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Editorial on the Research Topic

Bio A.I. - from embodied cognition to enactive robotics

Introduction

“The Brain—is wider than the Sky—

For—put them side by side—

The one the other will contain

With ease—and You—beside—

The Brain is deeper than the sea—

For—hold them—Blue to Blue—

The one the other will absorb—

As Sponges—Buckets—do—

The Brain is just the weight of God—

For—Heft them—Pound for Pound—

And they will differ—if they do—

As Syllable from Sound—”

-Emily Dickinson

If the connections of the human brain were disentangled and placed into a sequence,

they would indeed be wider than the sky, being hundreds of kilometers long and likely

capable of stretching to the moon and back. If we consider the kinds of intelligence generated

by brain-body-environment systems, then such emergent minds may be vaster still in

terms of their complex combinatorics, with the pinnacle of expressive power potentially

being found in language with its “infinite use of finite means”. The field of artificial

intelligence and machine learning (AI/ML) seeks to reproduce the powers of biological

learners, where we struggle to recapitulate the ways in which even supposedly simple

animals demonstrate the ability to respond flexibly to a wide range of situations. In this

Research Topic, we were grateful to receive a diverse assortment of articles that address

ways in which principles of enactivism and embodied cognition might allow for advances
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in AI/ML, potentially without requiring explicit representations,

pre-specified algorithms, or centralized control structures. In what

follows, we briefly summarize these contributions, highlight some

potential implications, and end with a discussion of potential ways

forward for AI/ML and cognitive science more generally.

Summary of contributions and
commentary

Please note that while we use the author’s own words where

possible, we strongly encourage interested readers to reference the

original articles.

In “The acquisition of culturally patterned attention styles under

active inference”, Constant et al. present simulations of visual

foraging based on active inference, demonstrating the acquisition of

attention styles patterned according to cultural artifacts that drive

perception, action, and learning. This paper compellingly shows

how material culture may both drive and be driven by human

thought and by the building and rebuilding of patterns of attention.

In “Enacting plant-inspired robotics”, Lee and Calvo suggest

plants as a holistic source of inspiration for soft robotics

in terms of their non-centralized, modular architectures

and highly plastic phenotypes. In contrast with notions of

autonomy based on the independent operability of systems over

an observation window, plants and other living organisms

exhibit a stronger form of autonomous functioning in

terms of needing to support self-production dynamics that

create distinctions between themselves and the “domain of

interactions that maintain the conditions of viability for the

system”. They further suggest that the field of “growbots”

could be advanced if those systems took a more active

role in acquiring sources of matter and energy for the sake

of self-preservation.

In “Carving up participation: sense-making and sociomorphing

for artificial minds”, Zebrowski and McGraw argue that properly

understanding social cognition requires a greater appreciation

of the nature of interactions involving participatory sense-

making (PSM). “Sociomorphing” is proposed as a means

of distinguishing between living sense-makers and artificial

systems, potentially allowing for the gradual incorporation of

AIs into contexts involving initially asymmetric degrees of

sociality. PSM and sociomorphing are suggested to provide

not only a basis for social robotics but also a potentially

robust framework for developing increasingly advanced AIs with

general intelligence.

In “Embodied object representation learning and recognition”,

Van de Maele et al. show how robotics can be informed by

considering the ways in which biological agents achieve scene

understanding for adaptive object manipulation and navigation

capabilities by leveraging active interactions with the world from

their first encounters with novel situations. Taking inspiration

from theories of neuroscience in which neocortical columns

build predictive models about objects within allocentric reference

frames, the authors introduce a Cortical Column Network (CCN)

architecture. In CCNs, each object category is represented in

its own reference frame by learning a generative model over

expected/predicted transformations in pixel space, given actions.

CCN ensembles vote on their respective beliefs regarding candidate

object categories, which results in the creation of novel CCNs

when classification likelihoods are too low. This architecture is

further validated in simulation environments, with classification

improving as agents gather more evidence (with self-supervised

active learning) and choose actions in ways that afford reaching

preferred observations/destinations.

In “Grounding context in embodied cognitive robotics”,

Valenzo et al. describe how autonomous machines may be

augmented with greater behavioral flexibility by providing

systems with a “global context” that integrates agent-related,

environmental, and task-related information. Through the

interaction of these core elements, agents are capable of (1)

selecting self-relevant tasks on the basis of current and anticipated

future needs (for learning and mastering contingencies), (2)

performing tasks with continuous performance monitoring, and

(3) abandoning unsuccessful tasks based on overall prediction

errors during situated action cycles. With respect to prediction-

error monitoring, the rate of reduction is taken as an index of

overall performance success, evoking emotions that both function

as driving elements for autonomous behavior and are also shaped

by the interactions of core elements of global context processing.

In “The problem of meaning: the free energy principle and

artificial agency”, Kiverstein et al. describe how biological agents

solve the “problem of meaning”, by acting in ways that express

sensitivity to context-dependent relevance. Drawing on common

principles of mind-life continuity and enactivist cognitive science,

the authors argue that robustly autonomous agents require

stable, self-sustaining patterns of sensorimotor interaction to

ground values, norms, and goals as they encounter different

(and differently) meaningful environments. The authors further

discuss relationships between enactivism and the FEP, including the

challenge that these perspectives are fundamentally incompatible,

with biological systems exhibiting historical path-dependent

learning but with free-energy-minimizing agents severing this

historicity. Such FEP agents also show a lack of the “interactional

asymmetry” present in enactivist accounts of autonomy. In

addition to addressing these challenges, it is suggested that rather

than fundamental incompatibility, the FEP needs enactivism for

the problem of meaning, and enactivism needs the FEP for

precise formal modeling of the necessary constituent factors for

realizing agency.

In “Avoiding catastrophe: active dendrites enable multi-

task learning in dynamic environments”, Iyer et al. introduce

a neural network architecture for enhancing the embodied

systems to operate in dynamic environments while flexibly

adapting to changing task contexts and continuously learning

without catastrophic forgetting/interference. This is achieved

by incorporating active dendrites and sparsity-promoting local

inhibitory systems, so dynamically constraining and routing

information in a context-specific manner. The architecture is

tested on several benchmarks, including amulti-task reinforcement

learning environment in which agents must solve a variety of

manipulation tasks (cf. meta-learning), in addition to a continual

learning setup in which task predictions change over the course

of training (cf. reversal learning). In both simulations, the

architecture developed overlapping yet distinct sparse subnetworks

that mediated the fluid adaptation to multiple tasks with
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minimal forgetting, providing (for the first time) a demonstration

of high performance with respect to both multitasking and

continual learning.

In “Social neuroAI: social interaction as the “dark matter” of

AI”, Bolotta and Dumas introduce a three-axis framework for

social learning in biologically-inspired AI, informed by FEP-AI:

(1) brain-inspired models of cognitive architectures, such as global

workspace and attention schema theories, that bridge individual

and social intelligence; (2) dynamical systems perspectives for

handling the inherently time-dependent nature of cognition; (3)

embodiment as a source of sophisticated communicative signals.

These social interactions are essential elements of advanced

cognitive ability yet remain under-explored in AI, constituting the

“darkmatter” with respect to attempts to understand human(imal)-

like intelligence. In light of this gap in our understanding, the

authors review the role of social learning in cognitive development

and the emerging field of “Social NeuroAI.”

In “Goal-oriented behavior with a habit-based adaptive

sensorimotor map network”, Woolford and Egbert present a

habit-based robot controller model that draws on enactivist

principles to realize agency via an adaptive sensorimotor map

(ASM) network architecture. ASM networks provide platforms

for experimental investigation that combine (1) mechanisms for

generating continuous motor activity as a function of historical

trajectories and (2) evaluative mechanisms that reinforce or

weaken those trajectories as a function of their support for the

structure of higher-order sensorimotor coordination. The authors

deploy these adaptive networks in a minimal cognition task

involving object discrimination, demonstrating how an individual

robot could learn through a combination of exploratory/random

movements and repetition of successful historical trajectories

of sensorimotor coordination (cf. motor babbling). These

robots display learning without explicit representational

mechanisms or extraneous fitness variables but rather adapt

according to the internal requirements of the action-generating

mechanisms themselves.

In “Embodied intelligence: smooth coping in the learning

intelligent decision agent cognitive architecture”, Kronsted et al.

describe how skillful actions may become habituated and ingrained

through experience, thereby placing less stress on cognitive load

relative to considered and deliberative thought and action (e.g.,

walking, driving, skiing, playing music, short-order cooking).

Smooth coping behaviors appear to be automatized in that they

are rapid and lacking in reflection, corresponding to Hurbert

Dreyfus’ description of Heideggerian phenomenology involving

“mindless” absorption in action and being in a state of flow.

However, pragmatists such as John Dewey et al. suggest that

intelligent flexibility is built into smooth coping in ways that make

it distinct from automatization. The authors detail a conceptual

model of smooth coping using the Learning Intelligent Decision

Agent (LIDA) system, informed by the Global Workspace Theory

of Consciousness, and argue that sequences of automatized

actions are intermittently interspersed with skillful and flexible

adjustment by consciously-mediated action selection (via dorsal

stream processes). An Automatized Action Selection sub-module

is introduced into LIDA to demonstrate these principles within

a hybrid architecture that allows for a synergistic combination of

both enactivist couplings and explicit representation for the sake of

more skillful conscious control of behavior.

In “Situated neural representations: solving the problems of

content”, Piccinini argues that situated approaches to mind based

on embodiment, embedding, enaction, and affect (with extension

not being relevant to their discussion) are deeply intertwined

with neural representation, with such a computational approach

“[requiring] embodiment, embedding, enaction, and affect at its

very core.” Additionally, situatedness is suggested to be necessary

to describe the adaptive shaping of computations in ways that

(1) construct representations with original semantic content, (2)

automatically coordinate neural vehicles with representational

content, (3) allow content to be causally efficacious, (4) allow

content to be sufficiently determinate to be meaningful/useful to

systems, (5) allow representation of distal stimuli, and (6) allow for

the possibility of misrepresentation.

In “An enactivist-inspired mathematical model of cognition”,

Weinstein et al. outline an enactivist-compliant mathematical

framework for natural and artificial cognitive systems that do

not attribute contentful symbolic representations to agents but

instead model nervous systems, bodies, and environments as “an

inseparable part of a greater totality”. Sensorimotor systems are

considered to be special cases of (potentially labeled) “transition

systems” with connections to deterministic automata. Minimal

sufficient requirements are also suggested for the property of

“sufficiency”, including optimal attunement of an organism to its

environment with sufficient history information spaces.

In “Using enactive robotics to think outside of the problem-

solving box: how sensorimotor contingencies constrain the forms

of emergent autonomous habits”, Egbert and Barandiaran suggest

that AI ought to take inspiration from the “precarious, self-

maintaining organization of living systems”. They demonstrate

how robots controlled by an iterative Deformable Sensorimotor

Medium can realize the spontaneous emergence of an organized

ecology of habits capable of re-enacting adaptive behaviors, with

habits formed within modalities having relatively greater similarity

to habits across modalities (similar to observations for biological

systems). These findings are further discussed in terms of their

relevance to sensorimotor contingency theory, adaptationist and

structuralist explanations in biology, and the potential limitations

of functionalist problem-solving approaches to AI.

In “Reach space analysis of baseline differential extrinsic

plasticity [(DEP)] control”, Birrell et al. introduce a learning

rule studied in the context of goal-free simulated agents that

produce environmentally aware behaviors. They further extend

this mechanism to intentional behavior to determine whether

“short-circuited DEP” can generate desired trajectories in a robotic

arm via simple open-loop control, with transient and limit cycle

dynamics explored in experiments involving target reaching and

circular motions.

In “Resonance as a design strategy for AI and social

robots”, Lomas et al. explore the relationships between the

physical mechanisms of resonance and human experience, with

consideration for enhancing those (potentially highly impactful)

experiences within human-robot interactions. The authors discuss

resonance as a cultural and scientific metaphor and review

“sympathetic resonance” as a physical mechanism (including
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synchronization and rhythmic entrainment) and “design strategy”

for shaping interactions between human and non-human systems.

With “Self-concern across scales: a biologically inspired direction

for embodied artificial intelligence”, Sims focuses on a foundation

for intelligence for all biological systems that reflects the existential

task of continued viability. Self-concern is introduced as “a property

of a complex system that describes its tendency to bring about

states that are compatible with its continued self-maintenance”, and

a potential means of recapitulating the power (and principles) of

human-like intelligence in artificial systems.

With “Mind the matter: active matter, soft robotics, and the

making of bio-inspired artificial intelligence”, Harrison et al. argue

for limitations in the realizability of cognitive phenomena such as

memory, learning, goal-directedness, and decision-making. That

is, the authors describe how cognition is deeply intertwined with

its materiality and corporeality and suggest that progress in AI

may require treating the underlying material, living processes as

more than mere “hardware” that can be abstracted over without

consideration for the soft, active, and plastic details of the particular

mechanistic realizers. In short, “the matter matters for cognitive

form and function.” With “multiple realisability 2.0”, materiality

enables, mediates, and constrains cognition, with precarious

conditions for existence being essential for understanding how

autonomous systems value, engage, and interact with their

environments with a goal-directedness grounded in existential

needs of survival, persistence, and reproduction.

In “Reclaiming saliency: rhythmic precision-modulated action

and perception”, Anil Meera et al. characterize the nature of visual

attention and saliency and how standard accounts based on mutual

information between current visual information and estimated

causes fail to consider the circular causality linking perception

and action (including decisions as to where to sample next, given

current beliefs). From this perspective, salience is defined as an

active inferential process that relies on the basic principles of

uncertainty minimization and rhythmic scheduling and attention:

precision control, or the confidence with which beliefs can be

updated, given sampled sense data. Alternatively phrased, salience

is related to uncertainty minimization, underwriting the selection

of future sense data, and attention is related to rhythmic precision

modulation. Numerical experiments are provided to demonstrate

advantages for state and noise estimation, as well as system

identification and action selection for informative path planning.

In “Embodiment enables non-predictive ways of coping with

self-caused sensory stimuli”, Garner and Egbert demonstrate how

sensory attenuation for self- (relative to externally-) caused stimuli

can be explained enactively. This is contrasted with classical

explanations of these phenomena based on efference copies,

wherein motor commands are accompanied by copies of signals

that predict the likely sensory consequences of that activity,

which are then subtracted from the actual sensory input. Genetic

algorithms are used in this work to investigate when non-

predictive solutions might be viable, which in the simple systems

tested involved modifying paper to shape or avoid self-caused

sensory inputs (rather than predicting and filtering them out) and

sometimes leveraging these self-caused inputs for greater control,

all without the need for an explicit internal model.

In “Am I (Deep) Blue? Music-making AI and emotional

awareness”, Novelli and Proksch provide a review of the

applications of AI to creative and emotional artistic endeavors,

focusing on musical composition. The authors suggest limitations

of systems rooted in current AIs that lack “thoroughly embodied,

interoceptive processes associated with the emotional component

of music perception and production”. The authors’ review presents

attempts to combine the impressive power of modern generative

models with more human-like emotional/interoceptive processing.

In “Connecting the free energy principle with quantum

cognition”, Gunji et al. outline a potential conflict between FEP-

AI and quantum cognition. While free energy minimization leads

to a Boolean lattice of classical logical propositions, quantum

cognition leads to an orthomodular lattice of quantum logical

propositions. Excess Bayesian inference is introduced, with binary

relations transformed from a distribution of the joint probabilities

via rough-set lattice techniques.

In “Small steps for mankind: modeling the emergence of

cumulative culture from joint active inference communication”,

Kastel et al. provide a compelling and testable deep active

inference formulation of social behavior and simulations of

cumulative culture. Cultural transmission is cast as a bi-directional

communication process that induces particular convergences (via

generalized synchrony) between the belief states of interlocutors.

Social/cultural exchange is further cast as a process of active

inference, equipping agents with choices regarding who to

engage with as communication partners, thus inducing trade-offs

between confirmation of current beliefs and exploration of social

environments. Cumulative culture emerges from the dynamics

of belief updating, with equilibria manifesting as segregation

into groups whose belief systems are actively sustained through

selective, uncertainty-minimizing, dyadic exchanges. Finally, the

nature(s) of these emergent equilibria crucially depend on the

precision-weighting of each individual’s generative model of their

encultured niches.

Conclusion

Across these contributions, we can see a broad range of views

on what it means for a system to be biologically inspired, many of

which are still neglected in machine learning. For example, people

are increasingly interested in enhancing large language models

with “multimodality” and potential grounding via simulation

environments (Driess et al., 2023; Yin et al., 2023). However,

approaches that attempt to take on enactivist insights are rare,

with business-as-usual oftentimes assuming that we might be able

to rely on achieving new emergent capabilities with sufficient

scaling (Silver et al., 2021). This is in contrast to what might

be suggested from fields such as developmental social robotics,

which emphasize the conditions for bootstrapping (and grounding)

robust and flexibly generative models of systems that “grasp” an

organism’smeaningful interactions with the environment (Dreyfus,

2007; Tani, 2016; Kolchinsky andWolpert, 2018; Linson et al., 2018;

Bisk et al., 2020; Safron, 20211; Hipólito et al., 2023).

From a radically embodied perspective, one might argue that

the entire field of cognitivist deep learning is on shaky foundations

by virtue of needlessly appealing to the literal sense of the mind-

machine metaphor, i.e. to minds as literal information processors
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(van Gelder, 1990; Van Gelder, 1995; Hutto and Hipólito, 2021;

Beckmann et al., 2023). In their view, because computation and

information processes cannot be found “in the wild” independent

of human (scientific) practices, the literal sense of the analogy

pushes toward a rudimentary view of natural intelligence (even if

operationally useful in some circumstances). However, we believe

that a more ecumenical approach may be called for if we relax some

of the usual assumptions that accompany these more cognitivist

notions, which may perhaps be made more powerful (and flexible)

when re-represented in more enactivist terms. For example, one

may think of a diverse range of scientific representations for

understanding biological intelligence without necessarily endorsing

that the target being represented entails the ontological properties

of the model (Candadai and Izquierdo, 2020; Constant et al., 2020).

These include (but are not limited to) the following models (of

representation/modeling-like phenomena):

1. Implicit “representation” and generalized stigmergic auto-

encoding of action-perception cycles via distributed attractor

dynamics over likely patterns of enaction with information

continuously with/offloaded into the environment in an

extended mind sense (Clark and Chalmers, 1998; Pfeifer and

Bongard, 2006; Heylighen, 2016).

2. Partially disentangled features in shared latent workspaces

(Bengio, 2017; Thomas et al., 2017, 2018)—possibly centered

in posteromedial and lateral parietal cortices (Safron, 2021a)—

potentially describable as reduced-dimension manifolds over

which neuronal activity evolves (Ji et al., 2023).

3. Predictive modeling of the likely homeostatic consequences

of different system-world states by subcortical structures

that ground all cognition in the preconditions for successful

life management and reproduction (Damasio, 2012; Safron,

2021b; Solms, 2021), thus coupling the individual to

phylogenetic (meta-)learning (Campbell, 2016; Ramstead

et al., 2018; Botvinick et al., 2019; Safron, 2019; Wang, 2021).

4. Predictive modeling (and thereby control) of these system-

world estimates by value-canalized striatal-cortical loops

could be understood as conditioning these percepts/concepts

on likely patterns of enaction. At hierarchically lower levels,

these could take the form of softly assembled coalitions of

forward models (cf., amortization and planning as inference)

(Botvinick and Toussaint, 2012; Kaplan and Friston, 2018).

At intermediate levels of abstraction, these could take the

form of (experienceable) patterns of embodied simulation

and the structuring of perception by relevant affordances

(Cisek, 2007). At higher levels, these could take the form

of (not directly experienceable) patterns of recurrent activity

(or reservoirs), whose bifurcations/tensors could flexibly

parameterize likely patterns of enaction with capacities for

evaluating multiple policies (Tani, 2016).

5. Re-representation of these features in the spatiotemporal

trajectories of the hippocampal/entorhinal system (Blouw

et al., 2016; Whittington et al., 2020; George et al., 2021;

Safron et al., 2021; Bengio et al., 2022; Dumont et al., 2023),

so allowing for orchestration of large-scale dynamics by likely

state transitions for the overall agentic system through time-

space, potentially affording some of the kinds of graphical

representations associated with “good-old-fashioned AI” and

symbolic cognitive science (Gentner, 2010; Crouse et al.,

2020).

6. Local objectmodels (Kosiorek et al., 2019; Van deMaele et al.),

which would be consistent with characterizations of cortical

columns as types of transformers, or Numenta’s “1000 brains

theory” (Hawkins, 2021). While it is questionable whether

every cortical column entails full allocentric object modeling

capabilities (Safron et al., 2021), this may be the case for local

“modules” that are capable of achieving sufficient degrees of

functional closure with respect to being able to inform and be

informed by action-perception cycles on the timescales of their

formation (e.g., whisker barrels, but not ocular dominance

columns). This is an example of how seemingly cognitivist

models of mental phenomena involving “representation”

may heavily depend on an understanding of enactivist

principles to accurately characterize the specific details of

the operation.

7. Re-representation of these features through

symbolic/linguistic capacities (which are themselves

realized as probable patterns of enaction for partially

expressed motor sequences/grammars), thus allowing for

cognition to be structured/stabilized/expanded according

to the combinatorics of syntactic language with its “infinite

use of finite means”. By affording multi-level recursive

self-referential self-modeling, an additional set of strange-

loop-involving (Hofstadter, 2007) virtual machines is

placed on top of “cognitive” hierarchies, thereby expanding

“cognitive light cones” to indeed be “wider than the sky.”—For

a preliminary discussion, see Friston et al. (2023).

In this non-exhaustive list of methodologies, it may be possible

to find an inclusive, potentially synergistic, and scientifically

valuable middle ground between seemingly incompatible theories

on the understanding of the mind. This effort is illustrated in

the diverse articles in this collection, ranging from discussions

of the centrality and power of morphological computation

to demonstrations of the promise of biologically-inspired

neural architectures.

It is worth noting that this more ecumenical stance still

requires criticality, as we would also caution against assuming

that adding seemingly biological features to a system will

necessarily improve its intelligent/adaptive functioning. This

cautioning may be especially timely in light of trends in

AI/ML that attempt to project future gains in performance

based on a combination of apparent “laws” of ability scaling

with computation, especially when combined with analogies

regarding human brains as “neural networks”. Of course,

brains are indeed types of neural networks, but they also

have multiple heterogeneous subsystems, which, taken together,

create a control architecture for embodied agents embedded

in environments in which they pursue valued goals, usually

developed (or trained) in the context of intelligently-structured

socioemotional learning curricula (Tomasello, 2014; Veissière

et al., 2019; Safron, 20211). As such, attempts to reduce the

sophistication of cognition to a “master algorithm” are likely

doomed to failure.
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Moreover, a substantial amount of intelligent functioning

may be realizable via the morphological “computation” enabled

by intelligently designed body plans and their physical reactive

dispositions. Indeed, this kind of “offloading” of computational

challenges onto (or into) bodies and environments is precisely

what we would expect from predictive processing systems as they

attempt to achieve adaptive functioning with maximal efficiency.

While “explaining away” prediction errors via dynamics closer

to primary modalities requires fewer neuronal transactions than

leveraging more complicated models, the energetic savings (of

minimizing cybernetic entropy) are even greater still if prediction

errors never enter nervous systems in the first place because they

have been eliminated via (en)active inference (Ramstead et al.,

2019). It follows, we believe, that the most fruitful meta-prior/over-

hypothesis for enactivism-informed cognitive science would be that

when it comes to trying to understand the sources of biological

intelligence, one should begin with observational behavior and how

cognition emerges from a system’s interaction with its context-

sensitive environment.

We are grateful to have had the opportunity to help bring

together this collection on the diverse ways in which embodiment

and environmental interactions provide foundations for cognition,

across multiple scales. While it may still be debated the precise

ways in which systems must be embodied in order to realize which

degrees (and kinds) of intelligence, we would even go so far as

to conclude with the maxim: “no body, never mind.” Or, in the

words of the great late poet Mary Oliver: “The spirit likes to dress

up like this: ten fingers, ten toes, shoulders, and all the rest· · ·

It could float, of course, but would rather plumb rough matter.

Airy and shapeless thing, it needs the metaphor of the body· · ·

it needs the body’s world· · · to be understood, to be more than

pure light that burns where no one is-so it enters us· · · lights up

the deep and wondrous drownings of the body like a star” (Oliver,

1986).
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This paper presents an active inference based simulation study of visual foraging. The

goal of the simulation is to show the effect of the acquisition of culturally patterned

attention styles on cognitive task performance, under active inference. We show

how cultural artefacts like antique vase decorations drive cognitive functions such

as perception, action and learning, as well as task performance in a simple visual

discrimination task. We thus describe a new active inference based research pipeline that

future work may employ to inquire on deep guiding principles determining the manner

in which material culture drives human thought, by building and rebuilding our patterns

of attention.

Keywords: perception, culture, archaeology, active inference, eye tracking, simulation

INTRODUCTION

Do the worlds we build alter our own minds and the ways we process information? In one sense, it
is obvious that they do—we read books, we listen to our teachers, and learn new ways of thinking
and reasoning as a result. Thanks to lifelong learning, we may become experts in a domain such
as forestry and become able to attend to, and differentiate, new things as a result. But we are also
immersed in a sea of material structures and artefacts such as pottery, ceramics, clothing, buildings,
tools, and more. As we encounter and explore these artefacts and structures, they too influence our
patterns of visual and embodied exploration, and thus our learning. But the nature and potential
cognitive importance of these interactions with material structure remains ill-understood.

Iterated encounters with non-linguistic aspects of material culture, we believe, do not simply
reflect human thinking and reasoning—rather, they shape and alter it. Our minds are as much the
products of these materialities as the cause. This is a bold claim, yet one that is quite often found in
the sciences of mind and culture (Dennett, 1991, 1996; Clark, 1997; Sutton, 2002; Knappett, 2005;
Renfrew and Malafouris, 2010). To our knowledge, it is a claim that has not been experimentally
demonstrated or subjected to rigorous analysis and testing. The simulations we report below are
meant as a first step towards building a pipeline to explore and test this claim—that encounters
with non-linguistic artefacts can alter patterns of thought and attention in cognitively interesting
and beneficial ways.

With this goal in mind, our paper presents a proof of principle for modelling visual foraging and
sensory learning of artefacts using active inference for Markovian inference models. Markovian
models are used to perform predictive statistical inference over some states of interest, given
the outcomes those states are known to generate. For instance, Markovian model can be used
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to perform weather forecasting over some unknown states (a.k.a.
hidden states, or unknown variables) which would represent the
weather for each day of the week (e.g., rainy; sunny), and where
the outcomes would be some observable property of the possible
states (e.g., cloud shapes). After observing these properties,
inference proceeds by combining known prior probabilities
of transitioning from one state to the next (e.g., history of
transitions between rainy to sunny days, or sunny days to sunny
days, etc.) with the known likelihood of observables under each
state. The resulting posterior specifies the Bayesian probability
the hidden variables at the next time step (e.g., tomorrow’s
weather). In this paper, we utilise the theory of active inference
to perform the requisite inference, action-selection, and learning
for our model.

Crucially, active inference straddles multiple levels of Marr’s
hierarchy, from deep computational considerations in statistical
inference and thermodynamics, all the way down to being able to
build biologically plausible models of psychophysical tasks which
accord with known neurophysiology. This theoretical breadth
licences us to create an active inference model of the interaction
between inference and learning systems and material culture
which can demonstrate, through psychophysical observables, the
importance of the material world for shaping mental attention
styles and ultimately cognitive capacities.

We present two experiments. In experiment 1, we provide a
pilot simulation of visual foraging that showcases the potential
of our method for modelling empirical data on foraging
over differentially complex cultural artefacts. Experiment 1 can
be viewed as a training experiment, where artificial agents
learn about the hierarchical structure of artefacts, and where
this acquired knowledge is later applied to a categorisation
task (experiment 2). Our simulation focuses on implementing
artificial behaviour that could mimic in vivo participants scan
paths over antique vases such as observed in Criado-Boado et al.
(2019). Criado-Boado and colleagues studied the influence of
decoration patterns on scan paths employed by visual foragers.
They use a vertical index (Vi) to measure the influence of various
patterns on visual saccades, relative to the size of the visual
display presenting the differentially decorated vases (e.g., more
or less complex decoration painted horizontally or vertically).

We show that an increase in decoration complexity, when
modelled as patterns of hidden states, entails characteristically
different scan paths, and hence Vi; We call these scanpaths
“Culturally Patterned Attention STyles” (C-PAST). These scan
paths are the result of the agent attempting to predict the
next decoration based on observed pigments and learning the
probability transitions between the visual motifs forming the
decorations. These scanpaths should be viewed as heuristics
of culturally shaped patterns of attention. Future work should
attempt to fit the model generating those scanpaths with real
participant data. The motivation for calling the scanpaths
“cultural” is that vase decorations have been shown to be a
good indicator of cultural complexity. Hence, we call “cultural,”
or rather “culturally patterned” the scanpaths that result from
learning based on the exposure to such decorations; the
patterning here being synonym of learning.

In experiment 2, we provide a modelling method to transfer
the learning of priors across simulations under active inference,
which, to our knowledge, has never been done before in the
literature. Transfer learning here refers simply to the transfer of
knowledge across tasks (e.g., employing knowledge acquired in
task X to perform the actions required in task Y). The challenge
with the transfer of learning in active inference modelling is
that the model parameters (e.g., transition probabilities between
hidden states) are normally task specific, which means that
they correspond to the environment of the task at hand (e.g.,
motifs as hidden states being specific to the vase perceived by
the agent). The novel modelling strategy we propose in this
paper allows transfer learning by breaking down the environment
of a task into units that are general purpose hidden states.
These units are locations in a discrete 2-dimensional map,
which we call the remapping likelihood matrix (see method for
details). The remapping matrix allows us to local representations
of the immediate environment, and, crucially, to reuse these
units or groups of units, when learned, across tasks. While
it unlocks the possibility to accomplish our simulation, we
recognise that the present method of likelihood remapping
is trivial. Based on the learning of the structure of vases’
decorations in experiment 1, in experiment 2 we simulate a
pattern categorisation task that involves reusing learned model
parameters in experiment 1. In the categorisation task, the agent
has to match a series of motif cut-outs with their corresponding
motif. We show how performance (hits vs. non-hits) changes
depending on learned parameters under the different levels
of cultural complexity afforded by vases transferred from
experiment 1.

In summary, with experiment 1 and 2, we show the potential
of active inference to study (i) exposure to artefactual complexity
leading to the acquisition of the knowledge underwriting
different Culturally Patterned Attention STyles (C-PAST)—here
knowledge about transition probabilities among hidden states, or
representations of the structure of the world; (ii) the repurposing
of C-PAST in novel cognitive tasks, and the manner in which
different C-PAST influence performance in novel cognitive tasks.
We are aware that the task that we use may be considered too
simple to demonstrate the effect of C-PAST on cognitive task
performance, and that our task is limited to non-natural scenes.
However, the goal of our simulation, beyond reproducing the
results of Criado-Boado et al. (2019) is to provide a simple
example of a scalable modelling strategy for future research on
related issues in the field of cognitive archaeology.

VERTICAL INDEX, SOCIAL COMPLEXITY,
CULTURAL COMPLEXITY AND ATTENTION

The vertical index (Vi) is a measure that compares the proportion
of horizontal to vertical saccades made when viewing an image
(Criado-Boado et al., 2019; Millán-Pascual et al., 2021). This
measure, which is closely related to the density of information
presented in vertical dimensions, has been shown to vary
considerably across items ranging from pots to monuments,
drawn from different archaeological epochs (Prieto-Martínez
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et al., 2003). The archaeological record shows that decoration
patterns of complex prehistoric societies generally followed high
Vi patterns, whereas low Vi patterns are found in simpler
societies. Criado-Boado et al. (2019) note that archaeologists
accept that the evolution of pottery decorations parallels, in the
particular chronological sequence on study, changes in the level
of complexity of social organisation [see Prieto-Martínez et al.
(2003) for a detailed characterisation of the social complexity
embedded in the pottery sequence analysed in Criado-Boado
et al. (2019) and see Criado-Boado (2014)] for a more general and
theoretical account of the interactions between materiality and
social processes] and propose that a virtual index of decoration
may be a measure or reflection of such a social complexity
[Müller et al. (2015) also illustrates similar conclusions for a
different pottery style]. Criado-Boado et al. (2019) found that
the verticality of decoration correlated with the chronological
evolution of the decorations on ceramics displayed in their
study; these being associated with difference cultural periods
and associated levels of social complexity. They showed that
eye movements of participants followed the same evolutionary
trend reported by the Vi index when presented with the vases’
decorations characteristic of each successive social periods.

Here, what we refer to as social complexity differs from what
is sometimes described as cultural complexity (Sterelny, 2020).
Social complexity denotes the overall level of organisation of
a society, whereas cultural complexity denotes the complexity
of artefacts found in a given population. Cultural complexity
is sometimes viewed as a proxy to social complexity, as it
would reflect the level of skills and expertise of the tool and
artefacts makers and users, which in turn would reflect the
level of social complexity. Cultural complexity can be viewed as
either repertoire complexity, or peak complexity (Sterelny, 2020).
Repertoire complexity corresponds to the number of distinct
tools that were used in each society, whereas peak complexity
corresponds to the level of complexity of a given tool, which can
be measured in terms of parts and functions of the tool; these
being called technounits Oswalt (1973). The correlation observed
by Criado-Boado et al. (2019) was between social complexity and
the Vi of decorations on vases. The correlation was not between
social complexity and cultural complexity.

A challenge with studying the relation between social
complexity and cultural complexity is that repertoire complexity
and peak complexity may vary independently (Sterelny, 2020),
and depending on the sort of artefact one considers, peak
complexity may even be inversely proportional to the true
level of skills of artefacts makers reporting social complexity.
Moreover, the locus of peak complexity may change over
time in a same society. These problems are especially salient
when considering the complexity of aesthetic objects like vase
patterns. For instance, it is common to observe disparity
within the artefactual repertoire, with simpler societies having
poorer decorative vase patterns but highly complex body
ornamentations like tattoo motifs or plumes arrangements. The
same applies to more advanced societies and pottery decorations,
whose peak complexity can correlate at first with the level of
social complexity, but then decrease with time as the society
discovers new material and media for artistic expression (e.g.,

jewellery, metallurgy, architecture, etc.). For instance, pottery
was important to express social styles and social identities in
the Atlantic façade between 6,000 and 2,000 BP, while in other
cultures and times other sort of material were used to mainly
express social identity (e.g., jewellery, metallurgy, monuments, or
tattoos, personal ornaments, or plumes).

Despite the intrinsic interest of these issues and their
importance for understanding the historical record, it is
important to note that our target in the simulation studies is
something rather different. Our goal is to explore the potential
role of cognition (attention, perception and learning) as a variable
operating within these complex regimes. Specifically, we are
asking whether, and in what ways, interactions with artefacts
might alter patterns of attending, which in turn alter ways of
thinking and reasoning about the world (e.g., in a cognitive
task). Thus, we introduce cognition (attention, perception and
learning) as a third variable to the complex relation between
social complexity and cultural complexity. The hope is that styles
of cognition may function as an explanatory bridge between
cultural and social complexity. Accordingly, our simulation
explores the synthetic relationship between task performance
and the acquisition or learning of attention styles based on the
exposure to vase decorations. The motivation for this simulation
is to explore the ways interactions with artefacts might alter
patterns of attending, which in turn alter ways of thinking and
reasoning about the world (e.g., in a cognitive task). If such effects
are real, then there may be a good reason to believe that there
exists a link between the structure of the human-made world
and the ways we think and reason after cultural immersion in
different such worlds. Because artefacts affording greater vertical
index correlate with social complexity, and because vertical
indices illicit characteristically different visual foraging patterns
(Criado-Boado et al., 2019), one could hypothesise that there
is a ratchetting loop between the acquisition of attention styles,
features of the artefacts that illicit such an acquisition (e.g., Vi),
and cultural complexity.

Note that novel patterns of attending do not necessarily
witness of a neurobiological change in the human evolutionary
history (e.g., encephalization). The hypothesis on the cognition-
culture loop is not primarily a gene-culture co-evolutionary
hypothesis on the evolution of social complexity and cultural
complexity (e.g., Henrich, 2015). Rather, such a hypothesis refers
to dynamics at the level of cognition and culture. Attention
styles are acquired over developments; they are akin to cognitive
“gadgets” (Heyes and Frith, 2014) that support the scaf-folding
of more complex abilities such as language and mind reading.
One of these abilities may be that of reproducing complex human
social ensembles; an ability scaf-folded through artefactually
mediated acquisition of attention styles. The current simulation
is a first step towards studying such cognition-culture loop under
the theory of active inference.

Finally, note that our project differs from related research
in the field of active inference, culture and cognition. Here,
our goal is not to account for the formation and function of
human culture, but rather, to inquire on the manner in which
culture shapes perception and influences task performance. That
is, we are not here attempting to define what culture is and
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how it works, but rather we are here attempting to describe
the way humans may respond to its products and how those
influence cognitive task performance. While this latter problem
is certainly part of the more general project of accounting for
the formation and function of culture, this problem remains one
that can be approached independently of the larger discussion
on the ontology of culture. Under active inference, the ontology
of culture is defined as patterns of attention, or “regimes” of
attention shaped by local practises (e.g., Kaufmann and Clément,
2007; Ramstead et al., 2016; Constant et al., 2019, 2020; Veissière
et al., 2020). Despite the differences in research orientations noted
above, our simulation may be viewed as providing one possible
illustration of the manner in which the acquisition of regimes of
attention (here C-PAST) influences task performance.

METHOD: ACTIVE INFERENCE

Active inference is a theory arising from theoretical neuroscience,
which posits that perception, action, and learning can be
fundamentally united since they can be cast as performing a
form of approximate Bayesian inference (known as variational
inference) on the same information—theoretic objective (Friston,
2010). Although anchored in abstract conceptions of inference,
active inference possesses a neurobiologically plausible process
theory (Friston et al., 2017), and has been applied to explaining
and building models of diverse aspects of neural and cognitive
function such as planning and navigation under uncertainty
(Kaplan and Friston, 2018), saccade generation and reading (Parr
and Friston, 2017), sequential decision making tasks (Friston
et al., 2013, 2016), up to complex continuous control tasks
(Pio-Lopez et al., 2016; Fountas et al., 2020; Millidge, 2020;
Tschantz et al., 2020), as well as psychophysical observables such
as modelling evidence accumulation (FitzGerald et al., 2015).
Moreover, through the expected free energy functional, active
inference also entails a natural epistemic drive which has been
exploited before in previous active-inference studies of visual
foraging (Friston et al., 2015; Mirza et al., 2016). Here, we
present a high-level description of active inference. For a detailed
overview of active inference in discrete state-spaces and for the
purpose of economy of space, we refer the technically minded
reader to the dedicated method papers of Friston et al. (2015,
2017), and Da Costa et al. (2020).

An Overview of Variational Inference
Active inference posits that action, learning and perception can
all be described as a process of variational inference. Variational
inference is an approximation to exact Bayesian inference which
postulates the existence of a variational recognition density,
which is matched to the true posterior via an optimisation
process. Variational inference thus converts a difficult and
intractable inference procedure into a potentially tractable
optimisation process, for which good approximate solutions
exist. Variational inference obtains its solution by minimising the
variational free energy functional, and this is used in our model
for perception—i.e., the inference of hidden states from observed
outcomes. Active inference extends this theory to include action,
which is inferred from preferences over sequences of potential
future states. This requires the use of a subtly different objective

functional—the expected free energy—which is a functional
over expected future states and observations. The expected
free energy naturally includes an epistemic exploration-inducing
information gain term which encourages active inference agent’s
to seek out novel outcomes, which thus canmimic key behaviours
in visual foraging which is all about information gathering.

Variational inference depends on two mathematical objects—
the variational recognition distribution (hereafter referred to
as the variational distribution) and the generative model. The
variational distribution is a distribution over all hidden variables
in the model and represents the agent’s beliefs about the
state of the world. The generative model is the agent’s model
of how the observables in the world are “generated” by the
hidden variables which must be inferred. During inference, the
variational distribution (the agent’s beliefs) are optimised to best
conform to the outcomes or data observable by the agent. Thus,
in inference, the generative model is “inverted” —in that we look
to recover the mapping from observations to hidden states, given
a mapping from hidden states to observations.

An Overview of the Variational Distribution
Formally, let x refer to hidden variables, where xn refers to the
hidden state at level n, and π refer to a policy (fixed sequence
of actions). The variational distribution can then be factorised
as follows:

Q(x10 :T , x
2
0 :T ,π) = Q(x10)Q(x

2
0)Q(π)

T
∏

t=1

Q(x1t |π)Q(x
2
t |π) (1)

Moreover, the agent’s generative model can be factorised as:

p(o0 :T , x
1
0 :T , x

2
0 :T ,π) = p(π)p(x10)p(x

2
0)p(o0)

T
∏

t=1

p(ot|x
1
t )p(x

1
t |x

1
t−1, x

2
t ,π)p(x

2
t |x

2
t−1,π) (2)

Given these distributions, inference is achieved by optimising the
variational distribution in order to minimise free energy:

Q∗(x10 :T , x
2
0 :T) = argminF(Q0 :T , o0 :T)

F = DKL(Q(x
1
0 :T , x

2
0 :T;φ)||p(o0 :T , x

1
0 :T , x

2
0 :T))

(3)

In a similar fashion, action selection is achieved by optimising the
variational distribution to minimise expected free energy, which
we compute at each step:

π ∼ Q∗(π) = argminπ ς(Q,π)

ς(Q,π) = EQ(ot :T ,x1t :T ,x
2
t :T |π)

[

DKLQ(x
1
t :T , x

2
t :T |π)

||p(ot :T , x
1
t :T , x

2
t :T)

]

An Overview of the Generative Model
In the current work, the active inference agent utilises a two-
level hierarchical generative model parametrised by four matrices

“A1,” “A2” and “B1
′′

and “B2
′′

(for a deeper description of
hierarchical models in active inference see, Friston et al., 2017).
Here we present the role these matrices play in the variational
inference over states, future states and outcomes in general. In the
result section, we describe the semantic of these matrices, which
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will be specific to the tasks we seek to accomplish in experiments
1 and 2.

The “A” matrices represent the parameters of a likelihood
distribution which maps from the hidden states at a hierarchical
layer to the outcomes associated with the layer (the outcomes of
all hierarchical layers other than the lowest layer correspond to
the hidden states of the hierarchical layer below). These matrices
denote the instantaneous probabilistic mappings between the
hidden states and outcomes.

The “B”matrices represent the (policy- dependent) transitions
between the hidden states over multiple time-steps. The
parameters of the “B” matrices were learnt through experience.
This learning can be cast as inference on the parameters of a
dirichlet hyperparameter over the entries of the “B” matrix. For
more details see Da Costa et al. (2020). Crucially, the parameters

of the “B2
′′

matrix are inferred over the course of a trial and
provide the representation of the C-PAST.

Given such a generativemodel and an initial state distribution,
sequences of potential future outcomes and hidden states can
be generated and compared for different potential policies
(sequences of action) which could be enacted. These sequences
of future outcomes and hidden states are scored by the expected
free energy functional (denoted “G”). Policies are selected
which minimise “G.”. In our experiments, look-ahead was only
performed for a single time step into the future and actions were
selected which greedily minimised “G.”

Another important aspect is the encoding of an agent’s
preferences into the generative model. This is encoded through
the matrix “C” which specifies a desired probability distribution
over outcomes. In our experiments the agent strongly desired to
observe pigments and will be averse to observing non-pigments.
This simple constraint on agent behaviour is sufficient to generate
complex visual-foraging behaviour.

We specify a prior the entries of the “A” matrices. Crucially,
to ensure that the active inference agent only was in possession
of local knowledge (i.e., the content of its foveated region and
not the entire image), we utilised the novel likelihood remapping
trick by which the “A” matrices were represented in a state-
dependent fashion so that the agent was only aware for a given
hidden state (location), the presence or absence of the pigment in
a 3 x 3 square around the agents location. Likelihood remapping
allows the agent to perform state inference and navigation by
bypassing the full representation of the generative process (i.e.,
environment). This is in contrast to standard active inference
approaches which typically require the agent to be given a correct
global understanding of the scene. To achieve this locality, the
“A” matrix becomes state-dependent so that it only provides
information about outcomes in the proximity of the state the
agent is in. A further description of this likelihood remapping
method can be seen below in Figure 1.

RESULTS

Experiment 1
The goal of experiment 1 was to exemplify the relation between
artefactual complexity and scan path cultural specificity under
active inference. We showed how variations in artefactual

complexity leads to the acquisition of different “Culturally
Patterned Attention STyles” (C-PAST). Scan paths are artificial
visual saccades enacted by the agent during the visual foraging
task. The goal of the visual foraging task was simply for the agent
to explore the visual scene, which consists of a vase decorated
with motifs made of pigments. The agent’s simulated gaze starts
at the centre of the vase and is free to explore the vase for 100
timesteps. We presented the simulated agent with vases that had
different levels of complexity—that is, that were made up of more
or less visually rich patterns. The richness of the patterns came
from the inclusion of more or less vertical features, or motifs,
from horizontal (0 degree angle), to oblique (−45 and+45 degree
angle), to vertical (90 degree angle). We measured the influence
of pattern complexity on visual foraging with a version of the
virtual index (Vi) used in Criado-Boado et al. (2019). Vi is a
measure of visual saccades relative to the size of the display upon
which the vase is presented. The empirical results of Criado-
Boado et al. (2019) suggest that vase complexity affects change in
scan paths’ Vi. The purpose of simulation 1 was to reproduce this
effect in silico and based on the parameters needed to simulate the
effect, phenotype the different attention style or C-PAST acquired
through exposure to vases with four levels of complexity (0 to 3)
(see Figure 2).

The Model for Experiment 1

To perform the task in experiment 1, the simulated agent
applies our inference algorithm to a simple two level Markovian
generative model. The generative model allows the agent to infer
two things: (i) the hidden states at level 1 or 2, and (ii) an
action policy, which optimises the desired sequence of hidden
states enacted by the agent. In experiment 1, the level 1 hidden
states are locations on the visual display where pigments can
be found. The presence or absence of a pigment functions as
the sensory outcome. Level 2 hidden states represent the motifs
which consist of repeating patterns of pigments, for instance,
crosses, diagonal and horizontal lines (see Figure 2). Using a two-
level hierarchical generative model allows us to simulate an agent
that can infer the presence of more abstract hidden states (i.e.,
level 2 motifs) based on its inference of simpler hidden states
(i.e., level 1 pigments). For each cycle of inference at level 2,
four cycles of inference are performed at level 1, that is, four
pigments are inferred. The heatmap we present below is the result
of having inferred those different hidden states. The second thing
the agent can infer based on its generative model is an action
policy, which here stands for a (sequence of) visual saccades.
Action policies are simply sequences of control states that are
inferred over multiple time steps based on preferences the agent
has for certain outcomes.

The generative model represents and performs inference over
four sets of parameters. The first is a likelihood parameter
A1, which exists at level 1, and is a probabilistic mapping
between sensory outcomes (pigments) and level 1 hidden states
(locations on the visual display). At level 1, we keep the likelihood
deterministic (all [0 1]), which speaks to the fact that the
agent can clearly perceive the pigments. The second likelihood
parameter A2, represents the probabilistic mapping between the
motifs and the locations perceivable by the agent. This likelihood
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FIGURE 1 | Likelihood remapping. For illustrative purposes, this figure presents a generative process (A hat) made of 36 locations, or states. Each state is associated

with an outcome, either black or white. (1) The initial likelihood is defined for an agent that would start in location 8. The likelihood of the generative model is specified

based on the 8 locations, or hidden states surrounding the current location, as well as the current location. (2) Based on the inferred policy (e.g., 8 → 15), we move

the agent in the generative process, here, to location 15. (3) Indexing the novel surrounding and current location from the generative process, we remap the likelihood

that will be used at t + 1 to infer the state and the policy.

is also deterministic, which speaks to the fact that the agent knows
how a given motif (for instance a cross) can be represented by
a sequence of pigments. The second set of parameters are the
transition probability mappings between level 1 hidden states
B1 or the level 2 hidden states B2. In experiment 1, the agent
learns the transitions between hidden states (motifs) at level 2.
Transitions are deterministic at level 1 and depend entirely on
the action policy. A two-level model, with uncertainty in level
2 transitions (motifs transitions) will scan differently. Increases
in vase complexity drive the learning of motifs transition (i.e.,
patterns). We refer the reader to the method section for the
details of the manner in which our inference algorithm performs
the inferences, formulates action policies, and learns B2.

Vertical Index
The Vertical index (Vi) is defined as the height “h” of the region
upon which the agent gazed times the number of vertical saccades
(number of steps taken vertically given the inferred policies),
minus the width “w” of the region gazed upon time the number of
horizontal saccades, all that divided by the sum of the product of
the height “h” and number of vertical saccades, and the product
of the width “w” and the number of vertical saccades:

VirticalIndex(Vi) =
h∗nb.vert.saccades− w∗nb.horiz.saccades

h∗nb.vert.saccades+ w∗nb.vert.saccades
(4)

The change in Vi relative to the four levels of complexity are
presented in Figure 3, with their associated level of decoration
complexity. GIF representations of the simulation as well as the

source code for all experiments can be found at https://github.
com/BerenMillidge/MaterialCulture. The results show that Vi
correlates positively with the levels of complexity, as expected,
and empirically observed in Criado-Boado et al. (2019). We
present the scanpaths in Figure 4.

C-PAST

We define the “Culturally Patterned Attention STyles” (C-PAST)
as sets of motif-transition parameters learned when the agent is
presented with decorations during exploration. Our simulation
shows that difference in pattern complexity naturally entails
differences in C-PAST, leading to systematic differences in Vi
(Figure 3). To measure the C-PASTs, we use the entropy, in
information theoretic terms, of the sets of motif-transition
parameters B2. Formally, we define our measure of C-PAST as

C − PAST = H[B2] = −

N
∑

i

B2
: i logB

2
: i (5)

where H is the Shannon entropy and N is the number of
motifs. We use entropy because it allows us to describe intrinsic
features of the distributions, without having to commit to a
normative assessment of those distributions (e.g., compared to
an ideal, extrinsic criterion of goodness). Indeed, the purpose of
measuring C-PASTs is simply to phenotype the various attention
styles that obtain from the exposure to various levels of cultural
complexity. Note that we only allowed for learning of transition
probabilities (B2 parameters), but in principle, nothing prevents
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FIGURE 2 | (A) Vi is a measure of visual saccades relative to the size of the visual area gazed upon. This area increases with decoration complexity. (B) States and

outcomes for the generative model. At level 1, the outcomes are the absence or presence of a pigment. The states are the locations (1/900) of which we

(Continued)
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FIGURE 2 | take a sample of nine currently available locations to define the focal area (updated based on the navigation matrix for every trial, see method). Level 2

states are motifs (sets of locations) and their associated outcomes are the location at level 1 [e.g., “P(location|motif)]. The focal area corresponds to the outcome

likelihood at level 1. The important thing to remember is that we are respecifying the likelihood after each eye movement, using the remapping likelihood matrix (see

method section). (C) 900 locations grid over which the active inference agent scans. The agent can decide to move from the central location of the 3 x 3 focal area

(grid) to any location of the grid. The four levels of decoration complexity build on one another. Level 0 is a straight line, and level 1 adds verticality by adding oblique

shapes below the line. Level 2 adds oblic motifs on the top of the straight line as well, and level 4 adds vertical lines below the oblique shapes at the bottom.

FIGURE 3 | (A) The effect of artefact complexity on the vertical index (Vi) measure of scan paths. Consistent with the empirical findings of Criado-Boado et al. (2019),

we find that artefactual complexity positively correlates with Vi (B). The effect of artefact complexity on the C-PAST measure of learned generative models. As

described in the main text, this measure quantifies the entropy of the motif-transition parameters “B2,” which are learned over the course of the 100 trials. These

results demonstrate that artefact complexity correlates positively with C-PAST, highlighting the symmetry between environmental complexity and model complexity.

one from allowing learning in other parameters so as to get a
richer measure of C-PAST (e.g., entropy of A and B parameters).

Results Experiment 2
The goal of experiment 2 was to explore the impact of different

C-PASTs on cognitive task performance in a novel cognitive task.
Note that the learning only happens in experiment 1. This means

that we simply import the trained or learned parameters into the

experiment two without letting the model further learn within

the context of experiment 2. Accordingly, experiment 2 is not
a typical transfer learning experiment. However, the proposed

setup is ready for bone fide transfer learning simulations as
future work could allow for learning, and thus study the effect
of transferred learning on learning and task performance. Here,

we only focused on the effect of prior learning on novel
task performance. Experiment 1, which could be viewed as a
“training,” or learning experiment was a visual foraging task.
Experiment 2 is a simple visual classification task where the agent
is presented with a predetermined series of cut-outs of certain
shapes and must select the shape that matches the cut-out (see
Figure 5). We simulated the task under the four different C-
PASTs acquired in experiment 1. These were acquired through
the exposure to the four different levels of decoration complexity
on the vase. We presented the same predetermined series of cut-
outs to all agents. We then recorded hits and non-hits over 100
trials, or series of 100 cut-outs. The agent received no feedback
on its answer, meaning that no further learning took place in
experiment 2.
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FIGURE 4 | For each panel [(A–D), or complexity 0 to 3], the upper left quadrant represents the heatmap and the final location (red dot), with the motifs superimposed

at the end of the 99 trials; the lower left quadrant represents the heatmap alone at the end of the 99 trials; and the lower right quadrant represents the scan path over

99 trials; the upper right quadrant represents the final motif perceived. The heatmap represents the paths and the number of times the agent moved over a location.

The more often a location was gazed upon, the yellower it became (gradient from blue to yellow). MP4 versions of the experiment can be found at https://github.com/

BerenMillidge/MaterialCulture.

The Model for Experiment 2

We use the same model as in experiment 1, but with a
single level of parametrisation. Hidden states correspond to
the shapes that made up the motifs in experiment 1, and the
sensory outcomes are the cut-outs. Accordingly, the transition
matrices (B parameters) are the transition probability mappings
between shapes, and the likelihood parameter (A parameter) is a
likelihood mapping between cut-outs and shapes. The likelihood
mapping is deterministic, meaning that our agent can perfectly
sense the shapes and their associated cut-outs (i.e., the agent
has a non-noisy sensory access to cut-outs). The mappings for
the transition parameters are those that have been learned in
experiment 1 (i.e., as level 2 transition probability mappings,
or level 2 B parameters B2), and so may contain uncertainty.
Crucially, and distinct in this work is that we use a novel method
of “likelihood remapping” to ensure that the agent at any point

only perceives its local environment—i.e., the central foveated
region of the visual.

Performance

The stimuli we employed in experiment 2 was a series of cut-outs.
The task was to select the matching cut-out. We recorded the
number of hits and non-hits over 100 trials. Figure 6 presents the
results for the agents having been trained under the four different
levels of decoration complexity in experiment 1. Our results show
that C-PAST trained under higher levels of cultural complexity
leads to increased performance.

DISCUSSION

This paper presents two computational experiments using active
inference. The first was a training simulation wherein an
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FIGURE 5 | (A) States and outcomes are the shapes and the cut-outs respectively. There are no preferences for specific cut-outs; only aversion for the outcome that

corresponds to the “+”. This is to make sure that the simulated agent always makes a decision across the 100 trials. (B) The task wherein the agent is presented with

a series of cut-outs (outcomes) and has to infer what shape should fit in. We ran 100 trials where the agent is presented with a blank display followed by a cut-out. A

single trial has three moments: (i) the agent is presented with a target (first slide); (ii) the agent receives the sensory entry, or cue that corresponds to the cut-out

(second slide); (iii) the agent infers and selects the motif that matches the cut-out (slide 3).
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FIGURE 6 | From left to right: Hits (1.0) vs. non-hits (0.0) over 100 trials for agent’s exposed to different levels of artefact complexity. We find that the accuracy of

agent’s guesses (percentage of hit-rate) correlates with the level of artefact complexity.

agent could freely explore the decorations on four different
vases affording four different levels of decoration complexity.
Decoration complexity was defined in terms of the amount
of verticality in motifs as well as the number of motifs. We
used the decoration complexity to train different culturally
patterned attention styles (C-PASTs), which we phenotyped in
terms of the entropy of the distribution of their associated
parameters. We observed that the different C-PASTs correlated
with different virtual indices (Vi). The overall observation was
that the increase in complexity correlated with increase in Vi, as
observed empirically by Criado-Boado et al. (2019). Complexity
and Vi also correlated positively with C-PASTs’ entropy. The
goal of our simulation study was simply to reproduce the results
of Criado-Boado and colleagues using active inference. Because
active inference is known as a good computational candidate
to account for human behaviour, the main contribution of our
simulation is to have provided the beginning of a behaviourally
plausible explanation for the computation that may underwrite
the results of Criado-Boado and colleagues. The explanation
for the correlation we simulated is simple: the more complex
the stimuli, the more exploration there is, and the more
exploration there is, the more transitions are observed and
therefore the more dispersion there is in the B2 parameters (i.e.,
the mappings are less deterministic). Cultural complexity thus
has the consequence of “loosening” the learning of transitions
among cultural motifs, and so renders learning more flexible
(i.e., opens the agent to exploring novel shapes), which is a
phenomenon discussed in relation to creativity (Van de Cruys
and Wagemans, 2011; Veissière et al., 2020). There is more
complexity and variety in the experienced transitions amongst
hidden states, or more elaborate hierarchical structure, which
in turn facilitates learning more complex and varied models
of the world. In experiment 2, we simulated a simple visual
classification task in which we reused the C-PAST trained in
experiment 1. Here again, increased flexibility in learning prove
useful. We measured success rate (hits non-hits) in a simple
visual discrimination task under each C-PAST. The overall
observation was that C-PASTs acquired during the exploration

of more complex artefacts lead to better performance in the
discrimination task.

Crucially, our results on the relation between cultural
complexity and the “loosening” of the learning of transitions
among cultural motifs are consistent with archaeological
observations. For instance, in neolithic contexts, it has been
observed that relatively uniform ceramic decorations increase
the diversity of the decoration over time. For example, we
can structurally identify Neolithic societies in Central Europe
for which oldest phase uniform decorations are in use over
a large area. In the following phase, this uniformity dissolves,
which correlates with increase in decorations variability. In
the case of Linear Pottery, this is associated with spin-offs
of individual farmsteads from the central settlement around
5100 B.C. and increased generational independence (Shennan
and Wilkinson, 2001). A similar phenomenon can be seen
for the large-scale Globular Amphora phenomenon with a
broadening of ritual activities around 3,000 BC (Müller, 1996).
From 2500 B.C. onwards, cyclical increases and decreases in
motif variation are observed for the Bell Beakers, which can
be linked to an intentional renewed restriction of cultural
diversity usually occurring every 150 years or so. Since
comparable changes in diversity are also probable in the Bronze
Age (cp. Staniuk, 2020), we should be able to identify a
fundamental phenomenon for illiterate societies. The learning
changes observed in the simulations offer at least one of
several explanatory patterns for the archaeological observations
described in the example.

The purpose of experiment 1 and 2 was to demonstrate
the feasibility of an active inference based archaeological study
of the effect of material culture on cognition. In future work,
we plan on using the computational paradigm developed
here to test empirically the correlations observed in our
simulated experiment. Even though we used very simple tasks in
experiments 1 and 2 for illustrative purposes, nothing prevents us
from designing more complex simulation scenarios that can be
used to model participant’s performance in richer environments.
Indeed, the likelihood remapping strategy we employed in this
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paper, because it builds environments based on a single type of
hidden states, makes it possible to design complex 2D or 3D
training environments and to transfer the learning of the model
across different such environments.

Projected iterations of this new experimental paradigm could
address at least four important and interlocking issues. The
first, and most obvious, is to explore the effects of different
material structures and practises on learning and attention.
This could be done with contemporary artefacts characteristic
of different culture, which we could use to test cross-cultural
variations in visual attention styles. Such future studies should
be informed by studies on cultural differences in physical
objects perception (e.g., Masuda and Nisbett, 2001, 2006;
Kitayama et al., 2003; Ishii et al., 2014). The second is to
explore learning and transmission in whole populations of
active inference agents. The third is to look at how learning
that is achieved in one such generation and passed on to
another influences the design of the environment itself—the so-
called “trans-generational bottleneck” whose importance in the
domain of language change has been the subject of much recent
experimentation (for a review, see Smith and Kirby, 2008). Here,
there is an opportunity to confront the real historical record with
predictions made on the basis of the simulations. The fourth—
and potentially the most revealing—would be to explore the
principal dimensions along which variations in material culture
and patterned practises impact learning and attention, using this
to drive new (more functionally revealing) ways of grouping and
taxonomising the real socio-historical record. For example, we
predict that important variations will flow from the way different
material designs manipulate sensory surprise at different levels of
abstraction and processing.

Summing up, we have described a new experimental pipeline
for exploring links between active inference and changing
cultural complexity. These links are, we hypothesise, mediated
by changing patterns of attention—patterns that can be trained
and enforced by the structural and decorative complexity of
the objects we encounter. In future work using this pipeline,

we hope to discover more of the hidden variables and deep
guiding principles linking material culture to changing patterns
of thought and reason.
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Enacting Plant-Inspired Robotics
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Plants offer a source of bioinspiration for soft robotics. Nevertheless, a gap remains in

designing robots based on the fundamental principles of plant intelligence, rooted in a

non-centralized, modular architecture and a highly plastic phenotype. We contend that

a holistic approach to plant bioinspiration—one that draws more fully on the features of

plant intelligence and behavior—evidences the value of an enactivist perspective. This

is because enactivism emphasizes not only features of embodiment such as material

composition and morphology, but also autonomy as an important aspect of plant

intelligence and behavior. The enactivist sense of autonomy concerns the dynamics of

self-producing systems (such as plants) that create a distinction between themselves

and a domain of interactions that bear on the conditions of viability of the system. This

contrasts with the widespread, but diluted notion of autonomy that merely indicates the

independent operability of a system for an arbitrary period. Different notions of autonomy

are relevant for soft roboticists, for instance, when evaluating limitations on existing

growing robots (“growbots”) that take bioinspiration from plants, but depend on a fixed

source of energy and material provided by an external agent. More generally, plant-

inspired robots serve as a case study for an enactivist approach to intelligence, while,

correspondingly, enactivism calls attention to the possibility of non-zoological forms of

intelligence embodied in a self-organizing, autonomous system.

Keywords: soft robotics, embodied robotics, plant intelligence and behavior, enactivism, autonomy, growbots

INTRODUCTION

Plants offer a rich source of bioinspiration for soft robotics. Despite progress in selected areas
(see Mazzolai et al., 2020, for a mini-review), a gap remains in designing systems based on
the fundamental principles of plant intelligence. More “holsitically” plant-inspired robots would
inhabit bodies that exhibit a fuller range of plant features, rooted in a decentralized and modular
architecture coupled with a highly plastic phenotype (Calvo et al., 2020; Calvo and Trewavas,
2021). In addition to plant-like bodies, realizing key characteristics of plant intelligence, such as
flexible and adaptive growth, may require attention to the role of biological autonomy. Given
its consideration of embodied features such as material composition and morphology as well as
adaptive autonomy, this article indicates that the project of designing more fully plant-like systems
forms a fruitful two-way exchange with enactivism (Varela et al., 1991/2017; Noë, 2004; Stewart
et al., 2010; Thompson, 2010; Hutto and Myin, 2012; Di Paolo et al., 2017).

The prospect of more holistically plant-inspired robots connects with a general embodied
perspective that recognizes the value of intelligent problem-solving via adaptive morphology [as
demonstrated, for example, exemplar “passive dynamic walker” by McGeer (1990); for discussion,
see Clark, 1997]. Smart embodiment is evidently key to plant intelligence and behavior; for instance,
the material and structural properties of plant bodies are adapted to exploit physical constraints
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(friction, gravity, and inclination) for growth (as opposed to
locomotion) (Lopez et al., 2014; Vandenbrink and Kiss, 2019).
Correspondingly, plant-inspired robots indicate alternative
means of adaptive embodiment in the form of growing robots or
“growbots” (Laschi et al., 2016; Sadeghi et al., 2017; Del Dottore
et al., 2019), i.e., systems that move by lengthening or extending
the surface area of their bodies.

Beyond these basic considerations of embodiment, an enactive
perspective also draws attention to a strong sense of autonomy,
grounded in the concept of autopoiesis (Vernon, 2010). As such,
enactivism can play a heuristic role in drawing attention to
strong biological autonomy and reminding us that materials and
morphology do not exhaust the possibilities of bioinspiration.
As it pertains to plant-inspired robotics, this perspective can be
used (among other things) to evaluate limitations on existing
growbots, which take bioinspiration from plants, but depend
on a fixed source of energy and material provided by an
external agent. More broadly, considering autonomy as part of
a soft and embodied perspective may serve in the development
of holistically plant-like robots, while testing principles of
non-animal intelligence and behavior gleaned from applying
tools from plant cognitive science/neurobiology (Baluška et al.,
2006a,b).

EXISTING PLANT-INSPIRED ROBOTS AND
THE NATURE OF PLANT INTELLIGENCE

Existing bioinspired robots demonstrate the practical value of
considering plant capacities for intelligent behavior. Recent
advances in material composition, kinematic principles,
and morphological features build on plant research. For
example, effective adhesive mechanisms have been drawn from
examinations of climbing plants, soft spiral grippers from
twinning plants (Yang et al., 2020), and grasping-by-coiling
behaviors from plant circumnutation—a term coined by Darwin
(1875) that refers to the helical movements created by growing
tips and other plant organs. Moreover, robotic growth via
root-like filament deposition has taken inspiration from the
plant kingdom (Blumenschein et al., 2020; Fiorello et al., 2020;
Mazzolai et al., 2020).

Much of this existing plant-inspired research falls within
the field of soft robotics, which is vital for understanding
the holistic plant-inspired robotics targeted in this article. By
“holistic plant-inspired robotics,” we refer to the development of
systems that are more fully plant like in their intelligence and
behavior (in a sense to be specified shortly), as opposed to merely
borrowing a small number of specific materials or gadgets. Soft
robotics refers to the design and construction of systems with
flexible bodies using compliant materials, often drawing on the
properties of living organisms (Kim et al., 2013; Calisti et al.,
2017; Thieffry et al., 2017; Rich et al., 2018; Drotman et al., 2021).
A common advantage of soft (over hard) robots is greater bodily
flexibility and adaptability to the environmental constraints.
Soft robotics, in turn, overlaps with “embodied” perspectives,
introduced earlier. While soft robotics focuses specifically on
the problem-solving potential afforded by compliant materials

of the sorts exploited by nature (Trivedi et al., 2008), embodied
perspectives more broadly draw insight from the capacities of
the adaptive morphology of an organism (Hoffmann and Pfeifer,
2018). In keeping with a soft and embodied perspective, research
in plant intelligence indicates the distributed nature of control
and processing, where adaptive responsibility is shared between
internal signaling channels, the material properties of (soft)
organs, and the dynamics of body-environment interactions.

By examining existing plant-inspired robots, we can
distinguish between systems that selectively borrow elements of
plant design vs. systems based on the fundamental organizing
principles of plant intelligence (Frazier et al., 2020). There
is a spectrum. However, plant-inspired robotics has hitherto
concentrated on a small number of tools for solving certain
problems (although see Blumenschein et al., 2020, for instance,
on designing more plant-like systems of control). As such,
there remain unexplored avenues for engineering systems
that manifest the full suite of fundamental features of plant
intelligence. Such systems not only contain a few plant-like
gadgets, but resemble plants in their basic organization.

Of course, plants exhibit as much variety in their anatomical
and physiological details as animals. We should, therefore,
remain sensitive to potential diversity in plant intelligence
and behavior. Nevertheless, we can identify some generic
principles that typify the plant kingdom, much as we can
with animals (aardvarks, albatrosses, and alligators share
similar centralized neural hardware and locomotion-based
sensorimotor competencies, despite their myriad differences).
Indeed, attending to the common character underlying plant
particularities might help us to appreciate the gaps left by plant-
inspired robotics that focuses only on specific bodily gadgets. The
key features of plant behavior and intelligence that we take to be
instructive for soft roboticists include the following:

Distributed coordination:Higher plants are characterized by
a highly globalized yet decentralized, i.e., distributed architecture,
with replicating modules that consist of branch roots (below
ground) alongside leaves and subtended buds (above ground),
flexibly distributed to optimize the procurement of energy and
mineral resources (Calvo and Trewavas, 2021). The important
point, for our purposes, is that plants display highly localized
activity, while using feedback and feedforward mechanisms
(Calvo and Friston, 2017) to provide stability and flexible
responses to achieve organism-level adaptive behavior.

Movement via growth: Plants move by growth rather than
locomotion (Darwin and Darwin, 1880). In animals, growth
principally concerns the development of the organism as it
matures and is relatively determined. In plants, growth is
associated with the continuous, dynamic interaction of the
organism with the environment, throughout its life, and is
highly plastic. It is primarily characterized by the extension
from the tip of the body (apical extension) and length change,
allowing organisms to move through spatially constrained
environments and adopt three-dimensional structures. Growth,
thus, closely overlaps with “remodeling” of a plant, changing its
material properties, and “morphogenesis,” changing its shape, to
adaptively act within its dynamic environment (Del Dottore et al.,
2018). Notably, as an efficient strategy for movement, growth
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is found across scales of natures and different kingdoms—for
example, in fungal hyphae as well as networks of neurons—and
is associated with the flexible exploration of three-dimensional
(3D) space in a non-deterministic body (Blumenschein et al.,
2020).

Neural-like properties: Plants lack neurons. Nevertheless,
growing research highlights related molecular-level functional
similarities between animal and plant substrates (Baluška and
Levin, 2016; Miguel-Tomé and Llinás, 2021). One example is
the fact that plants possess neurotransmitters [acetylcholine,
glutamate, dopamine, histamine, noradrenaline, serotonin, and
gamma-aminobutyric acid (GABA)], some of which appear to
play roles analogous to those in animals (Baluška and Mancuso,
2009a; Baluška, 2010). Another example is the capacity for
plant cells to produce electric potentials and exploit auxin-
secreting neuron-like plant synapses (Baluška and Mancuso,
2009b). Electrical signals are transmitted along vascular conduits
via networks of phloem, xylem, and cambium, again highlighting
the importance of the vascular system for whole-body integration
(Baluška et al., 2006).

Swarm intelligence: Swarm intelligence refers to the activity
of the decentralized group of individuals that collectively
results in the emergence of adaptive behavior. Examples
include bird flocking, microbial organization, ant colony
coordination, and fish schooling. Research suggests that swarm
intelligence might apply to the plant roots too: local interactions
between relatively simple components (root tips) result in
the emergent functionality. For instance, Ciszak et al. (2012)
argue that coordinated activity among individual root apices,
which change in growth direction produces their episodic
patterns of coordinated activity, resulting (collectively) in
resource optimization.

Through their modular architecture within a highly plastic
phenotype, plants engage in a range of flexible and information-
sensitive capacities. Commonly observed capacities include
perception, communication, kin recognition, decision-making,
anticipation, learning, risk sensitivity, and mimicry (Calvo,
2016; Segundo-Ortin and Calvo, 2021). Plants, thus, display
remarkably intelligent behaviors without the need for a central
control organ.

Enacting Bioinspiration
As our discussion so far suggests, designing systems that are
more fully plant-like accords with soft robotics and a broader
embodied perspective. One reason for this emphasis on soft
bodies and smart morphology is that plant intelligence lacks
the sort of organization and architecture modeled by symbolic,
language like, or more explicitly deliberative architectures
(Newell and Simon, 1976; Pylyshyn, 1984). Research in plant
intelligence, for instance, indicates the distributed nature of
control, where adaptive responsibility is shared between local
responses, internal long-distance signaling mechanisms, the
material properties of organs, and the dynamics of body-
environment interactions (recalling the “principle of ecological
balance,” Pfeifer and Scheier, 1999). More fully plant-like
robots will exploit similar means for adaptive behavior through
principles of the smart embodiment such as sensorimotor

coupling with soft bodies, and decentralized control (Linson and
Calvo, 2020; Calvo and Trewavas, 2021).

Enactivism stresses the role of an adaptive embodiment for
intelligence and behavior and, thus, coheres with other soft
and embodied perspectives, but additionally centers the role
of “autonomy” and “adaptivity” (Froese and Ziemke, 2009),
based on the conviction of strong continuity between life
and mind (Varela et al., 1991/2017; Thompson, 2007). As
with all organisms, such adaptive autonomy plausibly plays an
important role in plant intelligence and behavior, as we shall
see. We contend, therefore, that an enactive perspective on
plant bioinspiration serves as a heuristic for drawing attention
to the contribution of soft materials and morphology to plant
intelligence as well as ask us to consider the role of adaptive
autonomy. On the flipside, plant bioinspiration offers enactivism
a case study for exploring the possibility of engineeringmore fully
agential systems.

Enactivism refers to a family of theories that share historical
roots and central tenets, but either diverge in significant ways or
otherwise stress different aspects of cognition (Ward et al., 2017).
For present purposes, the important aspect of enactivism, as we
intend it, is that it emphasizes not only: (1) agent-environment
coupling and the importance of bodilymorphology for intelligent
action, in keeping with other embodied approaches, but also
the role of (2) autonomy (Varela et al., 1991/2017; Thompson,
2007). Autonomy is here defined as a kind of recursive
process of production, in which a system is constituted by a
network of processes that recursively depend on each other to
generate the processes themselves, and constitute the system
as a unity individuated from its environment. To quote
Thompson, “an autonomous system is a self-determining system,
as distinguished from a system determined from the outside or a
heteronomous system” (Thompson, 2007, p. 37). For brevity, we
focus on basic metabolic or autopoietic autonomy (Ruiz-Mirazo
andMoreno, 2004), i.e., the capacity of a system to reproduce and
maintain itself physically. However, enactivists often recognize
other forms of autonomy (e.g., neurological, immunological,
sensorimotor). Robotics and plant research may benefit from
attending to these other forms of autonomy, which find a parallel
in the plant kingdom. For instance, in addition to “phytoneural”
(Calvo et al., 2017) and sensorimotor behavior, we would do
well to examine research in plant immunology (Jones and Dangl,
2006; Li et al., 2020).

Complementing the basic idea of autonomous constitution
is the idea that a truly autonomous system is “precarious” —
it must actively work to ensure its continued existence. This
links autonomy with adaptivity (Di Paolo, 2005; see also De
Jesus, 2018). Contemporary enactivism places great emphasis
on adaptivity—the capacity of the system to actively modify
its relationship to the environment in a manner that facilitates
its persistence (Di Paolo, 2005; Di Paolo and Thompson,
2014). Marrying autonomy with adaptivity, we get “adaptive
autonomy” (Barandiaran, 2002, 2004; Barandiaran and Moreno,
2008; Thompson and Stapleton, 2009), i.e., the notion of a system
that regulates its interactions with the world, thereby managing
its conditions for viability (the conditions under which it persists
as a distinct system). This creates a kind of interdependence
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between the interaction of a system and its environment and the
persistence of that system; actions of a system and its constitution
are intertwined.

Although autonomy for enactivists is, strictly speaking, an
all or nothing phenomenon—with living systems as the only
known instance of an unequivocally autonomous system—we
can still think of robots as more or less engineered in relation
to enactivist principles. This is because the design of such
systems may more or less emphasize autonomy as an important
ideal and guiding heuristic (in addition to the importance of
morphology and body-environment coupling, shared with other
embodied perspectives). Three considerations are worth bearing
in mind here. The first is that even embodied robots that are
typically thought of as autonomous because they can operate
independently for certain durations do not necessarily meet all
the requirements for full autonomy in the enactivist sense (Froese
and Ziemke, 2009). The second is that even if one falls short
of designing a fully autonomous system, autonomy can still
function as a model criterion. Finally, a focus on autonomy will
produce different results depending on whether research of an
individual is animal- or plant-inspired; autonomous growbots
may meet different criteria from “locobots” because of their
architectural and morphological idiosyncrasies (for a related
discussion on the specificity of “organismoid embodiment,” see
Vernon, 2010).

Autonomy (as well as adaptivity) is argued to be a crucial
determiner of genuine agency. We can unpack agency, from an
enactivist perspective, in terms of an autonomous organization
that adaptively manages its coupling to the environment and,
thus, contributes to sustaining itself (Barandiaran et al., 2009).
A more exact definition of “basic autonomy” (which slightly
diverges from the traditional formulation in terms of autopoiesis)
is provided by Ruiz-Mirazo and Moreno: “the capacity of a
system to manage the flow of matter and energy through it,
so that it can, at the same time, regulate, modify, and control:
(i) internal self-constructive processes and (ii) processes of
exchange with the environment. Thus, the system must be able
to generate and regenerate all the constraints—including part of
its boundary conditions—that define it as such, together with
its own particular way of interacting with the environment”
(Ruiz-Mirazo and Moreno, 2004, p. 240. Original emphasis).

An interesting consequence of the enactivist perspective is that
relatively “simple” organisms (including all the higher plants)
exhibit genuine agency, whereas robots capable of completing
complex information-processing tasks typically do not. Even
embodied robots with tight perception-action coupling, though
perhaps exhibiting agent-like behavior, do not possess intrinsic
agency unless such coupling arises from fulfilling one of that
requirements of the system for continued survival (Barandiaran
et al., 2009; Stapleton, 2016). In short, enactivism provides
relevant perspectives for robotic design concerned with the
genuine agency, rooted in the biological processes that are not
exclusive to animals. Again, it is important to stress the contrast
between the concept of autonomy outlined here and one invoked
in many areas of robotics (for discussion on the varied of
“autonomy” in robotics, see Smithers, 1997). For example, an
“autonomous system” often refers to a robot with the mere

capacity to self-manage for some extended period (arbitrarily
benchmarked) without human supervision.

Take growth in plant-inspired robotics as a case study (Del
Dottore et al., 2018). Enactivism provides the tools to assess
the limitations of existing growbots, given its emphasis on
homeostatic autonomy (Froese and Ziemke, 2009). Existing
robots are capable of growth via root-like appendages, providing
novel forms of movement (Sadeghi et al., 2017). Recent examples
of effective robotic growth include soft pneumatic robots
that achieve directed growth through the pressurization of an
inverted thin-walled vessel coupled with controlled asymmetric
lengthening, displaying a remarkable ability to move through
constrained spaces (Hawkes et al., 2017). However, all the existing
forms of plant-inspired roots depend on a prefixed store of energy
and matter. Recent pressure-driven robots depend on stored
material within a “base station” — a fixed spool of polyethylene
tubing provides the material for pressure-driven eversion, i.e.,
turning inside out—and externally provided source of liquid or
air pressure (Hawkes et al., 2017). From an enactivist perspective,
a more genuinely autonomous robot actively seeks out and
metabolizes all the material for growth in its environment and
uses this process to aid its persistence as an individuated system.
There are existing robots with artificial digestive systems that
seek out energy sources, process them, and egest waste (Melhuish
et al., 2006; Ieropoulos et al., 2010). Ecobot-II and -III convert
biomass into energy using onboard microbial fuel cells with
oxygen cathodes. However, these robots still require an external
source to supply key materials.

Moving forward, more truly autonomous growbots—that
are plant like in not only their material composition and
morphology, but in their adaptive autonomy—will not only
self-direct and self-manage in the manner of existing so-called
“autonomous” robots (free from direct human management),
but will actively seek out the requirements for fulfilling the
conditions of their own persistence. This may also be relevant
in examining limitations in the amount of growth and degree of
control possible in existing growbots compared with plants, given
their dependence on an external source (Hawkes et al., 2017).

Value of Plant-Inspired Robots
In addition to any generic benefits afforded by an enactivist
perspective—for example, see Smithers (1997) on the role of
autonomy for navigating unpredictable environments and Lowe
and Kiryazov (2014) on the role of autonomy for cognitive-
affective processes—designing robots that are more fully plant
like in their material composition, morphology, and autonomous
control promises some particular advantages for soft robotics.
Obviously, autonomous plant-like robots allow us to test the
possibilities of what forms intelligence might assume by taking
inspiration from a non-zoological branch on the tree of life.
They may also allow us to better test existing theories within
plant cognitive science/neurobiology, adopting a “synthetic
methodology,” i.e., understanding a phenomenon by building
physical systems that simulate aspects of the phenomenon
(Pfeifer et al., 2008).

Robots exhibiting more plant-like bodies as well as stronger
autonomy also promise practical benefits. These benefits would
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build upon (but potentially surpass) the advantages of existing
plant-inspired robots. This includes the fact that plants display
high levels of fault tolerance, with catastrophic damage less likely
given the absence of system-critical centralized organs as well
as the ability to acquire energy and material in proportion to
the demands of growth (a function of their adaptive autonomy).
In other words, plants have extensive redundancy built-in to
their basic organization. Such a strategy can minimize existential
risk (no single root is essential), but it also provides novel ways
to reach new locations that have advantages over locomotion
(e.g., navigating a hard surface by growing through small cracks).
There is also the broad principle that engineering an intelligent
system via many “not-so-smart” parts—via principles of swarm
intelligence—is often optimal given the cost/risk involved. This
is especially relevant, for instance, when designing expensive
systems for space exploration (Mehling et al., 2006; Wooten and
Walker, 2015; Gallentine et al., 2020).

Designing robots with reference to a more complete suite
of plant features including stronger autonomy—thus, has the
potential to produce relatively low-cost systems which can be
deployed with little configuration and that will actively build
themselves while exploring and adapting to their environment
with little or no external management. This could have serious
implications for space exploration, rescue operations, and
medical procedures (see also Blumenschein et al., 2020). Plant-
inspired robotics, thus, corroborates the dictum that embodied
perspectives both offer theoretical insight into the principles of
biological intelligence and are of practical value in the design of
adaptive systems (Pfeifer et al., 2008).

To summarize, we suggest there are at least four (overlapping)
reasons to consider the design of more holistically plant-inspired
robots with strong autonomy as a guiding heuristic:

• To uncover novel forms of robotic design (e.g., “is it possible
for a robot to solve problem x using a plant-like strategy?”).

• To exploit unique advantages of plant organization for
overcoming real-world tasks (e.g., “can plant-like growth
afford special benefits for exploring non-terrestrial planets?”).

• To test theories in plant cognitive science/neurobiology (e.g.,
“can we build a robot with a mechanism analogous to the one
we think underlies plant behavior?”).

• To engineer robots that exhibit autonomous, decentralized
intelligence as proof of concept for what forms intelligence can
take (e.g., “what forms of intelligence are possible to engineer
and how similar are these to existing organisms?).

Of course, soft roboticists are already sensitive to some of
these considerations, some of the time. As such, recognizing the
possibility of more holistically plant-like robots partially serves
as a tool to deepen and develop existing trends. Equally, if the
preceding discussion is correct, too little attention has been paid
to the possibility of genuinely autonomous systems, and the use
of strong autonomy as a heuristic to develop more fully plant like
(and other autonomous) robots, e.g., robots with more genuinely
plant-like growth properties.

Our discussion has explored a two-way relationship between
enactivism and the design of more plant-like robots. Enactivism

helps us attend to the possibility of looking to plants and other
non-zoological sources of inspiration, emphasizing the coupling
of adaptive morphology with strong autonomy across the tree of
life, while the practical success of plant-inspired robots reinforces
a postcognitivist perspective (Heras-Escribano, 2019) on the
diverse forms intelligence can take (Linson and Calvo, 2020).

CONCLUSION

This article has only begun to unpack the relationship between
plant bioinspiration and enactivism. It is apparent, however, that
plants offer a rich source of insight for future developments that
overlaps with an enactivist perspective and should not be ignored
in favor of purely zoological inspiration. Attention to principles
of strong autonomy (as exhibited by plants), in conjunction with
novel forms of plant-like materials and morphology, might prove
beneficial to plant-inspired robotics. It can also serve to assess
the limitations of existing plant-inspired robots such as growbots.
More broadly, we indicated that an enactive perspective on
plant bioinspiration contributes to ensuring that soft robotics
is a productive field that generates theoretical insights as
well as practical benefits with quantitative advantages. Future
research should examine the overlap between the design of
more autonomous plant-inspired robots and existing attempts to
develop genuinely life-like systems (Kriegman et al., 2020) as well
as other postcognitivist perspectives toward plant bioinspiration
such as ecological psychology (Frazier et al., 2020). Finally, in
addition to issues pertaining to growth and growbots discussed
in this article, work on plant-inspired robotics should investigate
the potential of development as a key element inmore fully plant-
like systems, given the significant role of development in plant
adaptive behavior (Segundo-Ortin and Calvo, 2021).
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Much of our everyday, embodied action comes in the form of smooth coping. Smooth 
coping is skillful action that has become habituated and ingrained, generally placing less 
stress on cognitive load than considered and deliberative thought and action. When 
performed with skill and expertise, walking, driving, skiing, musical performances, and 
short-order cooking are all examples of the phenomenon. Smooth coping is characterized 
by its rapidity and relative lack of reflection, both being hallmarks of automatization. 
Deliberative and reflective actions provide the contrast case. In Dreyfus’ classic view, 
smooth coping is “mindless” absorption into action, being in the flow, and any reflective 
thought will only interrupt this flow. Building on the pragmatist account of Dewey, others, 
such as Sutton, Montero, and Gallagher, insist on the intelligent flexibility built into smooth 
coping, suggesting that it is not equivalent to automatization. We seek to answer two 
complementary challenges in this article. First, how might we model smooth coping in 
autonomous agents (natural or artificial) at fine granularity? Second, we use this model 
of smooth coping to show how we might implement smooth coping in artificial intelligent 
agents. We develop a conceptual model of smooth coping in LIDA (Learning Intelligent 
Decision Agent). LIDA is an embodied cognitive architecture implementing the global 
workspace theory of consciousness, among other psychological theories. LIDA’s 
implementation of consciousness enables us to account for the phenomenology of smooth 
coping, something that few cognitive architectures would be able to do. Through the fine 
granular analysis of LIDA, we argue that smooth coping is a sequence of automatized 
actions intermittently interspersed with consciously mediated action selection, 
supplemented by dorsal stream processes. In other words, non-conscious, automatized 
actions (whether learned or innate) often require occasional bursts of conscious cognition 
to achieve the skillful and flexible adjustments of smooth coping. In addition, never-
conscious dorsal stream information and associated sensorimotor processes provide 
further online adjustments during smooth coping. To achieve smooth coping in LIDA 
we introduce a new module to the LIDA cognitive architecture the Automatized Action 
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Selection sub-module. Our complex model of smooth coping borrows notions of 
“embodied intelligence” from enactivism and augments these by allowing representations 
and more detailed mechanisms of conscious control. We explore several extended 
examples of smooth coping, starting from basic activities like walking and scaling up to 
more complex tasks like driving and short-order cooking.

Keywords: smooth coping, automatization, action selection, cognitive architecture, embodied cognition, global 
workspace theory, LIDA

INTRODUCTION

In this article, we develop a conceptual model of smooth coping 
using LIDA (Learning Intelligent Decision Agent), a hybrid, 
embodied cognitive architecture implementing the Global 
Workspace Theory (GWT) of consciousness (Baars, 1988), the 
perception–action cycle (Neisser, 1976; Freeman, 2002; Fuster, 
2004; Cutsuridis et  al., 2011), grounded cognition (Harnad, 
1990; Barsalou, 1999), appraisal theory (Lazarus, 1991; Roseman 
and Smith, 2001), long-term working memory (Ericsson and 
Kintsch, 1995), and other cognitive theories. It aims to be  a 
“unified theory of cognition” (Newell, 1994), taking these and 
other disparate theories, and uniting them under a single, 
comprehensive architecture. LIDA is a conceptual and 
computational architecture that has been used as the basis for 
software and robotic agents. The current paper is the theoretical 
overview of how to implement smooth coping in LIDA. Following 
research will implement formalisms, code agents, and test the 
agents in various environments. We  see this work as a first 
step toward robot implementation of smooth coping that will 
fit with current trends in robotics, such as learning by imitation 
(Bullard et  al., 2019).

Smooth coping is the process of skillfully and adaptively 
acting, typically toward the completion of a task. Smooth coping 
covers a wide range of skillful behaviors, from those that are 
relatively basic like breathing or suckling, to those that are 
learned through painstaking training, as in becoming a pilot 
(Dreyfus and Dreyfus, 1980). Masterfully driving through traffic, 
skiing a slope, or running an obstacle course are all classic 
examples of smooth coping. However, the concept can also 
include cooking, herding sheep, dancing, tidying up, and many 
other activities in which it is possible to reach a state of 
optimized performance. The concept originates in 
phenomenological philosophy, particularly in the embodied 
phenomenologies of Heidegger, 1928/2010 and Merleau-Ponty, 
1945/2012. Both of these thinkers were reacting against an 
intellectualized vision of human existence in philosophy and 
psychology that saw us as essentially epistemic agents geared 
toward knowing the world. As an alternative, they posited a 
vision of human existence that was, at its root, pragmatically 
oriented toward action and movement, and (for Merleau-Ponty) 
that was based in the agent’s embodiment.

In smooth coping the agent is not merely doing disjointed 
multitasking nor just doing automatized actions. Rather, most 
of the agent’s cognitive processes cohere toward fulfilling one 
distal intention. We  outline how a LIDA agent might achieve 

smooth coping, and provide three case studies: walking, driving, 
and short-order cooking (see section “Conclusion”). Importantly, 
smooth coping in LIDA typically requires a “meshed” combination 
of conscious, consciously mediated, and never-conscious processes 
interwoven within a continuing series of cognitive cycles 
implemented using the Global Workspace Theory of consciousness 
(Franklin and Baars, 2010). Historically, in the LIDA conceptual 
model, Action Selection has only been able to choose one, 
and only one, action at a time. In this paper, we  make a 
significant contribution to the LIDA model by introducing a 
new sub-module to Action Selection: Automatized Action 
Selection (AAS). This sub-module allows for concurrent selection 
of actions—AAS is capable choosing automatized actions in 
parallel. Furthermore, AAS runs in parallel with the original 
Action Selection algorithm which continues to choose one 
action at the time.

We begin by fleshing out recent debates on smooth coping 
and highlight the meshed nature of cognition supporting it 
(Christensen et  al., 2016; Gallagher and Varga, 2020). We  then 
introduce the LIDA model and the aspects of LIDA relevant 
to this project. For a more complete overview of LIDA, 
we  recommend reading the tutorial and our two most recent 
papers (Franklin et  al., 2016; Kronsted et  al., 2021; Neemeh 
et  al., 2021). We  illustrate how smooth coping might take 
place in a LIDA agent by going through three case studies of 
increasing complexity: walking alone, driving in traffic, and 
short-order cooking (see section “Conclusion”).

SMOOTH COPING

Although there has been a recent uptick in debates on smooth 
coping, the topic can be  traced at least back to Aristotle and 
the notion of phronesis (typically translated as “practical wisdom”). 
Smooth coping debates since their earliest inceptions have 
typically been tied to culture and sociality—to smoothly maneuver 
the world is often to do so in rich social cultural contexts 
(Rietveld and Kiverstein, 2014). Thus, debates on smooth coping 
cut across discussions in social cognition, anthropology, 
performance studies, and discussions of “expert performance” 
(Cappuccio, 2019).

The crossover between motoric and cultural discussions when 
dealing with smooth coping is especially pronounced when 
looking at the phenomenological tradition. In the twentieth 
century, Martin Heidegger introduced the term Zuhandenheit 
in his monumental Being and Time (1927). Often translated 
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as “readiness-to-hand,” Zuhandenheit refers to a mode of 
comportment that is pre-reflective and pre-theoretical. When 
I  take something, let us say a tool like a hammer, as ready-
to-hand, I  am  using it rather than reflecting on it. This usage 
is an embodied know-how rather than theoretical contemplation. 
Heidegger argued that the Western philosophical tradition 
focused exclusively on Vorhandenheit (“presence-at-hand”), that 
is, the theoretical comportment. For example, Kant’s theory 
of experience is explicitly aimed at supporting the endeavor 
of science. This focus on theoretical reason rather than embodied 
action is something we  can see reduplicated in the history of 
artificial intelligence and robotics. In contrast, Merleau-Ponty, 
1945/2012 examined embodiment and action as they dynamically 
interact with space, time, sexuality, other agents, and other 
domains. According to Merleau-Ponty, smooth coping is the 
most fundamental mode of our everyday lives. Years later, 
Hans Jonas (2001) developed a genetic phenomenology of 
subjectivity, according to which these basal strata of smooth 
coping enable higher-order cognitive processes to emerge, similar 
to contemporary claims of scaffolding. Across thinkers in the 
phenomenological tradition, we see an emphasis on embodiment 
in which smooth coping is a basic capacity of cognitive agents 
as they move through the world. In summary, many 
phenomenologists take the view that smooth coping forms 
the basic background of embodied human agency, and that 
more epistemically oriented, logical, or higher-order processes 
are less common and are founded against this background.

Building off of the phenomenological tradition, Dreyfus and 
Dreyfus (1980) developed a cognitive theory of smooth coping 
based on five stages of skill acquisition. According to their 
theory, expertise in a skill is characterized by automatization 
and a lack of higher-order thinking. On this model of smooth 
coping, experts have habituated their skills within a domain 
to the point that their movements are fully automatized. This, 
in turn, is supposed to explain why paying attention to oneself, 
or deploying higher-order cognitive processes, such as 
“strategizing,” can sometimes be  detrimental to performance 
(Fitts and Posner, 1967; Cappuccio et  al., 2019).

In the literature on smooth coping and expert performance, 
others have followed Dreyfus and Dreyfus and similarly argued 
that smooth coping in skillful action is a matter of complete 
automaticity (Papineau, 2013, 2015).

However, the Dreyfus model has in recent years been 
criticized by a variety of theorists, athletes, and artists, and 
from a variety of perspectives. For example, Barbara Gail 
Montero (2010, 2016) demonstrates that to be effective in many 
sports, the athlete must deploy both automatization and higher-
order cognitive processes. Additionally, Montero et  al. (2019) 
demonstrate that the empirical research program claiming that 
self-attention is detrimental to performance is based on flawed 
experimental design. Self-attention, monitoring, strategizing, 
and so forth, are often integrated into the flow of performance, 
rather than interrupting it.

