckoo finding a nest for the next generation is given by:
[image: image]
Where, [image: image] represents the location of the [image: image]th nest in the [image: image]th generation; · denotes point-to-point multiplication; [image: image] denotes the control quantity of the step length and is generally given a value of 1.
ICS Algorithm
The specific process of the algorithm is shown as follows (Fan et al., 2021):
(1) Parameters of the algorithm are set. The objective function [image: image] is determined and [image: image]. The initial locations of n nests generated randomly are assumed to be [image: image]. N, D, [image: image], and L separately represent the population size, dimension, probability of being found, and critical value. The maximum number of iterations is represented by [image: image], and the location of the optimal nest and the optimal solution are [image: image] and [image: image].
(2) The location of the current-generation nest is updated. The locations of the nests in the current generation and previous generation [image: image] are compared and the location of the nest with the better fitness replaces that with the worse fitness and [image: image]
(3) The random number R is taken as the probability of the host of the nest to find other birds’ eggs. The random number is compared with the probability [image: image] of the nest being eliminated. If [image: image], the location of the nest in [image: image] is randomly changed to determine a group of new locations of the nest. When updating the location of the nest, a group of better locations of the nest can be obtained: [image: image]. The location of the optimal nest [image: image] and optimal solution [image: image] are updated.
(4) Whether the algorithm meets the set maximum number of iterations is judged. If satisfied, the search is ended and the global optimal value [image: image] is output; otherwise, Step 2 is repeated for iterative optimization.
The flow-chart through the ICS algorithm is displayed in Figure 1.
[image: Figure 1]FIGURE 1 | Flow-chart through the ICS algorithm.
ELM
Extreme learning machine (extreme learning machine) ELM is an easy-to-use and effective single-hidden layer feedforward neural network SLFNs learning algorithm. Traditional neural network learning algorithms (such as BP algorithm) need to manually set a large number of network training parameters, and it is easy to generate local optimal solutions. The extreme learning machine only needs to set the number of hidden layer nodes of the network, and does not need to adjust the input weights of the network and the bias of the hidden elements during the execution of the algorithm, and generates a unique optimal solution, so it has fast learning speed and generalization (Choudhury et al., 2013). The classic ELM structure is displayed in Figure 2.
[image: Figure 2]FIGURE 2 | Classic ELM structure.
The ELM algorithm can be divided into five steps (Huang et al., 2012):
(1) Sample data are input.
(2) The input weight [image: image] and bias [image: image] of the hidden layer are determined.
(3) The output matrix H of the hidden layer is calculated.
[image: image]
(4) The weight matrix [image: image] is calculated.
[image: image]
[image: image]
(5) The predicted value is obtained.
It is assumed that there are N arbitrary samples [image: image], where [image: image]. The single-hidden-layer neutral network with [image: image] hidden-layer nodes is expressed as follows:
[image: image]
Where, [image: image] represents the activation function and [image: image] represents the input weight; [image: image] and [image: image] denote the output weight and bias of the ith hidden element, respectively. [image: image] denotes the inner product of [image: image] and [image: image].
ESTABLISHMENT AND ANALYSIS OF THE ICS–ELM MODEL FOR PREDICTING HEIGHTS OF FWCZS
Establishment of the Model
[image: image] of the ELM are closely related to its generalization and prediction performance, so the two parameters are optimized through iterations with the ICS algorithm, to attain more accurate and stable results. Random variables are presented in the ELM model, which leads to unstable results. However, the ICS model can independently determine the number of hidden-layer nodes, input weight and threshold of the ELM and can well ensure the stability of the results. The ICS–ELM model is established based on four steps: data processing, initialization and fitness calculation, model training and result prediction. In this case, the obtained results are more accurate.
The flow-chart through the model is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Flow-chart for predicting heights of FWCZs.
The calculation process is shown as follows:
(1) Data processing. It is supposed that there are N samples [image: image], where [image: image]. The formula used in data processing is as follows:
[image: image]
Where, [image: image] represents the eth influencing factor of the hth datum; [image: image] and [image: image] separately indicate the minimum and maximum values of the eth influencing factor; [image: image] denotes the processed data.
(2) Initialization and fitness calculation. The maximum number of iterations, a relevant parameter in the ICS algorithm, is set to 200 and the maximum and minimum values of Pa are 0.5 and 0.1, respectively. The maximum and minimum values of a separately are 1.5 and 0.5. N, [image: image], [image: image] and [image: image] represent the total number of samples, actual test value, predicted value of y and mean average of y, respectively.
[image: image]
(3) Model training. The training samples are substituted into the model. The optimization objective is to minimize the fitness function, and continuously optimize the model parameters with the ICS algorithm, thus establishing the optimal ICS–ELM model.
(4) Result prediction. The samples to be predicted are input into the trained ICS–ELM model with influencing factors and the predicted values are output, to analyze and verify the feasibility and accuracy of the results.
Model Analysis
The mining depth (H), dip length of working faces (L), mining thickness (M) and hard-rock lithology proportional coefficient (B) as main factors affecting heights of FWCZs are taken as input vectors. Heights of FWCZs (Hf) are output based on the ICS–ELM prediction model. In the research, 48 groups of sample data are collected, in which Groups 1–42 are taken as a training set, while Groups 43–48 are regarded as a test set (Table 1).
TABLE 1 | Sample data: factors influencing the height of an FWCZ.
[image: Table 1]The input weight ѡ and bias b of hidden elements in the ELM model are two important parameters that directly affect the prediction results. Therefore, the ICS model is used to optimize these two important parameters. The number of iterations in the ICS algorithm is set to 100 and the optimized data are substituted into the model to train the training set. The trained values and actual values of each sample are shown in Figure 4. Favorable fitting effects can be observed, furthermore, six samples in the training set are predicted. Excellent regression prediction results are obtained by use of this scheme (Figure 5).
[image: Figure 4]FIGURE 4 | Comparison of prediction results of the training set based on the ICS–ELM model.
[image: Figure 5]FIGURE 5 | Comparisons of prediction results obtained by the APSO–LSSVM, PSO–BP and ICS–ELM models.
To verify the prediction accuracy of the ICS–ELM model for heights of FWCZs, the prediction results are compared with results obtained by adaptive particle swarm optimization based least squares support vector machine (APSO–LSSVM) and PSO based BP (PSO–BP) models. The prediction effects of them are shown in Figure 5 and Table 2.
TABLE 2 | Prediction performance comparison of three models.
[image: Table 2]The root mean square error, mean absolute error, mean relative error and squared correlation coefficient of the ICS–ELM model is smaller than those of the other two models, and the obtained results are closer to the actual values. This indicates that the ICS–ELM model has stronger prediction performance for heights of FWCZs and wider applications.
EXAMPLE VERIFICATION
The N102 working face of a coal mine in Shanxi province in China. The average thickness of the coal seam is 15.3 m and the inclination angle is 2°–3°. The inclination length and strike length of the working face are 193 and 1406 m. The full-mechanized caving mining method is adopted, the mining height is 3.9 m, and the coal caving height is 11.4 m. Most of the working face the roof strata above the working face most are hard sandstone.
The traditional empirical formula for the height of the water-conducting fracture zone is obtained by regression analysis of a large number of measured data under conventional mining conditions. The formula takes into account factors such as mining thickness, overlying rock type and coal seam inclination, and is widely used. The maximum height of the water-conducting fracture zone in the test collection shaft is calculated by using the calculation formula of the maximum influence height of the gob fault zone in GB51044-2014 Code for Geotechnical Engineering Investigation of Coal Mine Goaf. The calculation formula for the maximum height of the water-conducting fracture zone is shown in the Table 3.
TABLE 3 | The formula for calculating the height of the water-conducting fracture zone.
[image: Table 3]Using the above formula, it is estimated that the height of the water-conducting fracture zone is 66.25–84.08 m. The ICS-ELM model is used to predict that the height is 78.34 m. The predicted value differs very little from the empirical formula. It shows that the height prediction model of the fully mechanized mining water-conducting fracture zone proposed in this paper is more realistic, and provides a scientific basis for the prediction and prevention of roof water damage.
CONCLUSION

(1) The two parameters, namely weight ѡ and bias b of hidden elements in the ELM model are optimized using the ICS algorithm, to establish the ICS–ELM model for predicting heights of FWCZs. This avoids influences of randomness of input weight matrix and bias of the hidden layer on the prediction accuracy of the ELM and improves prediction accuracy.
(2) By selecting 42 prediction samples for heights of FWCZs, the samples of heights of FWCZs are predicted and trained by using the ICS–ELM model and the predicted results are compared with those of APSO–LSSVM and PSO–BP models. The average error of the predicted results obtained by the proposed model is 3.97%, which is smaller than those of the other two algorithms. The predicted results are in line with the actual situations, so this model can accurately and effectively predict heights of FWCZs.
(3) The development of FWCZs is a complex movement and failure process of surrounding rock in time and space, and there are many influencing factors. In the future, the influencing factors such as mining speed, repeated mining, groundwater action, key strata action, etc. will be studied. Consider more influencing factors and increase the number of training samples to further improve the model’s performance.
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Although scholars have conducted many studies on barchan dunes in deserts and sandy areas around the world, few studies have been conducted on the morphological characteristics and changes in movement patterns of barchan dunes in the Yamarak Desert, China. To assess the changes in and movement patterns of these dunes, As well as the impact on the wind-sand hazards and geohazards around the study area, we selected several typical barchan dunes of different sizes in the Yamarak Desert and measured and calculated their morphologies using a combination of a 3-D laser scanner (RIEGL VZ-2000) and remote sensing image interpretation. The results show that the average coverage of the barchan dunes in the Yamarak Desert was 37.19%. Moreover, 62.81% of this area was covered by interdune sites. The movement velocity of the barchan dunes in this study area was 0–20 m/a, with an average movement velocity of 8.45 m/a. Of these dunes, 44.18% were fast-dominated dunes, 37.20% were particularly fast-dominated dunes, and 18.62% were moderately fast-dominated dunes. The barchan dunes moved in the 95–130° direction, which was basically consistent with the main wind direction of the area. The determination and function fitting of the barchan dune morphology shows that the correlation coefficients between all of the morphological parameters are greater than 0.8, except for the degree of spread and the symmetry of the two wings. We suggest adding the influences of other factors affecting barchan dunes and dune chains in the Yamarak Desert in future studies and paying attention to new wind-sand hazards and geohazards in the downwind corridor.
Keywords: morphological characteristics, movement patterns, barchan dunes, Yamarak Desert, wind-sand hazards, geohazards
INTRODUCTION
As a sub-discipline of geomorphology, wind and sand geomorphology specializes in the study of morphological features, spatial combinations of landforms, and their formation and evolution processes under the action of wind. The morphology and formation processes of wind-sand landforms are the core content of wind-sand geomorphology research; and its theoretical basis is that the process determines the morphology, and the morphology reflects the process (Tsoar, 1974; Lancaster, 1995; Dong Z. et al., 2011). Sandy landforms are landforms formed by wind erosion, transport, and accumulation of loose sand material on the surface, among which sand dunes are a common type of sandy landform (Wu, 1987).
Barchan dunes are evolved from shield-shaped sand dunes (Embabi and Ashour, 1993). Because the sand piles make the ground undulate, when the wind sand flows through the sand piles, the wind speed near the ground changes, which makes the air pressure distribution different. At the top of the sand pile, the wind speed is high and the air pressure is low. On the leeward slope, the wind speed is low and the air pressure is high. The airflow from the top of the sand pile and around the two sides of the sand pile generates eddy on the leeward slope of the sand pile, which accumulates the sand grains on the two sides behind the sand pile, forming horseshoe-shaped small depressions on the leeward slope of the sand pile. Sand dunes are an important, unique, and complex ecological, topographic, and physical system (Bagnold, 1941; Pye and Tsoar, 1990; Lancaster, 1995; Joanna and Nield, 2008; Parteli et al., 2009; Reffet et al., 2010; Goudie and Viles, 2014; Lorenz and Zimbelman, 2014). About 20% of the desert area is covered by sand dunes, some of which endanger human settlements, agricultural land, and roads (Dong Z. B. et al., 2011). Their movement is also a major form of desertification movement in addition to desert spreading and dust storms. Sand dune morphology and distribution characteristics are the products of the interactions and dynamic balance between the regional wind, sand sources, and plants, and they are important for discerning regional wind conditions, changes in the sand transport potential, and research on sand dune dynamics (Arens et al., 2004).
The morphology and dynamics of sand dunes depend on the wind direction, wind speed, and inflowing sand (Alvarez and Franklin, 2019). Sand dunes refer to the landform of sand dunes formed by the transportation and accumulation of wind. According to the shape, it can be divided into barchan dunes and dune chains, longitudinal dunes, honeycomb dunes, parabolic dunes and so on, and according to the degree of flow, it can be divided into fixed dunes, semi-fixed dunes and mobile dunes. Barchan dunes are the most common type of dune morphology. Barchan dunes are formed under the influence of unidirectional winds, low sand sources, and sparse vegetation, with a crescent-shaped planar shape, wing angles pointing downwind, and an inner slip surface (Reitz et al., 2010), and they are the most widely distributed and simplest type of wind-sand landform in deserts worldwide (Herrmann and Sauermann, 2000; Andreotti et al., 2002a; Hersen, 2004; Hersen and Douady, 2005; Andreotti and Claudin, 2007; Parteli et al., 2007; Durán et al., 2009; Durán et al., 2010; Burrough et al., 2012). The formation and development of the wind-sand interactions, evolutionary mechanism, and dune distribution have received wide attention from the wind-sand physics community. A wide range of scholars have studied and explored the morphology and distribution patterns, sediment composition, and dynamic processes of sand dunes (Yizhaq et al., 2004). The research methods mainly include field measurements, remote sensing image analysis, numerical simulation and theoretical analysis, wind tunnel simulations of wind-sand environments, and underwater simulations (Assis and Franklin, 2020; Alvarez and Franklin, 2017; Alvarez and Franklin, 2020; Bacik et al., 2020; Yang et al., 2020; Ling et al., 1998; Hersen et al., 2002; Ren et al., 2010; Qu et al., 2011; Jiao et al., 2013; Hanoch et al., 2018; Zhang et al., 2018; Zhou et al., 2019; Alvarez and Franklin, 2019; Zhang et al., 2019; Zhang et al., 2014). Studying the movement and morphology of barchan dunes in desert areas has practical significance for sand control.
As a type of moving dune, the movement direction of barchan dunes can indicate the direction of the surface material transport and the movement speed can be used to estimate the quantity of sand material transport, all of which provide important reference indicators for wind and sand control projects (Dong et al., 2008; Wang et al., 2009; Diniega et al., 2010; Koprowski et al., 2010; Bristow et al., 2019; Zhu et al., 2021; Tsoar et al., 2004). The study area of this project was the Yamarak Desert, which is located in the territory of the Alashan League. This area has a long distribution range and a dune morphology dominated by barchan dunes and barchan dune chains. A large number of independent barchan dunes are distributed in the interior of the desert. Studying the formation mechanism of the desert, the morphological structure of the dunes, and the migration pattern of the dunes is of great value (Yang et al., 2019; Zhou et al., 1990; Zhu et al., 1964). With the improvement of modern monitoring technology, remote sensing images are gradually applied in the fields of geological landslide monitoring (Huang et al., 2021), landslide sensitivity prediction (Zhu et al., 2021), risk assessment (Huang et al., 2020), desert environment monitoring and so on. However, remote sensing images can usually only be used to monitor parameters such as the location and shape of dunes, and satellite images or aerial images cannot be used to directly determine the surface area of dunes, dune volume, dune height, and dune migration rate.
In this study, a dune digital elevation model (DEM) was constructed using field measurements and high-definition remote sensing images from past years. The dune related parameters were extracted, the correlations between parameters were established, and the dune migration pattern in the Yamarak Desert was explored. The results of this study provide a theoretical basis and technical support for remote sensing dune monitoring and rapid 3-D simulation of dunes, as well as a reference for sand damage management.
STUDY AREA
Meteorological Conditions and Location
The Yamarak Desert (103°50′48″–105°27′28″ E, 39°35′23″–41°2′45″ N) is located on the northeastern part of the Alashan Plateau (Figure 1), northwest of the Helan Mountains. The topography is high in the east and low in the west. It is about 186 km long from east to west and 10–30 km wide from north to south, covering an area of 5,600 km2. Mobile dunes account for about 80% of this area and fixed and semi-fixed dunes account for 20%. The dune morphologies mainly include independent barchan dunes, barchan dune chains, and monopolies, followed by undulating sands. The climate of the region is controlled by the westerly circulation all year round. The area has a typical mid-temperate continental climate with scarce precipitation, an annual average precipitation of 102.9 mm, an annual maximum precipitation of 150.3 mm, an annual minimum precipitation of 33.3 mm, an annual average temperature of 7.8°C, an absolute maximum temperature of 39°C, an absolute minimum temperature of −29.6°C, an annual average evaporation of 2258.8 mm, and a frost-free period of 168 days. The daylight hours are 3,181 h, the solar radiation is 150 kcal/cm2, the prevailing wind direction is southwest, the main harmful wind is the northwest wind, the weather is windy, the annual average wind speed is 4.1 m/s, and wind and sand hazards are the main natural disasters. The light and heat resources are abundant, and the development of agriculture has potential advantages.
[image: Figure 1]FIGURE 1 | The location of the study area and the types of dunes. Note: panel (A) shows the specific location of the study area, panel (B) shows the main types of sand dunes in the study area, and panel (C) shows that the topography of the sub-marek desert is high on both sides and low in the middle, forming a “narrow pipe”-like appearance.
Vegetation Condition
The vegetation is mainly gravelly and sandy gravelly desert vegetation, and the plant species are mainly cathead spurge, small-leaved anemone, small-fruited white spurge, white sand artemisia, and sand needle grass. In addition, there are also valuable ancient relic species such as the national protected Mian Thorn and Bacopa monnieri plants (Yang et al., 2016).
METHODS
Dune Density Determination
The barchan dune morphology in the study area is mainly divided into three types (Herrmann et al., 2005; Parteli et al., 2014; Tsoar and Parteli, 2016) (Figure 1B): symmetric barchan (c1), bimodal dunes (c2), and Seif dunes (c3 and c4). Two profile lines (d1–d2 and d3–d4) were selected using high-resolution remote sensing images of the desert area, with the DEM perpendicular to the desert direction as the reference elevation; and the topographic variations in the desert and on both sides were extracted using the profile analysis tool in ArcGIS15.0 (Figure 1C). As can be seen from Figure 1C, the topography along profiles d1–d2 and d3–d4 is low in the middle and high on both sides. The Malagai Mountains and the Yingen Ula Mountains are to the northeast of the desert, and the Alaten Mountains are to the southwest of the desert (Ning and Wang, 2018), resulting in the location of the Yamarak Desert serving as a ventilation corridor, and its northwest trend is consistent with the trend of the Badain Jaran Desert, which provides a rich source of sand material for the formation of this desert.
Three sample lines (e1, e2, and e3) were laid out along the northwest-southeast direction in the desert using satellite images from China Resources III-02 acquired in 2019. The lengths of the three sample lines were measured, and the lengths of each barchan dunes were measured. The cumulative lengths of the dunes were calculated on each sample line, the dune density on each sample line was calculated according to the cumulative lengths of the dunes, and the dune density on the three sample lines was calculated. The average density of the dunes on the three sample lines was taken as the average density of the Yamarak dunes, which is given by the following equation:
[image: image]
where [image: image] is the dune density, [image: image] is the dune length (m), [image: image] is the length of the sample line (m), [image: image] is the number of sample lines, and [image: image] is the number of dunes.
Morphological Characteristics of Barchan Dunes
The morphological characteristics of the barchan dunes in the study area were used to select different morphological feature discriminative parameters and to establish quantitative feature discriminative indexes for the barchan dunes. According to the definition in Figure 2C, the morphological parameters of barchan dunes are described. The extracted parameters include the inner arc length of the dune (Li), the outer arc length of the dune (Lo), the ridge length of the dune (Lr), the projected width of the dune (L), the dune height (H), the chord length of the dune (Lc), the expansion degree of the two wings (De), the symmetry degree of the two wings (Ds), the projected area of the dune (Ap), the surface area of the dune (As), and the volume of the dune (V). The degree of symmetry of the two wings = [(distance from the left measured point to the reference point) − (distance from the right measured point to the reference point)]/2.
[image: Figure 2]FIGURE 2 | Schematic diagram of the extraction of the morphological parameters of the barchan dunes. Panel (A,B) represents the field measurement of sand dunes, and panel (C) represents the schematic diagram of morphological parameters of sand dunes.
Determination of Morphological Characteristics of Barchan Dunes
The RIEGL VZ-2000 was used to measure the barchan dunes in the Yamarak Desert at a distance of over 2000 m, with a target reflectivity of ≥90%, a laser emission frequency of up to 950 kHz, a scanning field of view of 100° × 360°, and scanning parameters, including the field of view, laser emission frequency, and effective measurement frequency. All of these parameters can be set. The fixed period was from 2013 to 2019, and a total of 74 barchan dunes were measured. First, color-corrected control points were placed in different parts of the dunes, a 3-D laser geomorphology scanner was placed in the inter-dune area to scan the morphological features of the dunes, and the scanned data were imported into the Riscan pro laser point cloud processing software for pre-processing data stitching and post-processing, including denoising, vector data creation, feature point (line) retention, vegetation filtering, data thinning, and datum point generation. Then, the pre-processed point cloud data were imported into the ArcGIS15.0 software to create a DEM map of the barchan dunes. Finally, the 3-D analysis module in ArcGIS15.0 was used to extract the morphological parameters of the dunes and to create Figures 2A,B. The 3-D laser geomorphology scanner measurements of the barchan dunes in the Yamarak Desert were obtained in situ.
Correlation Analysis and Movement Rule
MATLAB was used to correlate the extracted morphological parameters of the dunes; and based on the results, Origin2017 Pro was used to fit the morphological parameters to each other. The typical independent barchan dunes were selected, and Google Earth was used to extract the locations of the dunes in different years and to calculate the dune movement direction and the average annual movement distance of each dune (d). According to the dune movement grading method of (Zhu et al., 1981), the dune movement speed in the Yamarak Desert was classified into four classes: slow (<1 m/a), moderate (1–5 m/a), fast (>5–10 m/a), and especially fast (>10 m/a). The average annual movement rate of the dune was fitted to the dune height, dune projection area, and dune volume using Origin2017 Pro.
RESULTS
Description and Analysis of the Shape and Density of Barchan Dunes
Using field data and remote sensing data, descriptive statistics on the shape and density of barchan dunes are carried out respectively. Understanding and mastering the overall situation of dunes in the study area is more conducive to the subsequent study and classification of barchan dunes.
The Data Characteristics of Parameters of Barchan Dunes
Since some of the dunes in the study area did not exhibit the typical characteristics of barchan dunes due to fusion or separation effects with each other, which caused the original dunes to become larger dunes or dune chains, the dunes that exhibit the typical characteristics of barchan dunes were selected for the study in dune selection process, and the Origin2017 Pro data analysis software was used to perform descriptive statistical analysis of the parameters and to obtain a preliminary understanding of the dune morphology, including the distribution, degree of dispersion, outliers, anomalies, and extreme values of the parameters.
As can be seen from Table 1, the data characteristics of the parameters of the barchan dunes were analyzed. As can be seen from the results shown in Figure 3A, the distribution span of Li is 687.26 m, the minimum value is 124.31 m, and the maximum value is 811.57 m, which is mainly due to the formation of large dunes via mutual fusion between adjacent dunes through wind and sand action. The standard deviation of the Li values is 179.68 m, which indicates that most of the arc lengths within the dunes differ significantly from the mean value, and their distributions are more dispersed. The skewness of the Li values is 0.79, indicating that the symmetric distribution form of Li is right skewed, and the tail trails farther on the right side. The kurtosis of the Li values is −0.28, indicating that the steepness of the arc lengths within the dunes is flatter than the normal distribution form. As can be seen from Figure 3B, the distribution span of Lo is 971.64 m, the minimum value is 236.86 m, and the maximum value is 1208.50 m. The main reason for this is also dunes fusing with each other to form larger dunes. The standard deviation of the Lo values is 273.52 m, which indicates that its distribution is more dispersed. The skewness of the Lo values is 0.56, which indicates that the symmetric distribution form of the dunes’ outer arc lengths is right skewed. The kurtosis of the Lo values is −0.78, which indicates that the steepness of the arc length inside the dune is flatter than the normal distribution form.
TABLE 1 | Morphological parameter data characteristics of crescent-shaped sand dunes.
[image: Table 1][image: Figure 3]FIGURE 3 | Descriptive analysis of the morphological parameters of the crescent-shaped sand dunes.
As can be seen from Figures 3C–H, the data distributions of the parameters Lr, Lc, H, De, Ds, and Ap span 759.49 m, 242.36 m, 20.99 m, 63.20 m, 178.43 m, and 139197.59 m2, respectively, which is also mainly due to the fusion or separation effects between dunes. The standard deviations of the values of the parameters Lr, Lc, H, De, Ds, and Ap are 194.53 m, 55.73 m, 6.08 m, 13.56 m, 42.45 m, and 31009.99 m2, respectively, indicating that their data distributions are more dispersed. The skewness values of the parameters Lr, Lc, H, De, Ds, and Ap are 0.75, 0.84, 0.67, −0.15, 1.71, and 1.42, respectively, indicating that their data are symmetrically distributed, except for parameter De; and the symmetric distribution of which is right-skewed, except for the parameter Lr. The kurtosis values of the parameters Lr, Lc, H, De, Ds, and Ap are −0.30, 0.20, −0.68, −0.19, 2.17, and 1.94, respectively, indicating that the steepness of Lr, H, and De is flatter than the normal distribution form, and the steepness of Lc, Ds, and Ap is steeper than the normal distribution form.
Descriptive Analysis of Dune Density
Before the correlation analysis of each dune parameter was performed, the abnormal values of each parameter needed to be removed. As can be seen from Figure 4, the lower and upper ends of the box represent Q1 and Q3, respectively, and the spacing between them (i.e., the interquartile range, IQR) represents 50% of the values falling between the IQR. When the spacing between the values and Q3 exceeds 1.5 times the IQR, the value is identified as abnormal data and is rejected or specially treated. As can be seen from Figures 4G,H, for parameters De and Ap, six and two data points were eliminated, respectively, before performing the correlation analysis.
[image: Figure 4]FIGURE 4 | Box line diagram of the morphological parameters of the crescent-shaped sand dunes.
As can be seen from Table 2, the dune coverage in the desert was determined using the sample line method. The lengths of sample lines d1, d2, and d3 were 59022.03 m, 58961.47 m, and 59264.54 m, respectively, the cumulative lengths of the dunes on these sample lines were 22587.03 m, 22113.14 m, and 17657.7 m, respectively, and the cumulative lengths of the dunes on these sample lines accounted for 38.27%. The average coverage of the barchan dunes in this desert was 37.19%. Moreover, 62.81% was covered by interdune land covered with low and sparse shrubs and a large amount of coarse gravel, which was also an important factor in the barchan dunes remaining independent.
TABLE 2 | Dune density and interdune bottomland density.
[image: Table 2]Dependence Between Various Morphological Parameters of the Sand Dunes
The correlation analysis results for the morphological parameters of the dunes are shown in Figure 5. It can be tentatively concluded that the correlation coefficients of parameters De and Ds are less than 0.2, while the correlation coefficients between De and Ds and the rest of the parameters are less than 0.6. Excluding De and Ds, the correlation coefficients between the other morphological parameters are very strong (>0.8).
[image: Figure 5]FIGURE 5 | Correlation analysis of the morphological parameters of the sand dunes.
The results of the function fitting relationship of the morphological parameters of the sand dunes are shown in Figure 6. The extracted morphological parameters of the measured dunes were plotted, and it was found that Lo and Lr both exhibit smaller power function trends with increasing Li, with R2 values of 0.9545 and 0.9965, respectively (Figure 6A). The correlations between Li and L and between Li and H exhibit a small decreasing trend, with R2 values of 0.7425 and 0.6772, respectively (Figure 6B). There is a decreasing power function trend between parameters Li and Lc, with an R2 value of 0.7425, and there is an increasing power function trend between Li and V, with an R2 value of 0.8383 (Figure 6C). There are increasing power function trends between Li and both Ap and As, with R2 values of 0.8298 and 0.8470, respectively (Figure 6D). There are decreasing power function trends between Lo and both L and H, with R2 values of 0.8788 and 0.7153, respectively (Figure 6E). There are increasing power function trends between Lo and both Ap and As, with R2 values of 0.9618 and 0.9609, respectively (Figure 6F). There are decreasing function trends between Lr and both L and H, with R2 values of 0.8336 and 0.8457, respectively (Figure 6G).
[image: Figure 6]FIGURE 6 | Correlations between the various morphological parameters of the sand dunes.
There is a decreasing power function trend between Lc and Lo, with an R2 value of 0.8795, and there is an increasing power function trend between Lc and Lr, with an R2 value of 0.8090 (Figure 6H). There are increasing power function trends between Lr and both Ap and As, with R2 values of 0.8862 and 0.9005, respectively (Figure 6I), showing a good fitting relationship. There are decreasing power function trends between V and both Lo and Lr, with R2 values of 0.9586 and 0.9217, respectively (Figure 6J). There are increasing power function trends between L and both Ap and As, with R2 values of 0.9271 and 0.9195, respectively (Figure 6K). There is an increasing power function trend between L and V, with an R2 value of 0.8877, and there is a decreasing power function trend between L and H, with an R2 value of 0.8092 (Figure 6L). There are increasing power function trends between Lc and both Ap and As, with R2 values of 0.9179 and 0.9208, respectively (Figure 6M). There are decreasing power function trends between V and both Ap and As, with R2 values of 0.9665 and 0.9785, respectively (Figure 6N). There are increasing power function trends between Lc and both V and L, with R2 values of 0.8877 and 0.9987, respectively (Figure 6O).
Relationship Between Velocity and Shape Parameters
Barchan dunes of different sizes in the Yamarak Desert were selected, and the rate of the dune movement was calculated by measuring the distance travelled by the dunes using surrounding fixed points (brazier or scrub) as references. By calculating the movement rate of the dunes, the percentage of the dunes that moved predominantly fast was found to be 44.18%, the percentage of dunes that moved especially fast was 37.20%, and the percentage of dunes that moved at moderate speed was 18.62%. The overall average movement rate of the dunes was 8.45 m/s. The width of the dunes ranged from 50 to 250 m, the volume of the dunes ranged from 0.5 × 105 to 8 × 105 m3, the height of the dunes ranged from 5 to 13 m, and the direction of movement of the dunes ranged from 95° to 130°. As can be seen from Figure 7, the movement rate of the dune exhibited a gradually decreasing power function trend increasing dune width, with an R2 value of 0.6678. The rate of movement of the dunes exhibited a gradually decreasing power function with increasing dune volume, with an R2 value of 0.7708. The rate of movement of the dunes exhibited a gradually decreasing power function with increasing dune height, with an R2 value of 0.6990.
[image: Figure 7]FIGURE 7 | The correlations between the length of the dune, the height of the dune, the volume of the dune, and the direction of movement.
DISCUSSION
Effects of External Factors on Crescent Dunes
According to previous research results, barchan dunes are the most basic type of landforms in wind and sand landscapes, and their movement characteristics have received wide attention from scholars at home and abroad (Zhao et al., 1993; Li, 1994; Stam, 1997; Andreotti et al., 2002b; Wu et al., 2011). Barchan dunes are one of the fastest moving dune types. their movement direction can indicate the migration direction of sand materials, and their movement speed can characterize the loss of sand materials, which can be used as the main reference index for wind and sand fixation projects. The movement of barchan dunes is influenced by many factors, including the abundance of sand sources, vegetation coverage, topographic relief, wind conditions, and human activities (Yizhaq et al., 2007). In addition, the study methods and scale of the dune movement are different. The study area is mostly vegetated scrub and inter-dune bottomland, except for sand dunes (62.81% coverage), which is one of the important factors slowing down the dune movement.
Some scholars believe that barchan dune movement is a constant equilibrium state (Hersen, 2004), while others believe that barchan dune movement is a non-equilibrium state that is mainly controlled by the two wing angles of the dune and the stable polygon formed at the top of the dune (El belrhiti and Douady, 2011). However, some scholars believe that barchan dune movement is an always changing process (Yang et al., 2014) and is a geomorphic activity controlled by multiple factors, the change of any one of which will directly affect the morphology of the barchan dune.
Influence of Internal Factors on Crescent Dunes
According to the results of this study, the correlation coefficients among the morphological parameters of the barchan dunes indicate that they are closely related, except for the correlation coefficients between the degree of spread and the symmetry of the two wings and the other parameters, which are less than 0.6. The correlation coefficients between the other parameters are greater than 0.8. The dunes were analyzed using actual field measurements, and the rate of the movement of the barchan dunes in the study area was mainly affected by the barchan dune body itself. As the width, height, and volume of the dune increased, the rate of dune movement gradually decreased, which is consistent with the results of previous studies. However, the dunes are mainly barchan dunes and barchan dune chains, and there are a large number of independent barchan dunes in the interior of the desert, which is connected to the Badain Jaran Desert in the northwest and the Tengger Desert and Ulanbu Desert in the southeast. If we cannot determine the rule of the movement of the sand dunes in this area as soon as possible and adjust the corresponding control measures in time, the drifting sand will surely devour the pastures, salt fields, farmland, and other places, and it will also cause new wind and sand threats to the downwind part of the Hexi Corridor, Ningxia Plain, Hetao Plain, and even the Beijing-Tianjin area.
CONCLUSION
The barchan dunes in the Yamarak Desert moved at a rate of 0–20 m/a, with an average rate of 8.45 m/a. The percentage of predominantly fast dunes was 44.18%, the percentage of exceptionally fast dunes was 37.20%, and the percentage of moderately fast-moving dunes was 18.62%. The dunes moved in the 95–130° direction, which was generally consistent with the main wind direction in the area. Correlations were found between the morphological parameters of the typical barchan dunes, with correlation coefficients of greater than 0.8 between all of the parameters, except the degree of spread of the two wings and the degree of symmetry of the two wings. The rate of movement of the barchan dunes gradually decreased as a power function with increasing dune width, dune height, and dune volume.
Many factors influence the rate of movement of the barchan dunes in the Yamarak Desert, including the sand supply, vegetation cover, degree of topographic relief, wind strength, climate change, and human activities. In this study, only the topographic relief and the degree of ground cover in the study area were discussed, and subsequent studies should increase the study of other factors to gain a more complete understanding of the barchan dunes in this region.
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Compared with the amount of research undertaken on vertical-bearing piles in karst areas, there are fewer studies on the stability of horizontal-bearing piles (e.g., anti-slide piles and supporting piles), and little in the way of theoretical developments. In order to study the influence of karst cave in front of and under the pile on the stability of anti slide pile, this study designs orthogonal test, carries out numerical simulation by using ABAQUS finite element analysis software, deduces the displacement load curve of each group of piles, and then determines the lateral ultimate bearing capacity of anti slide pile when karst cave exists, and Through multiple linear regression analysis and test on the parameters such as the distance between the karst cave under the pile and the pile tip, the span height ratio of the cave in front of the pile and the span height ratio of the cave under the pile, it is concluded that there is a significant correlation between the above participation and the lateral ultimate bearing capacity. The research results have certain guiding significance for the application of anti slide pile in karst area.
Keywords: karst cave, anti-slide pile, numerical simulation, orthogonal test, multiple linear regression
1 INTRODUCTION
In areas with soluble limestone, surface precipitation, and free water flowing underground, there are long-term scouring and dissolution effects on the limestone, forming karst morphology, the process being termed karstification. Karst caves are, therefore, underground spaces formed by the karstification of soluble rock. The existence of karst caves destroys the integrity of a rock mass, greatly reducing its strength and stability. The development and formation of karst caves may lead to engineering problems, such as karst collapse, karst ground deformation, karst seepage and water inrush, soil erosion, and water and soil pollution, which causes difficulties in construction and economic losses to the engineering activities implemented on such foundations (Liu et al., 2018; Liu et al., 2019). With the rapid development of China’s economic and social infrastructure and the acceleration of urbanization, more complex sites, including those in areas of karst geology, which are not suitable for foundations, need to be used. Supporting piles in foundation pit engineering and anti-slide piles in landslide treatment engineering, the latter mainly bearing horizontal forces, are often arranged in bedrock with karst caves. This leads to the stability problem of horizontal-bearing piles in karst areas, where the usually adopted treatment methods include increasing the pile diameter, increasing the pile length to penetrate the karst cave, grouting and plugging the karst cave, or directly ignoring its impact and not undertaking any treatment. These treatment methods reflect the lack of theoretical development in terms of the design calculations and construction methods behind horizontal-bearing piles, such as anti-slide piles, when considering karst caves. By contrast, they can only be based on the experience of the engineering and technical personnel, with the safety and stability of the treated pile not able to be guaranteed. This leads to the situation where if the treatment method is too conservative, it will cause unnecessary delays and/or economic waste (Liu et al., 2021a; Liu et al., 2021b).
At present, there is little literature on the bearing characteristics and stability of horizontal-bearing piles in karst areas, either in China or abroad. Fan (2015) and Wang (2014) considered anti-slide piles in areas with karst caves and designed an orthogonal table to simulate the stability of piles under different conditions, obtaining an empirical formula for the safe distance separating karst caves from piles. Han (2019) studied the influence of a karst cave underlying an anti-slide pile on the pile’s stability and inferred the associated failure mode and failure mechanism. Li (2019) studied the influence on the stability of an anti-slide pile when there is a karst cave in the pile’s passive area (i.e., in front of the pile), and obtained the failure mode and failure mechanism, and compared the bearing capacity and crack development process of an anti-slide pile under the influence of two different karst cave forms. Chen and Yi (2017) calculated the safe thickness of a karst cave roof by using the mechanical analysis method, the elastic theory of surrounding rock, and the Griffith criterion. Shaowei et al. (2019) studied the stress and deformation characteristics of supporting piles with circular and rectangular sections based on the comparative model test and studied the anti-sliding ability of circular-section supporting piles. Wang and Zhang (2012) and Dai et al. (2016) used the FDM software FLAC3D to analyze the stability and deformation characteristics of pile foundations under different load levels in the karst area of a large railway. Zhou (2020) studied the pile foundation model for karst environments and obtained the change characteristics of karst foundations under pile loads. Suleiman et al. (2014) used a soil-structure interaction device to study the soil-structure interaction of a pile (i.e., the passive pile subjected to lateral soil movement) that was employed to stabilize a collapsed slope, and established the force-displacement relationship curve of the soil-pile interaction under the condition of passive loading. However, there appears to be no research results dealing with the bearing characteristics and stability of anti-slide piles with karst caves both under and in front of the pile. Based on this, our research group carried out indoor model loading tests and numerical simulation analyses considering anti-slide piles with karst caves both under and in front of the pile. The process of developing the indoor model loading tests and the results are discussed in another paper. This work discusses the numerical simulations and analyzes the influence of various parameters of karst caves on the bearing characteristics of anti-slide piles.
2 RESEARCH METHODS
The horizontal displacement development curves and the stress-strain law of a pile obtained from the numerical simulation of the same parameters considered in the indoor similarity model are consistent with the similarity test results, with the displacement and strain after the similarity conversion being the same order of magnitude. It is, therefore, feasible to use the ABAQUS software to study the numerical loading model of the effect of the double cave scenario on an anti-slide pile. However, the indoor similarity test is mechanical, and fewer factors are considered. In the follow-up study, it is necessary to add additional influencing factors and carry out an orthogonal test grouping for the analysis of the degree of influence of each factor on the bearing characteristics of an anti-slide pile.
3 RESEARCH PROJECT
3.1 Numerical Simulation Model
3.1.1 Calculation Method and Basic Assumptions
For the anti-slide pile without the influence of a karst cave, the main factors influencing its bearing capacity include pile stiffness, pile material strength, pile embedded depth, pile side rock, and soil conditions. When there is a karst cave near the pile, in addition to the nature of the pile itself and the surrounding rock and soil characteristics, there are other factors that describe how the cave affects the pile’s bearing capacity, such as the location, shape, size, number, distance from the pile, and thickness of the cave roof. According to the description in Zhao (2003), the anti-slide pile will cause deformation when it is subjected to horizontal thrust. According to the deformation state of the pile itself and the surrounding rock and soil, the anti-slide pile can be divided into a rigid pile and an elastic pile. The judgement of rigid and elastic piles is related to the calculated depth the pile is buried below the sliding surface. The geological strata considered in this study is limestone, which is hard in texture and is generally complete in distribution, so the “K” method is selected as the calculation method for the anti-slide pile. The cantilever section of the anti-slide pile in the model bears the horizontal thrust, and the corresponding horizontal resistance is provided by the fixed built-in section.
This study analyzed the influence of karst caves on the bearing characteristics of anti-slide piles. The anti-slide piles are arranged continuously, and the stress and cross section are not changed along the longitudinal direction. Displacement and deformation only occur in the cross-section, which is a plane strain problem. The Mohr-Coulomb ideal elastic-plastic model was used to describe the limestone, and the linear elastic model was used for the anti-slide pile.
3.1.2 Model Geometry
The plane strain problem is a two-dimensional problem where the model can be established by determining the length and width of the bedrock and the geometric size of the pile’s section. To avoid the influence on the stress distribution around the pile and the karst cave that would result from considering a too small boundary for the model bedrock, the vertical thickness of the bedrock was set to 15 m, and the transverse width was set to be 15 m outward from the central axis of the pile. The considered size ranges of the pile and caves are listed in Table 1. Schematic diagram of the model’s geometric parameter values in Figure 1.
[image: Figure 1]FIGURE 1 | Schematic diagram of the model’s geometric parameter values.
TABLE 1 | Geometric parameters of the pile and karst caves.
[image: Table 1]3.1.3 Physical and Mechanical Parameters of the Simulation Materials
Based on experience and previously acquired data, the values of the mechanical parameters of limestone are as follows: unit weight 17–31 kN/m3, uniaxial compressive strength 10–200 MPa, tensile strength 0.5–20 MPa, Poisson’s ratio 0.04 to 0.31, elastic modulus 10–80 GPa, cohesion 10–40 MPa, and internal friction angle 30°–50°. In the practical engineering, the anti-slide pile is generally set in place in bedrock with good integrity, a uniform distribution of strata, weak weathering degree, and relatively stable mechanical properties as the build-in section. The mechanical parameters of the limestone material considered in the simulation model are presented in Table 2.
TABLE 2 | Physical and mechanical parameters of the anti-slide pile and the considered limestone.
[image: Table 2]In the design of the anti-slide pile, the concrete grade is usually C30 to C40, and the steel bars are usually HRB400. Considering the large value of pile diameters and low reinforcement ratio in the design process of anti-slide piles, this paper selects C30 grade concrete for analysis. Based on the Code for Design of Concrete Structures (China Academy of Building, 2016), the values of weight, elastic modulus, and Poisson’s ratio of concrete and reinforcement for the piles are also shown in Table 2.
3.2 Failure Theory and Simulation Test Criteria
According to the theory of the elastic-plastic design of anti-slide piles proposed by Chen and Wang (1997), Wang et al. (1997), the core of the method is the establishment of the failure mechanism of the plastic zone of rock and soil in front of the pile. The extent of the elastic-plastic zone of the pile after loading, that is, the maximum allowable critical height of the elastic-plastic zone is the key parameter of such a design.
Considering the Mohr-Coulomb failure criterion, a wedge-shaped plastic zone will appear on the compression surface of the anchorage section of the bedrock when the pile bears horizontal thrust. When the wedge is in the limit equilibrium state, the sliding force and anti-sliding force of the pile under load are equal. When the load of an anti-slide pile continues to increase, the equilibrium state is destroyed, with the sliding force being greater than the anti-slide force, where the rock mass in the plastic zone presents a relative sliding state along the sliding surface, leading to the rock mass being sheared and destroyed. The displacement of the pile then increases rapidly, exceeding the deformation limit or cannot continue to bear the load, leading to the failure of the anti-slide pile. Stress diagram of the anti-slide pile and the wedge model in the elastic-plastic equilibrium zone in Figure 2.
[image: Figure 2]FIGURE 2 | Stress diagram of the anti-slide pile and the wedge model in the elastic-plastic equilibrium zone.
From the previous discussion, we know that many factors affect the bearing capacity of the anti-slide pile when a karst cave exists in its vicinity. However, if too many influencing factors are considered, there will be too many combinations of variables to be analyzed, making the analysis process overly complex. Considering the characteristics of the actual project, the pile diameter and fixity depth are set, and five factors (the thickness of the roof of the cave in front of the pile, the distance between the cave in front of the pile and the pile side, the distance between the cave under the pile and the pile end, the span-height ratio of the cave in front of the pile, and the span-height ratio of the cave under the pile) were selected as the variables, and six numerical levels are set for the orthogonal combinations. The maximum horizontal displacement of point A (located in the plastic zone of the rock mass in front of the pile, Figure 3) at the intersection of the pile and the rock surface in the simulations for each parameter combination is used to determine the horizontal ultimate load of the pile. The bearing characteristics of the pile under the changing factors are recorded to analyze the influence of these factors on the bearing characteristics of the anti-slide pile.
[image: Figure 3]FIGURE 3 | Diagram of the loading model used in the simulations.
Based on article 6.4.5 of the Technical Code for Testing of Building Foundation Piles (China Academy of Building, 2014), the horizontal load value corresponding to the starting point of the sharp drop of the H-Y0 curve in the slow maintenance load method can be taken as the lateral ultimate bearing capacity of a pile. The method employed in this study is to load the pile by stages and to record the maximum deformation value of the intersection point between the pile and the rock surface, which is similar to the slow maintaining load method in foundation pile detection technology. Therefore, in this paper, the above criteria are adopted to determine the lateral ultimate bearing capacity of the pile.
3.3 Simulation and Statistics
According to the “K” method, when the pile diameter is 2.0 m and the fixity depth of the pile is not more than 2.99 m, it is a rigid pile, and when it is more than 2.99 m, it is an elastic pile. In practical engineering, the principle of economy is usually given priority. Provided the bearing capacity and stability requirements are met, the pile length and diameter should be reduced as much as possible to save costs. Therefore, under the condition that there are karst caves both in front of and under the pile, the simulations and statistical analysis of the results will be carried out considering a rigid pile with a relatively small pile length. The fixity depth of the fixed pile is therefore set to be 2.5 m, and the cantilever length above the embedded section is 6.0 m.
3.3.1 Orthogonal Test Design
Through the preliminary analysis of the collected data, the five factors outlined above for the orthogonal test design are considered as independent variables, with a six-level orthogonal combination being designed for the simulation tests. The distances mentioned above are all from the outside of the karst cave to the margin of the pile or bedrock. The levels for each factor is shown in Table 3.
TABLE 3 | The level of each factor in the orthogonal test design.
[image: Table 3]Based on the level of these factors, the mixed level orthogonal test design was carried out using SPSS software, with a total of 49 groups of parameter combinations.
4 RESEARCH RESULTS
4.1 Simulation Calculation and Result Analysis
The loading simulations of the 49 groups of parameter combinations were calculated using the finite element analysis software ABAQUS. The horizontal limit load of the pile and the displacement corresponding to point A of the pile were counted according to the value principle of limit load. A schematic diagram of the simulation loading model is shown in Figure 3.
For the statistical analysis, five groups of typical cave distribution models were selected to determine the ultimate load and to analyze the change in the plastic zone of rock mass in front of the piles:
1) Group 7: A = 0.4 m, B = 1.2 m, C = 1.2 m, D = 1.67, E = 1.67, the roof rock mass of the karst cave in front of the pile is thin.
2) Group 30: A = 2.0 m, B = 2.4 m, C = 2.0 m, D = 2.5, E = 1.22, the thickness of rock mass is relatively large in all places.
3) Group 35: A = 1.6 m, B = 0.4 m, C = 0.3 m, D = 2.5, E = 0.6, the distance between the karst cave and the pile side and pile end is relatively small.
4) Group 37: A = 1.6 m, B = 0.4 m, C = 0.6 m, D = 1.22, E = 2.55, the thickness of rock mass between the two cave surfaces is small.
5) Group 49: A = 0.8 m, B = 2.4 m, C = 0.3 m, D = 1.67, E = 0.4, the distance between the karst cave under the pile and the pile end is small (A∼E corresponds to the factors listed in Table 3).
(1) Load-Displacement Curves
The resulting curves of the horizontal displacement of point A with the change in loading for the five groups of simulation tests are presented in Figure 4. The ultimate horizontal bearing capacity of the pile was determined based on these load-displacement curves.
[image: Figure 4]FIGURE 4 | Load displacement curves in the five group tests.
Based on these load-displacement curves and the ultimate load determination principle, the horizontal ultimate loads for Groups 7, 30, 35, 37, and 49 are 1.4, 4.2, 3.6, 3.6, and 3.0 MPa, respectively. In Group 7, when the load reaches 2.0 MPa, the plastic strain diagram shows that the rock mass at the cave roof has dislocation slip, indicating that the anti-slide pile is unstable. The trend in the curve for Group 35 is almost the same as that of Group 37, so it can be inferred that the distance between the karst cave under the pile and the pile end has little effect on the bearing capacity of the pile. To observe the internal force distribution and changes in each group more clearly, the plastic strain distribution diagram of each group under the ultimate load was derived, and the loading process was analyzed.
(2) Plastic Strain
The plastic strain distribution of the bedrock under the ultimate load for the five groups of tests is shown in Figure 5. The following findings have been identified:
1) When the roof of the karst cave in front of the pile is thin, the rock mass at the roof directly above the karst cave (a certain distance to the left of point A) appears to show larger plastic deformation than the rock mass at the other parts due to compression. A sliding surface appears, which shows a shear compression failure trend along the sliding surface. However, there is little or no elastic deformation in the other parts of the rock mass. In this case, the bearing failure of the anti-slide pile is caused by the shear failure of the rock mass at the cave roof.
2) When the cave roof is thick and distant from the pile side and pile end, the bearing capacity of the anti-slide pile is controlled by the deformation of the rock mass in front of the pile. The failure of the anti-slide pile is thus caused by the excessive deformation of rock mass at point A.
3) When the karst cave in front of the pile is close to the pile side, the rock mass between the karst cave and the pile side also shows high plastic deformation during the loading process. It can be assumed that if there are joints or fissures in this part of rock mass at this time, the pile is likely to have been damaged before reaching the ultimate load, resulting in the potential instability of the pile body.
4) When the boundaries of the caves in front of the pile and under the pile are close to each other, the rock mass between the two caves first experiences large plastic deformation. This part of rock mass was seen to be damaged in the simulations, but in practical engineering, the situation is more complicated. If this part of the rock mass has uncontrollable factors, such as the existence of cracks and different degrees of dissolution, the rock mass strength is in a non-uniform state, with this part of the rock mass owing to the cracks breaking first, resulting in the instability of the anti-slide pile.
5) When the karst cave under the pile is close to the pile end, the rock mass at the top of the karst cave first suffers large plastic deformation, where the deformation here is larger than that in front of the pile, The rock mass here is, therefore, more likely to be destroyed, resulting in the instability of the anti-slide pile.
[image: Figure 5]FIGURE 5 | Plastic strain distribution of the five groups of tests outlined in the text.
4.2 Multiple Linear Regression Analysis
4.2.1 Multiple Linear Regression
The horizontal limit load was taken as the dependent variable Y, and the roof thickness of the karst cave in front of the pile, the distance between the karst cave in front of the pile and the pile side, the distance between the karst cave under the pile and the pile end, the span height ratio of the karst cave in front of the pile, and the span height ratio of the karst cave under the pile, were defined as the independent variables X1, X2, X3, X4, and X5, respectively. The statistical data in Table 4 were imported into the SPSS software for linear regression analysis, and the following regression equation was obtained:
[image: image]
TABLE 4 | Fitting analysis parameters.
[image: Table 4]In this formula, the variables X1 to X5 should conform to the range of values of the corresponding factors in the orthogonal test design. The unit of Y is MN/m2, and to ensure dimensional unity, the unit of the coefficients of X1 to X3 is defined as MN/m3, and X4 and X5 are dimensionless, hence the unit of their coefficients and the constant term are defined as MN/m2. The orthogonal test design was carried out under the assumption that the anti-slide pile meets the strength index of the pile material, has no defects and meets the required safety standards. Therefore, the regression equation is suitable for analyzing the influence of the karst cave on the horizontal bearing capacity of the anti-slide pile when there are karst caves both in front of and under the pile, allowing the assessment of whether it is necessary to treat the karst cave or to modify the pile design.
4.2.2 Linear Regression Test

