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Exploring the Microbiome Analysis
and Visualization Landscape
Jannes Peeters1*, Olivier Thas1, Ziv Shkedy1, Leyla Kodalci 1, Connie Musisi 1,
Olajumoke Evangelina Owokotomo1, Aleksandra Dyczko2,3, Ibrahim Hamad2,3,
Jaco Vangronsveld4,5, Markus Kleinewietfeld2,3, Sofie Thijs4 and Jan Aerts1

1CENSTAT, Data Science Institute (DSI), Hasselt University, Diepenbeek, Belgium, 2VIB Laboratory of Translational
Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium, 3Department of
Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium, 4Center for
Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium, 5Department of Plant Physiology and
Biophysics, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Lublin, Poland

Research on the microbiome has boomed recently, which resulted in a wide range of tools,
packages, and algorithms to analyze microbiome data. Here we investigate and map
currently existing tools that can be used to perform visual analysis on the microbiome, and
associate the including methods, visual representations and data features to the research
objectives currently of interest in microbiome research. The analysis is based on a
combination of a literature review and workshops including a group of domain experts.
Both the reviewing process and workshops are based on domain characterization
methods to facilitate communication and collaboration between researchers from
different disciplines. We identify several research questions related to microbiomes,
and describe how different analysis methods and visualizations help in tackling them.

Keywords: microbiome, visual analytics, data visualization, bioinformatcs, data analysis, biostatistics

1 INTRODUCTION

The human gut microbiome has been the topic of many academical studies over the latest years, as
several diseases like multiple sclerosis and inflammatory bowel disease, have been found to be
connected to it (Wilck et al., 2017; Allaband et al., 2019). Studies even suggest that there is a link
between the gut microbiome and depression (Dash et al., 2015; Winter et al., 2018). Tripathi et al.
(2018) noted that although much progress has been made in this research field, a framework of
aggregated scientific knowledge about the topic (one needs to pose meaningful hypotheses) is still
lacking. The authors therefore advocate for more discovery-driven, and tool-driven research projects
instead of traditional, hypothesis-driven studies conducted using hypotheses-driven statistical or
mathematical models. The reasoning behind this inductive approach, from which we start with a
hypothesis-free exploration of the data, is that it can lead to unanticipated interesting questions as
well as deeper insights of understanding. A promising and by now well-established technique to
support hypothesis-free data exploration, are interactive data visualization and Visual Analytics
(VA) (VanWijk, 2005; Keim et al., 2010). Visualization experts play an important role in this as they
possess the knowledge and visual literacy to perform visual analysis, and develop meaningful
interactive data visualizations. Data visualization projects, and the interplay between visualization
experts and domain experts therefore becomes more prominent in different research fields; e.g.,
social sciences (Lamqaddam et al., 2020), archaeology (Panagiotidou et al., 2020), and microbiome
research. To work closely with domain experts, and performing a good requirement analysis is key
for the visualization experts to succeed in the development of meaningful visualization tools (Knoll
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et al., 2020). This involves the visualization expert(s) to gain
sufficient background knowledge in the research domain to
understand expert’s needs, and domain experts to express
their domain tasks, data types and analysis (Sakai and Aerts,
2015).

In this paper, we provide a picture of how (interactive) data
visualization and visual analytics are currently used in
microbiome research. To do so, literature covering visual
analysis pipelines, visualization methods and visual analytic
tools designed for microbiome research were reviewed and
discussed in interactive expert panel focus groups. These
interactive workshops were organized based on the principles
of Kerzner et al. (2019) and Gray et al. (2010), using an informal
setting in which discussion was facilitated through brainstorming
games (e.g., Post-up, Card sort).

2 MATERIALS AND METHODS

Data and material for the analysis was collected using a
combination of literature review and collaborative workshops
with a panel of experts related to microbiome research.

2.1 Literature Review
Literature was hand collected based on a google scholar search on
“microbiome visualization,” “microbiome visual analysis,” and
“microbiome studies interactive analysis.” To be as inclusive as
possible, additional tools were added if referenced in one of the
papers within this selection. Nevertheless, the final collection may
not be exclusive. In total, 31 papers published between 2009 and
2021 were selected. This should give an accurate presentation of
the analysis tools landscape. Note, that because of the special
interest in the visual analytics aspect, a strong emphasis on
visualization tools was laid in the search and collection process.

The review process was done manually. From each paper we
extracted general information on the tool; such as the platform
the tool is hosted on, the input formats of the data, and the aspects
of the microbiome that could be revealed using the tool (e.g.,
diversity indices, differential relative abundances, etc.). In
addition, we described which methods were used to extract
information on the several microbiome aspects as well as the
visualization method (if not overlapping) used for visual
interpretation. Note that for the interest of this study, only
analyses to perform on operational taxonomic unit (OTU) or
amplicon sequence variant (ASV) tables were taken into account.
This paper will not cover the process of transforming raw
sequence data (.fastq files) into readable OTU/ASV tables.

2.2 Evaluation Methods
To analyze and draw conclusions of the observations, two
techniques coming from the business environments were used
to facilitate insight generation by revealing underlying patterns;
being a closed cart sorting game (Sakai and Aerts, 2015) and the
use of a history map (Gray et al., 2010). Both were conducted
individually prior to the expert panel focus group discussions.

In card sorting, the objective is domain characterization, which
is crucial in visual design. As visualization experts might not have

sufficient background knowledge in the field of microbiome
research, “expert’s need” have to be extracted in more abstract
low-level tasks (Munzner, 2014). In this card sorting game, these
abstractions were made based on the literature. The rules of the
game are simple, a set of cards need to be sorted into meaningful
categories. Cards can represent items, objects, pictures, names or
attributes. In this case a closed Card Sort was conducted, meaning
a set of predetermined categories is used; each category
representing a feature (aspect) of the microbiome that could
be identified in the analysis tools. The cards to be sorted
contained the statistical methods, visualization algorithms and
visual designs that were found in the same analysis tools to
compute and represent these aspects. The sort in this exercise was
based on the frequency of occurrence in literature (i.e., if PCoA
was used to visualize between sample diversity, the “PCoA” card
was assigned to the “between sample diversity” class). An example
of how this was done can be found in Supplementary Figure S1
in the supplementary materials.

The history map (Gray et al., 2010) is used to familiarize new
people with an organization’s culture and history during periods
of rapid growth. The idea is to ask employees share memories
about certain topics (e.g., company successes, changes in
leadership, culture shifts, etc.) on a continuous timeline, to
later summarize and reflect on the findings, and look for
emergent patterns. The same exercise can be done in
academics however, shifting the focus from an “organisation’s
history” to a particular research field or research topic; being
“microbiome research through visual analysis.” In the interest of
this study, development of microbiome research through visual
analysis was broken down in three separate questions: 1) How did
the interest (coverage) of microbiome aspects develop over time
in the collection of reviewed analysis tools?, 2) How did the
methods used to capture these microbiome aspects develop or
change over time?, 3) How did the use of platforms to host these
visual analysis tools change over time? Like in the Card Sort game,
the answers to these questions were provided based on frequency
of occurrence in the literature (i.e., if a certain tool offers Shannon
diversity to capture within sample diversity, it is listed on the
timeline of methods used to capture within sample or alpha
diversity). Hence, multiple timelines were created; one containing
the aspect coverage, one representing the used platforms, and one
for each aspect individually to show the methodological
development and visual representations over time. An example
of such an exercise can be found in the Supplementary Figure S2.

2.3 Workshops
To further explore and dive deeper into the results captured by
the individual literature review analysis, similar exercises were
done within a focus group of domain experts related to the
microbiome. As experts in a complex research field may
sometimes experience difficulties expressing their research
objectives and needs due to the inherently exploratory nature
of the analysis, data and its uncertainties, literature suggests the
use of domain characterization exercises to facilitate
communication and information sharing within
interdisciplinary groups of experts (Munzner, 2009;
Panagiotidou et al., 2020). The expert groups were drawn
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from three different research domains (biologists, statisticians,
and visualization experts), to obtain diverge insights coming from
different perspectives. In total, 2 workshops were organized. The
first workshop included 4 participants, among which 1
microbiologist, 2 bio-statisticians and 1 visualization expert.
The second workshop included 1 microbiologist, 3 bio-
statisticians and 1 visualization expert. The same visualization
expert was present in both meetings, whereas all other
participants within the focus group changed. Due to COVID-
19, the second workshop had to be done virtually using the online
collaborative whiteboard platform Miro (miro.com). The first
meeting could be done in person. The meetings took between 1 h
and 30 min and 2 h, using an informal “game” structured setting.
An informal setting was chosen to create an open and friendly
environment to establish collegiality and trust across participants
(Knoll et al., 2020). The workshops were conducted in three
phases; 1) introduction, 2) Post-Up, and 3) Card Sorting.

At the start of the workshop, goals and guidelines for the
participants were communicated, followed by a short
introduction round and warm up exercise. According to
Kerzner et al. (2019), the latter encourages idea generation
and self expression and consequently advances in agency.

The second phase of the workshop aimed at generating ideas.
During this phase a post-up game (Gray et al., 2010) was played
to support brainstorming. The idea of this game is to start with a
question on which the group of participants will search answers
to. The question should be written down somewhere (e.g., on a
whiteboard) such that participants can consult it at any time.
The brainstorm is done individually, and answers should be
written down on separate sticky notes. Answers can then be
shared and sorted underneath the question and briefly
presented toward the group after a set amount of time; being
2 min within our setting. The intend of this game was to
compare the experts’ knowledge and needs to what is
currently available in the microbiome visualization tools. In
this set-up, five questions were asked:

• Q1: Conceptually, what information/knowledge can we gain
or would we like to obtain from doingmicrobiome research?
For example: influence of food on obesity, how drugs change
the gut microbiome, etc.

• Q2: Which data is required or relevant to obtain this
knowledge? For example: location, time, etc.?

• Q3: To answer questions of Q1: which specific aspects can
be retrieved from the OTU/ASV abundance table? e.g.,
taxonomic abundance, most present taxonomies in
collected samples.

• Q4: Given the aspects you wrote down before, can you think
about methods needed and or used (statistically, visually) to
obtain this information.

• Q5: When you think about your own research, I’m
interested in the platforms, tools, packages you have
used, or are using currently to analyze the microbiome.
Can you list these up?

An image of the workshop environment at the end of this
phase is shown in Figure 1A, and the list of provided answers can
be found in the supplementary materials (Supplementary Tables
S1, S5).

Phase three of the workshop included the same closed card
sort game as performed in the individual reviewing process. The
same cards and categories were provided to the expert panel and
the objective of the game was the same, only this time sorting was
based on experts’ knowledge rather than frequency of occurrence
in literature; allowing to easily identify discrepancies between
experts opinions and literature. Therefore only one card was
provided for each statistical method, visualization algorithm or
visual design this time, regardless frequency of use. Still,
participants were free to duplicate cards. All categories were
briefly explained before the start of the game. Each card also
contained concise description of the method. Based on this
information, participants were asked to sort the card under
the categories they believed it could be used for. Furthermore,

FIGURE 1 | Phase two and three of the workshops; (A) a post up brainstorm sessions in which participants were asked to provide their knowledge on 5
microbiome analysis related questions, and (B) a closed card sorting to provide their experts opinion on currently usedmethods. The actual results of the post up session
can be found in supplementary material (Supplementary Tables S1, S5).
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participants were also allowed to create additional cards and
categories containing methods and aspects not covered in the
tools. At the end, participants were asked to conduct a value
mapping through dot voting (Gray et al., 2010) on the cards that
had been sorted. Statistical methods, visualization algorithms and
visual designs that experts believed were still informative and
insightful obtained a dot, providing an indication of the ones that
are still accurate and useful in microbiome research, which could
result in interesting discussions. An image of the workshop
environment at the end of this exercise is presented in Figure 1B.

Important with these type of exercises is to promote open
communication among participants to obtain as much context
and background knowledge as possible, and acknowledge
expertise from all participants to gain as much input as
possible (Kerzner et al., 2019). The workshops were recorded
for later reference during analysis with permission of the
participants.

3 RESULTS

3.1 Research Objectives
Based on the literature and the answers to Q1 of the post up game
(i.e., Conceptually, what information/knowledge can we gain or
would we like to obtain from doing microbiome research?),
several objectives were identified in which microbiome
research can play a role. The responses of the experts on the
question “what information or knowledge can or could be
obtained from microbiome research?” could be categorized in
5 major objectives. The first, and most prominent research
objective listed by the experts is the association between the
microbiome and diseases, among which obesity and multiple
sclerosis. All experts believed there is a role to play for the
microbiome in disease treatment. Currently, drugs are used for
disease treatment, but more research is required on whether they
directly affect the disease or whether the effect is mediated
through the gut microbiome. If the latter is true, drug
alternatives such as a specific diet or fecal therapy could play a
prominent role. The second topic of interest that came forward
during the discussions was the effect of environmental and
personal conditions on microbiome composition. These
include seasonal changes (e.g., sunlight), geographical location,
past diseases, diet, etc. The third topic listed during the
discussions was the role for the microbiome in agriculture,
specifically its effect on plant growth/production. Next,
psychological associations were listed as a topic of interest.
Literature has shown that a link between the gut microbiome
and psychological diseases (e.g., depression) exists (Dash et al.,
2015; Winter et al., 2018), but does the gut microbiome
composition also alter our mood? Lastly, the experts expressed
interest in the role of the microbiome in areas such as crime
investigation. This could be in revealing social contact patterns
based on similar microbiome compositions, using the skin
microbiome to see who had physical contact with whom, but
also with certain objects or animals, etc. A commonality between
all the topics listed above is that they all rely on finding the
association between the microbiome (s) and other parameters,

and more interestingly (if possible) in revealing causal
relationships.

3.2 Data Requirements
Qualitative data is needed to provide accurate answers to these
research objectives. Based on the answers and discussion on Q2 of
the post up game (i.e., Which data is required or relevant to
obtain this knowledge?), a general outline of “qualitative data
collection in microbiome research” could be established. Besides
the need of qualitative genome sequencing, samples should be
accompanied by a set of metadata containing additional
information about the host and its environment, the (clinical)
study, and the sample collection. Specifically, baseline
characteristics of the host should be captured (e.g., if human:
age, gender, geographic location, etc.); environment information
from the host (e.g., exposure to certain chemicals, passive smoker,
diet, etc.); clinical information from both the host and the clinical
trial study; and information about sample collection (e.g.,
timestamp, sample location within the host). Furthermore, to
obtain metabolic information, accurate databases are required for
functional profiling. A full list of the answers provided to Q2 can
be found in the supplementary material (Supplementary
Table S2).

3.3 Methods and Algorithms in Microbiome
Research
To analyse this data and investigate previously listed research
objectives, an interplay between statistical methods, algorithmic
visualizations and (interactive) visual representations are
required. These allow us to reveal certain aspects of the
microbiome which accordingly permit us to provide answers
to these research objectives.

3.3.1 A Changing Research Landscape
The rapid development of these methods and algorithms in
microbiome research is clearly visible in the literature. The
first visualization oriented microbiome analysis tools only
covered the visualization of taxonomic abundance and
relationships (Ondov et al., 2011), and the exploration of
within- and between-sample diversity (Schloss et al., 2009).
Not many years later, tools started to implement methods to
test for statistical differences between samples in terms of
abundance (differential abundance analysis), and statistical
differences between cohorts or populations that can be related
to a particular (disease) condition (biomarker discovery)
(McMurdie and Holmes, 2013; Robertson et al., 2013; Weiss
et al., 2017). During the same period, the first tools allowing for
visual exploration of microbial interactions and associations
became available as well (Kuntal et al., 2013), used to get an
idea about which microbes tend to co-occur with each other.
Meta data also became more important in the analysis of diversity
between microbiome samples. It is more and more explored
together with the on taxonomic abundance based diversity scores
(Vázquez-Baeza et al., 2013; Zakrzewski et al., 2017; Liao et al.,
2019). In the latest years, major developments occurred;
enrichment analysis found its way into the microbiome visual
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analysis tools (Kuntal et al., 2016; Chong et al., 2020), researchers
are now able to visualize and investigate taxon-function
relationships (McNally et al., 2018), and tools were developed
for longitudinal studies including feature volatility and time series
analysis (Baksi et al., 2018; Bokulich et al., 2018). The latest
development in the field was the introduction of machine
learning (ML) classifiers (Chong et al., 2020; Shamsaddini
et al., 2020). Regardless of the fast development and
progression in microbiome research and its visual analysis
tools, all types of analyses and aspects of the microbiome have
remained relevant for exploration. This observation was made
based on the fact that older methods (e.g., diversity indices) are
still implemented in newer published tools (Carpenter et al.,
2021), and confirmed by the expert panel focus group discussions.
Figure 2 provides an overview of which microbiome aspects are
currently covered by which tool.

3.3.2 Aspects
In Q3 of the post up game, we asked our participants to list all
aspects that could be extracted from an OTU/ASV abundance
table in order to answer the research questions provided on Q1. A
wide variety of features were provided and could be categorized
into 4 major research interests: 1) exploratory analysis of baseline
characteristics such as (relative) abundance, variability, diversity
and richness, 2) statistical effect modelling to obtain effect sizes
and p-values, and identify differences taxa abundance and
discover biomarkers, 3) interaction models to reveal the
interrelationship between taxa, and 4) functional analysis of
taxa. In the following we discuss the aspects that were found

to be extracted in literature, supplemented with important
findings that came up during the workshops (answers to Q4
and card sort) and review process.

(Relative) Abundance
Perhaps the most important thing in microbiome research is the
ability to look into the (relative) abundance of taxa within and
across samples. It provides a first impression of which taxa
(functions) are most prominent within a sample, group or
population, and can guide us into certain directions of
interests. Due to the compositional structure of the data in
microbiome research, one tends to prefer looking into relative
abundances rather than absolute abundances. An exploration of
the (relative) abundances involves no complex statistical
modelling, and can be easily done by means of some
descriptive statistics and a visual representation of the data.

Visualization—Stacked or regular bar-charts seem to be the
most prevalent visual encodings to do so, although they are
limited in the number of species (functions) they can visualize
for the chart to still be readable (Knaflic, 2015). Heatmaps are a
frequently used alternative that allow us to visualize all species
(functions) at once. The use of color intensity as a channel in
heatmaps on the other hand makes the comparison in terms of
relative abundance a bit harder than using length (bars)
(Munzner, 2014). Nonetheless, does the use of color allows us
to easily include (relative) abundance visualization in other
microbiome aspect oriented visualizations [e.g., alongside
taxonomic classification (Ondov et al., 2011)]. Other
alternative visual encodings found in literature include the use

FIGURE 2 | Amatrix overview of the tools and algorithms included in the literature review, in which the tools and algorithms are represented in the columns, and the
microbiome aspects they measure and present listed as rows. Cells indicate the coverage of an aspect by the corresponding tool, and are colored based on the platform
they were hosted on.
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of angle [e.g., sunburst chart (Ondov et al., 2011)] and area [e.g.,
bubble plot (Dussud et al., 2018)] to display (relative) abundance.
An overview of how visualization is been used to represent
(relative) abundance in literature is shown in Figure 3.

Hierarchical/Relational Structures
Microbiome analysis can be done up to different levels depending
on the interest of the study, and the sequencing process used to
sample the data. In general, sequencing up to a deeper level
provides more detailed information. On the other hand, does it
bring more problems into the analysis due to sparseness. Most

statistical models are not suited to handle many zero counts in the
data (Knight et al., 2018).

Visualization—In the analysis of microbiome samples, it can
be interesting to visually represent the hierarchical level of the
taxonomies (domain, kingdom, phylum, class, order, family,
genus, species), hierarchical level of the functions (category
e.g., metabolism, superpathway e.g., carbohydrate metabolism,
subpathway e.g., glycolysis), or even the phylogenetic relationship
of the species. Tree structures (including radial trees, cladograms,
etc.) are the typical visual encodings used, and are basically the
only visual encoding found in literature (Figures 3B,E–G).

FIGURE 3 | An overview of the visual encodings used to display (relative) abundance and hierarchical/relational structures; (A) relative abundance displayed by
means of a stacked bar chart in BURRITO (McNally et al., 2018), (B) a krona sunburst chart showing the taxonomic hierarchy of the observed bacteria and their relative
abundance (Ondov et al., 2011), (C) OTU abundance visualized as a heatmap using Phyloseq (McMurdie and Holmes, 2013), (D) relative abundance of OTUs
represented in a bubble plot (Dussud et al., 2018), (E)GraPhlAn, a tree based visualization tool that allows to add visual annotations (Asnicar et al., 2015), (F) a “heat
tree” visualization showing the taxonomic hierarchy within its tree structure and OTU abundance using node width (Foster et al., 2017), (G) taxa and function hierarchy
displayed within tree structures in BURRITO with node width representing abundance (McNally et al., 2018).
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Within Sample (Alpha) Diversity
Alpha diversity provides an idea of the diversity of species within
a particular sample. This metric is often used as a biomarker
(Prehn-Kristensen et al., 2018) in disease association studies, but
also as a check of sample quality (Schloss et al., 2009).

Analysis—Looking into alpha diversity calculations and visual
representations, no clear evolution could be found. Many
different options exist and are used, but no uniform standard
has emerged yet. Typically, alpha diversity metrics can be
distinguished into two types: richness- and evenness-measures;
Chao1 being the most used richness metric, and Shannon the
most used evenness metric. A full list of alpha diversity measures
is provided by Hagerty et al. (2020). The authors advocate for the

use of a composite metric based on exploratory factor analysis
(EFA), taking into account both richness and evenness metrics
unified in one.

Visualization—box-plots are widely used to display alpha
diversity if the objective is to make a comparison between sample
cohorts. Line-charts (rarefaction curves) and scatter-plots tend to be
used more frequently when visualizing the metrics across samples;
the rarefaction curve presenting the (predicted) sample richness by
sequence size, often used for re-sampling. Venn diagrams are used to
display which part of the microbial taxa are present in multiple
samples in relation to the total diversity within those samples. An
overview of the visuals used to represent the within sample diversity
is given in Figure 4A–C.

FIGURE 4 | An overview of the visual encodings used to display within (alpha) and between (beta) diversity; (A) alpha diversity metrics compared between groups
by means of box-plots in BiomMiner (Shamsaddini et al., 2020), (B) rarefaction curve showing the number of OTUs by sequence size in Mothur (Schloss et al., 2009), (C)
alpha diversity metrics visualized using scatter plots in Phyloseq (McMurdie and Holmes, 2013), (D) beta diversity visualized using ordination in iMAP (Buza et al., 2019),
(E) a node-link diagram produced using TDA in TMAP to display beta diversity (Liao et al., 2019), (F) heatmap visualizations showing beta diversity distance
matrices (Lei et al., 2017).
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Between Sample (Beta) Diversity
Beta diversity represents the diversity of species across samples,
commonly used to find clusters of similar samples. Typically, this
feature is calculated in the exploratory analysis, as it provides a
first impression on which taxa are important to distinguish
samples, but also on how microbial compositions are related
to environmental and personal meta data. With regard to the
research objectives listed above, social contact networks could for
instance be revealed based on similar microbiome compositions
of the skin.

Analysis—Beta diversity is expressed as a distance matrix
calculation on relative OTU abundance, which serves as an
input for visual exploration of sample divergence and similarity.
Often occurring distance metrics are: (weighted) UniFrac,
Jaccard, Bray-Curtis and Jenson-Shannon (Oliveira et al.,
2018; Chong et al., 2020; Shamsaddini et al., 2020). An
important note however is that none of these measures
account for the compositionality of the data. Compositional
replacements for these distance metrics have been developed;
philr (Silverman et al., 2017) as a replacement for (weighted)
UniFrac, and Aitchison distance (Aitchison et al., 2000) for
Jensen-Shannon divergence and the Bray-Curtis dissimilarity
metrics. Nevertheless, implementation is lacking in the
microbiome visual analysis tools.

From 2019 onward, a new trend seemed to develop, which is to
test for statistical significance of the between-sample differences
(ordination measures). Statistical tests used for this include
AMOVA, HOMOVA, ANOSIM, PERMANOVA, PERMDISP,
and LIBSSHUFF (Buza et al., 2019; Chong et al., 2020;
Shamsaddini et al., 2020). One important recent development
is that ordination analysis techniques can be performed on
sample functional potentials rather than their taxonomic
proportions (Nagpal et al., 2019).

Visualization—The visual representation of beta diversity can
be either directly through heatmaps of the distance matrix (Lei et
al., 2017), through ordination based methods (e.g., PCoA,
NMDS) which present the samples in a 2 or 3 dimensional
space using dimensionality reduction techniques (Vázquez-
Baeza et al., 2013; Wang et al., 2016; Bolyen et al., 2019), or
by means of network visualizations based on topological data
analysis (TDA) (Liao et al., 2019) or cut-off based edges
(McMurdie and Holmes, 2013). Note that because of the
compositional ignorance in the commonly used distance
metrics, samples will be almost exclusively discriminated based
on the features that are most abundant realtive to the others
features and not on the most variable ones between samples.
Therefore, sample location could vary a lot in ordination plots
when different features are included or excluded (Gloor et al.,
2017). An example of the visual encodings listed above is shown
in Figure 4D–F.

Differential Abundance
With differential abundance analysis, OTUs that differ
significantly between samples, cohorts or populations are
identified using statistical hypothesis testing. In doing so, taxa
can be related to a certain response (e.g., disease state, growth
process).

Analysis—The search for the ideal analysis method for
differential abundance is still ongoing (Hawinkel et al., 2019).
To date, it has been proven that distributional assumptions do not
hold for the majority of the taxa, leading to poor performance of
parametric models (Hawinkel et al., 2020). The problem with non
parametric rank alternatives such as Wilcoxon is that they are
typically less powerful in comparison to parametric tests due to
their vulnerability to ties in the data (Jonsson et al., 2016). Custom
methods have been developed to test on significant differences
between microbiome data, taking the compositionality of the data
into account (e.g., ANCOM, ALDEx2) (Gloor et al., 2017). In
comparison to the complete lack of awareness in Beta diversity
analyses, differential relative abundance analysis methods relying
on these compositional assumptions are present in some visual
analysis tools (Zakrzewski et al., 2017). Yet, another possible
solution lies in semiparametric models, such as Probabilistic
Index Models (PIM) (Thas et al., 2012). These are based on
rank tests (non parametric), but allow for estimates of effect
sizes and inclusion of continuous covariates. So far, they haven’t
been introduced inmicrobiome visual analysis tools in a significant
way. An important note that came up during one of the workshops,
is that the methods used in visual analysis tools are all limited to
cross sectional analysis. To the awareness of the expert panel,
methods that do allow differential abundance testing in
longitudinal studies are sparse, and mostly parametric. Besides,
with the currently offered methods, conclusions can only be drawn
about associations between taxa and meta data identifying sample
cohorts, whereas inference on causality would be of major interest.
In recent years, several methods have been proposed relying on
structural equationmodels to reveal the direct andmediation effect
of the microbiome on a certain response (Sohn and Li, 2019; Wang
et al., 2020). These however cannot be found in the current visual
analysis tools. Nonetheless, these methods suffer from validity
issues (Vanderweele and Vansteelandt, 2009).

Visualization—To visualize statistical significance, several
visual encodings have been used; ranging from simple
heatmaps and box-plots, to more complex visuals like the
Manhattan plot (Harris et al., 2015), rocky mountain plot
(Carpenter et al., 2021), volcano plot (Shamsaddini et al.,
2020) or heat tree (Foster et al., 2017). An overview of some
of the visualizations found in literature is given in Figures
5A,C,E,F.

3.3.2.5 Biomarker Discovery
Biomarker discovery focuses on finding specific parameters or
indicators, called biomarkers, that can be related (assigned) to a
particular condition (disease).

Analysis—When it comes to biomarker discovery, two schools
of thought can be distinguished: one using predictive models such
as machine learning classifiers, and the other based on hypothesis
testing. Among the predictive models, LEfSE (Swenson and
Swenson, 2014) is by far the most offered method in the
visual analysis tools, followed by some other machine learning
algorithms. Methods based on hypothesis testing include
methods for statistical difference testing between groups (both
parametric and non-parametric). Similar to differential
abundance testing, models for clinical studies that take into
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account the effect of an intervention on both the response
(immune response) and biomarkers can be of interest as well.
The primary difference however is that their focus is merely on
association rather than causal relationships. To the best of our
knowledge, there are only two tools that test for association
between biomarkers (microbiome taxa compositions) and
clinical response variables: NetShift using an algorithmic
visualization (Kuntal et al., 2019a), and PhyloSeq using
supervised methods (i.e., canonical correspondence analysis,
discriminant correspondence analysis, sparse linear
discriminant analysis, etc.) (McMurdie and Holmes, 2013).
The authors of IVikodak listed the quantification of
association between specific sets of bacteria with disease state
as a planned future enhancement (Nagpal et al., 2019). None of
them however allow for longitudinal analysis, taking into account
the effect of an intervention on both the biomarkers and disease
response.

Visualization—A wide variety of visual encodings have been
used to represent the result of biomarker discovery analysis;

ranging from simple heatmaps and bar charts, to more
complex visuals like the volcano plot (Shamsaddini et al.,
2020) and heat trees (Foster et al., 2017). An ongoing search
noted by one of the experts in the focus group discussions is on
how to visually represent the results of clinical longitudinal
intervention studies: how do microbial composition and
clinical response variables change over time given a particular
intervention. In Figures 5B,D,F, some of the visualizations used
in the visual analysis tools are shown.

Classification
Classification is used to classify samples in predefined groups
based on their microbial composition. It provides information on
the most important features (taxa) within sample cohorts, and is
therefore often returning as a method for biomarker
identification as well.

Analysis—Classification methods are fairly new in
microbiome research, as only the more recently developed
visual analysis tools cover these methods (Chong et al., 2020;

FIGURE 5 | An overview of the visual encodings used to display differential abundant taxa and identified biomarkers; (A) Manhattan plot showing statistically
significant differential abundant taxa (Harris et al., 2015), (B) a visual presentation of the most significant taxa (potential biomarkers) (Cosma-Grigorov et al., 2020), (C)
difference in abundance of significant taxa shown in a heatmap in BiomMiner (Shamsaddini et al., 2020), (D) “community shuffling plot” showing the changes in microbial
interactions between clinical groups in Netshift (Kuntal et al., 2019a), (E) rocky mountain plot indicating differential abundant taxa in tidyMicro (Carpenter et al.,
2021), (F) a heat tree visualization showing significantly different taxa between disease and control group (Cosma-Grigorov et al., 2020).
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Shamsaddini et al., 2020). Machine learning algorithms such as
random forest classifiers or support vector machines are typically
used for this type of analysis.

Visualization—Line charts (expressed as ROC curves) are
typically used to represent model performance, whereas bar
charts are used to display the most important features. An
example of how this is been shown in literature is given in Figure 6C.

Microbial Interaction
The analysis of microbial interaction is focused on identifying the
relationship between species. Different types of relations can exist
between microbes: mutualistic, commensal, parasitic and competitive
(Faust et al., 2012). The goal is to find amethod that reveals all of them
at once. Identifying these relationships is important for all research
objectives listed above. It provides more context on why certain taxa
abundances differ in certain situations, and guides us towards possible
causal relationships (e.g., is the drug altering the relative OTU
abundance or is it altering its relative abundance through another
taxa that contains a specific relationship with the OTU of interest).

Analysis and Visualization—Looking at the development of
microbial interaction analysis within the microbiome visual

analysis tools, new methods have been introduced during recent
years, which gives an indication that the use of different methods is
still further explored. At themoment, three schools of thought can be
distinguished: 1) correlation based methods. Problem however with
correlation is that it doesn’t correct for the compositionality of the
data, and thus leads to spurious correlations (Gloor et al., 2017).
Therefore, methods like SparCC, SPIEC-EASI and FastSpar were
developed which result in network visualizations based on cut-off
values (Chong et al., 2020). 2) Predator-Prey based methods using
(generalized) Lotka Volterra equations to model relationships (Shaw
et al., 2016; Kuntal et al., 2019b). 3) Topology based methods using
topological data analysis (TDA) to construct the networks (Liao
et al., 2019). All of these methods result in a graph visualized as a
node-link diagram. Figures 6A,B provides an overview of how
networks are used to represent microbial interactions.

Functional Profiling
As mentioned above on (relative) abundance, one could also look
into the metabolic functions of microbial populations.

Analysis—Depending on the type of sequencing, different
programs and methods can be used for functional profiling.

FIGURE 6 | An overview of the visual encodings used to display classification method results and interactions between taxa; (A) taxa interaction network (Wu et al.,
2020), (B) taxa interaction network visualized using TDA in TMAP (Liao et al., 2019), (C) visual representation of the results of the Random Forest classifier in BiomMiner
(Shamsaddini et al., 2020).
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Galloway-Peña and Hanson (2020) provide a nice overview
including use cases and shortcomings. Using 16S rRNA
sequencing, methods such as PICRUSt (Langille et al., 2013)
and Tax4Fun (Aßhauer et al., 2015) allow to predict the gene
content potential functionality based on a comparison between
relative abundances and the reference genome of the taxa present.
An important note of the authors that came up in the expert panel
discussions as well is that these however are rough approximations,
as they don’t take into account actual protein expressions. Using
shotgun andmetatranscriptome sequencing approaches, tools such
as MetaGeneMark (Zhu et al., 2010) and Glimmer-MG (Kelley
et al., 2012) carry out protein sequence homology based searches
against databases of orthologues, enzymes, or protein domains and
families for gene identification and annotation. The results could
then be used for pathway enrichment analysis.

Visualization—The link between taxa and functions can be
visualized using bipartite graphs (Figure 7C) or interactive stacked
bar charts using highlighting, as was done in Burrito (McNally et al.,

2018). The result of functional profiling are typically represented in a
metabolic pathway network (Figure 7D) (Zhang et al., 2019).

Longitudinal Analysis
As mentioned before in the section on differential abundance and
repeated in the section on biomarker discovery, to gain a deeper
understanding of causal relationships between the microbiome
and various sample cohorts (e.g., grouped by disease state),
longitudinal studies are required (Secrier and Schneider, 2013).
Given the literature reviewed in this study, two tools were found
to allow for longitudinal microbiome time series analysis; TIME
(Baksi et al., 2018), and q2-longitudinal (Bokulich et al., 2018),
which is an extension on QIIME2.

Analysis—In q2-longitudinal, linear mixed effect models are
used to test for differential abundance. Changes of microbial sample
compositions are captured across time using unweighted UniFrac,
whereas in TIME dynamic time warping distance is used to capture
groups of taxa showing similar trends over time. TIME identifies

FIGURE 7 | An overview of the visual encodings used to display feature volatility and functional profiling; (A) eveloution of relative abundance over time visualized
using a linechart in q2-longitudinal (Bokulich et al., 2018), (B) associations between taxa based on Granger causality testing represented in a node-link diagram in TIME
(Baksi et al., 2018), (C) taxa-function relationship displayed using a bipartite graph in BURRITO (McNally et al., 2018), (D) KEGG metabolic pathway network (Zhang
et al., 2019), (E) taxa clustered based on similar trends in time in the web-app TIME (Baksi et al., 2018).
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causal relationships among taxa using Granger Lasso causality.
Stationary taxonomic groups (meaning no inter-microbial
competition) are identified using an augmented dickey fuller test.

Visualization—Both tools allow for exploration of feature
volatility using volatility plots (line charts) (Figure 7A). causal
relationships between taxa are displayed using node-link diagrams
(Figure 7B); clustering of taxa showing similar trends over time is
visualized using a radial tree structure (Figure 7E).

Still, to the best of our knowledge no methods for longitudinal
mediation analysis allowing for the identification of causal
relationships between intervention, microbiome and response
are incorporated yet.

3.4 Tools and Platforms
Situating all publications on a timeline (see Figure 2) it becomes clear
that initially (2009–2014) tools were mainly made available as
standalone downloadable software. Quickly, tools were made
available as web applications as well. R and Python are often used
to run the analyses on the server side of these web applications (Chong
et al., 2020; Reeder et al., 2020), but packages and libraries do also exist
to run analyses in the R studio or python programming environments
(McMurdie and Holmes, 2013; Buza et al., 2019). The main reason to
develop software or web-apps is to remove the constraint of coding, as
not all biologist know how to code and learning R or Pythonmight be
a bit cumbersome (Huse et al., 2014; Chong et al., 2020). Hence they
most often serve as complete analysis pipelines in which microbiome
researchers upload their data and can perform different analyses
through a point-and-click user interface (Huse et al., 2014). The
major problem however with these applications is maintenance. Since
standalone software is not open source, updates most often stop when
funding stops, as there is nobody who can keep everything up to date
besides the developers. A solution to partly alleviate this could be the
use of R and Python based server apps like R Shiny (Chang et al.,
2015), as was done in Microbiome Explorer (Reeder et al., 2020) or
MicrobiomeAnalyst (Chong et al., 2020). Looking into the R packages
and Python libraries, three types of packages and libraries can be
distinguished: the complete analysis pipeline packages which allow
for a thorough and diverse analysis of the microbiome [e.g.,
Phyloseq (McMurdie and Holmes, 2013), MicrobiomeExplorer
(Reeder et al., 2020), IMAP (Buza et al., 2019)], the extensions
on these complete packages [e.g. phylogeo (Charlop-Powers and
Brady, 2015)], and the computational- or visualization
algorithms [e.g. SPIECE-EASI (Kurtz et al., 2015), TMAP
(Liao et al., 2019)]. These extensions and algorithms both
focus on revealing one particular aspect of the microbiome.
During the expert panel group workshops, it became clear that R
is primarily used among the participating bio-statisticians. For
the creation of a custom visualization, visualization experts
make use of web based environments and its according
coding languages (HTML, CSS, and JS), and dedicated
visualization libraries [D3 (Bostock et al., 2011), p5, etc.].

4 DISCUSSION

Based on the expert panel focus group workshops, the main interest
in microbiome research is in the identification of associations

between the microbiome and host characteristics; be it
environmental or health related factors within or among humans,
or growth indicators in agriculture. Relevant analysis methods are
mainly differential abundance analysis and biomarker discovery.
Although these analyses often include metrics like alpha diversity as
model parameters, or start from preliminary exploration of the data
by looking at the taxonomic compositions and diversity between
groups. These methods often include baseline characteristics (e.g.,
diversity metrics) as model parameters, and proceed from
preliminary exploratory analysis of the data.

When it comes to revealing these aspects in the data, several
approaches are available. For some aspects the same approach is
used exclusively, whereas for others different schools of thought
apply. Within sample (alpha) diversity is captured using either
richness- or evenness-measures, but a uniform standard is missing
(Hagerty et al., 2020). Between sample (beta) diversity is always
measured using a distance metric on relative OTU abundance, and
stored in a distance matrix. None of the currently implemented
distance metrics however accounts for the compositional structure
of the data. This compositionality is also one of themajor problems
for the reliability of statistical hypothesis testing models, which are
central in differential abundance testing. Based on the card sorting
within the focus group discussions, it became clear that biomarker
discovery can rely either on statistical hypothesis testing or
predictive modeling. Therefore, many of the methods used in
differential abundance testing are found to be used for
biomarker discovery as well. Consequently, the same overlap
can be found in methods based on predictive modeling which
are used for sample classification. Amajor interest expressed by the
expert panel group is the ability to perform causal analysis, which is
currently insufficiently developed in differential abundance
analysis and biomarker discovery. To do so, the necessity of
longitudinal studies and analysis was stressed.

A wide variety of visual encodings exists to represent the data
aspects concealed in the OTU abundance tables. Some of these
are more unconventional than others, but standard charts (e.g.,
bar chart, line chart) are most common. Some of them are
unconditionally bound to a certain data aspect; hierarchical
structures within the data (e.g., taxonomic level) are visualized
exclusively using tree structures, connected components are
typically used to express relationships (e.g., between taxa, or
between functions and taxa), and line charts are most
conventional to display evolution over time. Other data
aspects on the contrary have been visually represented in
many different ways. (Relative) abundance has been visually
encoded using channels such as length (e.g., bar chart), color
saturation (e.g., heatmap), angle (e.g., Krona), and area (e.g.,
bubble plot). Based on visualization theory, length would be the
most effective channel to display quantitative information such as
(relative) abundance (Munzner, 2014), but the use of bar charts
however limits the amount of information that can be displayed
for it to be still informative. Color saturation on the other hand
would be the least effective channel from the ones listed, whereas
heatmaps would be the only choice to visually represent the entire
data on a static manner. For this reason, heatmaps are also used to
visualize beta diversity. It provides a nice overview of the (dis)
similarities between samples, although it can become a bit
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cumbersome to read when the amount of samples is too large.
Since the interest is often not limited to the discovery of (dis)similar
samples but also in revealing the underlying patterns between
samples, ordination basedmethods aremost prevalent in literature.
They allow additional data features to be included in the
visualization for interpretation, which is not possible using
standard heatmaps. The downside of ordination based methods
however is that these are limited to a visual representation in a 2 or
3 dimensional space, which might not capture the entire variance
to be explained. By displaying the samples using TDA (i.e., node-
link diagram), distance between samples is expressed in the edges
between the nodes (samples), and therefore no longer relies on the
geometric space (Lum et al., 2013). The visualization of the
outcomes of statistical models could be as simple as using bar
charts and box plots, but have been conducted many times by
means of custom visuals as well. In general, the choice depends on
the information of interest. If the interest is a list of potential
biomarkers (i.e., most important features), a simple bar chart will
do and is highly effective according to visualization theory
(Munzner, 2014). If the interest is on the effect sizes or any
other parameters, more complex and custom visuals are needed.

Here, it is important to also address the issue of visual literacy. In
general, the advantage that comes with using standard charts is that
everyone can read them. The amount and richness of information that
can be shared with them is however limited. On the other hand,
custom representations can provide more information in a single
graphic but can become hard to read. They should be used with care,
by providing the right amount of context needed by the user to
understand. An example that emerged during one the workshops was
the Rocky Mountain Plot (Figure 5E) used in tidyMicro (Carpenter
et al., 2021) to highlight taxa counts correlated with subjects’ age. One
could draw conclusions based on the highly correlated taxa counts, but
important additional information is missing to draw more accurate
conclusions (e.g., variability). Hence, the custom visualization can
provide the solution to bring more context to the data analysts, as
multiple data aspects can be embedded in the same visual and no
longer need to be looked at in isolation [e.g., GraPhlAn (Asnicar et al.,
2015)]. In creating these custom visuals, it is imperative that a user-
driven design process is used in which visualization expert and
domain expert work closely together (Munzner, 2009). Yet, current
papers on microbiome visualization and visual analysis mention
nothing about the use of design process.

5 LIMITATIONS

It is sometimes hard to make a clear distinction between tools, as
some of them are actually algorithms (e.g., SPIEC-EASI) or visual

encodings (e.g., Krona, GraPhlAn) that act and were specifically
developed as microbiome visualization tools, but are also
embedded as encodings in other tools.

Given the contact constraints added through the COVID-19
pandemic, one of the workshops had be done virtually. As not all
participants were familiar with the tools used during this session,
additional time was required to familiarize. Nevertheless, both
meetings provided a clear overview of some important research
topics to cover in microbiome research. The workshop setting was
found to be key in structuring discussions, from which interesting
information could be obtained such as pointing out current
problems and shortcomings. Due to the interdisciplinary
composition of the workshops, an additional result was that
participants could quickly familiarize themselves in other research
domains. We understand that providing examples during the
workshops could prime answers into a certain direction.
However, due to the interdisciplinary setting of the workshops,
we also believe that providing an example helps participants to come
to a common understanding of the question asked.
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Visualizing Phytochemical-Protein
Interaction Networks: Momordica
charantia and Cancer
Yumi L. Briones1*, Alexander T. Young2, Fabian M. Dayrit 1, Armando Jerome De Jesus1 and
Nina Rosario L. Rojas1*

1Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines, 2Institute of Environmental Science &
Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines

The in silico study of medicinal plants is a rapidly growing field. Techniques such as reverse
screening and network pharmacology are used to study the complex cellular action of
medicinal plants against disease. However, it is difficult to produce a meaningful
visualization of phytochemical-protein interactions (PCPIs) in the cell. This study
introduces a novel workflow combining various tools to visualize a PCPI network for a
medicinal plant against a disease. The five steps are 1) phytochemical compilation, 2)
reverse screening, 3) network building, 4) network visualization, and 5) evaluation. The
output is a PCPI network that encodes multiple dimensions of information, including
subcellular location, phytochemical class, pharmacokinetic data, and prediction
probability. As a proof of concept, we built a PCPI network for bitter gourd
(Momordica charantia L.) against colorectal cancer. The network and workflow are
available at https://yumibriones.github.io/network/. The PCPI network highlights high-
confidence interactions for further in vitro or in vivo study. The overall workflow is broadly
transferable and can be used to visualize the action of other medicinal plants or small
molecules against other diseases.

Keywords: network visualization, network pharmacology, reverse screening, medicinal plants, phytochemicals,
Momordica charantia (bitter gourd), colorectal cancer

1 INTRODUCTION

Medicinal plants have been consumed to fight disease since ancient times (Petrovska, 2012).
However, even in the modern age, their complex cellular action is not fully understood. Unlike
magic bullets that selectively target a given protein, phytochemicals in medicinal plants act on
multiple protein targets to restore the overall equilibrium of the cell (Ding et al., 2009). While in vitro
and in vivo methods are often used to study the therapeutic effects of medicinal plants, there is
limited experimental data on phytochemical-protein interactions (PCPIs) (Huang et al., 2018).
Recently there has been increasing use of in silico methods such as reverse screening and network
pharmacology in natural products research, as these are well-suited for studying the multi-targeted
action of medicinal plants (Chandran et al., 2017).

Reverse screening uses experimentally validated PCPIs to make novel predictions. While
conventional screening starts with a target protein and searches for compounds targeting it,
reverse screening starts with the compounds (e.g. phytochemicals) and looks for proteins
targeted by these compounds (Huang et al., 2018). The ability of reverse screening to predict
PCPIs makes it useful for a network pharmacology approach where phytochemicals and proteins are
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analyzed as nodes in an interaction network. Of all existing
reverse screening tools we are aware of, only one provides a
network visualization: Bioinformatics Analysis Tool for
Molecular mechANism of Traditional Chinese Medicine
(BATMAN-TCM) (Liu et al., 2016). The network shows
predicted interactions between phytochemicals, protein targets,
and enriched pathways and diseases. However, this does not
provide a complete picture of the action of a medicinal plant
against a specific disease, which is often the goal of natural
products research. It would be useful to see protein-protein
interactions (PPIs) between targets to evaluate downstream
effects. The network can be better organized by sorting nodes
into subcellular compartments. To assess whether
phytochemicals can reach these compartments,
pharmacokinetic properties are needed. There are existing
tools for each of these purposes, but they are all separately found.

Natural products research would greatly benefit from a
streamlined workflow that results in a strong (PCPI) network
visualization. Thus, we developed a novel workflow combining
existing tools to predict and visualize the cellular action of a
medicinal plant against a disease. The five-step pipeline consists
of 1) phytochemical compilation, 2) reverse screening, 3) network
building, 4) network visualization, and 5) evaluation. This outputs
a PCPI network that encodes multiple dimensions of information
including PPIs, subcellular location, phytochemical class, and
pharmacokinetic properties. This makes it easier to determine
which predicted PCPIs merit further in vitro and in vivo study.

As a proof of concept, we applied the workflow to Momordica
charantia L. (bitter gourd) against colorectal cancer. Bitter gourd
has shown anticancer activity in vitro and in vivo but has not been
thoroughly investigated in silico (Raina et al., 2016). Meanwhile,
colorectal cancer is a disease known to be highly influenced by diet
(Dray et al., 2003). We evaluated select PCPIs by molecular
docking and identified high-confidence predictions for further
study. Our website (https://yumibriones.github.io/network/)
contains the PCPI network we generated and a diagram of the
workflow with links to all resources used. With this study, we aim
to improve the efficiency of natural products research by using
readily available tools to produce insightful network visualizations.

2 METHODS

2.1 General Workflow
The general workflow consists of five main steps:

1) Phytochemical compilation: A medicinal plant is chosen and
searched in a phytochemical database and literature to obtain
a “Phytochemical list.”

2) Reverse screening: The “Phytochemical list” is entered in a
reverse screening program to obtain a “Complete PCPIs” list.

3) Network building: Protein targets from the “Complete PCPIs”
list are run through pathway enrichment after which a disease
is chosen. The “Disease-specific PCPIs” are merged with the
existing PPI network Signaling Network Open Resource
(SIGNOR) 2.0 to output a “PCPI-SIGNOR disease
network.” Information on phytochemical class,

pharmacokinetic properties, subcellular location and
protein function are added using various resources.

4) Network visualization: The “Annotated PCPI-SIGNOR
disease network” is visualized using Cytoscape and
arranged by subcellular location using the plug-in
boundaryLayout. Phytochemical and protein attributes are
visualized.

5) Evaluation: The “PCPI-SIGNOR disease network
visualization” is analyzed and notable PCPIs are evaluated
in silico, in vitro, or in vivo.

Figure 1 is a detailed diagram of the workflow showing inputs
and outputs of each step and all resources used in the study.

The following sections provide more detail for each step,
including brief backgrounds on each resource used.

2.2 Phytochemical Compilation
After choosing a medicinal plant to investigate, the plant is
entered into the Indian Medicinal Plants, Phytochemistry And
Therapeutics (IMPPAT) (https://cb.imsc.res.in/imppat)
database. IMPPAT contains phytochemical-plant associations
mined from medicinal plant books, phytochemical databases,
and PubMed abstracts (Mohanraj et al., 2018). Phytochemicals
may also be determined from the literature. Positive and negative
control molecules may be selected. If drugs are selected as
controls, their interactions are referred to as drug-protein
interactions (DPIs). The Simplified Molecular Input Line
Entry System (SMILES) of all molecules are obtained from
PubChem (Kim et al., 2019). Phytochemicals are sorted by
class according to Medical Subject Headings (MeSH) Tree (U.
S. National Library of Medicine, 2021) or Chemical Entities of
Biological Interest (ChEBI) ontology (Hastings et al., 2016).

To simulate metabolism, glycosides (molecules bonded to
sugar units) are manually hydrolyzed with molecular editing
software such as ChemSketch, developed by Advanced
Chemistry Development, Inc. (ACD/Labs). Both glycosides
and aglycones (the non-sugar unit) are kept in the list of
phytochemicals, combining any duplicate structures into a
single entry. The complete resulting list is the “Phytochemical
list” from Figure 1.

2.3 Reverse Screening
Reverse screening is done with SwissTargetPrediction (http://
www.swisstargetprediction.ch), a shape screening software that
uses ligand-protein binding data from ChEMBL version 23
(Mendez et al., 2019). When a query molecule is entered,
SwissTargetPrediction calculates 2D and 3D similarity scores
with ligands in the database. Both scores are combined to
obtain the probability that the query molecule shares the same
protein target as the matched ligands (Daina et al., 2019). If the
query molecule is already listed in the ChEMBL database,
SwissTargetPrediction assigns a prediction probability of 1.

Molecules in the “Phytochemical list” from the previous step
are entered into SwissTargetPrediction using the SMILES, with
Homo sapiens as the selected organism. The output is a list of
predicted protein targets and probability scores for the query
molecule which can be downloaded as a CSV file. Only results
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with probabilities greater than zero are considered. The combined
list of predictions for all molecules in the “Phytochemical list” is
the “Complete PCPIs” output.

2.4 Network Building
Network building consists of four steps: 1) pathway enrichment,
2) addition of PPIs and glycoside-aglycone relationships, 3)
assignment of subcellular locations, and 4) pharmacokinetic
analysis of phytochemicals.

2.4.1 Pathway Enrichment
The program g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)
(Reimand et al., 2007) is used to identify statistically
overrepresented pathways in the set of predicted protein
targets from the “Complete PCPIs” list. The protein names are
entered as a query, and the search is carried out with Homo
sapiens as the selected organism, a 0.05 significance threshold,
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000) as the reference database. Results
are downloaded as a CSV file which lists all enriched pathways
and intersected proteins per pathway. From the file, the disease of
interest is located. The intersected proteins under the disease are
used to filter the “Complete PCPIs” list to only the “Disease-
specific PCPIs.”

2.4.2 Addition of PPIs and Glycoside-aglycone
Relationships
The SIGNOR 2.0 database is used as a source of PPIs. SIGNOR
2.0 is a biological network of literature-based causal interactions
between proteins. The entire network is directed from source to
target node (Licata et al., 2020). The full Homo sapiens database
was downloaded on September 28, 2020. Tableau Prep is used to
combine the “Disease-specific PCPIs” with PPIs from SIGNOR
2.0 using the disease-specific protein targets as a join clause.
Glycoside-aglycone relationships are added to the network as
interactions directed from the parent glycoside to child aglycone.
The resulting file is the “PCPI-SIGNOR disease network”
(Figure 1). In this file, all source nodes are labelled “Entity A”
while all target nodes are labelled “Entity B.”

2.4.3 Assignment of Subcellular Locations
All proteins in the “PCPI-SIGNOR disease network” are assigned
a subcellular location using an interactive database of the HeLa
spatial proteome developed by Itzhak et al. (2016) (http://
mapofthecell.biochem.mpg.de/). The database is a
downloadable Excel file that reports the most probable cellular
location of a protein based on fractionation and mass
spectrometry experiments. When protein names are entered
into the file, the corresponding subcellular locations will appear.

FIGURE 1 | The workflow begins with phytochemical compilation for the chosen plant. This is followed by reverse screening to predict PCPIs. Network building
filters PCPIs to the chosen disease, combines these with PPIs, and annotates the networkwith phytochemical and protein attributes. The annotated network is visualized
with Cytoscape. Evaluation is done through any in silico, in vitro, or in vivo method. This flowchart and links to resources can be found at https://yumibriones.github.io/
network/workflow.html.
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UniProt is used for proteins not in the HeLa database. Protein
entries in UniProt contain a “Subcellular location” section based
on expert annotations (The UniProt Consortium, 2021). The
Gene Ontology (GO) tool is not chosen for this step, as it often
outputs a long list of all recorded links between a protein and
cellular component with no way to narrow down options (Hill
et al., 2008).

Subcellular locations of phytochemicals and controls are
assigned in this order of priority:

1) ligands with protein targets in the nucleus were placed in the
nucleus;

2) ligands with protein targets in the mitochondrion were placed
in the mitochondrion;

3) ligands with protein targets in the plasma membrane were
placed in the plasma membrane; and

4) ligands with protein targets in the cytoplasm were placed in
the cytoplasm.

In the “PCPI-SIGNOR disease network” file, the subcellular
locations of “Entity A” and “Entity B” are entered into separate
columns labelled “Location A” and “Location B” respectively.
This results in an “Annotated PCPI-SIGNOR disease
network” file.

2.4.4 Pharmacokinetic Analysis of Phytochemicals
SwissADME (http://www.swissadme.ch/) assesses
physicochemical and pharmacokinetic parameters of input
molecules (Daina et al., 2017). All phytochemicals and
controls included in the “Disease-specific PCPIs” are entered
into SwissADME using their name and SMILES. The results are a
list of pharmacokinetic data for each molecule. The results are
downloaded as a CSV file and the following attributes are noted:
Abbott bioavailability score, gastrointestinal (GI) absorption (for
orally ingested medicinal plants), and lipophilicity using the
partition coefficient log p (Eq. 1). A more lipophilic
compound would have a higher log p value.

logP � log10
[concentration of solute in octanol]
[concentration of solute in water] (1)

Each pharmacokinetic parameter is entered as its own column
in the “Annotated PCPI-SIGNOR disease network” file. Columns
modifying “Entity A” or “Entity B” are ended with “A” or “B”
respectively (e.g. “Bioavailability A”).

2.5 Network Visualization
The “Annotated PCPI-SIGNOR disease network” Excel file is
loaded into Cytoscape 3.6.0 (Shannon et al., 2003). All duplicate
edges and self-loops are removed.

For edges, these parameters are followed:

1) edge thickness is mapped to the SwissTargetPrediction
probability score (thicker edges � more probable); and

2) edge color is mapped to interaction type (predicted PCPI or
DPI � blue, PPI upregulation � green, PPI downregulation �
red, glycoside-aglycone relation � dark green dashed line).

For ligand nodes, these parameters are followed:

1) node shape is set to circle;
2) node transparency is mapped to log P value (lower log P �

more transparent, higher log P � more opaque);
3) node size is mapped to GI absorption (high absorption � large,

low absorption � small);
4) node border color is mapped to Abbott bioavailability score

(lowest scores in red, highest scores in green); and
5) node color was mapped to ligand class.

For protein nodes, these parameters are followed:

1) node shape is set to square;
2) node color is set to pink; and
3) label color is mapped to protein function (red � oncogene

protein, green � tumor suppressor, black � other protein).

Nodes are automatically organized into a cell template based
on the assigned cellular location using the Cytoscape plug-in
boundaryLayout, developed by University of California San
Francisco’s Resource for Biocomputing, Visualization, and
Informatics (UCSF RBVI).

Supplementary Figure S1 shows the evolution of the network
visualization in graphical form. The complete PCPI network and
detailed legend are shown in Figure 2 in the Results section. We
visualized the network in two ways: with a white background
(Figure 2) and a dark background (Supplementary Figure S2).

2.6 Evaluation Through Docking
Evaluation of interactions in the “PCPI-SIGNOR disease network
visualization”may be done in silico, in vitro, or in vivo. We chose
to evaluate PCPIs in silico through molecular docking with
Autodock Vina, which outperforms its predecessor AutoDock
4 in speed and accuracy (Trott and Olson, 2010).