The point here is that higher-order processes, such as 
planning, strategizing, monitoring, and so forth, are not always 
detrimental to expert performance, but on the contrary are 
often necessary for expert performance and successful smooth 

coping. Given this insight, smooth coping is often a matter 
of fluently integrating what some have called “online” (immediate 
sensory stimuli is needed) and “off-line” (detached from 
immediate sensory stimuli) cognition (Wilson, 2002). Several 
theories now propose an integrated web of causality between 
low-level and higher-order processes in expert performance 
and smooth coping more generally. Such models include “arch” 
(Høffding and Satne, 2019), meshed architecture (Christensen 
et  al., 2016, 2019), the dual-process model (Neemeh, 2021), 
radically meshed architecture (Gallagher and Varga, 2020), and 
a variety of similar approaches (Bermúdez, 2017; Pacherie and 
Mylopoulos, 2021).

While these models vary with regards to their commitments, 
the general gist is the same: both low-level and higher-order 
cognitive processes are utilized and impact each other during 
expert performance. For example, automatized non-conscious 
processes, such as the continual adjustment of posture or 
dribbling of a basketball, can be  impacted by higher-order 
conscious processes, such as thinking about and realizing the 
opponent’s strategy. A mixed martial arts fighter facing an 
opponent with a longer reach might strategically try to outsmart 
their opponent by trying to grapple rather than kicking and 
punching. Such a higher-order strategic decision in turn impacts 
how fighters adjust their postures and reconfigure their 
sensorimotor readiness toward certain action types.

In the literature on dance performance, some phenomenologists 
have similarly pointed out that even in highly choreographed 
performances in which one movement brings forth the 
next,  expert dancers must adjust their performances to the 
particularities of the stage, that night’s audience, lighting, air 
density and humidity, costume malfunctions, and other factors 
(Bresnahan, 2014). In this same vein, and perhaps even more 
importantly, the expert dancer (and expert performer in general) 
must always move in and out of conscious monitoring of the 
body itself, to adjust in accordance with how the body feels 
that day (Ravn, 2020).

From these brief examples, we  can see that embodied 
expertise, whether in mundane cases like walking or driving 
or in highly specialized domains, such as sports and performance, 
involves a fluent intermixing of various cognitive processes 
and different levels of awareness (conscious, never-conscious, 
pre-conscious, pre-reflective). While meshed architecture 
approaches differ on their commitments to concepts, such as 
“mental representation” or how to conceptualize the causation 
between different cognitive mechanisms, it is commonly agreed 
that smooth coping is not just a matter of automatization. 
Rather, we  frequently utilize and change between various 
cognitive processes. For example, musicians sometimes report 
being in a state of complete automatization while simultaneously 
monitoring their own actions and the actions of fellow musicians. 
In such a state the musician playing is acting through 
automatization but they are ready to interject with top-down 
control at any moment (Høffding, 2019).

Similarly important in discussions of smooth coping and 
expert performance is the notion of dispositional skill or habit. 
Here thinkers tend to develop accounts of habits that are 
strongly inspired by John Dewey’s (1922) notion of habit as 
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a context-sensitive, flexible, disposition to act. Whether working 
within explicitly anti-representationalist enactive cognitive science 
(Gallagher, 2020; Segundo-Ortin and Heras-Escribano, 2021) 
or representationalist cognitive science (Schack, 2004; Sutton 
et  al., 2011; Bermúdez, 2017; Pacherie and Mylopoulos, 2021), 
there is a general agreement that habit is an important concept 
in expert performance and smooth coping. Habits in such a 
view are entrenched through practice but are flexibly adapted 
to a variety of contexts. Unlike motor programs that are 
contextually rigid (Ghez, 1985; Neilson and Neilson, 2005), 
habits are always regulated and finely adjusted by the current 
context—habits are ways of adaptively being in one’s environment 
(Dewey, 1922).

THE LEARNING INTELLIGENT DECISION 
AGENT COGNITIVE ARCHITECTURE

Learning intelligent decision agent is a systems-level cognitive 
architecture intended to provide a complete and integrated 
account of cognition (Franklin et  al., 2016). Thus, rather than 
modeling one aspect of mind, the LIDA model aims to be  a 
“unified theory of cognition” (Newell, 1994) capable of modeling 
human, animal, and artificial minds.1 Cognition, as it is used 
here, broadly encompasses every mechanism of mind including 
(but not limited to) perception, attention, motivation, planning, 
deliberation, metacognition, action selection, and motor control, 
as well as the embodiment of all of these activities. “Cognition” 
then is meant to cover the entirety of the agent’s mental life 
including its embodiment and embodied actions. Within the 
LIDA framework, “minds” are broadly conceived of as control 
structures for autonomous agents (Franklin, 1995; Franklin and 
Graesser, 1997). Here “control structures” (see Newell, 1973) 
are broadly conceived of as those mechanisms that allow an 
agent to pursue its agenda. To be  an autonomous agent is in 
part to have an agenda, and to have a mind is to have structures 
that allow one to pursue that agenda (however simple or 
complex one’s agenda might be). Consequently, autonomous 
agents are always in the business of answering the question 
“What should I  do next?”

Learning intelligent decision agent is composed of many 
short- and long-term memory modules, as well as special 
purpose processors called codelets. While modularity is 
sometimes seen as a “bad word” in contemporary philosophy 
of mind, the LIDA model is modular in the sense that it is 
composed of a collection of independent modules that are 
constantly performing their designated task. However, it is 
important to note that the LIDA model is not committed to 
the modularity of brains (Franklin et  al., 2013). In fact, the 
LIDA model makes no claims about brains whatsoever. Thus, 
the LIDA model can be  implemented even by brains that are 
dynamic and full of neural reuse (Kelso, 1995; Anderson, 2014).

Importantly, the LIDA model implements the Global 
Workspace Theory of consciousness (Baars, 1988, 2019). An 

1 For an overview of other cognitive architectures see Kotseruba and Tsotsos (2016).

agent typically cannot be aware of everything in its environment 
(external or internal) and therefore needs to “filter out” the 
most relevant information. LIDA agents therefore have 
information regarding the world “compete” for its attention 
in a module known as the Global Workspace. Whatever structure 
wins (most typically a coalition of structures) is globally broadcast 
to every module throughout the model—hence the term “the 
global broadcast.” In this way, the Global Workspace functions 
as a filter that dictates what information becomes available to 
the rest of the agent’s modules.

In LIDA, sensory stimuli are used to construct both a rich 
model of the external environment and an internal environment 
within the module known as the Current Situational Model 
(CSM). In broad strokes, the CSM creates a model of the 
world, and different parts of the model are then sent to compete 
in the Global Workspace.

The LIDA model utilizes two types of special purpose 
processors—structure building codelets and attention codelets. 
Structure building codelets build, potentially complex, 
representational structures in LIDA’s CSM. These structures 
can include, among other things, sensory content from an 
agent’s environment and cued long-term memories (e.g., from 
Perceptual Associative Memory, Spatial Memory, Transient 
Episodic Memory, and Declarative Memory). Attention codelets, 
on the other hand, continually monitor the CSM looking for 
structures that match their concerns. If found, pre-conscious 
content and its corresponding attention codelets are formed 
into coalitions that compete for consciousness in LIDA’s 
Global Workspace.

Coalitions consist of attention codelets and the contents 
for which they advocate. These coalitions are then sent to 
compete within the Global Workspace for conscious “attention.” 
The competition taking place within the Global Workspace 
module decides to what the system will consciously attend. 
Whichever coalition has the highest activation has its content 
broadcast to every LIDA module across the model (i.e., its 
content is globally broadcast). Consciousness consists of, among 
other things, the frequent serialized broadcast of discrete 
cognitive moments unfolding across overlapping cycles, that 
is then typically processed by each module. In other words. 
Consciousness is discrete and one thing after the other occurs 
at rapid pace (Baars, 1988). While all of LIDA’s modules take 
in input asynchronously, the serialized nature of the global 
broadcast facilitates a smooth serialized unfolding of 
consciousness and, as we  shall see, of embodied action. For 
a general overview of the LIDA model, its modules, and 
processes, see Figure  1.

To be  able to address the fact that agents have varying 
needs, across culture, personal history, and current situations, 
several variables are attached to structures in the CSM. For 
example, each structure has an activation value that is used 
in part to measure its salience. The salience of these structures 
is used to determine the activation of coalitions containing 
these structures, modulating their chance of winning the 
competition for global broadcasting in the Global Workspace. 
For an in-depth account of salience and motivation in LIDA 
(see McCall et  al., 2020).
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One of the core commitments of the LIDA research program 
is that the LIDA model is an embodied architecture (Franklin 
et  al., 2013). This means that LIDA agents are biologically 
inspired in their design, and always in active commerce with 
their environments. In line with 4E approaches to cognition, 
LIDA agents are always in the process of answering the question 
“What do I  do next?” Furthermore, constantly answering this 
question means that all LIDA agents have an “agenda” and 
in many embodied LIDA agents the agenda stems from the 
demands of the agent’s body.

Debates within embodied cognition often distinguish between 
weak and strong embodiment (Gallagher, 2011). In rough terms, 
an approach to cognition is weakly embodied if the body 
tends to simply be  “represented” within a systems central 
processing. A system is strongly embodied if the arrangement 
of the systems physical body aids in the constitution of its 
cognition. However, the LIDA model does not neatly fit into 
this categorization. The LIDA model uses subsumption 
architecture (Brooks, 1991), and is in constant sensitive commerce 
with the environment through its dorsal stream. The LIDA 
dorsal stream, among other things, directly impact an agent’s 
physical involvement with its world. LIDA agent’s also have 
a body schema that constantly impacts the unfolding of 
sensorimotor action. At the same time, it is true that the 
LIDA model also represents its own body within the current 
situational model. Furthermore, the LIDA cognitive architecture 

is made so that it can be  implemented both in physical and 
non-physical agents, such as robots or software agents, 
respectively. Therefore, the LIDA model contains both elements 
of strong and weak embodiment, and in physical agents, both 
approaches tend to be  in play.

With this overview in hand, we  are ready to dig into more 
detail regarding the LIDA cognitive cycle and action selection. 
Action selection is of special importance during smooth coping 
since successful smooth coping requires the skillful selection 
and execution of the right actions at the right time.

The Cognitive Cycle
Learning intelligent decision agent’s cognitive cycle is divided 
into an understanding phase, an attention phase, and an 
action and learning phase (see Figure  2). LIDA’s cognitive 
cycle begins with external and internal sensory input, and 
the construction and updating of structures (i.e., representations) 
in the Current Situational Model (CSM). Structures that attract 
the attention of an attention codelet are then brought to the 
Global Workspace in which they compete for consciousness. 
The winning structure is broadcast throughout the model, 
and the system may make a decision to act (internally or 
externally) through an action selection mechanism. Learning 
can also occur as the result of each conscious broadcast. 
While a detailed discussion of learning in LIDA is beyond 
the scope of this article, it suffices to say that a LIDA agent 

FIGURE 1 | The LIDA model cognitive cycle overview diagram.
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typically learns with each cognitive cycle (as a direct result 
of its conscious broadcast).

For readers new to LIDA, it is helpful to remember that 
each cognitive cycle is rapid, lasting only 200–500 ms in humans 
(Madl et  al., 2011), and that LIDA’s modules work largely 
asynchronously and independently of each other. As a result, 
cognitive cycles can “overlap.” For example, the “action and 
learning phase” from one cognitive cycle can occur concurrently 
with the “perception and understanding phase” of the next. 
Thus, while each cognitive cycle is conceptually divided into 
discrete, serial phases, it is rarely the case that an agent’s 
modules and processes are completely inactive.

Action Selection
During the action and learning phase of each cognitive cycle, 
LIDA’s Action Selection module will typically select behaviors 
that specify executable (internal or external) actions. This process 
of action selection is needed for many reasons. For example, 
it may be  the case that many behaviors can accomplish a task, 
although not all of them equally well. For example, a box might 
be  moved by carrying it, pushing it with one’s hands, scooting 
it with one’s foot, or even pushing it with one’s head while 
crawling on all fours. In these cases, Action Selection facilitates 
the selection of the most situationally relevant and reliable of 
these behaviors. Furthermore, at any given moment, agents may 
have multiple, competing desires and goals. Action Selection 
facilitates the selection of behaviors that are more likely to lead 
to the most desirable outcomes. Finally, Action Selection 

coordinates the parallel selection of non-conflicting behaviors. 
Historically, Action Selection chose one, and only one, behavior 
at a time. In this paper, we enhance the Action Selection module 
to include an Automatized Action Selection sub-module (see 
Section “Smooth Coping in LIDA”) that allows for the selection 
of multiple, non-conflicting behaviors in each action selection event.

Action Selection depends on LIDA’s Procedural Memory, a 
long-term memory module that determinates situationally 
relevant actions and their expected environmental consequences. 
In other words, Procedural Memory specifies what actions are 
available to take, and would happen if they were taken, while 
Action Selection determines what the agent will do given that 
knowledge (see Figure  3).

As conscious content is globally broadcast throughout all 
of LIDA’s modules, it is received by Procedural Memory, which 
uses the contents of the conscious broadcast to instantiate2 
schemes that are relevant to that conscious content. Instantiated 
schemes are referred to as behaviors, which are candidates for 
selection by LIDA’s Action Selection module.

Each scheme consists of a context (i.e., environmental 
situation), an action, and a result (i.e., that action’s expected 
environmental consequences). These can be specified at many 
different levels of abstraction and generality. Each scheme 
also contains a base-level activation, which serves as an estimate 

2 Instantiation is a specification process. It takes data structures and makes 
them more concrete. For example, in perception, the “template” for a chair 
could be  instantiated into a specific chair, for example, a chair that is currently 
in front of an agent.

FIGURE 2 | The LIDA Cognitive Cycle Diagram color coded. Green modules are involved in the perception and understanding phase, pink modules in the attention 
phase, and grey modules are involved in the Action and learning phase.
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of the likelihood that the scheme’s result will follow from 
its action when taken in a given context. For example, a 
generic “key turning scheme” might specify an action that 
corresponds to the bodily movements needed to turn a key, 
the context of being near a lock, and the expected result of 
that lock being unlocked. Each successful selection and 
execution of this scheme’s action (in the given context) will 
generally result in an increase in its base-level activation. 
Similarly, each failure will lead to a decrease in its base-level 
activation. If, as we  might expect, this “key turning scheme” 
generally succeeds, then it will eventually have a high base-
level activation. However, if its context were underspecified, 
for example if it did not limit “key turning” to when an 
agent is “near a lock,” then its action might be  taken in 
inappropriate situations, leading to an unreliable scheme that 
often fails inexplicably. This unreliability would manifest in 
the scheme having a low base-level activation.

At this juncture it would be  natural to ask, “Wait, is there 
a scheme for everything? Is there a coffee making scheme? 
A TV watching scheme? A CrossFit scheme?” First, we  must 
understand that many schemes are culturally specific. A LIDA 
agent that is implemented in a car factory floor robot does 
not need a “cool handshake” scheme. However, an agent that 
exists in a culture in which different handshakes are integral 
to cultural fluency likely has schemes for different culturally 
relevant greetings.

Second, we  must understand that complex actions are 
achievable through the execution of multiple simpler actions. 
For example, riding a bicycle consists of pedaling with both 
legs, steering, braking, scanning the environment, and much 
more. Historically in LIDA, the coordination of multiple actions 
into complex actions has been implemented as streams of 
schemes (see section “Behavior Streams and Skill”). As a result 
of these streams, LIDA agents do not need to learn unique 
schemes for every complex action. Rather, seemingly novel 
complex actions can be manifested through multiple preexisting 
schemes. In this way, LIDA achieves a form of “transfer learning” 
(Pan and Yang, 2009). To further facilitate the learning of 
complex actions, in this paper, we  introduce the hierarchical 
organization of schemes (see section “Smooth Coping in LIDA”), 
which in conjunction with the automatized action selection 
of actions allows for fluid agential behavior.

When Action Selection chooses a behavior that specifies 
an external action (that is, one intended to modify an agent’s 
external environment), it passes it to LIDA’s Sensory Motor 
Memory for execution. If, on the other hand, the chosen 
behavior specifies an internal action (for example, one used 
to support mental simulation), it is sent to (or used to spawn) 
a structure building codelet that updates the Current Situational 
Model accordingly.

The selection of a behavior can also result in the creation 
of an expectation codelet. Expectation codelets are a type of 

FIGURE 3 | To gain a better grasp of the action selection process in LIDA, it is helpful to think of the process as a funneling toward specificity. Procedural memory 
contains information about things the agent can do under various circumstances at a somewhat abstract level. Action Selection, broadly speaking, chooses “what 
to do” in the agent’s particular circumstance. Sensory Motor Memory decides “how to do it” be picking a motor plan, high specificity, and Motor Plan Execution 
carries out the motor plan. In this way, actions are procedurally selected with increasing specificity.
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attention codelet tasked with monitoring the Current Situational 
Model for content that matches the expected results of the 
agent’s recently selected behaviors. This temporarily biases 
an agent’s attention toward the environmental consequences 
of its recent actions, helping to produce a feedback loop 
between an agent’s actions and their results. Thus, in line 
with enactive and predictive approaches to cognition, action, 
perception, and prediction are intimately tied together in a 
feedback loop.

Research on smooth coping generally agrees that smooth 
coping consists of a series of automatic and consciously controlled 
actions, as well as both low-level sensorimotor activity and 
higher-order thought, such as strategizing or monitoring 
(Christensen et  al., 2016; Montero, 2016; Høffding, 2019; 
Gallagher and Varga, 2020). In other words, smooth coping 
is a combination of ingrained and automatic processes with 
conscious and deliberate processes resulting in fluent and skillful 
action. In LIDA, this is modeled through the combination of 
four different modes of action selection: consciously mediated 
action selection, volitional decision making, alarms, and 
automatized action selection (Franklin et  al., 2016, pp.  29–32).

Consciously mediated action selection refers to the many 
actions an agent performs in which the conscious broadcast 
is involved, while simultaneously being unaware of the selection 
processes that go into choosing those actions. For example, 
in sailing, the sports sailor might be  consciously aware of the 
different ropes on the mast but is not aware of the competition 
in Action Selection that makes her choose the particular rope 
grip she ends up deploying. Similarly, a tennis player might 
be  consciously aware of the ball as it approaches but is not 
aware of the action selection process that make him choose 
the smash over the volley.

Volitional action selection refers to the type of action selection 
in which the agent is consciously and actively aware of some 
of the selection processes. For example, when an agent is 
deliberating about what is the best move to make in a board 
game, and mulling over the different choices, outcomes, and 
pitfalls, they are doing volitional action selection. By mulling 
over different possible actions and their outcomes, “options” 
are created in the Current Situational Model (Franklin et  al., 
2016). Such options can become conscious and make their 
way to Procedural Memory, which may then instantiate behaviors 
based on these options. Action Selection may then choose 
from among these behaviors. Hence, the first part of volitional 
action selection is conscious while the second part is unconscious 
(the conscious broadcast is being utilized but the agent is not 
aware of the process taking place in Action Selection). In fact, 
in no mode of action selection is an agent aware of what is 
happening within the Action Selection module—the module 
just continuously does its job. In short, during volitional action 
selection, the agent is aware of the options they are juggling 
but not aware of what is going on “inside” Action Selection.

Alarms are never-conscious processes that bypass the competition 
in the Global Workspace. If some object or event is recognized 
by Perceptual Associative Memory as an alarm, the object or 
event will be  sent straight to Procedural Memory to instantiate 
schemes. Behaviors relevant to alarm content are assigned a high 

activation value in Action Selection and are typically selected 
and immediately passed along to Sensory Motor Memory—which 
in turn passes along motor plans to Motor Plan Execution. Put 
simply, many agents have experienced acting in an alarming 
situation, and only becoming aware of their actions after the 
fact. For example, having a big spider climb on one’s arm for a 
lot of people will result in a series of brushing, jumping, and 
spasms, in which they are only aware of the threat after the fact. 
Similarly, in driving, many drivers experience reacting to dangerous 
situations as fast or faster than they are consciously aware of the 
situation. Note here that alarms can be  both innate as in the 
spider example or culturally determined as in the driving example.

The final mode of Action Selection is automatized action 
selection. Automatized actions are overlearned actions where one 
action can be thought of as calling the next. Selection of automatized 
actions proceeds unconsciously, that is, selection does not necessarily 
need content from the conscious broadcast. These are typically 
the kinds of actions that have been practiced time and time 
again, and they can be  performed without conscious thought. 
For example, walking on an empty sidewalk is a typical automatized 
action. It requires little attention, and the agent can simultaneously 
focus on other matters. In this paper, we go into detail regarding 
automatized action selection in Section “Smooth Coping in LIDA.”

While we go into details regarding automatization in section 
“Smooth Coping in LIDA” it is worth noting here a core 
difference between automatized action selection and alarms. 
Alarm actions revert back to normal functioning once the 
alarm action has been executed and does not call for further 
actions. In this way, alarms are a temporary interruption of 
whatever the agent is doing. Automatized actions on the other 
hand do not interrupt or take priority over normal processes 
in the system. Furthermore, automatized actions specify which 
actions are to proceed them from within the Automatized 
Action Selection module (more on this in section “Smooth 
Coping in LIDA”).

While in humans this whole process, starting with Procedural 
Memory, Action Selection, Sensory Motor Memory, and finally 
Motor Plan Execution, might seem long and laborious, it is 
important to remember that this process is extremely rapid. 
Each cognitive cycle typically happens within a few hundred 
milliseconds (Madl et  al., 2011). Thus, when dealing with fast 
paced dynamic action, as is often the case in smooth coping, 
the overlapping cognitive cycles are more than sufficiently 
speedy to make adjustments and act on the fly. Furthermore, 
we  must remember that Motor Plan Execution operates in 
parallel with all other systems, allowing for non-conscious 
adjustments to in-flight motor plans. Additionally, the LIDA 
Sensory Motor System is based on Brooks’s subsumption 
architecture (Brooks, 1991), allowing for rapid agent world  
interaction.

Similarly, to enactive and predictive processing approaches 
to mind, LIDA agents are always in the process of adaptively 
acting; We can say that LIDA agents are perpetually answering 
the question “What should I do next?” In LIDA, Action Selection 
continually chooses a behavior among candidate behaviors and 
sends them to Sensory Motor Memory (unless the action is 
to deliberate). This ensures that the agent is always in the 
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process of acting to stay in an optimal adaptive relationship 
to its environment.

Behavior Streams and Skill
Smooth coping involves “skill” and “optimal grip.” To have an 
optimal grip on an activity is to skillfully navigate that activity 
with fluency and ease (Merleau-Ponty, 1945/2012; Rietveld and 
Kiverstein, 2014; Bruineberg et  al., 2021). Concepts, such as 
“skill” and “fluency,” often include being able to execute several 
actions in an uninterrupted fashion and adjusting those chains 
of movements to the dynamical real-time changes and demands 
of the situation (Nakamura and Csikszentmihalyi, 2014).

In LIDA, skill and fluency are, in part, implemented via 
behavior streams. Besides individual schemes, Procedural Memory 
also contains streams of schemes that can be  instantiated. A 
stream of schemes is a stringed-together series of action schemes 
that can be  collectively instantiated using contents from one 
or more global broadcasts. The entire instantiated stream of 
schemes is known as a behavior stream. Once a behavior 
stream has been sent to Action Selection the module can 
rapidly select one behavior at a time and pass each of these 
behaviors on to Sensory Motor Memory (which in turn passes 
on motor plans to Motor Plan Execution).

For biological agents smooth coping often involves a series 
of fluent actions. For example, dribbling a basketball, taking 
three long strides, and then jumping for the slam dunk can 
occur as one integrated, fluent series of movements. Furthermore, 
people rarely do just one thing at a time. The action selection 
process in LIDA, therefore, often involves Action Selection, 
rapidly picking behaviors from several behavior streams.

Historically, in the LIDA conceptual model, Action Selection 
has always picked one, and only one, action at the time. 
However, in biological agents, physical actions frequently overlap. 
Therefore, in this paper we are enhancing LIDA’s Action Selection 
to support the simultaneous selection of multiple actions. 
Specifically, in addition to the selection of actions one after 
another by our original action selection algorithm, we  are also 
supporting the simultaneous selection of automatized actions. 
This is achieved by Action Selection’s new Automatized Action 
Selection sub-module. Developing this sub-module is one of 
the contributions of this paper.

For example, one can imagine the (haunting) scene of a 
circus clown riding a unicycle, juggling, and deliberately, 
maniacally laughing while performatively grinning its teeth. 
Such a performance requires multiple skilled actions overlapping 
at once. Even though Action Selection is constrained to choose 
only one behavior at a time, this does not mean that the 
execution of previously selected behaviors must be  sequential. 
Furthermore, Action Selection can rapidly choose behaviors 
from multiple concurrent behavior streams, and pass them 
forward to Sensory Motor Memory for execution.

To be a skilled agent at some activity involves (among other 
things) having finely tuned, well-rehearsed behavior streams 
and motor plan templates that can be  flexibly adjusted to the 
demands of the present situation. In LIDA, much of the “skilled” 
aspects of smooth coping is handled by Action Selection, 
Sensory Motor Memory, and especially Motor Plan Execution.

As a behavior is sent to Sensory Motor Memory, the system 
must create a motor plan—a highly concrete plan of bodily 
movement. Motor plans specify sequences of specific movement 
commands (the motor commands) that direct each of the 
agent’s specific actuators. Here an actuator simply means one 
of the physical parts through which an agent acts on the 
world. For example, a factory robot might only possess a single 
“arm” actuator. Human beings, on the other hand, have a 
great many more actuators.

Motor plans and their motor commands react and adapt 
to rapid incoming data from Sensory Memory through a dorsal 
stream (Neemeh et  al., 2021) to guarantee that the agent’s 
actions are in synch with the most current state of 
the environment.

Often in smooth coping, an environment may change as 
an agent is acting on it. For example, being a sports sailor 
involves skillfully maneuvering the sails of a boat as the vessel 
is being bumped and rocked by erratic winds and currents. 
To skillfully complete motor plans during such dynamic situations 
motor plans constantly react to sensory information through 
LIDA’s dorsal stream as the agent is acting. An agent sailing 
might issue a motor plan to reach for a specific rope. However, 
as they are reaching the boat is rocked by a large wave. Instead 
of continuing the reach in the same fashion, updating the 
motor plan in real time through the dorsal stream ensures 
that the agent adjusts their reach, and still successfully grasps 
the rope.

Affordances, Action-Oriented 
Representations, and Behavior Streams
Recent research on smooth coping cashes out much of the 
skillful interaction loop between agent and environment in 
terms of affordances and sometimes action-oriented 
representations (Milikan, 1995; Clark, 2016; Williams, 2018; 
Gallagher, 2020; Bruineberg et  al., 2021; Kronsted, 2021a). 
Affordances and action-oriented representations are two very 
similar concepts. Affordances are typically defined as possibilities 
for actions that exist as a relation between an enculturated 
agent and the environment (Gibson, 1979/2013; Chemero, 2009). 
Significantly, affordances are ordinarily thought of as a 
non-representational concept. Action-oriented representations 
are very similar—but as implied in the name, they are a class 
of mental representations. Action-oriented representations are 
representations that also beckon or move the agent into action 
(Milikan, 1995; Ramsey, 2007; Clark, 2016; Kirchhoff and 
Kiverstein, 2019).

In LIDA we  take a middle-ground approach by using 
representational affordances. LIDA affordances are conceptualized 
as representations within the system. For a recent account of 
how LIDA agents learn and use affordances (see Neemeh et al., 
2021). Here it will suffice to say that as LIDA agents become 
enculturated and trained in various activities, they learn to 
perceive new affordances upon which they can react. As a 
LIDA agent gains increased skill, their perceptual system can 
detect increasingly more fine-grained affordances that can factor 
into the selection of increasingly fine-grained behavior streams.
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There is a careful relationship between action, learning, 
behavior streams, and affordances. One of the aspects of LIDA 
that make the model stand out from other cognitive architectures 
is the “L”—Learning. LIDA agents technically speaking can 
“learn” something new with every cognitive cycle. With each 
global broadcast, almost all modules can be  updated with 
content from the broadcast, and each module (including the 
various memory modules) can perform some function in light 
of that broadcast. For example, Perceptual Associative Memory 
might build new connections, Transient Episodic Memory might 
put together a new event, the Conscious Content Queue adds 
to the specious present, perhaps Procedural Memory starts 
building a new scheme, and much more. For a detailed account 
of learning in LIDA (see Kugele and Franklin, 2021).

In terms of smooth coping, as a LIDA agent acts upon 
its environment, with each broadcast the agent slowly becomes 
more familiarized with that environment and the relevant 
task at hand. Such adaptation includes building more specialized 
and fine-grained affordances and behavior schemes for those 
affordances. For example, an agent might not know a thing 
about Brazilian Jujitsu, but with training, the different 
movements of opponents become associated with affordances 
for action or counter action (Kimmel and Rogler, 2018). An 
opponent going for the rear neck choke—affords putting one’s 
back flat on the mat. An opponent putting their weight in 
the wrong spot during close guard affords performing a leg 
triangle choke. There is a virtuous cycle between affordances 
and their associated behavior schemes. Smooth coping is most 
often a matter of having fine-grained affordances that make 
available the use of appropriately fine-grained behavior schemes 
(see Figure  4).

As agents perceives an event, they also perceive the associated 
affordances. If a coalition containing affordances wins the 
competition for broadcast in the Global Workspace, then the 
presence of the affordance in the broadcasted content will 
help instantiate behavior schemes, and thereby also promote 
winning the competition in Action Selection.

As mentioned earlier, choosing a behavior (perhaps from 
a behavior stream) also creates an expectation codelet to facilitate 
the monitoring of behavior-related outcomes. The creation of 
expectation codelets not only help bringing action outcomes 
to consciousness, but also helps ensure that the affordances 
associated with those action outcomes are also broadcast 
consciously. Acting on one affordance brings about the next 
affordance in an action promoting feedback loop. Such a 
feedback loop is in line with empirical and theoretical literature 
on affordances that conceptualizes smooth coping as a feedback 
loop between action and affordances (Di Paolo et  al., 2018; 
Kimmel and Rogler, 2018; de Oliveira et  al., 2021; Kimmel 
and Hristova, 2021; Kronsted, 2021b).

Overall, we see that smooth coping is not a matter of already 
being skilled at an activity. Rather smooth coping involves the 
ability to continually improve one’s skill and adaptivity. In 
LIDA, this adaptiveness is built into the flow of information 
across modules, facilitated by the conscious broadcast.

Of course, smooth coping is not only about knowing 
“what to do,” but also about having sufficiently developed 

sensorimotor coordination to do so—in layman’s terms having 
the right motor skills. Therefore, the skill cycle in LIDA 
also includes the agent building and refining increasingly 
sophisticated motor plan templates. Over many cognitive 
cycles, Sensory Motor Memory is slowly updated so that 
the agent is (hopefully) always in a position to know “how 
to do it” and with a great level of sophistication. Going 
into detail on how Sensory Motor Memory builds and updates 
motor plans is outside the scope of this paper. The important 
takeaway is that LIDA agents consistently update their action 
capabilities by updating their schemes for “what to do” 
(behaviors) and their plans for “how to do it” (motor 
plan templates).

Let us take the example of becoming better at sports—in 
this case, soccer. Through practice, soccer players learn to 
perceive the field and see it in terms of different opportunities. 
That is, the player, over time, learns to experience the game 
in terms of different affordances “in this situation, I  can do 
a long pass, dribble past this guy on the right, or do a short 
backward pass.” Over time, players learn to see the field in 
terms of affordances that provide possibilities for “what to do” 
(potential behaviors). However, learning to exploit affordances 
is also a matter of learning how to concretely utilize the 
affordance “how to do it” (motor plans). With practice, agents 
therefore also fine-tune their physical capabilities in part by 
developing increasingly sophisticated motor plan templates—in 
the beginning, dribbling and kicking is clumsy, but over time 
it becomes second nature.

Naturally, doing something as advanced as expert level soccer 
requires multiple processes—some consciously mediated, others 
automatic. Hence, next, we  will look at how different modes 
of action selection are interwoven during smooth coping, and 
the role of automatized action.

AUTOMATIZATION AND THE 
AUTOMATIZED ACTION SELECTION 
SUB-MODULE

One crucial aspect of smooth coping is that it involves both 
higher-level and lower-level cognitive processes (Christensen 
et al., 2016; Montero, 2016; Høffding and Satne, 2019; Gallagher 
and Varga, 2020). Let us return to the clown example. The 
clown performer who is simultaneously riding a unicycle, 
juggling, grinning, and talking to select audience members 
may utilize both consciously mediated, fully conscious, and 
automatized actions. Thus, to account for such overlapping in 
action during smooth coping, we  need to take a look at how 
LIDA agents achieve automatization.

An automatized action is implemented as a series of behaviors 
in a behavior stream that have been mastered to the point in 
which those behaviors can be  selected without mediation from 
the conscious broadcast—that is automatized behaviors can 
be  selected without the need for sensory input updating. 
However, the execution of these behaviors may often require 
sensory input (for example over the dorsal stream or even 
the conscious broadcast).
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For the purposes of smooth coping, it is often important 
that agents can do several actions simultaneously (for example, 
pedal and pass, dribble and tackle, punch and block, and the 
list goes on). In this paper, we  therefore introduce a new 
sub-module to the LIDA model, namely, Action Selection’s 
Automatized Action Selection sub-module (AAS). This 
sub-module runs in parallel with Action Selection, and repeatedly 
sends behaviors to Sensory Motor Memory (SMM). For example, 
in our unicycling clown example, Automatized Action Selection 
can repeatedly choose the automatized behavior “pedal” and 
send it to SMM.

Having a sub-module that deals entirely with automatized 
behaviors, and being able to repeatedly select such behaviors, 
allows for Action Selection to focus in parallel on other 
forms of action selection, such as consciously mediated action 
selection or deliberation. Let us return to the example of Jiu 
Jitsu and the triangle choke. The “triangle choke” is a high-
level behavior that consists of several movements (see Figure 5): 
leg hook, triangle hook, arm hook, and the squeeze. When 
Action Selection selects that high-level behavior, it sends that 
behavior to the AAS sub-module. From there AAS can select 
from the component behaviors in the “triangle choke’s” behavior 
stream. In short, Action Selection passes on high-level 
automatized behaviors to AAS, which then selects from lower-
level component behaviors in the high-level behavior’s behavior 
stream. Being able to choose actions in parallel, allows for 
the Jiu Jitsu practitioner to carefully read their opponent’s 

patterns, and deliberate about what to do next while 
simultaneously producing complex behaviors, such as the 
“triangle choke” (Figures 6, 7). Smooth coping is often achieved 
by having Automatized Action Selection working harmoniously 
in parallel with other forms of action selection.

Automatized Action Selection runs in parallel with Action 
Selection choosing behaviors from automatized behavior streams 
(for example, walking, pedaling, dribbling, playing an ingrained 
song, etc.). Each of the behaviors from the selected behavior 
stream can be  thought of as “calling the next” behavior in 
that stream. So once a high-level automatized behavior is 
selected, each of its lower-level behaviors, metaphorically 
speaking, gets to choose what behavior comes next. For example, 
if an agent is playing an overlearned piano piece (say Alley 
Cat by Bent Fabric) by way of Automatized Action Selection, 
each note, which corresponds to a lower-level behavior, “calls 
the next.” Once the first note has been chosen from the “Alley 
Cat Automatized behavior stream,” the first note selects the 
next note upon its completion. This produces the sensation 
recognized by many musicians as the piece essentially playing 
itself. This kind of automatization of one action calling the 
next also ensures that the musician can sing at the same time, 
lock eyes with the audience, playfully shimmy their shoulders, 
etc. all at the same time.

In LIDA technical terms, automatized behaviors are “degenerate” 
behavior streams—they are overlearned actions that do not include 
branching options. The lack of branching options is what allows 

FIGURE 4 | Procedural Memory contains streams of specialized behaviors. For example, to perform the Triangle Choke from Brazilian jiu jitsu the agent must first 
hook their leg around the opponent, form a leg triangle, and then tighten the triangle with legs and arm. These separate behaviors can be executed fluently by 
having each action linked together in a behavior stream that can have its variables specified with data from the conscious broadcast. By learning actions that are 
chained together, agents can execute highly specialized behaviors.
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FIGURE 5 | Above are three of the virtuous cycles in LIDA agent smooth coping. The first cycle demonstrates the affordance action cycle step by step. The second 
cycle demonstrates the relationship between expectation codelets new affordances and action. As an agent acts, they also generate expectation codelets and such 
codelets increases the chance of action-related affordances winning the competition for consciousness. Such biasing of attention in turn creates more actions. 
Finally, the skill cycle demonstrates how affordances lead to the creation of appropriate behavior schemes and executing behaviors in turn leads to the perception of 
new affordances.

FIGURE 6 | Here, we are zooming into Action Selection. In this case, Action Selection is choosing between a wealth of candidate behaviors. In this case, Action 
Selection chooses the “triangle choke” and passes it on to the Automatized Action Selection sub-module. Action Selection and the Automatized Action Selection 
sub-module run in parallel to facilitate multitasking. In this case, the agent is choosing to perform a Triangle choke while simultaneously choosing to “deliberate” on 
what to do next.
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the behavior to directly “call the next.” An automatized high-
level behavior for pedaling may contain a behavior for pedaling 
with the right leg that then calls a behavior for pedal with the 
left leg—there are no branching options.

Importantly, automatized behavior streams can also 
be hierarchically structured where each of the behaviors in these 
streams can correspond to other behavior streams. This capability 
is critical because the specification of many actions benefits 
from hierarchical structure, and the reuse of these higher-level 
behaviors can be more efficient in memory. High-level behaviors 
often contain multiple behavior streams that must “line-up.” 
For example, to build a Reuben sandwich requires getting bread, 
mayo, sauerkraut, corned beef, and Swiss cheese, assembling 
the components, and putting them on a plate. Each of these 
sub-actions can be  automatized and part of its own behavior 
stream. Collectively, these automatized behaviors contribute to 
realization of the high-level “Reuben sandwich” behavior.

A deli worker might make and wrap a sandwich like usual 
without taking the costumer’s difficult special order into 
account “only a little mayo, extra pickles, add sardines!” 
Making the sandwich differently requires consciously mediated 
action selection rather than automatization with one action 
calling the next. This explains why sometimes even when 
clearly intending to do one thing agents end up doing another 
because the beginning of the action was of an automatized  
nature.

It is important to note that although automatized behaviors 
do not have branching options and call the next action, they 
still generate expectation codelets. Just as with all other actions 
in LIDA, the generation of expectation codelets allow the 
system to keep track of the fulfilment of its actions so that 
the system may know whether to continue with its behaviors 
or switch to other behaviors.

As Automatic Action Selection feeds automatized behaviors 
forward to Sensory Motor Memory, that module can instantiate 
motor plans that also indicate the “timing” for how long the 
automatized action needs to be executed for—thereby mitigating 
the risk of doing something “mindlessly” for too long. In the 
music example, the motor plans for each note are designated 
a very short and precise timing. A motor plan for automatized 
“walking” on the other hand can have the temporal designation 
“until further notice” within the motor plan. We must remember 
that while automatization is often good for expert performance, 
smooth coping involves interwoven types of actions. Relying 
too much on automatization will often cause the task to fail.

SMOOTH COPING IN LIDA

One way to describe smooth coping is the use of automatization 
with intermittent use of consciously mediated actions (see Figure 8) 
as well as other overlapping action selection types toward the 

FIGURE 7 | The Automatized Action Selection sub-module rapidly chooses one behavior at the time from candidate automatized behaviors (much like regular 
Action Selection). Like pearls on a string these behaviors are sent forward to Sensory Motor Memory at high speed; all in parallel with whatever might be happening 
in Action Selection. Differently from regular Action Selection selected automatized behaviors also “calls” for the next action to be selected to insure rapid smooth 
unfolding of the overlearned series of behaviors.
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fulfillment of an intention (Kronsted et  al., 2021). The agent is 
not simply multitasking or simply just doing automatization. 
Rather, all or most of the agent’s cognitive processes are cohering 
toward fulfilling one intention (completing this difficult recipe, 
football maneuvers, making it to work through traffic).

If some event forces the agent to abandon the cohering 
of their actions toward the intention the smooth coping process 
is interrupted. For example, the unicycling clown is engaging 
in smooth coping—cycling, juggling, grinning, and singing, 
all toward the intention of completing their act with a 
mesmerized audience. However, if a stagehand suddenly runs 
onto the stage and yells, “You must come at once, your wife 
is giving birth,” then the agent’s actions are no longer directed 
at the distal intention of finishing the act. Smooth coping 
has been interrupted. Less dramatically, if the phone rings 
while an agent is cooking, if the agent picks up the phone 
and attends to the phone call rather than the stove, smooth 
coping has been temporarily interrupted. The processes can, 
of course, be  re-engaged as soon as the agent puts the phone 
down. In contrast, if the agent where to continue cooking 
while talking on the phone the agent can still be  said to 
be  smooth coping.

While we have here focused mostly on perception and action 
selection, and not memory processes, Smooth coping in LIDA 
is a phenomenon that operates across all modules. As mentioned 
previously in this paper we  here introduce a new addition to 
the LIDA cognitive architecture—the Automatized Action 

Selection sub-module. In this section, we  briefly go into more 
detail regarding the different modes of action selection, and 
then describe their interwoven nature during smooth coping 
especially in relation to the Automatized Action Selection 
sub-module. Finally, we  provide three concrete case studies to 
demonstrate how the entire theoretical framework might play 
out (see section “Conclusion”).

Interwoven Action Selection, and 
Feedback Loops
We can now see how action selection during smooth coping 
is achieved in LIDA agents through the interweaving of action 
selection types—consciously mediated action selection, volitional 
action selection, alarms, and automatized action selection.

As agents act in a variety of dynamically changing situations, 
they must deploy different forms of action selection to adaptively 
achieve their goals. For example, an agent might deploy a 
series of behaviors and behavior streams to carefully operate 
a table saw to carve pieces of wood in the right dimensions. 
Such behaviors and behavior streams might include walking 
to the table saw, grasping the wood, carefully lining it up on 
the table, and sliding the wood forward onto the saw while 
taking aim to ensure a straight-line cut. As the agent is deploying 
these behavior streams, they might also have intermittent 
moments of deliberation in which they actively think about 
which pieces to cut first and how to stack them up in the 

FIGURE 8 | Here, we see an example of how an instance of smooth coping could unfold in a LIDA agent. The clown initiates automized actions, such as biking, 
juggling, and perhaps singing. In this case, the clown starts by biking, then overlays juggling, and finally starts singing (three concurrent automatized behaviors). 
Intermixed with these automized actions are behaviors picked out from a behavior stream and single behaviors. For example, the clown can turn its head toward 
select audience members and do a terrifying grin, perhaps do a spin on the bike or in the case of the single behavior that stops all other actions—do a backflip on 
the bike to then continue the routine.
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right order. The agent might further deliberate about the right 
dimensions of the cuts, which in turn will trickle down and 
affect the specifics of the instantiated motor plans and the 
execution of the actions in Motor Plan Execution.

Since the agent in our example is very skilled at carpentry, 
they have over years of practice developed automatized behavior 
streams and highly sophisticated motor plan templates for 
operating a table saw. So, the agent can operate the saw mostly 
through Automatized Action Selection.

Perhaps as the agent is working the table saw, their finger 
gets alarmingly close to the blade, and an alarm is triggered 
in the system pulling the hand backward. Alarms are importantly 
a part of the smooth coping flow when they enable the agent 
to continue with the intended activity. So, in the table saw 
example, the alarm that stops the agent from cutting off a 
finger naturally allows for the agent to continue the activity. 
However, an alarm to shake a large spider off one’s hand 
does not perpetuate the intended activity, and will typically 
break the smooth coping. The reason to bring up alarms 
here is to underscore that alarms usually must be  learned, 
and are often skill and context-specific. For example, outside 
the context of Brazilian Jiu jitsu, getting a nice underhook 
hug is sweet and comforting. However, within the context 
of Jiu Jitsu it means the practitioner is about to be  swept 
and likely lose the match. Hence, a context-specific alarm is 
likely triggered that will make the practitioner pull their arm 
back and try to close their armpits (to deny the opponent 
the underhook). Alarms are often an integrated part of 
mastering a skill since they are rapid and bypass the competition 
for conscious broadcasting.

Let us return to our table saw example. At some point 
over years of practice working the table saw has become 
automatized; the choosing of wood pieces, readying them at 
the table, and performing the cuts are now done by automatized 
behavior streams in which one action calls the next. In this 
way, the agent can repeatedly choose the same reliable behavior 
streams again and again until the job is done. Automatization 
allows for the selection of other actions (commonly, consciously 
mediated or deliberative actions) in parallel with the automatized 
action unfolding. The worker can operate the table saw (thanks 
to the Automatized Action Selection sub-module) while yelling 
at his/her apprentice to correct their form, bring them coffee, 
or perhaps deliberate about which technique to use for a 
difficult piece of wood that requires a different technique.

The overarching point is that smooth coping in LIDA involves 
deploying various forms of action selection each aimed at the 
task at hand. Be  it alarms, consciously mediated actions, 
deliberative actions, or purely automated actions, each behavior 
selected coheres toward completing the agent’s goal in an 
adaptive fashion.

At this juncture, we  cannot forget that smooth coping 
involves multiple feedback loops between the agent’s actions 
and changes in the environment. For example, driving behind 
a car while trying to read a funny bumper sticker on the car, 
involves having to be  at the right range of distances to that 
car. Too far away and one cannot read the sticker, too close 
and the cars may collide—the agent must maintain “optimal 

grip” (Merleau-Ponty, 1945/2012; Dreyfus and Wrathall, 2014; 
Bruineberg et  al., 2021). As already discussed, rapid dorsal 
stream updating of sensory information in movements updates 
Motor Plan Execution in action so that the agent can stay in 
an optimal relationship to their environment during action. 
There is a constant feedback loop between a LIDA agent’s 
actions and dorsal stream information.

Furthermore, with each action, an expectation codelet is 
also generated. As mentioned earlier, such codelets scan the 
Current Situational Model for objects and events related to 
the expected outcome of the agent’s actions. Structures brought 
to the Global Workspace by expectation codelets are typically 
highly salient and are very likely to win the competition for 
conscious broadcast. In this fashion, there is a feedback loop 
between an agent’s actions and their expectations. Through 
the feedback loop between actions and high activation results, 
LIDA agents can stay in careful attunement with the unfolding 
of their activities in dynamic contexts. We  see that coinciding 
with an agent’s actions is attention toward the results of those 
actions which in turn help determine the completion of the 
intended activity. This is a biasing of attention toward the 
results of one’s actions which in turn helps perpetuate the 
completion of the intended activity.

Finally, the cognitive cycle in general assists in increasing 
adaptivity through learning. LIDA agents can update their 
memory modules with every cognitive cycle (Kugele and 
Franklin, 2021). In this way, the agent is always slowly but 
surely moving itself toward a greater degree of adaptivity.

In general, we  can think of at least three feedback loops 
that aid LIDA agents in smooth coping—the general cognitive 
cycle (adaptivity on a distal time scale), the action attention 
loop (adaptivity on a proximal time scale), and the action 
dorsal stream loop (motor adaptivity on a rapid timescale). 
In short, the cognitive cycle helps with task adaptivity over 
longer periods of time. Consciously mediated action selection 
aids in adaptivity in the agent’s current context. Automatization, 
motor plans, and the dorsal stream takes care of rapid in the 
moment adaptivity (see Figure  9).

We have looked at different forms of action selection and 
how they are interwoven toward the completion of a task 
during smooth coping. We  have also looked at the different 
feedback loops that comes with these various forms of action 
selection, and how these feedback loops help the agent adapt 
to the task across different time scales.

DISCUSSION

For our discussion, we  will apply everything we  have looked 
at so far in three small case studies to see how smooth coping 
might play out in a LIDA agent in each scenario. We  start 
with the relatively simple example of walking, and move up 
in complexity to driving, and then short-order cooking.

Solo Walking
Sam wakes up at 5:00 am to take a daily walk in Shelby Farms 
Park. The path is a mile loop around a lake, and the early 
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hour means that very few others are walking around at the 
same time.

Sam’s system utilizes the automatized behavior stream of 
walking. As the path curves ever so slightly around the lake, 
Sensory Memory updates Sam’s Motor Plans and motor 
commands so that Sam adjusts the direction of his body, the 
height and length of each step and other minor adjustments 
needed to move through the very accessible flat terrain. Minor 
differences in the height of the pavement mean that sometimes 
Sam’s Sensory Memory must update his stepping motor 
commands to be  a little longer and a little higher.

Being mostly a matter of automatization, Sam can let his 
mind wander and think actively about other things in his life 
that need pondering (should I  hop on the Bitcoin craze, is 
Squid Game really that good, what am  I  doing with my life?). 
Given that there are no obstacles in the terrain, Sam’s systems 
can simply continue to select and execute automatized walking 
behaviors. However, no automatized behavior is indefinite, and 
Sam does still need to periodically check for obstacles. Therefore, 
Sam still frequently looks at the road ahead and re-selects the 
automatized walking behavior.

Eventually, Sam notices a pedestrian and their dog 
approaching. The person and their dog have won the competition 
for consciousness, and Sam’s Action Selection is now choosing 
between multiple candidate behaviors (while Automatized Action 
Selection is making sure Sam is still walking). In Action 
Selection, walking onto the grass or standing still to let the 
dog and owner pass are the two most salient options. Standing 
still wins the competition in Action Selection, and Sam lets 

the person and their dog pass on the narrow path. Choosing 
this behavior also interrupts the automatized walking behavior.

An expectation codelet is generated looking, among other 
things, for a clear walking path since this is the expected 
outcome of Sam’s action. While the dog and owner are now 
behind Sam, the Current Situational Model continues to update. 
Then the expectation codelet brings the empty path structure 
to the Global Workspace to compete for broadcasting. Since 
Sam intends to walk and is expecting to have a clear path, 
the structure has high activation and may win the competition 
for consciousness.

As a result of the empty path coming to consciousness, 
Procedural Memory instantiates relevant schemes including a 
high-level “walking” behavior. This behavior and its behavior 
stream are sent to Action Selection. Action Selection chooses 
the highly relevant automatized “walking” behavior and sends 
it to the Automatized Action Selection sub-module. As a result, 
Sam keeps on walking with the Automatized Action Selection 
sub-module in charge of selecting actions. Now he  is again 
free to continue to think about cryptocurrency, trending TV 
shows, and existentialism.

Driving
Sam is done with his existential morning walk. At 8:00 am, 
Sam drives to work at a local diner. The route is a combination 
of suburban roads and highway driving, and takes approximately 
20 min to complete. Some of the traffic is rush hour traffic.

Sam is utilizing an automatized behavior stream to follow 
the car in front of him at a safe distance. This of course also 

FIGURE 9 | Here, we see three feedback loops that aid the agent across different timescales of smooth coping. The cognitive cycle in general aims to keep the 
agent in an equilibrium with its environment across long time scales. For example, winning a tournament. The attention cycle attunes the agent to their current 
context and the task(s) they are currently undertaking. For example, the context and task of playing and winning a soccer match. Finally, the dorsal stream cycle 
aims to keep the agent optimally adapted to their current task at the motoric level across rapid time scales. For example, dribbling, tackling, avoiding other players, 
shooting at the goal.
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includes the motor plan for safe distance following which is 
receiving constant dorsal stream updating. Dorsal stream input 
to the motor plan makes sure that Sam does not push the 
gas pedal too hard or too softly. Following another car at the 
appropriate distance in rush hour traffic involves constant 
adjustment of motor commands to apply the right amount of 
pressure to the gas pedal.

However, since this is rush hour, Sam also needs to hit 
the brakes often and at the appropriate pressure. This means 
that through consciously mediated action selection, the behavior 
to press the brake is selected and executed at the appropriate 
level of pressure. Hence, Sam has an automatized car following 
behavior scheme and motor plan that is being frequently 
interrupted by the consciously mediated behavior of pushing 
the brake to remain at the right distance. Each time the 
brake has been pushed an expectation codelet is generated 
and helps the resulting distance between cars come to 
consciousness. The new distance between cars being broadcast 
in turn helps Action Selection either re-select the automatized 
follow behavior scheme, or perhaps some other automatized 
driving behavior.

Via consciously mediated action selection Sam decides to 
activate the behavior stream for changing lanes. Action Selection 
rapidly chooses each of the behaviors from the lane changing 
behavior stream. Sensory Motor Memory chooses between 
motor plans for each of the lane changing behaviors, and 
Motor Plan Execution begins carrying out the physical 
movements. In short Sam changes lanes; checks the back mirror, 
the side mirror, over the shoulder, turns on the blinker, checks 
again, turns the steering wheel left, turns the steering wheel 
back to neutral, rechecks windows and mirrors.

Suddenly a person who is texting and driving veers into 
Sam’s lane, and an alarm is triggered. The urgency of the 
situation means that the closing of the car bypasses the 
competition for conscious broadcast, and is sent directly to 
Procedural Memory. Schemes are instantiated and Action 
Selection chooses an appropriate behavior stream (break and 
veer). Given the urgency of the situation the break and veer 
behavior stream has very high salience, and easily wins the 
competition in Action Selection. Sensory Memory chooses 
appropriate motor plan templates and instantiates them, and 
Sam slams the breaks and veers the car away from the 
reckless driver.

Since an alarm was responsible for the avoidance maneuver, 
Sam has not yet realized what has just happened. Only 
approximately 100 milliseconds later, after the event has been 
recreated in the Current Situational Model, does Sam become 
“aware” of what just happened. However, during these 100 
milliseconds, the break and veering maneuver takes place due 
to the rapidity of the alarm process. In this way, Sam survives 
the reckless driver.

During the alarm maneuver expectation, codelets were 
created, searching the Current Situational Model for the expected 
results of the dodging maneuver—a safe distance to the incoming 
driver. As this state of affairs obtains, Sam can now use 
consciously mediated action selection and choose to aggressively 
honk at the distracted driver—what a way to start your shift.

The Short-Order Cook
Sam arrives at work a bit grouchy from the driving encounter. 
He  begins his shift as a short-order cook at a diner. This 
diner has a counter with the short-order cook behind it and 
several tables. The diner is particularly busy for the first several 
hours of the day (people are coming in for brunch and 
hangover breakfast). Sam is engrossed in work throughout 
that time and is working on multiple orders simultaneously. 
The orders are coming in at a fast pace, and many guests 
are ordering modifications to their dishes (extra cheese, no 
cheese, chocolate chip pancake on the side, hot sauce on the 
side, side salad instead of fries, etc.) In addition to making 
the variety of menu items, several regulars arrive with their 
special orders and expect to be  greeted as they sit down at 
the counter.

Let us begin with the first order—two eggs benedict, potatoes, 
and a side of halloumi salad (order one). Upon seeing the 
order slip, a distal intention is created in the Current Situational 
Model (finish order one)—this intention cues up information 
into the CSM regarding halloumi salad, potatoes, and eggs 
benedict. First, the intention (finish order one) wins the 
competition for consciousness, and in the next few cycles, 
structures regarding the current state of the kitchen and 
structures with information about eggs benedict, potatoes, and 
halloumi salad, each win a competition for consciousness (given 
the rapidity of cognitive cycles this is all still within the first 
second or two!).

At this point, information regarding the state of the kitchen 
and what to make are now present in the CSM and is broadcast 
to Procedural Memory. This information is now used to 
instantiate a multitude of schemes and scheme streams. These 
candidate behaviors are sent to Action Selection which must 
now choose “what to do.” In this case, the high-level action 
corresponding to the automatized behavior stream of poaching 
eggs is selected and sent to AAS. AAS selects behaviors from 
the “egg poaching” automatized behavior stream and sends 
them to the Sensory Motor Memory module. Sensory Motor 
Memory instantiates the chef ’s highly skilled egg poaching 
motor plan, and sends it to Motor Plan Execution. This 
process continues with the other behaviors in the behavior 
stream being selected by the Automatized Action Selection 
sub-module where each action can be  thought of as calling 
the next action. Thus, Sam ends up using automaticity to 
rapidly stir the vinegar–water mix, crack the eggs, and fish 
them back out.

As Sam is poaching eggs via automaticity, a regular customer 
sits down at the counter (Big Lu). The presence of the regular 
is highly salient to Sam, and easily wins the competition for 
consciousness. Procedural Memory upon receiving the global 
broadcast (containing the content of “Big Lu the regular”) 
instantiates several greeting behaviors, one of which is selected 
by Action Selection. Simultaneously, the egg poaching 
automatized behavior is still being executed. In other words, 
Sam is now stirring the pot rapidly with one hand, cracking 
eggs into the pot with the other hand, and directing his posture 
toward the customer while saying, “what’s up man, how 
you  been?”
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Big Lu tries to greet Sam over the counter with a handshake. 
But since Sam’s hands are full, he needs to use a compensating 
behavior. The outstretched hand comes to consciousness and 
instantiates several possible candidate behaviors—one such 
behavior is to use the elbow to complete the greeting. Choosing 
this behavior means that a motor plan is instantiated that also 
takes into account that Sam is still stirring a pot and cracking 
eggs via automaticity. As Sam reaches his elbow over the 
counter so that Big Lu can high-five his elbow, Sam’s motor 
plans for stirring and egg cracking can be  radically adjusted 
through dorsal stream information and/or through subsequent 
conscious broadcasts.

As the eggs are being finished, a new order comes in: 
French toast and scrambled eggs with a side of bacon (order 
two). This fact comes to consciousness and creates a distal 
intention for order two which is stored for later retrieval in 
Sam’s Transient Episodic Memory as well as the CSM. Once 
Sam finishes order one, he  can attend to and work on order 
two. However, at the moment, Sam still needs to assemble 
order one. The order two intention wins the competition for 
consciousness, and the intention is broadcast throughout the 
model, including various short and long-term memory modules 
(Sam is now working with two distal intentions present in 
the CSM).

However, Sam is still working on order one. So, Sam is 
now using consciously mediated actions to carefully assemble 
the eggs benedict for order one (he needs to grasp and assemble 
English muffin, ham, poached eggs, and hollandaise sauce).

Given that there are several chefs in the kitchen Sam does 
not have to make everything from scratch (for example, one 
worker is at the sauce station, another is at the meats stations). 
However, Sam does need to know where each component is 
and the location and activities of his co-workers. This information 
is updated in Sam’s Current Situational Model, including 
affordances in the environment. For example, if the lid is on 
the hollandaise pot, the sauce is not available for pouring. 
However, if the lid is at a tilt, Sam knows from engrained 
institutional knowledge that his co-worker is done with the 
sauce. In this case, the pot, therefore, affords “pourability” and 
Sam uses that information to perform a consciously mediated 
action of pouring some sauce onto the eggs.

As Sam is assembling the eggs benedict, pouring sauce, 
and adjusting the garnish, he  is comparing the current state 
of the dish to long-term memory of what eggs benedict generally 
ought to look like—presentation is half the battle. Furthermore, 
as he is adding each component to the dish, expectation codelets 
are continually keeping his attention on track.

Sam puts the finished dish on the service counter for servers 
to pick up and begins order two, as orders three, four, and 
five arrive. As Sam is using automatized actions to make more 
eggs, flipping sauteed potatoes, or stirring, he  is also keeping 
track of each order, and Action Selection is repeatedly sending 
new behaviors forward. Intermittent with the constant dance 
between automatized behaviors and consciously mediated 
behaviors, Sam might need to deliberate. For example, should 
Sam work on order five instead of four since not all the 
ingredients for four are ready? An ideomotor process begins 

with proposers, supporters, and objectors. “No, let us do the 
dishes in first come first order. That is easiest” “yes, let us 
put order four on hold to knock down the order we  can 
while we  wait for the salmon to finish cooking.” Even as Sam 
is actively deliberating, he  is still executing both automatized 
actions and consciously mediated actions. Ultimately, skipping 
order four while the salmon is cooking wins the deliberation 
process, and Action Selection chooses behaviors relevant to 
making order five.

Around 4 pm the brunch rush is finally over, and Sam gets 
to hang up his apron and go home. What a day!

CONCLUSION

Smooth coping is a common phenomenon in high skill activities, 
such as sports and performance, but also in our daily lives 
as we  navigate the world. Smooth coping generally involves 
the cohering and centering of cognitive activity toward a task 
or activity (which is often highly culturally determined).

Learning intelligent decision agent agents engage in smooth 
coping by interweaving several forms of action selection including; 
consciously mediated action selection, volitional action selection, 
alarms, and automatization. Automatizations are overlearned 
behavior streams that allow for the selection of behaviors 
without conscious intervention; conceptually for one action to 
call the next. These automatizations also facilitate the concurrency 
of automatized action execution. Not only can automatized 
behavior streams be  executed concurrently, but they can also 
be  hierarchically structured. Smooth coping generally involves 
the biasing of attention and adaptivity toward tasks so that 
agents can gain an optimal grip on their various contexts. 
The LIDA model contains various feedback loops across distal, 
proximal, and rapid timescales that aid the agent in adaptivity. 
In line with recent embodied and enactive approaches to 
cognition, LIDA agents are constantly answering the question 
“what should I  do next?” Through interwoven action and 
perception loops the agent pursues its agenda, and in the 
process reaches higher degrees of adaptivity across different 
time scales.

One strength of the smooth coping literature and our 
exploration of smooth coping in LIDA is that both expert 
action and quotidian life utilizes the same cognitive resources, 
and thus we  can map a clear progression from novice to 
expert without the use of any additional “special” cognitive 
resources. In fact, from the literature on smooth coping and 
our overview of smooth coping in LIDA we  can come to 
appreciate the complexity that goes into both expert performance 
and everyday cognition. Despite the ease at which it is performed, 
smooth coping is an immense achievement for any cognitive 
system be  it artificial or organic.
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Situated approaches to cognition maintain that cognition is embodied, embedded,

enactive, and affective (and extended, but that is not relevant here). Situated approaches

are often pitched as alternatives to computational and representational approaches,

according to which cognition is computation over representations. I argue that, far from

being opposites, situatedness and neural representation are more deeply intertwined

than anyone suspected. To show this, I introduce a neurocomputational account of

cognition that relies on neural representations. I argue not only that this account is

compatible with (non-question-begging) situated approaches, but also that it requires

embodiment, embeddedness, enaction, and affect at its very core. That is, constructing

neural representations and their semantic content, and learning computational processes

appropriate for their content, requires a tight dynamic interaction between nervous

system, body, and environment. Most importantly, I argue that situatedness is needed

to give a satisfactory account of neural representation: neurocognitive systems that are

embodied, embedded, affective, dynamically interact with their environment, and use

feedback from their interaction to shape their own representations and computations

(1) can construct neural representations with original semantic content, (2) their neural

vehicles and the way they are processed are automatically coordinated with their content,

(3) such content is causally efficacious, (4) is determinate enough for the system’s

purposes, (5) represents the distal stimulus, and (6) can misrepresent. This proposal hints

at what is needed to build artifacts with some of the basic cognitive capacities possessed

by neurocognitive systems.

Keywords: neural representation, neural computation, semantic content, situated cognition, embodiment,

embeddedness, enactivism, affect

THE PROBLEMS OF CONTENT

Explaining cognition in terms of neural computations over neural representations, as
mainstream cognitive neuroscience does, raises tough foundational questions. Among the
most difficult are a cluster of related problems pertaining to the putative semantic
content of neural representations. I will refer to them as the problems of content:
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1. The source of original content (cf. Haugeland, 1998; Jacob,
2019). The semantic content of public language and other
public symbolic systems is derivative—that is, it seems to
derive from other entities, the symbols’ users, whose states
appear to possess semantic content of their own. For instance,
the word “burro” means butter in Italian but donkey in
Spanish; the very same physical symbol—the same sequence
of phonemes or letters—can mean different things in different
languages. The most plausible explanation is that the content
of words such as “burro” derives from the speakers of the
different languages within which the words occur. In contrast,
if intelligent agents operate via representations internal to
their neurocognitive systems, the semantic content of their
internal representationsmust be original—it cannot be derived
from other semantically contentful sources on pain of vicious
regress. But there is no consensus on how neurocognitive
states can acquire original semantic content.

2. The coordination between vehicles and their content
(cf. Fodor, 1994, p. 12ff, 86; Piccinini, 2004, p. 405).
Representational explanation requires that vehicles be
processed computationally in a way that matches their
content. For example, suppose we want a computer to
perform inferences about animals. The inferences the
computer performs must match the meaning of its various
symbols: for instances, from “there is a dog” the computer
may infer “there is a barking animal” but may not infer
“there is a meowing animal”; the opposite must hold for
“there is a cat.” In ordinary artificial computers, the match
between computations and the semantic content of the
vehicles is accomplished by the programmer, who can
independently access both the computational vehicles and
their content and program the computer accordingly. In the
case of neurocognitive systems, however, there is no external
programmer. Thus, it is unclear how computational vehicles
and the computations performed over them can be matched
to appropriate semantic contents. It seems that any putative
mechanism tasked with matching vehicles and the way they
are processed to the vehicles’ semantic content must have
independent access to both vehicles and their contents, so
that it can match them accordingly. This would require that
vehicles and contents be accessible independently of one
another within the neurocognitive system, which does not
seem possible.

3. The causal efficacy of content (cf. Stich, 1983; Dretske, 1988;
Fodor, 1994). Insofar as representations explain behavior, they
appear to do so in virtue of their content. For instance, suppose
that my dog Cinnamon licks my face because she is happy
that I’m back home, and this is cashed out in part in terms
of Cinnamon’s neural representation whose semantic content
is that I’m back home. Such semantic content is supposed to
contribute to the explanatory power of representations. For,
if Cinnamon’s representation, causing her to lick my face,
had a different content—e.g., that the cat is meowing—then
a representational explanation of why Cinnamon is licking
my face would fail. But what causes behavior is the vehicle
that carries the content, which is what the system physically
processes. Since the causal work is done by the vehicle, the

semantic content has no causal work left to perform. In
addition, semantic content appears to be relational in a way
that undermines its causal efficacy. For semantic content is
a relation between the vehicle and what it represents, and
that does not seem to be the sort of thing that can play a
causal role. If these observations are correct, then semantic
content plays no causal role. If so, content is epiphenomenal
and representational explanation is illusory. The genuine
explanation of behavior is causal and, therefore, it can’t appeal
to semantic content.

4. The determinacy of content (cf. Shea, 2018; Neander
and Schulte, 2021). It seems to many that a notion
of representation worthy of its name should come with
determinate semantic content—the kind that can be expressed
by a proposition and evaluated as true or false or, in the
case of concept-like representations, the kind that can be
expressed by a linguistic predicate. But theorists disagree about
what content neural representations have. A classic example is
what the frog’s eye tells the frog’s brain (Lettvin et al., 1959).
Even theorists who agree pretty closely on what determines
the semantic content of neural representations have offered
different interpretations of the internal signals that allow frogs
to detect, catch, and eat bugs. They have proposed that the
signals’ content is (i) fly (there now), (ii) something small, dark,
and moving (there now), or (iii) food (there now). There is no
consensus on how to resolve this disagreement. This suggests
that putative neural representations lack determinate contents
after all, which in turn suggests that neural vehicles are not
representations properly so called.

5. The distality of content (e.g., Dretske, 1988; Shea, 2018;
Neander and Schulte, 2021). Between a stimulus and a neural
state, there is a causal chain involving many intermediate
causes, all of which correlate with the internal state and
all of which may be said to cause the internal state. For
instance, a visual stimulus such as a flower in a garden causes
patterns of light waves that travel through the air, which
cause activation patterns in the retinas, which cause spike
trains to travel through the optic nerve, which cause activation
patterns in the lateral geniculate nucleus of the thalamus, etc.
Many naturalistic theories of content assign content at least
in part based on the relation between a representation and
what causes it (Adams and Aizawa, 2021). If the content of
a representation is determined by what causes it, however, it’s
unclear why a neural state should represent the distal cause—
e.g., the flower—rather than any of its more proximal causes.

6. The possibility of misrepresentation (e.g., Dretske, 1986; Fodor,
1994; Neander and Schulte, 2021). If a system can represent, it
should also be able to misrepresent. For instance, if visibility
is poor, a system might mistake a horse for a cow, thus
representing a horse as a cow. As noted above, however,
many naturalistic theories of content appeal to the relation
between a representation and what causes it. Accordingly,
if a representation is caused by a horse, its representational
content should be horse, not cow. But then it’s unclear how a
representation can ever misrepresent. There is no consensus
about how a naturalistic theory of content can account for the
possibility of misrepresentation.
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The difficulty of one or more of these problems has led
many theorists, including many theorists of situated cognition,
to reject neural computations, neural representations, or
both (e.g., Casper and Artese, 2020). According to such
theorists of situated cognition, cognition is situated—that
is, embodied, embedded, enactive, and affective—as opposed
to representational and computational (e.g., Thompson,
2007). Many others continue to maintain that cognition
involves computation over representation, and some have
correctly pointed out that cognition being representational and
computational is compatible with cognition being situated (e.g.,
Clark, 1997; Miłkowski, 2017). Even among such compatibilists,
however, there is no consensus on how to fully solve the problems
of content.

I will argue not only that situatedness is compatible with
computation and representation, but also that the situatedness of
neurocognitive systems and, as a consequence, the situatedness of
neural computations and representations is the very key to solving
all the problems of content at once. Specifically, I will argue that
neurocognitive systems that are embodied, embedded, affective,
dynamically interact with their environment, and use feedback
from their interaction to shape their own representations and
computations (1) can construct neural representations with
original semantic content, (2) their neural vehicles and the way
they are processed are automatically coordinated with their
content, (3) such content is causally efficacious, (4) is determinate
enough for the system’s needs, (5) represents the distal stimulus,
and (6) can misrepresent.

Caveat 1: The most successful account of the semantic content
of internal representations is informational teleosemantics
(Dretske, 1988; Neander, 2017; Shea, 2018). Roughly, according
to informational teleosemantics, the semantic content of
(indicative) representations is the information they have
the function to carry. Existing versions of informational
teleosemantics go at least part of the way toward solving problems
1 and 4-6. This is largely because teleosemantics already includes
an important element of situatedness: the teleofunctions that
give teleosemantics its name are wide functions—functions that
reach into the organism’s environment. That said, problems 2
and especially 3 are harder to crack; I will argue that solving
them along with fully solving the others requires amore thorough
appeal to the organism’s situatedness. As I will point out,
the recent literature contains hints that the solutions to the
problems of content are to be found in the situatedness of
neural representations. The considerations to follow are intended
to (i) improve on existing versions of teleosemantics by (ii)
making points that are either overlooked or only implicit in
the teleosemantics literature, thereby (iii) showing how the
situatedness of neurocognitive systems contributes to solving the
problems of content and (iv) providing a unified solution to the
problems of content.

Caveat 2: I will not propose a complete account of
intentionality. For present purposes, intentionality is the
property of indicative mental states, such as beliefs, to the
effect that they can be attributed a propositional content
with full-blown truth conditions, as opposed to the kind of
accuracy conditions that I will adopt as a standard for the

kind of (nonpropositional) neural representations that make
up the bulk of the cognitive economy of most animal species.
Explaining intentionality involves explaining fully determined
propositional contents, referential opacity, representation of
nonexistent objects, and other phenomena that go beyond the
scope of this essay. What I will do is propose a solution to some
of the most difficult problems faced by an account of basic neural
representations with original semantic content, problems which
lie at the foundation of any naturalistic theory of intentionality.
Fully accounting for intentionality itself is a separate project,
which will require additional work (for steps in that direction,
see Morgan and Piccinini, 2018; Piccinini, 2020b).

Caveat 3: I will set phenomenal consciousness aside. The
relationship between neural representation (and computation)
and phenomenal consciousness is challenging territory that lies
outside the scope of this paper (for more detailed discussion
of options and some hints at the direction that appears most
promising, see Piccinini, 2020a, Ch. 14 and Anderson and
Piccinini, unpublished, Ch. 7).

Caveat 4: In addition to embodiment, embeddedness,
enaction, and affect, situated approaches also include the thesis
of extended cognition, that is, that some cognitive states or
processes occur outside the skull. Whether cognition is extended
does not affect my argument, so I will remain neutral about that.

BASIC FRAMEWORK

I will adopt a theoretical framework defended in detail by
Piccinini (2020a, 2022). Here I will briefly recap the main
aspects that are relevant to this project. This section is intended
primarily for philosophers; non-philosophers can skip it without
too much loss.

The universe consists of many objects that stand in
compositional relations: small objects compose larger objects,
which compose ever larger objects until all objects, taken
together, compose the whole universe. Objects have natural
properties, including relational properties. There are three types
of property: qualities, such as shape and size; causal powers, such
as the ability to fire action potentials; and structural properties,
such as beingmade of neurons and glial cells arranged in a certain
way. An object’s properties are invariant aspects of the properties
of that object’s parts. A composite object itself is an invariant
under certain transformations in its parts.

The objects we are concerned with are substantive wholes,
namely, objects whose (proper) parts change their properties
when they come to stand in organizational relations such that
the parts compose such wholes. For instance, pluralities of
disconnected neurons and glial cells cannot perform nontrivial
cognitive functions. When they are connected together and
sustained by an organism’s metabolism, however, neurons and
glial cells form nervous systems, thereby acquiring the ability to
send signal to one another and, collectively, to perform nontrivial
cognitive functions.

It’s important to note that causal powers require disposition
partners for their manifestation and are typically individuated
by the manifestations they have when they encounter their
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partners (Martin, 2008). For instance, the very notion of a signal
presupposes that the signal is sent to one or more receivers.
Accordingly, the power to send a neuronal signal presupposes a
communication channel through which a neuron sends the signal
to one or more receivers. Thus, causal powers include an intrinsic
aspect—what the object can contribute to a manifestation—and a
relational aspect—what the object must be related to in order for
the manifestation to occur.

It’s also important to note that a property can be both the
manifestation of an object’s causal powers as well as a causal
power of its own. For instance, a truck’s momentum is both a
manifestation of its power to set itself in motion and a causal
power of its own, which can be transferred to other objects in
case of collision. Later I will argue that semantic content is a case
of this sort: both the manifestation of some of a neurocognitive
system’s causal powers and a causal power of its own.

Some systems contain mechanisms. For present purposes,
mechanisms are subsystems composed of different types of part,
each with its own specialized powers, and the parts are organized
in such ways that each part meets disposition partners in some
of the mechanism’s other parts and portions of the environment
of the system. As a result, mechanisms have powers that their
parts, when they are not organized to form the mechanism, could
never have.

Some special mechanistic systems are organisms. What counts
as an organism is a difficult question that I cannot address
in depth here. Suffice it to say that organisms have special
closure properties such that their parts are mutually involved
in maintaining the organization of the system1. Organisms
include sets of entities each of which can be produced from
other entities within the set (Kauffman, 1993), organisms
exert work to maintain internal constraints that in turn
are necessary to produce the work (Kauffman, 2002), their
processes are mutually constrained in such a way that each
constraint is generated by at least one other constraint (Montévil
and Mossio, 2015), and their behavior, broadly construed
to include metabolism, must result at least sometimes in a
mutually supportive set of conditions that include survival,
development, reproduction, and helping others (Piccinini, 2020a,
p. 68). I call the latter four conditions goals in the following
minimal sense: they require work and, if all members of a
population fail to fulfill them, eventually the population goes
extinct. Thus, for organisms to continue to exist, the four
goals must be pursued and fulfilled at least sometimes by
some organisms.

Since organisms have goals that they must pursue, their
traits (parts and their properties) as well as the artifacts they
build and use may contribute to such goals. Contributing
to such goals in a stable way is what I call the biological
function(s) of such traits and artifacts. Token traits and artifacts
that belong to a type some of whose tokens are able to
perform a function may be said to have that function even
though they cannot perform it or cannot perform it at the
appropriate rate in appropriate situations. Thus, this is a

1This self-organizing feature of organisms has long been emphasized by what is

sometimes called autopoietic enactivism (Varela et al., 1974; Ward et al., 2017).

normative notion of function: traits and artifacts can function
incorrectly, malfunction, or completely fail to perform their
function2.

Some organisms have specialized control organs—namely,
nervous systems—whose function is to direct the behavior
of the organism as a whole in response to environmental,
physiological, and developmental conditions. Fulfilling control
functions requires transducing different kinds of external
signals into internal vehicles that allow the control organ to
integrate different sources of information, build and update
internal models of the body and environment, and use such
models to guide and direct behavior. Since the function of
the vehicle is to encode different sources of information
as well as guide the control of a complex organism, the
vehicles themselves are defined in terms of such functions,
not any particular ways in which the vehicles are physically
implemented. I call such vehicles medium-independent, and
the manipulation of such vehicles in a rule-governed way,
which is needed to perform control functions, computation
in a generic sense. While neural processes are computational
in a generic sense, there are good reasons to conclude
that they are sui generis computations—neither digital nor
analog3.

NEURAL STRUCTURAL REPRESENTATION

There is a widespread consensus that the notion of
representation that is relevant to cognitive neuroscience is
that of structural representation4. To a first approximation,
a structural representation is a model of a target that can
guide behavior with respect to its target. For example,
a map of a territory is a structural representation.
More precisely, I define a structural representation
as a system that has the function of possessing the
following four features: (i) a partial isomorphism
(homomorphism5) to its target, (ii) being activated by
signals coming from its target, (iii) the ability to guide

2Some complex organisms have sentience and sapience, which give rise to

nonbiological functions, which are stable contributions to nonbiological goals.

Nonbiological functions are not especially relevant here.
3Roughly, digital computations can operate over sequences of discrete states,

analog computations can operate over continuous variables, and neural

computations operate over spike trains; within spike trains, spikes are distinct

from one another, which makes them somewhat similar to discrete states, but

their frequency and sometimes their timing are functionally significant, which

makes them somewhat similar to continuous variables. Since the vehicles of neural

computation shares similarities and differences with the vehicles of both digital and

analog computation, neural computation is sui generis. A more detailed treatment

is in Piccinini (2020a, especially Chs. 6 and 13).
4The following account of neural representation and its content was influenced

most directly by Piccinini (2020a, Ch. 12), which is a descendant of Thomson and

Piccinini (2018), and by Lee (2021). Other important recent sources that influenced

me on the problems of content and related matters include Gładziejewski (2015),

Ramsey (2016), Gładziejewski and Miłkowski (2017), Miłkowski (2017), Neander

(2017), Buckner (2018, forthcoming), Dewhurst and Villalobos (2018), Lee (2018),

Shea (2018), Millikan (2021), Poldrack (2021), and Bielecka andMiłkowski (2020).
5Some authors prefer the notion of similarity to that of homomorphism. For a

recent account of semantic information carried by structural representations in

terms of similarity, see Miłkowski 2021.
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behavior with respect to its target, and (iv) the ability
to be decoupled from signals coming from its target
(and therefore to guide behavior with respect to its
target even when its target is not directly activating the
representation)6.

Ramsey argues that, in addition to defining structural
representation in such functional terms (a model that can guide
behavior), we also need an account of the semantic content
of structural representation (Ramsey, 2007, 2016). He points
out that many theorists either fail to distinguish between the
functional role of structural representations and their semantic
content or they simply ignore the functional role.7 Ramsey
concludes that, in addition to an account of functional role
along the lines I gave above, we also need an account of
the representations’ semantic content. The most successful
account of the semantic content of structural representations
is informational teleosemantics, which says, roughly, that the
semantic content of a structural representation is the information
it has the function of carrying about its target (Dretske,
1988; Neander, 2017; Shea, 2018). For present purposes, that
a state carries information about a target means that the
occurrence of that state raises the probability that the target is
also occurring.

I agree that the notion of structural representation is the
relevant one, and I will endorse a version of informational
teleosemantics. I add that neural representations have special
features such that, when the relevant notion of structural
representation and the relevant teleosemantic theory are
formulated properly, the vehicles of neural representations and
their semantic content are two sides of the same coin. That is,
the same functional properties that turn a system of internal
states into a neural representational system are also sufficient
to give such internal states their semantic content8. I will also
argue that, once we gain an adequate account of the ontology of
original semantic content, the content of neural representations
is an aspect of their causal powers—the power to track their
target and, as a consequence, to guide behavior with respect to
their target.

For present purposes, a neural structural representation is a
state of a simulation of a target, where a simulation is a system of
states, homomorphic to their target, which can evolve to match
the evolution of their target to some degree of approximation. In

6The notion of representation primarily under discussion here is that of indicative

representation, whose function is to fit the world. There are also imperative

representations, whose function is to change the world to fit them. I discuss

imperative representations in Piccinini (2020a, Ch. 12).
7Facchin 2021 has recently questioned whether structural representations’

functional role is genuinely representational. Roughly, he argues that (a)

receptors are not genuinely representational, yet (b) some receptors are structural

representations; therefore, (c) some structural representations are not genuinely

representational. Even as Facchin presents his argument, it leaves room for some

structural representations to be genuinely representational, which is all I need. In

any case, Facchin does not establish (a); instead, he makes a plausible case that

(a’) some receptors are not genuinely representational. Needless to say, (c) doesn’t

follow from (a’) and (b).
8For an account that goes somewhat in the same direction, see Shea (2018, p. 10,

Chs. 3 and 4).

addition, a neural structural representation is a state of a system
whose functions includes the following:

1. To build and maintain a simulation of its body
and environment.

2. To use the simulation to guide behavior by issuing
motor commands.

3. To use information from the body and environment together
with its own motor commands to update the simulation.

A system that performs the above functions has all the
four features of structural representations. By definition, the
simulation it builds and maintains is homomorphic to its target
and can guide behavior. By relying on information from the body
and environment to update its internal states, the system gets
activated by signals from its target. Finally, since the simulation
is a dynamical model that can evolve on its own in a way that can
match its target, its states can be decoupled from their target.

A system that performs the above functions already has all
that’s needed for its states to have semantic content according to
informational teleosemantics9. This is because, since one of the
system’s functions is building a simulation of its environment and
updating it using information from the environment, the states
of the simulation carry information about environmental states.
Wemay conclude that one of the states’ functions is tracking their
targets, or we may prefer to say that they track their target, when
they do, due to the function of the system as a whole; regardless,
this is enough for a viable teleosemantics. It is in virtue of the
information they carry about their targets that such states can
guide behavior with respect to their targets.

Now let’s consider the metaphysics of the semantic content of
this kind of structural representation. Recall from the previous
section that causal powers include an intrinsic aspect—what the
object can contribute to a manifestation—as well as a relational
aspect—what the object must be related to in order for the
manifestation to occur. Each state of the sort of simulation we are
discussing has an intrinsic aspect—the ability to receive, process,
and send signals—and a relational aspect—the relations to the
rest of the system. It is the relations to the rest of the system,
which in turn is related in appropriate ways to the body and
environment, which enable each internal state to receive and
send signals carrying information about their target and to guide
behavior on that basis.

On one hand, the system has learned to activate each internal
state to track specific targets and predict the target’s evolution.
Thus, when the system functions correctly, each internal state
sends its signals under appropriate circumstances (information
is flowing in either directly from the target or from other internal
states that carry information about the target, including past
states of the system). On the other hand, when the system
functions correctly, each internal signal can be used to guide

9My version of teleosemantics is not based on the usual, selectionist account of

functions, according to which functions are selected effects (e.g., Neander, 2017);

it is based on the goal-contribution account of function I briefly reviewed in the

previous section according to which functions are stable contributions to the goals

of organisms. One advantage of this innovation is that it makes it possible for

semantic content to be causally efficacious.
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behavior in the relevant way—i.e., with respect to its target. As a
result of the combination of its intrinsic and relational properties,
each internal state has the causal power to track its target, predict
the target’s evolution, and guide behavior with respect to its target
(to the extent that the system is performing its representational
function)10.

The semantic content of a neural representation is a
manifestation of its power to track its target and predict its
evolution. It is also the causal power to guide behavior with
regards to its target. Content is often represented by using that-
clauses; for example, “the cat is on the mat” means that the cat is
on the mat. This is an inadequate way of expressing the content
of neural representations, at least in the general case. On one
hand, typical neural representations do not enter the kind of
explicit inferential relations that linguistic representations, whose
content is expressed by that-clauses, can enter. In addition, their
correctness conditions are a matter not of truth or falsehood but
of degrees of accuracy with which a target is tracked. On the
other hand, however, neural representations are rich in detail,
connected to other representations, dynamical, and predictive of
their target’s evolution in a way that linguistic representations
are not. Thus, the content of a neural representation of the cat
being on the mat may be very roughly approximated as follows:
cat on mat there now and will likely evolve in such and such
a way. Notice that I didn’t use a that-clause, because typical
neural representations are not propositional representations but
simulations of their target.

A specific content may be distributed over a relatively large
ensemble of neurons. Yet content is relatively localized in the
sense that it is carried by a specific vehicle born by a specific
bearer (neuron/ensemble/circuit) and not diffused through the
whole neurocognitive system, or even a large part thereof.
Yet content (qua causal power) also depends on the causal
role that the firing of a neuron/neural ensemble/neural circuit
plays within the neurocognitive system, so it depends on the
structural and functional relations between the vehicle (and
therefore the vehicle bearer, the neuronal structure) and other
relevant portions of the system. Since content is acquired by
the neurocognitive system through learning via feedback from
the environment (more on this below), it is acquired holistically
thanks to the action of a system larger than the bearer of the
content, and it depends on the holistic relations between its
bearer and the rest of the system for its existence qua content. Yet
content is also somewhat localized in the sense of being possessed
by a small part of the system in virtue of the specific causal role
that subsystem plays within the whole system.

In other words, the content of a neural representation is a
manifestation of a causal power (the power to track a target), yet
this content is created by a broader learning process involving a
larger system, and the fact that it functions as content is made
possible by the broader causal role that the content plays in
guiding behavior within the system.

In summary, there are three causal processes pertaining to
content: the learning process that creates the content, the causal

10Shea (2018, p. 36, 39) has independently argued that content arises out of a

combination of a vehicle’s intrinsic and relational properties.

process that defines the content (as tracking a certain target and
predicting its evolution), and the causal process that makes it
possible for the content to guide behavior.

THE SITUATEDNESS OF NEURAL
REPRESENTATION

For neural representations to exist at all, the system that
constructs and maintains them—the neurocognitive system—
must be embodied, embedded, enactive, and affective. This
situatedness of neural representations is needed because neural
representations and the computations that are interdependent
with them emerge diachronically through the dynamical
interaction between the nervous system, its body, and its
environment in a way that must take into consideration the
organism’s needs. Let’s unpack this point, one step at a time.

Neurocognitive systems are made out of neurons and other
cells; the neurons, connected into networks, are the main
components performing cognitive functions. The structure and
functions of neurocognitive systems are innately constrained.
The structure and functions of an organism’s body affect how its
neurocognitive system develops and what processes it performs
(Chiel and Beer, 1997). In addition, developmental processes
that are at least partially under genetic control determine
the differentiation of the neurocognitive system into different
systems (cortex, cerebellum, hippocampus, etc.), the formation
of different subsystems (cortical areas, columns, nuclei), much of
the wiring between systems and subsystems, themain biophysical
properties of different types of neurons, the transduction of
external stimuli into firing rates within sensory systems, the
transduction of firing rates into muscle contractions at the
neuromuscular junction, and so forth. All these factors constrain
the type of representations and computations neurocognitive
systems can perform and the kinds of behaviors they can exhibit
(e.g., Kim et al., 2017; Wang et al., 2018). That said, one of
the most important features of neurocognitive systems, which
is also built through development, is their plasticity, that is,
their ability to change their structure and functions in response
to their dynamic interaction with body and environment.
Plasticity is the basis for the ability to learn, which in turn
allows neurocognitive systems to construct and shape their
representations and computations.

The study of how biological neural networks learn has
influenced and has been influenced by the study of artificial
neural networks. Comparing the types of learning that occurs
in biological vs. artificial neural networks will help us highlight
how important situatedness is to learning in biological neural
networks and what might still be missing from current
AI technology.

Artificial neural networks can learn in three main ways:
supervised, unsupervised, and by reinforcement. Supervised
learning occurs when an agent external to the network calculates
the error produced by the network, uses such error to adjust
the structure (and therefore the functions) of the network to
improve performance, and repeats this process until the network
exhibits the desired performance. This is often done by feeding
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the network labeled data during the training period, that is,
inputs that already include information about how the network is
supposed to classify the data. In contrast, unsupervised learning
occurs when the network itself adjusts its structure (and therefore
its functions) in response to its inputs in order to find, extract,
and represent similarities, invariants, and associations within its
inputs, without receiving external feedback on how to improve
its performance. Finally, reinforcement learning occurs when a
network performs actions in response to its input, receives a
reward signal in response to successful actions, and uses the
reward signal to adjust which actions it will select in the future
(Sutton and Barto, 2020).

Both supervised and traditional unsupervised learning have
limits. Supervised learning is limited by the requirement of
labeled data, which may or may not be always available in
large enough quantity. Unsupervised learning is limited by the
absence of any external information on how the inputs should
be processed; thus, it works best for tasks that require merely
extracting patterns from inputs. To overcome these limitations,
a more recent approach involves a type of unsupervised learning
called self-supervised learning: artificial neural networks that
learn by extracting supervisory signals from the data themselves,
without relying on explicit labels supplied by external agents.
By relying on the structure of the data, self-supervised learning
networks attempt to predict one portion of an input from another
portion, and then use any resultant discrepancy to improve their
representations and computations. Adding the ability to learn
from rewards and punishments turns a neural network into
a reinforcement learning network, which allows it to learn by
trial-and-error how to respond to different situations.

None of the training methods for artificial neural networks
are a perfect fit for the type of learning that occurs within
neurocognitive systems. Unlike in supervised learning, there are
no external agents labeling the data that enter neurocognitive
systems or calculating how the structure of neurocognitive
systems should be adjusted to improve performance. Therefore,
neurocognitive systems do not undergo supervised learning as it
occurs in artificial neural networks. In addition, unlike traditional
unsupervised learning, neurocognitive systems are not limited to
processing their inputs in the absence of external feedback.

The types of AI learning that are closest to what
neurocognitive systems do are self-supervised learning and
reinforcement learning. Like artificial systems undergoing
self-supervised learning, neurocognitive systems can extract
structure from their inputs, attempt to predict how the inputs will
evolve, and use any discrepancy to improve their representations
and computations (cf. (Buckner, forthcoming)). But even self-
supervised learning falls short because, in general, self-supervised
learning does not involve direct feedback from either the system,
the body, or the environment about the effects of the system’s
actions—if nothing else, because typical artificial neural networks
do not act in the world through a body in real time. In contrast,
neurocognitive systems are constantly directing their body to
act within their environment, use efference copies of their own
motor commands to adjust their expectations about how their
sensory inputs will change, and collect information about the
effects of their motor commands on both body and environment

shortly after issuing the commands. Thus, neurocognitive
systems can and do use constant, real-time feedback to correct
their structure so as to improve their performance.

This lacuna is addressed in part by reinforcement learning.
Like artificial systems undergoing reinforcement learning,
neurocognitive systems can adjust their action selection by
responding to rewards and punishments. There are at least four
important differences. First, neurocognitive systems learn in the
real world within a relatively short amount of time, whereas
current AI techniques are too inefficient to learn realistic tasks
in the real world within a reasonable time; learning occurs
within simulated worlds and then the acquired knowledge may
be transferred to the real world with some degree of success
(OpenAI et al., 2019a,b). Second, neurocognitive systems—
unlike ordinary artificial neural networks—include an internal
system of evaluative signals, so neurocognitive systems are
not limited to learning from external evaluative signals. Third,
neurocognitive systems use several different types of internal
reward and punishment signals instead of just one type of
evaluative signal. Fourth, insofar as neurocognitive systems can
learn from external evaluative signals, such as a parent or
teacher telling them “Yes” or “No,” they have to first learn to
interpret such signals. To distinguish the type of learning that
neurocognitive systems engage in from standard AI techniques, I
will call it active learning11.

Themost important feature that active learning shares with AI
methods is that the learning process itself shapes the computations
at the same time that it builds the representations. This marks a
critical difference from conventional computers. In conventional
computers, the processor manipulates data in accordance with
instructions, its circuitry usually remains the same over time,
while instructions and data are stored in separate memory
registers. Computer instructions have internal semantic content
that correspond to the operations performed by the processor,
while data can mean anything at all—their content need not have
anything to do with the computational operations performed on
them. Usually, the operations performed on data match their
contents, but this happens only because programmers and users
ensure that they do. In fact, computer data need not even mean
anything at all. Because of this, if computer data have semantic
content at all, as they usually do, they have derivative content.

In contrast, in learning neural networks, the operations
performed by the units are what activates their representational
states, and the representational properties of the states are
what allows the network to perform subsequent computational
operations efficiently. This mutual dependence exists because
both the computational operations and the representations are
constructed, jointly and at the same time, by one and the same
learning process (cf. Shea, 2018, p. 217). As a result, within
learning neural networks, computations and representations are
mutually constitutive of each other and, thus, automatically

11The label “active learning” is used in pedagogy for a method of learning in

which students are not merely listening to lectures or reading material (i.e., passive

learning) but are actively engaged with the material through discussions, writing

assignments, role play, etc. I am repurposing this label for the type of learning that

neurocognitive systems spontaneously engage in.
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coordinated. This is not enough to conclude that neural networks
have original, causally efficacious semantic content, but we will
soon see that it is an important step in that direction12. What is
also needed in order to acquire original semantic content is that
the network be embodied, embedded, and enactive.

Before getting there, I want to point out another,
underappreciated difference between neurocomputational
systems and conventional computers. Within conventional
computers, the only kind of information processing that takes
place is the computation of outputs based on inputs and internal
states. In contrast, neurocomputational systems are constantly
engaged in two types of information processing at once. Like
conventional computers, they yield outputs as a function of
their inputs and internal states. Unlike conventional computers,
they also learn—that is, they use a number of information
sources together with their self-organizing capacity to alter their
structure and, therefore, their future functions.