1) Test for the degree of fitting and independence
It can be obtained from Table 4 that R2 = 0.797, hence the fitting degree is good, indicating that the linear regression equation obtained is reasonable. The Durbin-Watson index is 1.908, indicating that the variables in the regression equation are independent of each other.
2) Multivariate analysis of variance
From the analysis of variance presented in Table 5, it can be seen that the F-Test Sig = 0.000 < 0.05, which also shows that the regression equation, displays a good significance.
3) Multicollinearity diagnosis and significance test
TABLE 5 | Parameters of the multivariate analysis of variance.
[image: Table 5]By the variance proportion coefficient in Table 6, the collinearity among the independent variables is seen to be not significant. Further analysis of the VIF parameters in Table 7 shows that the VIF of all factors is 1.000, indicating that there is no multicollinearity among these five independent variables, hence, no effect on the regression equation.
TABLE 6 | Collinearity diagnostic parameters.
[image: Table 6]TABLE 7 | Coefficient T-test.
[image: Table 7]It can be seen from Table 7 that the Sig coefficients of the roof thickness of the karst cave in front of the pile and the distance between the karst cave in front of the pile and the pile side are less than 0.05, indicating that these two factors are significantly and positively correlated with the horizontal ultimate load of the dependent variable. However, the Sig coefficients of the distance between the karst cave under the pile and the pile end, the height-span ratio of the karst cave in front of the pile, and the height-span ratio of the karst cave under the pile are larger, and the absolute values of coefficient [image: image] are smaller, indicating that these three factors have little influence on the horizontal ultimate load, leading to the degree of correlation to Y being as follows: X1>X2>X3>X4>X5.
4) Standardized residual analysis
By examining the standardized residual histogram shown in Figure 6, it can be seen that although some of the sample residuals exceeded the normal curve, the overall residuals were basically in line with a normal distribution, indicating that the selected influencing factor data Xi matched the dependent variable Y and that the regression model was reasonable.
[image: Figure 6]FIGURE 6 | Standardized residual histogram.
5 CONCLUSION
In this paper, the ABAQUS finite element analysis software was used to carry out the simulated loading test of an anti-slide pile with karst caves located both under and in front of it. Through the simulations and accompanying analyses, the following conclusions are drawn:
1) From the results of the linear analysis, it can be seen that the roof thickness of the karst cave in front of the pile (X1) and the distance between the karst cave in front of the pile and pile side (X2) display significant correlation with the bearing capacity of the anti-slide pile, and, hence, are the main factors affecting the bearing capacity of the pile. In the range of values considered within this study, the larger the values of X1 and X2, the higher the bearing capacity of the pile.
2) When the karst cave under the pile is close to the pile end (<0.3 m) or the distance between the surfaces of the two karst caves is small (<0.2 m), the plastic strain of the two thinner rock masses here is high when the anti-slide pile is being loaded. These two thin rock masses will be destroyed first, which will lead to the instability of the anti-slide pile. In view of these two kinds of karst cave distributions, the karst cave should be treated first, and any construction should be carried out only after meeting the necessary stability requirements.
(3) The research conditions of this paper are relatively ideal. The use of the inferred formula needs to meet the appropriate conditions, such as the strength of the anti-slide pile itself must meet safety requirements, the structure inside the bedrock is complete except for the karst cave, the rock mass is uniform, no large joints or fissures have developed, and there is no other strong filler inside the karst caves. When there are many disadvantageous conditions, the calculated bearing capacity should be reduced, or further specialized studies need to be made.
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For a waste dump with soft foundation, the foundation bearing capacity has an important impact on slope stability. According to the load distribution and stress characteristics of a waste dump, combining the gravity load of the triangular slope of the waste dump and the passive Earth pressure exerted by the foundation soil with an improved Plandtl formula, the foundation bearing capacity and the ultimate pile height of a waste dump are calculated and determined. The concept of foundation bearing capacity of a waste dump is redefined, that is, the ultimate pile height corresponding to a certain slope angle. A method for determining the ultimate pile height of a waste dump based on the slope angle of the waste dump is proposed, and the relation function between dump slope angle and waste height is established. The results show that the sliding moment increment (∆MS) caused by the gravity load of the triangular slope after waste increase is positively proportional to the pile height increment (∆H); the anti-sliding moment increment (∆MAS) is positively proportional to or positively correlated with the pile height increment (∆H); the slope angle of the waste dump decreases with the increase of the thickness of soft bedrocks, and the smaller thickness of soft bedrocks is more favorable to the ultimate pile height of the waste dump. The research results can provide reference for the calculation of the bearing capacity of soft foundation and the optimal design of slope shape of waste dumps.
Keywords: waste dump, soft foundation, ultimate bearing capacity, slope angle, ultimate pile height
1 INTRODUCTION
The stability of waste dumps is one of the critical factors for the safe production of an open-pit mine (Behera et al., 2016; Wang et al., 2017; Gong et al., 2021). As a joint product of geological processing and artificial landfilling, the slope stability of a waste dump is mainly affected by the mechanical properties of the foundation (Gao et al., 2021; Zhang Y et al., 2021), the shape of the slope, and the properties of the discharged materials (Han et al., 2016; Wang et al., 2019; Jiang et al., 2021).
The mechanical properties of the foundation are an internal influencing factor and cannot be artificially altered, especially the soft foundation with a low bearing capacity (Tao et al., 2018; Zhang Z et al., 2021). Under the action of granular material pressure, the slope/waste dump may slip along the smooth base, further causing the mess to collapse and triggering a retrogressive landslide (Jorge, 2017; Wang et al., 2020; Zhang et al., 2022). Slope failure is an inevitable aspect of economic mine slope design in the mining industry (Neil et al., 2020); large landslides or floor heaves have occurred at the south dump of the Antaibao Openpit Mine, the east dump of the Pingshuo Opencast Mine, the external waste dump at the “South Field” lignite mine, Northern Greece, the Jianshan dump of the Lanjian Iron Mine, etc. due to insufficient bearing capacity of foundations (Steiakakis et al., 2009; Cao et al., 2021; Huang F et al., 2021), which is a serious threat to mine safety and sustained operation. Hence, it is necessary to systematically study the bearing capacity of the foundation to ensure the safety and stability of the waste dump (Zhang et al., 2011; Chakraborty 2013; Park et al., 2017).
Currently, the calculation of the bearing capacity of dump foundations is usually based on the calculation method of the bearing capacity of building foundations in soil mechanics (Castelli, 2012; Moayedi et al., 2018), such as the formulae proposed by Prandtl (Roy et al., 2017), Terzaghi, and Hansen (Terzaghi, 1943; Georgiadis, 1985; Luo, 1986; Huang, 1991; Griffiths, 2001). In recent years, scholars have conducted a series of studies on ultimate bearing capacity in view of the instability caused by the soft foundation of waste dumps (Wang et al., 2012; Li L et al., 2021). Divya et al. (2020) used Bell’s approach to study the foundation bearing capacity of discontinuous rock slope in the Garhwal Himalayas of India. Karrech (2021) used the generalized Hoek–Brown criterion to analyze the seismic stability of three-dimensional rock slopes. Zhou (2002)deduced a theoretical formula of foundation bearing capacity based on the ultimate bearing capacity theory of foundations and the statics theory of loose medium. Zhai et al. (2015) analyzed the base bearing capacity according to foundation thickness and failure mode and determined the ultimate pile height through physical and mechanical tests. He et al. (1999) studied the topsoil thickness of the foundation and the contact conditions with the waste rocks in the dump, revealed the influencing mechanism of the foundation topsoil under loading, and obtained the critical topsoil thickness formula for determining the ultimate pile height. Zhong et al. (2017) adopted the leading bearing capacity theory to derive a theoretical formula for calculating the ultimate bearing capacity of foundations considering the foundation thickness and verified the calculation results by using FLAC3D.
To sum up, many scholars presently calculate the bearing capacity of the foundation base; some are theoretical derivation, and some are empirical formulas. However, these formulas and methods do not consider the inhibition of the anti-sliding force generated by the gravity load of the triangular slope of the waste dump slope on the foundation failure, and the influence of the foundation thickness on the foundation bearing capacity is rarely involved. Therefore, according to the actual conditions of an open-pit waste dump, based on the improved Prandtl calculation method, this paper analyzes the influence of basement rock thickness and slope angle on slope stability and determines the limit discharge height corresponding to different slope angles.
In a word, the traditional test method and stability analysis theory of ultimate bearing capacity research consider the influence of basement rock condition or basement state on the maximum bearing capacity and top dumping height of waste dump, respectively, but they do not form a law. Once the lithology of the waste dump basement and the angle of the waste dump slope change, the waste dump slope will become unstable. To change this situation, it is also necessary to further understand the relationship between the dumping height of the waste dump and the bearing capacity of the foundation and establish a scientific calculation method of the ultimate bearing capacity of the foundation of the waste dump. In this paper, a particular discussion is carried out. A new theory, practice, and formula for calculating the bearing capacity of weak foundations according to the actual load distribution and stress characteristics are given.
2 PRANDTL CALCULATION METHOD ON ULTIMATE VERTICAL LOAD
2.1 Analysis of Prandtl’s Vertical Load Calculation Principle
Due to the simple calculation principle and convenient application (Pakdel et al., 2021; Wang et al., 2010), Prandtl’s formula is widely used to calculate the bearing capacity of dump foundations and the ultimate pile height of open-pit waste dumps (Li et al., 2017a). The failure pattern of foundations proposed by Prandtl is shown in Figure 1 (Kyle et al., 2013; Jiang et al., 2019). The vertical stress in Zone Ⅰ is the maximum principal stress, namely, the ultimate bearing capacity of the foundation (Pu) (Amin et al., 2018; Huang et al., 2020). It is a Rankine active zone. The sliding planes AC and BC are 45°+φ/2 with the horizontal plane. Soil wedges ADH and BEG in Zone Ⅲ are in a passive state after being pressed downward by the wedge in Zone Ⅰ, and they are Rankine passive zones. The sliding planes DH and EG form α = 45°−φ/2 with the horizontal plane. Between the active zone and the passive zone, the transition zones ACD and BEC (Zone Ⅱ) are composed of a group of logarithmic spiral curves and a group of radiation lines. The equation of the logarithmic spiral curve (CD) is expressed as:
[image: image]
Where r is the vector radius from the origin of the spiral curve to any point on CD, (m); r0 is the initial radius, namely, the line segments AC and BC, (m); θ is the angle between rays r and r0, (°); φ is the internal friction angle of the foundation soil, (°).
[image: Figure 1]FIGURE 1 | Schematic diagram of the Prandtl foundation sliding model.
2.2 Prandtl Vertical Load Calculation Formula
In Figure 1, a part of sliding soil OCDI is regarded as a rigid body, as shown in Figure 2. According to the balanced state of the force system on OCDI, the ultimate load Pu per unit length on OA (base surface) and its moment to point A can be calculated by Eq. (2):
[image: image]
[image: Figure 2]FIGURE 2 | Force analysis of isolators.
The resultant force of the active Earth pressure on OC plane is:
[image: image]
Its moment about point A is:
[image: image]
The moment of the resultant force of the soil weight on AI plane about point A is:
[image: image]
The Prandtl formula assumes that the soil mass beneath the foundation is weightless and ignores that the passive Earth pressure generated by the soil mass on the right side of surface ID can produce an anti-sliding moment. According to Rankine’s Earth pressure theory, the passive Earth pressure on ID surface is:
[image: image]
Its moment about point A is calculated by:
[image: image]
The moment of the resultant force of the cohesion on CD about point A is:
[image: image]
The resultant resistance force (F) on CD passes through the center point A of the logarithmic spiral curve, and then its moment about point A is zero. According to the equilibrium condition for the moment about point A, the following equation is obtained.
[image: image]
Eqs. 1–8 are substituted into Eq. 9 to obtain:
[image: image]
where γ0 represents the weighting average volumetric weight of the soil above the foundation, (kN/m3).
γ1 means the volumetric weight of the foundation soil, (kN/m3); d is the burial depth of the foundation, (m); c is the soil cohesion above the foundation, (kPa); b is the foundation width, (m). Pu refers to the ultimate load, (kPa); Ea indicates the active Earth pressure, (kPa); Ep denotes the passive Earth pressure, (kPa).
3 DUMP FOUNDATION BEARING CAPACITY CALCULATION USING A REVISED PRANDTL FORMULA
When Prandtl’s formula is used to calculate the ultimate bearing capacity of the dump foundation (Abhishek et al., 2015), only the soil above the foundation is regarded as uniformly distributed on the foundation plane and specific load distribution of the slope is ignored. However, the actual load distribution of the dump should be considered during calculation. The resistance force to the ultimate bearing capacity of the foundation is composed of the gravity load of the triangular slope and the passive Earth pressure of the foundation soil. Therefore, according to the load distribution characteristics of the dump foundation, the foundation bearing capacity and the ultimate pile height of the slope can be calculated and determined based on a revised Prandtl formula.
3.1 Analysis of Foundation Bearing Capacity Under Non-Uniform Loading
Combined with the practical conditions of the dump slope in an open-pit mine, when the foundation of a vertical gradient with a slope angle of 90° reaches the ultimate bearing capacity (H90), a continuous sliding surface will occur in the foundation, indicating that the foundation is in the limit equilibrium state and further loading will cause overall shear failure to the dump foundation. The actual dump slope is set at a certain angle with the horizontal surface. When the mine waste is discharged at a certain angle on the vertical slope, which is under the limit equilibrium condition, the vertical slope foundation will not slide along the sliding surface because a triangular slope is produced at the side of the slope, namely, triangular slope gravity load is induced and also provides additional resistance to the foundation sliding surface. The foundation is in a stable state, allowing another certain pile height on the vertical slope. When the discharging reaches a certain height (i.e., the height increment, ∆H), the slope is in a new limit equilibrium state (Deng et al., 2019). At this time, the sliding moment of the newly increased slope is equal to the anti-sliding moment. As a result, the slope has a new ultimate pile height (Huang et al., 2017; Wang J et al., 2021).
3.2 Improved Formula for Calculating Prandtl’s Ultimate Bearing Capacity
By analyzing the isolator OCDI, the moment increment ΔL caused by the gravity load of the triangular dump slope is associated with the difference value between (H90+ΔH)/tanβ and [image: image], where β is the slope angle. Thus, the passive Earth pressure on ID surface is discussed in two aspects.
3.2.1 The Gravity Load of the Triangular Slope is on the Inner Side of the Foundation Sliding Surface
When the value of (H90+ΔH)/tanβ is smaller than [image: image], the gravity load of the triangular slope at the side of the dump is distributed in the inner part of the sliding surface of the foundation (within the ID surface) on the horizontal axis, and moment increment is generated on the OA, OC, and AI planes separately, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Sliding mode diagram when (H90+ΔH)/tanβ < [image: image]
The resultant force increment of the ultimate bearing capacity is generated on OA (foundation surface) and its moment increment about point A is:
[image: image]
The resultant force increment of the active Earth pressure on OC surface can be calculated by:
[image: image]
Its moment increment about point A is:
[image: image]
The resultant force increment of the soil weight on AI surface is obtained:
[image: image]
Its moment increment relative to point A is:
[image: image]
The moment of the resultant force of the cohesion on CD about point A is that:
[image: image]
When the dump slope reaches a new limit equilibrium state and the pile height increment (∆H) produces ∆MS equal to ∆MAS, then:
[image: image]
[image: image]
[image: image]
3.2.2 The Sliding Surface Is Covered by the Gravity Load of the Triangular Slope
When the value of (H90+ΔH)/tanβ is bigger than [image: image], the gravity load on the triangular slope covers the sliding surface AI, leading to passive Earth pressure on ID surface, as expressed in Figure 4.
[image: Figure 4]FIGURE 4 | Slip mode diagram when (H90+ΔH)/tanβ > [image: image]
The resultant force increment of the ultimate bearing capacity is generated by OA (foundation surface), and its moment increment about point A is:
[image: image]
The resultant force increment of the active pressure on OC surface is achieved by:
[image: image]
Its incremental moment relative to point A is:
[image: image]
The resultant force of the soil weight on AI surface presents trapezoidal loading distribution and its resultant force increment about point A is as follows:
[image: image]
Its moment increment relative to point A can be obtained:
[image: image]
Both the gravity load of the soil on the right side of the ID surface and the gravity load of the triangular slope acting on the AI surface produce passive Earth pressure on the ID surface. The passive Earth pressure on the ID surface is a superposition. According to Rankine’s passive Earth pressure theory (Etezad et al., 2015; Xu et al., 2019; Yang et al., 2019), it can be concluded that:
The Earth pressure at the top of the bedrocks is:
[image: image]
The Earth pressure at the bottom of the bedrocks is:
[image: image]
Its moment relative to point A is shown below:
[image: image]
The moment of the resultant force of the cohesion on CD about point A can be achieved by:
[image: image]
When the dump slope reaches a new limit equilibrium state, the pile height increment ∆H produces ∆MS equal to ∆MAS, and the waste height at this time is the ultimate pile height.
[image: image]
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3.3 Analysis of the Base State of Waste Dump
According to Eqs. 11–30, based on the elastic–plastic limit equilibrium analysis, the relation between the sliding moment increment (∆MS) and the pile height increment (∆H) presents a proportional function, and the anti-sliding moment increment (∆MAS) shows proportional or positively correlated cubic function relation with the pile height increment (∆H). By discussing Eq. 31 and from Figure 5, it can be found that when ∆M > 0, the anti-sliding moment of the ultimate bearing capacity of the dump foundation is bigger than the sliding moment, shear failure of the foundation will not occur, and the bearing capacity of the foundation meets the requirements. When ∆M = 0, the anti-sliding moment of the ultimate bearing capacity of the dump foundation is equal to the sliding moment and the foundation is in the limit equilibrium state. As ∆M < 0, the anti-sliding moment of the ultimate bearing capacity of the dump foundation is smaller than the sliding force and overall shear failure of the dump foundation takes place.
[image: Figure 5]FIGURE 5 | Relationship curves of ΔM and ΔH. (A) ΔM > 0, (B) ΔM = 0, (C) ΔM < 0.
3.4 Determination of Allowable Pile Height Based on Ultimate Bearing Capacity of Foundation
As specified in the foundation engineering specification (Zheng, 2019; Chen H H et al., 2021), when the foundation width b > 6 m, take b = 6 m. When the foundation width b < 3 m, take b = 3 m. Since the length and width of the dump are both thousands of kilometers, the influencing width of the initial uniform vertical load is deemed as 6 m in this study when the improved Prandtl method is utilized to calculate the bearing capacity of the foundation. Based on the revised Prandtl algorithm, the effect of the gravity load of the triangular slope on the foundation bearing capacity dominantly depends on the slope angle. When the discharging angle is changed, the corresponding ultimate bearing capacity is certainly different. Therefore, calculating the maximum load per unit area of the foundation body is transformed into solving the ultimate pile height corresponding to a certain slope angle, and the latter is more beneficial to the calculation of the foundation bearing capacity.
The improved Prandtl formula is used to calculate the ultimate bearing capacity of the dump foundation. The influence depth of the foundation bearing capacity is considered as the thickness of the soft foundation (D), and the foundation width (b) in the limit equilibrium state can be obtained (Poulsen et al., 2014; Ismail Ibrahim et al., 2016):
[image: image]
According to Eqs. 11–31, it can be seen that different foundation widths under non-uniform loading condition correspond to slope angles of the dump in the limit equilibrium state. By judging the relationship between the horizontal length of the gravity load of the triangular slope and the sliding surface length of the foundation, the pile height increment ∆H is obtained based on the moment equilibrium condition.
[image: image]
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For the dump with affirmable lithology, the foundation thickness is a constant and the corresponding foundation width is confirmed. When the slope angle (β) is different, the corresponding ultimate pile height can be calculated, and then the allowable height of the dump can be determined. When the discharging angle is smaller than β, the pile height can be infinitely high in theory.
3.5 Influence of Different Foundation Lithology and Thickness on Foundation Bearing Capacity
Compared with the dump size, the foundation width (b) is a small constant (6 m). According to Eq. 32, the value of b can be determined according to the thickness of the foundation strata (D), and the corresponding slope angle (β) and the ultimate pile height can be obtained (Li et al., 2017b; Zheng et al., 2020; Ma et al., 2021). Physical and mechanical properties of the foundation strata are given in Table 1 (Jiang et al., 2020; Wang L J et al., 2021). By substituting these parameters into Eqs. 11–34, the relationship between D and β can be achieved as presented in Figure 6.
TABLE 1 | Physical and mechanical properties of base strata.
[image: Table 1][image: Figure 6]FIGURE 6 | Relationship between base strata thickness and dump slope angle.
It can be seen from Figure 6 that the slope angle and the ultimate pile height are different under different foundation lithology. The ultimate pile height is calculated according to the revised Prandtl formula. When the foundation thickness is constant, better foundation lithology allows smaller dump slop angle. Meanwhile, the corresponding ultimate pile height is larger. As the foundation lithology is constant, the slope angle decreases with the increasing thickness of soft foundation strata. In other words, better rock lithology and smaller thickness of foundation are more favorable to the ultimate pile height.
4 ENGINEERING CASE STUDY AND DISCUSSION
4.1 Engineering Case Study
The bedrocks of an open-pit dump are mainly quaternary medium sand with loose structure, strong compressibility, and poor mechanical properties. Shear failure is easy to occur under the loading of waste materials, resulting in instability of the dump and large landslides due to improper treatment. Therefore, the dump stability cannot be ignored. The elevation of the dump is about 1,077 m, and the average thickness of the bedrocks is about 20 m in Figure 7.
[image: Figure 7]FIGURE 7 | Schematic diagram of external waste dump.
According to the stress characteristics and load distribution of the dump, the ultimate load, the ultimate height of the vertical slope, and the ultimate pile height are calculated by employing the revised Prandtl formula. The ultimate vertical load and the ultimate height of the vertical slope are 505.44 kPa and 31.2 m, respectively. Figure 8 presents the relation curves between ∆M and ∆H at different slope angles. It is noted that when the slope angle is 33°, ∆H is 2.06 m and the ultimate pile height is 33.26 m. When the slope angle is 27.1°, ∆H is 5 m and the ultimate pile height is 36.2 m. If the slope angle is less than 27.1°, the two curves have no intersection and ∆H has no solution. This implies that the anti-sliding moment of the dump is greater than the sliding moment, and the pile height can be infinitely high.
[image: Figure 8]FIGURE 8 | The maximum pile height of the dump at different slope angles. (A) Slope angle = 40°, (B) slope angle = 33°, (C) slope angle = 27.1°, (D) slope angle = 15°.
The slope angle, the elevation, and the slope height of an open-pit dump are 20°, 1,108 m, and 31 m, respectively, in Figure 8. The slope and the foundation are both in a stable state. By using the improved Prandtl formula, it is obtained that when the dump slope angle is less than 27.1°, the pile height can be infinitely high under the premise of only considering the foundation stability, which is consistent with the engineering practice. This verifies the rationality and reliability of the improved Prandtl formula proposed in this paper.
4.2 DISCUSSION
The stability of waste dumps is a long-term research topic of slope engineering. Therefore, considering the bearing capacity of the waste dump foundation, the angle and limit of the height of the waste dump slope are calculated, which provides a basis for the stability analysis of the waste dump foundation (Cho et al., 2014; Chen H et al., 2021). The traditional analysis methods mainly focus on the stability evaluation of waste dump (Huang F M et al., 2021), and less consideration is given to the bearing capacity of the waste dump base. This study provides an excellent supplement to the slope stability of the open-pit waste dump.
This study focuses on the analysis of the actual load distribution and stress characteristics and puts forward an improved Prandtl foundation bearing capacity calculation method. The calculation of the foundation bearing capacity of the waste dump is transformed into the relationship function problem of solving the limit dumping height corresponding to a specific slope angle. The angle of waste dump slope, base lithology, and base rock thickness are three key factors affecting the base stability of waste dump.
In the stability analysis of the waste dump, the mechanical state of the waste dump and the physical and mechanical parameters of the base rock layer of the waste dump should be considered (Kainthola et al., 2015; Zástěrová et al., 2015). When the basement’s lithology and the rock stratum’s thickness are different, the dumping angle and the limit dumping height will change under the gravity stacking of the upper dumping materials. This paper considers the influence of the basement conditions on the stability of the waste dump. The better the lithology of the basement, the greater the dumping slope angle, and the dumping slope angle of the waste dump decreases with the increase of the thickness of the weak basement rock stratum. The lithology of the vulnerable basement rock stratum is better. The consistency is smaller, which is more favorable to the limited height of the waste dump.
In this study, the waste dump of an open-pit mine is analyzed. On the premise of considering the base lithology and rock thickness, the base stability of the waste dump is guaranteed, and the optimal waste angle and height of the waste dump are calculated. The bearing capacity of the weak foundation of the waste dump will change significantly under the action of pressure, water, and time for a long time, which is very important to the stability of the waste dump and needs further research in the future (Li X S et al., 2021). This study applies to the calculation of bearing capacity of the weak foundation of the waste dump, provides technical support for the stability evaluation of waste dump, has good application value, and will achieve good engineering results in the application of open-pit waste dump.
5 CONCLUSION
In this study, a calculation method of bearing capacity of waste dump base based on the improved Prandtl formula is proposed. The ultimate bearing capacity of the base is defined as the ultimate dumping height corresponding to a specific slope angle, and the influence laws of different base lithology and base thickness on the maximum bearing capacity of the base of the waste dump are analyzed. The rationality and reliability of the calculation method of foundation bearing capacity of waste dump proposed in this paper are verified through an engineering example.
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This study presented a framework for uncertainty analysis of the ultimate axial bearing capacity of piles evaluated by the UniCone method in layered soils. The UniCone method by Eslami and Fellenius (1997) is a direct piezocone penetration test (CPTU) method for evaluating the ultimate axial capacity of piles in the reliability design. The spatial variability of CPTU data is modeled as a random field for each soil unit in the soil strata. The empirical correlation coefficients of the UniCone method are assumed to follow lognormal distributions. On the basis of uncertainties of CPTU data and empirical correlation coefficients, the first-order reliability method (FORM) is then applied to the reliability analysis of ultimate axial bearing capacity of piles. The effects of spatial variability of CPTU data and variations of empirical correlation coefficients on the ultimate axial bearing capacity of piles are evaluated by an Excel spreadsheet-based framework. Seven case studies show that the proper identification of different soil units from soil profiles is crucial for estimating the failure probability of pile capacity in the reliability analysis. Uncertainties of CPTU data and empirical correlation coefficients would be over-estimated unless different soil units in soil profiles are identified properly from each other. The over-estimated geotechnical parameters contribute to a higher failure probability of pile capacity. The proposed framework can evaluate the uncertainty of the ultimate axial bearing capacity of pile foundations more rationally.
Keywords: uncertainty analysis, ultimate axial bearing capacity, spatial variability, reliability analysis, piezocone penetration test
INTRODUCTION
Pile foundations are widely used to support highway bridges, tall buildings, transmission towers, and other structures to transfer the upper loads into stiff soil or rock layers in the deep ground (Naggar, 2002; Basack and Sen, 2014; Zhu et al., 2017; Wang et al., 2021; Basack et al., 2022). The reliability of ultimate axial bearing capacity of piles is a major safety issue for geotechnical engineering. The spatial variability of in situ measurements and variations of empirical correlations coefficients lead to significant uncertainties in predicting the ultimate axial bearing capacity of piles by the cone penetration test (CPT) or piezocone penetration test (CPTU) (Haldar and Babu, 2008; Dithinde et al., 2011; Chen and Zhang, 2013; Mendoza et al., 2017; Jarushi et al., 2020).
The reliability-based design (RBD) has been increasingly concerned as a more rational approach to evaluate the effects of geotechnical uncertainties on the ultimate axial bearing capacity of piles (Phoon and KulhawyGrigoriu, 2000; Tandjiria et al., 2000; Honjo et al., 2002; Zhang and Chu, 2009; Zhang and Chu, 2009). The first-order reliability method (FORM) has been demonstrated as one of the most effective tools for probabilistic design in geotechnical practice (Low and Tang, 1997; Haldar and Sivakumar Babu, 2009; Teixeira et al., 2012; Teixeira et al., 2014). In most FORM studies, when conducting spatial variability analysis, different soil units are seldom identified from each other in a soil profile, which may lead to a biased estimation of uncertainties associated with geotechnical and design parameters (Phoon and Kulhawy, 1999; Uzielli et al., 2005; Low and Phoon, 2015). If the layered soil strata are viewed as an integral unit, the correlation among the geotechnical parameters of different soil units in a soil profile becomes indistinct. The spatial correlation significantly influences the failure probability of geotechnical design obtained from the FORM analysis (Jaksa et al., 1997; Dithinde et al., 2011; Ching and Phoon, 2019; Wang et al., 2019). As a consequence, the probabilistic analysis of the ultimate axial bearing capacity of piles may be biased.
This study presented an Excel spreadsheet-based framework for the uncertainty analysis of the ultimate axial bearing capacity of piles in layered soils. The CPTU-based UniCone method by Eslami and Fellenius (1997) is selected to calculate the ultimate axial bearing capacity of piles by CPTU data. The framework takes into account the spatial variability of layered soils and the variations of empirical correlation coefficients of the UniCone method. The uncertainties associated with CPTU parameters and empirical correlation coefficients in layered soils are analyzed in terms of the random field and random variables, respectively. The FORM is applied to evaluate the ultimate axial bearing capacity of pile foundations considering the uncertainties of design parameters. The uncertainties of ultimate axial bearing capacity of piles in layered soils from seven case studies are discussed with the proposed framework.
UNCERTAINTIES IN THE UNICONE METHOD
Many direct CPT/CPTU-based methods have been proposed to predict the ultimate axial bearing capacity of piles in geotechnical practice (Lunne et al., 1997; Mayne, 2007). Among those methods, the UniCone method by Eslami and Fellenius (1997) has been proved to be a more reasonable method than other methods (Abu–Farsakh and Titi, 2004; Cai et al., 2009; Cai et al., 2012; Niazi and Mayne, 2016; Golafzani et al., 2020; Heidari and Ghazavi, 2021). The UniCone method has shown usefulness and reliability for clays, silts, and sands (Mayne, 2007; Amirmojahedi and Abu–Farsakh, 2019). Hence, the UniCone method (Eslami and Fellenius, 1997) is adopted for the uncertainty analysis of the ultimate axial bearing capacity of piles in this research.
The ultimate axial bearing capacity (Qu) of a single pile mainly consists of end bearing capacity (Qb) and friction resistance along the shaft (Qs):
[image: image]
where qb is the unit end resistance at the pile base, Ab is the section area of the pile, fpi is the unit pile shaft resistance of the ith soil layer, Asi is the superficial area of pile shaft at the ith soil layer, and N is the number of soil units in the soil strata.
Based on a database of 102 full-scale pile loading tests from 40 sites, Eslami and Fellenius (1997) developed the correlations between unit pile resistances and effective piezocone penetration resistance (qe) for a single soil layer as
[image: image]
[image: image]
where Cp is the toe correlation coefficient, Cs is the shaft correlation coefficient, determined from a soil behavior chart depending on sleeve frictional resistance (fs) and qe, qeg is the geometric average of qe values over the influence zone, qe is the effective cone tip resistance that qe = qt–u2, and qt is the cone tip resistance corrected for the unequal area effect caused by pore water pressure (u2) (Lunne et al., 1997; Mayne, 2007). Table 1 presents the empirical ranges and advised approximation for Cs corresponding to the soil type.
TABLE 1 | Shaft correlation coefficient Cs (Eslami and Fellenius, 1997).
[image: Table 1]Substitution of Eqs 2a, 2b in Eq. 1 derives
[image: image]
The influence zone for qeg values depends on the stiffness of surrounding soils above and below the pile toe along with the diameter (B) of the designed piles. Based on comprehensive literature reviews and experimental analysis, Eslami and Fellenius (1997) suggested that the influence zone extends from 4B below the pile toe to a height of 8B above the pile toe when a pile is installed through a weak soil into a dense soil, and 2B above the pile toe when a pile is installed through a dense soil into a weak soil. Due to the uncertainties associated with (Cp, qeg, Csi and qei), Qu could vary in a large range. In this research, the Unicone method is analyzed from a probabilistic way to evaluate the reliability of the ultimate axial bearing capacity of piles.
Uncertainties of Empirical Correlation Coefficients
For a soil profile with high variability, the geotechnical parameters usually followed skewed probability density distributions (PDFs). Consequently, in the estimation of bearing capacity around the pile toe, the geometric mean value is more rational than the arithmetic mean value for average properties of geotechnical parameters (Eslami and Fellenius, 1997; Golafzani et al., 2020; Heidarie Golafzani et al., 2020). However, the geometric mean, qeg, is not compatible with reliability-based analysis, in which the arithmetic mean is used. Hence it is necessary to rewrite Eq. 3 in the form of the arithmetic mean (qea), as follows:
[image: image]
where a = qeg/qea is the ratio of geometric mean (qeg) to arithmetic mean (qea), varying between 0 and 1. The values of the ratio a can be determined from the sampling CPTU data. Since both geometric and arithmetic mean values of qe are viewed as deterministic quantities, the ratio (a) is also treated as a constant (deterministic value).
According to Eq. 4, four indices including two in situ measurements (qea and qe) and two empirical coefficients (Cp and Cs) should be concerned as random parameters. The variance of Qu depends on the probability distributions of four indices (Cp, qea, Csi, and qei), and also depends on the correlation between each pair of two indices. For convenience, the geotechnical parameters in Eq. 4 are denoted as Y variables, i.e., Y1 = Cp, Y2 = qea, Y3i = Csi, Y4i = qei, where i is the order of the soil unit. In this research, all the Y parameters in Eq. 4 are assumed to be individually following lognormal distribution advised for most geotechnical parameters. Under this assumption, only the means and variance of these parameters are needed and discussed in this section. To get a consistent description of the magnitude of uncertainty, the dimensionless coefficient of variation (COV) is used instead of variance, defined as the ratio of standard deviation over the mean.
The Cp and Cs are uncertain because the true values are not available, and only empirical values can be obtained based on the engineering database. Based on 14 pile case histories, Eslami and Fellenius (1997) proposed a mean of 0.98 and a standard deviation of 0.09 for Cp. Hence, in this research, the Cp is assumed to be a lognormal variable with a mean of 1 and COV of 0.1. For the Cs, the recommended values are shown in Table 1, most values should vary within the 95% confidence interval (CI). If the soil strata containing different layers are treated as a whole soil unit, the 95% CI for the PDF of Cs should be the interval between the lower bound and upper bound for all the involved soil types.
Figure 1 illustrated the estimated PDFs of Cs for different soil types. The statistical parameters including expected value (μ), standard deviation (σ), COV, and the 95% CI are listed in Table 2. The 95% CI for each type of soil is the same as the recommended ranges in Table 1, and the estimated mean value of Cs for each soil type approximates the suggested mean value. In Figure 1, the PDFs of Cs are almost asymmetric if different types of soils are investigated individually. The normal distribution can be used to approximate the lognormal distribution when the COV is small (COV <0.3). However, the lognormal distribution is still adopted to guarantee the positivity of Cs.
[image: Figure 1]FIGURE 1 | Estimated PDFs of Cs.
TABLE 2 | Proposed lognormal distributions for Cs.
[image: Table 2]However, if different soil units are lumped together, the estimated PDFs of Cs are distinctly skewed (as shown in Figure 1) and the COVs increase significantly. In extreme cases, both Zone 1 and Zone 5 exist in the soil strata, the mean and COV of Cs are 2.41 and 0.99. Due to uncertainties associated with empirical coefficients, separating different soil units properly should be more reasonable than a mixing soil profile in the reliability-based analysis by the UniCone method. This suggestion is also suitable for other CPT/CPTU-based predicting methods (Mayne, 2007; Golafzani et al., 2020; Heidarie Golafzani et al., 2020).
Uncertainties of Effective Cone Tip Resistance
Soil properties exhibit spatial variability over the space. Due to insufficient site characterization information and limitations of testing techniques, the geotechnical parameters become variational. Different Interpretations of in situ testing data also contribute to the geotechnical uncertainty (Mo et al., 2021; Chen and Mo, 2022). The random field has been widely applied to model the spatial variability of geotechnical parameters including the effective cone tip resistance (both qe and qea).
The Framework of Random Field
In a random field model, the in situ measurement Y(z) at a depth z in a soil unit is treated as a combination of a trend component t(z), and a fluctuation component w(z) (Phoon, et al., 2003; Uzielli, et al., 2005):
[image: image]
The trend component represents the impact of physical factors on the in situ measurements, such as overburden pressure and geologic setting, usually treated as a deterministic component. The fluctuation component represents the spatial variability of a geotechnical parameter. It has been emphasized that the fluctuation component is not inherent but depends on the selection of trends (Cafaro and Cherubini, 2002; Phoon, et al., 2003; Stuedlein et al., 2012). In the reliability analysis, only the arithmetic mean value is used rather than the trend, leading to a potential conflict between reliability and the random field model. Assuming that Cs is independent of both depth (z) and qe, it can be proved easily that a linear trend in Eqs 2a, 2b is mathematically equivalent to the arithmetic mean of qe profile. Therefore, it is acceptable to directly apply the random field with a linear trend for the reliability-based analysis of piles. However, a high-order trend cannot be replaced by the arithmetic mean for qe in Eqs 2a, 2b. In this case, it is advised to further subdivide the soil into different units and perform further analysis.
In a random field model, the linear trend can be determined by linear regression analysis. The scale of fluctuation (δ) represents the inherent spatial variability of a soil property. COV and δ are used to describe the corresponding fluctuation component (Phoon and Kulhawy, 1999; Phoon et al., 2003).
The Scale of Fluctuation and Spatial Averaging
The scale of fluctuation in the vertical direction (δv) or in the horizontal direction (δh) indicates that the soil property values show a relatively strong correlation within the lagging distance. This study emphasizes the vertical random field parameters as the piles are mostly installed vertically in layered soils.
The random field theory is simplified by the weak stationarity, which requires that the means and variances of the data segments in a soil profile are constant along with the coordinate (Jaksa et al., 1997). For a weak-stationary soil profile, the autocorrelation function (ACF) only depends on the intervals between two observations rather than the absolute depth coordinates (z1 and z2). The ACF, which is normalized by the sample variance, can be estimated as (Phoon et al., 2003; Uzielli, et al., 2005)
[image: image]
where τ is lagging distance, τ = |z1 – z2|; Δz is sampling interval; zi = i(Δz) is depth coordinate of ith sampling point; n is the number of data points; and s2 is the sample variance. Eq. 6 is accurate up to a maximum lag of less than 1/4 of the total sample length, i.e., j < n/4. In practice, only the initial parts of the ACF (i.e., R(τ) > 1.96/ [image: image]) are necessary for subsequent analysis according to Uzielli et al. (2005). Eq. 6 should be calculated within the sampling interval smaller than the δv.
Discontinuity of ACF can be observed when the lag distance approaches zero, which is referred to as the nugget effect (Jaksa et al., 1997). The nugget effect describes the impacts of the random measurement error and spatial variability of soil property in a small scale and also contributes to the imprecise evaluation of uncertainties associated with geotechnical data.
The ACF obtained from Eq. 6 is discrete. Several theoretical continuous autocorrelation models (ACMs) can be used to fit the sample ACF based on the regression analysis (Phoon et al., 2003; Uzielli, et al., 2005). The best-fitting ACM should be selected to determine the δv of geotechnical data. Vanmarcke (1977) suggested that the variance of geotechnical data can be reduced by averaging data points within the range of δv. The reduced variance is more representative than the raw measurements as the performance of a single pile depends on the averaged regionalized soil property, rather than the point estimates of variance. Table 3 lists five common ACM and the corresponding variance reduction functions (VRFs), which are defined as the ratio of the variance of post-averaged data over that of pre-averaged data.
TABLE 3 | Autocorrelation models and variance reduction functions (Vanmarcke, 1977; Phoon and Kulhawy, 1999); Phoon et al., 2003; Uzielli, et al., 2005).
[image: Table 3]Coefficient of Variation
The coefficient of variation evaluates the absolute magnitude of fluctuation about the trend. The COV of a soil profile in one soil unit after removing a trend is defined as (Phoon and Kulhawy, 1999)
[image: image]
where σY and μY are the standard deviation and mean of Y, n is the number of data points in the profile, and zi is the depth of ith sampling point.
After spatial averaging, the reduced COVr of Y in each soil unit is
[image: image]
Random Field Model in Layered Soils
Piles are generally installed in layered soil strata rather than homogeneous soil. For layered soil strata, the random field model can be applied for a soil profile without separating different soil units, as commonly used in geotechnical literature. However, it is suggested to apply the random field model for each soil unit since the COV of geotechnical data can be highly overestimated if different soil units are mixed up together (Phoon et al., 2003; Uzielli, et al., 2005). The autocorrelation structure can be also highly overestimated if different soil units are not identified properly. It has been observed that the estimated δv depends on the scale of observation (Cafaro and Cherubini, 2002). If the whole soil strata are modeled as one random field, then the qe readings in a soil unit are merely a fluctuation component of the whole soil profile. This observation contributes to the conclusion that qe is highly correlated in space. Even if a linear trend is removed, the CPTU readings are still close to each other at adjacent locations. If different soil units are investigated individually, the δv should be smaller and more representative of spatial variability of qe.
Based on the aforementioned analysis, the random field model of soil strata containing N soil units is recommended as shown in Figure 2. The random field model is constructed individually for each soil unit, including the influence zone. The size of the influence zone directly impacts the correlations among qei of different soil units.
[image: Figure 2]FIGURE 2 | Random field model for layered soils.
Correlations Among Geotechnical Parameters
Another source of the uncertainties associated with qe is the covariance, which describes the linear relationship between paired geotechnical parameters. For a soil profile shown in Figure 3, Vanmarcke (1977) proposed the following formula to estimate the product-moment correlation (ρY12) between two segments (ws1 and ws2):
[image: image]
where z0 = |c - b|; z1 = |c - a|; z2 = |d - a|; z3 = |d - b|; Δz1 = |b - a|; Δz2 = |d - c|; a and c are the upper bounds of ws1 and ws2, respectively; b and d are the lower bounds of ws1 and ws2, respectively; and Γ2(•) is the variance reduction function of the whole profile.
[image: Figure 3]FIGURE 3 | Calculation scheme of the correlation between two segments.
Vanmarcke (1977) has proven that the above equation is still applicable even if the two segments are overlapped (i.e., c > b). According to the above formula, the correlation between any two qe profiles of non-overlapped soil units approximates to zero. But for two soil units overlapped, the correlations should not be ignored.
By applying Eq. 9, the soil profile should be stationary in the second-moment sense because the correlation structure can be described using a consistent ACM. The stationarity of a geotechnical profile can be checked rigorously using the modified Bartlett’s test proposed by Phoon et al. (2003). The non-stationary points of the soil profile may correspond to the soil boundaries. Uzielli et al. (2005) showed that cohesionless soils are more variable than cohesive soils. The variance of fluctuation components can be hardly constant with the depth caused by non-stationarity. For a single soil unit, weak stationarity is often an acceptable assumption after a specific trend is removed (Vanmarcke, 1977; Stuedlein et al., 2012; Bong and Stuedlein, 2017).
Including the uncertainties of Cp, qea, Csi, and qei, the variability of Qu can be estimated by the random field theory. In this research, the following strategy is adopted when the N different soil units are identified properly from a soil profile:
(1) The qe data of different soil units along the pile shaft are uncorrelated to each other, while they are autocorrelated in the same soil unit
(2) If the influence zone contains at least two soil units, then the qea of the influence zone is assumed to be uncorrelated to all the qe along the pile shaft and the correlation matrix of (Cp, qea, Csi, qei) is simply an identity matrix
(3) If the influence zone is limited in the Nth soil unit, then the correlation between qea and qeN is estimated using Eq. 9, whereas qea and qei (i = 1, 2, … , N-1) are uncorrelated
RELIABILITY INDEX OF PILE BEARING CAPACITY
The most advantage of reliability analysis is to quantify the uncertainties of design parameters and to manipulate those uncertainties consistently. In this section, the basic concept of reliability analysis is introduced firstly. Then, data transformation is discussed to conduct the reliability analysis. An Excel-based reliability analysis framework is illustrated to evaluate the ultimate axial bearing capacity of piles in layered soils by spatial variability and the FORM analysis.
Reliability Analysis Theory
Reliability analysis originates from the limit state design concept. The limit state function of the vertically loaded pile can be written as
[image: image]
where Qu is the ultimate bearing capacity, S is the load, and M is the margin of safety. If Qu and S are normally distributed, then M is also normally distributed with a mean of μM and a standard deviation of μM. If Qu and S are further uncorrelated, then a dimensionless reliability index, β, is defined as (Baecher and Christian, 2005)
[image: image]
Here, M represents the geometrical distance from a design point to the limit state in the unit of capacity. Eq. 11 indicates that β is a standardized representation of M. β evaluates the distance from a design point to the failure criteria in the standardized space. Eq. 11 assumes that the margin of safety is expressed as a linear sum of uncorrelated normal random variables. However, when the M is expressed in terms of design parameters (Cp, qea, Csi, qei and S), this assumption is contradictory to the geotechnical practice, because the capacity of piles is often expressed as a nonlinear function of non-Gaussian variables. After proper data transformation, β can be directly defined in the multivariate standard normal space. So the FORM provides a more rational estimation of the probability of failure (pf). Data transformation for each variable and the correlations among those variables are introduced in the following sections.
Data Transformation
In this research, S is also assumed as a lognormal random variable with a mean of μS and standard deviation of σS. Then, the correlated Y variables can be individually converted to correlated standard normal variables (Vi) using the following simple transformation:
[image: image]
where Ti = lnYi, μTi and σTi are the mean value and standard deviation of Ti, respectively. The μTi and σTi can be obtained using (Low and Tang, 1997) the following expression:
[image: image]
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where μYi and σYi are the mean value and standard deviation of Yi, respectively.
Due to the nonlinear transformation, the product-moment correlation coefficient between Vi and Vj, ρVij, is different from the initial correlation coefficient ρYij. However, shifting or scaling two variables will not change the product-moment correlation between them. Therefore ρVij should be the same as the product-moment correlation (ρTij) between Ti and Tj.
Since Ti and Tj follow the normal distribution, (Ti + Tj) is still a Gaussian variable with means and variances as
[image: image]
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Therefore, YiYj = exp(Ti + Tj) follows lognormal distribution with the expected value as
[image: image]
Combining Eqs 13a, 13b, Eqs 14a, 14b, 14c, the following expression can be derived:
[image: image]
It is noted that ρVij is the (i,j)th entry of correlation matrix KV. So KV can be determined from the correlation matrix KY, especially in the situation that the COVs of Yi and Yj are small (e.g., COV <0.3). ρVij may approximate ρYij because ln(1 + x) approximates x very well when x is close to zero. After obtaining the transformed correlation matrix, the last issue in Eq. 11 is that the correlated Gaussian variables need to be converted to uncorrelated Gaussian variables. Transformation for uncorrelated Gaussian variables with the definition of reliability index is introduced subsequently.
Reliability Index
The Cholesky decomposition method converts the correlated standard normal variables to uncorrelated variables with no change in the normality of the correlation matrix. Since KV is asymmetric and positive definite matrix, it can be factored into two matrices transposing each other (Baecher and Christian, 2005):
[image: image]
where W is a lower triangular matrix. Then, the vector of uncorrelated standard normal variables, X, can be obtained as
[image: image]
where X = (X1, X2, … , X5) is the vector of uncorrelated standard normal variables, V = (V1, V2, … , V5).
Finally, all correlated lognormal Y variables are converted to uncorrelated standard normal X variables. Assuming that the limit state function can be approximated by the sum of transformed uncorrelated Gaussian variables, the reliability index, β, can be estimated using the following formula (Baecher and Christian, 2005):
[image: image]
To consistently demonstrate the sensitivity of β on Yi, a sensitivity factor (αi) is defined as Xi/β. A large absolute value of αi indicates high influence of Yi on β (Teixeira et al., 2012, Teixeira et al., 2014). The reliability index (β) defined in Eq. 17 indicates the minimal distance between the critical data point in the limit state function and the origin of uncorrelated multivariate standard normal space. Therefore, the FORM analysis becomes the problem of finding minimal β and corresponding critical design points under the constraint of limit state function.
Algorithm for Reliability Index
Many algorithms for conditional minimization are available in the statistic literature. The algorithm procedure proposed by Low and Tang (1997) can be modified to conveniently solve the minimization problem. The procedure is updated to account for the transformation of correlations among variables as follows:
1) Define the means, standard deviations, and correlation matrix (KY) of (Y1, Y2, … , Y5) using the random field model
2) Convert Yi to Xi individually using the logarithm transformation with a standardizing procedure, using Eq. 12, Eq. 13a, Eq. 13b
3) Convert the correlation matrix KY to KV using Eq. 15
4) Assign initial values for each Vi variable and obtain the corresponding Yi variable
5) Obtain the margin of safety, M = f(Y1, Y2, … , Y5)
6) Define reliability index, β, according to Eq. 17
7) Invoke the “Solver” command in the Excel software to minimize β by changing the values of Vi subject to the constraint that M = 0
8) Obtain the critical values of (V1, V2, … , V5) and corresponding β
9) Perform Cholesky decomposition on the KV, obtain the critical values of (X1, X2, … , X5) using Eqs 16a, 16b, and evaluate the sensitivity factors (αi)
10) Estimate the probability of failure using pf = Φ(-β)
The modified algorithm is suitable for both correlated and uncorrelated random variables. An Excel-based framework for the reliability design of pile foundations by the CPTU-based UniCone method is developed, as shown in Figure 4. Using the proposed framework, seven case studies in two sites are analyzed to investigate the difference of estimated pf by separating soil units properly or not.
[image: Figure 4]FIGURE 4 | Flowchart for the uncertainty analysis of axial pile capacity in layered soils by the UniCone method.
UNCERTAINTY ANALYSIS OF AXIAL PILE CAPACITY
The impacts of uncertainties of geotechnical parameters on the reliability design are assessed in terms of the probability of failure factor of safety (pf–FS) curve by different interpretations of soil profiles. The FS represents the averaged influence of resistance on the load, since a large mean value of capacity with a small mean value of the load leads to a high FS. Then, the mean value of S is determined using μS = μQu/FS. The COV of S is selected as 15% as commonly used in literature (Zhang et al., 2004; Chen and Zhang, 2013; Tang and Phoon, 2018; Bueno Aguado et al., 2021). If soil profiles are interpreted in different ways, the values of δv and COV should change accordingly. Deviations in β and pf could be expected due to different values of δv and COV at the same FS level. Seven driven piles designed in layered soils are analyzed by the proposed framework to demonstrate the importance of identifying different soil units properly. For convenience, Type I indicates the uncertainty analysis by dealing with the soil strata as an integrated unit, while Type II indicates the uncertainty analysis by identifying different soil units from a soil profile.
Site Condition
The seven design case studies are located in Nanjing and Suqian, Jiangsu, China. Table 4 lists the dimensions and required axial capacities of the driven piles. These piles include closed-end pre-stressed high-strength concrete (PHC) pipe piles and pre-stressed concrete (PC) pile. The piles are driven into the bearing layers. The bearing layers locate in the last soil units as listed in Type II method. The pile types do not influence the estimations of bearing capacity by the UniCone method as discussed previously.
TABLE 4 | Basic information of site strata and piles.
[image: Table 4]In Table 4, Case 1–Case 4 are in the Nanjing sites. In Case 1 and 2, soil strata consist of sand and silt units, while in Case 3 and 4, the soil strata consist of silty clay with soft clay. In Table 4, Case 5–Case 7 are in the Suqian sites. The soil strata in Case 5–Case 7 contain relatively loose silt over median sandy silt. Therefore, the study on Case 1 and 2 illustrates the performance of reliability-based analysis in mixed cohesionless deposits. The study on Case 3 and 4 checks the performance of reliability analysis in mixed cohesive deposits. The investigation on Case 5–7 evaluates the performance of reliability-based analysis in mixed silts. Case 1 is a representative example of qe profile for the spatial variability analysis.
Spatial Variability Analysis
In the proposed framework, the spatial variability of qe has been analyzed. The results of spatial analysis are concluded in Table 5. Figure 5 presents a representative example of qe profile measured at one of the Nanjing sites in Case 1. Three soil units are identified from the CPTU profile according to the adjacent borehole data, as shown in Figure 5. The first unit is silt from the ground surface to a depth of 6.8 m. The second unit is silty sand from 6.8 to 11.4 m in depth. The last soil unit is sandy silt from 11.4 to 19.0 m in depth.
TABLE 5 | The results of spatial analysis of qe.
[image: Table 5][image: Figure 5]FIGURE 5 | Estimation of random field parameters of the qe profile in Case 1.
For Type I analysis, a global trend is removed and the δv is estimated from the corresponding fluctuation component, as shown in Figure 5. For Type II analysis, the linear trends are estimated and removed individually for three identified soil units, as shown in Figure 5. The δv values of three soil units are then determined by fitting ACMs respectively. The linear trend can be directly estimated using the “Trend” function in Excel. Eq. 6 indicates that under the assumption of weak stationarity, the autocorrelation coefficient at a given lag distance can be approximated by the Pearson correlation coefficient. In a soil unit, if the residuals of qe are recorded as (w1, w2, … , wn), at the jth (j = 0, 1, 2, … , n/4) lag distance, the ACF can be estimated simply using the “Pearson” function in the Excel software as “Pearson(w1:wn-j, wj+1:wn)”.
Figure 5 and Table 5 illustrate the estimated ACFs compatible with fitted ACMs for Case 1. For Type I analysis, the random field parameters of qe along the pile shaft are μqe = 7,094 kPa, COVqe1 = 0.43, δvqe1 = 1.06 m with the SNX model. For Type II analysis, the random field parameters of qe of three soil units are estimated as: 1) Unit I: μqe1 = 2,227 kPa, COVqe1 = 0.35, δvqe1 = 0.19 m with SMK model; 2) Unit II: μqe2 = 10,253 kPa, COVqe2 = 0.25, δvqe1 = 0.26 m with CSX model; and 3) Unit III: μqe3 = 9,499 kPa, COVqe3 = 0.27, δvqe3 = 0.24 m with the SMK model. Since the pile is 16 m in length and 0.4 m in width, the influence zone is determined ranging from 12.8 to 17.6 m in depth. The estimated ratio of qeg to qea is 0.95. Assuming that the fluctuation component of qe with a linear trend in the influence zone is stationary enough in the second-moment sense, the random field parameters of qea are estimated as μqea = 9,177 kPa and COVqea = 0.28, δvqea = 0.22 m with the CSX model. The nugget effect is not observed in the curve fitting of ACM to ACF. Therefore, the random measurement errors associated with qe measurements are neglectable in this research.
Applying the above procedure to other cases, the random field parameters of qe can be determined for both Type I and Type II analysis, as listed in Table 5. In Type II analysis, the standard deviations (mean and COV) of qe in different soil units are seldom similar. Hence, assuming the fluctuation component of the whole profile is stationary, perhaps over-simplified. It is reasonable to assume that qe data from different soil units are uncorrelated because measurements in one soil unit can hardly provide information on the adjacent soil unit. The range for spatial averaging in each unit is determined as the length of the pile shaft along with the corresponding unit. Then, the reduced COVs can be obtained for all the variables and are imported to the FORM analysis.
Reliability Analysis
The Excel-based algorithm modified from Low and Tang (1997) is developed for reliability analysis to account for the variation of the correlation matrix after data transformation. Figure 6 presents the Type II analysis of Case 1. Type I analysis is similar but more simple. Basic functions for the operation of matrices are also illustrated in Figure 6. Decomposition of the correlation matrix can be achieved using the “CHOL” function in “RealStats.xlam”. “RealStats.xlam” is developed for statistical analysis using Excel and is available on the website (http://www.real-statistics.com/). The “Solver” command in Excel can be used to obtain the minimal β subjected to the constraint of limit state function by changing V or X values.
[image: Figure 6]FIGURE 6 | Procedure for evaluating failure probability of pile foundations (modified from Low and Tang (1997))
DISCUSSION
For Case 1, the relationship between pf and FS can be estimated by both Type I and Type II analysis with those parameters shown in Figure 5 and Figure 6. Similar conducts may apply to the other cases in Table 5. The results for Nanjing sites and Suqian sites are displayed in Figure 7 and Figure 8, respectively.
[image: Figure 7]FIGURE 7 | FS–Pf relationships for Nanjing sites.
[image: Figure 8]FIGURE 8 | FS–Pf relationships for Suqian sites.
Effects of Spatial Variability
In Figure 7, at a small FS level, the difference between Type I and Type II is small, whereas, at a high FS level, the difference becomes conspicuous. In Case 1, when FS = 1.5, the pf of Type I is 7.5 × 10–2 while the pf of Type II is 6.5 × 10–3, the difference between the two pf values is almost within one order of magnitude. When FS = 4.0, the pf of Type I is 1.26 × 10−8 while the pf of Type II is 5.3 × 10–18. The difference between the two pf values is about ten orders of magnitude. A similar observation is confirmed in other cases in Nanjing sites. Since all the different soil units are modeled as a homogeneous random field, the COV and δv can be highly overestimated. The overestimated COV and δv contribute to a high pf value at the same FS level. This inference is applicable for cohesionless and cohesive soil deposits in Nanjing sites.