Protein structures were downloaded from the Protein Data
Bank (PDB) (Berman et al., 2000). We used the Auto in silico
Consensus Inverse Docking (ACID) server to guide our PDB
structure selection (Wang et al., 2019). ACID contains a
curated set of protein targets according to the following
restrictions:

1) no structures with resolution larger than 3.0 Å;
2) no structures solved by Nuclear Magnetic Resonance (NMR)

(structures are all solved by X-ray diffraction for uniformity);
3) no structures with ligands containing nonstandard atoms (e.g.

Si, Be); and
4) structures must have only one drug-like ligand bound in the

active site.

Structures of the bound inhibitors were obtained from PDB
while phytochemical structures were obtained from PubChem.
Protein and ligand structures were prepared for docking with
Autodock Tools. We manually calculated grid boxes using
AutoDock Tools, centering the box on the bound ligand in the
active site. In the absence of a bound inhibitor, protein structure
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was analyzed with Aquaria (http://aquaria.ws/), which aligns
UniProt sequence with a chosen PDB structure and highlights
features such as binding site (O’Donoghue et al., 2015).

For each protein, we docked the inhibitor bound to the
original PDB structure as a positive control before docking
phytochemicals. Results were visualized in 3D with ChimeraX

FIGURE 2 | PCPI-SIGNOR disease network visualization for bitter gourd against colorectal cancer. The cell template is from the Cytoscape plug-in
boundaryLayout. Detailed legend at the bottom. The network can be interactively viewed at https://yumibriones.github.io/network/.
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(Pettersen et al., 2021) and in 2D with LigPlot+ (Laskowski and
Swindells, 2011).

3 RESULTS

This section details results for our proof-of-concept study, where
we applied the workflow to visualize a PCPI network for bitter
gourd against colorectal cancer.

3.1 Phytochemical Compilation
We compiled 169 phytochemicals found in the fruit, seeds, and
leaves of bitter gourd. These were taken from IMPPAT and
reviews by Raina et al. (2016), Jia et al. (2017), and Mozaniel
et al. (2018). Most were phenolic acids, triterpene glycosides, and
aglycones. For positive controls, we selected the chemotherapy
drugs vemurafenib (a selective B-raf inhibitor) and sorafenib (a
multi-kinase inhibitor). Meanwhile for negative controls, we
chose alprazolam (a benzodiazepine), tolnaftate (an
antifungal), and tigecycline (a tetracycline antibiotic), all of
which have similar structures to phytochemicals but are not
expected to act on colorectal cancer signaling. In total, 174
ligands were compiled for screening. The phytochemical list is
shown in Supplementary Table S1 and summarized in
Supplementary Figure S3.

3.2 Reverse Screening
SwissTargetPrediction predicted 6937 PCPIs with nonzero
probability between 166 phytochemicals and 772 protein
targets. No matches were found for (+)-catechin,
(-)-epicatechin, and the cis-zeatin riboside aglycone.

For negative controls, SwissTargetPrediction predicted 52
DPIs for alprazolam, 7 DPIs for tolnaftate, and 17 DPIs for
tigecycline with nonzero probability. The top predicted targets for
alprazolam were GABA receptors, consistent with experimental
knowledge. For tolnaftate and tigecycline, human targets were
identified because of structural similarity to other molecules.
SwissTargetPrediction may identify false positives, highlighting
the need for an evaluation step.

For positive controls, SwissTargetPrediction predicted 100
DPIs for vemurafenib and 100 DPIs for sorafenib, all with
nonzero probability. For sorafenib, all results had probability �
1 with targets being mostly protein kinases, consistent with
experimental knowledge. For vemurafenib, there were only
four results with probability � 1 including the experimentally
known target B-Raf proto-oncogene, serine/threonine kinase
(B-raf). This demonstrates the reliability of
SwissTargetPrediction as a reverse screening tool. The
“Complete PCPIs” list is shown in Supplementary Table S2.

3.3 Network Building
All g:Profiler results are listed in Supplementary Table S3 with
the top ten results shown in Supplementary Figure S4. Pathway
enrichment of phytochemical targets identified 23 protein targets
in the KEGG colorectal cancer entry. These proteins were
involved in the epidermal growth factor receptor (EGFR)/
mitogen-activated protein kinase (MAPK) and

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein
kinase B (Akt) pathways, Wingless-related integration site
(Wnt) signaling, apoptosis and cell cycle regulation. The
disease-specific protein targets included oncogene proteins like
catenin beta 1 (CTNNB1) and B-raf and the tumor suppressor
glycogen synthase kinase 3 beta (GSK3b). Protein classifications
are listed in Supplementary Table S4.

A separate g:Profiler analysis for the negative controls
alprazolam, tolnaftate, and tigecycline found no protein targets
involved in the KEGG colorectal cancer pathway. Meanwhile,
pathway enrichment of positive controls vemurafenib and
sorafenib identified four additional protein targets involved in
KEGG colorectal cancer: A-Raf proto-oncogene, serine/threonine
kinase (A-Raf), Raf-1 proto-oncogene, serine/threonine kinase
(Raf-1), mitogen-activated protein kinase kinase 2 (MAP2K2),
and transforming growth factor beta receptor 2 (TGFBR2)
(Supplementary Table S3).

In total, the KEGG colorectal cancer PCPI-SIGNOR network
contained 98 nodes (69 phytochemicals, 2 drugs, and 27 proteins)
and 331 interactions (251 PCPIs, 60 PPIs, 10 DPIs, and
10 glycoside-aglycone relationships). The PCPI network and
legend are shown in Figure 2. The dark version of the
network can be viewed at https://yumibriones.github.io/
network/(Supplementary Figure S2). Supplementary Table
S5 contains the data used to build the “Annotated disease-
specific PCPI-SIGNOR network.”

3.4 Network Visualization
Figure 2 shows the “PCPI-SIGNOR disease network
visualization” for bitter gourd against colorectal cancer.

Our PCPI network has a number of advantages over other
visualization methods for medicinal plant interactions. The
reverse screening tool BATMAN-TCM represents
phytochemicals, proteins, pathways and diseases as nodes
in a simple network. Yi et al. (2018) have also documented a
workflow resulting in a visualization similar to BATMAN-
TCM. However, natural products research often aims to
study the action of a medicinal plant against a specific
disease. These simple visualizations lack the information
needed to address this problem, and additional
information is presented in other diagrams or in the text
of the paper. Meanwhile, our PCPI network presents plenty of
information in a single diagram designed to be intuitively
understood by biologists.

One clear advantage of our visualization is that nodes are
sorted by subcellular compartment, highlighting which
phytochemicals have targets in specific organelles (Figure 2).
For instance, phytochemicals in the mitochondrion must target
B-cell lymphoma 2 (Bcl-2). Seeing subcellular location makes it
easier for biologists to identify the roles of proteins in the
network.

Another major advantage is the display of pharmacokinetic
properties to help assess whether phytochemicals are able to
reach protein targets in the cell. High investigation priority
may be given to phytochemicals with larger nodes (high GI
absorption) and green or orange borders (high or medium
bioavailability). Seeing phytochemical classifications is also
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helpful, as priority can be given to classes such as triterpenoids
and flavonoids which are more unique to bitter gourd.

Our visualization also conveys information through edges.
The thickest edges (SwissTargetPrediction probability � 1)
represent interactions already recorded in ChEMBL. Novel
predictions would have thinner edges. We can also see
relationships between phytochemicals and their metabolism
products by following the dashed arrows. Interactions between
proteins are represented with green or red arrows for up or
downregulation, revealing the downstream effects of a
phytochemical beyond its direct protein target.

To illustrate how these advantages come together, here is
an important insight we can get from Figure 2. Triterpene
glycosides (light green) are all small nodes mostly in the
plasma membrane. However, following the dashed arrows
reveals that many aglycone products (dark green) have
large nodes and are in the nucleus and cytoplasm. This
tells us that aglycones generally have higher GI absorption
than glycosides with targets deeper in the cell. This supports

experimental knowledge that aglycones are better absorbed
than their glycoside parents (Bhattacharya, 2019).

Important trends in the PCPI network can be summarized
using standard bar graphs as in Figure 3.

As observed in Figure 2, triterpene glycosides were highly
abundant but had low GI absorption while aglycones had high GI
absorption (Figure 3A). Protein kinases were abundant and
highly targeted by phytochemicals (Figure 3B). Highly
targeted proteins include EGFR and the mechanistic target of
rapamycin kinase (mTOR) (Figure 3C), though this is already
apparent from Figure 2. While bar graphs can reveal general
trends in the data, the network visualization shows these trends
while also showing specific interactions. Figure 2 alone can
already highlight PCPIs to evaluate further in vitro, in vivo, or
in silico.

3.5 Evaluation by Molecular Docking
We used Autodock Vina (Vina hereafter) to dock 28 PCPIs and 6
DPIs in the KEGG colorectal cancer PCPI-SIGNOR network. We

FIGURE 3 | (A) Relationships of SwissADME parameters (high/low GI absorption, average bioavailability, average log p) and SwissTargetPrediction results
(number of ligands, number of protein targets, average probability) per phytochemical class as well as the two positive control drugs vemurafenib and sorafenib (SORA/
VEM) in the KEGG colorectal cancer PCPI-SIGNOR network. (B)Number of proteins, number of phytochemical ligands, and average probability scores per protein class.
Proteins targeted only by SORA/VEM are not included in the subfigure. (C) Top ten most targeted proteins by phytochemical ligands (excluding SORA/VEM).
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FIGURE 4 | Simplified PCPI network showing the predicted anticancer action of bitter gourd (with high docking confidence and probability � 1 PCPIs from
docking). Pathways and downstream effects are shown. Phytochemical structures are connected to their corresponding nodes by dashed lines. All PCPIs are
represented by red arrows indicating inhibition. Smaller square nodes are proteins directly inhibited by phytochemicals in the network.
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chose phytochemicals with high GI absorption from various
classes including phenolic acids, triterpenoids, flavonoids, fatty
acids, and aglycones. Proteins were selected from the EGFR/
MAPK and PI3K/Akt pathways, Wnt signaling, apoptosis, and
the cell cycle. Only the top pose from Vina was considered.
Detailed docking information is listed in Supplementary
Table S6.

For positive docking controls, we docked each protein to its
bound inhibitor from the PDB structure.We found that predicted
poses from Vina were visually similar to experimental poses.
Docking interaction energies were generally more negative for
bound inhibitor-protein pairs versus phytochemical-protein
pairs (Supplementary Figure S5). The positive controls
vemurafenib and sorafenib docked with highly negative
energies comparable to the bound inhibitors. We concluded
that Vina predicted binding poses with fairly high accuracy.

Flavonoids and phenolics docked to the adenosine
triphosphate (ATP)-binding sites of protein kinases with
highly negative docking interaction energies, suggesting
competitive inhibition of kinase activity. On the other hand,
triterpenoids generally had less negative docking interaction
energies when docked to the ATP-binding site. This suggests
that flavonoids and phenolics have a high potential for in vitro or
in vivo activity.

To quantify this, we assigned confidence levels to PCPIs based
on docking interaction energy (“docking confidence” hereafter)
(Supplementary Figure S6). Among the PCPIs with probability
� 1, we set the most negative docking interaction energy as the
“soft cutoff” (−7.8 kcal/mol). The upper bound of the 99.7%
confidence interval (CI) (−6.4 kcal/mol) was set as the “hard
cutoff.” Interactions were classified as follows:

1) High docking confidence: docking interaction energy,
E < − 7.8 kcal/mol (soft cutoff);

2) Medium docking confidence: − 7.8 < E < − 6.4 kcal/mol (hard
cutoff);

3) Low docking confidence: E > − 6.4 kcal/mol.

Most flavonoid-protein interactions had high docking
confidence while triterpenoid-protein interactions had low
docking confidence (Supplementary Figure S7). Interestingly
however, all interactions between triterpenoids and mTOR had
high docking confidence.

We then used docking confidence to calculate “probability
confidence” regions based on SwissTargetPrediction probability.
We took the mean probability values of each docking confidence
level and calculated the 68% CI (equivalent to 1 standard
deviation) for each mean (Supplementary Figure S8).
Detailed calculations are shown in Supplementary Table S6.
Probability confidence regions were assigned as follows:

1) High probability confidence: probability, P > 0.1263 (upper
bound of the mean probability of low docking confidence
interactions);

2) Uncertain probability confidence: 0.1263 > P > 0.0774 (lower
bound of the mean probability of medium docking confidence
interactions);

3) Low probability confidence: P < 0.0774.

We then sorted each interaction in the KEGG colorectal
cancer PCPI-SIGNOR network according to probability
confidence regions (Supplementary Table S5). Flavonoids
were most abundant in the high probability confidence region,
triterpenoid aglycones were abundant in the uncertain region,
and triterpene glycosides were abundant in the low probability
confidence region. Protein kinases were highly targeted in all
probability confidence regions (Supplementary Figure S9).

Docking results are color-coded according to the legend in
Supplementary Figure 10, and all visualizations are shown in
Supplementary Figures S11–27.

3.6 Simplified PCPI Network for Anticancer
Action of Bitter Gourd
We visualized a smaller PCPI network including only high
docking confidence and probability � 1 interactions
(Figure 4). This is a simplified model of the predicted
anticancer action of bitter gourd. Phytochemicals in this
diagram are strong candidates for in vitro and in vivo activity.

Ellagic acid, a phenolic compound, was predicted to inhibit the
most proteins and pathways including the cell cycle, EGFR/
MAPK pathway, and PI3K/Akt pathway. Ellagic acid was also
predicted to inhibit the tumor suppressor GSK3b, but
interestingly, experiments show that inhibition of GSK3b may
in fact decrease cancer cell proliferation (Marchand et al., 2012).
Meanwhile, the flavonoids quercetin and luteolin were predicted
to inhibit the same proteins and pathways including PI3K/Akt
and EGFR/MAPK, thereby inhibiting cell survival and
proliferation. The triterpenoids momordicine I, kuguacin C,
and the charantagenin D aglycone were all predicted to inhibit
the PI3K/Akt pathway via mTOR. We highly recommend that
these predicted interactions be studied further through in vitro
and in vivo experiments. The phytochemicals in Figure 4 may
also be used as marker compounds for medicinal formulations of
bitter gourd.

This figure demonstrates the ability of our workflow to
visualize high-confidence PCPI predictions as a detailed yet
intuitive network. The workflow can be used to create PCPI
networks for other medicinal plants and diseases. If small
molecule drugs are searched together with medicinal plants,
the PCPI network can even identify shared protein targets and
potential interaction effects. Unlike the integrated tool
BATMAN-TCM, our modular workflow allows researchers to
use other tools at any step. However, we recommend using the
tools presented in this study as these were carefully selected. The
workflow and links to all resources are available at https://
yumibriones.github.io/network/workflow.html.

4 CONCLUSION

We developed a novel workflow to visualize the predicted cellular
action of a medicinal plant against a disease. We combined select
tools into a five-step pipeline: phytochemical compilation, reverse
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screening, network building, network visualization, and
evaluation. The resulting phytochemical-protein interaction
(PCPI) network visually reflects protein-protein interactions,
subcellular location, phytochemical class, pharmacokinetic
data, and other attributes in a single figure. By clearly
communicating all these attributes visually, the network helps
users identify interactions worth evaluating further. Our proof-
of-concept study on bitter gourd against colorectal cancer
identified triterpenoid aglycones and flavonoids as key players
in the network. The PCPI network and workflow are available at
https://yumibriones.github.io/network/. We evaluated select
PCPIs through docking to produce a smaller network of high-
confidence interactions that can be validated in vitro and in vivo.
Overall, this workflow streamlines natural products research by
using readily available tools to visualize a rich, intuitive PCPI
network.
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Boosted by the exponential growth of microbiome-based studies, analyzing microbiome
patterns is now a hot-topic, finding different fields of application. In particular, the use of
machine learning techniques is increasing in microbiome studies, providing deep insights
into microbial community composition. In this context, in order to investigate microbial
patterns from 16S rRNA metabarcoding data, we explored the effectiveness of
Association Rule Mining (ARM) technique, a supervised-machine learning procedure, to
extract patterns (in this work, intended as groups of species or taxa) from microbiome
data. ARM can generate huge amounts of data, making spurious information removal and
visualizing results challenging. Our work sheds light on the strengths and weaknesses of
pattern mining strategy into the study of microbial patterns, in particular from 16S rRNA
microbiome datasets, applying ARM on real case studies and providing guidelines for
future usage. Our results highlighted issues related to the type of input and the use of
metadata in microbial pattern extraction, identifying the key steps that must be considered
to apply ARM consciously on 16S rRNAmicrobiome data. To promote the use of ARM and
the visualization of microbiome patterns, specifically, we developed microFIM (microbial
Frequent Itemset Mining), a versatile Python tool that facilitates the use of ARM integrating
common microbiome outputs, such as taxa tables. microFIM implements interest
measures to remove spurious information and merges the results of ARM analysis with
the common microbiome outputs, providing similar microbiome strategies that help
scientists to integrate ARM in microbiome applications. With this work, we aimed at
creating a bridge between microbial ecology researchers and ARM technique, making
researchers aware about the strength and weaknesses of association rule mining
approach.

Keywords: pattern mining, microbiome data, DNA metabarcoding, microbiome patterns, machine learning,
association rule mining
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1 INTRODUCTION

Studying microbiome patterns is now a hot-topic in different
fields of application (Kyrpides et al., 2016; Wood-Charlson et al.,
2020). From ecology to medicine, microbiomes are undoubtedly a
cornerstone of research, acknowledged as being key participants
in all ecosystems, including the human one (Duvallet et al., 2017;
Layeghifard et al., 2017). In recent years, DNA sequencing
strategies have become one of the main sources for studying
microbial communities (Wood-Charlson et al., 2020). Further,
16S rRNA metabarcoding is currently the preferential method to
obtain great amounts of information in a time and cost effective
manner (Wood-Charlson et al., 2020), becoming one of the
primary sources of data regarding microbiome studies
(Gonzalez et al., 2018; Knight et al., 2018; Bokulich et al.,
2020; Mitchell et al., 2020).

In this context, data mining approaches seem to be newfangled
solutions for disclosuring and understanding microbial
ecosystems (Wood-Charlson et al., 2020; Galimberti et al.,
2021; Ghannam and Techtmann, 2021). Spanning from
classification and signature extraction to interaction and trait
associations (Pasolli et al., 2016; Qu et al., 2019), data mining
strategies can identify hidden patterns that may help to predict
biological functions (Noor et al., 2019; Thomposon et al., 2019).
Investigating patterns and exploring their role in functional and
predictive aspects are now pivotal to proxy the knowledge of
microbial associations, both disentangling interactions and niche
specialization (Chaffron et al., 2010; Faust and Raes, 2012; Ma
et al., 2020).

Considering the size and complexity of High-Throughput
Sequencing (HTS) 16S rRNA metabarcoding data,
interpretation and summarization are not straightforward
(Naulaerts et al., 2015) and, for this reason, pattern mining
strategies have become essential for researchers to disentangle
the high amount of information (Kyrpides et al., 2016; Wood-
Charlson et al., 2020; Ghannam and Techtmann, 2021).

Recently, association rule mining (ARM) emerged as a
promising technique to study microbiome patterns (Naulaerts
et al., 2015; Tandon et al., 2016). Specifically, Tandon et al. (2016)
have demonstrated the potentials of this technique on two
microbiome datasets, in particular the HMP dataset
(Turnbaugh et al., 2007) and two prebiotic studies (Kato et al.,
2014; Xiao et al., 2014). From the classic application on market
basket problems (Agrawal et al., 1993), association rule mining
started to be applied to answer a wide range of biological
questions. From annotation tasks (Manda et al., 2012; Manda
et al., 2013; Manda, 2020) to protein interaction networks
(Koyuturk et al., 2006), ARM was applied to a wide range of
research fields, including genetics (Carmona-Saez et al., 2006;
Alves et al., 2010; Karpinets et al., 2012; Ong et al., 2020),
molecular biology (Agapito et al., 2015; Boutorh and
Guessoum, 2016; Naulaerts et al., 2016), and biochemical
disciplines (Yoon and Lee, 2011; Zhou et al., 2013; Naulaerts
et al., 2016). Noticeably, the expression ‘association rule mining’
comprehends two main phases: 1) frequent itemset mining, the
extraction of patterns intended as elements often co-occur
together in a dataset (Agrawal et al., 1993), and 2) rule

calculation, to identify strong association between patterns
previously extracted (Agrawal et al., 1993).

Despite the apparent simplicity of use, large datasets can
produce high numbers of patterns, making their extraction
difficult (Agrawal et al., 1993; Han et al., 2004; Karpinets
et al., 2012; Naulaerts et al., 2015). Beside several algorithms
have been developed to better capture reliable patterns, as for
example Eclat (Agrawal et al., 1996), FP-Growth (Han et al.,
2004) or Apriori (Agrawal et al., 1993), avoiding uninformative or
spurious information is still a current issue (Naulaerts et al.,
2015). Interesting measures such as support (frequency of a
pattern) or pattern length are pivotal to control the generation
and the evaluation of patterns discovered (Agrawal et al., 1993;
Karpinets et al., 2012; Naulaerts et al., 2015). Still, a few issues
exist in setting these parameters (Naulaerts et al., 2015).
Considering the support, setting a low value leads to a high
amount of patterns, difficult to explore and visualize. At the same
time, setting a high support value can be detrimental for finding
rare but informative patterns. Over and above, researchers try to
identify metrics that can be used to pinpoint patterns of interest
(and so called “interest measures”). In detail, several metrics have
been implemented (Tan et al., 2002; Omiecinski, 2003;
Franceschini et al., 2012; Tang et al., 2012), as for example lift
or maximal entropy (Tatti and Mampaey, 2010; Hussein et al.,
2015). Nevertheless, extracting effective information is not an
easy task as the definition of interestingness is strictly associated
with the biological question and the research field under study
(Koyutürk et al., 2006; Karpinets et al., 2012; Naulaerts et al.,
2015). Considering the rule calculation phase, issues regarding
the evaluation of reliable rules remain (Karpinets et al., 2012;
Naulaerts et al., 2015). In general, taking into account previous
works, the most widely used parameters to evaluate both patterns
and rules are support and confidence, where confidence is a
measure that describes the strength of the association between the
two elements of the rule (Naulaerts et al., 2015).

Recently, different works related to pattern mining applied to
microbiome studies were published, such asMITRE (Bogart et al.,
2019), MANIEA framework (Liu et al., 2021) and the work of
Tandon et al. (2016). Nevertheless, as also highlighted by the
work of Faust (2021), applying such an algorithm still has its
limitations and, despite the efforts of recent works, guidelines for
microbiome data applications have not been completely defined
(Naulaerts et al., 2015; Faust, 2021). Different libraries have been
implemented, such as pyfim (Muino and Borgelt, 2014), mlxtend
(Raschka, 2018) and arules (Hahsler et al., 2011). A few
frameworks have been recently developed and applied on real
case studies (Tandon et al., 2016; Liu et al., 2021). However, tests
to establish specific best practices for 16S rRNA metabarcoding
data do not exist.

Apart from the availability of tools, the application of pattern
mining to study microbiome patterns must consider the intrinsic
biological aspect of microbiome data (Balint et al., 2016; Gloor
et al., 2017). Beside the issues related to species abundances that
should be filtered to obtain a solid input dataset, also metadata
composition and taxonomy level should be considered. Further,
microbiome matrices can be large and complex: composed of
thousands of taxa and hundreds of samples (Faust, 2021;
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Ghannam and Techtmann, 2021), microbiome data can affect
pattern mining approaches, sometimes obliging to set high but
improper interest measures. This last point is crucial if we
consider that 16S rRNA metabarcoding data can describe
putative ecological properties and sparse microbial associations
(Faust, 2021).

Given these premises, our work wants to shed light on the
strengths and weaknesses of pattern mining strategy into the
study of microbial patterns, in particular from 16S rRNA
microbiome datasets. In detail, we show pitfalls of ARM
applied on real case studies, highlighting issues related to the
type of input and the use of metadata. Then, we identify the key
steps that must be considered to apply ARM consciously on 16S
rRNA microbiome data. Moreover, to facilitate the integration of
ARM technique into microbiome pipeline, we developed
microFIM (microbial Frequent Itemset Mining), a versatile
user-friendly and open source Python tool that promotes the
use of ARM integrating common microbiome practices, such as
taxa tables and distance matrix visualizations. Besides the
conventional parameters, microFIM implements interest
measures to remove spurious information. Moreover, it
merges the results of ARM analysis with the typical
microbiome outputs, aiming at creating a bridge between
microbial ecology research and ARM technique.

2 MATERIALS AND METHODS

This section comprehends twomain paragraphs: 1) description of
microFIM (microbial Frequent Itemset Mining) tool to promote
microbiome pattern exploration with two simulated dataset and
2) microFIM analysis on real case microbiome datasets to
highlight ARM potentials and caveats. microFIM was
developed on the basis of Frequent Itemset Mining (Naulaerts
et al., 2015), in which patterns of elements that co-occur can be
extracted from a transactional dataset, typically (Naulaerts et al.,

2015). A pattern (or itemset) is called frequent if its support value
within the dataset is greater than a given minimal support
threshold. For an overview of the method and its translation
in terms of bacterial composition instead of elements, please see
Figure 1. A complete description of the approach with formalized
expression can be found in the works of Tan et al., 2002 (Chapter
6), Goethals, 2005, and Naulaerts et al. (2015).

2.1 microFIM Implementation
To promote and integrate the use of ARM in microbiome studies,
we developed microFIM (microbial Frequent Itemset Mining), a
versatile open-source user-friendly tool implemented in Python
(v. > 3; https://github.com/qLSLab/microFIM).

microFIM receives as input the taxa table and the metadata file
used during the microbiome bioinformatic analysis. In particular,
a taxa table is composed of rows and columns representing the
taxa and their abundances for each sample. It derives from the
conversion of the BIOM file into a CSV or TSV file (https://biom-
format.org/). In general, considering the well-established QIIME2
microbiome platform (https://qiime2.org/; Bolyen et al., 2018),
complete frameworks and scripts to analyse and obtain taxa tables
are implemented.

To promote the usage to a wider group of researchers, the tool
can be used both via Python functions and running the pre-
settled scripts, which allow interactivity through the command-
line, avoiding coding implementations. To favor easy integration
in Python scripting and future implementation of additional
functions and metrics, Python functions were divided into
thematic sections. microFIM is composed by six main steps: 1)
filtering taxa table with metadata, 2) converting taxa table into a
transactional database to be read by ARM algorithms, 3) extract
microbiome patterns, 4) calculate additional interest measures to
evaluate the patterns extracted, 5) create the pattern table (a taxa
table improved with patterns, presence-absence information
among samples and interest measures) and 6) visualization of
results.

FIGURE 1 |Graphical overview of Frequent Itemset Mining (A) and Association Rule mining (B) approach integrated with elements related to microbiome analysis.
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Template files are provided to runmicroFIM scripts. Considering
interest measures, we integrated support, pattern length and all-
confidence metrics, which generates “hyperclique patterns”
(Agrawal et al., 1993; Tan et al., 2002; Omiecinski, 2003; Xiong
et al., 2006). Considering a pattern “X” composed of different items,
all-confidence is calculated as the ratio between the support of “X”
and the highest support retrieved from the elements of the pattern
“X.” For example, a pattern X is composed of three elements that,
considering the entire dataset, have the following support threshold:
0.3, 0.6 and 0.8. Overall, the pattern X has a support of 0.3. All-
confidence will be calculated as the ratio between the support of
X—0.3—and the higher support within X—0.8, resulting in 0.37.
All-confidence, in this way, is defined as the smallest confidence of all
rules which can be produced from a pattern, i.e., all rules produced
from a pattern will have a confidence greater or equal to its all-
confidence value (Tan et al., 2002; Omiecinski, 2003). In detail,
confidence is an indication of how often a rule has been found to be
true, so it is considered as a measure of rule reliability (Hornik et al.,
2005; Hahsler et al., 2011; Naulaerts et al., 2015).

In order to show the usage and the potentials of microFIM, we
tested the tool on simulated matrices (available in
Supplementary Tables S1, S2) and on real case studies. In
particular, the cases selected are: 1) the ECAM dataset
(Bokulich et al., 2016), 2) the vaginal microbiome dataset of
Ravel et al. (2011) and 3) the Montassier dataset (Montassier
et al., 2016). Details about the application of microFIM on real
case studies are described in the next sections. Parameters used to
run microFIM on simulated matrices are the following: 0.3 as
minimum support threshold, a minimum of two elements and a
maximum of 10 to extract patterns.

In the Results section, a complete scheme of the tool is
provided. microFIM is mainly based on four Python libraries:
fim (Muino and Borgelt, 2014), Pandas (McKinney, 2010; Reback
et al., 2020), Numpy (Harris et al., 2020), and plotly (https://
plotly.com/). It is available as a conda environment (https://docs.
anaconda.com/; Anaconda Software Distribution, 2020) and all
the details about tutorials and installation are available in our
Github repository (https://github.com/qLSLab/microFIM).
Python notebooks and an example of microFIM usage via
scripting are also reported in the repository. In general, beside
the focus of this work, microFIM may potentially be used for a
wide range of applications. As the primary resource input consists
in a matrix describing the presence-absence of an element (rows)
in a dataset (columns, representing samples), fields of study in
which it can be applied may be various, also merely consider the
analysis of OTU (Operational Taxonomic Unit) or ESV (Exact
Sequence Variants) instead of taxa (Schloss and Westcott, 2011;
Callahan et al., 2017) of 16S rRNA metabarcoding data.

2.2 Real Case Studies Analysis
To show the caveats and potentials of association rule mining, we
used microFIM on three real case studies: the ECAM dataset (Early
Childhood Antibiotics and the Microbiome; Bokulich et al., 2016),
the vaginal microbiome case study of Ravel et al. (2011) and
Montassier case study (Montassier et al., 2016). Different input
types were selected based on taxonomy level and metadata
composition. In detail, the ECAM dataset collects a total of 875

samples, describing the gut microbiome of the first 2 years of life of
43 infants. Presence-absence tables were created taking account of
the taxonomic rank. In particular, we used: 1) the taxa table obtained
directly from QIIME2 datasets (Bolyen et al., 2018) in which only
taxa assigned to genus level, with a relative abundance > 0.1% in
more than 15% of samples, are considered (Input 1—data are
available in Supplementary Table S3); 2) family table obtained
from collapsing the previous Input 1 via QIIME2 plugins (https://
github.com/qiime2/q2-taxa; Input 2—Supplementary Table S4); 3)
a taxa table consisting only of taxa with complete taxonomy at the
genus level (Input 3—Supplementary Table S5). Metadata as type
of delivery and antibiotic exposition were considered to evaluate
patterns extraction.

Considering the vaginal microbiome dataset (Ravel et al.,
2011), we obtained from MLRepo repository (Vangay et al.,
2019) the taxa table obtained via the MLRepo pipeline
(Vangay et al., 2019). The dataset collects 388 samples,
investigating the vaginal microbiome of 396 asymptomatic
North American women. Additional presence-absence tables
were created taking account of the taxonomic rank, in
particular from the original dataset obtained from MLRepo,
also family and genus levels were considered. Low and high
nugent score values (a scoring system for vaginal swabs to
diagnose bacterial vaginosis) were considered for the
evaluation regarding metadata filtering.

Finally, the dataset of Montassier et al. (2016) was included.
The dataset collects 28 samples from patients with non-Hodgkin
lymphoma undergoing allogeneic hematopoietic stem cell
transplantation (HSCT) in order to identify microbes that
predict the risk of BSI (bloodstream infection). OTU table and
taxa table obtained with MLRepo pipeline were selected (Vangay
et al., 2019).

For the ECAM and Ravel et al. (2011) datasets, minimum
support threshold of 0.2, minimum length of 3 and a maximum
length of 15 elements were used. Montassier et al. (2016) datasets
were analysed considering a minimum support of 0.9, a minimum
length of 5 and a maximum length of 10. After pattern extraction,
interest measures as support, pattern length and all-confidence were
calculated (Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).
Distributions of number of patterns, length and support were
evaluated considering both ARM analysis and interest measures
filtering. A minimum of 0.5 and 0.8 of all-confidence were used to
evaluate hypercliques patterns (Tan et al., 2002; Omiecinski, 2003;
Xiong et al., 2006). Consideringmetadata filtering, pattern extraction
was performed with the previous settings. A minimum of 0.8 of all-
confidence was used to evaluate hypercliques patterns (Tan et al.,
2002; Omiecinski, 2003; Xiong et al., 2006). Visualizations were
created with plotly and pandas Python libraries. Both datasets,
results and metadata files are available in Supplementary Material.

3 RESULTS

3.1 microFIM Tool: Extending Association
Rule Mining to Microbiome Pattern Analysis
Association rule mining demonstrates its useful properties in
different contexts (Naulaerts et al., 2015; Tandon et al., 2016). To
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promote the use of ARM in the microbial community field, we
implemented microFIM, a versatile open-source project
developed in Python and freely available at https://github.com/
qLSLab/microFIM.

In this section, we explain the framework of usage, the main steps
of pattern extraction and filtering and insights of visualizations
available. In addition, two main examples are reported, in order
to show the workflow of the tool. In Figure 2 a scheme of microFIM
framework is reported. In particular, microbiome data (taxa table)
can be filtered (step 1) and then converted into a transactional
dataset (step 2), in order to be read as input by association rule
mining algorithm. Subsequently, patterns can be generated setting
parameters via a template file to be filled (tutorials and templates are
available at https://github.com/qLSLab/microFIM) (step 3). In detail,
minimum support threshold, minimum and maximum length of
patterns must be specified. Pattern extraction was implemented via
pyfim library (Muino and Borgelt, 2014). At this stage, the default
algorithm used is Eclat (Muino and Borgelt, 2014), but other
algorithms are available within the pyfim library (Apriori or FP-
Growth; Muino and Borgelt, 2014). The set of interest measures
initially calculated are “support” and “pattern length” (which
describes the number of elements belonging to a pattern).
Further, other interest measures are added (step 4) and can be
used to filter patterns. In microFIM implementation, all-confidence
interest measure was included, in order to help remove spurious
information (Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).
As described in Section 2, all-confidence can be used to set the
smallest confidence of all rules that can be produced from a pattern,
i.e., all rules produced from the pattern will have a confidence greater
or equal to its all-confidence value, creating the basis for rule

reliability exploration at the pattern level (Tan et al., 2002;
Hornik et al., 2005; Omiecinski, 2003; Xiong et al., 2006; Hahsler
et al., 2011; Naulaerts et al., 2015).

The main result of this step is the creation of the pattern table
(step 5). Conceptually similar to the microbiome taxa table, the
pattern table described the presence of a pattern for each sample,
integrating the interest measures previously calculated (step 4).
microFIM visualizations comprehend distributions of patterns
considering support, length and interest measure values. To
describe the relationships between samples considering patterns
found, a Jaccardmatrix can be also obtained and visualized (step 6).

To better show the potentials of microFIM, we included a
demonstrative analysis of both simulated data and data belonging
to real case studies (see the next Section 3). In particular, as also
described in the Section 2, simulated data are composed of two
main matrices with a dimension of 10 samples and 5 taxa. In
Figures 3A,B a graphical representation of the simulated
matrices is shown. Through microFIM, ARM analysis was
performed. The final output of the analysis is the pattern
table, represented in Figures 3C,D and available in
Supplementary Tables S6, S7, respectively. The pattern table
integrates the interest measures of length, support and all-
confidence and, as it is a dataframe, patterns can be filtered
and further visualized with Python libraries or other data analysis
tools easily. In addition, results of the pattern table can be
visualized with microFIM through the following plots: scatter
plot, bar chart and heatmap. In Figures 3E,F, heatmaps built on
Jaccard distance results are shown.

In detail, Dataset 1 (Figure 3A; Supplementary Table S1) is a
full-presence dataset. This means that ARM can potentially

FIGURE 2 | Scheme of microFIM framework. 1) Filtering taxa table; 2) Conversion of taxa table into transactional file; 3) Extract patterns with template file filled with
minimum support threshold, minimum andmaximum length; 4) Adding of interest measures as support, pattern length and all-confidence (Omiecinski, 2003; Xiong et al.,
2006); 5) Generating pattern table, composed by presence-absence of patterns within samples and interest measures; 6) Generating visualizations.
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generate all the combinations of patterns from a length of 1 to a
length of 5. All patterns will have a 1.0 of support and a 1.0 of all-
confidence, as they are all associated with each other. In this case,
considering only the pattern composed by Taxa1, Taxa2, Taxa3,
Taxa4, and Taxa5, with a length equal to 5 and a support equal to
1.0, can be sufficient to resume the information within the
dataset. In addition, these settings can be adjusted directly by
running the algorithm, avoiding the creation of uninformative
patterns and reducing calculation time. In Figure 3E, Jaccard

heatmap shows also the 100% similarity between Dataset 1
samples. The complete pattern list obtained by Dataset 1 is
available in Supplementary Table S6.

Considering Dataset 2 (Figure 3B; Supplementary Table S2),
instead, a different composition can be observed. In particular,
Taxa1, Taxa2 and Taxa3 co-occur in samples 1, 2, and 3. In
addition, Taxa3 is present in all the samples (Figure 3B). As we
ran an ARM analysis considering a minimum length of 2, the
pattern composed by only Taxa3 was not detected. However, the

FIGURE 3 | (A) Graphical representation of Table 1; (B) Graphical representation of Table 2; (C) Pattern table generated from Table 1; (D) Pattern table generated
from Table 2; (E) Jaccard heatmap plot of Table 1; (F) Jaccard heatmap plot of Table 2.
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pattern built by Taxa1, Taxa2 and Taxa3 was detected, with a
pattern length of 3 and a support of 0.3. Focus the attention on
Taxa1-Taxa2 pattern, the value of all-confidence is equal to 1.0,
meaning that there is a strong association between them and the
rules generated from this pattern will have a minimum
confidence of 1.0. Details about patterns extracted from
Dataset 2 are available in Supplementary Table S7.

3.2 microFIM Applied on Real Case Studies
Association rule mining is a data mining technique widely used in
very different research fields and applications. This chapter is

dedicated to the use of ARM, in particular the pattern mining
step, on real microbiome case studies. In detail, three case studies
was chosen to demonstrate the potentials of ARM andmicroFIM:
the ECAM dataset (Bokulich et al., 2016), the vaginal microbiome
case study of Ravel et al. (2011) and the Montassier case study
(Montassier et al., 2016) (see Section 2 for details). Considering
the potential of ARM to reconstruct patterns, we focused the
analysis on three main aspects: the type of input used, the filter of
patterns whose elements are highly related to each other (also
called hyperclique patterns; Xiong et al., 2006) and the use of
metadata to filter and apply ARM.

FIGURE 4 | For Input 1, 2 and 3, here number of patterns obtained (1a, 2a, 3a), distribution of support values (1b, 2b, 3b) and distribution of pattern lengths (1c, 2c,
3c) are shown. In particular, three levels of analysis are shown: no filters applied to patterns, a minimum all-confidence of 0.5 and a minimum all-confidence of 0.8.
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To evaluate how ARM can be used on microbiome data,
different types of inputs were considered. In particular, for the
ECAM case study, we used: 1) the ECAM taxa table obtained
directly from QIIME2 datasets (Bolyen et al., 2018) in which only
taxa assigned to genus level, with a relative abundance > 0.1% in
more than 15% of samples, are considered (Input 1—data are
available in Supplementary File S3); 2) family table obtained
from collapsing the original one via QIIME2 plugins (Input
2—Supplementary File S4); 3) a taxa table consisting only of
taxa with complete taxonomy at the genus level (Input
3—Supplementary File S5).

Minimum support thresholds of 0.2, minimum length of 3 and
maximum length of 15 were considered. In Figure 4 we show the
results about the number of patterns retrieved considering three
levels of analysis: output after the analysis previously described,
patterns filtered with a minimum all-confidence of 0.5 and
patterns filtered with a minimum all-confidence of 0.8. In
Figure 4, for each filter, the distribution of support values and
pattern length are provided.

In detail, Input 1 (Supplementary File S3) generated a total of
1,844,696 patterns. The mean support achieved by the patterns
generated is 0.3 and a median of 0.2, with a minimum value of 0.2
and maximum value of 0.7. Regarding the pattern length, the
mean value is 8.45, while the median is 8, with a minimum value
of 3 and maximum value of 16.

Family table (Input 2—Supplementary File S5) generated a
total of 23,997 patterns. The mean support achieved by the
patterns generated is 0.28 and a median of 0.24, with a
minimum value of 0.2 and maximum value of 0.85. Regarding
the pattern length, the mean value is 6.38, while the median is 6,
with a minimum value of 3 and maximum value of 12.

Regarding genus table (Input 3—Supplementary File S6),
ARM analysis generated a total of 25,250 patterns. The mean
support achieved by the patterns generated is 0.25 and a median
of 0.23, with a minimum value of 0.2 and maximum value of 0.85.
Regarding the pattern length, the mean value is 6.14, while the
median is 6, with a minimum value of 3 and maximum value of
11. All the results are available in Supplementary Tables S6–S8,
respectively, and can be visualized in Figure 4.

In order to consider the putative informative patterns, a
framework involving hypercliques patterns (Xiong et al., 2006)
was applied. In particular, the all-confidence metric was
considered at 0.5 and 0.8 thresholds for all the datasets
analysed (Inputs 1–3).

Regarding the Input 1 (Supplementary File S3), a total of
2,213 patterns were extracted considering an all-confidence of
0.5, while no patterns were obtained with 0.8 threshold. First all-
confidence threshold resulted in patterns with a mean and a
median support value was 0.43, with a minimum value of 0.21
and amaximum of 0.72. Pattern length consisted in a mean of 3.9,
a median length of 4, with minimum and maximum of 3 and 7,
respectively.

Regarding the Input 2 (Supplementary File S4), a total of
2,081 patterns were extracted considering an all-confidence of
0.5. A mean support of 0.53 and a median support was 0.51 were
observed, with a minimum value of 0.21 and a maximum of 0.85.
Pattern length consisted of a mean of 4.98, a median length of 5,

with minimum and maximum of 3 and 9, respectively. A total of
78 patterns were extracted considering an all-confidence of 0.8. A
mean support of 0.72 and a median support was 0.73 were
observed, with a minimum value of 0.51 and a maximum of
0.85. Pattern length consisted of a mean of 3.23, a median length
of 3, with minimum and maximum of 3 and 4, respectively.

Regarding the Input 3 (Supplementary File S5), instead, a
total of 25,250 patterns were extracted considering an all-
confidence of 0.5, while no patterns were obtained with 0.8
threshold. First all-confidence threshold resulted in patterns
with a mean of 0.25 and a median support value of 0.23, with
a minimum value of 0.2 and a maximum of 0.72. Pattern length
consisted in a mean of 6.14, a median length of 6, with minimum
and maximum of 3 and 11, respectively.

For demonstrative purposes, a Jaccard heatmap considering
samples belonging to the first sampling date of the ECAM dataset
of the Input 3 table (Supplementary Table S5) was generated, in
order to show a potential use of Jaccard distance on pattern
analysis (available in Supplementary Figure S11). In general,
results are summarized in Figure 4 and tables are available in
Supplementary Tables S8–S10, respectively.

Overall, Input 1 obtained the highest number of patterns,
achieving 1,844,696 patterns. The support distribution has a great
range of values for all the three datasets, from 0.2 to almost 0.8.
Also length achieved a wide range of values, considering patterns
from 3 elements length to almost 16. In general, a great reduction
in the number of patterns was observed considering the all-
confidence filtering (Figure 4—sections 1a, 2a and 3a). In parallel,
this filter resulted in higher support values (Figure 4—sections
1b, 2b and 3b) and lower pattern length (Figure 4—sections 1c, 2c
and 3c).

Metadata filtering was applied to the genus ECAM dataset,
considering two category types: antibiotic administration and
type of delivery. The complete results of the pattern analysis are
available in Supplementary Table S12. Overall, a total of 141,480
patterns were obtained from the data belonging antibiotic
administration, while the opposite obtained a total of 8,223.
Vaginal delivery resulted in a total of 45,412 patterns, while
cesarean delivery samples resulted in 10,288. Also in this case, the
usage of all-confidence filtering drastically reduced the number of
explorable patterns, achieving the following results: 2 and 1
patterns for antibiotic administration and vaginal delivery,
respectively, and 0 patterns for the opposites.

microFIM was also applied to other two real case studies:
vaginal microbiome obtained by the work of Ravel et al. (2011)
and the dataset of Montassier case study (Montassier et al., 2016).
Considering the first one, different input types and metadata
filtering were used: in particular, the dataset was obtained from
the MLRepo collection (Vangay et al., 2019). Then, family level
and genus level dataset were obtained. Dataset can be identified as
Input 4 (dataset available in MLRepo; Vangay et al.,
2019—Supplementary File S15A), Input 5 (dataset at the
family level—Supplementary File S15B) and Input 6 (dataset
at the genus level—Supplementary File S15C). As for the ECAM
analysis, results are presented considering the three main input
types and the number of distribution of patterns are evaluated as
the previous scheme.
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In particular, Input 4 (Supplementary File S15A)
generated a total of 83 patterns. The mean support
achieved by the patterns generated is 0.2 and a median of
0.2, with a minimum value of 0.2 and maximum value of 0.5.
Regarding the pattern length, the mean value is 3.1, while the
median is 3, with a minimum value of 3 and maximum value
of 4. Family table (Input 5—Supplementary File S15B)
generated a total of 226 patterns. The mean support
achieved by the patterns generated is 0.25 and a median of
0.23, with a minimum value of 0.2 and maximum value of
0.55. Regarding the pattern length, the mean value is 3.68,
while the median is 4, with a minimum value of 3 and
maximum value of 6. Regarding genus table (Input
6—Supplementary File S15C), ARM analysis generated a
total of 225 patterns. The mean support achieved by the
patterns generated is 0.25 and a median of 0.24, with a
minimum value of 0.2 and maximum value of 0.46.
Regarding the pattern length, the mean value is 3.77, while
the median is 4, with a minimum value of 3 and maximum
value of 6. All the results are available in Supplementary
Tables S15D–F, respectively, and can be consulted in
Supplementary Table S14.

Minimum all-confidence of 0.5 and 0.8 were considered to
evaluate hypercliques patterns. Regarding the Input 4
(Supplementary File S15A), 16 patterns were extracted
considering an all-confidence of 0.5, while no patterns were
obtained with 0.8 threshold. First all-confidence threshold
resulted in patterns with a mean of 0.23 and a median support
value was 0.21, with a minimum value of 0.2 and a maximum of
0.48. Pattern length consisted in a mean of 3.06, a median length
of 3, with minimum and maximum of 3 and 4, respectively.

Input 5 (Supplementary File S15B) obtained two patterns,
considering an all-confidence of 0.5, while no patterns were
obtained with 0.8 threshold. The 0.5 all-confidence threshold
resulted in patterns with 0.46 and 0.55 support values. Both
patterns have a length of 3.

Regarding the Input 6 (Supplementary File S15C), 15
patterns were extracted considering an all-confidence of 0.5,
while no patterns were obtained with 0.8 threshold. First all-
confidence threshold resulted in patterns with a mean and a
median support value was 0.3, with a minimum value of 0.25 and
a maximum of 0.38. Pattern length consisted in a mean of 3.13, a
median length of 3, with minimum and maximum of 3 and 4,
respectively.

Overall, the support distribution has a low range of values for
all the three input files, from 0.2 to almost 0.5. Length is around 3
elements per pattern. In general, also in this case a great reduction
in the number of patterns was observed considering the all-
confidence filtering (Supplementary Table S14).

Metadata filtering was applied to the dataset, considering the
nugent category, low and high levels. The complete results of the
pattern analysis are available in Supplementary Table S14.
Overall, a total of 15,836 patterns were obtained from the data
belonging to high nugent score value, while the opposite obtained
a total of 21. The usage of all-confidence filtering drastically
reduced the number of explorable patterns, obtaining 16 patterns
for high nugent score value.

Finally, Montassier dataset (Montassier et al., 2016) was tested
considering the OTU table and taxa table obtained fromMLRepo
pipeline (Vangay et al., 2019). A minimum support threshold of
0.9 was considered, with a minimum length of 5 and a maximum
length of 10. A total of 446 patterns were obtained considering the
taxa table, while 9 patterns were obtained considering the
OTU table.

Distributions of pattern and length are similar between the
two input files. In particular, a mean support of 0.93 and a mean
length of 5.1 (5–6) were detected.

4 DISCUSSION

Pattern mining strategies are now newfangled solutions for
disclosure of microbial patterns (Tandon et al., 2016; Liu
et al., 2021). However, besides the power of these techniques,
great efforts must be undertaken to extrapolate relevant patterns
that can be integrated into biological contexts (Naulaerts et al.,
2015; Faust, 2021).

Basically, the strategy consists of two main phases: 1)
extraction of patterns (also known as “frequent itemset
mining”) and 2) rules calculation. In this work, we focused in
particular on the first phase, as great potential can be achieved
considering the exploration of patterns at any length and
subsequently be filtered to create reliable associations.

In detail, our Section 4 will touch two main topics: 1)
considerations about parameter settings to perform pattern
mining strategies in the context of 16S rRNA metabarcoding
data and 2) guidelines and future perspectives to support real
applications. In order to present an overview of frequent itemset
mining as a tool for microbiome pattern analysis, we developed a

FIGURE 5 | Overview of the main strengths, weaknesses, opportunities
and threats (SWOT analysis) related to the use of frequent itemset mining as a
tool for microbiome pattern analysis.
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SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis
(Figure 5).

4.1 Run Association Rule Mining Could Not
Be Enough Without Care in Setting
Parameters
As described above, pattern mining strategies can be powerful to
get insights from large and complex datasets (Naulaerts et al.,
2015). However, pattern analysis may have limitations (Faust,
2021). In this work, we provide ARM analysis on both simulated
and real datasets and propose microFIM (https://github.com/
qLSLab/microFIM), a Python tool specifically suited for
microbiome pattern analysis. Our results will consider the
pattern composition obtained through our framework (Section
2) without considering their biological implications, as it is
beyond the scope of this work.

Considering the application of ARM on simulated datasets, we
showed that initial settings can reduce the amount of information
retrievable, both considering interest measures as support or
length and all-confidence metric.

Regarding the application on the real case studies, a few
considerations can be made. First of all, the type of input can
change the reliability of results: different numbers of patterns
have been generated considering different input types. In
particular, both considering aspects related to data
visualization and interpretation, the taxonomy level of
investigation must be considered.

A second point that arises is the minimum support threshold
to choose. The choice can be both related to biological questions,
as for example which is the minimum number of samples to
retain a pattern interesting, but also on technicalities. In detail,
exploring all the potential patterns cannot be reliable and useful,
as the number of patterns can be very high, related also to great
computational efforts and visualization issues (Naulaerts et al.,
2015). For this reason, we started using a support of 0.2, that
means that only the taxa that co-occur in at least the 20% of
samples were considered (up to 175 of 875 for the ECAM dataset
and up to 77 of 388 for the Ravel case study). However, this is a
case-specific threshold as no guidelines exist to set a correct
support threshold in this research field. The wrong value can
potentially hide information and, at the same time, create
spurious patterns. In addition, it can generate misleading
results without taking into account the Simpson’s paradox
(Tan et al., 2002), a phenomenon in which a pattern appears
frequently but disappears or drastically changes when the data are
combined differently, as for example considering only a set of
samples (Tan et al., 2002).

Nevertheless, once patterns are generated, filtering steps can
be added, in order to both reduce the information and better
evaluate specific patterns, with peculiar characteristics. Filters can
include the length of patterns or additional interest measures
(Agrawal et al., 1993; Karpinets et al., 2012; Naulaerts et al., 2015).

Pattern length, in particular, can be also included before
running the analysis, as algorithms take into account a
minimum and a maximum value of pattern length, in order to
reduce the number of explorable patterns (Agrawal et al., 1993).

However, this choice must be done before exploring the results.
Of course, it is possible to reduce the number of patterns after
extraction, but computational efforts and running time must be
considered (Agrawal et al., 1993; Naulaerts et al., 2015). Pattern
length can also vary based on the research field of application and
the biological questions. In the ECAM case study, for example, we
observed different median values of pattern length, from
minimum values of 3 to maximum of 16, suggesting also
different levels of analysis.

However, other metrics can be included to filter patterns (Tan
et al., 2002; Omiecinski, 2003; Franceschini et al., 2012; Tang
et al., 2012). Usually they are called “interest measures” and are
generally used to evaluate a set of peculiar patterns, in order to
filter the interesting ones (Tatti and Mampaey, 2010; Hussein
et al., 2015; Naulaerts et al., 2015). Also in this case, the biological
question can guide how to properly set the filtering step. In this
work, we used all-confidence metrics, which generate hyperclique
patterns (Omiecinski, 2003; Xiong et al., 2006). The application of
this metric helps to find groups of items (in this case species or
taxa) where items belonging to the same pattern are highly
affiliated with each other and can generate rules with the
minimum threshold chosen. Using this approach reduces
drastically the number of patterns and, in addition, allows to
filter only strong associated groups. In this case, the amount of
information was drastically reduced considering the two
thresholds of all-confidence considered (0.5 and 0.8). This
reduction can promote a manual exploration of results and
pave the way for exploring strong associations and putative
rules. Clearly, other interest measures can be applied. All-
confidence may not be the only interest measures useful for
microbiome analysis. Other metrics can be selected to filter
patterns, but they must be identified based on specific
questions related to the research field of application (Naulaerts
et al., 2015).

4.2 Fitting Association Rule Mining for
Microbiome Studies: Guidelines to Support
Real Applications
Frequent itemset mining and, subsequently, association rule
mining, is a pattern mining technique able to explore items
that co-occur with a certain frequency, as sets of commercial
products that customers buy together in the classic supermarket
basket problem (Agrawal et al., 1993; Naulaerts et al., 2015). The
flexibility of frequent itemset mining techniques is demonstrated
by the wide range of bioinformatics applications, from for
example SNPs association studies to annotations and motif
association exploration (Carmona-Saez et al., 2006; Koyuturk
et al., 2006; Alves et al., 2010; Karpinets et al., 2012; Manda et al.,
2012; Manda et al., 2013; Zhou et al., 2013; Agapito et al., 2015;
Boutorh and Guessoum, 2016; Naulaerts et al., 2016; Manda,
2020; Ong et al., 2020). It is a powerful instrument to explore
patterns from large and complex data sets (Agrawal et al., 1993;
Karpinets et al., 2012; Naulaerts et al., 2015), providing different
algorithms and a wide range of parameters to filter patterns of
interest. Besides the most used, as support (frequency of a pattern
or a rule in the dataset) or length (the number of species
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contained in a pattern), other metrics can be included in the
pattern analysis (Naulaerts et al., 2015; Agrawal et al., 1993;
Hornik et al., 2005). Beside its potentials, great efforts have to be
made to perform pattern mining strategies on microbiome data
and obtain reliable and interpretable results, with sound
biological implications. As mentioned above, a few points
raised from the works done. From threshold choices to input
data types, setting pattern analysis is not an easy task.
Considering the peculiarities of microbiome data and the
flexibility of the technique, here we propose five statements to
guide researchers before starting ARM analysis.

4.2.1 Setting the Input Data
This point highlights the importance of the type of pattern to be
considered. In the microbial ecology field, a lot of interest
probably regards the investigation of species patterns, in order
to evaluate community patterns and putative ecological
processes. However, this is not straightforward if we consider
16S rRNAmetabarcoding data: taxonomy does not always reach a
species level and this uncertainty can negatively impact pattern
reconstruction. In addition, noise derived from contamination or
sequencing biases can be present (Faust and Raes, 2012; Balint
et al., 2016; Gloor et al., 2017; Faust, 2021). However, precautions
can be taken: removing uncertain taxa or cleaning the table based
on abundance thresholds or statistical methods is possible (Faust
and Raes, 2012; Balint et al., 2016; Gloor et al., 2017). Different
levels of taxonomy can be used as input, as we also demonstrated
in the previous sections. Of course, choices must be taken with
conscience as they will impact on the final result and therefore the
interpretation must be correctly contextualized.

4.2.2 Consider the Use of Metadata
The inclusion or filtering considering metadata information can
improve the reliability of the method, both looking for specific
patterns linked to metadata and also to better explore the dataset.
In this way, we can reduce the information to be explored,
lowering the support value, retaining rare or patterns related
to specific metadata, and preventing Simpson’s paradox issues
(Agrawal et al., 1993; Naulaerts et al., 2015).

4.2.3 Individuate What is Interesting for the Specific
Case Study
The definition of what is interesting depends on the biological
context at issue. No simple guidelines exist, as the application of
pattern mining on microbiome data is still in its infancy
(Naulaerts et al., 2015). Testing and developing new metrics is
an important field of research and can make a difference to track
reliable patterns that can be further used for classification tasks or
functional analysis. In this work, we applied the all-confidence
metric (Omiecinski, 2003; Xiong et al., 2006). However, we
believe that other interest measures can be applied and a wide
variety of them are available in other tools already developed
(Hahsler et al., 2005; Hahsler et al., 2011). In general, this step
allows to drastically reduce the number of explorable patterns
(Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).

Basically, length can be used to clean the information extracted
via ARM. As ARM can generate patterns at any length, single

items or only pairs of items can be pruned, in order to find
interesting associations composed by 3 or more elements. From a
biological point of view, exploring longer microbial patterns can
enhance microbial community investigations and pave the way
for high-order interactions exploration (Faust, 2021).