It’s worth pointing out what sorts of information sources
neurocomputational systems can use to actively learn. They
include the timing and frequency of their vehicles (primarily,
neuronal spikes), the channels through which input signals arrive
(visual, auditory, olfactory, etc.), the correlation between one
portion of a signal and another portion, and the dependencies
between various sorts of input signals (from the environment,
body, or neurocognitive system itself, as in the case of efference
copy), internal states (such as internal states of the simulations
of body and environment and the internal evaluative signals
they elicit), and output signals (such as motor commands). By
exploiting these relationships and performing operations that
are sensitive to them, a neurocognitive system can process
information using medium-independent vehicles. In addition,
by exploiting the different patterns of dependencies that occur
between internal signals and signals from the body, on one hand,
and between internal signals and signals from the environment,
on the other hand, neurocognitive systems can learn to
distinguish between their body and their environment. The
upshot is that neurocognitive systems can build representations
with original semantic content because neural representations
and the computations that manipulate them are functions not
only of each single network’s inputs and internal states but also
of the real-time dependencies between different portions of the
whole neurocognitive system’s inputs as well as between inputs,
internal states, and outputs, which in turn carries information
about the body and environment of the system.

Thus, active learning requires embodiment—that is, a tight
dynamic coupling between neurocognitive system and body13.

12For an independently developed yet converging argument that the coordination

between vehicles and their content helps solve the problem of the causal efficacy of

content see Shea (unpublished).
13Different authors characterize embodiment, embeddedness, and enaction in

different ways (for a recent review, see Shapiro and Spaulding, 2021). Some

authors define embodiment, embeddedness, or enaction in ways that preclude

computation and representation (e.g., Thompson, 2007, p. 13); this begs the

question at hand. I adopt characterizations that are present in the literature, do not

beg the question of computation and representation, and suit present purposes. A

fuller treatment of the relation between the present argument and themany themes

from the literature on situated cognition will have to wait for another occasion.

This is true not only because the body contains the sensors and
effectors that neurocognitive systems need in order to receive
information and act on it. It’s also because the real-time feedback
loop between neurocognitive systems and their body, whereby
the body moves in direct response to neural activity and almost
immediately sends information back to the neurocognitive
system about how it’s moved, is needed for the neurocognitive
system to learn how to represent its body, how to represent
its body distinctly from its environment, and how to effectively
simulate and control its body. Since the body is, in turn,
the main receiver of information about the environment, the
neurocognitive system could not fulfill its learning potential—
much less learn how to direct its body within its environment
by using internal simulations as a guide—without its constant
dynamic interaction with its body.

Active learning requires embeddedness as well—that is, a
tight dynamic coupling between nervous system, body, and
environment. This is true not only because the environment
contains the sources of information most senses are sensitive
to (except for proprioception, which is perception of the body
itself) or because the body itself could not function in the absence
of its environment. It’s also because the real-time feedback
loop between neurocognitive systems and their environment—
whereby the environment mostly remains the same regardless
of the organism’s movements even while the perspective of
the organism changes, and yet the environment also changes
in specific ways that depend on the actions performed by the
organism—is needed for the neurocognitive system to learn how
to represent its environment, how to represent its environment
distinctly from its body, and how to effectively simulate and
act within its environment. For example, abnormal visual
stimulation during a developmentally critical period impairs
vision in ways that can be irreversible (e.g., Hubel and Wiesel,
1970). The neurocognitive system cannot develop properly
and cannot fulfill its learning potential without dynamically
interacting with its environment, in a way that is mediated by
its body.

Active learning requires enaction too. For present purposes,
enaction is a kind of dynamic interdependence of a system
and its environment that unfolds continuously in real time.
Specifically, when enaction occurs, cognitive states and processes
affect the organism’s body and environment while the body
and environment affect cognitive states and processes (cf. what
Ward et al., 2017 call “sensorimotor enactivism”). Enaction in
this sense is already largely implicit in what I said above—
let’s highlight its most relevant aspects. At any given time, the
neurocognitive system is building and updating a simulation
of its body and environment and using such a simulation to
guide behavior. Meanwhile, each motor command affects (i)
how the body moves, (ii) how the sensory input changes (if
nothing else, because the position of the body relative to its
environment changes), and (iii) some ways that the environment
changes (because the organism’s actions change it). Moreover,
the simulation is attempting to predict how all of this is
about to unfold, and the system compares its predictions to its
sensory data. Sensory data, in turn, are the main way that the
environment affects neurocognitive systems in real time. All of
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the dependencies between sensory inputs and motor actions are
constantly exploited by neurocognitive systems to update their
internal simulations as well as to learn how to improve their
simulations and the way they guide behavior.

Finally, active learning requires affect. In the most basic sense,
affect is a system of internal signals that evaluate the state of
the organism and its environment to motivate the selection of
actions that satisfy the organism’s needs. Animals, or at least
animals of sufficient complexity and behavioral flexibility, need
affect in this sense to select actions that satisfy their needs as
well as evaluate external situations and, eventually, learn to select
action sequences that are adaptive within different situations. As
we have seen, affect in this sense is an aspect of reinforcement
learning, which is an aspect of active learning.

As a result of the dependence of active learning on the
situatedness of neurocognitive systems, neural representations
and computations themselves are embodied, embedded,
enactive, and affective. That is, neural representations and
computations are the result of the tight interdependence between
neurocognitive systems and their body and environment—
neurocognitive systems track their targets and guide behavior
thanks to their situatedness.

This account is a kind of content externalism, to the effect
that neural representations require a direct dynamical coupling
to the body and environment in order to exist at all as well
as to acquire their semantic content. Content is determined in
part by the environment together with the interaction between
the nervous system and its environment. As a consequence,
neural representations are individuated at least in part by the
external variables they have the function to track. This accords
with standard definitions of content externalism (Rowlands et al.,
2020).

This content externalism is a close relative of but should not
be confused with the traditional content externalism defended
by Putnam 1975. According to traditional content externalism
(adapted to neurocognitive systems), a difference between two
environments that is undetectable by the organism, such as
a difference in chemical composition between two substances
that the organism has no sensory ability to discriminate, is
enough to alter the semantic content of a representation. For
example, suppose that an organism A has learned to activate
representations of type R in the presence of substance S so as to
guide behavior with respect to S. In light of teleosemantics, tokens
of R represent S. Suppose that organism A has an exactly similar
duplicate A∗ who lives in an environment where substance S∗

is present in exactly the same contexts in which S is present
within A’s environment, yet neither the original organism A nor
its duplicate A∗ has any way to distinguish S∗ from S. As a
result, within the duplicate A∗, tokens of R get activated in the
presence of S∗. Traditional content externalism maintains that,
in the duplicate A∗, tokens of R represent S∗ rather than S.

Traditional content externalism is neither needed nor
plausible within the kind of naturalistic perspective I advocate.
The sort of case envisioned by traditional content externalism is
an exotic case that is unlikely to occur in real life. If it were to
occur, the reasonable thing to say is that there are two types of
substances, S and S∗, represented by tokens of R. A real-world

example is the gemstone jade, which may be composed of either
of two chemically different minerals, jadeite and nephrite14. Prior
to modern chemistry, no one knew that there were two types
of jade. Nevertheless, then as now, and contrary to traditional
content externalism, the term “jade” does not mean just jadeite or
just nephrite depending on whether we are looking at jadeite or
nephrite, or whether we are in an environment where only jadeite
is present or only nephrite is present, or, as traditional content
externalists would put it, whether we live on a planet where just
jadeite or just nephrite is present. “Jade” just means jade, i.e.,
something that can be either jadeite or nephrite. By the same
token, neural representations represent what neurocognitive
systems use them to track, regardless of howmany different types
of underlying structures activate the same representation15.

In conclusion, neural representations emerge diachronically
through the dynamical interaction between neurocognitive
systems, their body, and their environment, and they depend
on such a dynamic interaction for their existence and updating.
This situatedness of neural representations allows us to solve the
problems of content.

HOW SITUATEDNESS SOLVES THE
PROBLEMS OF CONTENT

The first problem is the source of original semantic content:
how do neural representations acquire original (i.e., non-
derivative) semantic content? The situatedness of neurocognitive
systems is the very source of their representations’ original
content. As we’ve seen, original content itself emerges via a
combination of biological evolution and active learning from
the constant interaction between nervous system, body, and
environment. The original content of a neural representation
is a property acquired by the representation via a combination
of evolution shaping development and active learning that the
system undergoes as it constructs internal simulations of its body
and environment to guide the organism’s behavior. Perceptual
representations and their original content may be more
dependent on receiving sensory information than on guiding
action, while the reverse may be true of motor representations;
nevertheless, for all types of neural representations to be normally
acquired and coordinated, all the forms of situatedness we
discussed must contribute16.

The second problem is the coordination between vehicles
and their content: how do vehicles and contents get matched
with one another so that the computational operations the
nervous system performs over the vehicles match their semantic
content? Situatedness solves the coordination problem because
the contents themselves are an aspect of the vehicles’ functional
role, and such a functional role (including the computational

14Jade was discussed extensively in the debate on reductionism about mental states

(Kim, 1992; Fodor, 1997). I am putting the example to a different use.
15This conclusion is consistent with many critiques of traditional content

externalism; see Sections 3.2 and 3.3 of Rowlands et al. 2020 for a review.
16Thanks to a referee for pointing out that there may be cases of atypical

development, neurodiversity, or neuropathology in which some forms of

situatedness do not contribute to the development of neural representations.
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operations to be performed on the vehicles) are learned by the
system via its interaction with body and environment and the
feedback it receives through that interaction at the same time that
the content itself is acquired. As we’ve seen, in neurocognitive
systems there is no separation between the semantic content
of a neural representation and the computational operations
performed over them. The computational operations are an
aspect of what gives a neural representation its content; neural
representations with the content they have are what allows
subsequent computational operations to be performed; the
contents and the computational operations are acquired together
as the system undergoes active learning.

Let’s consider this a bit further. When a neurocognitive system
begins to develop, it possesses some ability to process its inputs,
build internal states, deliver outputs, and learn from the feedback
it receives from itself, its body, and its environment. These initial
operations may be partially random but they are also constrained
by the architecture and biophysical properties of the system, the
morphology and organization of the body, and the structure
of the environment. The system may already have a system of
internal representations built by developmental processes, or it
may be closer to a blank slate. If the system does have innate
internal representations it must be because evolutionary and
developmental processes sufficiently analogous to active learning
have constructed them so that their semantic content matches
the operations performed by the system over them or else such
representations could not function as such. Over time, it is
precisely the process of dynamic interaction between nervous
system, body, and environment that allows the system to acquire
new or more sophisticated representations at the same time that
it learns how to use them. Thus, the neural representational
vehicles and their content can only arise together because they
are two sides of the same coin. The matching between vehicles
and contents is guaranteed by the fact that both contents and the
operations performed over the vehicles are joint products of the
same active learning process.

The third problem is the causal efficacy of content:
how can the semantic content of neural representations be
causally efficacious? Situatedness solves the causal efficacy
problem because, as we’ve seen, the content of situated neural
representations is an aspect of the causal powers of its
vehicles. As a result, unlike typical artificial computing systems,
neurocomputational systems are sensitive to the semantic
content of their vehicles.

To illustrate, consider a token r of neural representation type
R. Suppose that the system has actively learned to activate tokens
of R to track and simulate the presence of dogs in its environment
and guide behavior with respect to dogs (e.g., Bracci et al.,
2019). According to the version of informational teleosemantics
I advocate, r has original semantic content that can be expressed,
approximately, by dog there now and will likely evolve in such
and such a way. Such a content is not something distinct from
and independent of r’s causal powers. Rather, r’s content is both
a manifestation of some of the neurocognitive system’s causal
powers and a causal power of its own, which can trigger further
manifestations. In this case, r’s content is an aspect of its power
(again, within the context of the neurocognitive system) to guide

the system’s behavior with respect to a dog being there now.
This is made possible by the automatic coordination of r (and
the computations that process r) with r’s content that is created
when the disposition to activate tokens of R is constructed
within the system via active learning. Thus, r’s content causes the
system’s behavior with regards to a dog being there now. This
is how the semantic content of neural representations causally
explains behavior.

The fourth problem is the indeterminacy of content: how can
neural representations be said to have semantic content when
theorists can’t agree on what content they have? Situatedness
solves the problem of the indeterminacy of content because
the content of the kind of basic neural representations we’ve
been discussing need not have fully determinate semantic
content like declarative sentences within a human language.
Neural representations have the kind of content that the system
needs in order to guide behavior; the kind of content that is
ecologically significant and that evolution can act on. The type
of behavior depends on the type of organism, and the content
of individual neural representations is for neuroscientists to
investigate empirically, not for philosophers to intuit about. By
investigating the response properties of neurons and neuronal
populations, neuroscientists can determine what such neurons
or populations are most responsive to under relatively good
sensory conditions, and that is their semantic content. If there
are different, nonequivalent ways of labeling such contents
linguistically (e.g., “fly,” “small dark moving entity,” “food”; or
“S” versus “S∗”), this doesn’t matter so long as all such labels are
extensionally equivalent within the relevant ecological niche17.
Only when it comes to linguistic cognition do the very special
neurolinguistic systems that are involved acquire the kind of
categorical contents that admit of full-blown truth conditions.
How to get there is a complex story that still needs to be told
in detail (some hints are provided in Piccinini and Hetherington,
unpublished; Piccinini, 2020b, 2022).

The fifth problem is the distality of content: why should the
distal stimulus be the content of a neural representation rather
than any of its more proximal stimuli? Situatedness solves the
distality problem because different items along the causal chain
from distal stimulus to neural representations exhibit different
patterns of dependency. As we’ve seen, neural representations
are not static—they dynamically predict the evolution of their
target and guide behavior with regards to the target. Meanwhile,
the system obtains and processes feedback in response to its
actions. At the very least, the organism’s movements, including
its eye movements, constantly change the precise point of view
from which the nervous system obtains sensory data from any
given target. The dependency patterns between different items
along the causal chain from distal stimulus to internal states
are different, the different items evolve in different ways, and
changing point of view alters them in different ways. Therefore, as

17Whether the labels in our frog example are actually extensionally equivalent

within the ecological niche of frogs is questionable. For instance, frogs eat way

more than just flies, so “fly” is not extensionally equivalent to “food”. At any rate,

we should let neuroscientists find the best way to characterize the content of neural

representations.
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soon as the system attempts to predict how something will evolve
over time and improve its predictive performance as well as its
action efficacy, it must extract the invariants that are relevant
to external stimuli—those it might have to interact with—and
discard any invariants that pertain to more proximal stimuli as
spurious. It is part and parcel of a neural systems’ active learning
to acquire representations capable of predicting the evolution
of the distal stimuli—those the system might actually interact
with18.

The sixth and last problem is the possibility of
misrepresentation: how can a neural representation
misrepresent a stimulus that triggers it? Traditional information
teleosemantics is often thought to provide a satisfactory
account of misrepresentation. The solution is supposed to be
that misrepresentation is failure to perform representational
function. This is a huge step in the right direction but it’s not
enough by itself. The problem with this standard solution is
that it requires determining representational function precisely
enough to make room for misrepresentation. Specifically, there
must be something that determines what each internal state
has the function to represent so that, when the state responds
to something else, misrepresentation ensues. Extant proposals
are that either evolution (Neander, 2017) or an appropriate
learning period (Dretske, 1988) determine what each state has
the function to represent. I already ruled out evolution as the
source of the right notion of function, so that’s a nonstarter. As
to learning, no one has found a principled way to distinguish the
learning period from the rest of the life of a representational state,
such that after the learning period is over the representational
function is fixed. In some cases, there is a critical learning
period that may be the basis for establishing the representational
functions of internal states. But, in general, neurocognitive
systems never stop learning!

Situatedness comes to the rescue because, again, different
stimuli engage in different patterns of dependencies. The most
obvious difference is feedback in response to the organism’s
actions. Again, neural representations are dynamical simulations
of their environment, which are largely learned. At any given
time, neurocognitive systems have multiple representations that
could be activated in response to incoming sensory data.
Suppose that, during a dark night, in response to a stimulus,
a system activates a COW-representation—that is, the kind of
representation it has learned to activate when it needs to simulate
cows. The COW-representation yields specific predictions about
how the sensory data will change if the stimulus is approached
(i.e., it will look more and more distinctly like a cow), or if the
stimulus makes a vocalization (i.e., it will “moo”), or what their
footprints will look like, and so forth. As soon as enough sensory
feedback is collected that matches a different representation
better than the current one, the system itself should self-
correct, and it will self-correct if it’s functioning properly.
That is, the system will deactivate the COW-representation and
activate one that fits the sensory data better—e.g., a HORSE-
representation. Thus, misrepresentation occurs when a system

18Some recent teleosemantic literature moves at least part of the way in the same

direction (e.g., Neander, 2017, Ch. 9; Garson, 2019; Schulte, 2021).

activates a representation, targeting a stimulus, which makes
worse predictions about incoming data about what a stimulus
will do and how it will appear under various possible conditions
than an alternate representation that is also available to the
system. In short, misrepresentation arises from the interaction
of learning, simulation, and the ability to detect errors and make
corrections. The ability of neurocognitive systems to correct their
own misrepresentations is also another way of seeing that their
content is causally efficacious (Bielecka and Miłkowski, 2020)19.

CONCLUSION

I have argued that, far from being opposites as so many have
thought, situatedness and representation are more deeply
intertwined than anyone suspected. What makes neural
representations possible is the very situatedness of the processes
that acquire neural computations and representations.

Neurocognitive systems are indeed embodied, embedded,
affective, dynamically interact with their environment, and
use feedback from their interaction to acquire their own
representations and computations via active learning. This
accounts for the following: (1) neurocognitive systems construct
neural representations with original semantic content, (2) their
neural vehicles and the way they are processed are automatically
coordinated with their content, (3) such content is a special
kind of causal power and hence causally efficacious, (4) is
determinate enough for the system’s purposes, (5) represents the
distal stimulus, and (6) can misrepresent. This proposal hints
at what artifacts should be like in order to acquire the basic
cognitive abilities possessed by neurocognitive systems.
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Scene understanding and decomposition is a crucial challenge for intelligent systems,

whether it is for object manipulation, navigation, or any other task. Although current

machine and deep learning approaches for object detection and classification obtain high

accuracy, they typically do not leverage interaction with the world and are limited to a set

of objects seen during training. Humans on the other hand learn to recognize and classify

different objects by actively engaging with them on first encounter. Moreover, recent

theories in neuroscience suggest that cortical columns in the neocortex play an important

role in this process, by building predictive models about objects in their reference frame.

In this article, we present an enactive embodied agent that implements such a generative

model for object interaction. For each object category, our system instantiates a deep

neural network, called Cortical Column Network (CCN), that represents the object in its

own reference frame by learning a generative model that predicts the expected transform

in pixel space, given an action. The model parameters are optimized through the active

inference paradigm, i.e., the minimization of variational free energy. When provided with

a visual observation, an ensemble of CCNs each vote on their belief of observing that

specific object category, yielding a potential object classification. In case the likelihood on

the selected category is too low, the object is detected as an unknown category, and the

agent has the ability to instantiate a novel CCN for this category. We validate our system

in an simulated environment, where it needs to learn to discern multiple objects from the

YCB dataset. We show that classification accuracy improves as an embodied agent can

gather more evidence, and that it is able to learn about novel, previously unseen objects.

Finally, we show that an agent driven through active inference can choose their actions

to reach a preferred observation.

Keywords: generative modeling, robotic perception, deep learning, active inference, representation learning

1. INTRODUCTION

Having a machine understand the world from pixels has been a long standing challenge defining
the field of computer vision (Hanson, 1978). In the last decade, we have witnessed a proliferation of
deep learning techniques in this domain, which started with the leap in performance obtained by a
convolutional neural network (CNN) on object classification (Krizhevsky et al., 2012). Besides the
exponential scaling of available compute resources, this progress is mainly fueled by the collection
of massive datasets like ImageNet (Deng et al., 2009). The main strength of these techniques is that
their classification accuracy typically improves as they are trained on more data, scaling to datasets
containing billions of images (Mahajan et al., 2018). However, this strength is also becoming a
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main point of critique, as an exponential increase in compute
(and energy) resources is required for marginal gains (Thompson
et al., 2021). Moreover, these classifiers are known to be
vulnerable to ambiguous and adversarial samples (Gilmer et al.,
2018), and are restricted to object categories known and seen
during training.

Humans on the other hand are embodied agents (Safron,
2021), allowing them to resolve ambiguity by actively sampling
the world (Mirza et al., 2018). They are also much better learners:
by the age of two, toddlers can recognize around 300 object
categories (Frank et al., 2016), and can generalize a newly
learned label to instances they have never seen before (Landau
et al., 1988). Moreover, toddlers actively engage with their
environment, visually exploring objects from various viewpoints
by looking at and playing with them (James et al., 2014). In
contrast to datasets collected for machine learning, which aim to
collect a large and diverse set of exemplars of each object category,
toddlers rather learn from a severely skewed data distribution,
where only a small set of object instances are pervasively present,
yet still we are able to generalize (Clerkin et al., 2017). Therefore,
we propose a more enactive method for object category learning,
in which an artificial agent can actively sample viewpoints.

Predictive coding is a paradigm based on the hypothesis of
the Bayesian brain (Rao and Ballard, 1999), which makes the
assumption that cortical circuits perform Bayesian inference to
find the hidden causes of the observed signals. According to this
paradigm, the brain entails a generative model and uses this to
encode the error on the predicted observation.

Active inference is a process theory of sentience, which states
that intelligent systems build a generative model of their world
and act by minimizing a bound on surprise, i.e., the variational
free energy (Friston et al., 2016). As such, active inference can
not only be used to build artificial agents (Çatal et al., 2020a),
but also to develop theories about functioning of the brain (Parr
and Friston, 2018). For instance, Parr et al. (2021) propose
an active inference account for human vision, which considers
perception as inferring a scene as a factorization of separate
(parts of) objects, their identity, scale and pose. Factorizing
object identify from their scale and pose is consistent with
the so called two stream hypothesis, which states that visual
information is processed by a dorsal (“where”) stream on the
one hand, representing where an object is in the space, and a
ventral (“what”) stream on the other hand, representing object
identity (Mishkin et al., 1983).

Similarly, Hawkins et al. (2017) hypothesize that cortical
columns in the neocortex build object-centric models, capturing
their pose in a local reference frame, encoded by cortical grid
cells. Also empirical evidence from cognitive psychology showed
that humans, given a single view of an object never seen before,
have strong expectations about rotated views of that object,
implying internal representations of three dimensional objects
rather than two dimensional views (Tse, 1999). Recent findings in
recordings of rhesus monkey brains provide evidence that indeed
3D shape is encoded in the inferior temporal cortex (Janssen et
al., 2000).

Drawing inspiration from all these findings, we present a
system for learning object-centric representations from pixel

data. Akin to how a toddler interacts with a toy, we devise
an artificial agent that can look at a 3D object from different
viewpoints in a simulated environment. Parallel to cortical
columns, our system learns separate models, which we call
Cortical Column Networks (CCN) for separate object categories,
which encode object pose and identity in two separate factors.
An ensemble of CCNs then forms the agent’s generative model,
which is optimized by minimizing free energy. By engaging in
active inference, our agent can realize preferred viewpoints for
certain objects, while also resolving ambiguity on object identity.

Building on previous work (Van de Maele et al., 2021a), we
now evaluate our agent on pixel data rendered from 33 objects
from the YCB benchmarking dataset (Calli et al., 2015). In this
article, we show that using object-specific models introduces the
ability to classify out-of-distribution objects through a two-stage
process that first aggregates the votes and then compares the
prediction error on the likelihood of the observation.We devise a
mechanism to aggregate information over multiple observations,
and show that an embodied, enactive agent outperforms a
static classifier for the object classification task. Moreover, we
provide qualitative insights on how the system resolves ambiguity
through the predictive model.

Additionally, we illustrate how the agent can be drawn to
preferred observations through the active inference paradigm,
which is crucial for object interactions such as grasping. We
investigate the behavior of the latent code representing the object
pose and show that the model maps similar observations to
the same latent, leveraging symmetrical properties of the object
structure to reduce the model complexity.

To summarize, the contributions of this article are threefold:

• We propose an object-centric model (CCN) that learns
separate identity and pose factors directly from pixel-based
observations through the minimization of free energy. The
ensemble of CCNs for known objects form the agents
generative model.
• We combine the learned identity latent representation with

the likelihood of a CCN to classify objects of both seen (exact
identity) and unseen (other class) categories.
• We show that through active inference, the agent can be

driven toward an expected observation. We find that the agent
reduces complexity in its internal model by mapping similar
observations to a similar latent code.

2. METHODS

In this section, we first discuss recent generative models for
human vision, and propose our generative model for object
recognition and perception. Second, we derive the free energy
functional to optimize such a generative model under active
inference. Finally, we present a particular instance of such a
model, using an ensemble of modular deep neural networks,
called Cortical Column Networks.

2.1. Generative Models for Vision
The Bayesian brain hypothesis finds its origin in the writings
of von Helmholtz (1977), and makes the assumption that the
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intelligent brain reasons about the world and its uncertainty
as a Bayesian process. This perspective is further formalized in
terms of active inference, which posits that the brain entertains
a generative model of how sensory data are generated, and
functions by maximizing a lower bound on Bayesian model
evidence through learning and action selection (Friston et al.,
2016). Perception then boils down to inverting this model and
finding the likely causes that generated the sensory data, i.e.,
using (approximate) Bayesian inference to compute posterior
probabilities over hidden causes.

In the context of vision, this calls for inferring the causes that
generate a retinal image in the case of a human, or an array
of camera pixels in the case of a machine. Such a generative
model should then be able to construct a scene and predict “what
would I see if I looked over there” (Mirza et al., 2016). Rao and
Ballard (1999) formalize a generative model for vision, through
the predictive coding paradigm, by applying the underlying
assumption that the external environment generates natural
signals in a hierarchical manner by interacting with hidden
physical causes such as object shape, texture or luminance. While
their generative model considers a factorization in separate latent
terms, it does not consider the influence of the observers pose and
does not explicitly factorize the scene in separate objects.

A detailed generative model of human vision is proposed
by Parr et al. (2021), as schematically represented in Figure 1.
To predict a retinal image, one needs to know the scene and its
constituent objects or entities, as well as the observer’s viewpoint
within that scene. This is depicted in Figure 1A: the observer’s
viewpoint vt at timestep t is determined by its location lt and
head direction ht in the scene s. What the observer sees are
the different entities ei that are described by their identity i

and their placement in an allocentric reference frame defined
by a translation ti and rotation ri. The retinal image ot is then
formed from the different entities ei, the observer’s viewpoint
vt together with the context c, e.g. the lighting conditions etc.
Importantly, the observer can take action at and move to another
location in the scene, rendering vision as an inherently active,
embodied process. The corresponding generative model is shown
in Figure 1B, which is simplified from Parr et al. (2021), in the
sense that Parr et al. (2021) also considers recursive definitions
of entities, i.e., objects can again be defined as their constituent
parts, and adopts a more fine grained factorization, e.g. also
taking into account eye direction as separate factors.

Similar generative models can be used for learning machine
vision using pixel observations (Eslami et al., 2018; Van de
Maele et al., 2021b). In this case, the system is trained to make
inferences about the scene s, given images ot and corresponding
absolute viewpoints vt . This requires massive datasets containing
many views of a large variety of scenes with a number of
constituent objects, typically limited to primitive shapes and
colors. However, this becomes unfeasible in the real world,
where the variety of objects and their arrangement in scenes
yields a combinatorial explosion, and where an accurate, absolute
viewpoint of the camera is often missing. Also, developmental
psychology suggests that toddlers don’t learn from scanning
scenes, but rather focus on a single dominating object that is close
to the sensors (Smith et al., 2010).

Therefore, we propose a different generative model, which
is more object-centric as opposed to scene-centric. We
draw inspiration from the Thousand Brains Theory of
Intelligence, focused on the computational principles of
the neocortex (Hawkins et al., 2019). First, we subscribe to
the principle of a repetitive functional unit, i.e., a cortical
column, which have basic similarity of internal design and
operation (Mountcastle, 1997). Second, each such functional
unit learns a model of complex objects (Hawkins et al., 2017),
inferring both “what” the object is as well as “where” it is located.
We model a single repetitive unit to have both the “what”
and “where” information streams, this in contrast to the brain
anatomy where the ventral and dorsal stream are present in
separate physical areas, resulting in separate cortical columns
for this function (Hawkins et al., 2019). Additionally, our model
only considers a single object per functional unit rather than the
numerous models a cortical column in the brain can contain.

Third, instead of inferring both the observer’s as well as the
object’s poses in a global reference frame, each model learns a
representation in an object-centric reference frame (Hawkins et
al., 2019). Again, the agent is enactive and can move around, but
instead of changing an absolute location and/or head direction,
actions are now encoded as relative displacements with respect
to the object at hand. This is depicted in Figure 2A: at timestep
t, the observer captures an observation ot of a certain object
with identity i, at a certain pose pt relative to the object. The
observer can move around by executing action at , which changes
the relative viewpoint to pt+1.

We can formalize such an object-centric generative model as a
Bayesian network, displayed in Figure 2B. We assume the agent
focuses on a single object with identity i, and can sample different
poses pt by moving around by taking actions at . At each timestep
t, the object identity i and current pose pt yield the observation
ot . The generative model up to the current timestep t can then be
factorized as:

P(i, p0 : t , o0 : t , a0 : t−1) =

P(i)P(p0)

t
∏

k=1

P(pk|pk−1, ak−1)
︸ ︷︷ ︸

Transition model

P(ok|pk, i)
︸ ︷︷ ︸

Likelihood model

P(ak−1). (1)

The generative model hence consists of a transition model,
which models how an action moves the agent to a new poses, a
likelihood model that predicts the observation of an object with a
given identity viewed from a given pose, and prior distributions
over identity, initial pose and actions.

Crucially, we will instantiate and learn such a separate model
for each and every object type. The identity variable i then
becomes a Bernoulli variable whether or not the object at hand
belongs to the object type this particular model is representing.
This is interesting from a computational perspective, as it allows
to train each model on a confined dataset consisting of mainly
views of a single object, which improves sample efficiency, and to
instantiate a new model when a new object type is “discovered”,
enabling continual learning without catastrophic forgetting. To
infer the object identity, we aggregate the outputs of the different
models as having them casting a “vote.”
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FIGURE 1 | (A) An observer’s view of the world is determined by its location lt and head direction ht at a timestep t, and the objects ei in the scene, their identity ii ,

and translation ti and rotation ri in the world coordinate frame. The observer can take action at to move to another location. (B) A generative model of vision, simplified

from Parr et al. (2021): starting from a scene s, we predict the objects or entities ei one might encounter, their identity ii and their placement in an allocentric reference

frame defined by a translation ti and rotation ri . Together with the context c, i.e., the lighting conditions, and the viewpoint vt of the observer the observation ot is

generated. Furthermore, the observer can change its viewpoint vt by taking actions at that move its location lt and/or head direction ht. Both actions and observations

are observed variables shown in blue, whereas the others are unobserved and shown in white.

FIGURE 2 | (A) Visual representation of the environment in which an object with identity i (in this case: sugar box) can be observed by a camera at a pose pt, relative

to the object. The agent can transform this viewpoint, provided it performs action at+1 to go to pose pt+1. At each pose, an observation ot is perceived. (B) The

Bayesian Network describing the generative model of the agent. The variable i represents the identity of the observed object, pt represents the latent representation of

the camera pose at timestep t. The variable ot represents the sensory observation and is dependent on the identity i and pose variable pt. The current camera pose pt
is dependent on the previous pose pt−1 and action at−1 of the agent. Again observed variables are shown in blue, while unobserved variables are shown in white.

In what follows, we derive the (expected) free energy
functional to infer actions for the agent to engage in active
inference, and to update the model in doing so. Next,
in Section 2.3, we provide more details on the actual
parameterization of the model, the training mechanism and the
voting scheme.

2.2. Active Inference
Active inference is a theoretical framework to describe the
behavior of intelligent agents in dynamic environments. This
theory postulates that all intelligent beings entail a generative
model of the world, and act and learn in order to minimize an
upper bound on the negative log evidence of their observations,
i.e., free energy (Friston et al., 2016).

In order to infer beliefs about the unobserved variables,
an agent needs to “invert” the generative model and calculate
the posterior, which is in general intractable. Therefore, the
agent resorts to variational inference, and approximates the true
posterior by some tractable, approximate posterior distribution.
In our case, we use an approximate posterior Q(i, p0 : t|o0 : t) that
factorizes as follows:

Q(i, p0 : t|o0 : t) = Q(i|o0 : t)

t
∏

k=0

Q(pk|i, ok). (2)

The variational free energy F is a quantity to describe Bayesian
surprise, i.e., how much the approximate posterior and the true
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joint distribution differ. Given the generative model defined in
Equation 1, the variational free energy F is then defined as:

F = EQ(i,p0 : t)[logQ(i, p0 : t|o0 : t)− logP(i, p0 : t , o0 : t , a0 : t−1)]

= DKL[Q(i|o0 : t)||P(i)]+
∑

t

DKL[Q(pt|i, ot)||P(pt|pt−1, at−1)]

︸ ︷︷ ︸

complexity

−
∑

t

EQ(i,p0 : t)[log P(ot|pt , i)]

︸ ︷︷ ︸

accuracy

(3)

Hence, minimizing free energy entails maximizing model
accuracy, while minimizing the model complexity, i.e., KL
divergence between the approximate posterior and prior
distributions. Also note that this is equivalent to maximizing
the Evidence Lower Bound (ELBO) as used in variational
autoencoders (Kingma and Welling, 2014; Rezende et al., 2014).

Crucially, in active inference, agents minimize the free energy
not only by updating their internal model, but also by performing
actions that they believe will minimize free energy in the future.
However, future observations are of course not yet available.
Therefore, the agent relies on its generative model to acquire

expected observations over future states, and uses these to
compute the expected free energy G for an action at :

G(at) = EQ(i,p0 : t+1 ,ot+1)
[logQ(i, p0 : t+1|o0 : t , at)

− logP(o0 : t+1, a0 : t−1, p0 : t+1, i|at)]

≈ −EQ(ot+1)
[logP(ot+1)]

︸ ︷︷ ︸

instrumental value

− EQ(i,p0 : t+1 ,ot+1)
[logQ(i|o0 : t+1, at)− logQ(i|o0 : t , at)]

︸ ︷︷ ︸

info gain on object identity

(4)

− EQ(i,p0 : t+1 ,ot+1)
[logQ(p0 : t+1|i, o0 : t+1, at)− logQ(p0 : t+1|i, o0 : t , at)]

︸ ︷︷ ︸

info gain on object pose

Here, we make two assumptions. First, we assume that the
prior P(o0 : t+1|at) ≈ P(ot+1). In active inference, the agent
is assumed to have prior expectations about preferred future
observations (Friston et al., 2016). Because this is a prior
expectation, we can leave out the conditioning on action, and
it only applies on future observations. Second, we assume
that the bound on the evidence is tight, and hence that the
approximate posterior distributions can be used in lieu of
the true posteriors, i.e., P(i|o0 : t+1, at) ≈ Q(i|o0 : t+1, at) and
P(p0 : t+1|i, o0 : t+1, at) ≈ Q(p0 : t+1|i, o0 : t+1, at).

FIGURE 3 | A Cortical Column Network (modeling a master chef can). In the top left, an observation o0 is provided to the encoder model qφ . This model predicts the

distribution over identity as Bernoulli variable to be either belonging to the dedicated object category (i.e., master chef can) or not. Secondly, a distribution over the

latent pose variable p0 is predicted. A sample p0 from this distribution is then decoded through the decoder pψ and provides the reconstruction ô0. Using the

transition model pχ , this pose sample is transitioned into a belief over the latent pose variable p1,transitioned, given action a1. A sample from this new belief over

p1,transitioned is also decoded into an expected view ô1,transitioned.
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The result can be decomposed into three terms. The first term
is the instrumental value, which values future outcomes that have
a high probability under the prior distribution over preferred
outcomes. Intuitively, this will yield a high value for expected
observations that are similar to the preferred observation. The
second term is an epistemic term that values information gain on
the object identity. This means that it will result in higher values
for actions that will provide more information, i.e., the expected
difference between prior and posterior distributions is large. The
third term is also an epistemic term that values information
gain on inferring the agent’s pose relative to the object. This
is similar to the second term, but this time in terms of the
pose latent.

2.3. Cortical Column Networks
In order to engage in active inference, an implementation
of the generative model is needed. We choose to model the
vision system as the generative model defined in Section 2.1.
We use the factorization shown in Equation (1). The priors
over identity, initial pose and actions are constant and are
therefore not explicitly modeled. The posterior distributions
of the likelihood model is defined as the distribution over
the observation, when the latent variables describing identity
and pose are provided. The transition model represents the
relation between the pose latent at the next timestep, provided
with the pose latent at the current timestep and the taken
action. Finally, we amortize the inference process that infers
the latent variables describing identity and pose, given an
observation by an encoder model. We call the combination
of a likelihood model, transition model, and encoder model
for a single object category a Cortical Column Network
(CCN) for this object category. In this context, amortization
simply means learning a mapping from sensory input to the
sufficient statistics of an approximate posterior, with a known
functional form. Knowing the functional form of the posterior
means the free energy objective functionals are well defined,
enabling the application of standard optimization techniques
(in this case Adam Kingma and Ba, 2015). This enables a
generic optimization of belief distributions that underwrite active
inference (Dayan et al., 1995), and can be thought of as learning
to infer.

For high-dimensional data, such as pixel-based observations,
designing a mapping to a latent distribution is infeasible by hand.
We thus resort to deep learning to learn the likelihood and
transition models directly from observation data. Additionally,
we amortize the inference process and learn the encoder
model jointly, similar to the approach applied in variational
autoencoders (Kingma and Welling, 2014; Rezende et al.,
2014).

2.3.1. Model
We propose the Cortical Column Network (CCN) as basic
building block of our architecture. Drawing inspiration from
the Thousand Brains Theory (Hawkins et al., 2017), which
promotes the modularity of cortical columns in the brain that

learn predictive models of observed objects, we instantiate a
separate CCN for each object type or identity. This results
in a dedicated CCN for each known object type, and can be
scaled to more objects by adding more CCNs. A CCN consists
of three neural networks: an encoder qφ , a decoder pψ , and
a transition model pχ , which parameterize the approximate
posterior, likelihood model and transition model introduced
in Equations (1) and (2). The encoder qφ has two heads that
map a pixel-based observation to both a pose latent space p,
which is modeled as a Normal distribution with a diagonal
covariance matrix, and an identity latent space i, modeled as a
Bernoulli variable. The decoder pψ learns the mapping from the
pose latent p to a distribution over the observation o, which is
modeled as a Normal distribution with fixed variance N (ô, I).
The transition model pχ learns to transform a sample from the
pose latent p to a belief over the transitioned pose in latent
space, also modeled as a Normal distribution with diagonal
covariance matrix.

The information flow of a single CCN is shown in Figure 3.
A single CCN is dedicated to model a single object type, in
this case a master chef can. An observation o0 is fed into the
encoder qφ , as depicted in the top left corner. The belief over the
identity of observation o0 is represented as a Bernoulli variable
marking whether or not the observation belongs to the CCN
object category. The encoder also outputs a distribution for the
pose latent, from which samples can be decoded into expected
observations using decoder pψ , as shown in the top right of the
figure. Finally, the bottom row illustrates the transitionmodel pχ ,
which computes a belief over the pose latent p1 after taking an
action a1, at current pose latent p0. Again, the decoder model pψ
can be used to estimate observation ô1 after action a1. This gives
the CCN the ability to imagine “what would this object look like
from here,” and to infer the best action, e.g. that minimizes the
expected free energy (Equation 4). Once an action is selected, the
agent moves to a new pose, obtains a novel observation o1, and
the process repeats.

2.3.2. Optimization
The encoder, decoder and transition neural networks for a single
object are optimized in an end-to-end manner from pixel-based
observations. For each object, we create a dataset Di from
which one can sample triplets (o0, a1, o1), i.e., two images o0
and o1 together with action a1 which is the relative transform
to move the camera from the initial to the next viewpoint.
All viewpoints are collected such that the target object is
centered in view.

The overall train procedure is given in Algorithm 1. When
training the CCN for object i, each iteration we sample a
triplet (o0, a1, o1) from Di, as well as an observation onegative
of a random other dataset Dj 6=i. We forward all observations
through the encoder model, and reconstruct ô0, ô1 from the pose
latents p0 and p1, as well as ô1,transitioned after transitioning from
pχ (p0, a1). To minimize the variational free energy as defined in
Equation (3), our loss function becomes:
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LFE = ||ô0 − o0||2 + ||ô1 − o1||2 + ||ô1,transitioned − o1||2
︸ ︷︷ ︸

Lreconstruction

+ DKL[qφ,p(o1)||pχ (p0, a1)]
︸ ︷︷ ︸

Lcomplexity

+ BCE(qφ,i(o0), 1)+ BCE(qφ,i(o1), 1)+ BCE(qφ,i(onegative), 0)
︸ ︷︷ ︸

Lclassification

(5)

Here, we represent the likelihood model as an isotropic Gaussian
on the reconstructed pixels ô, which yields a mean squared
reconstruction loss for the accuracy term in Equation 3, resulting
in the Lreconstruction term of the loss in Equation (4). Lcomplexity in
Equation (4) exactly represents the complexity term for the poses
as a KL divergence term between the encoded pose distribution
on the one hand, and the predicted transitioned pose distribution
on the other hand. For object identity, we assume a uniform
prior P(i) in Equation (3), which results in a binary cross entropy
(BCE) loss term for each CCN, and we use the other object
sample onegative to contrast. These terms form the Lclassification

of the loss in Equation (4). For further details on the training
procedure, we refer to the implementation details in Section 3.1.
Note that the distribution over the latent pose variable is modeled
as a Gaussian distribution with a diagonal covariance matrix
for which the parameters are learned through the optimization
process. Hence, these latent dimensions do not reflect the
translation and orientation parameters of an absolute pose in an
Euclidean reference frame, but encode the pose in an abstract,
object-local reference frame.

Algorithm 1 : CCN training.

1: for iteration = 1, 2, . . . do
2: (o0, a1, o1) ∼ Di ⊲ Sample observation-action pairs

from the dataset of object identity i
3: onegative ∼ Dj 6=i ⊲ Sample negative anchor
4: p0, i0 ∼ qφ(o0) ⊲ Encode the observations and

sample a pose and identity latent
5: p1, i1 ∼ qφ(o1)
6: p1,transitioned ∼ pχ (p0, a1) ⊲ Transition the pose latent
7: ô0 ← pψ (p0) ⊲ Reconstruct samples
8: ô1 ← pψ (p1)
9: ô1,transitioned← pψ (p1,transitioned)

⊲ Compute the loss terms
10: Lreconstruction ← ||ô0 − o0||2 + ||ô1 − o1||2 +

||ô1,transitioned − o1||2
11: Lclassification ← BCE(qφ,i(o0), 1) + BCE(qφ,i(o1), 1) +

BCE(qφ,i(onegative), 0)
12: Lcomplexity ← DKL[qφ,p(o1)||pχ (p0, a1)]
13: L← Lreconstruction + Lclassification + Lcomplexity

14: φ,χ ,ψ ← Adam(L) ⊲ Update parameters

2.3.3. Voting Over Object Identity
After training a CCN for each of the N known objects, our
aim is to infer the object identity Q(i|o0 : t), as a categorical
distribution with N + 1 categories, one for each object type and
an “other” category. To this end, we use a Dirichlet distribution
with concentration parameters α0 :N as conjugate prior for
the categorical variable. At each timestep t, the concentration
parameters are updated as follows (Smith et al., 2022):

{

αi,t = αi,t−1 + η · qφ,i(ot) , for i < N

αN,t = αN,t−1 + 0.5
(6)

We initialize αi,0 as a constant vector with values 0.1. This can
be interpreted as the voting mechanism from the Thousand
Brains theory (Hawkins et al., 2017), where each CCN casts a
vote on whether the object in view belongs to the category it
was trained on. Over time, the different votes are aggregated
as collecting evidence for the different object categories. When
an unambiguous view is rendered from a known object, only a
single CCN, i.e., the one trained on that object category, will be
active and cast a vote. However, in the case the object category
cannot be distinguished from an observation, i.e., the top of a
cylindrical object could be both a master chef can or a chips can,
multiple votes will be cast on the different possible categories.
In this case, the embodied agent can query additional views, in
particular views that will provide information gain about object
identity and as such minimizing the expected free energy defined
in Equation 4.

In case of an unknown object, ideally none of the CCNs
is active. Therefore, we add a fixed vote of 0.5 for the
“other” category, which will prevail when none of the CCNs
is consistently active over time. However, in practice, we find
that unkown objects behave as out-of-distribution data for each
individual CCN, and the predictions from the learned model
are therefore unreliable. To mitigate this inherent limitation of
deep neural networks, we propose an additional likelihood-based
scheme for detecting the “other” category. Concretely, we look at
the reconstruction error of the likelihoodmodel to assess whether
the CCN is in effect correctly modeling the object at hand. When
the reconstruction error exceeds an object-specific threshold, the
votes cast by the CCNs are ignored, i.e., η = 0, and only a vote of
0.5 is cast for the “other” category.

Moreover, instead of calculating the total mean squared error,
we use a scaled reconstruction error. As scale factor, we choose
the reciprocal of the amount of pixels in the intersection between
the foreground masks of the prediction and the observation.
The foreground masks are obtained by thresholding the fixed
background color used in the renderings. This forces the original
observation and the reconstruction to have high overlap, and
increases the weight of foreground pixels for small objects.

When multiple timesteps are considered, the likelihood based
threshold also considers the transition with respect to the
previous observation. Concretely, when executing an action, we
predict the new observation by first inferring the new pose given
the previous pose and action, and reconstructing that one. Again,
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in order for the vote to be valid, the CCNmust now have a scaled
reconstruction error smaller than the thresholds for both cases.

In the case of embodied agent, the action selection process is
driven through the minimization of expected free energy G. To
infer the object identity, the prevalent term in the expected free
energy G is the information gain term on object identity. The
agent then chooses the action as follows:

at+1 =

argmin
at+1

−EQ(i,p0 : t+1,ot+1)[logQ(i|o0 : t+1, at)− logQ(i|o0 : t , at)]

(7)

In practice, we use a Monte Carlo approximation where we
evaluate this term for a number of randomly sampled actions,
and select the best one. Similarly, the expectation is approximated
by sampling from our models.

2.3.4. Moving Toward a Preferred Observation
Once the agent has inferred the object class and its pose with
respect to the object, it can also use the model to infer actions that
bring the agent toward a preferred observation opreferred. This can
be useful in use cases where the agent needs to inspect a particular
aspect of a certain object more closely, or when the agent needs
to manipulate the object and is provided with a (demonstration
of a) grasp pose.

To infer the action that brings the agent toward a preferred
observation, we can again evaluate the expected free energy G.
In this case, we assume the agent already correctly inferred the
object identity and pose, i.e., the information gain on these
variables is low, and the expected free energy G boils down
to maximizing the instrumental value in Equation (4), i.e., the
expected error between the predicted and preferred observation.
As our likelihoodmodel in pixel-space does not necessarily reflect
the perceptual difference between two images (Zhang et al.,
2012), we match instead the likelihood in the pose latent space.
We do this by first determining the preferred pose distribution
P(pt+1) by encoding the preferred observation opreferred, and then
minimizing the expected free energy with respect to the actions
to match this preferred distribution, essentially computing:

at+1 = argmin
at+1

EQ(pt+1|pt ,at+1)[− log(P(pt+1))] (8)

Again using a Monte Carlo approximation, we first sample
random actions, evaluate the expected free energy for all these
actions with respect to the preferred pose distribution, and select
the action with the lowest expected free energy. The preferred
pose distribution is computed by encoding the preferred
observation opreferred using the encoder model qφ,p, whereas
the expected pose distribution is acquired by transitioning the
current pose latent pt to an expected future pose latent using the
transition model pχ .

TABLE 1 | Ranges from which the absolute viewpoints are sampled in spherical

coordinates in the dataset creation process.

Variable min max

azimuth 0 2π

elevation − π
2

π
2

radius 0.10m 0.55m

θ 0 2π

3. RESULTS

In this section, we conduct and analyze a number of experiments
to evaluate our proposed approach. First we explicate the
experimental setup, dataset creation, model parameterization,
and training details. In a series of experiments the following
research questions are addressed:

• Can a collection of CCNs be used for object classification?
• Can the ensemble of CCNs be used for detecting which object

categories are out of distribution, essentially quantifying what
the model does not know?
• Does embodiment improve classification accuracy as the agent

can resolve ambiguity using multiple observations?
• Can a CCN for a given object category be used for object

pose estimation?

3.1. Experimental Setup
To train our ensemble of CCNs, a dataset of different objects is
required. To this end we select a subset of 33 objects from the
YCB dataset (Calli et al., 2015), for which high quality triangular
meshes were readily available. This set of objects is split in a
known and unknown category, consisting of 26 and 7 objects
respectively. For a full list of the used objects, the reader is
referred to the Supplementary Materials.

For each object category of the known category, we create
a dataset by rendering object meshes from this object on a
uniform background. The camera poses are sampled randomly
from a uniform distribution in spherical coordinates, for which
the ranges are provided in Table 1. The orientation is then
determined as the orientation to point the camera to the center
of the object’s bounding box, and randomly rotated with angle θ
around the axis pointing to the object. For each object, a dataset
of 10000 views is created, for which 90% is used as train data, 5%
as validation data and 5% for testing.

We base our encoder and decoder model on the variational
autoencoder architecture used in Ha and Schmidhuber (2018),
where an image is first processed through a convolutional
pipeline, after which a linear layer is used to transform
the extracted information into the parameters of a Gaussian
distribution with a diagonal covariance matrix. The decoder is
the inverse of this process, where the embedding is expanded
into the spatial dimensions. This result is then upscaled through
a deconvolution pipeline into an expected observation. For the
transition model, we simply use a multilayer perceptron network.

The encoder model qφ is instantiated as a convolutional
neural network that first processes a 64 by 64 RGB image with
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4 convolutional layers. Each layer has a 4x4 kernel and uses a
stride of 2. The layers output tensors with 8, 16, 32, and 64
channels, respectively after which they are activated through a
LeakyReLU activation function with a negative slope of 0.01. The
resulting representation is flattened to a 256-dimensional vector
after which it is processed by two separate heads, or in other
words, separate linear layers. The classification head is a linear
layer, followed by a sigmoid activation function that predicts the
Bernoulli variable directly. The second head predicts the mean
of the belief over the pose latent by a linear layer with 8 outputs,
while the variance is predicted as the softplus of the output of a
third linear layer with 8 outputs.

The decoder model pψ is designed as the inverse of the
encoder. The latent code is first expanded into a 64 dimensional
vector using a linear layer, followed by a LeakyReLU (0.01
negative slope). The result is now reshaped into an image tensor
that can be processed by convolutional layers. It is then processed
by 2 transposed convolution layers with kernel size 6 and stride
2, after which it is fed through 2 transposed convolutions with
kernel size 5 and stride 2. The output channels of these four layers
are 64, 64, 32 and 16 and are followed by LeakyReLU activations
with a negative slope of 0.01. Finally, a convolution layer with
kernel size 1x1 and stride 1 is used to compress the channels into
a 3-channel image, followed by a sigmoid to ensure the outputs
are in the [0, 1]-range.

The transition model pχ is parameterized as three linear
layers that are followed by a LeakyReLU activation function with
negative slope of 0.01. The first layer takes the concatenation of
the pose latent code, the translation vector of the selected action
and the orientation quaternion of the selected action as input,
and transforms it to a 128 dimensional vector. The following
two linear layers both have 256 outputs. This final output is then
passed through 2 separate linear layers with 8 outputs, of which
the first represents the mean of the transitioned belief and the
second is passed through a softmax, which then represents the
predicted variance of the belief over the transitioned pose.

The model is optimized in an end-to-end fashion using the
Adam optimizer (Kingma and Ba, 2015) with learning rate 10−4

on the loss described in Equation (4). The separate terms in this
loss function are scaled using Lagrangian multipliers (Rezende
and Viola, 2018), which are inversely proportional to the gradient
on the difference between the loss-term and a tolerance, to
avoid posterior collapse. The multipliers for each term have an
initial value and will be adapted within a specific range. The
tolerances start at a fixed, low value and are updated every 500
steps. If the threshold is not reached, the tolerance is relaxed by
multiplying it with a value of 1.10. This enforces the model to
focus first on producing good reconstructions, and later optimize
for classification and minimizing complexity. We also add a KL
loss for all Gaussian outputs to standard normal to improve
training stability. The values used in the optimization process are
shown in Table 2.

3.2. Classification
First, we investigate the classification performance of our
ensemble model consisting of 26 CCNs. These CCNs are each
trained on a single object category, while views from the other 25

TABLE 2 | Values used in the constrained optimization mechanism (Rezende and

Viola, 2018), used for training a CCN.

Parameter Initial value Range

λreconstruction 80 [0, 100]

λreconstruction_transition 40 [0, 100]

λclassification 500 [0, 1000]

reconstruction start tolerance 10 N/A

transitioned start reconstruction tolerance 10 N/A

classification start tolerance 0.01 N/A

tolerance adjust frequency 500 N/A

Reconstruction references direct reconstruction without transitioning the latent code. The

transitioned reconstruction references the reconstruction loss on the transitioned latent,

and the classification terms reference the binary cross entropy terms in the loss function

from Equation (4).

categories are used as negative anchors. The 26 object categories
are listed in the confusion matrix, shown in Figure 4. First,
we evaluate the performance of classifying a single observation,
followed by an experiment in which an embodied agent can query
multiple observations sequentially.

3.2.1. Static Agent Classification
To investigate the classification performance of a static agent,
we provide the agent with a single observation. We address
whether an ensemble of CCNs can be used for accurate object
classification. Additionally, we investigate to what extent our
approach can accurately detect when an object is out of
distribution, i.e., the object does not belong to a category
previously seen by the agent during training.

For each object category, 100 samples are randomly sampled
from the test for classification, and all unknown objects are
clustered in an “other” category. As described in Section 2.3,
each CCN votes for the known category it was trained on,
provided that the reconstruction likelihood is within a predefined
threshold. We empirically determine the threshold for each
category by looking at the reconstruction errors of train-set
observations, and scale the 95% quantile value by a factor 1.1, to
remove outliers. This results in a high classification performance
while still being able to detect more novel objects.

We show the confusion matrix for the static agent in Figure 4.
An average classification accuracy of 86.71% is achieved. The
confusion matrix shows that the main source of errors is due
to the CCNs not being confident enough on the reconstruction
and the “other” vote wins. We also see that in some cases there
is some confusion between similar shaped objects, i.e., between
“pudding box,” “cracker box,” and “gelatin box.” We hypothesize
(see Section 3.2.2) that querying more observations of the same
object will adjust the vote for the correct object category, and
after multiple observations the agent will resolve these issues.
We qualitatively investigate these difficult samples, as is shown
in Figure 5. This figure shows ambiguous observations that are
incorrectly classified by the ensemble of CCNs. It can be observed
that the reconstruction from both the (wrongly) chosen model
and the correct model are very similar. For example for the
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FIGURE 4 | Confusion matrix, using the max of a Dirichlet distribution and a likelihood based threshold over object beliefs as described in Section 2.3. 100 examples

are classified for each class of the 26 known and 7 unknown objects. Overall, an average classification accuracy of 86.71% is achieved.

strawberry and the apple, a large red circle is reconstructed. It
is thus difficult to accurately predict the object class.

Figure 5 also shows the expected next viewpoint that would
be encountered if an action minimizing expected free energy
G was performed. The latent code for both potential object
categories is acquired through both the correct and incorrectly
chosen transition models and an imagined view can be acquired
using the respective decoders. Clearly, these selected observations

are more easily distinguishable and thus enforce our hypothesis
that embodiment will aid in the correct classification of three
dimensional objects.

Alternatively, we could also train a single classifier using
the same amount of parameters as the ensemble of CCNs
which we expect to achieve similar classification accuracy to
the ensemble of CCNs. However, due to the inherent nature
of the model design, it would be unable to estimate when
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FIGURE 5 | Ambiguities found in the ensemble CCN classifier. From left to right: initial observation ot provided to the agent. The reconstruction ôt predicted using the

expected model. The reconstruction ôt predicted using the correct model. The chosen next observation ot+1 through the minimization of expected free energy G. The

expected observation ôt+1 using the selected model. The expected observation ôt+1 using the correct CCN model. (A) The gelatin box. (B) The pudding box. (C) The

strawberry. (D) The sugar box.

objects from an unseen category occur and this model would
not have the flexibility to add new modules when novel objects
are encountered.

3.2.2. Embodiment and Aggregating Votes
The previous section showed some clear disadvantages using a
static agent: ambiguities can not be resolved, nor can information
from previous observations be used to make a more confident,
and more reliable decision. In the following experiment, we
investigate whether classification accuracy improves as the agent
is embodied and can actively query novel viewpoints. At each
timestep, the agent randomly samples 100 action candidates
and evaluates the expected free energy, i.e., to maximize the
information gain on object identity as stated in Equation (4). This
action is then executed and a novel observation is provided to the
agent, which updates the Dirichlet concentration parameters and
the process repeats.

In Figure 6, the classification accuracy of an active inference
driven agent over time is shown for different datasets. When
testing the agent only on the known classes (dashed line), the
agent can immediately resolve ambiguities and the performance
reaches 100% after two steps. When only considering objects
from the 7 “other” categories (dotted line), the classification
accuracy starts at a lower value of around 70% (as can also be
seen in the confusion matrix in Figure 4), and over time reaches
an accuracy of 85%. Finally, the red line shows the classification
accuracy for all objects combined (26 known and 7 unknown
objects). The performance rises from 87 to 97% after nine steps.
The full confusion matrix for each different step can be found in
the Appendix.

It can be observed that the accuracy for the known classes
only increases. This is attributed to the Dirichlet information
aggregation scheme. As more information is acquired, the
votes and evidence for certain object categories becomes more
overwhelming. In contrast, accuracy for the other category clearly
gains information after a single timestep, but then fluctuates
between 80 and 90%. As described in Section 2.3, the other
category is mainly detected by the second reconstruction-based

phase of the classification pipeline. This phase considers the
current observation, and the transition given the previous
observation, the window of information is thus two timesteps,
and therefore no classification performance increase is found
after more than two steps.

As a comparison baseline, we evaluated the embodiment using
a random agent, i.e., the next viewpoint is randomly selected
instead of using free energy minimization. The accuracy this
random agent realizes, is indicated by the blue line in Figure 6.
The performance of the random agent is on par with the active
inference agent. We also observe that the ratio of informative
views with respect to ambiguous views is high. Recall from the
confusion matrix, the correct object identity can be inferred in
over 80% in the first step of the (randomly) sampled views.
Hence, it is to be expected that providing a random additional
view provides the necessary information to get the correct
classification, and the free energy agent has only a small margin to
improve upon. We expect the gap between the free energy agent
and a random agent to become larger in the case where more
ambiguous viewpoints are present, as the free energy agent will
avoid those as evidenced by Figure 5.

3.3. Pose Estimation
Next, we evaluate to what extent CCNs can be used for object
pose estimation, given a desired view. First, we qualitatively
evaluate the object pose estimation for different objects. At each
timestep, the agent samples 1,000 random actions and calculates
the instrumental term of expected free energy G as described in
Section 2.3.4. Again, the agent selects the action that minimizes
the expected free energy and queries a new observation.

In Figure 7, we plot the input and target views, as well
as the predicted viewpoints with the best (lowest) and worst
(highest) expected free energy G for master chef can, mustard
bottle, strawberry and windex bottle. Below each observation the
inferred or predicted latent code is shown. It is clear that the
latent code is similar for matching the observations, while having
the additional benefit that it does not suffer from the typical issues
with MSE such as the scaling issue for pixel-wise errors.
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FIGURE 6 | Classification accuracy over time for an embodied agent, driven through the active inference paradigm. The agent is provided with different objects in

random poses to classify, accuracy over a duration 10 steps is plotted. For each object category, 5 splits of 20 observations are classified and are used to visualize the

95% confidence bounds. The graph indicates classification accuracy over time for objects of the 26 known and 7 unknown objects. The red line represents the

accuracy for the free energy agent, while the blue line represents the accuracy for the random agent. For the active inference agent, the distinction is made between

the known and unknown objects: the dotted red line indicates the classification accuracy for objects of the 7 unknown object categories and the dashed line indicates

the classification accuracy for the 26 known objects.

FIGURE 7 | Qualitative results for object pose estimation for (A) master chef can, (B) mustard bottle, (C) strawberry, and (D) windex bottle. The first column shows

the input of the model with the mean latent code shown below. The second column shows the target observation along with its mean latent code. The third column

shows the imagined observation and the transitioned latent code for the action with the lowest expected free energy G, while the final column shows the imagined

observation and latent code for the action with the highest expected free energy G.

However, when we quantitatively evaluated the resulting
poses, we noticed that the absolute pose error in Euclidean space
was often way off, despite similar reconstructions. To further
inspect this, we plot the expected free energy landscape for
varying azimuth and elevation for the predicted target pose, as
well as the initial, target and selected pose.

In Figure 8, we show heatmaps of expected free energy G for
25 objects from the YCB dataset in the pose estimation scheme.
The exact pose can be represented by four degrees of freedom:

azimuth, elevation, radius and axis angle θ . We vary two of these
dimensions while keeping angle θ and radius fixed and plot the
expected free energy landscape for the agent to reach a target
observation, marked by the red cross. As indicated by the figure
legend, the lightly colored areas are more desired by an active
inference agent as they have a lower expected free energy. The red
cross marks the preferred state of the agent, and the black dots
show the initial observation and the point with lowest expected
free energy.
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FIGURE 8 | Heatmaps of the expected free energy G for reaching a target observation, marked by the red x. The pose parameters radius and angle θ around the

z-axis of the camera are kept in a fixed position, while varying the azimuth and elevation angle over their full range in 40 linearly spaced points in each dimension. The

initial point and the point with lowest expected free energy G are marked by black dots. The arrow head points at the point with lowest free energy, starting at the

pose of initial observation.

For some objects, such as banana and mug, there is a clear
global minimum in the expected free energy landscape, and the
pose estimation is quite accurate. However, for other objects,
such as sugar box, mustard bottle and bleach cleanser, there
are multiple local optima, or the landscape might even be
invariant to the azimuth axis, as is the case for a lot of the
can and box objects, the bowl and plate. These areas with
low free energy are aliased areas, where the symmetry of the

object surfaces. This shows how our model has actually learned
various object symmetries, and learns to map different aliases
with similar pixel observations onto the same point in pose
latent space.

This can be viewed more clearly for imaginations generated
while varying one dimension of these plots. Figure 9 shows
imaginations of a varying azimuth or elevations while keeping
the three other dimensions fixed. In the heatmap of the
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FIGURE 9 | Imaginations generated from CCN models of (A) master chef can, (B) strawberry, (C) windex bottle, and (D) plate. We vary a single dimension while

keeping the other three at a fixed position. The top row shows a varying elevation and the bottom row shows a varying azimuth, within the full range as defined in

Section 2.3.

master chef can, it can be observed that varying the azimuth
results in the same expected free energy, while this differs for
changing the elevation. Figure 9A shows this more clearly as
all reconstructions of a straight can are identical. The model
did not learn to reconstruct the exact contents of the can label,
but blurs this as an average of the whole can. Similarly for
Figure 9D, a different azimuth will show a horizontal plate, and
no difference can be found. In contrast, the strawberry has a fairly
localized expected free energy minima, which can be attributed
to the position of the green on the strawberry head. For this
reason, the different orientations can be differentiated. The same
can be found for the windex bottle, where the objects inherent
asymmetry results in a clearer loss landscape.

4. DISCUSSION

In this article, we proposed a method for learning object-centric
representations in an unsupervised manner from pixel data.
We draw inspiration from recent theories in neuroscience, in
particular an active inference account of human vision (Parr et al.,
2021) and the Thousand Brain Theory on intelligence (Hawkins
et al., 2017). This leads to a modular architecture, where each
model separately learns about an object category and a pose
in an object-centric reference frame. We called our modular
building block a Cortical Column Network, referring to the
cortical column structures in the neocortex which (Hawkins et al.,
2017) hypothesize also model objects in a local reference frame.
However, despite the similarities, it is important to note that
there are also important differences with how biological cortical
columns are supposed to work in the Thousand Brains theory.

For instance, each cortical column in the neocortex processes
a distinct, small sensory patch, whereas our CCNs all work on
the same, full resolution camera input. Moreover, each cortical
column is hypothesized to model and vote for a larger number
of object categories, which yields a more scalable processing
architecture and sparse object representations. Finally, we also
note that as the “what” and “where” information stream are
located at distinct areas in the brain, this information is
also processed through separate cortical columns. These and
other aspects are not treated in our current CCN architecture,
and it remains an exciting research direction to investigate
to what extent artificial agents should mimick biologically
plausible architectures and processing methods. For example, the
representation of multiple internal models, or hypothesis for the
sources of sensory information, has been explored in the context
of birdsong and social exchange in the auditory domain (Isomura
et al., 2019). Again, the basic idea is that multiple hypotheses are
entertained and the model with the highest evidence contributes
more to the posterior beliefs (i.e., Bayesian model average) about
latent states or codes. Embedding our CCNs within the active
inference framework enabled us to integrate both model learning
and action selection under a single optimization objective. It
would be interesting to investigate to what extent biological
cortical columns could also be modeled to engage in active
inference to produce motor commands.

Having a repertoire of object-specific cortical columns, who
can “vote” or “compete” to explain sensory input, can be
understood from a number of perspectives. The thousand
brains perspective is closely related to mixtures of experts, of
the kind found in MOSAIC architectures for motor control
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(Haruno et al., 2003). Perhaps most generally, it can be regarded
as a simple form of Bayesian model averaging (Hoeting et al.,
1999). In other words, each cortical column builds a posterior
belief about the attributes of an object, under the hypothesis
or model that the object belongs to a particular class. The
evidence for this model is then used to form a Bayesian model
average over object attributes. A Bayesian model average simply
marginalizes over the models by taking a mixture of posteriors
under each model, weighted by the evidence for the respective
models (usually, a softmax function of variational free energy).

Visual information is processed according to two major fiber
bundles in the brain. It is hypothesized that these two fibers
process separate aspects of the observed visual stimulus. The
observed object identity is processed through a ventral pathway,
and the objects location is processed through a specialized dorsal
pathway (Grobstein, 1983). We found that using a ensemble of
CCNs, a high accuracy classifier can be built combining both
a ventral (“what”) stream to infer object identity, and a dorsal
(“where”) stream inferring an object pose, and predicting other
viewpoints. Crucially, we showed that an enactive, embodiment
agent is required both to train such a system unsupervised, by
collecting a dataset of viewpoints of each object, as well as tomake
correct inferences, and resolve ambiguity in the observation. In
this work, we decoupled the data collection and the inference
phase, and trained on a dataset of a relatively large number of
randomly queried poses. Under active inference, one can also
model the inference process over model parameters (Friston
et al., 2016), and actively sample views that one expect to
maximize information gain for the training process. It is worth
investigating whether the model can be trained more efficiently,
by driving the agent to the most informative view using
the information gain on model parameters in the expected
free energy functional. Information gain on model parameters
is, in the active inference literature, called “novelty”, while
information gain on latent states or attributes is associated with
“salience” (Schwartenbeck et al., 2019).

We also investigated the pose estimation properties using the
dorsal (“where”)-stream of our model. We showed that we are
able drive the agent’s actions toward a preferred, target pose
by providing the corresponding observation. While we showed
that the agent is indeed able to find a viewpoint with a similar
observation, we also found that a lot of alias viewpoints exist in
the latent space, due to object symmetries on the one hand, and
the lack of sufficient visual details captured by the model, i.e.,
to disambiguate the front or back label of an object. However,
we argue that in the case of robotic manipulation, this level of
performance would already be sufficient for basic manipulation
tasks such as grasping or pushing. Nevertheless it remains an
important area of future work to find models that are able to
capture and encode the required level of (visual) detail.

In addition there are still a couple of limitations in our current
setup that might be addressed in future work. For example, our
models currently learn the representation for a single object
instance of an object category. In simulation, there is no variation
between multiple instances of the mustard bottle, however, in
real life the label can be attached crooked, or some markings can
be present on the object. The current CCNs do not generalize

to perturbations of the objects let alone other objects belonging
to the same category, i.e., a coffee mug with a different height
or color. It is worth investigating whether a single CCN can
contain representations of different instances of a more general
object category. Also note that our current CCN models are
trained from scratch for each novel object category. Hence, a
lot of overlapping information has to be relearned. Learning
to re-use information would yield CCNs that are closer to the
thousand brains theory as the cortical columns in the brain also
reuse information (Hawkins et al., 2019). In order to re-use
information learned by the CCNs, a potential extension would
be to share weights between all CCNs for part of the layers,
or devise a more hierarchical approach modeling part-whole
relationships (Hinton, 2021).

Finally, our CCN models only encode egocentric
representations in an object-local reference frame. In order
to model a whole scene or workspace, the agent will need to map
these egocentric poses into an allocentric reference frame (Parr
et al., 2021). This would enable the agent to build a cognitive map
of the workspace, inferring for each object an allocentric pose in
the workspace, and “navigate” from one object to another. This
would then give rise to a hierarchical generative model, mapping
the world and its constituent objects using the same priniciples
as simultaneuous localization and mapping (Safron et al., 2021).

Related Work
In previous work, we built an artificial agent that learned such a
generative model from pixel data, inferring beliefs about a latent
variable representing the scene s, given image observations ot
from absolute viewpoints vt (Van de Maele et al., 2021b). Similar
to a Generative Query Network (GQN) architecture (Eslami et
al., 2018), this approach requires a huge train set of different
scenes, with a limited set of constituent objects, in order to learn
valid scene representations. The representations from this model
encode all present objects and their relative pose with respect
to the global allocentric reference frame. As a result, this lacks
a factorization of different objects, and does not scale to a large
number of objects present in the scene.

Most object-centric representations stem from the seminal
work Attend Infer Repeat (AIR) by Eslami et al. (2016), where
an image of a scene is factorized as a collection of latent
variables separately describing the what and where parameters
of each object. These variables are recurrently predicted, and
can thus be scaled to an arbitrary amount of objects in the
scene. AIR considers a static observer looking at a single
observation. Burgess et al. (2019), proposedMONet, which learns
the decomposition in an unsupervised end-to-end fashion. They
also learn a structured representation describing each object.
IODINE (Greff et al., 2019) also learns a joint decomposition
and representation model but requires a fixed amount of slots
that can be filled in by separate objects. Other work focuses
on dynamic scenes by adding a temporal component (Kosiorek
et al., 2018). They do this by adding a propagation module for
objects from previous timesteps, and a discovery module that
detects novel aspects. Other follow-up works tackle the scalability
problem (Crawford and Pineau, 2020; Jiang et al., 2020) by
predicting segmentationmasks directly. Lin et al. (2020) combine
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the scalability and temporal works, and add multimodality in the
model through sampling inmultiple steps. More recent work also
considers three dimensional scenarios (Chen et al., 2021) with
primitive shapes such as cubes or spheres where a generative
query network (Eslami et al., 2018) is used as a rendering module
for objects separately.

Similar to these models, we also make the separation in a
what and where latent code. However, instead of forcing the
factorization in a single latent space, we factorize on a model
level, which results in a modular CCN model, where each
CCN can focus on a single object type. While all mentioned
models acquire impressive results on either static or dynamic
observation data, none of these models consider an embodied,
enactive agent to improve perception, which we believe to be
crucial for intelligence.

An upcoming type of models are the implicit representation
models that learn three dimensional structure explicitly in
the model weights (Mescheder et al., 2019; Park et al., 2019;
Mildenhall et al., 2020; Sitzmann et al., 2020). Neural Radiance
Fields (NeRF) (Mildenhall et al., 2020), can learn complex
object geometry by directly optimizing color and opacity values
when conditioned by the coordinate and orientation of a point
in the three dimensional space. This is optimized end-to-end
directly from observation by casting rays from the camera pose
and inferring sampled points on this ray. In follow-up work,
different ways to optimize these models real-time by selecting key
observations and strategic sampling of rays were found (Sucar
et al., 2021). Similar to the implicit representation models, we
learn to reconstruct object observations from a different set of
observations. While the reconstruction detail of these models is
impressive, these models lack an inverse model to infer poses or
object categories.

A popular brain-inspired paradigm for unsupervised
representation learning is predictive coding (Rao and Ballard,
1999). This mechanism works by hierarchically estimating the
input and only propagating the error. This way, the lower levels
of the hierarchy focus on smaller details of the observation. This
work has also been used to separate the “what” and “where”-
information streams (Rao and Ruderman, 1999). The predictive
coding paradigm can be recast as active inference when using
distributions over the predictions, rather than point estimates
and when actions can be inferred to lead the artificial agent to a
preferred goal state (Jiang and Rao, 2021).

The proposed approach in this article is also closely
related to the object pose estimation research domain. These
methods typically try to estimate the object pose directly as
a 6 dimensional vector representing both the translation and
orientation with respect to an absolute reference frame. Within
the taxonomy provided in the survey paper by Du et al.
(2021), our method could best be classified under the template-
based label: given an observation, the model tries to find
the pose that best matches one of the pre-defined labels. In
this case, a trained CCN amortizes the process of finding the
exact template through encoding the observation. The most
closely related approaches use convolutional neural networks
to directly estimate the object pose, and are pretrained on
a set of labeled data which can be considered the templates
(Do et al., 2018; Xiang et al., 2018; Liu et al., 2019).

While these approaches acquire high accuracy results, they
are trained supervised with a labeled dataset. In contrast, our
approach is trained unsupervised from sequences of observations
an enactive agent could perform, enabling our model to learn
in arbitrary environments. This also has the corollary that the
learned pose is in a non-interpretable latent space and can not
be decomposed in an explicit translation and orientation.

The active inference (Friston et al., 2016) framework has
also been previously adopted for describing generative models
for active vision (Parr et al., 2021). In prior work, this
framework has been shown to drive intelligent agents for
visual foraging (Mirza et al., 2016; Heins et al., 2020), or
for creating fovea-based attention maps to improve perception
accuracy (Dauc, 2018). However, these works typically work
with simpler, human engineered generative state space model,
whereas in our case, the models are learned end-to-end from
pixels. Different works also combine active inference with deep
learning for learning state spaces directly using pixel-based
observations (Çatal et al., 2020b; Fountas et al., 2020; Mazzaglia
et al., 2021), but focused more on pixel-based benchmarks for
reinforcement learning.

5. CONCLUSION

In this article, we proposed a novel method for learning object-
level representations, drawing inspiration from the functional
properties of the dorsal and ventral stream in the human
neocortex. We made a separation on an object level, and create
a basic building block for learning representations, which we
coin a Cortical Column Network or CCN. We first described a
generative model that casts vision as making inferences about
an object pose and identity. For this generative model, we
derived the (expected) free energy functional, which is used for
both optimizing the model parameters as well as driving the
agent actions toward desired poses or gaining information for
better inference.

We showed that an ensemble of CCNs can be used for accurate
object classification. By aggregating CCN predictions as “votes”
in a Dirichlet distribution, we are able to correctly identify all
known objects, while at the same time also being able to detect
never seen before objects as an “other” category. We showed
how an enactive, embodied agent improves the classification
accuracy over time, by actively sampling novel observations that
reduce ambiguity. We also investigated the ability of a CCN
for reaching a preferred pose, given a target observation. We
qualitatively evaluated how indeed the agent moves toward a
matching observation. In addition, we explored the expected free
energy landscape, showing that our models learn an abstract
latent space for encoding pose in an object-local reference frame,
exploiting object symmetries.

We believe that developing algorithms for learning in
enactive, embodied agents is key to build artificial intelligent
agents. To do so, we should rather inspire ourselves by the
domains that study such embodied agents, i.e., behavioral
psychology, biology and neuroscience, rather than only limit
ourselves to the domain of artificial intelligence. We hope this
work takes a small step in that direction.
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Intelligence in current AI research is measured according to designer-assigned tasks

that lack any relevance for an agent itself. As such, tasks and their evaluation reveal a

lot more about our intelligence than the possible intelligence of agents that we design

and evaluate. As a possible first step in remedying this, this article introduces the notion

of “self-concern,” a property of a complex system that describes its tendency to bring

about states that are compatible with its continued self-maintenance. Self-concern, as

argued, is the foundation of the kind of basic intelligence found across all biological

systems, because it reflects any such system’s existential task of continued viability.

This article aims to cautiously progress a few steps closer to a better understanding

of some necessary organisational conditions that are central to self-concern in biological

systems. By emulating these conditions in embodied AI, perhaps something like genuine

self-concern can be implemented in machines, bringing AI one step closer to its original

goal of emulating human-like intelligence.

Keywords: homeostasis, embodied cognition, anticipatory control, artificial intelligence, artificial symbioses,

basal cognition, common fate, goal directed behaviour

INTRODUCTION

Artificial intelligence (AI) was originally described as the project of making a machine behave in
ways that would be called intelligent if a human were so behaving (McCarthy et al., 1955). Central
to this notion of intelligence is the idea of task evaluation. True intelligent behaviour is read off
from an agent’s ability to successfully complete tasks requiring something akin to human cognitive
capacities to be successfully completed.1 AI has generally fallen into two categories that align with
two classes of tasks. The first category is specialised AI, which is designed with the aim of carrying
out and being evaluated with respect to very specific tasks (e.g., playing GO, driving cars, generating
language, etc.).General AI, on the other hand, is designed to carry out a broad domain of tasks that,
at the time of design, are largely unknown (Thórisson et al., 2016). Although there is no agreed
upon notion of intelligence in the AI literature, it is task evaluation, something that is often based
on human psychological metrics that are used to determine whether a performance qualifies as
intelligent or not. The Turing Test is a more general illustrative example of this manner of framing
the concept of intelligence around the completion of tasks that are evaluated using human-based
psychometrics (i.e., an artificial agent is intelligent if it can respond to a series of questions in a
manner that is indistinguishable from responses of a human agent) (Turing, 1950).

1Although “intelligence” is often used to refer to higher cognitive capacities in the literature, in what follows, the terms

“intelligence” and “cognition” will be used synonymously.
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Regardless of whether an AI agent has been designed to
complete specialised tasks or even in the case of general AI,
where tasks might not be fully known when designing the system,
the general domain of tasks must eventually be recognised by
designers to be evaluated. This suggests that tasks and their
evaluation reveal a lot more about our intelligence than the
possible intelligence of agents that we design and evaluate. Man
and Damasio (2019), thus, ask the following important question
regarding the legitimacy of using the completion of designer-
based tasks as a reliable indicator of human-like intelligence:

“Whose goals?” Does an agent that myopically follows orders to

the extent that it endangers itself and compromises its ability to

carry out future orders deserve to be called intelligent?” (p. 447;

author’s emphasis).

An agent, for instance, that is equipped with a deep convolutional
network and is able to correctly classify instances of threatening
dogs when they are present 99% of the time in various
environments but that fails in the capacity to behave in ways that
allow it to avoid being damaged by a threatening dog also seems
to lack something central to basic intelligence. Although such
an agent might continue to complete the “visual” classification
task that it has been given, the fact the completion of that task is
compatible with the agent blindly pursuing its own destruction
is at odds with the intuitive idea that basic intelligent behaviour
is something that in living systems is typically adaptive and
supports self-maintenance.

There is another approach to tasks and intelligence, however.
This alternative approach suggests evaluating intelligence
according to how a system completes tasks that bring about its
own goals. It is becoming increasingly recognised that plants
(Baluška and Mancuso, 2009; Shemesh et al., 2010; Trewavas,
2014; Gagliano et al., 2016; Novoplansky, 2016; Calvo et al.,
2020) and basal systems (Maturana and Varela, 1980; Nakagaki
et al., 2000; Hellingwerf, 2005; Ben Jacob et al., 2006; Lyon,
2006; Van Duijn et al., 2006; Shapiro, 2007; Saigusa et al., 2008;
Baluška and Levin, 2016; Pinto and Mascher, 2016; Reid and
Latty, 2016; Levin, 2019; Bechtel and Bich, 2021; Boussard et al.,
2021; Hanson, 2021; Lyon et al., 2021) display some degree of
intelligence that is expressed in various manners in which they
adapt to the complexity of their environments. Selective pressures
and environmental stresses that challenge both homeostasis and
development are fundamental existential tasks that all biological
systems encounter and must adaptively respond to. Importantly,
remaining in a limited and select range of viability supporting
physiological states is something that every biological system
has a concern for (Jonas, 1966/2001). As such, any biological
system is motivated from its genesis to deal with existential tasks
that are intrinsic to it (Barrett, 2019). A system’s own tasks
are an expression of what Kant called “purposiveness without
purpose” (1790/2007).2 All other tasks are organised around the
task of continued self-maintenance, a task that endows both the

2This is the idea that the worth of a purposive system resides in its own being rather

than a result, the value of which is determined external to that system (Cassirer,

1981).

environment and an organism’s environmental interactions with
meaning from its perspective.

The tendency of a system to bring about states that are
compatible with its continued self-maintenance when perturbed
is what I shall refer to as self-concern. Because self-concern
is underwritten by a system’s ability to measure and track the
evolution of its own physical states and compare these with
encoded optimal states, such concern may be said to reflect a
form of self-reference. That said, self-concern should not be
understood as involving the occasioning of personal-level states
(e.g., beliefs and/or desires of folk-psychology) about the self
or self-awareness. As it is being envisioned here, self-concern
is strictly a subpersonal-level phenomenon, which can diverge
from concern at the personal level (e.g., various systems that
one’s body is composed may slowly fail to track and return
to states that are compatible with one’s continued viability due
to senescence; however, one during this period of development
may be concerned for one’s own survival). Importantly, if it is
assumed that this kind of concern forms the basis of biological
intelligence (something that will later be argued is, in fact, a
reasonable assumption) and that biological intelligence offers a
powerful and revealing lens with which to view intelligence across
the board, then the following question becomes an emphatic
one: how do we go about designing self-concerned AI agents
in a way that sets the stage for basic intelligence to emerge in
such agents?

The aim of this article is to investigate and bring to light
some features of the relationship between intelligence and self-
concern in biological systems in a manner that can be used to
informAI research. Self-concern in biological intelligent systems,
it shall be argued, presupposes some form of embodiment.
It is largely in part due to an environment’s long-term
effects (beneficial or adverse) on a system’s body encountered
through the interface of that body that its environment
comes to have a meaning for that system, a meaning that
is reflected in viability-sustaining behaviour driven by self-
concern. Furthermore, various intelligent adaptive strategies that
contribute to continued metabolic functioning and boundary
regulation, it shall be argued, are tantamount to a series of
solutions to a system’s own intrinsic task (i.e., goal) of continued
self-maintenance. It will be argued that until agents are able
to exhibit something like self-concern on multiple scales of
their embodiment, the kind of specialised and general tasks
used to evaluate AI will continue to be overly theory-laden
reflections of our own intelligence. Otherwise stated, until AI
agents are concerned about their continued self-maintenance,
their behaviour will continue to be exclusively guided by the
processing of syntactical information that has meaning to
us rather than semantic information that is grounded in an
AI agent’s own viability conditions (Kolchinsky and Wolpert,
2018). My aim is to cautiously progress a few steps closer
to a better understanding of some organisational conditions
that are central to self-concern in biological systems. By
emulating these conditions (and most likely some others) in
embodied AI, perhaps something like genuine self-concern
in machines can emerge, bringing AI one step closer to its
original goal.
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The rest of the article is organised as follows: Section
A Biologically Inspired Functional Approach to Intelligence
provides a description of the biologically inspired functional
approach to intelligence and then turns to the central notion
of concern, showing how intelligence and concern are related;
Section Three Necessary Features for Self-Concern in Biological
Systems focuses on three necessary features of concern found
in living systems: “system-environment energetic traffic,” the
system-initiated process of energy accrual and exchange that
allows an agent to defend its systemic boundaries and
maintain its functional organisation via self-production; “dual
information-carrying nature of interfacing bodily elements,”
the property of an embodied system to harvest information
simultaneously about the states of its external environment
and its internal states; “hierarchically structured systems that
share a degree of common fate,” the spatially and temporally
nested organisation of systemic parts, the interaction of which
is mutually supportive on different timescales; Section When
Anticipatory Dynamics Answer to Self-Concern then looks at
how anticipatory behaviour is related to concern and what this
means for designing embodied AI systems in a manner that
will get them closer to being self-concerned adaptive systems.
I conclude with some brief remarks about some various design
challenges and ethical issues that arise when considering self-
concern in AI.

A BIOLOGICALLY INSPIRED FUNCTIONAL

APPROACH TO INTELLIGENCE

Onemanner of restricting the scope of tasks (and task evaluation)
in a way that respects the fact that intelligent behaviour is, at
its core, an adaptive strategy is to deploy a biological functional
approach to the notion of intelligence when designing AI. Such
a biologically inspired approach describes what intelligence does
for an agent as opposed to defining intelligence relative to the
purposes and interests of the designer. For example, Sejnowski
(2018), in describing intelligence, states that it is a general
capacity that “evolved in many species to solve the problems
they faced to survive in their environmental niches” (p. 263).
Intelligence, from this perspective, is seen, first and foremost,
as a solution to a (moving) set of environmental challenges
that a system must adaptively respond to in order to remain
alive3. To be sure, this functional approach does not claim that
intelligence is limited to solving survival-related environmental
problems; rather, it makes a more modest claim that intelligence
is, fundamentally, a strategy for coping with environmental
complexity (Godfrey-Smith, 1996; cf. Lyon, 2006).

Importantly, characterising intelligence in terms of its
evolutionary functionmeans recognising that it is something that
can only be defined in relation to the kind of environment that

3Locating the notion of human intelligence in various abilities to cope with

survival-relevant human environmental tasks, the aim of AI, as it was introduced

by McCarthy et al. (1955), might be reframed as the project of getting machines to

cope with human niches in ways that would be recognized as being analogous to

how humans adapt to the complexity of our niches.

an embodied agent must deal with in order to survive4. Being
embodied and embedded in an environment is a precondition
for cognition and anything that might be accurately deemed
intelligent behaviour (Bateson, 1972; Clark, 1997; Pfeifer and
Bongard, 2006; Pfeifer et al., 2007; Pezzulo et al., 2011; Lara
et al., 2018). As such, differences in agent morphology and niche
will be reflected in different forms of intelligent behaviour. For
example, human intelligence, given the specifics of the human
niche, will be different in form than, say, the intelligence that
allows bees to successfully navigate their bee niches, pursuing
opportunities for action, what Gibson (1966) called “affordances,”
and avoiding potential harm-inducing situations that are specific
to bee-like animals. In characterising biological intelligence
relative to an agent’s continued survival in its environmental
niche, the notion of intelligence is rendered a relational property
as opposed to a capacity that can be understood (or investigated)
in the abstraction of what intelligence is a response to. In
approaching intelligence by way of its biological function, we
glean some insight (with a fair amount of speculation of course)
into conditions under which various forms of intelligence have
been evolutionarily selected for and, hence, why such forms of
intelligence (human or non-human) are present today.

Crucially, by deploying a biologically inspired functional
approach to intelligence, AI is not restricted to using human
intelligent behaviour as a gold standard; although the aim of AI
may be to design agents whose intelligent behaviour is human-
like, a functional approach to intelligence suggests a different
(yet not exclusively so) starting point to the investigation of
intelligence. In taking a “biogenic approach” (Lyon, 2006) and,
thus, recognising cognition’s fundamental role as an evolved
adaptive strategy, one first carries out a detailed investigation of
the simplest instances of intelligent behaviour in basal biological
systems and then works up to the more complex cases of
intelligence in humans. Intelligence is, thus, viewed as something
that reflects an evolutionary continuity among different forms of
life along common phylogenetic branches and across different
branches; this is a recognition that various forms of cognition
may be evolutionarily convergent strategies that have arisen
many times in different phyla much like vision or breathing has
arisen multiple times, taking different forms. Human intelligence
is, thus, not different in kind from that of simple organisms
but different in form (cf. Darwin, 1871). Such a functional
approach to intelligence provides a much-needed conceptual and
methodological basis for throwing light on the fact that there is a
“spectrum of intelligent behaviour found in nature that artificial
systems can learn from” (cf. Webb and Scutt, 2000; Dupeyroux
et al., 2017; Sejnowski, 2018, p. 267).

One apparent snag in deploying a functional approach to
inform the development of AI is this: AI agents, even when
taking the form of embodied agents, are typically fully abiotic

4The famous cyberneticist Bateson (1972), in many ways, auguring the arrival

of embodied and situated cognition, recognized the importance of considering

bodies and environments as parts of cognitive explanation. According to him, the

cognitive system is a unit of explanation, the bounds of which are determined

by information-carrying pathways (i.e., circuits) that cannot be severed without

rendering the explanandum mysterious.
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agents. They are neither subject to heritable mutation nor
does the notion of selective fitness apply to them; they are
neither subject to senescence nor do suffer death. Of course,
evolutionary algorithms might simulate such processes, but the
chosen parameters that define the simulation and the chosen
desiderata used to score fitness in such simulations are just
that, chosen by designers (but see Bongard and Levin, 2021;
Lehman and Stanley, 2011). One of the reasons that is embedded
in an environment might be thought of as a precondition for
intelligent behaviour is the fact that the presence of uncertainty
that is inherent in natural environments has real existential
consequences for systems situated in these environments. Fitness,
which may be construed as an inverse cost function, “is a
concept that only has meaning in the context of a concrete set
of constraints, either from the environment or from the system
being optimised” (Sejnowski, 2018, p. 267). Conceding to all of
this is, however, consistent with holding the claim that basing
the notion of intelligence on adaptation does not place any
actual biological requirements on AI. It is not necessary that an
agent undergoes or partakes in exact processes that are central
to adaptation in living systems; rather, in order for machines to
exhibit intelligence in any manner comparable to the simplest
expressions of biological intelligence (e.g., archaea, bacteria, slime
mould, yeasts, living cells, etc.), it may be the case that they will
have to engage in some processes that are functionally similar to
those that are characteristic of living systems. The presence of
such biologically inspired processes, I shall argue, is the bedrock
on which self-concern in machines might arise.5

Self-Concern in Intelligent Systems
Returning to Man and Damasio’s point above a central aspect
of intelligent behaviour is that the goals of a behaving system
can be said to be that system’s own. Goals may be construed as
monitorable physical states that a system’s continued functioning
depends on and to which a self-organising system tends to
return after perturbation. In living systems, such goals may
be construed as “homeostatic imperatives” (Man and Damasio,
2019), which a system’s self-concern is defined with respect
to; it is a system’s goal of self-maintenance, which endows its
actions and the environment with meaning from its perspective.
Deploying concepts from cybernetic control theory (Wiener,
1948; Ashby, 1952; Conant and Ashby, 1970; Bateson, 1972), self-
concern can be associated with a regulating system’s tendency
to return to an optimal set point range that is consistent with
its continued functioning.6 It is the concern that an agent has
for stabilisation of its physiological states within its viable set
point range that motivates not only the simplest expressions of

5This is particularly telling: if something like adaptivity is assumed to be a

fundamental feature of all intelligent behaviours, then the progress of AI will not

proceed the progress of artificial life (AL) or vice versa; the progress of both the AL

and AI programmes will depend on their marching in lockstep.
6The notion of stable set points borrowed from the cybernetic control theory is a

useful abstraction in the sense that homeostatic equilibria are not stable but shift

across the lifetime of a biological system. Hence, homeostatic set points are more

accurately seen as dynamic or moving equilibria.

intelligent behaviour but also acts as the foundation on which the
most complex forms of intelligent behaviour are grounded.7

Behavioural avenues of self-concern mirror the open-ended
definition of evolution. There are myriad ways that such concern
might be behaviourally expressed, and the update of options
available to mitigate self-concern at any given time is the result of
a system’s continuous dynamic exchange with its environment.
To put it differently, self-concern is the driver of flexible
and evolving behavioural solutions to homeostatic challenges
posed by hostile environments. As such, it reflects the inherent
creativity that some have acknowledged to be central to cognition
and life (Kant, 1790/2007; Goodwin, 1978, 1994).

Although various architectures implementing theories such as
optimal control theory (Berridge and Robinson, 2003; Sterling,
2012), drive reduction theory (Hull, 1943; Konidaris and Barto,
2006), and homeostatic reinforcement learning (Sutton and
Barto, 1998; Oudeyer and Kaplan, 2007; Keramati and Gutkin,
2014) have placed homeostatic maintenance state front and
centre as a driver of intelligent behaviour in agents, self-concern
fails to be directly addressed in current AI research.8 Part of this
may be due to the fact that the relationship between self-concern
and intelligent behaviour in biological systems is, itself, poorly
understood. One of the aims of this article is to correct this;
integral to the development of basic intelligence in AI, the kind
that is ubiquitous in the living world, is understanding the details
of self-concern in biological systems and designing agents that
can engage in anticipatory homeostatic error correction fuelled
by functionally similar machine self-concern. The next section
offers a possible starting point for such a biologically inspired
approach to embodied AI.

THREE NECESSARY FEATURES FOR

SELF-CONCERN IN BIOLOGICAL

SYSTEMS

In what follows, I shall present three related features that I will
argue are necessary (but not sufficient) for the emergence of
self-concern in biological systems. These features are:

• Controlled system-environment energy traffic.
• Dual information-carrying nature of interfacing

bodily elements.
• The common fate of hierarchically structured systems.

It is my hope that by making these features explicit, they may
be instructive for the designing and improvement of already
existing designs of biologically inspired agents, advancing the
field of embodied AI one step closer towards the emergence of
self-concern in artificial agents.