In Figure 8, the difference between Type I and Type II is relatively small at the same FS level. However, at a high FS level, the difference between Type I and Type II is still distinct in Case 5 to Case 7. In Case 5, when FS = 4.0, the pf of Type I is 7.0 × 10–12, while the pf of Type II is 8.9 × 10–16. However, the difference between the two pf values is about four orders of magnitude. A similar observation is confirmed in other cases in Suqian sites.
In Case 1–Case 4, the spatial variability of geotechnical parameters in Type I is significantly different from that in Type II because the soil strata consist of different soils. In Case 5–Case 7, the means and COVs of Cs in Type I are the same as those in Type II because of the same soil strata, but the random field parameters of soils are vary greatly. In an idealized case, if the soil profile contains only one homogeneous soil unit, the reliability results of Type I and Type II are expected to be the same by the proposed framework. But even if soil strata consist of the same soil types, different interpretations of soil profiles may lead to different reliability results.
Effects of Uncertainties of Empirical Correlation Coefficients
It is of interest to investigate the impact of uncertainties of design parameters (Cp, qea, Csi, qei, S) on pf in terms of the sensitivity factor. The design parameters are ordered according to the soil strata. Case 1 and Case 5 are studied to illustrate the influence of Type I and Type II interpretation methods on the sensitivity factors, as shown in Figure 9 and Figure 10 respectively.
[image: Figure 9]FIGURE 9 | Sensitivity factors for Case 1.
[image: Figure 10]FIGURE 10 | Sensitivity factors for Case 5.
For Case 1, three soil units are identified from the soil profile. In Figure 9, the pf of Type I mainly depends on the uncertainties of the Cs and S, whereas the influences of qea and qe are relatively small. During spatial averaging, the uncertainties involving qea and qe are reduced, but the uncertainties of Cs are highly overestimated (COV of Cs = 0.30) in Type I. However, in Type II, the main factor influencing the failure probability is only the load, indicating that the uncertainties of the geotechnical parameters are evaluated exactly. It can be concluded that, in Type I analysis, the uncertainties of the empirical correlation coefficients will impact the failure probability significantly.
For Case 5, two soil units are identified from the whole soil profile. In Figure 10, the impact of Cs in Type I is the same as that in the Type II analysis. This can be well understood because the means and COVs of Cs are the same in Type I and Type II methods for Case 5. In Type I analysis, the absolute values of sensitivity factors of qea and qe are slightly larger than those in Type II. In Type I analysis, the performance of the pile is more influenced by the uncertainties of CPTU data. This is consistent with the observation that the variability of qe is over-estimated in Type I analysis.
A rational design can be achieved when different soil units are identified properly from the soil profile in the reliability analysis. If different soil units are not identified properly, uncertainties of CPTU data and empirical correlation coefficients should be over-estimated, the pf may be also over-estimated, leading to a conservative design. Christian and Baecher, (2011) emphasized that over the past few decades, the failure probability of geotechnical foundations in reliability analysis is significantly overestimated, compared to the frequency of failures in practice. The failure probability of piles in layered soils can be reduced when different soil units are identified properly from a soil profile in the reliability analysis.
CONCLUSION
In this study, an Excel spreadsheet-based framework is developed for the uncertainty analysis of the ultimate axial bearing capacity of piles in layered soils. The uncertainty analysis is based on the UniCone direct piezocone method involving spatial variability of CPTU data and variations of empirical correlation coefficients. Proper identification of different soil units from a soil profile is crucial for estimating the failure probability of pile capacity in the reliability analysis.
The main conclusions are summarized as follows:
(1) Different interpretations of spatial variability of a soil profile may lead to different reliability results. The spatial variability of soil strata in layered soils can be evaluated accurately when different soil units are identified properly from a soil profile in the reliability analysis.
(2) For a soil profile consisting of the same soil types, the empirical correlation coefficients are the same, the spatial variability of different soil units also makes a great influence on the reliability results.
(3) As FS ranges from 1.0 to 4.0, the pf values estimated by Type I are consistently higher than those of Type II in all cases at the same FS level, because the Type I method over-estimated uncertainties of geotechnical parameters than the Type II method.
(4) In the Type II method, uncertainties of geotechnical parameters are reduced by the proper identification of different soil units from each other in a soil profile, producing rational reliability results.
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GLOSSARY
a Ratio of qeg to qea
Ab Section area of the pile
As Superficial area of pile shaft
B Diameter of design piles
COV Coefficient of variation
Cp Toe correlation coefficient
Cs Shaft correlation coefficient
fp Unit pile shaft resistance
fs Sleeve frictional resistance
FS Factor of safety
M Margin of safety
pf Probability of failure
qb Unit end resistance at the pile base
qe Effective piezocone penetration resistance
qea Arithmetic mean of qe
qeg Geometric mean of qe
qt Cone tip resistance
Qb End bearing capacity
Qs Friction resistance along the shaft
Qu Ultimate axial bearing capacity
load S load
u2 Pore water pressure
αi Sensitivity factors
β Reliability index
δ Scale of fluctuation
δh Scale of fluctuation in the horizontal direction
δv Scale of fluctuation in the vertical direction
Δz Sampling interval
μ Mean value
ρ Product-moment correlation
σ Standard deviation
τ Lagging distance
Φ Cumulative density function of standard Gaussian distribution
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In this study, theoretical analysis and numerical simulation methods were used to investigate the mechanical mechanism of the migration failure of the overlying strata and the development characteristics of the water-conducting fractured zone (WCFZ) in the mountainous carbonate areas in southwestern China. Due to the block-shaped rock mass structure characteristics of carbonate rocks, this paper considered the rock mass structure of the overlying strata. For the three-hinged arch structure of the block-shaped rock mass, the theory of damage mechanics was used to deduct the recursive calculation formula for the ultimate subsidence of the three-hinged arch structure of the overlying strata. Then, a method for determining the height of the WCFZ (HWCFZ) in the overlying strata under mining conditions was developed. Numerical simulations were carried out to study the stress field, plastic zone, and displacement field of the overlying strata and the dynamic evolution of the WCFZ during the mining process, and it was revealed that there was a positive feedback effect between them. After the mine was mined, due to the change of the stress field of the overlying strata, the overlying strata were mainly subjected to three types of plastic deformation during the fracturing process: tension, shearing, and tensile-shearing. There was a plastic partitioning phenomenon in the overlying strata. Among them, the tensile-slip failure zone was the most severely damaged. And the boundary of the WCFZ and the bending subsidence zone were determined based on the change characteristics of the displacement field. The HWCFZ obtained from the numerical simulations was consistent with the theoretical calculated value (93 vs. 92.5 m), validating the reliability and accuracy of the theoretical calculation method. Underground mining activities are active in the mountainous carbonate areas in southwestern China, and there are many landslide disasters due to overlying strata collapse, resulting in serious casualties. Therefore, prediction of HWCFZ and stability analysis of mountain need to be carried out for different mines in order to effectively carry out geological disaster prevention and mitigation research.
Keywords: mountainous carbonate areas in southwestern China, thin-bed mining, structure of overlying strata, HWCFZ, calculation method
1 INTRODUCTION
The Yunnan-Guizhou Plateau in southwestern China is an important energy reservoir containing coal and other mineral resources. With the rapid development in western China, the demand for energy has increased significantly, resulting in the exponential expansion of the scale of thin-bed mining. After the ore is mined, a pressure relief zone is formed in the goaf, causing the overlying strata to deform, fracture, and migrate (Jin et al., 2015). As a result, the stress in the overlying strata is redistributed. According to the deformation and failure characteristics of the overlying strata, the strata can be divided into a caved zone, fracture zone, and bending subsidence zone from bottom to top. The caved zone and fracture zone are also called the water-conducting fractured zone (WCFZ) (Aitao and Kai, 2018; Mondal et al., 2020). During mining operations in mountainous or hilly areas, due to the large fluctuations in the terrain, the surface movement is very different than that related to mining under flat ground. The presence of these three zones often leads to uneven subsidence, shearing, and compression failure of the weak strata at the bottom of cliffs (especially around the foot of the slope), which can in turn cause severe landslide disasters (Kang et al., 2000; Altun et al., 2010; Zheng et al., 2015; Li et al., 2016a; Fathi Salmi et al., 2017). Therefore, it is of great significance to study the migration and failure of the overlying strata and to quantitatively predict the height of the WCFZ (HWCFZ) for the prevention and control of geological disasters in mining areas. Currently, extensive studies have been conducted on this topic. For example, based on field measurement HWCFZ data, Liu (1981) used statistical correlation analysis and the least squares method to obtain a series of empirical equations for calculating the HWCFZ in overlying strata with various degrees of hardness. These equations meet the safety production requirements of most mines in the northern plain area of China. Xu et al. (2009); Xu et al. (2012) performed theoretical analysis, experimental simulations, and engineering detection to study the influence of the location of the key overlying strata layers on the HWCFZ and proposed a method for estimating the HWCFZ based on the location of the key overlying strata layers. Moreover, based on the theory of plates and shells in elastic mechanics, Liu et al. (2017) proposed an equation for calculating the maximum deflection of the overlying strata by determining the roof fracture based on the relationship between the roof’s tensile stress and the ultimate tensile stress. Then, they used the ultimate deflection value of the thin plate and the height of the free space below it to calculate the maximum HWCFZ of the Jurassic strata in China under mining conditions. Zhu et al. (2020) calculated the tensile strain of a rock stratum using the integral method and compared it with the measured yield tensile strain to determine the failure state of the rock mass. Then, they studied the development of the WCFZ in bedrock and in loess strata. In addition, they used the block plastic zone simulated by the UDEC software to determine HWCFZ. Based on the masonry beam Sliding–Rotation (S-R) stability theory, the key strata theory, and the cantilever beam theory, Ning et al. (2019) calculated the separation distance and the ultimate subsidence of the overlying strata and proposed a revised HWCFZ calculation equation, which they compared with the traditional empirical equations. Based on the key strata theory, Li et al. (2020b) proposed a method for calculating the HWCFZ in the overlying strata under backfill mining, and they verified their method using the UDEC numerical simulation and by monitoring the quantity of flush fluid circulation loss. Fan et al. (2020) used the rock layer’s tensile ratio to determine whether there were connected fractures in the roof stratum due to tension deformation. Furthermore, the HWCFZ developed in overlying strata covered by thin bedrock and a thick clay layer was identified and the Rock Failure Process Analysis (RFPA) software was used to simulate the development of the WCFZ during the mining process. In addition, Chen and Zhu (2020) predicted the HWCFZ of a working face based on the key strata theory and the composite strata theory. The HWCFZ was calculated based on the plastic zone simulated using the UDEC software, and the influence of the lithological assemblage of the roof on the HWCFZ was analyzed. This revealed that the HWCFZ of a roof composed of hard strata was the largest, while the HWCFZs of hard-soft and soft-hard combinations of strata were relatively small. Tan et al. (2022) studied the overburden fractures and the height of “two zones” in the working face through experiments and theoretical analysis, and discussed the height of “two zones” in the overburden based on the changes of mine water inflow. They believed that the prediction formula of the HWCFZ based on the traditional “three-zone” mode was inapplicable to the “two-zone” high-intensity mining mode, which resulted in the relatively small calculated result.
Since the movements of the rock strata and the surface are the results of numerous geological and mining factors (Wang et al., 2007), the HWCFZ is affected by a variety of factors, including the mining height, mining depth, ore seam inclination, the length of the working face, the advancement speed of the working face, the lithology of the roof, and the strength and structure of the rock mass (Hu et al., 2012; Liu et al., 2015; Zhang J. et al., 2016; Hou et al., 2020). Therefore, there are large differences in the HWCFZs developed in overlying strata with different depositional ages, lithological combinations, and rock mass structures and under different mining conditions. Currently, few studies have focused on the HWCFZ in the carbonate strata in southwestern China, which is composed of thin ore seams and thick structural bedrock. Therefore, based on the geological and mining conditions of a working face in the Zengziyan Bauxite Mine, in this study, we combined theoretical mechanical calculations and UDEC numerical simulations to explore the mechanical mechanism of the migration and failure of the overlying strata and the development characteristics of the fracture zone. Through theoretical analysis, a method for predicting the HWCFZ was developed based on a three-hinged arch structure (Diederichs and Kaiser, 1999; Nomikos et al., 2002). The theoretical results were compared with the numerical simulation results, thereby validating the feasibility and accuracy of the theoretical method. Thus, the proposed method provides a reference for HWCFZ prediction in mines with similar conditions.
2 BACKGROUND
The Zengziyan Bauxite Mine is located in the river valley of Nanchuan District, Chongqing, China (Figure 1A), and it has a three-level cliff-type topography with nearly horizontal layered strata. The third-level cliff is mainly composed of limestone of Longtan Formation (P2l) of the Permian System, its height is 30–70 m, and the elevation range is 1820–2000 m. The second-level cliff is composed of limestone of 3rd, 4th and 5th part of Maokou Formation (P1m3+4+5), its height is 100–236 m, and the elevation range is 1,550–1930 m. The first-level cliff is about 70–110 m high and the elevation range is 1,400–1,560 m. It is mainly composed of limestone of 1st part of Maokou Formation (P1m1) and Qixia Formation (P1q). The bottom of the cliff is bauxite of the Liangshan Formation (P1l) of the Permian System, with burial depths of 300–450 m, and the ore bed is continuous and stable, with an average thickness of 2.05 m. The roof and bottom plate are mainly composed of claystone. The area between the 1st and 2nd-level cliff is a slope composed of the shale intercalated with limestone of the 2nd part of the Maokou Formation (P1m2). The area below the first-level cliff is a slope landform composed of silty shale of Hanjiadian Formation (S2h) of the Middle Silurian System and Quaternary deposits (Q4) (Figures 1B,C and Table 1). Field measurements have revealed that the layer thickness of the overlying strata is 0.2–0.8 m. There are multiple groups of dominant longitudinal structural planes perpendicular to the strata, and the joint spacing ranges from 0.2 to 1.0 m. The layered rock strata are divided into blocks (Figure 1D).
[image: Figure 1]FIGURE 1 | Zengziyan Bauxite Mine in Nanchuan District, Chongqing: (A) Location of Zengziyan Bauxite Mine (refer to Feng et al., 2014); (B) Mining geological conditions; (C) Section of overlying strata; (D) Stratigraphic structure (region I in Figure 1B); (E) Room-and-pillar mining face.
TABLE 1 | Stratigraphy of the study area.
[image: Table 1]Room-and-pillar mining is the mining method. The maximum working face width (in the inclination direction) is 16 m. The specifications of the safety pillars are 5–8 m in the mining area (Figure 1E). The roof subsidence and floor bulging at the working faces in the Zengziyan Bauxite Mine are very common. Due to the long-term mining activities, 30 × 104 m3 of goaf have been formed. A series of dangerous rock collapse zones have formed above the goaf along the edge of the cliff, and several collapse failures have occurred. According to the field investigation report on the dangerous rock belt (Chongqing Geology and Mineral Exploration and Development Bureau, 2009) and previous studies (Feng et al., 2014; He, 2015), the soft foundation of shale intercalated with limestone of Maokou Formation (P1m2) of Permian System at the bottom of the rock collapse zones has undergone uneven subsidence and compression deformation. It is thought that the WCFZ is close to or has even reached the bottom of the soft foundation. However, according to the aditional mining experience, after thin-layer mining, the range of WCFZ is relatively small, and the WCFZ will not approach or reach the bottom of the damaged foundation, and thus, it will have no effect on the stability of the mountain foundation and will not cause mountain failure. Therefore, we carried out this study to analyze the mechanism of the migration and failure of the overlying strata and the development characteristics of the WCFZ in the mountainous carbonate areas in southwestern China.
3 MECHANICAL METHOD FOR DETERMINING HWCFZ
3.1 Mechanism of Overlying Strata Failure
Prior to underground mining, the rock strata are subjected to the gravity of the overlying strata, and the surrounding rock is usually in an elastic deformation state under three-way compression. After the ore body is mined, the goaf becomes a pressure relief zone, and the stress of the original rock strata is redistributed. According to the new stress distribution in the surrounding rock, the overlying strata can be divided into a reduced stress area, an increased stress area, and an unchanged stress area (Qian et al., 2010). The block-shaped rock mass above the goaf is the reduced stress area, which is in an unloaded state. Since the vertical joints oriented perpendicular to the strata are relatively developed in the mountainous carbonate areas in southwestern China, the roof cannot be suspended above the goaf for an extended period of time. Under its own weight, it bends and migrates toward the goaf, causing horizontal separation fractures to form between the layers of the strata. In the vertical direction, the rock mass is subjected to tension, and the dominant longitudinal joints oriented perpendicular to the strata expand, forming connected and unconnected fractures. These two types of longitudinal fractures cause the rock mass to gradually break into blocks. During the crushing of the rock blocks, a typical three-hinged arch structure is formed (Yang, 2010; Gou and Chen, 2011). As the underground mining activities progress, the equilibrium state of the three-hinged arch structure of the roof is gradually broken from bottom to top, and instability of the roof periodically occurs, during which the unconnected fractures transform into connected fractures. During this process, the separation fractures crisscross with the connected fractures oriented perpendicular to the strata, forming the WCFZ. As the HWCFZ increases, the free space of the goaf continuously decreases due to the fragmentation heave characteristics of the rock blocks. When the height of the free space in the goaf is less than the ultimate subsidence of the three-hinged arch, that is, the unconnected fractures can no longer be transformed into connected fractures, the structure reaches an equilibrium state, and the WCFZ reaches its maximum height at this point (Figure 2). Because the three-hinged arch structure of the upper strata is not completely unstable, it only experiences bending and subsidence, with no connected fractures. This area is defined as the bending subsidence zone. Therefore, the stability of the three-hinged arch structure can be used as an indicator of whether the HWCFZ in the overlying strata reaches the maximum value. It should be noted that the roof is usually composed of rock formations with various thicknesses and strengths. During the fracturing process, failures occur throughout the entire thick stratum macroscopically, yet from the microscopic perspective, the failures occur layer by layer according to the layered structure of the rock mass, especially in sedimentary rocks such as limestone and sandstone. Based on the blocky structure of the rock mass in the study area, the three-hinged arch model and the theory of damage mechanics (Xie, 1990) were used to calculate the equivalent compressive strength [image: image] and the equivalent bearing stress [image: image] of the roof. The critical safety factor k of the three-hinged arch was determined, and the ultimate subsidence Si of the three-hinged arch was calculated. Then, based on the height of the free space in the goaf, the criteria for determining the maximum height of the WCFZ in the overlying strata were developed.
[image: Figure 2]FIGURE 2 | Sketch map of rock layer’s three-hinge arch failure after mining.
3.2 Ultimate Subsidence Si
3.2.1 Equivalent Compressive Strength [image: image]
Due to the development of structural planes, especially vertical structural planes, in the study area, the rock mass was cut into blocks. Under mining disturbances, the overlying strata fractured into two blocks along the vertical structural plane first, and then, under their own weight, the two blocks subsided, with the middle joint acting as a hinge. In this situation, block 1 and block 2 formed a three-hinged arch (Figures 2, 3). According to previous researchers’ research on the rock mass structure, migration laws and equilibrium conditions of the overlying strata in the stope (Fayol, 1885; Evans, 1941; Qian, 1981; Qian and Miao, 1995a), after underground mining, due to the different curvatures of the displacement curves of the upper and lower strata, there are separation between layers. Therefore, itcan be considered that the upper and lower strata moved synchronously, without vertical contact, to maintain the three-hinged arch during the vertical subsidence. The stability of the three-hinged arch completely depends on the equivalent compressive strength and the equivalent bearing stress of the two blocks (Qian et al., 1994), and the crushing and failure of the contact surface lead to instability of the arch structure. Since the overlying strata is damaged media, the stress on the hinged blocks is usually concentrated, and the maximum compressive stress is often greater than the compressive strength of the rock mass, that is, the contact surface (CC´DD’) experiences compressive failure first. Therefore, in this study, we mainly considered the compressive force perpendicular to the contact surface.
[image: Figure 3]FIGURE 3 | Three-hinged arch structure and damage area of contact surface (Note: Rectangle CC´DD’ is the contact surface of compression damage between rock blocks, and the rectangle CDKM is the magnified display of the tensile fractures caused by the compression during the crushing of the rock blocks, σ1, σ2, σ3 are the 1st, 2nd, and 3rd principal stress in the contact area, respectively, and their directions are the direction of mutual extrusion between the two rock blocks, Parallel to the direction of the longitudinal section between the blocks and parallel to the direction of the cross section of the stope.).
To calculate the equivalent compressive strength [image: image] of the three-hinged arch, mechanical analysis of rock block 1 was carried out as shown in Figure 4.
[image: Figure 4]FIGURE 4 | Force diagram of rock block 1 in three-hinged arch structure.
The bending moment equation for point B:
[image: image]
[image: image]
Here, Tij(A) is the horizontal force of the left rock block on rock block 1, Tij(C) is the horizontal force of the right rock block on rock block 1, and Fij(A) is the vertical supporting force of the lateral rock wall. The layer thickness of the overlying strata is hi, and the joint spacing is lj. Gij is the weight of rock block 1, [image: image], where b is the width of the working face. θi is the rotation angle of rock block 1, and Si is the subsidence of the three-hinged arch structure, which is also the separation distance of the overlying strata.
The force balance equation in the vertical direction:
[image: image]
The force balance equation in the horizontal direction:
[image: image]
By combining Eqs 2–4, the horizontal force is obtained:
[image: image]
Based on the geometric relationships shown in Figure 4,
[image: image]
By combining Eqs 5–6, the horizontal force is obtained:
[image: image]
As mining progresses, the two rock blocks continue to migrate towards the goaf. During the crushing process, the rectangular contact surface (CC´DD´) (Figure 4) deforms first due to the stress concentration. The actual damage area is
[image: image]
where a is the occlusal thickness between the rock blocks (m), and [image: image] (Qian and Miao, 1995b). b is the length of the rectangular contact surface (m), which is equal to the width of the working face; and D is the damage factor.
Therefore, the equivalent compressive strength between the two rock blocks is
[image: image]
3.2.2 Equivalent Bearing Stress [image: image]
The brittle tensile fracturing is governed by the tensile strain ε3 (Sun and Sun, 2011). According to Hooke’s law,
[image: image]
where μ is the Poisson’s ratio of the overlying strata, ε3 is the tensile strain under three-dimensional compression, and E is the elastic modulus.
When the tensile strain ε3 is equal to the ultimate three-dimensional compressive tensile strain ε3,0, the rock mass undergoes tensile failure. It is assumed that during the migration of the three-hinged arch before the instability stage, the upper surface has never been in direct contact with the overlying stratum and the lower surface has never been in contact with the loose rock pile, that is, there is free space above and below the three-hinged arch. Thus, the intermediate principal stress is [image: image], and the failure conditions are as follows.
If ε0 is the ultimate strain under uniaxial compression, then
[image: image]
where the third principal stress σ3 is equal to the horizontal stress σH of the deep fractured strata, i.e.,
[image: image]
By combining Eqs 10–12, the first principal stress perpendicular to the contact surface of the two blocks is obtained:
[image: image]
where w is the burial depth of the fractured roof, γ is the unit weight of the rock mass, and σc is the uniaxial compressive strength of the rock mass.
Considering the damage and deformation caused by the crushing effect of the two rock blocks, when the rock mass experiences compression-tension failure, the equivalent bearing stress [image: image] of the two rock blocks is
[image: image]
Substituting Equation (13) into Equation (14) gives
[image: image]
3.2.3 Ultimate Subsidence Si
Based on the equivalent compressive strength [image: image] and the equivalent bearing stress [image: image] of the roof, the safety factor k of the three-hinged arch was determined, i.e., the ratio of the equivalent compressive strength [image: image] to the equivalent bearing stress [image: image] is defined as the safety factor k of the three-hinged arch:
[image: image]
When k = 1, the structure is in a stable state. By substituting Eqs 9, 15 into Eq. 16, the calculation formula for the ultimate subsidence Si of the three-hinged arch is obtained:
[image: image]
3.3 Height of the Free Space
After the ith roof stratum collapses and accumulates in the goaf. The distance between the top of the deposit and the incompletely caved roof is defined as the height of the free space [image: image]. [image: image] is related to the mining height M, the thickness of each roof layer [image: image], and the broken expansion coefficient of the rock block [image: image].
[image: image]
where M is the thickness of the ore layer, and h0 is the caving thickness of the directly overlying roof (the 0th roof). h1 is the caving thickness of the first roof stratum. hi is the caving thickness of the ith roof stratum. [image: image] is the broken expansion coefficient of the ith roof stratum. [image: image] is the height of the deposit after the collapse of the ith roof stratum.
The broken expansion coefficient of the 1st to ith roof strata can be replaced by the average broken expansion coefficient kave, which can be calculated using the following equation (Zhang et al., 1998):
[image: image]
where Wn is the subsidence at measuring point n, and h is the height at point n.
3.4 Calculation Flow-Process of HWCFZ
As mining progresses, the roof strata continue to undergo bending deformation, separation, and collapse, causing the height of the free space in the goaf to continuously decrease, and the HWCFZ of the overlying strata gradually increases. Using Eq. 17, the ultimate subsidence Si+1 of the three-hinged arch structure of the (i+1)th overlying stratum can be obtained. The HWCFZ is then calculated by comparing Si+1 and Hi. When Si+1 < Hi, the HWCFZ formed by the overlying strata reaches the maximum value. Thus, the criteria for determining the maximum height of the WCFZ is as follows (Figure 5).
[image: image]
[image: Figure 5]FIGURE 5 | Calculation flow-process diagram of the maximum height of the WCFZ.
When [image: image], the overlying strata continue to break and collapse, causing the HWCFZ to continuously increase.
When [image: image], the overlying strata stop collapsing, and the top surface of the WCFZ is located at the ith roof stratum.
3.5 Calculation of HWCFZ
The overlying strata in the Zangziyan Bauxite Mine have a consistent lithology, i.e., layered limestone of medium thickness. Since the HWCFZ is relatively small compared to the burial depth of the overlying strata overall, the maximum value of 450 m was used to calculate the burial depth w of the fractured strata in the WCFZ in each cycle. According to Eq. 12, the confining pressure of the deep rock mass is σ3 = 2,385 kPa. Based on the vertical distance from each measurement point on line 4 to the ore and the Y-displacement measured at each point (refer to displacement field analysis in numerical simulation section), the average broken expansion coefficient kave of the roof strata was calculated to be 1.02 using Eq. 19. According to the field measurement data and a previous study (He, 2015), the mechanical parameters of the overlying strata were obtained (Table 2). Taking the second roof layer in the overlying strata as an example, the parameters were substituted into Eq. 17 to obtain the ultimate subsidence S2 of the three-hinged arch formed after the roof stratum collapsed, and a value of 0.3527 m was obtained. Then, using Eq. 18, the height of free space under the second roof stratum was calculated to be H1 = 2.18 m, so S2 = 0.3527 < H1 = 2.18 m. According to the criteria expressed in Eq. 20, the second roof stratum is currently in a fractured state, and thus, the HWCFZ will continue to increase. Similarly, the ultimate subsidence of the three-hinged arch formed by the collapse of the 3rd, 4th, … , (i+1)th layers was calculated, as well as the height of the free space Hi. Table 3 summarizes the fracture state of each roof stratum. Based on these calculations, the HWCFZ was obtained by adding the thicknesses hi of all of the collapsed roof strata, and a value of 92.5 m was obtained. The top surface of the WCFZ was located in the lower part of the P1m2 shale, which is intercalated with limestone.
TABLE 2 | Calculating parameters of HWCFZ in Zengziyan Bauxite.
[image: Table 2]TABLE 3 | Broken state of overburden roof strata of goaf.
[image: Table 3]4 NUMERICAL SIMULATIONS
4.1 Establishing the Numerical Model
The UDEC software (Itasca, United States), which is based on the discrete element method, was used to create a two-dimensional numerical model of the Zengziyan Bauxite Mine according to the geology and mining scheme. This model was used to simulate the stress field, plastic zone, displacement field, and WCFZ development characteristics of the strata overlying the working face. The actual depth of the overlying strata was 450 m, the modeled depth was 131 m, and the thickness of the bedrock was about 17 m. The interface between the large thick P1m3+4+5 limestone and the P1m2 shale intercalated with limestone was set as the upper boundary of the model. The size of the model was 400 m × 150 m, and the thickness of the ore layer was 2.2 m. To eliminate the influences of the boundaries, 70 m safety pillars were set on each side of the model. The simulated mining procedure was as follows. The total mining distance was 258 m. The room and pillar method was used for the mining. The room width was 16 m, and the pillar width was 6 m. A total of 12 rooms were mined, and 11 pillars were created and then mined. The mining process was divided into three stages, including 14 steps (steps 1–4, 5–9, and 10–14). In each stage, four rooms were excavated simultaneously as a group, which were then connected after a certain distance to form square pillars. When mining the rooms, the pillars temporarily supported the roof. After the four rooms in each mining stage were mined, all of the pillars used in the previous stage were mined. Figure 6 shows mining steps 1 to 14. The boundary conditions were as follows: since the actual depth of the overlying strata was 450 m and the simulations only included 131 m, an initial vertical principal stress of 8.5 MPa was applied at the top of the model to simulate the weight of the 319 m of overlying strata. The Poisson’s ratio was used to calculate the horizontal stress component, which was applied to both sides to simulate the initial stress field. In the subsequent excavation simulations, the bottom was set as a fixed hinge support, i.e., fixed vertically with horizontal displacement, and the horizontal displacements of the sides of the model were fixed. The Mohr-Coulomb yield criterion was adopted. In order to measure the changes in the displacement field and stress field in each area of the model during the mining process, a total of four lines were set up at different positions in the rock strata. Specifically, three horizontal lines with lengths of 280 m were distributed from the top surface of the model to the top of the ore bed. Their distances to the top of the ore bed were 131, 87, and 30 m. Each line consisted of eight measurement points, with a spacing of 40 m. A longitudinal line (#4) was set up in the middle of the model. This line was 118 m long and consisted of six measurement points arranged from 11 m from the top of the ore layer to the top of the model, and the spacing between the six points was 30 m, except for point 4, which was located at the interface between P1m1 and P1m2 to monitor the displacement (Figure 6). The parameters used in the numerical simulations were the same as in a previous study (He, 2015) (Table 4).
[image: Figure 6]FIGURE 6 | Engineering geological rock groups and boundary condilions of numerical model.
TABLE 4 | Physical–mechanical parameters of the rock mass used in the numerical models.
[image: Table 4]4.2 Results and Analysis
4.2.1 Stress Field
In order to illustrate the stress changes in the overlying strata during the mining process, the first mining stage (i.e., steps 1–4) was analyzed. After the simultaneous mining of the four rooms began in the first stage, the stress of the overlying stratum behind the open-off cut and at the front of the working face did not change significantly compared with the original stress state; whereas the stress in the roof above the goaf was redistributed, and the stress path deflected from the original longitudinal direction into an arch pattern. The stress on the surrounding rock decreased from the 8 MPa compressive stress caused by gravity and the overlying pressure to 1 MPa. Moreover, the high stress area was transferred to the pillars on the sides of the goaf, causing the compressive stress to increase from 8 to 15 MPa (Zhu et al., 2022). The roof strata formed a typical pressure arch (Figure 7A). The pressure arch supported the rock strata from above the arch to the top of the model, and the upper rock strata did not experience bending and subsidence. With the recovery of the safety pillars, the pressure arch in the roof strata shifted forward as the working face continuously advanced from 70 to 76 m–80 m. In addition, the scale of the pressure arch expanded longitudinally and laterally, and the roof strata in the range of the pressure arch exhibited a decrease in the compressive stress or even the tensile stress. From the macroscopic perspective, the overlying strata experienced unloading relaxation and open fractures were generated (Figures 7B,C,D) (Zhang Y. et al., 2016).
[image: Figure 7]FIGURE 7 | The dynamic change of the tensor stress zone of the overlying strata in the model, mining distance of coalface: (A) 64 m, (B) 70 m, (C) 76 m, (D) 82 m.
4.2.2 Characteristics of the Plastic Zone
In order to illustrate the changes in the plastic zone during the mining process, the first mining stage (i.e., steps 1–4) was analyzed. After the simultaneous mining of the four rooms began in the first stage, due to the pressure relief, the original compressive stress of the roof and floor strata of the goaf and the ore body was released, resulting in varying degrees of plastic deformation (Guo et al., 2018). Here, we only discuss the plastic deformation of the roof strata, which can be divided into three types: tensile deformation, shear deformation, and tensile-shear deformation. In this stage, due to the relatively small span of the goaf, the overall plastic deformation was small. The direct roof underwent tension deformation first, i.e., opening of the rock block along the dominant longitudinal joints, and the small area of old roof above the direct roof and the area above the mining boundary underwent shear deformation (Figure 8A).
[image: Figure 8]FIGURE 8 | The dynamic change of the plastic zone of the overlying strata in the model, mining distance of coalface: (A) 64 m, (B) 70 m, (C) 76 m, (D) 82 m.
When the working face had continuously advanced to 70 m, the plastic deformation range became larger than that in the previous stage, and the type of plastic deformation of the roof changed. The middle of the roof at the maximum mining distance exhibited tensile-shear deformation, while the area on both sides of the roof and the area above exhibited tensile deformation. This was mainly due to the fact that the strata in the middle of the roof near the goaf were the first to form a three-hinged arch and to undergo tensile deformation. After the three-hinged arch became unstable, shear-slip failure occurred along the dominant longitudinal structural plane (Figure 8B). With the continuous advancement of the working face, the suspended area of the roof gradually increased, and the plastic zone in the roof strata increased significantly, exhibiting obvious zoning characteristics from bottom to top. Specifically, the lower roof mainly underwent tensile-shear deformation, forming a tension-slip failure zone. The upper roof was dominated by tensile deformation, forming a large tensile deformation zone. Shear deformation occurred in the area above the boundaries on both sides, forming a symmetrical shear deformation zone with a 45° angle towards the goaf. The tensile-slip failure zone was the most severely damaged and contained many connected fractures. This was the main area in which the WCFZ developed (Figures 8C,D).
4.2.3 Displacement Field
Figure 9 shows the Y-displacement at different measurement points on the three horizontal lines after mining. Based on the data, the closer the roof was to the goaf, the larger the longitudinal displacement was. Measurement points 3–6 experienced the maximum displacement (1.82 m), while the maximum displacements on line 2 and line 1 occurred at measurement point 5 near the middle of the goaf. Their longitudinal displacements were 0.68 and 0.33 m, respectively. Line 1 was located at the top of the model. It can be seen from Figure 9 that after the mining, a depression centered on the middle of the goaf appeared on the top of the model. The main reason for the differences in the longitudinal displacements in the different areas was that as the mining progressed, the separated rock strata gradually migrated downward to fill the goaf. Due to the fragmentation heave characteristics, the larger the distance from the roof strata to the goaf was, the smaller the height of the free space was, that is, the less space was available for the migration of the upper strata, and the smaller the displacement was. Line 4 in Figure 10 shows the dynamic change in the longitudinal displacement of the overlying strata in the middle of the goaf during the different mining stages. The overall migration speed exhibited a slow-fast-slow pattern. In steps 1–7, the measurement points on line 4 were not displaced. This is mainly because the ore seam in this area had not been mined. In step 8, point 1 was the first to undergo slight longitudinal displacement. In step 9, since the working face had advanced beyond the horizontal projection point of measurement point 1, the rock strata near this point were free to migrate toward the goaf, and the displacement of point 1 increased significantly (to 0.4 m). In addition, point 2 on line 4 started to experience longitudinal displacement. In step 11, measurement points 3, 4, 5, and 6 on line 4 all began to exhibit different degrees of displacement, and the migration rates of these points followed a certain pattern, i.e., 3 > 4 > 5 = 6. Point 4 was located at the interface between P1m1 and P1m2. When the mining was complete, the longitudinal displacement of point 4 was 0.47 m, which was larger than those of the other points on line 4, indicating that the WCFZ had reached the interface. This is consistent with the findings of the field investigation. In addition, points 5 and 6 moved synchronously after the migration began, indicating that there was no separation within the P1m2 shale intercalated with limestone. Thus, this area was a bending subsidence zone. Based on the above analysis, the top surface of the WCFZ was located between points 4 and 5 on line 4, i.e., the maximum range of the HWCFZ was 87–101 m. It should be noted that when the mining reached step 13, the longitudinal displacement of measurement point 1 on line 4 reached the maximum value of 1.98 m, and then, it remained unchanged during the subsequent mining. This indicates that under the action of the overlying strata and its own weight, all of the separation fractures in the strata below this point were completely closed, and there was no space available for further migration.
[image: Figure 9]FIGURE 9 | Y-displacement of horizontal lines.
[image: Figure 10]FIGURE 10 | Y-displacement of line 4.
4.2.4 Dynamic Evolution of the WCFZ
The dynamic evolution of the HWCFZ is shown in Figure 11. After the commencement of the simultaneous mining of the four rooms in the first stage, because three 6 m safety pillars were temporarily retained, the roof overhang length was small, the roof strata were relatively stable, and thus, a WCFZ did not develop. When the working face had continuously advanced to 60 m, due to the long overhang length of the roof, bending and separation failure occurred in some areas in the overlying strata, which led to the formation of connected fractures. At this time, the HWCFZ was 17 m. When the last safety pillar from the first stage was mined, the maximum overhang length of the roof was 82 m; the WCFZ expanded upward; and its height reached 25 m. With the continuous advancement of the working face, the roof strata experienced periodic failure in the form of a three-hinged arch, which migrated toward the goaf. As a result, the HWCFZ gradually increased. When the working face had continuously advanced to 192 m, the HWCFZ was 85 m, which was near the interface between P1m1 and P1m2. When the working face had continuously advanced to 214 m, the HWCFZ developed in the lower shale strata of P1m2. At this time, the WCFZ reached the maximum height of 93 m. After this, the HWCFZ remained unchanged. However, the horizontal range of the WCFZ continued to increase with the advancement of the working face. The top of the fissure arch was an approximately horizontal line, and it was saddle-shaped (Liu et al., 2017). This is consistent with the HWCFZ range of 87–101 m obtained from the displacement analysis (Section 4.2.3). Moreover, it is also consistent with the HWCFZ of 92.5 m calculated using the theoretical equation (Section 3.5). Thus, the results demonstrate the effectiveness of the theoretical calculations and numerical simulations.
[image: Figure 11]FIGURE 11 | Height of the WCFZ as mining: (A) advancing 16 m continuously, (B) advancing 60 m continuously, (C) advancing 82 m continuously, (D) advancing 126 m continuously, (E) advancing 170 m continuously, (F) advancing 192 m continuously, (G) advancing 214 m continuously, (H) advancing 258 m continuously.
4.2.5 Common Law
With the continuous advancement of the working face, the stress field, plastic zone, displacement field and HWCFZ of overlying strata would change dynamically, but there was a positive feedback effect between them, that is, after the mine was mined, the stress field of the overlying strata was redistributed, and the roof strata formed a typical pressure arch. The overlying strata within pressure arch mainly underwent three types of plastic deformation, namely, tensile deformation, shear deformation, and tensile-shear deformation, and the plastic deformation exhibited obvious zonal characteristics. The closer the overlying strata was to the goaf, the greater the degree of deformation, which was mainly manifested as tensile-shear deformation, and the displacement field was also larger. In this situation, the roof strata experienced periodic failure in the form of a three-hinged arch, which migrated toward the goaf. As a result, the HWCFZ gradually increased. As the goaf was gradually filled by the overlying strata, the variation of the stress field of overlying strata from the bottom to top gradually weakened, the plastic deformation and the change of the displacement field became slower, and the HWCFZ grew slowly. When the separation fractures in the strata were basically closed, the HWCFZ no longer increased and it reached the maximum value. At this time, its outline was saddle-shaped.
5 DISCUSSION
5.1 Inapplicability of Traditional Empirical Formulas
Currently, the empirical formulas for calculating the HWCFZ given in the Regulation for Coal Pillar Retention and Coal Mining in Buildings, Water Bodies, Railways, and Mine Shafts is widely used (State Administration of Work Safety, 2017). In this paper, the HWCFZ was calculated by substituting the physical and mechanical parameters of the overlying strata in the Zengziyan Bauxite Mine into empirical formulas 1 and 2, and the results were compared with those obtained based on the theoretical formula and numerical simulations considering the structural rock mass. The results are shown in Table 5. The values calculated from the theoretical formula and the numerical simulations were much higher (2.5–3.7 times and 8.4 times, respectively) than the values calculated from the empirical formula. This suggests that the results from the traditional empirical formulas have large errors and are not applicable to calculating the HWCFZ in the mining areas of mountainous carbonate areas in southwestern China. This is mainly because the empirical formulas were derived based on measurement data for mines in northern China, and these mines mainly have loose strata structures or thick loose strata-bedrock structures. The traditional empirical formulas only consider the thickness of the ore seam and the rough strength of the strata, and they do not consider the structure, the physical or mechanical parameters of the rock mass (e.g., the rock mass’s strength and broken expansion behavior), or the burial depth of the ore body. Therefore, the prediction of the HWCFZ in different mines should be performed based on the actual local geological conditions and mining conditions, rather than by directly adopting existing methods. Only in this way can accurate predictions be achieved and science-based support provided for safe production. Of course, for many mines in the mountainous carbonate areas in southwestern China, there are multiple sets of mineable layers under the ground. Compared with single-layer mining, multiseam mining tends to cause more serious failure to the overlying strata, and the development height of WCFZ is higher. This study only considers the influence of single-layer mining on the migration and failure of overlying strata and development of the HWCFZ. The theoretical method proposed in this study should be updated and expanded in the later stage, and it should be applied to research the migration and failure of overlying strata and development of the HWCFZ during the multiseam mining process.
TABLE 5 | Comparison of calculation results between the empirical formulas, theoretical formulas, and numerical simulations.
[image: Table 5]5.2 Instability Mechanism of Mining-Type Mountains
The mountainous carbonate areas in southwestern China (e.g., Sichuan-Chongqing, Yunnan-Guizhou, western Hunan, and western Hubei) are folded mountainous areas. The rock masses were mainly deposited in a marine-terrestrial interaction-terrestrial depositional environment, and the stratigraphic lithologies are mainly composed of Permian and Triassic carbonate rocks such as limestone and dolomite, and clastic rocks such as sandstone. The average layer thickness of the rock mass is less than 1 m. The proportion of the overlying strata that is composed of hard rock is >90%. The burial depth of the ore bed in this area is generally 40–300 m (Xie and Wang, 2012), and the thickness of the ore bed is generally less than 2.5 m. That is, this area is characterized by a shallow burial depth and a thin mining thickness. The geological structure is complex, and there are multiple sets of dominant longitudinal structural planes, which are densely developed. The thin-layered and medium-thickly layered rock mass is cut into massive structures (Figure 12), and the spacing between the structural planes is 0.2–1.0 m. Thin ore layers are mined under loose cohesive soil layers, soft rock layers, and thick and extremely thick structural hard rock masses. Previous studies have concluded that after thin-layer mining in this area, the WCFZ will not reach the bottom of the thick and extremely thick structural hard rock mountain, so the base will not be damaged, and thus, the WCFZ will have no effect on the stability of the base of the mountain. However, a large number of case studies have shown that with the continuous intensification of the mining of the thin ore beds in the southwestern carbonate mountainous areas, many overall collapse disasters have occurred in the overlying mountains (Yin et al., 2010; Zhao et al., 2016a; Li et al., 2016b; Cui et al., 2021). Through field investigations in recent years, it has been found that the overlying strata are bent, deformed, and fractured due to underground mining, gradually forming fracture zones, and the HWCFZ formed as a result of the underground mining under the hard rock caprock has increased significantly (Chen and Zhu, 2020). The increase in the WCFZ in the overlying strata causes uneven subsidence of the upper strata near the base of the dangerous rock mass, forming an uneven subsidence zone, which in turn causes damage and fracturing of the base of the dangerous rock mass and pulling of the top of the rock mass. The combined effect described above has resulted in the overall instability of the mountain (Figure 13) (Li et al., 2015; Li et al., 2016b; Zhao et al., 2016b; Li et al., 2020a). The closer the top boundary of the WCFZ is to the bottom boundary of the folded mountain collapse zone, the more prone the mountain is to instability. Therefore, the HWCFZ of the structural rock mass is the key factor controlling the stability of the mining-type mountains. The focus of future research should be on the influence of the increase in the HWCFZ in the overlying strata on the stability of the upper part of the mountain, and subsequently, the instability process and mechanism of the mining-type Mountains should be studied. Considering that the deformation of hard rock mountain induced by thin-bed mining is a long-term process, the fissure flow formed by groundwater often leads to accelerating deformation of the structural overlying strata. Furthermore, the long-term monitoring of some parameters such as the stress field, displacement field and groundwater field of the overlying strata should be carried out, which is conducive to the later study about the instability process and mechanism of mining-type mountain.
[image: Figure 12]FIGURE 12 | Typical blocky structure of overlying strata in the southwest carbonate mountainous area.
[image: Figure 13]FIGURE 13 | Typical slope instability model in the southwest carbonate mountainous area.
6 CONCLUSION
In this study, through theoretical analysis and numerical simulations, we investigated the geological structure characteristics of underground mining, the migration and failure mechanism of the overlying strata and the development of the HWCFZ during the mining process in the Zengziyan Bauxite Mine. The main conclusions are as follows.
1) In the process of underground mining in the mountainous carbonate areas in southwestern China, it is necessary to consider the block-shaped rock mass structure characteristics of carbonate rocks, and the instability model of three-hinged arch structure can be used to determine the HWCFZ. This analysis method makes the prediction result of overlying strata slump height more accurate, which is beneficial to the evaluation of mountain stability.
2) Numerical analysis revealed the variation characteristics of stress field, plastic zone and displacement field of structural overlying strata during the mining process. After mining and pressure relief, there were mainly three types of plastic deformation in the range of pressure arch, including tensile deformation, shear deformation and tensile-shear deformation, and the plastic deformation exhibited obvious zonal characteristics. The HWCFZ obtained through the numerical calculations was consistent with the results of the theoretical calculations (93 vs. 92.5 m), which validated the reliability and accuracy of the theoretical calculation method.
3) In the mountainous carbonate areas in southwestern China, underground mining leads to the significant increase of the HWCFZ in the overlying structural strata, resulting in landslide disasters in the overlying mountains. Therefore, it is necessary to pay attention to the monitoring of the main areas, including the WCFZ in the overlying strata in the goaf, the uneven subsidence zone, and the mountain collapse zone.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
JL and BL analyzed, wrote, and processed the data; YG provided opinions on the writing of the paper; FC participated in the numerical calculations; KH participated in the field survey; JL and HL modified the format. All of the authors have read and agreed to the published version of the manuscript.
FUNDING
The authors would like to sincerely thank the funding agencies that supported this research. This work was supported by the National Key R&D Program of China (No. 2018YFC1504806) and the National Science Foundation of China (No. 41907257).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Aitao, Z., and Kai, W. (2018). A New Gas Extraction Technique for High-Gas Multi-Seam Mining: A Case Study in Yangquan Coalfield, China. Environ. Earth Sci. 77 (4), 1–16. doi:10.1007/s12665-018-7291-z
 Altun, A. O., Yilmaz, I., and Yildirim, M. (2010). A Short Review on the Surficial Impacts of Underground Mining. Sci. Res. Essays. 5 (21), 3206–3212. doi:10.5897/SRE.9000106
 Chen, Y., and Zhu, S. (2020). Determination of Caved and Water-Conducting Fractured Zones of "two Soft and One Hard" Unstable Coal Seam. Acta Geod Geophys. 55 (3), 451–475. doi:10.1007/s40328-020-00300-w
 Chongqing Geology and Mineral Exploration and Development Bureau (2009). Investigation and Evaluation Report on the Dangerous Rock Belt from Zengziyan to Guanyin Cave in Jinfo Mountain. Chongqing: Nanchuan District. 
 Cui, F., Li, B., Xiong, C., Yang, Z., Peng, J., Li, J., et al. (2021). Dynamic Triggering Mechanism of the Pusa Mining-Induced Landslide in Nayong County, Guizhou Province, China. Geomatics, Nat. Hazards Risk 13 (1), 123–147. doi:10.1080/19475705.2021.2017020
 Diederichs, M. S., and Kaiser, P. K. (1999). Tensile Strength and Abutment Relaxation as Failure Control Mechanisms in Underground Excavations. Int. J. Rock Mech. Mining Sci. 36 (1), 69–96. doi:10.1016/S0148-9062(98)00179-X
 Evans, W. (1941). The Strength of under Mined Strata. Trans. Am. Inst. Min Metall. L. 50, 475–500. 
 Fan, H., Wang, L., Lu, Y., Li, Z., Li, W., and Wang, K. (2020). Height of Water-Conducting Fractured Zone in a Coal Seam Overlain by Thin Bedrock and Thick Clay Layer: A Case Study from the Sanyuan Coal Mine in North China. Environ. Earth Sci. 79 (6), 1–11. doi:10.1007/s12665-020-8873-0
 Fathi Salmi, E., Nazem, M., and Karakus, M. (2017). Numerical Analysis of a Large Landslide Induced by Coal Mining Subsidence. Eng. Geology . 217, 141–152. doi:10.1016/j.enggeo.2016.12.021
 Fayol, M. (1885). Sur Les Movements De Terain Provoques Par L’exploitation Des Mines. Bull. Soc. L'ind Minerale. 14, 818. 
 Feng, Z., Li, B., Yin, Y. P., and He, K. (2014). Rockslides on Limestone Cliffs with Subhorizontal Bedding in the Southwestern Calcareous Area of China. Nat. Hazards Earth Syst. Sci.Earth Sys 14 (9), 2627–2635. doi:10.5194/nhess-14-2627-2014
 Gou, X., and Chen, R. (2011). Three-Hinged Arch Structure Stability of Mining Overlying Strata. J. Liaoning Tech. Univ. (Nat Sci). 30 (S1), 70–73. 
 Guo, W., Zhao, G., Lou, G., and Wang, S. (2018). A New Method of Predicting the Height of the Fractured Water-Conducting Zone Due to High-Intensity Longwall Coal Mining in China. Rock Mech. Rock Eng. 52 (8), 2789–2802. doi:10.1007/s00603-018-1567-1
 He, K. (2015). Research on Collapse Mechanism of Tower Rock. PhD Thesis. Xi’an, China: Chang’an University. 
 Hou, E., Wen, Q., Ye, Z., Chen, W., and Wei, J. (2020). Height Prediction of Water-Flowing Fracture Zone with a Genetic-Algorithm Support-Vector-Machine Method. Int. J. Coal Sci. Technol. 7 (4), 740–751. doi:10.1007/s40789-020-00363-8
 Hu, X., Li, W., Cao, D., and Liu, M. (2012). Index of Multiple Factors and Expected Height of Fully Mechanized Water Flowing Fractured Zone. J. China Coal Soc. 37 (4), 613–620. doi:10.13225/j.cnki.jccs.2012.04.026
 Jin, K., Cheng, Y., Wang, L., Dong, J., Guo, P., An, F., et al. (2015). The Effect of Sedimentary Redbeds on Coalbed Methane Occurrence in the Xutuan and Zhaoji Coal Mines, Huaibei Coalfield, China. Int. J. Coal Geology . 137, 111–123. doi:10.1016/j.coal.2014.11.009
 Kang, J., He, W., and Hu, H. (2000). Analysis of Surface Deformation and Slope Stability Caused by Mining in Mountainous Areas. Beijing: China Science and Technology Press. 
 Li, B., Feng, Z., Zhang, Q., Zhao, C., Yan, J., Gao, Y., et al. (2016a). Researches on Formation Modes and Early Identification of Mega-Landslides in the Mountainous Karst Areas. Beijing: Science Press. 
 Li, B., Feng, Z., Wang, G., and Wang, W. (2016b). Processes and Behaviors of Block Topple Avalanches Resulting from Carbonate Slope Failures Due to Underground Mining. Environ. Earth Sci. 75 (8), 1–26. doi:10.1007/s12665-016-5529-1
 Li, B., Wang, G., Feng, Z., and Wang, W. (2015). Failure Mechanism of Steeply Inclined Rock Slope Induced by Underground Mining. Chin. J. Rock Mech. Eng. 34 (6), 1148–1161. doi:10.13722/j.cnki.jrme.2014.0974
 Li, J., Chu, H., Li, B., He, K., and Gao, Y. (2020a). The Key Scientific Issues of the Landslide Disasters Research Induced by Underground Mining in the Coal-Related Sedimentary Rock Strata Mountain Area of Southwestern China. Carso Sin 39 (4), 453–466. doi:10.11932/karst20200401
 Li, L., Li, F., Zhang, Y., Yang, D., and Liu, X. (2020b). Formation Mechanism and Height Calculation of the Caved Zone and Water-Conducting Fracture Zone in Solid Backfill Mining. Int. J. Coal Sci. Technol. 7 (1), 208–215. doi:10.1007/s40789-020-00300-9
 Liu, S., Li, W., and Wang, Q. (2017). Height of the Water-Flowing Fractured Zone of the Jurassic Coal Seam in Northwestern China. Mine Water Environ. 37 (2), 312–321. doi:10.1007/s10230-017-0501-1
 Liu, T. (1981). Mining Influence Caused by Large-Scale Stope and its Temporal and Spatial Distribution. Mine Surv. (1), 70–77. 
 Liu, X., Tan, Y., Ning, J., Tian, C., and Wang, J. (2015). The Height of Water-Conducting Fractured Zones in Longwall Mining of Shallow Coal Seams. Geotech. Geol. Eng. 33 (3), 693–700. doi:10.1007/s10706-015-9851-2
 Mondal, D., Roy, P. N. S., and Kumar, M. (2020). Monitoring the Strata Behavior in the Destressed Zone of a Shallow Indian Longwall Panel with Hard Sandstone Cover Using Mine-Microseismicity and Borehole Televiewer Data. Eng. Geology . 271, 105593. doi:10.1016/j.enggeo.2020.105593
 Ning, J., Wang, J., Tan, Y., and Xu, Q. (2020). Mechanical Mechanism of Overlying Strata Breaking and Development of Fractured Zone during Close-Distance Coal Seam Group Mining. Int. J. Mining Sci. Technology 30 (2), 207–215. doi:10.1016/j.ijmst.2019.03.001
 Nomikos, P. P., Sofianos, A. I., and Tsoutrelis, C. E. (2002). Structural Response of Vertically Multi-Jointed Roof Rock Beams. Int. J. Rock Mech. Mining Sci. 39 (1), 79–94. doi:10.1016/S1365-1609(02)00019-9
 Qian, M. (1981). Equilibrium Conditions of Overlying Strata in the Stope. J. Chin. Aca. Min. Tech. (2), 34–43. 
 Qian, M., Miao, X., and He, Fu. (1994). Key Block Analysis of "Masonry Beam" Structure in the Stope. J. China Coal Soc. 19 (6), 557–563. 
 Qian, M., and Miao, X. (1995a). Morphology and Stress Analysis of the Overlying Strata in the Stope. Chin. J. Rock Mech. Eng. 14 (2), 97–106. 
 Qian, M., and Miao, X. (1995b). Theoretical Analysis on the Structural Form and Stability of Overlying Strata in Longwall Mining. Chin. J. Rock Mech. Eng. 14 (2), 97–106. 
 Qian, M., Shi, P., and Xu, J. (2010). Mine Pressure and Rock Formation Control. Xuzhou: China University of Mining Tech Press. 
 State Administration of Work Safety (2017). Regulation for Coal Pillar Retention and Coal Mining in Buildings, Water Bodies, Railways and Main Shafts. Beijing: Coal Industry Press. 
 Sun, G., and Sun, Y. (2011). Principles of Rock Mass Mechanics. Beijing: Science Press. 
 Wang, J., Zhao, Z., and Hou, Z. (2007). Study on the Catastrophic Collapse of Surface Land Induced by Mining under A Shallow and Hard Strata. J. China Coal Soc. 32 (10), 1051–1056. 
 Xie, H. (1990). Damage Mechanics of Rock and Concrete. Jiangsu: China University of Mining and Technology Press. 
 Xie, H., and Wang, M. (2012). Geological Hazards of Coal-Mining Subsidence and Types of Subsidence Area in Guizhou. J. Guizhou Univ. (Nat. Sci). 29 (3), 128–131. doi:10.15958/j.cnki.gdxbzrb.2012.03.035
 Xu, J., Wang, X., Liu, W., and Wang, Z. (2009). Effects of Primary Key Stratum Location on Height of Water Flowing Fracture Zone. Chin. J. Rock Mech. Eng. 28 (2), 380–385. 
 Xu, J., Zhu, W., and Wang, X. (2012). New Method to Predict the Height of Fractured Water-Conducting Zone by Location of Key Strata. J. China Coal Soc. 37 (5), 762–769. doi:10.13225/j.cnki.jccs.2012.05.002
 Yang, Z. L. (2010). Stability of Nearly Horizontal Roof Strata in Shallow Seam Longwall Mining. Int. J. Rock Mech. Mining Sci. 47 (4), 672–677. doi:10.1016/j.ijrmms.2010.03.001
 Yi, T., Han, X., Weitao, Y., Wenbing, G., Erhu, B., Tingye, Q., et al. (2022). Study on the Overburden Failure Law of High-Intensity Mining in Gully Areas with Exposed Bedrock. Front. Earth Sci. 10, 295. doi:10.3389/feart.2022.833384
 Yin, Y., Sun, P., Zhang, M., and Li, B. (2010). Mechanism on Apparent Dip Sliding of Oblique Inclined Bedding Rockslide at Jiweishan, Chongqing, China. Landslides 8 (1), 49–65. doi:10.1007/s10346-010-0237-5
 Zhang, D., Deng, K., and Zhou, M. (1998). Study on the Change Law of the Broken Expansion Coefficient of Mining Rock Mass. Jiangsu Coal (1), 3–5. 
 Zhang, J., Zhang, K., Cao, Z., and Zhang, Y. (2016). Mining-Bursting Simulation and Height Calculation Method for Conducting-Water Fractured Zone. J. China Coal Soc. 42 (6), 1557–1564. doi:10.13225/j.cnki.jccs.2016.1720
 Zhang, Y., Ye, J., Ji, H., and Wang, J. (2016). Identifying the Development of Mining-Induced Fractures Zone Using Dynamic Stress Tracing Method. Rock Soil Mech. 37 (11), 3291–3298+3323. doi:10.16285/j.rsm.2016.11.031
 Zhao, J., Lin, B., Ma, Y., Zhang, X., Lan, Z., and Huang, R. (2016a). Physical Modeling on Deformation Characteristics of Overlying Rock Mass above Mined-Out Area in Gently Inclined Coal Seam. J. China Coal Soc. 41 (6), 1369–1374. doi:10.13225/j.cnki.jccs.2015.1408
 Zhao, J., Xiao, J., Lee, M. L., and Ma, Y. (2016b). Discrete Element Modeling of A Mining-Induced Rock Slide. Springerplus 5 (1), 1–19. doi:10.1186/s40064-016-3305-z
 Zheng, D., Frost, J. D., Huang, R. Q., and Liu, F. Z. (2015). Failure Process and Modes of rockfall Induced by Underground Mining: A Case Study of Kaiyang Phosphorite Mine Rockfalls. Eng. Geology . 197, 145–157. doi:10.1016/j.enggeo.2015.08.011
 Zhu, T., Li, W., Wang, Q., Hu, Y., Fan, K., and Du, J. (2020). Study on the Height of the Mining-Induced Water-Conducting Fracture Zone under the Q2l Loess Cover of the Jurassic Coal Seam in Northern Shaanxi, China. Mine Water Environ. 39 (1), 57–67. doi:10.1007/s10230-020-00656-z
 Zhu, Z., Wu, Y., and Liang, Z. (2022). Mining-Induced Stress and Ground Pressure Behavior Characteristics in Mining a Thick Coal Seam with Hard Roofs. Front. Earth Sci. 10. doi:10.3389/feart.2022.843191
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Li, Li, Gao, Cui, He, Li and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 27 April 2022
doi: 10.3389/feart.2022.863511