4.2.4 Consider Computational Time
As fully described in previous works, data dimensions and density
drastically increase time calculation and memory usage (Agrawal
et al., 1993; Naulaerts et al., 2015). Reducing input data can make
ARM more reliable and faster to be performed (Agrawal et al.,
1993; Naulaerts et al., 2015). In addition, beside the common
concept of pattern, closed and maximal patterns exist. Both result
in a faster extraction, but with a reduction of information
(Agrawal et al., 1993; Naulaerts et al., 2015).

Overall, the inclusion of interest measures directly into the
ARM framework may favour the development of new faster
algorithms, leading the technique directly to the exploration of
specific patterns (Omiecinski, 2003; Xiong et al., 2006; Naulaerts
et al., 2015).

4.2.5 Tools and Visualization Strategies
To better suit pattern mining for microbiome data applications,
tools and visualization techniques are essentials (Naulaerts et al.,
2015). In detail, in this work we tried to concept a new pattern
mining output combining the common microbiome output with
pattern analysis. The pattern table can be an important resource
to perform and visualize pattern results in a microbial
perspective. In addition, it allows further statistical analysis
that is usually performed for microbiome data. Considering
the visualization process, we set up different plots to have an
overview of pattern distributions and create a Jaccard matrix to
show the distance between samples. However, different
visualization methods exist, based on tables, matrices and
graphs (Naulaerts et al., 2015). Here we cite the R packages
arulesviz, FPViz andWiFIsViz (Hornik et al., 2005; Hahsler et al.,
2011; Naulaerts et al., 2015). Even though these visualizations
allow different strategies to explore data, issues related to high
dimensional dataset remain and none of them are conceptualized
for microbiome analysis. At the same time, collecting human
readable information can facilitate data visualization strategies
and interpretation (Naulaerts et al., 2015), but of course
interesting measures must be considered. Finally, considering
practicality of use, several ARM implementations can be utilized
(Naulaerts et al., 2015). Moreover, frameworks have been
implemented, often accompanied by GUI (Graphical User
Interface) or interactivity components (Naulaerts et al., 2015).
However, a deepening in the microbiome field has not been
established yet.

4.2.6 Evaluation and Benchmarking Strategies
From a computational point of view, the complexity and
dynamics of microbial communities leads to difficulties in
developing and testing methods to evaluate them. In general,
it was demonstrated that microbial co-occurrence analysis may be
an extraordinarily promising approach for studying microbiomes
(Faust and Raes, 2012). Several works explained how co-
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occurrences reveal indications about ecological processes shaping
community structure (Lima-Mendez et al., 2015), exploring hub
species and potential microorganisms relationships (Berry and
Widder, 2014). Further, Ma et al. (2020) showed how global
microbial co-occurrence analysis and network reconstruction
may be an encouraging strategy to reveal patterns and explore
new mechanisms. However, besides these results, transform
microbiome data into purposeful biological insights remain
challenging, as also demonstrated by different evaluations
(Faust and Raes, 2012; Berry and Widder, 2014), and open
questions still remain (Faust and Raes, 2012; Layeghifard
et al., 2017; Ma et al., 2020; Faust, 2021). The use of ARM on
microbiome data models or datasets created in-silico will be
necessary to disentangle the potentials of ARM in the
microbiome research field, also considering the range of
microbiome aspects that can be considered (Weiss et al., 2016;
Hosoda et al., 2020; Faust, 2021). In particular, tests should
examine how the technique is affected by noise signals, both
related to sequencing and laboratory protocols (Weiss et al.,
2016). In addition, as microbiome data may potentially
describe a complex and intricate ecological community, several
ecological aspects can be evaluated with ARM, both describing
the generation of redundant information and the difficulty
associated with extracting patterns due to specific ecological
behaviors, as for example competition, exclusion or symbiosis
(Faust and Raes, 2012; Weiss et al., 2016; Faust, 2021).

In general, recent advancements in data integration and data
reuse strategies may enhance the exploration of microbial
patterns from large-scale studies (Jordan and Mitchell, 2015;
Ma et al., 2020; Su et al., 2020; Ghannam and Techtmann,
2021). Microbiome simulators and in vitro studies can be a
great instrument for benchmarking works and improve
guidelines to apply ARM (Faust, 2021). Beside the potential of
ARM on large scale analysis, giving a great overview of data under
investigation (Naulaerts et al., 2015), these advancements may
contribute to developing tests and benchmarking strategies in
order to set ARM for microbial pattern research looking at
biological implication, specifically.

Concluding, all the challenges mentioned above can
disentangle ARM analysis for microbiome pattern exploration.
As the output of the analysis can be extensive and redundant,
results should be interpreted with caution. The associations
extracted do not necessarily imply causality. Instead, it
suggests a strong co-occurrence relationship between species.
Causality, on the other hand, requires knowledge about the
causal and effect attributes in the data (Tan et al., 2002).
There are several approaches to evaluate the robustness of an
output. In this first work, pattern length, support and all-
confidence were explored and included in the microFIM tool.
From a biological perspective, filtering results with these
parameters could help to highlight meaningful patterns, but
may not be enough. Further, we tried to depict issues that we
think must be considered before using an ARM approach for
specifical biological traits. As there is an interest in research to

exploit data mining techniques, citing for example the works of
Srivastava et al., 2019 or Zakrzewski et al., 2017, we also think that
suiting ARM for microbiome analysis will be a great resource in
the future. Considering the huge amount of data available and
produced with the advent of High-Throughput DNA Sequencing
(HTS) technologies, an increasing selection of large-scale data
science strategies seems to have enormous potential in resolving
challenges in microbiome pattern exploration (Jordan and
Mitchell, 2015; Kypides et al., 2016). Association rule mining
and microFIM tools may have great potential not only with 16S
rRNA metabarcoding data, but also in a wide range of
applications. As also supported by Naulaerts et al. (2016),
ARM analysis is a versatile technique: the integration of files
such as taxa tables guarantees the usage also on a wide variety of
datasets belonging from different sources, as for example the
QIITA platform (https://qiita.ucsd.edu/; Gonzales et al., 2018) or
the MLrepo (https://knights-lab.github.io/MLRepo/; Vangay
et al., 2019), but not only. Beside the main focus of this work
and microFIM development, very different types of data can be
analysed and integrated with ARM framework. From gene
associations to merely metabarcoding projects, whose output
has the same structure of 16S rRNA taxa table, microFIM may
potentially pave the way for multiple usages, creating a bridge
with several research fields and applications.
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Interactive, Visual Simulation of a
Spatio-Temporal Model of Gas
Exchange in the Human Alveolus
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1Supramolecular and Cellular Simulations, Center for Computational and Theoretical Biology, Faculty of Biology, University of
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In interdisciplinary fields such as systems biology, good communication between
experimentalists and theorists is crucial for the success of a project. Theoretical
modeling in physiology usually describes complex systems with many
interdependencies. On one hand, these models have to be grounded on experimental
data. On the other hand, experimenters must be able to understand the interdependent
complexities of the theoretical model in order to interpret the model’s results in the
physiological context. We promote interactive, visual simulations as an engaging way to
present theoretical models in physiology and to make complex processes tangible. Based
on a requirements analysis, we developed a new model for gas exchange in the human
alveolus in combination with an interactive simulation software named Alvin. Alvin exceeds
the current standard with its spatio-temporal resolution and a combination of visual and
quantitative feedback. In Alvin, the course of the simulation can be traced in a three-
dimensional rendering of an alveolus and dynamic plots. The user can interact by
configuring essential model parameters. Alvin allows to run and compare multiple
simulation instances simultaneously. We exemplified the use of Alvin for research by
identifying unknown dependencies in published experimental data. Employing a detailed
questionnaire, we showed the benefits of Alvin for education. We postulate that interactive,
visual simulation of theoretical models, as we have implemented with Alvin on respiratory
processes in the alveolus, can be of great help for communication between specialists and
thereby advancing research.

Keywords: interactive simulation, visualization, theoretical modeling, lung physiology, requirements analysis,
spatio-temporal resolution, education

1 INTRODUCTION

Systems biology is a highly interdisciplinary research field that integrates theoretical modeling and
experimental data (Gavaghan et al., 2006). A key component of projects with valuable scientific
progress is close cooperation between experimentalists and theorists (Byrne et al., 2006; Drubin and
Oster, 2010; Welsh et al., 2006). However, this entails certain challenges. Different ways of thinking
and terminologies or jargon often hinder communication between the disciplines. Ongoing efforts to
bridge the gap include educational reviews [e.g., (Sharpe, 2017; Fischer, 2019)], summer schools,
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special research programs (https://www.newton.ac.uk/event/cgp/
) and large multi-laboratory initiatives such as the Virtual
Physiological Human (Viceconti et al., 2008) or The Virtual
Brain (https://www.thevirtualbrain.org). Key components of
these approaches are informative visualizations and the
possibility of hands-on experience.

The goal of our study was to create a tool to better present
modeling results to experimenters. To this end, we consider
communicating results of mathematical modeling in
physiology. In publications, models are usually presented as
follows (Mogilner et al., 2011): The model definition is given
in terms of mathematical equations, occasionally supported by
schematic diagrams describing the model structure. For the
corresponding simulations, all parameter values are listed and
the output is visualized in graphs and compared with
experimental data, where appropriate. When modeling spatial
structures and processes, the simulation output is presented in
still images or, if possible, animations (Chao, 2003; Lin et al.,
2004; Saber and Heydari, 2012). As an alternative for the
communication of state of the art theoretical models, we
promote interactive, visual simulation. Previous approaches
include computer-aided diagnosis software (Xiong et al., 2017;
Conover et al., 2018) or systems for medical education (Jacob
et al., 2012; Jamniczky et al., 2012; Costabile, 2021). We focus on
the human lung. Existing interactive systems for teaching in this
field address respiratory mechanics (Kuebler et al., 2007; Warliah
et al., 2012) or gas exchange (Kapitan, 2008). All above systems
for teaching convey established educational content. They have
not been intended to advance the current state of research. In
contrast, (Winkler et al., 1995) argue that their interactive system
has great utility beyond its educational use. They have developed
an application that provides an interactive interface with a
simulation of a multi-compartment model. Ventilation
mechanics, gas transport, gas mixing and gas exchange are
considered. However, the actual process of gas exchange, the
key functionality of the human lung, remains as abstract as the
site where it occurs.

We thus focused on the smallest functional unit of the lung -
the alveolus. The overarching goal was to provide an interactive
visualization of the process of gas exchange in the human alveolus
for research and education. We refined and combined existing
models (Weibel et al., 1993; Dash et al., 2016) to cover the
complete transport of oxygen into hemoglobin. The resulting
model provided the computational core for an interactive
simulation software named Alvin. Alvin facilitates
investigations of relationships between morphological and
physiological factors and the course of gas exchange. The
software enables systematic investigations of our model with
respect to experimental data. We aimed to maximize the
usability of Alvin for both research-related and educational
usage. As an exemplary use case in research, we present a
plausibility check of pulmonary diffusion capacity
measurements. Concerning the applicability of Alvin in
teaching, we present the details of its integration into a digital
physiology lab course for undergraduate students and the results
of a corresponding survey among its participants. The software is
available for download at https://go.uniwue.de/alvin.

Particular about our work is the development of the
mathematical model with the aim of visualization in combination
with the requirements-based engineering of the simulation software.
This resulted in an advanced gas exchange model and an interactive
application that exceed the existing standard. Specifically, design
features as the ability to run and compare multiple simulation
instances at the same time and the combination of providing
parameter value presets as well as allowing parameter
configurations by the user are key contributions to the field. This
results in an educationally valuable application that also allows
revealing unknown underlying assumptions of results presented
in the literature. Taken together, our work demonstrates that an
interactive, visual simulation is a versatile and powerful tool to
visualize modeling results for both researchers and students.

2 METHODS

On the basis of our goals, corresponding requirements were
defined in a user-centered engineering approach. Our
interdisciplinary team included a development team (AK, AM,
KS) and supervising experts (SvM for games engineering, SCF for
mathematical modelling, KP for physiology education). Concepts
on requirements were first drafted within the development team.
These concepts were then either acknowledged by experts/
stakeholders in a quality gateway or returned for revision. The
higher-level requirements could be categorized into three groups:
Scientific (S), educational (E) and accessibility (A) requirements.

S.1. Gas exchange model suitable for interactive configuration.
S.2. Interfaces for interaction.
S.3. Quantitative simulation output.
S.4. Visual feedback that emphasizes the connection between
structure and function of the alveolus.
E.1. Presentation of educationally relevant respiratory
phenomena.
E.2. Facilitate autonomous work with the application.
A.1. Compatibility with common devices (computers or
tablets with windows, iOS or linux).
A.2. Simple and clear GUI (to enhance the intuitive use of the
system).
A.3. Applicability to the widest possible range of scientific
issues.

In an iterative process, system requirements and final design
requirements were developed from these higher-level user
requirements (and recorded in a total of 166 GitLab issues).
The complete set of requirements is listed in Section S1.1 of the
Supplementary Material.

3 RESULTS AND DISCUSSION

3.1 Integrative Alveolar Gas Exchange
Model
The human lung consists of progressively branching bronchi and
bronchioles, and blood vessels follow this structure (Hsia et al.,
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2016). The respiratory zone begins where the first alveoli adjoin
the bronchioles (Haefeli-Bleuer and Weibel, 1988). Alveoli are
hollow protrusions that have a large surface area and a thin tissue
barrier. They are surrounded by a dense network of fine
capillaries (Weibel and Gomez, 1962). Within an alveolus,
inhaled air passes through the cavity and gas exchange with
the capillary blood takes place through the tissue barrier (Weibel,
2009). An alveolus thus represents the smallest functional unit of
the lung. We established a spatio-temporal model of gas exchange
in the human alveolus based on empirically established models
(Weibel et al., 1993; Dash et al., 2016) (requirement S.1). This
entailed the integration of the established models and the
alignment of their numerical scales. Any gaps in the model
had to be identified and closed. Finally, the new model was
validated against data from the literature.

3.1.1 Model
The process of gas exchange in an alveolus can be divided into
two sequential steps (Roughton and Forster, 1957): 1. The
diffusion of oxygen through the tissue barrier into the blood
and red blood cells and 2. its binding to hemoglobin (Hb). For
each step, we adopted an established model describing this
process (Weibel et al., 1993; Dash et al., 2016). By integrating
the two sub-models into a complete model we can simulate the
entire process of gas exchange inside an alveolus. The diffusion of
oxygen across the alveolar wall is calculated based on Fick’s law
(Weibel et al., 1993), resulting in

] � DMO2 · ΔpO2 � KO2 ·
s

τ
· ΔpO2 (1)

The oxygen flow ] across the barrier is a function of the
pressure gradientΔpO2 between air and blood andmorphological
parameters that contribute to the so called membrane diffusing
capacity for oxygen DMO2. More precisely, DMO2 comprises the
ratio between surface area s and barrier thickness τ multiplied by
the permeability coefficient KO2. Standing alone, this calculation
would yield a mean quantity of oxygen flow in the alveolus.
However, the potential of visualization should be exploited and
the course of diffusion along the capillary should be shown in the
alveolar model. This is particularly interesting as partial pressures
of respiratory gases inside the blood are not homogeneous in the
alveolar region. Gas exchange leads to oxygen (O2) and carbon
dioxide (CO2) pressure gradients in the alveolar capillary. In a
healthy individual, blood enters this area with a low partial
pressure of oxygen (pO2) and a high partial pressure of
carbon dioxide (pCO2). Diffusion of O2 from the alveolus into
the capillary and of CO2 out of the capillary into the alveolus
gradually increases pO2 and decreases pCO2 until the distribution
of gases reaches equilibrium (Powers and Dhamoon, 2019).
Hence, the course of pressure gradients depends on the
efficiency of gas diffusion and the blood flow velocity. To map
O2 and CO2 pressure gradients in our model, a representative
capillary was divided into subsections of equal size (Figure 1).
Oxygen diffusion from the alveolar space into the different
sections is calculated successively starting with the first
section. Here, blood enters with a preset pO2. This involves a
partial pressure gradient with respect to the alveolar space. The

diffusion along this gradient is calculated according to Eq. 1. The
absolute amount of oxygen that reaches this capillary section is
calculated from this oxygen flow and the blood flow velocity. It
affects the pO2 of the blood in the next section, which is
considered in a new calculation cycle and so on.

The quantity of CO2 diffusing out of the capillary and into the
alveolus is determined via the respiratory exchange ratio from the
quantity of oxygen that is taken up by the blood. The respiratory
exchange ratio is defined as the amount of CO2 produced divided
by the amount of O2 consumed. This ratio is assessed by
analyzing exhaled air in comparison with the environmental
air and its average value for the human diet is around 0.82
(Sharma et al., 2020). Taken together, this provides a time-
resolved model for the first step of gas exchange: The
diffusion of oxygen from inhaled air into the capillary blood
of the alveolus and of carbon dioxide in the reverse direction.

In a second step, the binding of O2 and CO2 to hemoglobin
was adopted from (Dash et al., 2016), such that

SHbO2 �
pO2/p50( )

nH

1 + pO2/p50( )
nH (2)

Hemoglobin oxygen saturation (SHbO2) is expressed as a Hill
function depending on pO2, the Hill coefficient nH and p50, the
value of pO2 at which hemoglobin is 50% saturated with O2. The
parameter nH, in turn, depends on pO2. Polynomial expressions
describe the dependence of p50 on pCO2 in the blood, blood
temperature, the pH inside erythrocytes (pHrbc) and
concentration of the organic phosphate 2,3-
bisphosphoglycerate ([2,3]-DPG). These dependencies have
been described and fitted to several experimental data sets
(Dash et al., 2016) for a wide range of parameter values
(fulfills requirement A.3.1). In our model, SHbO2 is calculated
for each section according to the pO2 and pCO2 gradients along
the capillary sections determined in step 1. Hence, we obtain the
distribution of blood oxygen saturation along the capillary as the
main output of our model.

Together, this yields a model for the complete process of
oxygen transport from inhaled air into hemoglobin in the blood
with spatio-temporal resolution. All parameters essential for the
model and their default values were collected from the literature
and represent a normal, healthy condition (Table 1).

3.1.2 Model Validation
In a first step of model validation, we analysed whether the two
submodels from step 1 and step 2 had been sensibly adapted from
the literature. In our model, oxygen diffusion is estimated for a
single alveolus with a surface area of 121,000 μm2. Other
parameters affecting DMO2 (namely tissue barrier thickness
and permeability coefficient, see Eq. 1) were adopted without
change. DMO2 of the whole lung in relation to body weight (bw)
was estimated as 0.079 ml/(s ×mmHg × kg) (Weibel et al., 1993).
To compare our model result (DMO2

(model) � 6 × 10–9 ml/(s ×
mmHg)) withWeibel’s estimate, it needs to be extrapolated to the
organ scale. Multiplying DMO2

(model) by the number of alveoli in
the human lung (480 × 106 (Ochs et al., 2004)) results in a
DMO2

(model, extrapolated) of 2.88 ml/(s × mmHg). This value is
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distinctly lower than the DMO2 estimated by Weibel et al.,
assuming a standard body weight of 70 kg: DMO2

(Weibel, bw 70

kg) � 5.53 ml/(s × mmHg). This estimate has been based on
morphometric studies in fully inflated, fluid-filled lungs (Weibel
et al., 1993). It is recognized that in an air-filled lung, however,

only about 60–70% of the alveolar surface is exposed to air (Gil
et al., 1979; Bachofen et al., 1987). The default value for surface
area in our model was taken from studies on perfusion-fixed, air-
filled lungs (Mercer et al., 1994). Hence, our combination of
parameter values for the surface area of a single alveolus (Mercer

FIGURE 1 | Schematic representation of themodel capillary with erythrocytes, separated from alveolar space by a single cell layer of alveolar epithelium. (A) In order
to reconstruct O2 and CO2 pressure gradients along the capillary, it is divided into sections of equal size. The pressure gradient between alveolar space and blood (ΔpO2)
and the resulting flow of oxygen along this gradient is calculated for each section subsequently, as oxygen flow into one section affects pO2 and thus ΔpO2 of the next
section. Calculation of oxygen diffusion depending on ΔpO2 is based on Fick’s law (Weibel et al., 1993). (B) According to the pO2 and pCO2 gradients along the
capillary sections determined in step 1, hemoglobin oxygen saturation (SHbO2) is calculated for each section. The corresponding Hill equation has been defined and fitted
to experimental data (Dash et al., 2016).

TABLE 1 | Model parameters and their default values. Values of morphological and physiological parameters of the gas exchange model were collected from literature. All
values given are mean values referring to a single alveolus.

Parameter Unit Default value References Value range

Alveolar pO2 mmHg 100 Sharma et al. (2020) 1–150
Blood pO2 mmHg 40 Dash et al. (2016) 1–150
Alveolar pCO2 mmHg 40 Sharma et al. (2020) 1–150
Blood pCO2 mmHg 45 Dash et al. (2016) 1–150
Surface area μm2 121,000 Mercer et al. (1994) 0–210 000
Thickness of tissue barrier μm 1.11 Gehr et al. (1978); Weibel et al. (1993) 0.1–3.0
Blood flow velocity mm/s 1 Abstracted from: Weibel et al. (1993); Petersson and Glenny, (2014) 0.01–2
Blood volume μm3 404,000 (50% “capillary

recruitment”)
Abstracted from: Gehr et al. (1978); Ochs et al. (2004); Okada et al. (1992) 1–808,000

Blood temperature °C 37 Dash et al. (2016) 20–44
Erythrocyte pH (pHrbc) 7.24 Dash et al. (2016) 5.8–8.2
Concentration of [2,3]-DPG mM 4.65 Dash et al. (2016) 1–10
Capillary length μm 500 Weibel et al. (1993) *not adjustable
Capillary volume μm3 808,000 Ochs et al. (2004); Gehr et al. (1978) *not adjustable
Capillary radius μm 3.15 Mühlfeld et al. (2010) *not adjustable
Number of capillaries 52 Calculated from capillary volume, radius and length *not adjustable
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et al., 1994) and the number of alveoli in the human lung (Ochs
et al., 2004) produce a result that falls short of the previous
estimate. However, the discrepancy is explained by known

differences in the morphometric methods used. We
deliberately chose the surface value from the study on an air-
filled lung to be as close as possible to the in vivo situation. The
sub model describing hemoglobin oxygen saturation was adopted
from the literature (Dash et al., 2016) without further
modifications. Hb-O2 dissociation curves across the different
parameter ranges from this publication [Figure 4 E-H in
(Dash et al., 2016)] were recreated and indicate a correct
implementation of the model (Figure 2).

In a second step, the complete integrative model was validated.
We used published experimental data to validate our model. A
key contribution of our model is the temporal and spatial
resolution. Rather than determining mean values, oxygen
partial pressure and saturation gradients along the alveolar
capillary are generated. This allows validation of the model in
a physiological context. For default parameter settings, 50% of the
oxygenation that blood undergoes during its transit along the
alveolus is completed after 0.04 s (Figure 3). This measurement
was performed for an increase in saturation from 81 to 97%,
reaching the reaction half-time at 89%. The corresponding
measurement in mice is 0.037 s (Tabuchi et al., 2013) and it
has been argued that there are only slight differences between
species (Lindstedt, 1984). In summary, we showed that we have
correctly adopted and sensibly modified the individual models.
Our new integrative model provides results that are consistent
with experimental data.

3.1.3 Model Discussion
Our mathematical model was assembled from two existing sub
models (Weibel et al., 1993; Dash et al., 2016). One sub model
describes the diffusion rate of oxygen from the air into the blood
depending on morphological properties (Weibel et al., 1993). In
this preceding work, the lung has been defined simplistically as a
single container of air and the partial pressure of oxygen in the
blood has been considered constant. Some simplifications still
exist in our new model. For example, the introduction of a

FIGURE 2 | Oxygen dissociation curves recreated in Alvin for different ranges of parameter values from the original paper (Dash et al., 2016). This includes value
ranges for the parameters (A) pH in erythrocytes (pHrbc), (B) blood pCO2, (C) concentration of [2,3]-DPG and (D) blood temperature.

FIGURE 3 | Illustration of the diffusion gradient along the model capillary
(top) and a screenshot of the plot displaying oxygen saturation along capillary
between 81 and 97% (bottom). This screenshot was taken from a simulation
with pO2 values of 97 mmHg in the alveolar space and 46 mmHg in the
deoxygenated blood. All other parameters remained at their default settings.
Reaction half-time is defined as the time point at which 50% of the
oxygenation that blood undergoes during its transit along the alveolus is
reached.
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breathing pattern was neglected: Partial pressure changes in
alveolar space only occur when respective parameter values are
modified by the user (suggests that O2 diffusing out of the
alveolus is instantly replaced and CO2 diffusing into the
alveolus is evacuated immediately). Also, blood flow was
approximated as a continuous flow of a homogeneous plasma/
erythrocyte mixture. However, our new integrative model also
features improvements compared to the original models. Instead
of steady states, it provides information about oxygen transport
over the continuous course of time. It has already been noted that
a time-dependent modeling approach is better suited to
reconstruct gas exchange in lung tissue than steady-state
approaches (Sapoval et al., 2020). Accordingly, the temporal
resolution is a valuable improvement to the model.

For validation, we compared reaction half-time results from
our model with what has been reported in the literature (Tabuchi
et al., 2013). Reaction half-time is defined as the time that elapses
until 50% of the oxygenation that blood undergoes during its
transit along the alveolus is complete. We measured 40 ms with
default parameter settings. Experimentally, a half-time of 37 ms
has been determined in mice (Tabuchi et al., 2013).
Corresponding theoretical predictions have been slightly lower
at 18–32 ms. Tabuchi et al. argue that this discrepancy is due to
the fact that the oxygenation process already takes place in the
precapillary arterioles, but for the prediction only capillaries were
considered. Since only capillaries are considered in Alvin as well,
we may suspect that our value underestimates the in vivo human
reaction half-time slightly.

In our model, capillaries are divided into an arbitrary number
of sections. The finer grained this discretisation, i.e. the smaller
the individual sections and the larger their number, the larger is
the resolution of calculated gas dynamics and, thus, the resulting
accuracy. However, as described in the following section, our
model forms the basis of a visual simulation. With higher
resolution, the computational demand grows, especially due to
the three-dimensional rendering of the respective capillary
sections. Therefore, we manually optimised this detail to
maximise the accuracy without jeopardising the simulation’s
interactivity.

3.2 Visualization and Interactivity: The Alvin
Application
Interaction with content positively influences its conception (Pike
et al., 2009; He et al., 2021) and helps to explore concepts. In
parallel with the mathematical model, we developed the Alvin
simulation software to support the conception and exploration of
the gas exchange process in a single alveolus. Addressing the
scientific, educational and accessibility requirements (see
Methods), we aimed at maximal usability of the software for
both research-related and educational applications. Overall, Alvin
should impart an understanding of the relationship between
structure and function of the alveolus.

3.2.1 Visualization
Alvin is a desktop-based application implemented in Unity. It is
available forWindows, macOS and Linux (fulfills (A.1)). The user

interface of Alvin consists of the following core components: a
three-dimensional model of an alveolus illustrating the
simulation process, a configuration menu for model parameter
values and a panel displaying dynamic graphs (Figure 4) (fulfills
A.2.1). A key feature is the ability to run and compare multiple
simulation instances at the same time.

The animated, three-dimensional model of an alveolus
illustrates the current state of the simulation (Figure 4, center,
see also Section S1.3 of the Supplementary Material for further
details) (fulfills S.4.1). The alveolus is visually filled with small
representations for air molecules, animated to signify Brownian
motion. Each one is representing roughly 2 × 109 molecules of
oxygen (red spheres), carbon dioxide (blue spheres) or nitrogen
(white spheres), respectively. Thickening or thinning of the tissue
layer indicates value changes of the model parameter “thickness
of tissue barrier”. Erythrocytes are animated and move along the
cut-open capillary. The number of erythrocytes proportionally
corresponds to a standard value of 5 × 106 cells per μL blood
(Pagana et al., 2019). Their relative position on this path is
constantly tracked. Oxygen partial pressure (Eq. 1) and
hemoglobin oxygen saturation (Eq. 2) gradients are calculated
along the same path. This information is combined to color
erythrocytes according to their oxygen saturation and to
cumulatively total the amount of oxygen taken up by the
erythrocytes over the course of the simulation (see Figure 4,
graph “oxygen uptake”).

Hence, simulated gas exchange can be retraced by observing
the amount of gas spheres crossing the tissue barrier from one
side to the other and changes in capillary and erythrocyte coloring
(S.4.2). Quantitative outcome of the simulation can be monitored
on three different graphs (S.3.1) (Figure 4, right). They show
hemoglobin oxygen saturation as a function of pO2 in the blood
(oxygen dissociation curve) (E.1.2), or of time (oxygen saturation
along capillary). Finally, the total amount of oxygen taken up is
tracked as a function of the time since the simulation was started
or reset. Graphs of different simulation instances are indicated by
their respective instance color.

3.2.2 Interactivity
The parameter panel (Figure 4, left) allows users to configure
model parameter values. Changes in parameter values yield run-
time updates in the 3D visualization and the quantitative graphs
(S.2.1). A traffic light color code and keywords provide
classification of the chosen parameter values with regard to
their healthy or pathological ranges (E.2.2). More information
can be obtained by clicking the respective info button (indicated
by a question mark) (E.2.1). Model parameters are grouped in
terms of the tissue components to which they relate (A.2.2).
Visual highlighting in the 3D alveolus model emphasizes these
connections (S.4.3). For instance, all tissue components except
the capillary are grayed out when the cursor is over the window
for model parameters relating to the blood. To examine the
process in the 3D model in more detail, it can be moved,
rotated or zoomed. Detailed quantitative information can be
obtained by hovering over a graph with the mouse. The
instance menu allows direct comparison of different parameter
settings by running several simulation instances simultaneously
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(S.2.2) (Figure 4, bottom). Characteristic coloring and custom
naming facilitate distinguishing between different simulation
instances. A selected instance can be copied, deleted or reset
to its initial parameter values. Parameter presets for healthy and
common pathogenic conditions are provided (E.1.1) (Table 2).
Finally, the user interface contains control elements to monitor or
reset simulation time (S.2.3 and S.3.2) and to toggle between
pressure units (A.3.2) and visual highlighting modes. More
technical details on the implementation of Alvin are provided
in Section S1.2 of the Supplementary Material. Taken together,
these features present interrelationships of the gas exchange
process as one explores the system. For example, the user can
decrease the alveolar partial pressure of oxygen and observe how
this affects the progression of oxygen binding to hemoglobin
along the alveolar capillary. One could also observe at what

alveolar pO2 the blood O2 saturation reaches a critically low
value at the end of the process. Another example would be to
increase the tissue barrier thickness and observe how much the
blood oxygen saturation decreases despite unchanged alveolar
partial pressures.

3.2.3 Discussion on Visualization and Interactivity
Alvin intends to increase understanding of the complex
relationships of gas exchange by highlighting connections and
allowing comparison of multiple simulations. Previous
interactive systems for gas exchange have pursued a similar
goal. (Winkler et al., 1995) have modeled the lung as a
complex of abstract gas exchange units (compartments) that
can be simulated under individual conditions. (Kapitan, 2008)
have created a model of gas exchange that is based on the alveolar

FIGURE 4 | Screenshot of the interactive application Alvin. (1) Model parameters are grouped in categories and can be configured by the user. Colors and
information text provide possible real-world interpretation of the values. (2) Animated simulation of an alveolus for the active parameter set provides visualization of the
effect of the model parameter values. (3) To increase exploratory value, multiple simulation instances can be compared. (4) Quantitative simulation output is displayed
with plots color-coded for each active instance of the simulation. (5) Simulation time is displayed and can be reset. (6) Utility functions and settings are available.

TABLE 2 | Parameter value shifts in presets representing pathogenic conditions. For every condition, pathophysiological issues or symptoms are represented by increased
(↑) or decreased (↓) values of the respective model parameters.

Pathogenic condition Pathophysiology/Symptom Parameter value shift

Pneumonia Fever Temperature ↑

Tissue damage Surface area ↓
Accumulation of fluids and dead cells Barrier thickness ↑

ARDS (acute respiratory distress syndrome) Collapse (alveolar aelectasis) Surface area ↓↓
Fever Temperature ↑

COPD (chronic obstructive pulmonary disease) Impaired exhalation Alveolar pCO2 ↑ and blood pCO2 ↑
Impaired exhalation Alveolar pO2 ↓
Tissue damage Surface area ↓

Pulmonary fibrosis Thickened and scarred connective tissue Barrier thickness ↑
Impaired inhalation Alveolar pCO2 ↓

Pulmonary embolism shunt Blood volume ↓↓
shunt Blood flow velocity ↓↓
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gas equation (Sharma et al., 2020) and takes the ratio of
ventilation to perfusion into account. Both systems enable
simulation of inhomogeneous distribution of ventilation and
perfusion. This provides valuable insights into higher-level
relationships. In both systems, individual gas exchange units
and the whole complex are visualized by means of abstract
schematic representations. What happens in detail and how it
looks like remains unanswered. Alvin fills this gap. The site of gas
exchange is no longer abstract—a 3Dmodel illustrates an alveolus
in realistic proportions. It conveys the structure of important
components (capillary net, tissue barrier). The connection
between structure and function is interactively explored in the
simulation. Blood flow and tissue thickness in the 3Dmodel adapt
to the parameter settings and directly affect the simulation
process. What further sets Alvin apart from the two systems
mentioned above is the possibility of running multiple simulation
instances simultaneously. This allows different conditions to be
compared directly instead of being modeled and explored one
after the other. However, the design of the instance menu in Alvin
still has a limitation. While qualitative output of several
simulation instances can be compared directly, the user is
required to switch tabs along the instance menu to compare
parameter settings and visual output on the 3D model. This issue
should be addressed in future improvements to the system.

The combination of providing parameter value presets as well
as allowing parameter configurations by the user enables a
presentation of the model that expands existing best-practice
(Mogilner et al., 2011). Alvin includes a multitude of visualization
elements and interaction possibilities. They aim at an intuitive
usage of the application and understanding of the gas exchange
simulation. It should be assessed whether the use of Alvin is
actually perceived as intuitive. For this purpose, in the context of a
use case study (described in Section 3.3.2), we had a group of
users fill out a standardized questionnaire to measure intuitive
usability.

3.3 Applying Alvin: Use Case Studies
We provide two concrete examples for the application of Alvin.
One of our goals was to ensure that researchers can flexibly
explore the model simulation. Here, we demonstrate how the
interactive simulation can be used to interpret data from the
literature. Second, we report on Alvin’s integration into a
university level virtual class. The application was used to
convey basic and important respiratory processes in the
context of a given instructional framework that combined a
traditional lecture and instructor based- as well as self-learning.

3.3.1 Alvin in Research: Interpreting Data and Testing
Predictions
To present a possible use case ofAlvin for research, we employ the
application to check the plausibility of pulmonary diffusion
capacity measurements. The pulmonary diffusion capacity
(DLO2) describes the lungs’ capacity to transport oxygen from
the air to the blood. It is defined as the oxygen consumption _VO2

in L/min (oxygen uptake over time) divided by the mean oxygen
pressure gradient between alveolar air and capillary blood ΔpO2

(Lindstedt, 1984).

DLO2
� _VO2

ΔpO2
(3)

Physiological estimates of DLO2 are usually derived from
measurements of diffusion capacity for carbon monoxide
(DLCO) (Forster, 1964; Crapo and Crapo, 1983). Normal values
of DLO2 at rest are around 30 ml/(mmHg × min) (Hsia et al.,
2016). Determination of DLO2 based on morphometric data has
resulted in a value of 158 ml/(mmHg × min) (Weibel, 2009) and
thereby exceeds physiological approximations considerably.
There are several reasons for this discrepancy (Hsia et al.,
2016). One of them is that for the morphological estimation, a
complete perfusion of the capillaries is assumed and the entire
alveolar surface is included in the calculations (Weibel, 1970).
Under normal conditions, only about 50% of capillary segments
in the alveolar wall are perfused by erythrocytes and thus
contribute to gas exchange (Okada et al., 1992) (Figure 5A).
Increasing blood pressure (e.g., due to increased cardiac output)
leads to recruitment of further capillary segments. In the
perfusion fixed, air-filled lung, only about 60–70% of the
alveolar surface area is exposed to air (Gil et al., 1979;
Bachofen et al., 1987). In addition, lung volume changes
during respiration depending on the transpulmonary pressure.
It has been proposed that alveolar recruitment may be responsible
for these volume changes, i.e., opening and closing of alveoli
(Carney et al., 1999). However, in situ studies rather suggest an
increase in alveolar size (D’Angelo, 1972). In terms of the model
parameters in Alvin, both hypotheses manifest themselves in
changes in the alveolar surface area available for gas exchange. A
surface area of 207,000 μm2, measured in inflation-fixed lung
tissue (Stone et al., 1992), describes a maximum surface exposure
of 100%. The default surface area setting in Alvin is 121,000 μm2

and thus corresponds to an exposure of 58%. This value was taken
from a study in which the tissue was perfusion fixed (Mercer et al.,
1994). Capillary recruitment in Alvin is reflected in capillary
blood volume, for which the default value 404,000 μm3 represents
50% recruitment. By mimicking the ratios of capillary
recruitment and alveolar surface area in Alvin, one can
directly trace the effect on DLO2. 100% alveolar surface
exposure and 100% capillary recruitment in Alvin yield a DLO2

of 200 ml/(mmHg × min). 58% alveolar surface exposure and
50% capillary recruitment result in a DLO2 of 61 ml/
(mmHg × min).

Alveolar surface area and capillary recruitment impact DLO2

estimates almost linearly (Figure 5B). Additionally, it is
interesting to observe their synergistic effect, as ventilation and
perfusion are regulated to match (reviewed in (Wagner, 1981;
Petersson and Glenny, 2014)). Parallel increase of both alveolar
surface exposure and capillary recruitment lead to a non-linear
increase in DLO2, slowly at first and then more rapidly.
Consistently, anti-parallel combination of these factors yields
generally low DLO2 estimates, with a peak at 50% each.
Quantification of this relationship in Alvin can be used to
interpret other data from the literature. For instance, DLO2 has
been estimated from measurements of DLCO and pulmonary
blood flow (Kulish, 2006). To recreate these estimates,
pulmonary blood flow, expressed in volume per unit time, was
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interpreted as alveolar blood volume in Alvin. Assuming a
constant blood flow velocity of 1.5 mm/s, the alveolar blood
volume was obtained from the mean capillary length of
500 μm (Weibel et al., 1993) and the maximum volume of
alveolar capillary bed 808,000 μm3 (Ochs et al., 2004; Gehr
et al., 1978). Under these conditions, DLO2 was determined in
Alvin with varying alveolar surface area settings (Figure 5C). The
resulting DLO2 graphs all differed in slope from the published data
(Kulish, 2006). Thus, Kulish’s predictions did not appear to have
been based on constant alveolar surface exposure. By adjusting
alveolar surface area values (100, 87.5, 62.5, 55.0 and 60% surface
exposure) along with increasing blood flow (3, 10, 20, 30 and
32 L/min), the results could finally be reconstructed. This fitting
was not successful at very low blood flow values.

This is only one example of how to employ Alvin to investigate
correlations in a broader sense or to reproduce data from the
literature to gain further insight. Further questions could address
the kinetics of gas exchange. One possibility would be to

investigate the threshold conditions under which the blood is
still sufficiently oxygenated within the transit time.

3.3.2 Alvin in Higher Education: Physiology Lab
Course
For application in teaching, the benefits of an interactive
simulation have been perceived and exploited since the 1980s
(Dewhurst et al., 1988; Davis and Mark, 1990) and are still being
pursued today (Jacob et al., 2012; Tworek et al., 2013). Therefore,
we integratedAlvin into a university level class on human biology,
specifically an online practical session on blood and respiration.
Alvin was used to support the online session by providing an
interactive model of the cooperation of the bloodstream and the
respiratory system. The suitability of Alvin for this course was
measured with an online questionnaire.

The course was scheduled for 2 h and 45 min. The participants
consisted of students of teaching Biology, specifically of the
German levels of Grundschule (elementary school/grades 1–4,

FIGURE 5 | Diffusion capacity of the lung for oxygen (DLO2) strongly depends on perfusion and ventilation. (A) Illustration of capillary recruitment (left) and alveolar
expansion (right). (B) Diffusion capacity of the lung for oxygen (DLO2) depending on capillary recruitment and alveolar expansion for a parallel (left) and antiparallel
combination (right). Alveolar expansion and the ensuing surface exposure are simulated in Alvin by increasing alveolar surface area from 0 (0%) to 207,000 μm2 (100%) in
steps of 12.5%. Capillary recruitment is represented by capillary blood volume increase from 0 (0%) to 808,000 μm3 (100%) in steps of 12.5% in Alvin. (C)
Comparison to published DLO2 estimates (Kulish, 2006) (black). Pulmonary blood flowwas interpreted as blood volume inAlvin, assuming a flow velocity of 1.5 mm/s and
morphological features (mean capillary length of 500 μm (Weibel et al., 1993) and maximum volume of alveolar capillary bed 808,000 μm3 (Gehr et al., 1978; Ochs et al.,
2004)). Alveolar surface exposure was fixed at constant values (blue dashed lines) and adjusted with increasing pulmonary blood flow (red line).
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mostly third year students), Mittelschule (secondary school/
grades 5–8, mostly third year students) and Gymnasium
(grammar school/grades 5–13, mostly fifth year students).

After an introduction into the topic “Blood and Respiration”
in the form of a 45 min lecture, Alvin was presented briefly,
explaining how to use the application and interpret the 3D model
and graphs. Participants were given a few minutes to familiarize
themselves with Alvin. They were then asked for feedback as they
worked with the application. An online questionnaire was
provided to collect responses. Participation was voluntary and
could be withdrawn throughout the event. Submitting the
questionnaire as a whole, or answering individual questions,
was not mandatory. The questionnaire was split in four parts.
The entire questionnaire, translated from German, can be found
in the Supplementary Material (Supplementary Section S2.1).

The first part consisted of a generic demographic questionnaire,
extended by specific questions to assess the formal background of
the students and their experience with the subject. We receivedN �
73 valid submissions which were at least partially answered. Of the
N � 73 surveys received, 11 self-identified as male, 56 as female.
The participants all had some prior knowledge of respiratory
physiology acquired in a physiology lecture in the previous
semester and/or in school or training. In this lecture, basics
about the structure and physiology of the lungs as well as the
functions of the blood as a transporter of respiratory gases were
explained. About half of the group (N � 34) could be assumed to
have even deeper prior knowledge, as they stated that they had
studied further literature in addition to the lecture in question.
Participants could be divided into groups with prior knowledge
level 1 and 2 accordingly. None of the participants reported being
affected by color blindness. The second part contained 13 different
exercises addressing respiratory processes in the alveolus. These
exercises provided instructions on how to integrate Alvin into
solution approaches. Among other things, these exercises
highlighted well-known relationships and phenomena such as
the Bohr effect (Riggs, 1988). Responses were rated on a scale
of 1–4 (with 1 indicating perfect answers). The individual exercises
were answered by different numbers of participants (Figure 6A).
Exercise 7 and 10 were answered by less than half of the
participants and were therefore not included in the mean
overall score of 1.6. Participants with prior knowledge of level 1
performed similarly well to participants with prior knowledge of
level 2 (Supplementary Figure S1).

The third part consisted of two standardized questionnaires to
assess the visual aesthetics and the usability of the application:
Visawi-s (Visual Aesthetics of Websites Inventory- short version)
(Moshagen and Thielsch, 2021) and QUESI (Questionnaire for
Measuring the Subjective Consequences of Intuitive Use)
(Hurtienne and Naumann, 2010). Visawi-s (Moshagen and
Thielsch, 2021) captures four central aspects of aesthetics from
the user’s perspective: simplicity, diversity, colorfulness and
craftsmanship. Participants were presented with statements
targeting these four aspects. They rated them on a scale from
1 (strongly disagree) to 7 (strongly agree). The mean overall (N �
72) Visawi-s score was 5.8 (see Figure 6B). The standardized
QUESI provided a measure of usability (Hurtienne and
Naumann, 2010). It is based on the assumption that intuitive
use is the unconscious application of prior knowledge leading to
effective interaction. It can be divided into the following
subscales: Subjective mental workload, perceived achievement

FIGURE 6 | Results of a survey for undergraduate students that worked
with Alvin in a physiology lab course. (A) Evaluation of thirteen subject-specific
exercises. Responses were scored 1 - correct, 2 - partially correct (e.g.,
subsequent faults), 3 - unclear to 4 - incorrect. The mean score for every
exercise was determined. The individual exercises were answered by different
numbers of participants (grey bars). (B) The standardized Visawi-s survey
(Moshagen and Thielsch, 2021) addresses design features. The 72
participants rated from 1 (strongly disagree) to 7 (strongly agree). The mean
score over all four categories was 5.8 (red, dashed line). (C) Results on
usability from the standardized survey QUESI (Hurtienne and Naumann,
2010). Five subscales are assessed, with higher scores obtained the more
intuitive the use of the system was perceived to be. The mean overall QUESI
score from 69 forms was 2.98. (D) Participants were asked “which benefits do
you see in this system compared to a traditional text book?“. A frequency
analysis on the answers was performed. The most recurrent terms were
(translated from German): “parameter”, “better”, “modifiy”, “changes”, “by
oneself”, “illustrative”, “testing”, “see”, “illustrated”, “apparent”, “interactive”
and “immediate”.
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of goals, perceived effort of learning, familiarity, and perceived
error rate. The total score of the questionnaire is equal to the
mean across all five subscales. Generally, higher scores represent a
higher probability of intuitive use. Participants’ (N � 69)
assessments of the use of Alvin resulted in a QUESI score of
2.98 (Figure 6C). Published benchmark values for mobile devices
and applications (Naumann and Hurtienne, 2010) range from
2.39 (Alcatel One Touch 311) to 4.23 (Nintendo Wii). Familiar
products generally perform better in the QUESI (Naumann and
Hurtienne, 2010). Hence, participants’ prior experience with
similar systems in a broader sense, for example, with
computer games in general, is important. The majority of our
participants (N � 59) reported rarely (yearly to never) playing
computer games. The minority (N � 29) reported using computer
games frequently (monthly to daily).

Finally, the questionnaire included customized questions on
the use ofAlvin (evaluation can be found in Supplementary Section
S2.2) and free-form questions aimed at the acceptance of the
software in the educational context. One of them was “Which
benefits do you see in this system compared to a traditional text
book?”. A frequency analysis on answers revealed the highest
recurrence for the terms “parameter”, “better”, “modifiy”,
“changes”, “by oneself”, “illustrative”, “testing”, “see”,
“illustrated”, “apparent”, “interactive” and “immediate”
(Figure 6D). A question asking for general feedback was
responded to in part with constructive criticism. In particular, it
was noted that the content of Alvin and the subject-specific tasks
were too complex for this introductory event. Or that more time
would have been necessary to familiarize oneself with the
application. In addition, some reported problems switching
between the German lecture content and the English-language
application. The participants solved the subject-specific exercises
for the most part correctly. It can thus be concluded that Alvin is
suitable to assist in solving such tasks. Responses to free-text
questions suggest which aspects of working with Alvin stood out
as particularly positive. These include the possibility to interact with
the simulation by configuringmodel parameters and the freedom to
independently test different conditions. It was also perceived
positively that the simulated processes are presented very
illustratively in Alvin.

3.3.3 Discussion of Use Cases
Our exemplary use cases show the applicability of Alvin in
research and in education. We showed an investigation of the
dependencies of DLO2 on surface area and blood flow in Alvin.
Physiological estimates often only consider information about
blood flow (Kulish, 2006). By reproducing these estimates in
Alvin, one can draw conclusions about the alveolar surface. At
particularly low blood flow values, it is not possible to reproduce
the physiological estimates for DLO2 in Alvin. This could have
different causes. In the logic of the model and the definition of
DLO2, it is ensured that DLO2 is zero when the blood volume is
zero. The physiological estimates in (Kulish, 2006) do not seem to
meet this criterion. (note: One cannot be certain, however,
because in Kulish et al. (Kulish, 2006) the lowest reported
value for blood flow is 3 L/min). It is possible that our model
does not produce reliable results in the range of low blood volume

values. Another possibility is that the derivation of DLO2 from
DLCO is not reliable in low ranges. This plausibility check shows
how Alvin can be used to support or challenge published data.
Drawing on known relationships, additional information can be
obtained from previous results.

We also showed that Alvin is helpful for communicating
respiratory processes in the training of undergraduate students.
Well-known processes or phenomena like the Bohr-Effect
(Riggs, 1988) can be recreated in Alvin and compared with
results reported in the literature. Interactivity of the simulation
enables experimentation with the model and exploration of its
limitations. This aspect was also positively highlighted by
participants of the physiology lab course in free-form
answers of our questionnaire. The results of the QUESI and
VISAWI questionnaires on their own do not allow for
quantitative conclusions on usability or aesthetics of the
application. This would require comparing them to
corresponding results from comparable test situations (for
example, about similar systems). At this point, one can only
state that the replies did not hint at unknown issues. Instead,
they were aligned with our expectations that participants should
be able to operate the system autonomously and find its use
appealing and relatively intuitive.

In summary, the integration of Alvin into physiology classes at
the university level was successful. Beyond that, issues were
pointed out where the implementation could be optimized in
the future. Prominent and consistent were requests for more time
to engage with Alvin. We deliberately refrained from providing
the application to the participants in advance of this course to
avoid a mutual influence of the participants regarding their
experience with Alvin. This was important for the evaluation
with the standardized questionnaires. For general use in teaching,
however, this does not have to be taken into account. On the
contrary, an exchange between students about the system could
increase its learning value. We conclude that Alvin is less suitable
to be included in a single physiology lesson. Instead, we
recommend that students be made aware of the app ahead of
time or to invest several course sessions.

4 CONCLUSION AND OUTLOOK

Interactive, visual simulations allow communicating modeling
results and thereby help to further our understanding of the
process under study. We presented Alvin, an application for
simulating gas exchange in a single alveolus. The simulation is
based on a mathematical model for the entire transport process of
oxygen from the air to hemoglobin of the blood. We claim that
having the goal of an interactive, visual simulation in mind when
developing a mathematical model is beneficial for the modeling
process. It resulted in a specific requirement for the model: In
order to be able to map the course of the simulation on a three-
dimensional tissue model, it had to be temporally and spatially
resolved. Models evolve by being revised and improved over and
over again (Drubin and Oster, 2010). If one assumes that a model
can be better developed the more experts review it, then it is
advantageous to make the model freely and intuitively accessible.
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We argue that interactive visualization offers an engaging way
to communicate theoretical models to other scientists and
students. When cooperating with experimenters, it is
important for theorists to present their models in the most
accessible way possible. This creates as large a basis for
discussion as possible in order to jointly plan further
experiments or model refinements. By making model
parameters intuitively configurable, any experimenter can
compare his or her own measurements with the modeling
results. By including undergraduate students in the target
group for Alvin, we ensured that only a minimum of prior
knowledge is required for its usage.

In the future, we plan to extend our model to encompass a
system of multiple alveoli and their associated vessels. This will
allow us to address further questions and complex relationships
regarding gas exchange in lung tissue. It is known that the
ventilation-perfusion relationship, and therefore the diffusion-
perfusion relationship, has a strong influence on DLO2 (Hyde
et al., 1967; Hammond and Hempleman, 1987). An evolution of
Alvin that includes an alveolar sac or a whole acinus with differently
ventilated and perfused alveoli can provide valuable insights. This
could also be used, for example, to further investigate the hypothesis
of precapillary oxygen uptake (Tabuchi et al., 2013). It states that the
oxygenation process already takes place in the precapillary arterioles
before the blood reaches the alveolar capillary bed.

Rather than just presenting the data that results from a newly
developed model, it is worthwhile to implement the model in a
way that allows for interaction. Visualizing the simulation makes
the engagement with the model more intuitive and accessible to a
broader target group. Empiricists and theorists look at a system
from different angles. Some work in a bottom-up fashion and take
local samples and draw conclusions for the overall system. Others
create abstract models for the overall system top-down and try to
approach the truth by introducing more and more details. Only
by working closely together can these two perspectives efficiently
contribute to reliable results and become a “middle-out”
approach (Noble, 2008). The communication of the achieved
findings or predictions plays an important role here. We contend
that interactive, visual simulations of theoretical models, as we
have implemented with Alvin on respiratory processes in the
alveolus, will make an important contribution to bridging the gap
between empiricists and theorists.
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Naview: A d3.js Based JavaScript
Library for Drawing and Annotating
Voltage-Gated Sodium Channels
Membrane Diagrams
Marcelo Querino Lima Afonso1*†‡, Néli José da Fonseca Júnior2‡, Thainá Godinho Miranda1

and Lucas Bleicher1*
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Voltage-gated sodium channels (Nav) are membrane proteins essential to initiating and
propagating action potential in neurons and other excitable cells. For a given organism
there are often multiple, specialized sodium channels found in different tissues, whose
mutations can cause deleterious effects observed in numerous diseases. Consequently,
there is high medical and pharmacological interest in these proteins. Scientific literature
often uses membrane diagrams to depict important patterns in these channels including
the six transmembrane segments (S1–S6) present in four different homologous domains
(D1–D4), the S4 voltage sensors, the pore-lining residue segments and the ion selectivity
filter residues, glycosylation and phosphorylation residues, toxin binding sites and the
inactivation loop, among others. Most of these diagrams are illustrated either digitally or by
hand and programs specifically dedicated to the interactive and data-friendly generation of
such visualizations are scarce or non-existing. This paper describes Naview, an open-
source javascript visualization compatible with modern web browsers for the dynamic
drawing and annotation of voltage-gated sodium channels membrane diagrams based on
the D3.js library. By using a graphical user interface and combining user-defined
annotations with optional UniProt code as inputs, Naview allows the creation and
customization of membrane diagrams. In this interface, a user can also map and
display important sodium channel properties, residues, regions and their relationships
through symbols, colors, and edge connections. Such features can facilitate data
exploration and provide fast, high-quality publication-ready graphics for this highly
active area of research.

Keywords: membrane plot, voltage gated sodium channel (NaV), d3.js, data visualization, javascript

INTRODUCTION

Voltage-gated sodium (Na+) channels are key signaling membrane proteins responsible for electrical
excitability, also involved in biological processes in non-excitable cells, and of considerable
physiological and pharmacological interest (Cardoso and Lewis, 2018). Voltage-gated Na +
channels (Navs) can generate and propagate action potentials in excitable cells due to channel
opening and fast inactivation mechanisms that regulate the permeation of Na + ions across the
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membrane (Capes et al., 2012; Xia et al., 2013; Kubota et al.,
2017). These channels are present in a large variety of organisms,
the domain architecture of human Navs being observed in all
animals. Their dysfunction is involved in severe diseases such as
epileptic seizures, migraines cardiac arrhythmias, as well as pain-
related neuropathies (Xia et al., 2013; Erickson et al., 2018).
Sodium channels are involved in multiple physiological roles
within a given organism, including the transmission of
somatosensory signals, angiogenesis, muscle contraction, and
immune cell maturation (Cardoso and Lewis, 2018). In
addition, insect sodium channels are potential targets for both
natural and synthetic insecticides and are therefore of agricultural
interest (Zhang et al., 2016).

Each channel consists of an alpha subunit and auxiliary beta
subunits that modify the properties of the first (Widmark et al.,
2011). The alpha subunit is composed of a single chain of four
sub-units in tandem (Domains I-IV), each formed by a structure
of six transmembrane helices (6TM, H1-H6) that associate as
tetramers to form a channel. Small extracellular and intracellular
loops connect each helix, and the pore loops and large
intracellular loops connect each domain (Yu and Catterall,
2003). In mammals, nine isoforms of these channels are found
(Gene names SCN1A-SCN11A) possessing different functional
roles, properties, and tissue-specific distributions among cells of
the central and peripheral nervous systems (Chowdhury and
Chanda, 2019). Post-translational modifications such as
glycosylations and phosphorylations are part of the cellular
modulation repertoire of these channels in vivo, being mostly
found within the intracellular loop between the first and second
domain of these channels (Scheuer, 2011; Laedermann et al.,
2015; Cardoso and Lewis, 2018).

Graphical representations of the Nav alpha subunit
transmembrane architecture are widely used in the scientific
literature, with the earliest examples dated from the late
1980s—(Tanabe et al., 1988; Trimmer et al., 1989;
Chiamvimonvat et al., 1996; Marban et al., 1998; Yu and
Catterall, 2003; Yamaoka et al., 2006; Wood and Iseppon,
2018; Zybura et al., 2021). In these diagrams, membranes are
disposed as either boxes or a bilayer lipid, transmembrane helices
are shown as rectangles or cylinders, and loops as curved lines.
Features commonly described by such plots include the voltage
sensing helix S4, the fast inactivation motif IFM, glycosylation
and phosphorylation sites, drug binding sites, important
mutation sites, relevant sites for subunit interaction, and toxin
binding sites. These features are usually displayed as either text or
symbols inside the diagram.