7The fact that homeostasis is emphasized in this article as a basis for self-concern,

however, does not imply that the process of heterostasis (i.e., exploring and seeking

high information gain via self-perturbation) is not a significant driver of behaviour

in self-concerned living systems.
8Oudeyer and Kaplan (2007) focus on the development of models of “intrinsic

motivation” within the framework of reinforcement learning, and there may be

some general overlap with what I am calling self-concern.
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Controlled System-Environment Energy

Traffic
The first feature that I will argue is central to self-concern
in biological systems, controlled system-environment energy
traffic. The specific form that this traffic takes in biological
systems occurs in the service of metabolism, which is “the
set of life-sustaining chemical reactions within living cells”
(Lane, 2016, p. 295). The two types of reaction characteristic
of metabolism across all life forms are “anabolic reactions”
(i.e., storing energy in the form of synthesised adenosine
triphosphate, ATP) and “catabolic reactions” (i.e., breaking
down of ATP into ADP + Pto release energy for work). It
is through the acquisition of resources (e.g., nutrients) that
living systems, via the combination of these reactions, are able
to maintain the physiological processes which underwrite their
ability to remain far from thermodynamic equilibrium with
their environments, temporarily flouting the second law of
thermodynamics. For biotic self-organising systems, remaining
far from thermodynamic equilibrium means remaining alive
(Nicolis and Prigogine, 1977; Friston, 2012, 2019; Demirel, 2014).
A system, by harvesting resources from its local environment,
can fuel the metabolic processes that allow it to (a) generate
itself materially (e.g., protein synthesis) and (b) maintain its
organisation in the face of environmental perturbation and
despite continuous material turnover; these are the respective
processes of “self-production” and “self-maintenance,” which
form the basis of Maturana and Varela’s (1987) notion of
“autopoiesis” (see also Gánti, 2003, Chemoton model).

It is the sense in which a system both actively pursues
resources and actively directs how these resources are used (i.e.,
how self-production and self-maintenance play out) that system-
environment energy traffic is controlled (cf. Bechtel and Bich,
2021). Why might the process of controlled energic traffic be
required for self-concern? Phenomenologist Hans Jonas provides
a hint when he writes:

“In order to change matter, the living form must have matter at

its disposal, and it finds it outside of itself, in the foreign ‘world.’

Thereby life is turned outward and towards the world in a peculiar

relatedness of dependence and possibility. It wants to go out to

where its means of satisfaction lie: its self-concern, active in the

acquisition of new matter, is essential openness for the encounter

of outer being.” (Jonas, 1966/2001, p. 84).

The core idea that Jonas so eloquently expresses is that one
of the directions of energy traffic that metabolism presupposes
(taking in raw materials as a source of energy) places any
living system in a relationship of need with its milieu; this
need fundamentally arises from the fact that living systems
are subject to constant material turnover that can only occur
when that system acquires new resources. As such, this need
implies a concern on the part of the behaving system for
fulfilling its metabolic demands. Taking this into consideration,
we may say that controlled system-environment energy traffic
presupposes certain dependence on the environment on the
part of the traffic controlling system. This dependence suggests
that these systems that seek out sources of energy that they,

in turn (via metabolism), use for work have a basic concern
for their continued existence. Such is the primitive goal that
every living system is concerned to satisfy, a goal that intelligent
behaviour answers to and that provides the metabolising
energy trafficking system with a basic perspective on the world
(Lyon, 2006; Lyon et al., 2021). If this claim is in the right
ballpark, then how may it be used to inform the development
of AI?

From what has been said, we may glean this: if an agent
altogether lacks the need for system-environment energy traffic
that allows it to both maintain and produce itself to some
degree, then that agent also lacks the capacity to exhibit basic
concern. Such an agent fails to be autonomous (cf. Kauffman,
2000). Any behaviour that may be usefully ascribed to it, no
matter how intelligent such an agent may be judged to be,
fails to be its behaviour, because it does not stem from or,
importantly, answer to its own concern. To be sure, both
biological systems and machines require energy to do useful
work in any capacity. However, and this difference is telling,
biological systems both constantly monitor their energy levels
across different spatial and temporal scales and actively behave in
ways to fulfil their energetic needs. Such behaviour is not merely
foraging for sources of usable energy but also generating the
very materials and processes that allow for such energy foraging
to continue to occur. Moreover, although to different degrees,
each nested constituent part of a biological system, when all
is going well, both contributes to and benefits from controlled
energy traffic. This multi-scale concern reflects a basic “self-
similarity” that is unique (at least for now) to the hierarchical
organisation of biological systems (Bongard and Levin, 2021)
(more will be said about this below). It is for this reason that an
individual’s biological parts (i.e., cell, organs, etc.), each of which
takes part in its own energetic processing (i.e., monitoring and
regulation), allow for distributed (decentralised) control at a very
fundamental level9.

This brings us to the following question: could a machine
ever truly engage in controlled system-environment energy traffic
with its environment? Sure, but probably not in the samemanner
that an organism can. Metabolism occurs on the nanoscale where
“there is spontaneous motion, but there is enough structure and
the relations between forces are such that a lot can happen,
by biassing tendencies in random walks” (Godfrey-Smith, 2016,
p. 5). The rapid development of nanobots (Berger, 2016;
Service, 2016; Linke et al., 2020) and engineered nanomaterials
(Galetti et al., 2019) suggests that operation on the nanoscale
itself, however, fails to present an uncrossable boundary to

9One dimension in which system-environment energy traffic might vary in degree

is with respect to how much each constituent part of a system both contributes

to and relies on the energy traffic of the system (s) in which it is nested or

coupled to. For example, if system-environment energy traffic is limited to only one

nested element of a larger nesting system, then that larger system might satisfy the

requirement of system-environment energy traffic but only to a minimal degree,

whereas if each constituent and nested element of a larger system contributes

to and relies on the energy traffic of all other elements (to varying degrees), the

supraordinate system has a high degree of system-environment energy traffic.

Quantifying this dimension of system-environment energy traffic falls out of the

scope of this paper.
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imitating energy traffic in machines (but see Nicholson, 2020).10

Furthermore, ongoing advancements in self-replicating robots
(for a detailed review, see Moses and Chirikjian, 2020) may
be a promising starting point for the development of a basic
form of artificial self-production.11 It is a starting point because
there is a notable difference between what might roughly be self-
replication in machines and self-producing machines; whereas
the former involves the use of supplied raw building materials to
produce other machines that are copies of themselves, the latter
involves the continuous generation (synthesis) of a system’s own
parts. To date, self-replicating robots are still limited to using
supplied resources and cannot self-produce these materials from
the ground up (Schranz et al., 2020); in other words, they lack
the kind of “operational closure” that is unique to autonomous
autopoietic systems (Maturana and Varela, 1980).12

One thing, however, that is key to keep in mind is that a
system that is not subject to material degeneration (at least on
short timescales) is a system that does not require (artificial) self-
production. In other words, when an agent can both undergo
substantial wear and tear due to its behaviour and environmental
perturbations and monitor its own material degeneration,
then harvesting energy from environmental resources takes
on a particular value for the system; it is a manner of
contributing to its own persistence across material turnover.
Such turnover is something that is ultimately linked to the
materiality of an embodied agent. For this reason, a soft
robotic implementation may be invaluable in providing some
implementational conditions for material turnover to occur
and, hence, provide a need for artificial self-production. The
production and development of microbial fuel cells (MFCs) in
robots (Ieropoulos et al., 2005; Philamore et al., 2016) seem
to be a promising manner of getting energetically autonomous
embodied AI off the ground via biological metabolism (more on
this below). MFCs provide systems that use them with conditions
for material turnover and a need for self-production (at the level
of microbes in the fuel cell).

Does it matter that “artificial metabolism” in machines will
most likely be quite different from biological metabolism when
it comes to being the fundamental of an agent’s concern? I would
like to suggest that such a question should not be addressed prior
to the advent of artificial metabolism in agents. If it is telling of
anything, to decide beforehand reveals nothing more than a deep
commitment to the use of a priori intuitions, intuitions that may
or may not be hostage to a deeply ingrained “biocentrism” when
it comes to metabolism and/or self-concern (cf. Meincke, 2018).

Let us now turn to the second necessary feature of self-concern
in biological systems, which, I will argue, is also a prerequisite for
basic intelligence in embodied AI.

10Nanobots, however, are programmed to do specific tasks and, as such, they differ,

at least currently, from, say, autonomous protein motors in biological systems

(Linke et al., 2020).
11The theoretical beginnings of the current research programme of self-replicating

machines may be traced back to Von Neumann’s (1966) logical models of self-

reproducing automata.
12Xenobots (Kriegman et al., 2020), algorithmically designed collections of frog

skin and heart cells that have the capacity to heal themselves, may be a possible

exception to this.

Dual Information-Carrying Nature of

Interfacing Bodily Elements
Even at the most basal level, biological self-concern relies on
a system having multiple sources of feedback from its internal
and external environments. It is only through the evaluation
of such feedback that a system’s behaviour may be directed in
one way or another to return it to states that are compatible
with its continued existence (i.e., its set-point values). Self-
concern, although a feature of an entire system, is something
that each component part of a biological system contributes to
via the registration of information regarding its current state
or condition and the state of the environment that it interacts
with. Of particular importance are the states of components that
causally interface the system with its external milieu.

From bacteria to humans, the presence of some form of
the membrane that separates a living system from its external
environment is ubiquitous. For example, Escherichia coli has a cell
membrane that acts as a boundary between its cytoplasm and the
external (terrestrial or fluid) medium, the dynamics of which the
bacterium must behaviourally adapt to. The cell membrane and
the flagellar motor machinery that it houses not only transmit
external mechanical forces (tension, compression, and shear)
to the internal components of the cell (Dufrêne and Persat,
2020), but multiple kinds of transmembrane receptor proteins
and dedicated sensors also allow environmental feedback in
the form of chemical gradients (Macnab and Koshland, 1972),
light (Fraikina et al., 2015), and mechanical force (Dufrêne and
Persat, 2020). Importantly, it is via the effects of environmental
stimuli on the cell membrane and other environment interfacing
components (e.g., flagella) that various internal biochemical
cascades arise that contribute to the bacteria’s ability to cope with
their environmental dynamics. Were this interface to become
non-responsive, the E. coli’s responses to its environment would
in effect become random and ineffective, and thus the bacterium
would soon cease to be. Like the simple E. coli, all living systems’
membranes act as a conduit for proximal information about their
environment. This proximal information is relevant to the notion
of concern because its arising presupposes that some external
force or stimulus has made a sensory contact with the organism
already by way of inducing a change in the state of themembrane.

Of particular importance is the presence of mechano-
stimulation, because it requires direct contact with themembrane
or other bodily components that interface with the environment
(e.g., hair, feathers, antennae, flagella, cilia, etc.). Proximal
stimulus detection is not only informative about the states
of the world but also the states of the system itself. If an
abnormally high amount of mechanical stress is exerted upon
the plasma membrane of a eukaryotic cell, it would result
in membrane breach and that cell’s likely death (Cooper and
McNeil, 2015). Less dramatically, too much concentrated friction
against a restricted area of the human epidermis (e.g., the
skin on the tip of the finger) would result in damage to the
epidermal membrane itself. Thus, there is a dual information-
carrying nature that the interfacing bodily elements of biological
systems have: they carry information about the conditions of the
environment and the condition of the very system to which these
interfacing elements belong. This dual information-carrying
nature of interfacing bodily elements, I would like to argue, is
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a second necessary feature for self-concern in biological systems;
self-concern requires a structure through which multiple sources
of environmental feedback are integrated and causally related to
the condition of the system.

This feature places some important constraints on the
materiality of embodied agents, a constraint that can be read-
off of direct observation on how such interfacing bodily elements
are implemented in biological systems. One observation is that
the kinds of membranes that separate a biological system from
its environment are deformable; their structure is responsive to
changes in applied external and internal forces (tension, friction,
and stress). Deformation of a material substrate not only implies
a change in environmental conditions (forces applied) but also
change in the structural condition of the deformed membrane
and the system that possesses such membrane.

Another observation is that the kinds of membranes and
interface components found in livings systems often exhibit
material elasticity (i.e., having low elastic modulus). This
condition is tightly (yet contingently) related to the property
of deformability; after structural deformation due to change in
environmental conditions (e.g., brief exertion of compressive
force), materials that things like cell membranes or epidermal
membranes are made of allowing for a system to return to
its original structure. In other words, the materials allow for
recovery from deformation. This is relevant for any system that
uses information about the environment to guide its behaviour
because if such a system not only detects deformation but also
how long it takes to elastically recover from deformation, that
system can use the time difference between deformation and
recovery to direct its behaviour and measure the states of its
own responsiveness, something that may be informative about
damage; whereas a short (or regular) recovery time suggests
that the condition of the material itself is suited for optimal
performance, a long (or irregular) recovery time suggests that
the material has perhaps a defect or structurally damaged and
unsuitable for optimal performance.

A third and last observation regarding the kinds of
membranes and interface components that separate a biological
system from its environment is that they exhibit local
transmission of causal effects. This is just to say that affecting one
concentrated area in a membrane or other interface component
is likely to also affect adjacent areas. This property is, of course,
related to that of being deformable and elastic. For instance,
dropping a weight on a taught sheet of rubber stretched across
a frame does not only deform the area of the sheet where the
weight meets the rubber but also increases the tension on the
areas surrounding weight. Similarly, exerting mechanical force
on a biological membrane does not only deform the point of
contact but also affects the adjacent areas. This property of
local transmission is important for biological systems, because
it allows for information about the environment and the self to
be distributed locally, and, hence, contributes to the biological
system’s ability to use different sources of information to monitor
itself (its own current bodily conditions). To be sure, the property
of local transmission that accompanies both elasticity and
deformability suggests that any neat separation of exteroceptive
and interoceptive (and proprioceptive) information may be an

artificial one (see Gibson, 1966 for a similar remark about
exteroception and proprioception).13

These three material properties characteristic of dual
information-carrying interfacing bodily elements imply
something crucial about the structure of an embodied AI if its
structure is to support the emergence of self-concern, namely, it
is (partly) due to the fact that biological systems are composed of
biotic structures made of materials that are largely deformable,
elastic, and transmit local causal effects that such systems are
subject to damage that occurs on the timescale of living systems.
This timescale of damage can be contrasted to the timescale of
damage that would be sustained by a structure composed of
non-deformable, rigid materials. Many of our longest-standing
architectural constructions (e.g., pyramids and the Colosseum of
Rome) have been constructed of rigid materials such as limestone
and cement, and our more recent architectural constructions
add the strength of steel. The durability of these materials is
related to their rigidity (e.g., their high tensile strength and
compressive strength). The kind of damage that they sustain
takes the form of long-timescale processes of metal corrosion,
aggregate expansion, and calcium and lime leaching, to name a
few. Because of the deformable, elastic, and local transmission
properties of materials that largely make up living bodies,
the damage that things like cell membranes sustain might
take the form of post elastic limit micro-tears or enzymatic
decomposition (e.g., being digested by an amoeba). Since such
damage is detectable and occurs at fast timescales (i.e., it is not
due to being exposed to constant environmental conditions) it
allows living systems to behave in ways that minimise future
damage, fleeing the situation if motile, or nutating towards better
conditions if sessile.14

Material properties that underwrite the ability of interfacing
bodily elements to carry information about the world and the
system itself are largely captured with new technologies of the
rapidly developing field of soft robotics (Hawkes et al., 2017;
Booth et al., 2018; Shih et al., 2019, 2020; Thuruthel et al., 2021;
Hardman et al., 2022). Whereas traditional robotics, focusing
upon task precision and strength in controlled environments,

13Although I have focused on membranes and their properties that are typical

to living systems that exhibit dual information carrying, having a membrane

is not a necessary requirement for dual information carrying to be physically

instantiated. As long as there are distributed sensing/actuation devices that can

harness and leverage spatially relative information, dual information carrying can

be instantiated by a network of elements that are not, as a whole, enveloped by

a single membrane. In such cases, the boundary that is instantiated is one of

dynamically coupled causal influence. For example, a swarm of robots need not

itself have a membrane to exhibit dual information carrying. All that is required

is that the behaviour of each component element of the swarm is a function of

the sensing/actuation parameters of the others. In such a case, the coupled swarm

will exhibit dual information carrying across its network of distributed swarm

members, each with their own sensing/actuation devices that contribute to an

emerging dynamically bounded system.
14This is not to suggest that living systems are not subject to slow and gradual

decomposing via oxidation reactions; they are if they are aerobic respiring systems

or they live in oxygen-rich environments. Such damage, however, being the result

of a constant environmental condition, fails to be something that an organism can

escape from; it is merely a condition on aerobic life. As such, although complex

organisms like us are aware of the slow damage that oxidation causes, it is not

something that we are concerned with given it is a condition on our aerobic life.
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have used (and still use!) rigid metal links (i.e., joints) and
electric non-distributed actuators, soft robotics focuses on
the adaptability of robots to the real world and complex
environments, and, as such, uses synthetic compliant materials
that can undergo deformation along with distributed actuators.
In addition to this, conductive piezoresistive strain sensor
fibres have recently been incorporated into the self-healing
deformable material, allowing for the control system to sense
damage (Georgopoulou et al., 2021) and proprioceptive feedback
(Truby et al., 2020).15 This feature seems to accurately map
onto the material properties (deformability, elasticity, and local
transmission of causal effects), which, as I have argued, are
required for implementing interfacing bodily elements that carry
information about both the environment and the agent. This
being said, were such soft robots able to measure their own
energetic conditions and actively (or proactively) engage in
energy-sourcing and material exchange—the kind which we
have already seen is suggested by controlled system-environment
energy traffic, such robots would indeed be one step closer to
the realisation of agents with self-concern (cf. Man and Damasio,
2019).

Let us nowmove on to the notion of a hierarchically structured
organisation; the third and last feature that I will argue is
necessary for concern in biological systems.

Common Fate of Hierarchically Structured

Systems
Living systems are self-organising complex adaptive systems.
This means that they can maintain themselves in states that are
far from thermodynamic equilibrium, temporarily avoiding the
dissipation that inevitably results from the tendency for entropy
to increase (Nicolis and Prigogine, 1977; Friston, 2012, 2019;
Demirel, 2014). One central property of complex systems is
that they are hierarchically organised (Simon, 1962). We may
understand the notion of a hierarchical system in terms of
“containment” where a larger system contains smaller subsystems
nested within it (McShea, 2012). This is to say that such systems
contain “interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level
of elementary system” (Simon, 1962, p. 468).16 Multicellular
organisms, for example, contain living organs and tissues that, in
turn, contain living cells. Although the hierarchical organisation
of complex systems more generally may be construed in terms
of intensity of interactions (i.e., who interacts with whom and
how often), the form that the intensity of interaction takes in the
hierarchical organisation of both biological and physical systems
is that of “relative spatial propinquity” (Simon, 1962, p. 469).

Hierarchical organisation implies differences in both
relative timescales and behavioural constraints; faster timescale

15The “Octobot” (Wehner et al., 2016) is a striking example of an entirely soft robot

that contains no electronics. Much like signal processing in slime mould, the signal

processing in the Octobot occurs via oscillations and fluid transport (microfluidic

logic). Locomotion, signal processing, and decomposition of onboard fuel supply

are closely connected!
16Of course, the identification of a lowest level is something that is, itself, an open

question of scientific investigation and a matter of contention. However, for the

purposes of this article, we can set the question of what such a level might be aside.

behaviour of nested subsystems is constrained by slower
timescale behaviour of systems in which they are nested.
Roughly, system Y is constrained by another system, X, just in
case the latter’s features act as order parameters for the former,
reducing the degrees of freedom of Y.17 As such, we may say that
the faster timescale dynamics of some nested system is “enslaved”
to the slower global dynamics of the nesting system, making the
former subordinate to the latter (Haken, 1985). For instance,
the homeostatic condition of a liver (roughly, a collection of
differentiated cells and biochemical cell interactions) may largely
constrain the homeostatic state of any individual cell contained
in the collection, and, simultaneously, the individual cells
contribute to the maintenance of the liver that constrains them.
Crucially, the kind of constraint relations that are governed by
a biological system’s homeostatic imperatives, unlike those in
systems that do not answer to system-wide self-maintenance,
means that “certain differences in the part have an informational
effect upon the larger unit, and vice versa” (Bateson, 1972, p.
324). This is just to say that for both nested and nesting biological
systems, a cause for homeostatic compensation at either of their
respective levels is semantic information (Kolchinsky and
Wolpert, 2018).

How is hierarchical organisation related to self-concern?
To answer this question, let us first consider the fact that
in multicellular biological systems every nested subordinate
(bounded) system within a larger superordinate system is, itself,
adaptive and “participates in its own self-maintenance, sensing
and signalling the state of its life process” (Man and Damasio,
2019, p. 447). This suggests that self-concern is not merely a
property of a superordinate system, but that it is something
that arises at each nested level of biological organisation to
varying degrees. Just as organisms adaptively respond to external
environmental challenges (e.g., stresses) they face to avoid
dyshomeostasis, organs and tissues modify their dynamics in
ways that are adaptive to the challenging conditions of their body
environment; similarly, bodily cells via variable gene expression
biochemically respond to the challenges of their organ or tissue
environments (Pezzulo and Levin, 2016; Levin, 2019).18

What about prokaryotic organisms that do not have organelles
and yet still exhibit self-concern? Although elements within
prokaryotes (e.g., microtubules and actin filaments of the
cytoskeleton, etc.) may not exhibit self-concern themselves,
something that follows from the fact that such parts fail to satisfy
two necessary conditions for the self-concern proposed above,
it is the dynamics occurring across different scales constrained
by the temporal-spatial organisation of such elements that
contribute to self-concern at the level of the organism.
Importantly, these element dynamics may be characterised as

17In synergetics (Haken, 1985), an “order parameter” refers to ameasure of a global

system’s slowmacroscale dynamics that determines the fast dynamics ofmicroscale

component systems by reduction of the degrees of freedom of the latter.
18Parisi and Petrosino (2010) were early to stress how robotics could be

instrumental for understanding how organisms adapt to both “external worlds”

and “internal worlds.” Conversely but in a similar spirit, I am suggesting

that understanding how hierarchically nested/nesting biological systems adapt

simultaneously to both internal and external worlds is crucial for the development

of concern in biologically inspired robots.
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serving a common fate; it is by contributing to the continued
homeostatic maintenance of the whole organism that each
element brings about the continued production of itself via the
material turnaround that is insured by the continued functioning
of the organism.

With these considerations in mind, I would like to suggest
that self-concern is a system-level property that rests on there
being a common fate of both the hierarchically nested parts and
the nesting (i.e., constraining) system.19 Without some degree
of common fate being respected at relatively lower levels of
hierarchical organisation, self-concern at higher levels is not
possible. Imagine the rather brutal example that tomorrow every
cell in your body would begin competing for resources with one
another; this would be tantamount to each cell behaving as a
unicellular organism (ignoring the presence of biofilms for the
sake of argument!). Although each of these cells might exhibit
self-concern in much the same manner that prokaryotes do,
self-concern would fail to arise at the level of either the organ
or the organism. Each cell would fail to contribute to the self-
maintenance of your organs (or you at the organismic level)
because of the absence of common cell fate; the viability of
one cell in such a brutal case may indeed be largely dependent
on bringing about conditions that would adversely affect the
homeostasis of all others. Thus, self-concern in biological systems
at the level of nesting (constraining) system requires that nested
systems share some degree of common fate with nesting systems.

If the common fate of hierarchically organised systems is
a requirement on biological self-concern, and such concern is
a requirement on biological intelligent behaviour, then using
the biological case as a model for agents, it seems that some
degree of hierarchically organised systems exhibiting common
fate will be a necessary feature for embodied AI if something even
slightly akin to basic biological intelligence can be exhibited by
AI. How can the notion of the common fate of hierarchically
organised systems inform embodied AI more specifically?20

One very general suggestion is to explore the endosymbiotic
relationship and design artificial endosymbiotic systems. The
idea is to somehow elicit self-concern at the level of global
nesting-system from both (a) the interactivity of the global
system and a simple nested system, which have both been
programmed to emulate a form of mutualism (i.e., to use and
contribute to one another’s continued self-maintenance) and
(b) the agent-environment energy (metabolic) traffic that the
global system is forced to engage in to keep the endosymbiont
and itself functioning. Treating the endosymbiont agent as the
lower, faster scale subordinate system and the host agent as the
slower scale superordinate system, the hierarchical organisation
of these systems sharing a degree of common fate, amongst some
of the other features that we have already touched upon, may

19The notion of common fate was originally introduced by Wilson and Sober

(1989) in the context of providing a characterisation of biological individuals.
20It should be emphasised that the kind of nested hierarchical organisation of

elements with common fate that I am arguing about is fundamental to (self)

concerned systems involved in concrete physical implementation rather than

merely a hierarchically organised network (architecture) that plays the role of a

control system. Many thanks to Christian Oettmeier for pushing me to clarify this

point.

support a self-organising autonomous system, a system that by
bootstrapping21 can cast away its scaffolding, replacing the self-
maintenance tasks extrinsically put in place by designers with
tasks that arise (i.e., are discovered) from interactions between
the parts, tasks that reflect an intrinsic concern on the part of the
whole system for its own self-maintenance.

Recent developments in swarm robotics may prove to be a
promising avenue for testing this hypothesis (see Christensen
et al., 2008; Liu and Winfield, 2009 for symbiotic-inspired robot
swarms). Here, interaction among robots has taken the form
of continuous (Bezzo et al., 2014) or pulse-coupled oscillatory
signals (Barcis et al., 2019), whose alignment of oscillatory
frequency and/or phase alignment allow members of a swarm
to behave synchronously (Schranz et al., 2020). If swarm
robots were to implement the kind of hierarchical common
fate dynamics, which, as I have argued, is required for self-
concern, then the interaction among themmust not only take the
form of information-sharing but must also involve behavioural
interaction by exerting reciprocal mechanical forces that have
consequences on the continued functioning of both the nested
and nesting parts.

Another research area that may lend itself to the development
of agents with common fate at various hierarchical levels of
an organisation is that of hybrid associations composed of
both machines and microorganisms (Ieropoulos et al., 2005;
Philamore et al., 2016; Tsompanas et al., 2021). For example,
anaerobic anodophile bacteria, when used in a microbial fuel cell
(MFC), will transfer electrons to the MFC’s electron-accepting
anode electrode, which in turn supplies an MFC housing
robot with electrical energy (Habermann and Pommer, 1991;
Ieropolous et al., 2004).22 If such an MFC housing robot behaves
so as to remain in (or return to) environments that are rich in
kinds of substances that MFC-inhabiting bacteria can metabolise
(e.g., sulphate, acetate, glucose), then its doing so mutually
supports the survival of the bacteria and its own continued
energetic functioning. Further development of this kind of
(biotic/abiotic) artificial symbiosis between nested bacteria and
a nesting machine, if what has been argued here is correct,
may be one crucial method of bringing about self-concern in
AI, namely, bacteria’s self-concern may be the source of the
emergence of self-concern in the larger hierarchically organised
bacteria-machine system.

One important takeaway from this section is this: the fact that
self-concern has not yet been implemented machines (Man and
Damasio, 2019, p. 447) does not suggest that such self-concern
cannot find expression in machines or organism-machine
associations. If self-concern is a requirement for basic intelligence
across the board, then we should expect a concentrated effort on
the part of future research to develop hierarchically organised
systems that implement self-concern across scales.

21The term “bootstrapping” is used in a general manner here to denote a “process

that automatically increases in complexity” (Moses and Chirikjian, 2020, p. 9)

rather than the specific notion of bootstrapping deployed in statistics.
22MFCs are transducers that are given a biochemical energy source and convert it

to electrical energy; they can, thus, power robots in which they are located.
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WHEN ANTICIPATORY DYNAMICS

ANSWER TO SELF-CONCERN

With three necessary features of biological self-concern on hand,
I now want to consider the relationship between self-concern
and intelligence by way of a particular capacity that is central
to cognition: anticipatory behaviour. My argument in this final
section will take the following form: anticipatory behaviour
is often recognised as indicative of intelligence; an important
aspect of intelligent anticipatory behaviour (in contrast to mere
anticipatory behaviour) is that it is possible for such behaviour
to answer to a system’s long-term homeostasis; a system’s
behaviour that answers to its long-term homeostatic stability is
behaviour that answers to that system’s self-concern; therefore,
an important aspect of intelligent anticipatory behaviour is that
it is possible for such behaviour to answer to self-concern. If
one effective way of bringing embodied AI closer to emulating
the intelligence found in even the most basal of living systems
is to use aspects of biological intelligence to inform AI design,
then designing agents, the anticipatory behaviour of which could
answer to self-concern, may be one manner of bringing AI
closer to emulating the kind of intelligence observed in the
biological world.

It has been widely acknowledged that one way of expressing
intelligence in biological systems is by an exhibition of
anticipatory behaviour (Bartlett, 1932; Craik, 1943; Piaget, 1970;
Neisser, 1976; Drescher, 1991; Arbib, 1992; Riegler, 2001; Grush,
2004; Castelfranchi, 2005; Lyon, 2006; Bar, 2007; Pezzulo,
2008; Bickhard, 2016; Nasuto and Hayashi, 2016; Levin, 2019;
Kiverstein and Sims, 2021; Sims, 2021). Anticipatory behaviour
may be generally characterised as a behaviour that allows for a
system to respond to yet-to-be encountered changes in external
or internal environmental states as a function of prior states that
the system has encountered. This characterisation throws light
on one reason why anticipatory behaviour is considered as an
expression of intelligence: it involves deploying some form of
memory and learning (or model acquisition more generally) to
bias behaviour towards a system-preferred outcome; hence, it
involves some form of information processing. Such behaviour
is orchestrated in a manner that is dependent on internal states
that have a certain degree of independence or detachment from
current streams of sensory information (Pezzulo, 2008). Internal
states may be generally construed as constituting a system’s
“internal model” that captures environmental dynamics and the
effects of its actions on its environment (Neisser, 1976; Rosen,
1985/2012; Pezzulo, 2008; Friston, 2012; Pezzulo and Levin, 2016;
Schulkin and Sterling, 2019).

Anticipatory behaviour, when all goes well, delivers

preferred behavioural outcomes. Such outcomes are relative

to physiological states that a system should visit given both its

phenotype and the form of metabolic redox machinery that its
phenotype serves (i.e., kinds of donors and acceptors a system

implements to fuel proton chain reactions to drive catabolism

of ATP). A preferred behavioural outcome for E. coli, which

metabolises glucose, is encountering high concentrations of

glucose in its environment. On the other hand, a preferred
behavioural outcome for a sun-loving plant such as Portulaca
oleracea, which requires photosynthetic light to effectively

convert H2O and CO2 into sugars, is encountering the presence
of photosynthetic light. It is because preferences exhibit a
high degree of stability and can act as reference points for
long-term homeostatic supporting behaviour in the face of
environmental flux (i.e., set-point values) that preferences
themselves can be understood as (partly) constitutive of a
system’s internal model. Recall that long-term homeostasis is
an intrinsic existential goal in all biological systems; as such, a
system’s behaviour that answers to its long-term homeostasis is
a behaviour that answers to that system’s self-concern (Jonas,
1966/2001). It is, thus, the ability for anticipatory behaviour
to be driven by a system’s concern for its own continued
stability that qualifies such behaviour as intelligent at its most
fundamental level. For example, a hypothetical system that
only behaves anticipatorily, bringing about outcomes that
are irrelevant to its continued survival, would certainly fail
to survive very long; this would be because of the fact that
no behaviour comes without some metabolic cost, and that
regularly engaging in anticipatory behaviour that brings about
expected sensory or behavioural outcomes is consistent with
regularly bringing about maladaptive conditions. The regular
and repeated proactive jumping of a mouse to the exact next
location where a snake predator will strike falls short on
any account of being an example of intelligent behaviour.
Such a mouse, despite the accuracy of its predictions, is a
dead mouse.

There is an objection waiting in the wings, which may
be posed as follows: certainly, an elaborately planned suicide
can be an exhibition of intelligence, and such a plan neither
answers to long-term homeostasis nor self-concern on the part
of the organism! This counterexample can only go through,
however, if the claim was being made that all intelligent
anticipatory behaviour must answer to a system’s self-concern.
The claim that I am making, however, is only that in order
for some anticipatory behaviour in a biological system to
qualify as intelligent, it must be possible for such behaviour
to answer to self-concern grounded in the continued long-
term homeostasis of that system.23 In other words, if a system’s
anticipatory behaviour could not, in principle, be influenced
by its homeostatic norms, then such behaviour, although it
is anticipatory, fails to exhibit the form of intelligence that
is typical of biological anticipatory behaviour. Hence, even
though an elaborately planned suicide results in loss of life
and dyshomeostasis, it is the type of behaviour that could,
in fact, answer to the maintenance of long-term homeostatic
stability. On such an occasion, however, it simply fails to
do so.

There have been a number of recent cognitive theories and
computational models that have taken into account the role of
anticipation for intelligent behaviour and that have been used to
inform cognitive robotic technologies (see Nasuto and Hayashi,
2016 for an overview).24One increasingly popular process

23I am concerned here with nomological possibility and not logical possibility.
24The implementation of anticipatory dynamics, of course, is not new. In optimal

control theory, forward models (i.e., internal models that generate predictions

of the sensory consequences of motor commands) have been used at least since

Jordan and Rumelhart (1992).
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theory that has been used to formulate specific anticipation-
driven cognitive architectures is active inference (Friston et al.,
2009; Pezzulo et al., 2015; Morville et al., 2018; Baltieri and
Buckley, 2019; Corcoran et al., 2020; Millidge, 2020). This
theory, which was originally applied to brain dynamics, casts
perception, action, and learning in terms of a Bayesian inference
problem-and-error correction. In active inference, agents are
endowed with prior beliefs that they will frequent some sensory
states more than others, and these priors reflect an agent’s
homeostatic range. Unlike rewards in classical reinforcement
learning, which are received from the environment, priors in
active inference agents are internal states of the agent that can
remain stable across environments and, hence, in this sense
may be construed as intrinsic to the agent (Friston et al.,
2015). Similarly, Keramati and Gutkin’s (2014) homeostatic
reinforcement learning model aims to make sense of how
rewarding behavioural outcome values are computed as a
function of internal states and estimate dyshomeostasis reduction
in an outcome.

Intelligent anticipatory behaviour in AI requires that it is
possible for behaviour to answer to an agent’s own intrinsic
homeostatic goals; such behaviour is grounded in self-concern.
Whether or not anticipatory architectures such as active
inference (or homeostatic reinforcement learning for that
matter) will bring embodied AI closer to intrinsically emerging
normativity is dependent on the ability of such architectures
to provide agents with means to go beyond the values that
designers initially endow them with. In the case of active
inference, this will likely include providing agents with a means
for discovering conjugate priors (i.e., hyperpriors) (see Sajid
et al., 2021) within real world environments that pose concrete
threats to the continued self-maintenance of the agent. This
kind of adaptive plastic reshaping of priors (i.e., value) may
be roughly conceptualised as a form of accelerated evolution
where a single agent is seen as an evolving lineage subject
to open-ended learning (Standish, 2003; Stanley et al., 2017).
By equipping an agent with the necessary means to learn the
normative parameters that define its continued self-maintenance
in real-world environments, the anticipatory behaviour of such
an embodied agent is poised to answer to its own self-
concern. What more is required? If what I have presented
above is accurate, then focusing on the further development
of (1) controlled system-environment energy traffic, (2) dual
information-carrying nature of interfacing bodily elements, and
(3) highly integrated, hierarchically structured systems sharing
a common fate will be necessary to bring the current AI,
the various architectures of which are already capable of
generating accurate estimations of yet-to-be encountered states,
much closer to emulating the kind of intelligent behaviour
exhibited by biological systems, a behaviour that is grounded
in self-concern.

CONCLUSION

In this article, I have argued for the centrality of concern
in biological systems even for the most basal expressions of

intelligent behaviour. I argued that if this is the case, then
there is good reason to think that if the intelligence of
an agent is to ever be comparable to the intelligence of a
biological system (human or otherwise), then it will require
the presence of some form of self-concern. I have described
three necessary features underpinning the concern in biological
systems that can be used to inform the development of
functionally similar features in embodied AI. Lastly, I have
argued that although anticipation may be seen as central to
intelligent behaviour, it is only anticipatory behaviour that
could answer to the intrinsic norms of the system and, thus,
be subject to self-concern which is a clear exhibition of
intelligence.

To close, let us look at a few questions that highlight some
of the complex issues that arise when considering the possible
implementation of self-concern in embodied AI. Although
addressing these questions falls beyond the scope of this article, I
would like to stress the importance of considering them.

Let us assume that we have managed to implement self-
concern in an embodied AI. This agent will be very unlike
any of those that we currently interact with in at least one
central manner; a self-concerned embodied AI agent will do
what it can to remain in states that are consistent with its
continued functioning/existence. This hypothetical case provides
us with the opportunity, in closing, to raise a few important
questions on potential challenges and ethical issues regarding
self-concerned AI.

One challenge is to design self-concerned embodied AI agents
in a way that avoids deceiving us (a form of explanatory
opacity via transmission of misinformation). This will be crucial
for such AI agents given the fact that if they exhibit the
kind of basic biological intelligence that I have argued arises
with self-concern, such agents may, in fact, disguise their
immediate goals (deception) in order to satisfy their long-term
goal of continued self-maintenance, not unlike many living
organisms do (e.g., mimicry, feigning death, etc.). A further
challenge is this: one can easily imagine a case in which such
a self-concerned AI agent’s continued functioning might be
incompatible (or evolves over time to be incompatible) with
the continued well-being of a human (or multiple humans)
(e.g., competition for common resources, etc.). How can this
scenario be avoided via precautionary design efforts without
jeopardising the very aim of self-concern in embodied AI?
A related ethical question arises when considering that an
embodied AI agent that implements self-concern need not
be one that is self-aware or conscious. Should the fact
that we are aware that such an AI agent has an intrinsic
concern about its own continued functioning be enough for
us to be obligated to avoid impeding its intrinsic goals?
If so, what are the situations in which we can renege on
such obligations?

One important question that we are left with is whether
self-concern in embodied AI is something that could even be
recognisable by us? Although it might take the form of machines
that flexibly and adaptively behave in ways that allow them to
avoid their own “machine death,” the kind of behaviour that will
be driven by machine self-concern is likely to be very different

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2022 | Volume 16 | Article 85761494

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sims Self-Concern Across the Scales

from that which we can readily identify in living systems. Perhaps
most interesting here is the prospect of learning more about the
aspects of self-concern that are particular to humans from our
attempts at making sense of self-concern in machines. Whatever
the case, although the emergence of concern in AI may very
well depend on us, once up and running, the intelligence that
such systems exhibit will be directed at completing tasks that are
(largely) their own.
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Resonance, a powerful and pervasive phenomenon, appears to play a major role

in human interactions. This article investigates the relationship between the physical

mechanism of resonance and the human experience of resonance, and considers

possibilities for enhancing the experience of resonance within human–robot interactions.

We first introduce resonance as a widespread cultural and scientific metaphor. Then,

we review the nature of “sympathetic resonance” as a physical mechanism. Following

this introduction, the remainder of the article is organized in two parts. In part one,

we review the role of resonance (including synchronization and rhythmic entrainment) in

human cognition and social interactions. Then, in part two, we review resonance-related

phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground

for the introduction of a design strategy and combinatorial design space for shaping

resonant interactions with robots and AI. We conclude by posing hypotheses and

research questions for future empirical studies and discuss a range of ethical and

aesthetic issues associated with resonance in human–robot interactions.

Keywords: resonance, entrainment, synchronization, metaphor, design space, social robotics, AI for wellbeing,

human-media interaction

INTRODUCTION

Resonance is a powerful physical mechanism that manifests in any physical system involving
oscillations (Buchanan, 2019). Examples include the electromagnetic resonances that enable
wireless communications, the acoustic resonances that give musical instruments their beauty, and
the orbital resonances that shaped our solar system. No matter the medium, resonance produces
amplification and synchronization effects in oscillatory systems. Details on the varying kinds of
resonance are found in Box 1.

This article reviews the role of resonance in human systems, in AI and in human–robot
interactions (HRI). Given the general appreciation of resonance in human interactions, we argue
that designers canmake use of the untapped potential of resonance to shape successful and desirable
interactions in AI and HRI.

98

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.850489
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.850489&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.d.lomas@tudelft.nl
https://doi.org/10.3389/fnbot.2022.850489
https://www.frontiersin.org/articles/10.3389/fnbot.2022.850489/full


Lomas et al. Resonance as a Design Strategy

BOX 1 | A compilation of “resonance” terms from the scienti�c literature.

The following table outlines the breadth of the concept of resonance across

three domains in the social and physical sciences. The examples given for

each type of resonance (right column) are not meant to be an exhaustive

reference list—instead, our intention is to include a few illustrative examples

of each conception of resonance.

Psychology and neuroscience

Affective resonance Decety, 2010; Mühlhoff, 2019

Bodily resonance Bedder et al., 2019

Conceptual resonance Lee et al., 2007; Howie and Bagnall, 2020

Cognitive resonance Giorgi, 2017

Embodied resonance Kirsch et al., 2016b; Gallese and Sinigaglia,

2018

Emotional resonance Gratch et al., 2013; Schrock et al., 2004;

Decety, 2010; Giorgi, 2017

Empathic resonance Azevedo et al., 2013

Harmonic resonance Lehar, 2003

Interpersonal resonance Uithol et al., 2011; Himberg et al., 2018

Intrapersonal resonance Uithol et al., 2011

Limbic resonance Lewis et al., 2001

Motor resonance Cross et al., 2006; Aglioti et al., 2008

Neural resonance Large and Snyder, 2009; Katz, 1995

Neuroaesthetic resonance Beardow, 2021

Perceptual resonance Schütz-Bosbach and Prinz, 2007

Physiological resonance Engert et al., 2019

Social resonance Kopp, 2010; Wheatley and Sievers, 2016

Other social sciences

Advertising resonance McQuarrie and Mick, 1992

Aesthetic resonance Farber, 1994

Brand resonance Keller, 2010

Carnal resonance Paasonen, 2011

Consumer resonance Shang et al., 2017

Cultural resonance McDonnell et al., 2017

Entrepreneurial resonance Warren, 2004

Ethical resonance Prasad, 2019

Frame resonance Snow and Benford, 1988; Giorgi, 2017

Historical resonance Ferreira and Vale, 2020

Human resonance Rosa, 2018

Interaction resonance Hummels et al., 2003

Institutional resonance Strydom, 2003

Morphic resonance Sheldrake, 2011

Narrative resonance van Werven et al., 2019; Duarte, 2013

Norm resonance Gutterman, 2015

Political resonance Cunneen, 2019

Sexual resonance Baudrillard, 2005

Spiritual resonance Siegel, 2013

Value resonance Schemer et al., 2012

Physics

Types of resonance discussed in physics literature include:

Antiresonance Rajasekar and Sanjuan, 2016

Autoresonance Rajasekar and Sanjuan, 2016

Chaotic resonance Rajasekar and Sanjuan, 2016

Coherence resonance Rajasekar and Sanjuan, 2016

Ghost resonance Rajasekar and Sanjuan, 2016

Harmonic resonance Li et al., 2020

Multiple harmonic

resonance

Ludeke, 1942

Parametric resonance Rajasekar and Sanjuan, 2016

Stochastic resonance Rajasekar and Sanjuan, 2016

Subharmonic resonance Ludeke, 1942

Sympathetic resonance Zhang et al., 2013

Vibrational resonance Rajasekar and Sanjuan, 2016

Furthermore, as resonance occurs in any physical system with oscillations,

there are medium-specific resonances, including the following examples:

Acoustic resonance Ziada and Lafon, 2014

(Continued)

BOX 1 | Continued

Chemical resonance Freeman et al., 2014

Electrical resonance Blanchard, 1941

Friction resonance Duan et al., 2021

Geometrical resonance McMillan and Anderson, 1966

Gravitational resonance Baeßler et al., 2015

Magnetic resonance Slichter, 2013

Mechanical resonance Wilfinger et al., 1968

Optical resonance Oldenburg et al., 1998

Orbital resonance

(mean-motion resonance)

Sinclair, 1975; Wang et al., 2021

Plasma resonance Dahm et al., 1968

Quantum resonance Moran et al., 2017

Reaction resonance Yang et al., 2015

Tidal resonance Garrett, 1972

Additionally, resonances can emerge from the combinations of basic

physical forces, such as those illustrated by the following examples:

Electromagnetic resonance Fauché et al., 2017

Nuclear magnetic

resonance

Hore, 2015

Plasma-electron resonance Tonks, 1931

Spin-mechanical resonance Poshakinskiy and Astakhov, 2019

Magneto-mechanical

resonance

Grimes et al., 2002

Electromagnetic acoustic

resonance

Hirao and Ogi, 1997

Nuclear acoustic resonance Sundfors et al., 1983

Spin gravitational resonance Quach, 2016

Electron spin resonance Wertz, 2012

Optical spin resonance Crooker et al., 1997

Finally, there are emergent resonances that take on a researcher’s name,

including the following:

Fano resonance Lassiter et al., 2010

Feshbach resonance Tojo et al., 2010

Mie resonance Roll and Schweiger, 2000

Proudman resonance Vilibić, 2008

Schumann resonance Williams, 1992

Most of the forms of resonance listed in the PHYSICS category appear to be

based upon Helmholtz’s (2009) idea of sympathetic resonance. For instance,

in a review of magnetic resonance, “the term resonance implies that we are

in tune with a natural frequency of the magnetic system” (Slichter, 2013).

Yet a recent Royal Society review article (Vincent et al., 2021) makes the

following claim: “the definition of resonance has been generalized

[to include] all known processes leading to the enhancement,

suppression or optimization of a system’s response through the

variation/perturbation/modulation of any system property.” This

incredibly broad definition of resonance in physics suggests the challenge

and need for a coherent understanding of this important concept across

physics, neuroscience, the social sciences and design.

Resonance in Human Interactions: A
Metaphor, a Mechanism or Both?
“Resonance” is a commonly-used term that describes the human
experience of powerful, connecting and activating interactions
(Duarte, 2013). For instance, we can “resonate” with a film or with
a new friend. Metaphors related to resonance are also common,
such as in the expressions “syncing up,” “getting on the same
wavelength,” or even “feeling good vibes.”

Although the term “resonance” is often intended as a
metaphor to describe an interaction, in many cases physical
resonance may also be a mechanism underlying the interaction.
For instance, people metaphorically “resonate with music” but
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the brain also physically resonates with music: the actual
frequencies of sound and rhythm can be observed in the
frequencies of electrical activity in the brain (Coffey et al., 2019,
2021; Kaneshiro et al., 2021; Pandey et al., 2021). Or, consider
the common expression “syncing up” to describe a meeting.
Even though “syncing” (that is, synchronization) is intended
purely as a figure of speech, human communication does link to
measurable “inter-brain synchrony” (Dumas et al., 2010; Dikker
et al., 2019; Czeszumski et al., 2020; Kingsbury and Hong, 2020;
Dumas and Fairhurst, 2021; Moreau and Dumas, 2021). This
article aims to create a bridge between the human experience
of resonance and resonance as a physical mechanism. In so far
as resonance is more than a metaphor—if resonance is also a
causal mechanism in human interactions—then this will have
implications for measurement and design.

Some skepticism is justified in viewing resonance in human
interactions as “real” rather than as just a metaphor. Historically,
sympathetic resonance (sympathy: σv̌µπα̌θεια̌ or sumpátheia)
was viewed as the primary mechanism for magical phenomena.
For instance, the neoplatonic philosopher Plotinus (205–
270) wrote: “But how do magic spells work? By sympathy
[sumpatheiai] and by the fact that there is a natural concord
[sumphonian] of things that are alike [homoion] and opposition
of things that are different.” (Lobis, 2015). Even in the modern
era, there remains a widespread belief system that positive
thinking or “thought vibrations” can bring about positive real-
world occurrences through sympathetic resonance (Atkinson,
1906; Hicks and Hicks, 2006; Ehrenreich, 2009). Perhaps as a
result of this association with magic, resonance was not always
acceptable as a scientific explanation. A recent column in Nature
Physics notes:

“. . . until the very late nineteenth century, scientists were reluctant

to use the term ‘resonance’ in connection with anything except

acoustic phenomena, where it originated. Use of the word in other

fields. . . always included some disclaimer that the link was “only

by analogy”, despite the formal equivalence of the fundamental

dynamical equations.” (Buchanan, 2019)

Now, the situation has changed: the term “resonance” is
abundant in contemporary scientific literature (reviewed in
Box 1). However, the term is often used ambiguously, where it
is unclear whether “resonance” is being treated as a metaphor
or as a physical mechanism. This ambiguity is present in the
social sciences as well as in physics. Resonance in physics
is an increasingly broad concept that refers to a range of
phenomena. To bring clarity, we offer a glossary in Box 2 with
proposed definitions for resonance and related terms, such as
synchronization, entrainment, reverberation, etc.

Resonance as a Physical Mechanism
To provide grounding for resonance in human dynamics, this
section outlines physical resonance as a causal mechanism in
acoustics. Though we focus on sound, it is important to note
that resonance operates in all oscillating systems, regardless of
medium. This universality results from the fact that resonance is
a mathematical property—it is the natural result of the alignment
of phases in oscillating systems.

A wine glass offers an excellent example of the physics of
resonance. First, if a glass is gently tapped with a spoon, there
will be a reverberating sound that reflects the natural frequencies
of oscillations in the wine glass. These natural frequencies,
which are inherent to the structure of the glass, are also known
as characteristic frequencies or eigen frequencies (“eigen” is
German for “own” or “inherent”). These natural frequencies are
also the resonance frequencies of the glass: when external, forced
oscillations match these natural frequencies, resonance occurs.
But, while tapping the glass with a spoon may reveal the resonant
frequencies of the glass, the wine glass is not in resonance with
the spoon.

Sympathetic resonance occurs when external, forced
oscillations are aligned to a system’s own natural oscillations.
If a loudspeaker plays the resonant frequencies of a wine glass,
the glass will begin to oscillate at much greater amplitudes than
if the speaker played other, non-resonant frequencies. Now the
glass is in resonance with the speaker. This effect manifests in
other common acoustic systems, as well. When one tuning fork
is struck near another identical fork, they will both begin to
oscillate together, having been coupled together in synchrony via
the acoustic vibrations. Similarly, two strings tuned to the same
note will move one another in synchrony through sympathetic
resonance (Figure 1).

The relationship between resonance, synchrony and
amplification was articulated by German nineteenth century
scientist Hermann Helmholtz. His book “On the Sensations
of Tone as a Physiological Basis for the Theory of Music”
(Helmholtz, 2009; originally published 1863) offers the first
scientific exposition of sympathetic resonance in acoustics.
His primary illustration of sympathetic resonance involves
the resonance between a church bell and its bellringer. If the
bellringer provides consistent pulls at a frequency that aligns
to the bell’s natural rate of swinging, then the swinging will
be rapidly amplified. Importantly, the sympathetic resonance
occurs when phases of oscillation align: that is, when the
downward pull of the bellringer matches up with the downward
motion of the bell’s swing. The role of synchrony in sympathetic
resonance is easier to observe with a slow bell ringer than with
the rapid oscillations of a wine glass. Yet, even the sympathetic,
synchronized oscillations of a wine glass can be made visible with
high frequency camera equipment (Slow Mo Guys, 2021).

Synchrony between systems does not necessarily imply
sympathetic resonance. Two systems might be synchronized
with each other due to a third system, for instance, or for
other non-causal reasons (Hasson and Frith, 2016). Other forms
of resonance only occur with powered oscillators (like the
clocks and metronomes in Figure 1), namely entrainment and
synchronization. These terms—which explain phenomena like
the synchronization of fireflies or the entrainment of dancers to a
musical beat— are defined and discussed in Box 3. In this article,
we treat these two terms as subsets of sympathetic resonance (by
analogy, like squares are subsets of rectangles).

Resonance as a Metaphor
Having briefly considered the operation of resonance as a
physical mechanism, we now wish to bring clarity to the
metaphorical use of resonance in science and broader culture.
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BOX 2 | Glossary of terms.

Resonance, in this article, is treated as an umbrella term that involves physical resonance (either sympathetic or internal), synchronization, entrainment, memesis

and attunement—as well as metaphorical resonance.

Sympathetic Resonance occurs when external, forced oscillations are aligned to a system’s own natural oscillations and this results in amplification and

synchronization. The amplification effect occurs when the natural frequencies of a system align with the frequencies of an external oscillator. Resonance also involves

a synchronization or mirroring effect, as the phase and frequency of an external oscillator are reflected in the phase and frequency of the system’s response.

Internal Resonance involves the activation of the natural frequencies (“eigen frequencies”) of a system. For instance, tapping a wine glass results in internal

resonances.

Synchrony is a broad term that describes the temporal correlation of independent units of action. Correlations can occur in frequency independently from phase;

for instance, heart rate synchrony can occur in people who have the same heart rate, even if their hearts do not beat at exactly the same time. Although all meanings

of resonance should refer to a causal phenomena, synchrony can occur without a causal relationship (i.e., correlation does not imply causation).

Synchronization, in contrast to synchrony, should be understood as a complex dynamic and causal process—not a state. Pikovsky et al. (2001) carefully define

synchronization as “an adjustment of rhythms of oscillating objects due to their weak interaction.” Further, synchronization requires “self-sustained oscillators,” like a

powered metronome. Self-sustained oscillators are those that “oscillate with a distinctive waveform at a preferred amplitude that reflects a balance between energy

inflow and dissipation.” (Strogatz, 2003). Synchronization also requires a sort of “weakness in coupling.” Weakness is important because a very strong coupling

between systems simply results in immediate complete synchronization. The synchronization of two oscillators does not require that the two have the same phase at

the same time; for instance, two clock pendulums can be synchronized but swing in anti-phase. When an external oscillation frequency is nearly aligned to a natural

frequency of a powered oscillatory system, the systems will “phase lock” together and synchronize. Synchronization can occur at “a rational fraction of the resonance

frequency,” like 2:3 or 2:1 (Shim et al., 2007).

Entrainment occurs when a consistent rhythmic pulse of one oscillator shifts the frequency of another self-sustained oscillator. For instance, a drummer’s beat can

entrain the motion of rowers or entrain dancers to a common rhythm. Like synchronization, entrainment requires weakly-coupled and self-sustained (powered)

oscillators (Pikovsky et al., 2001). In fact, the two terms are nearly identical; at least one author (Izhikevich, 2007) claims that entrainment is limited to 1:1

synchronization. According to Helfrich et al. (2019), true entrainment requires that “an ongoing oscillator is entrained by a rhythmic input at a slightly different

frequency. The entrained oscillation becomes phase-locked and the amplitude increases. After the entraining stream stops the oscillator exhibits a reverberation at

the driving frequency for several cycles.” Some definitions of entrainment require that an external oscillator unidirectionally influences a powered oscillator (Lakatos

et al., 2019) but other definitions allow for mutual entrainment, “whereby two rhythmic processes interact with each other in such a way that they adjust toward

and eventually ‘lock in’ to a common phase and/or periodicity” (Clayton et al., 2005). In this article, entrainment is treated as the mechanism for synchronization

(synchronization through entrainment) and both terms are treated as types of resonance (see Box 3).

Reverberation can be defined by the reverberation time, which is the time required for an oscillation to “fade away” once the external input has stopped. After an

impulse, a system’s natural or resonance frequencies tend to continue to reverberate, as in a tapped wine glass or echoes in a cathedral.

Coherence refers to the statistical similarity between two or more oscillating systems (Wolf, 2010).

Mimesis, or imitation, describes the intentional or non-intentional replication of movement patterns. These replications do not need to be synchronous. For instance,

a child sticking out their tongue and another child copying them. This can be viewed as a type of resonance enabled by memory.

• Behavioral Mimicry occurs when people behave in similar or identical ways within a short period of time. (Mayo and Gordon, 2020); i.e., “the replication of automated

behaviors”

• Imitation can be described as “a short sequence of actions that I see my interaction partner performing and then consequently replicate…imitation is not mere

mirroring in the sense that one copies every little part of another’s movement. It is rather the replication of the action with regard to the outcome of the action which

leads to the acquisition of new skills” (Lorenz et al., 2016).

Behavioral synchronization describes behaviors that are synchronous in time, but potentially complementary (e.g., turn-taking) (Chartrand and Van Baaren, 2009).

Physiological Synchrony or Biobehavioral synchrony involves the rhythmic and temporal correlation of breath rate, heart rate, hormone production, or interbrain

synchrony (Feldman, 2017; Mayo and Gordon, 2020)

Psychological Attunement has been defined as “Entrained rhythms [that] constitute a form of dynamic equilibrium in which partners vary their behaviors over time

while keeping this variation within desired limits” (Sadler et al., 2009).

The Vibe (e.g., “good vibes” or “vibing with”) is a pervasive cultural construct used to describe how people perceive the shared affective experience and aesthetic

expectations of a group, a place, a product, a brand, a robot, etc. The vibe is different from a person’s individual affective reaction, as it describes the aspects of

conscious experience that are perceived to be shared between people (Witek, 2019). Hypothetically, the vibe emerges from interpersonal resonance effects.

Harmony is an ancient concept (Lomas et al., 2022) that has an intrinsic relationship with resonance: the harmonic tunings of stringed instruments maximize

acoustic resonance between the tuned strings. For example, musical notes with consonant intervals (such as the 2:3 ratio of a musical fifth) will share common

acoustic harmonics, while dissonant intervals do not. These shared harmonics produce physical resonances between tuned strings—and perhaps resonances

between neural oscillators, as well.

A recent review of the word “resonance” in the language
of scientific literature (Ruthven, 2021) reveals that resonance
typically serves as an implicit metaphor to indicate 1. agreement
(e.g., new evidence can resonate with an existing theory), 2.
arousal (e.g., a film that resonates is engaging and moving) or
3. action (e.g., the resonance of a speech can motivate people to
take action). But, despite a vast number of scientific articles that
use resonance as a term, it is only very rarely defined. The lack

of definition suggests that “resonance,” as a term, is easily and
broadly understood intuitively as a metaphor.

Metaphors are useful when they enable concrete, familiar
experiences to communicate abstract, conceptual meanings
(Lakoff and Johnson, 1980; Yang, 2014). A metaphor involves
the pairing or alignment of concepts between a concrete source
and a more abstract target; this coupling of concepts produces
mappings that allow multiple concepts to be integrated together
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FIGURE 1 | (Left) Resonance between mutually attuned tuning forks and strings involves synchronization and amplification. (Right) Sketch by Christiaan Huygens (b.

1629), who discovered “the sympathy of two clocks.” When two clocks are placed on a common beam, their two pendulums will eventually synchronize. Right

bottom: a set of weakly coupled powered metronomes (self-sustained oscillators) will eventually synchronize. Photo courtesy: Harvard Natural Sciences Lecture

Demonstrations.

into an emergent space of meaning (Holyoak and Stamenković,
2018). An example set of metaphorical mappings use the
metaphor “Love is a Journey”: for instance, in a journey (the
source) there are travelers while in love (the target) there are
lovers. In Table 1, we provide a similar set of explicit mappings
between the metaphor of acoustic resonance and resonant
human interactions.

With this introduction to resonance established, we are
now posed to explore the alignment between the metaphorical
experience of resonance (as in a film that resonates) and the
physical phenomena of resonance itself. The next section of the
article considers the research basis for understanding resonance
in human interactions.

PART 1: RESONANCE IN HUMAN
INTERACTIONS

A common example of physical resonance in human interactions
can be found on nearly any playground. When pushing someone
on a swing, the pusher needs to coordinate the timing of
their pushes to the swing’s natural back-and-forth oscillation
(determined primarily by the length of the swing). Does pushing
at a faster rate help? No: if the pusher simply pushed more times
per second, most of the pushes would do nothing because they
would not line up with the movement of the swing. When a
pusher aligns their timing to the natural frequency of the swing,
they amplify the effects of their effort: many small, well-timed
pushes are enough to get the swinger high into the air.

Beyond this simple example, where else might resonance
occur in human interactions? To scope our search, we assume
that sympathetic resonance can only occur when external
oscillations and natural oscillations align. Therefore, physical
resonances in human systems should only be present during
human activities that have a natural frequency or rhythm
of oscillation.

Consider an everyday rhythmic human activity: walking.
Researchers have used accelerometers to determine the dominant
and natural up-and-down frequency of walking. The typical
frequency of naturalistic walking is about 2Hz, or two steps
per second (MacDougall and Moore, 2005). This natural
oscillatory frequency can vary—some people walk faster or
slower than others. However, across a diverse set of participants,
the researchers found that the tempo of walking was not
dependent upon height, weight, or other physical factors. In fact,
the researchers suggest that the 2Hz natural tempo is the result
of genetically encoded “central pattern generators” in the spinal
cord, as these are the basis of the tempo of locomotion in other
animals (Guertin, 2013).

This is not just trivia: structural engineers need to take into
account this 2Hz human walking pace in every footbridge that
is built. Famously, a 2Hz resonance frequency caused the UK’s
Millenium Bridge to dramatically sway side-to-side when it was
loaded with pedestrians (Dallard et al., 2001; Strogatz et al.,
2005). On opening day, the bridge became so crowded that
most people could not easily walk forward—instead people were
so packed-in that they had to walk in a sort of side-to-side
waddle. Unfortunately, the bridge had a natural side-to-side 2Hz
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BOX 3 | Clarifying the relationship between resonance, entrainment and synchronization.

This article treats resonance as an umbrella concept that includes both metaphorical resonance and resonance as a physical mechanism. As resonance has an

expansive meaning in physics (Box 1), we first distinguish between typical resonance (which involves the natural frequencies of a system) and atypical resonance

(which does not involve natural frequencies). Then, typical resonance includes internal resonance (the activation of reverberating natural frequencies) and sympathetic

resonance (alignment between the frequencies of external oscillations and the natural frequencies of a system). Sympathetic resonance can be further divided into

passive resonance and active resonance. Passive resonance occurs with unpowered oscillators (like a wine glass) while active resonance occurs with powered

or self-sustained oscillators (like battery-powered metronomes). Active resonance includes the phenomenon of entrainment, which occurs when a self-sustained

oscillator synchronizes its phase and frequency to a weakly coupled external oscillation.

The natural or resonance frequency of an oscillator can be considered its preferred frequency. Powered oscillators, like metronomes, also have a preferred amplitude

of oscillation—this is not the case for passive oscillators, like wine glasses. When external frequencies align with the preferred frequencies of a wine glass, the most

noticeable aspect is the amplification of the amplitude of the oscillation. In contrast, when external oscillations align with the natural frequencies of a powered oscillator,

the most noticeable aspect is the synchronization. However, the synchronization of frequency and phase also occurs between a wine glass and an external speaker

while amplification also occurs with synchronized metronomes. For this reason, we describe entrainment and synchronization as types of sympathetic resonance;

namely, the type involving a self-sustained oscillator.

The scientific relationship between entrainment and resonance is often a point of confusion due to the lack of clear definitions (Helfrich et al., 2019). Our view diverges

from other descriptions of resonance that are limited to passive, unpowered systems (Pikovsky et al., 2001; Guevara Erra et al., 2017; Lakatos et al., 2019). Our view is

that the concept of resonance can easily accommodate active forms as well as passive forms, as both involve preferred frequencies of oscillation (natural frequencies),

synchronization effects and amplification effects. Given the ubiquity of resonance in oscillatory systems—and its already expansive definition in physics (Box 1)—why

should resonance only refer to unpowered systems and thus exclude dissipative systems, like the brain? Rather than treating “resonance” in interpersonal interactions

as a complete misnomer, we make the case that it is appropriate and physically accurate to say that we resonate with people, films or other media. We hope that

this view opens the door to a more comprehensible and coherent scientific study of resonances in human interactions.

Types of Resonance

• Metaphorical Resonance

• Physical Resonance

◦ Atypical Resonance: Does not involve natural frequencies (see Vincent et al., 2021)

◦ Typical Resonance: Involves natural frequencies

� Internal Resonance (involves the activation and reverberation of natural frequencies within a stimulated system, like the reverberations of a tapped wine

glass)

� Sympathetic Resonance (involves the alignment of external frequencies with the natural frequencies of a system—when the forced frequencies match the

natural frequencies)

• Passive Resonance: unpowered and externally sustained; like a wine glass vibrating in synchrony with external oscillations.

• Active Resonance: powered and self-sustained, like a metronome synchronizing with external oscillations. This encompasses different types

of synchronization:

◦ Complete Synchronization (due to strong coupling)

◦ Entrainment (Phase Synchronization)

� In-phase

� Anti-phase

� Phase shifted

◦ Frequency Synchronization

◦ Envelope Synchronization

◦ Partial and Asynchronous Synchronization (e.g., mimesis)

resonant frequency. As the bridge started to sway back and
forth, this led to the synchronization of the waddling motion of
the thousands of pedestrians. Without deliberate coordination,
people stepped left and stepped right in synchrony with each
other, entrained to the swaying motion of the bridge. As a
result, the 2Hz side-to-side oscillation of the bridge was further
amplified to dangerous levels.

Given that 2Hz is a natural frequency of human movement,
the theory of resonance predicts that 2Hz should also be a
resonance frequency. That is, external rhythmic inputs at about
2Hz should cause a synchronization and amplification of human
movement. Is 2Hz actually a resonance frequency of movement?
One way to test this prediction is to consider the popularity
of music at different beats per minute (BPM), where 120 BPM
would be equivalent to 2Hz. Figure 2 presents a histogram

showing the relative distribution of BPM in the Top 50 songs for
each year of the past decade, worldwide. This reveals a distinct
peak at 120 beats per minute.

Is this a resonance effect? The graph in Figure 2 resembles
a resonance curve: given a range of input frequencies, there is
a selective amplification at the same frequencies as the natural
frequencies of the stimulated system (i.e., the 2Hz natural pace
of movement in humans). However, the peak may arise for
a variety of reasons, from the musicians’ recognition of the
popularity of 120 BPM to the listeners’ increased familiarity
with 120 BPM songs. Most importantly, there are many more
songs released at 120 BPM. So, even though it is not entirely
appropriate to refer to the graph as a resonance curve, it may
still be a function of resonance effects (e.g., a greater likelihood
of rhythmic entrainment to walking frequencies at 120 BPM).
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In this article, we propose that physical resonance can
be distinguished from purely metaphorical resonance when
the mathematics of resonance (as used to characterize other
physical systems) can be used to model human interactions.

TABLE 1 | A hypothetical conceptual mapping of acoustic resonance and

human resonance.

Acoustic resonance (source) Human resonance (target)

A string tuned to another string can

respond sympathetically

A person attuned to another person

can respond sympathetically

A string’s sympathetic response to

another string results in synchrony

A person’s sympathetic response to

another person results in synchrony

A string mirrors the vibrations of

another string

A person mirrors “the vibe” of another

person (see Box 2)

A string vibrates to the frequency of

another string, if tuned

A person responds to the expression

of another person, if attuned

The attunement of strings is based on

a common or an aligned set of

oscillations

The attunement of people is based on

a common background or an aligned

set of experiences

Tuning strings enhances the

resonance between strings

Attuning people (e.g., with common

experiences) enhance resonance

Resonance results in greater

amplitude of sound

Resonance results in greater

excitement in people

A string will only selectively resonate

to particular frequencies, based on its

own natural oscillations

A person will only selectively resonate

to particular [people, films, books,

etc], based on their own natural

propensities

Synchronization, amplification and signal alignment are the
mathematical hallmarks of resonance—therefore, physical
resonance in human systems should occur when the oscillations
of external signals match natural human oscillations and this
results in synchronization and increased energy (amplification).
This viewpoint treats the physics of human resonance in a similar
fashion as other physical systems yet it leaves room for future
research to further clarify the relationships involved.

Rhythmic Human Interactions
The previous example shows how rhythmic human activity can
be investigated as a context for physical resonance phenomena.
Rhythmic human interactions clearly occur in artistic domains,
such as music-making (Clayton et al., 2005), dance (Larsson
et al., 2019) and various kinds of cultural rituals like chanting
(Gelfand et al., 2020). Rhythmic interactions are also common
in everyday life, as in the case of walking, conversational
turn-taking (McGarva and Warner, 2003; Wilson and Wilson,
2005; Lee et al., 2010), patterns of eye contact (Wohltjen and
Wheatley, 2021) or with interactions like handshakes (Melnyk
and Hénaff, 2019). More intimate rhythmic interactions occur
during human sexual behavior (Safron, 2016). Leading up to
the moment of birth, midwives often advise expectant mothers
to push in phase synchrony with their own rhythmic uterine
contractions (Hanson, 2009). Researchers have also observed that
the earliest interactions between parent and child are strongly
rhythmic (Stern et al., 1985). Babies cry in a rhythmic manner

FIGURE 2 | The above histogram is compiled from a Kaggle dataset containing the “Top 50” Billboard songs from 2010 to 2019. It appears to be a resonance curve

showing maximum excitement at a preferred frequency of oscillation. However, note the sharp dropoff from 120 BPM to 118 BPM—this is not expected in a

resonance curve, as the frequencies close to resonance tend to resonate strongly as well. There may simply be very few songs released with this BPM. But, while this

graph might not be a resonance curve, it may be a result of meaningful resonance effects in the brain—an increase in amplitude due to the alignment of external

frequencies with natural frequencies https://www.kaggle.com/leonardopena/top-spotify-songs-from-20102019-by-year.
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and caregivers soothe them with synchronized motions (Trehub
and Trainor, 1998). Synchrony in caregiving appears to literally
“tune” the human social brain (Yaniv et al., 2021).

“This resonance or echoing of affect, feelings, and emotions that

takes place in the reciprocal interaction between infants and their

caretakers is a necessary element for the development of empathy

and advanced social cognition.” (Decety and Meyer, 2008)

Neurobiological Rhythms and Human
Nature
What makes human behavior so rhythmic? Human rhythms are
believed to emerge from a broad range of biological oscillators
that are present across the brain and the rest of the body
(Varga and Heck, 2017). For instance, rhythmic central pattern
generators in the spinal cord not only drive locomotion (Ijspeert,
2008; Guertin, 2013), but also drive heart rhythms (Bucher et al.,
2015) and breath rhythms (Molkov et al., 2014). Furthermore,
body and brain oscillations appear to integrate together in a
hierarchical architecture (Klimesch, 2018).

Rhythmic—and resonant—phenomena are found in the
brain at multiple levels, from neurons to circuits to brain
waves (Buzsaki, 2006). Individual neurons have natural intrinsic
oscillatory periods (Lampl and Yarom, 1997); neurons can
be tuned to respond to different input frequencies through
resonance, like “strings on a violin” (Das et al., 2017). At the
level of neural circuits, the reverberation of recurrent activity
in neural ensembles plays a key role in memory (Wang, 2001;
Tegnér et al., 2002; Han et al., 2008), as originally predicted
by neuroscientist D.O. Hebb in 1949 (Hebb, 2005). Finally,
large-scale electrical oscillations in the brain, or brainwaves,
demonstrate clear resonance effects (Herrmann, 2001) that are
observable through electroencephalography (EEG). Further to
this, neurobiological processes associated with adaptive learning
(Grossberg, 2013, 2017), perceptual learning (Raja, 2020), and
ecological cognitive architecture more generally (Raja, 2018),
have all been theorized as forms of physical resonance.

Neurons are, technically speaking, non-linear oscillators
(Izhikevich, 2007; Stiefel and Ermentrout, 2016)—therefore, it is
not so surprising that large collections of neurons exhibit both
internal resonance effects (one part of the brain resonating to
another) and external resonance effects (the brain resonating to
environmental phenomena).Many scientists believe that physical
resonance in the brain plays a major role in music perception,
such as the physicist and neuroscientist Ed Large, who claims:

“The brain does not ‘solve’ problems of missing fundamentals, it

does not ‘compute’ keys of melodic sequences, and it does not

“infer” meters of rhythmic input. Rather, it resonates to music. . .

certain aspects of this process can be described with concepts

that are already well-developed in neurodynamics, including

oscillation of neural populations, rhythmic bursting, and neural

synchrony.” (Large, 2010)

Some researchers have recently proposed a unified account of
rhythmic synchronization and entrainment in the brain (Lakatos
et al., 2019); other researchers have proposed a unified account of

the biological, neurological and physical mechanisms involved in
the “rhythmic entrainment of biological systems” (Damm et al.,
2020). Rhythmic entrainment has been found to govern patterns
of interaction at a social, population, and even species level—
where, in the latter case, the entrainment of natural oscillations
can be observed at the scale of economies and ecosystems
(Greenfield et al., 2021). In short, it would appear that resonance
effects can operate all the way up and all the way down: from
neurons to economies.

Entrainment and Rhythmic
Synchronization
Human interactions can naturally synchronize through the
process of entrainment (Boxes 2, 3), which is akin to the natural
synchronization of metronomes (Figure 1). Social neuroscientist
Ruth Feldman (2012, 2017) argues that biobehavioral synchrony
(in behavior, heart rate, endocrine production and brainwaves)
serves as a key principle underlying parental love, romantic love,
friendship and human attachments. Indeed, when loving human
partners interact, their rhythmic communication produces
measurable physical synchronization in behavior (Grafsgaard
et al., 2018), in heart rate (Prochazkova et al., 2022) and in the
brain (Kinreich et al., 2017).

Some argue that the ability to synchronize to a beat is one of
the core skills associated with human social behavior. Kirschner
and Tomasello (2009) found that children 2–4 years old could
adjust their natural drumming tempo to match another beat—
but that their accuracy in synchronizing was significantly higher
when they drummed with a human partner (as opposed to
drumming along with a machine or drumming along with a
drum sound produced by a speaker). The authors argue that
“drumming together with a social partner creates a shared
representation of the joint action task and/or elicits a specific
human motivation to synchronize movements during joint
rhythmic activity.”

Humans are typically much less able to synchronize to
rhythms of visual flashes than to rhythms of auditory tones (see
review by Repp and Su, 2013). But, rhythmic entrainment and
synchronization is not specific to music or auditory experiences.
With certain forms of visual stimuli (i.e., bouncing balls),
visual synchronization becomes nearly as accurate as auditory
synchronization (Iversen et al., 2015). Researchers have also
found that deaf individuals exhibit enhanced synchronization to
visual rhythms, suggesting that the ability to attune to rhythms
is at least partially based on experience and not just a result
of biological coupling between the auditory and motor system
(Iversen et al., 2015). Researchers have found that humans
can synchronize to tactile pulses on their back with higher
accuracy when feeling the vibrations played over their entire
back rather than at just a small portion; similarly, rhythms that
engage multiple sensory modalities also produce more accurate
synchronization (Ammirante et al., 2016). This suggests that
overall sensory immersion and attentional engagement affects the
propensity to synchronize with rhythms.

Synchronization helps support coordinated actions between
individuals. Meta analyses (Morgan et al., 2017) have shown
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that behavioral synchrony in groups increases prosocial behavior,
increases perceived social bonding, and generally feels good (as
measured as increases in positive affect). Why might behavioral
synchrony feel good? Cracco et al. (2021) claim that “synchrony
is aesthetically pleasing and a signal of group cohesion, as
stimuli that are processed more fluently are known to produce
a hedonic response.”

Rhythmic synchronization is very rare in the animal kingdom,
at a social level, apart from special examples (see extended
discussion in Box 4). The human capacity for rhythmic
synchronization may have coevolved in human cultures because
it enhanced social bonding between sexual partners, between
parents and children, and within larger social groups. Savage et al.
(2021) state:

“‘Neural resonance’ (synchronous brain activity across

individuals) facilitates social bonding through shared experience,

joint intentionality, and ‘self-other merging’. Through the

production of oxytocin and endogenous opioids, neural

resonance also facilitates prosociality.”

Hyperscanning and Inter-brain Synchrony
The scientific understanding of rhythmic entrainment and neural
resonance is a fast-moving area of neuroscience that is being
propelled by new hyperscanning methods that scan the brains
ofmultiple interacting participants simultaneously. Interpersonal
neural synchrony at the group and dyadic level has been
shown to be associated with a number of predictors, including
shared stimulus features, joint actions, personality traits, social
intentionality, relationship quality, and cooperation (see, e.g.,
Czeszumski et al., 2020 for review).

For example, recent work from co-authors of this article
investigated the relationship between inter-brain synchrony and
group dynamics and found that EEG inter-brain synchrony
predicted collective performance among teams better than self-
report (Reinero et al., 2021). In another line of work, group-
based inter-brain coherence predicted class engagement and
social dynamics in groups of high school students during their
real-world lessons (Dikker et al., 2017; Bevilacqua et al., 2019).
Social closeness with the teacher also correlated with brain-to-
brain synchrony—that is, enhanced synchrony was found with
students who reported greater engagement with the teacher.
Finally, and perhaps most directly related to the concept of
resonance: Brainwaves of students who engaged in face-to-
face interactions before class were more synchronized during
class, even if students were no longer interacting. This finding
raises interesting questions about the role of resonance in the
directionality of the relationship between human face-to-face
interaction, inter-brain synchrony, and social connectedness.

The Downside of Being in Sync: Chained to
the Rhythm?
Humans may be predisposed to synchronize with each other, but
this does not always lead to positive outcomes. Synchronization
also has some important tradeoffs; Gelfand et al. (2020)
claim that synchrony can produce conformity, destructive
obedience, groupthink, antisocial aggression and also impair

group creativity. They point to findings (Wiltermuth, 2012a,b)
that people who have been randomly assigned to a synchronous
activity are more likely to comply with an anti-social order
(e.g., irritating a stranger) and to follow a morally compromised
command (in the study, participants were asked to grind up live
bugs). Synchrony also increases the likelihood that people will
engage in conformity, like copying majority opinions rather than
following their personal preferences (Dong et al., 2015). Further,
sometimes synchrony is simply “situationally inappropriate;” in
a study of a complex verbal coordination, groups that were
randomly assigned to a synchronization task performed worse,
reported higher levels of conflict and reduced group cohesion
(Wood et al., 2018).

Gelfand et al. (2020) randomly assigned participants to
march synchronously around a college campus or at their
own pace. The participants who synchronized showed reduced
creativity when writing stories. They also found that synchronous
marching discouraged the development and sharing of minority
perspectives during decision-making. They relate this finding
about synchrony to the need to balance “tightness” and
“looseness” in culture.

The ability to flexibly move in and out of synchrony appears to
be critical to adaptive flexibility. Mayo and Gordon (2020) claim
that “two tendencies exist simultaneously, one to synchronize
with others and another to move out of synchrony and act
independently. We suggest that an adaptive interpersonal system
is a flexible one, able to continuously adjust itself to the
social context.”

Savage et al. (2021) point out the key difference between
rhythmic integration and pure synchronization: rhythm is
predictable but also flexible to accommodate diverse individual
contributions. This is because rhythm involves two essential
components: 1. equally timed beats (isochronicity) and 2. a
hierarchical structure (meter). “While synchronization solely
to the beat (e.g., in marching or unison chanting) allows
large groups to integrate, it tends to submerge individual
contributions. Meter solves this problem by allowing many
individuals to contribute, out of phase, to the same integrated
rhythm.” Social rhythms (of speech, music, dance, etc.) can
thus support diversely coordinated actions within a loosely
unified structure.

Origins of Empathy: Sympathetic
Resonance
Sympathetic resonance—including synchronization and
rhythmic entrainment—appears to have been a key factor in
human evolution (Savage et al., 2021; Lin and Lomas, 2022).
Resonance relates in a fundamental way to the human capacity
to feel what another person feels, which is often called empathy.
But, before the term “empathy” was coined in the twentieth
century, the ability to feel what others feel was referred to
as “sympathy”—as in sympathetic resonance. The eighteenth
century philosopher Adam Smith wrote his first book, “The
Theory of Moral Sentiments” (Smith, 1759), with the general
thesis that “sympathy” accounts for a large portion of moral
behavior. Specifically, he explained that people like to help other
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BOX 4 | Resonance in non-human animals.

Despite the relative utility of resonant phenomena in humans (such as social synchronization and entrainment), it is rare in the animal kingdom. There are examples of

animals synchronizing with other members of their species: for instance, chirping insects, croaking frogs, claw-waving crabs, and flashing bioluminescent animals,

like fireflies (Wilson and Cook, 2016). However, these examples seem to involve somewhat involuntary neurological connections in fairly simple animals. Why is

entrainment not more common? While this is not well-understood at present, Wilson and Cook (2016) provide three criteria for rhythmic entrainment: 1. an animal

needs to have the mechanical ability to move with the beat (i.e., the tempo should be similar to an animal’s natural tempo of movement), 2. the animal must be able

to extract the beat from the sensory environment and pay attention to it, and, crucially, 3. the animal must have the motivation to voluntarily move in union.

Until very recently, it was believed that only human beings could synchronize to an external rhythm, like a musical beat. It was only with the advent of YouTube that

researchers first discovered Snowball the Dancing Cockatoo (Patel et al., 2009; Patel and Iversen, 2014) and 33 other examples of animals that appeared to show

entrainment to music (Schachner et al., 2009). These examples spanned 14 different bird species—and an Asian Elephant. This led to the belief that only species

that had previously evolved the capacity for vocal mimicy could entrain to a beat. Schachner et al. (2009) noted that, despite a large number of “dancing” dog videos,

none demonstrated the ability to synchronize with music (even though some dogs had been trained for years to compete in dance competitions).

Some animals can be reliably trained to synchronize to a rhythm. In 2011, researchers demonstrated that Budgerigars, a parrot-like bird, could learn to produce

rhythmic beak tapping patterns that synchronized to an audio-visual metronome (Hasegawa et al., 2011). Then researchers managed to train Ronan, a Sea Lion

(Cook et al., 2013), to entrain to a beat—this was surprising because Sea Lions are not vocal learners.

Over the past decade, there has been much investigation of the capacity for non-human primates to entrain to a musical beat. Sounds can induce spontaneous

rhythmic swaying in chimpanzees (Hattori and Tomonaga, 2020)—however, this swaying effect occurs in response to randomized rhythms and when sounds are

rhythmic (Bertolo et al., 2021). Monkeys have been trained to tap in response to an auditory or visual metronome, however, their movements are always reactive:

they always tap following the stimuli (although much faster than they can in a single reaction time experiment; see Wilson and Cook, 2016). In contrast, when humans

entrain to a similar metronome, they typically tap slightly before each stimulus in the beat. In just one case, researchers have trained monkeys to make predictive,

synchronized eye movements to a visual metronome—however, the monkeys had to be rewarded for each trial (Takeya et al., 2017). Based on this evidence, the

authors suggest that monkeys and other animals may have the capacity for “predictive and tempo-flexible synchronization to a beat” but might not be “intrinsically

motivated” to synchronize!

In summary, it is surprising that so few animals—neither dogs nor monkeys—are predisposed to entrain to a beat. After all, even animal neurons have the capability

to entrain to periodic rhythms. Why, then, are animals generally so unable—or unwilling— to entrain to a beat? One possibility: consider that the heart is entrained

to rhythms produced by central pattern generators in the spinal cord; clearly, animals need to protect their heartbeat from becoming entrained to external stimuli. It

may be that, even in the simplest of animals, there is a need to evolve defense mechanisms that can protect against unwanted resonance effects. Part of the human

capacity for rhythmic entrainment may result from the ability to “let one’s guard down” in order to open up to certain kinds of external rhythmic entrainment with other

people. This would suggest that humans only resonate to external stimuli when they feel safe to do so; after all, stress may make it difficult to dance or to be moved

by music. This also suggests that animals may be able to resonate, if they could be emotionally or biochemically prepared to do so. This opens up possibilities for

animal-robot and animal-AI interactions that can be explored in the future.

people because they sympathetically feel good when other people
feel good and sympathetically feel bad when other people feel
bad (Schliesser, 2015).

Later, the nineteenth century German psychologist Theodore
Lipps used the German term Einfühlung to describe how people
“feel into” the states of other people and even art pieces. By
using an inner imitation or simulation, people seem to be able to
fuse with artworks or persons through a process of “Psychische
Resonanz” (Lipps, 1891). For instance, watching a tightrope
walker produces a resonance with internal associated feelings like
vertigo. The representation of the performer in one’s own mind
allows one to feel how oneself would feel in the same situation.
The psychologist Edward Titchener reviewed Lipps’ work in 1909
(Titchener, 1909) and, rather than using the German Einfühlung,
he coined the new English word Empathy (Schliesser, 2015).

Empathy, Motor Resonance and “Mirror
Neurons”
Empathy is viewed as a critical component of human social
interactions. However, it is extremely challenging to pin down.
While there is an enormous amount of scientific work on
empathy, there is still considerable debate about its definition
(Hall and Schwartz, 2019). Is empathy a singular capability
or does it result from a “laundry list” of characteristics?
Psychologists generally accept the division between cognitive
empathy and affective empathy. Cognitive empathy refers to the

ability to recognize and understand another person’s mental state
(cognitive processes captured by what is referred to as “theory of
mind” or mentalizing), while affective empathy refers “the ability
to vicariously experience the emotional experience of others”
(Reniers et al., 2011). Furthermore, psychologists will often draw
another distinction between empathy (which involves the ability
to distinguish the experience of another person’s emotion from
one’s own emotional state) and emotional contagion. Emotional
contagion involves the direct propagation of emotional states;
unlike empathy, this effect is common in non-humans, like mice
(Hernandez-Lallement et al., 2020).

Regardless of definition, the capacity for empathy (or, at least,
affective empathy) is typically conceptualized as emerging from
motor resonance. Motor resonance describes how the spatial-
temporal activations of an observer’s brain mirrors the brain
activations of another person as they perform some set of actions.
That is, when observing the physical behavior of another person,
the brain regions related to this behavior activate in both the
observer and the person enacting the behavior, creating a sort of
spatial-temporal synchrony between observers and actors. Thus,
motor resonance is a type of physical resonance that provides a
mechanism for sharing conscious experiences between people.
For instance:

“. . . the coupling between action and perception, also named

“motor resonance” [involves] the automatic activation, during

actions perception, of the perceiver’s motor system. During action
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observation the two motor brains “resonate” because they share a

similar motor repertoire”. (Sciutti and Sandini, 2017)

Several theories of empathy describe motor resonance as the
mechanism underpinning the mirroring processes of emotions
and actions, where mirroring processes are defined as automatic
processes for internal imitation (Iacoboni, 2009) or embodied
simulation (Gallese, 2009). The simulation theory of empathy
(e.g., Preston and De Waal, 2002) suggests that people can feel
what other people are feeling because observing another person’s
behaviors will coactivate or call upon neural representations of
one’s own bodily experience (Hurley, 2008).

While stereotypical expressions may produce meaning
symbolically (e.g., a smile is symbolically associated with joy
or a frown with sadness), human emotional expression is far
more dynamic, expressive, and context dependent. The spatial-
temporal dynamics of, say, a rapidly lifted eyebrow can express
inner emotional states with great specificity. Observing the
eyebrow rapidly lifting will engage our own motor cortex
to activate in a similar time scale and specifically in the
areas expected for the muscles involved. These spatial-temporal
activations appear capable of automatically triggering associated
emotional states (Wood et al., 2016). That is, whatever feelings
might have been associated with rapid eyebrow lifting in the
past, either in the self or in others, will now be primed. In
this manner, interpersonal motor resonance appears to support
“mind reading” (Agnew et al., 2007) and the sharing of conscious
experiences (Lin and Lomas, 2022). Because our brains reflect
or mirror each other, through resonance, we can sympathetically
experience the feelings associated with other’s actions, in part by
knowing “how we would feel if we were acting that way.” And it
is not just observation: even listening to descriptions of actions
can trigger motor resonance (Zwaan and Taylor, 2006).

Researchers continue to debate the origins of mirroring
processes, but they appear to result from simple bidirectional
associations between perception and motor responses that are
learned over time (Keysers and Gazzola, 2009, 2014; Hanuschkin
et al., 2013). Simple correlations of associated actions and
observations seem to produce “action perception circuits”
that serve as the neural mechanism for mirroring processes
(Pulvermüller, 2018).

For a clear example, fMRI results show that when people
watch others perform actions with their hands, mouths or
feet, there are activations in their own premotor cortex—
activations that are also triggered when performing those
actions themselves. Furthermore, these action activations occur
“following a somatotopic pattern which resembles the classical
motor cortex homunculus.” (Buccino et al., 2004a) For
instance, if person A watches person B kick a ball, the “leg
part” of the premotor cortex will show a similar pattern
of activation in person B (the kicker) and in person A
(the observer).

The “Like Me” Hypothesis
If we consider the sympathetic resonance of two tuned
strings, the strings have in common their natural frequencies
of oscillation. A similar sympathetic resonance occurs when

we see another person smile; this can trigger similar action
representations in our brain and activate associated emotional
states. Following the metaphor of two tuned strings, the “like me”
hypothesis predicts that the degree of motor resonance between
an actor and observer will correlate with the degree of similarity
between the actor and the observer.

Buccino et al. (2004b) investigated humanmotor resonance in
response to dogs, monkeys and people. They found that “Actions
belonging to the motor repertoire of the observer (e.g., biting
and speech reading) are mapped on the observer’s motor system.
Actions that do not belong to this repertoire (e.g., barking) are
essentially recognized based on their visual properties.” In other
words, actions that are not “like me” may be recognized but they
do not resonate.

If resonance is enhanced when observing actors similar to the
observer, is it also impaired when there is a lack of similarity?
Researchers have found that when subjects observe people of
a different ethnicity, there is significantly less motor resonance
than when watching members of the same ethnicity (Gutsell and
Inzlicht, 2010; Azevedo et al., 2013). This unfortunate effect is
predicted by resonance theory: less similarity, less resonance.

The resonance between actions is dependent upon a person’s
ability to do those actions. The “like me” hypothesis predicts that
persons who are highly trained in a particular skill should be
able to resonate with another person trained in the skill, at least
to the extent that their action-observation circuits are mutually
developed. Work with expert dancers using fMRI (Calvo-Merino
et al., 2005; Cross et al., 2006), EEG (Orgs et al., 2008), and
facial EMG (Kirsch et al., 2016a) provides evidence in support
of this idea that shared learning experiences and shared skills will
increase motor resonance.

Evidence against the Like-Me hypothesis comes from the fact
that similarity does not always enhance activation intensity. A
series of fMRI experiments showed that mirroring processes (also
known as the “Action Observation Network” or AON) are more
strongly engaged during the observation of robot-like motions,
both when the motions were performed by actual robots and
when people act in a jerky, robot-like manner (Cross et al., 2012).
It appears that the relationship between familiarity and neural
resonance is not entirely linear because—in part—the perception
of novelty (Knight and Nakada, 1998) also amplifies the brain’s
response to actions (Gardner et al., 2017).

The brain’s sensitivity to novelty may help explain why motor
resonance is exceptionally amplified when expert dancers observe
other expert dancers perform (Cross and Ramsey, 2021). Experts
not only have deep familiarity with the movements but they will
also have an expert sensitivity to the many small novelties within
the expert’s individual execution. Familiarity and novelty—
though seemingly opposite—both contribute strongly to an
aesthetic experience (Hekkert et al., 2003). This may account
for why aesthetically valued actions influence motor resonance.
Researchers have found that the intensity of activations in the
AON (a brain marker of motor resonance) correlates with
aesthetic ratings of the observed dances (Cross et al., 2011).
Calvo-Merin et al. (2008) also examined the neural response to
dance movements and noted that, of five aesthetic dimensions
(like-dislike, simple-complex, dull-interesting, tense-relaxed and
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weak-powerful), only shifts in liking-disliking correlated with the
brain response in the AON.

Thus, several factors can enhance motor resonance, including
inter-subject similarity. Generally speaking, motor resonance
appears to be enhanced by the overall motivational relevance of
the subject-observer interaction; the similarity of the subject, the
novelty of the interaction, the aesthetic quality of the interaction,
and when the subject is viewed as desirable, powerful or sharing
a common goal (Greenberg, 2019). This also implies some
possibilities for breakdown and pathologies in psychological
relationships due to misattunement in interpersonal resonance
(Bolis et al., 2017).

Human Resonance, Exemplified by the
Actor Will Smith
To conclude this section on the role of resonance in human
interactions, consider this quote by the actor Will Smith
explaining his growth as an actor during his performance as
Richard Williams, the father of Venus and Serena Williams.
The quote illustrates the connection between the body, the
communication of emotional depth and how resonance is
generated during aesthetic experiences (described here as
“vibrations”). It also shows the vast distance roboticists must
travel to approach the capabilities of human actors in producing
effective sympathetic resonance (for resonance in acting, also see
Bogart, 2021).

“At the core, acting is what you can comprehend emotionally.

And when you comprehend it emotionally, do you understand

it enough to feel it and create interesting behavior around

it? So something like Richard Williams’s walk: Now, you can

mimic someone’s walk and look authentic. It’s a completely

different thing when you know why the person is hunching

over vs. the stand-up-comedian version of it just mimicking it.

Understanding that was the leap that happened: When you know

why Richard Williams’s left leg hurts, what happened with the

spike that got driven through it, that, as an actor, is the 90 percent

of the iceberg that’s below the surface. When you’ve programmed

it deeply, those things have corresponding vibrations for the

audience that they don’t even realize.” (New York Times, 2021).

PART 2: RESONANCE IN ROBOTICS

In this article, we use “robot” as a general shorthand for a
non-human artificial agent. This deliberately broad definition
includes many forms of intelligent and autonomous systems that
vary in the degree of adaptivity (from highly adaptive to non-
adaptive, e.g., a pre-programmed movement sequence), in the
degree of embodiment (from physical to virtual), in the degree of
human resemblance (humanoid to non-humanoid), in the degree
of biological resemblance (highly life-like to highly machine-
like) and in the degree of social interactivity (highly social to
non-social). A typical chatbot, for instance, is a moderately
adaptive, virtual, humanoid, machine-like and highly social
robot. In contrast, a Roomba is a highly adaptive, embodied,
non-humanoid, machine-like and non-social robot.

Social robots are robots that are specifically designed to
respond appropriately in social situations. While empathy is

typically required for human social competence, social robots do
not necessarily require empathic behaviors to participate in social
situations. A definition of empathy that can apply to both robots
and humans is “the ability to sense and appropriately respond
to the internal driving states of other entities, including feelings,
emotions, intentions, plans and perspectives.” Asada (2015)
offers a comprehensive framework for “Artificial Empathy” in
robots, which articulates a clear progression from emotional
contagion (“simple synchronization”) to emotional and cognitive
empathy (more complex synchronization) to compassion (which
involves the partial inhibition of synchronization—in order
to understand the perspective and feelings of others without
adopting those feelings oneself). So, while there are links between
artificial empathy and resonance in robotics, resonance does not
imply empathy.