[image: image2]
Laboratory Model Tests of Seismic Strain Response of Anti-Seismic Anchor Cables
Yan Wang1*, Yafeng Tang2, Fei Zhang1 and Jinlong Guo1
1School of Engineering, Fujian Jiangxia University, Fuzhou, China
2China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, China
Edited by:
Faming Huang, Nanchang University, China
Reviewed by:
Krishanu Roy, The University of Auckland, New Zealand
Jiayong Niu, Southwest Jiaotong University, China
* Correspondence: Yan Wang, 2017023@fjjxu.edu.cn
Specialty section: This article was submitted to Geohazards and Georisks, a section of the journal Frontiers in Earth Science
Received: 27 January 2022
Accepted: 22 March 2022
Published: 27 April 2022
Citation: Wang Y, Tang Y, Zhang F and Guo J (2022) Laboratory Model Tests of Seismic Strain Response of Anti-Seismic Anchor Cables. Front. Earth Sci. 10:863511. doi: 10.3389/feart.2022.863511

Under the impact of seismic forces, the strain of conventional anchor cables tended to increase sharply in an instant, which could easily cause the anchor cables to fail due to stress overload. This study aimed to optimize the design of rock supporting methods under dynamic disaster events such as earthquakes and rock bursts. A scale model specimen with a mechanical sliding device was designed based on an anti-seismic anchor cable. The working mechanism and seismic strain response of anti-seismic anchor cables were studied using static and shaking table model tests. The results show that under a static force, the anti-seismic anchor cables undergo in sequence a first elastic deformation stage, a slipping stage, a second elastic deformation stage, a plastic strengthening stage, and a brittle failure stage. In the slipping stage, the anchor cables start frictional sliding while keeping the axial force unchanged so as to adapt to the large deformation of the rock mass. The anti-seismic anchor cables exhibit the three situations of no-slip, instantaneous slip, and gradual and accumulative slip under seismic excitation. With a large constant resistance to slippage, the anchor cables do not slip, which can easily cause the anchor cables to break due to stress overload. With a small constant resistance to slippage, the reserved slipping distance is instantly exhausted; a step-shaped jump appears in the time history curves of the strain of the anchor cables. In the engineering design, a preset constant resistance to slippage is needed to match the seismic force for the anchor cables to exhibit the mechanism of multiple accumulated slips. During each slipping process, the strain of the anchor cables first decreases and then increases, with the peak strain decreasing significantly. This mechanism effectively cushions the instantaneous impact force of the earthquake, releases rock deformation, and dissipates seismic energy.
Keywords: anti-seismic anchor cable, model test, working mechanism, seismic strain response, time history curves of strain
1 INTRODUCTION
Southwest China’s location in an earthquake-prone zone readily exposes it to seismic activity, causing landslides, collapses, and other geological disasters within a complex geological environment. The problem of slope stability under the action of a range of adverse factors such as earthquakes, rainfall, load stacking, unloading, and excavations remains a long-standing and perennially difficult problem (Shi et al., 2015; Tang et al., 2015; Mu et al., 2020; Tiwari and Latha, 2020; Yang and Zhang, 2020). The previous investigations into the landslide and collapse disasters caused by earthquakes found that when a slope was unstable due to an earthquake, the anchor cables within the slope had sustained local damage as the seismic action had instantaneously produced enormous impact forces (Zheng et al., 2015; Fan et al., 2016; Massey et al., 2017; Bian et al., 2018; Zhang et al., 2019). The anti-seismic reinforcement capacity of the conventional anchor cables is often restricted owing to their insufficient deformation capacity. Therefore, under powerful seismic action, it is difficult for the conventional anchor cables to achieve the required reinforcement effect.
Scholars at home and abroad have developed a variety of new anchor cables after extensive research and tests, which have been proven to offer good anti-seismic performance. The typical new anti-seismic anchor cables from abroad are the Garford bolt from Australia (Sengani, 2018), Roofex bolt from Austria (Ozbay and Neugebauer, 2009), the Yield-Lok bolt (Wu and Oldsen, 2010), Cone bolt from Canada (Cai and Champaigne, 2012; Liang Y. et al., 2017), a new energy-absorbing bolt from Sweden (Krzysztof, 2018), and the D-bolt from Norway (Li, 2012; Li and Doucet, 2012). In China, there are the CRLD constant resistance and large deformation anchor cable (Tao et al., 2017; Lv et al., 2018), the NPR new constant resistance and large deformation anchor cable (He et al., 2016; He et al., 2017), a new high strength and high pretension yieldable anchor cable (Lian et al., 2010; Li et al., 2017), and an extrusion sleeve–type yield anchor cable (Zhang et al., 2015). The researchers at home and abroad have carried out numerous field static tensile tests and engineering application tests on the new type of anti-seismic anchor cables, which have verified the advantages of these innovative anti-seismic anchor cables over conventional ones, such as large deformation capacity and good resistance to static and dynamic load (Srilatha et al., 2016; He et al., 2018; Xu et al., 2018; Yang et al., 2018; Zhan et al., 2019; Nie et al., 2020).
At present, the research on slope engineering is mostly focused on the dynamic response of slopes, deformation, and failure mechanism of slopes, earthquake influence coefficient, and composite support structure (Li et al., 2016; Liang J. X. et al., 2017; Fan et al., 2017; Lin et al., 2017; Xu et al., 2017; Zhang et al., 2017). Although research on the mechanical characteristics, working mechanisms, strain response attributes, and failure modes of anti-seismic anchor cables remains relatively scarce, targeted research needs to be carried out. In addition, research on new anti-seismic anchor cables is mostly carried out using field tests and numerical simulations (Lai et al., 2016; Zhou et al., 2016; Zhu et al., 2017; Tao et al., 2020). Field testing is time-consuming, difficult to implement, and inconvenient to adjust parameters. Although numerical simulation offers the benefits of low cost and high ease of implementation, the results still need to be supported by corresponding experiments. Laboratory model tests present the advantages of good economy, strong pertinence, and accurate data (Jing et al., 2020a; Jing et al., 2020b; Jing et al., 2020c). In the present study, a prototype specimen and scale model specimen of anti-seismic anchor cables were used as the research objects. The working mechanism, seismic strain response, and seismic anchoring mechanism of anti-seismic anchor cables were studied using static and shaking table model tests. The research results were intended to provide references for the design of rock support in areas prone to high seismic activity.
2 BASIC STRUCTURE OF ANTI-SEISMIC ANCHOR CABLES
Anti-seismic anchor cables mainly comprise a bearing plate, anti-seismic anchor, permanent anchor, and steel strand. The steel strand passes in turn through the bearing plate, anti-seismic anchor, and permanent anchor, and a certain distance is preset between the permanent anchor and the anti-seismic anchor to allow for the slipping displacement of the anti-seismic anchor cable. Among these, the anti-seismic anchor is a sliding extrusion sleeve structure that can slide smoothly while providing a constant anchoring force, whereas the permanent anchor is a standard fixed extrusion sleeve structure, and hence cannot slide. The basic structure and physical photograph of the anti-seismic anchor cable are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Basic structure and photograph of an anti-seismic anchor cable. 1-bearing plate; 2-anti-seismic anchor (sliding extrusion sleeve); 3-unbonded steel strand; 4-permanent anchor (fixed extrusion sleeve); 5-frictional material fill; 6- seal cover; 7-preset slipping distance. (A) Basic structure. (B) Physical photo.
When an earthquake impacts an anchored slope, the force on the anchor cable increases sharply. When the impact force exceeds the frictional force between the anti-seismic anchor and anchor cable (i.e., the preset constant resistance to slippage), stable frictional sliding occurs between the anchor cable and anti-seismic anchor, which effectively cushions the instantaneous impact force of the earthquake, thereby preventing the anchor cable body from being ripped off due to stress overload or insufficient deformation capacity. Therefore, the significant deformation of the rock mass is adapted and the ductility of the failure of the overall anchor structure is increased to achieve the purpose of seismic reinforcement.
3 MECHANICAL PROPERTIES OF ANTI-SEISMIC ANCHOR CABLES
3.1 Tensile Test of Anti-Seismic Anchor Cables
The mechanical properties test of the anti-seismic anchor cable used the prototype sample. Three groups of single-beam and same type anti-seismic anchor cables were selected to undergo a tensile test by the uniform loading method. The schematic diagram of the tensile test is shown in Figure 2. During the tests, the displacement positions of the anti-seismic anchors were observed, and the stop signal for each test was the point when the anti-seismic anchor was no longer generating slip. This enabled the slip control load of a single-beam anti-seismic anchor cable to be obtained. Once the slipping of the anti-seismic anchor cable had ceased, tensile failure testing of the abovementioned specimens was continued to establish the force characteristics of the anti-seismic anchor cable after slipping. The load-displacement curve under static load is shown in Figure 3. It can be seen that the stable load value of slipping of the anti-seismic anchor cable was generally around 200 kN, the average value of the corresponding sliding displacement was 37 mm, and the average value of the maximum tension was 260 kN. The constant resistance to slippage was designed to equate 80% of the yield strength of the anchor cable.
[image: Figure 2]FIGURE 2 | Schematic diagram of tensile test; 1-anti-seismic anchor; 2-cushion block; 3-tool anchor; 4-force sensor; 5-limit plate; 6-tension table.
[image: Figure 3]FIGURE 3 | Load-displacement curve under static load.
In order to verify the force characteristics of anti-seismic anchor cables under dynamic repeated load, three groups of single-beam, same type anti-seismic anchor cables were selected for repeated loading and unloading tests. The test results are shown in Figure 4. The test results showed that in the repeated loading and unloading process, the control loads of slipping of the anti-seismic anchor cable were 200 kN (1st time), 211 kN (2nd time), 213 kN (3rd time), 215 kN (4th time), and 216 kN (5th time), and the maximum increase was 8%. The variations were not readily discernible. When the applied load once again equated the control load of slip, the anti-seismic anchor slipped, and the displacement began to increase further. This showed that the anti-seismic anchor cable was not sensitive to dynamic variable loading and that its anchoring effect had not weakened. In contrast to the conventional anchor cables where the boundary anchoring force would weaken under dynamic loading, the anti-seismic anchor cable slipped step-by-step under dynamic loading, which had the capacity to reduce the impact on the end-anchoring force by cyclic loading and unloading.
[image: Figure 4]FIGURE 4 | Test results under loading/unloading condition. (A) Time history curve of tension. (B) Load-displacement curve.
3.2 Working Mechanisms of Anti-Seismic Anchor Cables
The most important characteristics of anti-seismic anchor cables are their capacity to compensate for the lack of plastic deformation of their structural materials to meet the requirements for large deformation of the slope. The working mechanisms of anti-seismic anchor cables were established based on the results of the static tensile tests, as shown in Figure 5. Point A corresponds to the initial slip of the anchor cable, and the corresponding axial force of the anchor cable is Frs; point B marks the end of the slip and the initiation of the second elastic deformation stage, where the corresponding axial force of the anchor cable is Fre; point C indicates that the second elastic deformation of the anchor cable has ended and the start of the plastic strengthening stage, where the corresponding axial force of the anchor cable is Fs; point D is the end of the plastic strengthening stage of the anchor cable material and the point where the failure stage is about to be entered, where the corresponding axial force of the anchor cable is Fpe; point E represents the breaking point of the anchor cable, where the corresponding axial force of the anchor cable is Fp.
1) The OA stage is the first elastic deformation stage: the anchor cable was anchored to the slope rock mass, the initial stress on the anchor cable was small, and the axial force of the anchor cable gradually increased with the generation, propagation, and penetration of the slope crack.
2) The AB stage is the slipping stage: the continuous deformation of the rock mass caused the axial force of the anchor cable to increase continuously. When the constant resistance to slippage was exceeded, frictional sliding of the anchor cable body started, while the axial force was kept unchanged. At this stage, the working mechanism of the anti-seismic anchor cable consisted in adjusting uneven stress, energy absorption, and energy consumption.
3) The BC stage is the second elastic deformation stage: when the anchor cable reached the preset maximum slipping displacement ∆AB, the slip ended, and the free section of the anchor cable was no longer elongating. At that point, the force characteristics of the anti-seismic anchor cable equated that of a conventional pressure-type anchor cable, and the stress state returned to the elastic stage.
4) The CD stage is the plastic strengthening stage of the material: when the axial force of the anchor cable reached the yield limit Fs, plastic deformation began to develop.
5) The DE stage is the brittle failure stage of the material: when the anchor cable reached the ultimate stress Fpe and the ultimate strain of materials, the anchor cable broke.
[image: Figure 5]FIGURE 5 | Axial force-elongation curve of conventional and anti-seismic anchor cables.
4 SHAKING TABLE MODEL TEST
4.1 Model Similarity Design
In the similarity design of the model test, the geometric size, acceleration, and density were taken as the basic quantities for the similarity design. The similarity ratio of geometric size was 100:1, the acceleration was 1:1, and the density was 1:1. The similarity constants of other parameters were derived from the basic quantities using the dimensional analysis method. Since the main research object of this work was the strain response of the anti-seismic anchor cables, the elastic modulus of the slope was related to the deformation of the slope, and it did not need to guarantee its strict similarity. Last, the similarity constants of each physical quantity were obtained, as shown in Table 1.
TABLE 1 | Similarity constants of the shaking table model.
[image: Table 1]4.2 Anchor Cable Specimen
4.2.1 Design of the Anchor Cable Specimen
In order to study the strain response characteristics of the anti-seismic anchor cables, a scale model specimen was designed based on the mechanical characteristics and friction energy dissipation mechanism of anti-seismic anchor cables. The anchor cable specimen included the following: a steel strip (simulating steel strand), fixed nut (simulating permanent anchor), and wooden splint (simulating anti-seismic anchor). The frictional resistance between the wooden splint and steel strip was compared with the constant resistance to slippage of the anti-seismic anchor, and the reserved distance between the fixed nut and wooden splint was compared with the slipping displacement of the anti-seismic anchor cable. The width, thickness, and cross-sectional area of the steel strip were 11 mm, 0.6 mm, and 6.6 mm2, respectively. According to the material properties test, the elastic modulus, tensile strength, and axial stiffness of the anchor cable specimen were 212 GPa, 1,200 MPa, and 1,399.2 kN, respectively. Three strain measuring points were arranged along the longitudinal direction of the anchor cable specimen. The anchor cable specimen is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Anchor cable specimen. 1-fixed nut; 2-preset slipping distance; 3-wooden splint; 4-steel strip; 5-steel clamps; 6–1st strain measuring point; 7–2nd strain measuring point; and 8–3rd strain measuring point.
4.2.2 Static Tensile Test of Anchor Cable Specimens
The static tensile tests of three anchor cable specimens were carried out using the universal static material testing machine. Before slipping, the anchor cable was loaded at a uniform speed of 20 mm/min, and after slipping, it was loaded at a uniform speed of 50 mm/min. The time history curves of the strain of anchor cable specimens are shown in Figure 7, where Figure 7B is an enlarged partial view of Figure 7A. It can be seen that in the AB stage, the axial force of the anchor cable specimens approximately correlated positively with the elongation (corresponding to the OA stage in chapter 3 abovementioned, which is similar as follows); in the BC stage, the elongation of anchor cable specimens increased steadily under the condition that the axial force was kept constant (AB stage); in the CD stage, the anchor cable specimens showed obvious elastic stress characteristics (BC stage); in the DE stage, the axial force of anchor cable specimens increased sharply under less elongation (CD stage); in the EF stage, the elongation of anchor cable specimens increased sharply until destruction under the condition of an essentially constant axial force (DE stage). The test results showed that in the static tensile test, each stress stage of anchor cable specimens was fundamentally consistent with the mechanical properties of the anti-seismic anchor cables described in Chapter 3 previously.
[image: Figure 7]FIGURE 7 | Time history curves of strain of anchor cable specimens. (A) Entire process. (B) Enlarged part.
4.3 Slope Model Design
The experimental model of the anchored slope is shown in Figure 8. The slope body was poured with C20 concrete and the measured density and the elastic modulus of the slope model were 2,570 kg/m3 and 20.5 GPa, respectively. For the simulation of the sliding interface of the slope, the slope model No. 1 used a mixture of clay and fine sand, and slope model No. 2 used a mixture of clay and gypsum; the measured density, cohesion, and internal friction angle of this mixture were 1,960 kg/m3, 15.2 kPa, and 25.8°, respectively. The arrangement of the anchor cable specimens is shown in Figure 8B.
[image: Figure 8]FIGURE 8 | Experimental model of the anchored slope. 1-slope surface; 2-sliding interface; 3-anchor cable; 4-anti-seismic anchor; 5-sliding block; 6-bedrock. (A) Slope model design/mm. (B)Surface of slope model. (C) Back of slope model.
An experimental system was adopted in the form of a small earthquake simulation shaking table, which had the capacity to be loaded simultaneously both horizontally and vertically. Before the start of the test, the slope model was excited with bidirectional white noise sweep loading. The acceleration amplitude of the white noise was 0.05 g. Through the spectrum analysis method, the amplitude–frequency characteristic curve of the slope model was obtained. The natural vibration frequency was 10.7 Hz, and the damping ratio was 0.0587.
4.4 Loading Scheme Design
In the shaking table test, the sinusoidal wave, Tianjin wave, EI wave, and Taft wave after correction and filtering using the fundamental wave were used. The excitation method was concurrent horizontal and vertical loading. The vertical amplitude of the seismic acceleration was 2/3 of the horizontal amplitude. The time compression ratio was 10. The detailed loading scheme of model tests is shown in Table 2.
TABLE 2 | Loading scheme of model tests.
[image: Table 2]5 TEST RESULTS AND DISCUSSION
5.1 No-Slip Situation of Anti-Seismic Anchor Cables
Under working condition Nos. 14–19, it can be seen that the anti-seismic anchor cable specimen did not slip, and its strain fluctuated smoothly. The anchored slope maintained good stability. The time history curves of the strain of the anti-seismic anchor cable specimens are shown in Figure 9. The data in the figure are the test results of the 1st measuring point of the 1st anchor cable specimen. In this instance, the anti-seismic anchor cable had a similar force mechanism to that of the conventional pressure-type anchor cable. The peak strain of the anti-seismic anchor cable continued to increase with the increase in seismic acceleration amplitude, and the maximum peak strain was 119.7 × 10−6, as shown in Table 3. Under these working conditions, the anchor cables were sensitive to the instant impact of the earthquake. Once subjected to strong seismic forces, the axial force of the anchor cable increased sharply, which inevitably caused a surge in the risk of failure of the anchor cable due to stress overload, thus seriously endangering the safety of the entire anchored slope.
[image: Figure 9]FIGURE 9 | Time history curves of strain of anti-seismic anchor cables in no-slip situation. (A) Working condition 18#. (B) Working condition 19#.
TABLE 3 | Peak strain of anti-seismic anchor cables in no-slip situation.
[image: Table 3]5.2 Instantaneous Slip Situation of Anti-Seismic Anchor Cables
Under working condition Nos. 22–24, it can be seen that the anti-seismic anchor cable specimen had slipped, and its strain increased rapidly after the end of the slipping. The time history curves of strain of the anti-seismic anchor cable specimens are shown in Figure 10. The data in the figure are the test results of the 1st–3rd measuring points of the 1st anchor cable specimen. In this instance, the strain time history curves displayed a step-shaped jump, and the reserved slipping distance was instantly exhausted during the vibration process. When the seismic acceleration amplitudes were 0.8, 0.9, and 1.0 g, the increase ratios of the peak strain of the anchor cable before and after slip were 81, 79, and 74%, respectively, and the corresponding slipping start times were 10.33, 9.85, and 7.35 s, respectively, as shown in Table 4. As the amplitude of seismic acceleration increased, the peak strain of the anchor cable increased gradually, and the slipping start time was brought forward gradually. Under strong seismic conditions, the anti-seismic anchor cable slipped instantly because the preset constant resistance to slippage was too small, and the mechanism of frictional slip could not provide energy consumption.
[image: Figure 10]FIGURE 10 | Time history curves of strain of anti-seismic anchor cables in instantaneous slip situation. (A) Working condition 23#. (B) Working condition 24#.
TABLE 4 | Peak strain of the anti-seismic anchor cables in instantaneous slip situation.
[image: Table 4]5.3 Gradual and Accumulative Slip Situation of Anti-Seismic Anchor Cables
Under working conditions No. 20, the time history curves of the strain of the anti-seismic anchor cable specimens are shown in Figure 11. The data in the figure are the test results of the 1st–3rd measuring points of the 1st anchor cable specimen. It can be seen that the anchor cable slipped gradually and in stages, and its peak strain value was significantly lower than that in non-slip and instantaneous slip situations. The preset constant resistance to slippage of the anti-seismic anchor cable matched the seismic force under this working condition. The time history curve of the strain of the anti-seismic anchor cables was roughly divided into five stages: OA stage was the static strain before the earthquake. AB stage was the initial stage of seismic loading, where the slope model began to vibrate, and the strain of anchor cable specimens increased sharply because of the impact force. The stages of BC, CD, and DE corresponded to three slipping processes of the anti-seismic anchor cable. In each slipping process, the change trend of the anchor cable strain was first decreasing and then increasing. When the anchor cable began to slide, the force of the anchor cable was reduced due to the temporary reduction of the restraint on the sliding body. When the slip ceased, the force of the anchor cable increased because that provided supporting force again. When the axial force of the anchor cable exceeded the constant resistance to slippage, the anchor cable started to slip again. The reserved slipping distance of the anti-seismic anchor cable was exhausted by multiple accumulations. The displacement of a single slip was correlated with the curvature of the time history curve of strain and the time of strain recovery. The EF stage was the termination of seismic dynamic response; the stress of the anchor cable tended toward a certain value that was in a static state.
[image: Figure 11]FIGURE 11 | Time history curves of strain of anti-seismic anchor cables in gradual and accumulative slip situation.
5.4 Discussion
According to the test results, the strain response of the anti-seismic anchor cables varied with the loading intensity of the ground motion, and three different situations were observed: 1) When the seismic force was small and the constant resistance to slippage was large, the sliding body did not slip; 2) When the seismic force was large and the constant resistance to slippage was small, the anti-seismic anchor cables slipped instantly, and the reserved sliding distance was exhausted all at once; 3) When the seismic force and the constant resistance to slippage were set to appropriate values, the anti-seismic anchor cables slipped gradually, and the reserved sliding distance was exhausted through multiple accumulation.
Therefore, in the engineering design of the anti-seismic anchor cables, the preset constant resistance to slippage should match the seismic inertial force of the sliding body. When the constant resistance to slippage is relatively large, the anchor cable does not slip and cannot adapt to the large deformation of the rock mass, which causes the anchor cable to break due to insufficient deformation capacity of the material. When the constant resistance to slippage is relatively small, the anchor cable completes the slippage instantly; a step-shaped jump appeared in the time history curves of the strain of the anchor cables, which causes the effects of buffering the seismic force and consuming energy are not obvious. When the constant resistance to slippage is moderate, the anchor cable slips gradually and in stages. During each slipping process, the strain of the anchor cable first decreased and then increased, with the peak strain decreasing significantly. The mechanism of multiple accumulated slips effectively cushions the instantaneous impact force of the earthquake, releases rock deformation, and dissipates seismic energy.
6 CONCLUSION