Although sodium channel diagrams have been used for over
30 years, the availability of tools dedicated to an automated
generation of such plots has been limited, but options for
simpler diagrams with varying features are available. TOPO2
(Johns, 2010) reads an input indicating the number of segments
in a protein chain, start/finish residues for transmembrane or
partially inserted segments and residues to be colored and
generates a simplified color diagram. Topology diagrams can
also be drawn by using the output of a topology detection
software such as HERA (Hutchinson and Thornton, 1990) and
feeding it to topology drawing software such as TopDraw (Bond,

2003). This approach can also be used for globular proteins, but
does not allow for individual residue/segment annotation, and
includes no information about membrane insertion, being
restricted to the secondary structure topology obtained from a
PDB file. Membrane diagrams with individual annotations can be
created using TMRPres2D (Spyropoulos et al., 2004) using user-
provided info or importing information about transmembrane
boundaries using public databases. The LaTeX based Protter web
application (Omasits et al., 2014) and Textopo (Beitz, 2000) are
capable of generating membrane protein diagrams in which each
residue is displayed as geometric forms (often as circles). Whereas
annotations can be easily included in both programs as symbols,
text or specific colors, secondary structures cannot be easily
distinguished in the diagrams of Protter and Textopo.

Various commercial and open source alternatives dedicated to
drawing chemical compounds such as MarvinSketch, ChemDoodle,
BKchem, XDrawChem, JChemPaint, ACD/ChemSketch, and
MolView often have modules dedicated to the 3D visualization of
proteins, but generating 2D diagrams (Krause et al., 2000; Todsen,
2014; Bergwerf, 2015). ChemDraw is one of the few alternatives
including the possibility of drawing such diagrams in a highly
dynamic and easy-to-use interface but lacking the possibility of
direct inclusion of protein related data (Cousins, 2005).

Sodium channels membrane diagrams remain popular despite
the increasing deposition of Nav structures in the last years,
especially by cryogenic electron microscopy (Ahuja et al., 2015;
Pan et al., 2018; Xu et al., 2019; Jiang et al., 2021), and the vast
number of software dedicated to the 3D visualization of protein
molecules such as PyMOL (Schrödinger, 2015), UCSF Chimera
(Pettersen et al., 2004), VMD (Humphrey et al., 1996), Jmol (Jmol
development team, 2016), and JavaScript based tools such as
3Dmol (Rego and Koes 2015), iCn3D (Wang et al., 2020), Litemol
(Sehnal et al., 2017), NGL Viewer (Rose and Hildebrand 2015)
and Mol* (Sehnal et al., 2021). Often used alongside figures
rendered from 3D structures, the persistent usage of Nav
diagrams could be attributed to their summarizing capacity.
The alpha subunit of Navs often possess a length of more
than 1,500 amino acids which can be challenging to depict
when their complex topology is taken into account: four
domains of six transmembrane helices and a reentrant loop,
long and short interdomain loops disposed on either the intra or
extracellular faces of the plasma membrane. Due to this the
explicit representation of some features could require multiple
3D poses.

This publication describes Naview, an open-source d3.js based
JavaScript library for drawing and annotating voltage-gated
sodium channels membrane diagrams. Naview can highlight
essential Nav features by using custom data provided by the
user to modify the text, color, and connecting lines at specific
helix/loop elements or residues.

METHODS

Implementation
Naview is implemented as an open-source d3.js based JavaScript
web component, which can be used by importing its main CDN
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file (naview.js) into web pages. The complete documentation of
each of the library’s 107 functions and eight global variables can
be found at: http://bioinfo.icb.ufmg.br/naview/public/docs/index.
html. Naview is freely available under the Apache License 2.0. The
complete source code and additional information related to
library usage can be found at GitHub (https://github.com/
marceloqla/NaView/). In addition to the web component,
Naview can also be used as a web application (http://bioinfo.
icb.ufmg.br/naview), developed in PHP, allowing direct access to
any sodium channel available in the UniProtKb. Naview Style
Editor is a graphical user interface that allows plot customization,
the upload of residue mapped properties and residue/element
interactions, and the download of the plot figures as Scalable
Vector Graphics (SVG) or Portable Network Graphics (PNG).
The styling information can also be exported as a text file that can
be reused in new diagrams.

Data Input and Processing
Two main inputs are generally supplied to Naview for generating
a Nav alpha-subunit diagram (Figure 1):

1) A mandatory UniProt formatted text string (hereafter named
Raw Text) containing the required data plotting a Nav alpha
subunit. In the web application version, it is automatically

fetched from the UniProtKb, requiring only the sequence
identifier;

2) An optional JavaScript Object Notation (JSON) object,
hereafter named Style Object, containing information
related to the elements plot disposition such as their
drawing types, widths, heights, scales, and colors (http://
bioinfo.icb.ufmg.br/naview/public/docs/symbols/style_obj.
html on the documentation for further information on the
Style Object). When not supplied, a default representation of
the Style Object is automatically applied. Any drawing options
of the Style Object can be modified by Naview Style Editor
(Figure 2).

Additionally, other inputs related to plotting text, color, and
relationship annotations can be supplied. Each of them is
described alongside their specific syntax in their dedicated
sections.

The UniProt formatted Raw Text supplied by the user is then
processed for the definition of drawing areas for three possible
element types: membrane, helices, and loops which are further

TABLE 1 | Property table example. First column must be formatted with the
“Resid” header followed by digits indicating each residue for a property to be
mapped. The following property columns have header strings and are followed by
float or integer numbers indicating the value of a property for each residue of
a NaV.

Resid Property

1 0.2871809547
2 0.9835970474
3 0.3891381106
4 0.2391246386

TABLE 2 | Relationship table example. Four columns are allowed with the
following headers: “source”, “target”, “raw_weight”, and “type”. First and
second columns indicating the interacting residues or elements. The “raw_weight”
column contains an edge weight for color or width mapping. The last column
“type” can be used to indicate edge types which can be weighted or colored
separately.

Source Target Raw_weight Type

776 660 0.6944505517 Resids
86 469 0.7383026986 Resids
1,308 318 0.4949883823 Resids
305 510 0.9651479396 Resids
1,621 123 0.3030461658 Resids
DomainI; Helix4 DomainII; Loop4 0.08937180957 Elements
DomainII; Helix4 DomainIV; Helix4 0.9300459795 Elements
InterDomain5; Loop InterDomain1; Loop 0.1476849439 Elements

FIGURE 1 | Naview’s general workflow: UniProt formatted data is initially checked and processed before initial draw areas are pre-calculated from the Style Object
width, height and border definitions. These areas define the positioning of each drawn element in the following order: Membrane, Helices, Short Loops, Pore Loops,
Long Loops, N and C terminal Loops. As each protein element is rendered, anchorage points are defined for proper loop positioning. Properties defined from the Style
Obj or mapped from user selected settings define colors and drawing modes for each of the drawn features.
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sub-divided as short loops, long loops, pore loops, N-terminal
loop and C-terminal loop.

Membrane, Helix and Loop Despictions
The Membrane element can be depicted as a “box” (SVG “rect”
element) or as a lipid bilayer (multiple SVG “path” elements). The
Style Object controls all specifications of coloring and drawing
aspects of these two membrane representations, such as their
opacity and relative sizes. Likewise, helices elements can be
plotted according to three possible Style Object draw types:
“box”, “cylinder” and “cartoon”.

Loops can be drawn by different curves whose rendering
depends on their classification. Two aspects are considered for
the rendering of these curves: their curve type function and their
curve scaling method. Curve type functions describe the shape of
a given loop by generating points to be interpolated by the

d3.curveNatural function. Distances between these points have
fixed or user-selected bounded proportions such that each curve
type drawing aspect is scaled according to the Curve Scaling
methods defined in the Style Object. Curve types common to the
short and long loops include the “Simple”, “Bulb” and
“Mushroom” curves. The “swirl” curve type is specific to short
Loops. Pore loops are generated by the “pore” curve type and N-
and C- terminal by the “N Curves” curve type. The availability of
multiple curve customization options allows users to customize
plot aspects to their preferred style (Figure 3).

Design decisions for the representation of membranes, helices
and loops attempted to cover most previously published Nav
diagrams (Tanabe et al., 1988; Trimmer et al., 1989;
Chiamvimonvat et al., 1996; Marban et al., 1998; Yu and
Catterall, 2003; Yamaoka et al., 2006; Wood and Iseppon,
2018; Zybura et al., 2021). The usage of individual elements

FIGURE 2 | Naview’s style editor. (A)Main options of the styling menu including: 1) Dropdowns for options related to each of the drawn diagrams features such as
colors, sizes and proportions. 2) Button for refreshing the currently drawn plot. 3) Button for opening the console that allows entering specific text annotation or color
rules. 4) and 5) are buttons for adding property and relationship related data to the plot. 6) button for exporting a Style Objectwith the currently selected configurations. 7)
Buttons for exporting the plot image in the SVG and PNG formats. (B)Console for adding a text annotation or color rule. 1) Dropdown for selecting between the text
annotation or color rule modes. 2) Dropdown for selecting the input of free/property based text. 3) Input box for typing the desired text annotation. 4) Text positioning
scheme: “absolute” defines text position by the given “x” and “y” 5) and 6) parameters; “relative” defines text position according to a selected element. “dx” and “dy” 7)
and 8) shift the text to be drawn in the informed horizontal (“dx”) and vertical direction (“dy”), being especially helpful in the “relative” positioning scheme. 9) Button for
appending the currently defined text to the figure. 10) Removes all added text annotations. (C) Color rule addition console. 1) Opens a window for allowing specific
residue/elements selections. 2) Opens a window for selecting a specific color/property-based color mapping. 3) Clears the currently selected color rule. 4) Updates plot
with the currently selected color rule. 5) Removes all previously added color rules.
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inside a SVG document for each of the single Navmain secondary
elements allowed the attribution of precise cartesian coordinates
for each individual residue in this document. This enables the
proper assignment of any text, color or edge annotations on the
plot by the user.

Naview includes four scales to determine the loop length,
depending on each loop type:

• “Fixed” in which a box of fixed height (and possibly width
for “Bulb” and “Mushroom” curves) is set for determining
the interpolating points of all loops of a given type (Short,
Long, Pore or N/C terminus Loops).

• “Scaled” in which the height (and possibly width as above)
of the boxes set for determining the interpolating points of
all loops of a given type (Short, Long or Pore Loops) are set

FIGURE 3 | Naview’s curve drawing logic. (A) “Simple” curve function: a new point pS is generated in the center of two anchoring ponts drawing functions and
scaled by a Δy parameter according to the selected loop length scales. (B) The “Bulb” curve function in which two new points are generated in relation to the “Simple”
curve type: pB1 and pB1 whose vertical growth is controlled by pY, a proportion of the total Δy. The horizontal position of these points is given by the Δx parameter in the
opposite direction of their closest anchoring points. (C) “Swirl” curve function is a variation of the “Bulb” curve type whose horizontal position is defined in a
symetrical direction by a Δcx parameter, defined as a proportion of the distance of the anchoring points to their centroid. (D) The “Mushroom” curve type includes two
new points in relation to the “Bulb” curve type: pM1 and pM2. The vertical position of these points is defined by the pY2 parameter as a proportion of the total Δy, and their
horizontal position is defined from the anchoring points positions towards their centroid by the Δcx parameter.

FIGURE 4 | Example of Naview’s relationship drawing. Edges are colored in purple, with their central widths scaled according to the “raw_weight” column weights.
This scaling allows the visual perception of stronger (larger width) and weaker (thinner width) relationships within the user inputted data. The membrane is shown as a
grey box. All helices are shown as red cartoons except for the voltage-sensing helix 4, colored in blue.
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from a linear, power or logarithmic scale of their amino acid
numbers up to a maximum box height (and possibly width).

• “Reslen” in which the height (and possibly width) of each
box of a loop-type (Short, Long, Pore or N/C terminus
Loops) is defined by a specific pixel value.

• “Custom” in which boxes of fixed specific height (and
possibly width for “Bulb” and “Mushroom” curves) are
set for determining the interpolating points of each loop
of a given type (Short, Long Loops).

All helix and loop coloring, opacity, stroke and scaling settings
are controlled by properties of the Style Obj.

Input of Residue/Element Mapped
Properties and Relationships
User-inputted residue properties and residue, helix and loop
relationships can also be rendered as text annotations, specific

coloring rules and edges between residues or elements (Figures
4–6). The possibility of including properties and relationships in
the plot differentiate Naview from drawing-only methods, by
allowing the ability of the direct inclusion and visualization of
experimental data. Both types of data can be either preloaded
alongside the Raw Text (Examples in Tables 1 and 2) or included
by the Naview Style Editor.

Specific property valuesmapped for a set of residues can be loaded
and used to generate color scales for differential residue coloring or
element mapped text annotations. These properties should be loaded
as a JSON object in which each Nav alpha subunit residue index
(Example 1,2,3 . . . 2005 for a Nav containing 2005 residues) is used as
a key for another dictionary, whose keys are strings describing a given
property and whose values are those of the given properties for the
selected residue (Example: 1:{“Conservation”:0.1},2:{“Conservation”:
0.3},3:{“Conservation”:0.5} and henceforth).

Data representing relationships or interactions between
different residues/elements present in the plot can be included

FIGURE 5 | Example of Naview’s text annotations. All domain-indicating texts were added by using the Naview Style Editor console in the text edition mode. Text
position can be adjusted by clicking and dragging any added text element. A single click highlights the selected text annotation and allows the editing of its current text
and font characteristics. In this example such annotations were used to indicate specific domains (I-IV) and the first intracellular loop (ID-LOOP). Helices are shown as
black cartoons and the membrane as a lipid bilayer. All loop residues are scaled to two pixels.

FIGURE 6 | Example of Naview’s property-based color map from lightblue to blue after loading a CSV containing a randomly valued property named
“Conservation” ranging from 0 to 1 for each of the protein’s residues. Used color rule: “ALL, by:Conservation,#ADD8E6;#0000FF, min;max”. As such residues with a
higher “Conservation” value are colored in a darker tone of blue. Helices are shown as cartoons and the membrane as a lipid bilayer. All loop residues are scaled to two
pixels.
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as a list of JSON inputs in the following format. Example:
{“source”: 1,“target”: DomainI;Helix6, raw_weight:0.5, “type”:
“Residue Importance”}.

Color Rules and Text Annotations
A list containing multiple color-filling text rules can be loaded as
an input for generating a property-based residue color map.
Accepted strings for color rules are any residue or element
string keys followed by a comma-separated hex or string
formatted color. Additionally, when properties have been
mapped for a given Nav, they can be used for generating
property-specific color maps.

Text annotations can be added as a list of JSON objects
containing information about where a specific text should be
drawn. This information can either be coded as absolute
horizontal and vertical coordinates or as relative coordinates
according to the positioning of a given residue or helix/loop
element.

Alternatively, both color rules and text annotations can be
added by the Naview Style Editor graphical interface (Figures
2, 5, 6).

RESULTS AND DISCUSSION

The existence of a diagram for displaying the alpha-subunit
architecture of Nav for over 30 years highlights their
usefulness in depicting important properties of these proteins.
The Naview d3.js based JavaScript library described in this
publication is the first automated method focused on
generating these diagrams. Examples and the full
documentation for this library can be found at: http://bioinfo.
icb.ufmg.br/naview/use and http://bioinfo.icb.ufmg.br/naview/
public/docs/index.html.

The construction of transparent, information-rich and
thought-provoking visual narratives is an intrinsic challenge in
bioinformatics data visualization which requires the management
of different graphical elements for efficient communication (Tao
et al., 2004; O’Donoghue, 2021). This challenge is addressed by
Naview’s through its high customization and data integrative
potential and facilitated by the inclusion of a dynamic graphical
interface. Since Naview is formatted as a fully documented
JavaScript library, its inclusion in web data resources focused

on these channels can also be done simply and straightforwardly.
By allowing the inclusion of residue mapped properties and
relationships, Naview can be used for data exploration and
integration purposes beyond the generation of publication-
ready Nav figures.

In this publication, we demonstrate Naview and describe the
logic of its implementation along with many of its features for
plotting text, interactions and color mapped properties of sodium
channels. Future updates should be focused on expanding the text
annotation syntax to include drawing of polygons, arrows,
backgrounds and other symbols, as well as reconfiguring the
JavaScript library for drawing schemes and displaying data for
any transmembrane/membrane-anchored protein.
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Development and Application of
Automatized Routines for Optical
Analysis of Synaptic Activity Evoked
by Chemical and Electrical Stimulation
Debarpan Guhathakurta, Enes Yağız Akdaş, Anna Fejtová*† and Eva-Maria Weiss*†

Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg,
Erlangen, Germany

The recent development of cellular imaging techniques and the application of genetically
encoded sensors of neuronal activity led to significant methodological progress in
neurobiological studies. These methods often result in complex and large data sets
consisting of image stacks or sets of multichannel fluorescent images. The detection of
synapses, visualized by fluorescence labeling, is one major challenge in the analysis of
these datasets, due to variations in synapse shape, size, and fluorescence intensity across
the images. For their detection, most labs use manual or semi-manual techniques that are
time-consuming and error-prone. We developed SynEdgeWs, a MATLAB-based
segmentation algorithm that combines the application of an edge filter, morphological
operators, and marker-controlled watershed segmentation. SynEdgeWs does not need
training data and works with low user intervention. It was superior to methods based on
cutoff thresholds and local maximum guided approaches in a realistic set of data. We
implemented SynEdgeWs in two automatized routines that allow accurate, direct, and
unbiased identification of fluorescently labeled synaptic puncta and their consecutive
analysis. SynEval routine enables the analysis of three-channel images, and ImgSegRout
routine processes image stacks. We tested the feasibility of ImgSegRout on a realistic live-
cell imaging data set from experiments designed to monitor neurotransmitter release using
synaptic phluorins. Finally, we applied SynEval to compare synaptic vesicle recycling
evoked by electrical field stimulation and chemical depolarization in dissociated cortical
cultures. Our data indicate that while the proportion of active synapses does not differ
between stimulation modes, significantly more vesicles are mobilized upon chemical
depolarization.

Keywords: segmentation algorithm, synapse detection, synaptic vesicle recycling, electrical stimulation, chemical
depolarization, cultured neurons, image processing

INTRODUCTION

Neurotransmission is crucial for brain development, cognition, learning, and memory processes. In
neuronal synapses, neurotransmitters are stored in synaptic vesicles (SVs). Upon stimulation of
neurons, these vesicles fuse with the presynaptic plasma membrane to release neurotransmitter into
the synaptic cleft, which is the key step in synaptic transmission. To preserve the presynaptic
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structure and to ensure effective vesicular release during
repetitive stimulations, SVs are retrieved from the presynaptic
membrane and subsequently refilled with neurotransmitters. To
study their properties, synapses in neurons can be visualized as
synaptic puncta in neurons in vitro, ex vivo, or in vivo with
fluorescence microscopy utilizing antibodies against pre- and
postsynaptic proteins (Ivanova et al., 2020; Anni et al., 2021)
or using genetically encoded reporter constructs (Ng et al., 2002;
Welzel et al., 2011). Reliable detection of synaptic puncta is
crucial for proper quantification of synaptic properties. In the
past, automatized segmentation algorithms emerged as tools to
reduce time need and human bias (Ippolito and Eroglu, 2010;
Danielson and Lee, 2015; Kulikov et al., 2019). Nowadays,
sophisticated segmentation algorithms based on machine
learning are able to segment synapses precisely and comprise
approaches working with very small sets of training data (Berg
et al., 2019; Stringer et al., 2021). However, downstream
postprocessing of bulk images and merging of received data
are difficult. In fact, most labs still rely on human experts
carrying out detection of synaptic puncta manually or semi-
manually (Abraira et al., 2017; Ippolito and Eroglu, 2010; O’Neil
et al., 2021). This procedure is time-consuming and error-prone
and relies on reduced data amount. We think that routines,
enabling a full analysis that includes preprocessing steps and
postprocessing calculations, can improve this. Hence, we
developed the segmentation algorithm SynEdgeWs that we
implemented in frameworks to realize fully automatized
routines performing image preprocessing, precise and robust
puncta segmentation, and postprocessing of data. SynEval
routine allows the analysis of three-channel images and
embeds the readout of synaptic puncta features such as
number, fraction, and emitted mean fluorescence intensity
(MFI). ImgSegRout routine processes image stacks such as
time-lapse imaging sequences. We applied ImgSegRout on a
realistic live-cell imaging data set from experiments where SV
release was monitored using genetically encoded markers, the
so-called synaptic phluorins (Royle et al., 2008). Finally, as a
proof of concept, we tested SynEval routine on a realistic data set
intended to compare different approaches to induce
neurotransmitter release in cultured neurons, namely
electrical stimulation via field electrodes and chemical
depolarization.

METHODS

Preprocessing
Efficient preprocessing of images is crucial for proper
segmentation of synaptic puncta. In the first step,
convolution of the original image creates a background
image that is subtracted from the original image afterward
(Supplementary Methods S1.1) (Sternberg, 1983). Negative
values are set to zero and linear normalization enhances the
contrast of acquired images. The preprocessing routine is
additionally equipped with a retouching function for very
bright regions that may disturb proper segmentation. This is
an optional function, selectable via graphical user interface

(GUI). Thereby, based on its characteristic bimodal shape,
intensity histogram of the original image enables determining
of a cutoff threshold value in-between the maxima to outline
bright regions (Supplementary Methods S1.1, Supplementary
Figure S1). Subsequent dilation and flood filling were
implemented with MATLAB built-in functions. The resulting
binary image masks the original image and the values of pixels
within the mask are replaced with the corresponding pixel
values from the background image. Subsequently, the
background is subtracted from the whole image.

Segmentation Algorithm SynEdgeWs
We developed SynEdgeWs to detect automatically
fluorescently labeled synaptic puncta without user
intervention (detailed flowchart in Supplementary Material
Figure S2, Figure 1A). While customized to work within the
presented routines, SynEdgeWs implementation in new or
modified routines is easy. In brief, an edge filter using sobel
operator (Kanopoulos et al., 1988) calculates the image
gradient (Figure 1B). Determined on an image gradient
histogram, the application of the gradient threshold outlines
the edges of synaptic puncta as a rough segmentation that is
followed by dilation and flood-filling operations. To separate
potentially connected puncta, marker-controlled watershed
transformation operates within each section originating
from intensity centroids. Afterward morphological operators
(dilation/erosion) discard potential artifacts. To refine contour
of regions of interest (ROI), thresholding checks border pixel
values. Regions with a size beyond a certain range are
discarded. Therefore, in the frameworks, minimum and
maximum pixel numbers are calculated from expected
synaptic puncta size in micrometer, camera pixel size,
magnification, and binning adjustable via the GUI. The
algorithm works with an iteratively decreasing image
gradient threshold to overcome heterogeneous fluorescence
intensity emitted by puncta (Figure 1C, Supplementary
Material—Methods S1.2). For each iteration, the
coordinates of detected synaptic puncta were stored in
order to merge them finally. ROI detected during one
iteration was excluded for the following iterations. This
procedure avoids the detection of large regions that would
be difficult to separate consecutively by watershed
transformation. The user can determine the number of
iterations via the GUI.

Routine SynEval for Segmentation of
Antibody-Stained Synapses in a
Multichannel Approach
The routine SynEval analyzes three-channel data in a batch
process (Figures 2A,B). A GUI enables selecting images as TIFF
files for each channel and configuring settings for the
determination of the valid synaptic puncta size range in pixel
counts (Supplementary Material Table S1). All images
undergo preprocessing. The image recorded in channel 1 is
set as a template. A segmentation mask and the corresponding
list of ROI coordinates arise from running SynEdgeWs on this
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template. The ROI coordinates are transferred to channel 2 and
3 images and the MFI of each ROI from all the channels is
obtained. To evaluate signal colocalization, the program
determines a threshold for the signal in channels 2 and 3.
Therefore, the application of edge filter, dilation, and flood
filling results in a rough segmentation. Within this
segmented region, the median of the lowest 1% fluorescence
intensity is calculated and defines the threshold. Further
postprocessing calculations provide a feature table

(Supplementary Material Table S2), which is exported as an
MS excel file.

Routine ImgSegRout for Monitoring
Fluorescence Signals Derived From Puncta
ImgSegRout processes time-lapse recordings saved as image
stacks. It works in a batch mode and allows the operator to
select several image stack files at once (Figure 3A). The routine is

FIGURE 1 | Design and benchmarking of SynEdgeWs segmentation algorithm. (A) Illustration of puncta detection procedure by iterative gradient threshold
application in SynEdgeWs exemplified on synapsin marker staining. The upper image is the initial image (synaptic staining of cultured neurons). SynEdgeWs applies an
edge filter (sobel operator) and iteratively performs a rough segmentation by gradient threshold refined by followed dilation/flood filling operation and marker controlled
watershed transformation. (B) Close-up (section indicated in A, upper image) of synaptic puncta marked by arrows (left) and their segmentation (right). (C)
Visualization of detected ROIs after each iteration (n = 4, step 1–4) on the initial image. The last row shows merged segmentation mask after four iterations on the initial
image. (D–F) Performance of SynEdgeWs (with iteration number it = 2) was benchmarked against thresholding (Thr), thresholding with subsequent marker-controlled
WS (ThrWs), and detection of local maxima controlled by global threshold (LocMax) using cropped images stained against synapsin (n = 10). Validation of SynEdgeWs by
F1 score (D), bf score (E), and dice coefficient (F). For statistics one-way ANOVAwith multiple comparisons by Tukey was done: ****p < 0.0001, ***p < 0.001, **p < 0.01,
*p < 0.05. The box indicates the interquartile distance with median, and the whiskers are plotted in minimum to maximum range.
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based on our routine described in Anni et al. (2021) modified by
herein-introduced segmentation algorithm SynEdgeWs and
preprocessing procedure (process flow in Figure 3A). In brief,
similar to SynEval, a GUI prompts to adjust settings for puncta
size calculation, to select preprocessing features such as
retouching and to insert the iteration number using
SynEdgeWs (Supplementary Material Table S1). Moreover,
postprocessing steps such as bleaching correction are
selectable. Additionally, either by selecting a single frame or by
selecting a sequence of frames consecutively averaged, the user
determines a template for the segmentation process in
SynEdgeWs. Subsequently, a multiple TIFF file is loaded.
SynEdgeWs detects ROI on the template and returns a list of
coordinates. ROI coordinates are transferred to each frame of the
whole stack and MFI is read out. Additionally, the read-out
process returns a background trace containing one background
value per frame. Postprocessing includes subtraction of
background values from individual fluorescent signal traces as
well as smoothing and optional bleaching correction described in
Anni et al. (2021). ImgSegRout exports all results as a MS
excel file.

Primary Neuronal Cultures
Dissociated primary rat neuronal cultures were prepared exactly
as described previously (Anni et al., 2021). The experiments
involving animals in this study were approved by local animal

welfare officer (FAU: TS12/2016 and TS13/2016), in accordance
with the European Directive 2010/63/EU and German animal
welfare law. Briefly, cortices from E18 rat embryo were collected
and cell suspension was obtained after trypsinizatin and
mechanical trituration. Cells were plated in DMEM containing
10% (v:v) fetal calf serum, L-glutamine, and antibiotics on poly-L-
lysine coated 18 mmMenzel glass coverslips at density of 120,000
cells/ml and kept at 37°C in 5% CO2 atmosphere. 1 h later media
was replaced to Neurobasal growth medium supplemented with
B27, L-Glutamine, and antibiotics. Neurons were grown for
18–21 days in vitro (DIV) prior to all experiments
(Supplementary Material Table S3).

Immunocytochemistry and Synaptotagmin1
Antibody Uptake Assay
Synaptotagmin1 antibody (Syt1Ab) uptake assay was carried out
using Syt1Ab as described previously with slight modifications
(Anni et al., 2021). For chemical stimulation, high KCl-Tyrode’s
buffer (TB) containing in mM: 69 NaCl, 50 KCl, 2 CaCl2, 2
MgCl2, 30 glucose, 25 HEPES, pH 7.4 and Syt1Ab (1:250 dilution)
was applied to coverslips with DIV 18–21 neurons for 4 min at
room temperature (RT). Thereafter, neurons were shortly washed
and fixed in 4% (w:v) paraformaldehyde. For electrical
stimulation, neurons were placed in a stimulation chamber
and immersed in physiological TB, containing in mM: 119
NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 30 glucose, 25 HEPES, pH

FIGURE 2 | SynEval for detection and analysis of synapses in three-channel immunofluorescent images. The schema in (A) shows all steps of SynEval routine. (B)
Image recorded in channel 1 (here Syn1,2 staining) serves as a template to create segmentation mask. The segmentation mask is applied on images from channels 2
(Syt1Ab uptake) and 3 (anti-VGAT staining) to read out parameters and create table of features. Scale bar is 4 µm.
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7.4 and Syt1Ab. A train of 900 pulses (90 mA, 1 ms each) was
delivered at 20 Hz using submersed electrodes. After 1 min,
neurons were shortly washed and fixed in 4% (w:v)
paraformaldehyde. The following steps were identical for
electrically and chemically stimulated samples. For blocking
and permeabilization coverslips were incubated in 10% (v:v)
FCS, 0.1% (w:v) glycine, and 0.3% (v:v) TritonX 100 in PBS
for 40 min. Primary antibody against VGLUT1 (1:1,000), VGAT
(1:1,000), and synapsin 1,2 were applied overnight at 4°C in 1:
1,000 dilution. The fluorescently labeled secondary antibodies
were applied for 1 h at RT. All antibodies were diluted in PBS
containing 3% (v:v) FCS. Coverslips were mounted in Mowiol.
Images of immunofluorescence for all channels were acquired
exactly as described previously (Anni et al., 2021)
(Supplementary Material Table S3).

Preparation of Lentiviral Construct
To express the pH-sensitive synaptophysin–mOrange
[SypmOr (Egashira et al., 2015)] in neuronal cultures, the
SypmOr sequence was cloned into a FULW lentiviral vector
(i.e., FUW with a modified multiple cloning site) using
NEBuilder® HiFi DNA Assembly (NEB) through EcoRI and
BamHI restriction sites. The production of virus in

HEK293T cells was done exactly as described in Anni et al.
(2021). To transduce neurons, 100 µL of lentivirus containing
medium was applied per coverslip at DIV 2 (Supplementary
Material Table S3).

Live Imaging of SV Recycling Using SypmOr
Imaging was performed as in Anni et al. (2021) with minor
modifications. Coverslips with neurons (DIV18-21) were placed
in an electrical field stimulation chamber and imaged at RT in
physiological TB containing 10 µM CNQX, 50 µM APV, pH 7.4,
and 1 µM bafilomycin A1 on an epifluorescence microscope,
using an automated perfect focus system (PFS) and 60X/
NA1.2 water-immersion objective. Stimulus was generated
using A 385 stimulus isolator connected to STG-4008
stimulus generator (Multi Channel Systems, Reutlingen,
Germany). Subsequent to stimulations, TB containing 60 mM
NH4Cl was applied to achieve alkalization across all
membranes. SypmOr fluorescent dye was excited at 543/22
with a Led-HUB lamp and time-lapse images were acquired
using a Cy3 filter (emitter 593/40) at the frequency of 1 Hz using
iXon EM + 885 EMCCD Andor camera controlled by VisiView
software in 2 * 2 binning mode. Data were exported as stack files
(.stk) containing frames with 502 × 501 pixels of 16-bit

FIGURE 3 | ImgSegRout for detection and analysis of synapses in image stacks. (A) Flowchart in A depicts all steps of ImgSegRout. (B) Example of preprocessing
of images during ImgSegRout. Here, images of neuronal cultures expressing SypmOr sensor for monitoring of SV recycling were processed. Shown are the raw image
(left), image after retouching procedure (middle), and image after background subtraction (right). Scale bar is 40 µm. (C) Illustration of neurons from imaging experiment
to monitor SV release. Shown are cells upon stimulation with 40 AP (20 HZ) and 900 AP (20 Hz), respectively, and the application of NH4Cl to alkalize SV and to
visualize the total amount of SV. Scale bar is 15 µm. (D) Representative mean curve derived from three experiments. The data points represent the mean values of
normalized MFI traces (ΔF/F) with plotted error (SEM). In an experiment, normalized MFI values were calculated by averaging all traces derived from individual ROIs and
by normalizing in the range of NH4Cl signal and baseline (F = FNH4Cl—Fbase; ΔF = Fframe—Fbase).
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monochromatic intensity values (Supplementary Material
Table S3, S4). For further processing, stack files are
converted into multiple TIFF files.

RESULTS

Performance of Segmentation and Routines
The aim of both presented routines is the fast, unbiased, and
reproducible identification of synaptic puncta from images
obtained by fluorescence microscopy and consecutive
calculation returning a table of results as an Excel file. The
in-house developed segmentation tool SynEdgeWs is the
essential core algorithm of both routines and is imbedded
in a framework of pre- and postprocessing procedures to allow
direct usage on data with the purpose of saving time and
reducing error potential.

Benchmarking of Segmentation Tool SynEdgeWs
Binarization of images by automatically determined cutoff
threshold (Thr) (Sezgin and Sankur, 2004; Glebov, 2019) and
local maxima determination, controlled by global threshold
(LocMax) (Sbalzarini and Koumoutsakos, 2005; Xu et al.,
2011) are still commonly used methods for image
segmentation that run without user intervention and
training data render them capable to run within the
presented routines. To test SynEdgeWs algorithm, we
benchmarked its performance against these methods by
implementing them into the same environment in
MATLAB. Since watershed transformation is a common
method to separate connected puncta, we additionally
implemented that to Thr (ThrWs) (Richter et al., 2018;
Guo et al., 2019) (Supplementary Material Methods S1.3).
To generate a reference segmentation as ground truth
(ROIref), a human expert carried out manual segmentation
of synaptic puncta on ten cropped images using Image
Segmenter App (MATLAB). The same images were
subsequently segmented by the four automatic
segmentation methods resulting in respective ROIauto. To
compare all tested algorithms, F1 score was calculated. F1
is an established parameter to benchmark accuracy calculated
as the harmonic mean of the performance metrics precision
(positive predictive value) and recall (sensitivity) (Dice, 1945;
Sørensen, 1948; Fawcett, 2006). Here, the calculation of F1
score underlies the comparison of individual ROIs
(Supplementary Material Method S1.4). Additionally, we
used built-in functions in MATLAB to measure further
parameters to quantify segmentation quality. These are the
F1 score, which compares the binary segmentation masks at
pixel level, hereinafter referred to as dice coefficient (dice)
(The MathWorks, 2017a) and the contour-matching score,
also called boundary F1 score (bf score) (Csurka et al., 2004;
The MathWorks, 2017b).

Benchmarking SynEdgeWs against LocMax yielded in
significantly higher values for the measure dice (SynEdgeWs:
0.658 ± 0.011, LocMax: 0.580 ± 0.010, p = 0.0040) as well as bf

score (SynEdgeWs: 0.802 ± 0.011, LocMax: 0.733 ± 0.016, p =
0.0461) and higher values for F1 score (SynEdgeWs: 0.822 ±
0.010, LocMax: 0.761 ± 0.016). For all measures, SynEdgeWs
significantly outperforms Thr (F1 score: 0.582 ± 0.019 p < 0.0001;
bf score: 0.693 ± 0.021, p = 0.0007; dice: 0.591 ± 0.018, p = 0.0158)
and ThrWs (F1 score: 0.590 ± 0.022, p < 0.0001; bf score: 0.681 ±
0.021, p = 0.002; dice: 0.577 ± 0.018, p = 0.0025) in all measures
(Figures 1D–F).

SynEval for Detection and Analysis of Synapses in
Three-Channel Immunofluorescence Images
The MATLAB-based routine SynEval facilitates analysis of
three-channel recordings in a batch process. The image
recorded in channel 1 is set as a template to create a
segmentation mask and a list of coordinates of detected
ROI (Figures 2A,B). The ROI coordinates are transferred to
the images recorded in channels 2 and 3 to read out parameters
(Supplementary Material Table S2). To test SynEval on a
realistic dataset, probes immunostained against synapsin 1,2
(Syn 1,2), a synaptic marker, were recorded in channel 1. The
signal in channel 2 corresponded to Syt1 antibody labeling.
This labeling had been previously performed in living cells to
mark active synapses undergoing neurotransmitter release
during antibody incubation (Kraszewski et al., 1995). The
signal in channel 3 corresponded to staining for vesicular
glutamate transporter 1 (VGLUT1), a marker for excitatory
synapses (Figure 4B). Compared with manual analysis, this
routine enables faster analysis. We tested running time (n =
150 images split into 15 runs) of our routine by using a built-in
function stopwatch timer by MATLAB resulting in a mean
value of 39.1 ± 4.8 s (Supplementary Material Table S5).
Analysis of the same data, performed by a skilled
experimenter using an optimized Fiji plugin (Wang et al.,
2020), needed about 240 s per experiment. Additional 240 s
were needed for postprocessing data carried out in MS Excel
(Supplementary Material Methods S1.5). Thus, the time
advantage gained by SynEval is around one order of
magnitude compared with the semi-manual method. Time
requirement for the user is further reduced courtesy of the
batch mode.

ImgSegRout for Detection and Analysis of Synapses in
Image Stacks
Time-lapse fluorescence imaging of optical probes targeted
toward the lumen of SVs (synapto-pHluorins) is a common
method to investigate release and recycling of SVs at the level
of individual synapses, which is a proxy for
neurotransmission (Sankaranarayanan et al., 2000). We
developed ImgSegRout to monitor synapto-pHluorin
fluorescence signals from time-lapse recordings, but, in
general, the routine is capable of extracting fluorescence
traces derived from any fluorescent puncta recorded as an
image stack. It processes data in a batch mode (Figure 3A). To
test ImgSegRout, we generated a realistic dataset by live-
imaging neurons expressing the SypmOr reporter for
monitoring SV fusion and retrieval (Egashira et al., 2015).
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In this case, we implemented an approach described earlier by
Burrone and colleagues (Burrone et al., 2006). Specifically,
imaging was performed in the presence of bafilomycin to
prevent vesicle reacidification, which allows visualization of
cumulative release of SVs of different physiological
properties. Release of a readily releasable pool of vesicles
was induced by electrical field stimulation with 40 APs
(pulses) at 20 Hz, release of all releasable vesicles was
achieved by delivery of 900 APs at 20 Hz (Figures 3C,D).
In these experiments, expression of SypmOr reporter resulted
in a strong fluorescence signal in neuronal cell bodies, which
hampered the reliable segmentation process. Therefore, we
applied a function integrated in preprocessing to retouch
these very bright areas and to render images suitable for
the segmentation process (Figure 3B). Testing performance
of ImgSegRout by analyzing several real data experiments (n =
12 split in 3 runs) using the built-in stopwatch time function
in MATLAB yielded in an averaged running time of 29.99 s
per image stack with 260 images, 502 × 501 pixels. We

switched off bleaching correction, because the bleaching
was minimal in these experiments.

Application of SynEval to Compare SV
Recycling Induced by Chemical or Electrical
Stimulation
Finally, we employed SynEval on realistic data with the aim of
comparing SV release induced by chemical depolarization and
electrical field stimulation. These two methods are broadly used
in the field, but direct comparison of the data obtained by these
alternative approaches was not yet performed. To close this gap,
we labeled recycling vesicles evoked 1) by brief chemical
depolarization with 50 mM KCl or 2) by electrical field
stimulation with 900 APs at 20 Hz applied via submerged
parallel field electrodes (Figure 4A). We used an antibody
against luminal domain of SV protein Syt1 (Syt1Ab). This
antibody binds its epitope only upon fusion to SV with
plasma membrane (i.e., during depolarization/stimulation),

FIGURE 4 | Application of SynEval for the analysis of SV recycling evoked by electrical and chemical stimulation. Experimental design of Syt1Ab uptake with
consecutive immunostaining is depicted in (A). (B–C) The representative pictures are shown for Syn 1,2 staining used to determine synaptic puncta, Syt1Ab uptake
assay upon chemical depolarization (50 mM KCl, 4 min) and staining for VGAT for inhibitory synapses (B) and VGLUT1 for excitatory synapses (C), and respective
merged images. (D) The representative images of Syt1 uptake upon electrical stimulation (900 AP/20 Hz) and chemical depolarization. Scale bars are 10 µm. (E,F)
Quantification of active synapses evaluated as fraction of Syt1-positive puncta (Syt1+) out of all synapsin-positive puncta (E) or on inhibitory or excitatory synapses
defined by VGAT or VGLUT1 staining (F) upon chemical depolarization (KCl) and electrical stimulation (900 AP) stimulation. N was 84 (KCl) or 77 (900 AP) visual fields
derived from eight coverslips for each group in E and 43 (KCl/VGAT), 40 (900 AP/VGAT), 40 (KCl/VGLUT1), 35 (900 AP/VGLUT1) visual fields derived from four coverslips
per group in F. (G)MFI of active (i.e., double positives Syt+Syn+) synapses upon chemical depolarization or electrical stimulation. (H) Same analysis as in G but inhibitory
(VGAT+) and excitatory (VGLUT1+) synapses were identified by staining and evaluated separately. N numbers were same as in E and F, in the graph bars depict the mean
values and whiskers correspond to SEM. Significance was assessed using Student’s t-test, significance is depicted as ****p < 0.0001, *p < 0.05.
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internalized during compensatory endocytosis and thus labels
vesicles that have underwent exo- and endocytosis cycle during
time of experiment. Following stimulation, cells were fixed and
processed for immunostaining with antibodies for presynaptic
marker Syn 1,2, as well as for marker of inhibitory (vesicular
GABA transporter, VGAT) (Figure 4B) or excitatory (VGLUT1)
(Figure 4C) synapses. Images were analyzed, using SynEval
routine (Figure 2A). Syn 1,2 staining had been recorded in
channel 1 to create segmentation mask with SynEdgeWs
(Figure 2B). The segmentation mask determined ROIs on
images from channel 2 (Syt1Ab uptake) and channel 3 (VGAT
and VGLUT1, respectively) and application of threshold identified
ROIs as positive for respective marker. To compare stimulation
methods, proportion of synapses positive for Syt1Ab uptake as well
as MFI of Syt1Ab uptake signal were analyzed (Figures 4F–H).
While the first parameter reveals proportion of presynaptically silent
synapses, the second relates to the relative number of SVs, which
underwent exocytosis upon the respective stimulation at individual
synapses and is a good proxy for presynaptic efficacy. The overall
number of active (i.e., responding) synapses in relation to the total
amount of synapses was similar upon both types of stimulation
(Figure 4E, KCl: 0.829 ± 0.004; AP 900: 0.0.835 ± 0.005). In the next
step, we analyzed proportion of active inhibitory and excitatory
synapses. No difference was obvious in the proportion of inhibitory
synapses, minor but significant increase was detected in the
proportion of excitatory synapses upon electrical stimulation
(Figure 4F, VGLUT1+, KCl: 0.813 ± 0.007; AP 900: 0.844 ±
0.007/VGAT+, KCl: 0.935 ± 0.003; AP 900: 0.919 ± 0.004). In
contrast, analyzing FI of Syt1Ab, depicted as relative FI related to
overall mean, showed increased labeling upon depolarization with
KCl compared with electrical stimulation (Figure 4G, KCl: 1.172 ±
0.028; AP 900: 0.8118 ± 0.024). This was true for both inhibitory and
excitatory synapses (Figure 4H, VGLUT1+, KCl: 2.070 ± 0.031; AP
900: 0.835 ± 0.040/VGAT+, KCl: 1.160 ± 0.026; AP 900: 0.823 ±
0.024). These data indicate that while the proportion of synapses that
respond to chemical and electrical stimulation remains the same, the
number of SV that are released upon chemical depolarization at
excitatory and inhibitory synapses is significantly higher in
comparison with neurons undergoing electrical field stimulation.
This needs to be considered when interpreting the experimental
outcomes using both stimulation regimes.

CONCLUSION

In this study, we implemented newly developed segmentation
algorithm SynEgdeWs in fully automatized frameworks to
combine precise, reliable, and fast identification of objects on
fluorescently visible and acquired synaptic puncta images with
complete pre- and postprocessing. The emerging routines
SynEval and ImgSegRout are user-friendly turnkey solutions
with the purpose of saving time and reducing human bias.

SynEdgeWs relies on gradient intensity. Since it does not rely on a
cutoff intensity threshold to create a binary image, it is less affected by
low signal-to-noise ratio or uneven illumination. We have proven
SynEdgeWs to outperform algorithms based on threshold application
and maxima-guided approaches, as determined by assessment of

accurate synapses localization (F1 score) and other measures. Since
SynEgdeWs operates iteratively and applies decreasing thresholds for
image gradient for each iteration, trade-off between specificity and
sensitivity is adjustable depending on image data quality. Due to
preservation of shape, this algorithm is potentially suitable to
recognize virtually any other cellular structure defined by
fluorescent signal that we aim to realize in future routines.

The routines SynEval and ImgSegRout were significantly faster
than semi-manual methods. Moreover, the automatic routines
are less prone to human error or individual variability, since they
hardly involve any steps requiring manual intervention and
therefore allow comparison of data obtained by different
experimentations or laboratories. Both routines are applicable
and adaptable to a wide range of experimental setups. We prepare
all software packages for execution inMATLAB runtime enabling
the use of software without installing MATLAB and provide
routines with a GUI.

The GUI allows specifying further settings such as camera pixel
size, magnification, binning, expected diameter of puncta in
micrometer to define expected puncta dimensions in pixel counts
and to exclude structures out of scope and reasoning. Both routines are
equipped with pre- and postprocessing computations partly selectable
via the GUI, like bleaching correction in the postprocessing of
ImgSegRout or retouching of bright artifact in preprocessing.

Finally, the application of SynEval allowed us to answer a
relevant biological question on comparing two different
techniques broadly used to induce, monitor, and quantify
SV release. Both electrical stimulation and chemical
depolarization with KCl have their advantages depending
on the experimental system. But without detailed
knowledge about their relative potential to evoke SV
release, the comparison of experiments using either of
them is difficult. In our setting, the proportion of synapses,
which are activated, does not differ between both methods.
However, a direct comparison revealed that significantly more
SV are mobilized upon chemical depolarization compared
with electrical stimulations. We conclude that both electrical
stimulation and chemical depolarization merit their place in
different experimental settings, but chemical depolarization
tends to mobilize vesicles that are not releasable upon intense
electrical stimulation. It will be interesting to approach the
molecular determinants of the observed difference in future
experiments.
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Uncertainty Visualization: Concepts,
Methods, and Applications in
Biological Data Visualization
Daniel Weiskopf*

Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany

This paper provides an overview of uncertainty visualization in general, along with specific
examples of applications in bioinformatics. Starting from a processing and interaction
pipeline of visualization, components are discussed that are relevant for handling and
visualizing uncertainty introduced with the original data and at later stages in the pipeline,
which shows the importance of making the stages of the pipeline aware of uncertainty and
allowing them to propagate uncertainty. We detail concepts and methods for visual
mappings of uncertainty, distinguishing between explicit and implict representations of
distributions, different ways to show summary statistics, and combined or hybrid
visualizations. The basic concepts are illustrated for several examples of graph
visualization under uncertainty. Finally, this review paper discusses implications for the
visualization of biological data and future research directions.

Keywords: visualization, uncertainty, layout, visual mapping, sampling, graph visualization

1 INTRODUCTION

Data uncertainty can seriously affect its analysis and subsequent decision-making. Therefore,
uncertainty should be considered in the context of visual data analysis and communication. This
is well understood in many disciplines that deal with measured data. For example, error bars are
widely used to indicate the uncertainty that comes with measurements, indicating standard mean of
error or related descriptions of variability or uncertainty. However, uncertainty is not restricted to
measurements but can also originate from numerical error in simulations, uncertainty in devising
models, or many other sources.

In this paper, we discuss approaches to uncertainty visualization that do not restrict themselves to error
bars. We address the problem of uncertainty visualization from a broader perspective, going beyond
traditional statistical graphics and supporting more complex data than individual univariate distributions
of data values, and therefore, linking to advanced visualization techniques. For many reasons, uncertainty
visualization is difficult and considered one of the top research problems in visualization (Johnson, 2004).
We will discuss some of the reasons and show strategies to address the problems.

There are already a number of survey papers on uncertainty visualization (see Section 2). We aim
to complement them by adding some new perspectives: 1) We focus on presenting general concepts
of uncertainty visualization, with an emphasis on strategies for visual mappings. Here, we will use a
categorization that partially differs from existing ones, focusing on structuring the design space.
2) We build a bridge between sampling for visualizing uncertainty and modeling probability
distributions, emphasizing the need for appropriate layout methods. 3) The general concepts are
illustrated with examples in biological data visualization, and implications for visualization in
bioinformatics are discussed.
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This paper is written from the perspective of visualization
research, as for example, presented in conferences like IEEE VIS,
EuroVis, or IEEE PacificVis and journals like IEEE Transactions
on Visualization and Computer Graphics or Computer Graphics
Forum. Therefore, we want to build a connection between
visualization research in general and applications in
bioinformatics. Although this paper has some characteristics of
a survey, it is not meant to be a systematic survey of (biological)
uncertainty visualization techniques. Instead, we often use
examples from our own previous work to illustrate concepts.
The main goal is broad coverage of principles, concepts, and
approaches.

We see the following benefits: This paper provides an overview
of general strategies that can be useful to visualize uncertainty in
biological data. We also discuss practical aspects of integration
into biological data analysis and visual communication, as well as
future directions.

This paper is based on and extends a talk from VIZBI 2021.1

2 RELATED WORK

There are many survey papers on uncertainty visualization that
cover the topic from different perspectives. The seminal paper by
Pang et al. (1997) adopts a general classification of visualization
techniques and applies it to uncertainty visualization. Their
classification is based on: the value of the input data and its
corresponding value uncertainty; the position of the data within
the domain, along with its positional uncertainty; the extent of
location and value; the visualization extent (discrete vs.
continuous); and axes mappings. This kind of classification or
variants thereof are good because they bring order into the large
collection of visualization techniques in general, and uncertainty
visualization techniques in particular. They also facilitate
choosing a visualization based on data characteristics.
However, this taxonomy is less suited to understand how
uncertainty visualization works and how we can use the
design space to come up with new uncertainty visualizations.
Therefore, Pang et al. (1997) also characterize uncertainty
visualization techniques according to the following categories:
adding glyphs, adding geometry, modifying geometry, modifying
attributes, animation, sonification, and psychovisual approaches.

Griethe and Schumann (2006) base their survey on categories
that can be associated with the visualization design space, similar
to Pang et al.’s latter characterization: using free graphical
variables, including additional graphical objects, animation,
interaction, or leveraging other human senses. Later papers by
Potter et al. (2011) and Brodlie et al. (2012) primarily structure
their surveys according to data type, in particular, the
dimensionality of the domain and the attached data values
and uncertainties. Bonneau et al. (2014) organize their survey
according to traditional representations (in 1D, 2D, and for
probability density functions), visual comparison techniques,

modification of attributes, glyphs, and image discontinuity.
Ristovski et al. (2014) present a taxonomy focused on types of
uncertainty and corresponding visualization challenges,
concentrating on medical visualization. Siddiqui et al. (2021)
summarize uncertainty visualization techniques for diffusion
tensor imaging (DTI), considering the whole DTI visualization
pipeline.

The above survey papers not only report on existing
uncertainty visualization techniques, but also provide some
background information: for example, on modeling
uncertainty, how uncertainty data is acquired, and how
uncertainty can be included in visualization processes or the
visualization pipeline.

Jena et al. (2020) use a categorization with respect to
publication type, publication venue, application domain, target
user, and evaluation type. Their survey paper is accompanied by a
web page2 that can be queried and browsed according to the
categorization and that comes with consistent descriptions and
representative images for each visualization technique. Especially
the thumbnail images facilitate quick browsing for potential
solutions to uncertainty visualization problems.

Padilla et al. (2020) start from the design space of uncertainty
visualization, distinguishing graphical annotations of
distributional properties (showing intervals and ratios, or
distributions), visual encodings of uncertainty, and hybrid
approaches. They also summarize some theories for
uncertainty visualization, bringing in a perspective from
psychology.

A recent survey article is by Kamal et al. (2021). They use the
following categories to structure uncertainty visualizations:
geometry, attributes, animation, visual variables, graphical
techniques, and glyphs. They also summarize the conceptual
basis of uncertainty visualization, sources and models of
uncertainty, evaluation approaches, and future research
directions.

As pointed out by Griethe and Schumann (2006), not all
taxonomies are necessarily useful in structuring existing
uncertainty visualizations because they might result in very
uneven distributions of papers to categories. Therefore, our
categorization of visual mappings is inspired by the design-
space-oriented classifications from Pang et al. (1997), Griethe
and Schumann (2006), Bonneau et al. (2014), Padilla et al. (2020),
and Kamal et al. (2021). Our structure of visual mappings in
Section 4 synthesizes a categorization based on variants from the
above previous work, targeting strategies that can be used to
develop new uncertainty visualization techniques.

The above survey papers are primarily based in the
visualization research community. It should be noted that
there is relevant related research in other fields as well. One
prominent example is geography, geospatial science, and
cartography; see the survey by MacEachren et al. (2005).

Related to perceptual and cognitive theories, Zuk and
Carpendale (2006) applied principles by Bertin, Tufte, and
Ware to examples of uncertainty visualizations to illustrate

1D. Weiskopf: Uncertainty Visualization. Keynote presentation at the 11th
International Meeting on Visualising Biological Data (VIZBI 2021) 2https://namastevis.github.io/uncertaintyVizBrowser/
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and better understand these and assess them.While theirs is not a
survey paper, it provides a theoretical underpinning that is useful
in understanding uncertainty visualization. The survey paper by
Hullman et al. (2019) focuses on one aspect of uncertainty
visualization: its evaluation. Examples of evaluation papers
include the ones by Deitrick and Edsall (2006) or Sanyal et al.
(2009), but many more are reviewed by Hullman et al.

Skeels et al. (2010) pick out another important aspect: what are
relevant models and types of uncertainty for visualization?
Furthermore, visualization in general has to consider the analysis
tasks that should be supported. Murray et al. (2017) provide a task
taxonomy for the analysis of biological pathway data that includes
identifying uncertainty. Also in the context of bioinformatics,
Hamada (2014) summarizes several approaches to handle
uncertainty, in particular, recommending visual representations.

It should also be noted that there are other concepts that are
related to uncertainty and have some overlap. For example,
ensemble visualization aims to show members from an
ensemble, which can be viewed as a special case of describing
variability. Therefore, uncertainty and ensemble visualization
techniques show substantial overlap. Wang et al. (2019)
provide a survey of ensemble visualizations. Other related
concepts comprise human trust building or data provenance,
as integrated into the framework by Sacha et al. (2016).

Some of the example visualizations that we demonstrate in this
paper are based on (joint) research that went into the doctoral
theses by Görtler (2021) and Schulz (2021). These theses also
provide overviews on quantification for uncertainty visualization
and approaches to making visualizations aware of uncertainty. In
particular, they discuss sampling and layout methods for
uncertainty visualization.

In summary, we do not want to replace the aforementioned
surveys that come with a broad coverage of previous literature.
Instead, our goal is to provide some additional perspective on the
problem of uncertainty visualization. In contrast to most of the
previous survey papers, we use many examples from biological
data visualization to illustrate uncertainty visualization.
Furthermore, we present a slightly different categorization of

visual mappings and point out specific issues that were not the
focus of previous papers: the role and challenges of sampling for
the implicit visualization of distributions, and the relevance of
layouts for advanced uncertainty visualization.

3 OVERVIEW OF UNCERTAINTY
VISUALIZATION

This section provides an overview of where and how uncertainty
plays a role in visualization. We use the visualization pipeline to
organize and structure the effects of uncertainty, see Figure 1.

Many of the previous survey papers employ the visualization
pipeline as well (Pang et al., 1997; Griethe and Schumann, 2006;
Brodlie et al., 2012; Ristovski et al., 2014; Kamal et al., 2021;
Siddiqui et al., 2021). Our description is based on a pipeline for
scientific visualization by Haber and McNabb (1990) and the
related one for information visualization by Chi and Riedl (1998).
However, we extend it slightly by including the human user (with
their perceptual and cognitive aspects) and the interaction of the
user with different stages of the pipeline. All of these need to
consider uncertainty as well.

Following Brodlie et al. (2012), we can distinguish between
visualization of uncertainty and uncertainty of visualization. The
former is the typical focus when we address uncertainty
visualization: showing the uncertainty that comes with the data.
The latter term describes the additional uncertainty introduced by
visualization—on top of the uncertainty associated with the data.
Often, these two terms are treated in a combined fashion because
they form the overall uncertainty in the final visualization.

There is an important point that comes with the visualization
pipeline: The different stages have to be made uncertainty-aware
and they have to be able to propagate uncertainty through the
pipeline.

3.1 Uncertainty Modeling and Acquisition
One difficulty is that the term uncertainty is not well defined in
the field of uncertainty visualization. In particular, there is not a

FIGURE 1 | Visualization pipeline including uncertainty.
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unique model of uncertainty. In some vagueness, it may refer to
error, variability, or other aspects that may degrade the quality of
data and visualization. Therefore, a typical challenge in using
uncertainty visualization is to first understand the type of
uncertainty that is to be shown. This is one of the critical
elements in linking visualization to the specific application
at hand.

There are a number of different taxonomies to describe
various types of uncertainty. For example, we can distinguish
between accuracy/error, precision, completeness, consistency,
lineage, currency, credibility, subjectivity, and interrelatedness
(MacEachren et al., 2005, 2012). Skeels et al. (2010) provide a
classification in the form of measurement precision,
completeness (covering missing values, sampling, aggregation),
inferences (covering predictions, modeling, and descriptions of
past events), disagreement, and credibility.

These models of uncertainty are determined by the sources of
uncertainty and how it is used in the visualization and analysis.
For example, there might be measurement errors, numerical
errors from simulations, missing or corrupted data, variability
from statistical observations, or from aggregating larger chunks of
data into a compressed form.