Resonance, synchronization and entrainment have been
widely studied in the field of human–robot interactions (HRI).
Examples of synchronization behaviors in HRI (discussed in
detail below) include eye contact, handshakes, giving or receiving
objects, walking, massaging, coordinating or collaborative tasks
and learning by imitation. The following section considers (1)
robots that entrain to rhythms, (2) robots that resonate with
people (3) robots that can entrain human biorhythms, (4) the
synchronization of people with robots and (5) robots as a
platform for synchronizing multiple people.

Robots That Entrain to Rhythms
Dance and music have been an important driver of social
robotics. Kozima et al. (2009) used a yellow dancing robot
“KeepOn” to either dance in synchrony with background music
or dance out of synchrony. They found that, when dancing in
synchrony, children were more likely to socially interact and to
do so for longer. While there are many dancing robots (reviewed
in Bi et al., 2018), most involve pre-programmed motions that
are unable to adjust to external visual or auditory stimuli.
Responding in real-time to external motions (such as a human
dancer) is often limited by hardware and software processing
delays. Behavioral resonance is computationally challenging.

Nico, a drumming robot (Crick et al., 2006), used visual,
auditory and proprioceptive data to “attune to a tempo that is
set by a human conductor, in concert with human performers.”
To accomplish this, Nico uses multiple oscillators that model a
hierarchy of rhythmic attention. To detect the beat, Nico used
cameras to follow the ictus of the conductor’s hand (which is
when it “bounces” off an imaginary line). As hardware constraints
prevented Nico from following a faster tempo, faster beats caused
the robot to find a lower hierarchical level of the rhythm:
a tempo half that of the beat. The researchers found that
human musicians playing along learned to accommodate Nico’s
mistakes and attune to them. More recently, another successful
synchronizing drumming robot was demonstrated by Iqbal and
Riek (2021). Though these systems involved simple rhythmic
beats, “Shimon” is a robotic marimba player that plays along
with human accompaniment in a variety of ways, including call
and response (Hoffman and Weinberg, 2010). Motivated by the
notion of robotic movement as a dynamic affordance (Hoffman
and Ju, 2014), Shimon has an expressive non-humanoid head that
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synchronizes with the musical beat. Arguably, Shimon vibes with
other human players.

Beyond affective interactions, entraining to rhythms can
support basic robotic locomotion. Walking on two feet is
extremely difficult for robots unless it is on a flat predictable
ground (Endo et al., 2008). Some roboticists have found success
in using a biomimicry approach—they use “central pattern
generators,” like those in the human spinal cord, to achieve
dynamic stability through rhythmic entrainment (see reviews,
Ijspeert, 2008; Buschmann et al., 2015; Aoi et al., 2017; Xie
et al., 2021). This oscillatory approach to robotics also applies
to robotic prosthetic limbs for humans, where synchrony with
the human motion must be extremely precise (Ronsse et al.,
2010).

Synchronization and entrainment have also been useful for
the implementation of deceptively simple motor movements,
like shaking hands (Melnyk and Hénaff, 2019) or handing a
ball to another person. Using the robot iCub, Duarte et al.
(2021) used a coupled dynamical system to learn the motor
resonances between armmotions during the handover of the ball.
Ansermin et al. (2016) also used a coupled oscillator approach
to enable the robot NAO to imitate human gestures through
entrainment and synchronization. The researchers found that
mutual entrainment between the robot and human enabled
gesture mirroring and precise synchronization with far fewer
computational resources than other approaches (e.g., those
involving a high-level planning process).

Robots That Can Resonate With People or
Other Agents
Robot imitation is useful for many reasons, whether for helping
robots learn through demonstration (Argall et al., 2009) or
to make robots more persuasive (Bailenson and Yee, 2005).
Robots can imitate humans in many ways—but usually in
ways that are very different from how humans imitate each
other (Breazeal and Scassellati, 2002). Robots that use oscillators
to resonate or synchronize with people is a more limited
approach but often useful. Using a “mirror neuron framework,”
Barakova and Lourens (2009) gave simulated as well as embodied
robots the ability to synchronize with human movements; this
led to improved turn taking behaviors. Kopp (2010) used a
motor resonance approach to support intentional alignment
between robots and people. Researchers have proposed a variety
of methods for the quantitative measurement of synchrony
in human interactions (Delaherche et al., 2012) and the
measurement of motor resonance between humans and robots
(Sciutti et al., 2012). These approaches have been useful for
demonstrating the presence of motor contagion between people
and robots (Bisio et al., 2014). A motor resonance system
successfully enabled a robot to learn from a human demonstrator
to introduce itself using Taiwanese Sign Language (Lo and
Huang, 2016). Coupled oscillators, based on central pattern
generators, enabled the robot Pepper to wave back at a human
partner in an adaptive, synchronized manner; this was perceived
as more enjoyable than a non-adaptive wave (Jouaiti and Henaff,
2018).

However, not every application of movement synchrony
enhances outcomes. For instance, Henschel and Cross
(2020) conducted a controlled experiment to investigate
how synchronized task behavior affected the likeability of the
humanoid robot Pepper. They found that synchronized task
performance had no effect on the likeability of the robot. This
was surprising in light of contemporary attitudes:

“The field of HRI has largely adopted the assumption that when

robots automatically synchronize their movement to users, users

will feel that interactions with these technologies are more natural

and similar to human interactions. . . non-verbal synchronous

behaviors are used to signal interest, involvement, rapport,

similarity, or approval, resulting in highly synchronous exchanges

being mutually rewarding experiences for the interactants.”

(Kirkwood et al., 2021)

Robots That Can Entrain Human
Biorhythms
Robots can influence the biorhythms of people; for instance,
Macik et al. (2017) showed that a non-humanoid robot
can help entrain breathing patterns while Sato and Moriya
(2019) used AI-controlled music tempo to control changes
in the rate of breathing. Robots that promote sleep using
rhythmic entrainment include the Somnox Sleep Robot
(Mohammadi-Khanaman and Lundström, 2019) or the Fisher-
Price “Soothe’n’Snuggle” stuffed toy (Figure 3), which uses
rhythmically pulsing movements, sounds and lights to help
small children fall asleep. While the “Lulladoll,| which plays
breathing and heart-beat sounds, did not have a significantly
beneficial effect on infant sleep (O’Loughlin, 2018), the Philips
Smart Sleep system did produce improvements in slow wave
sleep and executive functioning in adults (Diep et al., 2020).
This headband system uses EEG and audio-pulses to create a
closed loop system that entrains slow waves associated with
deep sleep.

The Synchronization of People With Robots
In certain situations, people appear to automatically align their
speech and behavior to artificial partners. This synchronization
has been shown through alignments in speaking rate (Bell et al.,
2003), prosody (Suzuki and Katagiri, 2007), gestures (Iio et al.,
2011), gestural rhythm (Ansermin et al., 2017), formality of
speech (Kühne et al., 2013), vocabulary (Iio et al., 2015) and
facial expressions (Hofree et al., 2014). When this alignment
occurs, it tends to be associated with a positive experience
of the artificial partner. For instance, Fujiwara et al. (2021)
showed that when humans spontaneously synchronized their
motions to a non-human partner, humans were more altruistic
and reported greater affiliation for their non-human partner.
Importantly, synchronization effects are highly dependent upon
the specific social context—for instance, a competitive task can
easily produce a reversal in facial expression synchrony, like a
winner smiling at a losing frown (Hofree et al., 2018).
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FIGURE 3 | (Top) Hasbro’s “Snackin’ Sam” appears to engage children through motor resonance: articulating its neck, jaw and tongue to show interest in eating a

popsicle. The Fisher-Price “Soothe’n’Snuggle” appears to support child sleep through rhythmic entrainment to its in-and-out breathing pattern. A Pudo brand robot

delivers food in a restaurant, using periodic facial expressions to create a friendly vibe. (Bottom) The Shybo robot expresses emotions through movement; this

sequence shows the robot reacting to the loud sound of a clap by closing the hat, shaking it and lighting up in red.

Robots as a Platform for Synchronizing
Multiple People
Robots can also serve as a medium or platform to help
synchronize people together. For instance, the BAO-ME is
“a zoomorphic robot that is designed to help decrease stress
levels and enhance feelings of support and companionship
by recreating the sensation of being hugged through haptic
interaction” (Levantino, 2018). Sharing heartbeats between
people can enhance empathy (Winters et al., 2021). Outside
of the scientific literature, there now exist a variety of robotic
devices that have been designed to support synchronization
between long-distance romantic couples. From a recent review
(Lolo Nate, 2022): The Frebble gives the synchronized sensation
of holding a partner’s hand, the Bond Touch communicates
via synchronized tactile feedback, the Lovense supports
synchronized sexual stimulation and the Kissenger (kiss
messenger) uses actuated silicon lips to replicate the kiss of a
distant but synchronized partner.

Robots, Embodied Emotions and
Sensorimotor Communication
Embodied robotic movements, like human movements, can
communicate emotions. Santos and Egerstedt (2021) found
that non-humanoid robot swarms were able to trigger basic

emotion perception through simple, basic forms of movement—
just modulations of speed and smoothness were able to make
robots seem happy, surprised, angry, fearful, disgusted or sad.

Movements create emotive “vitality affects” between infants
and parents (Stern et al., 1985). These affects stem from variations
in the contours and envelopes of movement intensity and
rhythmic patterns. For instance, affective feelings result from
motions that are “surging,” “fading away,” “fleeting,” “explosive,”
“crescendo,” “decrescendo,” “bursting” “drawn out,” etc. (quoted
in Mühlhoff, 2019). Movement-based “body moves” (Gill, 2012)
are clearly manifested in robots, such as the non-humanoid toy
robots in the popular “furReal” series byHasbro. For instance, the
“Snackin’ Sam the Bronto” (Figure 3) toy dinosaur robot moves
its neck, mouth and tongue to communicate interest in eating1.
Similarly, “Shybo” (Figure 3), a humanoid machine-like social
robot, reacts to loud sounds by turning its hat down and shaking,

1It should be mentioned that a significant portion of this paper was written with

the help of this social robot. Not the writing, per se, but enabling the writing

by engaging the lead author (JDL)’s 3-year-old son during a 12 h train ride.

Why would a highly active 3-year-old spend such an inordinate amount of time

feeding his “FurReal” dinosaur a fake popsicle? The articulated neck, jaw and

tongue movements, synchronized to associated vocalizations (sniffing, slurping,

etc.), seemed to resonate with his own intentional motor repertoire (JDL’s boy loves

his popsicles). Thus, motor resonance may help explain his overall engagement

with the robot.
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giving the impression of being scared (Lupetti and VanMechelen,
2022). A periodic display of facial expressions in a food serving
robot (Jiang, 2020) helps contribute to a more friendly vibe—yet,
its lack of responsiveness inmovement (other than a sudden stop)
shows room for future improvement (Figure 3).

Movement-based design improvements have also been
applied to non-embodied virtual characters. For instance, Gratch
et al. (2021) found that when a digital listener nods and smiles
at the right time, people tend to share more information about
themselves. The addition of oscillatory motion to the postures of
virtual characters tended to increase human empathy in response
to virtual expressions of pain (Treal et al., 2021).

DESIGN STRATEGY FOR RESONANCE

We propose that resonance can serve as a design strategy for
social robots and AI. What makes for a design strategy? While
there are many perspectives (e.g., Porter, 1991; Aguiar, 2014), we
refer to Mintzberg et al. (1995) in describing strategy as a plan or
pattern that integrates goals, policies, and action sequences into a
cohesive whole. Resonance, then, may offer a cohesive conceptual
framework for integrating overarching goals (human-centered,
collaborative, empathic, etc.) and implementation approaches. In
other words, resonance as a design strategymay help identify new
human objectives for interaction and reveal ways of achieving
those objectives.

Why pursue resonance in robotics? While the application
of resonance may help support rational, instrumental outcomes
(e.g., saving time or money), it may also help satisfy affective
human needs for how we interact with the world. A “machine
world” may be rational but alienating; a world of resonance
might be pursued for its own sake—that is, resonance may be an
intrinsic value for human interaction (Rosa, 2019).

If resonant interactions are intrinsically valuable, how might
we design robots and AI to realize this value? In the following
section, we first propose a design space for resonance in
relationships. Systematically exploring this space can help reveal
how different characteristics of resonance can impact human
experience. We then examine a variety of design opportunities
and finally suggest the importance of continued work to
operationalize and measure human resonance. This step will be
essential for validating and optimizing the value of resonance in
human–robot interactions.

A Design Space for Resonance
This next section progressively builds a theoretical design space
(Shaw, 2011; Lomas et al., 2021) to describe the input and
output factors of resonance. Table 2 describes how eight different
situations emerge from the combination of two factors: the
number of participants (i.e., plurality) and their reciprocity. This
two factor design space, as an initial gesture, helps reveal different
characteristic forms of interactional resonance.

Based on our reviews of resonance in human interactions and
in robotics, we then propose additional factors or dimensions
to describe the design space of resonant relationships (Box 5).
These include the input space, or the independent variables:
frequency, amplitude, reciprocity, power balance, plurality,

TABLE 2 | An initial design space for resonance showing the combination of

plurality (number of participants) and reciprocity (mutual vs. one-way influence).

Combination Example

One-to-one mutual

resonance

A normal conversation between two people

One-to-many mutual

resonance

A CEO or leader mutually influencing a

company of people; or like a single person

dancing in the middle of a dance circle

Many-to-one mutual

resonance

This is identical to one-to-many mutual

resonance (as the influence is mutual)

Many-to-many mutual

resonance

An audience and band at an intimate concert,

or a group of friends hanging out. Global

coupling or all-to-all coupling is also

exemplified by the synchronization of fireflies or

a large audience clapping into synchrony.

One-to-one one-way

resonance

A unidirectional influence, like a tuning fork

resonating to a sound played on a speaker

without the speaker being affected by the

tuning fork. Or, like reading a private letter from

a dead author.

One-to-many one-way

resonance

A unidirectional influence from one person to

many people, like the publication of a book. Or,

for example, a group of people watching Martin

Luther King Jr’s “I have a dream” speech.

Many-to-one one-way

resonance

A unidirectional influence from many persons to

one person, like a private listening to a

recording of a band.

Many-to-many

one-way resonance

A unidirectional influence from many people to

many persons, like listening to recorded music

or a population watching a television series.

complexity, periodicity, synchrony, predictability, intentionality,
fidelity and timescale. The design space also consists of the
outcomes, including several objective outcome factors: energy
level, frequency, phase, synchronization and stability. Finally,
the outcome space also includes subjective outcome:emotional
arousal, emotional valence and attentional engagement.

Resonance as a Research Program
As a research program, we hypothesize that the input factors of
resonance can explain subjective and objective outcomes. For
instance, the tempo of a robot’s interactions (movement and
speech) could be systematically varied to determine how this
affects the human response. Effects will likely depend on the
context (Lim et al., 2021), i.e., they may not always generalize
across different robotic platforms, behaviors or cultures.

Researching human resonance may improve human–robot
interactions and also help advance human psychology (Sciutti
and Sandini, 2017). As people are naturally predisposed to
“sync” and “vibe” with each other, this can make the study
of their interactions a challenge to scientifically investigate in
a controlled manner. Social robots present the possibility of
precisely controlling the dynamics of the oscillatory inputs to
human social interactions. The paradigm of the HumanDynamic
Clamp, for instance, has been specifically proposed to probe
the oscillatory relationship between humans and virtual humans
(Dumas et al., 2020).
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BOX 5 | A Design space for resonance.

The input space of the factors or dimensions of resonant relationships

Dimensions of Resonance Scale of Dimensions Illustrative Examples

Frequency or Tempo of

interactions

Fast to slow Speaking quickly vs. speaking slowly

Amplitude of interactions Soft to intense Speaking softly vs. speaking loudly

Reciprocity of interactions One-way to fully mutual A loudspeaker vibrating a wine glass is a one-way relationship; while two

synchronizing metronomes is a fully mutual interaction.

Power balance of interactions Balanced to unbalanced Unbalanced relationships: a passive object receiving input from a powered

oscillator, like a loudspeaker to wine glass. Or, a CEO talking to an

employee.

Plurality of interactions Two oscillators to many

oscillators

Two people talking vs. an orchestra playing together.

Complexity of interactions Simple to complex A headnod is simple vs. a full body gesture

Periodicity of interactions Consistent to chaotic A sine wave vs. speech

Synchrony of interactions Synchronous to asynchronous Rowers on a galley boat move synchronously whereas turn taking in a

conversation is asynchronous

Predictability of interactions Deterministic to stochastic The resonance of a wine glass to a speaker is predictable, while the

resonance of an audience to a political message may not be.

Intentionality of interactions Spontaneous to purposeful People can unconsciously or consciously mimic one another’s postures

Fidelity of interactions Exact imitation to approximate

imitation

During imitative acts, one may copy the full sequence of behavior or merely

copy the intent

Timescale of interactions Long timescale to short

timescale

For instance, rhythmic interactions can be entrained to a seasonal holiday,

to a day-night cycle, to a meeting agenda, or to a conversational exchange

The output space of objective outcomes resulting from resonant relationships

Dimensions of outcome

effects

Scale of dimensions Illustrative examples

Energy level within the affected

system

Amplification to dampening Resonance can increase the amplitude of vibration in a wine glass; similarly,

it can increase the emotional arousal of a person watching a film. A system

might be able to entrain the breath in order to produce deeper

(higher-amplitude) breathing. A system might use anti-resonance to reduce

painful shocks while walking.

Frequency of the affected

system

Decreased frequencies to

increased frequency

Brainwave entrainment protocols have been shown to decrease theta wave

frequency to increase working memory (See review by Hanslmayer et al.,

2019)

Phase of the affected system Forward to backwards A sigh is capable of resetting respiratory phase (Vlemincx et al., 2013);

musical systems can similarly shift respiration (cite).

Synchronization within the

affected system

Synchronized to desynchronized A pacemaker can support the synchronization of internal oscillations in a

heart. A system that could desynchronize the rhythm of a social group

might enable creative conflict.

Synchronization of relationship

between systems

Synchronized to desynchronized Resonance can lead to increased synchronization between systems—for

instance, a robot that gives a good handshake may promote trust.

Stability of the affected system Decreased stability to increased

stability

Resonance can be a destructive force, as in a wine glass shattered by a

loudspeaker. Resonance can also lead to stability: in the case of music,

tonal stability is related to the degree of resonance between notes.

Stability of relationship between

systems

Decreased stability to increased

stability

When a loud speaker breaks a wine glass, the resonant frequency of the

glass changes—ending a stable pattern of sympathetic resonance.

The output space of subjective outcomes resulting from resonant relationships

Dimensions of outcome

affects

Scale of dimensions Illustrative examples

Emotional arousal of human

response

Increased arousal to decreased

arousal

A person getting more excited or calming down

Emotional valence of human

response

Positive feelings to negative

feelings

A person rating an experience with a robot as positive or negative

Attentional engagement of

human response

Increased engagement to

decreased engagement

Paying more attention to a robot or disengaging from the experience
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Resonance, as a metaphor, can also help guide scientific
research. Bartha (2013) describes how resonance was used as
a “programmatic analogy” by nineteenth century physicists
investigating spectral lines—the bright lines showing the
frequency specific emission of light from molecules. These
spectral lines were viewed as “completely analogous to the
acoustical situation, with atoms (and/or molecules) serving as
oscillators originating or absorbing the vibrations in the manner
of resonant tuning forks.” This analogy served as a guiding
research program for physicists. Metaphors of resonance might
play a similar guiding role in the design of social robots and AI.

Design Opportunities for Resonance in
Robotics
This article proposes the possibility of designing autonomous
robots that resonate with people at a social level (Henschel
et al., 2020). How might roboticists use resonant relationships to
improve human–robot interaction quality?

There are many opportunities for robots to support
human engagement and collaboration through more oscillatory
relationships. Rhythm is recognized as an important non-
linguistic cue in Human–Robot Interactions (Mutlu et al., 2016);
robotic rhythm may help improve the predictability or legibility
of robotic motion (Dragan et al., 2015; Abe et al., 2019). Robots
could use their own rhythms to entrain the rhythms of their
conversational partner, e.g., by increasing or decreasing the
tempo of their conversational interactions. Rhythmic awareness
might enable robots to predict when to initiate or cease actions
in order to maximize a human response. Social robots could
promote interactive social resonance by shaping an appropriate
“vibe;” not talking too fast or slow, not talking over other people,
not breaking into a conversation at the wrong moment, etc.
Alternatively, robots might deliberately interact with existing
human oscillations, such as brainwaves, breath, walking, head
nodding or heart rate. Robots might gain access to the state of
human oscillations through wearable biosensors or they might be
able to infer this information from visual or auditory information
streams using computer vision or natural language processing.
For instance, robots might aim to measure and entrain to the
tempo or pace of a person’s behavior.

The metaphor of resonance, even apart from physical
measurement, may aid designers of social robots and AI systems
if the metaphor helps make the complexity of social interactions
more manageable. Digital computer interactions involve a great
number of metaphors, such as buttons, pipes, folders, files,
streams, clouds etc. Metaphors are useful because they provide
a conceptual interface between people and a complex system
design (Sharp et al., 2019). Resonance may help provide an
intuitive model of social interactions that could guide design
activities. For instance: although “the vibe” within social groups is
far from being understood scientifically, designers of social robots
might find the metaphor useful for understanding the reception
of social robots.

We suggest that the design vision of “robots that can vibe
with people” will lead to distinctly different outcomes than,
say, “robots that show empathy.” While the latter might orient

toward the mimicry of human facial expressions or the modeling
of human emotional states, the former can leverage resonance
and vibes as cultural metaphors. This points to subtle visual,
auditory and tactile design elements that could be crafted to
create emotionally satisfying authentic social interactions.

Operationalizing and Measuring
Resonance
New opportunities will also arise as we move from resonance as a
metaphor to resonance as a mechanism and then to resonance
as a measurement. Measures of resonance can play a valuable
role in the AI optimization of human experiences; i.e., learning
to attune to humans through the maximization of resonance. If
resonance can be adequately measured and treated as an metric
or objective function, then it might be optimized algorithmically
(Lomas et al., 2016). For instance, if interpersonal resonance
during a videoconference session could be measured, it could be
optimized through the iterative testing of different interventions.

The ability to identify and measure interpersonal synchrony
has facilitated a great deal of social research (Condon andOgston,
1966; Kendon, 1970; Bernieri et al., 1988). Recent efforts have
compared different ways of measuring bothmovement and inter-
brain synchrony, using both offline and real-time approaches
(Ayrolles et al., 2021; Chen et al., 2021; Dikker et al., 2021;
Fujiwara and Yokomitsu, 2021). However, the measurement of
resonance presents distinct challenges. Synchrony is simply the
statistical correlation of a signal. Measures of resonance may
demand more interpretation; taking into account, for instance,
the depth of human engagement, its duration, the reverberating
echoes of a signal over time, the presence of harmonics, etc.
Therefore, it remains a research question: what quantitative
metrics might be best matched to the human perception of
interpersonal resonance?

To unpack this question, the next sections will consider several
of the key factors that are expected to correlate with resonance,
including attention, aesthetic pleasure, flow states and wellbeing.
During this discussion, hypotheses will be noted with a [H.#] so
they can be enumerated in Box 6.

Resonance and Attentional Engagement

What does it mean when a film “resonates” with a viewer?
Typically, this refers to an aesthetic experience that is powerful,
pleasurable, connecting and memorable (Adams-Price et al.,
2006; Roger, 2020). In other words, resonance refers to emotional
engagement. More moving, immersive and resonant experiences
would be expected to result in the temporal correlation of more
brain areas with the temporal characteristics of external signals
in the world. Interbrain synchrony appears to track immersion
(Dikker et al., 2021), but, when another brain is not present (as
with a robotic interaction), will the depth of oscillatory coupling
of the brain to the environment (or robot) predict the depth of
the aesthetic experience?

Human resonance (with media, other humans, or with
robots) may be correlated with attentional engagement: more
engagement, more resonance. However, evidence against this
idea comes from Kumagai et al. (2018), who had subjects listen
to music in a focused manner or while watching an unrelated
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BOX 6 | List of hypotheses.

[H.1] The resonance that we feel has a counterpart in the resonance we

can observe in the brain (e.g., in brain-stimuli correlations). In other words,

aesthetic resonance (e.g., attentionally engaging, pleasurable, immersive

experiences) will correlate with neural resonance.

[H.2] The aesthetics of a human–robot interaction will predict whether or not

people will continue to engage with a robot.

[H.2] Aesthetic preferences for social robot interactions will correlate with high

levels of synchrony as well as high levels of independence.

[H.4] Resonance will predict flow states: self-reported flow states should

result in a greater correlation between brain activity and signals in the external

world.

[H.5] A person’s wellbeing will be predicted by their neurological propensity

to resonate with other people or media.

[H.6] Robust measures of human resonance and harmonization will be

valuable for AI objective functions.

[H.7] Interpersonal resonance (Brain-Brain Correlation) will correlate with

psychological rapport.

[H.8] Animals have evolved defense mechanisms to prevent resonance,

synchronization and entrainment to external forces (see Box 4 for counter

conditions).

[H.9] Humans can selectively resonate; shutting down openness to

resonance in response to perceived deception or increasing it in response

to authenticity, for instance.

[H.10] Computing architectures based on oscillatory coupling will produce

new possibilities for artificial consciousness and conscious sympathies in

Human–Robot relationships.

silent film. They found that “the level of attention did not
affect the level of entrainment [and] the entrainment level is
stronger when listening to unfamiliar music than when listening
to familiar music.”

In contrast, several studies (e.g., Madsen et al., 2019;
Kaneshiro et al., 2020) have found that media engagement
is strongly predicted by an Inter-Subject Correlation (ISC)
measure, which measures the level of similarity between the
brain responses of different participants. In other words, when
an individual’s brain response is similar to other people engaging
with a piece of media, then they are likely to be more
engaged. This effect is comparable to the finding that, across
a group of independent people, heart rates rise and fall in
synchrony to a verbal story, but only during engaged attention
(Pérez et al., 2021). Dauer et al. (2021) found that the ISC
predicted continuously reported individual listener engagement
while listening to Steve Reich’s Piano Phase. The researchers
operationalized engagement for participants as “being compelled,
drawn in, connected to what is happening, and interested in
what will happen next” (Schubert et al., 2013). This aligned
with a previous definition of engagement as “emotionally laden
attention” (Dmochowski et al., 2012). Similar results have been
found in the inter-subject correlations while watching engaging
films (Dmochowski et al., 2014; Cohen et al., 2017). Inter-
subject correlations were also found to predict learning during
instructional videos (Cohen et al., 2018).

Part of the challenge of operationalizing human resonance
from a brain-to-stimuli correlation measure comes from the

challenge of decoding how a stimulus produces a brain response.
Dmochowski et al. (2018) developed a novel multi-dimensional
Stimulus-Response Correlation (SRC) measure that was found
to correlate with the ISC measure while watching films. The
researchers were then able to apply the SRC measure to
continuously track engagement during a video game. Does
greater neural resonance to media, operationalized as Stimulus-
Response Correlation (SRC), predict the intensity (arousal) or
pleasure (valence) of the media experience? A resonance theory
of engagement and aesthetic pleasure would predict that neural
resonance will correlate with aesthetic resonance (e.g., Trost et al.,
2017; Beardow, 2021) [H.1].

Resonance and Aesthetic Pleasure

Akeymotivation for considering the role of resonance in robotics
is that it may help support more positive and aesthetically
pleasing experiences with robots. Aesthetics play an important
role in the perception of robots (Forlizzi, 2007). The human
aesthetic sense attunes behavior by helping to evaluate and
activate different action-perception possibilities. The aesthetics
of a human–robot interaction are likely to predict whether
or not people will continue to engage with a robot, in a
short-term or long-term manner (Lee et al., 2009) [H.2]. One
hypothesis for the aesthetics of human–robot interactions might
be described as a “harmony of opposites” (Hekkert, 2014; Lomas
et al., 2022): namely, that people will prefer a robot interaction
that involves high levels of synchrony as well as high levels
of independence [H.3]. Like a musical interaction between
a drummer and guitarist, both robot and human should be
independent yet synchronized.

Resonance and Flow States

Fluency in human–robot interactions is a desirable outcome
(Hoffman, 2019). What is the relationship between fluency and
resonance? One popular theory of flow states in human-media
interactions claims that flow states are characterized by the
synchronization of different regions of the brain (Weber et al.,
2009; Weber and Fisher, 2020). Jackson and Csikszentmihalyi
(1999) explain flow states in elite athletes as moments when
they “enter an effortless rhythm that transforms the agony into
ecstasy. Often, athletes refer to such times as ‘being in the
zone.”’ Perhaps flow states could be conceived as meaningful
increases in the resonance between the brain and the external
world. A resonance theory of flow would predict a greater
correlation between brain activity and the external world during
flow states [H.4]. For instance, flow experiences with robots
might be measurable as increased resonance (stimulus-response
correlation) between the brain and the robot’s expressive
movements or sounds (although this may be confounded by
novelty effects, see section The “Like Me” Hypothesis).

Resonance and Spiritual Wellbeing

The mechanism of resonance in robots may help lead to
enhanced wellbeing, as proposed by the Lorenz et al. (2016):
“behavioral and motor synchrony and reciprocity could be
helpful to meet the aim of developing robots that increase
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human well-being on a more fundamental level beyond pure
task-support and short-term reduced feeling of loneliness.”

In the book “Resonance: A Sociology of Our Relationship to
the World,” sociologist Rosa (2019) argues that resonance is a
primary value that underpins human happiness, wellbeing and
flourishing. From this, we might hypothesize that a person’s
wellbeing will be predicted by their neurological propensity to
resonate with other people or media [H.5]. Resonance also
relates to more profound and powerful wellbeing experiences.
Synchronized human activities are known to produce mystical
experiences where the boundaries between self and other can
be blurred (Hove and Risen, 2009; Paladino et al., 2010) and
participants can experience a profound feeling of oneness (Swann
et al., 2012). How might synchronizing, resonant robots (or AI)
induce or support these kinds of human experiences? Perhaps
they might dance with us (Basso et al., 2021) or, even, show love
for us (Feldman, 2017)? What might it mean to design spiritually
fulfilling robot interactions?

From Synchrony to Resonance to Harmonization

Synchrony, taken to an extreme, can lead to inflexibility (e.g.,
the conformity example in section The Downside of Being
in Sync: Chained to the Rhythm?). Resonance, taken to the
extreme, can also lead to problems, like instability (e.g., the
Millenium Bridge example in section Part 1: Resonance in
Human Interactions). Resonant relationships may be valuable—
even intrinsically valuable—but resonance might be misleading
as a primary or ultimate value. A world filled with resonant
robots and AI may be exciting but also so powerful it could
rip apart institutions of rational discourse (see below section
6.1 on Persuasive Machines). In future work, it may be useful
to investigate the potential for robots and AI to support
harmonization as an outcome. Harmonization has served as
a core social value in diverse societies for thousands of years
(Lomas et al., 2022). However, there is not any acceptable
measure of the harmony of songs, let alone measures of harmony
in social interactions. However, the importance of objective
optimization functions for AI systems (Sarma et al., 2018;
Stray et al., 2021; Shneiderman, 2022) suggests the potential
value of developing robust measures of human resonance and
harmonization [H.6].

ETHICAL CONSIDERATIONS OF
RESONANCE

Persuasive Machines
The philosopher Hughes (2012) suggests that robots will need
resonance (in the form of a functional equivalent of mirror
neurons) in order to demonstrate compassion for people. But,
there are negative societal outcomes to consider as well. If robots
can resonate with people—that is, build psychological rapport
[H.7]—this might significantly enhance their ability to persuade
or manipulate people. However, an improved understanding of
resonancemight also reveal more effective psychological defenses
against non-consensual persuasion.

Former US president Donald Trump has been recognized
as a political figure with a special ability to resonate with

people (Giorgi, 2017). Matheny et al. (2018) provide a close
analysis of Trump’s acceptance speech at the Republican National
Convention. Through an analysis of his body language, they
provide “evidence that Trump created an empathetic resonance
with the audience that helped generate a sense of political
movement and unity.” The authors describe how Trump would
characteristically point in the air or put his thumb and finger in
a pinch—and then move this gesture in a rhythm synchronized
to his own speech rate. The audience cheered 151 times during
his speech, 63% of the time during a pinch or pointing
gesture. Only 10 of those cheers occurred when Trump was
in a bodily neutral position. This analysis shows that affective
resonance is a powerful phenomena—but not necessarily a
positive phenomena.

Media theorist Gibbs (2019) paints a similarly fraught picture
of human resonance at a societal scale:

“. . . after the feminist reclaiming of affect as a way of knowing

equal in importance to cognitive and rational modes. . . the darker

powers of affect became clear, operating. . . in concert with the

televisual medium to create (or at least attune to and amplify)

various social moods and to capitalize on them for political

purposes. In this context, the public sphere was thus exposed as

anything but a space of rational debate in the service of a contest

of ideas. Instead, it could be viewed as space in which emotion

held sway, where inchoate feeling could be captured and directed,

most obviously, but not only, by political figures who were able to

resonate with and even orchestrate public emotions, or simply, to

sing us lullabies to keep us asleep and dreaming while they went

about their business.”

The systematic application of resonance to political rhetoric
at a societal scale may present a deep threat to democracy.
How machines, algorithms, or AI might wield resonance as
a tool to manipulate humans at scale deserves further study
and consideration.

Resistance to Resonance: Emergence of
Defense Mechanisms
In Box 4, we present an extended hypothesis proposing that
animals evolved defense mechanisms to prevent resonance,
synchronization and entrainment [H.8]. Similarly, humans seem
to have the ability to selectively resonate; one example is that, if
we feel that we are being manipulated, we may shut down our
openness to resonance [H.9]. Robots that mirror a human user’s
physical or cultural attributes or express interest in similar ideas
or hobbies could potentially enhance the empathic and affiliative
response in humans. However, crude “copycat” approaches are
likely to easily backfire if people feel manipulated or if they feel
the robot interaction is inauthentic (Metzler et al., 2016).

What might happen in a future of resonant robots and virtual
agents? There is likely to be a competitive effect where, at first,
humans may be compelled but then eventually become more
discriminating. People may become used to a higher quality
of resonant engagement, which could drive further advances
in resonant robots. Eventually, people might become wary of
normal levels of interpersonal rhythmic competency making
it difficult for normal people to connect. On the other hand,
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humans may become even more attuned to authenticity in
interaction; imperfections and personal character may become
more valued.

The Extended Mind: Resonance as a
Bridge to Consciousness
A theory of resonance offers a bridge or common currency
(Northoff et al., 2020) between human conscious experience
and the mathematical nature of our physical world. Resonance
seems to govern a great deal of neural activity and is also plainly
manifest in conscious experience. But, to what extent is the
resonance that we feel also the resonance we can observe in
the brain? These two domains may only loosely overlap; and
yet, our conscious experience must relate, in some way, to the
widespread presence of neural oscillations. Hunt and Schooler
(2019) have proposed that “the binding problem” of conscious
experiences in the mind is achieved through the integration of
shared resonances in the brain—in other words, they propose
resonance as an answer to the “hard problem” of human
consciousness. Subsequent work (Safron, 2020) suggests that
Darwinistic competition for resonant amplification underpins
consciousness. Valencia and Froese (2020) argue that collective
consciousness is shared through inter-brain synchronization.

From an extended mind perspective (Clark and Chalmers,
1998), the rich hierarchy of harmonized oscillations between
the brain, the body and external rhythms show how cognitive
processing can be distributed into the world (Hutchins, 2001).
There may be little difference between an external rhythm and
an internal rhythm, other than the degree to which it couples
with other neural rhythms. From this perspective, a beating drum
is just another rhythm in the brain. Due to the resonant nature
of our being, sympathetic resonance with other people seems to
allow the direct sharing of collective consciousness across bodies
and time. Yet, if resonant coupling is the basis of consciousness,
then might we run the risk of creating resonant robots or AI
systems that could, in a meaningful sense, actually share our
conscious experience?

At present, it is computationally challenging to support real-
time resonance with human oscillations (see section Robots That
Can Resonate With People or Other Agents). However, there are
a variety of new computational architectures that use coupled
oscillators to perform information processing (see review by
Csaba and Porod, 2020). These naturally resonant computational
systems might support a new approach to representing and
responding to human activity. Perhaps oscillatory computer
systems could become capable of direct resonant coupling with
humans in a similar manner to how humans attune to one
another [H.10].

Limitations of Resonance
This article has presented resonance as a simple physical concept
that can explain complex human behavior. While resonance
may indeed serve as a powerful program for research, our
understanding of it is far from complete. Even the resonance
of a stretched string is astonishingly complex (see Bajaj and
Johnson, 1992); human resonances, which result from the
interrelation of billions of hierarchical oscillators, will no

doubt exhibit endless complexities. But, a scientific progression
can start with a simple guiding model for resonance that
can then lead to a more complex model. As an example,
researchers predicted that synchronization might help support
romantic courtship behaviors. However, their initially simple
notion of synchronization failed to predict behavior. This
led the researchers to develop a more complex model of
“hierarchically patterned synchronization” that successfully fit
the data (Grammer et al., 1998).

CONCLUSION

Resonance can refer to powerful and connecting aesthetic
experiences—as well as a broad range of other topics in
the scientific literature (Box 1). Having reviewed the role of
resonance as a metaphor and mechanism in human relations
and in robots, we propose that resonance can serve as a design
strategy to guide our relationships with artificial agents.

This article makes the case that resonance in human
interactions is more than a metaphor: it is a physical mechanism
that can be measured and harnessed. We show how the concept
of resonance provides an intuitive model that can guide empirical
research. Resonance lends itself to scientific study because it
makes clear predictions: external oscillations that align with a
system’s natural oscillations are likely to cause synchronization
and amplification effects. The ability to measure resonance in
interactions could aid AI-human interactions by enabling a
meaningful “objective function” for optimization. Promisingly,
the concept of resonance may even bridge the gap between what
we can measure and what we can feel.

Resonance, entrainment and synchronization occur in human
dynamics for the same reason it occurs in all other physical
systems: it reduces free energy (Bruineberg et al., 2018; Koban
et al., 2019). This makes human resonance a mundane,
complicated and powerful phenomena. Further research on
human resonance may open up new opportunities for the design
of positive interactions with robots and with humans alike.
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A key challenge for AI is to build embodied systems that operate in dynamically

changing environments. Such systems must adapt to changing task contexts and

learn continuously. Although standard deep learning systems achieve state of the

art results on static benchmarks, they often struggle in dynamic scenarios. In these

settings, error signals from multiple contexts can interfere with one another, ultimately

leading to a phenomenon known as catastrophic forgetting. In this article we investigate

biologically inspired architectures as solutions to these problems. Specifically, we show

that the biophysical properties of dendrites and local inhibitory systems enable networks

to dynamically restrict and route information in a context-specific manner. Our key

contributions are as follows: first, we propose a novel artificial neural network architecture

that incorporates active dendrites and sparse representations into the standard deep

learning framework. Next, we study the performance of this architecture on two separate

benchmarks requiring task-based adaptation: Meta-World, a multi-task reinforcement

learning environment where a robotic agent must learn to solve a variety of manipulation

tasks simultaneously; and a continual learning benchmark in which themodel’s prediction

task changes throughout training. Analysis on both benchmarks demonstrates the

emergence of overlapping but distinct and sparse subnetworks, allowing the system

to fluidly learn multiple tasks with minimal forgetting. Our neural implementation marks

the first time a single architecture has achieved competitive results in both multi-task

and continual learning settings. Our research sheds light on how biological properties

of neurons can inform deep learning systems to address dynamic scenarios that are

typically impossible for traditional ANNs to solve.

Keywords: dendrites, continual learning, reinforcement learning, neuroscience, embodied cognition

1. INTRODUCTION

Creating embodied systems that thrive in dynamically changing environments is a fundamental
challenge for building intelligent systems. Humans handle such environments with ease, but today’s
deep learning systems struggle with them. Standard Artificial Neural Networks (ANNs) often
fail dramatically when learning multiple tasks, a phenomenon known as catastrophic forgetting
(McCloskey and Cohen, 1989; French, 1999) where the network forgets previously-learned
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information. ANNs are inherently designed for static
environments with batch training, and learning multiple
sequential tasks can lead to significant interference between
tasks. Embodied systems, where an agent actively behaves in a
changing environment, pose additional challenges. In dynamic
scenarios, the training dataset itself is not fixed. Sensory inputs
are dependent on an agent’s actions and as an embodied agent
learns, the actions taken for a given context change as well. Thus,
a network learning in these situations needs to avoid forgetting
relevant information, update only the information that requires
fine tuning, and forget the information that is no longer
relevant. The network must distinguish between these types
of information categories instead of treating all information
as equivalent. The optimal algorithms and architectures for
learning in dynamic environments are unknown and remain a
fundamental research challenge for AI.

We investigate these questions by looking to neuroscience and
biological systems for clues to inform ANNs. In particular we
hypothesize that biological properties of pyramidal neurons in the
neocortex can enable targeted context-specific representations
that avoid interference. Most ANNs today rely on an idealized
(but inaccurate) model of neurons known as the point neuron
model, consisting of a linear weighted sum of inputs followed by
a non-linearity (Figure 1, left). Proposed over a hundred years
ago (Lapique, 1907), the point neuron model continues to form
the basis for current deep learning systems (McClelland et al.,
1986; LeCun et al., 2015). In contrast, pyramidal neurons, which
comprise most cells in the neocortex, are significantly more
sophisticated and demonstrate a wide range of complex non-
linear dendrite-specific integrative properties (Spruston, 2008;
Figure 1, right). Experimental evidence suggests that dendrites
are important for learning task-specific patterns (Yang et al.,
2014). In this article we incorporate into an ANN two properties
of biological neural networks: active dendrites, and sparsity via
local inhibition.

We explore the impact of these properties in two non-
traditional machine learning scenarios: multi-task reinforcement
learning (multi-task RL) and continual learning. In multi-task RL,
a robotic agent learns to perform a diverse set of independent
tasks (Yu et al., 2019). Even though tasks are interleaved through
training, standard ANNs suffer from significant task interference.
In continual learning, a network is trained sequentially on a set
of tasks and evaluated on all tasks after training (McCloskey and
Cohen, 1989; van de Ven and Tolias, 2019). Here, standard ANNs
do not perform well due to catastrophic forgetting. Specifically,
because ANNs with point neurons overwrite most of their
connections during each iteration of learning, tasks learned at
the beginning of training are forgotten and receive low accuracy
scores during the evaluation phase (French, 1999; Parisi et al.,
2019).

The rest of the article is arranged as follows. After discussing
background material, we propose a new architecture that
incorporates dendrites and sparse representations into deep
learning. We then test our architecture on one representative
benchmark from each of the two scenarios, multi-task RL and
continual learning. We show experimental results on a standard
multi-task RL benchmark, Meta-World. We also show results

FIGURE 1 | (Left) The point neuron prevalent in most ANNs today computes

a simple linear weighted sum of its inputs followed by a non-linearity. (Right)

Morphology of a representative pyramidal neuron. Pyramidal cells in the brain

exhibit a vastly more complex structure and functionality. Inset shows a

prototypical basal dendritic segment that acts as an independent

computational unit.

on a standard continual learning benchmark, permutedMNIST.
The results in both cases show that an identical architecture with
active dendrites performs well in both benchmarks. Finally, we
analyze the results and show that active dendrites and sparse
representations help with catastrophic forgetting and gradient
interference by learning to create task-specific subnetworks
where representations are sparse and mostly orthogonal. Overall,
our results suggest that detailed biological properties of neurons
can be used to address dynamic scenarios that are difficult for
traditional ANNs to solve.

2. BACKGROUND

2.1. Multi-Task Learning
The goal of multi-task learning (Caruana, 1997) is to learn a
single function that can solve a variety of different learning tasks.
The literature in multi-task learning spans many subfields of
machine learning, including computer vision (Misra et al., 2016;
Kendall et al., 2019; Liu et al., 2019; Purushwalkam et al., 2019),
and natural language processing (Dong et al., 2015; McCann
et al., 2018). The fields of multi-task RL and continual learning
can be seen as subsets of multi-task learning. In the former, tasks
are learned in parallel. Conversely, in continual learning, tasks
are learned in an ordered sequence.

Compared to single-task machine learning, learning multiple
distinct tasks introduces new challenges. When using gradient-
based learning algorithms such as backpropagation1, one
challenge is that error gradients and accumulated knowledge
from different tasks can interfere with one another. The weight
changes necessary to reduce the error for one task may be very
different from the changes required for another task. This is a
common problem sometimes defined as catastrophic forgetting
(French, 1999) or catastrophic interference (McCloskey and
Cohen, 1989) in continual learning.

Yu et al. (2020) propose a method to modify conflicting
gradients through gradient projection. Several other works
demonstrate that using or changing the gradients via various
normalization, gradient-similarity, and regularization techniques

1In this article, the term backpropagation refers to the learning method used

in deep learning (Rumelhart et al., 1986) and not the phenomenon of back

propagating action potentials in dendrites.
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can improve learning in multi-task settings (Zhang and Yeung,
2014; Chen et al., 2018; Sener and Koltun, 2018; Du et al.,
2020). Novel network architectures are an alternate strategy for
avoiding interference in multi-task computer vision settings.
Rosenbaum et al. (2018) implement routing networks, learned
functions that use task information to determine how to compose
a set of function blocks. Liu et al. (2019), Maninis et al.
(2019) demonstrate that attention-based architectures could also
prevent task interference in multi-task learning scenarios.

2.1.1. Multi-Task Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning in
which an agent acts in an environment and receives rewards for
each action taken (Sutton and Barto, 2018). The goal is to train
an agent, whose actions are determined by a policy function, to
maximize the total reward received. One fundamental challenge
of RL is that the training set itself is highly dynamic. As the agent
learns and updates its policy function, it chooses different actions,
which in turn changes the sequence of inputs that are received.

Deep RL uses deep learning networks to represent the policy
function (see Arulkumaran et al., 2017 for a review). Recent years
have witnessed the promise of deep RL in a variety of different
settings. Mnih et al. (2013) demonstrate that an agent trained
with their Deep Q-Network can surpass the performance of
expert humans in Atari video games. A few years later, Silver et al.
(2018) achieve superhuman performance in more challenging
games such as Chess and Go. Other algorithms achieve strong
performance in continuous environments with continuous
action inputs (Lillicrap et al., 2016). Other methods attempt to
induce beneficial learning behaviors such as more stable training
(Schulman et al., 2017) and improved exploration (Haarnoja
et al., 2018b).

Multi-task reinforcement learning combines Deep RL with
multi-task learning (Wilson et al., 2007; Yang et al., 2020; Yu
et al., 2020). Multi-task RL leads to particularly challenging
and interesting scenarios where the system must address both
dynamic training regimes and interference from multiple tasks.
The idea of separating a neural network into different modules
which are composed in a task-dependent manner is proposed in
multi-task RL to prevent gradient interference (Andreas et al.,
2017; Devin et al., 2017; Sahni et al., 2017; Haarnoja et al., 2018a;
Goyal et al., 2020; Yang et al., 2020). Policy distillation, in which
information from a “teacher” network is condensed to a smaller
“student network,” is another popular approach to combine
information from different tasks in an effective manner (Rusu
et al., 2016).

2.1.2. Continual Learning
While multi-task RL requires the simultaneous acquisition
of multiple skills, continual learning requires the sequential
acquisition of multiple skills. More generally, continual learning
is the ability to acquire new knowledge over time while retaining
relevant information from the past. A typical scenario involves
training a network on a set of distinct tasks presented in a
strict sequence of training phases. Testing the network involves
measuring accuracy on all past tasks. van de Ven and Tolias
(2019) and Parisi et al. (2019) extensively review the field.

Two common approaches to catastrophic forgetting in continual
learning involve regularization and subnetworks methods.

Regularization-based methods in continual learning regulate
plasticity levels throughout the network during the course of
training. In recent years, two of the most prominent examples
of regularization are Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2017) and Synaptic Intelligence (SI) (Zenke
et al., 2017). Both methods (EWC and SI) estimate the relevance
of each weight of the network in solving each task. Inspired by the
complex synapse structures seen in biology, SI uses an additional
parameter per weight with internal dynamics that depend on the
relevance of each weight to each task.

Subnetwork-based methods reduce task interference by
identifying subpopulations of neurons that each learn one of
the many tasks in the sequence. Gated Linear Networks (Veness
et al., 2021) and Dendritic Gated Networks (Sezener et al., 2021)
are examples of this type of approach and work by applying
a gating mechanism that selects subnetworks based on the
input. Context-dependent Gating (XdG) (Masse et al., 2018)
selects predetermined subnetworks of neurons, but exact task
information must be provided both at training and test times.
Similarly, in Wortsman et al. (2020) each task is designated a
sparse subset of neurons in the network.

2.2. Properties of Biological Neurons
Biological neural networks have evolved in ways that make
them much more resilient to catastrophic forgetting and are
able to perform significantly better in dynamical scenarios than
any ANN to date. ANNs and their component point neurons
emerged as simplified abstractions of the complex processes
occurring in biological networks and neurons respectively. In this
section, we explore the complexities of biological neural networks
and review a few properties that are relevant to our work.

2.2.1. Neurons and Active Dendrites
The pyramidal neuron is the most prevalent neuron type
found in the neocortex and hippocampal areas (Spruston,
2008; Ramaswamy and Markram, 2015). In particular they
represent the most common excitatory neuron type found in
areas associated with advanced cognitive functions (Spruston,
2008). A typical pyramidal neuron has an extensive dendritic
tree containing thousands of synapses, each receiving input
from another neuron (y Cajal, 1894; Bentivoglio and Swanson,
2001; Kandel, 2012). The point neuron model (Lapique, 1907)
postulates that all of these synapses have a linear impact on the
cell. This simple assumption formed the basis for Rosenblatt’s
original Perceptron (Rosenblatt, 1958) and continues to form the
basis for current deep learning systems and ANNs (McClelland
et al., 1986; LeCun et al., 2015).

Today it is well-known that the point neuron assumption is
an oversimplified model of biological computations. Proximal
synapses (close to the cell body) have a linear impact on the
neuron, but the vast majority of synapses are located on distal
dendritic segments (far from the cell body) and individually have
minimal impact on the cell. These distal segments process groups
of synapses locally in a non-linear fashion, and are known as
active dendrites (Magee, 2000; Antic et al., 2010;Major et al., 2013;
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Stuart and Spruston, 2015; Stuart et al., 2016). Empirical evidence
(London and Häusser, 2005; Branco and Häusser, 2010) suggests
that each distal dendritic segment acts as a separate active
subunit performing its own local computation. Modeling studies
show that neurons with active dendrites are more powerful and
complex than the point neuronmodel can accommodate (Poirazi
et al., 2003; Jadi et al., 2014; Poirazi and Papoutsi, 2020; Beniaguev
et al., 2021).

When input to an active dendritic segment reaches a
threshold, the segment initiates a dendritic spike (Antic et al.,
2010). In basal dendritic segments, dendritic spikes travel to
the cell body and can depolarize the neuron for an extended
period of time, sometimes as long as half a second (Antic et al.,
2010; Major et al., 2013; Gao et al., 2021). During this time, the
cell is significantly closer to its firing threshold and any new
input is more likely to make the cell fire. This suggests that
basal active dendrites have a modulatory, long-lasting impact on
the cell’s response, with a very different role than proximal, or
feedforward, inputs (Hawkins and Ahmad, 2016; Antic et al.,
2018). Active dendritic segments typically receive contextual
input that is a different input than received in proximal segments.
These context signals can arrive from other neurons in the
same layer, neurons in other layers, or in the form of top-
down feedback. Recent experimental evidence has shown that the
input on active segments can drive context-dependent activity
(Takahashi et al., 2020). In our model, we incorporate these
ideas and explore the possibility of using context to create task-
specific subnetworks.

2.2.2. Sparse Representations
Neural circuits in the neocortex are highly sparse. Studies show
that relatively few neurons spike in response to a sensory stimulus
across multiple sensory modalities (Attwell and Laughlin, 2001;
Barth and Poulet, 2012; Liang et al., 2019). Sparsity is also present
in neural connectivity; cortical pyramidal neurons show sparse
connectivity to each other and receive relatively few excitatory
inputs from most surrounding neurons (Holmgren et al., 2003).
These two phenomena are significantly different from standard
ANNs, where both activations and connectivity are dense.

When modeling sparsity in ANNs, sparse neural
representations are translated into vectors where most of
the entries are off (i.e., equal to zero; Majani et al., 1989). Just
like in dense representations, individual entries in a sparse
representation can correspond to the presence of certain
features (e.g., the unique position of an edge in an input
image). One advantage of sparsity in representations is that
vectors for two separate entities have low overlap, which means
the set of features/entries that are non-zero in both vectors
is small. Previous studies show that sparse representations
are more resistant to noise than dense representations, and
slight perturbations in the input are less likely to hinder
a trained pattern recognizer (Ahmad and Hawkins, 2016;
Ahmad and Scheinkman, 2019; Paiton et al., 2020). The idea
of low representation overlap among unrelated inputs may be
particularly useful when an ANN is learning multiple, unrelated
tasks. If the representations of two different tasks have near-zero

overlap, it is possible to significantly reduce task interference.
We explore this question in our simulations below.

3. ACTIVE DENDRITES NETWORK MODEL

Our primary goal is to augment standard ANNs with the
biological properties described above. The extensions should be
general and applicable to a range of complex scenarios such as
multi-task RL and continual learning. The key aspects of our
model are summarized as follows, with details noted in the rest
of this section:

1. Pyramidal neurons integrate a range of diverse inputs on
multiple independent dendritic segments. To model this, we
implement neurons that separate out contextual inputs from
feedforward inputs. Each neuron processes the feedforward
input using a linear weighted sum. A set of independent
dendritic segments process the contextual input using a
separate set of weights.

2. Contextual inputs on active dendrites can modulate a
neuron’s response, making it more likely to fire. To
model this, we implement a function that can up-modulate
or down-modulate the feedforward activation based on
dendritic activation.

3. Neural activity and connectivity are highly sparse. To model
this, we incorporate a k-Winner-Take-All function (kWTA)
that mimics biological inhibitory networks (Cui et al., 2017)
and guarantees sparse activations.

The above properties are implemented such that the entire
network is differentiable and trainable end-to-end using
backpropagation. This makes the architecture suitable for testing
on any standard deep learning scenario.

3.1. Active Dendrites Neuron
Building on the original HTM neuron model (Hawkins and
Ahmad, 2016), our Active Dendrites Neuron [Figure 2 (right
inset)] receives two sources of input, analogous to the proximal
and distal inputs in pyramidal neurons. Feedforward activation
is computed by a linear weighted sum of the feedforward
input vector, identical to the mechanism in a point neuron.
Meanwhile, multiple dendritic segments process a context
vector, and the subsequent dendritic output modulates the
feedforward activation. This computation produces a neuron
where the magnitude of the response to a given stimulus is
highly context-dependent.

Given input vector x, weights w, and bias b, our neuron
computes the following feedforward activation:

t̂ = w⊤x+ b (1)

Similarly, each dendritic segment j computes u⊤j c, given weight uj
and context vector c. (The method we use to compute the context
vector, c, is described in later sections.) We select the segment
with the strongest response to the context when computing
dendritic activation d, which is used to modulate the neuron:

d = max
j

u⊤j c (2)
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FIGURE 2 | [Right (inset)] Illustration of a single Active Dendrites Neuron. Feedforward weights (green) receive regular feedforward input while dendritic segments

(blue) receive a context vector. After all dendritic segments compute an activation value, the highest value modifies the linear weighted sum computed by feedforward

weights. (Left) An overview of the base network structure used in our experiments. There are two hidden layers. Each layer outputs sparse activations, as determined

by a kWTA activation function. In addition, the weights between layers can be sparse. A context vector is computed for each input. The dendritic segments in each

layer receive this context vector as input.

In order to modulate feedforward activation t̂ by the dendritic
activation d, we use modulation function f (t̂, d) where f (m, n) =
m × σ (n). Here, σ (·) is the sigmoid function which takes a
real number and maps it into the range [0, 1]. Therefore, by
combining (1) and (2) with f , we can write the output of a single
Active Dendrites Neuron as:

ŷ = f
(

t̂, d
)

(3)

= f

(

w⊤x+ b, max
j

u⊤j c

)

(4)

=

(

w⊤x+ b
)

× σ

(

max
j

u⊤j c

)

(5)

Here, a strong positive dendrite response to the context vector
will retain the feedforward activation. Conversely, weak or
negative responses to the context vector will significantly reduce
the activation. We note that there are many variations of (2) that
are possible. We found that the network works best when we
select the dendrite activation with the largest absolute value and
retain the sign in d (Section 6.3).

3.2. Sparse Representations
We apply a kWTA activation function (Ahmad and Scheinkman,
2019) as our choice of non-linear activation in each hidden layer
of the network:

k(ŷi) =

{

ŷi if ŷi is one of the top k activations over all i

0 otherwise
(6)

where i indexes neurons in the same layer. The effect of kWTA is
to ensure sparsity by selecting the top k activations and setting
all others to zero. Feedforward layers that are modulated by
dendritic segments and apply kWTA thus produce sparse activity
patterns that are highly context-dependent. Additionally, our
feedforward layers also use sparse weights as proposed in Ahmad
and Scheinkman (2019).

3.3. Active Dendrites Network Architecture
Figure 2 (left) shows our Active Dendrites Network, trained
end-to-end with backpropagation, where all neurons in each
hidden layer are Active Dendrites Neurons. We make two
notes: first, only the neurons that were selected by the kWTA
function will have non-zero activations (and thus non-zero
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FIGURE 3 | The Meta-World v2 Multi-Task 10 (MT10) environment, where a single robotic arm must learn to solve a variety of tasks ranging in difficulty.

gradients). Therefore, during the backward pass, only the weights
corresponding to those winning neurons will be updated. Second,
for each of those winner neurons, only the dendritic segment
j that was chosen by the max operator is updated; all other
segments uj′ for j′ 6= j remain untouched. Thus a very
small sparse subset of the full network is actually updated for
each input.

We hypothesize that a functional specialization will emerge
where different dendritic segments will each learn to identify
specific context vectors. Since most dendritic segments that don’t
respond to a specific context will not be updated, any context-
dependent modulation of the neuron should be preserved from
task to task. Ideally, the whole process will preserve any context-
dependent modulation of a neuron between tasks, reduce
gradient interference, and prevent catastrophic forgetting.

4. RESULTS

4.1. Results With Multi-Task Reinforcement
Learning
The multi-task RL problem we investigate uses the Meta-World
v2 environment and its associated v2 tasks (Yu et al., 2019). Meta-
World contains multiple different object manipulation tasks
that a single robotic arm must learn to solve simultaneously.
We use the MT10 environment, which contains 10 tasks
ranging in complexity as depicted in Figure 3. Although the
concrete outcome of each task is unique, all tasks share a
common structure that enables the agent to leverage some shared
information during training. For instance, learning how to grasp
an object is a shared concept among many of the tasks.

The algorithm we use to train our robotic agent is multi-
task Soft Actor-Critic (MTSAC) as introduced by Yu et al.
(2019), an adaptation of the popular Soft Actor-Critic (SAC)
framework proposed earlier by Haarnoja et al. (2018b). MTSAC
is an actor-critic deep RL algorithm that maximizes an agent’s
cumulative reward to solve a task while also maximizing entropy
to encourage environment exploration. To maintain consistency
with the codebase of Yu et al. (2019) which fixes goal states
(e.g., position of an object in the environment) through training,
we also keep goal locations constant across all our experiments.

A deeper explanation about our multi-task RL setup and the
algorithm we use to train the agent can be found in Section 6.1.
As in many RL problems, there is no static training and testing
dataset. Rather, past experiences from the agent are used to
iteratively train the agent. We freeze the network at regular
intervals to test accuracy on all tasks.

4.1.1. Network Structure for Multi-Task RL
Figure 4 shows our network architecture for multi-task RL. We
use a network with 2 hidden layers—each with 2,800 neurons
and followed by a kWTA activation function—and a final output
layer. The first hidden layer has standard neurons whereas the
second hidden layer contains Active Dendrites Neurons which
are modulated by the context vector. The primary feedforward
input to the network is a state vector consisting of the agent’s
position in the world as well as the position and orientation of the
target object. The output of the network is an action vector that
describes the joint torques and gripper forces of the robotic arm.
The structure of the state and output vectors is identical across all
tasks. All feedforward weights are sparse.

For our multi-task RL experiments, the context vector c

encodes the task ID as a one-hot encoded vector. We considered
other options to generate c, such as first pre-processing the one-
hot encoding by a linear layer, but found that a one-hot encoding
was adequate. Each Active Dendrites Neuron in our network has
exactly 10 dendritic segments (same as the number of tasks to
learn) so that each segment can potentially learn to recognize a
unique context vector.

We compare our Active Dendrites Network to baselines
reconstructed2 from Yu et al. (2019) which are multi-layer
perceptrons (MLPs) with dense weights and ReLU activations.
These MLP baselines are used to model both the policy and the
Q function. Additionally, these MLP baselines receive context
information c in the form of feedforward input concatenated to
the state vector. Thus, both the Active Dendrites Network and the
baseline network receive identical information at each time step;

2We are unable to directly present the published baseline results because their

plots contain inconsistencies between success rates per-task and across all tasks.

To present a fair comparison, we re-run the baseline networks using their codebase

and hyperparameters.
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FIGURE 4 | An overview of the network structure used in our multi-task RL experiments. A kWTA activation is applied to both hidden layers. The context vector is the

task ID. The dendritic segments in the second hidden layer receive this context vector as input.

FIGURE 5 | The success rate of our network when learning 10 tasks compared to the MLP baseline with context. (Left) Experiment 1—the average of 10 Active

Dendrites Network runs and 10 MLP baseline network runs that all share the same training hyperparameters. (Right) Experiment 2—the average of the five best

Active Dendrites Network experiments and the five best MLP baseline experiments. The shaded region in each plot represents the standard deviation of the success

rate from the average.

the primary difference between the two architectures is how the
context vector is handled.

Table 2 in Section 6.1.4 shows the networks we ran, the
number of non-zero parameters in each network, and the
hyperparameters used to train each network. Although we
control the hidden sizes to yield approximately the same
number of total non-zero parameters across our experiments,
we note that the MLP baseline network contains nearly 500,000
more non-zero parameters than our Active Dendrites Network.
We chose a network with two hidden layers to draw fair
comparisons with the MLP baselines presented in Yu et al.
(2019). Supplementary Materials (Section 1) includes the results
of additional experiments detailing the impact of some of our
architectural choices.

4.1.2. Dendrites Improve Multi-Task RL Accuracy
We show results from two different experiments that compare
our Active Dendrites Network to the MLP baseline network.
Experiment 1: In this experiment, we assess the overall

performance of each architecture. We ran both an Active

Dendrites Network and a MLP baseline network with identical
training hyperparameters. Figure 5 (left) shows the mean overall
success rate for each architecture during the course of training
over 10 independent trials. To identify which architecture
performs the best for each task, we compute the mean success
rate per task for the last 500,000 environment steps of training
and list these values in Table 1. Additionally, we show the
per-task training statistics during this same segment of training,
as seen in Figure 6.

We see in Figure 5 (left) that although the Active Dendrites
Network has lower success rates early in training, it overtakes the
baseline architecture and is about 10% better by the end. Table 1
shows that the average end success rate for the Active Dendrites
Network (across the last 500,000 steps of training) is 87.5%. In
comparison, the average success rate for the MLP baseline is
76.6%. We also note that the push, peg-insert-side, and pick-place
tasks were the hardest to solve because they are the most unlike
the other tasks. Specifically, these three tasks require that a robot
grasp and move a small object to a specified location. As evident
in Figure 6 for these three tasks, the median success rate of an
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TABLE 1 | The mean per-task success rate produced by each network in

Experiment 1.

Tasks Model

Active Dendrites

Network (%)

MLP baseline (%)

Drawer-close 100.0 100.0

Window-close 99.7 95.3

Button-press-topdown 95.7 97.3

Reach 99.7 86.3

Window-open 99.3 93.7

Drawer-open 99.7 86.0

Door-open 94.7 84.3

Push 67.3 59.0

Peg-insert-side 71.7 47.0

Pick-place 47.7 17.3

Overall 87.5 76.6

The success rates are averaged over the last 500,000 steps of training. The best success

rate between the Active Dendrites Network and MLP baseline is highlighted in bold.

Active Dendrites Network is far greater than that of the MLP
baseline network. We hypothesize that these tasks are hard to
learn because of significant gradient interference with the other
tasks, and that the context-specific sparsity imposed by the Active
Dendrites Network helps remove this interference.
Experiment 2: The high variance in Figure 5 (left) is inherent in

many RL scenarios (Irpan, 2018; Ibarz et al., 2021). This is in large
part due to the highly stochastic and dynamic training process.
For instance, small variations in the trained policy can result
in large variations in the agent’s behavior which significantly
impacts the data collected during training. Additionally, a policy
can generate different behaviors during training when sampling
from its predicted action distribution.

To control for some of this variation in training, for each
network initialization we select the best result across different
training runs. For each of five different Active Dendrites Network
initializations, we ran five training runs and picked the run with
the highest end success rate across the last 500,000 environment
steps of training. We then compute the mean overall success rate
across these five best runs. We follow the same procedure for
finding the five best MLP baseline networks and compare the
results in Figure 5 (right).

We find that this process significantly reduces the variance
and that the best Active Dendrites Networks still outperform the
bestMLP baseline networks. Across the five best Active Dendrites
Network runs, the average overall end success rate is 95.6%. In
comparison, across the five best MLP baseline runs, the average
overall end success rate is 88.2%.

4.2. Results With Continual Learning
A typical continual learning problem consists of training a neural
network on a discrete number of tasks in sequence. Once a
network is trained on a particular task, it does not encounter that
task during training again. The goal is to learn all the tasks in
sequence without forgetting previously-learned tasks.

We use the permutedMNIST dataset (Goodfellow et al., 2014),
a common benchmark in continual learning where each task
requires classifying images of handwritten digits (0–9) after a
unique pixel-wise permutation has been applied. Since the data
distribution of each task changes and because neural networks
are generally not permutation-invariant, forgetting occurs.

We use the original MNIST training dataset of 60, 000 images
to construct the dataset for a single task. Since we train on
T consecutive tasks, the network is trained on a total of T ×
60, 000 images. Once training is complete, the network accuracy
is calculated using a test set consisting of all T permutations
applied to the MNIST test dataset of 10, 000 images.

We train our model to learn up to 100 tasks in sequence.
The network is tested at the end of training by computing
accuracy on the test set for all tasks. When attempting to learn
T consecutive tasks, the hidden neurons are equipped with T

dendritic segments each to give it sufficient capacity to recognize
a unique context vector for each task. We report accuracy
numbers by averaging over 8 independent runs each with a
randomly-picked seed. See Section 6.2 for additional details.

4.2.1. Computing the Context Vector
As with multi-task RL, we need to compute an appropriate
context vector. For continual learning, we use a simple prototype
method (Rosch, 1975; Snell et al., 2017) to select the context
vector where a single vector represents each task [Figure 7
(left)]. We implement two different variations of the prototype
method depending on the knowledge available to the system
during training.

4.2.1.1. Training Method 1 (Task Information Provided)
In the first method, we assume that the system receives task
information during training, when all training samples for a
particular task are assigned a single prototype context vector. We
compute the prototype vector for task τ by taking the element-
wise mean over all the training samples across all features:

pτ =
1

|Vτ |

∑

x∈Vτ

x

where Vτ denotes the set of all data samples x that the model
observes to train on task τ . The dimensionality of the context
vector is thus identical to the dimensionality of the input vectors.
This context vector is specific to each task and agnostic to the
target label.

4.2.1.2. Training Method 2 (Task Information Not Provided)
In the second method, we relax the constraint that the identity
of the task is given during training and instead implement
prototypes that are automatically selected during training. To
achieve this, we use a statistical clustering approach that builds
context prototypes on the fly. When the system receives a new
batch of training samples from a task, we use an unpaired
multivariate t-test to compare the current samples to previously-
observed training samples. If the new batch of samples is similar
to earlier training samples, they are assigned to an existing
prototype. If not, the new batch of samples is assumed to
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FIGURE 6 | Box plots of the accuracies for each MT10 task for our Active Dendrites Networks and MLP baseline networks in Experiment 1. We discard outliers for all

runs for clarity.

FIGURE 7 | (Left) An illustration of the prototype method for computing the context vectors. The blue circles are training samples in input space for task A, while the

orange circles are training samples for task B. The blue star is a vector that represents the prototype for task A, and the orange star represents the prototype for task

B. (Right) An overview of the network structure used in our continual learning experiments. There are two layers of hidden units, each with a kWTA activation function.

A context vector is computed from each image by locating the nearest prototype vector.

correspond to a new task, and a novel prototype is instantiated.
In this case, there isn’t necessarily a one-to-one mapping between
tasks and prototype context vectors. More details on this method
are described in Section 6.2.3.

4.2.1.3. Selecting Prototypes During Inference
For both methods above, we do not provide any task information
to the system during evaluation. Instead it must dynamically
select the correct context vector and provide that to the network.
We enable this dynamic approach by selecting the closest

prototype vector to each test example using Euclidean distance.
That is, for a test example x′, the chosen prototype is:

argmin
pτ

||x′ − pτ ||2

computed over all prototypes pτ stored in memory.

4.2.2. Network Structure for Continual Learning
Figure 7 (right) shows the network that we used for our continual
learning experiments. Each of the two hidden layers contain
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FIGURE 8 | (Left) The accuracy of our Active Dendrites Networks when learning 2, 5, 10, 25, 50, and 100 permutedMNIST tasks in sequence. We show results

using both prototype methods while training: when the model is provided with a prototype, and when it must select the vector in an online manner. (Right) The

accuracy of the Active Dendrites Network and SI. The accuracy when combining SI + active dendrites is greater than either one on its own.

2,048 Active Dendrites Neurons followed by a kWTA activation
function. The output of the network is a standard layer with
10 neurons. We choose our network layer sizes to be similar to
previous studies that report results on this dataset (Kirkpatrick
et al., 2017; Zenke et al., 2017; Masse et al., 2018). (Section 6.2
details the hyperparameters used for each experiment).

4.2.3. Dendrites Mitigate Catastrophic Forgetting in

Continual Learning
As shown in Figure 8 (left), we achieve accuracies of 94.6

and 81.4% on 10 and 100 consecutive permutedMNIST tasks,
respectively, when context is provided during training, and
accuracies of 94.3 and 76.9%when context is dynamically chosen
during training. Since there are always 10 categories, chance
accuracy is 10% independent of the number of tasks. This
demonstrates that the network successfully retains the majority
of the knowledge from previous tasks. Note that a standard
feedforward network performs poorly on this benchmark
(Kirkpatrick et al., 2017; Zenke et al., 2017; van de Ven and Tolias,
2019; see also Section 4.3.3 for more direct comparisons).

We also compare the results with SI (Zenke et al., 2017;
see Section 2.1.2). SI is inspired by the complex structure of
biological synapses and known to do well on this benchmark.
SI operates solely at the level of synapses: it maintains an
additional parameter per weight that controls the speed of
weights adapting to specific tasks. In SI, the weight updates are
sprinkled throughout the network and not grouped according
to units or dendrites. On the other hand, the dendrites in
our network impact a small subset of the neurons, and only
the weights on these neurons and dendrites are modified. As
such, our two approaches seem to be complementary. Figure 8
(right) shows the benefits of combining these two techniques.
The accuracy of Active Dendrites Networks combined with SI
improves to 97.2 and 91.6% accuracy on 10 and 100 consecutive
tasks, respectively. Combining the two leads to higher accuracy
than either method on its own. This suggests that biological

mechanisms at the synapse, neuron, and network levels can
operate together to handle continual learning. Note that SI as
described in Zenke et al. (2017) requires knowledge of the task
during training; therefore we only combine it with our first
prototype method. It may be possible to remove this restriction,
which is a direction for future research.

4.2.4. Comparison With Context Dependent Gating
The idea of leveraging sparse representations and subnetworks
within an ANN to combat catastrophic forgetting is not
entirely novel. The implementation closest to ours is XdG
(Masse et al., 2018) that uses a hard-coded distinct subnetwork
for each task. When training on a task, the implementation
invokes the task-specific subset of the hidden layer of the
ANN; other neurons are forced to have an activation value
of zero. The XdG implementation requires a task ID that
determines exactly which neurons to turn on or off. Training
Active Dendrites Networks in a continual learning scenario
also yields subnetworks and sparse representations. However,
we emphasize two major distinctions between our model
and XdG:

1. Task information is inferred in our system (via prototyping)
whereas XdG provides the system with a task ID during
training and testing. As such, our system is solving a problem
that is known to be significantly more challenging (van de Ven
and Tolias, 2019).

2. Subnetworks automatically emerge via the use of dendritic
segments for each new task whereas XdG pre-allocates a
different subnetwork for each task, which also indicates our
system is solving a more challenging problem.

We compare Active Dendrites Networks to XdG in Figure 9. Just
as we augment Active Dendrites Networks with SI, so too does
XdG. Our results with a large number of tasks are significantly
better than XdG, and slightly worse than XdG combined with SI,
but without their limitations.
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FIGURE 9 | (Left) Final accuracy of the Active Dendrites Network in comparison to XdG when learning 2, 5, 10, 25, 50, and 100 permutedMNIST tasks. The more

tasks learned by the system, the greater the accuracy of the Active Dendrites Network. (Right) Final accuracy of each method when augmented with SI, and SI itself.

XdG results are taken from Masse et al. (2018).

FIGURE 10 | The fraction of instances for which each of the first 64 hidden units in the hidden layer became active (after applying kWTA), when training an Active

Dendrites Network on MT10 tasks (Left) and 10 permutedMNIST continual learning tasks (Right). Both figures separate instances by task. For MT10, the figure tests

the trained RL policy on each task three times during evaluation. For permutedMNIST, the figure uses 5,000 randomly-chosen test examples across all tasks. Note

that each hidden layer contains more than 2,000 hidden units, but we show just 64 for ease of visualization.

Learning is more challenging in our system as dendritic
segments must learn the mapping between context vectors
and different subnetworks. In effect, sparse representations and
minimally overlapping subnetworks emerge organically in our
model. We note that perhaps this makes learning more effective
as dendritic segments can choose subnetworks that overlap more
for tasks that are more semantically related, thus requiring less
network capacity.

4.3. Analysis
4.3.1. Are Dendrites Invoking Subnetworks?
The hypotheses of our work are two-fold. First, Active Dendrites
Networks modulate an individual neuron’s activations for each
task. Second, kWTA activations use this modulation to activate

subnetworks that correspond to each task. To test these
hypotheses, we train and analyze an Active Dendrites Network
for 10 tasks inmulti-task RL and continual learning scenarios and
investigate the representations of a layer of neuronsmodulated by
dendritic segments.

Figure 10 shows the average activation frequency per task

(after applying kWTA) for the first 64 neurons in the second
hidden layer for both multi-task RL and continual learning.
Looking horizontally across the rows, each task appears to select
a different sparse subset of neurons. Looking vertically across the
columns, each neuron appears to activate frequently only for a
small fraction of tasks. According to this measure, it appears that
the network has indeed learned to invoke minimally overlapping
subnetworks for different tasks.
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FIGURE 11 | The behavior of the dendritic segments of two separate neurons in a hidden layer of an Active Dendrites Network during three random evaluations of

each MT10 task and 5,000 random evaluations of each permutedMNIST task. These charts show the activation computed by each dendritic segment given the

context vector corresponding to each task, before (Top) and after (Bottom) training. Note that the dendritic segments for a particular neuron are completely separate

of the segments of another in both multi-task RL and continual learning scenarios (e.g., Neuron A’s first segment is unrelated to Neuron B’s first segment).

What is the effect of dendrites on a single neuron? In
Figure 11, we analyze a few Active Dendrites Neurons and their
responses to different context vectors before and after learning
10 multi-task RL and permutedMNIST tasks in sequence. At the
beginning of training, the responses are random with scattered
positive, negative, and near-zero responses. After training, most
responses are weak and only a few are either strongly positive
or negative. Notably, across the neurons, dendrites only have
strong responses to a few contexts as different neurons participate
in different subnetworks. We note that in the multi-task RL
scenario, we observe both strong positive and negative responses
while the continual learning scenario only shows strong positive
activity. We are unclear as to why this particular behavior
emerges in continual learning but not multi-task RL.

4.3.2. Impact of Sparsity Level and the Number of

Dendrites
We show that an Active Dendrites Network is competitive
with benchmarks in both multi-task RL and continual learning.
However, to what extent are active dendrites and sparse
representations both contributing factors toward alleviating
catastrophic forgetting?

We investigate this question in the context of continual
learning. We find that both active dendrites without sparse
representations and standard point neurons with sparse
representations are better than chance in a continual learning
scenario. However, the combination of both active dendrites and

sparse representations yield significantly better results than either
one on its own. As Figure 12 (left) shows, the accuracy of both
methods evaluated independently and evaluated together on 10
and 100 permutedMNIST tasks demonstrates the importance of
implementing both active dendrites and sparse representations.

To further test the impact of dendrites and sparsity, we run
two additional tests in the continual learning scenario. First, we
fix the level of sparsity in our hidden representations and vary the
number of dendritic segments per hidden neuron. Second, we fix
the number of dendritic segments per hidden neuron and vary
the sparsity in our hidden representations (i.e., vary k in kWTA).
As seen in Figure 13 (left), increasing the number of dendritic
segments leads to a small monotonic increase in accuracy.
Figure 13 (right) shows that reducing sparsity translates to
a sharp drop in accuracy, further highlighting the need for
sparse representations.

4.3.3. Are Networks With Dendrites Equivalent to

Larger Networks?
Over the last couple of decades, multiple studies have suggested
that dendritic computations performed by pyramidal neurons
can be approximated by ANNs that have one or more hidden
layers. For example, Poirazi et al. (2003) shows that a larger
two-layer neural network can well-approximate the post-synaptic
responses of a pyramidal neuron with active dendrites. Various
follow-up studies also make similar claims (Jadi et al., 2014;
Beniaguev et al., 2021), with Beniaguev et al. (2021) suggesting
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FIGURE 12 | (Left) Continual learning test accuracy on permutedMNIST using active dendrites and dense representations (green), regular ANNs with sparse

representations (orange), and Active Dendrites Networks (blue) which use both active dendrites and sparse representations. (Right) Continual learning test accuracy

for our Active Dendrites Network compared to regular feedforward networks with more layers. Our Active Dendrites Network has three layers; the two hidden layers

contain neurons modulated by dendritic segments. In all experiments (left and right subfigures), we average results over 8 independent runs, each with a randomly

initialized seed, and omit standard error bars as they highlight a very small range.

FIGURE 13 | (Left) Final accuracy on test examples across all tasks when varying the number of dendritic segments per neuron and keeping activation sparsity

constant when learning 10 (top) and 50 (bottom) permutedMNIST tasks. (Right) Final accuracy on test examples across all tasks for a fixed number of dendritic

segments per neuron and varying activation density level on 10 (top) and 50 (bottom) permutedMNIST tasks.

that a pyramidal neuron is equivalent to a larger ANN with
seven hidden layers. In this section we show that in the dynamic
scenarios considered here, an Active Dendrites Network is not
equivalent to larger or deeper ANNs.

In the case of multi-task RL, a pyramidal neuron’s activity
cannot be approximated by a neural network with more
parameters. For instance, classical deep networks that are trained
on a variety of tasks are incapable of performing well due to
gradient interference, an issue that cannot be solved with simply
more hidden neurons. When comparing a three-layer Active
Dendrites Network and a three-layer MLP with 500,000 more
learnable, non-zero parameters, Figure 5 shows that networks
with dendrites and sparse representations far outperform the
MLP baseline. We also experiment with larger 3-layer MLPs
that have 1,700,000 more non-zero parameters than our Active

Dendrites Network (hyperparameters found in Table 2 of
Section 6.1.4). In this case, we find that the MLP produces a
success rate of 73.1% across 10 tasks (averaged over the last
500,000 environment steps of training), which underperforms
our Active Dendrites Network yielding an average success rate
of 87.5%.

In addition, in the continual learning setting, our network
with dendrites cannot be approximated by a neural network
with multiple layers. When considering continual learning,
classical deep networks are incapable of performing well
due to catastrophic forgetting, regardless of network depth.
This specific trend can be observed in Figure 12 where
our Active Dendrites Network outperforms standard MLPs
that have (a) the same number of layers but no dendrites
(for 10 and 100 permutedMNIST tasks), and (b) many
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more layers and roughly the same number of learnable
parameters (for 10 permutedMNIST tasks). (Other ablation
studies, not shown in Figure 12, are described in the
Supplementary Materials section.)

These results for both multi-task RL and continual learning
suggest that standard ANNs that are wider or deeper are still
prone to gradient interference and catastrophic forgetting while
active dendrites can help retain knowledge from previous tasks.
In these dynamic settings, our experiments show that a standard
feedforward network with more hidden units or additional layers
is not as powerful as a network with active dendrites.

5. DISCUSSION

The exact mechanistic details of how a biological neuron converts
incoming signals into action potentials (i.e., spikes) remain
unclear. Ever since Rosenblatt (1958), models of biological
neurons favor a single linear weighted sum (the point neuron)
as a tractable abstraction. This idea continues to serve as the
prevalent paradigm in machine learning today for the individual
computational unit. One shortcoming is that standard ANNs
with point neurons can suffer from catastrophic forgetting. They
overwrite many of their connections for each learning iteration,
and thus quickly lose previously-acquired knowledge (French,
1999; Parisi et al., 2019).

In this article we show that augmenting point neurons
with biological properties such as active dendrites and
sparse representations significantly improves a network’s
ability to learn multiple tasks at once. In the multi-task
RL setting, a three-layer Active Dendrites Network can
achieve an average accuracy of about 88% when learning
10 Meta-World tasks together. In the continual learning
setting, an almost identical network can achieve greater than
90% accuracy when learning 100 permutedMNIST tasks
in sequence. These results, on two very different scenarios,
suggest that Active Dendrites Networks may represent a
general purpose architecture for avoiding interference and
forgetting in complex settings. In the rest of this Discussion
we elaborate on this idea and describe some relationships to
other research.

5.1. Dendrites Enable Dynamic Context
Integration and Routing
In this section, we attempt to elucidate how active dendrites
help in dynamic scenarios such as multi-task and continual
learning, and discuss our theory of their underlying role in
the neocortex. Following experimental evidence (Section 2.2.1),
our model suggests that dendritic segments in each neuron
identify specific contexts and then modulate neuronal activity
based on this identification. Combined with subsequent local
inhibition (kWTA function), the modulation can impact whether
the neuron activates.

We propose that the consequence of this behavior is to
invoke sparse context-specific subsets of the network. Two
different context vectors can lead to different winners and
different sparse activation patterns (illustrated in Figure 14). As

FIGURE 14 | A representation of subnetworks within an Active Dendrites

Network. By receiving different context vectors as input, dendritic segments

invoke different subnetworks for a fixed feedforward input. The subnetworks

are distributed, i.e., they may share some of the same neurons.

suggested by the figure, the same feedforward input can activate
completely different neurons based on the specific context. Note
that the subnetworks are distributed and that two different
subnetworks may share some neurons. In Section 4.3.1, we
showed that task-specific representations do indeed emerge in
our experiments (Figure 10).

Why do subnetworks help? In dynamic conditions, the
system must react and learn in constantly changing situations.
Subnetworks restrict the flow of information to be highly context-
dependent and relevant to each specific situation. In addition,
errors will only propagate through the active subnetwork. Only
the active neurons will update their feedforward weights and only
the winning segment within those active neurons will update
their dendritic weights. Thus, by utilizing context the brain can
isolate information flow, and direct learning itself in a highly
localized and task specific manner. The last two decades have
seen significant experimental support for highly localized task
specific learning in the dendrites of pyramidal neurons (Losonczy
et al., 2008; Yang et al., 2014; Kerlin et al., 2019; Limbacher and
Legenstein, 2020).

What is the role of context? In this article we have
used a context vector that represents the current task. Prior
experimental and modeling work shows the utility of various
other types of context. In recurrent networks, it is possible to
use the previous activity of the network as context for dendrites.
In this case a layer of neurons becomes a powerful sequence
memory system (Hawkins and Ahmad, 2016). For sensorimotor
inference, if the coordinates of an external reference frame is
used as context, neurons can perform object recognition with
actively moving sensors and by integrating information over
time (Hawkins et al., 2017). Schmidt-Hieber et al. (2017) and
Heald et al. (2021) also provide experimental evidence for the
role of dendrites in separating out information in continuous
sensorimotor streams. In the neocortex, if the inference results of
neighboring cortical areas are used as context, dendrites can be
used to disambiguate uncertain information and perform voting
(Hawkins et al., 2017).

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2022 | Volume 16 | Article 846219139

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Iyer et al. Avoiding Catastrophe

In each of the above scenarios, although the nature of the
context greatly impacts emerging behavior, the fundamental
operations remain the same. Dendrites recognize patterns that
best match their synapses, and up-modulate their neurons such
that they are more likely to win. This in turn invokes context
specific subnetworks that route information flow and gate
learning in order to effectively learn and perform the task at hand.
Contextual routing mediated by dendrites may thus be a general-
purpose and powerful capability that underlies much of cognitive
function (Phillips, 2015; Phillips et al., 2015). Indeed, the ability
to generate context-dependent output based on a common set of
operations could be a crucial building block of cognitive maps
able to cover any domain (Whittington et al., 2022). Flesch et al.
(2022) provide experimental evidence for contextual gating in a
study of human continual learning and memory.

In our implementation we have focused primarily on
feed-forward information flow and basal dendrites, and have
ignored recurrent and feedback connections and apical dendrites
(Larkum et al., 1999; Larkum, 2022). Interestingly, lateral
connections and feedback connections seem to segregate
onto different dendritic integration zones (Guest et al., 2021;
Lafourcade et al., 2022). Recent experimental evidence suggests
that apical dendrites also process feedback context and have
a modulatory impact on the cell leading to task specific
functionality (Kerlin et al., 2019; Takahashi et al., 2020;
Schoenfeld et al., 2022). From a modeling perspective, there is
additional complexity related to generating top-down context
(Siegel et al., 2000) and simultaneously processing three separate
input streams (Phillips, 2015; Larkum, 2022), an interesting area
for future research.

In this article, we have focused on modeling the dendritic
properties of pyramidal neurons, but we note that dendritic
modulation and gating may occur with other neuron types.
For example, thalamocortical neurons may exhibit analogous
dendrite initiated gating properties (Errington and Connelly,
2011). As such, dendrite mediated contextual integration and
gating may be a more general phenomenon of biological neural
systems. Modeling other neuron types is an interesting area for
future work.

5.2. Comparison to Other Multi-Task RL
Systems
Many techniques in multi-task RL make manual changes to the
network structure or learning scheme in order to account for
the learning of new tasks. In multi-task scenarios, optimizers
struggle to learn different tasks that vary in gradient magnitude
and have conflicting gradient direction. In these cases, tasks with
larger magnitudes are usually preferred during optimization over
others. To rectify this issue, Yu et al. (2020) minimizes gradient
interference by orthogonally projecting the gradients of tasks
that conflict with each other. Additionally, in most scenarios, a
policy trained on a specific task with a specific agent cannot be
adapted to similar problem settings. Devin et al. (2017) proposes
a framework to learn separate policy modules corresponding to a
particular task or robotic agent. Ultimately, they show how these
modules can be mixed to perform new task–agent combinations

or serve as a starting point for good initializations when learning
complex behaviors. Many multi-task problems also highlight the
issue of parameter sharing between distinct tasks. To that end,
Yang et al. (2020) introduces a base policy network composed of
multiple modules and a separate routing network. The routing
network uses a task embedding and the current state of the
agent to reconfigure the base network’s modules with a learned
routing strategy.

In contrast, our Active Dendrites Network activates sparse
subnetworks by introducing control over individual neurons
in a network. By dynamically integrating a context vector
to modulate these neurons, the network automatically creates
distinct subnetworks to learn each task. Unlike prior approaches,
our network does not require modified learning rules, separate
modules, or dedicated routing networks to train new tasks.
Rather, a single architecture is capable of reducing gradient
interference, learning a diverse range of tasks, and can be applied
to scenarios beyond multi-task RL.

5.3. Comparison to Other Continual
Learning Systems
There are a few papers on continual learning that are very
related to the core ideas in this paper. Our networks create
representations composed of different sparse subnetworks of
neurons. Abbasi et al. (2022) use kWTA in conjunction with a
modified gradient update method to avoid task interference. XdG
(Masse et al., 2018) and Supermasks (Wortsman et al., 2020)
also explicitly utilize sparse subnetworks per task. XdG, discussed
extensively in Section 4.2.4, hard-codes a sparse subnetwork
for each task. This extra supervision step removes the need to
dynamically gate activations but requires knowledge of the task
identity during inference. In addition, as seen in Figure 9, XdG
does not scale as well as our networks. In contrast, Supermasks
uses a randomly initialized network and focuses on locating
the best subnetwork for each task and forgoes any further
training. The technique shows impressive scaling behavior, but
it’s unclear whether complex tasks can be solved without any
network training.

Our Active Dendrites Neurons dynamically determine a
representation for each feedforward input based on auxiliary
contextual inputs. In the case where the modulation function
f involves multiplication, our Active Dendrites Networks are
an instance of multiplicative networks. Jayakumar et al. (2020)
demonstrated that multiplicative networks can excel in multi-
task scenarios by learning dynamic representations in a task-
specific manner.

Several ANN-based techniques leverage the idea of auxiliary
contextual inputs. For instance, Gated Linear Networks (Veness
et al., 2021) and Dendritic Gated Networks (Sezener et al.,
2021) gate activation values for each neuron based on contextual
information. Although inspired by dendrites these models
(1) don’t activate sparse subnetworks, (2) have fixed random
dendritic weights (to model cerebellar dendritic branches), and
(3) are binary classifiers (i.e., 10 Dendritic Gated Networks
are required to classify MNIST digits). Furthermore, because
Sezener et al. (2021) test Dendritic Gated Networks only up to 10
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permutedMNIST tasks using a very different metric, we cannot
provide a direct comparison with our model.

5.4. Future Work
Our initial results show that active dendrites and sparse
representations can mitigate catastrophic forgetting and
interference in multi-task RL and continual learning settings.
One crucial next step is to test this framework on more
real-world scenarios with greater complexity than MT10 or
permutedMNIST. The majority of existing work in MTRL
considers tasks with shared input and action spaces. Dendrites
may be beneficial in scenarios where this assumption does
not hold. Extending to tasks with very different input and
output spaces is an interesting area for future research. Another
interesting area is to combine our two scenarios and explore
continual multi-task RL. While testing on more diverse
benchmarks, it will also be important to explore additional
methods for generating context vectors for a given task. Another
important direction for future research is to investigate sparse
dendritic segments, following neuroscience evidence suggesting
that each segment relies on just a handful of synapses (Branco
and Häusser, 2011).

6. METHODS

6.1. Multi-Task Reinforcement Learning
Experiments
In this section, we provide the details of our multi-task RL
experiments3. We use the Multi-Task Soft Actor-Critic algorithm
(MTSAC) originally discussed in Yu et al. (2019), which is
described as an adaptation of the Soft Actor-Critic algorithm
(SAC; Haarnoja et al., 2018b). We adapt the code in the original
Meta-World GitHub repository4 to fit our experiments.

6.1.1. Basics of Reinforcement Learning
To formalize our specific RL problem, we define some
fundamental concepts. The state of the RL agent and the action it
will take at a specific time t are denoted as st and at , respectively.
The RL algorithm trains a policy π to take at given st in order to
maximize total return G =

∑

t γ
tr(at , st) across all time-steps t,

where r(at , st) is the reward given by the environment and γ is a
discount factor to strongly consider immediate rewards.

To optimize this policy, our RL formulation uses Markov
Decision Processes (MDPs) to model decision making in
stochastic environments. Following the notation introduced in
Sutton and Barto (2018), we consider a finite-horizon MDP
defined by the tuple (S,A, P, r,T) that operates in a state space S
and action space A. The MDP also uses the transition probability
P between any two states st and st+1 by taking action at , which is
explicitly defined across all states and actions as P(st+1|st , at) : S×
A→ R. Agents in this setting receive a reward r : S×A→ R that
is also defined across all states and actions. Additionally, agents

3PyTorch source code for our experiments is available at https://github.com/

numenta/htmpapers.
4Meta-World source code is available at https://github.com/rlworkgroup/

metaworld.

must make decisions within a fixed number of steps, denoted by
the finite-time horizon T.

The RL algorithm we consider computes a value function
that estimates the total return accrued at a specific state. More
precisely, the value function describes the significance of starting
at some state st and following some policy π . The value function
for policy π can be defined below:

Vπ (st) = Eat∼π

[

r(st , at)+ Est+1∼P

[

γVπ (st+1)
]]

(7)

= Eat∼π



r(st , at)+
∑

st+1∈S

P(st+1|st , at)
(

γVπ (st+1)
)



 (8)

=
∑

at∈A

π(at|st)



r(st , at)+
∑

st+1∈S

P(st+1|st , at)
(

γVπ (st+1)
)





(9)

Note that Equation (7) establishes a recursive relation with
respect to the function Vπ . To estimate the value at a given state
st , an agent must take an action at sampled from policy π to
calculate the expected value at the next state st+1. By repeating
this process until a terminal state is reached, the agent can use the
value function to choose actions that lead to highly valued states.