1) Under a static force, the anti-seismic anchor cables undergo in sequence a first elastic deformation stage, a slipping stage, a second elastic deformation stage, a plastic strengthening stage, and a brittle failure stage. In the slipping stage, the anchor cables start frictional sliding, while keeping the axial force basically unchanged to adapt to the large deformation of the rock mass; these constitute a working mechanism to absorb the deformation energy of the rock mass.
2) The strain response of the anti-seismic anchor cables under seismic excitation present three situations: no-slip, instantaneous slip, and gradual and accumulative slip. When the constant resistance to slippage is large, the anchor cables do not slip, which can easily cause the anchor cables to break due to stress overload. When the constant resistance to slippage is small, the reserved sliding distance is instantly exhausted; a step-shaped jump appears in the time history curves of the strain of the anchor cables, and the peak strain increases by 70–85%.
3) In the engineering design, the preset constant resistance to slippage of the anti-seismic anchor cables is needed to match the seismic inertial force, resulting in the anchor cable slipping gradually and accumulatively. During each slipping process, the strain of the anchor cables first decreases and then increases, with the peak strain decreasing significantly. The mechanism of multiple accumulated slips proves effective in cushioning the instant impact force of the earthquake, releasing rock deformation and dissipating seismic energy.
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Reasonable stope structural parameters are very important to ensure the safety and efficiency of mining. In this paper, based on the elastic-plastic constitutive model of Mohr-Coulomb strength criterion, the reasonable span and critical span are calculated by using simply supported beam theory and mine room width calculation formula. PLAXIS2D finite element analysis software was used to conduct numerical simulation research on 7 m × 9 m, 5 m × 12 m stope structure parameter schemes and 7 m × 9m, 5 m × 12 m waste rock filling schemes. The optimal structure parameters of the stope were determined based on the calculation and analysis of displacement variation rule, surrounding rock stress distribution and plastic zone. The analysis and simulation results show that Case 1 one-time mining 7 m × 9 m and Case 3 one-time mining 5 m × 12 m, the plastic zone is connected, the simulation calculation is not convergent, and the stope is unstable. Case 2 waste rock filling 7 m × 9 m and Case 4 waste rock filling 5 m × 12 m, the distribution and change of stress, displacement and plastic zone in the goaf under the two cases are compared, and finally the waste rock filling 7 m × 9 m is obtained can improve the economy and safety of mining in the mining area, and verify the feasibility of implementing stope structural parameters and waste rock filling mining system is verified.
Keywords: phosphate mine, optimization of stope structure parameters, stability of surrounding rock, PLAXIS2D, numerical simulation
1 INTRODUCTION
In terms of mining design and actual mining conditions, on the one hand, stope structure parameters affect the stability of continuous mining of underground stope, on the other hand, they also affect the economic benefits of mining (Dong et al., 2017; Xu et al., 2021). Thus, it is certainly need to select reasonable stope structure parameters from the aspects of safety and economy (Qiao 2001; Yang and Ore, 2015; Fu et al., 2017; Wojtecki et al., 2021). When the span of the mine room is small and the size of the ore pillar is too large, although the safety is improved, the ore recovery rate will be low, when the pillar size is too small and the room span is large, it will reduce the stope stability and increase the probability of large-scale ground pressure activities (Cao et al., 2019; Huang et al., 2021a; Huang et al., 2021b; Guo et al., 2021; Liu et al., 2021; Wang et al., 2021), which will bring great danger to safety production (Castro-Caicedo, 2019; Hu et al., 2019; Almoataz et al., 2020; Mikhail et al., 2020). Therefore, it is necessary to optimize the stope structural parameters to ensure the safety and efficiency of stope mining (Xiang and Ke, 2014; Tang et al., 2017; Liu et al., 2018; Zhu et al., 2021a; Sun et al., 2021).
The traditional optimization methods of stope structural parameters mainly include field test Zhang (2009) and model test Zhang (2010). These methods are difficult to accurately realize the optimization selection of various structural parameters with the integration of computer technology and numerical analysis method, the stability analysis of stope, pillar and mine room under different stope structural parameters can be carried out by using computer simulation software (Du et al., 2016; Tang et al., 2016; Wang et al., 2016; Barnewold and Lottermoser, 2020).
In recent years, many scholars have used numerical simulation software to study the optimization of stope structural parameters (Wagner 2009; Falaknaz et al., 2015a; Falaknaz et al., 2015b; Kamash et al., 2021). Lin (2021) designed the numerical simulation of different schemes of the stope structure of the metal mine based on the orthogonal test method, so as to analyzed and selected the best parameter optimization results. Qiu et al. (2013) used ANSYS numerical simulation software, the stope structural parameters of room height, length, width and pillar width are optimized. Through comparative analysis, the optimal stope structure parameters are obtained. Zhao et al. (2019) used Mathews stability diagram method, and Yang et al. (2017) used FLAC3D numerical simulation and theoretical calculation, the stability of stope roof and pillar is comprehensively studied to determine the reasonable stope structure parameters. Ge (2017) used MIDAS-GTS technology to obtain the optimization scheme of stope structural parameters. Yi and Liao (2017) optimized the stope structural parameters based on ANSYS and fuzzy evaluation, and obtained the optimal combination scheme of room and pillar width. Li et al. (2019) used the principle of orthogonal test to optimize the parameters of a thick and large iron mine stope and realized efficient and economic mining. Idris and Nordlund (2019) used FLAC3D to study the deformation magnitudes of various stope geometries to determine the optimal stope geometry with a minimum ground control problem. Jing et al. (2020)used FLAC3D numerical software to support scheme of the excavated roadway was then designed, and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway.
The above scholars analyzed the stability of surrounding rock and the optimization of structural parameters in underground mining in the mining area through the change law of ore and rock mechanics in the mining process. However, at present, the scale of the underground goaf of the mine is large, which increases the difficulty of recovering the remaining ore resources. In the process of phosphate rock mining, the joint influence of structural parameters and waste rock filling is still lack of optimization research.
Therefore, this study uses the finite element analysis software PLAXIS 2D, which can simulate the complex geotechnical structure, carry out the simulation calculation of step-by-step construction, activate and suppress various unit components, and simulate the optimization of structural parameters of underground phosphate rock mining by using load and other functions. Through the comparative analysis of stope space width, pillar width and other parameters, combined with simply supported beam theory and reasonable stope width theory, the synergistic effect of the best stope structure parameters and filling scheme is finally obtained. It provides guidance for efficient and safe mining of phosphate rock and reference for mining of similar mines.
2 STUDY AREA AND MATERIALS
2.1 Stratigraphic Conditions
Wawu IV ore block belongs to medium and high mountain area. After denudation and strong erosion, it forms the geomorphic characteristics of vertical and horizontal gullies and overlapping mountains. The highest altitude in the area is 1710 m, which is located in Gaobaling in the east of the mining area, and the lowest is 574 m, which is located in Zhuyuan River in the southwest corner of the mining section. The maximum relative elevation difference is 1136 m, generally about 400∼800 m. Most of the peaks are round, a few isolated peaks are bamboo shoots, and most of them are cliffs. The valley is a “V” shaped valley with narrow valley bottom and valley slope of 40°∼80°. The whole mining area is covered with lush forests, and the steep terrain is conducive to drainage.
Phosphate rock is located in the northeast of Huangling anticline. The exposed strata in the area include Mesoproterozoic Shennongjia group (Ptsh) and Kongling group (Ptkn). Neoproterozoic upper Nanhua NANTUO formation (Nh2n), Sinian Doushantuo Formation (Z1d), Dengying Formation (Z2dn), Paleozoic Cambrian (∈), Ordovician (O), Silurian (S) and Cenozoic Quaternary. The phosphorous rock series in this ore block is mainly composed of phosphorous mudstone and dolomite. The main ore bed in the ore section is Ph13 ore bed, which is stably distributed in the north of the ore section and occurs in layers. It is monoclinic structure as a whole with slight wavy fluctuation. The ore bed is inclined to the southeast as a whole, with a dip of 130°∼175°, and the dip angle is generally 18°∼35°. Affected by faults, the ore bed becomes steeper or even upright locally.
2.2 Hydrometeorological Conditions
The mining area belongs to subtropical monsoon climate with four distinct seasons and abundant rainfall, with typical mountain climate characteristics. The annual maximum precipitation (83 years) is 1552.42 mm, the annual minimum precipitation (88 years) is 913.7 mm, the annual average rainfall day is 155 days, and the maximum daily precipitation (September 9, 83 years) is 109.7 mm. The precipitation is concentrated. The precipitation in rainy season (may October) accounts for 80.9% of the annual precipitation, the precipitation in dry season (November February of the next year) accounts for 9.4% of the annual precipitation, and the freezing period is from December to march of the next year.
The phosphate rock layers in ore block IV of Wawu mine are concealed underground, and more than two-thirds of the phosphate rock layers occur above the local erosion base level. The hydrogeological conditions of ore block IV belong to the karst water filled deposit of “the water filled rock stratum is mainly composed of dissolution fractures, the roof has direct and indirect water inflow, and the hydrogeological conditions are medium to complex.”
2.3 Lithology of Surrounding Rock at the Top and Bottom of Phosphate Rock Layer
2.3.1 Surrounding Rock of Phosphate Rock Roof
The lithology of the surrounding rock of the phosphate rock roof is siliceous, porous and fine-grained dolomite, with good continuity and integrity of the rock stratum. The thickness of rock stratum is 57.98 ∼ 107.56 m, the average thickness is 93.13 m, the content of P2O5 is 0.12% ∼ 6.80%, and the average content is 1.67%. The compressive strength of roof dolomite is 117 mpa, the rock is hard and has high strength. The joint fissures in the dolomite layer of the roof are not very developed, and the fissures are mostly filled with calcite veins. Generally, a tensile fissure can be seen only at a distance of 20 ∼ 40 m, and the tunnel needs support only at the large structural fracture zone.
2.3.2 Phosphate Rock Layer
Ph13 phosphate rock layer is produced in layers and blocks with good integrity. The thickness of the ore bed is 1.47 ∼ 10.66 m, the average thickness is 5.46 M, the content of P2O5 is 18.06% ∼ 29.86%, and the average content is 22.12%.The compressive strength of phosphate rock layer is 116 mpa, dense, hard and high strength. The joint fissures of phosphate rock layer are basically closed and have good stability. No large fracture zone and water leakage are found in drilling or tunnel excavation.
2.3.3 Floor Surrounding Rock
The lithology of the surrounding rock of the floor of the phosphate rock layer is the same as that of the surrounding rock of the roof. The thickness of the rock stratum is 12.95 ∼ 86.26 m, with an average thickness of 32.30 m. The content of P2O5 (phosphorous mudstone in the direct floor) is 0.86% ∼ 9.9%, with an average content of 1.93%. The compressive strength of floor dolomite is 138 mpa, the rock is hard and has high strength.
2.4 Selection of Mechanical Parameters of Rock Mass
The surrounding rock of phosphorus ore bed roof in Wawu IV ore block is dolomite, with hard rock, high strength and good integrity. Ph13 phosphorene bed is dense, hard and complete. The engineering geological conditions of Wawu IV ore block belong to medium type. Because there are some differences between the mechanical parameters of rock and rock mass, it is necessary to weaken the mechanical parameters of rock to obtain the mechanical parameters of rock mass. Firstly, the mechanical parameters of rock are obtained through indoor experiments (Wu et al., 2020; Dong et al., 2021; Gao et al., 2021; Wang and Liu 2021), and then weakened by using empirical reduction method and Hoek-Brown strength criterion (Serrano et al., 2016; Shi 2016) according to the on-site geological conditions.
The selection of rock mass parameters in this paper is based on the analysis of the existing data of the mine, and referring to the above relevant literature and field mechanical tests, to comprehensively obtain the physical and mechanical parameters of roof dolomite, floor dolomite, filling body and ore deposit. The obtained physical and mechanical parameters of rock mass are shown in the Table 1.
TABLE 1 | Physical and mechanical parameters of rock mass in ore section.
[image: Table 1]2.5 Other Geological Conditions
According to records, earthquakes in Yichang City in history are mainly weak earthquakes, and there has been no destructive earthquake. According to the seismic ground motion parameter zoning map of China (GB18036-2001), the mining area belongs to the seismic basic intensity VI area, and the seismic basic acceleration is 0.05 g. According to the crustal stability grade and seismic index, the mining area belongs to the stable area. No magmatism has been found in the ore section. The metamorphism in the ore block only shows the shallow metamorphism of the basement strata of the Middle Proterozoic Shennongjia group.
3 MODEL ESTABLISHMENT
3.1 Basic Assumptions and Premises
In view of the complexity of stope mining technology, in order to facilitate modeling and calculation analysis, the following simplifications and assumptions are made:
(1) It is assumed that the rocks and fillings in the model are homogeneous and isotropic continuous media.
(2) Because there are few faults and structural planes in the buried area of phosphate rock, the influence of factors such as interruption layer, fracture and structural plane on the stability of the mining area is ignored in the modeling process.
(3) Because the geological structure of the buried area of phosphate rock is also relatively simple, the structural stress is ignored and only the influence of gravity on the calculation model is considered.
(4) In order to improve the calculation efficiency, it is assumed that the processes such as mine room excavation and filling goaf are completed at one time.
(5) The simulated stope height is 68 m, the horizontal thickness of the excavated ore body is 8 m, and the ore body dip angle is 30°. Pillar sizes are 5 m × 5 m and 7 m × 7 m respectively.
3.2 Simulation Area Selection
Select the drift of ore Section 4 of Wawu phosphate mine, take 32 m thick rock mass above and below the phosphate rock layer, and select the section passing through exploration line 23 for numerical analysis. The phosphate rock layer is subjected to the self-weight load of the overlying rock mass. The self-weight load is estimated by multiplying the thickness of the phosphate rock layer from the surface by the unit weight of the soil. The thickness from the surface is taken as 400 m, and the unit weight of the rock mass is taken as 27 KN/m3, equivalent to 400 m × 27 KN/m3 = 12420 KPa, applied to the upper part of phosphate rock layer, p = 12420 KPa. The selected simulation area is shown in Figure 1 and Figure 2.
[image: Figure 1]FIGURE 1 | Plan of roadway in section IV of Wawu Phosphate Mine.
[image: Figure 2]FIGURE 2 | (A) Area diagram of numerical simulation of Wawu phosphate ore section IV (Pressure p = 12.42 MPa). (B) Area diagram of numerical simulation of Wawu phosphate ore section IV (Pressure p = 12.42 MPa)
3.3 Simply Supported Beam Theory and Calculation of Reasonable Room
The stope roof can be assumed to be simply supported beams at both ends Yang et al. (2015). According to the material mechanics, the stress at any point on the upper and lower surfaces of the neutral axis of the rock beam is:
[image: image]
Where, ɑ is the dip angle of ore body, (°). l is the span of rock beam, m. h is the height of rock beam, m. [image: image] is the unit weight of rock mass, 104 N/m3. The maximum tensile stress occurs on the lower surface of the neutral axis of the rock beam a [image: image] and the maximum tensile stress is:
[image: image]
The maximum allowable span of roof inclination is:
[image: image]
The maximum allowable span of the vertical strike of the roof is:
[image: image]
The stress analysis of simply supported beam is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Stress analysis of simply supported rock beam.
For the stope mined by stage open stope and subsequent filling method, the width of the stope can be determined according to the safety guarantee and production capacity of stope mining Zhang et al. (2021). When the stope safety is guaranteed, the greater the width and height of the stope, the greater the production capacity of the stope Zhang et al. (2014). The calculation formula of room width is as follows:
[image: image]
Where, H is the mining depth of the ore body, m. β Is the lateral pressure coefficient, generally taken as 0.65. σt T is the tensile strength of top pillar rock stratum (reduced according to the tensile strength of rock mass, generally 0.4), MPa. Taking H = 400 m, γ = 29 kN/m3, σt = 2.1 MPa is substituted into Eq. 5, It can be obtained that the room width of the filling yard of phosphate rock in Ore Section 4 of Wawu phosphate rock area is about L = 9 m. Therefore, we have obtained the empty yard span of each scheme, as shown in Table 2.
TABLE 2 | Allowable empty field span of each scheme.
[image: Table 2]The calculation result of simply supported beam theory is the maximum allowable span under corresponding ore and rock conditions, so the result is too large. In practical application, the calculation result of reasonable room width should be taken as reference, and the maximum cannot exceed the calculation result of simply supported beam theory. Therefore, the width of the simulated ore room is 12 and 9 m respectively.
3.4 Failure Criterion
PLAXIS program has strong application and can simulate complex engineering geological conditions, especially suitable for deformation and stability analysis. PLAXIS program can calculate two kinds of engineering problems: plane strain problem and axisymmetric problem. It can simulate soil, wall, slab, beam structure, contact surface between various elements and soil, anchor bolt, geotextile, tunnel, pile foundation and other elements. Analyze 2D and 3D deformation, consolidation, graded loading, stability analysis and seepage calculation in geotechnical engineering. PLAXIS uses the finite element strength reduction method to calculate the safety factor in the sense of soil mechanics.
The values of displacement, stress, strain and member internal force can be output to the table. The constitutive model of soil, linear elasticity, Mohr Coulomb, soft soil model, hardening model and soft soil rheological model can simulate the construction steps, and the post-processing of multi-step calculation is simple and convenient (Huang et al., 2017; Zhu et al., 2021b).
The lithology of the phosphate rock is mainly composed of dolomite and mudstone, which are elastic-plastic bodies. Therefore, it is applicable to the strength failure criterion of Mohr Coulomb. The mechanical model is shown in Figure 4. Based on Mohr-Coulomb strength criterion, the shear failure envelope ƒs = 0 on segment AB is defined as:
[image: image]
[image: Figure 4]FIGURE 4 | Mohr-Coulomb strength criterion in PLAXIS2D.
Based on the tensile failure criterion, the tensile failure envelope ƒt = 0 on segment BC is defined as:
[image: image]
Where, σ1 is the maximum principal stress, MPa. σ3 is the minimum principal stress, MPa. φ is the internal friction angle, (°). c is cohesion, MPa. σt is tensile strength, MPa. In Figure 4, the points on line AB or line BC are in critical failure state. The lower left half (area I) of the area surrounded by three line segments AB, BC and σ3-σ1 = 0 is in an undamaged state, the upper right half (area II) is in a damaged state.
3.5 Preliminary Scheme Selection of Stope Structure
This study mainly focuses on the numerical simulation and optimization of stope structural parameters Zhang and Chen (2016). According to 3.3 simply supported beam theory and reasonable chamber width calculation results, the maximum allowable span and reasonable span of each case are determined. Combined with the existing mining technical conditions and actual production conditions, the following four cases are put forward, and the stope stability under the four cases is compared. There are two options. The first scheme is to change the stope structural parameters (Case 1 and Case 3), and the second scheme is to increase waste rock filling (Case 2 and Case 4).
Case 1: The stope structural parameters are the pillar width of 5 m, the room width of 12 m and the ore body thickness of 8 m. No filling is carried out after one-time excavation.
Case 2: The stope structural parameters are pillar width of 5 m, room width of 12 m and ore body thickness of 8 m. For waste rock filling, three ore chambers are filled horizontally and longitudinally to form a large point column with the ore pillar. Two ore chambers are left at the periphery without filling, and then filled all the time according to the same method, as shown in Figure 5.
[image: Figure 5]FIGURE 5 | Schematic diagram of filling scheme.
Case 3: The stope structural parameters are pillar width of 7 m, room width of 9 m and ore body thickness of 8 m. No filling is carried out after one-time excavation.
Case 4: The stope structural parameters are pillar width 7 m, room width 9 m and ore body thickness 8 m. The waste rock filling method is the same as Case 2. The schematic diagram of mining scheme is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Schematic diagram of mining scheme.
3.6 Boundary Condition
The finite difference software PLAXIS 2D is used for modeling. According to the elastic-plastic theory, the mining influence range after stope excavation is usually within 5 times of the roadway radius. In this paper, the model is established based on 3–5 times of the analysis area. The model is 270 m long, 122 m high and 8 m thick, with 42,763 nodes and 5,275 units. The horizontal displacement constraint in the X direction is adopted on the left and right sides of the model, the horizontal and vertical constraints are applied on the bottom of the model, the model surface is free constraint, show in Figure 7.
[image: Figure 7]FIGURE 7 | PLAXIS2D modeling diagram.
4 SIMULATION RESULTS AND ANALYSIS
Under the same mining method, change the stope structural parameters and waste rock filling scheme. According to the numerical simulation results, analyze the displacement, maximum principal stress and plastic zone range of each stope top, floor and point column, so as to judge the stope stability. The displacement, stress and plastic zone parameters of each scheme are shown in Table 3.
TABLE 3 | Displacement, stress and plastic zone parameters of each project.
[image: Table 3]4.1 Analysis of Displacement Distribution Law
Because the original stress balance state is broken, the roof and floor of the stope are affected by horizontal stress, so they squeeze towards the goaf, resulting in displacement towards the goaf. Among them, the vertical displacement generated in the middle of the roof of the goaf is the largest. It can be seen from Figure 8 that the maximum displacement generated by the roof in Case 1 is 2.8 cm, in Case 2 is 2.0 cm, in Case 3 is 1.8 cm and the maximum displacement of the top plate in Case 4 is 1.0 cm. Therefore, the maximum displacement generated by the roof in Case 4 is the minimum. After filling the goaf, it can be seen from the Figure 8 that the overall displacement of the rock mass in the mining area decreases to a certain extent. The addition of filling body reduces the settlement displacement of surrounding rock in the mining area and the affected area of surrounding rock settlement, so that the influence of mining disturbance on the overlying strata of goaf roof and surface becomes smaller. This shows that filling the goaf after room mining effectively enhances the stability of the seam and reduces the possibility of geological disasters such as surface subsidence and mine collapse.
[image: Figure 8]FIGURE 8 | Vertical displacement of stope roof in four case.
4.2 Analysis of Distribution Law of Maximum Principal Stress
Due to the mining of stope, the stress of stope and surrounding rock is released, breaking the original stress state and redistributing the stress of surrounding rock. Stress concentration occurs at the top and bottom corners of the stope, and the compressive stress is mainly concentrated on the room and pillar. It can be seen from Figure 9 that the maximum principal stress of the whole goaf roof in Case 1 is about 36.84 MPa, in Case 2 is about 32.51 MPa, in Case 3 is about 28.98 MPa and in Case 4 is about 24.71 MPa. Therefore, the maximum principal stress of goaf roof in Case 4 is the minimum. After filling the goaf, the distribution of stress concentration area becomes less, and part of the tensile area is transformed into compression area; the maximum compressive stress of ore body and the maximum tensile stress of ore pillar are obviously reduced. This shows that the filling body bears part of the vertical compressive stress instead of the roof, floor and pillar, so as to release the concentrated stress in the goaf, effectively prevent the vertical deformation of the roof and floor of the goaf, reduce the possibility of pillar failure and collapse, and strengthen the stability of the surrounding rock of the seam.
[image: Figure 9]FIGURE 9 | Maximum principal stress diagram of stope roof in four case.
4.3 Analysis of Distribution Law of Plastic Zone
From Figure 10, in Case 1, the plastic zone of the surrounding rock around the stope is asymmetric, mainly because the shear stress generated by the surrounding rock is greater than the shear strength of the rock mass, resulting in the plastic state of the surrounding rock. In Case 3, the plastic area of the stope is basically concentrated at the pillar. And the plastic area generated by Case 1 is larger than that generated by Case 3, and the stress of surrounding rock changes sharply. This is because the two ends of the stope have exceeded the mechanical strength of the rock mass itself, resulting in stress release. To sum up, the stope under the two working conditions are unstable. The plastic zone ratios for Case 1 and Case 3 are shown in Table 4.
[image: Figure 10]FIGURE 10 | | (A) Distribution of stope plastic area in Case 1 and 3. (B) Distribution of stope plastic area in Case 1 and 3.
TABLE 4 | Area ratio of plastic zone under case 1 and case 3.
[image: Table 4]4.4 Analysis of Plastic Zone Distribution After Filling
In Case 2 and 4, the plastic area of the stope is basically concentrated at the top and bottom of the pillar, and the plastic area is small. Compared with the working condition of unfilled goaf, the range of plastic zone of phosphate rock layer is reduced to a certain extent, and the rock mass stress around the plastic zone is in the state of elastic stress, and the overall stability of phosphate rock layer is strengthened. It can be seen from Figure 11 that the plastic area generated by Case 2 is larger than that generated by Case 4. Compared with Case 1 and 3, the plastic area of Case 2 and 4 is smaller and the stope stability is higher. The plastic zone ratios for Case 2 and Case 4 are shown in Table 5.
[image: Figure 11]FIGURE 11 | | (A) Distribution of stope plastic area in Case 2 and 4. (B) Distribution of stope plastic area in Case 2 and 4.
TABLE 5 | Area ratio of plastic zone under case 2 and case 4.
[image: Table 5]5 DISCUSSION
5.1 The Best Scheme of the Cases
The results of numerical simulation show that the maximum values of tensile stress and final displacement of each scheme usually appear in the middle of the area, and the increase of mine room span is very easy to cause the rapid increase of the maximum settlement in the mining area. It can be seen from the plastic zone that with the increase of mine room span, the plastic zone is also increasing. In Case 1 and Case 3, the failure area in the pillar appears the failure state of plastic zone penetration, so it is not suitable to use. Considering several factors such as roof stability and plastic area, Case 2 and Case 4 can ensure the safety of stope mining. The data of Case 2 and Case 4 show little difference. Considering the efficient production and stope stability, Case 4 is the most suitable, that is, the stope structure scheme of 7 m pillar and 9 m room waste rock filling.
The optimized stope structure parameters are applied to the stope with a buried depth of about 400 m. The edge pillar, stope pillar, roof and floor can remain stable, and only a small amount of ore caving occurs at the place with relatively developed joint fissures. Compared with the original stope design scheme, the optimized scheme increases the width of pillar and reduces the number of pillars, The stability of the stope has been greatly improved, and the recovery rate of the mine has been increased to about 79%, which has created good economic benefits for the mine.
5.2 Optimal Stope Structure Parameters
Stope structure parameter design is a multi-factor and multi-objective optimization problem. The more factors and objectives, the more advantages of this method can be fully reflected. Therefore, it can be regarded as a general method to solve this kind of problem. The evaluation indexes set in this paper only include stability indexes and economic indexes, while other indexes in the actual production of the mine (mining and cutting ratio, stope production capacity, geological conditions, etc.) can also be taken into account; At the same time, the comprehensive evaluation method used in this paper is only the objective weighting method. If the objective weighting method is combined with the subjective weighting method, a more accurate comprehensive evaluation value can be obtained, and the stope structure parameters most in line with the current situation of mine production can be obtained accordingly.
Mine geological conditions are generally complex, and the simulation process of finite element analysis software fully reflects the complex and changeable geological conditions of the mine. The determination of ore body parameters should adopt the combination of numerical simulation and theoretical calculation. Therefore, based on the elastic-plastic constitutive model of Mohr Coulomb strength criterion, the reasonable span and critical span are calculated by using the simply supported beam theory and the calculation formula of room width. By improving the reliability of the calculation results, the data are closer to the engineering practice, so as to ensure the safety and efficiency of mining operation.
5.3 Research Limitations
The generalization of geometric model involves complex geological bodies. This paper only studies and analyzes the two-dimensional model of phosphate rock mining without three-dimensional numerical simulation, which is slightly different from the actual situation. The model itself has experienced a generalization, so various assumptions are put forward in the simulation calculation to facilitate the simulation calculation. For example, the horizontal displacement constraints in the X direction are adopted on the left and right sides of the model boundary conditions, the horizontal and vertical constraints are applied on the bottom of the model, and the model surface is free constraints, which will be different from the actual situation of the mine; In the actual engineering filling, the filling body can not completely fill the ore chamber, and this factor is not considered in the simulation calculation. The above deficiencies need to be further discussed in the follow-up study.
6 CONCLUSION
The maximum allowable span and reasonable span of each scheme are determined by comprehensively using the simply supported beam theory and the calculation formula of room width. 7 m × 9 m, 5 m × 12 m two stope structure parameter schemes and 7 m × 9 m, 5 m × 12 m two waste rock filling schemes of are studied by numerical simulation. The analysis and simulation results show that the simulation calculation of Case 1 and Case 3 does not converge, the maximum principal stress exceeds the rock mass strength, the plastic area is too large and there is a penetration phenomenon, resulting in a great reduction in the stability of the phosphate mine stope, the stope is prone to collapse, the mining area is too large, and the stope stability is greatly reduced. Under Case 2 and Case 4, the maximum principal stress does not exceed the rock mass strength, and the plastic area is small, so the stope is relatively safe. When the stope span is 9 m and the waste rock is filled, the maximum vertical displacement, maximum principal stress and the volume of plastic zone change little, the plastic zone is not connected, and the stope is in a stable state; When the stope span is 12 m and the gangue is filled, the vertical displacement and maximum principal stress of the stope roof and floor are the largest, the equivalent safety factor of the upper part of the roof is at the limit value, the plastic area in the study area is connected, the volume of the plastic area increases greatly, and the stope is in the limit stable state. Comprehensively considering the calculation results of the model and the comprehensive comparative analysis of stress, displacement and plastic zone, when the stope span is 9 m and the gangue is filled, the stope production capacity can be brought into full play on the premise of ensuring the Stope Safety and maximizing the interests of the mine.
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This study conducted ten freeze-thaw cyclic tests to clarify the effect of freeze-thaw cycles on the forces acting on the buried oil pipeline. The stress evolution in the Q345 steel pipeline versus the number of freeze-thaw cycles was obtained. The test results were consistent with the COMSOL simulation of the effect of different moisture contents on the pipeline bottom stress. Besides the proposed XGBoost model, eleven machine-learning stress prediction models were also applied to 10–20 freeze-thaw cycling tests. The results showed that during the freeze-thaw process, the compressive stress at the pipeline bottom did not exceed −69.785 MPa. After eight freeze-thaw cycles, the extreme value of the principal stress of -252.437MPa, i.e., 73.17% of the yield stress, was reached. When the initial moisture content exceeded 20%, the eighth freeze-thaw cycle’s pipeline stress decreased remarkably. The XGBoost model effectively predicted the pipeline’s principal stress in each cycle of 10 freeze-thaw cyclic tests, with R2 = 0.978, MSE = 0.021, and MAE = 0.102. The above compressive stress fluctuated from −131.226 to −224.105 MPa. The predicted values well matched the experimental ones, being in concert with the “ratcheting effect” predicted by the freeze-thaw cycle theory. The results obtained provide references for the design, operation, and maintenance of buried oil pipelines.
Keywords: pipeline stress, freeze-thaw cycle, XGBoost, algorithm comparison, forecasting model
INTRODUCTION
Buried oil and gas transportation plays an important role in the global energy supply. Long-distance oil transportation via buried pipelines often crosses seasonal frozen soil areas, which freeze-thaw cycles induce cyclic stresses in pipelines’ metal. Therefore, the effects of temperature and the number of freeze-thaw cycles on the pipeline stressed state should be analyzed.
Periodic temperature changes often hinder the normal operation of pipelines. In winter, the oil viscosity increases, the paraffin at the bottom of the pipeline accumulates, hindering the oil transportation. Moreover, the pipeline is arched by the freeze-thaw cycle load, resulting in uneven stress on the oil pipeline. Pores are formed between the pipe and the soil, and the pipeline may be broken by additional stresses (Boguchevskaya et al., 2016; Wu et al., 2010). The generation of soil frost heave force is aggravated by high moisture content (Jin et al., 2010; Li et al., 2010; Liu et al., 2014; Dvoskina et al., 2015). The above problems concern all buried oil pipelines that pass through seasonally frozen soil areas.
In gas pipelines, a similar phenomenon is related to the Archimedean force of the water-bearing soil acting on the pipeline (Teng et al., 2021; Mukhametdinov, 1996). Besides, strain accumulation or the so-called ratcheting effect is intrinsic to melting soil-pipeline engineering. This effect increases stresses and displacements of buried oil pipelines with the number of freeze-thaw cycles in seasonal frozen soil areas. As the number of loading cycles increases, this phenomenon mainly manifests itself by increased displacements, which tend to be stable after reaching the maximum value. This displacement accumulation should also be considered in the power engineering, chemical engineering, and metallurgical industries (Gokhfeld and Charniavsky, 1980; Fuschi et al., 2015).
In a freeze-thaw process, the volumetric strain of the water-containing frozen soil is relatively small, so that a significant strain level can be reached only when the pipe strain is accumulated cycle by cycle. The pipeline strain accumulation is restrained by residual stress during inelastic deformation. However, due to the unique plastic deformation of steel, a delay (lag) between the maximum stress and plastic deformation may occur. For the study of stress accumulation in buried pipelines, some scholars have carried out numerical analyses of water-heat coupling (Kang et al., 2016; Zhang et al., 2020a, Zhang et al., 2021 T.) and stress field calculation (Wen et al., 2010).
However, variations of atmospheric temperature, soil moisture content, and soil types along the buried oil pipeline are complex. The heat conduction/convection of pipe soil is often affected by the migration of moisture and the formation of ice lenses (Li et al., 2019). Uneven frost heave, thawing settlement, and pipe warping are very serious pipe-soil disasters (Andersland and Ladanyi, 2003). To study the mechanical evolution of buried oil pipelines, some scholars have carried out frost heaving tests (Slusarchuk et al., 1978; Carlson and Nixon, 1988; Huang et al., 2015; Kim et al., 2008; Xu et al. ., 2010; Huang et al., 2004). Their results indicated a close relationship between the steel grade of the pipe, growth of the elliptical frozen soil area around the pipe sections, frost heave rate, types of soil in different pipe sections, and growing overburden pressure.
The thermal-hydro-mechanical (THM) model can more accurately simulate and predict the frost heaving force, pipeline displacement, and moisture migration of buried pipelines (Nishimura et al. ., 2009; Zhang and Michalowski, 2015; Bekele et al. ., 2017; Haxaire et al., 2017). The operation and maintenance of buried pipelines are affected by surrounding soil temperature, moisture content, frost heave strength, tensile strength, creep, soil elastic modulus, pipeline displacement, buried depth, and steel pipe parameters (Nixon et al., 2016). It is extremely important to predict the stresses and displacements of buried pipelines under freeze-thaw cycles to ensure their safety, stability, and economic benefit. However, the effect of multiple freeze-thaw cycles has not been clarified yet, and only the stress response of the pipeline under a single freeze-thaw cyclic load has been studied in detail. Therefore, the THM coupling model and the respective software package are required to numerically simulate and verify oil pipelines’ stress evolution effectively. The stress evolution of buried pipelines is closely related to the moisture content of surrounding soil, so it is of great significance to study the effect of different moisture contents on pipeline’s stress.
In recent years, machine learning (ML), which could comprehensively learn potential correlations of input and output variables, has been widely applied to nonlinear multi-parameter regression problems (Prayogo et al., 2020). Thus, Xu et al. (2021) combined the XGBoost (an optimized distributed gradient boosting library designed to be highly efficient, flexible, and portable), backpropagation (BP) neural network, and linear regression method to establish a dam deformation prediction model. They concluded that it was problematic to accurately predict the peak of training samples by the tree algorithm. Based on the hybrid method of genetic algorithm and machine learning, Zhang, 2017 extracted the stress analysis characteristics of the plate and predicted the defects. The tree algorithm integrated with the XGBoost (Chen and Guestrin, 2016; Abbasi et al., 2019; Dong et al., 2020; Kim et al., 2020) was introduced into the regularization parameter, effectively avoiding the over-fitting phenomenon. The superposition of numerous decision trees improved the calculation accuracy, while the iterative efficiency was enhanced by the second-order Taylor expansion of the objective function. Given the nonlinear relationship between pipeline stress and atmospheric temperature, soil moisture content, freeze-thaw cycles, and other factors, it is expedient to apply the ML approach to buried oil pipelines.
Stress monitoring of buried oil pipelines under freeze-thaw cycles is hindered by long periods, large data volume, long-distance transmission, and difficulty in installing strain gauges. The XGBoost-based regression can better adapt to the engineering requirements of long periods, high precision, and large oil pipeline stress monitoring data volume. Due to its easy convergence and high fitting prediction accuracy, it has been applied to many fields. However, to the best of the authors’ knowledge, its application to pipeline safety assessment has not been reported yet. This study aimed to fill this gap by predicting the stressed state of a buried pipeline made from the Q345 steel under numerous freeze-thaw cycles. Eleven regression models based on XGBoost and machine learning were realized. The optimal model for the pipeline stress evolution prediction was finally selected by comparing their MSE, MAE, and R2 parameters. It furnishes a novel method for stress analysis of pipelines subjected to freeze-thaw cycles.
PRINCIPAL ANALYSIS
Stress Calculation Formula
The experimental strains measured on the pipeline surface by strain rosettes were monitored as tensile ([image: image] and [image: image]) and shear ([image: image]) components for the two-dimensional stressed state. These strain components were processed by the strain-processing method proposed by Zhang (2006) as follows:
[image: image]
[image: image]
where subscripts 0, 45, and 90 correspond to the respective angle θ values.
According to the generalized Hooke’s law
[image: image]
[image: image]
where E and υ are the material’s elastic modulus and Poisson’s ratio, respectively.
Substituting Eqs 1, 2 into Eqs 3, 4, the first and second principal stresses can be obtained as follows:
[image: image]
[image: image]
Elaboration of the Principal Stress Prediction Based on XGBoost Algorithm
The XGBoost optimization model with the characteristics of both linear and tree models has been introduced by Chen et al. (2016). By constructing multiple trees to fit the residuals, the model prediction values of all decision trees were accumulated into the final one, and the model was trained by the gradient boosting decision tree (GBDT) algorithm.
In the current elaboration of principal stress prediction models for the Q345 steel pipe, the XGBoost algorithm dealt with the stress prediction function, and new functions of each factor were continuously added to approximate the measured stress values, namely:
[image: image]
where K is the prediction round; [image: image] is the value of the K-th round deformation predictive function; [image: image] is the value of the (K-1)th round deformation predictive function; [image: image] is the decision tree function of the temperature factor (Ti) aging factor (ti), and stress factor (σ1).
The XGBoost algorithm objective function can be derived by Chen et al. (2016) as follows:
[image: image]
where L is the loss function used to evaluate the loss between the predicted and true strain values; [image: image] is a regularization function to control model complexity and avoid overfitting. The regularization function can be defined as follows:
[image: image]
where [image: image] and [image: image] are the penalty coefficients of the regularization item; [image: image] is the leaf node-corresponding weight; T is the temperature.
By re-arranging (7) and applying the second-order Taylor expansion, we get:
[image: image]
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Formula (10) can be further reduced to the following form:
[image: image]
where [image: image] and [image: image] are the loss function’s first- and second-order gradient statistics, respectively. The model training was completed by iteratively finding [image: image] to minimize the objective function.
Time Scaling Principle of Freeze-Thaw Cycles
Since the time and space scales of the heat transfer problem in buried oil pipelines are very large, a reduced similarity ratio was used for the experiment.
According to the similarity theory (Guo et al., 2010), the similarity criterion number of the model was derived as follows:
[image: image]
where L0 is characteristic length, m; [image: image] is the period of surface temperature change, h.
The physical analog properties of the experimental and actual systems were guaranteed. The experiment lasted for 10 days, and the 10-year variation process of the buried pipeline in the existing system under the freeze-thaw cycles’ action was simulated. The specific similarity process is described in Table 1.
TABLE 1 | Actual/testing time conversion.
[image: Table 1]Taking the Da-Qing section of the China-Russia buried oil pipeline as a reference, a 1:10 downscaled physical analog model of the buried oil pipeline was designed. The specific parameters of the pipeline and model are listed in Table 2.
TABLE 2 | Specific parameters of the pipeline and physical analog model.
[image: Table 2]TABLE 3 | Evaluation of prediction accuracy (RMSE).
[image: Table 3]TEST AND MODEL VERIFICATION
Test Principle and Results
The strain-monitoring data of the performed freeze-thaw cyclic tests with ten cycles were obtained. The specific freeze-thaw test principle is shown in Figure 1, while the actual test box layout is depicted in Figure 2.
[image: Figure 1]FIGURE 1 | Schematic diagram of the test procedure.
[image: Figure 2]FIGURE 2 | The test box layout.
To explore the effects of temperature and time on the stress at the pipeline bottom, the respective temperature and stress time history curves were plotted, as shown in Figure 3, according to the strain data obtained from the test and calculated via Eqs 5, 6.
[image: Figure 3]FIGURE 3 | Principal stress and temperature evolutions at the pipeline top (Aσ1) and bottom (Cσ1).
As shown in Figure 3, the maximum compressive stress at the pipeline bottom was −252.437 MPa, corresponding to 73.17% of the yield stress. It can be seen that the thermal (temperature-induced) stresses strongly impacted the pipeline, which top and bottom were both compressed. This occurred due to a large stiffness of the Q345 steel pipe and the coupled effects of upper soil gravity, pipeline’s and internal fluid’s gravity, and frost heave pressure.
The compressive stress value gradually accumulated and increased with the number of freeze-thaw cycles. After reaching the extreme value after seven or eight freeze-thaw cycles, there was a recovery trend, with a final stabilization. This was consistent with the “ratcheting effect” predicted by the freeze-thaw cycle theory.
The analysis of plots in Figure 3 revealed that the extreme stress at the bottom of the pipeline always occurred 1–2 h after the extreme negative temperature was observed. This finding was consistent with the limit analysis results of Cherniavsky, 2018 for structures subjected to thermal cycling.
COMSOL Simulation Verification
COMSOL modeling process is shown in Figure 4. In seasonally frozen soil areas, the temperature field around the buried oil pipeline is controlled by its thermal properties, the oil temperature in the pipeline, and the number of freeze-thaw cycles. According to the basic theories of heat transfer and frozen soil mechanics, the transient heat conduction equation considering the volumetric strain effect on the temperature fluctuation has the following form:
[image: image]
where C is the specific heat capacity of the frozen soil (J/(kg·°C)); ρs and ρw are soil and water densities, respectively (kg/m3); λ(θ) is the soil thermal conductivity (W/(m·°C)); L is the latent heat of ice-water phase change in the frozen soil (J/kg); βt is the thermal stress coefficient of the frozen soil (MPa/K); εv is the volumetric strain.
[image: Figure 4]FIGURE 4 | The simulation process.
Boundary Conditions
1) Atmospheric temperature at the top of the pipeline was derived as follows:
[image: image]
The boundary conditions on the left and right sides of the pipeline were set as the adiabatic (zero flux) conditions; according to the field drilling data. Finally, the temperature at the bottom of the model was assumed to be unchanged, that is TCD = -0.89 °C.
[image: image]
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2) Boundary conditions for the inner wall temperature of the pipeline were derived as follows. According to the design oil temperature of the China-Russia oil pipeline, the temperature in the pipeline had the following form:
[image: image]
3) Boundary conditions of the water field
In the initial conditions of the water field, the initial water content of silty clay was set to 0.3. The pipeline material implied a moisture content of 0, and the water flux of all external boundaries in the calculation was zero.
4) Stress boundary conditions were as follows
[image: image]
5) Displacement boundary conditions were:
[image: image]
RESULTS AND ANALYSIS
The temperature, moisture, and pipeline-soil coupled stress fields after ten freeze-thaw cycles were numerically simulated, as shown in Figure 5.
[image: Figure 5]FIGURE 5 | Moisture, temperature, and pipe-soil stress fields under freeze-thaw cycles. (A) Moisture field; (B) Moisture field profile; (C) Temperature field; (D) Temperature profile; (E) Pipe-soil stress field; (F) Pipeline stress field.
The COMSOL-based numerical simulation was carried out to explore the initial moisture content effect on the stressed state of the Q345 steel pipeline bottom. The obtained stress evolution curve is presented in Figure 6.
[image: Figure 6]FIGURE 6 | Stress evolution at the pipeline bottom for various initial moisture contents.
It can be seen in Figure 6 that at the initial moisture content of 0.3, the maximum stress evolution patterns at the pipeline bottom obtained experimentally and via the numerical simulation were consistent, which verified the COMSOL model feasibility. As the moisture content increased, the stresses generated in the pipeline also grew because the soil with high moisture content produced higher frost heave forces during the freeze-thaw cycle.
It can be seen in Figure 6 that the pipe-soil interaction stress increased with the moisture content w, reaching its maximum at 20% < w<30%. This implied that small moisture contents, in particular, the optimal moisture content of 0.16%, slightly affected the frost heave force of the frozen silty clay.
As the moisture content w continued to increase, the soil porosity dropped, promoting the interaction between soil particles. In addition, the water froze into ice, and the ice lens enhanced the pipe-soil bonding force. The stresses at the pipeline bottom increased after the seventh freeze-thaw cycle. Subsequently, the soil pores grew and became saturated, the soil-induced forces were reduced, in contrast to ice-induced ones. The pipeline stress field stabilized, exhibiting a recovery trend.
XGBoost Verification and Comparison With Other ML Algorithms
XGBoost-Based Prediction Procedure
Step 1. The data on the temperature and time-effect factors were processed, and the relevant influencing factor was sorted as the input sample set, which was subdivided into the training set, verification set, test set 1, and test set 2. The verification set was separated from the training set by the cross-validation function.
Step 2. The training and validation sets were sorted and completed; the evaluation index CV was generated by cross-validation. The optimization range of each parameter was determined, and the Bayesian optimization algorithm was brought into the black box non-derivative global optimization. To avoid the local optimum and the predicted value mutation, the parameter group with CV < 0.2 was selected to construct the prediction model, and the training set 1 was predicted. If the predicted value mutation occurred in the selected parameter group, the CV threshold was increased. The training speed and prediction accuracy of each model of each parameter group were comprehensively evaluated. The optimal parameter group and the optimal models were selected to construct the pipeline stress prediction model.
Step 3. The data of test set 2 were incorporated into the model constructed in Step 2 for the model evaluation. The XGBoost model feasibility was evaluated by its comparison with the model based on the LightGBM algorithm (Xu et al., 2021). The respective flowchart is depicted in Figure 7 (Su et al., 2016; Xu et al., 2021).Four kinds of ML regression algorithms, namely the support vector machine (SVM), Random Forest, LightGBM, and XGBoost, were realized, yielding the pipeline bottom stress regression values. These were plotted versus the experimental ones in Figure 8.It can be seen in Figure 8 that each of these 4 ML models achieved high accuracy. Under freeze-thaw cycles, the SVM-predicted stresses at the bottom of the Q345 pipeline ranged from -148.451 to -145.852 MPa. There was a large discrepancy with the experimental value caused by the sensitivity of SVM regression to the selection of parameter adjustment and sum function. Therefore, SVM regression was a poor choice for the prediction model of principal stresses at the top and bottom of the Q345 steel pipe.The maximum relative error was minimized by comparing the predicted and test values, verifying the model’s accuracy. RMSE is an important indicator to evaluate the accuracy of the model and is given in Table 3.It can be seen from Figure 9 that the XGBoost algorithm provided the best prediction of the principal stress at the pipeline bottom for each freeze-thaw cycle. The correlation coefficient was R2 = 0.978, the fitting effect was excellent, and the convergence speed was high.The determination coefficients of SVM, Random Forest, and LightGBM models also met the engineering requirements, and the complex local stress was predicted quite accurately. For the XGBoost model, regularization 2 was introduced, and appropriate parameters were adjusted to avoid large overfitting. XGBoost model had a high correlation coefficient R2 and low MSE = 0.02, RMSE = 11.07, and MAE = 0.1017. The results showed that under freeze-thaw cycling, the XGBoost model for the bottom stress of the Q345 pipeline had the highest evaluation index, and the model outperformed the other three.
[image: Figure 7]FIGURE 7 | Modeling process based on the XGBoost algorithm.
[image: Figure 8]FIGURE 8 | Regression verification of four algorithms [(A) SVM Regression; (B) Random Forest Regression; (C) LightGBM Regression; (D) XGBoost Regression].
[image: Figure 9]FIGURE 9 | Histogram of evaluation indicators for four machine learning algorithms.
Pipeline Stress Prediction Under Freeze-Thaw Cycles Based on XGBoost
With an increase in the number of freeze-thaw cycles, the gravity and frost heaving force on the pipeline had coupled aggravated effect on the stressed state. However, when a certain number of freeze-thaw cycles was reached, this effect tended to be stable and saturated.
Twelve ML models were used to simulate 10–20 freeze-thaw cycles of the pipeline under study to verify the ratcheting effect further. Besides the proposed XGBoost model, these included Linear Regression, SVM, Random Forest, Gradient-Boosted Decision Trees (GBDT), LightGBM, BP Neural Network, Decision Tree, K-Nearest Neighbors (KNN), Adaboost, Extratrees, and Catboost models (Zhang Y. G. et al., 2021, 2021d; 2021e).
The prediction results on the principal stress evolution at the pipeline bottom are depicted in Figure 10.
[image: Figure 10]FIGURE 10 | Principal stress evolutions at the pipeline bottom predicted by 12 ML models, with a partial enlargement.
As seen in Figure 10, the Q345 steel pipeline bottom stress predictions based on KNN, SVM, and Decision Tree were strongly inconsistent with the test results. For example, the stress predicted by the Decision Tree and SVM grew linearly with time, which was not consistent with the experimental pattern. However, the high stress predicted by KNN was concentrated in a small area, which could not guarantee pipeline safety.
It can be seen in Figure 10 that the Q345 pipeline stress evolutions predicted via the BP Neural Network, Linear Regression, and Catboost had a gradually increasing trend, which did not comply with the experimentally observed ratcheting effect. Therefore, these models had to be excluded as inapplicable ones. The curves established by Random Forest, Adaboost, and Extratrees are not time-sensitive and temperature-sensitive, so they were also excluded from further consideration. The stress predictions of the Q345 oil pipeline established by the XGBoost and LightGBM were both quite accurate, combining high correlation coefficients (R2) with small mean square errors (MSE) and mean absolute errors (MAE). The highest R2 of XGBoost was 0.978, and the lowest MSE and MAE were 0.021 and 0.102, respectively. This implied that the XGBoost-based prediction model of the Q345 pipeline had high prediction accuracy, and the introduction of regularization parameters could effectively avoid overfitting.
As shown in Figure 11, the prediction data of the LightGBM model after 240 h poorly reflected the stress fluctuation at the bottom of the buried oil pipeline under the freeze-thaw cycling. Its time-temperature sensitivity was relatively low, but the model had high safety margins.
[image: Figure 11]FIGURE 11 | Prediction of the principal stress evolution at the pipeline bottom via XGBoost and LightGBM.
During 10–20 freeze-thaw cycles, the principal stress of the pipeline predicted via the XGBoost-based model fluctuated between -131.230 and -224.105 MPa, while the predicted and observed fluctuation patterns were very close.
As shown in Figure 12, during a freeze-thaw cycling process, the volumetric strain of the water-bearing frozen soil was relatively small, while the compressive stress at the pipeline bottom reached 69.785 MPa. Significant changes occurred only when the strain accumulation in the pipeline continued with each new cycle. After 13–14 freeze-thaw cycles, the maximum principal stress in the Q345 steel pipe tended to be saturated.
[image: Figure 12]FIGURE 12 | The maximum principal stress evolution at the pipeline bottom with the number of freeze-thaw cycles.
With the pursuit of a more reliable stress prediction in cold-region pipeline engineering, the LightGBM algorithm, which had higher safety margins than the XGBoost, could be alternatively used. However, its time and temperature sensitivities were unsatisfactory, therefore the high-precision XGBoost model should be used as the main one. Then, to increase the safety of pipe-soil interaction, the LightGBM can be used to predict the maximum stress in practical engineering to increase the safety margin of the XGBoost prediction results (Gao et al., 2020; Zhang X. et al., 2021, Zhang et al., 2021 Y., Zhang et al., 2022; Chelgani et al., 2021; Huang et al., 2021; Ma et al., 2021; Wang et al., 2021).
DISCUSSION ON THM COUPLING UNDER FREEZE-THAW CYCLES
THM Coupling Mechanism
In rock and soil mechanics, multi-field coupling usually refers to the interaction between the seepage, temperature, and stress fields of rock and soil. The THM coupling mechanism and coupling equation of pipeline stress under freeze-thaw cycles are presented in Figure 13.
[image: Figure 13]FIGURE 13 | THM coupling mechanism and equation.
The stress evolution of buried oil pipelines under freeze-thaw cycles is closely related to the frozen soil’s moisture, temperature, and stress fields. Temperature gradient and soil water potential are the main driving forces for water migration. Moisture content and porosity are internal factors controlling water distribution. Therefore, the Richards equation with moisture content as a variable and phase transition account was applied. The transient heat conduction equation, which treated the volumetric strain effect as temperature variation, was established based on heat transfer theory and frozen soil mechanics.
According to Figures 3, 13, with the freezing and thawing cycles, the evolution law of principal stress at the top and bottom pipeline was consistent. Compared with the temperature time-history curve, the stress at the bottom pipeline had a lag. During the soil freezing process, the water in the soil was subjected to the combined action of pore stress and gravity. With the freezing and thawing cycles, the freezing edge of pore water pressure decreased, while the stress in the pipeline increased. After six freezing and thawing cycles, the pore water pressure was balanced, and the stress in the pipeline tended to be stable. Pipeline stress increased with temperature, while it dropped with increased temperature in the soil melting process. This implied that at a certain initial moisture content, the pipeline-soil force was affected by the pore water pressure, the number of freeze-thaw cycles, and the frost heaving force.
According to Figures 6, 13, due to the temperature gradient effect, the unfrozen water migrated to the soil surface at the beginning of the freeze-thaw cycles. Due to the in situ freezing of pore water, the pore pressure in the freezing edge increased sharply. When the pore pressure in frozen soil exceeded the soil separation stress, the soil was separated. An ice lens began to form, and water migration to the ice lens provided its continuous growth. As a result, the multilayer ice lens was formed, and the pipeline stress was accumulated. After six freeze-thaw cycles, when the initial moisture content exceeded 16%, a large frost heaving force between the pipe and soil was generated. The initial water content strongly related to the pipeline stress: the higher the former, the more significant the latter’s variation. At water contents exceeding 16%, the pipeline stress in the sixth freeze-thaw cycle decreased sharply. Therefore, the pipeline with high water content under multiple freeze-thaw cycles faced the risk of damage.
In summary, the pipe-soil interaction force was affected by initial moisture content, freeze-thaw cycles, frost heaving force, pore water pressure, temperature gradient, and other influencing factors.
Suggestions and Prospects
The temperature gradient changes and influence on frozen soil conditions must be considered. The simulated pipeline temperature was constant, ignoring the temperature change under permafrost conditions. Therefore, the oil temperature of the pipeline should be set as a step function in the subsequent research to simulate the actual pipeline operation.
Under THM coupling, pipeline stress accumulation is caused by frost heaving and thawing settlement. It can be used for pipeline design in seasonal frozen areas, but its physical mechanism has not been identified yet. The mechanical behavior of buried oil pipelines should be studied using comparative experimental research, theoretical research, numerical simulation, thermodynamics, and fluid mechanics.
The pipe-soil interaction process is also affected by the fluid in the pipe, temperature gradient, heat transfer, flow rate, particle size, and erosion-corrosion synergy. Under the action of erosion-corrosion, buried pipeline stress evolution is very complex. Therefore, the pipeline stress model should not only consider time-varying THM phenomena related to the constitutive behavior of frozen soil but also account for the interface deterioration of fluid and pipeline.
CONCLUSION
Using the background of the Da-Qing section of the China-Russia buried oil pipeline, this study optimized the freeze-thaw cycling test device based on the similarity theory. The general rule of pipeline stress evolution under freeze-thaw cycles was obtained. The COMSOL model verified the stress evolution of the pipeline under freeze-thaw cycles and predicted the stress evolution for different moisture contents. This verification realized the THM coupling of buried pipelines. The XGBoost-based prediction results made it possible to draw the following conclusions.
1) In a freeze-thaw process, the compressive stress at the pipeline bottom reached -69.785 MPa. The principal stress value increased gradually with the number of freeze-thaw cycles. After eight freeze-thaw cycles, the principal stress reached the extreme value of −252.437 MPa (i.e., 73.17% of yield stress). After fourteen freeze-thaw cycles, the principal compressive stress of the Q345 steel pipeline reached -224.733 MPa (65.14% of the yield stress) and tended to be saturated. This was consistent with the ratcheting effect predicted by the freeze-thaw cycle theory (Cherniavsky, 2018). Therefore, pipeline scale test had important reference value for actual pipeline engineering design.
2) Numerical simulation was performed to study the effect of initial moisture content (5, 10, 16, 20, 25, and 30%) on the pipe-soil interaction. The stress at the pipeline bottom increased with the moisture content w. However, this increase was the most obvious at w = 20–30%, indicating that at moisture contents below 16%, the number of freeze-thaw cycles had little effect on the frost heaving force of the frozen silty clay.
3) The principal stress prediction for the Q345 oil pipeline established via the XGBoost model was excellent, featuring R2 = 0.978, MSE = 0.0207, MAE = 0.102, and RMSE = 11.0673. This result shows that the prediction accuracy of the Q345 pipeline prediction model was high. The XGBoost regression model established a nonlinear relationship between the test parameters and the pipeline stress, predicting the pipeline stress evolution for 10–20 freeze-thaw cycles.
4) Pursuing better stress prediction effects in pipeline engineering in cold regions, the tree algorithm combined with the XGBoost integration was introduced into the regular term parameters, effectively avoiding overfitting. The superposition of many decision trees improved the calculation accuracy, and the iteration efficiency was improved by the second-order Taylor expansion of the objective function. It could better meet the engineering requirements of the oil pipeline stress monitoring cycle, high precision, and large data volume.
5) Under 10–20 freeze-thaw cycles, the principal stress of the pipeline predicted by the XGBoost model fluctuated from −31.235 to −224.105 MPa, which results were consistent with the experimental ones.
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CFMPs (cement and fly ash mixing piles) are used to reinforce fly ash foundation to solve the problem of a large amount of fly ash accumulation in coastal areas. CFMP-fly ash composite foundation is used as the foundation of coastal and coastal engineering. Through the indoor model test, the bearing characteristics and load transfer mechanism of CFMP-fly ash composite foundation under wave load were investigated. The results show that with the increase of wave load, the horizontal resistance of the fly ash stratum increases gradually, the soil resistance moves down, and the level of resistance shows nonlinear characteristics. The pile bending moment, pile displacement, and horizontal resistance of the CFMP composite foundation are concentrated in the upper pile and fly ash stratum, which can improve the ability of the composite foundation to resist horizontal load by improving the physical and mechanical properties of the upper fly ash stratum. Through the calculation of the load–displacement curve, it is found that the measured displacement value is closer to that obtained using the p–y curve method (a method for solving nonlinear lateral resistance of piles). The hysteretic curve area of cyclic loading decreases with the increase of cyclic number. The accumulation of elastoplastic deformation of pile shows that the properties of fly ash gradually change to elastic stage, cyclic loading can reduce the horizontal deformation modulus of composite foundation CFMP caused pile—fly ash system of weakening, in peak load reaches level under the critical state displacement curve showed a trend of the rapid growth of nonlinear, cyclic cumulative failure occurs, and the cyclic load limit state is reached, which affects the service performance of the whole structure.
Keywords: fly ash foundation, model test, wave load, cyclic load, bearing performance
1 INTRODUCTION
As a kind of weak formation, the fly ash stratum has the characteristics of large compressibility, high water permeability, large void ratio, and low shear strength. In actual engineering practice, fly ash foundation can easily cause instability and unevenness. As a result, reinforcement measures are necessary to ensure the safety of the structure built on the fly ash stratum (Zhang, 2011; Tian et al., 2011; Zhang et al., 2011; Du et al., 2021). In recent years, a study on the features of cement–soil mixing pile composite foundation has brought new ideas for the treatment of fly ash foundation (Zotsenko et al., 2015; Luo et al., 2018; Choi and Kang, 2020; Wan et al., 2021; Huang et al., 2021; Guo et al., 2021).
Cement–soil mixed pile composite foundation belongs to the semi-rigid pile composite foundation, which is a widely used foundation treatment technology at home and abroad. It has the advantages of fast construction speed, low project cost, and little influence on the surrounding environment during construction. The cement–soil mixing is used to consolidate the fly ash foundation into cement piles with certain strength, integrity, and water stability with the aim of improving the soil strength (Zhu et al., 2007; Kim et al., 2017; Lu et al., 2019; Sun et al., 2020; Kalita and Anitha Kumari, 2021; Cheng et al., 2021; Seregin, 2022). With the gradual increase of coastal and offshore buildings, the lower foundation not only bears the deadweight load of the upper structure but is also influenced by the horizontal loads, for instance, water flow, wave, and wind during the long-term life service time (Dyson and Randolph, 2001; Motta, 2013; Xu et al., 2020; Wang et al., 2020; Xu et al., 2021; Jin et al., 2021; Huang et al., 2022). Research on the horizontal bearing capacity of the composite foundation has been carried out at home and abroad, and some achievements have been made.
Li et al. (2018) found that DCM-BP had obvious advantages by comparing the horizontal ultimate bearing capacity, pile bending moment, and transverse resistance of DCM-bored pile and conventional bored pile under transverse load. Jeong and Kim (2020) studied the distribution and deformation of loads under transverse loads by means of the p–y curve method using the transverse load transfer method. Through a series of model tests, Mahdi et al. (2021) found that the foundation around the pile moved when the lateral load was applied to the pile, and the pile position moved greatly near the ground level. Richards et al. (2021) studied the bearing characteristics of single pile foundation under cyclic horizontal load, especially pointing out that the pile accumulation displacement rate and secant stiffness change rate gradually decreased with the increase of the load value under cyclic load. Zhang et al. (2019) studied the cumulative deformation response of a single pile under horizontal cyclic load and found that the cumulative displacement of pile top presented two-phase characteristics with the increase of cyclic number. Chen et al. (2018) found out using the model test that the cumulative displacement under cyclic load was larger than that under static load with the same amplitude, and the horizontal displacement relationship was rigid plastic. Chen et al. (2022) accomplished the cyclic detection of the single pile in foundation, and the outcomes indicated that plastic deformation of the soil surrounding the pile would accumulate under the cyclic loading, and the horizontal stiffness of the pile–soil system reduced with increasing number of cycles.
At present, research works on cement–fly ash mixing pile composite foundation mainly focus on its vertical bearing capacity (Zhou SQ. et al., 2020; Zhou S. et al., 2020), while research on the horizontal bearing capacity has been rarely reported. Therefore, research on the bearing characteristics of CFMP composite foundation under horizontal load has important scientific significance and broad application prospects.
In this study, horizontal load tests on CFMP composite foundation were carried out. Both static and cyclic lateral load tests were conducted to study the horizontal load characteristics of composite foundation. The lateral displacement of composite foundation, horizontal resistance coefficient of model pile, bending moment of pile, lateral displacement of pile, horizontal resistance, and pile side soil pressure were analyzed. The applicability of the p–y curve and m methods to calculate the load–displacement curve of CFMP composite foundation was studied and analyzed. The displacement curve, secant stiffness, and pile bending moment of CFMP composite foundation under horizontal cyclic loading were studied and analyzed to explore the influence of CFMP on the horizontal bearing characteristic of fly ash foundation.
2 MATERIALS
2.1 Test Materials
The test model foundation material (fly ash) was taken from a fly ash accumulation site in Huainan City, Anhui Province. In order to eliminate the adverse influence of particle size of test materials on bearing characteristics, according to the conclusion that the influence of foundation bearing characteristics can be ignored when the particle size ratio between model structure and model foundation soil is greater than 23 times, fly ash with particle size less than 2.00 mm was selected for this test. The particle size is divided into <0.075 mm, 0.1–0.075 mm, 0.25–0.1 mm, 0.5–0.25 mm, 1–0.5 mm, and 2–1 mm. Screening tests are carried out on the selected fly ash to obtain fly ash materials with different particle sizes. The gradation of fly ash particles is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Fly ash particle grading curve.
2.2 Model Box and Foundation Preparation
In order to meet the distance requirement between the model pile and the inner and bottom walls of the model box, and meet the condition of a semi-infinite filling medium, this test utilizes an acrylic plate model box. The size of the box is 500 × 500 × 750 mm (length × width × height) and wall thickness is 25 mm, and a 10-mm thick steel plate is used for welding reinforcement. At the same time, the model pile size is constrained by the side wall of the model box, and the boundary effect should be considered. Ovesen (1979) discovered that the boundary effect influence could be ignored when the distance between the side wall of the box and the model was larger than 2.82 times of model size. To eliminate the above influence on the test outcomes, the ratio of the diameter of the model pile to the distance between the side wall of the model box and the model pile should be larger than 2.82.
The approach of single compaction times (50 times/layer) and laying layer thickness (10 cm/layer) was used for foundation preparation (Chen et al., 2018). After every 10 cm of fly ash spreading, the fly ash layer was compacted 50 times by a compactor, and then the fly ash layer was pressed by a steel plate and filled to the specified height. In order to make the compactness of the model foundation conform to the requirements of the foundation, the model foundation was subjected to back pressure produced by the self-weight stress of the model foundation. Back pressure load of 1 kg/cm2 was employed on the model foundation surface to accelerate the consolidation of the model foundation (Chen et al., 2018). An X-ray fluorescence analyzer was used to measure the chemical parameters of fly ash. The basic chemical parameters of fly ash are displayed in Table 1. The fundamental physical and mechanical performances of fly ash were measured through indoor tests, and the fundamental physical and mechanical indexes of the fly ash are reflected in Table 2. An X-ray diffractometer is used for diffraction of fly ash, and its diffraction pattern is shown in Figure 2.
TABLE 1 | Chemical properties of fly ash.
[image: Table 1]TABLE 2 | Physical properties of fly ash.
[image: Table 2][image: Figure 2]FIGURE 2 | Fly ash diffraction pattern.
2.3 Model Pile
In the model test, the diameter and length of the pile are 40 and 500 mm, respectively, and the aspect ratio is 12.5, which is close to the aspect ratio in the field test condition (the diameter and length of the pile are 1 and 13 m, respectively, and the aspect ratio is 13). The field engineering is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Field engineering test of CFMP-fly ash composite foundation.
As an important part of the CFMP composite foundation, the change of model pile strength will have a great impact on the bearing capacity of the composite foundation. Therefore, according to the construction technology standard of soil–cement mixing pile (QB-CNCEC J010112-2010), the cement content is generally 7%–20% of the weight of reinforced soil. Four cement mixtures with different proportions (8%, 12%, 16%, and 20%) were selected for the test, and the test block mold (70.7 × 70.7 × 70.7 mm) was used to prepare samples; the module configuration is shown in Table 3. The above four cement and fly ash samples with different proportions were vibrated, compacted, and placed in a curing room for curing. After 28 days, the unconfined compressive strength test was conducted, as shown in Figure 4.
TABLE 3 | Cement fly ash test block ratio table.
[image: Table 3][image: Figure 4]FIGURE 4 | Compressive strength curve of cement fly ash test block.
The maximum compressive strength is 2.09 MPa when the content of cement is 20%. This is a 50.36% strength increase compared with 1.39 MPa when the cement content is 16%. Considering the safety of pile foundation design, referring to the construction technology standard of soil–cement mixing pile (7%–20%) and the economic problems of cement cost in field engineering, the proportion of the model pile is 20% cement, 80% fly ash, and 35% water.
After mixing with a ratio of 2:8 cement and fly ash, it was poured into a customized PVC tube with a length of 50 cm, an inner diameter of 4 cm, and a wall thickness of 0.5 cm. It was put into a curing room for 5 days, and then a miniature cutting machine was used to cut the PVC tube. The model pile was removed and cured for 55 days (Zhou SQ. et al., 2020; Zhou S. et al., 2020). The model pile was buried using the embedded method. The fly ash foundation 20 cm below the pile bottom was first filled and compacted; then, the embedded position of the model pile and bearing plate was found using steel ruler measurement. After positioning, the pile body and bearing plate were placed, and the fly ash was filled in time; initial compaction was carried out to ensure that the pile body and bearing plate are vertical. In this way, fly ash was repeatedly filled to complete the burial of the model pile.
2.4 Model Test Design
To explore the bearing features of the CFMP composite foundation, several resistance strain gauges were arranged symmetrically along the side of the model pile to measure the strain at various sections of CFMP. Two strain gauges were symmetrically arranged on each section of CFMP, and seven sections were arranged on the pile from top to bottom based on the depth of the pile. The detailed arrangement is reflected in Figure 5. Based on the static load test, the data of the strain gauge were collected by the static strain test system. When measuring the horizontal displacement of the foundation, the important part of the static load test was to choose a dial indicator; the accuracy is 0.01 mm, and the range is 0–20 mm. Two dial indicators were symmetrically installed on the two sides of the bearing plate and kept at the same horizontal line, and the test results were averaged to obtain the horizontal displacement of CFMP composite foundation. In addition, in order to obtain the variation of earth pressure in the model foundation, miniature earth pressure boxes numbered T1–T5 were embedded in the pile side, and the specific layout is shown in Figure 5.
[image: Figure 5]FIGURE 5 | Layout of the indoor model test under wave load.
3 METHODS
3.1 Test Loading
For model piles, the horizontal static load test should be carried out after setting for 24 h after the completion of embedding. First, the horizontal ultimate bearing capacity of CFMP was determined by a preloading test, and then the loading was carried out in a graded and equal way using the slow loading method, and the unloading amount of each stage was twice the graded load at the loading time. According to the Technical Code for Building Foundation Pile Testing (JGJ 106-2014), after each level of load is applied, at 5, 15, 30, 45, and 60 min to read the displacement value, the next level of load can be applied when the horizontal displacement of foundation under this level of load is not more than 0.1 mm per hour for two consecutive times. When the horizontal displacement is too large to continue loading or the horizontal displacement increases significantly and the deformation rate accelerates rapidly, the loading is terminated. During unloading, the load of each stage should be maintained for 1 h, and the horizontal displacement should be measured at 15, 30, and 60 min. After unloading to zero, the residual displacement should be measured and maintained for no less than 3 h.
Five groups of cyclic load amplitudes were selected according to the horizontal static load test data. The cyclic load test was carried out after the model pile was buried and maintained for 24 h. When the horizontal cyclic load was applied, the design value of cyclic load amplitude was divided into 10 grades. After each load, the horizontal displacement was read after 2 min of dead load; after each load was loaded to the design value, the horizontal displacement was read after 4 min of dead load, and then the unloading began; after each load, the residual displacement was read after 2 min of dead load. This cycle was repeated 30 times to complete the horizontal cyclic loading process.
3.2 Data Processing
Proportional coefficient m of the foundation soil horizontal resistance coefficient is a significant parameter in designing horizontal load. Based on “The Technical Code for Building Pile Foundation” (JGJ 94-2018), for the foundation soil horizontal resistance coefficient, its horizontal deformation coefficient α and proportional coefficient m can be calculated as
[image: image]
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where [image: image] is the lateral displacement coefficient, which is 2.441 in this test, and [image: image] is the calculated width of the pile body. For a circular pile, when D ≤ 1 m, [image: image] = 0.9 (1.5 days + 0.5), EI is the bending stiffness of the pile, E is the elastic modulus of pile material, and I is the moment of inertia of the pile section. The measured horizontal force and lateral displacement of the foundation are substituted into Eq. 1, and m of the foundation horizontal resistance coefficient can be calculated by using pile bending stiffness.
Based on the strain gauge data, the pile bending moment under various levels of the horizontal load is calculated in Eq. 3, where [image: image] is the strain difference of the two symmetric strain gauges in the pile section obtained through measurement; [image: image] is the spacing between adjacent strain gauges of the pile section.
[image: image]
From the quadratic integration of the pile bending moment, the pile deflection can be calculated as follows:
[image: image]
Based on the elastic beam theory, the horizontal resistance of pile soil is obtained by differentiating the distributed bending moment twice.
[image: image]
where [image: image] (sixth-order polynomial) is used to fit the pile bending moment curve. This method can obtain a continuous soil resistance distribution curve. The m method assumes a linear correlation between the horizontal displacement and foundation reaction. A study has been carried out on the response of the pile body under the action of horizontal load in the foundation soil; this work utilizes the matrix transfer approach to solve the problem, and elastic coefficient K of the horizontal spring in the calculation formula is
[image: image]
where m is the proportional coefficient of horizontal resistance coefficient of foundation soil, [image: image] is the calculated width of the pile, z is the depth of pile in foundation, and h is the height of the soil layer taken. The p–y curve method mainly uses the Winkler foundation model and assumes the soil as a nonlinear elastic spring and the pile as an elastic beam. According to the laboratory model experiment and Matlock, the p–y curve form is (Wang and Yang, 2012)
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
where l is the effective length; [image: image] is the influence depth; [image: image] is the reduction coefficient, with a value of 0.5–1; [image: image] is the ultimate soil resistance coefficient; and [image: image] is the average value of soil modulus within the depth range of foundation soil. Horizontal secant stiffness k of pile–soil is defined as shown in Eq. 13:
[image: image]
where [image: image] is cyclic load amplitude Q and [image: image] is the difference between the horizontal displacement and the residual displacement during loading.
4 RESULTS
4.1 Horizontal Static Load Test
After the horizontal static load test of the CFMP-fly ash composite foundation, the data are processed, and the bearing characteristics are analyzed from the ultimate bearing capacity, M value, pile bending moment, pile displacement, horizontal resistance, and earth pressure.
4.1.1 Cement and Fly Ash Mixing Pile Composite Foundation Displacement Gradient Scale
Figure 6 shows the horizontal displacement curve of the CFMP-fly ash composite foundation and fly ash foundation under horizontal load. From Figure 6, it can be found that the horizontal displacement curves of both the fly ash foundation and CFMP-fly ash composite foundation show steep drop characteristics, with obvious inflection points. At the initial stage of horizontal loading (0–90°N), the lateral displacement of the composite foundation increases slowly, and the pile–fly ash system does not show plastic deformation and is in an elastic working state as a whole. The lateral displacement for the composite foundation gradually accumulates with the increasing horizontal load. When the horizontal load reaches 90°N, the growth of lateral displacement accelerates obviously, and the horizontal displacement curve of the composite foundation shows obvious nonlinear characteristics, indicating that the fly ash at the pile side changes from an elastic state to a plastic state. The pile–fly ash system starts to enter the plastic failure stage when the load reaches 300°N, and the horizontal displacement curve appears as an obvious inflection point. In addition, the horizontal displacement curve of the CFMP composite foundation is compared with that of the fly ash foundation under the horizontal load. The lateral displacement of the composite foundation decreases obviously, indicating that the composite foundation can effectively control the lateral displacement of the foundation and can modify the elastic working space of the pile–fly ash system. It can be found that the deformation control ability together with horizontal bearing capacity of the composite foundation is significantly improved compared with the fly ash foundation.
[image: Figure 6]FIGURE 6 | Horizontal static load–displacement curve.
In order to better reflect the correlation between the lateral displacement and horizontal force of composite foundation in the process of the horizontal static load test, the horizontal load–displacement gradient curve is drawn by referring to the determination method of horizontal ultimate load and critical load given in the “Technical Code for Testing Building Foundation Piles” (JGJ 106-2014), as illustrated in Figure 7.
[image: Figure 7]FIGURE 7 | Horizontal force–displacement gradient curve of composite foundation under static load. (A) Horizontal force-displacement gradient curve of CFMP composite foundation. (B) Horizontal force-displacement gradient curve of fly ash foundation.
From Figure 7, it can be observed that the horizontal critical load is the horizontal load associated with the first displacement gradient, namely, the horizontal critical load of fly ash foundation, and CFMP-fly ash composite foundation is 90°N and 300°N. The horizontal critical load of CFMP composite foundation is 233% higher than that of fly ash foundation, indicating that composite foundation can evidently improve the horizontal bearing capacity of fly ash foundation and effectively control its lateral deformation.
4.1.2 m Value Curve of Fly Ash Around Piles
Figure 8 shows the relationship curve between the lateral displacement of the foundation and m value. From Figure 8, it can be found that m is not a certain value. The m value and lateral displacement exhibit a nonlinear change correlation. The m value is large when lateral displacement is small, and m is negatively related to lateral displacement. With increasing lateral displacement, m reduces and stabilizes gradually. The correlation between the lateral displacement and m value is similar to that of an inverse proportional curve. In reality, the correlation between the m value and foundation lateral displacement also reveals the nonlinear features of the generation of fly ash to a certain extent. In addition, the m value also shows nonlinear characteristics with the change of horizontal force of the foundation, the m value is high when the load level is small, and the m value gradually reduces with the increasing load level, which may be due to the plastic deformation of fly ash on pile side. Therefore, the lateral displacement of the foundation, soil properties, and horizontal load are the factors affecting the change of the m value, and the m value is mainly influenced via the pile–soil performances and the lateral displacement of the foundation.
[image: Figure 8]FIGURE 8 | Lateral displacement–proportional coefficient curve of composite foundation under static load.
4.1.3 Pile Bending Moment
Figure 9 shows the bending moment distribution curve of a single pile under horizontal load at all levels. With increasing pile embedment depth, the pile bending moment first increases and subsequently reduces. Pile bending moment also uniformly increases with increasing horizontal load. The pile bending moment evidently increases when the horizontal load reaches the critical load of 300°N, and the fly ash on the pile side enters an elastic–plastic state. For the CFMP composite foundation, its maximum pile bending moment appears approximately 17.5 cm below the model foundation surface, which is the major influence depth of the pile bending moment. The bending moment of the pile body gradually develops to the deep fly ash stratum with increasing horizontal load. It is believed that the horizontal load is gradually supported by the middle and lower fly ash stratum. In the whole process of the horizontal load test, most of the pile bending moment is distributed between 32.5 cm and above, and tends to 0 in the range of 32.5–47.5 cm. In addition, CFMP composite foundation can effectively enhance the moment resistance ability of the pile foundation by enhancing the physical and mechanical performances of the fly ash formation; hence, the horizontal bearing ability of the pile foundation is significantly improved.
[image: Figure 9]FIGURE 9 | Bending moment diagram of the pile under horizontal static load.
4.1.4 Pile Displacement
Through Formula 4, pile lateral displacement can be obtained indirectly from the pile bending moment. The pile lateral displacement distribution curve along pile depth under horizontal loads at all levels is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Pile lateral displacement diagram under horizontal static load.
Known from Figure 10, with increasing pile embedment depth, the pile lateral displacement decreases nonlinearly from the ground downward, and most of the displacement concentrates at the pile head. When more than 25 cm depth of the pile lateral displacement is close to zero, the lower lateral displacement of the pile body is influenced by the horizontal force of the foundation, and the bending deformation of the pile bottom is small. The pile deformation near the pile bottom is not high and is approximately vertical. The pile lateral displacement increases synchronously with increasing horizontal load, and increases greatly at the horizontal load of 300°N. With the increase of pile top lateral displacement, the load is gradually transferred to the deep fly ash stratum, and the zero point of pile displacement gradually develops downward, from 17.5 to 32.5 cm. This indicates that the fly ash stratum with a depth of 0–32.5 cm in the CFMP composite foundation is the most affected by horizontal load. In practical engineering, it is very important to improve the engineering properties of fly ash formation in this range to improve the horizontal bearing ability of the CFMP composite foundation.
The lateral displacement control effect of pile top under horizontal critical load is better. When the horizontal critical load is between 0°N and 90°N, the relation between the displacement and horizontal force between the pile and surrounding fly ash is approximately linearly elastic. With increasing horizontal load, the fly ash around the pile enters the stage of plastic deformation. At this time, the relationship between the displacement and horizontal force between the pile and surrounding fly ash is approximately elastic–plastic, which is nonlinear. When the horizontal load reaches the critical load of 300°N, the displacement of the pile increases sharply with the development of plastic deformation of the pile–fly ash system. This indicates that the development rate of pile displacement of the CFMP composite foundation is directly affected by the nonlinear pile section and the plastic development of the pile–fly ash system. Therefore, the greater the load, the less the impact on the limit of the displacement value.
4.1.5 Horizontal Resistance and Soil Pressure of Pile Side
Figure 11 shows the lateral horizontal resistance of the CFMP composite foundation pile under various loads. Based on Figure 11, when the load is constant, the horizontal resistance of the pile side increases first and reaches the maximum value at 17.5 cm of pile body, and then decreases rapidly downward, and there is a certain reverse soil resistance. The soil resistance near the tip of the pile is basically 0. This shows that fly ash from the upper part of pile circumference contributes the most to horizontal resistance. Moreover, along with increasing horizontal load, the horizontal resistance of the fly ash stratum increases gradually, and soil resistance zero position also moves down; this is because as the shallow plastic deformation of fly ash increases gradually, the pile lateral restraint ability declines, the load is passed to the deeper fly ash, and the bending moment of the pile change trend is consistent.
[image: Figure 11]FIGURE 11 | Horizontal resistance curve under horizontal static load.
Pile deformation caused by soil pressure on the pile side foundation is the outcome of the interaction of the pile–soil system. The variation law of soil pressure of CFMP composite foundation under horizontal loading is obtained through the micro-earth pressure box T1–T5 embedded in the pile side. Figure 11 shows the relationship curve between pile side earth pressure and horizontal load of miniature earth pressure boxes T1–T5.
On the basis of Figure 12, with increasing horizontal load, the pile side earth pressure gradually increases. When the horizontal load is constant, the soil pressure on the pile side exhibits a downward trend with increasing pile embedment depth (TI, T2, and T3). It can be seen that the soil pressure of the pile side in the shallow part of foundation fly ash is large, and that in the middle and lower parts is relatively small; that is, the physical and mechanical indexes of the fly ash stratum in the shallow part of foundation are the main controlling factors of the horizontal resistance of pile side. The measured earth pressure values of the miniature earth pressure boxes T4 and T5 on the side wall of the model box are all within the range of 5 kPa, and with large horizontal force, some values are less than 10 kPa. It is believed that when the length between the side wall of the model box and model pile is more than 8 D, the influence of horizontal load on the boundary is small or ignored.
[image: Figure 12]FIGURE 12 | Pile side earth pressure diagram under horizontal static load.
4.2 Horizontal Static Load Displacement Calculation
At present, under the action of horizontal load, the theoretical analysis of a single pile at home and abroad is principally classified as the p–y curve method, elastic foundation reaction method, as well as ultimate foundation reaction method (Kobayashi et al., 2009; Hong-jiang et al., 2017; Mao et al., 2018; Wang et al., 2020; Yin et al., 2021; Polishchuk and Shmidt, 2021; Ma et al., 2021; White et al., 2022). Among them, the ultimate foundation reaction method assumes that the pile is rigid and the pile deformation is not considered. As CFMP is a typical semi-rigid pile, which produces a certain degree of pile deformation in the process of horizontal loading, the ultimate foundation reaction method is not applicable. The elastic foundation reaction method is mainly divided into the k method, constant method, double parameter method, c value method, and m method, among which the constant method, k method, and c value method are not discussed here due to their own limitations. In this study, the p–y curve and m methods are employed to study the bearing displacement of the foundation under horizontal load.
Figure 13 shows the measured and calculated load–displacement curves of the model test. In accordance with Figure 13, the calculated value of the m method differs greatly from the measured value, and the displacement value calculated by the p–y curve method is close to the measured value. With increasing horizontal load, the displacement value calculated by the m method is smaller. This may be due to that the soil has entered the plastic stage, while the soil deformation is still calculated by the m method according to the elastic method. The displacement value calculated by the p–y curve is closer to that of the measured value. For the bearing ability of composite foundation, its critical value is 150°N. Under 150°N horizontal load, the measured displacement value is 2.81 mm, while the value calculated by the p–y curve method is 2.67 mm, and the difference value is 4.9%, which can be ignored. Therefore, the p–y curve method can be applied for calculating the bearing ability and load displacement of the CFMP composite foundation.
[image: Figure 13]FIGURE 13 | Measured and calculated load–displacement curves of model tests under horizontal static load.
4.3 Horizontal Cyclic Load
4.3.1 Hysteresis Curve of Cyclic Loading
By testing the horizontal force and displacement of the CFMP composite foundation, the load–displacement curve under cyclic load is given, as illustrated in Figure 14.
[image: Figure 14]FIGURE 14 | Horizontal displacement curve of composite foundation under horizontal cyclic load. (A) Horizontal displacement curve when F = 60N. (B) Horizontal displacement curve when F = 120N. (C) Horizontal displacement curve when F = 180N. (D) Horizontal displacement curve when F = 240N. (E) Horizontal displacement curve when F = 300N.
According to the diagram, the load–displacement curve under circulating load shows a clear hysteresis loop. The horizontal displacement increases with the increase of cycling times. In the first cycle, an obvious nonlinear load–displacement curve can be observed. With the increase of cycles, each cycle load in the process of the linear displacement curve is more and more obvious.
As the number of cycles increases, the whole hysteretic loop gradually shifts to the right and produces cumulative deformation under the unidirectional cyclic loading mode. The area of the hysteretic circle decreases gradually, indicating that the behavior of fly ash around the pile changes from the elastic–plastic stage to the elastic stage.
4.3.2 Stiffness Curve of Cyclic Loading
The relationship curve between secant stiffness and cycle times is shown in Figure 15. From Figure 15, it can be observed that the secant stiffness increases within a certain range at the beginning of the cycle. This is because the density of fly ash around the pile gradually increases with increasing cyclic load at the beginning of the cycle. With the accumulation of pile deformation and the increasing number of cycles, fly ash at the pile side gradually transfers to the deep layer. The compactness of deep fly ash decreases under cyclic loading, which results in a decreasing trend in the overall stiffness of the hysteretic loop.
[image: Figure 15]FIGURE 15 | Relationship curve between secant stiffness and the number of cycles.
When the amplitude of cyclic load is 60°N, 120°N, 180°N, 240°N, and 300°N, the final secant stiffness decreases by 16%, 18%, 22%, 27%, and 35%, respectively, compared with the initial secant stiffness. The reduction of horizontal secant stiffness of CFMP composite foundation indicates that the horizontal deformation modulus of the fly ash stratum is reduced, which leads to the plastic deformation of fly ash around piles and the weakening of the pile–fly ash system. When the horizontal load is small (F ≤ 120°N), the cyclic load has little disturbance to the soil, and the soil stiffness is basically unchanged. The cyclic cumulative displacement and residual displacement after unloading are relatively small, and the pile–fly ash system is approximately in an elastic state. With the increase of the load (180°N ≤ F ≤ 240°N), the disturbance of the cyclic load to the soil increases, and the stiffness decreases obviously. The cumulative displacement and residual displacement caused by the cyclic load at each stage increase gradually. When the load reaches the horizontal critical load (F = 300°N), the cumulative displacement and residual displacement of soil caused by each cycle increase rapidly, and the increase cannot be stabilized, which is defined as unstable load. CFMP composite foundation under the cyclic load of this amplitude has cyclic cumulative failure and reaches the cyclic load limit state. In addition, under the same load, the cumulative displacement of one-way cyclic load is much larger than that of static load. Therefore, the cyclic effect of the one-way cyclic load has a greater impact on the CFMP composite foundation than that of the static load.
4.3.3 Peak Displacement Curve of Cyclic Loading
The cumulative peak horizontal displacement of the CFMP composite foundation varies with the number of cyclic loading, as shown in Figure 16. On the basis of Figure 16, the horizontal displacement peak of the CFMP composite foundation increases with increasing load cycle and cyclic load amplitude. When the amplitude of cyclic load is small, its curve is approximately a horizontal straight line. For example, when the cyclic load is 60°N and 120°N, the horizontal displacement peak increases by 0.14 and 1.1 mm, respectively. When the amplitude of cyclic load is large, the horizontal displacement peak-cycle number curve increases steadily and linearly. When the cyclic load amplitude reaches the horizontal critical load (F = 300 N), the horizontal displacement peak curve shows a nonlinear rapid growth trend, which is caused by the failure of the pile–fly ash system when the CFMP composite foundation reaches the cyclic load limit state.
[image: Figure 16]FIGURE 16 | Horizontal displacement peak curve of composite foundation under horizontal cyclic load.
4.3.4 Bending Moment Curve of Pile Under Cyclic Loading
Figures 17, 18 show the variation of pile bending moment distribution and residual bending moment distribution of CFMP composite foundation under horizontal cyclic load with the increase of cyclic number. Based on Figure 18, the increase in the maximum bending moment of the pile body is positively correlated with the number of cycles. This is because cyclic load weakens the stiffness and strength of the fly ash around the pile, resulting in the gap between pile–fly ash and further softening of the pile–fly ash system.
[image: Figure 17]FIGURE 17 | Bending moment distribution diagram of composite foundation pile under horizontal cyclic load. (A) Bending moment distribution diagram at F = 120N. (B) Bending moment distribution diagram at F = 240N.
[image: Figure 18]FIGURE 18 | Residual bending moment distribution diagram of composite foundation pile under horizontal cyclic load. (A) Distribution diagram of residual bending moment when F = 120N. (B) Distribution diagram of residual bending moment when F = 240N.
When the amplitude of cyclic load is the same, the relative depth of the maximum bending moment together with the maximum residual bending moment in each cycle is constant and does not change with increasing cycle number. When the cyclic load is 120°N and 240°N, the maximum pile bending moment increases by 10% and 21%, respectively, and the maximum residual bending moment changes by 80% and 100%, respectively. It can be seen that the influence of cyclic load on the bending moment is minimal, but its influence on the residual bending moment is much more obvious. This is due to the softening of the fly ash around the pile and pile–fly ash clearance, which reduces the contact between the pile and surrounding fly ash, and the force of the fly ash stratum on the pile during unloading.
5 DISCUSSION
In this study, a horizontal load model test of the CFMP-reinforced fly ash foundation was carried out. The lateral displacement, bending moment of the pile, horizontal resistance of the pile, and soil pressure on the pile side of CFMP composite foundation were studied, and the applicability of the p–y curve method together with the m method to CFMP composite foundation was analyzed. The displacement curve, secant stiffness, and pile bending moment of CFMP composite foundation under horizontal cyclic loading were studied and analyzed. The test results show that the horizontal critical load of CFMP composite foundation was 233% higher than that of fly ash foundation; compared with fly ash foundation treated by dynamic compaction, the bearing capacity increases significantly, indicating that CFMP composite foundation could effectively improve the pile–fly ash-bearing capacity, and had an important influence on the improvement of the horizontal bearing performance of fly ash foundation and enhancing the deformation control ability. Under horizontal load, the maximum bending moment of the CFMP composite foundation was located between the upper and middle parts of the pile, and such depth is the major depth affecting the bending moment of the pile. The pile displacement of CFMP decreased linearly with increasing horizontal load, and its displacement mainly occurred at the top of the pile. With increasing lateral displacement of the pile top, the zero point of displacement gradually developed toward the middle of the pile. Therefore, the fly ash formation in the middle and upper parts of the CFMP composite foundation under horizontal load was the most strongly affected, and the strength of fly ash in this area should be enhanced in practical engineering. CFMP strengthened the fly ash around the pile, and the lateral binding of the pile was enhanced. Soil resistance gradually developed with the increase of horizontal lateral displacement. At the late loading stage, the fly ash stratum began to have plastic failure and the load was transferred downward. Therefore, CFMP improved the physical and mechanical performances and strength of fly ash around piles, which further increases the pile side soil pressure and improves the ability of the composite foundation to resist the horizontal load. Compared with the traditional concrete pile, CFMP shows better horizontal bearing characteristics and reduces the pile bending moment to a certain extent. The pile displacement degree of CFMP is smaller than that of the traditional concrete pile and has better stability.
The load–displacement curve obtained by using the conventional p–y curve method and m method was basically consistent with the shape and trend of the measured curve of the model pile. The calculation result of the m method was small, while that of the p–y curve method was closer to the measured value, exhibiting that the p–y curve method could be employed for calculating the bearing capacity and horizontal displacement curve of the CFMP composite foundation.
The area of the hysteretic curve circle of cyclic loading gradually decreased with increasing cycle number, indicating that the behavior of fly ash around piles changed from elastic–plastic to elastic. The cumulative horizontal displacement increased linearly until the cyclic load reached the critical load value, and the pile–fly ash system was destroyed when it reached the critical load. The horizontal secant stiffness increased first and then decreased, and the earlier cyclic load increased the compactness of fly ash. With increasing cycle number, the fly ash resistance around the pile transferred from the shallow layer to the deep layer, and the fly ash compactness at the shallow layer decreased. When the cyclic load amplitude reached the critical load, it entered the cyclic load limit state, and the service performance of the CFMP composite foundation was affected. Compared with the current research results on fly ash foundation, CFMP composite foundation has obvious bearing capacity advantages, which can greatly improve the horizontal bearing capacity of fly ash foundation, meet the engineering needs, and has a good engineering application prospect.
6 CONCLUSION