Despite this vagueness, many uncertainty visualization
techniques are based on some kind of probabilistic modeling
of data uncertainty, i.e., in the form of probabilities or probability
density functions. Furthermore, such uncertainty is often
acquired by aggregation or computing summary statistics such
as mean, median, standard error, percentiles, etc. Therefore,
unless stated otherwise, we assume such probabilistic modeling
and that uncertainty is described by summary statistics, by
parameters of probability models (like parameters of
probability density functions), or by providing original data
samples (from which statistical descriptions could be computed).

3.2 Filtering and Transformations
Usually, the input data is not directly mapped to a visual
representation. In particular, for large or complex data, it
might be necessary to reduce the amount of data shown.
Therefore, filtering and transformations of the input data are
required to obtain data that is more informative: it might be
reduced in amount or complexity, or important features might be
extracted for highlighting. Therefore, this stage of the
visualization pipeline is critical for avoiding or reducing
information overload.

Filtering can be as simple as selecting data items based on
allowed ranges of data, which might be specified by the user or
driven by the distribution of the input data. Clustering is a
common transformation approach in visualization because it
facilitates structuring and grouping data, supporting
summarized and compact representations; see, for example the
survey paper by Xu andWunsch (2005). Another typical example
is the use of dimensionality reduction methods (or
multidimensional projection) that allow one to transform
high-dimensional input data to 2D or 3D data, leading to an
easy mapping to visualization space. For background reading, see,
for example, the book on nonlinear dimensionality reduction by
Lee and Verleysen (2007). Modeling in high-dimensional space is

very generic and can be used for manifold applications. One
bioinformatics example is the representation of phylogenetic
trees that lends itself to multidimensional projection and
uncertainty visualization (Willis and Bell, 2018).

Complex types of transformations can introduce additional
uncertainty, i.e., they can lead to increasing visualization
uncertainty. For example, multidimensional projections cannot
fully guarantee the preservation of the original characteristics of
the input data. The introduced distortions from projections can
be identified and visualized, as summarized in a survey paper by
Nonato and Aupetit (2019). Or, as in fuzzy clustering (Baraldi
and Blonda, 1999), transformations might provide gradual or
fuzzy assignments to clusters on purpose, again resulting in
uncertainty that only originates at this stage of the
visualization pipeline.

However, transformations do not only contribute to
visualization uncertainty, they also have to be able to propagate
incoming uncertainty downstream the pipeline. In this case, the
transformation stage does not add errors during the process, but it
has to pass them through appropriately. Since transformations can
be highly nonlinear, this propagation might be hard to compute
and it might distort the uncertainty substantially.

For example, uncertainty-aware principal component analysis
(PCA) (Görtler et al., 2020) incorporates the uncertainty in high-
dimensional data points to adapt the computation of the
projection operator. Figure 2 illustrates the effect of
uncertainty on PCA. Uncertainty not only affects the display
of the data points (which get wider with increasing uncertainty),
but it even impacts the projection directions as indicated by the
rotation of the PCA axes.

This example demonstrates the importance of making
transformations aware of uncertainty. While there are
uncertainty-aware variants already for some of the typical
filtering and transformation techniques, there is still much
room for future work in this direction. This is a research
question not just for visualization but any field where
numerical analysis of uncertain data is performed. Therefore,
related methods may be developed in a range of different research
fields.

3.3 Mapping and Rendering
The mapping stage of the visualization pipeline takes the
transformed data and produces a renderable representation,
for example, in the form of geometry together with attributes
like color or opacity. Such geometry could be the set of points
to be shown in a scatterplot, or a triangle mesh for an
isosurface. This representation is then rendered to generate
the final visualization image. The actual rendering is mostly
well understood, with manifold techniques available from
computer graphics.

In contrast, the mapping stage is in the center of visualization
because it is the critical link between data and image. Developing
appropriate visual mappings can already be hard for visualization
without uncertainty, and it becomes even more challenging for
uncertainty visualization. Visual mapping is a focal point of this
paper, with a detailed discussion of mapping strategies in a
dedicated later section (see Section 4).
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3.4 Perception and Cognition
Visualization only works in combination with a human that uses
imagery to understand the data or communicate with others.
Therefore, visual perception and cognition play a critical role in
visualization in general (Ware, 2021). In this context, user-
oriented evaluation of visualization techniques is relevant and
challenging at the same time (Lam et al., 2012); there is even a
specialized series of workshops addressing evaluation methods
for visualization.3

Including uncertainty makes understanding and assessing
perception and cognition even harder. In particular, we have to
be careful in designing uncertainty visualization so that it is
correctly understood by the recipient. For example, even
researchers have problems understanding and correctly
judging the information encoded in the, at first sight quite
simple, visualizations in the form of confidence intervals and
error bars (Belia et al., 2005). These findings led to
recommending alternatives to error bars (Correll and
Gleicher, 2014).

Error bars are quite simple and very common; therefore, it is
conceivable that more complex uncertainty visualizations could
be affected even more from difficulties with perceiving and
understanding them (Boukhelifa and Duke, 2009). Assessing
cognitive aspects is particularly hard when complex decision-
making has to be done under uncertainty (Padilla et al., 2021). It
can also make a difference whether experts or non-experts use
and read uncertainty visualizations. For example, Tak et al. (2014)
study how non-experts perceive and understand typical examples
of uncertainty visualizations. Some theories and further examples
of perceptual and cognitive considerations are summarized by
Padilla et al. (2020). Similarly, special attention needs to be paid to
perform a proper evaluation of uncertainty visualization; see the
survey paper by Hullman et al. (2019).

3.5 Interaction
While uncertainty visualization sometimes targets passive
consumption, for example, in the form of an illustration for
visual communication, it is often employed in an interactive
environment. Interactive visualization or visual analytics are
typically used to facilitate visual data analysis.

Therefore, the interaction needs to be made aware of
uncertainty as well. This includes how data serves as the basis
for the interaction technique. However, uncertainty can also be
present in the interaction itself. The user may not be sure about
what they want to exactly specify with their input. For example,
the input may serve as a threshold for interactive filtering. Here,
uncertain input may be specified by sliders that are connected to
uncertainty in the form of probability density functions (Greis
et al., 2017). Another example is fuzzy selection facilitated by
several selection modes, including triangle and trapezoidal shapes
(Höferlin et al., 2011); see Figure 3.

Overall, the topic of uncertainty-aware interaction has not
received much attention in visualization research. Therefore, we
see the need for more work in this direction. One challenge is
that this is directly linked to the difficult problem of
understanding cognition and mental models of
uncertainty—related to the previous subsection. Another
challenge is that uncertainty-aware interaction has to be
adapted to the different steps of the visualization pipeline.
For example, specifying uncertain value ranges (as in the two
examples above) is appropriate for defining value-oriented
filtering, but different inputs are needed for other filters,
transformations, or visual mappings.

3.6 Integration
So far, we have discussed the stages of the visualization pipeline
one after another. However, uncertainty needs to be propagated
through the whole process (Wu et al., 2012). Unfortunately, it can
be hard to accurately compute uncertainty propagation because
the various stages of the visualization pipeline can be quite
complex and highly nonlinear. In particular, it is challenging
to include human perception, cognition, and interaction in this

FIGURE 2 | Uncertainty-aware PCA applied to a simple test data set with four points with two data dimensions. Increasing the amount of uncertainty attached to
the data points, we obtain wider and wider distributions (here, normal distributions) that lead to larger and larger coverage in the visualization. However, the changes in
the distributions of uncertain input even affect the computation of the PCA axes: they are rotated to reflect the changing distribution of the input. Image: © 2020 IEEE.
Reprinted, with permission, from Görtler et al. (2020).

3BELIV: Evaluation and Beyond – Methodological Approaches for Visualization,
https://beliv-workshop.github.io
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propagation. Another problem is that typical uncertainty
propagation methods tend to increase uncertainty
substantially, especially, when transformations are highly
sensitive or when there is a sequence of transformations. The
uncertainty estimates are often too conservative and, therefore,
unrealistically large if uncertainty is passed on without a full
model of the data and visualization process. By including

additional information, more accurate and tighter descriptions
of uncertainty might be possible.

Overall, the whole visualization process should be made aware
of uncertainty (Correa et al., 2009). Since this might not be fully
possible, we recommended assessing the visualization workflow
and identifying the most substantial contributors to uncertainty,
along with the intended visualization goals and tasks. Based on

FIGURE 3 | Interactive selection by fuzzy filtering. The data context is given by a histogram (blue), along with some data details (at the column highlighted in light
red). The user chose a trapezoid function for fuzzy selection, setting the four parameters x1 to x4 accordingly. The yellow area indicates the selection. Image: “Speed
filter” by Höferlin et al. (2011) licensed under CC BY 3.0.

FIGURE 4 |Overview of visual mapping strategies to show uncertainty. The individual visualization techniques only serve as illustrative examples and are not meant
to provide a complete list of methods.
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this, efforts in incorporating uncertainty can be directed to the
most relevant components.

4 VISUAL MAPPING

In this section, we discuss visual mappings of uncertainty in more
depth. Visual mapping strategies are summarized in Figure 4.
This figure is inspired by the visual summary used by Padilla et al.
(2020). However, our categorization partially differs from theirs
and also from the other taxonomies reviewed in Section 2. Please
note that the icons in Figure 4 illustrate typical representatives for
the respective strategy, but they are not meant to be
comprehensive, i.e., it is to be understood that there are more
visualization approaches for the respective strategy.

If not stated otherwise, we assume a probabilistic model of
uncertainty—typically in the form of probability density
functions (PDFs) describing distributions of data values. These
may be reduced to concise characteristic descriptions, for
example, by summary statistics. Or the raw samples might be
available before computing summary statistics or
constructing PDFs.

4.1 Explicit Visualization of Distributions
Let us start with the first kind of visual mappings: these aim to
show distributions explicitly and fully. For example, a PDF can be
seen just as a function and, therefore, a function plot displays the
uncertainty distribution comprehensively. If the uncertainty data
is provided as “raw” sampled data, traditional histograms in the
form of bar charts can be employed. An alternative is the dot plot
(Wilkinson, 1999), or the nonlinear dot plot (Rodrigues and
Weiskopf, 2018) for higher dynamic range. The sample-based
visualization can even be used if only a PDF is available: just by
drawing samples from the given PDF.

The advantage of the explicit visualization of distributions is
that they provide full disclosure of uncertainty information. A
disadvantage is the extra visualization space needed: frequency or
probability (density) are plotted along an axis (usually, the
vertical axis) that is perpendicular to the axis that carries the
data values (usually, the horizontal axis), i.e., we require 2D space
instead of 1D space just for the data axis.

A related characteristic is that the 2D visualization axes carry
different meanings: data values vs frequency or probability (density).
This difference can have benefits if we want to clearly separate the
two meanings. At the same time, it can lead to problems if the
visualization space is taken as one 2D space.

Overall, the explicit visualization of distributions is typically
employed for rather small data sets, or for data drill down to show
detailed views on large data sets.

4.2 Implicit Visualization of Distributions Via
Samples
Some problems of the above explicit visualization can be
addressed by showing distributions implicitly via samples
drawn from the distribution. The basic process is as follows:
In the first step, the distribution is sampled to produce potential

realizations of the data, compatible with the uncertainty
representation. Each sample is treated as if it was not affected
by uncertainty. In the second step, each sample is visualized. The
last step is responsible for showing the visualizations of all
samples in some combined fashion.

Variants of this uncertainty visualization approach mostly
differ in the way they implement the last step. One option is
to overlay or composite the individual visualizations of the
samples, for example, by additive blending or alpha blending
(Schulz et al., 2017). Another option is the use of animation,
showing individual visualizations one after another, e.g., in the
form of the animation of potential realizations (here, surfaces) by
Ehlschlaeger et al. (1997) or in the form of Hypothetical Outcome
Plots (Kale et al., 2019). Yet another option places individual
visualizations next to each other in one large image, in the form of
small multiples (Tufte, 1990).

All of these implicit visualizations have the advantage that they
just use the regular visualization space, i.e., there is no need for
extra space with other semantics, as for the explicit visualization
of distributions. Therefore, the uncertainty visualization should
be understandable by the user if they are familiar with the
original, non-uncertainty-affected visualization. The variants
for the last step have specific advantages and disadvantages.
The overlay approach has the advantage that it essentially
needs just the visualization space that a single visualization
would need. Another advantage is that it results in a static
image, i.e., it can be flexibly used in visual communication,
and it gives the user enough time to carefully inspect the
visualization. The main disadvantages are overplotting, clutter,
and ambiguities that can arise from compositing many
visualization samples.

The animation approach avoids this overplotting and provides
some advantages in interpreting uncertainty (Kale et al., 2019).
However, this approach comes with typical problems of animated
visualization that can be difficult for analysis tasks (Robertson
et al., 2008). Animation also has some issues with scalability with
the number of samples shown: it is hard to get a quick overview,
which in contrast is possible with the single and static image in
the overlay approach.

Small multiples are similar to the animated display because
they show individual visualizations independently. The main
difference is that animation puts the individual images one
after another along time, whereas small multiples place them
next to each other in an enlarged visualization space. Similarly to
animation, this approach avoids overplotting. However, it needs
much visual space and, again, has issues with the scalability
regarding the number of samples. Also, it might be hard to
perceive and interpret differences between the individual
visualizations.

While the visual representation is quite different in the three
approaches, they all share the need for appropriate registration or
alignment between the individual images—whether these are the
images that go into the blending, animation, or as part of the small
multiples. The potential problem is that individual images may
look very different even if the sampling from the distribution leads
to similar data. In other words, some visualization techniques can
be very sensitive to slight changes in the input data. For example,
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many graph drawing algorithms can lead to quite different outputs
even if the input is similar (e.g., in the form of rotated images).
Section 5 discusses the registration problem and visualization
approaches for the example of graph drawing in more detail.

4.3 Summary Statistics as Range Plots
The above explicit and implicit visualizations aim to show the full
characteristics of the underlying distributions. However, it is often
sufficient to convey just some aggregated or concise representation of
the distributions. For example, summary statistics may rely on some
indicator of central tendency (such asmean ormedian) and variability
(like standard deviation, standard error, or percentiles). Statistical
graphics then maps these summarizations to visual representations
such as error bars or box plots.

From the perspective of visualization, these mappings lead to a
representation of ranges. For example, a typical box plot shows
the range from the 25 percentile to the median and then to the 75
percentile, where each of the boundaries is indicated by a line in
the box plot. Another observation is that these range plots need
additional visualization space to make room to show the ranges.
Therefore, they work fine for traditional statistical plots where
one has just a few data items that are enriched by statistical
graphics. However, it becomes harder to fit the range plots into a
visualization that already needs a lot of space on the image to
show data without uncertainty.

One strategy maps the original data to a lower-dimensional
visual representation that supports adding ranges. For example,
3D volume data can first be reduced to a 1D curve by letting a
space-filling curve cut through the volume; afterward, we can
apply bands or range representations around the curve (Demir
et al., 2014). Figure 5 shows an example that uses a data-adaptive
space-filling curve to perform the reduction to 1D (Zhou et al.,
2021). Here, the data comes from a heart ischemia simulation; see
Rosen et al. (2016) for background reading.

Another strategy relies on a generalization of the idea of a box
plot, utilizing the concept of statistical depth, which can be seen as
the generalization of medians or percentiles in complex data. For
example, contour box plots indicate parts or ranges in a spatial
domain that correspond to certain values or ranges of depth
(Whitaker et al., 2013). Another example shows variability in
functions by function box plots (Mirzargar et al., 2014).

Yet another strategy places small glyphs on the domain to
indicate data ranges at respective locations. For example, radial

glyphs can be used to represent the range of vector quantities at
respective locations in a vector field (Hlawatsch et al., 2011).
Furthermore, the concept of displaying ranges can be extended to
rather complex geometric representations, for example, in order
to visualize confidence intervals for fiber tracking for showing 3D
brain structures (Brecheisen et al., 2013).

In general, range plots provide a representation of
summarizing characteristics of uncertainty and are rooted in
well-known visual representations from statistical graphics.
Therefore, they can be used without much learning required
by recipients of the visualization. Another advantage is that
ranges show quantitative information about summary
statistics. However, there is a caveat: as mentioned before,
even traditional error bars might be misinterpreted (Belia
et al., 2005). Furthermore, the principle of showing distinct
ranges can lead to the wrong interpretations because they
might lead to introducing false categorical boundaries, e.g.,
inside vs outside regions (Padilla et al., 2020). Finally, range-
based visualizations tend to need substantial extra space on the
visualization image that might not be available.

4.4 Summary Statistics in Visual Variables
and Glyphs
We can still use characteristic quantities from summary statistics,
but now map them to visual channels, such as color, brightness,
texture characteristics, etc. There are many different design
choices for this mapping, with different characteristics and
effectiveness for uncertainty visualization. Most of these
mappings focus on including the variability of the input data
into the visual representation.

For example, MacEachren et al. (2012) link visual channels for
uncertainty representation to the semiology of graphics by Bertin
(1983). Visual variables (also called retinal variables by Bertin)
describe a set of visual primitives from which we can construct a
visualization. MacEachren et al. (2012) investigate the following
visual variables according to their usefulness for uncertainty
visualization in terms of intuitiveness and task performance
(focusing on map reading): location, size, color hue, color
value, color saturation, orientation, grain, arrangement, shape,
fuzziness, and transparency. These exhibit different adeptness for
uncertainty visualization, for example, fuzziness shows a high
level of intuitiveness in their study.

FIGURE 5 | Functional box plots applied to a data-adaptive space-filling curve. The volume rendering on the left shows the median of a heart ischemia simulation.
The center part shows the variability in the input along the horizontal axis that corresponds to a space-filling curve cutting through the volume. Here, the user can select
(brush) ranges of interest such as an area where the potential value is larger than 3 eV. The corresponding ischemic region is highlighted (yellow) in the volume rendering
on the right. Image: © 2021 IEEE. Reprinted, with permission, from Zhou et al. (2021).
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These visual variables are only one approach to structure the
design space. Boukhelifa et al. (2012) provide a grouping into
three main categories: color-oriented approaches (hue,
saturation, or brightness), focus-based methods (mapping
uncertainty to contour crispness, transparency, or resolution),
and geometric mapping (e.g., sketchiness in rendering, distorting
line marks). Animation (for example, oscillating displays) can
also be used to represent uncertainty (Pang et al., 1997).

In particular, if such mappings are used to modify larger
graphical elements such as icons or glyphs, we have a quite large
design space that allows us to represent uncertainty. For
example, Vehlow et al. (2013) modify attributes of (larger)
nodes to show uncertainty: by color gradients or alternatively
by star-shaped icons. In another application, glyphs are
designed to represent the distribution of fibers (Schultz et al.,
2013).

Figure 6 shows an example of a 3D visualization using
waviness to represent uncertainty, here for the uncertainty
that comes from disagreement in secondary structure
assignments (Schulz et al., 2018). Alternative visualization
methods for the uncertainty in secondary structure
assignments are discussed by Hamada (2014). Another
example of uncertainty visualization for proteins is by Maack
et al. (2021), who address the visual representation of
uncertainty in the conformation of proteins.

Uncertainty encoding in visual variables has the advantage
that it can, if done appropriately, provide an intuitive
visualization of uncertainty that integrates well in existing
non-uncertainty visualization techniques because the original
visualization technique might not be changed substantially.
However, these visualization techniques tend to focus on
rather qualitative representations; it is usually hard to read off

accurate uncertainty information. Another issue is that there can
be conflicts in choosing the visual variables: one has to balance
between the need for a good visual representation of uncertainty
and the other kinds of information that should be shown in the
visualization. Also, one has to be careful that there might be
(negative) interactions between visual variables that can make it
hard to include uncertainty information in an existing
visualization.

In summary, this mapping approach needs careful design but
can lead to good qualitative overview visualizations.

4.5 Uncertainty as Additional Data
Dimension
The above approaches to including summary statistics
essentially use different visual mappings to integrate the
additional information that comes with summary statistics.
To this end, they employ different variants of visual
mappings.

However, we can also cast the problem of uncertainty
visualization into the problem of multivariate visualization.
For example, let us consider the case of data with n data
attributes or dimensions. And let us assume that each data
dimension comes with uncertainty described by one measure
of variability (e.g., standard error of means). Then, we just
increase the dimensionality of the data from n to 2n to
represent, for example, both the means and the standard error
of means. From this perspective, we have transformed the
problem of n-D visualization (for precise data) to the problem
of 2n-D visualization (for uncertain data). Therefore, we can
apply standard visualization techniques that can deal with
multiple data dimensions (Wong and Bergeron, 1994), such as

FIGURE 6 | Visualization of uncertainty in secondary structure assignment for the example of the photoactive yellow protein of E. coli (PDB ID: 2ZOI). The ribbon
diagram (left image) represents this uncertainty in the form of waviness in the geometric shape. The insets show details of parts of the sequence diagrams (images to the
right), stacking the differing assignments along the vertical axis. The agreement structure merges the assignment results where possible. Image: © 2018 IEEE. Reprinted,
with permission, from Schulz et al. (2018).
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parallel coordinates (Inselberg, 1985; Heinrich and Weiskopf,
2013) or scatterplot matrices.

The advantage of this approach is that it can readily use
existing visualization techniques and, thus, there is no or only
little extra effort required. Another advantage is that many of
these visualization techniques support accurate visualization. For
example, parallel coordinates or scatterplots let us read off
quantitative information accurately from the diagrams, which
is in contrast to the more qualitative visualizations in the previous
subsection. The important disadvantage is that we lose the nature
of uncertainty in the visualization: there is no intuitive connection
to variability. Therefore, this approach is less useful for conveying
uncertainty in visual communication, and it can be prone to
misinterpretations even by expert analysts.

4.6 Hybrid Visualizations and Systems
The above visualization techniques can be used in combination or
together with other non-uncertainty visualizations, leading to
hybrid visualizations. One strategy is to build a composition of a
larger visualization that combines different visual
representations. Often, the uncertainty visualization is placed
next to the usual, non-uncertainty visualization. For example,
Holzhüter et al. (2012) use an explicit representation of
uncertainty with additional bar charts placed next to the
actual visualization to show uncertainty from the visualization
of biological expression data. Typical strategies use juxtaposition
of visualizations or overlays to perform the composition. The
summary plot (Potter et al., 2010), for example, integrates a box
plot, histogram, a display of statistical moments, and a plot of the
distribution.

Another common strategy employs multiple coordinated
views (Baldonado et al., 2000) to link separate visualization
views, often in connection with brushing and linking (Becker
and Cleveland, 1987). Multiple coordinated views are popular in
larger visualization or visual analytics systems because they allow
us to represent data from different angles.

Hybrid visualizations, in particular, multiple coordinated
views, are quite common and useful for uncertainty
visualization because they allow us to reduce the complexity of
each individual visualization, which is especially important for
the increased difficulty that comes with including uncertainty in
the visualization. However, we have to be careful that we do not
overload the user with too complex combinations and hard-to-
handle interactions. Therefore, attention needs to be paid to an
appropriate design of the visualization and interaction.

5 EXAMPLE: GRAPH VISUALIZATION

We want to illustrate the aforementioned concepts for the
example of graph visualization, with a focus on node-link
diagrams. There are several reasons for choosing this example:
1) It is a rather complex kind of visualization already for the
traditional non-uncertainty case. Therefore, it serves to show
what challenges and opportunities arise with advanced
uncertainty visualization. 2) It is an example of visualization of
abstract data (often referred to as information visualization),

which is less well explored than uncertainty visualization for
scalar or tensor fields (as in scientific visualization). Therefore,
this example illustrates the current developments in uncertainty
visualization. 3) Graphs are a versatile form of data representation
with manifold uses in bioinformatics and beyond. Therefore,
there is direct relevance for applications in biological data
visualization.

Graph visualization is a large subfield of visualization, with
many techniques available; see, for example, Battista et al. (1998),
von Landesberger et al. (2011), and Beck et al. (2017) for
background information.

Our first example (Vehlow et al., 2012) aims at the
visualization of biochemical reaction networks. Such networks
play a role in understanding certain cell functions or diseases. Our
first step is to interface with the underlying modeling of the
system and data acquisition (the early steps of the visualization
pipeline; see Section 3). In this example, the modeling is circled
around ordinary differential equations (ODEs) that are
connected in the form of a directed graph. Vertices of the
graph represent species and edges correspond to reactions.
Besides regular edges, there might be hyper-edges representing
regulatory interactions. Uncertainty is introduced by noise in
measurements and, subsequently, by the uncertainty that comes
with Bayesian parameter estimation.

From the visualization perspective, we are dealing with data in
the form of a graph with uncertain and time-dependent attributes
on the graph’s vertices and edges, where time dependency comes
from the temporal evolution of the reactions. Figure 7 shows a
snapshot from a visualization system that facilitates the
uncertainty-aware visual analysis of such kind of data. It takes
the general approach of multiple coordinated views with
brushing-and-linking (Section 4.6) to present the data from
different angles and with different levels of detail. The node-
link graph visualization (Figure 7 (1)) shows the topological
structure of the graph and includes the visualization of
uncertainty for edge and vertex attributes via color-coding of
respective standard deviations; therefore, the uncertainty
visualization uses a visual variable (here, color) to represent
summary statistics (here, standard deviation); see Section 4.4.
The same color-coding is used to show uncertainty in a detail
view (Figure 7 (4)).

The visualization system also includes bands around temporal
function plots (Figure 7 (6), (7)), implementing a range
visualization of summary statistics; see Section 4.3.
Furthermore, there is an explicit display of value distributions
in the form of histograms (Figure 7 (3)), again focusing on
selected details; see Section 4.1. Value distributions are also
shown in an overlay of sample points in a scatterplot
(Figure 7 (2)); see Section 4.2. Finally, there is additional data
processing and extraction of information that is aligned with
uncertainty-affected input: fitting of axes due to principal
component analysis (Figure 7 (2)) and correlation according
to Pearson coefficients (Figure 7 (5)).

This example demonstrates that multiple different
perspectives are often required to obtain a comprehensive view
and analysis of uncertain data. The different views are also needed
to support a variety of analysis tasks. In this example, the system
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was developed and evaluated in collaboration with domain
experts.

The next example shows uncertainty visualization for the case
where uncertainty is introduced not at the data acquisition stage,
but only later during the visualization pipeline in the
transformation stage (Vehlow et al., 2013). Here, graph
clustering (i.e., community detection) is applied to facilitate data
analysis of a protein–protein interaction network on different levels
of granularity: graph nodes are combined in groups that can be
then shown by meta-nodes representing groups of nodes.
Uncertainty is introduced by applying fuzzy clustering, which
can lead to the gradual membership of a node in several groups.

In this example, the amount of uncertainty associated with
grouping in a meta-node is represented by the amplitude of spikes
in star-shaped icons (see the middle and right image in Figure 8),
i.e., summary statistics is represented in a visual variable of the
icon. In addition, original nodes may belong to several fuzzy
clusters; here, the certainty of membership is shown again by a
visual variable, now in the form of a color gradient within a node
(several examples in the left image in Figure 8). Besides the visual
mapping to visual variables, the layout of the networkhas to incorporate
the information from fuzzy clustering, i.e., the mapping stage of the
visualization pipeline has to be aware of the uncertainty model.

The previous two examples have focused the graph visualization
aspect on showing summary statistics via visual variables. Our third
example shifts the focus: how does uncertainty in edge attributes
affect the geometry of the node-link diagram? The uncertainty
model assumes distributions of weights on edges. Differing edge
weights should influence the length of the edge. Therefore, the
layout has to incorporate the variability of the weights.

A probabilistic graph layout (Schulz et al., 2017) achieves
uncertainty visualization by showing distributions implicitly
via overlay. Figure 9 illustrates the processing steps. First, we
need a model of the probabilistic graph. Here, one has to
consider whether there are dependencies between the
probability density functions for the weights on the different
edges. With this uncertainty model, we can then draw samples:
these samples are complete graphs with edge weights, albeit
each weight is now a fixed value that comes from drawing the
sample. The next step produces a graph layout independently
for each of the graph samples, here via a force-directed graph
layout.

As already discussed in Section 4.2, registration or alignment
is needed if the individual visualizations do not fit together. This
is the case with many graph layout results. Therefore, we need an
alignment step, here implemented by tying the individual layouts

FIGURE 7 | Coordinated multiple views for uncertainty visualization, analyzing an insulin signaling model. Image: © 2012 IEEE. Reprinted, with permission, from
Vehlow et al. (2012).
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to a reference layout. In other words, an appropriate layout is a
key component in this kind of uncertainty visualization.

The final step renders the overlay of the individual graph
visualizations. The basic idea is to perform blending of the
individual images. However, this approach would lead to
problems caused by visual clutter. Therefore, a combination of
splatting nodes, curve bundling for the edges, and adapted node
coloring and clustering is used.

Figure 10 shows an example of probabilistic graph
visualization for protein–protein interactions. The edge
weights are derived from scores computed from data from
the STRING database.4 The comparison between the
traditional visualization without uncertainty (left image in
Figure 10) and the one that incorporates uncertainty (right

image in Figure 10) demonstrates varying levels of (un)-
certainty associated with the different interactions.

This example is based on an overlay resulting in a static image. By
exchanging the last part of the processing pipeline, one could also use
small multiple or animation to show the individual graph
visualizations coming from the sampling process. For example,
Zhang et al. (2022) present and discuss amethod based on animation.

The sampling approach essentially reduces the problem of
uncertainty visualization to the visualization of many individual
samples. Figure 11 illustrates the process.

We start with the uncertainty model in the form of probability
density functions or similar probabilistic descriptions. From these,
points—in a potentially abstract and complex space—are produced
by sampling (e.g., Monte-Carlo random sampling, quasi-Monte-
Carlo sampling, etc.) and mapped to intermediate images by
applying regular non-uncertainty-oriented visualization. In the
last step, the images are overlaid to generate the final
visualization. As in the example of probabilistic graph

FIGURE 8 | Visualization of data of a protein–protein interaction network (Jonsson and Bates, 2006). The images show the same subnetwork as in the original
article, containing 1,253 weighted interactions between 232 proteins, where edge weights indicate confidence scores for the interactions. From left to right: increasing
level of aggregation, starting from the original network data. Image: © 2013 IEEE. Reprinted, with permission, from Vehlow et al. (2013).

FIGURE 9 | Processing steps for sampling-oriented node-link visualization of uncertain graph data. Image: © 2017 IEEE. Reprinted, with permission, from Schulz
et al. (2017).

4https://string-db.org/
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visualization, this last step aims to generate a density representation
(here, of nodes and edges), e.g., by employing kernel density
estimation. Therefore, the process essentially performs a
discretization into points and then a reconstruction of a density
field, i.e., a numerical approximation with several potential sources
for errors and required parameter choices.

Ideally, we would avoid the construction of in-between
samples and, instead, directly go from the probability
description of the data to the density model of the visual
output. This can be readily done when there is no registration
needed, such as for typical cases of scientific visualization with
given spatial embedding. For example, the probability where an
isosurface cuts through the volume can then be mapped to
density, which can be rendered by color-coding (Pöthkow and
Hege, 2011). However, when the visual mapping implies more
complex transformations, the density computation becomes
more difficult. For certain scenarios of multidimensional data,
there are techniques that construct density plots for parallel
coordinates and scatterplots (Bachthaler and Weiskopf, 2008;
Heinrich and Weiskopf, 2009; Heinrich et al., 2011) that carry
over to respective uncertainty plots (Zheng and Sadlo, 2021).
However, developing similar techniques for other advanced

examples of uncertainty visualization remains a largely
unsolved problem so far.

6 DISCUSSION

We have surveyed concepts, strategies, and methods for uncertainty
visualization—mostly from the perspective of visualization research.
This section discusses general observations, open questions, and
directions for future research. In addition, we link this discussion
to recommendations geared toward use in applications of biological
data visualization.

6.1 Open Questions and Future Directions in
Visualization Research
We have seen that there has been quite some progress in uncertainty
visualization, leading to a large variety of available techniques.
However, we have also discussed that uncertainty visualization is
challenging due to the difficult, yet relevant interplay of many
different components in the visualization process. Therefore, there
are a number of directions for future research.

FIGURE 10 | Probabilistic graph layout for visualizing protein–protein interactions for pancreatic alpha-amylase (Amy2). The left image shows the expected
(average) graph, i.e., traditional non-uncertainty visualization. The right image shows the uncertainty visualization. Image: © 2017 IEEE. Reprinted, with permission, from
Schulz et al. (2017).

FIGURE 11 | Process of sampling and density estimation for the implicit visualization of distributions.
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Layout is key to advanced visual mappings. One issue with
integrating uncertainty information in an already complex
visualization is the lack of space, for example, to place glyphs,
integrate range representations, use waviness or sketchiness of
larger visual marks, etc. Here, the layout process essentially needs
to balance the different and conflicting requirements from showing
complex data and its uncertainties. Visualization space is a scarce
resource in this respect. The example of probabilistic graph
visualization exhibits another layout problem: the one of aligning
or registering individual visualization images. Therefore, future
progress in the visual mapping of uncertainty is related to
developing appropriate layout methods that optimize for
potentially conflicting goals.

Perception, cognition, and evaluation. Understanding how we
perceive visualization and reason with it is a central problem in
visualization in general; and this problem is even harder when we
include uncertainty. Therefore, this topic will continue to play a
highly relevant role in uncertainty visualization, and it is tightly
connected to ways of how uncertainty visualization is evaluated,
e.g., from the user perspective.

Uncertainty visualization literacy. There is the general issue of
visualization literacy, i.e., dealing with how people can generate
and read visualizations. With the progress in uncertainty
visualization techniques comes the opportunity of working on
improving respective literacy. Due to the difficulties that users
have with many visual representations of uncertainty, there is a
great potential from the interplay between improving
visualization techniques and teaching skillsets.

Interacting with uncertainty visualization. We have touched
on some examples of interaction techniques geared toward the
process of uncertainty visualization. However, this topic is largely
untapped so far. We see great potential for future research on
interaction methods that will have to include the perceptual and
cognitive aspects discussed above.

Integration with machine learning and explainable AI. The major
trend toward including machine learning also manifests itself in
uncertainty visualization. Here, the special interest is in assessing and
visually communicating the uncertainty associated with automatic
data analysis and machine learning, which also links to visualization
as a means to support explainable artificial intelligence (AI).

Frameworks and software integration. A message from the
consideration of the complete visualization pipeline is: it is not
sufficient to just look at stages of the pipeline separately. For
example, it is not enough to only consider visual mappings of
uncertainty. Instead, there is a need for frameworks that provide a
unified perspective. There is already some work on frameworks
and integration (e.g., Correa et al. (2009), Wu et al. (2012), and
Sacha et al. (2016)), but with the progress coming from the other
topics listed above, the frameworks will need to be adapted and
extended. In particular, there is the challenge of including the user
in the combined process of human–machine visual data analysis.
A practical problem is the lack of uncertainty visualization
techniques in many existing software systems. Available
implementations of uncertainty visualization are often

restricted to individual and separate research prototypes.
Therefore, there is the need for extended software systems
supporting uncertainty visualization.

6.2 Recommendations
The lack of widespread implementations of uncertainty
visualization is one issue that makes it hard to include it in
applications of biological data visualization. Still, there are
opportunities for practical impact of uncertainty visualization
on bioinformatics applications. Some of the following
recommendations might facilitate the integration of
uncertainty visualization in such applications.

Think about data modeling and the context of the visualization
process. An important early step is to understand the data and
uncertainty model, which naturally has to be deeply rooted in
the application at hand. The next step is to consider the tasks that
should be solved with visualization and how they might be affected
by data uncertainty. To this end, interdependencies between the
components for data acquisition, processing, and visualization
should be taken into account, including propagation of
uncertainty. Here, rough estimates or models might be sufficient
for a coarse description of the interdependencies, and these might
be done completely outside of visualization software systems.

Focus onmain players for uncertainty.Although we argued for the
importance of considering the whole visualization process, it is clear
that not all stages are equally important for each application. Instead,
it is better to focus the attention on the main sources and effects of
uncertainty. Then, only these parts of thewhole processmight have to
be extended from regular non-uncertainty processing to an
uncertainty-aware counterpart. This approach can reduce the
effort substantially, especially when there is no comprehensive
uncertainty visualization system available.

Choose appropriate visualization techniques. In general,
visualizations should be chosen to match data characteristics,
tasks, and intended audience. Usually, there is not a single-best
method. This statement is especially true for uncertainty
visualization. For example, existing multivariate data
visualization might be enough for your own internal processes
of data analysis, but not for effective communication to a broader
outside audience. The choice of visualization technique might
also be related to the availability of implementations (or lack
thereof). Some visual mappings are easier to integrate into
existing non-uncertainty-oriented visualization techniques than
others. For example, per-pixel visual variables like color or others
tend to be easy to integrate into existing non-uncertainty-
oriented visualization systems; it might be as simple as
modifying the color map or extending multivariate
visualization in parallel coordinates with additional data axes.
Other uncertainty mappings require much more work, for
example, when there is a serious impact on the layout or
when comprehensive systems have to be changed for a full
visual analytics framework for uncertainty. Such efforts in
modifying or implementing visualization techniques should
play a role in choosing appropriate techniques.

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 79381914

Weiskopf Uncertainty Visualization

90

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Need for integration in existing software. In general, there is a
lack of comprehensive uncertainty support in existing
visualization software in many bioinformatics applications.
Therefore, some community effort could help with including
more of the uncertainty-aware stages of the visualization pipeline.

Uncertainty awareness. Due to the complexity of uncertainty
visualization, there might not be a single and comprehensive
solution. Instead, the main goal of this paper is increased
awareness of issues that come with uncertainty in visualization.
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DJExpress: An Integrated Application
for Differential Splicing Analysis and
Visualization
Lina Marcela Gallego-Paez* and Jan Mauer*

BioMed X Institute (GmbH), Heidelberg, Germany

RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented
understanding of transcriptome complexity in health and disease. However, despite
the availability of countless bioinformatic pipelines for transcriptome-wide splicing
analysis, the use of these tools is often limited to expert bioinformaticians. The need
for high computational power, combined with computational outputs that are complicated
to visualize and interpret present obstacles to the broader research community. Here we
introduce DJExpress, an R package for differential expression analysis of transcriptomic
features and expression-trait associations. To determine gene-level differential junction
usage as well as associations between junction expression and molecular/clinical features,
DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on
an average laptop computer and provides a set of interactive and intuitive visualization
formats. In contrast to most existing pipelines, DJExpress can handle both annotated and
de novo identified splice junctions, thereby allowing the quantification of novel splice
events. Moreover, DJExpress offers a web-compatible graphical interface allowing the
analysis of user-provided data as well as the visualization of splice events within our
custom database of differential junction expression in cancer (DJEC DB). DJEC DB
includes not only healthy and tumor tissue junction expression data from TCGA and
GTEx repositories but also cancer cell line data from the DepMap project. The integration of
DepMap functional genomics data sets allows association of junction expression with
molecular features such as gene dependencies and drug response profiles. This facilitates
identification of cancer cell models for specific splicing alterations that can then be used for
functional characterization in the lab. Thus, DJExpress represents a powerful and user-
friendly tool for exploration of alternative splicing alterations in RNA-seq data, including
multi-level data integration of alternative splicing signatures in healthy tissue, tumors and
cancer cell lines.

Keywords: alternative splicing, splicing aberrations, differential splicing analysis, cancer splicing, The Cancer
Genome Atlas Program (TCGA), GTEx database

INTRODUCTION

Splicing of pre-mRNA is a crucial process in eukaryotic gene expression regulation. In addition to
canonical splicing, which leads to the inclusion of constitutive exons into the mature mRNA, the
transcriptome is subjected to alternative splicing. Alternative splicing can give rise to multiple
protein-coding isoforms from a single pre-mRNA and thus represents a major determinant for
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proteome diversity. Approximately 92%–94% of human genes
generate alternatively spliced transcripts, often with tissue-
specific regulation (Wang et al., 2008; Barbosa-Morais et al.,
2012). Alternative splicing is involved in a variety of cellular
processes, such as cell proliferation, differentiation, migration
and survival (Paronetto et al., 2016; Gallego-Paez et al., 2017).
Emerging data indicate that alternative splicing plays a critical
role in the pathogenesis of many diseases, including several
molecular subtypes of cancer (Oltean and Bates, 2014; Scotti
and Swanson, 2016; Jiang and Chen, 2021). Interrogating such
splicing abnormalities can facilitate identification of disease
drivers, drug resistance mechanisms, and molecules capable of
regulating pathological splicing events. Thus, exploration of
alternative and aberrant splicing phenotypes promises to shed
light on novel aspects of health and disease.

The recent release of transcriptome-wide RNA sequencing
(RNA-seq) data repositories such as The Cancer Genome Atlas
(TCGA) (Tomczak et al., 2015) and the Genotype-Tissue
Expression (GTEx) project (Lonsdale et al., 2013) have lifted
alternative splicing analysis opportunities to an unprecedented
level. However, a unified and accessible analysis strategy for this
data has largely been missing.

The gradual development of RNA-seq technologies and cost-
effective alternative splicing studies at the transcriptome level has
allowed the parallel evolution of bioinformatic tools for splicing
quantification and visualization. Most of these tools rely on two
main computational approaches: 1) quantification of the Percent
Spliced-In (PSI) metric, which uses the ratio between exon-exon
junction spanning sequencing reads that provide evidence for the
inclusion or exclusion of an alternatively spliced region [e.g., rMATS
(Shen et al., 2014), MISO (Katz et al., 2010), SUPPA (Alamancos
et al., 2015), SplAdder (Kahles et al., 2016), psichomics (Saravia-
Agostinho and Barbosa-Morais, 2019), AltAnalyze (Emig et al.,
2010), SpliceSeq (Ryan et al., 2012), VAST-TOOLS (Irimia et al.,
2014), MAJIQ (Vaquero-Garcia et al., 2016), LeafCutter (Li et al.,
2018) and Whippet (Sterne-Weiler et al., 2018)], and 2)

quantification and de-convolution of the entire set of reads
aligned to the gene to estimate transcript isoform abundance (e.g.,
Cufflinks (Trapnell et al., 2010), RSEM (Li and Dewey, 2011), Sailfish
(Patro et al., 2014), Salmon (Patro et al., 2017) and Kallisto (Bray
et al., 2016)) (see Table 1 for a comparison of these tools). Although
these bioinformatic tools have propelled transcriptome-wide
alternative splicing analysis forward, they suffer from significant
limitations. These include the need for high computational
resources and bash-based operation, restrictions of input file
formats, incomplete transcriptome annotation and consequently
inaccurate transcript/PSI quantification. Furthermore, these tools
suffer from complex static graphical outputs that are complicated
to visualize and interpret or lack the option for association of splicing
phenotypes to clinical or molecular data. These caveats are obstacles
for a straight-forward interpretation of the biological and
physiological relevance of alternative splicing in disease. Thus,
despite the large variety of available tools, there is still a high
demand for easy-to-use alternative splicing analysis strategies that
can incorporate comprehensive data visualization and integration
with external sample traits.

Here we introduce a novel differential junction expression analysis
pipeline, DJExpress, which is an R package for analysis of
transcriptomic features and expression-trait associations. DJExpress
runs on an average laptop computer (Supplementary Figure S1) and
provides a set of interactive and intuitive visualization formats.
DJExpress uses raw splice junction counts—derived from STAR
aligner (Dobin et al., 2013) or other junction quantification
algorithms—as input data to determine gene-level differential
junction usage. The statistical approaches implemented by
DJExpress include empirical Bayesian procedures to assess
differential junction expression between experimental conditions
and junction-level t-statistics tests to determine differences
between each junction and all other junctions within the same gene.

In contrast to the majority of existing pipelines, DJExpress can
handle both annotated and de novo identified splice junctions,
thereby allowing the characterization of novel splice events.

TABLE 1 | Feature comparison between DJExpress and other existing splicing analysis tools.

Tool GUI User-selected alignment
method

Non-annotated junctions
supported

Splicing pattern
visualization

Downstream trait
association

DJExpress Yes Yes Yes Yes Yes
MAJIQ Yes Yes Yes Yes No
Psichomics Yes Yes No Yes Yes
AltAnalize Yes Yes No Yes Yes
LeafCutter Yes No Yes Yes Yes
SplAdder No Yes Yes Yes No
rMATS No Yes Yes No No
SpliceSeq Yes No No Yes No
Whippet No No Yes Yes No
JunctionSeq No No Yes Yes No
MISO No No No Yes No
SUPPA No Yes No No No
Cufflinks No No Yes No No
Salmon No Yes No No No
RSEM No Yes No No No
Sailfish No No No No No
VAST-TOOLS No No No No No
Kallisto No No No No No
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Moreover, through gene-level differential junction usage calculation,
DJExpress identifies associations between junction expression and
molecular/clinical features using large matrix operations. An
additional more advanced feature of DJExpress involves weighted
junction co-expression network analysis (JCNA). JCNA-derived
junction expression modules can be correlated with phenotypes of
interest, thereby allowing differential splicing analysis on a systemic
scale. For downstreamprocessing, JCNAoutputs can be exported in a
format compatible with network visualization tools such as VisANT
and Cytoscape (Shannon et al., 2003; Hu et al., 2004).

In addition to these locally accessible features, DJExpress offers a
web-compatible graphical interface for the analysis of user-provided
data as well as the visualization of DJEC DB, a custom database of
cancer-specific splicing profiles and their association to external traits
from tumor samples and cancer cell lines. DJECDB includes not only
TCGA and GTEx data, but also cancer cell line data from the Cancer
Dependency Map (DepMap1) project. The integration of DepMap
data allows association of junction expression with functional

genomics features such as gene dependencies and drug response
profiles. This facilitates identification of cancer cell models for specific
splicing alterations that can then be used for functional
characterization in the lab.

Taken together,DJExpress represents a novel and versatile tool
to analyze and explore alternative splicing phenotypes in health
and disease.

METHODS

Differential Junction Expression Module
The data analysis workflow in the DJE module is depicted in
Figure 1. For differential junction expression (DJE) and junction
co-expression network analysis (JCNA), DJExpress uses quantified
raw reads aligned to exon-exon junction loci and the transcriptome
annotation as the primary input. Mapped and quantified junction
reads are typically generated from FASTQ or BAM files using
common RNA-seq alignment/quantification tools [e.g., STAR
(Dobin et al., 2013), TopHat (Trapnell et al., 2009), MapSplice
(Wang et al., 2010), Rsubread (Liao et al., 2019)] (Figure 2A).
Following the statistical principles in limma Bioconductor package
(Law et al., 2014; Ritchie et al., 2015), DJExpress first tests for
differential expression of genomic features (here splice junction
regions) using an initial input matrix of read count values as
rows and sample ids as columns. Count data is then transformed
to log2-counts per million (logCPM), and observation-level weights
based on mean-variance relationship are computed (using the voom
function from limma). Users can decide at this point whether to keep
the default expression threshold for filtering junctions prior to
hypothesis testing (10 minimum of read count mean per
junction) or to adjust the threshold based on the mean-variance
trend. A linear model is then fit per junction using a provided
experimental design, and empirical Bayes moderated t-statistics are
implemented to assess the significance level of the observed
expression changes.

The linear model framework of limma is also used in parallel to
calculate differential junction usage, where significant differences in
log-fold changes in the fit model between junctions from the same
gene are tested (using the diffSplice function from limma). DJExpress
thereby identifies alternatively spliced regions in transcripts based on
two main features of splice junction expression: 1) Quantitative
changes in the abundance of individual junctions between
experimental groups, and 2) Differences in their expression levels
compared to the average expression of other junctions in the gene.

Following these criteria, splice junctions are classified based on
their absolute log-fold change (e.g., experimental condition A vs
B) and their relative log-fold change (target junction vs all other
junctions in the gene) in one of the following expression groups
(Figure 2B):

Group 0: Junctions without differential expression or
differential usage.
Group 1: Junctions with equal levels of differential expression
and differential usage, reflecting changes in splicing patterns
between experimental conditions (in this case, both absolute
and relative log-fold change values are similar, if not the same).

FIGURE 1 | General workflow of the DJE analysis module in DJExpress.
Junction quantification files (e.g., SJ.out.tab files from STAR aligner) and
transcriptome annotation files (gft file format) are provided by the user as input.
Junctions are then annotated with their corresponding genes and filtered
based on user-defined expression cutoffs. Differential junction expression is
then calculated between experimental conditions. Significant differences in
junction usage can be interactively visualized using the gene-wise PlotSplice
graph. When external trait data is provided, the DJE module can identify
significant junction-trait associations that can be further visualized using
SpliceRadar plots.

1https://depmap.org/.
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FIGURE 2 | Calculation of differential junction expression using the DJE module. (A) After alignment and quantification of RNA-seq reads supporting exon–exon
junctions, differential junction expression is analyzed and depicted using the gene-wise splice plot visualization method. The schematic shows 8 junctions (J1-J8) in
hypothetical gene, where each junction is plotted along the x-axis and ordered by genomic coordinate position. Relative log-fold change values (logFC), which indicate
the difference between the expression of the target junction vs the average junction expression in the gene is shown in the y-axis. Junctionswith logFC values above
a user-defined threshold (absolute logFC of 1.0 in the example) are considered as differentially used and colored blue or red in case of downregulation and upregulation,
respectively. (B) DJExpress determines alternatively spliced transcript regions based on both, alterations in their expression levels compared to the average expression
of other junctions the same gene (differential usage, based on relative logFC) and alterations in junction abundance between experimental conditions (differential
expression, based on absolute logFC). Junctions are then classified into four main groups. Group 0 corresponds to junctions without differential expression or differential
usage and is visually represented as grey points in the scatter plot. Group 1 (red box and red/blue points in the scatter plot) comprises junctions with similar values of
absolute and relative logFCs which reflects changes in splicing patterns between experimental conditions without confounding alterations in the total expression of the
gene. Group 2 (green box and green points in the scatter plot) represents junctions with differential expression but no differential usage or vice-versa, which indicates the
presence of altered total gene expression levels between conditions that explain observed differences. Group 3 (orange box and orange points in the scatter plot)
designates junctions with significant but dissimilar levels of relative and absolute logFCs, indicating the presence of both, total gene expression and local splicing
changes. Relative vs absolute logFC plots are produced within the output of the DJE module, where junctions are classified into specific groups according to the
significance of their logFC values and their position inside or outside of the distribution by ≥2 standard deviations. Arrows indicate example target junctions. (C) When
external sample trait data (e.g., clinical or molecular data) are provided by the user, DJExpress can identify significant junction-trait associations within a target
experimental condition using either correlation analysis, ANOVA test or linear regression models. If correlation is selected by the user (as in the depicted example), the

(Continued )
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Group 2: Junctions with differential expression but no
differential usage or vice versa, implying the occurrence of
generalized changes in expression across the gene, rather than
the presence of a differentially spliced region (in this case,
either the absolute or relative log-fold change value is not
significant).
Group 3: Junctions with divergent levels of differential
expression and differential usage, indicating concomitant
changes in splicing and total gene expression (in this case,
the absolute and relative log-fold change values can
substantially vary from each other).

One of the main features of DJE module’s approach is the
incorporation of an interactive gene-wise junction representation
(Figure 2A). This approach facilitates straight-forward visual
inspection of differential splicing across the gene and exploration
of supplementary information about each junction’s expression. This
includes the above-mentioned classification based on absolute and
relative log-fold change patterns, basic statistics on expression levels
(e.g., mean and median expression in each experimental condition,
number of samples expressing the junction, etc.) as well as the
identification of non-annotated and condition-specific junctions.
The latter are also called “neojunctions” in the DJExpress pipeline,
referring to junctions detected in the tested condition but are not
found in the control condition.

Junction-Trait Association Module
Further exploration of the potential physiological relevance of
alternative splicing is possible through the association of junction
expression to external sample traits (e.g., clinical or molecular data).
Significant junction-trait linkages are determined by large matrix
operations including correlation analysis, ANOVA test or linear
regression models [using cor and bicor from WGCNA (Langfelder
and Horvath, 2008) and Matrix_eQTL_engine from MatrixEQTL
(Shabalin, 2012)]. The top significant association can be visualized
though heatmap plots or alternatively, using the SpliceRadar plot
format (Figure 2C), where the coefficient of top-ranked correlations
is used to map each junction-trait association within a radar chart.
This graphical concept allows the users to simultaneously visualize
relevant associations between the expression of selected junctions
(e.g., the top most differentially expressed junctions or a subset of
junctions within a target gene) and external traits, as well as to
elucidate expression-trait patterns shared among junctions of interest
with potential biological relevance.

Junction Co-Expression Network Analysis
Module
A widely used approach for describing correlation networks in
systems biology is the weighted gene co-expression network
analysis (WGCNA, Langfelder and Horvath, 2008). WGCNA

is a screening method based on pairwise correlations between
features in gene expression data. This approach allows the
identification of clusters (or modules) of highly correlated
genes, intramodular hub genes and representative module
eigengenes (MEs). These can be used in the estimation of
module membership values for each gene as well as in
association analyses between modules and to external
sample traits. This technique has been frequently
implemented for the assessment of gene-network signatures
and for the identification of functional pathways and
candidate molecular biomarkers, integrating gene
expression and clinical/molecular data from physiological
and disease conditions (Oldham et al., 2008; Presson et al.,
2008; Ma et al., 2017; Vieira et al., 2019).

The weighted junction co-expression network analysis module
(JCNA) in DJExpress provides an implementation of WGCNA
algorithms (version 1.70.3, Langfelder and Horvath, 2008) in the
context of splice junction expression when sufficient sample size
is provided (≥15 samples within single experimental conditions
as suggested in the WGCNA guidelines) (Figure 3A). JCNA
initiates with a data pre-processing step where outlier samples
(clustered using the average linkage method) and lowly expressed
junctions are removed to ensure high confidence network
construction. Correlation matrices (e.g., using Pearson,
Spearman or the default biweight midcorrelation) (Wilcox,
2012) are then built for all pair-wise junctions. The full
network is subsequently specified by a weighted adjacency
matrix calculated with an appropriate soft threshold power
(Zhang and Horvath, 2005). Summary plots of a network
topology analysis are produced by JCNA (following WGCNA
guidelines) to aid users in the selection of the soft-thresholding
power around which scale-free topology in the junction network
is achieved.

Additional parameters such as minimummodule size, module
detection sensitivity or cut height of the hierarchical clustering
dendrogram for module definition can be introduced for junction
module identification (Figure 3B). Calculation of MEs is also
possible, where expression patterns of all junctions in a module
are summarized into a single expression profile. This measure is
then used in the correlation analysis with sample traits. Notably,
ME calculation reduces the computational burden of multiple
testing, which otherwise can be exceedingly high since junction
quantification datasets usually comprise millions of expression
features.

Users can either keep the output of a 1-pass JCNA or can
continue into a second round of network construction. During
this 2-pass JCNA, the gene expression-specific effect within
junction modules is subtracted. This is particularly relevant in
the context of junction-trait associations, since a considerable
number of co-expressing junctions are expected to cluster into
single modules as a result of intrinsic associations at the gene

FIGURE 2 | results are used to construct heatmap or SpliceRadar plots with target splice junctions (e.g., inclusion junctions (red) and exclusion junction (blue) in an exon
skipping event). In the case of SpliceRadars, positive correlation coefficients are located within the outer region (green) and negative correlation coefficients are found
within the inner region (grey) of the radar chart, allowing the visual inspection of multivariate trait associations to user-selected alternative splicing events.
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expression level. Here, 2-pass JCNA improves the identification
of true co-splicing signatures, since junctions from the same gene
or from highly correlated genes tend to cluster without any
specific association to splicing.

For 2-pass JCNA, gene expression-based networks
including correlations with a user-selected sample trait are
calculated (Figure 3C). The absolute value of junction
significance, which represents the correlation coefficient
between a given junction and the selected trait is plotted as
a function of the corresponding gene significance. Junctions
outside of the distribution by ≥ 2 standard deviations
(showing no correlation between junction and gene
significance for trait) are kept for network re-construction.
Thus, 2-pass JCNA strategy allows the user to further explore
associations between molecular/clinical traits and modules of

co-expressed splicing events that can be defined once gene
expression-related junction co-expression is identified and
removed from the network.

Furthermore, as in the case of WGCNA pipeline, the
resulting junction modules from JCNA can be also
exported to network graphical tools such as Cytoscape or
VisANT for further visual exploration and customization
(Figure 3D).

Run Time and Memory Benchmarks
For run time and memory consumption benchmarks of
function within the DJE module (DJEimport, DJEannotate,
DJEprepare and DJEanalyze), we used STAR-derived junction
quantification files from the TCGA COADREAD tumor
sample cohort. DJExpress pipeline was applied 10 times on

FIGURE 3 |General workflow of JCNAmodule inDJExpress. (A) For the DJExpress JCNAmodule, the user needs to provide junction read counts (or the output of
the DJEanalize function) and a transcriptome annotation file. After removing outlier samples and lowly expressed junctions, a first round of co-expression analysis is
performed where junction modules and module/junction vs trait associations are calculated. The user can continue into a second round of network construction, where
co-expression analysis and trait association is produced using gene expression data. This information is used to identify and remove junction-trait correlations from
the network that reflect gene expression-based associations. The remaining junction set is used to re-construct junction co-expression modules and module-trait
correlations. (B) Dendrogram schematic of clustered junctions with assigned modules based on a dissimilarity measure (1-TOM) as described for WGCNA (Langfelder
and Horvath, 2008). (C) Heatmap schematic of correlations between junction module eigengenes (MEs) and different sample traits. (D) Schematic representation of
interaction networks of junctions within a co-expression module that can be produced using Cytoscape or VisANT visualization tools. Junctions belonging to the same
gene are indicated by the same color.
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two cores of a macOS X 11.6.1 system with 2.3 GHz Quad-
Core Intel Core i5 processor and 16 GB of memory, RStudio
Desktop 1.4. 1106 and R 4.0.5. Each run was performed on
datasets with increasing number of samples (e.g., 10, 20, 40,
60, 80, 100, 200, 400,600, 800, 1000) and 100,000 randomly
retrieved splice junctions. For the differential junction
expression analysis using DJEanalyze, samples were
randomly divided into two groups using Bernoulli

distributed values with a 50% probability of success
(Supplementary Figure S1).