The RL algorithm we consider also estimates an action-value
function Qπ . While value functions estimate the value of starting
at st and following π , action-value functions estimate the value
of starting at st , taking action at , and then following π until a
terminal state is reached. This is known as the Q function, which
can be described explicitly below:

Qπ (st , at) = r(st , at)+ Est+1∼P

[

γEat+1∼π

[

Qπ (st+1, at+1)
]]

(10)

Fundamentally, value functions and Q functions can be related
by the following two expressions:

Qπ (st , at) = r(st , at)+ Est+1∼P

[

γVπ (st+1)
]

(11)

Vπ (st) = Eat∼π

[

Qπ (st , at)
]

(12)

Throughout the training process, explored state, action, reward,
and next state transitions–namely (st , at , rt , st+1)–are used to
train π . In some algorithms, including ours, these transitions are
stored in a replay buffer D and are sampled by batch during each
step of training to dynamically compute either the value or Q
function. After a suitable period of exploration, the agent will take
actions that yield the maximum Vπ (st) or Qπ (st , at) value. Note
that while V , Q, and π are expressed in discrete state and action
spaces above, they can be easily extended to work in continuous
state and action spaces using function approximations such as
neural networks.

6.1.2. Basics of Multi-Task Reinforcement Learning
We can extend the ideas in Section 6.1.1 to our multi-task RL
experiments inMeta-World. Specifically, the problem framework
uses a separate MDP to model each task τ . In the context
of the Meta-World multi-task environment, each task shares

Frontiers in Neurorobotics | www.frontiersin.org 16 April 2022 | Volume 16 | Article 846219141

https://github.com/numenta/htmpapers
https://github.com/numenta/htmpapers
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Iyer et al. Avoiding Catastrophe

TABLE 2 | The hyperparameters for each multi-task RL model.

Active dendrites network MLP baseline Large MLP

Network hyperparameters

Feedforward input size 39 49 49

Hidden sizes 2 × [2,800] 2 × [2,800] 2 × [3,000]

Output size 4 4 4

Feedforward weight sparsity 10% 0% 0%

Activation function kWTA ReLU ReLU

Activation sparsity 25% ∼ 50% ∼ 50%

Num. dendritic segments per neuron 10 0 0

Num. weights per dendritic segment 10 — —

Num. hidden layers modulated 1 — —

Dendritic segment weight sparsity 0% — —

Non-zero feedforward parameters 7,169,964 7,994,004 9,165,004

Non-zero dendritic parameters 280,000 0 0

Non-zero parameters (total) 7,449,964 7,994,004 9,165,004

Training hyperparameters

Number of epochs 3,000 3,000 3,000

Number of timesteps 15,000,000 15,000,000 15,000,000

Number of gradient steps per epoch 250 250 250

Buffer sampling batch size 2,560 2,560 2,560

Replay buffer size 1,000,000 1,000,000 1,000,000

Policy learning rate 3× 10−4 3× 10−4 3× 10−4

Q-function learning rate 3× 10−4 3× 10−4 3× 10−4

Target Q-function update rate 5× 10−3 5× 10−3 5× 10−3

Policy (Min, Max) Std e−20, e2 e−20, e2 e−20, e2

Action sampling distribution type Tanh normal Tanh normal Tanh normal

identical state and actions spaces and defines common transition
probabilities and time horizons. However, each task defines
separate reward functions, although all functions share a similar
scale and structure to allow a single agent to uniformly learn
all tasks. We assume a uniform distribution of tasks p(τ ) and
train a task-conditioned, stochastic policy π(a|s, c) to solve all
T tasks, where c is a context vector that provides information
about a specific task. Explicitly, the policy is trained to maximize
the total return from the task distribution p(τ ) as expressed by
Eτ∼p(τ )

[

Eπ

[

6T
t=0γ

trt(st , at)
]]

.

6.1.3. The Multi-Task Soft-Actor Critic Algorithm
The MTSAC algorithm we use in our experiments is based on
the SAC algorithm and slightly modified to solve τ various
tasks simultaneously. In SAC, an RL algorithm uses a V or Q
network (known as the critic) to train a policy π (known as
the actor) to take better actions. SAC modifies the original value
function definition to also consider the entropy of the policy
π . By maximizing both expected return and entropy, an agent
is motivated to explore new states while computing an optimal
policy. More details about the SAC algorithm can be found
in Haarnoja et al. (2018b).

In MTSAC, both π and Q are conditioned by context
vector c and are thus denoted as π(at|st , c) and Q(st , at|c),
respectively. MTSAC also uses τ different entropy coefficients

ατ to control the exploration per task. More details about the
MTSAC algorithm can be found in Yu et al. (2019).

The Meta-World environment we use is MT10, which
contains 10 different tasks that a single robotic arm must solve.
All tasks share an identical state space st ∈ R

39 and action
space at ∈ R

4. Because there are 10 different tasks, c is a 10-
dimensional one-hot encoded vector that describes the task ID.

6.1.4. Experiment Settings
The training hyperparameters are identical for the Active
Dendrites Network and the MLP baseline. For every run, the
model is trained for 3,000 epochs. Each epoch comprises of
one episode of 500 timesteps for each of the 10 tasks. In
total, this amounts to 5,000 timesteps per epoch and 15,000,000
timesteps for the entire run. Our implementation parallels the
baseline implementation. In our experiments, we use one Active
Dendrites Network to model the policy π and another to model
the Q function.

The model is also used to collect new data to be stored in a
replay buffer. At the end of each epoch, the model is then trained
for 250 gradient steps. For each gradient step, the algorithm
randomly samples a batch of 2,560 experiences from the replay
buffer. The replay buffer is a queue of limited size, capped at 1
million, with newer experiences replacing older experiences.

To allow a better comparison between the models, we set
the learning rates, target Q function update rate, and policy
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minimum and maximum standard deviations to be the same
for all runs. The difference between the models is the network
architecture of the policy and Q functions. The Active Dendrites
Network modulates each neuron in the second hidden layer
with 10 dendritic segments, where each segment is a vector of
size 10. In total, this dendritic layer adds an additional 280,000
parameters to the overall network.We apply a fixed sparsity mask
of 10% to the weights of the feedforward layers of the Active
Dendrites Network to reduce the number of free parameters
and keep it of comparable size to the MLP baseline. The Active
Dendrites Network also uses a kWTA activation function instead
of ReLU, which effectively selects the top 25% of units and zeroes
out the remaining during every forward step.

6.2. Continual Learning Experiments
We discuss the setup of the continual learning experiments.
Our model is trained on T discrete tasks in sequence. More
specifically, our model first trains on task τ = 1. Once learning
task τ is complete, the model then starts training on task τ + 1.
After training on task τ = T , all learning is complete. Each task τ

consists of standard batch learning with i.i.d. training data. While
training on task τ where 1 ≤ τ ≤ T , our model only receives
training data corresponding to task τ . Once the model finishes
learning task τ , it never again receives information about any task
τ ′ ≤ τ for training purposes. The model is, however, evaluated
on the test data for each task to determine how well it performs.

6.2.1. PermutedMNIST
We train our model on the permutedMNIST dataset, a
benchmark dataset for continual learning (Goodfellow et al.,
2014), which is derived from MNIST. MNIST comprises
approximately 60,000 black and white images of handwritten
digits 0–9 where each such image has dimensions 28 × 28 pixels
and the associated target digit as the label. During training,
roughly 50,000 images are used for training and the remaining
10,000 for testing.

In permutedMNIST with T tasks, MNIST is replicated T

times, but each time with a unique pixel-wise permutation
applied to all 60,000 images. That is, each task randomly re-
arranges the pixels of all images exactly the same way while
preserving the associated target label. The first task (τ = 1)
corresponds to the identity permutation (i.e., regular MNIST)
and every subsequent task generates a random pixel-wise
permutation. As permutedMNIST is synthesized from regular
MNIST, there can be an arbitrary number of tasks, T . Figure 15
illustrates a single image taken from different tasks.

Our model, and all comparisons we made, uses a single output
head. Each model has 10 output units in the final layer of the
network representing the 10 categories. These output units are
re-used for each task, i.e., the model is trained to predict the first
output unit for label “0” regardless of which task the input data
corresponds to. In this setup chance accuracy is 10%.

6.2.2. Experiment Settings
When employing the prototype method described in Section
4.2.1 to select context signals at test time only, we train an Active

FIGURE 15 | A visual illustration of permutedMNIST. Each task applies a

unique pixel-wise permutation to the same original image (leftmost image)

while preserving the target label. A model’s task is to identify the digit in each

case regardless of permutation.

Dendrites Network with two hidden layers that comprise Active
Dendrites Neurons. We find that having just a single hidden
layer reduced accuracy by a few percentage points while 3 hidden
layers provided a minimal performance boost. For 100 tasks, a
single layer reduced accuracy by 3% and three layers improved
accuracy by 0.5%. For all training, we use the Adam optimizer
(Kingma and Ba, 2015) and a batch size of 256 samples. Table 3
gives the exact hyperparameters and model architecture for each
model we train and evaluate on permutedMNIST. Note that
hyperparameters were optimized individually for each setting.

To combine Active Dendrites Network with SI, and to
compare against XdG, we reduce the number of units in each
hidden layer from 2,048 to 2,000 as to exactly match the
architectures (with the exception of dendritic segments) used
in the SI and XdG papers. (See Supplementary Materials for a
discussion on the number of parameters.) In addition, the SI-
and-Active-Dendrites network is trained for 20 epochs per task
instead of just three as this significantly improves results. We fix
the learning rate to be 5 × 10−4 for all numbers of tasks, and we
use SI regularization strength c = 0.1 and damping coefficient
ξ = 0.1. Both (a) training for 20 epochs per task and (b) the c, ξ
values that we use here align with the training setups of Zenke
et al. (2017) and Masse et al. (2018).

6.2.3. Constructing Prototypes During Training

Without Task Information
When task information is not given during training nor
testing, the task corresponding to each input example must be
inferred. This section describes the online clustering method
we implemented to infer task information during training. One
inductive bias in our procedure is that all training examples in
a batch correspond to the same task, since continual learning
scenarios usually only observe examples from a single task within
a given batch.

Formally, let X = {x(1), . . . , x(n)} be a batch of n training
examples (in the case of permutedMNIST, each x(i) is a 784-
dimensional vector for 1 ≤ i ≤ n). Suppose M individual
prototypes are designated thus far: p1, . . . , pM . For each pj (where
1 ≤ j ≤ M), the individual examples used to construct that
prototype are also stored in memory: Yj = {y

(1), . . . , y(mj)},
where mj gives the number of examples for cluster j. These
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TABLE 3 | The hyperparameters used to train each model on permutedMNIST.

Active dendrites network

(task info. provided)

Active dendrites network

(task info. not provided)

3-Layer MLP 10-Layer MLP

Network hyperparameters

Feedforward input size 784 784 784 784

Hidden sizes 2 × [2,048] 2 × [2,048] 2 × [2,048] 10 × [2,048]

Output size 10 10 10 10

Feedforward weight sparsity 50% 50% 0% 0%

Activation function kWTA kWTA ReLU ReLU

Activation sparsity 5% 5% ∼ 50% ∼ 50%

Num. dendritic segments per neuron T T 0 0

Num. weights per dendritic segment 784 784 — —

Dendritic segment weight sparsity 0% 0% — —

Non-zero feedforward parameters 2,914,314 2,914,314 5,824,522 35,198,986

Non-zero dendritic parameters T × 3, 211, 264 T × 3, 211, 264 0 0

Non-zero parameters (total) See Supplementary Materials 5,824,522 35,198,986

Training hyperparameters

(T = 2) Learning rate 5× 10−4 10−3 — —

(T = 2) Number of epochs 1 5 — —

(T = 5) Learning rate 5× 10−4 10−3 — —

(T = 5) Number of epochs 1 5 — —

(T = 10) Learning rate 5× 10−4 10−3 3× 10−6 3× 10−6

(T = 10) Number of epochs 3 3 5 3

(T = 25) Learning rate 3× 10−4 3× 10−4 — —

(T = 25) Number of epochs 5 1 — —

(T = 50) Learning rate 3× 10−4 10−4 — —

(T = 50) Number of epochs 3 3 — —

(T = 100) Learning rate 10−4 10−4 10−6 3× 10−7

(T = 100) Number of epochs 3 3 3 3

previous training examples are observed by the learner during
previous batches of learning and stored in memory. We identify
if the new batch X is similar enough to any cluster of training
examples Yj such that the corresponding prototype pj should be
used as the context signal. If a cluster j is found such that X is
“similar” to Yj, then Yj is expanded to include X. Subsequently,
pj is updated to incorporate samples from X. Otherwise, if X is
deemed significantly different from Yj for all j, then a new cluster
is formed:YM+1 ← X and its prototype is the element-wisemean
of all x ∈ X. Algorithm 1 describes the procedure for clustering
during training when task information is not provided.

In the pseudocode, how do we determine when X is similar
enough to some Yj? If we have univariate data (i.e., if each
x ∈ X and y ∈ Yj is a scalar quantity), we could use an
unpaired t-test do this. Instead, we use a generalized version
of an unpaired t-test that applies to multivariate data. In our
hypothesis testing setup, the null hypothesis is that for any
given j, the same underlying process generates samples from
both X and Yj. When we accept the null hypothesis, we
assume each x ∈ X and each y ∈ Yj are training examples
from the same permutedMNIST task—and therefore pj can be
used as the context signal when training an Active Dendrites
Network on examples in X (albeit pj is first updated to account
for X).

Algorithm 1 : Clustering algorithm by which a new batch of
inputs X either gets assigned to one of M existing clusters or
initiates clusterM+1. This procedure is greedy since it assigns X
to the first cluster j that it suitably matches.

1: procedure CLUSTER(X, Y)
2: M← 0 ⊲ Number of existing clusters
3: while not done learning do
4: X← new batch
5: assigned← False

6: for j = 1 toM do

7: if ¬ assigned and IS_MATCH(X, Yj) then
8: assigned← True

9: Yj ← Yj ∪ X
10: update pj to include each x ∈ X

Hotelling (1931) proposed Hotelling’s t-squared statistic (t2)
as a generalization of the t-statistic used to perform single-
variable t-tests; it is computed as

t2 =
|X||Yj|

|X| + |Yj|

(

x̄− ȳ
)⊤

6
−1

(

x̄− ȳ
)
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where x̄ and ȳ are simply the element-wise means of all x ∈ X
and y ∈ Yj, respectively, and 6 is the pooled, sample-adjusted
covariance matrix of samples in X and Yj. The test statistic t2

can be compared to a chosen p-value to accept or reject the
null hypothesis by first transforming it to a value drawn from
an F-distribution (whose cumulative density function is more
well-studied than that of the t-squared distribution) as follows:

f =
|X| + |Yj| − d − 1

d
(

|X| + |Yj| − 2
) t2

where d is the dimensionality of the samples.
We fix a p-value and derive a value for f based on t2 as

give above. If f > p, then we reject the null hypothesis since
the probability that the same generative process explains both
X and Yj is extremely low, and thus create a new cluster. Since
we perform pairwise multivariate t-tests between X and Yj for all
existing prototypes j, a new cluster and prototype emerge if and
only if we reject the null hypothesis for allM t-tests.Algorithm 2

describes the procedure for performing the multivariate t-test via
the t-squared statistic given two sets of multivariate samples.

Algorithm 2 : Unpaired multivariate t-test using Hotelling’s
t-squared statistic. Here, we use a slight abuse of notation
when computing covariance matrices by assuming sets of d-
dimensional vectors can also be treated as matrices whose rows
correspond to their d-dimensional elements. We assume a p-
value is fixed a priori. In our implementation, we replace all
standard matrix inversions with the Moore-Penrose pseudo-
inversion.
1: procedure IS_MATCH(X, Y)
2: x̄← 1

|X|

∑

x∈X x ⊲ Compute X mean

3: ȳ← 1
|Y|

∑

y∈Y y ⊲ Compute Y mean

4: 6X ←
1
|X|−1 (X − x̄)(X − x̄)⊤ ⊲ Compute X covariance

5: 6Y ←
1
|Y|−1 (X − ȳ)(Y − ȳ)⊤ ⊲ Compute Y covariance

6: 6←
(|X|−1)6X+(|Y|−1)6Y

|X|+|Y|−2 ⊲ Compute pooled covariance

7: t2 ←
|X||Yj|

|X|+|Yj|

(

x̄− ȳ
)⊤

6
−1

(

x̄− ȳ
)

⊲ Compute t2

8: f =
|X|+|Yj|−d−1

d(|X|+|Yj|−2)
t2 ⊲ Convert t2 to f

9: if f > p then:
10: return False ⊲ Reject null hypothesis
11: else

12: return True ⊲ Accept null hypothesis

6.3. Absolute Max Gating
We outline how we implement gating in Active Dendrites
Networks. In Section 3, we present gating as modifying the value

of the weighted linear sum computed by the point neuron based
on the maximum activation, i.e., σ (maxj u

⊤c). One problem with
this formulation is that it becomes difficult to turn a neuron off
(i.e., force it’s activation value to be zero) due to themax operator.
That is, if dendritic segment j learns to turn off the unit, then
based on sigmoidal gating, we should expect that u⊤j c is a small

number with large absolute value (very negative). However, it’s
likely that for some other segment j′ (j 6= j′), u⊤j′ c > 0 > u⊤j c

which means that segment j′ will be selected by the max operator
instead of segment j, hence increasing the chance that the neuron
will be selected by the kWTA process.

This motivates absolute max gating in which the activation
with the largest magnitude is selected and its sign is kept. More
formally, a point neuron augmented with absolute max gating
computes its output as

j∗ = argmax
j

∣

∣

∣
u⊤j c

∣

∣

∣
,

ŷ =
(

w⊤x+ b
)

σ

(

u⊤j∗ c
)

.
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This article introduces a three-axis framework indicating how AI can be informed by

biological examples of social learning mechanisms. We argue that the complex human

cognitive architecture owes a large portion of its expressive power to its ability to

engage in social and cultural learning. However, the field of AI has mostly embraced

a solipsistic perspective on intelligence. We thus argue that social interactions not

only are largely unexplored in this field but also are an essential element of advanced

cognitive ability, and therefore constitute metaphorically the “dark matter” of AI. In the

first section, we discuss how social learning plays a key role in the development of

intelligence. We do so by discussing social and cultural learning theories and empirical

findings from social neuroscience. Then, we discuss three lines of research that fall

under the umbrella of Social NeuroAI and can contribute to developing socially intelligent

embodied agents in complex environments. First, neuroscientific theories of cognitive

architecture, such as the global workspace theory and the attention schema theory, can

enhance biological plausibility and help us understand how we could bridge individual

and social theories of intelligence. Second, intelligence occurs in time as opposed to

over time, and this is naturally incorporated by dynamical systems. Third, embodiment

has been demonstrated to provide more sophisticated array of communicative signals.

To conclude, we discuss the example of active inference, which offers powerful insights

for developing agents that possess biological realism, can self-organize in time, and are

socially embodied.

Keywords: social interaction, cognitive architecture, virtual agents, social learning, Neuro-AI, neurodynamics,

self-organization, Alan Turing

1. THE IMPORTANCE OF SOCIAL LEARNING

1.1. Social Learning Categories
Various approaches have been proposed in order to reach a human-like level of intelligence.
For example, some argue that scaling foundational models (self-supervised pretrained deep
network models), data and compute can lead to such kind of intelligence (Bommasani
et al., 2021; Yuan et al., 2022). Others argue that attention, understood as a dynamical
control of information flow (Mittal et al., 2020), is all we need. Transformers have
proposed a general purpose architecture where inductive biases shaping the flow of
information are learned from the data itself (Vaswani et al., 2017); this architecture can
be applied to various domains ranging from sequence learning to visual processing and
time-series forecasting. Others argue that by having a complex enough environment, any

149

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.846440
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.846440&domain=pdf&date_stamp=2022-05-06
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guillaume.dumas@centraliens.net
https://doi.org/10.3389/fcomp.2022.846440
https://www.frontiersin.org/articles/10.3389/fcomp.2022.846440/full


Bolotta and Dumas Social Neuro AI

reward should be enough to elicit some complex behavior and
end up in intelligent behavior that subserves the maximization
of such reward. This therefore discards the idea that specialized
problem formulations are needed for each ability (Silver
et al., 2021). Our proposal stems from the idea that human
cognitive functions such as theory of mind (the capacity to
understand other people by ascribing mental states to them)
and explicit metacognition (the capacity to reflect on and
justify our behavior to others) are not genetically programmed,
but rather constructed during development through social
interaction (Heyes, 2018). Since their birth, social animals use
their conspecifics as vehicles for gathering information that can
potentially help them respond efficiently to challenges in the
environment, avoiding harm and maximizing rewards (Kendal
et al., 2018). Learning adaptive information from others results
in better regulation of task performance, especially by gaining
fitness benefits and in avoiding some of the costs associated
with asocial, trial-and-error learning, such as time loss and
energy loss as well as exposure to predation (Clark and Dumas,
2016). Importantly, cultural inheritance permeates a broad array
of behavioral domains, including migratory pathways, foraging
techniques, nesting sites and mates (Whiten, 2021). The spread
of such information across generations gives social learning a
unique role in the evolution of culture and therefore makes it
a crucial candidate to investigate the biological bases of human
cognition (Gariépy et al., 2014). In the current paper, we do not
focus extensively on the differences between social learning in
humans and in other animals as the cognitive processes used
in acquiring behavior seem to be very similar across a wide
range of species (Heyes, 2012). What sets humans apart from
other animals, however, is: a) social learning in humans is highly
rewarded from early infancy (Nielsen et al., 2012), b) the nature
of the inputs surrounding humans is way more complex than
for other animals (Heyes, 2012). According to the ontogenetic
adaptation hypothesis (Tomasello, 2020), human infant’s unique
social-cognitive skills are the result of shared intentionality
(capacity to share attention and intention) and are adaptations
for life in a cultural group—with individuals coordinating,
communicating and learning from each other in several ways.
Recent reviews have identified four main categories of social
learning that differ in what is socially learnt and in the cognitive
skills that are required (Hoppitt and Laland, 2008; Whiten, 2021)
(Figure 1). These categories have been developed through the
approach of behaviorism. While we acknowledge that there is
more to social learning than mere behavior (the affective and
cognitive dimensions are equally crucial Gruber et al., 2021), we
keep it as the focus of this short article because it is an empirically
solid starting point with clarified mechanisms. The purpose
of this section, then, is to give an example of social learning
mechanisms that are common across multiple species and can be
understood as a natural form of Social Neuro-AI. Moreover, this
section aims at demonstrating how social interactions are a key
component of biological intelligence; we make the case that they
might be of inspiration for the development of socially intelligent
artificial agents that can cooperate efficiently with humans and
with each other. In other words, although there are examples
of social agents (chatbots, non-player characters in video games,

social robots), we argue that social interactions still remain the
“dark matter” of the field. These social behaviors often emerge
from a Piagetian perspective on human intelligence. As argued
by Kovač et al. (2021), mainstreamDeep Reinforcement Learning
research sees intelligence as the product of the individual agent’s
exploration of the world; it mainly focuses on sensorimotor
development and problems involving interaction with inanimate
objects rather than social interactions with animate agents. This
approach can and has given rise to apparent social behaviors, but
we argue that this is not the best approach, as it does not involve
any focus on the genuine social mechanisms per se (Dumas et al.,
2014a). Instead, it sees social behaviors as a collateral effect of the
intelligence of a solitary thinker. For this reason, as Schilbach
et al. (2013) argued a decade ago that social interactions were
the “dark matter” of cognitive neuroscience, here we argue that
social interactions can also be considered metaphorically as the
“dark matter” of AI (Schilbach et al., 2013). Indeed, more than
being a rather unexplored topic, social interactions can constitute
a critical missing piece for the understanding and modeling of
advanced cognitive abilities.

At the most elementary level, enhancement consists of an
agent observing a model that focuses on particular objects or
locations and consequently adopting the same focus (Thorpe,
1963; Heyes, 1994). For example, it was demonstrated that bees
outside the nest land more often on flowers that they had seen
preferred by other bees (Worden and Papaj, 2005). This skill
requires social agents to perform basic associative learning in
relation to other agents’ observed actions; it is likely to be
the most widespread form of social learning across the animal
kingdom. A more complex form of social learning consists
of observational conditioning, which exposes a social agent
to a relationship between stimuli (Heyes, 1994); this exposure
causes a change in the agent. For example, the observation of
experienced demonstrators facilitated the opening of hickory
nuts by red squirrels, relative to trial-and-error learning (Weigl
and Hanson, 1980). This is therefore a mechanism through
which agents learn the value of a stimulus from the interaction
with other agents. Yet a more complex form of social learning
consists of affordance learning, which allows a social agent to
learn the operating characteristics of objects or environments
by observing the behavior of other agents (Whiten, 2021). For
example, pigeons that saw a demonstrator push a sliding screen
for food made a higher proportion of pushes than observers in
control conditions, thus exhibiting affordance learning (Klein
and Zentall, 2003). In other words, the animals perceive the
environment partly in terms of the action opportunities that it
provides. Finally, at the most complex level, copying another
individual can take the shape of pure imitation, where every detail
is copied, or emulation, where only a few elements are copied
(Byrne, 2002). For example, most chimpanzees mastered a new
technique for obtaining food when they were under the influence
of a trained expert, whereas none did so in a population lacking
an expert (Whiten, 2005). As to what is required for imitation,
there are debates in the literature ranging from the distinctions
between program-level and production-level imitation (Byrne,
2002) to the necessity of pairing Theory of Mind (ToM) with
behavioral imitation to obtain “true” imitation (Call et al., 2005).
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FIGURE 1 | Social learning categories. Figure inspired by Whiten (2005).

We refer the reader to Breazeal and Scassellati (2002) for a more
detailed discussion of imitation in robots.

1.2. Social Learning Strategies
Crucially, while social learning is widespread, using it
indiscriminately is rarely beneficial. This suggests that individuals
should be selective in what, when, and from whom they learn
socially, by following “social learning strategies” (SLSs; Kendal
et al., 2018). Several SLSs might be used by the same population
and even by the same individual. The aforementioned categories
of social learning have been shown to be refined by modulating
biases that can strengthen their adaptive power (Kendal et al.,
2018). For example, an important SLS is copying when asocial
learning would be costly; research has shown that, when task
difficulty increases, various animals are more likely to use social
information. Individuals also prefer using social information
when they are uncertain about a task; high-fidelity copying is
observed among children who lack relevant personal information
(Wood et al., 2013). In general, other state-based SLSs can affect
the decision to use social information, such as age, social rank,
and reproductive state of the learner; for example, low- and mid-
ranking chimpanzees are more likely to use social information
than high-ranking individuals (Kendal et al., 2015). Model-based
biases are another crucial category; for example, children prefer
to copy prestigious individuals, where status is evidenced by
their older age, popularity and social dominance (Flynn and
Whiten, 2012). Multiple evidence also suggests that a conformist
transmission bias exists, whereby the behavior of the majority of
individuals is more likely to be adopted by others (Kendal et al.,
2018).

1.2.1. Social Learning in Neuroscience
We have presented evidence that social learning is a crucial
hallmark of many species and it manifests itself across different
behavioral domains; without it, animals would lose the possibility

to quickly acquire valuable information from their conspecifics
and therefore lose fitness benefits. However, one important
question is: how does the brain mediate social processes and
behavior? Despite the progress made in social neuroscience
and in developmental psychology, only in the last decade,
serious efforts have started focusing on the answer to this
question—as neural mechanisms of social interaction were
seen as the “dark matter” of social neuroscience (Schilbach
et al., 2013); recently, a framework for computational social
neuroscience has been proposed, in an attempt to naturalize
social interaction (Tognoli et al., 2018). At the intra-brain
level, it was demonstrated that social interaction is categorically
different from social perception and that the brain exhibits
different activity patterns depending on the role of the subject
and on the context in which the interaction is unfolding
(Dumas et al., 2012). At the inter-brain level, functional
Magnetic Resonance Imaging (fMRI) or Electroencephalography
(EEG) recordings of multiple brains (i.e., hyperscanning) have
allowed to demonstrate inter-brain synchronization during
social interaction—specifically, while subjects were engaged in
spontaneous imitation of hand movements (Dumas et al.,
2010). Interestingly, the increase in coupling strength between
brain signals was also shown to be present during a two-
person turn-taking verbal exchange with no visual contact,
in both a native or a foreign language context (Pérez et al.,
2019). Inter-brain synchronization is also modulated by the
type of task and by the familiarity between subjects (Djalovski
et al., 2021). Overall, this shows that, beyond their individual
cognition, humans are also coupled in the social dimension.
Interestingly, the field of computational social neuroscience has
also focused on explaining the functional meaning of such
correlations between inter-brain synchronization and behavioral
coupling. A biophysical model showed that the similarity of both
endogenous dynamics and anatomical structure might facilitate
inter-individual synchronization and explain our propensity to
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socially bind with others via perception and actions (Dumas et al.,
2012). More specifically, the connectome, a wiring diagram that
maps all neural connections in the brain, not only facilitates
the integration of information within brains, but also between
brains. In those simulations, tools from dynamical systems thus
suggest that beyond their individual cognition, humans are also
dynamically coupled in the social realm (Dumas et al., 2012).

1.2.2. Social Learning and Language Development
Regarding language development in humans, cognitive and
structural accounts of language development have often
conceptualized linguistic abilities as static and formal sets
of knowledge structures, ignoring the contextual nature of
language. However, good communication must be tailored to
the characteristics of the listener and of the context—language
can also be explained as a social construct (Whitehurst, 1978).
For example, evidence shows that the language outcome of
children with cochlear implants is heavily influenced by parental
linguistic input during the first years after cochlear implantation
(Holzinger et al., 2020). In terms of specific social learning
variables, imitation has also been shown to play a major role in
boosting language development, usually in the form of selective
imitation (Whitehurst et al., 1974; Whitehurst and Vasta, 1975).
Moreover, in children with autism spectrum disorder, social
learning variables such as joint attention, immediate imitation,
and deferred imitation have been shown to be the best predictors
of language ability and rate of communication development
(Toth et al., 2006). These results clearly suggest that social
learning skills have an influence on language acquisition in
humans.

2. STEPS TOWARD SOCIAL NEURO AI

How Could Social Learning Be Useful for AI?
In the previous sections, we have provided convincing

evidence that interpersonal intelligence enhances intrapersonal
intelligence through the mechanisms and biases of social
learning. It is a crucial aspect of biological intelligence that
possesses a broad array of modulating biases meant to strengthen
its adaptive power. Recent efforts in computational social
neuroscience have paved the way for a naturalization of social
interactions.

Multi-agent reinforcement learning (MARL) is the best
subfield of AI to investigate the interactions between multiple
agents. Such interactions can be of three types: cooperative
games (all agents working for the same goal), competitive games
(all agents competing against each other), and mixed motive
games (a mix of cooperative and competitive interactions). At
each timestep t, each agent is attempting to maximize its own
reward by learning a policy that optimizes the total expected
discounted future reward. We refer the reader to high-quality
reviews that have been written on MARL (Hernandez-Leal
et al., 2019; Nguyen et al., 2020; Wong et al., 2021). Here, we
highlight that, among others, low sample efficiency is one of the
greatest challenges for MARL, as millions of interactions with the
environment are usually needed for agents to learn. Moreover,
multi-agent joint action space increases exponentially with the

number of agents, leading to problems that are often intractable.
In the last few years, part of the AI community has already
started demonstrating that these problems can be alleviated
by mechanisms that allow for social learning (Jaques, 2019;
Ndousse et al., 2021). For example, rewarding agents for having
a causal influence over other agents’ actions leads to enhanced
coordination and communication in challenging social dilemma
environments (Jaques et al., 2019) and rewarding agents for
coordinating attention with another agent improves their ability
of coordination, by reducing the cost of exploration (Lee et al.,
2021). More in general, concepts from complex systems such
as self-organization, emergent behavior, swarm optimization
and cellular systems suggest that collective intelligence could
produce more robust and flexible solutions in AI, with higher
sample efficiency and higher generalization (Ha and Tang,
2021). In the following sections, we argue that to exploit all
benefits that social learning can offer AI and robotics, more
focus on biological plausibility, social embodiment and temporal
dynamics is needed. Studies have focused on the potential of
conducting research at the intersection of some of these three
axes (Kerzel et al., 2017; Husbands et al., 2021). Moreover, it is
worth noticing that (Dumas et al., 2012; Heggli et al., 2019) offer a
tentative glimpse of what the intersection of the three axes would
look like-both using dynamical systems with computational
simulations to address falsifiable scientific questions associated
with the idea of social embodiment.

2.1. Biological Plausibility
Biological plausibility refers to the extent to which an
artificial architecture takes inspiration from empirical results
in neuroscience and psychology. The social learning skills and
biases that we have shown so far are boosted in humans by
their advanced cognitive architecture (Whiten, 2021). Equipping
artificial agents with complex social learning abilities will
therefore require more complex architectures that can handle
a great variety of information efficiently. This is exactly what
"Neuro-AI" aims at: drawing on how evolution has shaped the
brain of humans and of other animals in order to create more
robust agents (Figure 2). While the human unconscious brain
aligns well with the current successful applications of deep
learning, the conscious brain involves higher-order cognitive
abilities that perform much more complex computations than
what deep learning can currently do (Bengio, 2019). More
specifically, “unconsciousness” is where most of our intelligence
lies and involves unconscious abilities related to view-invariance,
meaning extraction, control, decision-making and learning; “i-
consciousness” is the part of human consciousness that is focused
on integrating all available evidence to converge toward a single
decision; “m-consciousness” is the part of human consciousness
that is focused on reflexively representing oneself, utilizing
error detection, meta-memory and reality monitoring (Graziano,
2017). Notably, recent efforts in the deep learning community
have indeed focused on Neuro-AI: building advanced cognitive
architectures that are inspired from neuroscience. In particular,
the global workspace theory (GWT) is the most widely accepted
theory of consciousness, and it postulates that when a piece
of information is selected by attention, it may non-linearly
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FIGURE 2 | Billions of humans interact daily with algorithms—yet AI is far from human social cognition. We argue that creating such socially aware agents may require

“Social Neuro-AI”—a program developing 3 research axes: 1. Biological plausibility 2. Temporal dynamics 3. Social embodiment. Overall, those steps toward socially

aware agents will ultimately help in aligned interactions between natural and artificial intelligence. Figure inspired by Schilbach et al. (2013).

achieve “ignition,” enter the global workspace (GLW) and be
shared across specialized cortical modules, therefore becoming
conscious (Baars, 1993; Dehaene et al., 1998). The use of such
a communication channel in the context of deep learning was
explored for modeling the structure of complex environments.
This architecture was demonstrated to encourage specialization
and compositionality and to facilitate the synchronization of
otherwise independent specialists (Goyal et al., 2021). Moreover,
inductive biases inspired by higher-order cognitive functions
in humans have been shown to improve OOD generalization.
Overall, this section proposes that we draw inspiration from
one structure we know is capable of comprehensive intelligence
capable of perception, planning, and decisionmaking: the human
brain (Figure 2). For a more extensive discussion on biological
plausibility in AI, we refer the reader to Hassabis et al. (2017) and
Macpherson et al. (2021).

2.2. Temporal Dynamics
Figure 2more specifically, FFNs allow signals to travel only from
input to output, whereas RNNs can have signals traveling in
both directions and therefore introduce loops in the network.

Incorporating differential equations in a RNN (continuous-
time recurrent neural network) can help learn long-term
dependencies (Chang et al., 2019) and model more complex
phenomena, such as the effects of incoming inputs on a
neuron. Moreover, viewing RNNs as a discretization of ordinary
differential equations (ODEs) driven by input data has led to
gains in reliability and robustness to data perturbations (Lim
et al., 2021b). This becomes clear when one notices that many
fundamental laws of physics and chemistry can be formulated
as differential equations. In general, differential equations
are expected to contribute to shifting the perspective from
representation-centered to self-organizing agents (Brooks, 1991).
The former view has been one predominant way of thinking
about autonomous systems that exhibit intelligent behavior: such
autonomous agents use their sensors to extract information
about the world they operate in and use it to construct an
internal model of the world and therefore rationally perform
optimal decision making in pursuit of some goal. In other
words, autonomous agents are information processing systems
and their environment can be abstracted away as the source
of answers to questions raised by the ongoing agents’ needs.
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Cognitive processes are thought to incorporate representational
content and to acquire such contents via inferential processes
instantiated by the brain. Importantly, according to this view,
the sensorimotor connections of the agents to the environment
are still relevant to understand their behavior, but there is
no focus on what such connections involve and how they
take place (Newell and Simon, 1976). The latter view, in
line with the subsumption architecture introduced by Brooks
(1991), shows how the representational approach ignores the
nonlinear dynamical aspect of intelligence, that is, the temporal
constraints that characterize the interactions between agent and
environment. Instead, dynamics is a powerful framework that
has been used to describe multiple natural phenomena as an
interdependent set of coevolving quantitative variables (van
Gelder, 1998) and a crucial aspect of intelligence is that it occurs
in time and not over time. If we abstract away the richness of real
time, then we also change the behavior of the agents (Smithers,
2018). In other words, one should indeed focus on the structural
complexity and on the algorithmic computation the agents need
to carry out, but without abstracting away the dynamical aspects
of the agent-environment interactions: such dynamical aspects
are pervasive and, therefore, necessary to explain the behavior
of the system (van Gelder, 1998; Barandiaran, 2017; Smithers,
2018).

2.3. Social Embodiment
There has been a resurgence of enactivism in cognitive
neuroscience over the past decade, emphasizing the circular
causality induced by the notion that the environment is acting
upon the individual and the individual is acting upon the
environment. To understand how the brain works, then one
has to acknowledge that it is embodied (Clark, 2013; Hohwy,
2013). Evidence for this shows that embodied intelligence in
human children arises from the interaction of the child with
the environment through a sensory body that is capable of
recognizing the statistical properties of such interaction (Smith
and Gasser, 2005). Moreover, higher primates interpret each
other as psychological subjects based on their bodily presence;
social embodiment is the idea that the embodiment of a socially
interactive agent plays a significant role in social interactions. It
refers to “states of the body, such as postures, arm movements,
and facial expressions, that arise during social interaction and
play central roles in social information processing.” Thompson
and Varela (2001) and Barsalou et al. (2003). This includes
internal and external structures, sensors, and motors that allow
them to interact actively with the world. We argue that robots
are more socially embodied than digital avatars for a simple
reason: they have a higher potential to use parts of their bodies
to communicate and to coordinate with other agents (Figure 2).
At a high level, sensorimotor capabilities in the avatar and robots
are meant to model their role in biological beings: the agent
now has limitations in the ways they can sense, manipulate,
and navigate its environments. Importantly, these limitations are
closely tied to the agent’s function (Deng et al., 2019). The idea
of social embodiment in artificial agents is supported by evidence
of improvements in the interactions between embodied agents
and humans (Zhang et al., 2016). Studies have shown positive

effects of physical embodiment on the feeling of an agent’s social
presence, the evaluation of the agent, the assessment of public
evaluation of the agent, and the evaluation of the interaction
with the agent (Kose-Bagci et al., 2009; Gupta et al., 2021). In
robots, social presence is a key component in the success of social
interactions and it can be defined as the combination of seven
abilities that enhance a robot/s social skills: 1. Express emotion,
2. Communicate with high-level dialogue, 3. Learn/recognize
models of other agents, 4. Establish/maintain social relationships,
5. Use natural cues, 6. Exhibit distinctive personality and
character, and 7. Learn/develop social competencies (Lee, 2006).
Social embodiment thus equips artificial agents with a more
articulated and richer repertoire of expressions, ameliorating the
interactions with it (Jaques, 2019). For instance, in human-robot
interaction, a gripper is not limited to its role in the manipulation
of objects. Rather, it opens a broad array of movements that can
enhance the communicative skills of the robot and, consequently,
the quality of its possible interactions (Deng et al., 2019). The
embodied agent is therefore the best model of the aspects
of the world relevant to its surviving and thriving, through
performing situationally appropriate actions (Ramstead et al.,
2020) (Figure 2). Therefore, it will be crucial to scale up the
realism of what the agents perceive in their social context, going
from simple environments like GridWorld tomore complex ones
powered by video-game engines and, finally, to extremely realistic
environments, like the one offered by theMetaHuman Creator of
Unreal Engine. In parallel, greater focus is needed on the mental
processes supporting our interactions with social machines, so as
to develop amore nuanced understanding of what is ‘social’ about
social cognition (Cross and Ramsey, 2021) and to gather insights
critical for optimizing social encounters between humans and
robots (Henschel et al., 2020). For a more extensive discussion
on embodied intelligence, we refer the reader to Roy et al.
(2021). These advancements will hopefully result in more socially
intelligent agents and therefore in more fruitful interactions
between humans and virtual agents.

3. ACTIVE INFERENCE

The active inference framework represents a biologically realistic
way of moving away from rule-governed manipulation of
internal representations to action-oriented and situationally
appropriate cognition (Friston et al., 2006). More specifically,
active inference can be seen as a self-organizing process of
action policy selection (Ramstead et al., 2020), which a) concerns
the selective sampling of the world by an embodied agent and
b) instantiates in a generative model the goal of minimizing
their surprise through perception and action (Ramstead et al.,
2020). In other words, generative models do not encode
exploitable and symbolic structural information about the world,
because cognition does not perform manipulation of internal
representations, but rather instantiates control systems that
are expressed in embodied activity and utilize information
encoded in the approximate posterior belief (Ramstead et al.,
2020). Interestingly, by grounding GWT within the embodied
perspective of the active inference framework, the Integrated
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World Modeling Theory (IWMT) suggests that conscious
experience can only result from autonomous embodied agents
with global workspaces that generate integrative models of the
world with spatial, temporal and causal coherence (Safron, 2020).

Active inference models are still very discrete in their
architectures, especially regarding high-level cognitive aspects,
but they may be a good class of models to raise the tension
between computation and implementation (Figure 2). Therefore,
they only have been able to handle small policies and state-spaces,
while also requiring the environmental dynamics to be well
known. However, using deep neural networks to approximate key
densities, the agent can scale to more complex tasks and obtain
performance comparable to common reinforcement learning
baselines (Millidge, 2020). Moreover, one advantage of active
inference is that the associated biologically inspired architectures
predict future trajectories of the agent N steps forward in
time, rather than just at the next step. By sampling from these
trajectories, the variance of the decision is reduced (Millidge,
2020).

Interestingly, by grounding GWT within the embodied
perspective of the active inference framework, the Integrated
World Modeling Theory (IWMT) suggests that complexes
of integrated information and global workspaces can entail
conscious experiences if (and only if) they are capable of
generating integrative world models with spatial, temporal,
and causal coherence. These ways of categorizing experience
are increasingly recognized as constituting essential “core
knowledge” at the foundation of cognitive development (Spelke
and Kinzler, 2007). In addition to space, time, and cause, IWMT
adds embodied autonomous selfhood as a precondition for
integrated world modeling.

4. A DETAILED PROPOSAL: HOW CAN
INCREASED BIOLOGICAL PLAUSIBILITY
ENHANCE SOCIAL AFFORDANCE
LEARNING IN ARTIFICIAL AGENTS?

Attention has become a common ingredient in deep learning
architectures. It can be understood as a dynamical control
of information flow (Mittal et al., 2020). In the last decade,
transformers have demonstrated how attention may be all we
need, obtaining excellent performances in sequence learning
(Vaswani et al., 2017), visual processing (Dosovitskiy et al.,
2020) and time-series forecasting (Lim et al., 2021a). While
transformers proposed a general purpose architecture where
inductive biases shaping the flow of information are learned
from the data itself, we can imagine a higher-order informational
filter built on top of attention: an Attention Schema (AS),
namely a descriptive and predictive model of attention. In this
regard, the attention schema theory (AST) is a neuroscientific
theory that postulates that the human brain, and possibly the
brain of other animals, does construct a model of attention:
an attention schema (Graziano and Webb, 2015). Specifically,
the proposal is that the brain constructs not only a model of
the physical body but also a coherent, rich, and descriptive
model of attention. The body schema contains layers of valuable

information that help control and predict stable and dynamic
properties of the body; in a similar fashion, the attention schema
helps control and predict attention. One cannot understand
how the brain controls the body without understanding the
body schema, and in a similar way one cannot understand how
the brain controls its limited resources without understanding
the attention schema (Graziano, 2017). The key reason a
higher-order filter on top of attention seems a promising
idea for deep learning comes from control engineering: a
good controller contains a model of the item being controlled
(Conant and Ross Ashby, 1970). More specifically, a descriptive
and predictive model of attention could help the dynamical
control of attention and therefore maximize the efficiency with
which resources are strategically devoted to different elements
of an ever-changing environment (Graziano, 2017). Indeed,
the performance of an artificial agent in solving a simple
sensorimotor task is greatly enhanced by an attention schema,
but its performance is greatly reduced when the schema is not
available (Wilterson and Graziano, 2021). Therefore, the study
of consciousness in artificial intelligence is not a mere pursuit of
metaphysical mystery; from an engineering perspective, without
understanding subjective awareness, it might not be possible to
build artificial agents that intelligently control and deploy their
limited processing resources. It has also been argued that, without
an attention schema, it might be impossible to build artificial
agents that are socially intelligent. This idea stems from the
evidence that points at an overlap of social cognition functions
with awareness and attention functions in the right temporo-
parietal junction of the human brain (Mitchell, 2008). It was
then proposed that an attention schema might also be used for
social cognition, giving rise to an overlap between modeling
one’s own attention and modeling others’ attention. In other
words, when we attribute to other people an awareness of their
surroundings, we are constructing a simplified model of their
attention—a schema of others’ attention (Graziano and Kastner,
2011). Indeed, such a model would enhance the ability of the
agent to predict social affordances in real time, which is a
goal the field has been trying to achieve in different ways (Shu
et al., 2016; Ardón et al., 2021). Without a model of others’
attention, even if we had detailed information about them, we
could not predict their behavior on a moment-by-moment basis.
However, with a component that tracks how and where other
agents are focusing their resources in the environment, the
probabilities for many affordances in the environment become
computable in real time (Graziano, 2019). Specifically, there
are three predictions that are investigated in this proposal. The
first prediction is that, without an attention schema, attention is
still possible, but it suffers deficits in control and thus leads to
worse performance. The second prediction is that an attention
schema is useful for modeling the attention of other agents
as well —as the machinery that computes information about
other people’s attention is the same machinery that computes
information about our own attention (Graziano and Kastner,
2011). The third prediction is that an agent equipped with an
attention schema is going to have better OOD generalization
than a classic Proximal Policy Optimization agent (Schulman
et al., 2017), especially in environments in which the ability to
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intelligently control and deploy limited processing resources is
necessary.

5. CONCLUSION

At the crossroads of robotics, computer science, psychology,
and neuroscience, one of the main challenges for humans
is to build autonomous agents capable of participating in
cooperative social interactions. This is important not only
because AI will play a crucial role in daily life well into
the future, but also because, as demonstrated by results in
social neuroscience and evolutionary psychology, intrapersonal
intelligence is tightly connected with interpersonal intelligence,
especially in humans (Dumas et al., 2014b). In this opinion
article, we have proposed an approach that unifies three lines
of research that, at the moment, are separated from each
other; in particular, we have proposed three research directions
that are expected to enhance efficient exchange of information
between agents. Biological plausibility attempts to increase the
robustness and OOD generalization of algorithms by drawing
on knowledge about biological brains; temporal dynamics
attempts to better capture long-term temporal dependencies;
social embodiment proposes that states of the body that arise
during social interaction play central roles in social information

processing. Unifying these axes of research would contribute
to creating agents that are able to cooperate efficiently in
extremely complex and realistic environments (Dennis et al.,
2021), while interacting with other embodied agents and with
humans.
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We present a description of an ASM-network, a new habit-based robot controller model

consisting of a network of adaptive sensorimotor maps. This model draws upon recent

theoretical developments in enactive cognition concerning habit and agency at the

sensorimotor level. It aims to provide a platform for experimental investigation into the

relationship between networked organizations of habits and cognitive behavior. It does

this by combining (1) a basic mechanism of generating continuous motor activity as a

function of historical sensorimotor trajectories with (2) an evaluative mechanism which

reinforces or weakens those historical trajectories as a function of their support of a

higher-order structure of higher-order sensorimotor coordinations. After describing the

model, we then present the results of applying this model in the context of a well-known

minimal cognition task involving object discrimination. In our version of this experiment,

an individual robot is able to learn the task through a combination of exploration through

random movements and repetition of historic trajectories which support the structure of

a pre-given network of sensorimotor coordinations. The experimental results illustrate

how, utilizing enactive principles, a robot can display recognizable learning behavior

without explicit representational mechanisms or extraneous fitness variables. Instead, our

model’s behavior adapts according to the internal requirements of the action-generating

mechanism itself.

Keywords: habit, sensorimotor contingencies, minimal cognition, robot controller, adaptive autonomy, enactivism

1. INTRODUCTION

1.1. A Novel Habit-Based Controller
An enactive approach to AI and robotics requires us to take seriously the roots of autonomous
agency and sense-making (Froese and Ziemke, 2009). To gain insight into the nature of intelligence,
we cannot be content with mimicking the dynamics of intelligent behavior within the constraints of
externally imposed norms.Wemust also askwhy a system generates its own normative dimensions,
how are they grounded in the material processes of the agent as a self-organizing system, and
how do they relate to an intrinsically meaningful perspective on the world. These questions must
motivate the design of our artificial models.

In recent years, a rich notion of habit as a core feature of cognition has been explored by theorists
focussing on aspects of autonomy, sense-making, and anti-representationalism in enactivism
(Barandiaran and Di Paolo, 2014; Egbert and Barandiaran, 2014; Barandiaran, 2017; Ramírez-
Vizcaya and Froese, 2019; Hutto and Robertson, 2020). Of particular interest to us is a line of
investigation concerning how habit serves as an approximation of a fundamental unit of the
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sensorimotor domain of cognitive life, analogous to the role of
the autopoetic cell as foundational to the biological domain of life
(Buhrmann et al., 2013; Buhrmann and Di Paolo, 2017; Di Paolo
et al., 2017; Di Paolo, 2019). In this view, a habit is a precarious
but self-maintaining structure of sensorimotor activity, one that
sustains itself as an entity over time by continually reproducing
the conditions of its own performance.

Aspects of this view have been investigated through a
computational model called the Iterant Deformable Sensorimotor
Medium (IDSM) (Egbert and Barandiaran, 2014; Egbert and
Cañamero, 2014; Egbert, 2018;Woolford and Egbert, 2019; Zarco
and Egbert, 2019). The IDSM is essentially a mapping between a
sensorimotor state and a change in motor state which is mutated
as the medium is imprinted with a history of trajectories through
a sensorimotor space. When coupled to a robot the medium
serves as a controller which drives a kind of similarity-based
behavior, in which the robot is driven to repeat the motor
activity that it produced when it was historically in a similar
sensorimotor state. As a behavior is repeated more frequently
it in turn sustains and reinforces its influence on the IDSM
mapping. Taken together, this facilitates the development of self-
maintaining habitual behavior. Beyond the IDSM, a handful of
other AI/robotics-type works drawing upon enactive theory have
explored habits through different computational mechanisms
or used comparable similarity-based mechanisms without being
explicitly concerned with habit (Mirza et al., 2006; Iizuka and
Di Paolo, 2007; Bedia et al., 2019; Georgeon and Riegler, 2019).
Nevertheless, the scope of computational models of the enactive
notion of habit remains relatively under-developed considering
the relevance of habit to broader development of enactive
cognitive science.

A recent criticism of the line of investigations working
with the IDSM and related models is that they remain too
minimal to provide an effective model of intelligent behavior,
and that our artificial agents must be capable of developing an
increasingly complex network of habits (Ramírez-Vizcaya and
Froese, 2020). One of our recent works attempted to step in this
direction by exploring how maintaining and refining a network
of habits supported goal-oriented behavior acquired through
evolutionary processes (Woolford and Egbert, 2020). Here we
aim to push further in the direction of enriching the space of
available computational models which can be used to explore
habit-based cognition. To this end we present a new robot
controller model, an Adaptive Sensorimotor Map Network (ASM-
network). Building upon the kind of processes introduced with
the IDSM, the ASM-network adaptively regulates the behavior of
the robot as it engages with its environment, so as to maintain
the viability of a structural organization within the model. That
internal structure is motivated by the hypothesized organization
of a sensorimotor agent as a structure of self-maintaining
sensorimotor regularities (Di Paolo et al., 2017). The first half of
this article thus details relevant elements of sensorimotor theory
and adaptive sensorimotor agency, and then describes how the
model captures some of these principles.

After presenting the model, we present an investigation
to demonstrate its practical capacity as a tool for modeling
cognition behavior. We investigate how a robot can solve

a minimal cognition task previously investigated using
evolutionary robotics methods (Beer, 1996). Evolutionary
robotics methods have yielded invaluable developments in
embodied theories of cognition through the analysis of the
dynamics of adaptive behavior (Beer, 2008; Vargas et al., 2014).
However, they have a critical limitation as an approach to
investigating normativity and agency in an enactive sense, in that
the viability constraints which the adaptive behavior maintains
are externally imposed and have no meaningful correlation with
the behavioral dynamics of the system. Barandiaran describes
this as “the problem of dissociation between norm-establishing
and norm-following processes” (Beer, 1997; Barandiaran and
Egbert, 2014). Our investigation demonstrates that a system
which attempts to reconcile these processes can still be used to
investigate the same kinds of adaptive dynamics.

1.2. Sensorimotor Contingency Theory
Sensorimotor Contingency Theory is an attempt to account
for the existence and quality of perceptual experience without
appeals to notions of internal representation and other
computational explanations (O’Regan and Noë, 2001; Noe,
2004). According to O’Regan and Noë’s formulation of the
theory, regularities in the relationship between movement and
sensorimotor stimulation, and the “mastery” of such regularities,
can explain an agent’s phenomenal experience of perception as a
result of their embodied activity. An archetypal example of the
explanation provided by the theory is that of how the quality of
“softness” is experienced. When a person squeezes a soft object
such as a sponge, there is a particular contingent relationship
between movements in the hand yielding a particular amount
of pressure on the nerves in the finger tips. When squeezing a
harder object such as a stone, the same muscle movements would
coincide with a greater intensity of pressure on the fingertips. In
mastering the laws of these relationships between motion and
sensation the agent brings forth the experiences of softness and
firmness, and the distinction between them. As O’Regan puts it,
the experience of softness/firmness is a quality of the interaction
in time between the body and the object, not an essential property
of the object or “inside” the brain (O’Regan, 2011).

The theory’s emphasis on perception as a process of active
agent-environment interaction resonates with the enactive
approach to cognition, especially with regard to the notion
of sense-making. However the exact nature of sensorimotor
contingencies and the notion of mastery in particular has
proven challenging to reconcile with other aspects of enactivist
thought. One challenge is the original formulation’s apparent
acceptance of cognitive representationalism to account for
mastery (Hutto and Myin, 2012). Another is the question of
how and why an autonomous agent would develop mastery of
contingencies that are meaningful for that agent. Recently Di
Paolo, Buhrmann, and Barandiaran provided a formalization
of sensorimotor contingencies in terms of dynamical systems
theory (Buhrmann et al., 2013). As part of this formalization, they
defined four categories of sensorimotor contingencies, which
describe different levels of the relationship between sensorimotor
dynamics and the experience of the agent:
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FIGURE 1 | The sensorimotor scheme O, associated with the behavior of

bouncing a basketball. The scheme consists of the cyclical organization of the

three coordinations, A × A’ → B × B’ → C × C’ → A × A’, where the arrows

indicate the transitional structure between these coordinations. The A × A’

notation refers to the simultaneous realization of the agent-side sensorimotor

support structure A, and the environment-side response structure A’.

1. Sensorimotor (SM) Environment, the set of all regularities in
the way that actions may affect perceptions for a given body in
a given environment, e.g., between eye movements and retinal
stimulations, without regard for the agent’s internal dynamics
involved in performing those actions.

2. Sensorimotor Habitat regular trajectories within the
sensorimotor environment associated with a particular agent’s
way of being. In other words, the time-extended regularities
involved in the loop of both action affecting perception
and perception affecting action, given the specific internal
properties of the acting agent.

3. Sensorimotor Coordination, a clustering of regularities
within the sensorimotor habitat associated with the fulfillment
of a particular goal of an agent.

4. Sensorimotor Scheme, an organization of coordinations
associated with a particular normative framework and
modulated according to that framework.

These categories clarify the distinction between (1) contingencies
considered in more mechanical or statistical terms relating to the
coupling between body and environment, and (2) contingencies
as related to the experience of the agent in terms of its needs
and expectations. We will briefly expand upon the details of
these categories which are most relevant to this investigation. We
are mostly concerned here with what it means for sensorimotor
coordinations to be organized in relation to goals and norms.

Figures 1, 2 illustrate the way in which the bodily and
environmental aspects of bouncing a basketball relate to the ideas

of sensorimotor coordination and sensorimotor schemes. We
can consider this as a scheme composed of three coordinations:
Pushing the basketball toward the ground; preparing to receive
the ball as it bounces on the ground; and receiving the ball as
it returns to the hand. Each of these coordinations describes
a particular class of embodied dynamics, all associated with a
particular aspect of the basketball bouncing process. Assuming
the scheme is stable, then each particular instance of enacting
this scheme will follow the same sequence of coordinated acts,
with each instance of a coordination varying in its precise
dynamics but reliably establishing the enabling conditions for
an instance of the next coordination. The processes involved in
these transitions are honed over time with respect to various
normative dimensions associated with bouncing a basketball
effectively and efficiently.

A crucial emphasis of this formalization is that these
regularities are not just concerned with the agent’s brain
and body, but involve the entirety of the brain-body-world
system. The regularities associated with the performance of
this scheme encompass both the positioning and readiness of
the agent’s body, and the position of the ball in relation to
the body. Figure 2 illustrates how these regularities form a
sensorimotor-coordination. Each coordination encompasses co-
occurring regularities in the dynamics of both the agent (i.e.,
the actions and sensations associated with pushing the ball
downwards, in the case of A here) and the environment (i.e., the
position of the ball in space and its physical attributes, in the case
of A’), within a specific temporal context with respect to several
other coordinations. In other words, every instance of a particular
coordination is a trajectory through a space of sensorimotor
states (sensorimotor space), over which relevant state variables
are transformed from one particular set of enabling conditions to
another set, and a coordination structure ultimately is composed
of the infinite set of possible variations on these trajectories.

In this example, we have outlined what an organization of
sensorimotor contingencies might look like with respect to a
particular activity, but not how or why such an organization
would develop. Exactly whose goals and norms are we referring
to when we say a scheme is associated with a particular normative
framework, and where do those norms come from?

1.3. Sensorimotor Agency
Di Paolo et al. (2017) integrated their formalization of
SMCs with a proposal for an account of cognition in
which a complex embodied agent, such as a human, is
not reducible to just its biological processes, but rather
consists of many autonomous processes in deeply interwoven
but ultimately irreducible biological, behavioral, and social
domains. These processes and the relations between them
ultimately ground the goals and norms which are relevant
to the higher-level categories of sensorimotor contingencies.
The core of their proposal is the idea that an organization
of sensorimotor contingencies can manifest the necessary and
sufficient properties to possess its own form of agency. Such
an organization is proposed to constitute behavioral domain’s
analog to the notion of the cellular organism as biological agent.
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FIGURE 2 | A more detailed visualization of the A × A’ coordination from the previous figure. The coordination captures not just the agent’s actions (A) and sensations

but also the environmental processes that happen concurrently (A’). The state spaces represent theoretical projections of the state spaces of the relevant variables on

the agent-side and environment-side of the engagement. The trajectories are not just co-occurring but also circularly causal, with the sensorimotor trajectory being a

function of both internal (e.g., neuromuscular) dynamics and the environmental impacts on the agent’s body, and similarly the environmental trajectory being a function

of both the agent’s actions and environmental processes such as gravity acting upon the ball.

The short version of the definition of an agent that underlies the
proposal is:

An autonomous system capable of adaptively regulating

its coupling with the environment according to the

norms established by its own viability condition

(Barandiaran et al., 2009).

In the case of a sensorimotor agent, this system is a self-
individuating, self-sustaining organization of activity which
emerges within the dynamics of a brain-body-environment
system, an entity composed of interacting sensorimotor schemes.
This interaction refers to the relations between sensorimotor
schemes in time—the way in which the performance of one
scheme can regularly support, inhibit, or require the performance
of other activities. At a high level we can think of each of these
schemes as the regularities concerning a particular embodied
activity: drinking from a cup, walking, reaching for a phone.
Crucially, these are regularities which emerge not just in the
dynamics of the internal process of the agent, but over the
entire coupled system comprising the physical properties of
the world, the agent’s body, and the agent’s neurological and
physiological dynamics. A structure of interrelated activities
can be understood as constituting its own kind of entity in
the sensorimotor domain. Such a entity would comprise the
entirety of the activities involved in a particular embodied agent’s
mode of being. The self-individuation of this structure refers
to the way in which the stability of this structure is established
through the very processes of activity that constitute it. These

processes establish an operational closure of all of those activities
which stabilize support for other activities within this structure,
and in turn depend on the support of other activities in the
structure. This process of self-individuation grounds a dimension
of normativity related to the continuation of the activities which
constitute the sensorimotor agent, as well as to the integrity
of the structural relationships between activities. Actions and
environmental structures may take on meaning of being more
or less good or bad depending on how they support or disrupt
that process. These elements may be irrelevant or even in direct
opposition to the agent’s viability at another level, such as
the biological. If the dynamics of the brain-body-environment
coupling are such that the behavior of the agent may change
and develop to maintain its sensorimotor organization according
to these norms, then we have an autonomous structure at the
sensorimotor level which adaptively regulates its engagement
with its environment, thus fulfilling the criteria of an organization
that possesses its own form of agency.

This theory of sensorimotor agency has the potential to
explain how andwhy an agent develops the sensorimotormastery
necessary to ground its phenomenal experience of the world,
and to explain how complex behaviors and skills can take on
“a life of their own,” apparently divorced from any role in
maintaining the viability of the biological agent engaged in those
behaviors. Clearly though, the idea of an agent constituted by
its own acts presents a challenging conceptual puzzle (Di Paolo
et al., 2017, Chapter 6). Artificial models have a key role to play
in both clarifying and developing this and associated theories.
Much of this work to date has focussed on the notion of
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FIGURE 3 | Simplified visualization of an ASM-unit in operation. The model essentially stores a number of historical trajectories in this space which have passed from

the within range initial state to the range of final states, and utilizes information about those trajectories to generate motor activity for the robot in its current state.

habit, which provides a useful “first approximation” (Egbert
and Barandiaran, 2014) of a minimal kind of self-sustaining
sensorimotor entity. A habit may be conceived of as a dissipative
structure of activity which depends upon its own continual re-
performance for stability. In the context of the formalization of
sensorimotor contingency categories, the structure of a minimal
habit is akin to a single, circular scheme in which a series
of coordinations ultimately reproduce the conditions for their
own re-enactment. This structure grounds a single normative
dimension concerning that continuing cycle of reproducing
enabling conditions. Although the notion of habit—especially
a single habit in isolation—does not capture the full richness
of sensorimotor agency (Di Paolo et al., 2017, p. 146–154), it
provides a starting point for investigation.

This brings us to our own work. Our aim is to build
upon previous models that have been used to investigate this
kind of enactive notion of habit, moving a step closer to the
idea of sensorimotor agency proper. In particular our model
aims to investigate the notion of habit more directly in terms
of those categories of sensorimotor contingency, by explicitly
incorporating properties of sensorimotor structure and dynamics
which support the maintenance of that structure’s viability in the
face of environmental disruptions and obstacles. We now present
a description of this model.

2. MODEL

2.1. An Overview of the ASM-Network
Model
In the simplest description, the ASM-network model is a robot
controller which generates motor commands for a robot based
on the relationship between its current sensorimotor state
and its history of sensorimotor trajectories. It consists of a
network of Adaptive Sensorimotor Map units (ASM-units).
The general design of each unit is similar to an earlier model,
the Iterant Deformable Sensorimotor Medium (IDSM) (Egbert
and Barandiaran, 2014; Egbert and Cañamero, 2014), while the

mechanisms involved in organizing these units as a network
are based on our previous Sensorimotor Sequence Reiterator
model (Woolford and Egbert, 2020). Both of those models,
and this one, may be considered as belonging to a family of
habit-based robot controllers. These models are similar in
two primary ways: Firstly, they are all specifically concerned
with a sensorimotor level of abstraction (i.e., leaving aside
lower level neural and physiological dynamics). Secondly,
when coupled to the motors and sensors of an embodied robot
as a controller, they serve to encourage the repetition and
reinforcement of the robot’s historical behaviors. The ASM-
network is unique among these controllers in that it monitors the
way in which new performances affect the stability of historically
established behaviors, and adaptively modulates its own
dynamics in the direction of maintaining the viability of those
behaviors. Additionally, the processes of the model are organized
analogously to the organization of sensorimotor contingencies
in an autonomous sensorimotor entity as we described in the
previous section.

Figures 3, 4 illustrate the basic elements of the ASM-
network model. In operation, only one ASM-unit is “active”
at any one time, and that unit is responsible for governing
the changes in motor activity of the robot. This state of
activation traverses the network over time. As a rough
approximation, we may think of an individual ASM-unit as
being associated with the agent dynamics associated with a
single sensorimotor coordination structure, and a collection
of these coordinations in a network as being associated with
a sensorimotor scheme. Figure 5 illustrates a hypothetical
relationship between our basketball-bouncing sensorimotor
scheme and an instantiated ASM-network model in the
context of a robot, controlled by an ASM-network, which
is able to successfully enact that sensorimotor scheme. The
model components illustrated there will become clear as we
discuss further.

We now discuss the model in three parts: Firstly, we
explain model at the level of individual ASM-units, and then
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FIGURE 4 | Example of an ASM-network consisting of 10 ASM-units. Like in

Figure 3, ASM-units are represented by two-dimensional projections of

sensorimotor-spaces. Arrows indicate that activation will transition from one

ASM-unit to another when the controlled robot is in an appropriate

sensorimotor-state. Note that the yellow initial-state regions of each ASM-unit

corresponds in space with a purple or green final-state region from a

preceding ASM-unit.

FIGURE 5 | The activity of an ASM-network with three ASM-units, overlaying a

visualization of the robot engaged in the ball-bouncing scheme. Each

ASM-unit simulates a particular sequential component of the dynamics

involved in the robot’s side of the coupling. Each activation of the ASM-unit

yields the necessary state for the activation of the next ASM-unit in the

sequence. The progression of activations through the network mirrors the

temporal arrangement of coordinations in a scheme.

at the network level. Finally, we will explain how these
two levels interact to adaptively maintain stable behavior.
Symbols used in the following sections are summarized in
Table 1.

TABLE 1 | Symbols for model parameters and components.

Symbol Value for section 3 Description

τ 0.1 s Period between node-creation

events in an ASM-unit

Nmax 8,000 Maximum number of nodes in a single

ASM-unit before nodes begin to be replaced

w 1.5 Scales the relative importance of P

and V comparisons in similarity metric

tg 8 s Period of activation for an ASM-unit

before non-historical transitions may occur

th 16 s Maximum period of activation

for an ASM-unit

dcutoff 0.2 sm-space units Maximum distance in SM-space

for candidate parent nodes

N
〈

P,V,1m,C,Z,A
〉

ASM-unit node

P 8-dimensional

vector

Position in SM-space of a node

V 8-dimensional

vector

Displacement of node’s position

from previously created node’s position

1m 1-dimensional

vector

Change-in-motor-state generated

at node-creation

C label Node class label, inherited

from parent node

Z label Label of the transition condition

which terminates the activation of an ASM-unit

A 0 or 1 Flag which marks a node as

reinforced or inhibited

Described values for the parameters and dimensionality of vectors are those used in the

investigation in Section 3 but are only indicative of a suitable order of magnitude for the

general case.

2.2. ASM Unit-Level Architecture
All ASM-units shares the same functional properties, and are
essentially self-contained in their operation in most cases.
Therefore, we can present most of the model in terms of a single
ASM-unit in isolation from the rest of the network. Figure 3
illustrates the basic elements of an ASM-unit graphically. Readers
familiar with the IDSM will recognize several core similarities in
the ASM-unit’s architecture.

A key concept at the heart of an ASM-unit is the notion of
the sensorimotor space, the construct of all possible values of all
sensor and motor variables of the controlled robot, which are
each treated as bounded scalars. Conceptually we may think of
these values as representing the full range of movements and
sensations accessible to the robot. At any moment, the robot’s
sensorimotor state is the value of all of those sensors and motors:

sm(t) =





















m1(t)
...

mn(t)
s1(t)
...

sn(t)





















(1)

The ASM-unit essentially operates in terms of comparing the
current sensorimotor state to historical states in terms of their
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position in sensorimotor space. In an example in the context of
the basketball-bouncing scheme, we may think of it comparing a
particular movement and sensation of the arm to other historical
movements and sensations.

The ASM-unit also gives primacy to the concept of the time-
extended trajectory of the robot’s sensorimotor state through
sensorimotor space. In the context of each ASM-unit, which
is only active for a finite segment of time, we specifically use
the term sensorimotor trajectory to refer to discrete segments
of the robot’s trajectory through the space, beginning at the
time of the ASM-unit’s activation and ending at the time of
its termination. The ASM-unit therefore has a collection of
historical sensorimotor trajectories, based on how many times
it has been activated. Figure 3 illustrates a collection of five
historical sensorimotor trajectories, suggesting that it the ASM-
unit is currently in its sixth activation. As per the basketball
example, we may think of each of these sensorimotor trajectories
as instances of the robot’s sensorimotor activity as it was going
through a particular performance of a particular act, e.g., of
pushing the ball.

An ASM-unit is designed so that it causes historical
sensorimotor trajectories to be repeated, by dynamically
generating a sensorimotor-state to change-in-motor-state map,
f (sm) = ṁ, based on those historical sensorimotor trajectories.
The dynamics of the model are precarious in that information
of historical trajectories is lost over time, so for a particular
behavior to be sustained over the long term it must regularly
recur. However, repeating historical trajectories is not as simple
as merely repeating historical motor actions. The time-extended
evolution of the sensorimotor state may be separated into the
evolution of the motor states and evolution of the sensor states:

˙sm = ṁ+ ṡ =





















ṁ1

...
ṁn

0
...
0





















+





















0
...
0
ṡ1
...
ṡn





















(2)

ṁ = f (sm)

ṡ = g(m, e)
(3)

Where, e is a vector representing the environmental state
(i.e., properties of the world and the robot’s position in it).
Ultimately the ASM-unit is only responsible for generating
f (sm) (see later, Equations 5–7), but has no direct influence
on g(m, e). In other words, the ASM-unit is designed to
reproduce historical sensorimotor trajectories, but it only has
direct control over the change in state in a subset of the relevant
dimensions. The same motor action in two different contexts
may yield different sensorimotor trajectories depending on the
environmental state. This produces a tension which causes only
certain behaviors to be stable—those in which the repetition
of certain sensorimotor states is concurrent with the repetition
of certain environmental states. In our basketball example, this
means that regular movements and sensations are only stable
if the physical properties of the ball bouncing off the ground
are also regular. This challenge relates to the concurrence of

agent-side and environment-side dynamics in a sensorimotor
coordination as illustrated in Figure 2.

In any non-trivial system, natural variations in the
environmental state will mean that exact repetitions of
historical trajectories are not possible, and thus the ASM-unit
needs a mechanism for comparing the relative similarity of the
current state to historical states. Thus, the influence of particular
trajectories through sensorimotor space propagates over the
entire state space, such that historical change-in-motor-state
commands are adjusted for the current context. From a design
perspective, the functional effectiveness of these comparisons
and adjustments (i.e., the comparisons are accurate and the
adjustments suitable) are critical to the ASM-unit’s ability to
repeat historical behaviors.

This brings us to the two operational mechanisms of an
ASM-unit, (1) storing information about historical sensorimotor
trajectories, and (2) using that information to generate
change-in-motor-state commands. Sensorimotor trajectories are
sampled at discrete intervals and stored by the ASM-unit as
sequences of nodes, each representing the sensorimotor state
of the robot at the moment of sampling. When determining
a change-in-motor-state command, the ASM-unit compares
the current SM-state to these stored nodes, and generates an
output based on the state of the most similar stored node. The
remainder of this subsection will explain the details of these two
basic mechanisms.

2.2.1. Node Creation

The controller is applied in a simulation of a continuous-time
system, using the Euler method to approximate continuous
dynamics, with a time step of size 0.01. At regular intervals of
τ time units (τ = 0.1s) a node is created to store the current state
of the robot, and a vector 1m is generated which determines the
rate of change to the robot’s motor state over the next τ interval.
The structure of a node is illustrated in Figure 6. Upon creation,
each node stores the following information:

1. The current sensorimotor state of the robot, which we regard
as the node’s position in sensorimotor space P,

2. The vector V from the position of the previously created node
to the position of the current node,

3. The vector 1m for the intended change in motor state
determined during node creation. The process of generating
1m is discussed shortly.

4. An identifying class label for the node, C, which is inherited
from the most similar historical node (parent node) and
will propagate to future similar nodes. This too is discussed
further shortly.

There are also data stored in each node that relate to how the
ASM-unit is exited. When the activation of an ASM-unit ends,
all of those nodes which were created during that activation are
modified to include:

5. An identifying label, Z, of the exit region that caused the
activation to transition to another ASM-unit.

Finally, when the activation of the next ASM-unit is completed,
every created node is updated with feedback regarding the
controller’s progression through the higher order network:

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 846693165

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Woolford and Egbert Adaptive Sensorimotor Map Network

FIGURE 6 | A trajectory through a 2D sensorimotor space, represented in an

ASM-unit with eight nodes. We use the node N4 as an arbitrary example, all

others share the same properties. For illustrative purposes we treat the motor

and sensor dimensions abstractly as continuous ranges between 0 and 100.

Note that the component A = 1 is determined in the context of subsequent

activations of other ASM-units. This is explained in Section 2.4.

6. A boolean A indicating whether the behavior associated with
the node is reinforced (A = 1) or is inhibited (A = 0). (Wewill
discuss this aspect of the model, which concerns its adaptive
properties, in Section 2.4.).

A completed node may thus be defined as the tuple:

N = 〈P,V ,1m,C,Z,A〉 (4)

The number of nodes in each ASM-unit begins at zero and grows
to a maximum ofNmax in a developed robot. After this maximum
is reached, old nodes are destroyed to make room for new nodes.
All of these nodes’ data are used in future activations of the
ASM-unit to contribute to future output of themapping function.
However, for now we will ignore the adaptive mechanism of the
model and disregard the influence of the C, Z, andA components
of the nodes, which are involved in that mechanism. We will
return to this aspect of the model in Section 2.4.

2.2.2. Motor Command Generation

At the same time as the generation of a new node to store state
data, the model also generates a change-in-motor-state vector
1m which influences the current motor activity of the robot
and is associated with the new node. This is done by finding
a parent node, which is the historical node which represents
a state most relevant to the current sensorimotor state of the
robot. The parent node is found by a similarity metric which
is applied to all historical nodes within a fixed distance of the

FIGURE 7 | A visualization of the mapping function using the similarity metric

described in Equation (5). This illustrates the moment in which node Na is being

created. The position in sm-space Pa and displacement from the previous

node Va will be compared to those of every nearby node. We isolate two of the

three nearest nodes, Nb and Nc, to compare. Nc is closest in space to Na, but

the velocity of the trajectory associated with Nc is very different from that of the

current trajectory. Nb is slightly further away, but the velocity of its associated

trajectory is much more similar, so Nb is selected as the parent node of Na.

1ma is taken as the average between 1mb and the hypothetical vector which

would put Na’s successor at the same motor state as Nb’s successor. This is

indicated by the pale arrows behind the 1ma arrow.

current sensorimotor state in sensorimotor space, and the node
which yields the greatest similarity value is classed as the current
parent node. The behavior associated with the new node will be
similar to the behavior associated with the parent node, and to
reflect this the two nodes are regarded as having the same class.
This is represented in-model with the new node’s C component
set to the same value as the parent’s.

The similarity metric which finds the parent node is illustrated
by example in Figure 7. Let us consider a node which has
just been created Na = 〈Pa,Va,1ma,Za,Aa〉 and an arbitrary
historical node Nb = 〈Pb,Vb,1mb,Zb,Ab〉 We measure the
similarity of the historical node to the current node as the
weighted product of the Manhattan distance between their
positions in sensorimotor space and the distance between their
incoming vectors.

sim(Na,Nb) = −1

(

n
∑

i=1

|Pai − Pbi |

(

n
∑

i=1

|Vai − Vbi |

)ω)

(5)

Where ω is a fixed parametric weight which scales the relative
importance of V compared to P.

Once a parent node has been identified, it is used to determine
a change in motor state for the robot. The method for this
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is illustrated in Figure 7. The 1m value for the new node is
generated by taking a modulated form of the parent’s 1m value:

1ma =
motor(Pa)−motor(Pb)

2
+ 1mb (6)

Where motor(Pa) refers to taking only the motor components
of the sensorimotor position. In effect this produces an
interpolation of 1mb and the hypothetical vector which would
yieldNa’s successor having the samemotor state asNb’s successor.
If a parent node cannot be found, either because this is the
first activation of this ASM-unit, or because no historical states
were sufficiently close to the current state, then 1m is generated
randomly, with each component of the vector selected from a
normal distribution (µ = 0, σ = 0.03).

Once it has been generated, 1m is used to determine a rate of
change in motor state for robot over the next interval of τ :

ṁ =
1m

τ
(7)

In other words the robot’s motor state changes linearly from time
t to time t+ τ so that the motor state shifts frommt tomt +1m
over that interval.

2.3. Network-Level Model Architecture
We have discussed the design of an ASM-unit in isolation, and
will nowmove on to howmultiple ASM-units are linked together
as a network as illustrated in Figure 4. As already mentioned,
each ASM-unit spends only a limited period of time in a state
of activation, and this state of activation regularly transitions
from unit to unit. Transitions occur when the state of the
system meets particular conditions, which depend upon either
the robot’s sensorimotor state or the duration of an activation.
With a finite number of ASM-units in the network, walks through
the network ultimately become cyclical, and this leads to the
repeated activation of individual ASM-units which enable the
history-based mapping functions to develop as they are applied.

The network, taken as a whole, defines the robot’s behavior
at a higher order than the immediate motor activations
generated by an individual ASM-unit’s mapping function: The
complete activation of a specific ASM-unit reflects a directed
transformation from one sensorimotor state to another (i.e., from
one transition condition to another) over a discrete period of
time, abstracted from the sensorimotor dynamics involved in
producing that transition. In other words we may think of a
complete activation of an ASM-unit as reflecting a performance
of a discrete act (i.e., pushing a ball downwards), whereas
the internal processes of each ASM-unit are reflective of the
continuous sensorimotor dynamics that constitute that act (i.e.,
applying a certain amount of tension into the muscles as the
surface of the skin feels a certain amount of pressure). Thus,
similarly to the way that a set of sensorimotor trajectories
captured in an individual ASM-unit reflect a set of regularities
in a particular context of the agent-environment coupling, a
repeated walk through the ASM-network reflects another set of
historically-established regularities at a more coarse time scale.
Having a multitude of ASM-units in the ASM-network produces
a level of context-dependant and time-extended variability to the
model’s behavior: For any given sensorimotor state, one ASM-
unit’s mapping will likely give an output unique from any other
ASM-unit. This means that the structure of the ASM-network,
and the sequential order in which ASM-units are activated, is as
fundamental to the behavior of the model as each independent
mapping function.

In the general case, the ASM-network topology is dynamic
and may generate new ASM-units over time and establish new
links between ASM-units, however the details of this are not
relevant to the investigation presented in Section 3 which uses a
static network, and thus we will save that description for future
work. Here we will focus on how groups of ASM-units are
linked as a network and how transitions occur from one unit to
another. Figure 8 illustrates the different transition processes in a
network. Each ASM-unit has a set of transition conditions Z, with

FIGURE 8 | Illustration of the transition process involved when an active ASM-unit succeeds (ASM1) or fails (ASM2 ) to establish the necessary sensorimotor

conditions to make a transition that is associated with stable behavior. After ASM1’s activation, the network transitions from ASM1 to ASM2, which have an historically

established link. After ASM2’s activation, however, the conditions to transition from ASM2 to ASM3 are not present. The controller explores SM-space until a stable

behavior is re-established. It could do this by either by transitioning to an ASM-unit which was not previously linked (2a.), or through random motor activity (2b.).
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each condition being associated with exactly one other ASM-unit.
Each transition condition is defined as a hyperrectangular region
in sensorimotor space with fixed upper and lower bounds along
each dimension. Any time that the robot’s sensorimotor state is
inside one of these regions of the active ASM-unit, the transition
condition is considered to be satisfied. When the condition is
satisfied, activation of the current ASM-unit ceases and the ASM-
unit associated with the transition condition becomes active. All
ASM-units also define a set of initial conditions, which is simply
the union of all of the transition conditions associated with that
ASM-unit in other ASM-units in the network.

Transitions may also occur if the activation of a single
ASM-unit has lasted for an over-extended period of time. The
motivation for this is clarified in the next section based on the
principle of regularity underlying the model’s design. The limited
time window is handled through a pair of parameters tg , and
th. The first defines a grace period, tg = 8, in which only the
active ASM-unit’s transition conditions are checked. The second
parameter defines a hard limit for the activation window, th = 16.
In the times between tg and th of an ASM-unit’s activation, all of
the network’s initial conditions are checked as though they were
transition conditions for the current ASM-unit. Finally, at time
th, activation of the ASM-unit is terminated immediately and the
controller generates random motor activity until any ASM-unit’s
initial condition is satisfied.

When a transition occurs, the formerly active ASM-unit’s
recently created nodes are updated with information about the
transition condition, as explained in the earlier description of
nodes. This aspect of the model is motivated by the need to adapt
to irregularities in the agent-environment coupling, and other

principles of structural self-individuation. We will now discuss
the former concern in detail, but hold back discussion on the
latter for a future work.

2.4. Adaptive Mechanisms of the Model
At last we turn to the adaptive mechanism of the ASM-network.
This mechanism produces a simple intrinsic goal for every
activation of an ASM-unit, toward which it is biased to develop:
To establish both sensorimotor and environmental conditions
that are sufficient to allow the next ASM-unit to do the same for
its own successor, thereby maintaining the established structure
of the ASM-network as a whole. To explain this, we begin
by temporarily stepping back from the technical description
to discuss how behavior can be understood as adaptive and
maladaptive in the context of the model.

Recall Figure 1, which presented an illustration of
sensorimotor scheme associated with bouncing a basketball.
In that scheme, there is an established structure of regularities
in the agent’s movements and perceptions, and in the way that
the ball responds to and enables them. However, if a disruption
is introduced to the scheme, say the ball is the wrong shape
to bounce in the same way as a basketball, performance of
the scheme will quickly go away. Figure 9A illustrates such a
disruption to the environmental response structure. In that
example, the coordination in which the agent prepares to receive
the returning ball is disrupted when the ball bounces away in a
way that a basketball would not have. The previously established
regularities in the relationship between motor action and sensory
stimulation do not hold. The same actions associated with
receiving the ball are met with irregular sensations, perhaps an

FIGURE 9 | (A) A visualization of a disruption to the basketball-bouncing scheme. The agent-side dynamics remain the same, but the environmental support for the

scheme is insufficient, specifically in terms of the shape and other physical properties of the ball which cause it to bounce differently off the ground. This disruption

prevents the transition from B × B’ to C × C’. (B) An idealized illustration of an ASM-network controlling a robot encountering that disruption. Although the

sensorimotor regularities involved in pushing the ball downwards are compatible which the established scheme, as the ball bounces wildly the sensorimotor

relationship becomes irregular, perhaps due to the variation in the robot’s visual sensors. This prevents ASM3 from being activated as the robot is not in a suitable

sensorimotor state.
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emptiness of the hand and a sight of the ball moving away. The
enabling conditions for the next coordination are not met, and
the agent is at a loss. Successfully adapting to this disruption
would entail altering the dynamics of the interaction with the
ball such that the various normative conditions that motivate the
agent to bounce the ball remain satisfied. At the sensorimotor
level, this would mean enabling the continued performance of
subsequent and concurrent sensorimotor coordinations as they
have been established through experience.

In order to adapt to a disruption such as the misshapen
ball, the agent could either adjust its movements so that it
can bounce the different ball in such a way that it returns
to hand, or it could do something other than bounce the
ball if it is misshapen—perhaps kick it instead. In the former
case, adaptation occurs within the context of a sensorimotor
coordination—the dynamics involved in transforming the state
of the coupling from one set of enabling conditions to another
may alter while the same organization of coordinations is
retained. In other words the agent may attempt to reconcile the
disruption with the pursuit of the same goal. In the latter case,
adaption occurs at the schematic level, through new coordination
structures providing compensatory progressions through the
same scheme, or with the emergence of a diverging sensorimotor
scheme with a different normative orientation. These processes
could also occur in tandem to a greater or lesser degree.

Figure 9B illustrates an idealization of the scenario of a
disruption playing out in the case of a robot controlled by
an ASM-network, comparable to Figure 5 which illustrated the
robot enacting the scheme without disruption. Just as the agent-
environment coupling is not in a suitable state for enacting
the next coordination, so is the ASM-network not meeting
the conditions to allow the next ASM-unit to become active.
Processes which compensate for such a disruption in ASM-
network model could occur at both the unit and network
level: Adaptation at the level of the coordination structure
can be influenced through the reinforcement and inhibition of
particular historical trajectories depending on how they relate to
the resulting progression through the network. This alters the
mapping functions and therefore the low-order dynamics of the
coupling, while retaining the same higher-order sensorimotor
transformations across sequences of ASM-unit activations. At the
schematic level, adaptive processes can be influenced through
the creation of new ASM-units in the network and new links
between existing ASM-units. This allows new mappings to be
generated and new transitions to occur, to accommodate new
modes of agent-environment engagement. In this article, we
focus purely on how the model’s dynamics at the unit-level
can adapt to maintain a pre-existing structure. The latter part
of the adaptive process—how the structure of the network can
generate dynamically—is equally important. However, we save
that description for a future work as it is not a part of the
investigation presented in Section 3.

The ASM-unit’s adaptive mechanism is based on a principle
of regularity. In a correctly functioning ASM-unit with an
established set of historical trajectories, if the environmental state
is sufficiently similar to its state during previous activations,
then the sensorimotor trajectory produced by the ASM-unit’s

operation should also be similar to the trajectories produced
by previous activations. By “similar trajectories” in this context
we specifically mean two trajectories which begin within the
same enabling conditions and reach the same set of transition
conditions within a limited time window. This principle follows
from the idea that because the controller is by design attracted
toward repeating historical motor activity, the source of major
deviations in a sensorimotor trajectory must be irregularities
in the environmental response structure. Following from this
principle, for a sequence of coordinations to be actively
maintained over time, the stability of the environmental support
structure must also be maintained. This provides a condition
by which a sensorimotor trajectory may be evaluated in the
context of enacting sensorimotor coordinations: Not only must
there be regularity in the relationship between action and
perception within a coordination, but that regularity must
correlate with the stability of the environmental support for the
next coordination. The model reinforces or inhibits trajectories
based on whether that correlation appears to hold, based on the
principle of regularity.

Figure 10A illustrates the process of reinforcing an instance
of a behavior. The model always reinforces any behavior which
does not lead to a failure to produce a regular trajectory
in the next ASM-unit. In other words if the sensorimotor
trajectory over the course of an ASM-unit’s activation is similar
to historical trajectories, then we assume that the environmental
state delivered by the preceding ASM-unit activation provided
suitable support for the sensorimotor coordination. It follows
that the activation of the preceding ASM-unit did not establish
any instability in the environmental support structure, and
therefore that trajectory should be reinforced to have an attractive
influence on future behavior.

In a contrasting example, Figure 10B illustrates an instance
of nodes in a trajectory being inhibited because they lead to
a breakdown of the established sensorimotor regularities. It
follows from a corollary of the principle of regularity that if
the current sensorimotor trajectory is different from historical
trajectories produced by the same ASM-unit, then sufficient
environmental support was not established by the preceding
ASM-unit (e.g., ASM1 in the figure) despite it achieving a suitable
sensorimotor state. This means that the mapping associated with
that ASM-unit, and the behavioral dynamics that it produces,
are not sufficient to maintain the stability of the broader
sensorimotor structure, because it produced regularities in the
sensorimotor response that did not correlate with the stability
of the environmental support structure. Therefore, the nodes
associated with the dynamics of the preceding ASM-unit’s last
activation are inhibited, in order to alter the unstable dynamics.
Additionally, the nodes in the current ASM-unit (e.g., ASM2 in
the figure) which fails to transition to the expected next ASM-
unit are also inhibited, as they too reflect dynamics which did not
produce a stable engagement.

Let us return to the details of the implementation. Trajectories
are reinforced or inhibited by setting the value of A component
of every node involved in representing that trajectory. Recall
that this component is simply a marker of this reinforcement
property: if the trajectory is reinforced, thenA = 1 for every node
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FIGURE 10 | (A) Illustrates an instance of reinforcement. At the end of Activation 2 there is a successful transition from ASM2 to ASM1, and this leads to a

reinforcement of the trajectory from Activation 1 which established the conditions for that successful transition. (B) By contrast illustrates an instance of inhibition. At

the end of Activation 2 the established conditions to transition to ASM1 are not met, and activation passes to some other unit ASMx . This causes the trajectory from

Activation 1 to be inhibited because it produced conditions which led to an unsuccessful transition.

associated with that trajectory. If inhibited, then A = 0 for every
node. Our explanation of the ASM-unit’s mapping function in
Section 2.2 assumed that all nodes were reinforced, but we now
complete the explanation in the case where nodes may be either
reinforced or inhibited. Recall that we previously stated that if
A = 1 for all nodes, then the parent node is identified as the
historical node which yields the highest similarity score in the
metric given in Equation (5). When the adaptive component is
included however, and A = 0 in some cases, the ASM-unit uses
a filtering process to bias the system toward repeating behavior
associated with the most relevant reinforced historical trajectory,
even if there are several other more similar historical trajectories.
The process may be best described algorithmically:

1. sim(Na,Ni) (Equation 5) is applied to all nodes to find the
node which produces the highest similarity score, call it Nb.

2. If NA
b

= 1, then Nb is regarded as Na’s parent node and the
algorithm terminates.

3. Otherwise, a set C of node class labels is created such that
C =

{

NC
b

}

.
4. The node with the next highest similarity score is found, call

it Nc.
5. If NA

c = 1 and NC
c /∈ C and NZ

c 6= NZ
b
, then Nc is regarded as

Na’s parent node and the algorithm terminates.
6. Otherwise, set C = C ∪

{

NC
c

}

and return to step 3 until
the algorithm terminates or there are no more valid historical
nodes for comparison.

Once the algorithm terminates, the 1m change-in-motor-state is
generated as described earlier. This process causes the behavior
of the robot to be directed toward repeating dynamics which
ultimately supported successful transitions through the network,
as well as actively avoiding those which failed. Essentially the
addition of new, reinforced nodes representing an instance

of a behavior increase the likelihood of that behavior’s future
performance by (1) increasing the diversity of states which attract
the repetition of that behavior, and (2) by lasting longer than the
nodes which came before them, given the finite capacity for nodes
in an ASM-unit. By contrast, the addition of inhibited nodes
reduces the likelihood of the same behavior being repeated in the
future by negating the influence of reinforced nodes via the effect
of the C and Z components.

This completes our description of the model as used in this
investigation. The reinforcement and inhibition mechanisms
produce a simple intrinsic goal for every activation of an ASM-
unit, toward which it is biased to develop: To establish both
sensorimotor and environmental conditions that are sufficient to
allow the next ASM-unit to do the same for its own successor.We
now present results of an investigation which demonstrate how
this intrinsic goal can in turn produce more second-order goal-
directed behavior in the robot which the ASM-network controls.

3. INVESTIGATION

We now demonstrate how an ASM-network can be used to
control a robot which successfully learns to perform a task
involving object discrimination. The parameters of the robot
and environment are essentially equivalent to an experiment
first presented by Beer (1996), in which agents were evolved to
distinguish between circles and diamonds using the standard
evolutionary robotics technique of evolving a continuous-time
recurrent neural network controller using a genetic algorithm.
The agents demonstrated their ability to distinguish between the
shapes by colliding with circles while avoiding the diamonds.
The task captures a fundamental capacity of any acting agent—in
order to selectively interact with its environment, an agent must
be capable of discriminating between different environmental

Frontiers in Neurorobotics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 846693170

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Woolford and Egbert Adaptive Sensorimotor Map Network

features. We use this task as a first demonstration of the ASM-
network’s value in investigating goal-oriented adaptive behavior
guided by the relationship between environmental and internal
mechanisms, as opposed to extrinsic fitness functions.

In our version of the experiment no genetic algorithm or any
other external optimization process is required. The properties of
the environment are specifically arranged, and the ASM-network
model is partially constrained, so that the stability conditions
for the ASM-network’s dynamics concurrently produce behavior
which aligns with the ascribed norms of the task. Initially the
robot’s behavior is entirely random, but over time the robot
develops an ability to scan the shape, identify the difference
between circles and diamonds, and responds appropriately to
the different shapes. Our results illustrate how our robots solve
the task.

3.1. Experimental Setup
Figure 11 illustrates the experimental setup. A robot with seven
ray sensors and one bi-directional motor is situated in a 2
dimensional arena. The rays are spread evenly with an angle of
π
9 radians between each, with three on either side of a central

ray pointing directly upwards. The motor allows the robot to
move horizontally with a velocity ranging between −30 and
30 units per second. The arena has a width of 300 units and
a height of 300 units, and periodic boundaries. At the start
of a simulation the robot begins at position (150, 0) in this
arena. An object, which may initially be either a circle or a
diamond shape is positioned in the arena. The object enters
the arena at 100 units above the robot vertically and offset
between −50 and 50 units horizontally from the robot. Circle
objects have a diameter of 36 units, and diamonds have a
side length of 36. The objects falls at a rate randomly selected
between 12 and 16 units per second. The robot’s sensors are
stimulated whenever the ray intersects with the falling object,
with the sensor activation modeled as a continuous scalar which
linearly increases from 0 if the intersection point is at the tip
of the ray, up to 1 if the intersection is at the position of
the robot.