1) CFMP composite foundation has a significant effect on improving the horizontal bearing capacity and enhancing the deformation control ability of the fly ash foundation. Under the action of horizontal load, pile deformation and foundation bearing horizontal load are concentrated on the pile body, which can improve the bearing capacity of the composite foundation by enhancing the engineering properties of the upper fly ash foundation.
2) Through the calculation of the load–displacement curve of the CFMP-fly ash composite foundation, it can be seen that the p–y curve method is more close to the measured value. In engineering applications, the p–y curve method can be used to predict the displacement of composite foundation, so as to better formulate engineering plans.
3) Under the action of horizontal cyclic load, the displacement rate and area of the hysteretic curve show a negative correlation trend with the increase in the number of cyclic loads. The fly ash resistance of the pile body transfers to the deep layer, and when the cyclic load value reaches the critical load, it enters the ultimate state under load, thus affecting the service performance of the CFMP composite foundation; therefore, the bearing capacity of composite foundation should be designed according to the critical load in engineering design.
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A reservoir area is mostly located in the canyon area, and the geological structure is complex. There are a large number of unstable slopes on the bank of the reservoir. The stability of bank slope is greatly affected by water storage and reservoir water regulation. In addition, sudden rainstorm and other external factors can reduce slope stability. In this article, the physical model test is used to study the seepage field and deformation characteristics of typical reservoir bank slopes with sand layers under different rainfall intensities, different water level fluctuation rates, and their coupling effects. The model has a length of 4.0 m, a width of 1.0 m, and a height of 0.9 m, and the piezometers and white balls are used to monitor the pore water pressures and displacements inside the slope model individually. The results show that the responsiveness of pore water pressure inside the slope lags behind both water level fluctuation and rainfall. The lag time is inversely proportional to the water level fluctuation rates under the single water level fluctuation condition, while it is proportional to water level fluctuation rates in the water level decline stage under the coupling effect condition. The rapid impoundment of the reservoir area has a strengthening effect on the stability of the reservoir bank slope. However, accelerated deformation of the slope occurs in the stage of water level decline, and the deformation rate is proportional to the water level fluctuation rates.
Keywords: water-force coupling, reservoir bank slope containing sand, water level fluctuation, seepage field, deformation characteristics
INTRODUCTION
A reservoir area is located in the gorge where the geological structure is complex. There are many unstable slopes on the bank of the reservoir, whose stabilities are greatly affected by the regulation of reservoir storage (Jiang et al., 2019). In addition, other external effects, such as sudden rainstorms, may lead to instability and failure. Compared with landslides in mountainous areas, landslides around reservoir banks are involved in various boundary conditions, including immersion infiltration of reservoir water, wave erosion, and water level fluctuation. The complete understanding of the deformation and failure characteristics, stability evolution law, and instability mechanism of reservoir landslides is the key to preventing and controlling geological disasters in reservoir areas.
In 1987, Gatto and Doe (1987) suggested that most of the bank collapses could be associated with the reservoir water level and the effect of wind-wave erosion. They concluded that the bank collapse should be treated as a site-specific problem because of the complexity and variability of numerous factors that may contribute to the collapse. In recent years, research on reservoir landslides has developed rapidly. Many previous field investigations have revealed that layered soil influenced the rainfall water movement and distribution of water content, which are two factors determining slope failures. However, the influence of an intermediate coarse layer on slope failure is still not evident due to many uncontrollable factors of a natural slope, such as the slope angle and rainfall intensity, (Hamrouni et al., 2019). Sengani and Mulenga (2020) used FLACSlope [Numerical software “Finite Difference Method (FDM)”] to simulate FoS and pore water pressure in sunny and rainy conditions of the Thulamela Municipality roads (R523); the results show that extreme rainfall can reduce the shear strength and resistance of the soil slope material. Bogaard and Greco (2016) thought that rainfall was one of the most common hazards responsible for triggering landslides. Some researchers think that the hydrology in and around a landslide area leads the pore pressure to replace the soil skeleton stress; as a result, the shear strength of the soil is reduced. Tang et al. (2020) evaluated the influence of the middle coarse layer on the slope stability during heavy rainfall through physical model tests; he found that intermediate coarse layers embedded between finer ones may initially confine the infiltration within the overlying finer layers, delaying the infiltration and eventually inducing a lateral flow diversion in the inclined slope. With the rigid body limit equilibrium method, Sun et al. (2017) studied the long-term stability of reservoir bank slope under the influence of periodic rainfall and fluctuation of reservoir water level.
By using the finite element numerical method to model the fluid-solid coupling effect, Wang et al. (2007) analyzed the stress field, seepage field, and stability of reservoir slope under the effect of water level fluctuation and pointed out that the sudden drop in water level was the main factor leading to the instability of the slope. Jiao et al. (2014) used the discontinuous deformation analysis method (DDA) to simulate the failure process of the Qian Jiang Ping landslide in the Three Gorges Reservoir area. Zhang et al. (2018) classified the slope failure mechanisms of the Da Gang Shan reservoir into creep–shear–tension failure and toppling–tensile–shear models. Min et al. (2013) monitored the Shi Liu Shu Bao landslide in the Three Gorges Reservoir area for many years and found that the deformation of the shallow landslide was mainly controlled by rainfall, while the change in the reservoir water level had a significant influence on the stability of deep landslide. (Hu et al. 2017b) studied the evolution process of the anti-landslide pile system by using a variety of field monitoring methods. Ji et al. (2018) studied the effects of slope gradient, material grain-size diameter, material density, wave height, and water level fluctuation on the bank collapse by orthogonal experiments. They found that slope gradient is the most sensitive factor affecting the bank collapse width, followed by soil density, clay proportion, wave height, and water level.
According to the existing literature, there are few research that focuses on the mechanism of bank slope with sand layer under hydro-mechanical coupling effects. In this article, a typical bank slope with a sand layer around a water conservancy and shipping hub reservoir was selected as the research object. By referring to some geological survey reports about this reservoir area, the large-scale indoor model test was designed to study the stability and deformation failure characteristics of slope under the conditions of different rainfall intensities (R), different water level fluctuation rates (V), and rainfall-coupled water level fluctuation. This study provides a certain reference for revealing the instability mechanism of the reservoir bank slope.
METHODS AND MATERIALS
The Xin Gan shipping hub is located in Ji’an City, Jiangxi Province, China; it is in the subtropical humid monsoon climate zone. The geomorphic units include structural denudation of middle and low mountains, denudation of hills and gully terrain, river erosion accumulation landform (Ganjiang alluvial plain); low denudation hills and gully terrain are y given out first, followed by alluvial plain. The Ganjiang River Basin is in the East Asian monsoon region with a humid subtropical climate, where the annual average temperature is between 17.2 and 19.3°C, and the extreme highest and the lowest temperatures are 41.6°C and −14.3°C, respectively. The average annual precipitation is 1,300–1,800 mm, and the maximum daily rainstorm occurs mainly from April to September. Heavy rainstorms are concentrated in frontal rain from May to June, and are mainly affected by typhoons from July to September.
In order to improve the irrigation conditions of farmland in the Xin Gan area and avoid crop waterlogging disasters, large-scale field lifting operations were carried out on agricultural canals, bucket canals, bucket ditches, and agricultural ditches. The total area is 656.45 mu and its elevation is 33–36 m. After field lifting, the typical slope becomes complicated, and it is composed of low-surface permeability weathered material, a middle fine sand layer, and bottom silty clay. In the reservoir area, the water level fluctuates between 5 and 8 m, and the slope stability changes obviously when rainfall happens. Therefore, it is of great practical significance to explore the stability of the slope under the effect of water level fluctuation in the rainy season.
According to the topography of the reservoir area, a simplified physical model of reservoir bank slope is constructed. Considering the test conditions, the scale ratio of this model is determined as 1:15. The height of the slope model is 0.86 m, the length of the slope toe is 2.73 m, the angle of the lower steep slope is 44.3°, and the angle of the upper slope is 19.6°. The geological structure in the reservoir area is simplified and contains three different soil layers: the upper soil layer (0.13 m), the middle sand layer (0.2 m), and lower silty clay (0.53 m).
Selection of Similar Materials
According to the similarity theorem (Stull, 1988), in order to ensure the lateral similarity between the physical model and the real case, the physical and mechanical properties and seepage characteristics of the model material need to be considered simultaneously. The geometric similarity coefficient, Cl = n = 15, with the dimensional analysis method, and related properties of the model material are determined as follows:
[image: image]
In the formula Cρ, Cg, Cε, Cφ, Ck, Cc, Cq, and Cv are density similarity coefficient, gravity acceleration similarity coefficient, strain similarity coefficient, internal friction angle similarity coefficient, permeability similarity coefficient, cohesion similarity coefficient, rainfall intensity similarity coefficient, and water level fluctuation rate similarity coefficient, respectively.
In this test, the weathered soil collected in the field with low permeability is used in the upper layer. The quartz sand is used as the permeable layer in the middle, and the lower silty clay is made of quartz sand, bentonite, and silty clay as the matching materials. The quartz sand and silty clay are mainly used to adjust the strength of similar materials, and bentonite is mainly used as the binder. Through a large number of laboratory tests, the physical and mechanical properties of similar materials in each group were comprehensively analyzed and compared, and the ratio of similar materials in the lower silty clay was finally determined, as shown in Table 1.
TABLE 1 | Comparison of the silty clay parameters.
[image: Table 1]Testing Apparatus
As shown in Figure 1, the model box has a length of 4.0 m, a width of 1.0 m, and a height of 0.9 m. It consists of three parts: the rainfall control system, the water level control, and the monitoring system. The transverse sides of the model box are toughened glass, and the longitudinal ends are steel plates. In the meantime, the gridline with 10 cm spacing and the contour line after slope scaling are attached to the toughened glass outside. The outlet is designed at the bottom of the front slope, and the water supply hose, micro flowmeter, and spherical solenoid valve with V port are connected to realize accurate water level control. The rainfall system is set on the rainfall bracket above the model box.
[image: Figure 1]FIGURE 1 | Physical model box.
Monitoring System
Each soil layer was filled into the model box according to the required compaction level. Then, white foam balls were arranged at the grid intersection and slope surface, among which 6 balls were selected as reference points to analyze the displacement and deformation during failure. Seepage in the slope was monitored by embedding six piezometers with a measuring range from −10 to 10 kPa and an accuracy of ±0.1%FS (P1–P6) (Figure 2). As shown in Figures 2B,C, in the process of slope filling, the piezometers and white balls are buried, and the piezometers are buried in the soil layer between 0.33 and 0.53 m; the balls are placed close to the glass for observation conveniently. Continuous detection was carried out within 2 h after each test. Subsequently, the displacement of D1–D6 was expressed by the relative displacement between the grids and white balls measured by the camera per hour.
[image: Figure 2]FIGURE 2 | Monitoring system. (A) Piezometers; (B) white balls and grids buried in the model box; and (C) piezometer and displacement monitoring points.
Test Scheme
According to the real project, the average annual rainfall during the operation of the reservoir area is 1,300–1,800 mm, and half of the rainfall is concentrated in the rainy season (from April to September). On this basis, the most unfavorable factors are considered, which means that the rainfall intensity R is 0.002 m/h, 0.003 m/h, and 0.004 m/h, and the rainfall is annually uniform. The complete water level fluctuation from the highest level (0.53 m) to the lowest level (0.33 m) with three different fluctuation rates V (0.5 m/d, 1.0 m/d, and 1.5 m/d) is considered in tests. Under the coupling effect, the maximum rainfall intensity R (0.004 m/h) is applied when the water level of the slope model rises to 0.53 m and then drops back to 0.33 m at different fluctuation rates. The specific test conditions are shown in Table 2.
TABLE 2 | Design of working conditions.
[image: Table 2]RESULTS
Condition 1: Different Rainfall Intensities
The static water level was controlled at 0.53 m to study the change in pore water pressure in the slope during rainfall. Three rainfall intensities R of 0.002 m/h, 0.003 m/h, and 0.004 m/h were set, and lasted for 38 h. The measured data from piezometers P3 and P4 and displacement monitoring points D1, D2, and D4 were selected for analysis.
It can be seen from Figure 3 that under the single effect of rainfall, the overall change trend of seepage in the slope is similar, and the response speed and variation amplitude of pore water pressure at each monitoring point are proportional to R. When R = 0.004 m/h, at the 15th hour, the pore water pressure of P3 rapidly increased to −0.9 kPa and slowly decreased to −1.28 kPa in the next 9 h. After the process, the pore water pressure curve tended to be gentle. This surge phenomenon gradually disappeared with the decrease of R (0.002 m/h, 0.003 m/h). At the same time, it can be found that as P3 decreased, the pore pressure at the monitoring point P4 also increased rapidly, roughly the same as the displacement of monitoring points, which became stable as the deformation reached the maximum value. Under the impacts of rainfall, slope runoff, and transient saturation, the displacement of monitoring points D1 and D2 is larger than that of D4. When R = 0.004 m/h, the maximum displacement difference between D1 and D4 reached 0.24 cm, and the displacement at D2 also increased significantly.
[image: Figure 3]FIGURE 3 | Pore water pressure of P3 and P4 and displacement of D1, D2, and D4 in condition 1.
Condition 2: Different Water Level Fluctuation Rates
Figure 4 shows that the pore water pressure of slope presents the same variation characteristics of first increasing, stabilizing, and then decreasing. The variation characteristic lags behind the water level fluctuation, and lag time is inversely proportional to V. The piezometers P1 and P3, which lie in the upper layer, responded rapidly when the water level rises to the height of the monitoring points. By contrast, the piezometers P2, P4, and P6, which lie in the deeper layer, have lag time scales of 2–6 h. With the increase of V, the lag time is getting shorter. This result is in contrast with Jiang et al. (2019), which indicates that the lag time is proportional to V in a loess slope during the water level decline process.
[image: Figure 4]FIGURE 4 | Pore water pressure and displacement under different water level fluctuation rates in front of slope.
According to the displacement monitoring data, the negative impact on the slope stability during the decline process is greater than that during the rising process, and as the value of V increases, even the rising process even plays a positive role in promoting the slope stability (Huang, 2007; Macfarlane, 2009; Qi-Lang et al., 2011; Li et al., 2018; Wang et al., 2019). We can find that the displacement caused by the water rising effect is negative when the values of V are 1.0 m/d and 1.5 m/d (Figures 4B,C), and the deformation rates during the decline process decrease with increasing V. However, when the V is 0.5 m/d, no negative value occurs and the deformation rates are larger. It also shows that the closer to the slope surface, the larger the displacement value is. Meanwhile, the displacement caused by water level fluctuations is larger than that caused by rainfall. In other words, water level fluctuation exhibits a greater impact on the slope stability than rainfall within a certain range and plays a dominant role in triggering landslides (Calcaterra et al., 2000; Guan et al., 2005).
Condition 3: Coupled Hydro-Mechanical Effect
Figure 5 presents the pore water pressure and displacement curves of the slope caused by the coupling effect of different water level fluctuation rates and rainfall. It shows that the variation characteristics of pore water pressure are similar to those under condition 2. However, its lag time is proportional to V. The peak value of P1, which is near the slope surface, increases slightly compared with that under condition 2, and the lag times of P3 and P6 are shortened to 2–4 h. However, because of the thicker covering layer, longer permeability path, and larger horizontal permeability coefficient of the sand layer, the pore water pressure curves of P5 maintain flat and the rainwater converges to P1 and P3.
[image: Figure 5]FIGURE 5 | R=0.004 m/h, pore water pressure and displacement under different water level fluctuation rates in front of slope.
The pore water pressures of P1 and P3 present a phenomenon of sudden increase and then decrease in the decline process of V = 0.5 m/d (Figure 5A), but this phenomenon cannot be observed when V=1.0 m/d and V=1.5 m/d. From the displacement curves, it appears that negative displacement would not be observed in the rising process of the coupling effect condition. Compared with those under the other two conditions, the deformation rates and final displacement under this condition are larger and the final displacement is proportional to V. It also shows that the closer to the slope surface, the larger the displacement value is. At the same time, the result shows that the deformation rates are converged in the rising process and accelerated in the declining process, and that the acceleration inflection points are consistent with the time of the decline point of pore water pressure.
DISCUSSION
Rainfall Infiltration Regulation
Figure 6 shows the envelope of the moist front based on the variation of pore water pressure at each measuring point under different rainfall intensities and external observation during the test. The results reveal that the migration range of moist front is enhanced as the rainfall rate increases.
[image: Figure 6]FIGURE 6 | Envelopes of moist front inside slope under different rainfall intensities.
The result in Figure 3A shows a phenomenon where the pore water pressure of P3 suddenly increases and then decreases. This phenomenon has a significant difference from the homogenous silty clay slope whose pore water pressure monotonically increases during persistent rainfall (Fakher Hamrouni et al., 2019). The reason is that P3 is located at the junction of three layers of soil. When the rainfall intensity is low, the infiltration process is relatively smooth in the upper weathered soil layer. When rainwater infiltrates the junction of multi-layer soil, due to the difference in permeability coefficient between upper and lower soil layers, the lower soil layer forms an air-water film on the interface of the soil layer caused by the action of matrix suction, which resists the further downward seepage of pore water. At present, a closed soil shell forms in the upper layer and the pore air of the lower layer is compressed such that the resisted pore water is concentrated at the junction, causing a sharp increase in the pore water pressure of P3.
With the continuous infiltration of rainfall, the pore air escapes through the soil pore as the pore air pressure increases to the maximum value to break the air-water film. At this time, a local drainage channel appears in the sand layer, so that the water gathered at the interface quickly migrates to the sand layer. Due to the larger permeability coefficient of the sand layer, the rainwater infiltrates rapidly so that the pore water pressure curve drops to a low situation (He et al., 2021; Hu et al., 2017a; Mein & Larson, 1973; Prete et al., 1998; Wei et al., 2018). But, with the increase of rainfall intensity R, the pore water pressure of the upper layer caused by rainwater infiltration is too large to break the air-water film quickly that the moist front migrates to the sand layer rapidly. Therefore, the phenomenon of sharply increased P3 gradually disappears. Slip deformation of the upper layer driven by seepage force has a significant influence on the overall stability of the slope (Song et al., 2011; Sun et al., 2014; Huang et al., 2017a; Mandal et al., 2019; Zhao et al., 2020).
Discussion on Seepage Field Characteristics Under Hydro-Mechanical Coupling
The internal seepage of reservoir bank slope with sand layer is an extremely complex process caused by the water-force coupling effects. As mentioned above, the response of pore water pressure inside the slope lags behind water level fluctuation and rainfall, and the change of pore water pressure in the shallow slope is higher than that in the deep slope. However, there is an opposite result to the single water level fluctuation condition where the lag time in the decline process of the coupling effect condition is proportional to V and is shorter. This phenomenon, different from the research results of many scholars, is closely related to the existence of sand layer inside the slope (Liu et al., 2005; Jin et al., 2012; Shen et al., 2018; Xu et al., 2018).
In the single water level fluctuation condition, as the permeability coefficient of the sand layer is much larger than those of upper weathered soil and lower clay soil, water migrates and accumulates in the sand layer rapidly after the surface soil is saturated in the rising process. Then the stored water in the sand layer, similar to a small reservoir, is replenished to the outward of slope in the decline process. Throughout the process, according to Darcy law, v = ki, the smaller V, the smaller the Δh (which refers to the water head difference per unit time) , and the smaller the hydraulic gradient i and permeability rate v of water in soil are, resulting in a larger lag time of pore pressure. Therefore, the lag time is inversely proportional to the water level fluctuation rates.
In the coupling effect condition, the seepage situation of the single water level fluctuation changes because of the increasing rainfall. As the rainwater is replenishing the sand layer, a longer duration of rainfall occurs with a smaller water level fluctuation rate. As a result, a higher groundwater level caused by rainwater infiltration forms in the sand layer. When the water level declines, there exists a larger instantaneous water head difference Δh during a lower water level fluctuation rate, and the pore water pressure responds more rapidly. Therefore, the lag time of the decline process is proportional to the water level fluctuation rate.
Figure 5A shows that a consistent phenomenon of sudden increase and then decrease occurs on the pore water pressure curves of P1 and P3 when V = 0.5 m/d. This is because when the water level decreases to a certain degree, the water head difference between the sand layer and the outside water level caused by continuous rainfall infiltration will increase, and the pore water pressure of the junction of multi-layer soil will increase sharply. It shows that for the reservoir bank slope with a sand layer, the influence of rainfall on the slope stability is more significant than that of water level fluctuation when the water level fluctuation rate is less than a certain degree that needs further exploration.
Discussion on Deformation Characteristics Under Coupled Hydro-Mechanical Effect
According to the results, the final displacements of slope caused by coupled rainfall and water level fluctuation are larger than those under the other two conditions, and the displacements caused by single rainfall infiltration are the lowest. In addition, the displacement near the slope surface is larger than that inside of the slope. This finding indicates that the deformation of the slope is developing from surface to inside in the three conditions.
As shown in Figure 7, in single water level fluctuation condition, the development of the slope plastic zone is inhibited, and the overall deformation rates of the slope are small, even producing negative values of slope displacement at the fluctuation rate of 1.5 m/d. It means that the larger the water level rising rate is, the smaller the slope displacements are. The reason is that, as the water level rises, an anti-sliding force is generated and enlarged continuously in the front of the slope with the increase in hydrodynamic pressure. Meanwhile, the water level outside the slope is higher than that inside the slope, so that the seepage force towards the inside slope is produced and becomes larger with the increase of the water level fluctuation rate. Therefore, at the prophase of the water level rising process, rapid water storage has a certain stabilizing effect on the front edge of the slope (Wang, 2000; Nardi et al., 2012; Peng, 2014; He et al., 2018; Jiading et al., 2018).
[image: Figure 7]FIGURE 7 | Displacement curves of D1 and D3 points under different working conditions.
However, in the coupling effect condition, the slope deformation rates increase significantly. The test results show that accelerated deformation of the slope occurs in the water level decline stage, and the deformation rate is proportional to the water level decline rate. Throughout the process, the change in trend of the front displacement of the slope conforms to the three stages of deformation and failure of the slope in terms of theory. The deformation rates are converged in the rising process and accelerated in the decline process, and the acceleration inflection point matches the decline point of pore water pressure well. The reason is that the expansion speed of moist front is accelerated and the total stress of the slope is enhanced because of rainfall infiltration, and thus the ratio of effective stress to the total stress is reduced. Meanwhile, rainfall infiltration results in a reduction in the water head difference between the outside and inside of the slope owing to the rapid rise of water, which weakens or even inhibits the development of the slope plastic zone.
At the decline process, the groundwater of the slope migrates towards outside, which leads to the reduction of pore water pressure and redistribution of internal stress, produces the consolidation settlement of soil, and magnifies the displacement of the slope.
Continuous rainfall produces dynamic scouring load on the slope surface, and continuous infiltration weakens the mechanical properties of the overlying soil layer. Combined with the seepage force generated from the internal soil to the outside of the slope, the anti-sliding force in front of the slope decreases during the decline process and the displacement increases significantly. At this time, a main fracture appears along the direction vertical to the slope at the trailing edge and several secondary fractures occur with the continuous infiltration of rainwater and the decline of water level (Figure 8). They continuously develop into the deep and finally leads to the local slip failure (Fha et al., 2021; Huang et al., 2020; Huang et al., 2017b; Zhang et al., 2021; Zhang et al., 2020a; Zhang et al., 2020b). Therefore, we can conclude that the deformation and failure course of the reservoir bank slope with sand layer is co-controlled by hydrodynamic effects, seepage force effects, and water-induced weakening effects, and the water level fluctuation is the dynamic factor and rainfall is the triggering factor.
[image: Figure 8]FIGURE 8 | Slope cracks.
CONCLUSION