Data Collection for Differential Junction
Expression in Cancer Database
Using the pipelines described for the DJE and JCNAmodules, we
generated DJEC DB, a custom database of cancer-specific splicing

FIGURE 4 | Schematic representation of DJEC DB data generation. DJEC DB takes STAR-based junction quantification across cancer tissue types and normal
tissue extracted from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database respectively. Significant differences in junction usage
between tumor and normal tissues were produced following DJE module pipeline. Cancer type-specific DJE with supplementary information (e.g., statistics summary,
absolute vs relative logFC group, etc.) as well as gene-wise splice graphs and domain-annotated gene models with the position of user-selected junctions can be
also visualized. Differentially expressed junctions in COADREAD were used as example data for junction co-expression network analysis (JCNA). Associations between
DJE and TCGA-associated trait data including microsatellite instability (MSI), mutations (MUT), genomic alterations (GA) and pathway alterations (PA) can be explored
within the “JT association” section. Junction quantification data from cell lines within DepMap repository was also introduced in the “CCLE junctions” section, allowing the
user to identify cancer cell models for specific splicing alterations and splicing-trait associations that can be used for functional characterization of splicing-trait
associations in the lab (TCGA tumor type abbreviation codes are as follows: ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, diffuse
large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, chromophobe renal cell
carcinoma; KIRC, clear cell renal clear cell carcinoma; KIRP, papillary renal cell carcinoma; LAML, acute myeloid leukemia; LGG, lower-grade glioma; LIHC,
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous adenocarcinoma; PAAD,
pancreatic adenocarcinoma; PCPG, phaeochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal adenocarcinoma; SARC, adult soft
tissue sarcoma; SKCM, cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC,
uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma).
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profiles and their association to external traits from tumor
samples and cancer cell lines (Figure 4). DJEC DB can be
accessed through a graphical interface based on the shiny
package (version 1.6.0) and includes healthy and tumor tissue
data for 9,842 human samples across 32 different tumor types
from TCGA, 3,235 normal post-mortem tissue samples from
GTEx and 1,019 cancer cell lines from the DepMap Project.

Alignment of GTEx and TCGA RNA-seq data sets to the
GRCh37 reference genome and subsequent splice junction
quantification, as well as removal of low-quality tissue samples
was previously done (Kahles et al., 2018) using the STAR aligner
tool with the following arguments:

STAR --genomeDir GENOME --readFilesIn READ1 READ2
--runThreadN 4 --outFilterMultimapScoreRange 1 --outFilter
MultimapNmax 20 --outFilterMismatchNmax 10 --alignIntron
Max 500000 --alignMatesGapMax 1000000 --sjdbScore 2 --align
SJDBoverhangMin 1 --genomeLoad NoSharedMemory --limit
BAMsortRAM 70000000000 --readFilesCommand cat --outFilter
MatchNminOverLread 0.33 --outFilterScoreMinOverLread 0.33
--sjdbOverhang 100 --outSAMstrandField intronMotif --out
SAMattributes NH HI NM MD AS XS --sjdbGTFfile GEN
CODE_ANNOTATION --limitSjdbInsertNsj 2000000 --out
SAMunmapped None --outSAMtype BAM SortedBy
Coordinate --outSAMheaderHD @HD VN:1.4 --outSAMattrRG
line ID::<ID> --twopassMode Basic --outSAMmultNmax 1

We used the raw junction counts from this study as the basis
for DJEC DB. For this, differential junction expression analysis
was implemented comparing junction abundance between each
TCGA cancer type and all GTEx normal tissues. Cancer-specific
changes in junction expression can be accessed through the DJE
Module section in the DJECDBweb application (Supplementary
Figure S2). Here, users can select target junctions to visually
explore interactive splice plots and differentially expressed
junctions in the context of protein domain and post-
translational modifications annotated within the Prot2HG
database of protein domains mapped to the human genome
(Stanek et al., 2020).

In addition to RNA-seq data, the TCGA repository contains
an extensive molecular and clinical annotation for tumor
samples, including additional omics data (genotyping, DNA
methylation, etc.) as well as multiple tumor classifications and
clinical records of the patient. This data collection allows
comprehensive correlation analyses between junction
expression and tumor/patient traits. The junction-trait (JT)
module section of DJEC DB (Supplementary Figure S3)
contains significant linkages found between differentially
expressed junctions and microsatellite instability (MSI) or
altered oncogenic signaling pathways based on mutations,
copy-number changes (CNV), mRNA expression, gene fusions
and DNAmethylation (Sanchez-Vega et al., 2018). This approach
is an adaptation of the Matrix eQTL method (Shabalin, 2012),
which uses large matrix operations of linear and ANOVAmodels
containing covariates to account for external factors such as
tumor grade or age of the patient.

Moreover, an exemplary co-expression network analysis can
be also found within the JCNA section, where users can
interactively explore junction expression modules as well as

the results of junction-traits associations in TCGA colorectal
(COADREAD) tumors (Supplementary Figure S4). This
implementation of WGCNA algorithms included the removal
of junctions with excessive missing values and sample
outliers after sample hierarchical clustering using the
goodSamplesGenes function (Langfelder and Horvath, 2008).
The subsequent soft-thresholding procedure ensures a scale-
free network, which emphasizes strong correlations between
junctions and penalizes weak correlations. The scale-free
network was constructed using the blockwiseModules function
which converts the correlation matrix into a strengthened
adjacency matrix that summarizes the association between all
junctions.

Gene-trait correlation matrices were also calculated and used
to identify and remove junctions whose correlation to external
traits was gene expression-dependent. Junction co-expression
modules were identified by dividing the junction expression
dendrogram into branches using a dynamic tree cutting
algorithm with medium sensitivity for cluster splitting
(deepSplit = 2). Different colors were then assigned to the
modules for subsequent visualization. MEs significance values
and correlations between MEs and clinical traits were also
calculated. The same was done for individual junction-to-trait
correlations.

To implement cancer cell line junction expression data into
DJEC DB, we downloaded fastq files from CCLE (available
through the Sequence Read Archive (SRA) under accession
number PRJNA523380) and carried out alignment and
junction quantification with the same strategy that was
previously used for TCGA and GTEx data (Kahles et al.,
2018). This data was then integrated with DepMap functional
genomics data in the CCLE DJE and CCLE SpliceRadar sections
of DJEC DB (Supplementary Figure S5). CCLE DJE comprises
the results of DJE analysis in cancer cell lines within the same
tissue of origin versus fibroblasts used as “healthy” control cell
lines. Significant correlations between differentially expressed
junctions and gene expression, CRISPR gene effect or drug
response values (DepMap 21Q3 Public, 2021) are found
within CCLE SpliceRadar. Here, users can plot SpliceRadar
charts with selected junction-trait associations. These database
components aim to facilitate the identification of cancer cell
models for specific splicing alterations and junction-trait
associations that can be further studied for functional
characterization in the lab.

RESULTS

The DJExpress toolbox incorporates both an R package
(containing DJE and JCNA modules) and a user-friendly
Shiny-based web application for a visual exploration of DJEC
DB as well as custom DJE analysis for user-provided junction
quantification data. Input files can either be STAR aligner-derived
“SJ.out.tab” files (containing splice junction counts per sample in
tab-delimited format) or any other junction quantification files as
long as they contain junction IDs as first columns, following the
format chr:start:end:strand (e.g., chr1:123:456:1, where positive
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or negative strand are coded as 1 and 2, respectively). In the
following paragraphs, we describe the use of DJExpress and DJEC
DB in detail and use case studies to demonstrate how DJExpress
and DJEC DB can be utilized to identify and computationally
explore alternative splice events across cell lines and patient
samples.

Differential Junction Expression and
Junction-Trait Association Analyses in
Cancer Cell Lines
To demonstrate the workflow of DJExpress, we analyzed cancer
cell lines from the DepMap repository, comprising 13 tissue types
that contain ≥30 individual cell lines per tissue (brain, breast,
colon/colorectal, gastric, head and neck, kidney, leukemia, lung,
lymphoma, myeloma, ovarian, pancreatic and skin cancer).
Table 2 summarizes the results of DJE analysis module per
tissue, using junction expression in fibroblasts as normal
control condition. Users can explore this data in the DJE-
CCLE section of DJEC DB.

DJExpress identified on average of 1,918 differentially used
junctions (FDR < 0.05 and |logFC| > 1), including previously
described alternative splicing events in cancer, such as the
downregulation of ACTN1 exon 19b (Gardina et al., 2006;
Thorsen et al., 2008; Bielli et al., 2018), VCL exon 19 (Gardina
et al., 2006; Thorsen et al., 2008), the upregulation ofNUMB exon
12 (Misquitta-Ali et al., 2011; Bechara et al., 2013; Zhang et al.,
2014; Zong et al., 2014), MAP3K7 exon 12 (Munkley et al., 2019;
Qiu et al., 2020; Oh et al., 2021), CTNND1 exon 20 (Yanagisawa
et al., 2008; Sebestyen et al., 2015; Wang et al., 2020), and EXOC1
exon 11 (Ray et al., 2020; Zhang et al., 2020), as well as of exons
contained within the variant domain in CD44 (Shirure et al.,
2015; Chen et al., 2018; Wang et al., 2018; Chen et al., 2020)
(Figure 5; Supplementary Figure S6). Moreover, the gene-wise
visualization of differential junction expression allowed the
identification of complex alternative splicing patterns and
isoform switches in cancer, such as the case of the co-
regulated inclusion of exon 11 and exclusion of exon 40 in
MYO18A in lymphoma and myeloma, the complex local event

involving exons 15–18 in MARK3 in leukemia, lymphoma,
myeloma, breast, colon, gastric, lung and pancreatic cancer, or
the isoform switches in RGS3 in breast, colon, gastric, lung,
ovarian and pancreatic cancers, and INPP5B in pancreatic
cancer cell lines (Figure 6; Supplementary Figures S7, S8).
These data demonstrate that DJExpress can not only reliably
identify previously described alternative splicing events but can
also facilitate the discovery and visualization of complex splice
events within annotated splice regions.

Notably, an average of 3,563 non-annotated splice junctions
per tissue and 292 neojunctions (defined as junctions not detected
in control fibroblast cell lines) were also discovered by the DJE
analysis module (Table 2). Here, the visualization of non-
annotated junctions within the gene-wise DJE plots allowed us
to identify the presence of previously unknown splicing events,
including exon skipping, alternative 3′ splice sites, alternative 5′
splice sites and alternative first and last exons (Supplementary
Figure S9). Moreover, DJE plots also revealed the presence of
novel splice junctions with genomic coordinates that suggest the
presence of exons so far not described in the human
transcriptome annotation (Figure 7; Supplementary Figure
S10). These newly identified splicing events are potentially
linked to cancer physiology and their functional
characterization could be subject of future studies.
Nevertheless, to further illustrate the capabilities of DJExpress
and DJEC DB, we next focused on a well-described alternative
splicing switch in NUMB mRNA.

Case Study 1: SpliceRadar-Based
Identification of NUMB Alternative Splicing
Regulators
NUMB encodes for a key determinant of cell fate that regulates
the trafficking of surface proteins such as Notch, integrins and
E-cadherin and can undergo alternative splicing (Nishimura and
Kaibuchi, 2007; McGill et al., 2009; Teckchandani et al., 2009;
Wang et al., 2009). Inclusion of NUMB exon 12 is frequently
observed in different types of cancer, leading to a 48 amino acid
extension of the proline-rich region (PRR) of the NUMB protein

TABLE 2 | Summary of DJE module junction statistics in CCLE.

CCLE tissue Quantified
junctions

DE
junctions

DE junctions in
Group

1

DE junctions in
Group

2

DE junctions in
Group

3

Novel
junctions

Neojunctions

Brain 120,611 846 74 73 14 3,456 110
Breast 123,349 2,153 499 431 247 3,426 255
Colon 122,639 3,363 663 722 409 3,400 336
Gastric 126,487 2,335 540 486 293 3,806 320
Head-Neck 119,194 2,398 440 391 144 3,573 316
Kidney 117,989 1,231 185 143 119 3,574 164
Leukemia 123,295 3,668 631 1,060 511 3,563 514
Lung 130,297 2,327 386 549 154 3,403 368
Lymphoma 122,911 3,795 689 1,012 524 3,772 354
Myeloma 119,528 3,307 727 678 420 3,734 398
Ovarian 122,251 1,603 295 283 238 3,512 241
Pancreatic 121,817 2,528 448 418 308 3,614 220
Skin 120,200 2,036 186 357 247 3,498 197
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(Chen et al., 2009; Zhang et al., 2014; Lu et al., 2015; Rajendran
et al., 2016). This longer NUMB isoform (Numb-L) was found to
promote proliferation, whereas the shorter isoform (Numb-S)

promotes differentiation of cancer cells (Verdi et al., 1999). In
lung cancer, the splicing factor QKI represses the inclusion of
NUMB alternative exon through competing with a core splicing

FIGURE 5 | Expression profile and gene context of known alternative splicing events in cancers detected by DJExpress using cancer cell line data. Examples of
known cancer-specific splice events are shown as gene-wise splice plots with relative logFC values (upper panels) and gene model plots with exon-to-protein domain
annotation (lower panels). (A,B) show gene-wise splice plots of exon inclusion events in NUMB and ACTN1 mRNA in breast and lung cancer cell lines, respectively.
(C,D) show gene-wise splice plots of exon skipping events inMAP3K7 and VCLmRNA in gastric and breast cancer cell lines, respectively (Numbers on the x-axis in
the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for significance (|logFC| > 1.0). Downregulated
and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively. These same junctions are indicated within the
gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant
FDR (>0.05) for at least one of them are shown in black).
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factor SF1, thereby inhibiting proliferation and Notch signaling
(Zong et al., 2014).

This well-documented NUMB isoform switch was also
detected with DJExpress, which showed a ~16-fold (log2 ~4-
fold) upregulation of NUMB exon 12 inclusion junctions in
breast cancer cell lines compared to fibroblasts (Figure 5A). A
similar NUMB splice pattern was observed across other cancer
types (data not shown). Furthermore, by using DJExpress JT
module, we corroborated the positive correlation between QKI
gene expression and NUMB exon 12 exclusion (Figure 8A).
Moreover, SpliceRadar-based visualization identified additional
positively and negatively correlated splicing regulators, including
SRPK2 and RBFOX2, which have both previously been implicated
in the regulation of NUMB alternative splicing (Lu et al., 2015).
Thus, our data suggests that the control of NUMB alternative
splicing in cancer may involve a more complex regulatory
network than previously thought. These data demonstrate that
DJExpress can not only validate known associations with splice
events but can also, through functionality of the SpliceRadar tool,
identify additional regulatory networks that may be altered in
cancer.

DJECDB incorporates gene dependencies and drug response data
from the DepMap repository. We thus expanded the landscape of
phenotypic associations to NUMB alternative splicing in lung cancer

cell lines (Figure 8B). Pathway enrichment analysis of significantly
associated gene dependencies revealed enrichment of components
within the mTOR and insulin signaling pathways. This is consistent
with previous studies, which suggested that activated ERK signaling is
a common mechanism that regulates NUMB isoform expression in
breast and lung cancer cells (Rajendran et al., 2016) (Figure 8C).
Similarly, SpliceRadar plots using top correlations with drug response
values also revealed associations between the expression of exon-
inclusion junctions in NUMB and cell survival rates after treatment
with several compounds targeting PI3K/mTOR and ERK MAPK
signaling (Supplementary Figure S11). These data reinforce the
notion of a functional connection between NUMB exon 12 inclusion
and pro-inflammatory signaling cascades.

Taken together, these results illustrate the potential of the
DJExpress pipeline to identify bona fide differentially expressed
splice junctions and reveal physiologically relevant associations
between junction expression and various external traits. Thus,
DJExpress can be used to support and generate hypotheses
regarding the potential molecular mechanisms involved in the
regulation and physiological consequences of alternative splicing.

DJEC DB Data Summary
TCGA project is a large-scale oncology study that has allowed the
comprehensive characterization of multiple cancer types using a

FIGURE 6 | Co-regulated splicing events within MYO18A transcript in blood cancer. Differentially used junctions as depicted in the gene-wise splice plot in
MYO18A indicate the concomitant inclusion of exon 11 and exclusion of exon 40 in Myeloma and Lymphoma cell lines. Gene model plot with Prot2HG-based domain
annotation suggest that these co-regulated splicing events involve exonic regions containing known MYO18A phosphorylation sites (brown), as well as regions
comprising the core myosin-like ATPase motor domain, MYSc_Myo18 (orange).MYO18A gene-wise splice plot in lymphoma is used as example (Numbers on the
x-axis in the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for significance (|logFC| > 1.0).
Downregulated and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively. These same junctions are
indicated within the gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the presence of protein
domains and/or post translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots indicate direction of
transcription. Coding and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the threshold (|logFC| >
1.0) but no significant FDR (>0.05) for at least one of them are shown in black).
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FIGURE 7 | DJE analysis suggests the presence of differentially spliced non-annotated exons in cancer cell lines. Gene-wise splicing as well as gene model plots
show non-annotated splice junctions whose gene location indicates the presence of exons not described in the human transcriptome annotation. (A) Differentially
expressed non-annotated junctions between exon 37 and 38 located in the vicinity of the CNH (dark green) and PH (orange) domains in CIT. (B) Differentially expressed
non-annotated junctions between exon 12 and 13 in SPIRE1, which contain the Spir-box domain (pink) involved in the interaction between SPIRE1 and formin
(FMN)-type actin nucleators, as well as protein phosphorylation sites (yellow). (C) Differentially expressed non-annotated junctions between exon 13 and 14 inHSP90B1
occurring within the HSP90 chaperone domain (green). ForCIT and SPIRE1 gene-wise splice plots, breast cancer is used as example. ForHSP90B1, lung cancer is used
as example (Numbers on the x-axis in the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for
significance (|logFC| > 1.0). Downregulated and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively.
These same junctions are indicated within the gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the
presence of protein domains and/or post translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots
indicate direction of transcription. Coding and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the
threshold (|logFC| > 1.0) but no significant FDR (>0.05) for at least one of them are shown in black).
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FIGURE 8 | SpliceRadar plots of top trait associations toNUMB alternative splicing in lung cancer. (A) Expression of splice junctions supporting exon 12 inclusion in
NUMBmRNA was correlated to the expression of a panel of manually curated splicing regulators in lung cancer cell lines. The top-ranked correlation coefficients (FDR <
0.05 and |rho| > 0.2) were used to construct the SpliceRadar chart with splicing factors depicted along the spokes, revealing a general trend of anti-correlation patterns to
splicing factor expression between inclusion (red and dark red) and exclusion (blue) junctions. Previously known associations to NUMB splicing were corroborated
(e.g., QKI, RBFOX2 and SRPK2), and novel associations with similar correlation levels were identified, suggesting a more complex regulatory network of NUMB
alternative splicing than previously described. (B) SpliceRadar plot showing top-ranked correlations (FDR < 0.05 and |rho| > 0.2) between exon inclusion junction
expression in NUMB and gene dependencies (defined as gene loss effect on cell survival) using DepMap CRISPR screen data. Anti-correlation patterns of dependency
values and expression of inclusion and exclusion junctions are also observed as in the case of panel (A). (C) KEGG pathway enrichment analysis using gene names of
significantly associated dependencies ranked by correlation coefficient. The enrichment plot shows top over-represented pathways within NUMB splicing-correlated
gene dependencies (Dot size represents the number of genes in each KEGG pathway, color gradient indicates significance level of adjusted p-values).
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catalogue of clinical and molecular data, including RNA
sequencing from thousands of patients across multiple tumor
types. This resource harbors an excellent opportunity for cancer
researchers and clinicians to explore and define tumor-specific
transcriptomic signatures, and to integrate them with additional
external traits such as mutations, copy number variations (CNV)
or microsatellite instability (MSI). These features of TCGA can
facilitate identification of novel therapeutic or diagnostic
biomarkers. However, TCGA alternative splicing analyses,
particularly the association of splice events with clinical and
molecular traits, is currently not available in an accessible way.

To fill this gap, we generated DJEC DB, a platform that
provides an integration of differential junction expression
analysis with TCGA molecular and clinical data. For this, we
used splice junction quantification from a recently published
study (Kahles et al., 2018) where TCGA and GTEx RNA-seq
samples were re-analyzed using 2-pass STAR alignment, thereby
allowing identification of annotated and de novo splice events.
Additionally, we quantified junction expression in cancer cell
lines from CCLE fastq files and integrated this data with
functional genomics data sets from the DepMap repository.

DJEC DB comprises four main sections: 1) Differential
Junction Expression (DJE) in TCGA vs GTEx tissue, 2)
Junction-Trait (JT) associations using external clinical and
molecular sample data, 3) Junction Co-expression Network
Analysis (JCNA) using junction expression in colorectal
(COADREAD) tissue samples as example dataset, and 4)

Differential Junction Expression in cancer cell lines and
association with DepMap functional genomics data (DJE-
CCLE).

The DJE section comprises summary statistics and
visualization options for an average of 6,345 differentially
expressed junctions across the 32 tumor tissue types analyzed
(FDR <0.05 and |logFC| > 2, Table 3). In the JT section, an
average of 674 statistically significant associations are shown
between differentially expressed junctions and altered
oncogenic signaling pathways determined by the presence of
mutations, CNVs, altered gene expression, gene fusions, DNA
methylation and MSI (in the case of COADREAD tumors).

To exemplify the use of the JCNA approach, we selected the
372 samples from the TCGA COADREAD tumor cohort to
construct a junction co-expression network (see methods for
details). For this, we used a minimummodule size of 20 junctions
and an unsigned network type, meaning that the weight of
connection between nodes (junctions) is calculated
irrespectively of the direction of the association, so modules
can contain both, positively and negatively correlated junctions
(Supplementary Figure S4).

From a total of 7,404 junctions filtered by their gene
expression-independent association to sample traits, 36
expression modules were found for this tumor type, with an
average of 206 junctions per module. Module-trait associations
were also determined throughout the correlation between ME
expression values and tumor stage, MSI, mutations in TP53,

TABLE 3 | Summary of DJE and JT junction statistics in DJEC DB.

TCGA tissue
cohort

Sample size Quantified junctions DE junctions Associations to
genomic alterations

Associations to
mutations

Associations to
pathway alterations

ACC 79 13,827,029 2,335 1 2 —

BLCA 408 14,369,479 2,935 215 274 —

BRCA 1,083 15,445,200 3,740 334 306 15
CESC 304 14,260,819 4,808 14 20 —

CHOL 36 13,786,637 8,446 10 10 —

COADREAD 372 14,315,224 5,534 49 44 —

DLBC 48 13,822,896 6,150 9 5 —

GBM 165 13,995,214 12,781 2 4 —

HNSC 500 14,592,967 5,745 49 117 2
KIPAN 738 14,965,143 2,836 92 93 1
LGG 526 14,536,867 6,771 6,708 6,061 404
LIHC 372 855,905 4,996 97 99 —

LUAD 516 14,681,817 3,931 153 149 —

LUSC 500 14,804,638 4,721 107 114 10
MESO 82 13,866,293 4,078 — — —

OV 199 16,204,728 8,509 9 10 —

PAAD 178 13,981,645 4,942 26 26 —

PCPG 183 14,428,362 8,973 228 228 —

PRAD 497 1,166,561 4,097 85 94 —

SARC 257 14,106,882 1,810 12 50 —

SKCM 471 14,106,882 3,436 16 11 —

STES 535 18,214,111 7,155 418 330 —

TGCT 156 14,050,087 9,684 14 14 —

THCA 500 14,437,693 4,885 699 714 37
THYM 118 13,939,486 3,860 30 31 —

UCEC 179 14,038,958 9,241 114 99 —

UCS 56 13,829,412 9,091 6 5 —

UVM 80 13,809,902 9,285 — — —
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EGFR, KRAS and BRAF genes, as well as expression across six
splicing factor gene modules previously calculated from gene
expression data.

Finally, the DJE-CCLE section contains the results of the
differential junction expression analysis of normal fibroblast
cells vs cancer cell lines clustered by tissue of origin, as

FIGURE 9 | Differentially expressed non-annotated junctions in SPIRE1 are also found in the context of primary tumor tissue. Differential expression of junctions
suggesting the presence of a non-annotated exon in SPIRE1 mRNA were not only identified in cancer cell lines (see Figure 7B) but are also found in BRCA, LUAD,
KIPAN, PRAD, and THCA TCGA cohorts. Caption of DJEC DB DJE analysis in KIPAN is shown as example. The exon inclusion event can be found by filtering for
differentially expressed junctions following cutoff criteria of <0.05 for FDR and |logFC|>1.0 (Panel 1) and then selecting any of the two inclusion junctions based on
their genomic coordinates (Panel 2). DJEC DB displays gene-wise splice plots (Panel 3) as well as domain-annotated gene model plots (Panel 4).
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described above. Significant correlations between junction
expression and functional genomics data obtained from the
DepMap repository are displayed in a summary table and
selected association patterns can be visualized using
SpliceRadar plots.

Search and Browse DJEC DB
Within the DJE section, users can first define the target tumor
tissue type as well as the logFC and FDR cutoffs for the
significance in differential expression (Supplementary Figure
S2). A table with the summary statistics is displayed and specific
target genes or junctions can be selected by the users in order to
display gene-wise splice plots as well as a zoomable gene model
plots with exon-to-protein domain annotation. In addition,
junction-trait associations in TCGA can be explored within
the JT section following user-defined tumor tissue type and
external molecular trait options (Supplementary Figure S3).

For the JCNA section using the TCGA COADREAD sample
cohort, a junction dendrogram with expression module
assignment, as well as a module-trait association heatmap are
displayed (Supplementary Figure S4). For intramodular
analysis, users can select specific modules and traits to
visualize module-to-trait significance plots, as well as module
networks in interactive format. Both are helpful in identifying
centrally located intramodular hub junctions with high module
membership as well as high significance for selected traits. This
allows the user to generate testable hypotheses about junction
module expression, regulation and association to cancer
phenotypes that can be implemented in validation experiments.

Similar interactive visualization can be also found within the
DJE-CCLE section. Here, users can select the tissue of origin, the
significance cutoff for differential expression, as well as target
genes/junctions and junction-trait associations to be displayed in
gene-wise splice and SpliceRadar plots (Supplementary
Figure S5).

Case Study 2: Cancer Cell Line DJE
Signature Is Recapitulated by Tumor Tissue
Analysis in DJEC DB
One of the central features of DJEC DB is the possibility to
interrogate the presence of alternative splicing patterns observed
in cancer cell lines in the context of tumor tissues. NUMB, VCL,
MAP3K7 and EXOC1 exon skipping events are examples of
known splicing events that can be also observed in tumor
tissue (Supplementary Figures S12–S15). Notably, the
presence of a differentially expressed non-annotated exon
between exon 12 and 13 in SPIRE1, which we detected in
cancer cell lines (Figure 7B), was also identified in BRCA,
LUAD, KIPAN, PRAD, and THCA cohorts by DJEC DB data
using gene-wise splicing visualization (Figure 9). This suggests
that the alternative inclusion of this previously unknown region
in SPIRE1 transcript may be a common feature across different
cancer types in vitro and in vivo. These data demonstrate the
applicability of DJEC DB in identifying and cross-validating
potentially oncogenic alternative splicing patterns both in
cancer cell lines and tumor tissue.

The JT module in DJEC DB provides a workflow to associate
junction expression with user-provided molecular or clinical
traits. In the case of CTNND1 splicing event, we found
significant associations between the expression of exon 20
inclusion junctions and TP53 mutation status in BRCA, as
well as with amplification of CCND1 gene and epigenetic
silencing of CDKN2A in STES (Supplementary Figure S16).
This is consistent with previous studies indicating that CCND1
isoforms expression regulates cell proliferation and cell cycle
progression by controlling the levels of cyclin proteins in
cancer cells (Chartier et al., 2007; Jiang et al., 2012; Liu et al.,
2014).

Taken together, these data corroborate DJEC DB as a valuable
bioinformatics resource for the exploration and visualization of
differential junction expression, as well as for the interrogation of
physiologically relevant junction-trait associations in the context
of global splicing analysis in cancer cell lines and tumor tissue.

DISCUSSION

With the increasing availability of NGS data sets, the possibility to
perform transcriptome-wide alternative splicing analysis has
become a commonality rather than an exception in disease
research. Nevertheless, computational analysis pipelines that
allow the broad research community to effortlessly interrogate
alternative splicing phenotypes are largely missing.

Our custom pipeline, DJExpress, aims to address this issue.
With DJExpress, we have incorporated multiple existing
algorithms in a novel computational approach for differential
splicing analysis, which is suitable for analysis of small-scale as
well as large-scale splice junction datasets. Moreover, DJExpress
allows the analysis of millions of exon-exon boundaries per
sample, using limma’s statistical framework. Limma’s
algorithm has been shown to be highly accurate for gene
expression analysis (Law et al., 2014; Corchete et al., 2020;
Gerard, 2020), although a comprehesive analysis of accuracy
for splicing is beyond the scope of this work and remains as a
future direction. Nevertheless, the implication of limma
methodology proved to be highly flexible. This is not only the
case in terms of model specification (any contrast in a linear
model including the use of continuous as well as categorical
predictors can be related to differential junction expression) but
also for the various parameters introduced into the fit model,
including posterior variance estimators, observation weights and
variance modelling. These features, together with limma’s
additional data pre-processing methods such as variance
stabilization, all help to improve inference of differential
junction expression.

Importantly and similar to gene expression studies (Peixoto
et al., 2015), removing or accounting for both known and
unknown confounding factors (e.g., technical biases such as
batch effects, or population structure such as molecular or
clinical subtypes) is crucial when analyzing alternative splicing
phenotypes in RNA-Seq data sets (Slaff et al., 2021). Confounding
factors can greatly increase the numbers of false positives and
negatives, which ultimately will affect interpretation of potential
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biological relationships. Thus users should test for potential
known confounder effects in their data, for example by using
PCA or UMAP plots, and use dedicated tools to correct for
confounders such as limma, ComBat, RUV, SVA and
MOCCASIN (Leek, 2014; Risso et al., 2014; Zhang et al., 2020;
Slaff et al., 2021).

Apart from these statistical aspects, DJExpress provides a
comprehensive framework to graphically summarize
differential splicing. The adapted limma-based visualization
approach allows inspection of alternative splicing not only at
the level of individual junction loci, but also in the presence of
more complex splicing patterns. These can involve
simultaneous changes in the expression of multiple
junctions across the entire gene. This is particularly
advantageous, considering that existing splicing analysis
tools are either focused on the definition of local alternative
splicing events which can be both simple (exon skipping,
alternative 3′ or 5′ splice sites, etc.) or complex
(simultaneous occurrence of multiple splice events in a
given mRNA), or only allow detection of known transcript
isoforms. Thus, most previous tools disregard the
simultaneous visual representation of the full spectrum of
up- and down-regulated splicing patterns in a gene that is
retrieved through junction quantification. Broadly used
exceptions are LeafCutter (Li et al., 2018) and MAJIQ
(Vaquero-Garcia et al., 2016), which can both also represent
complex splicing changes across the entire mRNA.

Notably, the differential junction usage analysis by
DJExpress does not allow a direct assessment of intron
retention events, which require intron and intron-exon
junction read counts for their quantification. Nevertheless,
dedicated tools such as MAJIQ (Vaquero-Garcia et al., 2016),
IRFinder (Middleton et al., 2017), iREAD (Li et al., 2020) or
S-IRFinder (Broseus and Ritchie, 2020) are specifically
designed for quantification of intron retention events and
are thus well-suited for this specific type of analysis.

Recently, RNA-seq data from TCGA and GTEx was
integrated within a large transcriptomic profiling workflow,
including splicing quantification of more than 20,000 human
normal and tumor tissue samples (Kahles et al., 2018).
Although this study provided unified splicing data across
healthy and tumor tissue, the analysis is based on the
construction of complex splicing graphs across thousands
of samples and genes which are difficult to access and
interpret. Furthermore, approaches to explore the data in a
graphically visualized format were not the scope of this
previous study. This limited the availability and
accessibility of this data for the general research
community as well as the feasibility of splicing-trait
association analyses using genomic, epigenetic, and clinical
records available within the TCGA repository. These points
are addressed by DJExpress and DJEC DB which facilitate easy
access, analysis and visualization of cancer splicing data.
Moreover, by providing a simple analysis workflow for
custom data sets, our pipeline is not restricted to cancer
researchers but can be used to pursue a broad variety of
alternative splicing-related scientific questions.

In conjunction with the usability of the DJExpress for
differential splicing analysis and visualization using custom
RNA-Seq data, the multidimensional integration of cancer
data within DJEC DB represents a comprehensive resource of
cancer-specific splicing signatures and junction-trait associations.
We demonstrated that our pipeline has the potential to unveil
novel splicing-related molecular signatures, which may
contribute to improved patient stratification and more
effective cancer treatment strategies. Moreover, the integration
of DepMap data allows association of junction expression with
molecular features such as gene dependencies and drug response
profiles. This will help researchers to identify cancer cell models
for specific splicing alterations that can then be used for
functional characterization in the lab.

Another recently established cancer splicing repository,
RJunBase (Li et al., 2021), follows a similar splicing analysis
strategy as DJEC DB. While focusing on back-splice and fusion
junctions, RJunBase provides splicing patterns at junction level
and median junction expression information in GTEx and TCGA
samples. However, it lacks differential junction expression
analyses between cancer and healthy tissue and does not
include association of splice events with molecular or clinical
data. Thus, compared to RJunBase, DJEC DB not only includes
differential junction expression analyses but also provides
functional associations of splicing changes with phenotypic
traits. These features make DJEC DB a comprehensive data
base that can facilitate the discovery of novel cancer-related
aberrant splicing patterns with potential phenotypic
consequences.

Taken together, DJExpress provides researchers with a
comprehensive toolbox for exploration of alternative splicing
phenotypes in health and disease, and, with DJEC DB,
includes multi-level data of alternative splicing signatures in
healthy tissue, tumors and cancer cell lines.
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Supplementary Figure 1 | Performance evaluation of DJE module. Median (A) and
log2 median (B) process time following 10 repetitions of data import (DJEimport),
junction annotation (DJEannotate), expression filtering (DJEprepare), normalization
and differential junction expression analysis (DJEanalyze) within the DJE module of
DJExpress. (C) Median memory consumption (in bytes) of the entire DJE module.
Error bars represent standard deviations. Default settings with increasing sample
size and random relative group sizes are used in the analysis.

Supplementary Figure 2 | Interactive DJE visualization in tumors using DJEC DB.
(A) Start interface of the DJE section in DJEC DB. Panel 1 highlights the selection
option section. Users can define the TCGA tumor type, and the significance cutoff for
differential junction usage based on minimal |logFC| and FDR values. Panel 2 shows
the downloadable summary statistics table for junctions passing the selected cutoff.
Here, users can filter junctions by browsing specific gene IDs, junction IDs or
genomic coordinates. After selecting a target junction by clicking over it on the table,
gene-wise splice plots as well as junction in domain-annotated gene model context
(Panels 3 and 4 respectively) can be interactively visualized. Hovering over each
junction in the gene-wise splice plot displays a box with summarized DJE
information, including relative and absolute logFC values, FDR values and
expression group of the selected junction. Colors within exonic regions in the
gene model plot indicate the presence of protein domains and/or post-
translational modifications (PTMs). The position of the selected junction within
the gene model plot is indicated by a dashed arc whose color correspond to the
type of differential expression (blue for downregulation and red for upregulation).
Specific regions within the gene model plot (e.g., position of the selected junction)
can be further explored by cursor selection, which displays a zoomed image version
of the selected gene region. (B) KIF13A exon inclusion event in BRCA TCGA cohort
is used as an example. Significance cutoff was set to |logFC| > 2.0 and minimal FDR
cutoff of 0.05. The two exon inclusion junctions are shown in red within the gene-
wise splice plot, and the gene model plot indicate the position of the selected
junction, which happens close to an annotated phosphorylation site of the protein.

Supplementary Figure 3 | Visualization of JT section within DJEC DB. This section
contains the results of the junction-trait association analyses using ANOVA and linear
models from Matrix eQTL methods (Shabalin, 2012). Differentially expressed
junctions within each TCGA tumor type were associated to microsatellite
instability (MSI) or altered oncogenic signaling pathways based on mutations,
copy-number changes (CNV), mRNA expression, gene fusions and DNA
methylation (Sanchez-Vega et al., 2018). Users can select the tissue of interest,
as well as the trait to which junction expression is associated (Panel 1). A
downloadable summary statistics table is displayed (Panel 2), where specific
genes, junctions, genomic coordinates or traits can be browsed. When a
specific association is selected from the table, interactive junction-trait
association boxplots are displayed (Panel 3) and hoovering over them shows

summarized statistics of the analysis. The image contains the example of the
association between a differentially expressed junction in the transcript of S100
Calcium Binding Protein A14 (S100A14) and MSI, with high levels of MSI (MSI-H) in
tumors (violet) being associated to significantly more inclusion levels of the junction
than low levels of MSI (MSI-L) (red) and microsatellite stable (MSS) (blue) colorectal
tumors.

Supplementary Figure 4 | Junction Co-expression Network Analysis (JCNA) of
TCGA COADREAD in DJEC DB. (A) JCNA section comprises the results of the
junction co-expression analysis across the 372 samples from the TCGA
COADREAD tumor type. 7,404 junctions where clustered into 36 expression
modules. The dendrogram of clustered junctions is displayed (panel 2), where
each branch in the figure represents one junction, and every color below represents
one co-expression module. The heatmap of module-trait associations (panel 3)
based on correlation coefficients between junction modules and traits is also shown
(blue and red indicate positive and negative correlations respectively). Traits are in
the x-axis and junction modules with their respective assigned letter and color are in
the y-axis. Traits analyzed include Microsatellite instability (MSI), BRAF, KRAS EGFR
and TP53 mutation status, tumor stage and 6 co-expression modules of splicing
factors calculated for COADREAD samples (SFG1-6). (B) Interactive scatter diagram
of module membership vs. junction significance is shown when users select specific
traits and modules within the selection options section (panel 1). (C) For the selected
module, an interactive junction network is also displayed. Each node in the network
represents a single junction. Junctions are colored based on gene ID. Users can
select target genes within the network to highlight their respective junctions (e.g.,
EDEM2 junctions in the zoomed image).

Supplementary Figure 5 | Visualization of junction-trait associations using
DepMap gene dependencies within JT-CCLE section in DJEC DB. This section
contains the results of the junction-trait correlation analyses using junction
expression and genome-wide gene dependency screens in cancer cell lines.
Users can select the tissue of interest, as well as the absolute correlation
coefficient cutoff to be used for SpliceRadar visualization (panel 1). A
downloadable correlation matrix is displayed (panel 2), where specific genes,
junctions, genomic coordinates or traits can be browsed. When specific
junctions are selected (maximum 3) from the table, interactive SplicePlots with
top 50 junction-dependencies correlations are displayed (panel 3). An example of
significant associations between MYO18A exon 40 expression and gene
dependencies in lymphoma cell lines is shown.

Supplementary Figure 6 | Illustration of known alternative splicing in cancer using
DJEC DB. (A) Cancer-specific inclusion of exon 11 in EXOC1 involving differentially
used junctions 11, 12 and 13. The alternative splicing events occurs within the
C-terminus Sec3_C domain (pink) and adjacent to several phosphorylation sites
(brown) as depicted by the domain-annotated gene model plot. (B) Exon 20
inclusion event in CTNND1, involving junctions 20 and 23. This exon localizes at
the C-terminal domain ofCTNND1 and in the vicinity of several phosphorylation sites
as indicated in the gene model plot. (C) Differentially used junctions are depicted
within the gene-wise splice plot in CD44 (downregulated junction indicating the
exclusion of the variable region and upregulated junctions indicating the inclusion of
exons 7–14 within the variable region). Gene model plot with Prot2HG-based
domain annotation indicate that the variable region in CD44 correspond to the
proteolytically cleavable extracellular Stem domain (dark gold) as previously
described. For differential junction expression in EXOC1, CTNND1 and CD44,
colon, pancreatic and breast cancer cell line are shown as examples,
respectively. (Numbers on the x-axis in the upper panels indicate the first, last
and differentially used junctions in the respective gene. Grey area indicate threshold
for significance (|logFC| > 1.0). Downregulated and upregulated junctions with |
logFC| above threshold and significant FDR (< 0.05) are shown in blue and red,
respectively. These same junctions are indicated within the gene model plots as
dashed arcs connecting upstream and downstream exons. Colors within exonic
regions indicate the presence of protein domains and/or post translational
modifications (PTMs) annotated within the Prot2HG protein domain database.
Arrows below gene model plots indicate direction of transcription. Coding and
UTR exons are illustrated as long and short exons respectively. Junctions with both
absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant
FDR (> 0.05) for at least one of them are shown in black. Junctions with either relative
or absolute logFC below the indicated threshold are shown in grey).

Supplementary Figure 7 | Example local complex event in MARK3 transcript in
several cancer types. (A) Differentially used junctions as depicted in the gene-wise
splice plot and gene model plot in MARK3 indicate the presence of a splicing event
involving several co-regulated junctions between exons 15–18 (the event accounts
for a double exon skipping event, where several exon-exon junctions, including an
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alternative 3′ splice site event are downregulated). CCLE Breast cancer vs fibroblast
analysis cell lines is used as example. (Numbers on the x-axis in the upper panels
indicate the first, last and differentially used junctions in the respective gene. Grey
area indicate threshold for significance (|logFC| > 1.0). Downregulated and
upregulated junctions with |logFC| above threshold and significant FDR (<0.05)
are shown in blue and red, respectively. These same junctions are indicated within
the gene model plots as dashed arcs connecting upstream and downstream exons.
Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain
database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with
both absolute and relative logFC above the threshold (|logFC| > 1.0) but no
significant FDR (>0.05) for at least one of them are shown in black). (B)
DJEplotSplice function in DJExpress allows the alternative interactive visualization
of all found junctions for a target gene within the original junction quantification data,
including those removed after coverage filtering. The full gene-wise plot of MARK3
reveals the presence of 1084 junctions detected across all analyzed samples.
Junctions filtered out for differential analysis based on user-defined expression
cutoffs are shown in clear grey. DJEplotSplice output offers an additional read
coverage information across the gene using the loess fit of median junction read
count (blue line) as readout. Numbers in the x-axis of the read coverage plot indicate
genomic coordinates of MARK3 gene structure.

Supplementary Figure 8 | Examples of isoform switches detected by DJExpress in
cancer cell lines. Visualization of differentially used junctions within gene-wise splice plots
and gene model plots reveals cases of upregulation and downregulation of specific
transcript isoforms. (A) INPP5B gene-wise splice plot in pancreatic cancer cell lines
indicates the presence of one upregulated junction and a series of consecutive
downregulated junctions at the 5′ region of the gene. When compared to the
transcript isoform annotation for INPP5B, this pattern is indicative of downregulation
of the long INPP5B isoform (bottom right) containing five additional exons at the 5′ region
which corresponds to the Type II inositol 1,4,5-trisphosphate 5-phosphatase PH protein
domain (INPP5B_PH) (green), while the short isoform (top right) containing an alternative
first exon downstream of the INPP5B_PH domain appears upregulated. (B) RGS3
isoform switch is also observed in breast, colon, gastric, lung, ovarian and pancreatic
cancers. The series of upregulated junctions belongs to a long isoform version of RGS3,
while downregulated junctions correspond to a shorter transcript variant with an
alternative downstream promoter. This short isoform shares its second and third
exon with the long isoform but differs in four downstream exons containing the
Regulator of G protein Signaling (RGS_RGS3) (brown) protein domain. RGS3 gene-
wise splice plot in gastric cell lines is shown as example (Numbers on the x-axis in the
upper panels indicate the first, last and differentially used junctions in the respective gene.
Grey area indicate threshold for significance (|logFC| > 1.0). Downregulated and
upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are
shown in blue and red, respectively. These same junctions are indicated within the gene
model plots as dashed arcs connecting upstream and downstream exons. Colors within
exonic regions indicate the presence of protein domains and/or post translational
modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows
below gene model plots indicate direction of transcription. Coding and UTR exons are
illustrated as long and short exons respectively. Junctions with both absolute and relative
logFC above the threshold (|logFC| > 1.0) but no significant FDR (>0.05) for at least one of
them are shown in black. Junctions with either relative or absolute logFC below the
indicated threshold are shown in grey).

Supplementary Figure 9 | Example of alternative splicing event types identified by
DJExpress. Differentially used non-annotated junctions are representative of different types
of alternative splicing events. (A) XRCC6 gene-wise splice plot in breast cancer cell lines
indicates the presence of an alternative 3′ splice site (A3’SS) in exon 6. This event occurs
within the Von Willebrand factor type A protein domain (vWA_ku) (pink) known to be
involved in protein-protein interactions. (B) An alternative first exon (AFE) event is detected
in BIN1 in lymphoma cell lines. The downregulated first exon is known to contain a region
required for interaction with BIN2 (orange). (C) Detection of an alternative 5′ splice site
(A5′SS) involving the first exon of LDLRAP1 in myeloma. (D) The upregulated junction in
C11orf58 in brain cancer cell lines indicates the presence of both, an alternative 5′ splice
site (A5′SS) and an alternative 3′ splice site (A3′SS) in exon 2 and 3, respectively, which
occurs inside the region corresponding to the Small acidic protein family (SAMP) domain
(pink) (Numbers on the x-axis in the upper panels indicate the first, last and differentially
used junctions in the respective gene. Grey area indicate threshold for significance (|logFC|
> 1.0). Downregulated and upregulated junctions with |logFC| above threshold and
significant FDR (<0.05) are shown in blue and red, respectively. These same junctions
are indicated within the gene model plots as dashed arcs connecting upstream and
downstream exons. Colors within exonic regions indicate the presence of protein domains
and/or post translational modifications (PTMs) annotated within the Prot2HG protein

domain database. Arrows below gene model plots indicate direction of transcription.
Coding and UTR exons are illustrated as long and short exons respectively. Junctions with
both absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant FDR
(>0.05) for at least one of them are shown in black).

Supplementary Figure 10 | Example of a differentially spliced non-annotated exon in
cancer cell lines. Differentially expressed non-annotated junctions indicate the presence of
an exon inclusion event (junctions 18–20) between exon 17 and 18 involving the actin-
binding module (I_LWEQ) (violet) in TLN1 as observed in the domain-annotated gene
model plot. TLN1 plots in breast cancer cell lines are used as example (Numbers on the
x-axis in the upper panels indicate the first, last and differentially used junctions in the
respective gene. Grey area indicate threshold for significance (|logFC| > 1.0).
Downregulated and upregulated junctions with |logFC| above threshold and significant
FDR (<0.05) are shown in blue and red, respectively. These same junctions are indicated
within the genemodel plots as dashed arcs connecting upstreamanddownstreamexons.
Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain
database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with both
absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant FDR
(>0.05) for at least one of them are shown in black).

Supplementary Figure 11 | SpliceRadar plot of top associations between NUMB
alternative splicing and drug treatment response in lung cancer. Expression of splice
junctions involved in the exon inclusion event ofNUMBwas correlated to cell survival
rates after drug treatment using DepMap drug screens data in lung cancer cell lines.
The top-ranked correlation coefficients (FDR < 0.05 and |rho| > 0.2) were used to
construct the SpliceRadar plot. A general trend of anti-correlation patterns with
inclusion (red and dark red) and exclusion (blue) junctions are observed. Boxes
indicate drugs targeting PI3K/mTOR and ERK MAPK signaling.

Supplementary Figure 12 |DJEsectionofDJECDBshowingsummary statistics table,
gene-wise splice plots and gene model plots of NUMB in TCGA BRCA. The two
upregulated junctions indicating the inclusion of exon 12 in NUMB are shown in red
within the gene-wise splice plot and the selected junction in the summary statistics table is
also highlighted within the genemodel plot (Panel 1 highlights the selection option section.
Panel 2 contains the summary statistics table. Panel 3 and 4 show the gene-wise splice
plot and the domain-annotated gene model plot, respectively).

Supplementary Figure 13 | Downregulation of exon 19 in VCL illustrated by DJE
section in DJEC DB. Exon inclusion junctions are shown in blue within the gene-wise
splice plot and the selected downregulated junction in the summary statistics table is
also shown within the gene model plot. CESC TCGA results are shown as example
(Panel 1 highlights the selection option section. Panel 2 contains the summary
statistics table. Panel 3 and 4 show the gene-wise splice plot and the domain-
annotated gene model plot, respectively).

Supplementary Figure 14 |Cancer-specific upregulation of exon 12 inMAP3K7 as
shown in DJEC DB. Exon inclusion and exclusion junctions are highlighted in red and
blue respectively within the gene-wise splice plot. The selected upregulated junction
in the summary statistics is illustrated within the genemodel plot. COADREAD TCGA
results are shown as example (Panel 1 highlights the selection option section. Panel
2 contains the summary statistics table. Panel 3 and 4 show the gene-wise splice
plot and the domain-annotated gene model plot, respectively).

Supplementary Figure 15 | Cancer-specific alternative splicing in EXOC1 as shown in
DJEC DB. Junctions indicating the upregulation of exon 11 in EXOC1 are shown in red
within the gene-wise splice plot. The selected upregulated junction in the summary
statistics is illustrated within the gene model plot. LUAD TCGA results are shown as
example (Panel 1 highlights the selection option section. Panel 2 contains the summary
statistics table. Panel 3 and 4 show the gene-wise splice plot and the domain-annotated
gene model plot, respectively) (Panel 1 highlights the selection option section. Panel 2
contains the summary statistics table. Panel 3 and 4 show the gene-wise splice plot and
the domain-annotated gene model plot, respectively).

Supplementary Figure 16 | Significant associations using Matrix eQTL methods
between CTNND1 exon 20 inclusion event and genomic alterations in TCGA are
shown within the JT section of DJEC DB. Selecting “Associations with Genomic
Alterations” and “BRCA” tumor type within the selection panel (Panel 1), followed by
“CTNND1” gene ID browsing within the summary statistics table (Panel 2) displays
the significant association to TP53 mutation. Box plots show decreased exon
junction expression in the presence of TP53 mutation (MUT), compared to wild-
type (WT) tumor samples (Panel 3). amplification of CCND1 gene and epigenetic
silencing ofCDKN2A are also significantly associated toCTNND1 alternative splicing
event in TCGA STES (Panel 4).
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Strategies for the Production of
Molecular Animations
Erik Werner *

RNS Berlin, Berlin, Germany

Molecular animations play an increasing role in scientific visualisation and science
communication. They engage viewers through non-fictional, documentary type
storytelling and aim at advancing the audience. Every scene of a molecular animation
is to be designed to secure clarity. To achieve this, knowledge on design principles from
various design fields is essential. The relevant principles help to draw attention, guide the
eye, establish relationships, convey dynamics and/or trigger a reaction. The tools of
general graphic design are used to compose a signature frame, those of cinematic
storytelling and user interface design to choreograph the relative movement of
characters and cameras. Clarity in a scientific visualisation is reached by simplification
and abstraction where the choice of the adequate representation is of great importance. A
large set of illustration styles is available to chose the appropriate detail level but they are
constrained by the availability of experimental data. For a high-quality molecular animation,
data from different sources can be integrated, even filling the structural gaps to show a
complete picture of the native biological situation. For maintaining scientific authenticity it is
good practice to mark use of artistic licence which ensures transparency and
accountability. The design of motion requires knowledge from molecule kinetics and
kinematics. With biological macromolecules, four types of motion are most relevant:
thermal motion, small and large conformational changes and Brownian motion. The
principles of dynamic realism should be respected as well as the circumstances given
in the crowded cellular environment. Ultimately, consistent complexity is proposed as
overarching principle for the production of molecular animations and should be achieved
between communication objective and abstraction/simplification, audience expertise and
scientific complexity, experiment and representation, characters and environment as well
as structure and motion representation.

Keywords: molecular animation, scientific visualisation, consistent complexity, design, advance the audience,
cinematic storytelling, molecule motion, dynamic realism

1 INTRODUCTION

Modern technology makes video an easily accessible and therefore omnipresent medium in our
lives and therefore also in the fields of knowledge and communication where it unfolds its full
potential in the form of molecular animations. Molecular animation can be described as motion
design for biological macromolecules. Since these nano-scale characters are not directly visible to
the human eye, we need to draw on an array of visualisation methods to communicate them.
Combining scientific illustration with motion gives us the opportunity to visualise the dynamics of
the molecular system.

Edited by:
Sean O’Donoghue,

Garvan Institute of Medical Research,
Australia

Reviewed by:
Jean-Karim Hériché,

European Molecular Biology
Laboratory Heidelberg, Germany

Christopher Hammang,
The University of Sydney, Australia

*Correspondence:
Erik Werner

erik.werner@rns.berlin

Specialty section:
This article was submitted to

Data Visualization,
a section of the journal

Frontiers in Bioinformatics

Received: 12 October 2021
Accepted: 14 April 2022
Published: 16 May 2022

Citation:
Werner E (2022) Strategies for the

Production of Molecular Animations.
Front. Bioinform. 2:793914.

doi: 10.3389/fbinf.2022.793914

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 7939141

PERSPECTIVE
published: 16 May 2022

doi: 10.3389/fbinf.2022.793914

116

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.793914&domain=pdf&date_stamp=2022-05-16
https://www.frontiersin.org/articles/10.3389/fbinf.2022.793914/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.793914/full
http://creativecommons.org/licenses/by/4.0/
mailto:erik.werner@rns.berlin
https://doi.org/10.3389/fbinf.2022.793914
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.793914


Molecular animations can be used in science communication,
education and research (Iwasa, 2010 and 2015). They create
interest, increase memory and lead to better comprehension of
complex subjects. In research, they provide researchers an insight
into processes by summarising and contextualising a mechanism
and can also support grant applications, marketing, social and
environmental campaigns and many more.

In 2008 Gael McGill announced “Molecular Movies . . .
Coming to a Lecture near You” (McGill, 2008), describing the
upcoming trend to use professional 3D software known from
movies. In 2010 a group of experts met at the Workshop on
Molecular Animation in San Francisco (Bromberg, Chiu and
Ferrin, 2010) to discuss needs and requirements. Since then,
several major publications appeared focused on scientific
visualisation (O’Donoghue et al., 2010a; O’Donoghue et al.,
2010b; Johnson and Hertig, 2014; Kozlíková et al., 2017;
Goodsell and Jenkinson, 2018; Olson, 2018) or visualisation
software (Goddard and Ferrin, 2007; Martinez et al., 2019). In
addition, the potential of animations has been highlighted by the
exemplary work of Iwasa (Iwasa, 2010 and 2015), Berry (TED,
2012) and others, and software development, for example of
ePMV (Johnson et al., 2011) and Molecular Maya (McGill, 2010),
enable the use of structural data in professional 3D software.

This perspective article formulates a number of guidelines
with relevance for molecular animations based on knowledge and
literature from the main fields design, scientific visualisation,
molecular kinetics/kinematics and cinematography/storytelling.
It may contribute to a theoretical basis for the field of scientific
and especially molecular animation.

Molecular animation is understood here as the visualisation
of the structure and dynamic of macromolecular biomolecules
and their substrates within the context of the living cell, at the
molecular nano-scale. Molecular animation therefore can be
seen as a subspace of data visualisation (with structural and
related dynamic data being a subset of all scientific data) and
medical illustration/animation, that includes the biological
mesoscale (larger than molecular complexes, smaller than a
cell; see Johnson (VIZBI, 2012b), Le Muzic et al. (2014) and
Goodsell et al. (2020) for details) and macroscale dimensions
(cells, organelles, organs, organisms). Consequently, this article
concentrates on aspects and principles most relevant to
molecular animations and may omit some others. Please see
the Supplement for a detailed description of the methodology
used in deriving these guidelines.

2 ADVANCE THE AUDIENCE AND ENGAGE
IT THROUGH STORYTELLING
2.1 Build the Basics and Advance the
Audience
Every design object should serve a purpose that benefits the user.
A molecular animation is an audiovisual design object, usually
aimed at a specific target audience whose expertise level may vary;
see McGill (VIZBI, 2012a) and Johnson and Hertig (2014). For an
audience to benefit from an animation, it is essential to adjust the
complexity to the actual expertise level. So it is deemed a good

idea to introduce a topic with basic knowledge and allow
everybody to connect, irrespective of their expertise. The
higher the audience’s expertise level and audiovisual literacy
the shorter the introduction can be. An animation may
quickly go into the latest results and very complex detail when
it addresses advanced experts. However, it may still be necessary
to explain the basic principles, the relevant visual conventions
and also to refresh the memory of a viewer.

The audience generally engages with the animation to learn
something new and interesting. It should therefore be the goal of
every animation to advance the audience - to introduce
something new, more complex, more challenging - and allow
them to extend their knowledge (Johnson and Hertig, 2014). This
means that the complexity level of the animation can go at least
one step further than the one that is indicated by the expertise
limit of the typical viewer.