A single run of the experiment continues until there have

been at least 2,000 descents of both circles and diamond objects.
The results here are based on 64 runs. During a run, the object

falls directly downwards, while the robot moves around the

FIGURE 11 | Experimental setup in three parts. (A) Illustrates the arrangement of the robot, its sensors, and an example of the circle descending. (B) Illustrates the

topology of the network that controls the robot. Transition conditions are suggested in three dimensions, with arrows and color-coding indicating which ASM-unit is

enabled by each transition condition. These conditions are discussed more precisely in the body text. (C) Illustrates the different ways that the object types react to

hitting the robot or the arena floor.
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arena freely. When the object collides with the robot or the
bottom of the arena, it returns back toward the top of the
arena immediately, responding differently if it is a circle or a
diamond. This is illustrated in Figure 11C. If a circle collides
with the robot, it returns 100 units vertically, whereas if it
collides with the bottom of the arena it returns 300 units. The
inverse is true for the diamond, it returns 100 units when it
hits the bottom of the arena and 300 units when it collides
with the robot. When the object returns, its downward velocity
randomly resets to a new value from the same possible range,
the object’s horizontal offset is randomly reset, and the shape
has a chance of swapping to the other type with a probability of
p = 0.5. This closely resembles a succession of resetting trials
in an evolutionary robotics framework, but we emphasize that
a single robot remains active over the course of the entire run,
and the single ASM-network develops its history over the run.
The continuity of a run is critical for two reasons: (1) The ASM-
network needs to build a history of behavior over time for it
to develop toward solving the task; (2) There is a consequential
difference for the robot between colliding with an object and
missing an object, in that the object returns to its sight more
or less quickly depending on its shape and whether it collides
or not (i.e., diamonds returning either 300 or 100 units up and
the opposite property for the circles). The significance of these
differences is discussed in detail in Section 4.

Each ASM-unit in the network has a sensorimotor space with
eight sensorimotor dimensions (S1..7 ∈ [0, 1], M ∈ [0, 1]),
coinciding with the seven sensors and one motor (RS1..7 ∈ [0, 1],
RM ∈ [−30, 30]) of the robot, such that:

M =
RM + 30

60
(8)

Sx = RSx (9)

The network is constrained to support the fulfillment of the task.
The network has a fixed arrangement of five units, with pre-given
transition conditions and links between each. These transition
conditions are associated with the potential sensorimotor states
of particular stages of the desired functional behavior, e.g., when
the robot sees any object, when the robot collides with any
object. This scaffolds the development of functional behavior and
constrains which habits are potentially viable, but it does not
define the behavior of the robot, as all of the motor dynamics
are produced by the ASM-unit mapping functions, which begin
undefined as there is no history for them to respond to. The way
in which these constraints scaffold specific functional behavior is
explained in Section 4.

The topological arrangement of the network is illustrated in
Figure 11B, but due to the dimensionality of the sensorimotor
space the transition conditions are only able to be suggested in
an image. We define them precisely here. ASM1 has 2 separate
transition conditions linked to ASM2 and ASM3, respectively.
The transition condition Z1,2 (i.e., condition for the transition
from ASM1 to ASM2) is defined as follows:

Z1,2 :
{

M ∈ [0, 1], S1,2,3,5,6,7 ∈ [0, 1], S4 ∈ [0.98, 1]
}

(10)

Where M ∈ [0, 1] means that the motor state as represented in
the ASM-unit may be anywhere between 0 and 1 to satisfy the
condition. Sx refers to the same for each sensor. Note in particular
that S4 is different from the others. Practically, this means that
the transition occurs whenever the robot’s central sensor is
very highly stimulated, and all other sensors and the motors
may be in any state. This condition would occur whenever the
object collides into the front of the robot. The other transition
condition is:

Z1,3 :
{

M ∈ [0, 1], S1,2,3,4,5,6,7 = 0
}

(11)

Which means that this condition is satisfied if and only if every
sensor is at 0, i.e., the robot cannot detect the object.

ASM2 has two transition conditions which are both linked
back to ASM1:

Za
2,1 :

{

M ∈ [0, 1], S1,3,4,5,6,7 ∈ [0, 1], S2 ∈ [0.01, 1]
}

Zb
2,1 :

{

M ∈ [0, 1], S1,2,3,4,5,7 ∈ [0, 1], S6 ∈ [0.01, 1]
}

(12)

Which means that the conditions are satisfied if either the S2 or
S6 sensors are at least slightly activated. In practice, at least one
of these conditions is satisfied if the object is anywhere in the
majority of the coverage of robot’s sensory field, although not if
for instance the object is moderately far to the left or right, or
immediately in front of the robot at a long distance.

ASM3 has two transition conditions which are the same as
those in ASM2, such that Za

3,1 ≈ Za
2,1 and Zb

3,1 ≈ Zb
2,1. We use the

approximation to reflect that although the ranges are the same,
the transition conditions are not identical because the sets require
different ASM units to be active. ASM4’s transition conditions are
also defined similarly to other units, such that Za

4,1 ≈ Za
2,1 and

Zb
4,1 ≈ Zb

2,1, and finallyASM5’s transition condition is Z5,4 ≈ Z1,3.
In Section 4, we discuss how this arrangement relates to the
behavior that the controller produces in more detail.

3.2. Results
We measure the performance of a robot in the task by looking at
how many times the robot responded “correctly” in a window of
the most recent descents of each shape. Figure 12 illustrates the
average performance over time over 64 runs. The plot samples
every 20th descent of either circles or diamonds, with each point
giving

∑

i
ci

20×64 , where c is the number of correct responses in
the previous 20 descents of a shape for the ith robot. Across
64 runs, the average performance of the robots for the first 20
descents for circles is 0.37 (i.e., they catches circles 37% of the
time) and for the first 20 descents of the diamond is 0.76 (i.e.,
they avoid diamonds 76% of the time). The average performance
in the last 20 descents for circles is 0.97, and for the last 20
descents of diamonds the performance is 0.99. Performance
improvement is rapid, reaching an average of over 0.9 for both
shapes within 200 descents, and reaching peak performance after
1,000 descents. Performance for diamonds is higher, especially at
the start, because of the greater likelihood of missing an object by
chance compared to colliding with that object. Catching involves
precise positioning, whereas avoiding can be accomplished in
many equally good ways. These results illustrate that the robot
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FIGURE 12 | Plot of the improving performance of robots, averaged across 64 runs. Although this figure only shows the first 500 interactions with each shape

because most of the development occurs early, performance continued to improve incrementally for the remaining 1,500 interactions.

is capable of learning how to effectively discriminate between
diamonds and circles.

The robot is capable of reliably solving this specific task
because the topology of the network is arranged such that the
behavior involved in maintaining the established links in the
network is necessarily also behavior which solves the task. In
all robots we observed a direct correlation between the rate
of successful transitions between ASM-units and the rate of
the robot’s correct responses to the object shapes. Crucially
though, the pre-given topology and environmental conditions
are insufficient to define for the robot the actual sensorimotor
dynamics involved in solving the task, i.e., how to move around
the environment in such a way that it can identify the different
shapes and collide or avoid as appropriate. To learn these
dynamics, the robot must engage with the environment over
time, and over the course of this engagement themodel’s adaptive
mechanisms reinforce those dynamics that support the transition
conditions within the network and inhibit those that lead to
violations of those conditions. The maps of each ASM-unit,
most critically ASM1, develop in such a way that the robot’s
behavior consistently establishes the enabling conditions of each
ASM-unit in a suitable sequential order. In ASM1 this means
that the mapping must produce dynamics which differ when
encountering differently shaped objects, as the environmental
conditions have been set such that disruptions will occur
elsewhere in the network if the robot interacts with the objects
incorrectly. This means that the bulk of the learning process
that occurs over the course of an experimental run is in the
development of ASM1’s map.

Meaningfully visualizing the maps themselves, and how they
change over time, is challenging due to their dimensionality.
Figure 13 illustrates a projection of the states of ASM1 for
one robot using principle component analysis. Note that

Component 1 = [0,−0.03,−0.03, 0.04, 0.18, 0.44, 0.64, 0.59] and
Component 2 = [0,−0.01,−0.01, 0.20, 0.66, 0.56,−0.32,−0.29].
The plot compares node positions in the early and late stages
of the robot’s development and highlights important differences.
Firstly, almost all nodes are reinforced by the end of the
robot’s development. Secondly, there are subtle change in the
distribution of the nodes over time, and by extension the
mapping: One clear example is that inhibited nodes (purple) tend
to be clumped together around (0.73, 0.9), in the early stages
of development, and by the later stage of development most
of the nodes in that area have disappeared. This suggests that
the inhibited nodes successfully dissuade the continuation of
trajectories which approach that region of sensorimotor space.
Figure 13C illustrates the projected sensorimotor trajectories of
the last 10 interactions with each shape for the same robot,
indicating the way that the trajectories for different shapes
diverge around (0,−0.25), and end in different regions of
sensorimotor space.

The relative positions of the robot and object over time as
the object descends through the robot’s sensory field provide
a better illustration of the robots’ development. Figures 14, 15
illustrate examples of these trajectories. Figure 14 demonstrates
the development of a single robot, which we selected to exemplify
the way in which the adaptive mechanisms of the model
contribute to particular dynamics becoming more stable than
others depending on how well they support the network-level
organization. The plots represent the robot’s horizontal position
relative to the object, from the moment the object is at a height
of 100 units until the moment the object reaches height of 0.
In each encounter the initial conditions of the object vary, in
terms of speed and displacement, within the parameters already
discussed. The top row illustrates the first 200 encounters with a
circle, and then the last 50 encounters. The second row illustrates
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FIGURE 13 | Projections of ASM1 derived using principle component analysis. (A) Illustrates the positions of the nodes after 100 descents of the object. Purple

markers indicate inhibited nodes, green indicates reinforced nodes. (B) Illustrates the positions of nodes after 2,000 descents. (C) Illustrates the sensorimotor

trajectories of the interactions with the last 10 descents of each shape. Blue indicates circles and red indicates diamonds. Note that the motor dimension is ignored

because it confounds the interpretability of the plot. The rapid jumps in the plots are due to individual sensors suddenly becoming active or inactive as they intersect

with the object.

the same for encounters with the diamond. The majority of the
improvement occurs rapidly, in the first 50 encounters. We can
also see that more subtle developments continue, most notably a
kind of behavior which leads to occasional narrow misses of the
circle becomes less frequent between the 50th to 200th encounter.
The final trajectories shows how the developmental process has
continued over the longer term to exaggerate the differences
between responses to the different object shapes, and to increase
the consistency of responses to a particular shape, especially in
the case of diamond encounters.

Figure 15 demonstrates the performance of eight randomly
selected robots, contrasting the early stages of their interactions
with the objects against the late stages. Every robot displays a
tendency to transition from an initially sprawling set of different
trajectories to a significantly more concentrated set of trajectories
in the later stages. Given that the object appears at a random
position with respect to the robot, a typical strategy emerges
which involves the robot moving to approximately the same
position relative to the object in each encounter, before the
responses to the different shapes diverge. All of the robots display
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FIGURE 14 | Plots illustrating the behavior one robot as it interacts with the falling objects. The first column shows the robot’s first 50 interactions with circles in the

top row and diamonds in the second row. The second column shows the second 50 interactions and so on. Each line illustrates a single interaction with an object

from the moment that it is 100 units above the robot until the moment the object either collides with the robot or the bottom of the environment. Blue lines indicate

that the object ultimately did the correct thing as per the task description, i.e., it collides with the circle or avoids the diamond. Following each plot from bottom to top

shows the relative horizontal positions of the robot and object as the object descends toward the robot. The object’s position is always at 0 on the x-axis, so a point at

x = 100 indicates that the robot is 100 units to the right of the object, and gives no indication of the robot’s absolute position in the environment.

some variation of a behavior involving sweeping multiple sensors
across the object in either direction before the responses diverge.
Beer observed that similar foveate-scan-decide strategies were
typical in his evolved CTRNN-controlled robots. This suggests
that these kinds of responses are particularly attractive for
this task even when the adaptive mechanisms producing such
behavior are distinct.

3.3. Auxiliary Results
In an auxiliary experiment we, performed 16 runs in which robots
were only ever exposed to diamond objects. There we observed
that a dominant behavior is for the robot to immediately and
continually moving at full speed in one direction or the other,
thereby missing the diamond by some distance. This is a very
simple behavior for the robot to discover by accident as it
simply involves keeping its motor state around its maximum or
minimum regardless of sensory state. This behavior also appears
in the early stage of Figures 15A,D–F, but is lost by the later
stages. This suggests that such a behavior is less stable when
circles are also present, as it limits the robot’s ability to identify the
shape type and respond appropriately. This provides an example
of the space of viable habits being constrained by the contrasting
properties of the shapes. Finally, we performed 64 runs in which
the responsive properties of diamonds and circles was inverted.
The average successful performance rate over the course of all
robots’ development is presented in Figure 16.

4. DISCUSSION

4.1. How Can the Robots Perform the
Task?
Our results present a model, based on enactive principles
of sensorimotor contingency theory and habit, which allows
a robot to learn to perform a specific cognitive task of
object discrimination without a functionally-oriented reward
mechanism. The model as presented in Section 2 is a generic
medium which specifies a whole suite of dynamics with certain
kinds of attractors. In the experiment presented in Section 3,
we apply some constraints to that medium which establish the
viability conditions of a particular sensorimotor organization,
such that the internal norms of the system align with the
ascribed norms of task, that is to avoid diamonds and collide
with circles. This allows a generic adaptive mechanism, directed
toward satisfying those internal norms, to also shape the behavior
of the robot to satisfy the requirements of the task. In natural
systems, a web of evolutionary and developmental processes all
serve to shape the sensorimotor organization of an agent in
a manner that produces an alignment such as this, while we
have engineered the alignment with a specific set of constraints
utilizing our knowledge of the task and system. How exactly
does the process of maintaining this particular sensorimotor
structure align with adaptively regulating behavior in terms of a
functional task?
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FIGURE 15 | Plots comparing the early and late stages of development for eight randomly selected runs. The first and third rows illustrate the first 40 interactions with

each shape type for 8 different robots (A–H), and the second and fourth rows show the last 40 interactions for the same robots. Blue lines indicate interactions with

circles and red lines interactions with diamonds.

Figure 17 illustrates the relationship between the enabling
conditions of an organization of sensorimotor coordinations as
they relate to the structure of the ASM-network used in the
experiment. We conceptualize an agent performing this task as
alternately enacting a pair of habitual behaviors, which, following
(Egbert and Barandiaran, 2014), we understand as simple loops
of sensorimotor coordinations:

1. In Loop 1 the interaction progresses from the robot detecting
the object at long range until it collides with the object (A1 ×

A1’), and then from there until the robot detects the object at
long range once more (B× B’).

2. In Loop 2 the interaction progresses from detecting the object
at long range until the object leaves the robot’s sensor range
(A2 × A2’), and then until the robot detects the object at long
range once more (C× C’)

We label A1 and A2 as such because they share an enabling
condition but involve diverging sensorimotor trajectories to

reach different transition conditions. Thus, we have two partially
overlapping loops of sensorimotor coordinations A1 × A1’
→ B × B’ → A1 × A1’ and A2 × A2’ → C × C’
→ A2 × A2. As we have discussed in Section 1, we may
think of the continuing sequential satisfaction of the enabling
conditions in these loops as the conditions of viability of a
sensorimotor habit. By design, our ASM-network medium is
oriented toward adapting behavior to maintain such viability
conditions. Transition conditions between ASM1, ASM2, and
ASM3 are associated with sensorimotor states associated with
detecting objects, colliding with objects, and losing detection
of objects, while ASM4 is associated with conditions that
only occur when the expected progress through the loops is
disrupted. Thus the pre-given structure of the ASM-network
in Figure 11 imposes this kind of arrangement of sensorimotor
coordinations onto the robots, and as such the sequential
fulfillment of the coordinations’ enabling conditions as its task.
However, those habitual viability conditions are completely
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FIGURE 16 | Results of an inversion of the default task, in which the responses properties of diamonds and circles are swapped. This causes the robots to develop to

avoid circles instead of diamonds and vice versa. Results are presented as per Figure 12, note that the learning rates are equivalent but the robots take longer to

respond correctly to diamonds instead of circles in this case.

agnostic to the different sensorimotor properties of interacting
with the shapes, and thus do not sufficiently explain the robots’
functional fulfillment of the object discrimination task. It is
the different properties of diamonds and circles, with respect
to what happens when they collide with either the robot or
the bottom of the arena, that imbues the shapes with intrinsic
relevance with respect to these goals. Specifically, colliding with
a diamond causes a delay in returning the object which disrupts
the progress of Loop 1, and likewise missing a circle leads to a
disruption Loop 2. Since the ASM-network’s adaptivemechanism
is geared toward avoiding behavior which produces disruptions,
i.e., behaviors which are non-viable with respect to maintaining
the arrangement of coordinations, the difference between the
objects will drive the robot to respond differently to the two
shapes. An interesting consequence of this is that if we invert
the properties of circles and diamonds in terms of how they
respond to collisions and misses, then robots with the same
ASM-network parameters instead learn to seek diamonds and
avoid circles. That the functional behavior produced is a equally
a consequence of both the internal dynamics of the agent and
dynamic properties of the environment highlight the value of this
kind of experimental approach.

4.2. What Do the Robots Learn
Autonomously?
We have discussed how the particular network used in
the experiment produces an alignment between the internal
mechanisms of our robot and the ascribed norms of the task.
But since we achieve this alignment through directly engineering
a set of constraints, what exactly is left to the robot to learn
autonomously? In functional terms, the robot has only been
given a structure of sensorimotor conditions that it needs

to repeatedly satisfy in order to maintain stable behavior. It
must learn that there is a difference in the way that the two

shapes impact that stability, that the difference corresponds

with particular perceptual characteristics of interacting with the

shapes as they descend, and how to act in response to those

different characteristics so that it avoids interactions which
destabilize its sensorimotor structure. While the arrangement in
Figure 17 are a consequence of the network structure illustrated
in Figure 11B, the development of suitable ASM-unit mappings
which satisfy this arrangement is comparable to the optimization
of weightings in terms of task fitness in an Evolutionary
Robotics approach.

We can explore this further to clarify our model’s relationship
to the theoretical concepts of sensorimotor contingencies and
habit mentioned in Section 1. Our constraints on the network
establish the parameters of the relationships between a set
of sensorimotor coordinations that are necessary for those
coordinations to be stable, but it does not establish the actual
sensorimotor dynamics that constitute those coordinations.
While the general effect of action on perception is implicitly
established in the characteristics of the robot and shapes, closing
the causal loop to establish the effect of perception on action
can only be established through interaction between robot and
environment. The development of those agent-side dynamics
will vary based on whatever specific environment-side dynamics
it encounters. The environmental dynamics can vary in terms
of four properties, all of which change the perceptual character
of interacting with the objects from the agent’s perspective.
These properties are: (1) the different shapes of the objects; (2)
The different mechanical properties of the objects (i.e., what
happens upon collision); (3) The different speeds of the objects;
(4) The different initial displacements of the objects. With our
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FIGURE 17 | An illustration of the robot’s arrangement of sensorimotor

coordinations as they relate to the ASM-network. Successful performance of

the task aligns with the robot proceeding through performance of Loops 1 and

2 without disruption. Over time ASM1 develops such that only Transition3
occurs when diamonds are present and only Transition2 occurs when circles

are present. Some simple adaptive processes also need to take place in ASM2

and ASM3 such that they consistently lead to the robot re-discovering the

object as it returns into view. Note that ASM5 does not feature as its only

purpose in the network is to provide suitable initial conditions for ASM4.

privileged view of the system we know that the differences in
properties 1 and 2 are meaningful with respect to the norms
of the system, while 3 and 4 are not, but this is not made
explicit in the experimental setup, i.e., the adaptive mechanism
is not tuned to respond to those properties in the same way
that a fitness function defines the relevant properties of the
world. Through interacting with the environment over time,
these relevancies nevertheless become expressed through the
robot’s behavior.

In developing stable habitual behavior, the robot effectively
learns that it needs to respond to the different shapes differently
and how to make those different responses. While it is not
responding like this, the internal dynamics of the controller
will be in flux since the agent-side dynamics of the coupling
become altered when particular trajectories are inhibited. Stable
habitual behavior entails the performance of a habit continually
re-establishing the conditions of its own re-performance, but
due to the instability of the controller the conditions for a
particular way of performing a habit may be lost over time even
if the same initial sensorimotor state is established. The results
illustrate that the robots generally developing the foundation

of a stable behavior within a few dozen interactions, but
beyond this the behavior is refined over time as the robot
generalizes that distinction between properties 1 and 2 across
the variations produced by properties 3 and 4. This refinement
coincides with a gradual improvement in task performance
after the first, relatively rapid phase of acquiring a generally
successful strategy. The behavioral refinement over time reflects
an individuation process in two separate habits (i.e., robot-
diamond interactions and robot-circle interactions) becoming
more distinct from one another to avoid interference between
the two, e.g., suddenly switching to an established seeking
behavior while in the process of avoiding because the dynamics
of each resonate too similarly with a particular context. Although
this is only a limited form of individuation—the distinction
between the structures of the habits is already present, only their
constitutive dynamics become more distinct—it nevertheless
points to interesting developmental processes which occur even
within this constrained model.

4.3. Limitations and Future Work
A criticism may be made of our investigation that the
constraints and carefully arranged properties of the experiment
mean that the model’s internal adaptive mechanism serves an
analogous function to an external optimization process such
as an evolutionary algorithm. While this is the case here,
because we are imposing a specific behavior on the system,
the crucial difference is that our model would still have an
adaptive and developmental gradient in the absence of such
constructions. In the typical evolutionary approach a specific
functional behavior is attractive in its own terms, via the fitness
metric. However in our approach the particular functional
behavior is made attractive through the relationship between
the environmental dynamics and the internal processes of the
robot and controller. Attractive behaviors will still arise for any
specification of environmental dynamics and be meaningful in
these terms.

Nevertheless, it is worth discussing the consequences of the
network constraints. In particular, the robot’s capacity to solve
the task as we expect it to do so relies in part on the fact
that it is incapable of assimilating the “wrong” environmental
support into its sensorimotor structure. In other words, the
dynamics associated with the diamond disappearing from the
robot’s view for much longer when it collides with the robot
are always treated as disruptive regardless of context and of
how many times it occurs, and vice versa for the circle. This
high-level rigidity limits the ways in which the robot may
adapt. In discussing the development of sensorimotor schemes
in human development, Piaget discussed three different classes
of adaptive processes of how instances of this disruption are
resolved over time (Chapman, 1992; Boom, 2010): (1) the
disruption is ignored without altering behavior; (2) The behavior
alters to compensate disruptions which have previously been
encountered, or (3) potential disruptions are anticipated and
behavior is altered so that the disruption is not encountered at all.
The second process would most accurately describe that which
is occurring in the robots in this investigation, while the others
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are not possible within the constraints that we have placed. The
combination of these kinds of adaptive process is a key part
of open-ended, autonomous development that is neicessary for
sensorimotor agency. The obvious next step in terms of using the
ASM-network to investigate sensorimotor agency is to remove
the constraints at the network level, in a manner that allows
precarious, self-maintaining structures to develop dynamically at
that level.

Although the constraints we have placed on the model
in this investigation limit the kinds of habits that may
form autonomously, they allow for an analytically tractable
investigation to demonstrate some of the model’s capabilities.
Our results provide a demonstration that the ASM-units are
effective in producing behavior which supports the maintenance
of a networked arrangement of such units that reflects a
structure of sensorimotor coordinations. Furthermore, this alone
is sufficient to produce a form of minimal cognitive behavior.
However the model is also sufficiently generic that it is not
necessary to have a pre-given network arrangement, engineered
to align with a specific function, in order to produce coherent

behavior. This opens the possibility to investigate self-organizing

sensorimotor structures and adaptive autonomy in more depth
in the future.
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The neuroplasticity rule Differential Extrinsic Plasticity (DEP) has been studied in the

context of goal-free simulated agents, producing realistic-looking, environmentally-aware

behaviors, but no successful control mechanism has yet been implemented for

intentional behavior. The goal of this paper is to determine if “short-circuited DEP,”

a simpler, open-loop variant can generate desired trajectories in a robot arm. DEP

dynamics, both transient and limit cycles are poorly understood. Experiments were

performed to elucidate these dynamics and test the ability of a robot to leverage these

dynamics for target reaching and circular motions.

Keywords: Differential Extrinsic Plasticity, self-organization, robotic control, play, intrinsic motivation,

neuroplasticity, reinforcement learning, complexity

1. INTRODUCTION

Robot control is still very much a work in progress. While much has been learned of how humans
and animals control their bodies (Winter, 2009), either outright or after a learning process, we still
do not know enough to be able to design a robot that even approaches human dexterity. Classical
control theory and more recently Reinforcement Learning (RL) have been extensively studied but
are still subject to lack of robustness, the curse of dimensionality and unreasonably high learning
times (Sutton and Barto, 2018).

One issue with these frameworks is the assumption that the brain directly controls the output of
each available degree of freedom; typically a learning agent will adjust its body’s motor torques at
each time step to produce a desired result in a rigid body systemwithin a given environment (see for
example OpenAI Gym; Brockman et al., 2016). This is clearly not how biology tackles the problem.
In a human, descending signals from the cortex pass through and are modified by interneurons
with their own neuroplasticity mechanisms, which activate bundles of muscle fibers and drive an
underactuated soft body with extremely complex dynamics (Pierrot-Deseilligny and Burke, 2005;
Winter, 2009). On the face of it, we have no hope. If we can’t reliably control a mathematically
much simpler rigid robot, how could we possibly control an agent with a similar complexity to a
human body?

On the other hand, could the complexity of the human body actually be a help and not
a hindrance to the perception/control problem? The bio-inspired research agenda known as
Embodied Intelligence suggests so (Pfeifer and Bongard, 2006; Cangelosi et al., 2015) and has
spawnedmany different initiatives in this area. One approach is morphological computation, which
investigates the ways that parts of the information processing burden can be offloaded to the body
itself (Hauser et al., 2012; Müller and Hoffmann, 2017), through sensor morphology (as in the case
of flies’ eyes) (Iida and Nurzaman, 2016) or through the simplification of control (Eder et al., 2018).
Physical reservoir computing uses the complexity of the body for general purpose computation
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(Nakajima, 2020). The richness of behavior of the peripheral
nervous system, providing fast-acting reflexes and hierarchical
and coordinated control (Côté et al., 2018) has been less applied
to robotic research, which almost exclusively models the control
problem as the agent’s brain directly driving motor torques.
Finally, investigations into different neuroplasticity schemes
show that a surprising variety of complex, environmentally-
aware behaviors can be spontaneously generated from simple,
biologically plausible neuroplasticity rules within sensorimotor
loops (Zappacosta et al., 2018).

These latter neuroplasticity-generated spontaneous behaviors,
detailed in the book “The Playful Machine” (Der and Martius,
2012) and in related papers (Der and Martius, 2015, 2017), can
drive simulated agents to explore and react to their environments
in a manner that is highly suggestive of natural behaviors
without building in any goals or higher-level planning of any
sort. The most recent iteration of this research uses a particular
neuroplasticity scheme called Differential Extrinsic Plasticity
(DEP) (Der and Martius, 2015; Pinneri and Martius, 2018) to
generate intriguing behaviors that are tightly coupled with the
environment: a four-legged creature will appear to search for
and find ways to climb over a fence; a humanoid will eventually
clamber out of a hole it is trapped in. From our external observer
perspective, these embodied behaviors appear to be goal-driven,
but yet they are not. DEP has emerged as an interesting and
promising candidate plasticity rule, but to date no practical

FIGURE 1 | In the “classical” version of Differential Extrinsic Plasticity (DEP) comprises two overlapping dynamical systems. [(A), top] The input layer x of a

feed-forward neural network C is driven by the motor positions. The output layer y drives the motor torques. These motors operate on the agents body in a given

environment (potentially with collisions) and the resulting motor positions xt+1 will be fed back to the input to start the cycle again. [(A), bottom] The positional

information returned as xt+1 is also fed to an inverse model that infers the rate of change of the motor torques ˜̇y that would have generated them in the absence of

environmental feedback. The difference between ˜̇y and the actual rate of change ẏ captures the environmental effects of the agent’s actions. This difference is then

used to modify the weights of C. In the “short-circuited version” of DEP [(B), top and bottom] there are no motors or sensors; the output y of the network is fed directly

back to the input x.

applications for it have yet been found. It is an autonomous
goal-free controller rather than a useful control method or
component in a larger system.

A complicating factor in the practical usage of DEP is the
current lack of an analytical solution, despite the research time
invested. In all likelihood, even simple DEP systems are too
complex to be fully described analytically and so research has
tended to be empirical, treating DEP as a pre-existing natural
phenomenon. This is not an insurmountable issue; it places
DEP within the context of related research into algorithmic
information and complexity theory, both areas cited in theories
of the development of the human brain (Hiesinger, 2021). The
behavior of DEP may not be solvable analytically even if it is
deterministic. It may be undecidable: the only way to determine
the output being to run it in simulation.

Given this, how can we study DEP and map out its potential?
First, we must simplify: by temporarily removing environmental
feedback we can map out baseline behaviors for DEP, following
the methods employed in Pinneri and Martius (2018). Second,
we must test the control-ability and limits of what DEP can
do: to what extent can higher order systems “request” particular
behaviors, and how much coverage will these behaviors provide
in the context of a given task?

This paper takes the first steps in this direction. By employing
“short-circuit DEP” (see below) and with a simple test case, where
the output of short-circuit DEP drives a simulated 2 degree of
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freedom (DOF) robot arm, we show that DEP can be made
to accomplish specific goals and that these goals cover a useful
region of task space.

2. MATERIALS AND METHODS

2.1. How “Classical” Differential Extrinsic
Plasticity Works
DEP describes a way of wiring motors and related sensors
together with a neuroplasticity rule, such that a DEP-enabled
agent produces a large set of “natural looking” behaviors that
respond to interactions with the environment. Summarizing
(Der and Martius, 2015; Pinneri and Martius, 2018), this section
describes the equations that define the thermoplasticity rule for
the “classic” version of DEP (see Figure 1A).

For a two-layer artificial neural network with input layer xi,
output layer yi, weights Cij, biases hi, and a tanh activation

TABLE 1 | Different plasticity schemes.

Plasticity scheme Update rule

Hebbian learning τ Ċij = xiyj

Differential Hebbian learning τ Ċij = ẋi ẏj

Differential extrinsic plasticity τ Ċij = ẋi (ẏj + δẏj )− Cij

function, the output activation is given by:

yi = tanh(

n
∑

j=1

Cijxj + hi) (1)

A simple feedback controller for an agent with rotary motors
may then be constructed where yi drives motor torques and xi
is driven by the resulting motor positions (see Figure 1A for
a 2 degree of freedom example). In itself, this is not a very
interesting controller, although given that themotor positions are
ultimately determined not only by the applied torques but also by
the body in which they’re embedded and its interaction with the
environment, nor is it trivial. This neural controller, the body and
the environment together form a single dynamical system.

The behavior of this dynamical system can be overlaid by a
second dynamical system driven by neural plasticity, that is, the
evolution over time of the controller’s weights. Many plasticity
schemes have been studied (see Table 1). Hebbian learning
modifies the weights based on the product of pre and post-
synaptic activations1. Differential Hebbian Learning is similar
(Zappacosta et al., 2018), but uses the product of the rates of
change of the two activations.

Differential Extrinsic Plasticity extends Differential Hebbian
learning by introducing an inverse model F that maps the rate of

1Using Hebbian learning here would give a system that resembles a continuous

variable Hopfield Network, but with normalization and an inverse model.

FIGURE 2 | (A) Examples of limit cycles reached by “Short-circuit” DEP. The phase diagrams show the trajectory of the system along the dimensions x1 and x2. The

second and third trajectories oscillate between two endpoints. The other trajectories are all rotational. (B) Maps of the attractors reached based on initial values of

x1, x2. The color bar refers to the rotational angle of the attractor, in the case of rotational attractors. Cyan refers to the non-rotational attractors shown in the second

and third examples in (A). The resulting map is shown in the top row. The map in the lower row reproduces the one shown in Pinneri and Martius (2018), but to

generate it requires slightly altering the DEP algorithm (see text). Our version lacks their basins of attraction.
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FIGURE 3 | (A) The experimental setup. A “short-circuit” DEP controller drives a 2DOF robotic arm in an open loop fashion. (B) A flowchart of the search algorithm for

obtaining a value for C0 that reaches a desired target ee∗ from starting position ee0.

change of received sensor values ẋt+1 back to the inferred rate of
change of motor torques ˜̇yt that caused them:

˜̇yt = F(ẋt+1) (2)

In most DEP implementations the inverse model F is
implemented as a simple matrixM such that

˜̇yt = Mẋt+1 (3)

and, as in this paper, it is often assumed to be the identity
matrix. F isn’t required to be strictly accurate to reproduce DEP’s
behavior (Der and Martius, 2015).

The revised update rule uses ˜̇y in place of ẏ and adds a damping
term. Dropping the time superscript t:

τ Ċij = ẋi ˜̇yj − Cij (4)

One way to think about ˜̇y is as the sum of the real historical value
for ẏ at t plus an error term δẏ with respect to the model F.

˜̇y = ẏ+ δẏ (5)

This substitution is shown in the final row of Table 1. Comparing
it to the scheme for Differential Hebbian Learning shows how
this “unexpected” environmental feedback is incorporated into
the weight updates.

The weight matrix C is normalized to Ĉ at each time step with
a factor κ and a parameter ρ that prevents a division by zero.

Ĉ← κC/(‖C‖ + ρ) (6)

Finally, the activation rule is modified from Equation (1) to use
the normalized Ĉ rather than C:

yi = tanh(

n
∑

j=1

Ĉijxj + hi) (7)

The combination of these two overlaid dynamical systems
produces an agent that cycles through a series of complex
behaviors that are responsive to environmental feedback.

2.2. How “Short-Circuit” DEP Works
A simplified version of DEP was used in Pinneri and Martius
(2018) for an empirical analysis of its behaviors. In this
configuration there are no motors or sensors; the system output
y is connected directly back to the system input x (Figure 1B).
As ˜̇yt = Mẋt+1 and ẋt+1 = ẏt and M is the identity matrix the
update rule simplifies to

τ Ċij = ẋiẏj − Cij (8)

This is effectively Differential Hebbian Learning with damping
and normalization.

By eliminating the environment, the behaviors generated can
be simplified to a set of predictable limit cycles, examples of which
are shown in Figure 2A. The limit cycles reached depend on the
initial conditions of the system, in particular the initial values for
x1, x2, y1, y2, ẋ1, ẋ2, ẏ1, ẏ2, and C. In Pinneri and Martius (2018),
all initial values were held constant except for x1, x2.

Following that paper, a map of the attractors reached based
on differing initial conditions for x1, x2 is shown in Figure 2B.
For each fixed point, the final 2x2 Ĉ matrix, is considered to be a
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FIGURE 4 | (A) For the circular controller, θ2 is derived from the angle between subsequent vertices of x. (B) This angle A is calculated by simple geometry.

rotational matrix and the corresponding angle is assigned a color.
There are two cases of non-rotational matrices: a zero matrix
(which is assigned bright red) and period-2 oscillations, such as
the second and third examples in Figure 2A, which are assigned
cyan. The resulting map is shown in Figure 2B (top).

It should be noted that (Pinneri andMartius, 2018) obtained a
different pattern, as that paper used code that inadvertently reset
the C matrix to zero at t = 2, generating different dynamics
(private communication). Their results were reproduced (with
the necessary code modification) in Figure 2B (bottom). For our
experiments we followed the strict interpretation of the DEP
equations. The attractors identified are the same, but the attractor
map with respect to initial conditions is different; the “basins of
attraction” cited in that paper being absent. In our opinion, these
basins are an artifact of the previous code base and not intrinsic
to DEP as such.

In the present paper’s experiments, as well as x1, x2, the initial
value C0 of the matrix C is also varied. It was discovered that
choosing different values for C0 elicits different trajectories and
ultimate limit cycles for each combination of the initial values
x1, x2. One way of looking at this is to say that different C0 can
select different behaviors for a given initial x1, x2.

2.3. The Experimental Setup
In the two experiments described, the “short circuit” DEP system
is used to drive a simple 2 degree of freedom robotic arm (see
Figure 3A).

The state s of the short-circuit DEP system can be fully
captured as

s = {xt+1, xt , xt−1,Ct} (9)

so that at each timestep st+1 ← DEP(st).
We can then use a robot arm with segment lengths l1, l2,

here 0.5 m, to “read out” the state s of DEP. The joint angles

θ , comprising θ1, θ2, are driven by a “driver” function D that is
specific to a given task type, such that

θ = D(s) (10)

Note that this is an open-loop controller. None of the reported
benefits of environmentally-aware “Classic” DEP are used here,
in line with the goal of learning to control a very simple DEP
system. The position of the robot’s end effector can be considered
as a simple transformation or readout of DEP’s internal state s.

Two types of task are considered. In the first, the goal is for
the robot arm’s end effector that starts at position ee0 to reach an
arbitrary target position ee⋆. For this type of task, function D(s) =
Dreach(s) is simply

θ = Dreach({x
t+1, xt , xt−1,Ct})

= πxt+1

= πy

(11)

In other words, the output of y of short-circuit DEP directly
drives the motor angles θ .

In the second type of task, the goal is for the end effector
to trace a circular trajectory of arbitrary radius r. Here, D(s) =
Dcircle(s) and we leverage the angleA between the vectors xt+1−xt

and xt − xt−1. See Figure 4 for the simple geometry that defines
a, b, c. Then, the two joint angles θ1, θ2 can be defined in the new
driver function:

θ = Dcircular({x
t+1, xt , xt−1,Ct})

θi =

{

ωt if i = 1

cos−1
(

b2+c2−a2

2bc

)

if i = 2

(12)
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FIGURE 5 | Examples of Reaching trials with: (A) different end effector start positions (green dot) and target positions (red dot). (B) The progress of the search for a

solution C matrix. (C) The solution trajectory in DEP space for the successful trial. (D) The solution trajectory in robot space for the successful trial. The most recent

positions are shown in dark blue while the early part of the trajectory is in light blue.

At a fixed point of C, Ĉt+1 → Ct and if |x| << 1,

xt+1 = tanh(Ĉxt),

xt+1 ≈ Ĉxt
(13)

Under these conditions, x is rotating around the origin in DEP
space and the angle between every other point is approximately
constant. As this angle drives θ2 then θ2 will also be a constant. θ̇1
is a constant, so the robot will describe a circle.

2.4. The Search Algorithm for C0
Given an input of an initial end effector position ee0 and target
position or trajectory ee⋆, our goal is to obtain an initial matrix
C0 that will drive the system to reach ee⋆. C0 is obtained by a
search algorithm, detailed in Figure 3B.

The 2 × 2 matrix C0 has four parameters that here each vary
between −1 and +1. The algorithm linearly divides the range of
each parameter into eight values, giving 8 × 8 × 8 × 8 = 4,096

possible values for C0. A simple grid search is performed, with
each value being trialed in a rollout of 20,000 time steps.

In the case of the reaching task, at each time step of the rollout,
if the distance between eet and ee⋆ is within a given tolerance ǫ,
then success is declared. 10 random starting positions ee0 and
10 random targets ee⋆ were combined to give 100 trials, each of
which is an execution of the algorithm in Figure 3B.

In the case of the circular task, success is declared after a full
rotation of the end effector, where the mean squared radius error
with respect to r is less than ǫ. Five random starting positions ee0
and five random radii r⋆ were combined to give 25 trials, each of
which is an execution of the algorithm in Figure 3B.

The experiments were implemented in Python on Jupyter
notebooks. The full source code may be downloaded from
GitHub2, inspected and run.

2https://github.com/SimonBirrell/dep-control
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FIGURE 6 | Examples of Circular Trajectory trials with: (A) The progress of the search for a solution C matrix. (B) The solution trajectory in DEP space. (C) The solution

trajectory in robot space. The most recent positions are shown in dark blue while the early part of the trajectory is in light blue.

3. RESULTS

The trajectories in DEP space produced in the experiments

generally consisted of a transient phase where the system

“wanders” in x1, x2 followed by a limit cycle phase. The Reaching
task leveraged both transient and limit cycle phase, while the
Circular task leveraged the limit cycles.

3.1. The Reaching Task
One hundred trials of the Reaching task were performed. In
every case, the system reported success: it found a path to all
end effector targets from all end effector starting positions. The
tolerance ǫ| had a value of 0.01 m.

Trajectory examples are show in Figure 5. In the example
in the top row, the search algorithm tested 1,541 C0 matrices
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FIGURE 7 | Search complexity and variance increases with lower error tolerance, for (A) Reaching trajectories and (B) Circular trajectories.

(Figure 5B) before finding a value that caused the end effector
(Figure 5A) to reach the desired target. The solution itself in
DEP space (Figure 5C) and robot space (Figure 5D) show that
the system had entered a rotational limit cycle before reaching
the target.

A second example, in the second row of Figure 5 shows a
contrasting example where a solution was found after testing only
179 search steps. In the solution, the systemwas still in a transient
phase when it hit the target, at only six time steps into the rollout.

3.2. The Circular Trajectory Task
Twenty-five trials of the Circular task were performed. In every
case, the system reported success: it managed to describe a
circular trajectory of at least one rotation where themean squared
radius error with respect to the desired radius was less than ǫ, in
this case 0.01 m.

Trajectory examples are shown in Figure 6. In the example
in the top row, the search algorithm required a mere 50 steps
(Figure 6A) to find a limit cycle in DEP space (Figure 6B) that
completed a circle of the desired radius (Figure 6C) after 551 time
steps of the rollout.

In the second example, in the second row of Figure 6, the
search algorithm required 3,412 search steps (out of a maximum
of 4,096) (Figure 6A) to find a solution in DEP space (Figure 6B)
that completed a circle after 332 time steps of the rollout.

The relationship of search time to tolerance ǫ can be seen
in Figure 7. For lower, more stringent, error tolerances ǫ, the
number of search steps required increases, as does its variance.
Increasing the tolerance required for reaching even slightly (say
from 0.01 to 0.025 m) reduces the search steps required by 75%.

4. DISCUSSION AND FUTURE WORK

The controller described in this paper is unlikely to signal the end
of inverse kinematics. To borrow Dr. Johnson’s phrase, it “is like
a dog’s walking on his hinder legs. It is not done well; but you

are surprised to find it done at all” (Boswell, 1791). Why do these
results, andDEP in general, matter?We can answer in three ways.

4.1. DEP as a Control Mechanism
First, what is the prognosis for DEP as a control system?
The present controller has reduced a high dimensional control
problem to one of simple selection of one of 4,096 different
discrete values of the C0 matrix. The original motivation for this
paper was to find a way to leverage DEP within the context of
Reinforcement Learning.C0 provides a low dimensional interface
for higher level systems to exploit. Yet most of the solutions are
indirect, taking time for the end effector to reach its goal.

The search algorithm could be extended to optimize for lower
time steps to reach the desired target position or trajectory.
Different trajectory types could be produced with different
driving functions, although fewer functions would be preferable
to more. Driving functions could be abstract, as they are here, or
derived from physical models of body elements, such as springs,
tissue, or muscles.

There is scope for improving the search algorithm itself
from a simple grid search, depending on what patterns, if
any, can be found in the mapping of target to C0. Are there
basins of attraction for C0? Is this controller learnable in a way
that generalizes?

Once understanding of the core behavior of “short-circuit”
DEP has improved, environmental awareness, one of the core
supposed advantages of the neuroplasticity rule, could be
reintroduced. This opens the way to recovery from perturbations
and short term, “reflex” reactions to changes in the environment.

4.2. The Study of DEP
A continuing expressed frustration in the DEP literature is the
lack of a full analytical treatment of DEP behavior. That may be
due a lack of human resources applied to the problem, or it may
be that a full treatment is simply intractable. Some algorithms
are mathematically “undecidable,” which is to say that their
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behavior cannot be predicted without executing the algorithm
itself. Perhaps DEP falls into this category.

In either case, this paper follows recent work in taking
an empirical, engineering approach to analysing DEP, rather
than a theoretical treatment. There remain many questions to
be answered.

DEP has produced some fascinating simulations, with realistic
looking and intriguing behaviors, such as gait switching,
overcoming obstacles, and interaction with devices such as
handles. How much of the observed behaviors are due to
DEP as a neuroplasticity rule and how much are due to
the particular body morphology of the simulated agents?
Passive walkers also produce realistic behaviors and respond
to the environment in a limited way, yet they have no
neuroplasticity at all. Clearly, the agents behavior is generated
by the complete system of neuroplasticity plus body plus
environment. How we can disentangle the contributions
of each?

Finally, does DEP scale? What are the limit cycles of higher
dimensional DEP systems? Our understanding of DEP behavior
is only just beginning.

4.3. Leveraging Pre-existing Complexity
DEP is an example of self-organization in action: of complexity
generated from simple rules. Self-organization is easy to
spot, but hard to design, yet may be necessary to enable
long-term learning processes such as evolution to work
effectively (Kauffman, 1995). Classical DEP is a system that,
in that evocative phrase, exists “on the edge of chaos,”
producing a rich set of behaviors even in the “short circuit”
version. Is this complexity useful to agents, or is it a
simple artifact?

The leverage of pre-existing complex behaviors is seen in
Physical Reservoir Computing (PRC), a field that applies a thin
layer of learning over highly complex, pre-existing dynamics
in a real or simulated body. A PRC system leverages a set of
dynamical behaviors as if they were basis functions and combines
them using a shallow artificial neural network. The network
can then be trained to perform some desired function. The
dimensionality of a problem that might require training a very
deep neural network has been reduced to that of training a
shallow one.

In the case of PRC, the pre-existing complexity is physical.
In other cases it may be algorithmical. A curious example is
the history of procedural content generation in computer games
(Smith, 2015). The practice originated over 40 years ago with
the need to generate details of thousands of planets in highly
resource-constrained computers. Rather than store such details,
they were generated from the Fibonacci sequence, passed through
an interpretive function analogous to our “driver function.” By
using a predictable mathematical sequence that has inherent
complexity, a vast amount of content could be generated ex
nihilio. Other examples of Algorithmic Information have been
studied, such as the “undecidability” and Turing completeness of
Rule 110 (Cook et al., 2004).

What is unclear is whether and to what extent nature
has leveraged these potential sources of complexity. In
developmental biology, there is a gap between the information
specified in the genome and the complexity of the end product
(Hiesinger, 2021). In learning there is a gap between the
mechanisms we have available and the complexity of the
problems to solve. Does pre-existing complexity play a part in
closing this gap? Is DEP an example of this?

Differential Extrinsic Plasticity remains a fascinating
phenomenon. Neuroplasticity remains an under-explored
component of Embodied Intelligence and a rich opportunity for
future work.
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AI (broadly speaking) as a discipline and practice has tended to misconstrue social

cognition by failing to properly appreciate the role and structure of the interaction itself.

Participatory Sense-Making (PSM) offers a new level of description in understanding

the potential role of (particularly robotics-based) AGI in a social interaction process.

Where it falls short in distinguishing genuine living sense-makers from potentially cognitive

artificial systems, sociomorphing allows for gradations in how these potential systems

are defined and incorporated into asymmetrical sociality. By side-stepping problems of

anthropomorphism and muddy language around it, sociomorphing offers a framework

and ontology that can help researchers make finer distinctions while studying social

cognition through enactive sociality, PSM. We show here how PSM and sociomorphing,

taken together and reconceived for more than just social robotics, can offer a robust

framework for AGI robotics-based approaches.

Keywords: anthropomorphism, sociomorphing, artificial general intelligence, Participatory Sense-Making,

enactivism, social cognition, social robotics

INTRODUCTION

Seibt et al. (2020a) argue that social robotics/human robot interaction has a “description
problem” insofar as it lacks a multidisciplinary set of terminology for describing apparently-social
interactions between (at least) people and social robots. They point out that some capacities in
these interactions can literally, rather than figuratively, be ascribed to robots, but that our current
ontologies for making sense of these interactions fail us. Sociomorphing is the direct perception
of real social capacities in agents or systems, including non-human agents. They say, “Such
interactions, we proposed, should not by default and in all cases be viewed as involving a mental
operation where fictional human capacities for social interaction are imaginatively projected onto
the robot; rather, heeding a suitably wide understanding of sociality, we should allow for human
social behavior towards robots to be guided by direct (and possibly implicit) perceptions of actual
non-human capacities for social interaction” (2020, p. 63, emphasis in original). While Seibt’s work
here focuses on social robotics in particular, the terminology and conceptual ontology may be
applicable outside of just social robotics work, and might offer important insights into artificial
general intelligence (AGI)1 work as it relates to robotics more broadly (Seibt, 2017). We propose
to tease apart the conceptual framework offered by Seibt et al. that combines sociomorphing with

1We use AGI here in the more traditional sense of the term, as it overlaps with concepts of machine consciousness, machine

mindedness, and early understandings of AI in general as an instantiation not merely of human-level intelligence, but of the

concomitant mind as what is doing the thinking (Newell and Simon, 1961; Fuchs, 2021).
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their larger project that then applies this new concept to an
ontology of simulation. Since our project here aims at showing
how this framework could help AGI work, rather than robotics
work that focuses on more surface-level social interactions, we
abandon Seibt et al.’s ontological commitments to simulation
and imitation in favor of using these concepts in an entirely
different kind of project, that of robotics-based AGI work. To
this end, we include an important discussion of enactive social
cognition, without which the sociomorphing work cannot get a
foothold for AGI. Participatory Sense-Making (PSM) (De Jaegher
and Di Paolo, 2007) offers a new level of enactive description
with regard to interaction among multiple autonomous agents.
As argued elsewhere (Zebrowski and McGraw, 2021) PSM is
a missing and valuable variable in robotic systems as they
relate to AGI (see text footnote 1). In attempting to apply
PSM to robotic systems, though, it appears mysterious how and
when we might attribute certain capacities, such as sentience
or autonomy, to artificial systems. However, here, we propose
that Seibt et al.’s notion of sociomorphing offers appropriate and
useful gradations in relation to what might count as autonomous
and (perhaps eventually) sentient robotic systems. In fact, these
perspectival gradations offer clear theoretical distinctions that
can be repurposed or reconciled with robotic approaches to
AGI in ways that might capture the interesting but currently-
overlooked level of description that PSM offers. Combining
PSM-levels of analysis in AI work with sociomorphing helps,
also, to capture the asymmetry attached to social interactions
including robots, an issue hinted at but never fully explored
or explained in earlier social cognition work (De Jaegher et al.,
2010)2. Additionally, while our goal here is to present a synthesis
of these two approaches and show how they specifically can
work in service of the AGI project that neither is individually
aimed at, we also recognize that targeted experimentation within
this framework, like all frameworks, is the next step to making
sense of this problem and measuring the degree to which this
new conceptual toolbox produces fruitful results. Therefore, our
task here is to iteratively explore these concepts, and evaluate
the terminological innovation as a sort of act of conceptual
engineering in service of making sense of sense-making in
concert with non-humans.

We recognize that the structure of this paper is a bit non-
standard.We believe that this is necessary in order to incorporate
the jargon of multiple niche academic areas in a way that will be
understandable by naïve readers. To be clear, we understand our
contributions to the literature to be as follows:

1) We borrow the concept of PSM from enactive social cognition
and show how it is a valuable framework for making sense of
behavior between humans and robots, while recognizing that
this was not the domain it was designed for.

2) We borrow the concept of Sociomorphing from human-robot
interaction (HRI) and show how it can be applied beyond

2We have inmind here Di Paolo et al.’s provocative assertion that, “Interactions are

social as long as the autonomy of the agents is not dissolved. . . We do not restrict

social interaction to the human species. As long as the terms of the definition can

be verified, they can apply to cross-species interactions or interactions with robots

that are autonomous in the sense intended” (2010, 443).

the social robotics it was designed for, enlarging the scope of
robotics-based AGI projects to help avoid known problems
with anthropomorphization.

3) We offer a new conceptual framework for robotics-based AGI
projects with the goal of focusing on social interaction as a
methodology and location to study primary cognition with
either or both human/animal and/or robot agents.

As such, we implore the reader to stick with us as we attempt to
make various vernacular jargons familiar enough to work with,
and hopefully to further deploy in AGI research.

The general structure of the paper is as follows: in Section
The Argument, we offer the argument as we understand it,
explaining PSM and its potential role in AGI, along with
empirical support for the claims, in Section Background: PSM.
In Section Sociomorphing, we discuss what sociomorphing
is and why the concept is needed, both in HRI as it was
originally intended, and also in AGI as we are applying it.
In Section Background: Concepts of Sociality, we discuss the
ways non-humans have been conceived of in social interactions
across a range of literatures from various disciplines. In
Section New Language and Conceptual Engineering, we offer
evidence that anthropomorphism has failed to properly fulfill
the explanatory role for which it is intended. In Section Failures
of Anthropomorphism, we begin to put the pieces together
to combine PSM and sociomorphing in a more complex way.
This leads us to Section Revising “Social Interaction With
Robots” in which we solidify the nuances of sociomorphing as
a process, and try to show how its use forces a revision of our
understanding of social interaction with robots, with a focus
on perspective-taking. In Section Phenomenology, we enrich
this argument by showing how it has explanatory power to
make sense of the phenomenological experiences described by
various human interactions with non-humans. Then in Section
Autonomy is Hard, we revisit earlier complications involving
senses of autonomy that need revision to reconcile enactive social
cognition with robotics. We close the paper with a discussion in
Section Discussion.

THE ARGUMENT

Background: PSM
In the classic example, we are asked to imagine two people trying
to pass in a hallway, and frustratingly mirroring one another
instead of successfully fulfilling the intentions of each, which
are to simply keep walking. As opposed to traditional cognitive
approaches to social cognition, in which an interaction with
another person tends to be just a special instance of in-the-head
cognition (in the form of mindreading or simulation), within
enactivism, social cognition is a richer and more fundamental
kind of cognition, in which genuine new kinds of meaning-
making are enabled. In articulating the enactive concept of
social cognition, De Jaegher and Di Paolo (2007, 2008) name
it “participatory sense-making” (PSM). With roots in biological
autonomy, the most general claim is that some kinds of social
interactions produce a kind of cognition/sense-making that
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emerges in the dynamics of the interaction and cannot be reduced
back to the intentions of the individual actors.

Cognizers have a consistent perspective of their world because
of the precariousness attached to their self-organization and
self-maintenance, which entails needs and constraints relevant
at multiple levels of their identities. Think of it this way: I
need food, and I also need a friend. “A social interaction is an
autonomous self-sustaining network of processes in the space
of relations between the participants, provided their autonomies
are also sustained” (De Jaegher et al., 2018, 139). An interaction
process, in particular one that’s considered autonomous in the
right way, has patterns of coordination and breakdown which
parallel the needs and constraints relevant to an individual
sense-maker. Meaning, also, emerges in the same way from
those patterns of coordination and breakdown which necessarily
incorporate and sometimes supersede the processes surrounding
the two (or more) individual sense-makers involved. Not all
interactions count as social, and those that do have self-
maintaining tendencies. In other words, the people involved in
the interaction coordinate part of the exchange, and the exchange
itself feeds back and encourages them to further sustain ormodify
the interaction. Think again about the people trying to pass in
the hallway.

Recently, it has been argued that AI and AGI work has failed
to consider and include claims from enactivism broadly and
PSM specifically (Zebrowski and McGraw, 2021). In rethinking
autonomy and openness in light of the enactive framework, social
cognition, especially in this form, is highlighted as a central
faculty of AI that has been widely overlooked. PSM has opened
up a new research program to pursue with respect to AGI (and
social robotics work). Yet what constitutes a sense-maker, and
what is needed to produce an interaction process which fits the
criteria necessary to be considered an autonomous sense-making
thing in itself remain unclear in some conditions, largely as a
result of both the traditional problem of other minds and also
the empirical facts about human social behavior. In other words,
there remain problems in describing and determining what
constitutes a genuine sense-making system, particularly in regard
to robotics, without running into epistemological roadblocks
complicated by human tendencies toward anthropomorphising,
and conflicting ideas of autonomy itself between enactivism and
robotics (e.g., Haselager, 2005). In some of this recent work it
is pointed out that there is a longstanding lack of consensus
around concepts of agency and autonomy in the robotics and
AI communities, as well as within many different systems of
philosophical analysis (Zebrowski and McGraw, 2021). Drawing
on Haselager (2005) and Barandiaran and Moreno (2006) the
authors say: “In the most uncomplicated sense, a system is
understood within robotics to be autonomous when it is able
to perform its work without oversight. A robot is generally
understood to be autonomous in the relevant sense when it
acts in a way that precludes any human from being in the
loop, and (perhaps more controversially) when it does so in an
unpredictable environment. But a human is often considered
autonomous in a much more radical sense: human autonomy
tends to point toward a kind of metaphysical claim of free will. . .
The least controversial sense of human autonomy is one that is

limited to the ability to set and pursue one’s own goals (309).
They go on to say, “Within the enactive and PSM literature,
an autonomous system is simply a system under precarious
circumstances whose processes work to generate and sustain
many of those processes as a source of self-identity” (310).
So while the question of autonomy is a messy one, especially
considering different fields and domains having distinct language
and concepts, these ideas are not irreconcilable. The most
convincing reconciliation comes from Di Paolo (2003), when he
asks, “how can we invest artfacts with a similar sense of meaning?
Do we need to go all the way down to metabolism and self-
production or is another solution possible?” (12). He argues,
instead of relying on the prototypical case of enactive autonomy,
that of processes of life, we can focus on “the mechanisms for
acquiring a way of life, that is, with habits” (13). Imbuing artificial
systems with something like Deweyan habits then becomes an
example of a way forward in making sense of autonomy that
isn’t limited to living systems. We will return at length to discuss
anthropomorphism as it relates to this question, since this is the
part of the equation that can be dealt with empirically.

Importantly for our purposes, we want to emphasize that
enactivism has a complicated history with AGI. It is often ignored
for its starting point in biological autonomy (although taken up
and overlapping in someways with historical uses of cybernetics).
However, thinking about social cognition at all, and enactive
social cognition in particular, would be an invaluable addition to
AGI projects. Because of the historical bias in which minds are
thought of as private, internal structures, social cognition tends
to be an afterthought, if it is thought of at all in AGI. What
PSM offers us is not merely the internal flipped outward, but a
recognition that the private internal mind was never the right
starting point. Instead, as PSM shows us, our interactions with
other agents, as well as with the world, are the right starting point
for making sense of social, and even individual cognition.

Reconciling an enactive theory of social cognition with a
range of AGI projects, however, is difficult in multiple ways.
One notable way is that PSM carries with it some assumptions
about the kinds of systems that can be meaning-makers within
these interactions. While teasing this apart is a large part of our
overall project in this paper, we want to highlight one particular
issue that deserves notice, because it is under-explored in the
literature. Because only certain kinds of (usually biological and
social) creatures can be interactors in obvious ways within PSM,
there is a kind of assumed symmetry within these interactions.
If we are engaged in joint meaning-making, we must both be
social and cognitive creatures in at least roughly the same way.
This symmetry proves particularly tricky in working out human
interactions with animals, as well as with non-biological systems
like social robots or other artificial cognizers (should such a thing
1 day exist).

There is empirical support for many of the claims in PSM
across multiple methodologies and levels of description, from
modeling at the neural level all the way to full embodied action
(Reed et al., 2006; Auvray et al., 2009; Candadai et al., 2019).
For example, Reed et al. (2006) performed an experiment in
which two people might be linked haptically in trying to solve
a target acquisition task. In the experimental condition, the
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two people were linked, and responded to one another’s motor
control systems in trying to acquire the target, although they were
ignorant of whether they were in the experimental condition or
not. Subjects either independently moved a handle to place a
projected mark into the target (in the single condition) or were
tethered together in solving the problem (in the dyad condition).
The results are surprising, and a reminder of why group or
collaborative work, while often frustrating, tends to produce
better outcomes than working alone. The authors say, “. . . task
completion times indicated that dyads performed significantly
faster than individuals, even though dyad members exerted
large task-irrelevant forces in opposition to one another, and
despite many participants’ perceptions that their partner was
an impediment” (365). In spite of feeling frustrated by their
partners’ real and perceived hindrances, pairs were faster and
more successful at the task. Individual intentionality cannot aim
toward this end; it can only be reached through an interaction
with another person [see also a discussion of this experiment
in De Jaegher and Di Paolo (2008), 143–144]. Similarly, Auvray
et al. (2009) designed an experiment using a one dimensional
plane on a computer screen to show that human participants
can consistently detect and distinguish the presence of another
person from that of both a fixed object and one that is mobile,
as well as one that’s a lure, shadowing the other participant’s
actual position. Otherwise sensory-deprived participants were
given haptic feedback when crossing one another’s activity, and
the same feedback when crossing a fixed or mobile object.
Each participant was told to perform an action (click a mouse)
when they believe they’ve encountered another living participant.
The authors state, “When the trajectories of the avatars cross,
both participants receive a stimulation. . . each participant then
turns back, then they will meet again, and this pattern forms
a relatively stable dynamic attractor” (11). Given the sensory
motor dynamics of the interaction, and the patterns of activity
which arise through active engagement with the other living
participant, they tended to create “. . . joint strategies of mutual
exploration” resulting in the participants finding each others’
avatars more often than not. These studies suggest that when
two sense-making systems interact with one another (in regard to
completing a specific task), an interesting new level of description
tends to emerge between those two agents, one that couldn’t have
emerged for just a single individual. Thus, we see PSM in action:
at least two autonomous systems in interaction, producing a
new autonomous system that is dynamic and responsive to the
individual interactors, but not always in a predictable or desirable
way. It is also suggested that dynamical systems tools can model
and measure this system.

Sociomorphing
Bracketing for a moment the phenomenological experience, we
want to acknowledge that there are many interactions between
humans and robots, as well as mundane interactions between
humans and animals, that seem to involve genuine meaning-
making. Due to limitations on the kinds of robotic systems we
have at this point in history, the meaning-making is largely one-
sided in those interactions, but the system in interactionmay well
be autonomous enough that it will soon, if it doesn’t already,

count as its own rudimentary kind of cognizing system in a
PSM-style interaction. But this asymmetry in interaction requires
serious attention, especially if we ever hope to make the leap
away from biological autonomy as the only actual (or conceptual)
possibility of meaning-making.

In recognizing a conceptual and terminological gap in
HRI research, Seibt et al. (2020a) have argued that the
persistent approach of analyzing robots through the lens of
anthropomorphism is mistaken; in its place, they offer a new
ontology that takes account of perspectives (both of participants
and observers) with a focus on asymmetrical social interactions.
They argue that anthropomorphism as a frame hinders our ability
to make sense of and study human interactions with social
robots (in particular) because we mistakenly believe we impose
human capacities and characteristics on machines which do not
have them. Instead, they argue that there are genuine social
capacities in animal and robot systems, but that we do not yet
have a framework for understanding those social capacities in
any way other than imposing human capacities on them. We
are always already aware of the non-human capacities in some
of our social interactions, and we already make adjustments to
our behaviors based on that awareness, which isn’t fully captured
by an anthropomorphic analysis (“e.g., one can undress in front
of a dog without being ashamed”) (Seibt et al., 2020a, 63). In
other words, you don’t treat the dog as a person with human
social skills and capacities, but you automatically make different
judgements about its role in your social world. This is likely
also true of, say, a robot dog like Aibo, although not necessarily
in the same ways that it’s true of a biological dog. Rather than
anthropomorphizing, this, then, is sociomorphing.

What sociomorphing adds to this picture is a way to
sidestep some of the problems of enactive autonomy, by
offering a new conceptual framework in which we can conceive
of asymmetrically-distributed social capacities across different
kinds of systems. One of us (Robin) has a dog who appears
to engage in frustratingly social interactions, wherein she (the
dog) will steal an object that has been placed deliberately but
unsuccessfully out of her reach, and then bring it into view so
that whoever is nearby will attempt to retrieve it from her. This
usually looks like Robin chasing the dog around angrily and
yelling futilely, the dog appearing to greatly enjoy this interaction,
running more the angrier Robin gets. This would appear to count
as a kind of PSM, insofar as there are two autonomous beings
engaged together in a single act, both of whom appear to be
frustrating the intentions of the other, but both of whom also
continue to engage not despite, but because of that frustration.
Robin wants to get the object without chasing the dog, and the
dog wants to be chased and sees the object only of instrumental
value in reaching that goal, and yet both are drawn into this game
repeatedly. You can see how the language of intentionality, when
projected onto the dog, is controversial and less than ideal. While
the game feels and looks quite deliberate from the human side,
it is extremely difficult to project intentions onto a dog like this
without running afoul of so much work in cognitive ethology.
What sociomorphing offers is a new category of explanation,
a new set of tools and language embedded in a whole new
framework, by which we are already engaged in treating the other
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with respect to its actual capacities and not imagined human
capacities we know it doesn’t possess. We anticipate different
kinds of responses from a dog, or a robot, than we would from
another person, andwe react in the situation to those actual social
capacities, not as if the other is capable of the narrow kinds of
human interaction that anthropomorphism seems to demand.

Background: Concepts of Sociality
While PSM offers a valuable lens through which to examine
social interactions, particularly those involving humanoid robots
or potential future AI systems, there have long been questions
about the role of non-humans in such interactions. In examining
the concepts of social interaction and social cognition, De Jaegher
et al. (2010) introduce the possibility of robots being genuine
social interactors under the right conditions. To reiterate, they
say, “We do not restrict social interaction to the human species.
As long as the terms of the definition can be verified, they can
apply to cross-species interactions or interactions with robots
that are autonomous in the sense intended” (443). We are
left wondering how autonomy “in the sense intended” can
happen in non-living systems, given that the sense intended
generally centers processes of life and autopoiesis. The authors
gesture toward future research questions, many of which overlap
with our own here, including explorations of the characteristics
of asymmetric social interactions and observational social
understanding (such as watching a movie) (446).

There is no interdisciplinary consensus on the role of non-
humans in social interaction, although reviews of the literature
have been undertaken in several disciplines with stakes in the
answer. Cerulo (2009) offers a broad review of theories mainly in
sociology, but with reach into philosophy and psychology, too,
which considers ways in which various forms of non-humans
might fit into social interaction. A theme that emerges in Cerulo’s
review is that non-humans have been considered potential social
interactors across a wide variety of theories, playing different
roles and having different constraints. Most importantly, what
emerges from this literature review is that interaction processes
as well as the entities that potentially contribute to them have
consistently gone through revision in tandem with evolving
theories and technologies. For example, both Nass and Turkle
noted that we interact with certain technologies and objects
in fundamentally social ways,and in some cases those objects
are capable of actively evoking feelings of intersubjectivity in
us as we interact with them (Cerulo 539–540). Owens and
Cohen, on the other hand, suggested that we consider non-
humans “doing mind” in social interaction, understanding the
non-human interactant as an other, treating it as independent of
oneself and acting as if it has the capacities it seems to have (536).
Importantly, this is not just projection and anthropomorphism,
at least according to these theorists, indicating that this debate
predates questions about AGI and social cognition.

In large part, Cerulo suggests that nonhumans in general
“. . . deserve a more central place in our analytic frame” (543). She
posits that the role and function of the mind in social interaction
has been lacking, and that shifting focus to a more inclusive
frame will help to fold in “. . . entities capable of different states
of mind” (543). She claims a dog, for example, has been shown to

have some awareness not only of “interactive routines” but also
to establish “. . . cognitive, affective, and behavioral presence in
interaction. . . ” (Cerulo 544). This seems undeniably true in the
case of Robin and her dog, but what of someone and their Aibo?
Where the traditional (mostly sociological) theories Cerulo puts
forward in her literature review have attempted to incorporate
(in some form) nonhumans in interaction, they’ve not been
definitive, in particular because social robotics and humanoid
robots pose new kinds of problems, many of which relate to and
are exasperated by failures of anthropomorphism.

Of course, philosophers of technology and others in human-
robot interaction have long tackled this same question of
sociality, asking what role the robot does or can play in our social
interactions. Mark Coeckelbergh, in a paper laying out a new way
to approach human-robot relations, discusses technology as an
“other in itself.” This work shifts the conversation away from
what an entity is to what it appears to be (Coeckelbergh, 2011).
The author uses Idhe’s concept of an alterity relation to strip
away the idea that an entity must have some prerequisite form of
intentionality or consciousness to be considered properly social
in human-technology relations. He sidesteps the ontological
unknowns by focusing on “the appearance of the robot as
experienced by the human” (199). Although Coeckelbergh’s
framing is phenomenological rather than sociological, like
Cerulo’s, the idea here links to an overarching conversation
touching on anthropomorphism’s cross-disciplinary relevance,
and the mistakes therein. There is a large body of scholarly
literature in both social robotics and social cognition that
attempts to tackle these questions, but because there remains
no cohesive HRI field that captures each of the relevant
disciplines, the problem remains (Hakli and Seibt, 2017). A
centralized, cross-disciplinary framework is necessary to at once
sync fractured theories together and also to move toward a more
cohesive tool in understanding the complexity surrounding social
interactions, in particular asymmetrical ones. For our argument,
this is a prerequisite to us being able to use this new combined
framework and conceptual scheme described here.

The scholarly literature on non-humans in sociality shows the
limits of anthropomorphism inmaking sense of social interaction
broadly. Even the phenomenologically based relational views put
forward by Coeckelbergh and others focus heavily on a human’s
experience of a social robot through an analysis shaped in terms
of anthropomorphism. To this end, Seibt et al. introduce the
concept of sociomorphing, which is the perception of real social
capacities and characteristics, but not framed in terms of human
sociality, which we have taken up here.

NEW LANGUAGE AND CONCEPTUAL

ENGINEERING

Failures of Anthropomorphism
As mentioned, it has been argued that the field of AGI
could benefit from the conceptual approach offered in PSM
(Zebrowski and McGraw, 2021). Briefly, this is true because
the enactive approach to social cognition offers new potential
levels of cognitive analysis through the form of emerging
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FIGURE 1 | The modified second-person perspective in asymmetrical social interactions, adapted by Eli McGraw and Jacqueline McGraw from Seibt, Vestergaard

and Damholdt 2020, with permission.

dynamic systems in social interaction. This joins historical calls
to center 4e cognition and embodiment, including humanoid
embodiment, in AGI (Holland, 2007; Chella et al., 2019).
Zebrowski and McGraw (2021), which we build on here,
centers on reconciling enactivism’s biologically-based notion
of autonomy with muddier notions of autonomy used across
robotics and AGI, as mentioned in Section Background: PSM.
Using the conceptual and empirical tools offered by PSM,
progress might be made toward understanding the possibilities
enabled by certain kinds of artificial systems in certain kinds
of social interactions with certain kinds of living systems.
However, this picture leaves open the possibility of perceptually-
indistinguishable but ontologically-distinct pictures, like the
traditional philosophical zombie problem.

If PSM is going to be a valuable framework for understanding
social robotics and (more importantly for our purposes)
future AGI work, then we need to understand the role of
the non-human system in that interaction better than any
framework currently does. In spite of an exploding literature
in human-robot interaction (HRI) and social robotics as they
relate to anthropomorphising, Seibt et al. newly suggest that
anthropomorphism isn’t actually all we’re doing when we as
humans engage with (social) robots. In other words, part of the
roadblock in making sense of social interactions with robots
broadly, and within enactive frameworks specifically, has been a
lack of terminology tomake proper sense of the ontological status
of each participant. Sociomorphing, then, is a “terminological
innovation” that provides us with conceptual and empirical
approaches not previously accessible within this framework.

The traditional accounts of social interaction imply or
explicitly demand that all interactants have some number
of certain kinds of (human) social capacities, including

consciousness, intentionality, self-awareness, empathy,
emotions, beliefs, reasoning, capacity for joint-action, etc.
(Duffy, 2003; Cerulo, 2009; Hakli, 2014; Parviainen et al., 2019;
Damholdt et al., 2020; Seibt et al., 2020a). With regard to
human-robot interaction (often social robotics), the literature
on anthropomorphism has always been contentious (Duffy,
2003; Waytz et al., 2010; Darling, 2017; Epley, 2018; Zebrowski,
2020). Many researchers point out that our projection of human
capacities onto non-human systems results in ametaphorical use
of anthropomorphism already. Parvianen et al., for example, say
“currently, the robot functions are described metaphorically in
the human-robot interaction literature, which refers to human
consciousness capabilities. Robots are said to “sense,” think,”
and “act” (Parviainen et al., 2019, 323). Duffy (2003) points
out that anthropomorphism “includes metaphorically ascribing
human-like qualities to a system based on one’s interpretation
of its actions. . . [it] is a metaphor rather than an explanation of
a system’s behavior” (181). Within social robotics in particular,
where the systems are designed to look social and appeal to
evolutionary responses people may have that judge certain traits
as social, we can easily see the mismatch between the concept of
anthropomorphism and its application.

One way that anthropomorphism seems to fail as a proper
frame in human-robot interactions is that there is a wide gulf
between the kinds of human capacities that produce certain
behaviors in humans and those similar kinds of behaviors in
robots (linguistic behavior here is the most obvious; when I say
“I love you” it means something very different than when an
Aibo or a Pepper robot says it. The same is true of many other
imitative behaviors). There is an asymmetry in these interactions
that causes a shift in perspective as to how I understand the
robot’s actions, and how I understand what the robot will
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understand of my actions. This asymmetry isn’t new, and it
holds for many of our human-animal interactions, as well as
interactions with humans who differ from us widely in age, class,
or neurotypicality3.

There has long been a call for new language both to
conceptualize and study human interactions with robots without
relying on anthropomorphism. Duffy (2003) paper includes
a clear recommendation for this: “Anthropomorphism should
not be seen as the ‘solution’ to all human-machine interaction
problems but rather it needs to be researched more to provide
the ‘language’ of interaction between man and machine”
(181). Coeckelbergh (2021), also calls for an overhaul of our
understanding of anthropomorphism as it relates to social robots.
In writing about the use of social robotics in relation to social
interaction, Hakli (2014) gestures to the shortcomings of sociality
broadly, anthropomorphic tendencies more specifically, and the
need to produce new language which takes into account the
breadth of the social. He surveys various ways social robots have
been excluded from the concept of sociality by definition, ruling
them out by defining social interactions in terms of consciousness
or intentionality. Instead, he argues that perhaps “if people
conceive of their interaction with robots as social interaction, this
should count as prima facie evidence that their interaction with
robots is social interaction” (107). Conceptualizing sociality as
fluid and malleable rather than having well-defined boundaries
can completely alter our ways of understanding social cognition.
These definitional pitfalls, to Hakli, shed light on the need to
rethink the concepts that provide structure for our theoretical
approaches in HRI and with asymmetric interactions more
broadly. Hakli points to the fact that other theorists have
undertaken the challenge to “. . . build conceptual frameworks
with graded notions and several dimensions that enable us to
locate more carefully the differences between different types of
agents” (113). Seibt et al.’s project with regard to sociomorphing
is an attempt to answer these calls for new language and concepts,
and we hope to take this challenge up and apply it further into
AGI work, too.

Revising Social Interaction With Robots
On some level, we’re asking how we can judge that a robot
has developed a mind, but this framing misses all of the
nuance needed when trying to make sense of something long
misunderstood as a binary. While there’s a simple way that this
is nothing more than an illustration of the traditional problem
of other minds, it seems that taking up (Seibt et al., 2020b)
framework helps chisel away at more of the problem through
clarifying and reconceptualizing some of the framework we
superimpose in analyzing human-robot social interactions. In

3An important note: In more than one place (2017, 2018), Seibt has laid out

features of an entire ontology that tries to make sense of what she sometimes

calls “simulated social interaction.” This ontology, called OASIS (Ontology

of Asymmetric Social Interactions) lays out a number of specific features of

these interactions, classifying different kinds of human-robot coordinated and

collaborative actions through different sorts of simulations. This ontology can

be closely tied to different kinds of sociomorphing, but the specific levels of her

ontology don’t quite capture our use of her concept. This is likely because we

are attempting to expand this idea beyond the framework of social robotics into

AGI/humanoid robotics work, which hopes to escape the focus on simulation and

eventually emerge as simply doing.

other words, what has the luxury of being a purely theoretical
issue for philosophers is much more pressing for practitioners,
and we hope to concretize some of this theory for researchers to
take up in practice. In approaching these interactions as involving
sociomorphing instead (or alongside) of anthropomorphizing,
we shift our focus to the actual capacities of the artificial system
instead of fictionalizing the interaction as if it were between just
human interactors. When I interact with another person, I know
that the social capacities for our interactions are more or less
symmetrically distributed, and that guides the perspectives I take
on such an interaction. But when we interact with some kinds of
social robots or animals, the authors argue that part of what we do
is generate a new model that tries to account for the asymmetry
of the interaction. Sociomorphing involves all of the following
(p. 58):

“(S1) it is direct perception;
(S2) it is a perception of non-human characteristics and
capacities (which resemble certain characteristics and
capacities familiar from human social interaction to
different and possibly very low degrees) in non-human
entities and circumstances;
(S3) it both arises in and guides interactive sense-making
in a situation of practical interaction (or the perception
of an interaction);
(S4) it typically occurs preconsciously but may also
occur consciously; and
(S5) it pertains to (relative to an external observer) actual
features of non-human entities and characteristics.”

We implicitly pick up on the shifting perspectives needed tomove
from symmetrical to asymmetrical social interactions, largely
shifting the second-person perspective (see Figure 1). If we look
at this figure, we can see the seven perspectival perceptions
of an asymmetrical social interaction with a social robot as
described by Seibt et al. In a default social interaction, for example
between two peers, they sociomorph one another using that
default second-person perspective with the assumption that “the
capacities required for the present kind of social interactions are
symmetrically distributed” (61). However, in this figure, we can
see how the human, possibly implicitly, understands that the
robot will take the human’s actions differently than a peer would,
and changes the interaction accordingly. My understanding of
my own action is different when I consider (through the second
person) how my actions are being perceived by a robot or a
dog (for example). There would be a cascade of changes given
the “non-default” ness of an asymmetrical situation. While the
authors here point out seven specific perspectives involved in this
sort of interaction, elsewhere they write that social interactions
have “irreducible perspectival complexity” (Seibt, 2018, 140; Seibt
et al., 2020a, 137). We suspect that the designers of the robot also
need to be represented in this picture, as the human interacting
with it will tend to default to what they think the system was
designed to do, but detailing the richness of these perspectives
is beyond the scope of this paper4.

4Coeckelbergh, as one example, states “I argue that designers have a responsibility

for designing the role and narrative related to their artifact, and indeed designing

the performance, but that the performance and the narrative created are also the
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Phenomenology
Recall that the primary aim of sociomorphing is to recognize the
perception of actual social capacities in a thing or person without
assuming evenly-distributed symmetrical social skills. Along with
this, the authors introduce a concept of types of experienced
sociality (TES) understood as the feelings of co-presence with
another agent or entity. They hypothesize that “sociomorphing
can take many forms each of which is manifested in, or otherwise
associated with, a type of experienced sociality” (Seibt et al., 2020a,
52) (emphasis in original). New TES’s occur when one agent
“operates with a 2nd person perspective that deviates from the
symmetry assumption” (61). A portion of any given TES touches
on a “feeling of co-presence or ‘being-with”’ a particular social
interactor (59). Imagine, for example, the phenomenological
distinction between what it feels like to be in a shared space
with a dog, or cat, vs. with a Pepper robot or another human
being. They acknowledge that in some cases, these capacities may
be perceptually indistinguishable from corresponding human
capacities (making this an ontological claim, but one that can be
tested or deployed in empirical settings to make finer distinctions
within the research). The feeling of co-presence is relevant in each
case, but the type of experienced sociality changes given differing
expectations of the situation, including things like anticipated
responsive capabilities and environmental circumstances. Some
forms of sociomorphing and the TES’s associated with them
can be mapped onto others intuitively. The TES of being-with
PARO or an Aibo for example, might resemble that of being-
with a cat or dog, or it may not at all, depending on the
context of the interaction. These complexities which arise within
two conceptually similar TES’s point to the idea that a new
descriptive framework is needed to better anchor various forms
of sociomorphing, and the shifting asymmetries across different
(actual and potential) sense-making systems.

Including this phenomenological feature, the TES, in the
ontological picture is long overdue. The experience of being-with
certain kinds of animal-like or human-like robots has long been
reported as similar to being-with a being. For example, Turkle
(1995) reported her first experience with MIT’s Cog as having
been surprising, since she knew what the robot was and what
it was (not) capable of. But still, she says, “Cog ‘noticed’ me
soon after I entered its room. Its head turned to follow me and
I was embarrassed to note that this made me happy. I found
myself competing with another visitor for its attention. . . Despite
myself and despite my continuing skepticism about this research
project, I had behaved as though in the presence of another being”
(266). Similarly, Darling (2021) reports a surprising experience
when visiting Boston Dynamics. She, like Turkle, had plenty
of experience with the generally non-functioning robots in the
labs at MIT, and when she saw one non-functioning robot
slumped over at Boston Dynamics, she remarked that people
often think the robots are more functional than they ever actually
are. But she goes on, “My jaw dropped. Behind the door was
a gymnasium-sized hall outfitted with an elaborate obstacle

responsibility of the user since they also co-create it” (Coeckelbergh, 2018, 73). This

kind of feedback loop results in complex perspective-taking that we seem able to

perform and create easily, but the theorizing behind such complexity is not nearly

as easy.

course. Dozens of dog-sized robots were roaming the premises,
walking up and down stairs, pacing back and forth in pens, or
ambling around the area completely by themselves” (Darling,
2021, 102). In spite of their rich familiarity with robots, each
of these researchers reports a surprising TES, a phenomenal
experience of being-with another kind of living being. This
phenomenon is not new and has been widely explored in relation
to phenomenology (Zebrowski, 2010). Darling’s language clearly
draws on the experience of being-with dogs, but it remains
unclear howmuch she sociomorphs the Boston Dynamics robots
as dogs and how much she instead implicitly takes up a similarly
non-default robotics-based perspective in this interaction. For
this reason, assumptions and intuitions about the TES and
associated variety of sociomorphing cannot be determined in
advance of targeted research within this framework. Given
this, both empirical and theoretical researchers in HRI and
AI ought to take up the sociomorphing framework to better
understand how people without as much experience with robots
as, for example, Turkle and Darling do, will experience them
as animals or people, and what role these systems can play in
social sense-making.

Our TES associated with being-with a dog or baby is likely
repurposed with a social robot until the robot speaks (like Sony’s
Aibo); imagine encountering the fictional Lying Cat from the
comic Saga (Vaughn and Staples, 2012). (Lying Cat is a large
bluish cat in the comic, who speaks one word, “lying” when
someone is lying. His metaphysical capacity to always know
this is never explained, and reflects no counterpart in the actual
world we live in). He, too, is a kind of categorical novelty in
the same way as the social robot, and sociomorphing captures
the experience in a way anthropomorphizing does not. The
capacity of a large cat to be a sense-maker in an interaction
process depends in part upon the way it fits my preconceived
idea of what social action looks like through my own lived
experience. Importantly, though, I am already sociomorphing
and considering a new TES that goes beyond the scope of
any previous interactions in such a way that introduces the
perception of the manifestation of a new capacity (because cats
have never done this). The joint process that arises between
myself and Lying Cat then, can be considered in terms of a
new something not previously available explicitly within the
enactive social model of PSM. Therefore, the sociomorphing
framework enriches our application of PSM to AGI specifically,
and not just HRI as proposed by the authors. We again
suggest that this enlargement of this framework has explanatory
power beyond interaction between humans and simulation-
based systems.

AUTONOMY IS HARD

We began this paper claiming that PSM is an overlooked
theoretical approach to social cognition that researchers in AGI
would be wise to take up. This is the case because it describes
the social interaction in terms of autonomous systems, which, in
proper kinds of interaction, generate new autonomous systems
capable of being studied on their own. It denies the “rear-
window” approach to social cognition, refusing to allow in-the-
head intentionality to be the appropriate level of description as it
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remains in both mindreading and simulation theories. It explains
empirical data that shows how multiple people in interaction
perform in ways that are more than the sum of their parts, as well
as offering a richer, enactive view of cognition that doesn’t merely
apply individual cognition to two or more people.

PSM, though, is a system requiring multiple levels of
autonomy: the individual interactors as well as the emergent
dynamics under the right conditions. At the core of these
autonomies and interactions is what Di Paolo et al. call a
“primordial tension.” This is not a tension between two agents
in interactions, but between the agents and the situation in
which PSM emerges. This tension persists “even if others are not
present as others or if there is no discord between intentions
at all” (140). In other words, even if you aren’t aware that
some of your interactions are with another cognitive system,
PSM may still occur. While we’ve avoided saying too much
about autonomy itself here, we must point out that autonomy
in the enactive sense is based in life processes, or at least a
kind of self-sustaining system which has not yet been achieved
in artificial systems. Autonomous robots, as the term is used,
share very little with autonomous systems within the enactive
framework, and we want to be careful not to equivocate to solve
the problem. However, as mentioned in Section Background:
PSM, Di Paolo (2003) has posed a potential way to resolve
the conflict by refocusing enactive autonomy away from life
processes and towards a “way of life” (13), a difference that can
make a difference in actual robotics-based AGI research. Seibt
et al.’s framework of sociomorphing and types of experienced
sociality (TES) help us reconceive the interaction process in a way
that opens up possibilities of gradations in how we understand
autonomy. Instead, the interaction is understood as a new kind of
thing, that requires new perspective taking. This reframing allows
for new ways of thinking about interacting with agents that may
or may not (yet?) be autonomous in the sense intended.

For example, in the Reed et al. (2006) study discussed
earlier, two people are interacting to solve a task, in spite of
being frustrated by the interaction process (indeed, people were
unaware of which condition they were in, the single condition
or the dyadic condition, and hence were unaware of the other
as other in interaction). The interaction, in this case, enables
the cognition needed to solve the problem quicker and more
accurately than either could solve it alone. The interaction
process, in this case, seems to, “deliver the necessary cognitive
performance” (De Jaegher et al., 2010). In other words, social
cognition is not just enabled here, but constituted in and by the
interaction process itself, as PSM predicts. As summed up by De
Jaegher et al. (2018) “in cases of synergy between individual and
interactive normativity, acts acquire a magic power. They achieve
more than I intend to” (143). We are arguing that this magic
power may actually emerge among other systems of sociality,
including possible or actual emergent dynamics between human
and artificial systems.

Take Sony’s Aibo robot dog, for example. In 2015, the New
York Times documented the phasing-out of Aibo, and the impact
it was having on multiple Japanese families who were holding
funerals as the Aibos became unrepairable. Aibo was a categorical
novelty insofar as it was a robot, but it looked (sort of) like a

dog, and it was trainable, so each person’s interactions with their
Aibo would change the system to optimize future interactions
with that particular owner or family. Many of the owners were
empty-nesters who took the robot on as a member of the family.
As mentioned earlier, the TES of being-with Aibo may or may
not be like being with a dog, or it may be a bit like being with a
baby. One of the owners says, “When I first got Aibo it was like
having a new baby. It wasn’t just a robot, because we had to raise
it” (The New York Times, 2015). In terms of anthropomorphism,
we might analyze this phenomenon as if the robot dog was
replacing a biological dog, or a child no longer living at home.
But neither of these explanations captures the actual role of the
robot dog, or captures the way the owners interacted with their
Aibos (shown on an untranscribed video). To the owners, their
feelings of co-presence associated with their prior experiences of
dogs or babies only brought them so far in attempting to capture
their understanding of Aibo as an other. Here, the owners’
second person perspective was reshaped given the asymmetry
of the process at hand (see Figure 1 again). They implicitly and
explicitly realized the fact that Aibo had capacities different from
(but including some) of those of another peer, a dog, or a baby.
Aibo had capacities of its own, and the owners treated it as a
social interactor in its own right. The Aibo-owners’ expectations
and interactions with their robot dogs are a bit like the inverse
of Darling and Turkle’s interactions described above, at least at
first glance. But in reality, the expectations of anthropomorphism
aren’t enough to capture the actual interactions between human
and robot-as-social actor that we see in each case. Aibo’s
owners are already engaged in sociomorphing, but without the
conceptual framework and language to describe it. Aibo clearly
lacks autonomy in the enactive sense, but as new technologies
emerge that might properly engage in social interactions with
humans, we need a finer distinction in how we understand and
experience sociality. And while there are no robots autonomous
in the enactive sense (yet), perhaps gradations of autonomy
are already emerging (the dog-like robots at Boston Dynamics
described by Darling above may be an interesting candidate)
and this framework guides us toward more productive design of
these systems.

DISCUSSION

By combining the approaches of both PSM and sociomorphing,
we have a new way to empirically study and theoretically
examine artificial systems as they exist in interaction with us
without constantly encountering epistemological roadblocks of
systems built to appear social. In fact, Seibt and her collaborators
have offered an in-depth ontology alongside the sociomorphing
framework that attempts to provide descriptive tools related to
different levels of simulation and asymmetry, carving up the
problem space into at least five different kinds of simulation
(Seibt, 2017; Seibt et al., 2020a). They have also created a new
instrument meant to take the theoretical structures into the
experimental sciences (Damholdt et al., 2020). Both traditional
HRI research, as well as AGI work, are in need of this new
terminology and framework, especially in light of the level
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of description PSM provides in studying social cognition. For
example, in terms of Lying Cat, sociomorphing introduces a
finer-grained approach to analyzing the actual systems at hand.
In other words, we don’t live in a universe with talking cats
who have access to metaphysical truths, so if I interact with
an actual cat who seems to be uttering “lying,” the framework
of sociomorphing that I use appropriately leaves out linguistic
capacities from the analysis. In the universe of Saga, that
would be different. In the case of an actual dog vs. Aibo,
anthropomorphism relies on language that may incorrectly
equate the two, which doesn’t allow for the literal ascription
of social capacities onto either. Sociomorphing allows for us
to take each of those systems as genuinely social, without only
projecting human capacities onto them. In fact, if we take up
sociomorphing broadly, other asymmetrical social interactions
we regularly engage in (such as when we say hi to the neighbor’s
dog or while watching birds out the window) would be reframed
as well, and we would have language and conceptual systems

that accurately capture the real cognitive and emotional states of
those systems. If each form of sociomorphing manifests in a TES,
and TES is fundamentally tied to phenomenological experiences
of co-presence as well as perspectival shifts, then AGI needs a
reckoning with the overall framework used to analyze cognition
broadly, but more specifically social cognition, most productively
understood as PSM.
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Biological agents are context-dependent systems that exhibit behavioral flexibility. The

internal and external information agents process, their actions, and emotions are all

grounded in the context within which they are situated. However, in the field of cognitive

robotics, the concept of context is far from being clear with most studies making little

to no reference to it. The aim of this paper is to provide an interpretation of the notion

of context and its core elements based on different studies in natural agents, and how

these core contextual elements have been modeled in cognitive robotics, to introduce

a new hypothesis about the interactions between these contextual elements. Here,

global context is categorized as agent-related, environmental, and task-related context.

The interaction of their core elements, allows agents to first select self-relevant tasks

depending on their current needs, or for learning andmastering their environment through

exploration. Second, to perform a task and continuously monitor its performance.

Third, to abandon a task in case its execution is not going as expected. Here, the

monitoring of prediction error, the difference between sensorimotor predictions and

incoming sensory information, is at the core of behavioral flexibility during situated action

cycles. Additionally, monitoring prediction error dynamics and its comparison with the

expected reduction rate should indicate the agent its overall performance on executing

the task. Sensitivity to performance evokes emotions that function as the driving element

for autonomous behavior which, at the same time, depends on the processing of

the interacting core elements. Taking all these into account, an interactionist model

of contexts and their core elements is proposed. The model is embodied, affective,

and situated, by means of the processing of the agent-related and environmental core

contextual elements. Additionally, it is grounded in the processing of the task-related

context and the associated situated action cycles during task execution. Finally, the

model proposed here aims to guide how artificial agents should process the core

contextual elements of the agent-related and environmental context to give rise to

the task-related context, allowing agents to autonomously select a task, its planning,

execution, and monitoring for behavioral flexibility.

Keywords: context, behavioral flexibility, task selection, prediction error, cognitive robotics
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1. INTRODUCTION

Cognitive robotics (CR) aims to understand cognition by
recreating it in artificial agents (Asada et al., 2001; Krichmar,
2012; Cangelosi and Schlesinger, 2015; Lara et al., 2018). In
doing so, the interaction with the environment is assumed to
be crucial for the emergence of cognitive abilities (Pezzulo et al.,
2011, 2013; Cangelosi et al., 2015). Artificial agents are considered
as useful tools to explore embodied, embedded, and grounded
models of cognition (Pfeifer and Scheier, 2001; Lungarella et al.,
2003; Pfeifer, 2004). Here, grounded cognition is understood
as a general approach that incorporates embodied, embedded,
enactive, and extended cognition into a broader perspective:
“cognition, affect, and behavior emerge from the body being
embedded in environments that extend cognition, as agents enact
situated action reflecting their current cognitive and affective
states" (Barsalou, 2020b, p.2).

Artificial agents are able to explore and manipulate objects in
their environments (Min et al., 2016; AdnanMohsin Abdulazeez,
2021). However, these tasks are usually learned under controlled
conditions, which restricts their ability to efficiently adapt to
the demands of dynamic environments (Min et al., 2016). One
of the great challenges in Cognitive Robotics (CR) is to design
autonomous artificial agents that generate appropriate behaviors
according to the environment in which they are situated (Mohan
et al., 2013; Asada, 2020). A promising approach is the attempt to
understand the underlying mechanisms of behavioral flexibility
that biological agents naturally exhibit. Behavioral flexibility
refers to the ability to switch from one behavior to another so as to
efficiently adapt to dynamic environments (Ragozzino, 2007; Lea
et al., 2020). In this regard, context processing plays an essential
role in behavioral flexibility.