(1) In the low rainfall intensity condition, an air-water film was produced at the intersection of the upper layer and the sand layer because of a large difference in their permeability coefficient, and it has a positive effect in resisting rainfall infiltration.
(2) Due to the existence of sand layer in the slope in the single water level fluctuation condition, the lag time of pore water pressure is inversely proportional to V. Conversely, the lag time of pore water pressure in the coupling effect condition is shorter and proportional to V during the decline process.
(3) The final displacements of slope caused by coupled rainfall and water level fluctuation are larger than those caused by other two conditions. In addition, the displacement near the slope surface is larger than that inside the slope. This indicates that the deformation of the slope develops from surface to inside in the three conditions.
(4) Accelerated deformation of the slope occurs in the water level decline stage, and the deformation rate is proportional to the water level decline rate. The deformation and failure processes of the reservoir bank slope with sand layer are co-controlled by hydrodynamic effects, seepage force effects, and water-induced weakening effects, and the water level fluctuation is the dynamic factor, and the rainfall is the triggering factor.
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number amplitude/g before slip after slip
no* no*
224 08 615 1113
234 09 762 136.4
244 1.0 85.4 1487

Note: the data in the table are the test results of the 1st measuring point of the 1st anchor cable specimen.
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79
74
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14# 0.5 133
16# 0.6 415
16# 0.7 67.2
17# 0.8 88.7
18# 0.9 101.2
19# 1.0 1197

Note: the data in the table are the test results of the 1st measuring point of the 1stanchor
cable specimen.
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Vertical direction
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(%)
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20
18
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Rock filing 29 21 89 12.4
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-118.558
-118.533
-118.622
-118.396
-118.682
-118.49

-118.481
~118.444

Totons) (W Tp(sim)

)

1911
1.4/1.0
4.2/0.7
32/1.8
4.4/1
3.9/0.9
3.5/1.9
3.1/0.9
2.8/0.7
3.4/1.4

Totobs) (S)/ Tpisim) (8)

29/2.4
28/2.6
24/26
0.8/2.1
2417
0.5/1
1.2/1.4
1725
25/2.6
0.8/2.9
2.4/2.8

PGVp(ans) (€M/S)/PGVp(sim)
(cmis)

59/56
50/110
34/64
111/63
89/43
133/74
156/93
100/73
71/52
63/31

PGV (obe) (Cm/8)/PGVp(sim) (Cm/s)

154/50
88/54
82/49

112/152
102/106
48/60
68/88

117/65
86/50
99/70
87/78

Evtovsy/Epteim)

0.42/0.59
0.6/0.30

0.61/0.31
0.53/0.63
0.69/0.57
0.69/0.80
0.67/0.77
0.77/0.79
0.49/0.63
0.51/0.46

Ep(oe/Epeim)

0.48/0.63
0.31/0.55
0.5/0.57

0.32/0.70
0.67/0.45
0.34/0.75
0.45/0.75
0.55/0.42
0.45/0.59
0.32/0.47
0.45/0.36

" indicates that the station is located in the forward rupture propagation direction of the asperity).