2.2 Adjust the Video Output to Reflect the
Consumption Scenario
A user consumes a molecular animation through a digital
screen, either in a guided presentation or in a stand-alone
format, for example on a video platform, which directly
influences the time of engagement (Frankel and DePace,
2012). In a presentation format, a speaker usually guides the
audience through the animation within a larger context
adjusted for the specific expertise level of the actual
audience. The animation is usually shown only once and
therefore needs to put special emphasis on clarity and
simplicity. A stand-alone animation can be paused and
repeated and therefore allows more complexity. The content
of an animation can be adjusted to those different scenarios
through an output strategy that makes use of a modular
toolbox and animation helpers such as labels, sound,
voiceover, subtitles or annotations. A full parent version
includes all available scenes and covers all relevant
communication objectives. For a specific scenario, a
selection of scenes serves as a derivative.

2.3 Use Filmmaking Production Techniques
The output strategy for an animation should be planned at the
very beginning of the production, a process that follows the
three production stages similar to a movie; please see Sharpe
et al. (2008), Jantzen et al. (2015) and Lepito (2018) for
details. The pre-prodcution stage includes the agreement
on the communication objectives, decisions on a look and
feel (style, colour, typography, narration, etc.), discovery of
the story, scripting, storyboarding, creation of animatics and
the output strategy. The production phase includes the
creation of models and their dynamic animation as well as
the implementation of lighting, cameras, materials, textures
and shaders to create a render of each frame. In the post-
production stage, individual sequences are combined into a
composite, combined into a final edit with labels and sound
and finally rendered out in a delivery format. While a
molecular movie requires special knowledge mainly in the
first two stages, post-production does not fundamentally
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FIGURE 1 | Storytelling and motion. (A) Molecular Actors. (B) Molecular Storytelling. The three stages of a classical story. Presentation Order, (C) overview first
(hexamer in the example), zoom (monomer with ligand) and filter (ligand details); and (D) search (spike protein), show context (whole virus), expand (detail of the spike
protein hinge region). Visualisation of the movement in/of macromolecules: (E) thermal movement (F) small and (G) large conformational changes and (H) Brownian
motion. (I) Timescales of biological processes. Molecules depicted are: (A) Dynamin1, PDB code 3SNH, (Faelber et al., 2011); (C) and (H) NMNAT1, PDB code
1GZU (Werner et al., 2002); (D) SARS-CoV-2 proteins S [PDB code 1KDI, (Gobeil et al., 2021)], E [PDB code 7K3G (Mandala et al., 2020)], M by Mahtarin et al. (2020)
and Swiss-Model entries for P0DTC4; (G) Adenylat Kinase, PDB codes 4AKE (Müller et al., 1996) and 2ECK (Berry et al., 2006). PDB: Protein Database (Berman et al.,
2000); Swiss-Model Repository (Bienert et al., 2017).
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differ from most video or movie projects. Subsequent
chapters therefore concentrate on the preparation and
production of molecular movies.

2.4 Engage the Audience Through
Storytelling
A typical research project is structured as a chronological
sequence of concept/hypothesis development, planning,
experiment, data analysis and data interpretation. However,
many research reports already use narrative elements in the
IMRAD format to present the knowledge: introduction
(exposition), methods (rising action), results (climax), analysis
(falling action) and discussion (resolution) (ElShafie, 2018). In an
animation, we canmake use of a narrative. Storytelling can attract
the audience’s attention, make them care and leave a lasting
impression by including stakes and allowing the audience to
relate to the story (Ma et al., 2012; Lepito, 2018). This makes the
science more meaningful to them without compromising on
scientific accuracy, objectivity and therefore credibility
(ElShafie, 2018). Due to the persuasive nature of narratives,
science animators need to include ethical considerations
related to the underlying communication objective (persuasion
or comprehension), the level of accuracy (external realism,
representativeness) or the use of narrative at all, especially
when addressing non-expert audiences (Dahlstrom, 2014).

The cinematic genre of molecular animations is best described
as non-fictional documentary. Documentary storytellers must
not invent and cannot make compromises when it comes to
the facts. Instead, they need to be guided by and find the story in
the material itself (Bernard, 2010). The story itself may be one of
exploration, where the researchers are portrayed on their journey
to discovery (Berlin, 2016). This is comparable to the well known
narrative of the hero’s journey (Vogler, 2007). However, the
molecular story may as well stand on its own. The molecular
characters in an animation can be seen as playing roles similar to
actors in a movie, even though they do not make conscious
decisions but rather follow the laws of physics. Main characters
carry the story, side characters support it and extras create the
background, see Figure 1A for an example. All of them act in an
environment that can have a strong influence on the story by
setting the location and external conditions.

Contextualised in the wider field of data visualisation, a
molecular animation belongs to one of seven genres of
narrative visualisation: film/video/animation. The narrative
structure tactics is strongly author-driven. As such, an
animation is characterised by linear ordering of scenes, heavy
use of labels, headlines and annotations (messaging) and a lack of
interactivity (Segel and Heer, 2010). The author is in full control
of the animation which constitutes passive storytelling (Wolhfart
and Hauser, 2007).

2.5 Chose the Story Structure
Any story can be characterised by the three act structure that goes
back to Aristotle’s Poetics (see the english translation, (Aristotle,
1996)) and Figure 1B) and includes a setting (establishment of
environment and characters; act 1), a plot with rising narrative

tension (act 2, the protagonist on a pursuit) and a resolution (act
3), see also ElShafie (2018). The structure of the story however
does not have to be linear. It is determined by the tools of
cinematography, editing and compositing. A viewer can get a
certain understanding of the topic through an overview that
shows all involved elements at the same time. It helps creating
a reliable and recognisable framework to come back to when
needed. While zooming into detail, the content is filtered and
unnecessary element and details are left out. This follows Ben
Shneidermann’s visual information-seeking mantra “overview
first, zoom and filter, then details on demand” (Shneiderman,
1996) (Figure 1C). For datasets with high complexity, an
alternative is: “search, show context, expand”, where we begin
with a starting point, reflect on the contextual aspects and expand
further context and detail when needed (Figure 1D; Munzner,
2014). Other story structures include comparative visualisation
(side-by-side comparison) and iterative visualisation (a repetitive
pattern when focusing on several features in the same context),
see Wohlfart and Hauser (2007) and Ma et al. (2012).

3 DESIGN EVERY SCENE TO SECURE
CLARITY

Many molecular animation concepts include a storyboard with
illustrated signature frames, the narration and possibly animatics
for the timing. The more complex a topic and an animation are,
the more important a storyboard becomes. Every signature frame,
the transitions between them and the relative movement within a
scene need to be designed to achieve the specific communication
objective of that scene. Technically, this can be achieved by
keyframe interpolation, particle or molecular dynamics with
defined starting points and dynamic field parameters.

3.1 Follow Design Principles
The signature frames are individual images that represent
important situations of the story. The molecular animator
should be able to create a clear design for them and therefore
have a good knowledge on design principles from various fields,
most importantly graphic design, motion design, user interface
design and cinematography/film. The design principles can be
categorised into five (partially overlapping) areas: draw attention,
guide the eye, establish relationships, convey dynamics and create
emotion /reaction. The methodology for the selection of
principles relevant for molecular animations is described in
the Supplement, including a visualisation of the principles in
Supplementary Figures 9S–13S; those from general graphic
design are mainly based on monographs “Graphik und
Gestaltung” (Wäger, 2014) and “Perception of Design” (Ware,
2012).

3.2 Use the Tools of Cinematography
An animation is created by moving from signature frame to
signature frame and includes the relative movement of
characters and camera view. Characters may enter, stay in
or leave the frame. Or they can move with the camera relative
to other characters or the environment. Also, camera
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movement can be combined with character movement. The
techniques and principles of non-dialogue cinematic
storytelling (Sijll, 2005; Mercado, 2010; Raschke, 2013) help
to reach the communication objectives and include setting the
look and feel through composition and lighting and finally
positioning and moving the camera through a scene while
maintaining that look and feel. The attention of the audience,
its emotions and interest are led by changing these parameters
and also the sound design. Viewing axes and depth of field
establish the relation between characters and both character
and camera motion establish an order of events. The choice of
focal length, editing, transitions and time altercations all play
important roles and are chosen dependent of the
communication objective. Overreaching principles from
cinematographic storytelling include “story is king”, were all
elements visible on the screen support the story and “show, not
just tell” where the eye is guided by visual highlighting (Lepito,
2018).

3.3 Learn From User Interface Design
The motion lessons of interface design (material.io/Google, 2021)
support the choreography of character movements. They deal
with the speed of incoming and outgoing elements, their duration
in the frame and the grouping of movements based on the
complexity. This way, we can define the movement path or
the fade-in/fade-out properties of the characters.

3.4 Ignore the “Disney Animation Principles”
It needs to be mentioned, that the well known set of “Disney
animation principles” (Thomas and Johnston, 1981) does not
apply to the nano-world of molecules. They cover timing and
spacing, easing, mass and weight, squash and stretch, follow
through and overlapping, secondary action, arcs, solid drawing,
anticipation, exaggeration, staging and appeal. With the help of
those principles, natural movements are recreated based on
material properties, following the laws of classical physics and
building on every-day-life experience in the macro world. An
experience that does not exist in the nano-world of atoms and
molecules. Here, movement is determined by random collisions,
diffusion gradients and thermal motion. So, with the exception of
the more general principles staging and appeal, those for the
design of motion need to be set aside for the animations of
molecules.

4 CHOSE ADEQUATE REPRESENTATION
TO ILLUSTRATE CURRENT KNOWLEDGE

4.1 Simplify and Abstract
Clarity is the overall goal of any design process and it is therefore
also important for scientific visualisation in general. It is often
reached by simplification (displaying fewer items) and
abstraction (using simpler forms of an item), or both in
combination. Clarity avoids clutter in the frame while
unburdening the perceptual system of the viewer. However, it
needs to be carefully balanced with the addition of more complex
detail in order to advance the audience. In fact, in the nano-world

of macromolecules, there is always a certain level of abstraction
involved in scientific visualisations which automatically leaves
room for interpretation (Sharpe et al., 2008). A taxonomy of types
of abstraction includes symbolic representations, schematic
diagrams, graphs, cartoons and realistic representations
(Offerdahl, et al., 2018; Goodsell and Jenkinson, 2018). They
all can play a role in molecular animations and need to be chosen
dependent on the audience expertise level and the specific
communication objective.

4.2 Chose a Representation of Biological
Macromolecules
The visualisation of a biological macromolecule (molecular
graphics) can range from very simple to very complex.
Illustrative and abstract representations include 1D formats
(letter codes), 2D formats (letter-code with crosslinks,
schematic) and 3D formats (arbitrary organic shapes,
backbone and ribbon/cartoon representations). 3D-surface
abstractions include beads representations (one bead per
subunit, e.g., amino acids) and coarse approximation. 3D
atomistic surface models show more detail and include
convolution surface models (e.g., Gaussian), molecular skin
surfaces, ligand excluded surfaces, solvent excluded surfaces
and solvent accessible surfaces. 3D atomistic space filling
models are characterised by each atom being represented by a
sphere with a radius based on the Van der Waals radii. 3D
atomistic bond-centric models include hyperballs, licorice and
ball-and-stick representations or even quantum mechanical
models. Please see Kozlíková et al. (2017), Goodsell and
Jenkinson (2018) and Olson (2018) for detailed descriptions
and Johnson and Hertig (J2014), Biocinematics (2016) and
O’Donoghue et al. (2010b) for overviews. Figure 2B includes
the representations of a short beta-strand polypeptide with
increasing complexity from bottom to top.

4.3 Respect Constraints
Choosing the adequate representation can be challenging and
depends on several factors like the actual, specific communication
objective, the experimental data available, the topical context, the
target audience expertise level, and others. To avoid
misconceptions, it is recommended to avoid causing superficial
understanding due to over-simplification and abstraction. A
depiction may be taken literally and not interpreted according
to underlaying scientific knowledge. Whole biological concepts
can be basically understood like this, but actual insight may not go
beyond the simplicity of the representation explaining it
(Goodsell and Jenkinson, 2018). Mixed representations are
popular to highlight details and help to establish the character
relationships.

4.4 Ensure Scientific Authenticity and
Transparency
At the same time it should also be avoided to imply more
knowledge than the data actually provides. The quality and
resolution of the available experimental data restricts the level
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of structural detail shown in a scientific visualisation or
animation. However, that does not keep us from integrating
data from all kinds of resources or even models, predictions or
hypotheses (O’Donoghue et al., 2010b; Ward et al., 2013). Even
with gaps in the data, it may still be useful to display the
complete macromolecule and to model the structure gaps
based on the best knowledge available. We always should
consider full length, native proteins for a more realistic
visualisation because it reflects the natural cellular
environment. This use of artistic licence plays an important

role in scientific visualisation; see Goodsell and Jenkinson
(2018) and Goodsell and Johnson (2007) for details on this
topic. In the spirit of scientific authenticity - which is
fundamental for the credibility of molecular animations - it
is good practice to mark the use of artistic licence by
differentiated representation, render style, colour and/or by
annotation. This ensures transparency and therefore increases
the accountability of an animation (Jantzen et al., 2015). The
viewer should be able to judge, which aspects are data derived
and which are more hypothetical.

FIGURE 2 | Complexity. (A) Visualisation of the overarching principle for the production of molecular animations, connecting the four main elements audience,
design, representation and motion. (B) Relationship between the level of detail of a macromolecule representation and the motion complexity for four relevant types of
motion. The complexity of motion (on the right) is visualised by a waveform-like line where a higher frequency represents more frequent changes and therefore higher
complexity. Representations, level of detail (left). Selected representations of a beta-sheet poly-peptide on a scale of increasing level of detail/complexity from the
bottom to the top. Illustrative abstract representations: curved backbone, linear backbone and ribbon/cartoon (Richardson, 1985; Carson, 1987). Surface abstractions:
beads and coarse approximation (Blinn, 1982). Atomistic surface representation: molecular skin surface (MSS), Gaussian surface, solvent accessible surface (SAS)
(Sanner, et al., 1996) and solvent excluded surface (SES) (Connolly, 1983). Atomistic space-filling representation: space-fill (Corey and Pauling, 1953; Koltun, 1965a and;
Koltun, 1965b). Atomistic bond-centric representations: licorice, ball-and-stick (Fieser, 1963).
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5 DESIGN THE MOTION TO REFLECT
MOLECULAR REALITY

The design of motion requires biophysical knowledge from
molecule kinetics and kinematics. For biological
macromolecules four types of motion are most relevant:
thermal motion, small and large conformational changes (all
intrinsic) and Brownian motion (with a molecule as one unit), see
visualisations in Figures 1E–H. More specific cases are the two-
dimensional movement of a protein in a membrane and directed
motor activities like the kinesin or myosin transport activities.
Please see Johnson and Hertig (2014) and O’Donoghue et al.
(2010b) for detail and Phillips et al. (2012), Nelson (2014) and
Kuriyan et al. (2012) for the biophysical principles. It is a massive
challenge to reflect various molecular motion time scales that
span 17 orders of magnitude (McGill, 2008), see Figure 1I.
However, the amplitude of a movement is often proportional
to its frequency, so very rapid movements can be left out when the
complete protein is shown. They need to be considered though,
when the intrinsic dynamic plays a role for the function
(Eisenmesser et al., 2005).

5.1 Thermal Motion
Thermal motion is observed for any atom in a molecule and has a
very high frequency, dependent on the temperature. The higher
the temperature, the stronger the positional dislocation. It can
often be neglected in an animation, especially when other, lower
frequency motions are shown. It remains relevant in very
complex and highly detailed animations, where visualising the
movement of individual atoms or even quantum mechanical
detail (orbitals) increases the accuracy of the representation.

5.2 Small Conformational Changes
Small conformational changes are based on the rotational
freedom of a bond between two atoms, e.g., the rotation
between peptide bonds (see Dong, 2021). Accumulated along a
network of macromolecule residues, they can add up to far-
reaching and larger movements. The rotational freedom can be
restricted through non-covalent bonds like hydrogen-bonds, salt-
bridges or hydrophobic interactions. Small conformational
changes should be included in animations with high
complexity and especially when they are central for the
visualisation of the molecular mechanism and therefore the
function of the macromolecule. Together with thermal motion,
small conformational changes are responsible for the “breathing”
of a protein (Makowski et al., 2008) which can be represented by a
fluctuating surface.

5.3 Large Conformational Changes
Biological macromolecules and especially proteins often have
domains, subdomains or other structural motifs (like alpha-
helices and beta-sheets) that show a certain rigidity within
themselves while flexible loops between them are responsible
for movements of those substructures relative to each other.
Flexible loops themselves also may undergo large
conformational changes to fulfil a function. Many biological
processes depend on this type of large conformational

changes. They are often visualised by the intrinsic movement
of surface representations, but also ribbon-type cartoons.

5.4 Brownian Motion
When macromolecules in a cellular environment move as one
unit, they usually do so by random collision with other molecules,
caused by their thermal motion and often described as random
walk. Collisions create an external force that is not directional, so
the movement of the macromolecule is random and not caused
by long-range attracting forces between two reaction partners.
This provides a challenge for a molecular animator, who needs to
find a balance between the visualisation of the non-directional
nature of the randommotion and the actual approach of reaction
partners within the timeframe of the scene. Le Muzic et al. (2014)
describe a way to blend random walk with linear interpolation in
a particle basedmetabolic networkmodel to simulate this motion.

5.5 Ensure Dynamic Realism
The motion-equivalent to structural detail in a representation is
called dynamic realism by Jantzen (Biocinematics, 2016). Both,
structural and dynamic information need to be considered in a
molecular animation where the representation becomes
unrealistic when it is inconsistent between structure and
motion. Dynamic realism means that abstract, less detailed
structure representations go along with simple dynamics and
more detailed structure representations also require more realistic
dynamic representations (Biocinematics, 2016). The complexity
of motion is interpreted here as the changes of direction and
acceleration, rather than those of the actual speed.

5.6 Reflect a Crowded Cellular Environment
In a crowded cellular environment, the set of principles described
by Jantzen et al. (2017) should be respected. In short and partially
merged: I. permanent Brownian motion causes collisions and
therefore movement, there are no long-range forces; II.
biological macromolecules underlay internal flexibility but they
have defined boundaries; III. in the cell, there aremany instances of
a molecule and not all react; IV. the cell is a crowded environment
that does not show aqueous effects. The representation of
individual elements in a crowded environment however does
not require the full detail of all elements. The further away an
element from the main focus, the fewer atoms can be displayed
without losing any major information (LeMuzic et al., 2014, 2015).

6 DISCUSSION

In systems of high dynamics such as the nano-world of biological
macromolecules, the medium of video can play out its strength.
Compared to explanatory text, an animation can often be more
efficient and intuitive. Compared to a diagram or illustration it
can be more accurate and detailed. Consequently, an animation
used in research and education should reflect the comprehensive
knowledge of a system. Only then the complexity of the system
can be communicated realistically and used for the development
and evaluation of hypotheses. Failure to reflect the complexity
leads to the misconception that a complex system is indeed
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simple and also to flawed future experiment design. As a
consequence, it is recommended to use 2D sketches and
cartoon style shading when little is known about a system and
a 3D animation for established mechanisms (Iwasa, 2010).

6.1 Consistent Complexity
Themain determinant for the complexity of amolecular animation is
the complexity of the actual communication objective, the point that
needs to come across, the focus of attention. The communication
objective of a particular scene can be very specific and is usually
related to one of these two categories (or a combination of both): a)
the properties of the components - structure, chemical and physical
properties, relation towards each other, etc.; and b) the dynamic of the
system, the changes over time. The complexity of a communication
objective is then directly associated to the complexity of the main
element. The principle of consistent complexity (see Figure 2A for a
visualisation) is proposed as overarching principle for the production
of molecular animations. The communication objectives can be
reached with clarity when consistent complexity is achieved for
the relevant aspects.

6.1.1 Communication Objective and Abstraction/
Simplification
A simple point is often made best with a simple rather than a
complex visualisation, as the latter can distract or overwhelm the
viewer. A complex point however usually requires a more
complex visualisation because the detail is just not there in a
simpler representation and the viewer is usually not able to
interpret it on his/her own.

6.1.2 Audience Expertise and Scientific Complexity
An animation should aim towards advancing the audience but not
overwhelm it.Hence, the scientific complexity of the visual story needs
to be in balance with the audience’s level of expertise and visual
literacy. The theoretical framework for visual storytelling developed by
Botsis et al. (2020) is helpful to evaluate the individual characteristics
of a visual story. It goes back to Cairo’s Visualization Wheel (Cairo,
2012) and comprises six contrasting pairs of characteristics:
conceptualisation - figuration, functionality - decoration, density -
lightness, multidimensionality - unidimensionality, originality -
familiarity and novelty - redundancy. A consistent story represents
the set of characteristics that are mentioned first in a pair (high
complexity) or second (low complexity). Practically, a modular
approach for the combination of scenes can help to target a
specific audience.

6.1.3 Experiment and Representation
The representation detail should match the quality and resolution
of the existing experimental basis. This helps to avoid the
impression of more knowledge than there actually is. For
scientific authenticity, the use of artistic licence should be
transparently annotated but not avoided if it helps the
representation of the realistic conditions.

6.1.4 Characters and Environment
Large differences in the representation complexity of neighbouring
character levels (main, side, extras, environment) should be avoided.

This is an issue for mixed representations. Amore gradual change of
the level of detail helps to avoid visual breaks. The environment
should have less complexity than the characters, but may well
become the focus of attention for another communication
objective and have its complexity increased for another scene.

6.1.5 Structure and Motion Representation
The complexity of the structure representation needs to be
matched with the one of the motion representation (dynamic
realism). While the complexity of a structure representation is
easily understood as the level of detail, the complexity of a motion
is less well intuitive. Figure 2B suggests a complexity scale for
properties and their associated movements. The level of detail of a
biomolecule representation does not necessarily correlate with
the speed and amplitudes of the different types of motion.

We need to look at the different motion types in order to relate
the complexity of a representation with the complexity of amotion.
Figure 2B sets them into relation and gives an indication which
type of motion should be shown in association with a certain
representation detail. Thermal motion should be included in an
animation when the communication objective focusses on the
atomistic reaction detail. It can be neglected at protein (surface)
level, where protein breathing should be included and thermal
motion adds next to nothing to the accumulative motion. Large
conformational changes are often at the heart of an animation and
the centre of the communication objective. The inclusion in the
animation is therefore a matter of course and relevant on the
domain/subdomain level. Brownian Motion is relevant for the
overallmotion ofmolecules as a unit and enables reactions between
molecules in the first place. It should therefore be included on that
protein level. However, it needs to be mentioned that the relations
described are a first indication only and that a specific
communication objective may well require different
combinations of representation and motion complexity.
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SingleCAnalyzer: Interactive Analysis
of Single Cell RNA-Seq Data on the
Cloud
Carlos Prieto*, David Barrios and Angela Villaverde

Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain

Single-cell RNA sequencing (scRNA-Seq) enables researchers to quantify the
transcriptomes of individual cells. The capacity of researchers to perform this type of
analysis has allowed researchers to undertake new scientific goals. The usefulness of
scRNA-Seq has depended on the development of new computational biology methods,
which have been designed to meeting challenges associated with scRNA-Seq analysis.
However, the proper application of these computational methods requires extensive
bioinformatics expertise. Otherwise, it is often difficult to obtain reliable and
reproducible results. We have developed SingleCAnalyzer, a cloud platform that
provides a means to perform full scRNA-Seq analysis from FASTQ within an easy-to-
use and self-exploratory web interface. Its analysis pipeline includes the demultiplexing and
alignment of FASTQ files, read trimming, sample quality control, feature selection, empty
droplets detection, dimensional reduction, cellular type prediction, unsupervised clustering
of cells, pseudotime/trajectory analysis, expression comparisons between groups,
functional enrichment of differentially expressed genes and gene set expression
analysis. Results are presented with interactive graphs, which provide exploratory and
analytical features. SingleCAnalyzer is freely available at https://singleCAnalyzer.eu.

Keywords: ScRNA-seq, data visualization, single cell, web server, data analysis

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has allowed for the quantification of RNA transcripts
within individual cells. These assays allow researchers to explore cell-to-cell variability and meet new
scientific goals. In the last few years, scRNA-seq has been applied, for example, to differentiate tumor
cells from healthy ones, deconvolute immune cells, describe states of cell differentiation and
development, and to identify rare populations of cells that cause disease (Haque et al., 2017).
Although experimental scRNA-seq assays are becoming increasingly user-friendly, the analysis of
sequencing data is complex. Data analysis requires the application of complex computational
pipelines and data analysis methods that require bioinformatics expertise (Hwang et al., 2018). The
interpretation of scRNA-seq results is strongly influenced by its analysis pipeline, and the incorrect
application of methods could lead to conclusions that are incorrect. Since data analysis is complex
and very important for correctly interpreting results, the development of analysis tools that produce
reliable results and minimize the possibility of error is essential for enhancing the usefulness of
scRNA-seq data.

Throughout the last 5 years, some software development projects have aimed to address the
absence of software available for the analysis of scRNA-seq data (Guo et al., 2015; Gardeux et al.,
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2017; Kiselev et al., 2017; Lin et al., 2017; Perraudeau et al., 2017;
Zhu et al., 2017; Scholz et al., 2018; Wagner and Yanai, 2018;
Chen et al., 2019; Monier et al., 2019; Stuart et al., 2019).
Designers of the projects have developed analysis pipelines
that can be executed with R or Python function calls or with
websites. Although the platforms have tremendous utility, they do
possess some usability and functionality limitations that should
be solved. For example, none of the applications are capable of
analysing raw sequencing files (FASTQ), they do not allow for the
interactive selection of groups and a few provide an integrated
functional analysis of results (see Supplementary Table S1).

We have developed SingleCAnalyzer to provide a Web
application server that performs a fully interactive and
comprehensive analysis of scRNA-Seq data with two simple
steps. It provides an integrated and interactive platform which
is able to process sequencing files (FASTQ) and perform full

scRNA-seq analyses and the functional analysis of results. It was
implemented as a cloud analysis platform that can be executed
without installing any software. SingleCAnalyzer facilitates the
analysis of scRNA-seq data to non-experienced users and
provides quick exploratory analyses to computational biologists.

RESULTS

The SingleCAnalyzer Website
The front-end of SingleCAnalyzer has been designed to provide a
means to fully analyse scRNA-Seq data using the following two
steps: 1) Setting input files and analysis parameters and 2) cluster
determination and the execution of comparative analysis. In the
first step, FASTQ/HDF5 files are uploaded or an ENA project
identifier is provided by the user. Basic information regarding the

FIGURE 1 | SingleCAnalyzer Workflow. Schematic representation showing SingleCAnalyzer workflow example. Panel 1 and 2 show the web interface for setting
input files and parameters. Panel 3 shows an example of visualization of dimensionality reduction, cellular type classification, pseudotime analysis and clustering results.
Panels 4 and 5 show selected sections of differential expression and functional analysis results.
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species studied and type of sequencing performed, as well as
optional parameters for the alignments of sequences can also be
specified on the web. Once the files are uploaded, demultiplexed
and aligned, users may perform further analysis including feature
selection, empty droplet deletion, dimensional reduction,
prediction of cellular type, analysis of trajectories/pseudotime
and unsupervised clustering. These analyses can be performed
and adjusted by selecting parameters in the ‘analysis parameters’
section (Figure 1).

Cluster determination and the execution of comparative
analysis is accomplished through the website, which provides
an interactive interface that allows the user to visualise cellular
type prediction, pseudotime predictions or clustering results via
six interconnected scatterplots generated using each
dimensionality reduction technique. Point colour and type
can be changed according to each analysis results. Users can
also generate new representations of gene pairs and colour the
points based on gene expression values. This interface specifies
the most adequate aggrupation, cellular classification or time
frame and is guided by the user’s knowledge regarding the
samples studied. On the interface, the user can also launch a
comparative analysis of all groups, or manually determine
which groups should be compared. The comparative analysis
includes an analysis of differentially expressed groups of genes,
and the functional analysis of gene ontology categories and
pathways.

Results are displayed in tabular form, which reveal the
execution status of each computational process and provide a
link to final results. These are provided as static reports and
interactive web pages. Results regarding the quantification of gene
expression values are provided with a table of quantification
statistics and downloadable files that contain information for
aligned reads regarding the number of reads generated per
transcript and the number of transcripts per million (TPM).
The quality control page descriptively reveals the distribution
patterns of expression using box plots, reveals estimated numbers
of expressed genes using a bar plot and represents the first two
components of a PCA analysis. The clustering results page
integrates dimensionality reduction, clustering, pseudotime
and cellular classification results within self-explanatory
interface which can also generate static reports that
incorporate user modifications and launch comparisons
between groups. Reports containing results are generated for
each comparison, which include differential expression,
functional enrichment and GSEA analysis. Differential
expression results are summarised in a table which is linked to
the following means to visualise data: MA plot, volcano plot, box
plot, line chart and heatmap. Functional analyses are also
summarised in tables and interactive visual means to represent
data such as bar plots, networks and symmetric heatmaps are
provided.

Supplementary Table S1 shows a comparison with
12 scRNA-Seq analysis platforms. The main features of the
SingleCAnalyzer website are:

- scRNA-Seq analysis from raw FASTQ, HDF5 files or ENA
project identifications

- Fully functional cloud platform that does not require the
installation of software

- Semiautomated analysis which avoids the need for
configuration using complex parameters

- User guided classification of cells within groups that is
guided by interconnected graphs that integrate
dimensional reduction, cellular type prediction, trajectory
analysis and unsupervised clustering results

- Performs FASTQ processing, gene filtering, empty droplets
detection, gene quantification, dimensionality reduction,
unsupervised clustering, differential expression, functional
overrepresentation and gene set expression analyses

- Straightforward presentation of results using interactive
visual representations of data and provides a means to
generate reports that are publication ready

Analysis Pipeline
Figure 2 shows the analysis pipeline of SingleCAnalyzer. It
integrates generally accepted tools used for the analysis of
RNA-Seq data, which also perform well as computational
resources. Supplementary Table S2 shows the computational
time required to analyse nine scRNA-Seq public data sets. The

FIGURE 2 | SingleCAnalyzer Pipeline. Chart of SingleCAnalyzer pipeline
with computational processes and output results.
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complete analysis of 154 demultiplexed samples takes an average
of 36 min, which allows for the real time analysis of low cell
number scRNA-Seq experiments. The most time-consuming
processes in the pipeline involves the upload, demultiplexing
and alignment of samples, which are tasks that are performed in
parallel. This parallelisation reduces the global analysis time by
57%, which makes the time requirement of our cloud
infrastructure equal to virtual machine or local pipelines
solutions. Moreover, SingleCAnalyzer does not store raw
sequences or aligned files in order to avoid user disk space
limitations, and the number of analysed samples of non-
commercial cloud platforms.

The next steps of the pipeline include feature selection, empty
droplets detection, dimensionality reduction, cellular type
prediction, trajectory/pseudotime analysis and unsupervised
clustering. SingleCAnalyzer applies gene filtering, which is based
on user input parameters to avoid non-informative output, noise or
drop out events. Afterward, six dimensionality reduction methods
are applied to the data and samples are visualised using interactive
scatter plots. Simultaneously, four unsupervised clustering
algorithms are applied to produce nine possible clustering
divisions for each method, a cellular type prediction method is
executed for each training dataset, and a pseudotime analysis is
performed (see methods). These cluster types can be mapped on
interactive plots at the request of the user.

Based on the unsupervised or manually curated clusters
produced, users can identify gene characteristics and the
functions of each group by launching comparison analysis.
This feature incorporates the differential expression analysis of
groups and the functional analysis of gene ontologies and
pathways. The analysis pipeline also processes quality control,
clustering, differential expression and functional analysis results,
and integrates them in an interactive and self-explanatory web
interface.

SingleCAnalyzer was conceived as an agile project, and new
scRNA-Seq analysis methods can be integrated within its analysis
pipeline. Only generally accepted methods that have been
demonstrated to generate reliable and reproducible results that
require reasonable quantities of computational resources will be
considered for addition to our cloud platform. The increasing
development of computational methods will inspire the
adaptation of the platform to meet the needs of researchers as
scientific trends regarding scRNA-SEQ data analysis emerge.

Interactive Visualization
Visualization is a key aspect on the interpretation of scRNA-Seq
results (Cakir et al., 2020). Analysis pipelines performs scatter
plots for the representation of dimensional reduction results
where point colors represent clusters, cell types, gene
expression or trajectory features of each cell (Kiselev et al.,
2017; Lin et al., 2017; Stuart et al., 2019). These plots are
adequate for publishing results, but not for explorative
analyses. At present, new technologies based on JavaScript
enable the generation of interactive graphs in a Web User
Interface. They allow the connection between graphs and the
use of HTML5 components which could control visualization
aspects. SingleCAnalyzer adopts this technology to visualize

information, interconnect graphs, show meta-information,
calculate descriptive statistics, generate new graphs under user
request and change the representation features interactively.
SingleCAnalyzer includes six different graphical
representations such as scatter plot, bar chart, heatmap,
network, boxplot and density plot. These graphs are
interactive, and the user can modify them by clicking on
tables, html controls or other graphs.

The central result page is the representation of dimensional
reduction and clustering of cells. It is composed by scatter plots
where points represent cells, and the user can select the color and
shape of points manually or by using clustering, cell population,
pseudotime or gene expression results. The user can also explore
group frequencies and define resulting groups based on meta-
information or cell disposition on the graph. All graphs are
interconnected, changes on graphical attributes or cell
selections are synchronized on all displays. Cells can be
located in all the graphs with a selection over one graph or by
means of the locate samples menu. The application also allows the
generation of new scatter plots which represent the expression of
two genes in each cell.

Once the user defines the groups, he can launch a comparative
expression analysis which results in two types of interactive
reports. One is the differential expression report which are
composed of interactive scatterplots, a boxplot, a line plot and
a heatmap. All these graphs show information on mouse action
and are connected with the table which summarizes the statistical
analysis. They enable the comprehensive exploration of results
and the query of information about expression changes of genes.
The other report is the functional analysis which includes self-
explanatory graphs such as bar plots, networks of terms and
triangular heatmaps. Networks and heatmaps represent relations
between gene sets which helps in the identification of related gene
functions or pathways, while the bar plot shows the number of
observed versus expected genes in each category.

Visualization features of SingleCAnalyzer enable the
exploration and interpretation of results in an integrated
platform which covers the main steps of scRNA-Seq analysis.
The platform was presented and discussed at the VIZBI21
conference, where some improvements were suggested by
attendants (VIZBI, 2022). Suggestions were focused on
improving the usability of the platform and the adaptation of
the analysis pipeline for their objectives. For example, an attendant
required an adaptation for the analysis of RNA-Seq data which was
developed and can be executed disabling the multiplexing process.
SingleCAnalyzer is also distributed as a Docker machine and our
graphical functions will be made public as R packages for its open
use in analysis pipelines. All the representations performed with
SingleCAnalyzer can be downloaded as graphical files ready for its
inclusion in publications and analysis reports.

MATERIAL AND METHODS

Implementation
The SingleCAnalyzer website runs using LAMP architecture
(Linux, Apache, MySQL and PHP). The front-end of the
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website was developed using PHP, HTML5, JavaScript, D3,
JQuery, AJAX and CSS3. Its implementation was based on the
RaNA-Seq project, which contains similar alignment, differential
expression and functional analysis tools (Prieto and Barrios,
2019). The analysis pipeline can be executed by a task
manager that runs the analysis processes using R, Python or
Linux Bash Shell. It also balances the computational load on our
high-performance computing cluster. The analysis pipeline
integrates cutting-edge tools which rapidly and reliably analyse
scRNA-Seq data. Figure 2 shows a flowchart of the pipeline used.
We have optimised the analysis processes in our pipeline by
harnessing computational clustering. Most of the tasks of analysis
can be executed in real time. This optimisation has facilitated the
development of an open and free cloud-based system.

FASTQ Processing
Raw sequence files in FASTQ format can be demultiplexed with
Alevin software (version 1.3.0) (Srivastava et al., 2019) or pre-
processed using the Fastp tool (version 0.19.4) (Chen et al., 2018).
Gene expression quantification of genes in the selected reference
genome is performed using Alevin or Salmon software (Patro
et al., 2017). The platform can be used to assess data generated
from any organism. At present, we have downloaded the most
popular genomes from Ensembl (164 genomes) and have
incorporated their transcriptome indexes within our server
(Cunningham et al., 2019). Quality control of samples is
performed based on the alignment summary, descriptive
statistics and the Alevin report of demultiplexed samples non-
supervised clustering performed using AlevinQC package
(version 1.4.0).

Gene Filtering
Gene filters based on the quantification of gene expression, which
reduce the noise and computational costs are available on
SingleCAnalyzer. The current version can filter genes with the
lowest levels of expression or standard deviations. We have also
integrated the function ‘FindVariableFeatures’ within the Seurat
package (version 3.2.2), which can identify variably genes by
considering the strong relationship between variability and
expression level (Stuart et al., 2019). Moreover, the user can
also perform further dimensionality reduction and clustering
processes by analysing the principal components obtained via
principal component analysis (PCA). The optimum number of
components used for the analyses can be determined using the
calc_npc function of the CIDR package (version 0.1.5) (Lin et al.,
2017). Empty droplets can be detected and removed with the
application of the DropletUtils tool (version 1.8.0) (Lun et al.,
2019).

Dimensionality Reduction
Interactive visualisation of samples in scatter plots requires a
dimensionality reduction process, which is performed using the
following methods: 1) PCA, which is generated with the prcomp
function of the stats R package (version 4.0.3); 2) Classic
multidimensional scaling (cMDS), which is performed with
the cmdscale function of the stats R package using camberra as
distance method; 3) Nonmetric multidimensional scaling

(isoMDS), which is performed using the isoMDS function of
the MASS R package (version 7.3); 4) t-distributed stochastic
neighbor embedding (t-SNE), which is performed using the Rtsne
function of the Rtsne R package (version 0.15); 5) Uniform
manifold approximation and projection (UMAP), which is
performed using the umap function of the uwot R package
(version 0.1.9); 6) and Non-negative matrix factorisation
(NMF), which is performed using the nnmf function of the
NNLM package (version 0.4.3). Collectively, application of
these methods provides users with a multi-perspective
assessment of the relationships between data.

Unsupervised Clustering
Determination of clusters within the interactive web interface is
supported by the results provided by unsupervised clustering
methods. At present, SingleCAnalyzer applies the following
unsupervised clustering methods: 1) k-means, which is
computed using the kmeans function of the stats R package
(with iter_max = 15); 2) partition around medoids (PAM),
which is computed using the pam function of the cluster R
package (version 2.1.0); 3) hierarchical clustering, which is
performed using the hclust function of the stats R package; 4)
leiden clustering and pseudotime analysis, which is performed
using Monocle3 R package (version 0.2.3) (Qiu et al., 2017). The
user can specify input parameters such as the desired number of
groups, the distance metric used by pam and hclust functions and
the agglomeration parameter of hclust.

Pseudotime Analysis
Trajectory and pseudotime analyses are performed using the
Monocle3 R package (Qiu et al., 2017). It calculates possible
trajectories between leiden clusters over the UMAP projection.
The pipeline calculates the pseudotime prediction for each cluster
centroid and a scale colour which represent the time is applied
over the points when an origin cluster is selected. The function
preprocess_cds uses PCA or LSI output based on user options
with the following parameters: norm_method = log and scaling =
true. The function reduce_dimension uses the following
parameters: max_components = 2, reduction_method =
UMAP, umap. metric = cosine, umap. min_dist = 0.1, umap.
n_neighbors = 15L, umap. nn_method = annoy. The function
cluster_cells uses the following parameters: k = 20,
cluster_method = Leiden, nunm_iter = 2, partition_qval =
0.05. The function learn_graph uses use_partitium and
close_loop as true.

Comparison Between Clusters
Groups of samples can be compared by applying different
methods to assess differential expression. Reviews of the use of
methods have concluded that no single method outperforms the
others under all circumstances, and suggest that it is necessary to
determine the optimal method or pipeline for each analysis
performed (Seyednasrollah et al., 2013; Soneson and
Delorenzi, 2013). However, researchers have acknowledged
that DESeq2 (version 1.28.1) (Love et al., 2014), EdgeR
(version 3.30.3) (Robinson et al., 2010) and limma (version
3.44.3) (Law et al., 2014) are the most widely used methods
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and consistently performed well when their reliability was
assessed. We have integrated all of the methods within a
SingleCAnalyzer that can be adjusted to apply customised
parameters to individual tests.

SingleCAnalyzer performs a functional enrichment analysis
and a gene set enrichment analysis (GSEA) for each comparison
result. The enrichment analysis is performed with the R package
GOseq (version 1.40) (Young et al., 2010) and the GSEA is
performed with the R package fgsea (version 1.14)
(Korotkevich et al., 2016). Functional annotation database
used by these methods was downloaded from the NCBI
BioSystems repository (Geer et al., 2009). Resulting graphs are
generated with the package RJSplot (version 2.6) (Barrios and
Prieto, 2018).

Data Management
Analyses can be launched as anonymous or registered users.
Anonymous accounts are regularly deleted, and registered users
can require the cancellation of their account. Data of registered
users are protected by their personal password which is encrypted
on our system. Users can freely download or delete their
processed data and analysis results without any limitation.
Raw data files uploaded by users (FASTQ, HDF5) are deleted
once they are processed. This deletion avoids storage limitations
and the presence of sequences in our system.

DISCUSSION

Single-cell platforms provide computational methods which
enable the transformation of sequences into expression values
of genes in each cell (Zheng et al., 2017; Shum et al., 2019).
Further steps can be performed by the application of
bioinformatics methods which are available on code
repositories or analysis servers. These methods are connected
in series to compose an analysis workflow. The development of
pipelines is a complex work which involves the installation, test,
setting up and integration of computational methods. In addition,
full processing of scRNA-Seq data requires an intensive
computational processing and the knowledge of programming
languages for the execution of the pipeline. On the other hand,
cloud servers are designed to avoid the development and
execution of pipelines by the analysts, but its use also implies
limitations such as additional data uploading time, uncertain
server loads and limited customization of the analysis. Previous
works have provided web servers for the analysis of scRNA-Seq
data from a matrix with gene counts of cells (Gardeux et al., 2017;
Zhu et al., 2017; Scholz et al., 2018; Chen et al., 2019; Monier et al.,
2019). In this work we have developed the first cloud server which
allow a complete analysis from sequences to pathways in a fully
integrated platform. It was possible with the integration of low
computational cost methods for the demultiplexing and
quantification of reads which supports Drop-seq and 10x
Chromium single-cell protocols (Srivastava et al., 2019).

Another approach for the analysis of scRNASeq sequences is
the use of workflow management systems. A popular option is
Galaxy which offers a web-based system for the pipeline

construction and the execution of bioinformatic analyses (Jalili
et al., 2021). A recent study has presented Galaxy workflows for
the analysis of scRNASeq data (Moreno et al., 2021). One of the
workflows allows the uploading of FASTQ files for processing
into an annotated cell matrix with Alevin. Then, post processing
is done with Scanpy (Wolf et al., 2018) and the interactive
visualization with the UCSC CellBrowser (Speir et al., 2021).
This workflow has similar limitations to cloud solutions, as
customization and uploading time, and requires of a
computational cluster account and training about Galaxy
workflows. Regarding the integration of results, the application
of standard visualization tools avoids the creation of custom
interfaces which integrate different nature of results, and the
execution of new analysis based on the user interaction with the
graph cannot be performed.

Visualization is a key aspect on the interpretation of scRNA-
Seq results (Cakir et al., 2020). An adequate and interactive
representation facilitates the correct classification and
characterization of cells. This issue has been extensively
approached by analysis techniques of cytometry and
visualization methods have been adapted to the specific
characteristics of single-cell such as the lower number of cells
and the increment on the number of variables (transcripts/
proteins). Two dimensional plots have been traditionally used
for the representation of fluorescent makers on Cytometry. At
present, flow cytometry panels can include dozens of makers and
its representation as scatterplots are performed by a dimensional
reduction technique. Similar strategy is followed for single cell
visualization, but the lower number of cells allows its
representation with web-based technologies which avoids
software installation and platform dependencies.
SingleCAnalyzer has developed its graphical interface with D3
and JavaScript technologies which allows the user-graph
interaction on a Web browser. This solution has efficiently
tested for the representation of 6,000 cells on six simultaneous
scatterplots and allows a full interaction with clustering, cell
classification, transcript quantification and cell trajectory
results. Regarding the differential expression interface, it can
handle 60,000 transcripts and perform six interconnected
representations (MA-plot, volcano plot, scatterplot, boxplot
and heatmap) on user interaction. The scalability of the
platform will depend on the optimization of Web Browsers in
the storage, representation and processing of interactive HTML
Canvas and Scalable Vector Graphics. Current browsers have
memory management and multiprocessing limitations. However,
these technologies are becoming popular, and browsers are
adapting their rendering engines for improving their
performace (e.g. RenderingNG technology of chrome).

Future implementations of SingleCAnalyzer will be directed
to the integration of novel analysis methods for scRNA-Seq and
to the compatibility with new platforms and experimental
protocols. At present, we provide semi-automated analysis of
scRNA-Seq data on the cloud with analytical and interactive
graphs, which enable the comprehensive analysis of results. It is
freely available for scientists to explore the potential of their
scRNASeq studies running quick analysis on an easy-to-use
interface.
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BioViz Connect: Web Application
Linking CyVerse Cloud Resources to
Genomic Visualization in the
Integrated Genome Browser
Karthik Raveendran†, Nowlan H. Freese†, Chaitanya Kintali, Srishti Tiwari, Pawan Bole,
Chester Dias and Ann E. Loraine*
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Genomics researchers do better work when they can interactively explore and visualize
data. Due to the vast size of experimental datasets, researchers are increasingly using
powerful, cloud-based systems to process and analyze data. These remote systems,
called science gateways, offer user-friendly, Web-based access to high performance
computing and storage resources, but typically lack interactive visualization capability. In
this paper, we present BioViz Connect, a middleware Web application that links CyVerse
science gateway resources to the Integrated Genome Browser (IGB), a highly interactive
native application implemented in Java that runs on the user’s personal computer. Using
BioViz Connect, users can 1) stream data from the CyVerse data store into IGB for
visualization, 2) improve the IGB user experience for themselves and others by adding IGB
specific metadata to CyVerse data files, including genome version and track appearance,
and 3) run compute-intensive visual analytics functions on CyVerse infrastructure to create
new datasets for visualization in IGB or other applications. To demonstrate how BioViz
Connect facilitates interactive data visualization, we describe an example RNA-Seq data
analysis investigating how heat and desiccation stresses affect gene expression in the
model plant Arabidopsis thaliana. The RNA-Seq use case illustrates how interactive
visualization with IGB can help a user identify problematic experimental samples,
sanity-check results using a positive control, and create new data files for interactive
visualization in IGB (or other tools) using a Docker image deployed to CyVerse via the
Terrain API. Lastly, we discuss limitations of the technologies used and suggest
opportunities for future work. BioViz Connect is available from https://bioviz.org.
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INTRODUCTION

Science gateways are Web sites that implement user-friendly
interfaces to high performance computing and storage systems
(Wilkins-Diehr et al., 2008). Science gateways typically assemble
and curate discipline-specific, command-line, Unix-based tools
within a single, easy-to-use interface, enabling users to run
compute-intensive processing on datasets too large for a
personal computer (Giardine et al., 2005; Goff et al., 2011;
Merchant et al., 2016). In a typical use case, domain
researchers upload their “raw” (unprocessed) data to the
gateway site and then operate the gateway’s Web-based
interface to create custom processing and analysis pipelines,
where a pipeline is defined as tasks performed in sequence by
non-interactive tools which emit and consume well-understood
file types and formats. Common pipeline tasks in genomics
include aligning RNA-Seq sequences onto a reference genome
to produce BAM (binary alignment) format files (Li et al., 2009),
generating scaled RNA-Seq coverage graphs from the “BAM” files
using tools such as deepTools bamCoverage (Ramirez et al.,
2016), or searching promoter regions for sequence motifs
common to sets of similarly regulated genes using tools such
as DREME (Bailey, 2011).

A science gateway aims to provide a single point of access for
tools needed to process and analyze data from a research project.
However, native visualization tools with their own graphical user
interfaces separate from a Web browser are difficult to use with
Web-based science gateway systems. The Integrated Genome
Browser from BioViz.org (Nicol et al., 2009; Freese et al.,
2016) and the Broad Institute’s Integrative Genomics Viewer
(Robinson et al., 2011) exemplify this problem. Both tools require
that data files reside on the user’s local file system or that they be
accessible via HTTP (hypertext transfer protocol) and
addressable via a file-specific URL (Uniform Resource
Locator). If the gateway system does not allow URL-based
access to data, then users must download the data files onto
their local computer file system, which may not be practical or
allowed.

Related problems confront visualization systems implemented
as Web applications, deployed on Web hosts and not the user’s
local computer. Using Web applications to visualize data can be
even more challenging for users, because these applications often
require hard-to-set-up data storage and delivery mechanisms
specialized to the application. To view one’s data using the
Web-based UCSC Genome Browser software, for example,
users can either deploy their own copy of the software, which
is difficult, or they can instead set up a UCSC Track Hub server,
which is less technically challenging but nonetheless requires
Track Hub-specific meta-data files to be created and configured
(Raney et al., 2014). Similarly, using the JBrowse Web-based
genome browser requires deploying data in JBrowse-compatible
formats (Buels et al., 2016).

Another typical requirement for science gateways is
extensibility, meaning they require a way for gateway
developers or users to add new tools to the system to
accommodate or even potentiate new directions for research.
The CyVerse science gateway, the focus of this article, supports

extensibility by allowing developers to create and deploy CyVerse
Apps, which are user-contributed container images that run
within a CyVerse-provided container environment (Devisetty
et al., 2016). Users create containers using Docker and then
contribute their container image along with metadata
specifying input parameters and accepted data types to
CyVerse. Once accepted and deployed, the container is
configured to run as an asynchronous “job” within the
CyVerse infrastructure via a queuing system. Thus, Apps run
non-interactively and therefore are not well-suited to providing
interactive, exploratory visualization. However, these Apps do
provide a means to create new input data for visualization, as we
explore here.

In this paper, we introduce BioViz Connect, a Web application
that overcomes limitations described above to add genome
visualization capability to the CyVerse science gateway system.
Previously called iPlant, the CyVerse science gateway is a
United States National Science Foundation funded
cyberinfrastructure project with the aim of providing
computational resources for life sciences researchers (Goff
et al., 2011; Merchant et al., 2016). We chose to work with
CyVerse in this study because it features a rich Application
Programming Interface (API), the Terrain REST API, that
supports secure computational access to CyVerse data storage
and analysis resources.

Using this API, we implemented a new visualization-focused
interface to these resources, called BioViz Connect, using the
Integrated Genome Browser (IGB) as the demonstration
application. We selected IGB because it offers one of the
richest feature sets for visual analysis in genomics [for
descriptions of IGB functionality, see (Nicol et al., 2009;
Gulledge et al., 2014; Loraine et al., 2015; Freese et al., 2016;
Mall et al., 2016)] and because we are members of the core IGB
development team. Therefore, we possessed insider’s knowledge
of the featured visualization application that allowed us to modify
IGB as needed for the project.

BioViz Connect enables users of Integrated Genome Browser
to visually analyze their CyVerse data without having to
download entire files to their local computer or migrate their
data into application specific data stores. BioViz Connect lets
users annotate their data sets with metadata, which control how
the data will look when imported into the IGB and also indicate
the genome version referenced in the data. Finally, BioViz
Connect lets users run compute-intensive visual analytics
algorithms, implemented as CyVerse Apps.

In the following sections, we describe how BioViz Connect is
implemented, explaining the technology stack used and how
BioViz Connect interacts with the CyVerse science gateway
resources via its Terrain API. Next, we describe how BioViz
Connect enables flow of data into the IGB desktop software by
activating a REST API endpoint residing in IGB itself. To
illustrate the functionality, we describe an example use case
scenario for BioViz Connect in which a hypothetical analyst
uses visualization and visual analytics tools within IGB in
conjunction with their CyVerse account to quality-check and
analyze an RNA-Seq data set from Arabidopsis thaliana plants
undergoing desiccation and heat stresses. Lastly, we discuss
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insights gained from implementing BioViz Connect, describe
limitations of the technology used, and propose how these
limitations might be overcome. BioViz Connect represents a
next step toward building integrated, user-friendly
computational environments that blend powerful local tools
like IGB with even more powerful remote infrastructures like
CyVerse, creating new possibilities for users to discover
biologically meaningful features in data while avoiding artifacts.

DESIGN AND IMPLEMENTATION DETAILS

In the following sections, we describe technical aspects of how
BioViz Connect is implemented, while also describing user
interface design choices intended to improve both usability
and transparency for users.

BioViz Connect Client and Server-Side
Design
BioViz Connect consists of two parts: a JavaScript-based user
interface that runs in aWeb browser and a server-side application
that manages authentication and communication with Terrain
API endpoints. The user interface code on the client-side is
implemented using HTML5, CSS, Bootstrap 4.3.1, JavaScript,

and jQuery 1.10.2. The server-side code is implemented in
python3 using the Django web application framework
(Figure 1). The currently available production instance of
BioViz Connect is deployed on an Ubuntu 18.04 system and
hosted using the apache2 Web server software as a reverse proxy.
BioViz Connect code is open source and available from https://
bitbucket.org/lorainelab/bioviz-connect.

User and Password Management
To use BioViz Connect, users must first obtain a CyVerse
Discovery Environment account by registering at https://user.
cyverse.org/register (CyVerse, RRID: SCR_014531). At the time
of this writing, there is no charge for this account. BioViz Connect
delegates user management, including logging in and password
management, to the Central Authentication Service (CAS)
OAuth service hosted and maintained by CyVerse (Figure 1).
Thus, CyVerse infrastructure manages user accounts and
information; no BioViz-specific accounts or passwords are
required, and the BioViz Connect software never gains access
to the user’s CyVerse password. After a user has logged in to
BioViz Connect using their CyVerse credentials, BioViz Connect
uses its server-side Redis database to store a user-specific access
token for the duration of the session, a token that allows BioViz
Connect to access and modify user data stored in CyVerse
infrastructure via the Terrain API on the user’s behalf.

FIGURE 1 | Diagram illustrating local client and remote server-side design of BioViz Connect. After users log in using their CyVerse user credentials, the BioViz
ConnectWeb interface appears in their Web browser. Clicking the “View in IGB” button causes the browser to make HTTP requests to a localhost REST endpoint within
IGB. These HTTP requests include information IGB uses to issue new HTTP requests for data resources. The BioViz Connect Web interface is populated via HTTP
requests made to a remote host running the Apache Web server, which forwards these requests (using a reverse proxy mechanism) to the BioViz Connect Web
application, implemented using the Django Web application framework. BioViz Connect then translates and forwards these user requests via HTTP to REST API
endpoints that are part of the Terrain API, which manages interactions with the CyVerse cloud.
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Integrated Genome Browser REST
Endpoint
Integrated Genome Browser is a free, open-source desktop
software program written in Java which users download and
install on their local computer systems (IGB, RRID: SCR_011792)
(Nicol et al., 2009; Freese et al., 2016). Installers for Linux,
MacOS, and Windows platforms are available at https://
bioviz.org.

The IGB source code resides in a git repository hosted on
Atlassian’s bitbucket.org site (https://bitbucket.org/lorainelab/
integrated-genome-browser). When viewed on the BitBucket
git repository’s Web site, changes to the code called “commits”
link to pages on the project management Web site documenting
the motivation for the change and/or technical challenges
encountered, thus making the source code easier to manage
and understand. The project management Web site uses Jira
from Atlassian Software, with URL https://jira.bioviz.org. IGB
version 9.1.4 or greater is required for IGB to connect to BioViz
Connect.

IGB contains a simple Web server configured to respond to
REST-style queries on an IGB-specific port on the user’s local
computer. JavaScript code downloaded into the Web browser
when users visit BioViz Connect pages enables requesting URLs
addressed to “localhost”, the user’s computer, using the IGB-
specific port. IGB intercepts these requests and performs actions
dictated by parameters embedded in the URL text. This
mechanism repurposes a REST endpoint dating from the
earliest releases of IGB from the early 2000s. The IGB Users’
Guide hosted at https://wiki.bioviz.org/confluence describes these
and other features.

BioViz Connect Metadata
BioViz Connect uses the Terrain Metadata API to manage and
obtain IGB-specific metadata for files and folders. The Terrain
API represents metadata items as triplets containing Attribute,
Value, and Unit. A metadata item’s Attribute attaches meaning to
what the metadata contains, and application developers can
create their own custom Attributes to support diverse
purposes. For example, since BioViz Connect is concerned
with genomic data visualization, we created custom Attributes
signaling genome assembly version, visual style information such
as foreground color and background color, and free text
comments on the data provided by the user, which are
displayed in BioViz Connect’s Web interface. A metadata
item’s Value is specific to the file or folder being tagged.
BioViz Connect uses the Unit value to indicate that the
metadata element concerns IGB and the BioViz Connect
application.

The genome identifier attribute requires further explanation, as
matching genome version names across systems has caused many
problems for genome browsers and their users. Integrated Genome
Browser, like many other systems, uses an application-specific
scheme for naming genome versions, and contains a listing of
synonyms matching these IGB-specific names onto genome
version names from other systems. For example, the IGB genome
version named H_sapiens_Feb_2009 is the same as UCSC genome
version name hg17, which is the same as NCBI version 35. The

BioVizConnect user interface includes components for users to view,
designate, or change the genome version metadata associated with
individual files. To ensure compatibility with IGB, BioViz Connect
uses a list of IGB-formatted genome identifiers hosted on the IGB
Quickload site (http://igbquickload.org/quickload/) to configure the
genome version selection components, implemented as menus.
When users operate the interface to view data within IGB, the
genome version metadata, along with style metadata, are passed to
IGB via its localhost REST endpoint. This ensures that the data
appear in the context of the correct genome assembly, alongside
other data already loaded from BioViz Connect or other sources,
while also enabling the user to specify in advance how the data will
look once it appears in IGB. In addition, if other users load the same
files, the data will look the same.

Enabling Access to Data via Public URLs
The flow of data from CyVerse into IGB depends on two key
technical features of the CyVerse data storage and hosting system.
First, the Terrain API enables users to create publicly accessible
URLs for data files in their accounts, and these URLs can be
enabled or disabled at will. In the current implementation, URLs
created in this way are accessible to any internet user. Second, the
CyVerse infrastructure supports HTTP range requests for these
URLs, enabling clients such as IGB to request subsets of data, thus
avoiding having to download or transfer an entire data file.

The BioViz Connect interface is designed to make the process of
managing these URLs as easy as possible, similar to commercial
cloud storage systems such as Dropbox and Google Drive that let
users create, destroy, and manage public links to individual files and
folders. Within the BioViz Connect interface, users create URLs for
individual files by right clicking the file and selecting the “Manage
Link” option. Selecting this option opens a right panel display in
which the current status of the file is shown, and users can toggle
between making the file public or private (Figures 2A,B).

As shown in Figure 2B, the text of this public URL is visible to the
user, and users can copy it to their system clipboard by clicking the
“copy” icon. The Terrain API determines the link text, and currently,
it always contains the user’s chosen name for the file and the path to
the file within the virtual file system, preceded by the prefix shown in
Figure 2B. We expose this detail to users because increasingly many
researchers are using their CyVerse accounts to host files, and the
current transparency and predictability of these URLs seems
important for them to know about. Likewise, if the pattern ever
changes, they will need to know this, as well.

BioViz Connect Deployment
BioViz Connect is managed using ansible roles and playbooks
publicly available in a git repository from https://bitbucket.org/
lorainelab/bioviz-connect-playbooks. The playbooks contain two
sets of tasks. One set of tasks creates a virtual machine using the
Amazon EC2 Web service. Once the host is created and running, a
second set of ansible tasks installs and configures software on the
host, including an Apache2 Web server, a MySQL database, and the
BioViz Connect code base. Playbook users can specify the BioViz
Connect repository and branch they wish to deploy, which facilitates
rapid testing of proposed new code. During the provisioning process,
a call is made to a Terrain endpoint that provides a list of all CyVerse
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asynchronous analysis apps that can produce output visible to IGB.
These data are then used to construct the “analysis” sections of the
user interface, and are stored in the BioViz Connect relational
database, co-located on the same host.

BioViz Connect Interface for Running Visual
Analysis Apps
When users right-click a file name in BioViz Connect, a context
menu appears with an option labeled “Analyse.” Information

FIGURE 2 | BioViz Connect interface and IGB data visualization. (A,B) BioVizConnect “Manage Link” interface, from the right panel display. By default, files are not
publicly accessible, and the interface appears as in (A). Clicking the button labeled “Create Public Link” creates a public link, switching the display to the image shown in
(B). (C)BioVizConnectmain page. The left panel shows shortcuts to home, shared, community folders. Themiddle panel lists files and folders. The right panel shows the
selected file’s metadata. (D) SRR10060893.bam and SRR10060894.bam files viewed in IGB overlapping the SR45a gene of A. thaliana. The track labeled TAIR10
mRNA shows SR45a gene models AT1G07350.1 and AT1G07350.2.
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about IGB-compatible Apps, the file types they can accept, and
App parameters are stored in the relational database configured
during deployment as described above. When a user selects this
option, BioViz Connect queries the database to identify IGB
Community Apps that accept the file as input, and these are
then displayed to the user. Once the user has selected an App,
another query retrieves additional information about it, such as
user-friendly description of what the App does, which is then
displayed to the user.

The CyVerse ecosystem contains many hundreds of Apps,
many of which are redundant or obsolete, and so the BioViz
Team controls which ones are shown to users by adding them to
the IGB Community, a CyVerse organizing concept that groups
resources (such as Apps) according to which users can use or
modify them. BioViz Connect only shows Apps that have been
added to the IGB Community.

RNA-Seq Data
RNA-Seq data presented in the use case scenario are from Sequence
Read Archive Bioproject PRJNA509437 (Leinonen et al., 2011), an
experiment in which Arabidopsis plants underwent either a 3-h,
non-lethal heat stress or a multi-day desiccation stress. Two post-
treatment sample time points were collected for treated plants and
their untreated control counterparts, with two to four replicates per
sample type and 23 samples in total. Sample libraries were sequenced
in single-end runs of the Illumina platform and are identified by their
run identifiers. BAM files were generated by aligning sequence reads
to the Arabidopsis June 2009 reference genome assembly using
TopHat2 (TopHat, RRID: SCR_013035) (Kim et al., 2013). The data
are available in the Community folder of publicly accessible datasets,
represented as a folder in the left-side panel of the BioViz Connect
display.

RESULTS

Understanding and Navigating the BioViz
Connect Interface
Our design goal in creating BioViz Connect was to give the user a
feeling of almost limitless computational power and space by
integrating seamlessly with the CyVerse “cloud.” Doing so
requires that users identify themselves to the system by
entering a username and password, but how this process takes
place can easily destroy the illusion of seamless access. To avoid
this, we used an OAUTH-style Terrain API endpoint that
delegates logins to CyVerse infrastructure, preventing BioViz
Connect from learning the user’s password.

To begin a sessionwith BioVizConnect, the user opens the BioViz.
org website in aWeb browser, selects the link labeled BioVizConnect,
and then clicks the link labeled “Sign in with your CyVerse ID”. This
action opens a Central Authentication Service (CAS) page, hosted by
CyVerse, where users enter their CyVerse username and password, or
sign up for a new account if they do not already have one. The Web
browser then returns to a “call-back” URL on the BioViz.org site,
which displays the BioViz Connect user interface, a browsable,
sortable, paginated view of the user’s CyVerse home directory and
its contents (Figure 2C).

This view of files and data resembles the interface for
commercial, consumer-focused cloud storage systems, a
deliberate design choice aimed at building on many users’
familiarity with Google Drive, the Dropbox Web interface, and
others. This interface displays a sortable, table-based view of the
user’s home directory within the CyVerse file storage system,
displaying a listing of files and folders the user has uploaded to
their account or created using CyVerse Apps, including BioViz
Connect Apps described in later sections. Single-clicking a file or
folder selects it, double-clicking a folder opens it and displays the
contents, and double-clicking a file opens a metadata display
showing information about the file (Figure 2C). A bread crumb
display at the top of the page shows the path from the root folder
to the currently opened folder, and a copy icon next to the
breadcrumb allows the user to copy the folder name and path.
The browser forward and back buttons work as expected, and
users can bookmark individual screens for faster navigation. The
URLs displayed in the browser’s URL bar match the currently
opened folder’s location, making the interface feel more polished
and user-friendly by ensuring that every user-facing detail,
including the URL, mimic and reinforce how the user has
organized their data within the CyVerse virtual file system.

The top part of every BioViz Connect page also features a search
bar that can be used to find files and folders with names matching a
user-entered query string. Matches are returned in a list view similar
to the original table view, and users can sort the results list by name,
size, or date modified. Only files for which the user has read access
and that reside in the currently visible section (Home, Community,
or Shared with me) are returned. On the left side of every page,
BioViz Connect displays icons representing shortcut links to the
user’s home directory, a publicly available community data folder,
and other destinations. The “Community” folder contains data
published for all CyVerse users, including the example RNA-Seq
data set for the use case scenario described in the next section.

Using BioViz Connect to View Data in
Integrated Genome Browser
To demonstrate BioViz Connect functionality, we next describe
an example use case scenario in which a hypothetical researcher
visually analyzes data from a typical RNA-Seq experiment. The
use case focuses on two main tasks: visually checking data quality
and then confirming differential expression of a control gene
known to be regulated by the treatment.

The experimental design included two treatments, heat and
desiccation stress, their controls, and two time points, totaling six
sample types, each with two to four replicates. The RNA-Seq
sequences are available in the Sequence Read Archive, and the
researcher has obtained the data, aligned it to the reference
genome, and then contributed the files to the Community
folder. Alignment files are stored in the file path “BioViz/
rnaseq/A_thaliana_Jun_2009/SRP220157/reads”. The user has
also annotated each file using the BioViz Connect interface,
adding the genome version, visual style information, and notes
describing each sample.

Now that the data are organized and annotated, the researcher
uses the BioViz Connect interface to import the data into
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Integrated Genome Browser for visualization and proceeds to
look at each file, one by one, to check the quality of the alignments
and confirm file identity. BioViz Connect makes this task easy to
perform. To illustrate, we discuss RNA-Seq alignment files
SRR10060893.bam and SRR10060894.bam, replicate control
samples from time point one of the heat stress treatment. A
quick scan of files listed in the BioViz Connect table view shows
that SRR10060893.bam has size 1.61 GB, about twice the size of
SRR10060894.bam, which is 0.669 GB. The user has annotated
the files with the number of sequence reads obtained per sample,
around 37 million for each. Because the samples were sequenced
to about the same depth, their resulting alignment files ought to
have similar sizes. Visualizing the sequence read alignments will
help explain the discrepancy.

To visualize the alignments, the user launches Integrated
Genome Browser, which is already installed on the local
computer, downloaded from the BioViz.org Web site. Once
IGB is running, the user clicks the “View in IGB” button
available in the “Visualization Tools” column in the BioViz
Connect table view, repeating this action for each file
(Figure 2C). This action causes JavaScript code running
within the Web browser to request data from a local URL
(domain “localhost”) corresponding to a REST endpoint
implemented within IGB. The URL includes parameters such
as the publicly accessible URL for the data file, the IGB name of its
reference genome, and visual style information indicating how
the file should look once loaded into IGB. In response, IGB opens
the requested genome version associated with the file and adds
the file as a new track to the display.

To check assumptions about a new data set, it is useful to
visualize a gene of known behavior, such as a gene already
known to be regulated by the experimental treatment. Prior
work from our lab and others have shown that SR45a,
encoding an RNA-binding protein, is upregulated by heat
and desiccation stresses, making it a good choice for this
purpose (Yoshimura et al., 2011; Gulledge et al., 2012). To
find the gene, the analyst enters SR45a into IGB’s search
interface at the top left of the IGB window, which zooms and
pans the display to the gene’s position in the genome. Next,
the user loads the alignments into the display by clicking the
“Load Data” button at the top right of the IGB window. Once
the data load, the user customizes track appearance by
modifying vertical zoom setting and changing the number
of sequences that can be shown individually in a track (stack
height), creating the view shown in Figure 2D.

This customized view makes problems with SRR10060894
obvious at a glance. The alignments for this sample appear to
stack on top of each other in orderly, uniform towers covering
only 30% of the gene’s exonic sequence. By contrast, the
alignments for sample SRR10060893 cover most of the
exonic sequence and also include many spliced reads split
across introns. The sparser pattern observed in SRR10060894
typically arises when the library synthesis process included too
many polymerase chain reaction amplification cycles, reducing
the diversity of resulting sequence data. This pattern indicates
that the user should exclude SRR10060894 from further
analysis, but the other file appears to be fine.

Comparing Sequencing Depth and
Complexity Using Integrated Genome
Browser Visual Analytics
Repeating the preceding process with other samples in the
dataset, the user identifies another problematic pair of files.
The files are replicates, but like the previous example, the files
sizes differ. The alignments file SRR10060911.bam is 1.83 Gb, but
its replicate SRR10060912.bam is only 0.454 Gb. Opening and
viewing the alignment files in IGB, the user confirms that one file
appears to contain more data than the other (Figure 3A). To
quantify this observation, the user takes advantage of a simple,
interactive visual analytics feature within IGB: selection-based
counting. As with PowerPoint and many other graphical
applications, IGB users can click-drag the mouse over
graphical elements to select a group of items and then single-
click while pressing SHIFT or CTRL-SHIFT keys to add or
remove items from selection group. IGB reports the number
of currently selected items in the Selection Info box at the top
right of the IGB window. Using this feature, the researcher finds
that sample SRR10060912 contains 1,925 alignments covering
SR45a, and sample SRR10060911 has 10,867 alignments, nearly
five times as many.

By further configuring track height and appearance settings,
and operating IGB’s dynamic vertical and horizontal zoom
controls, the user can stretch the display in each dimension
independently to reveal more detail about the alignments
(Figures 3B,C). From this new view of the data, the user can
tentatively conclude that alignment pattern diversity is similar in
each sample, but the depth of sequencing was greater in
SRR10060911. To confirm the finding, the user then applies a
visual analytics function (called a “Track Operation” within IGB)
that creates coverage graphs, also called depth graphs, using data
from the read alignment tracks (Figure 3D). To make a coverage
graph, the user right-clicks a track label for a read alignment track
and chooses option “Track Operations > Depth Graph (All).”
This generates a new track showing a graph in which the y-axis
indicates the number of sequences aligned per x-axis position,
corresponding to base pair positions. After modifying the y-axis
lower and upper boundary values (using controls in IGB’s Graph
tab), the user again can observe that the pattern of alignments is
similar between the two samples, but the overall level of
sequencing was different. Thus, the file size difference most
likely is due to a difference in sequencing depth rather than a
problem with the library synthesis, as was the case in the previous
example.

Normalizing Coverage Graphs to Compare
Gene Expression Visually
Coverage graphs set to the same scale allow comparing gene
expression across sample types, but only if the libraries were
sequenced to approximately the same depth. If not, then coverage
graphs need to be normalized before comparing them. Scaling
coverage graphs within IGB is impractical, however, as it would
require downloading, reading, and processing the entire bam-
format alignments file. A better approach is to off-load
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computationally intensive visual analytics tasks to CyVerse cloud
computing resources. To demonstrate the value of this strategy,
we deployed the deepTools genomeCoverage command line tool
from the deepTools suite (Deeptools, RRID: SCR_016366) as a
new IGB-friendly CyVerse App (Ramirez et al., 2016).

To create a scaled coverage graph, the user returns to BioViz
Connect, right-clicks a bam format file, and chooses “Analyse.”
This opens the Analysis right-panel display, which lists all IGB-
compatible CyVerse Apps that can accept the selected file type as
input (Figure 4A). Selecting “Make scaled coverage graph” opens
a form with options for creating the graph using the
genomeCoverage algorithm (Figure 4B). The interface
includes a place for the user to enter names for the analysis
and for the output file that will be produced. The user then clicks
“Run Analysis” button, which calls upon the CyVerse analysis

API to run the App with specified parameters using CyVerse
computing resources. The request to run the App and the work it
performs are called “jobs,” and jobs are carried out
asynchronously, running and completing only when resources
they require become available, as with other systems set up for
high-performance computing. Users can check job status by
using the Analyses History in the BioViz Connect interface
(Figure 4C), where Analyses are listed as Queued (waiting to
run), Running, Failed, or Completed. The length of the time to
complete a job is dependent on the size of the queue, the analysis
being carried out, and the size of the file. When we ran these
analyses ourselves, the “Make scaled coverage graph” job took
7 min and 12 s for the SRR10060911.bam as its file size is 1.83 GB,
whereas SRR10060912.bam took only 5 min and 52 s, most likely
due to its smaller file size of 455 MB. Larger files may take longer,

FIGURE 3 | Heat treated samples viewed in IGB. (A) Vertical dimension is compressed to show all alignments. (B) SRR10060911 and (C) SRR10060912 tracks
stretched vertically to reveal alignment patterns in more detail. (D) Alignment coverage graphs calculated within IGB using alignments from (A). The y-axis values
represent the number of aligned sequences per base pair position indicated on the coordinates track. The track labeled TAIR10 mRNA shows SR45a gene models
AT1G07350.1 and AT1G07350.2.
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FIGURE 4 | Example analysis in BioViz Connect with output visualized in IGB. (A) BioViz Connect main page with analysis right panel open. (B) Scaled coverage
graph analysis options for naming the analysis, selecting input file, output file name, and index file selection. (C) Analyses History showing the status of current and
previous jobs. (D) SRR10060904 (control), SRR10060911 (heat treated), and SRR10060912 (heat treated) scaled coverage graphs viewed in IGB overlapping the
SR45a gene of A. thaliana.
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for example, an 8.89 GB file took 38 min and 54 s to complete.
Independent of BioViz Connect, the CyVerse infrastructure sends
an email to users when jobs finish. When a job finishes, any files
or folders it creates appear in the analyses folder in the user’s
home directory, or in the same location as the input files, if those
are stored in a location where the user has permission to modify
or add to the folder. To quickly navigate to results, users can click
the analysis name in the Analyses History, opening the folder
where the output data files are stored.

Figure 4D shows sample App output, a visualization of the
SR45A region with three scaled coverage graphs loaded from
bigwig data files, a compact binary format for representing
numeric values associated with base pairs in a genome map.
Two heat-treated and one control sample are shown. The three
coverage graphs have been configured to use the same y-axis
scale, making it obvious that the heat treatment elevated SR45A
gene expression, consistent with previously published reports.
The image presents a clear visual argument in favor of this
conclusion, and it also shows the user how much the
expression level measurement varies across the gene body,
something a single summary statistic cannot provide.

DISCUSSION

BioViz Connect introduces and demonstrates innovations in the
field of science gateway development and research, while
providing useful functionality for researchers seeking to
understand and visualize genomic data. BioViz Connect
enables users of the CyVerse science gateway to visualize
genomic data files from their CyVerse accounts using
Integrated Genome Browser, a desktop application. To our
knowledge, BioViz Connect is the first and only resource that
integrates remote CyVerse file storage and computational
resources with a genome browser native to the local computer,
achieving this cross-application communication via localhost
REST endpoints.

We implemented BioViz Connect using the CyVerse Terrain
API, a collection of remote REST endpoints that form a
comprehensive computational interface to CyVerse resources.
However, CyVerse and its Terrain API were not the first cloud
system we considered. Our larger goal was to expand users’
experience of genome browsing by connecting the interactivity
and speed of a native, desktop genome browser (such as IGB)
with the vast resources of cloud-based, remote storage and
computing systems, making it easier for users to store and
share their data with others and also run compute-intensive
visual analytics algorithms that would never be possible using
just the user’s personal computer. To achieve this, we considered
several commercial and public-sector systems, but selected
CyVerse because of its focus on supporting scientific research,
its free cost for users, and its early support for computational
interfaces via APIs (Dooley et al., 2012).

At first, we proposed to use the CyVerse Agave API, which was
well-documented and well-supported at the time. Since then, at
least two other groups have published workflow management
sites that use Agave, justifying our original choice (Wang et al.,

2018; Hubbard et al., 2020). However, several months after
launching our project, we discovered that Agave’s
manipulation of user data conflicted with CyVerse’s own
Discovery Environment interface, then a Web interface
resembling a personal computer desktop. We also learned that
Agave lacked support for HTTP range requests against data files,
an essential feature from our perspective, and that this feature was
unlikely to be added, as Agave’s maintainers were in the process
of migrating to a new version to be called “Tapis.” Realizing our
problem, they recommended we instead use Terrain, the API that
powers the Discovery Environment interface. After consulting
with developer teams working on Terrain and Discovery
Environment, both based at University of Arizona, we decided
to use Terrain.

We chose to use Integrated Genome Browser as the
visualization component of BioViz Connect for several reasons.
The first was that we wanted to demonstrate and explore a
connection between cloud-based resources and a pre-existing,
native, desktop application already in wide use, and IGB satisfied
this requirement. The second major reason was convenience. As
the core development group for IGB, we understand its
architecture and capabilities, reducing our learning curve when
connecting this local application to the cloud. IGB already
contained a localhost REST interface that we could repurpose
for BioViz Connect, an endpoint was first developed in the early
2000s to enable a connection between the Affymetrix NetAffx
Web site and IGB. Since then, we used this same endpoint to
implement IGB’s internal region and data bookmarking system.
IGV, the only other native genome browser application in wide
use, has a similar REST endpoint used to trigger loading of data
files from the Galaxy Web site and others, but this endpoint lacks
features such as the ability to specify track appearance. The third
reason was that the IGB interface decouples navigation and data
loading, thus making it easier for users to control when data are
requested from the remote host. We surmised that this would
make possible delays in data loading less onerous than for other
browsers, such as IGV (Robinson et al., 2011), UCSC Genome
Browser (Kent et al., 2002), Jbrowse (Buels et al., 2016), and
Ensembl (Howe et al., 2021), all of which load data automatically
when users navigate to a new region. However, since we first
released BioViz Connect, the CyVerse development team have
improved data throughput, making those tools’ design less
problematic.

Our success in linking IGB to the cloud, along with the
abovementioned improvement in CyVerse infrastructure,
suggests an interesting next step for BioViz Connect: adding
other genome browser systems to the interface. Anticipating
this possibility, the first column in the BioViz Connect file
browser table is labeled “Visualization Tools,” a generic
heading that suggests adding other tools. Doing this would be
valuable because although genome browsers often recapitulate
each other’s features, all have capabilities unique to them, and
users who prefer them. For example, IGB offers fast navigation
through a genome, the ability to interact directly with data, access
to shared data via IGB Quickload sites, and visual analytics
functions called “Operations” that aid exploratory analysis.
Unique features of the Broad Institute’s IGV include a sashimi
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plot view for detecting differential splicing (Katz et al., 2015) and
a bisulfite sequencing view for understanding DNA methylation.
The UCSC Genome Browser excels at offering a multitude of data
sets in distinct tracks, while the Ensembl browser and associated
informatics system famously support nearly every reference
assembly known to science, including many plant genomes
not supported by UCSC. And the Jalview system provides a
host of features for examining the deep details of alignments, the
heart of genomic analysis (Procter et al., 2021). BioViz Connect
could make these systems easier to use and compare, allowing us
to study how different approaches to visualization affect
understanding.

To our knowledge, BioViz Connect is the first application
developed using the Terrain API by a group outside the CyVerse
development team. Because our work is open source, developed
entirely in public, other groups can use our implementation as a
guide or inspiration for their own work. BioViz Connect further
demonstrates to the larger community of biologists, developers,
and funders that modern, feature-rich REST interfaces to
powerful computational resources stimulate and enable
innovation and progress.

The scaled coverage graphs described in the use case scenario
offer a useful, practical example of how remote resources can
power interactive visual analytics on the desktop, an idea that has
been explored in diverse fields and settings, but not often applied
to genome visualization as was done here. The example we
presented used a pre-existing algorithm, developed by others,
but it shows how developers can harness a more powerful
gateway system to develop and deploy all-new interactive
genome data visualizations. Offloading compute-intensive
visual analytics functions to science gateway systems will likely
become more appealing and important as the size and complexity
of genomic data continue to increase.

LIMITATIONS AND WAYS TO OVERCOME
THEM

However, at least two important technical limitations remain,
providing opportunities for future work. The first technical
limitation has to do with how data flows from the CyVerse back
end data store and into the desktop genome browser application.
Integrated Genome Browser as currently implemented can display
data from users’ CyVerse accounts because the Terrain API can
assign publicly accessible URLs to individual data files, which makes
them available for visualization but exposes them to everyone on the
internet. This problem of public accessibility could perhaps be
addressed by adding password protection to these URLs, using
Basic Authentication headers defined by the HTTP protocol. IGB
already supports logging into password-protected Web servers, and
so this solution would require little or no changes on the client side.

Another problem has to do with the data file formats themselves
and how they can sometimes expose more information than
anticipated. IGB, along with every other genome visualization
system we are aware of, uses random access, indexed file formats
to retrieve subsets of data corresponding to genomic regions. For
example, BAM (binary alignment) files are typically large,

impractical to download in their entirety. The data stored in
these files are sorted by genomic location and therefore can be
indexed by genomic location. When retrieving data for a desired
genomic region, IGB and other programs use the BAM file’s index,
stored separately in a smaller “bai” file, to look up the range of bytes
where those data reside in the target file, and then read and process
only the data for that region, ignoring the rest. This idea of mapping
genomic coordinates to physical file coordinates has been in heavy
use for decades, for as long as IGB has existed. Indeed, the original
IGB development team at Affymetrix implemented one of the first
indexed file formats, called “bar” for “binary array format”, used for
storing and accessing data fromAffymetrix genome tiling arrays, one
of the first technologies invented to survey transcription across an
entire genome in an unbiased way. However, in some situations, the
index can sometimes serve as a genomicmap, providing an overview
of an entire dataset that could identify an individual. For example, as
shown in (Pedersen et al., 2017), one can use the BAM index to
detect chromosome abnormalities from whole genome sequencing
data, exposing more information about a person or an experiment
than anticipated.

The second technical limitation concerns how to flow data from
remote sites, via a Web browser, into other programs running
natively on the desktop, such as Integrated Genome Browser.
Web browser development communities are constantly changing
and improving their security models, essential to keeping users and
their data safe in an increasingly adversarial and dangerous digital
environment. Most Web pages are now loaded over encrypted
channels, using HTTPS, the secure version of HTTP, and this
includes BioViz Connect. This means that the JavaScript code
responsible for interacting with IGB’s localhost endpoint is also
loaded via HTTPS. However, when this code interacts with IGB via
its localhost endpoint, it does so via unencrypted HTTP, because
there is currently no robust way to support HTTPS for the localhost
domain. The Chrome and Firefox browser allow BioViz Connect
code to access the localhost IGB endpoint using HTTP because the
communication channel is limited to the user’s own computer,
presumed to be secure. The MacOS Safari Web browser does not
allow it, however. This means that BioViz Connect’s “View in IGB”
feature fails for Safari users. We handle this by advising the user to
switch to a different browser on MacOS. This issue exemplifies a
more general problemwith connecting the desktop to the cloud. The
methods used to communicate with remote computers are always
changing, usually becoming more restrictive, which means that
developers need to constantly test, revise, and update their
software, more so perhaps than developers who create stand-
alone, independent applications that rarely need to interoperate
with anything other than the host computer’s operating system.

Architectures using Web-based REST APIs may help solve these
problems. For example, CyVerse or BioViz Connect could add new
endpoints that themselves support region-based retrieval of genomic
data, as with the XML-based Distributed Annotation Service (Dowell
et al., 2001; Jenkinson et al., 2008), the newer JSON-based University
of Santa Cruz Genome Informatics REST interface (UCSC, 2021), or
the BEACONS network API, which supports multiple layers of user
authentication (https://beacon-project.io/). Rather than deliver data
in new JSONorXML formats that would requiremodifying the client
software, these new endpoints could simply stream the data in their
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native formats, requiringminimal or no change to the client software.
Another way to achieve this would be to design APIs using the facade
design pattern, in which an application translates an incompatible
interface to a compatible one, expanding the range of clients able to
access a resource. For example, developers could create a novel API
that provides all the services required for accessing BAM files and
their indexes, by creating and destroying secure URLs as users open
and load data file resources during a session. Many variations are
possible, and as cloud computing infrastructures become easier and
cheaper to build upon, more bioinformatics groups will attempt even
more daring and exciting innovations, amplifying their users’ ability
to investigate biological systems.

Finally, we highlight aspects of the BioViz Connect
interface and functionality that could be further developed
to help users find useful tools and help developers find users
for their tools. First, we note that the “View in IGB” button in
the BioViz Connect table view occupies a column labeled
“Visualization Tools,” a space where links to other
visualization tools could also be added, based on the input
data they accept. To make space for these other tools, we
could replace the button with an IGB logo, and use tooltips to
provide documentation or link to videos describing how to
use the tools. Second, we could enhance BioViz Connect
search capabilities to query MetaData tags or other file
properties and attributes. Third, we could collaborate with
the CyVerse team and other users to design and implement
data registries, which data providers and users could use to
publish, publicize, and locate data sets relevant to their work.
As we hope the name suggests, BioViz Connect will connect
researchers with data and tools, and will help tool developers
connect with their intended audience, improving scientific
practice for everyone.
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ShapoGraphy: A User-Friendly Web
Application for Creating Bespoke and
Intuitive Visualisation of Biomedical
Data
Muhammed Khawatmi, Yoann Steux, Saddam Zourob and Heba Z. Sailem*

Institute of Biomedical Engineering, Department of Engineering, University of Oxford, Oxford, United Kingdom

Effective visualisation of quantitative microscopy data is crucial for interpreting and
discovering new patterns from complex bioimage data. Existing visualisation
approaches, such as bar charts, scatter plots and heat maps, do not accommodate
the complexity of visual information present in microscopy data. Here we develop
ShapoGraphy, a first of its kind method accompanied by an interactive web-based
application for creating customisable quantitative pictorial representations to facilitate
the understanding and analysis of image datasets (www.shapography.com).
ShapoGraphy enables the user to create a structure of interest as a set of shapes.
Each shape can encode different variables that are mapped to the shape dimensions,
colours, symbols, or outline. We illustrate the utility of ShapoGraphy using various image
data, including high dimensional multiplexed data. Our results show that ShapoGraphy
allows a better understanding of cellular phenotypes and relationships between variables.
In conclusion, ShapoGraphy supports scientific discovery and communication by
providing a rich vocabulary to create engaging and intuitive representations of diverse
data types.

Keywords: microscopy, multiplexed imaging, morphology, glyph-based visualisation, high dimensional data, graph
editor, single cell data, science communication

1 INTRODUCTION

Biomedical imaging generates large amounts of data capturing biological systems at different scales
ranging from single molecules to organs and organisms (Walter et al., 2010). Inspection of individual
images is not feasible when hundreds of images are acquired, particularly when they are composed of
multiple layers, channels, or planes. Automated image analysis allows quantifying image data
resulting in large multiparametric datasets (Sero et al., 2015; Natrajan et al., 2016). Effective data
visualisation is essential for interpreting analysis results and unleashing the hidden patterns locked in
image data (Heer et al., 2010; Cairo, 2013).

Intuitive representations can improve the effectiveness of visualisation tools as they support
identifying and understanding the complex relationships in image data. By intuitive wemean that the
depicted representations are semantically relevant where the used visual channel resembles the
concept or the represented phenotypic feature. For example, it is easier to associate measurements of
cell size to the size of the object and the protein levels to the colour of the object. This has many
advantages especially when multiple variables are plotted simultaneously. First, the pictorial
representation facilitates remembering and interpreting the data. Second, the natural mapping
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between the measured objects and the representation makes it
easier to investigate the relationship between the measured
variables.

Visualising complex imaging data has been mostly limited to
general-purpose tools that do not take into account the structural
nature of image data. Due to their scalability to a large number of
data points, heat maps and dimensionality reduction, such as
UMAPs and t-SNE, are the most used approaches for visualising
high dimensional data, including image-based measurements
(McInnes et al., 2018). Several methods have been developed
for visualising bioimage data with an emphasis on interactive
linkage of raw image data, cell features, and identified quantitative
phenotypes using linked scatter plots combined with supervised
and unsupervised learning approaches including t-SNE plots.
These include Facetto, histoCAT, and mineotaur (Antal et al.,
2015; Schapiro et al., 2017; Krueger et al., 2020). ImaCytE
(Somarakis et al., 2019) is another tool for visualising
multiplexed image cytometry data that takes the interactive
aspect a step further by developing custom two-layered pie
charts to represent the proportion of different phenotypes.
While these tools are useful in interactive and data exploration
tasks, they heavily rely on the user interpretation of identified
phenotypes based on the appearance of a handful of cells which
can be a subjective and daunting task. Therefore, new
visualisation techniques for representing multiparametric
image data are desperately needed to aid data analysis and
result interpretation.

Glyph-based visualisation is another approach to visual design
where quantitative information is mapped to illustrative graphics
referred to as glyphs. They provide a flexible way of representing
multidimensional data (Ropinski et al., 2011; Borgo et al., 2013;
Fuchs et al., 2017). For example, we have previously developed
PhenoPlot, a glyph-based visualisation approach that plots cell
shape data as cell-like glyphs (Sailem et al., 2015). PhenoPlot was
built as is a MatLab toolbox and incorporates two ellipsoid glyphs
to represent the cell and nucleus. It uses a variety of visual
elements such as stroke, colour and symbols to encode up to
21 variables. The key focus of PhenoPlot is to allow for natural
data mapping by selecting graphic features that resemble data
attributes. For instance, the extent that a jagged border around the
cell ellipse can be used to represent the irregularity of cell shape,
and the proportion of “x” symbols filling the cell ellipse can be
mapped to endosome abundance. However, the shape
configuration in PhenoPlot is limited to two ellipse-shaped
objects and the feature mapping is hard-coded which does not
accommodate the diversity of biomedical images data.

To support knowledge discovery tasks from microscopy data,
we propose a new framework for creating glyph-based
representations by combining geometrical shapes that can
systematically encode several predefined visual elements. We
implemented this framework as a user-friendly web interface
that can automatically and swiftly map data to the created glyph
representations. To our knowledge, ShapoGraphy is the first
method that allows creating new glyph-based visualisation by
combining different shaped objects and custom mapping of their
properties, such as colour, symbols, stroke, and dimensions, to
data attributes. The user can choose from a basic set of shapes or

draw their own. The effectiveness and utility of ShapoGraphy are
illustrated by using various image datasets where we show that it
facilitates the understanding of cellular phenotypes and
interactive exploration of the data. This includes multiplexed
image data where single cell activities of tens of proteins are
measured simultaneously. In summary, ShapoGraphy allows the
users to construct an infinite number of glyph-based
representations in order to generate a quantitative and
intuitive visualisation to aid pattern recognition from
multiparametric data.

2 METHODS

2.1 Design and Concept of ShapoGraphy
To generate a quantitative pictorial representation of phenotypic
data we created ShapoGraphy; a user-friendly web application
(Figures 1A–D, 2A). ShapoGraphy maps data to visual
properties of shapes where multiple shapes can be combined
to define a biological structure. For example, a squared-shaped
object can be used to represent cell context, epithelial cell shape
can be represented using a square for the cell body and a circle for
the nucleus. We call such a configuration a template and provide
multiple templates to represent a variety of microscopy data. A
new template can be created by combining different shapes. The
users have the option of selecting from a collection of predefined
geometrical shapes or drawing their own. For example, the user
can draw a cell or organ shape. The objects can be positioned
relative to each other to create the desired structure (Figure 1D).
ShapoGraphy is highly customisable where the property of any
object in the template, such as colour, size or opacity, can be
changed.

We developed various encodings that allow mapping
continuous quantitative data to shapes by using different
visual elements (Figure 1C). These include dimensions, size,
and colour that are commonly used for visualising data. For
the fill gradient element, we employed well-established colour
maps from ColorBrewer (Brewer, 2022). We have previously
proposed novel visual elements, such as partial overlaying the
object outline or filling the object with symbols proportional to
the variable value (Sailem et al., 2015). We introduce new features
in ShapoGraphy, such as the mesh density (horizontal, vertical or
grid), opacity, and rotation angle (Figure 1C). The use of various
glyph shapes, positions and visual elements allows designing
abstract and intuitive representations of a broad range of
structures investigated in biomedical imaging to assist in
understanding, summarising, and communicating results
(Figure 1D). This type of design gives the user high flexibility
when it comes to constructing new visual encodings that are more
intuitive and engaging.

2.2 ShapoGraphy User Interface
We adopted a modular design that resembles other graphic
design software such as Adobe Illustrator. Data import, saving
results, figure export and other auxiliary functionalities such as
viewing the data in a heat map or t-SNE plots are available from
the top menu (Figure 2). Once a dataset is uploaded, the user can
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add various shapes from the left menu. This includes drawing a
custom shape using the “draw shape” icon which opens a small
canvas that the user can draw on. For this option, the user needs
to draw the shape in one stroke as many elements, such as border
symbols or overlay, will be mapped to the object outline. A list of
the added shapes will appear on the right menu. The user can
modify the name of each object using the pencil icon at the
bottom of the objects list so that they can be easily identified. The
user can also duplicate an object which can be useful to generate a
new object with exact feature mapping or when a custom shape
is used. The objects are laid on top of each other as layers.
The object layer order can be modified using the upward and
downward arrows on the left of the object name. For example,
the nucleus should be positioned after the cell object, as it will be
concealed otherwise. The object location can be changed from the
Global Features sub-menu or by dragging and dropping the
object in the canvas.

For each object, we recommend selecting visual channels in
such a way that they metaphorically resemble the measured
concepts. Different symbols can also be used to distinguish
different variables. The user can customise the visual
appearance of these channels and the variables that are bound

to them from the Data Mapping sub-menu. For example, for
“Symbol filling” or “Border symbol” elements, the user can
choose from the following symbols: {✕, *, -, •, □, ▟} and
specify their colour and size (Table 1). For the Mesh element,
the user can choose vertical, horizontal, radial, grid-like or
randomly oriented mesh (Figure 1C). The user can also
specify the stroke size of the mesh and the colour of the mesh
lines.

To facilitate the exploration of design space in ShapoGraphy,
we offer a hide/show functionality of each of the objects or data-
symbol mappings through the eye icon on the left of each object
or element. We found this functionality very useful when
assessing interactions between objects, decluttering the
representation or determining relevant features.

On the right menu, there are also options for data
normalisation which is discussed in Section 2.4 and positional
mapping of Shape Glyphs in 2D dimensional space.

We employ pagination to deal with a large number of data
points. The user has the option to display more objects on the
same page or browse them in multiple pages. This can be useful if
combined with sorting functionality in the Positional Mapping
sub-menu.

FIGURE 1 | ShapoGraphy provides a highly flexible framework for creating glyph-based visualisations. (A) Example of object shapes that can be created using
Shapography. (B) Shapes can be combined to create structures that resemble the measured phenomena. (C) Various visual elements are defined for each object and
can be selected by the user to encode several variables. (D) An example of how objects can be combined to represent a wide range of phenotypic information.
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2.3 Legend
The legend can be viewed from the topmenu. Creating a legend for
the resulting composite glyph can be challenging as we do not
know in advance which objects or elements will be used and how
they will overlap. We therefore employed a simple object-oriented
strategy where we plot each object separately and automatically
determine non-overlapping locations to label the used visual
elements (Figure 2B). Long variable names are truncated and
are displayed as a tooltip if the user hovers over them. An
alternative option for generating a legend is manual labelling of
one of the generated Glyph Shapes as we did for Figures 3, 4.

2.4 Data Normalisation
Like heat maps and other glyph-based approaches, our method
requires normalising the data between 0 and 1 so they are mapped
to the same scale (Sailem et al., 2015). If the uploaded data is not
normalised, then it is automatically scaled. We note that some
variables can be related (represent the same scale). For example, if
the width and length of an object were scaled independently, their
relative ratio will not provide a faithful representation of the

actual data. To tackle this problem, we introduce linked variable
functionality in the Data Normalisation sub-menu on the right.
Linked variables are mapped to the same scale. For instance, if the
length of the largest cell is 100 pixels and its width is 60 pixels,
then they will be scaled to 1 and 0.6 respectively when defined as
linked variables but to 1 and 1 when scaled independently
(assuming that this cell is also the widest cell).

2.5 Implementation
ShapoGraphy is developed using HTML5 and JavaScript. The
shapes and their customisation are implemented using paper.js
library. It is a client-side web application which means that all the
processing happens at the user end and minimal data is uploaded
to our server. This circumvents potential privacy issues.

We defined a portfolio of templates to accommodate different
data (Figures 3, 4 and Supplementary Figures S1, S2). The user
can choose an existing template to map their data or modify an
existing template by adding additional objects and changing
shape-data mapping. They can also delete or hide unwanted
objects for maximal flexibility.

FIGURE 2 | ShapoGraphy user interface. (A) ShapoGraphy allows users to interactively construct and customise their plots using a flexible graphical user interface.
The user 1) uploads the data from the file menu 2) creates objects 3) customises their properties 4) maps the selected object properties to the variables in the dataset.
Positional mapping can be used to position the created objects in a scatter plot based on selected data variables. (B) Legend is generated automatically by
ShapoGraphy where different objects are shown seperately and variables mapped to the different visual elements for each object are labelled. Objects names
chosen by the user are shown in bold. All other labels are the variable names that are mapped to the object properties or depicted marks.
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2.6 Import and Export
We offer multiple options for exporting visualisation created in
ShapoGraphy including Portable Graphics Format (PNG) or
Scalable Vector Graphic (SVG). The latter is particularly
useful if the user needs to tweak the design in a graphic
editors. The user can export their template which will be
saved as a JavaScript Object Notation (JSON) file. This can be
then imported using the “Load Project” function from the
File menu.

The File menu on top left allows the user to upload data, load
demo data or load a project (data file and previously saved
templates). If the variable names in the template and variable
names in the data file do not match, then the user can remap these
variables from the right menu.

2.7 Datasets
The datasets used in this manuscript are available as demo files
from the file menu in ShapoGraphy.

2.7.1 Wound Scratch Data
Wound scratch data was obtained from an image-based siRNA
screen measuring human dermal lymphatic endothelial cells
migration into a scratch wound created in a cell monolayer20.
Cells were imaged at 0 and 24 h following wounding at 4x
objective. Cells were detected and the wound area was
segmented using DeepScratch15. Measurements of wound size
and cell numbers at 24 h were normalised to timepoint 0 h and
represented using ShapoGraphy.

2.7.2 Multiplexed Imaging Data
Multiplexed imaging data of 2000 HeLa cells was obtained from
Gut et al. (2018) where immunofluorescence of different markers
was performed in cycles to image the subcellular localisation of 40
proteins16. Ten variables were selected to showcase ShapoGraphy.
Data was scaled and transformed using UMAP. K-means was

used to group phenotypically similar cells into six clusters. The
average of UMAP dimension 1 and 2 was calculated for each
cluster.

Three cell-shaped objects were created to represent PI3K/
AKT/mTOR pathway (pAKT, p4EBp1 and pS6, where “p” denote
protein phosphorylation) on the cell periphery as the proportion
of symbols overlayed on the object outline (Figure 4C). The grid
density in the square surrounding the cell object represents the
local cell density. The abundance of late endosomes (CAV1) was
represented as “x” symbols filling the cytosol. Golgi and
centrosome organelles were abstracted as circles with a colour
gradient reflecting their abundance. Three variables were mapped
to the circle-shaped nucleus object: the value of nuclear pore
protein (NUPS) was mapped to the border of the nucleus object,
the level of YAP transcription factor was mapped to the colour of
the nucleus object, and the abundance of cell proliferation protein
PCNA was represented as dots filling the nucleus object. The
position of each Shape Glyph is mapped to the cluster centre
using the Positional Mapping sub-menu.

3 RESULTS

3.1 Case Studies
We created various templates to represent diverse image datasets.
These include phenotypic data of breast tumours based on
METABRIC study (Curtis et al., 2012) and cell shape data
from our PhenoPlot study (Supplementary Figures S1, S2).
Here, we discuss in detail the application of ShapoGraphy to
multiplexed and wound healing data. Notably all these templates
can also be used with any numerical data.

3.1.1 Visualising Scratch Assays Data
As a first use case, we used ShapoGraphy to visualise the effect
of gene perturbations on cell migration into a wound scratch

TABLE 1 | Customisable properties of ShapoGraphy elements.

Visual element Static properties

Length No additional properties
Width No additional properties
Fill gradient Colour map
Fill symbols Symbol: { ✕, *, -, •, □, ◷}

Fill direction: left- > right, right- > left, top- > bottom, bottom- > top
Symbol colour
Symbol size

Spikes Stroke size
Spike density
Colour

Border overlay Stroke size
Stroke colour

Border symbol Symbol: { ✕, *, -, •, □, ◷}
Symbol colour
Symbol Size

Mesh Orientation {vertical, horizontal, radial, grid, random}
Colour
Stroke size

Rotation No additional properties
Opacity No additional properties
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(Javer et al., 2020). In this dataset, the closure of an artificially
made wound by human lymphatic endothelial cells is
measured over a period of 24 h to determine how different
gene knockdowns, using siRNA, affect cell migration
(Figure 3A). In addition to the change in wound area, we
measured the number and area of cells as they can affect the
final wound area.

To represent this data using ShapoGraphy, the well and the
wound were depicted as rectangles mimicking the shape of the

actual measured data. We chose to represent the cell area using
the colour of the well object because it applies to most of the cells.
We mapped the density of the cells to a mesh density element
because they represent a similar concept, i.e., density, and
therefore are easier to link. The height of the wound object
represents the change in wound area which naturally
corresponds to the healing process where cells migrate
vertically to close the created wound (Figure 3B). Compared
to a bar chart (Figure 3C), such representation reveals more

FIGURE 3 | Using ShapoGraphy to represent wound healing data. (A) Image data capturing the effect of various gene depletions on human lymphatic endothelial
cells ability to migrate into scratch wounds [time-point 0h (t0) and 24h (t24)]. (B) Intuitive representation of wound area and cell number measurements using
ShapoGraphy based on data in (A). The outer square represents the well where lighter red hues indicate lower cell area while higher red hues indicate higher cell area. Cell
number is mapped to grid density. The height of the inner square represents the normalised change in wound area. (C)Representation of the same data in (B) using
a bar chart where numerical data are mapped to the bars’ length
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readily that depletion of AKT2 and PLCG1 genes results in a
similar wound area and that AKT2 knockdown results in lower
cell density and higher cell area than PLCG1. Therefore, their
effects on cell motility are not equal. Similarly, depleting CDH5
and CDC42 significantly affects wound area, but CDH5
knockdown results in significantly lower cell number and very
large cells suggesting that these two genes affect cell motility
through different mechanisms (Figure 3B). This pattern is
difficult to discern from raw images as wound measurements
need to be normalised to the initial timepoint (0 h) (Figure 3A).
A bar chart of these three variables, on the other hand, does not
allow for metaphoric association between these variables making
it difficult to identify the relationships between them. These
results show that ShapoGraphy allows identifying interactions
between variables as it provides a more intuitive representation
which supports making scientific conclusions from complex
phenotypic data.

3.1.2 Visualisation of Multiplexed Imaging Data
Next, ShapoGraphy was used to obtain high data density of single
cell phenotypes in multivariate multiplexed imaging data
measuring 40 markers (Gut et al., 2018). Multiplexed imaging
allows simultaneous imaging of spatial protein activities,
subcellular organisation as well as various cell identities
(Zhang et al., 2013). Since tens of markers can be imaged,
colour coding of the different proteins is no longer useful to
visualise this information (Walter et al., 2010). To study the
phenotypic heterogeneity of cancer HeLa cells, we analysed data
from 2000 cells that were stained with markers highlighting
various cellular organelles and signalling components
including the AKT pathway (Methods). Using k-means and
UMAP cells could be clustered to characterise different
subpopulations but the specifics of the underlying phenotypic
differences between the clusters could not be obtained (Figure 4A
and Methods). Heat maps allow studying all the measured

FIGURE 4 | ShapoGraphy allows interpreting multiplexed single-cell data. (A) UMAP projection of 2000 single HeLa cells. (B) Representation of average values of
40 markers as well as local cell density for each identified cluster using a heat map. (C)Representation of selected features fromC using ShapoGraphy where the shapes
graphs are placed at centre of the cluster.
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markers individually but require many cognitive calculations
such as searching for the different variables and remembering
their values to compare them (Figure 4B). This makes them
challenging to interpret.

In order to facilitate the understanding of single cell
phenotypes that are derived from multiplexed data,
ShapoGraphy was used to design a template where the visual
elements resemble the represented data attributes. We

TABLE 2 | List of design decisions (objects and visual elements) used in Figure 3.

Design Description

For intuitive mapping of multiplexed image data, we used different objects to create a hierarchy and represent features
associated with different cellular compartments
Golgi (GM130) Centrosomes (Pericentrin)

Signalling of AKT is represented as symbols overlayed on the cell object outline. Three cell-shaped objects are layered to
represent additional information at the cell periphery. This configuration allows representing the signalling cascade pAKT ->
p4EBP1 and pS6. Different colours are used for these different proteins so they can be distinguished easily

Endosome abundance, based on CAV1, is represented as symbols filling the inner cell-shaped object. This visual channel is
well-suited to represent the punctate distribution of endosomes in the cell
Caveolin (CAV1)

Multiple variables are mapped to the nucleus object. The border symbol (red dots overlying nucleus glyph) provides a faithful
representation of nuclear pore protein (NUPS) that localises to the nucleus membrane. The nucleus colour is used to
represent the level of YAP transcription factor. While the cell proliferation protein PCNA is represented using symbol filling
due to its punctate appearance (blue dots)
NUPS PCNA YAP

We used colour gradient in a manner similar to a heat map to represent the value of proteins that localise to different
organelles. For example, YAP transcription factor is mapped to the colour of the nucleus glyph and Pericentrin is mapped to
the colour of the centrosome glyph where they localise. The same colour map is used to enable comparison. The colour
provides a good choice when the objects are overlapping, and part of the object is concealed as it is uniform throughout the
object
YAP (nuclear) Golgi (GM130) Centrosomes
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combined several objects to create a structure that mimics the
measured data and depicts the hierarchical nature of bioimage
data (Table 2). For example, as cells are composed of multiple
organelles, we used different circled objects inside the cell object
to represent data of proteins localised to different organelles:
nucleus, Golgi and centrosomes. On the cell object, we
represented the AKT signalling cascade as consecutive layers
on the cell periphery. We created a square around the cell object
to represent its context based on local cell density. As in the first
use case, we mapped the cell density to the mesh density as they
can be easily associated. Symbol filling is well suited for
representing endosomal abundance because of its punctate
distribution in the cytosol. The rationale for the different
design choices is explained in Table 2. This abstract
representation of different components in the cell and their
spatial arrangement provides a more intuitive representation
where the various elements in the Shape Glyph can be easily
linked to the measured variables.

A major advantage of using glyph representations is that the
quantitative information is self-contained and therefore the
position channel can be used to visualise additional
dimensions. We positioned the composite glyphs based on the
centre of identified clusters in the reduced UMAP space to help
sorting these composite glyphs and comparing cluster
phenotypes (Methods).

Figure 4C shows that Cluster 2, 4, and 6 on the right have high
cell density (grid density) and low late endosome abundance (x
symbols filling the cytosol). Cluster 6 and 4 are highly similar, but
Cluster 6 has the highest pS6 levels across all clusters, while
Cluster 2 has very high pAKT and p4EBp1, centrosomes
(Pericentrin), nuclear pore proteins (NUPS), but low YAP
values. Cluster 3 has also high pAKT and p4EBp1 like Cluster
2 but has lower cell density and the highest endosome abundance.
Discussing our results with biologists, they found that these
representations help them understand their data better as it is
easier to identify and relate the differences between clusters to
image data. In comparison, Figure 4B depicts the same
information in a heat map which can complement our Shape
Glyphs but does not help the user to build a mental picture of the
data. Therefore, ShapoGraphy provides a more expressive
representation of phenotypic classes and their biological
relevance based on high dimensional single-cell data which
allows scientists to uncover and study complex patterns and
relationships in the data.

3.2 Guidelines for Designing Glyph-Based
Representations Using ShapoGraphy
We reflect on our learning from developing various use cases
using ShapoGraphy and our discussions with potential users.
First, while the motivation of combining different objects is to
create semantically relevant representations, it is possible that
some object and/or element combinations can be perceived
differently from what is intended or can result in undesirable
properties. For instance, using a mesh element on a hierarchy of
circles can create geometric patterns (Supplementary Figure S4).
Here we propose that ShapoGraphy provides a fast approach for

assessing such interactions. Moreover, it allows experimenting
with various designs that can inspire new visual representations.

We noticed that when creating composite glyphs, users tried to
infer meaning from aspects of the element configuration which were
notmapped to data as the user was looking for patterns in the plotted
glyphs. This was the case when using themesh element with random
orientation. This problem did not arise when the user learned that
this is a static configuration. As object colour can be either statically
defined or dynamically mapped to the variable, we recommend
using it consistently for all objects. For example, the coloured objects
in Figure 4C (Golgi, centrosome, and nucleus) reflect the variable
value and the same colour is used otherwise. We also experimented
with assigning the same colour for all symbols/elements, however
some users found this representation difficult to scan and using
different colours helped the user in distinguishing and scanning
these distinct elements (Supplementary Figure S3). Continuing the
discussion of colour assignment, we found that using the same
colour map for “Fill gradient” element is important to make
comparisons across different objects easier.

Consideration should be given to the number of features when
using Shape Glyphs as our workingmental memory is limited and
can handle only 5–10 variables at a time (Cairo, 2013). Selection
of important features can be achieved through interactive
exploration in ShapoGraphy and using the hide/show
functionality to identify the most relevant information to be
communicated to the reader.

Object occlusion is another aspect that needs to be considered
when designing Shape Glyphs where objects are overlayed on top
of each other or partially overlap. Visual elements such as colour
and mesh density are less affected when part of the object is
occluded. For example, the nucleus object lies on the top and
occlude part of the Golgi and centrosome objects in Figure 4C,
but does not affect the perceived quantitative mapping as colour
is uniform throughout the object.

4 DISCUSSION

The human brain perceives information by converting visual
stimuli to symbolic representations that are then interpreted
based on our memories and previous knowledge.
Visualisation approaches help our brain create a mental
visual image of quantitative data in order to recognise
patterns and identify interesting relationships that might be
missed otherwise (Tufte, 2001). ShapoGraphy is a new
visualisation approach that allows creating bespoke glyph-
based representations by constructing composite glyphs that
combine different shapes and symbols, each of which encodes
multiple variables. To our knowledge, such an approach to
data visualisation has not been explicitly proposed before and
no tool is available to create such graphical representations
automatically.

The main advantage of ShapoGraphy is that it enables the
creation of a metaphoric quantitative representation of the data to
aid the reader in interpreting, understanding, and
communicating scientific results. This makes it perfectly suited
for bioimages because of the structural and hierarchical nature of
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these datasets. Nonetheless, ShapoGraphy is a very versatile tool
and can be applied to any numerical data such as single cell RNA
sequencing, proteomics, or non biological data. Another
advantage of Shape Glyphs is that such pictorial
representations can attract more attention from the reader as
they stimulate more cognitive activity (Borgo et al., 2013). This
can be beneficial when communicating data with a broad
audience. Therefore, ShapoGraphy serves as a general-purpose
methodology for creating more engaging and intuitive graphic
representations.

ShapoGraphy complements existing visualisation methods
such as heat maps, t-SNE and UMAPs. While the latter
approaches provide a global picture of the major trends or
structure in the data, ShapoGraphy allows a more detailed
understanding of multiparametric phenotypes. It aims to
represent quantitative data so the user can compare different
variable values relative to each other, rather than generating an
actual picture of the image data. Such distinction is necessary as
image data are often normalised which make interpreting raw
image data more challenging and subjective. Currently, our
approach is best suited for summarising and providing higher
information density of major phenotypes in the data, rather than
individual data points. This is because the pictorial nature of the
generated representations requires high resolution and more
space. These phenotypes can be identified using clustering or
classification tasks. A potential future direction is to extend our
approach to gain multi-level summaries of the data enabling
effective visualisation of a larger number of data points.

The high flexibility offered by ShapoGraphy to combine and
position different Shape Glyphs and symbols, including hand-
drawn shapes, provides an unprecedented opportunity to easily
evaluate various designs. This is an important distinction from
glyph-based visualisation methods that have been developed for
medical images as they provide a very bespoke representation for
the problem at hand making them hard to transfer to other types
of images (Ropinski et al., 2011). Notably, it can take time to learn
new visual encodings representing specific or complex domain
knowledge (Borgo et al., 2013). Once learned, such glyph-based
visualisations can become more effective for specialised users.
Many examples can be found in the genomics domain including
representations of gene variants or ideograms of chromosome
structure (Wolfe et al., 2013; L’Yi et al., 2022). Redundant or
alternative representations, that are more familiar to the user, can
be used in parallel with ShapoGraphy when introducing new
visual designs (Cairo, 2013).

An important future direction is to perform a user study for
evaluating various aspects of glyph-based designs generated by
ShapoGraphy. Given the infinite number of designs that can be
generated using ShapoGraphy, such a study should be carefully
planned and focused on the most recurring element combinations
or designs that are most well-received in the community. Moreover,
this assessment should align well with the purpose of the visualisation
such as facilitating the discovery of complex patterns, communicating
with a broad audience, interpretability, or effectiveness. The user study
could advance our understanding of how various elements interact
with each other and might highlight potential perturbations that can

be programmatically employed to improve future versions of
ShapoGraphy. For example, multilevel glyphs can be used to
minimise occlusion (Müller et al., 2014) or sequential highlighting
of certain glyph elements selected by the user. This could also inform
practices on visual elements that are most effective when combined
and which combinations should be avoided which ultimately could
accelerate the development of glyph-based visualisations.

Another interesting extension of ShapoGraphy would be the
automation of the mapping between numerical features and
shapes. One way to achieve that is to adopt a generative approach
where multiple glyph-variable mappings are proposed for the user to
choose from. Such an approach could inspire visualisation design
(Brehmer et al., 2022). This would greatly improve the user
experience as currently, the user needs to map features one by
one. We tackle this limitation by enabling users to save their
mapping along with their created composite glyph configuration
as a JSON file for later use.We also offer a range of templates that can
be directly used or adjusted by the user.

To conclude, ShapoGraphy can be used in all steps of data
analysis to create intuitive pictorial representations of any data
type. It can be used to summarise analysis results obtained
from clustering or classification approaches, as well as an
educational tool. We believe that the unique flexibility
offered by ShapoGraphy will expand our visual
vocabularies, accelerate the evolution of glyph-based
visualisation, inspire creative design, and stimulate the
development of new visual encoding schemas. Most
importantly, ShapoGraphy is not restricted to image data
but can be applied to any numerical data.
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