Site location

N-E
NE
N-E
R-D
R-D
R-D
R-D
R-D
R-D
R-D

Site Location

R-D
R-D
R-D
R-D
R-D
R-D
R-D
R-D
R-D
R-D
N-E
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Imperial valley earthquake Northridge earthquake

Thickness (km) Vy(km/s) V(km/s) Density (g/cm?) Thickness (km) V,(km/s) V(km/s) Density (g/cm?)
0.002 1.70 045 200 0002 1.70 045 200
0.004 1.80 065 210 0.004 1.80 065 210
0.006 1.80 085 210 0006 1.80 085 210
0.008 1.90 095 210 0,008 1.90 095 210
0.01 200 115 220 001 200 115 220
0.07 2.40 1.20 220 007 2.40 1.20 220
0.20 250 125 230 020 280 1.40 230
0.20 260 130 230 020 3.10 1.60 2.40
0.20 280 1.40 235 020 3.40 1.80 245
0.30 290 150 2.40 030 370 2.10 250
0.50 300 1.60 245 2,00 4.40 2.40 260
0.50 3.40 1.90 250 2,00 5.10 2.80 270
0.50 390 220 255 1.00 5.60 3.15 276
0.50 420 240 260 500 615 360 283
2.00 5.00 290 265 5.00 632 365 285
1.00 530 300 270 500 655 370 290
2.50 5.45 315 275 10.00 680 3.80 295
2.50 600 340 280 - 7.00 4.50 320
5.00 6.60 365 395

6.00 730 410 300

9.00 7.50 4.30 3.05
- 7.80 450 3.20
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Condition Variable

1 Rainfall intensity R: 0.002 m/h, 0.003 m/h, 0.004 mvh
Water level fluctuation rates V: 0.5 m/d, 1.0 m/d, 1.5 m/d
3 Rainfall intensity R: 0.004 m/h, V: 0.5 m/d, 1.0 m/d, 1.5 m/d

b





OPS/images/feart-10-863370/feart-10-863370-t001.jpg
Name

Similar material (sity clay)®
Prototype material (sity ciay)
Prototype material (sand layer)
Prototype material (overlying soi)

aSimilar material ratio is: standard sand" silty clay: bentonite: water-

Unit weight/(kN/m®)

15.6
15.6
142
173

Cohesion/(kPa)

At
16
0

27

Internal friction angle/()

o«
20
34
25

Permeability coefficient/(m/s)

210
1.4x10°°
3x102
15x10°®
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Group Moisture content Density

w (%) p (g/em®)
b 41.32 1.8
2 36.96 1.86

3 38.17 1.83
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Group

Undisturbed soil
sample q, (kPa)

123.14
155.39
138.28

Remolded soil
sample curing
for 0 day
' (0) (kPa)

27.24
2606
28.04

Remolded soil
sample curing
for 1 day
qu (1) (kPa)

278
26.56
28.51

Remolded soil
sample curing
for 7 days
9 (1) (kPa)

30.37
30.7
33.53

Remolded soil
sample curing
for 30 days
q'4 (30) (kPa)

32.44
36.65
40.68

Remolded soil
sample curing
for 60 days
' (60) (kPa)

33.64
36.76
41.85
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K K=K K<K<Ky Ki<K

Thixotropy classification Weak thixotropy Moderate thixotropy Strong thixotropy
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Clay EN qukPa @4(0) tdays Qult) K Kudays™ K Classification
kPa kPa days™! days™!

Zhanjiang clay' 847 175 2068 500 53.36 - 0.0014 0.0074 Strong

Tianjin clay? 625 125 2 360 68 - 0006 00128 Strong

Detroit clay® 25 360 144 100 211.68 0003 0023 0,008 Moderate

Faoclay* 1.87 15.26 818 252 12.56 0004 - 00085 Weak

1Zhang et al. (2017b); 2Huo et al. (2016); 3Skemption and Northey (1952); Kamil and Aforany (2019).
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Natural moisture
content w (%)

40.79
37.36
38.59

Natural soil
density p (g/cm?)

1.81
1.89
1.85

Specific gravity
Gs

267
27
268
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Type

Dynamic pore water pressure sensor

No

Ki~K4

Parameter

Range: 100~ +200 Kpa
Accuracy: 0.15%FS

Sensor
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Basic index Moisture content (%) Natural gravity Proportion Dry density Pore ratio Saturability Liquid limit

The average 40 14.3KN/m® 222 9.4KN/m? 1.42 76.5 489
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Soil layer

Sandy soi layer @
Clay soil layer (containing sand) @
Sandy soi layer @

Clay soil layer @

Sandy soi layer @

Clay soi layer ®

Weight (kN/m®)

18
185
190
195
198
206

Poisson’s ratio

0.35
0.45
0.32
0.40
0.30
0.38

Elastic modulus
(MPa)

10
5
50
18
70
40

Cohesion (kPa)

15.0
17.5
20.2
405
30.7
50.9

Internal friction
angle ()

180
16.4
254
122
206
108
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Chemical sio, ALO, Fe,0, cao K0 Tio, S0, Burn
component the vector

Percentage (%) 54.57 30.14 6.05 3.88 1.66 1.49 0.93 1.28
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Test no.

o e [ i

Sample no.

csst
css2
Css3
Css4
Csss
Css6
css7
Ccss8
CSs9

Fines content
Cr (%)

0
10
20
30
40
50
20
20
20

Dry density
P (glem®)

152
152
152
152
152
152
1.44
157
1.63

Matric suction
v (kPa)

0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750
0, 5, 10, 20, 35, 70, 120, 300, 750

Saturation degree
S (%)

Temperature
t(c)

25
25
25
25
25
25
25
25
25





OPS/images/fenvs-09-682907/fenvs-09-682907-t003.jpg
Sample no.

Csst
css2
Css3
Css4
Csss
CSSHE

4.950
4950
4.986
5.199
5571
7 806

70.599
49.026
18.685
10.261
9.456
2 2959

0.297
0.304
0.378
0414
0415
0.724
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Sample no.

Css7
CSs3
Css8
CSs9

4.863
4.986
5.138
5.365

21.062
18.685
21.881
12.845

0.389
0.378
0.338
0.356
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Sample
no.

CSsSt1

css2

CSS3

Css4

Csss

CSS6

css7

Css8

Css9

Fines
content
Cr
(%)

0

10

20

30

40

50

20

20

20

Dry

density

Pd

(g/em?)

1.52

1.52

1.52

1.52

1.52

1.62

1.44

1.67

1.63

Volumetric
water
content
0

Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation
Measured value
Calculated
value

Deviation

Matric suction y (kPa)

047718
0.46441

0.97
0.46987
0.46439

0.99
0.46427
0.46437

1.00
0.45006
0.46436

1.03
0.44541
0.46434

1.04
0.41553
0.46432

112
0.48013
0.47751

0.99
0.43521
0.45597

1.05
0.42078
0.44568

1.06

0.41810
041311

0.99
0.41805
0.41316

0.99
0.41768
0.41322

0.99
0.41551
0.41327

0.99
0.42749
0.41332

0.97
0.40603
0.41338

1.02
0.40961
0.38951

0.95
0.41186
0.43163

1.05
0.4033
0.43972

1.09

10

0.13837
0.12899

0.93
0.14672
0.12920

0.88
0.16675
0.12941

0.78
0.19865
0.12962

0.65
0.20726
0.12983

0.63
0.28344
0.13004

0.46
0.15731
0.13226

0.84
0.16401
0.12789

0.78
0.19048
0.12632

0.66

20

0.13248
0.10300

0.78
0.14041
0.10316

0.73
0.1453
0.10333

[kl
0.15148
0.10350

0.68
0.17922
0.10366

0.58
0.24268
0.10383

0.43
0.13662
0.10593

0.78
0.151
0.10179

0.67
0.164
0.10000

0.61

35

0.11480
0.09224

0.80
0.12933
0.09238

[kl
0.1287
0.09253

0.72
0.1453
0.09268

0.64
0.14503
0.09283

0.64
0.17082
0.09298

0.54
0.12022
0.09494

0.79
0.13348
0.09107

0.68
0.14485
0.08934

0.62

70

0.11363
0.08352

0.74
0.11962
0.08366

0.70
0.11194
0.08379

0.75
0.12354
0.08393

0.68
0.12362
0.08406

0.68
0.12221
0.08420

0.69
0.10874
0.08602

0.79
0.12081
0.08241

0.68
0.13169
0.08077

0.61

120

0.10521
0.07861

075
0.11127
0.07874

071
0.10356
0.07887

0.76
0.11563
0.07899

0.68
0.11333
0.07912

0.70
0.11108
0.07925

071
0.10069
0.08099

0.81
0.11146
007755

0.70
0.1222
0.07597

0.62

0.08367
0.07238

0.87
0.08545
0.07250

0.85
0.08773
0.07261

0.83
0.08974
0.07273

0.81
0.09192
0.07285

0.79
0.09346
0.07296

0.78
0.0808
0.07459

0.92
0.08911
0.07138

0.80
0.09722
0.06989

072

750

0.06078
0.06777

112
0.06320
0.06788

1.07
0.06395
0.06799

1.06
0.06752
0.06810

101
0.06803
0.06820

1.00
0.07228
0.08831

095
0.05718
0.06985

122
0.06476
0.06682

1.03
0.06974
0.06540

094
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Sample no.  dio (MM)  dao (MM)  dso (MM)  deo (mMm)  Non-uniformity coefficient C,  Curvature coefficient C,  Specific gravity G,

csst 0.003 0.128 0.163 0.180 1.946 0.976 273
css2 0.075 0.114 0.1563 0172 2.296 1.004 273
CSs3 0.014 0.097 0.141 0.163 11.753 4477 278
CSSs4 0.007 0.075 0.125 0.150 22475 5.619 273
CSS5 0.004 0.027 0.104 0.133 30.544 1.247 273

CSS6 0.003 0.019 0.075 0.110 34.868 0.995 273
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Physical quantity

Length L
Density p
Acceleration a

Dynamic shear modulus Grx
Vibration speed v

Vibration frequency w
Dynamic displacement u
Vibration time T

Strain level y/y

Similarity relationship

Cu

G

[eMondlon
ckecyncyn
CiCY-2C¥-oncli-:n
cpegy-angin
CuCR Cyrep
cp-egyancpian
Cry

Similarity constant

20
T
0.45

3.16
0.47
0.1
20.25
9.45
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Class

PDTD, percentage of domain in the total domain.

PDTD (%)

9.68
1827
12.26
15.84
16.69
32.26

Percentage of UN
pixels in each
class (%)

26.53
4.86
10.97
19.78
22.40
16.36

Percentage of APR
pixels in each
class (%)

9.42

1290
1240
16.02
16.83
32.38

Percentage of UN
pixels in each
class (%)

15.02
38.16
6.51
4.47
6.06
30.08
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Comparison Value Classification Percentage (%)

“RF"—“RF (improved)" -0.9731-0.9482 Underestimation -0.9731--0.5 1.00
Approximation -0.5-05 97.13
Overestimation 0.6-0.9482 1.88
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Susceptibity level

FR

FR (improved)

RF

RF (improved)

Very low
Low
Moderate
High
Very high

Very low
Low
Moderate
High
Very high

Very low
Low
Moderate
High
Very high

Very low
Low
Moderate
High
Very high

PLTL (%)

6.70
23.30
23.20
20.70
26.20

570
21.70
26.40
28.20
18.10

9.70
16.10
2220
27.80
24.20

0.78
6.69
16.89
26.66
48.98

PDTD (%)

24.00
40.40
19.20
10.00
6.40

19.80
39.20
25.30
11.80
3.90

37.40
30.60
18.10
8.00
5.90

26.66
30.02
23.19
13.36
6.77

Frequency ratio value
(PLTL/PDTD)

0.28
0.58
1
207
4.09

0.29
0.55
1.04
239
464

0.26
0.53
1.23
3.48
4.10

0.03
0.22
0.73
2.00
7.23

PLTL, percentage of landside in total landslide; PDTD, percentage of domain in total

domain.
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Factor Original class

Altitude 1
2
3
4
5
6
Rivers 1
2
3
4
5

PDTD, proportion of domain in the total domain.

PDTD (%)

14.61

24.19
27.52
16.42
11.53
574

22.96

12.26
15.84
16.69
32.26

FR

298

119
053
0.51
0.31
020

141

1.01
1.00
1.03
047

New class

Ffe ooren

s wn

PDTD (%)

9.68

4.93
24.19
27.52
16.42
11.53
5.74

9.68
13.27
12.26
15.84
16.69
32.26

FR

272
3.49
1.19
0.53
051
031
0.20

272

1.01
1.00
1.03
0.47
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Class 1 2 3 4 5 6

Altitude/m 120-350 350-600 500-700 700-900 900-1,100 1,100-1,656
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Factor

Altitude

Slope

Aspect

Stream Power Index (SPI)

Plan curvature

Profile curvature

Bedding structure

Class

SR I NEAR N

6-14
14-21
21-28
28-87

37
F
N
NE
3
SE
s
sw
w
NE
<500
500-2,250
2,250-7,000
7,000
<-001
-0.01-0.01
>001
<-001
-0.01-0.01
>001
BS1
BS2
BS3
BS4
BS5
BS6
BS7

PLTL

0.44
0.29
0.15
0.08
0.04
0.01
0.14
0.24
027
0.20
012
0.04
0.07
0.13
011
0.10
0.1
0.10
0.10
0.13
0.14
097
0.03
0.00
0.00
0.37
0.19
0.44
0.42
0.14
0.44
0.06
0.12
0.07
0.22
0.30
0.12
0.10

PDTD

0.15
0.24
0.28
0.16
0.12
0.06
0.14
0.20
0.24
0.22
0.15
0.05
0.06
0.13
o.11
0.10
0.12
0.12
0.1
0.1
0.15
0.96
0.03
0.00
0.00
0.38
0.16
0.45
0.43
0.12
0.45
0.04
0.15
0.04
0.19
0.28
0.14
0.16

FR

298
119
053
051
031
0.20
1.02
117
114
0.90
0.78
0.82
1.30
0.99
0.99
1.03
0.93
0.87
0.97
1.20
091
1.01
0.78
0.81
0.69
0.96
115
0.98
097
1.24
0.97
1.40
0.83
1.59
117
1.08
0.85
0.67

PLTL, percentage of landslide in total landslide: PDTD, percentage of domain in total domain.

Factor

Lithology

Land use

Geological structure

Rivers

Roads

PLTL

0.17
0.05
0.03
0.02
0.00
0.03
0.03
0.18
0.05
0.43
0.00
0.00
0.13
0.00
0.01
0.26
0.25
0.16
0.01
0.17
0.27
0.09
0.01
0.09
0.13
0.41
0.39
0.13
0.17
017
0.14
0.06
0.06
0.05
0.06
0.04
0.76

PDTD

0.16
0.07
0.06
0.06
0.04
0.08
0.03
0.09
0.07
0.38
0.00
0.00
0.08
0.00
0.01
0.39
0.22
0.05
0.00
0.25
0.16
0.09
0.04
0.19
0.1
0.41
0.24
0.13
0.17
0.16
0.29
0.06
0.06
0.05
0.04
0.04
0.76

FR

1.06
(kg
0.50
0.29
0.1
0.95
0.83

0.78
1.13
0.00

1.69
3.83
1.14
0.67
117

3.37
0.66

1.07
0.17
0.48
1.18
1.62
1.01
1.00
1.03
0.47
1.01
1.07
1.10

0.98
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Stratum code

Jss
Ta

System

Jurassic
Triassic
Jurassic
Triassic
Triassic
Jurassic
Jurassic
Jurassic
Jurassic
Jurassic
Permain
Triassic

Series

Upper
Upper
Upper
Middie
Lower
Lower
Middle-lower
Midde
Middie
Middie
Middie
Lower

Group

Suining
Xujiahe

Penglai

Badong
Jalingjiang
Zhengzhuchong
Ziiujin
Xintiangou
Xashaximiao
Shaximiao
Maokou

Daye

Main lithology

Red purple quartz sandstone with interbedded mudstone
Light gray lithic sandstone and sty shale

Gray white quartz sandstone with interbedded shale

Limestone and sandy mudstone

Limestone and dolomite, karst breccia, and dolomite limestone

Gray quartz sandstone with interbedded shale

Shale sandwiching quartz sandstone and limestone

Gray yellow feldspar sandstone with interbedded mudstone

Gray purple feldspar sandstone with interbedded mudstone

Alterative layers of purple red mudstone and feldspar sandstone or sitstone
Gray bioclastic limestone

Limestone, shale, and dolomite limestone
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Slope
Aspect
Plan
Profle
SPI
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Roads
Lithology
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BS
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1.00
020
009
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-0.05
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-0.08
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001

-0.05

—001

Slope  Aspect

1.00
-0.05
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-0.01
-0.02
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0.00

Plan

1.00
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0.00

0.00

0.00

0.00

0.00

0.00

Profile

1.00
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0.00
0.01
0.00
0.01
0.00

SPI
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-0.01
-0.01
-0.02

0.00
-0.02
-001

Rivers

1.00
0.08
0.00
0.04
-0.01
0.00

Roads

1.00
0.04
0.04
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002

Lithology

1.00

0.26
-0.07
001

1.00
-0.06
-0.01
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1.00
0.01

Land use

100
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Note: The extracted parameters inciude the inner arc ength of the dune (Li, the outer arc length of the dune (Lo, the ridge length of the clune (Lr, the chordlength of the dune (Lc), the dune
height (H), the expansion degree of the two wings (De), the symmeltry degree of the two wings (Ds), and the projcted arsa of the dune (Ap).





OPS/images/feart-10-861991/feart-10-861991-g005.gif
3 S 2 4z 8822 >3
X} q

~ 08068 €

5

.
.

2004
® ©
L3

s omcionszar om

2008






OPS/images/feart-10-861991/feart-10-861991-g006.gif





OPS/images/feart-10-861991/feart-10-861991-g003.gif





OPS/images/feart-10-861991/feart-10-861991-g004.gif
,,,,,,





OPS/images/feart-10-860507/inline_21.gif
foin





OPS/images/feart-10-860507/inline_2.gif





OPS/images/feart-10-860507/inline_20.gif





OPS/images/feart-10-860507/inline_18.gif





OPS/images/feart-10-860507/inline_19.gif
H
L





OPS/images/feart-10-860507/inline_16.gif





OPS/images/feart-10-860507/inline_17.gif
St





OPS/images/feart-10-860507/inline_14.gif





OPS/images/feart-10-860507/inline_15.gif





OPS/images/feart-10-860507/inline_13.gif





OPS/images/feart-10-860507/inline_4.gif





OPS/images/feart-10-860507/inline_38.gif
Ahe





OPS/images/feart-10-860507/inline_39.gif
Aemin





OPS/images/feart-10-860507/inline_36.gif
(Xp, Yi)





OPS/images/feart-10-860507/inline_37.gif





OPS/images/feart-10-860507/inline_34.gif





OPS/images/feart-10-860507/inline_35.gif
b; and w;





OPS/images/feart-10-860507/inline_32.gif
- A





OPS/images/feart-10-860507/inline_33.gif





OPS/images/feart-10-860507/inline_31.gif





OPS/images/feart-10-860507/inline_3.gif





OPS/images/feart-10-860507/inline_30.gif





OPS/images/feart-10-860507/inline_28.gif





OPS/images/feart-10-860507/inline_29.gif
W = [wir, W, .





OPS/images/feart-10-860507/inline_26.gif





OPS/images/feart-10-860507/inline_27.gif





OPS/images/feart-10-860507/inline_24.gif





OPS/images/feart-10-860507/inline_25.gif
(X, t)





OPS/images/feart-10-860507/inline_22.gif





OPS/images/feart-10-860507/inline_23.gif





OPS/images/feart-09-824889/inline_13.gif





OPS/images/feart-09-824889/inline_1.gif





OPS/images/feart-09-824889/inline_20.gif





OPS/images/feart-09-824889/inline_2.gif





OPS/images/feart-09-824889/inline_19.gif
ASq,





OPS/images/feart-09-824889/inline_18.gif





OPS/images/feart-09-824889/inline_17.gif
(p = 11.31°)





OPS/images/feart-09-824889/inline_16.gif





OPS/images/feart-09-824889/inline_15.gif





OPS/images/feart-09-824889/inline_14.gif





OPS/images/feart-09-824889/inline_8.gif





OPS/images/feart-09-824889/inline_7.gif





OPS/images/feart-09-824889/inline_6.gif





OPS/images/feart-09-824889/inline_5.gif





OPS/images/feart-09-824889/math_3.gif
Tilxy.z)l =






OPS/images/feart-09-824889/math_2.gif





OPS/images/feart-09-824889/math_11.gif
an






OPS/images/feart-09-824889/math_10.gif





OPS/images/feart-09-824889/math_1.gif





OPS/images/feart-09-824889/inline_9.gif





OPS/images/feart-09-824889/inline_23.gif





OPS/images/feart-09-824889/inline_22.gif





OPS/images/feart-09-824889/inline_21.gif





OPS/images/feart-09-824889/inline_4.gif
F = kymg





OPS/images/feart-09-824889/inline_34.gif





OPS/images/feart-09-824889/inline_3.gif





OPS/images/feart-09-824889/inline_29.gif





OPS/images/feart-09-824889/inline_28.gif





OPS/images/feart-09-824889/inline_25.gif





OPS/images/feart-09-824889/inline_24.gif





OPS/images/feart-10-809421/feart-10-809421-g009.gif





OPS/images/feart-10-809421/feart-10-809421-g008.gif





OPS/images/feart-10-809421/feart-10-809421-g007.gif
Tines)
16 mm waveguide

o,
-
o
o
o
o

[ —

ERE Y
Time )
24 mm waveguide

Tioes)
20 mm waveguide






OPS/images/feart-10-809421/feart-10-809421-g006.gif
i §.: i,
*Mﬂ&dﬁl fom i
O 0 W 00 K0 w0 W0 T S0 0 100 !y.l;nmmmm-wmmnwum
o im el
| %&WM foml
s L "
e e o
16 mm vaveguide 20 mm vaveguide
LR T
=
1

i
it
i

24 mm waveguide





OPS/images/feart-10-809421/feart-10-809421-g005.gif





OPS/images/feart-10-809421/feart-10-809421-g004.gif
4~8mm Quartzsand  8~16mm Quartz sand





OPS/images/feart-09-812661/crossmark.jpg
©

|





OPS/images/feart-10-809421/feart-10-809421-t001.jpg
Description

Gravel
Gravel
Quartz sand
Quartz sand

Particle size
range: mm

48
8-16
4-8

8-16
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B1
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c2
C3
D1
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Load rate/mm/s

0.0005

0.001

0.005

0.01

Compressive strength/MPa

104.355
111.332
159.168
152.820
120.123
136.960
185.252
171.357
179.023
253.385
217.227
186.324

Elastic modulus at
two-thirds of compressive
strength/GPa

72310
65.937
100.627
86.250
85.937
81.644
121.892
132,181
139.503
167.467
160.909
168.094

Poisson’s ratio

0.263
0.248
0.326
0.244
0.293
0.306
0.381
0.267
0221
0.256
0.255
0.288
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15+121
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10+626
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104852
10+880
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11+006
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114349
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11+412
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124817
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13+150
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14+216
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14+587
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144714
14+842
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15+058
15+079
15+099
15+122
15+295
15+338
15+355
15+376
15+426
15+432
15+463
15+484
16+070
164076
16+086
16+095
16+097
16+413

Length in axis (m)

2
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6
24
24
32
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9
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1
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7
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4
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Location at cross-section

Right side

Right side

Right side

Right side

Right side

Right side

Right side to spandrel
Right side to spandrel
Left side to spandrel
Right side to spandrel
Left spandrel

Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Left side to spandrel
Left side to spandrel
Right side to spandrel
Right side to spandrel
Right side to spandrel
Left spandrel

Right side to spandrel
Right side to spandrel
Right side to spandrel
Left spandrel

Left spandrel to top
top

Left spandrel

Right spandel
Spandrel and Right side
Right spandrel

Left side to spandrel
Right side

Right spandel

Right spandel

Top

Top and right spandrel
Right side and spandrel
Top

Right spandrel

Left side

Left side

Left spandrel

Left spandrel

Right side

Right side

Right side

Right side

Right side

Left spandrel

Left spandrel

Right spandrel

Right spandel

Top

Right spandel

Left spandrel

Right spandrel

Top

Left side

Right spandel

Left spandrel

Left spandrel

Left spandrel

Left spandrel

Top

Form

Exfolation
Exfoliation
Exfoliation

Plate peeling
Plate peeling
Plate peeling
Lump fick

Lump flick

Lump fick

Lump fick

Lump peeling
Lump flick

Lump fick

Lump flick

Lump fick

Lump spaling
Plate peeling
Plate peeling
Plate peeling
Plate peeling
Lump spaling
Lump spaling
Lump spaling
Lump spaling
Stratiform peeling
Stratiform peeling
Stratiform peeling
Stratiform peeling
Stratiform peeling
Stratiform peeling
Lump peeling
Stratiform pesling
Stratiform pesling
Stratiform peeling
Lump collapse
Lump collapse
Rib spaling

Rib spaling

Rib spaling
Peging

Rib spaling
Peging

Rib spaling

Rib spaling

Rib spaling

Rib spaling

Rib spaling

Rib spaling
Pesing

Peeling

Pesing

Peging

Faling

Pesling

Pesling

Pesling

Pesing

Pesling

Faling

Faling

Pesling

Faling

Pesling

Peeling

Pesling

Peeling

Peging

Pesling

Faling

Peeling

Pesing

Pesling
Exfoliation
Exfolation
Exdoliation

type

Sight
Siight
Sight
Siight
Medium
Medium
Sight
Medium
Medium
Intense
Sight
Medium
Intense
Drastic
Intense
Medium
Sight
Siight
Sight
Sight
Medium
Medium
Medium
Medium
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Medium
Medium
Sight
Sight
Sight
Medium
Sight
Medium
Siight
Sight
Sight
Sight
Siight
Medium
Sight
Sight
Sight
Sight
Medium
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Sight
Medium
Sight
Sight
Sight
Sight
Siight
Sight
Sight
Sight
Siight
Sight
Siight
Sight
Slight

Crater depth (cm)

10~50
10~30
50
30~50
50~80
60~100
30~50
30~80
80
150~280
30~70
30~100
150~220
150~300
150~250
50~100
10~30
20~30
10~30
10~40
30~100
50~100
50~120
50~100
10~50
50
30
10~40
5
10~50
10~20
10~50
10~50
10
20~100
10~150
10~30
10~40
10~50
10~240
10~20
20~100
10~50
10
10~30
10~28
10~43
20~80
30
10~32
10~15
10~20
80
40
50
50
15
16
40
10~25

100
10
10
10
10
10
10
10
20
30
30
30
30
30

Grade
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PH
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Section mileage Root-mean-square error/Ruse Correlation coefficient/R* Average error/Re/%

ZK67 + 220 1.68 0.99 1.30
ZK67 + 500 6.23 0.86 4.44
ZK67 + 900 7.26 0.98 5.01
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Self-weight
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Empirical formuia 2
Theoretical formulas considering structural rock mass.

Numeral Calculations

Calculation formulas

Hi = 284 = 5,6 (medium hard rock mass)

Hi = 20y/T M+ 10 (medium hard rock mass)

Hi=M+ho(1 ~koo) +1 (1 ko) +ha (1 =kp,) +--- + hi(1 = ko)

PYPIE
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Number of Stratigraphic Thickness of roof Broken expansion Height of the  Ultimate subsidence Broken state of HWCFz

strata i lithology stratum coefficient free Spus/m overlying roof Z/m
him k space H/m strata
183 Limestone 05 1.02 031 03527 No broken -
187 Limestone 05 1.02 032 03527 No broken -
186 Limestone 05 102 033 03527 No broken -
185 Limestone 05 1.02 034 03527 No broken =
184 Limestone 05 102 035 03527 Broken %5
183 Limestone 05 1.02 036 03527 Broken %20
182 Limestone 05 1.02 0.37 0.3527 Broken 91.5
181 Limestone 05 102 038 03527 Broken 91.0
180 Limestone 05 102 039 03527 Broken %05
Limestone 05 102 03527 Broken

5 Limestone 05 1.02 2.14 0.3527 Broken 30
4 Limestone 05 1.02 215 0.3527 Broken 25
3 Limestone 05 1.02 2.16 0.3527 Broken 20
2 Limestone 05 1.02 217 0.3527 Broken 15
1 Limestone 05 1.02 2.18 0.3527 Broken 10
0 Limestone 05 1.02 219 0.3527 = 05
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Lithology

Shale (Pym?)

Limestone (Pymi*/Pym’/Pyq)
Bauite (P)

Sty shale (S;h)

Density (kg/m3)

2,640
2,660
2,660
2,580

Elastic modulus
(Gpa)

29
38
235
27.8

Shear modulus
(GPa)

1.51
229
14.1
13.6

Cohesion (MPa)

0.89
113
0.64
0.61

Friction angle

0

35
40
39
35

Tensile strength
(Pa)

9.8e4
1765
9.5e4
6.0e4
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P
P45

P12
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Pym?
Pym'
Piq

Pyl

S:h

Thickness m

0-87
42-58
74-81

11-85
203-255
30-50
30-38
50-84
28-87

Lithology

The lithology is mainly crushed o, crushed stone and siag

Lithology is dark gray limestone

The lithology of the upper and lower areas is limestone, and the lithology of the middle area s sitstone, sity mudistone and
carbonaceous shale

Lithology is mainly gray breccia siiceous rock, light gray claystone, sitty mudstone and carbonaceous shale
Lithology is grey limestone

Lithology is gray calcareous talc shale intercalated with imestone

Lithology is gray-black limestone

Lithology is limestone

Lithology is mainly carbonaceous shale, bauxite, claystone and bauxite

Lithology is gray-black imestone
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Site Case no. Interpretation Soil strata Random field parameters of g,

 (kPa) cov 5, (m) ACM
Nanjing sites Case 1 Influence zone 9177 028 022 sax
Type | Al 7,094 043 1.06 SNX

Type I Unit | 2,227 035 019 SMK

Unit 1t 10,253 025 026 csx

Unit I 9,499 027 024 SMK

Case 2 Influence zone 3,716 014 034 SMK
Type | Al 2,328 021 075 SNX

Type l Unit 1 494 036 0.09 SMK

Unit I 3,108 015 0.40 SMK

Case 3 Influence zone 1,169 043 0.19 sax
Type | Al 764 070 218 SNX

Type Il Unit | 1,039 041 0.24 SQx

nit 1t 392 025 026 SNX

Unit It 1,412 0.38 017 SQx

Case 4 Influence zone 1.262 053 076 SNX
Type | All 890 0.95 297 SNX

Type l Unit | 770 044 039 SNX

Unit Il 270 022 0.85 SNX

Unit i 2,345 042 028 SNX

Suqian sites Case 5 Influence zone 6,907 023 0.44 csx
Type | Al 7,005 036 1.83 SNX

Type l Unit | 3,964 023 020 csx

Unit 7.810 027 077 SNX

Case 6 Influence zone 6,634 028 155 SNX
Type | Al 6,847 022 031 SMK

Type l Unit | 4,190 028 043 SMK

Unit 1t 7,283 022 062 SNX

Case 7 Influence zone 6034 031 090 SNX
Type | Al 7,978 025 091 SNX

Type l Unit | 2,662 040 021 sax

Unit Il 7,094 027 0.70 SNX
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Autocorrelation model

Single exponential (SNX)
Binary noise (BIN)

Cosine exponential (CSX)
Second-order Markov (SMK)
Squared exponential (SQX)

where h is the length for spatial averaging; if h < 8., then T2

Equation

R(1) = exp(-4d)

_ (11, mi<s,
R“)’{ 0 otherwise

R(x) = exp(-fhcos
R(@)=exp(-gH (1 +4)
R(x) = expl-n(]

Variance reduction function

12(h) = 3 (27 (8- 1 +exp(-2/6,))

_[1-h@8) h<d,
= { (8,/h)[1 -8,/ (3h)] otherwise

I2(h) = P 1% - exp(-Pisin()]
I2(h) = 2+ ep(-9) - 3 [1 - exp (D))
20 = 2 @ D + expl-m ()] - 1)
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Case
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Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Interpretation

Type |
Type l

Type |
Type Il

Influence zone
Type |
Type l

Type |
Type

Type |
Type Il

Influence zone
Type |
Type Il

Influence zone
Type |
Type Il

Soil
strata

Infiuence zone
Al

Unit |

Unit Il

Uniit 1l
Influence zone
Al

Unit |

Unit Il

Mixed soil

Al

Unit |

Unit Il

Unit 1l
Influence zone
Al

Unit |

Unit I

Unit Ill

Influence zone
Al

Unit1

Unit
Sandy Silt
Al

Unit1

Unit
Sandy Silt
Al

Unit1

Unit

Soil
type

Mixed soi
Silty mixture
Sit
Sity sand
Sandy silt
Sandy silt
Silty mixture
Loose Silt
Sandy silt
118-165
Clayey mixture
Sity clay
Soft clay
Silty clay
Mixed soi
Clayey mixture
Sity clay
Soft clay
Silty clay

Sandy Silt

Sity mixture

sit

Sandy silt
0-200

Sity mixture

sit

Sandy silt
0-21.0

Sity mixture

sit

Sandy sit

Depth
(m)

12.8-17.6
0-19.0
0-68
6.8-11.4
11.4-19.0
5.8-10.0
0-100
0-30
3.0-10.0
1.00
0-165
0-40
4.0-13.0
13.0-16.5
16.8-21.6
0-265
0-32
3.2-19.4
19.4-26.5

0-19.0
12.8-17.6
0-4.0
4.0-19
0.011
12.8-17.6
0-42
4.2-20
0.011
12.8-17.6
0-50
5.0-21.0

C,orC,
u cov
100 010
0016 030
0024 008
0011 0.1
0011 0.1
100 010
0025 050
005 005
0.011 0.1
010  PC
0035
0024
005
0.024
100 010
0035 026
001 008
005 005
0024 008
0011 011
100 010
0011 0.1
0.011 0.1
011 PHC
1.00
0011
0011
011 PHC
1.00
0011
0011

Pile
type

PHC

PC

600

PHC

PHC

2,700

2,650

Q,
(kN)

3,108

810

16

1,050

2,400

16

16

| %
(m)

16

0.85

20

16

0.97

0.97

Geg/Gea

0.95

0.98

0.26
0.08
0.05
0.08
0.63

0.97

0.10
0.1
o1

0.10
0.1
o
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Soil type

Soft sensitive soils
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Sand

Cs (%)

Range (%)

7.37-8.64
4.62-5.56
2.06-2.80
0.87-1.34
0.34-0.60

Approximation (%)

8.0
5.0
25
1.0
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1and 3
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3and 4
3and 5
4 and 5

Mean value e (%)

7.9
5.07
2.41
1.09
0.46
6.40
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325
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3.49
2.46
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1.63
1.13
072

Standard

deviation oc (%)

0.32
0.24
0.19
0.12
0.07
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1.44
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0.26

Coefficient
of variation COV

0.04
0.05
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0.1
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Cl (95%)

7.37-8.64
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Bedding angle

30"
45°
60"
90°

Uniaxial compressive
strength/MPa

448
57.3
63.7
516
437

Elastic modulus/GPa

13.44
19.93
21.96
19.66
14.49

Wave velocity/km-s™'

1.172
1.298
1313
1.508
1.357

Density/g.cm™

2.06
2.06
2.09
2.04
2.06

Saturated moisture
content (%)

524
4.95
479
5.10
512
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Bedding angle Uniaxial compressive Elastic modulus/GPa Wave velocity/km-s™' Density/g.cm™ Saturated moisture

strength/MPa content (%)
0 422 1335 1.174 207 499
30" 50.1 16.24 1.286 2.06 5.16
45" 54.2 18.45 1.312 2.08 4.43
60" 46.2 17.05 1.506 207 4.55

90 40.1 11.40 1.403 2.07 4.60
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45 steel screw 600 400 200 30-40 =16
Engineering bolt 200-600 260-600 200 250 216
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Material type Unit weight Cohesion (kPa) Friction angle Young’s modulus Poisson’s ratio
(kN/m?) 0 (MPa)

Landslide 20 10 20 10 0.25
Pile 24 - - 30,000 0.2
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Rock number M (kg) €mn (M) L (m) Hpn (m) 7a (KN/m®) Vo (KN/MY Kic (Mpa- m"?)

1-1 2.60x10* 22 3 35 247 10 216
1-2 2.60x10" 22 3 35 247 10 216
2-1 2.96x10* 25 3 4 247 10 216
2-2 2.95x10" 25 3 4 247 10 216
3-1 2.96x10* 25 3 4 247 10 216
3-2 2.95x10" 25 3 4 24.7 10 216
4-1 3.33x10* 28 3 45 247 10 2.16
4-2 3.70x10* 3.1 3 5 247 10 216
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Algorithm True positive (%) False negative (%) Training time (s) Testing time (s)

GAN + SVM 99.74 0.26 7,751 a1
STA/LTA 85.61 14.39 0 802
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True positive True negative False positive False negative

Number 5,359 5,369 4 14
Percentage (%) 99.74 99.93 0.07 0.26
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Stress or fracturing state Area P Te /K Ta /K AT /K §1% IRT enhancement mechanism and its

proportion/%
Frictional heat
production (FHP) (EL)
Pre-cracking zone on crack tip (Figure 8) X1 (Figure 8A) 307.281 307.029 0.252 0082 100
X1 (Figure 88) 308.519 301.301 7218 2400 100
Shear fracturing zone (Figure 9) Before (L in Figure 9) P1 306.330 306.263 0.067 0022 100
P2 306.442 0.179 0058 100
P3 306.309 0.046 0015 100
Moment (M in Figure ) Pl 306.737 306.266 0.471 0154 420 580
P2 307.015 0.749 0245 702 298
P3 306.709 0.443 0145 655 345
After (R in Figure 9) Pl 306.534 306.261 0273 0089 100
P2 306.484 0223 0073 100
P3 306.414 0.153 0050 100
Siding friction zone (Figure 10) Before (L in Figure 10) P1 302.108 301.392 0716 0238 100
P2 301.999 0.607 0201 100
P3 301.726 0.334 011 100
P4 301.789 0.397 0132 100
P5 301.804 0.412 0137 100
Moment (M in Figure 10) P1 304.315 301.392 2.923 0970 750 250
P2 307.046 5.654 1.876 208 92
P3 311.764 10872 3441 9.0 40
2] 302.895 1.503 0499 810 190
P5 305.149 3.757 1.247 855 145
After (R in Figure 10) d 302.139 301.409 0.730 0242 100
P2 301.920 0520 0173 100
P3 301.828 0.419 0139 100
P4 301.695 0.286 0095 100
P5 301.952 0543 0180 100
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Stress accumulation in area C

Stress accumulating (L in Figure 7)
Stress locking (M in Figure 7)
Stress relaxation (R in Figure 7)

Te /K

307.346
307.398
307.302

Ta /K

307.000
307.001
307.303

AT /K

0.346
0.418
0.286

E1%

0.113
0.136
0.003
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Lithology Serial number

Marble MHS-1
MHS-2
MHS-3
MHS-4
MHS-5

Granite GSD-1
GSD-2
GSD-3
GSD-4
GSD-5

Before sheared to fracturing

After sheared to fracturing

y=ax+b?® y=ax+b”
a® b* I a® b°
1.67e-7 0012 1.49-3 -1.35e-6 0002 3.68-3
4.16e-7 0.0013 321e-4 2927 0.0008 2.416-3
3.44e-8 0.0001 1.74e-4 267e-7 0.00015 7.22e-4
1.77e-7 0.0015 961e-4 -1.256-7 0.0019 6.296-3
1.49-7 0.0012 6.62e-4 6.86e-7 0.0015 7.24e-3
1.73e-7 0010 221e-3 3.63e-6 0,008 1.89e-3
5.43e-7 0010 201e-3 1.140-6 0.009 8.316-4
-4.800-8 0.0005 1.40e-3 -1.82e-7 0.0008 5.04e-4
9.78e-8 0.0004 431e-4 281e-7 0.0003 2.10e-4
2.23e-8 0.0012 5.67e-4 1.22e-7 0.0009 1.79e-3

" = ax+ b is the regression model, where a is the slope value and b is the intercept value.

ba is the maximum residual modulus value.
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Basement lithology ¢ (kPa) @ () A()  y (kN/m?) 5o (kN/m?)

Medium sand 4 32 29 16 16.2
Fine sand 10.08 288 306 938 10.78
Gravel 13.08 20.7 34.65 7 802
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Cave span
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Materials Weight y Elastic modulus Poisson’s ratio Cohesion ¢ Friction angle Dilatancy angle
(kN/m?) E (Pa) u (Pa) 90 v

Limestone 26.0 45x 10" 022 11.65x10° 385 5
Anti-slide pile 24.0 3.0x 10" 0.20 —— - s
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Model

Type
(Constant)

A
B
C
D
E

1.426

1.014

0.283
-0.058
-0.053
-0.017

Nonstandard coefficient
Standard error

0233
0.081
0.081
0.007
0073
0.073

Standard coefficient

0.858

0.239
-0.041
-0.05
-0.016

6.136
12.489
3.481
-0.593
-0.730
-0.229

sig.

0.000
0.000
0.001
0.566
0.469
0.820

Tolerance

1.000
1.000
1.000
1.000
1.000

Collinearity statistics

VIF

1.000
1.000
1.000
1.000
1.000
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Model Type Sum-of-squares df Mean square F sig.
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