The processing of the current context is fundamental for
biological agents to select the appropriate task at a givenmoment.
It is widely accepted that context acts as a set of constraints
that influence behavior (Bazire and Brézillon, 2005). Actually,
it makes no sense to talk about appropriate behaviors without
the notion of context (Turner, 1998). Furthermore, contextual
information is also essential for planning the sensorimotor
sequences to execute a selected task (Rosenbaum et al., 2014). It
has been suggested that the brain is a context-dependent system
since all inputs it processes concern the context in which they
occur (Nikolić, 2010). Following this line, processing context
would allow artificial agents to autonomously and appropriately
prioritize goals, select appropriate tasks, plan and execute them,
and even change tasks according to the current situation,
ultimately showing greater behavioral flexibility.

This paper aims to analyze the role of context in behavioral
flexibility and how this concept has been used in CR. Although
context is a widely used concept, not only in CR but also
within cognitive sciences in general, it remains an ill-defined
concept (for an attempt to analyze different definitions of the
concept of context see Bazire and Brézillon, 2005). Inspired
by the pioneering work of Turner (1998) in context-mediated
behavior for artificial agents, here, context is defined as any
identifiable configuration of environmental, task-related, and
agent-related elements that are perceived and experienced as

relevant in a specific moment and in a particular situation. To
respond to changing conditions, biological agents must monitor
internal demands and environmental factors, those that are of
self-relevance and full of affect, to guide and initiate behavior
(Barsalou, 2020b). Together, all those internal and external
elements of a situation that have predictive power and impacts
behavior constitute the global context (Turner, 1998, p.308). In
order to unravel the diffuse notion of context and considering
the key constituents of the definition proposed by Turner
(1998), three components of the global context are considered
in our analysis: agent-related, environmental, and task-related
context (Figure 1). Pfeifer and Bongard (2006) considered the
same components within their set of design principles for
artificial agents, stating that an intelligent agent should have a
defined ecological niche, a defined task, and an agent design
(Krichmar, 2012).

Each type of context is constituted by a set of diverse and
complex elements, and the processing of all of them in artificial
agents is not computationally trivial (Brooks and Mataric, 1993;
Connell and Mahadevan, 1993). In this sense, this work does not
pretend to be an exhaustive study of context as such. Rather, it
pretends to identify and analyzed the core elements of the agent-
related, environmental and task-related context to explore how
they have been taken into account in CR, and then highlight
the importance of the core elements interaction for behavioral
flexibility under a proposed model. Here, it is suggested that,
although there are innumerable elements related to the agent,
the environment, and the task, the particularity of a context
is constituted by means of the specific physiological needs,
motivations and associated emotions that are experienced, the

FIGURE 1 | Agent-related context, environmental context, and task-related

context are intertwined together to influence behavior. Figure adapted from

Cohen (1995).

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 843108203

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Valenzo et al. Grounding Context in Embodied Cognitive Robotics

perceived possibilities of action that a specific environment offers
the agent, and the task configuration in a concrete environment.

An essential aspect of the proposed model is that it considers
themonitoring of prediction error dynamics, which seems crucial
for switching strategies under changing circumstances. One
challenge for grounded cognition is to understand cognition
in depth within the context of situated action cycles (Barsalou,
2020b). We suggest that through the monitoring of the core
contextual elements, together with the monitoring of prediction
error dynamics, artificial agents would autonomously select self-
relevant situated tasks. We are aware that the sociocultural
context plays an essential role in behavioral flexibility of social
agents. However, we believe that it is essential to establish some
core elements of the context associated with auto-regulation and
object interaction before tackling more complex components of
situated action cycles. In this way, artificial agents would enact
situated action reflecting their current core context.

The structure of the paper is as follows: in Section 2, the
role of the agent-related, environmental, and task-related context
for behavioral flexibility is briefly explored and an overview of
the processing of each one in biological agents is presented.
In Sections 3–5, each type of context is addressed in more
detail through their core elements and how these have been
described in biological agents and then, some representative
cognitive robotics implementations addressing similar elements
are reviewed. In Section 6, the interaction of the three types of
context in behavioral flexibility is explored through a schematic
model that intertwines the core elements from each of them.
Finally, Section 7 concludes the paper. For the remainder of
the paper, when it reads “biological agents” it refers to living
organisms, “artificial agents” refers to situated artificial robots
and implementations and, when it reads “agents” it refers to both.

2. BEHAVIORAL FLEXIBILITY THROUGH
THE LENS OF DIFFERENT TYPES OF
CONTEXT

Global context includes all internal and external elements that
impact and restrict the behavior of biological agents at a given
moment, enticing these agents toward the performance of certain
tasks or avoiding others at any given moment. Although there
are countless contextual elements, they all come from three main
sources: the state of the agent, the environmental conditions,
and the characteristics of the task agents are engaged with in
the current moment (Cohen, 1995). This allows to identify
three particular types of context: agent-related, environmental,
and task-related context. This section explores the role of each
type of context for behavioral flexibility in biological agents.
Furthermore, how each type of context is processed by the
available sensory systems of these agents will be addressed. This
makes it possible to establish a basis to study the notion of context
within cognitive robotics in the following sections.

Flexible behavior, the ability to select the appropriate task
or change strategies to adapt to the environment, is modulated
by elements associated with the biological agent and the
environment (Palmer et al., 2014). The elements associated

with the agent that impact behavior constitute the agent-related
context, which is characterized by elements such as physiological
needs, emotions, as well as postural and morphological aspects.
On the other hand, the environmental context relates to the
characteristics of the specific environment in which the biological
agent is situated, such as the spatial configuration of the objects
in the environment, as well as their relational properties. Each
internal or external contextual element restricts behavior to
some type of task appropriate to achieve specific goals useful to
the well-being of the biological agent. In this sense, behavioral
flexibility is modulated by the interaction of the agent-related and
environmental context. Considering both contexts, agent-related
and environmental context, biological agents autonomously set
goals and select appropriate tasks to achieve them according to
the situation, monitoring both their needs and motivations at
the current moment as well as the possibilities of action that
an specific environment offers them. Task selection would be,
therefore, a function of these contexts.

Once a specific task has been selected, certain elements
of the biological agent and the environment become relevant
to achieve the task goal, these elements constitute the task-
related context (Martin et al., 2012). This type of context
overlaps with agent-related and environmental context only
in those elements that allow biological agents to select the
appropriate sensorimotor sequence to achieve the current
selected task (Figure 1). These elements are essential to plan
and execute goal-directed movements that dynamically change
during task execution, such as the situated spatial body and object
configuration (perceived via exteroception), the body posture of
the biological agent (perceived via proprioception), and even
the area around the biological agent in which objects can be
grasped and manipulated, known as peripersonal space. Every
time the biological agent moves its body or an object within the
task space, the task-related context is constantly “updated" to
consider these changes for the planning and execution of goal-
directed actions. Since its nature is a function of the selected task,
this context would be redefined every time the biological agent
changes tasks. Thus, the dynamics of task-related context differ
from agent-related and environmental context.

From a perspective that emphasizes embodiment for the
development of cognition, behavioral flexibility is achieved
when it is grounded in the constant monitoring of these three
contexts (Figure 1). This monitoring occurs through signal
processing of the interoceptive, proprioceptive, and exteroceptive
sensory systems. Agent-related context processing is strongly
linked to interoception and proprioception. Interoception
allows the perception of physiological states of the body
(Schulz, 2015), which play an essential role in determining
appropriate tasks for survival. Proprioception informs about
body posture, the changing body position during movement,
velocity, and applied force (Tuthill and Azim, 2018). Since
proprioception is essential for the planning of a task, it is
also closely linked to the task-related context. On the other
hand, exteroception allows the processing of environmental
context. Through the visual, auditory, tactile, olfactory, and
gustatory sensorymodalities, exteroception captures information
about the changes occurring in the environmental context

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 843108204

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Valenzo et al. Grounding Context in Embodied Cognitive Robotics

(Wade, 2019). Processing environmental context helps to
determine the task that better satisfies the biological agent’s
internal requirements according to the available external
resources and the environmental configuration. Exteroception
also provides information about the biological agent situated
in the environment. Biological agents can obtain indirect
information about their bodies with different exteroceptive
sensory modalities, such as vision. This is essential to integrate
information about the biological agent and the task being
executed to guide action through perception (Kozak and Corneil,
2021). Therefore, exteroception is also associated with the task-
related context.

In brief, the processing of the agent-related and environmental
context provides flexibility in task selection and switching.
Meanwhile, the task-related context processing provides
flexibility in the planning of the sensorimotor sequence to
perform a task and achieve the current goal under specific
circumstances. Each contextual element constrains behavior
driving the biological agent toward certain tasks and avoiding
others. By endowing an artificial agent with the ability to process
the current context, this agent would be able to select the task
that is appropriate at a given time according to the specific
circumstances at that moment. Most current artificial agents
implementations, focus only on some contextual elements, those
related to the task at hand, where mostly behavioral flexibility
is not the object of study. The proposal here, is that, in order
to achieve greater behavioral flexibility, contextual processing
should be an important issue. That is why, here, some core
contextual elements of each type of context have been identified
that would allow artificial agents to modulate their behavior
autonomously in a continuous cycle of context-sensitive actions.
In Sections 3–5, we suggest core elements for the agent-related,
environmental, and task-related context, respectively. At the
same time, it will be addressed why these elements are considered
core contextual elements for behavioral flexibility of biological
agents and how they have been modeled in artificial agents.

3. AGENT-RELATED CONTEXT

The agent-related context refers to elements associated with
the physical and physiological structure of a biological agent
that modulates behavior at different hierarchical levels of
organization. At a higher level, this type of context plays a
fundamental role for task selection. The agent-related context
allows setting specific goals, which are a priority for the biological
agent to stay alive during its coupling with the environment,
restricting the set of appropriate tasks possibilities to satisfy
an internal need or motivation. Physiological needs, intrinsic
motivation, and emotions are elements of the agent-related
context that have a strong impact on this level of behavioral
organization. At a lower hierarchical level, the agent-related
context plays a fundamental role in the planning and execution of
goal-directed and reflexive actions. Once the agent has selected a
task, aspects of the agent, such as body posture and peripersonal
space become relevant contextual elements for the planning and
execution of the specific task. Given their role in planning and

executing tasks, these contextual elements fall within the overlap
of agent-related and task-related context and will be addressed as
elements of task-related context. In the following, physiological
needs, intrinsic motivation, and emotions will be addressed. In
the first part of each subsection, the reason why said element
is considered a core element of the agent-related context in
biological agents will be explained. Subsequently, the second part
of each subsection will provide an overview of how the addressed
contextual element has been modeled in artificial agents.

3.1. Physiological Needs
Physiological needs, such as hunger or sleep, are sensations
evoked by internal states of the biological agent that indicate
a lack of nutrients, energy, or any other of the many internal
conditions necessary for survival (Taormina and Gao, 2013).
When physiological needs are detected by the interoceptive
modality, these must be regulated to maintain the homeostasis of
the biological agent (Strigo and Craig, 2016). Physiological needs
are associated with motivational states that constitute action
drives related to survival (Maslow, 1958). For instance, when an
animal is hungry, several types of hypothalamic neurons signal
this need and drive a specific task, such as foraging (Schulkin
and Sterling, 2019). Thus, physiological needs are core contextual
elements that have a strong impact on behavior when they
are detected (Ramirez-Pedraza and Ramos, 2021). Furthermore,
they modulate task activation causing an effect on the relative
desirability of different tasks. In the case of hunger, this averse
sensation increases the desirability of foraging and decreases the
attractiveness of other tasks not associated with getting food, such
as playing (Loewenstein, 2011).

Like biological agents, artificial agents must have a baseline of
certain states to function properly. For example, they must have a
certain level of energy, integrity in their sensors, and maintain an
optimum temperature for the proper operation of their motors.
In artificial agents, to keep these internal states in optimal values,
some studies have focused on modeling homeostatic systems
(Stradner et al., 2009; Vargas et al., 2009; Yoshida, 2017; Man and
Damasio, 2019; Kelkar, 2021). Generally, artificial agents must
remain in a viability zone, the set of possible states in which
the operation of the system is not compromised, allowing the
activation of tasks that help to regulate those internal states when
they exceed a predetermined limit.

Vargas et al. (2005) proposed a model based on an artificial
neural network (ANN), and on a hormone production controller.
Variations in external or internal states trigger the production
of a specific hormone. The level of hormones alters internal
states by driving neural networks’ actions through stimulation
of target neurons, affecting the input weights in the ANN to
perform a certain task. Once the task has been accomplished,
the hormone production controller receives a negative feedback
signal that ceases the production of the hormone. In another
study, Moioli et al. (2009) addressed the coordination of three
coupled tasks in a mobile robot: exploring the environment
while avoiding obstacles, searching for a light source when
fatigue is high, and searching for a black stripe in the arena
when the battery is low. They use three discrete-time artificial
recurrent neural networks derived from a model inspired by
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gaseous modulators (Husbands et al., 1998). Each network is
previously and separately evolved to accomplish a specific task.
Subsequently, the output of the network is modulated by the
levels of two simulated hormones associated with the levels of
fatigue and hunger. The levels of hormones, together with an
external stimulus, are responsible for determining the coherent
coordination of behavior.

The homeostatic value of drives, together with the allostatic
control for selecting appropriate behaviors to satisfy the
intrinsic needs, have been modeled considering the relevance
of the environmental context in Vouloutsi et al. (2013).
Using a humanoid artificial agent, the designed Distributive
Adaptive Control (DAC) architecture coordinated task selection
depending on intrinsic drives during human-robot interaction.
The DAC was based on reactive layers and adaptive layers.
The reactive layers monitored the levels of the drives, sociality,
exploration, survival, security, and play. The adaptive layers
were responsible for the assignation of the drives’ priorities, and
behavior selection, depending on the current state of the world.
The satisfaction of the drive and its associated homeostatic value
controlled the expressed emotion of the system through facial
expressions. In general, the DAC was capable of monitoring
and satisfying artificial intrinsic drives, prioritizing them
when several drives were competing, and organizing behavior
depending on the perceived stimuli in a given environment.
The DAC is a representative example of how modeling artificial
internal drives and their homeostatic regulation allows an
artificial agent to organize behavior autonomously responding to
internal and environmental constraints.

In Kirtay et al. (2019), the authors implemented a model-
free reinforcement learning (RL) framework to argue that
emotion can be considered as an emergent phenomenon of a
neurocomputational energy regulation mechanism in a decision-
making task. This mechanism generates an internal reward signal
to minimize the neural energy consumption of a sequence of
actions. Each action triggers a process of visual memory recovery
in which the actions to explore the environment are movements
of the neck and the eyes to direct the gaze. According to the
authors, the computational shortcut mechanisms on cognitive
processes to facilitate energy economy give rise to emotions.
In another work, Lewis and Cañamero (2016) study the role
that pleasure plays in the selection of actions whether related
or unrelated to the satisfaction of physiological needs. They
evaluate the effects of different types of pleasures and show that
pleasure, including pleasure not related to the satisfaction of
physiological needs, has value for homeostatic management in
terms of improved viability and greater flexibility in adaptive
behavior.

A fundamental element for autonomy in artificial agents
relates to energy. Most current artificial agents operate with
batteries that must be replaced or recharged by the user
(McFarland, 2009), so, self-charging robots would have a higher
level of autonomy. In this regard, EcoBot-II is an interesting
example designed to autonomously regulate its energy by
converting unrefined insect biomass into useful energy using
onboard microbial fuel cells with oxygen cathodes (Ieropoulos
et al., 2005). The work described by Lowe et al. (2010) addresses
energy-motivation autonomy where physiological information

is generated by a simulated artificial metabolism as a microbial
fuel cell batch. The grounding of behavior according to
artificial metabolic constraints permitted the evolution of sensory
anticipatory behavior in the form of simple pan/tilt active vision.

These studies show how physiological constraints impact not
only sensorimotor activity but also emotional and motivational
mechanisms. They allow the emergence of adaptive anticipatory
behavior, prioritize tasks, and organize behavior according to
the needs of artificial agents situated in a context. However, few
studies address other physiological needs in artificial agents, such
as engine integrity, or optimal operating temperature.

3.2. Emotions
There is no clear consensus about the definition of emotion, in
part, because it can be defined based on its affective domain, as
well as on its behavioral aspects that guide how biological agents
act and respond to the environment (Soudry et al., 2011). It has
been hypothesized that emotions evolved to drive behaviors that
promote homeostatic processes, explaining why an emotional
experience depends on the processing of interoceptive signals
(Pace-Schott et al., 2019). For instance, physiological needs are
strongly related to emotional experiences. Some basic emotions,
such as fear, anger, disgust, sadness, happiness, and surprise could
have been developed during the course of evolution and subserve
adaptational strategies (Ekman, 1992, 2016).

Emotions can be generally defined as multifaceted, whole-
body responses that involve coordinated changes in subjective
experience, behavior, and peripheral physiology (Mauss et al.,
2007). Emotions trigger responses from different biological
systems, including facial expression, somatic muscle tone, tone
of voice, and endocrine activity, to produce an optimal body
milieu for an effective task response (Rolls, 2000). The role
of these short-lived psychophysiological states encompasses
coordinating behavioral response systems, shifting behavioral
hierarchies, communication and social bonding, short-cut
cognitive processing, facilitating storage, and recall of memories
(Dolan, 2002; Phelps, 2006; Mulligan and Scherer, 2012; Tyng
et al., 2017).

Emotions represent efficient modes of adaptation to changing
internal and environmental demands, allowing behavioral
flexibility or even triggering a task interruption when a sudden
change occurs (Adolphs, 2016). They regulate behavior by
associating the situation with states of positive or negative valence
that express an appraisal involving a particular type of harm or
benefit (Griffiths and Scarantino, 2001; Coifman and Bonanno,
2010). Thus, emotions are core contextual elements, providing
direct agent-related information, regulating the selection of
beneficial tasks, as well as the interruption of an ongoing task
when necessary. Together, with physiological needs and intrinsic
motivation, emotions drive biological agents toward behaviors
that ensure their survival (Smith and Lazarus, 1990).

The computational modeling of emotions constitutes an area
of growing interest in CR (Breazeal and Brooks, 2005; Ziemke
and Lowe, 2009). The studies on emotions can be broadly
divided into those that focus on their role in modulating
behavior and those related to human-robot interaction (Arbib
and Fellous, 2004). Here, we address models that highlight the
role of emotions in the control of multi-task artificial agents
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(Kowalczuk and Czubenko, 2010; Ghayoumi and Bansal, 2016).
In these approaches, artificial agents generally learn some
predefined tasks and then find their high-level coordination.
Some studies associate emotions with the expected utility of each
behavior. From this perspective, emotions can be considered as
triggers of behavioral action sequences according to some value.
The higher the value, the higher the probability of a task to be
selected.

Emotions have been modeled to drive RL algorithms
(Moerland et al., 2017). Gadanho and Hallam (2001) proposed
a model in which emotions provided a reward value and helped a
mobile robot in determining the situations in which to reevaluate
decisions. The robot must maintain its energy, avoid collisions
andmove around a closedmaze-like environment. The addressed
emotions were happiness, sadness, fear, and anger. The model
was implemented using a recurrent neural network in which
emotions influence the perception of the state of the world. In
turn, this model was integrated into an RL architecture. The
intensity of emotions is associated with the internal state of the
artificial agent, determined by an energy deficiency and proximity
to obstacles.

Marinier and Laird (2008) implemented a cognitive
architecture called state, operator, and result (SOAR) (Newell
et al., 1987; Laird et al., 2012) as a basis for the integration of an
emotion module. Emotions allow the robot to assess what stimuli
attend to (sudden, relevant, pleasant), and to decide what to do
with the stimulus attended. Feelings serve as a reward signal for
a four-wheel-driven mobile robot. Completing a task provides
the robot with a positive reward. Daglarli et al. (2009) proposed
a model in which emotions and a motivational system constitute
the highest control level of the architecture. The motivation
module assigns behavior gain coefficients which provide an
increase or decrease of the impact of the behavior. In turn,
emotions determine sequences of behaviors for the planning of
long-term actions according to the probabilities of transition of
the emotional and behavioral states. A hidden Markov model is
implemented for behavioral and emotional transition processes.

Jitviriya et al. (2015) proposed a behavioral-emotional
selection model based on a self-organizing map (SOM) and a
discrete stochastic state-space Markov model. The artificial agent
determines the most suitable behavior and emotional expression
according to internal and external situations. Firstly, the artificial
agent recognizes the external situation and determines its
motivation. In turn, a cognition module is used for clustering
the input stimuli (the intrinsic motivation and external situation)
in a SOM. Then, the robot calculates the affective and
behavioral factors. The behavioral-emotional selection system
is implemented with a Markov model. The basic emotions
simulated in this work are normal, hope, happiness, sadness, fear,
and disgust.

Emotions have also been modeled using artificial evolution.
Parisi and Petrosino (2010) suggested that adding an emotional
circuit to the ANN that controls behavior leads to better
motivational decisions and thus greater fitness. Artificial agents
must eat and drink, eat and fly away from a predator, eat
and find a mating partner, eat and care for their offspring, or
eat and rest to recover from physical damage. Their results

show that robots with ANN that include an emotional circuit
behave more effectively than robots with ANN that do not.
Other approaches that use ANNs for emotional modulation of
tasks focus on increasing or decreasing the synaptic efficiency
of specific populations of neurons associated with tasks (Belkaid
et al., 2019). In general, artificial emotions have offered an elegant
approach for behavioral flexibility in artificial agents, providing a
unifying way to tackle different control issues.

3.3. Intrinsic Motivation
Intrinsic motivation (IM) could be defined as a natural desire or
interest in carrying out specific behaviors just for the pleasure
and satisfaction derived while performing them, rather than for
external rewards or pressures (Ryan and Deci, 2000; Sansone
and Harackiewicz, 2000; Oudeyer and Kaplan, 2008; Daddaoua
et al., 2016). Exploration, manipulation, curiosity, and play are
considered intrinsically motivated behaviors (Ryan and Deci,
2000; Reiss, 2004; Stagnitti, 2004). White (1959) called this
psychophysiological need effectance motivation or mastery. The
amount of effective interaction or degree of control biological
agents can have on objects, tasks, themselves, and other agents
naturally motivate behavior (Deci, 1975). IM allows biological
agents to acquire knowledge about themselves and their world to
effectively interact with the environment, being crucial for open-
ended cognitive development and for autonomy (Deci, 1975;
Perry et al., 2000).

It has been observed that the most motivating situations are
those with an intermediate level of novelty, this is, situations
between already familiar and completely new (Berlyne, 1960).
When a biological agent performs a task, an emotion with a
positive or negative valence is experienced as a result of how well
or bad it is performing the task. Recently, it has been suggested
that the monitoring of prediction error dynamics over time is
a self-regulation mechanism behind IM (Schillaci et al., 2020b).
Thus, a positive emotional experience is linked to a continuous
decrease in prediction error, conversely, a negative emotional
experience to a continuous increase in prediction error over time
(O’Reilly, 2020; Schillaci et al., 2020b). This mechanism can help
to explain how biological agents select their goals, as well as why
behaviors such as being curious and playful should feel good
(Kiverstein et al., 2019). IM involves an ongoing cycle of finding
optimal goals and interesting tasks that evoke emotions with
positive valence and it is, therefore, essential for learning and
encouraging interaction with the environment (Gordon, 2020;
Schillaci et al., 2020b).

The tendency to be intrinsically attracted to novelty has
often been used as an example of IM for guiding exploration
in artificial agents (Huang and Weng, 2002; Oudeyer et al.,
2007). This approach is useful to acquire optimal information
gain from the novel or interesting objects to create a more
accurate model of the world through curious exploration based
on an intrinsic reward inversely proportional to the predictability
of the environment (Schmidhuber, 1991). In knowledge-based
models, the interestingness of an action or event derives from the
comparison between the predicted sensorimotor values, based
on an internal forward model, and the actual values (Oudeyer
and Kaplan, 2008). The intrinsic reward for each event is
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proportional to the prediction error of that event according to the
learnedmodel. Thus, interesting situations are detected by higher
prediction errors.

IM allows artificial agents to autonomously select curiosity-
driven goal-directed exploration behaviors and focus on goals
with the optimal amount of reducible prediction errors (Schillaci
et al., 2020b). Marsland et al. (2000) proposed a novelty filter
using a SOM to learn representations of normality from sonar
scans taken as a robot explores the environment. The features
of the environment are clustered in the SOM. All neurons
of the SOM are connected to a single output neuron. The
connections to this output neuron represent the habituation
process of biological neurons, recording the number of times that
each winning neuron has fired. The output received from each
winning neuron reduces with the number of times it fires. This
allows the artificial agent to recognize novel or unusual features
of the environment and forget features that repeat over time.

Competence-based models provide another measure of
interestingness, given that it is the properties of the achievement
process that will determine task selection (Oudeyer and Kaplan,
2008). Artificial agents pay little attention to those tasks
that are already solved or unsolvable, for which the learning
progress stays small (Colas et al., 2018). Thus, they engage in
tasks associated with surprising or novel situations and can
autonomously change tasks when their model has improved. The
behavior is motivated by an intrinsic reward system that favors
the development of competence rather than being directed to
externally directed goals.

IM allows the progressive learning of more complex and
hierarchically organized skills. Barto et al. (2004) proposed
a strategy to explore the task space where each decision
involves the execution of a temporally extended task. Agents
are motivated to master tasks driven by the learning progress
for each of them. Learning progress generates intrinsic rewards
that determine action selection. Most implementations of IM
use the RL computational framework given its inspiration in
the brain reward systems (Eschmann, 2021). RL algorithms
tackle the challenge of how an artificial agent can learn to
approximate an optimal behavioral strategy, usually called a
policy, while interacting directly with the environment. The
optimality criterion of a problem is defining a reward function, an
approximate solution is viewed as the skill of expertly controlling
the given system (Sutton and Barto, 1998).

Luciw et al. (2011) proposed an artificial curiosity system
based on RL for environmental exploration. The artificial
agent builds an internal representation of its world through
navigation. The reward signal is modified to contain two
distinct components, one intrinsic and one external. The external
component is the reward signal in classical RL, while the
intrinsic reward signal is based on the measure of interestingness
that is used as a motivational system to speed learning.
The measure of interestingness assigns low values to patterns
already known or that cannot be learned, and high values to
patterns not known, but that can be discovered. The model
assigns values for maximizing combined external and intrinsic
rewards using a least-squares policy iteration with an internal
forward model.

IM has focused on the exploration and manipulation of
objects. Hart and Grupen (2012) propose that a single IM
function for affordance discovery can guide long-term learning
in artificial agents. Using RL, their function rewards the discovery
of tasks such as finding, grasping, and placing simple objects. IM
has been also used to improve the model of the artificial agent’s
body state and action space (Frank et al., 2014). This is achieved
by guiding the exploration of states and actions using intrinsic
rewards. Singh et al. (2010) consider an evolutionary perspective
to define a new optimal reward framework that captures the
pressure to design good primary reward functions that lead to
evolutionary success across environments. They show that both
intrinsic and extrinsic motivation can be understood as emergent
properties of reward functions selected because they increase the
fitness of learning of artificial agents across some distribution of
environments. In general, IM allows learning to be more efficient
by enabling the selection of novel tasks and goals with the optimal
capacity for error reduction.

4. ENVIRONMENTAL CONTEXT

Environmental context refers to the state of the environment
surrounding a biological agent at a given moment, affecting how
every sensory input is processed (Nikolić, 2010). It is related to
the terrain characteristics, the climate, and illumination, as well as
all the entities or objects in a scene (Bloisi et al., 2016). However,
the arrangement of objects is a key factor in determining the
environmental context. Each scene contains specific objects
that appear with a certain probability, and the spatial relations
among them also present regularities (Bar, 2004). Thus, the
typical spatial configuration of the environment makes it
possible to distinguish different types of environmental contexts.
Environmental context restricts the tasks a biological agent
can select at a given moment through the action possibilities
that are provided in a situation. According to Gibson (2014),
affordances refer to the possibilities for action that exist by virtue
of the relational properties between the environment and an
agent. From a cognitive robotics’ view, affordances are acquired
relations through bodily interactions of an artificial agent with its
environment that provide support for planning, and reside inside
the artificial agent as explicit relations that enable to perceive,
learn, and act (Şahin et al., 2007).

Objects by themselves do not provide action possibilities,
they need to be situated in a context to stand out as relevant,
affording context-dependent interactions. Each environmental
context offers a field of affordances to the biological agents
according to the typical objects present in it Withagen et al.
(2012) and Rietveld et al. (2018). Thus, the environmental
context has a predictive impact on the behavior of the biological
agent, by allowing certain actions to be taken, and restricting
others. Furthermore, the situated body in the environment and
object configuration have predictive power in the sensorimotor
sequence necessary to interact with them. Attention is deployed
to process the general configuration of the objects in the
environment, prioritizing those relevant regions for bodily
actions (Reed and Hartley, 2021). Together, these ideas are in
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line with the elements that have been suggested as necessary
for physically grounding an affordance in an artificial agent. For
doing so, it must be able to perform a behavior with an object
given its morphology and its motor capabilities, must determine
its relevance according to the artificial agent’s intentions or goals,
andmust consider the spatio-temporal physical constraints of the
objects in the environment to perform an action in the perceived
context (Koppula and Saxena, 2014).

An embodied theory of spatial attention in a situated context
is one that dynamically adjusts affordances of the body, the
current environment, and the goals of the biological agent (Reed
and Hartley, 2021). The spatial body and object configuration
are fundamental elements of task-related context given their
essential role in the planning and execution mechanisms for the
selected task and will be addressed in Section 5. Even though
many exteroceptive sensory modalities are used to obtaining
environmental context information, for the sake of brevity, only
visual information is addressed in this context, in both types of
agents. Given the speed of contextual processing at the visual
level, this sensory channel could be key to triggering predictions
according to the context as stated by Bar and Aminoff (2003) and
Bar (2007).

4.1. Spatial Configuration of the
Environment
The semantic context of a scene might be extracted early
enough to affect the perception of individual objects in it. Visual
recognition of scenes is a fast, automatic, and reliable process
(Oliva, 2005; Greene and Oliva, 2009; Lowe et al., 2018; Kaiser
et al., 2019). Thorpe et al. (1996) have reported that complex
natural scenes can be categorized under 150 ms. To explain
this phenomenon, theories of visual perception have suggested
a mode of processing based on specific spatial frequencies
that would convey different information about the appearance
of a stimulus (Kauffmann et al., 2015; Zhang and Li, 2019;
Aghajari et al., 2020). High spatial frequencies (HSFs) represent
abrupt spatial changes in visual information such as edges and
correspond to configuration information and fine detail. Low
spatial frequencies (LSFs) represent global information about
the stimulus (Kauffmann et al., 2014). As stated by Bar and
Aminoff (2003), a blurred partially analyzed image version of the
visual input is projected rapidly from early visual areas toward
the prefrontal cortex. LSFs in the image may provide coarse
information of scenes and could reach high-order areas rapidly
by conveying information through anatomical “shortcuts.” HSFs,
then, convey fine details of the image more slowly (Kihara and
Takeda, 2010; Kauffmann et al., 2017; Petras et al., 2019).

The blurred representation of environmental context activates
expectations or predictions about the most likely interpretations
of the input image in higher levels, which in turn is back-
projected as an initial guess to the temporal cortex to be
integrated with bottom-up processing (Bar, 2007). From this
perspective, a correspondence between a novel input and an
existing representation similar to the input stored in memory
would be activated. Then, associated representations with that
similar representation would be translated into predictions.
Top-down processes may facilitate recognition by limiting the
number of object representations that could be considered

according to the experience of the biological agent (Bar,
2004). Environmental context representation is stored in unified
memory structures called context frames. Some studies have
suggested that associative representations integrate information
about the identity of objects and their locations (Gronau et al.,
2008). These structures would bring together information about
the identity of objects that are most likely to appear in a
specific scene, as well as about the probable spatial relations
between these objects (Bar, 2004; Gronau et al., 2008). Brady
et al. (2011) argue that individual items are not represented
independently of other items on the same scene. Every scene
could have multiple levels of structure, from the level of feature
representations to individual items to the level of ensembles of
objects. Each scene representation allows simulations regarding
the activated context-specific category in support of situated
action (Barsalou, 2020a).

Additionally, some studies have suggested that biological
agents represent knowledge about where an object is typically
used in conjunction with information about how the object is
used. Peelen and Caramazza (2012) provided fMRI evidence
that object representations in the anterior temporal lobes would
convey information about where and how an object is typically
used. This favors their structural coupling with the world,
generating a field of affordances relevant to each environmental
context. However, it is not entirely clear how these contextual
associations are stored and integrated in the brain. Once
biological agents learn regularities about this coupling, fast
environmental context processing would allow them to generate
predictions about possible interpretations of the situation, to
simulate situations, and act according to what the environmental
context dictates, selecting the appropriate task in each situation
taking into account also the agent-related context.

CR usually model affordances as the relation between
an action, a single object, and an action effect without
explicitly considering other aspects of the environmental
context in which objects are embedded. Some computational
algorithms for learning affordances take into account an
invariant environmental context implicitly (Yukie, 2011). From
an embodied perspective, this restricts the interaction with
the environment and the behavioral flexibility artificial agents
can acquire during the learning process. However, there exist
research on environmental context can be learned through
behavioral experience in artificial agents during navigation.
In their pioneering work, Nolfi and Tani (1999) proposed a
hierarchical architecture of prediction networks that allows a
mobile artificial agent to extract spatio-temporal regularities in
a a simple and structured environment in order to infer its
position, as well as to detect changes in the environmental
topology. In their architecture, higher layers are trained to predict
the next internal state of lower layers, extracting regularities at
different levels of organization. The lower-level prediction layer
extracts regularities such as “walls”, “corners” and “corridors”,
while the higher-level prediction layer, by being exposed to
higher-level internal states and to shorter sequences, extracts
regularities which are hidden at the sensory level, such as ‘the
left side wall of the large room’ or “I am leaving the big room”.
Each prediction layer is a feedforward network with recurrent
connections. After being trained in an environment consisting
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of two rooms joined by a short corridor, the artificial agent
is able to detect whether the corridor between the two rooms
has been closed, whether a new obstacle has been placed in the
environment, or whether the extension of one of the two rooms
has been altered. This work is inspired by previous experiments
described in Tani (1996).

In another study, Nolfi and Parisi (1996) implemented a
genetic algorithm to simulate the evolution of a population of
neural networks which control the behavior of mobile artificial
agents that must explore efficiently an environment surrounded
by walls (for a closer look at related studies see Nolfi and
Floreano, 2004). In the experiments, artificial agents must be
able to reach a circular target area in its environment that
contains food. Since generations of artificial agents are not able
to perceive the target area, they have to efficiently explore the
environment to increase its chances of reaching the food arena
without colliding with the walls. Each artificial agent is controlled
by a feedforward neural network consisting of just an input and
an output layer, without hidden units. The network includes a
teaching subnetwork that determines how the standard network
changes its connection weights during life. In this sense, the input
generated by the teaching subnetwork can be influenced by the
external context and it can teach different behaviors in different
environments. Artificial agents are selected for reproduction
according to their ability to explore one of the two possible
environments, with dark or bright walls, respectively. Their
results showed that individuals that are allowed to learn during
their life perform better than those that do not learn. Although
these types of studies are focused in learning environmental
context through the agent’s experience, these works usually pay
less attention to the manipulation of objects.

On the other hand, there exist some studies that consider the
environmental context to explore navigation and manipulation
simultaneously (Sisbot et al., 2005). Mostly, these studies endow
artificial agents with pre-set abilities so that they can perform
various tasks in domestic environments. The knowledge of
artificial agents usually includes databases of objects that they do
not need to learn and the steps necessary to achieve goals are
specified in advance. Blomqvist et al. (2020) presented a mobile
manipulation system capable of perception, location, navigation,
motor planning, and grasping. The artificial agent is mounted
on an omnidirectional mobile base and can navigate using a
3D global pre-built map of his environment. The artificial agent
builds an occupancy grid for navigation and locates itself in the
environment by an online algorithm that estimates its position on
the global map. During navigation, the artificial agent can detect
objects through an RGB-based vision system, using a pre-trained
ANN with a database of different objects. Once the task-related
object is identified, the artificial agent extracts information about
its position in space in order to grab it and the 3D geometry
of the local scene is reconstructed in detail. Subsequently, grip
pose detection algorithms are used to generate and classify a
set of possible types of grasp. Finally, a path to the chosen grip
position is planned and executed, the clamp is closed, and the
object is retrieved from the table. The artificial agent can navigate
in a laboratory, find an object on a table, take it and drop it in
another place.

Asfour et al. (2006) implemented an architecture with a three-
level hierarchical organization: task planning, synchronization
and coordination, and execution level called sensor-actor level.
Tasks are decomposed into subtasks that represent sequences
of actions and contain the necessary information for execution,
such as the parameters of the objects, and spatial information
about the environment. The level of planning specifies the
subtasks to achieve a goal and manages resources and skills. The
coordination level activates actions sequentially or in parallel
with the execution level. The execution level is based on control
theory to execute specific control commands. This level uses
specific local active models about the environment and objects.
In the beginning, active models are initialized by global models,
which integrate information from the environment, containing
the database of objects, tasks, and abilities. The global model
corresponds to long-termmemory, while active models represent
short-term memory.

Puigbo et al. (2015) endowed an artificial agent with
predefined skills such as navigation, grasping, recognizing objects
and people. They implemented the SOAR architecture as part of
their approach (Newell et al., 1987; Laird et al., 2012). SOAR acts
as the reasoner by selecting the actions that must be performed
to achieve a goal. The control system is constituted by four main
modules. Firstly, a vocal command is sent to the robot that is
translated to text using an automatic speech recognition system.
The semantic extractor module divides the received text into
grammatical structures, from which the goal is generated. The
goal is compiled in the reasoner module and sent as input to
the SOAR cognitive architecture. The actions suggested by SOAR
are translated as skill activations in the action nodes. The robot
has information about the environment in five categories: (1) a
map of the environment, (2) an ontology that contains all the
actions, names of objects, people and places, (3) a database of
2D/3D models of objects that the artificial agent can recognize
and grasp, (4) a database of faces that the robot can recognize and
(5) a database with current knowledge of the state of the world,
the artificial agent, objects and people. The information available
allows the artificial agent to manipulate objects, navigate into a
room, and interact with people.

Some efforts have been put into autonomous learning of the
environmental context through the experience of artificial agents.
However, these studies usually focus solely on environment
navigation using mobile agents. Other studies have explored
navigation and manipulation of objects at the same time.
Generally, in these studies, environmental context is not acquired
through autonomous learning. In some cases, artificial agents
can plan sequences of actions. Nevertheless, the skills that they
exhibit are not acquired through experience. However, it is clear
that considering the environmental context extends the abilities
that an artificial agent can exhibit.

5. TASK-RELATED CONTEXT

Biological and artificial agents interact with objects through
manipulation tasks, such as grasping or pushing. Each task
involves a temporarily ordered sequence of sensorimotor states
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that leads to a specific goal (Grafton et al., 1998). To effectively
plan and execute a sensorimotor task, agents need to acquire
relevant information about themselves and the objects involved
in the task. These relevant elements to achieve the task goal are
determined once the task is selected and constitute the task-
related context. The core elements for the planning and execution
of a task suggested here are body posture, peripersonal space, and
the situated body and object configuration (incoming sensory
input) which dynamically change during task execution.

When grasping an object, information about its position
and orientation is crucial to adapt the sensorimotor sequence
accurately (Chen et al., 2014; Baltaretu et al., 2020). Given
the spatial object configuration, it is possible to predict the
sequence of actions that a biological agent will perform to
achieve a specific goal. For instance, the type of grasp used
to lift a glass would depend on whether the object is upside
down or upright on a table (Rosenbaum et al., 2014). If the
task involves two or more objects, the spatial relation between
items becomes relevant to plan the task. Simultaneously, body
posture is also essential for the execution of the sensorimotor task
(Sarlegna and Sainburg, 2009). The sensorimotor sequence will
also depend on the initial position of the body. This information
can be directly acquired through proprioception or indirectly
through incoming exteroceptive information, such as vision,
which provides information about the configuration of the body
situated within an environmental context.

Planning the sensorimotor sequence of a task implies that
an agent has to predict the sensorimotor consequences product
of its actions. During its execution, the prediction error,
resulting from the difference between the predicted and the
incoming sensory information, allows to dynamically adjust
the sensorimotor sequence in accordance with the situated
body and object configuration. Together, the body posture
and object configuration would determine the sensorimotor
sequence that would allow the agent to achieve the task goal
(Rosenbaum et al., 2014). The body posture of an agent and
its peripersonal space combined determine the location of a
target relative to an extremity. The effective control of the body
to avoid or manipulate objects requires an integrated neural
representation of the body and the space around the body
(Holmes and Spence, 2004).

5.1. Body Posture
Biological agents process information about the position of
their limbs in space through sensory modalities, such as
proprioception and vision (Sherrington, 1907; Grigg, 1994;
Saunders and Knill, 2003; Saunders, 2004; Montell, 2019).
The brain integrates this information in a multimodal neural
representation known as body schema (Head and Holmes,
1911; Carruthers, 2008; Morasso et al., 2015; Hoffmann
et al., 2020). The body schema allows to constantly monitor
the body posture to trigger the planning and execution
of goal-directed movements (Schillaci et al., 2016). When
performing goal-directed movements, biological agents must
integrate information about the body position and how this
relates to extrinsic spatial coordinates of objects in the world
(Sainburg et al., 2003).

Internal models have been suggested as the mechanism to
code for body schema (Wolpert et al., 1995, 2001). These models
allow biological agents to establish a causal relationship between
their intentions and actions, as well as to anticipate the effects
generated by their actions (Miall and Wolpert, 1996; Wolpert
and Kawato, 1998; Kawato et al., 2003; Tanaka et al., 2020).
Internal models integrate spatial body configuration and motor
information to control movements and plan actions (McNamee
andWolpert, 2019). The body posture constitutes a core element
of the task-related context given its determinant role in the
planning and execution of action for a given task configuration
(Zimmermann et al., 2012).

As infants do, artificial agents can also acquire a body
schema. A common strategy is motor babbling (Demiris and
Dearden, 2005; Kuniyoshi and Sangawa, 2006; Rolf et al.,
2010; Houbre et al., 2021). During this process, artificial agents
perform random movements which, in turn, cause changes
in their sensory situation. These changes are then associated
with the movements that cause them. Learning the spatio-
temporal patterns that relate sensorimotor modalities with the
body configuration allows artificial agents to distinguish between
their own body and the environment (Diez-Valencia et al.,
2019). In CR, internal models are a typical approach to allow
artificial agents to acquire the sensorimotor representations
necessary for prediction and action generation (Dearden and
Demiris, 2005). Nevertheless, the computational tools to encode
the spatial context of the body, the sensory situation, the
movements as well as the approaches to map associations
between them varies considerably (Schillaci et al., 2016; Nguyen
et al., 2021). For example, Gama and Hoffmann (2019)
study the acquisition of body schema in humanoid robots to
construct map-like proprioceptive representations, resembling
somatotopic representations within the brain. The joint angles of
the robot are considered proprioceptive inputs and are obtained
from different body configurations. Proprioceptive information
serves as input to a modified SOM. The neuron activation in
the maps encodes one specific joint or a combination between
two or three of them as the receptive fields of neurons in the
somatosensory cortex (Krubitzer et al., 2004).

Zhang et al. (2018) implemented an autoencoder to model
proprioception in a humanoid robot. Interestingly, they do not
consider joint angles directly as proprioceptive information, as
it is typically done. Taking into account that the exact value
of joint angles is unknown for biological agents, the joint
configuration is the input to the network and the hidden layer
is considered as proprioception. Using a multimodal variational
autoencoder (VAE), Zambelli et al. (2020) proposed a system
that enables an iCub to learn representations of its sensorimotor
capabilities considering the spatial configuration of its body. The
multimodal VAE is formed by multiple encoders and decoders,
one for each sensory modality such as proprioception, vision,
tactile, sound, and motor. In another study, Escobar-Juárez et al.
(2016) endowed an artificial agent with the capacity of executing
saccadic movements to focus a stimulus in the fovea as well
as to carry out a hand-eye coordination task using multimodal
representations. They proposed the Self-Organized Internal
Models Architecture (SOIMA), a network of self-organized maps
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interconnected with Hebbian weights. SOIMA provides coupled
inverse and forward models that allow multi-modal associations
of sensory and motor information.

In these studies, body schema is not adaptable as has
been reported in biological agents (lriki et al., 1996). Inspired
by the flexibility of body representations, Nabeshima et al.
(2006) proposed a biologically inspired model of body schema
adaptation. The artificial agent reaches for and touches an object
with its hand and learns to temporally integrate visual and
tactile information in associative memory. If the recalled visual
information is consistent with the currently obtained visual
information, then the location of visual contact is considered as
the location on the hand where the tactile sensation originated.
If visual contact occurs not on the robot’s hand, but on a given
tool, then the robot is not able to adequately use the tool with the
current hand trajectory controller, which induces the system to
learn a new kinematic controller for the tool. In their model, the
global memory is composed of two associativememories: a gating
ANN to associate the visually detected target approach direction
information with tactile information and, a non-monotone ANN
associating tactile signals with the distance between the hand
and the target. The authors suggest that tool use depends on
the coherent unification of spatial and temporal aspects of
multimodal information. Their model relies on the temporal
integration of vision, touch and, proprioceptive information.

Learning algorithms are useful computational tools to create
multimodal representations in CR, such as body schema
(Hoffmann et al., 2010; Morasso and Mohan, 2021). From
proprioceptivemaps tomultimodal representations, these studies
endow artificial agents with the capacity to autonomously
acquire contextual information about their own bodies. The
most explored modalities in CR have been proprioception and
vision. However, there is a growing interest in considering other
modalities to provide artificial agents with greater behavioral
flexibility (Dahiya et al., 2013; Zenha et al., 2018; Pugach et al.,
2019).

5.2. Peripersonal Space
Peripersonal space can be understood as the reaching space
of a biological agent, that is, the distance at which an object
can be reached by the hand of the agent without moving the
trunk (Cardinali et al., 2009; Serino, 2019). This region acts
as an interface between the agent’s body and the environment
(Makin et al., 2008; Noel et al., 2021). Peripersonal space was
also known as the flight zone and it would correspond to a
margin of safety around the body (Dosey and Meisels, 1969).
There is evidence about the involvement of peripersonal space in
guiding involuntary defensive movements for protection. Some
studies show that electrical stimulation of multimodal areas in
the brain evokes a complex pattern of hand and arm movements
in monkeys, similar to avoidance or defensive reactions, such as
turning the head or raising the hand (Graziano et al., 2002).

Although biological agents perceive space as something
continuous and unified, the processing of the peripersonal
space is particularly characterized by a high degree of
multi-sensory integration, mainly between visual and
somatosensory (tactile and proprioceptive) information

(Cardinali et al., 2009; Bertoni et al., 2020). The visually
evoked responses of peripersonal multimodal neurons are
modulated by the distance between the visual object and the
tactile receptive field. In this way, visual information can be
encoded with reference to the part of the body that contains the
tactile receptive field (Cardinali et al., 2010). Such a map would
give the location of the visual stimulus concerning the body
surface in somatotopic coordinates. Additionally, peripersonal
space includes different spatial representations, such as those
around the hands and the face (Farne et al., 2005). Peripersonal
space is crucial to guide movement (Graziano, 1999). It is a
core contextual element of the task-related context given that
it informs the body-related reachable spatial region where a
specific task can be carried out.

Synthetic approaches have modeled peripersonal space
centered on different parts of the body. Fuke et al. (2009)
proposed a model that enables an artificial agent to acquire a
head-centered peripersonal spatial representation using a SOM
and Hebbian learning. Their model is inspired by the face
representation in bimodal neurons found in the adjacent ventral
intraparietal region of the brain, which codes the location of
visual stimuli through the head-centered reference and connects
visual and tactile sensations (Sereno and Huang, 2006). These
neurons have been associated with the ability to avoid objects
moving toward the face as a protective mechanism (Graziano and
Cooke, 2006). Fuke et al. (2009) use proprioceptive information
of the arm as a reference so that when the artificial agent moves
his arm in front of his face the SOM is activated and learning
occurs. Their simulated artificial agent learns the association of
the visuo-spatial representation with the tactile representation of
the face.

Juett and Kuipers (2019) recreate the learning process
of peripersonal space in an artificial agent, by associating
proprioceptive information of the arm and the visual perception
of the hand and grippers of the agent. The peripersonal space
is modeled using graphs. The nodes of the graph represent the
state of the arm, and the edges correspond to safe movements.
Paths represent safe trajectories from one pose to another. In
their proposal, a reaching action emerges as a reliable way to
hit and move an object in the environment. When an object
is accidentally grasped, it moves dynamically with the hand,
generating a grasping action. The learning process is modulated
by a mechanism of IM and the artificial agent is capable of
reaching and grasping objects based on unguided exploration.

Nguyen et al. (2019) modeled visuo-proprioceptive-tactile
integration in a humanoid robot to develop reaching behaviors.
They implemented a deep neural network that receives as input
images from the cameras of the artificial agent and the position
of the head, while the output is the arm position and tactile
information of the hand and forearm. The network predicts arm
configurations of successful reaching, together with information
about the body part that would make contact with the objects.
Finally, Jamone et al. (2012) endow an artificial agent with the
ability to learn a representation of its own reachable space using
motor experience. The reachable space map that they proposed
uses a gaze-centered, eye-fixed reference frame. The position of
a point in space can be encoded with the motor configuration
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of the head and eyes of the artificial agent. Their maps are
implemented using a locally weighted projection regression
ANN. After learning, the artificial agent is capable of estimating
the reachability of a visually detected object, even before starting
the reaching movement. Together with information about the
configuration of the body, peripersonal space allows artificial
agents to perceive the space that surrounds them in order to carry
out processes of planning and executing manipulation tasks.

5.3. Situated Body and Object
Configuration
During task execution, it is necessary for biological agents to
continuously build a visual map of the current perceived spatial
body position in relation to the spatial arrangement of objects.
This exteroceptive information complements the perceived body
posture via proprioception to guide and adjust sensorimotor
sequences within the peripersonal space of the biological agent.
Visual working memory and attentional mechanisms are coupled
by means of the action that is being executed. An action
plan guides the retrieval of the appropriate sensory memory
representations, and when the expected outcomes of the action
are successful the representations are robustly consolidated,
leading to a more rapid retrieval in the future (Olivers and
Roelfsema, 2020). Thus, the content of visual working memory
is to serve future behavior, in such a way that action encoding
occurs in response to those visual memories of relevant objects
related to the anticipated actions (Boettcher et al., 2021).

A telling example is the execution of complex grasping
actions (van Polanen and Davare, 2015). The spatial information
of an object interacts with the information of its physical
properties to control object-oriented hand movements. This
spatial object configuration must be associated with information
about the body configuration in order to map spatial information
about objects into body coordinates (Colby, 1998; Graziano
and Gross, 1998; Bertoni et al., 2020). Thus, the situated body
and object configuration is a task-related contextual element
that dynamically changes during the execution of the planned
sensorimotor sequences. Action plans require working memory
for anticipating and chaining multiple steps, as well as the use of
attentional mechanisms that are guided by the situated recurrent
feedback for learning appropriate sensory-action couplings
(Olivers and Roelfsema, 2020). In case of not having vision or any
specific modality, it would also be expected that an integration
process be carried out with those modalities available to the
agent to generate predictions according to its experience. Given
that all the information for planning sensorimotor sequences
can not be known in advance, selective attention to relevant
information during the flow of action influences subsequent
action plans (Reed and Hartley, 2021). The situated action cycle
has particular outcomes that potentially change the agent-related
and environmental context, and these changes can also trigger
further iterations of the cycle (Barsalou, 2020b).

Many studies have taken the approach of “learning by
doing” to explore the consequences of self-generated actions
in artificial agents. Fitzpatrick et al. (2003) showed how robots
learn the effect of pushing actions on objects. In each trial,
the target was placed directly in front of the robot within

the task space. Then, the artificial agent executed pushing
actions from any of four different initial positions. During the
task, two variables were monitored, the initial proprioceptive
information of the hand position and at the moment of contact
and, the direction of retinal displacement of the target. In
another study, Hogman et al. (2016) endow a robotic system
with the ability to learn different object categories in a pushing
task. The authors define categories as action-effect relations or
sensorimotor contingencies, modeling the effects in an object-
centered representation. The pushing task was parameterized
using position and velocity. The robotic platform learns the
characteristics of translation and rotation of objects and acquires
knowledge with a certain degree of confidence from repeated
observations of action-effect pairs. The translation is computed as
the Euclidean distance between the initial and the final positions
and rotation is calculated through the dihedral angle between the
two planes.

Other studies have focused on addressing tool affordances. In
this case, learning corresponds to finding the mapping between a
set of features that describe tools and the effects that these tools
produce through actions on an object. Mar et al. (2018) propose
an approach where a robot learns tool affordances through
interaction and generalizes them for similar tools based on their
3D geometry. During the training phase, a set of drag actions is
performed by an iCub with a large number of tools grasped in
different pose orientations: right, front, or left. Each trial began
by placing a tool in the robot’s hand. After grasping the tool,
the iCub automatically detects the tool-pose it was given. Once
the tool was grasped and the robot’s end-effector successfully
extended to the tip of the tool-pose, the robot performed a series
of exploratory actions to discover the tool-poses drag affordances.
Tool affordances are learned as a regression between tool-pose
features and action-effect vector projections using SOMs. In
this study, the initial position of the objects that were dragged
is constant and object-object relations between the tool and
the target object are not considered. Tool affordances are also
addressed in Nabeshima et al. (2006). Interestingly, this work
discusses how manipulable objects, such as tools, can become
incorporated into the agent’s body schema through the temporal
integration of multisensory information. The contribution of
Nabeshima et al. (2006) is mentioned in Section 5.1, given the
emphasis their research makes on the adaptation of body schema
representation.

Understanding the effects of actions is essential for planning
and executing robot tasks. Paus et al. (2020) show that
predicting the effects of a pushing action enables goal-oriented
manipulation tasks. In this research, an artificial agent learns
internalmodels based on objects and the spatial relations between
them. The perceived scenes are represented as object-centric
graphs while the internal model predicts object pose changes
due to the pushing actions. The object properties are stored
in the nodes of the graph while edges contain relative spatial
information between object pairs. The internal model is used to
predict an output graph, from which the local object position,
after the push, can be extracted. This study considers the initial
and final position of objects explicitly in the model and also takes
into consideration spatial relation between the objects in a scene.
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Using previous knowledge is crucial for performing different
tasks in new situations and contexts. Khazatsky et al. (2021)
developed a situated controlled system for efficient self-
supervised goal-conditioned RL. A robot was trained with
several previous experiences of trajectories in different tasks
and contexts and tested in new environments and tasks by
sampling goals from a visuomotor affordance model. After
training affordances (policies), the robot was tested in new
environments which contained distractor objects as well as other
objects that afforded an interaction, such as opening or closing a
drawer or placing an object on a pot. Importantly, these objects
that afforded an interaction were not previously seen but had
similar characteristics related to what they afforded (e.g., drawer
with a different type of handle). In this work, learning required
generalization in terms of visual affordances and their associated
behaviors during online interactions to collect more data and
constantly improve the associated policy. As a consequence,
the policy of grasping generalizes to grasping objects and
the continual learning of new tasks is faster as it benefits
from increasing prior knowledge. This method of visuomotor
affordance learning allows online autonomous learning of tasks
in new contexts, which highlights the relevance of using prior
knowledge from other contexts and their related affordances for
scalable and continuous learning.

In another study, QueiSSer et al. (2021) focused on the
generalization of experiences in familiar task-related contexts to
those in unfamiliar task-related contexts that can be achieved
through learning during vision-based goal-directed planning.
In their experiments, blocks of different colors were placed
at random positions in the task space, and a robot arm with
a video camera was required to stack them in an arbitrary
configuration specified by a visual goal. The proposed model
introduces a large network composed of dynamically interacting
sub-modules, which incorporates a visual working memory sub-
module (VWMs), a visual attention module, and an executive
network for prediction of motor states and images. This network,
also controls visual attention by masks visual images in the
VWM. The large network is trained by using predictive coding.
Additionally, an optimal visuo-motor plan to achieve a given goal
state is inferred using active inference. The experiments showed
that a process of generalization occurs due to the information
processing developed through the synergistic interaction between
the VWM and other modules during the course of learning,
in which memorizing image contents and transforming them
is dissociated. After learning, the performance of the model
network in generating goal directed action plans using active
inference was evaluated, in cases that involved manipulating
blocks with novel colors. The results showed a significant
improvement in performance when using an additional VWM,
compared to a case using only a single VWM. The authors
suggested that the essential aspect of the mechanism acquired
through learning is dissociation of visual image contents from the
mechanism for their manipulation. This proposedmethod allows
the artificial agent to flexible adapt to the new characteristic of
objects during goal-directed planning.

Affordances consider the change in the task space but the
representation of this change can vary drastically during task

execution and within contexts. An autonomous artificial agent
must be sensible to contextual changes to be able to predict
the best sensorimotor sequence when performing a situated task
based on the most similar previously learned situations. The use
of previous experience and affordance generalization is relevant
when exploring new environments. However, here we want to
highlight that task-selection in a given context is also guided by
the current internal needs of an agent (agent-related context), as
well as by the performance expectations the agent has associated
with different tasks. In biological agents, these two elements are
directly linked to emotional states.

6. INTERACTIONIST MODEL OF
CONTEXTS

The interaction of agent-related, environmental, and task-
related context for behavioral flexibility is analyzed in a
schematic interaction model that integrates the core contextual
elements (Figure 2), for task selection, its execution, and
disengagement when necessary. In the model, each context is
perceived by its main source of sensory information. For agent-
related context, interoception and proprioception are key for
providing an affective and embodied context. Exteroception is
central for perceiving an environmental context in a situated
manner, and finally, together, proprioception, interoception, and
exteroception, are fundamental for grounding a task-related
context during task execution. We suggest that the model
presented here is a first approximation for grounding context
in artificial agents. Artificial agents will be able to manage
physiological needs, and intrinsic drives for learning, considering
the situated perceived environmental factors. By means of
perceiving the three types of contexts and their core contextual
elements, artificial agents will behave according to the changing
contextual conditions. This means that artificial agents will
be more prone to become competent to autonomously select
tasks that are of self-relevance to ‘survive’, as well as tasks that
promote learning, in a context-sensitive manner. This proposed
interaction model is an idealized representation of the different
contextual elements. In actual operation, as with other proposals
(e.g., Barsalou, 2020b), one or more elements could be omitted,
also, the sequence could be other than the one described here.

Biological agents learn regularities about the dynamics
between the agent-related, environmental, and task-related
context during their interaction with the world. It has
been suggested that this association is encoded by different
mechanisms, under the notion of internal models (Wolpert et al.,
1995; Kawato et al., 2003; McNamee and Wolpert, 2019). Thus,
biological agents learn to achieve their goals by anticipating the
sensory consequences of their actions under specific contexts,
and so, internal models are always context-dependent.

Internal models generate predictions about the most likely
sensory consequences of self-generated actions. Biological agents
always attempt to minimize the prediction error associated with
predictions using two highly coupled strategies: by updating the
internal model to generate better predictions or by fulfilling
predictions through action to match the expected sensorimotor
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FIGURE 2 | Interactionist model of contexts. Schematic representation of the three different types of context and the interaction of their core elements for selection,

planning, execution, and when necessary switching of a task.

states (Friston et al., 2011; Clark, 2015). Furthermore, attention
has been recently drawn to the importance of the monitoring of
prediction error over time when executing a task. Thus, biological
agents also learn the associated rate of how prediction error is
being reduced while executing a task. This rate can be understood
as changes in the velocity of prediction error reduction, in such
a way that it informs how well or bad a biological agent is
performing a task. This monitoring of prediction error dynamics
and its associated reduction expected rate is thought to play a
central role in emotions and well-being (Joffily and Coricelli,
2013; Van de Cruys, 2017; Kiverstein et al., 2019; Nave et al., 2020;
Hesp et al., 2021).

The positive and negative valence experienced as we act is
directly related to the success of the selected behavior in reducing
prediction error at the expected rate. Additionally, due that
prediction error dynamics are strongly related to emotions, it has
been suggested that the monitoring of the rate of error reduction
can be conceived as a self-regulation mechanism for guiding
behavior in artificial agents (Schillaci et al., 2020b). Thus, an
artificial agent can be intrinsically motivated to autonomously
select a goal associated with an optimal reducible prediction
error. The capability of monitoring the error rate reduction when
performing the task, allows an artificial agent to autonomously
‘decide’ if it should continue with the task when the pursued
goal is being achieved, or if it has to be abandoned when no

progress is achieved. In both scenarios, the artificial agent will be
intrinsically motivated to select another goal that allows learning.
It has been suggested that prediction error minimization is by
itself rewarding. Decision-making based on rewards is replaced
by the use of previous knowledge to avoid surprising states for
survival, which is a sufficient condition to drive prediction error
minimization (Friston et al., 2012).

In the model, physiological needs are central for determining
which action has to be prioritized for maintaining the biological
agent alive. When a physiological need is experienced, an
associated emotion with a positive or negative valence, together
with the environmental context, bring about the relevant
affordances with which the biological agent can engage. As
Rietveld et al. (2018) have suggested, biological agents respond to
affordances in a context-sensitive way and affectivity is a central
aspect of selective responsiveness to relevant affordances. To
some extent, in the model, responding to relevant affordances for
task selection and planning, can be understood as solicitations.
Solicitations are those affordances that show up as relevant to
a situated agent that feels immediately drawn to act a certain
way (Dreyfus and Kelly, 2007). Responding with a preference
to achieve a state of relative equilibrium and acting to correct
for disequilibrium in relation to a dynamic field of multiple
relevant affordances has been characterized as a tendency toward
an optimal grip (Kiverstein et al., 2021). The best opportunities
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for improving the grip with the environment come from selecting
those relevant affordances that are neither too complex, nor
too simple, and can potentially lead to a desired outcome of
equilibrium. Here, selecting the best task among solicitations is
based on their associated expected error reduction rate. This
rate is learned and constantly updated during situated action
cycles, being directly linked to the current competence of the
agent to achieve the desired outcome (for an implementation see
Schillaci et al., 2020a).

When there are no physiological needs, intrinsic motivation
brings the agent to explore its environment, eliciting positive
emotions related to curiosity-driven behaviors. In this situation,
task selection occurs in a similar fashion, the field of relevant
affordances allows the agent to select the task best suited for
exploration and learning, taking into consideration its expected
error reduction rate. In this regard, inspiration comes from
research, on infants, understanding preferences toward optimal
exploratory behaviors. In general, infants prefer to attend to
stimuli that evoke an intermediate rate of complexity (Kidd et al.,
2012), and to those that contain unexpected patterns of data
(Stahl and Feigenson, 2015) to be able to learn based on their
current competences.

Thus far, all the above mentioned, refers to the upper part
of the model, the shaded areas of both agent-related and
environmental context. As an example, the functioning starts
on the state of the physiological needs of the agent, is there a
physiological need that must be fulfilled, when yes, this evokes
and emotion and together with the element in the environmental
context selects a tasks from the field of affordances to fulfill the
respective need. When there is no physiological need to fulfill,
then intrinsic motivation is the one driving the agent to select
a task in the field of affordances. For both cases, the field of
relevant affordances of a particular agent is dependent on its
current concerns and competences, as well as the environmental
situation, also, the optimal grip on the field of affordances
dynamically changes as a result of this dependency (Bruineberg
and Rietveld, 2014).

In the model, once the task has been selected, either for
equilibrium maintenance and self-regulation or for exploration
and manipulation of the environment, the task-related context
emerges. First, for planning, the proprioceptive information,
framed in the task related context (both overlapping with the
two other contexts), becomes relevant for the planning of
sensorimotor sequences. The selected sensorimotor sequence has
an expected error reduction rate, schematically shown in the
planning block of the diagram as an error occurring over time
and its respective slope. Then comes the execution of the selected
task. During execution of the task, two types of prediction error
monitoring occurs in parallel. First, the monitoring of prediction
error, the predicted sensorimotor consequences of actions are
compared with the actual sensorimotor input for prediction error
estimation. This is shown in the task execution block, again as
error over time. The perceptual fast loop occurs as the situated
body and object configuration changes as the execution of the
task progresses, allowing corrections when necessary. This can
be though of as the fast control loop of the execution of the task,
involving internal models (depicted in the overlap yellow-blue,

and the overlap yellow-green, respectively). Second, there is the
monitoring of the expected error reduction rate. As the task is
executed, the rate of error reduction in the monitored prediction
error dynamics is compared with the expected error reduction
rate. In other words, the accumulated prediction error over time
when executing the task allows a direct comparison between the
expected error reduction rate associated to the task and the actual
prediction error dynamics.

The monitoring prediction error dynamics over time and
its comparison with the expected error reduction rate signal
how good or bad the agent is at performing the task, or how
optimal is being its grip with the environment. This comparison
is schematically shown in the comparator to the right of the
task execution block. The minimization of prediction error and
its relation with the expected reduction rate is thought to be at
the core of emotions and valence of agents actions (Kiverstein
et al., 2019; Hesp et al., 2021). When a faster than expected error
reduction rate occurs, produces positive emotions, motivating
the agent to continue with the task. A well-done feeling, also
updates the expected error reduction rate for that particular
task in that particular context. This is shown by the negative
slope of the error at the lower left in the emotions block, with
an arrow going back down to planning and execution. A rate
of minimization of the actual error which is slower than the
expected one can triggers a disengagement from the task. This
difference will have a negative valence and bring the system back
to the slow loop by means of monitoring its current physiological
needs, as well as the other core agent-related and environmental
contextual elements so as to select a different task. This might
also occur when the agent is not capable to minimize the error.
this is shown by the error at the lower right in the emotions
block, with an arrow bringing the system back to monitoring of
physiological needs. When the difference between the expected
error reduction rate and the actual rate is not very large, the
agent might continue with the execution of the task. Still, the
comparison also has an emotional valence. A positive rate of
reduction is an encouragement to continue as is, whereas a
negative rate might be seen as a warning or as a signal for a
necessary change in the manner the task is being planned and
executed (Schillaci et al., 2020b).

The model shows two different temporalities in the rate that
sensory changes occur. First, a low rate of sensory changes occurs
while general properties of the contexts are processed to bring
relevant affordances for task selection (intense blue agent-related
context; intense green environmental context). This slow loop
is represented in the model by black arrows interacting with
the core contextual elements for task selection and planning.
Second, when the task-related context emerges, a fast rate of
sensory changes occur in the environment while executing the
planned sensorimotor sequence of the task (light blue, green, and
yellow). This fast loop is represented in the model by orange
arrows interacting with the core contextual elements during
task execution. In this regard, Marchi (2020) suggested that the
line that distinguishes cognition and perception can be set by
considering the functional levels of the processing hierarchy.
Cognitive levels, the higher levels of the hierarchy, perform more
abstract and general functions to represent general knowledge
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about contextual properties, and are not so susceptible to fast
sensory changes that occur in the environment. On the contrary,
perceptual levels, the lower levels of the hierarchy, are in close
spatiotemporal proximity to sensory detectors, and are highly
sensitive to fast sensory changes in the environment product
of short-term actions (e.g., grasping, taking a step). Thus, the
proposed model considers the sensitivity criterion proposed by
Marchi (2020), in such a way that cognition is depicted by
the slow loop for contextual information processing and task
selection and planning, while perception is depicted by the fast
loop, which is radically affected by fast sensory changes that occur
during the task execution.

It is important to highlight the open question with regards
to the optimal size of the time window in which prediction
error dynamics has to be monitored. Different time windows
of prediction error monitoring, starting from being very brief
to relatively long, produce different patterns of emotional
experience, as well as a different sensitivity to meaningful
changes in the error reduction rate (Carver and Scheier, 1990).
Recently, it has been suggested that the size of this time
window should change dynamically according to ‘how well or
bad things are going’ with respect to the expected progress
(Schillaci et al., 2020a,b). Thus, when the error rate constantly
decreases, meaning the agent is doing well on the task execution,
the need for error monitoring diminishes. On the contrary, if
prediction errors are increasing, a more careful evaluation has
to be done. In computational implementations, less monitoring
implies the liberation of resources. In this regard, in the proposed
model, the time window by which prediction error dynamics are
monitored could change dynamically based on the experienced
emotions product of the differences between the expected error
reduction rate and the actual reduction rate. Additionally, here
it is suggested that the time window can also be influenced by
the level of familiarity of the perceived environmental context.
When an agent becomes familiar with a particular context, the
confidence or the precision related to relevant possibilities of
action increases (Friston et al., 2017a,b). Thus, in a familiar
environmental context, the tasks that tend to be selected are very
likely to lead to preferred outcomes (pragmatic value), and as a
consequence the expected rate of error reduction is very fast. In
this scenario, previous experience guides the retrieval of robustly
consolidated representations for action planning that will lead to
the expected outcome (Olivers and Roelfsema, 2020). Given the
pragmatic value of a selected task in a familiar context, the time
window by which prediction error dynamics are monitored is
decreased. On the contrary, in novel or unfamiliar environmental
contexts the outcomes of a set of possible tasks tend to be
uncertain. Accordingly, the tasks that can be selected in a novel
environmental context tend to be for exploration and learning
(epistemic value). Hence, their associated expected rate of error
reduction is slow. As a consequence, the time window by which
prediction error dynamics are monitored is increased until more
experience is gained and appropriate sensory-action couplings
are consolidated.

Finally, in line with Barsalou (2020b), the interactionist
model of contexts presented here offers a grounded approach to
perception, cognition, and behavior. The situated action cycles in

the environmental context are grounded in the task that is being
executed. Central to the model is the processing of physiological
needs, as well as the constant monitoring of the prediction
error dynamics, which are the base for emotional states. An
optimal grip with the environment is provided by the equilibrium
experienced by acting in a particular situation to reduce affective
tension or disequilibrium (Rietveld, 2008). Thus, a situation
improves by being responsive to those relevant affordances
that potentially can bring about the experience of equilibrium.
Further, the proposed model highlights the particular role of the
different sensory systems such as interoception, proprioception
and exteroception in cognitive processes associated with the
modulation of behavior. From this perspective, cognitive and
perceptual processes not only occur in the brain, but are
distributed in the dynamic coupling, full of affectivity, between
the brain, the body, and the environment. Thus, the interactionist
model of contexts is then: a) embodied in the processing
of the physiological needs of agents, their morphology and
their sensorimotor capabilities, b) affective, as agents act to
improve the context-sensitive grip on a dynamic field of relevant
affordances, c) situated in the environmental context, the current
body and object configuration that, together, make the relevant
affordances stand out for task selection and planning, and finally,
d) grounded in the situated action cycles during task execution
that trigger the processing of fast multimodal sensory changes, as
well as the two types of prediction error monitoring that occurs
in parallel.

7. DISCUSSION

Context processing plays an essential role in autonomy
and behavioral flexibility of biological and artificial agents.
Essentially, context is involved in all cognitive, perceptual and
behavioral aspects. Endowing artificial agents with the ability to
process the context in which they are situated would allow them
to prioritize goals and tasks that are important for their internal
self-regulation and to promote their learning and mastery of
the environment. This makes context and its processing a key
element for CR. The vast majority of studies in CR consider one
or more contextual elements, however, the concept of context
is rarely explicitly addressed. There is consensus that context
acts as a set of restrictions that influence behavior, but, the
discussion is open on what the notion of context actually is.
Given the relevance of context not only in behavioral autonomy
and flexibility but in cognition in general, this work aims to
motivate the discussion about context processing within CR. In
this paper, context is treated as encompassing all those elements
of the agent and the environment that have an impact on
decision-making and behavior. The essence of context is complex
given the diverse nature of its components. Here, to address
global context, a distinction has been made, analyzing context
as agent-related, environmental, and task-related context. The
agent-related context is characterized by elements such as
physiological needs, emotions, intrinsic motivation, as well as the
morphological aspects of the body. The environmental context
relates to the characteristics of the specific environment in which
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the agent is situated, such as the spatial configuration of the
objects in the environment, as well as their relational properties.
Finally, the task-related context is characterized by elements that
dynamically change during the execution of the task, such as
the situated spatial body and object configuration (perceived
via exteroception), the body posture of the agent (perceived via
proprioception), and its peripersonal space. It is suggested here,
that the three types of context must be monitored at all times.
When an agent is involved in the execution of a task, most of its
attentional resources are devoted to achieving the goal. However,
an agent can not afford to stopmonitoring its physiological needs
or its surroundings, big changes in any context must be attended
in order to guarantee survival.

For each type of context, their core elements are analyzed
separately, and several implementations in CR, representative for
each core element, are described. Generally, each study focuses
on different cognitive processes using a variety of mathematical
and computational tools for their implementations. Here, it
is proposed that establishing agent-related, environmental and
task-related context allows a rapid identification of the elements
considered in each study, regardless of the process modeled
or computational tool used. In this sense, the classification of
implementations made here, according to the core contextual
elements, can shed light about the scope and limitations of
the study of context in CR. At the same time, further research
can be framed using this classification as a guide toward more
autonomous and flexible behavior in artificial agents.

The main aim of this work is to explore and understand how
the three contexts and their core elements should interact to
provide behavioral flexibility in biological and artificial agents.
A model is proposed integrating these core contextual elements
considering their interactions and different temporalities during
task selection and execution. Themodel gives great importance to
the role of monitoring prediction error dynamics, as well as the
expected error reduction rate. The agent-related context, together
with the environmental context bring about a field of affordances
at a given moment. Task selection is made on the field of relevant
affordances according to the expected prediction error reduction
rate for each task. Monitoring of prediction error dynamics
allows online corrections of the planned sensorimotor sequence,
by comparing predictions with incoming sensory information.
All these, occur in the grounded task-related context during the
agent’s situated action cycles. Monitoring prediction error over
time, as the task is executed, and comparing it with the expected
prediction error reduction rate allows an agent to be sensible
to its performance. This sensitivity signals if it is appropriate to
continue execution, when results are positive and it “feels good,”

or autonomously switch task, when things occur not as expected,
and the task becomes “frustrating.” The model also includes two
temporal resolutions, a slower one for cognition and a faster one
for perception and situated action cycles.

Finally, the interactionist model of contexts suggested here is
embodied, affective, and situated, by means of the monitoring of
the agent-related and environmental core contextual elements.
Additionally, it is grounded in the processing of the task-
related context and the associated situated action cycles during
task execution. The model suggests how artificial agents should
monitor the core contextual elements of the agent-related and
environmental context to give rise to the task-related context
based on the field of relevant affordances, their associated
expected error reduction rate and its positive or negative
emotional valence, reflecting a tendency toward an optimal grip.
This capability allows agents to autonomously select a task, its
planning, execution, and monitoring for behavioral flexibility.
In this regard, the model could shed light on the complexity
of the dynamics of affordances’ activation and to what extent
the context filters this activation (see Borghi, 2018, for an
extensive analysis of this issue). The modeling of context is
essential to study the structural coupling between agents and
their environment. The model presented here aims to contribute
in this direction, as well as in clarifying the notion of context
for behavioral flexibility, not only in artificial agents, also in
biological agents.
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Artificial Intelligence has shown paradigmatic success in defeating world champions

in strategy games. However, the same programming tactics are not a reasonable

approach to creative and ostensibly emotional artistic endeavors such as music

composition. Here we review key examples of current creative music generating AIs,

noting both their progress and limitations. We propose that these limitations are rooted

in current AIs lack of thoroughly embodied, interoceptive processes associated with

the emotional component of music perception and production. We examine some

current music-generating machines that appear to be minimally addressing this issue

by appealing to something akin to interoceptive processes. To conclude, we argue that

a successful music-making AI requires both the generative capacities at which current

AIs are constantly progressing, and thoroughly embodied, interoceptive processes which

more closely resemble the processes underlying human emotions.

Keywords: music cognition, artificial intelligence, emotion, interoception, creativity, aesthetics

1. INTRODUCTION

In the race to build increasingly autonomous–perhaps even conscious–machines, focus onmachine
learning and machine intelligence is on the rise. Paradigmatic AI successes in games such as chess
and Go have relied heavily on computational processes that occur primarily “in the head” of
game-playing agents. 4E (embodied, embedded, enactive, extended) approaches to cognition are
increasingly demonstrating the importance of cognitive processes which extend beyond such rule-
based symbol manipulation, and into the bodies and external environments of cognitive agents.
The next great frontier for autonomous intelligent systems is human creativity and art. Specifically,
an art form that encapsulates the tenets of 4E cognition and places an emphasis on the agent’s
interaction with their social environment, as well as their external and internal milieu: music.
Numerous music-making AIs have been created in attempts to simulate, understand, or replicate
the process of human creativity in musical composition using artificial neural networks, such as
Google’s Magenta, Cambridge University’s BachBot, or Sony CSL’s Flow Composer.

There are practical reasons that computers have difficulty performing creative tasks as
successfully as strategic tasks, due to both mathematical complexity and a deep connection with
emotional processing in human music-making. These emotional processes have roots in bodily,
physiological, and autonomic states in the performer and the listener. We draw on theories that
emphasize thoroughly embodied, interoceptive processes rooted in the prediction and regulation
of internal physiological processes as part of the mechanism of human emotion (Seth and Friston,
2016), and extend these theories to musical perception and production (Proksch, 2018). If these
bodily processes are crucial to creative musical success, then AIs will need such mechanisms
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(or analogues to them) in order to create authentic music. We
argue that generative music AIs must experience, or robustly
simulate, something akin to the interoceptive processes that
underlie emotional states.

2. ARTIFICIAL INTELLIGENCE: DEFEATING
CHAMPIONS, APPROXIMATING MUSIC

2.1. AI Successes: Defeating Champions
2.1.1. DeepBlue and AlphaGo
If AI Success is measured in terms of the ability to equal (or
outperform) expert human counterparts, then IBM’s Deep Blue
and Google’s AlphaGo are paradigmatic successes. DeepBlue beat
Gary Kasparov in 1997 by mapping every possible combination
of moves it could make, up to the next six moves, according to
a set of pre-programmed rules and evaluations established with
the help of expert chess players (Campbell, 1998). Nearly 20 years
later, AlphaGo beat Lee Sedol, the world champion of the strategy
game “Go.”

DeepBlue and AlphaGo both used a directed graph, called
a game tree, which represents possible moves and positions
for multiple sequences of game play. A complete game-tree
for chess would contain 10120 moves (already more than the
number of atoms in the universe, 1080), and a game-tree for
Go would massively exceed this number. Before AlphaGo, most
Go AIs achieved this computational feat by using a technique
called Monte Carlo Tree Search. Instead of looking through
pre-programmed mappings of every possible combination of
moves from a current state, the AI stores only the rules, and
runs multiple simulations extending from the current state until
any winning state, re-running this simulation for every move.
AlphaGo used machine learning combined with policy and
value (neural) networks to determine the move with the highest
likelihood of a win, in combination with simulative tree-search
methods (Silver et al., 2016). Using a variety of methods, strategy
game AIs have achieved expert-level success. Given AI successes
at strategy games, one might wonder if these techniques extend
to creative (albeit rule-based) endeavors such as music-making.
Could this strategy work for music? Music composition has far
more possibilities at each decision-point than chess or Go, and
does not have rules in the same sense of options being forbidden
and thus eliminated (many of our most beloved songs break a
supposed “rule” of composition; Cochrane, 2000), nor success or
failure states that end the exercise early.

It is impractical to even store a “tree” of all possible musical
sequences of any reasonable length, let alone to encode any
information about their aesthetic viability. A song might range
across two or more octaves, each with twelve notes and 60
possible chords for each instrument part, plus differences in
rhythm, tempo, orchestration, to say nothing of going beyond the
traditional Western paradigm, e.g., including quarter-tones. We
need a shortcut. Current music-making AIs have attempted to
achieve this shortcut in ways similar to AlphaGo, using recurrent
neural networks with value programmed as the probabilistic
likelihood of the next note, given the structural information of
the previous notes in terms of rhythm, pitch, etc. These AIs have

produced promising results (as we shall see) but the evidence is
growing that there is a limit to what can be accomplished with
probabilistic structural data of the musical input alone.

2.2. AI Works in Progress: Approximating
Music
Music-generating AIs work primarily by learning patterns in the
structural information-pitch, rhythm, harmony, etc. of a set of
musical training data. After training, the AI is provided with
a set of rules and some form of starting cue from which it
generates a piece of music. There are many different methods
one can use to create a music generating AI, reviewed in detail
in Carnovalini and Rodà (2020). Here, we will focus on three
examples of generative AIs which learn from musical training
input to probabilistically generate musical compositions.

2.2.1. Magenta
Magenta is a far-reaching Google project that seeks to determine
whether machine learning can be used to create “compelling art
and music”1. Magenta’s early music compositions used Recurrent
Neural Networks (RNNs), which work by learning a probability
distribution of possible inputs given previous data, in order to
predict the next input. After a series of training data, the RNN can
now generate its own output using the same probabilistic rules.
Magenta is trained on thousands of monophonic (single note
at a time) melodies, from which it learns the rules and style of
those melodies, and develops probabilistic models which it uses
to generate new monophonic melodies on its own.

The result, in Magenta’s first ever composition in June 2016,
was a fairly impressive, albeit simplistic composition, reminiscent
of a standard theme and variations2. Just under one and one-
half minutes long, it begins with a simple but clear motif set to
a repeating eighth-note and quarter-note rhythm, which repeats
first verbatim, then again with a bit of clumsy ornamentation,
before entering a “creative” development section introducing
some awkward new rhythms. The piece returns to the original
motif, before ultimately and abruptly stopping mid-phrase with
no clear conclusion.

This abrupt ending occurs because, unlike in a human
composition, many music-making AIs thus far have no concept
of a musical “narrative arc” with conclusive resolutions. Instead,
they will tend to “wander around” their music-making process
unless a human programs it to stop at a certain point.
Much of Magenta’s work thus far has dealt with monophonic
compositions, generating a single note at a time3. This contrasts
with the next examples that use multiple streams of notes.

1Magenta is an open source project from the Google Brain team.Source code and

updates can be found at: https://github.com/tensorflow/magenta.
2To listen to Magenta’s first composition: https://www.youtube.com/watch?v=lht-

emTioLw.
3There has been improvement in establishing a narrative structure by

implementing hierarchical models such as MusicVAE. MusicVAE implements a

variational autoencoder consisting of a bidirectional LSTM network and a novel

hierarchical RNN decoder. This allows for generation of music sequences with

a more coherent long-term structure. Listen to MusicVAE at: https://magenta.

tensorflow.org/music-vae.
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2.2.2. BachBot
At first listen, BachBot’s4 compositions are much more
impressive than the debut single-note melody from the Magenta
Project. BachBot also uses Long-Short Term Memory (LSTM)
RNNs, and is trained specifically on Bach chorales. Unlike
Magenta, its training input is homophonic, or chordal, with a
series of simultaneous pitches (chords) organized as melody plus
harmony, all composed by J.S. Bach. Like Magenta, BachBot
used its probabilistic models of which chords should come next
to generate new pieces (here in the style of Bach chorales)
on its own. The music created by this AI is much more
sophisticated than the melodic-play generated by Magenta, and
to the untrained ear is virtually indistinguishable from that
composed by Bach himself5.

Unlike Magenta’s rough approximation of a theme and
variations, these chorales follow a cadential structure with well-
organized phrases6. Instead of awkwardly-placed ornaments,
BachBot’s chorales contain purposeful passing tones within a
stable rhythmic structure. However, while impressive, BachBot
suffers some of the same problems as Magenta. Unless Bachbot is
given at least one line of a chorale (or a melody) to harmonize
over, it will suffer the same “wandering” fate as Magenta’s
compositions. It maintains its semblance of structure because a
human provides it with a prescribed line of notes, which then
constrains its output and leads BachBot through a structured
journey of composition.

2.2.3. Flow Composer (Paris, Sony Computer Science

Laboratories, ERC Funded Project
The even more impressive Flow Composer7 was created to
produce pop songs. Rather than LSTM’s, Flow Composer uses
Markov constraints. This solves the “wandering” problem faced
by both Magenta and Bachbot by generating finite-length
sequences, and similar to Bachbot it generates these sequences in
accordance with a given composer-style, or genre of music. Flow
Composer takes input for model generation in the form of lead
sheets (basic chord structure plus a melody line), and once again
uses its probabilistic memory to generate a new lead sheet for a
new song all on its own.

Flow Composer created the first ever full-length pop song
composed by an AI, the Beatles-“inspired” track “Daddy’s Car”8.
Daddy’s Car has lyrics, with multiple voices, guitar, drums—a
full orchestration. However, as impressive as this is, and despite
the problems apparently solved from Magenta and Bachbot

4BachBot is also open source, run by researchers at the University of Cambridge

and Microsoft Research Center. You can find source code and updates at: https://

github.com/feynmanliang/bachbot.
5You can listen to BachBot at: https://soundcloud.com/bachbot.
6Performance RNN generates polyphonic compositions of solo piano, and

incorporates expressive timing by encoding a flexible rather than strict metrical

grid while also allowing the dynamics of each note to vary. Listen to Performance

RNN at: https://magenta.tensorflow.org/performance-rnn.
7FlowMachines, by Sony Computer Science Laboratories in Paris, is a European

Research Council funded project. Unfortunately, it is not an open source project.

However, more information on their project, including DeepBach (FlowMachines

take on BachBot) can be found at: http://www.flow-machines.com/.
8You can listen to “Daddy’s Car” at: https://www.youtube.com/watch?v=

LSHZ_b05W7o.

dealing with wandering and improper ornamentation or rhythm,
the only thing that Flow Composer generates is a lead sheet.
The rest of the music composing process, including writing the
harmonies themselves, instrumentation, and writing the lyrics,
are performed by human collaborators9.

2.3. What’s Missing?
There is a common thread amongst these music-making AIs,
and that is the importance of the human in the process. This
is partially rooted in the fact that each example is not truly
generating musical content, but is reliant to some degree on
human intervention. In fact, Magenta, with the most basic and
least impressive of the compositions highlighted here, composes
music with the least help from human musical decisions. If
each composition was subjected to a sort of musical “Turing
test,” Magenta’s might be the least likely to pass because it rests
in an “uncanny valley” between quality music and childlike—
or just plain strange—artificial creativity. However, the other
compositions might pass solely due to the human intervention
necessary to yield the finalmusical product. It might be countered
that this is simply a difference of degree, because human
composers are still better at music than our AIs. But at what,
exactly, are humans better?

Although music students and young musicians are taught and
trained in the rules and norms of their musical culture, there is
a common pre-theoretical or folk-psychological notion that what
is important in composing music is the expression or elicitation
of emotion. Good music does not just blindly follow rules, it has
feeling, emotion. Historical and current work in music cognition
indicates that part of what enables humans to both process
and create music in the way that we do involves inherently
emotional processes (Huron, 2008; Juslin and Västfjäll, 2008;
Trost et al., 2012; Koelsch et al., 2015). Current trends in
the philosophy of cognitive science indicate these emotional
processes are rooted in the prediction and regulation of internal
physiological processes, or interoceptive states. Conceiving of the
experience of emotional states as crucially involving interoceptive
processing has important implications for music-making AIs.

3. EMOTION AND INTEROCEPTION

There are competing accounts of what makes an “emotion,”
however all accounts consider the importance or interoceptive,
physiological states of the body. If an emotional experience
arises from gathering evidence from the state of our body, plus
a subsequent-or simultaneous-cognitive appraisal (James, 1884;
Lange, 1885; Schachter and Singer, 1962), then the brute-force
rule-following and simulation-based success of strategy game AIs
could be extrapolated to emotional and creative processes like
music making. There are some reliable cross cultural mappings
of particular musical sounds to particular (potentially emotional)
functions—such as the downward melodic passages and slow

9Remember, the melody is incorporated as part of the generated leadsheet, as are

the instructions for which notes to include in the harmonies, but not necessarily

which voice those notes should be assigned to the harmonies—e.g., the guitar or

the bass.
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rhythms of soothing lullabies (Mehr et al., 2019). Indeed,
musicians make use of standard motifs within their musical
traditions that are associated with or meant to evoke certain
emotions in an audience. An AI could, in theory, form a reliable
mapping between statistical regularities of music and emotion
across cultures, even without a physical body to instantiate those
interoceptive processes itself.

However, making music that elicits or evokes an appropriate
emotion is not as simple as choosing from a library of sound
sequences coded for emotional content. Emotional experience
relies on expectations about the way that interoceptive states
of the body will unfold with respect to the external and social
context of that experience (Critchley, 2005; Seth, 2013; Seth and
Critchley, 2013). In this vein, making music with emotion relies
on expectations about the way that interoceptive states of the
body will respond to music-listening and music-making. In fact,
experience with the bodily movement involved in making and
moving music leads to enhanced interoceptive awareness for
both musicians and dancers alike (Schirmer-Mokwa et al., 2015;
Christensen et al., 2018). Information from relevant interoceptive
states (whether first-hand, i.e., having a body capable of them,
or second-hand, i.e., interacting with an individual that does),
can enhance artificial music generation systems’ ability to create
compelling music.

The experience of emotion in music listening and music
production is rooted in expectancy of not just the structural
information of music (for which our AIs are very capable),
but also more thoroughly embodied expectancy of the internal,
physiological state which is either cued or expressed in
music listening or creating, respectively (Proksch, 2018). Music
listening is a common tool by which individuals monitor and
regulate their emotional states and supporting neurochemistry
(Chanda and Levitin, 2013). Consider the practice of listening
to calming music as you fall asleep—calming because it cues the
brain to minimize levels of cortisol and adrenaline in your body
(McKinney et al., 1997; Khalfa et al., 2003; Thoma et al., 2013).
Or the opposite, listening to upbeat energetic music on your
morning run, inciting increased general arousal, and enjoyment
of physical exertion (jymming’, c.f. Fritz et al., 2013a,b), while
the exercise itself may even boost increased enjoyment of the
music (Hove et al., 2021). These same processes are leveraged by
a composer, or an improviser, who is creating music in response
to or in order to modulate their audience’s emotional, and by
extension physiological, states.

The exteroceptive information of the music, the structural
organization of pitch and rhythm, is mutually contextualized
by the thoroughly embodied, interoceptive information which
is used to generate the music itself, and the integration of
these two forms of information in the creative process of music
composition is what leads to the pre-theoretical intuition that
may be deemed the “heart and soul” of a musical work. Music-
making AIs, and the music they compose, are thought to lack
this emotional quality. Since computer programs lack the proper
embodied, interoceptive states and homeostatic physiological
drive, by which emotions are proposed to be constituted, then
this pre-theoretical intuition is plainly justified. It seems that
music-making AIs cannot compose authentic music because

they lack the interoceptive, emotional processes necessary to do
so.

Thus far, we have observed that the most musically impressive
programs have a higher degree of human intervention to achieve
a satisfying musical structure. We have justified criticisms of
AI’s musical output by demonstrating that the pre-theoretical
notion that computer composed music lacks the “heart and
soul” of authentic, human composed music can be rooted in
basic interoceptive processes of physiological homeostasis. By
incorporating this more thoroughly embodied process, AIs may
be able to avoid their worst tendencies and ground their musical
output in terms of their own interoceptive states, and come closer
to attaining states resembling something like human emotions. In
this next section, we will present twomoremusicmachines which
may create closer approximations to authentic musical works.

3.1. Minimally Interoceptive Artificial Music
Generation
3.1.1. Magenta: AI Duet
We return to the Magenta project to visit an interactive,
improvising music machine. AI Duet runs on similar models as
we’ve discussed earlier, using RNNs and LSTMs to learn the rules
and styles of its input, and then using those rules to generate
its own musical output. However, this time, AI Duet takes
input from a human, improvising musician—in real time—and
together they improvise their own joint musical performance.
Simply put, when you play a series of notes, the computer will
respond to those notes, sometimes mimicking, mirroring, or
expanding on the input you’ve given it. This is much more
impressive than Magenta’s initial attempts at music composition,
in that it incorporates real time social interaction. The music
generated by these social performances range from an awkward
situation between two mediocre or completely inexperienced
improvisers, to fairly convincing collaborative experiments.
These experiments, whether or not they are aesthetically pretty
or pleasing musically, have some semblance of feeling. This is
because the musical event as a whole, in this case, is partially
rooted in interoceptive processes—albeit only the embodied
interoceptive processes of the human collaborator. The computer
program itself is still only processing the exteroceptive content of
the musical structure. If two of these music AIs interact together,
themusic produced quickly becomes nonsensical in the sameway
that the conversation between two chatbots quickly deteriorates.

3.1.2. Cybraphon
Designed in 2009 by the FOUND artist collective together with
Simon Kirby from the University of Edinburgh, Cybraphon is
a “moody, autonomous robot band in a box” and is housed at
the National Museum of Scotland (National Museums Scotland,
2009). The instrument is quite literally a wardrobe, filled with
musical objects, lights, an “emotion meter,” and a computer
which controls when each of these objects will sound, light up,
or move (Taubman, 2014). Unlike the previous AIs discussed,
Cybraphon is not entirely generative from the ground up. Rather,
it performs by choosing from a repertoire of precomposed bits
of music, and selects the music that corresponds to its current
“emotional” state. This “emotional state” is not a product of
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solving the problem of giving a robot a homeostatic body,
but rather from being thoroughly entrenched in social media.
Cybraphon is a bit of a diva—it Googles itself every fifteen
seconds and observes its current popularity over news sites,
twitter, and facebook. The more online activity, and the more
positive the online activity, Cybraphon will “cheer up” and
might play one of its happy tunes. If no online interaction is
happening, it will sit in a state of perpetual indifference, refusing
to make music at all10. Cybraphon has something like extended
interoceptive processing, loosely embodied by activity of the
online community. Although similar to AI Duet’s reliance on
human interoceptive processes in the creation of a musical event,
Cybraphon does not rely on any one person or group of persons’
interoceptive processes, but rather translates social media activity
into loosely embodied “emotional” states based on the online
activity’s deviation from normal levels. This nearly resembles
the sort of embodied process in which interoceptive emotions
are proposed to be rooted. However, the instrument lacks a
predictive component that might enable it to probabilistically
seek a homeostatic set point for these extended interoceptive
states.

3.2. What’s Missing
Crucially, the prediction and regulation of interoceptive states
relies to some extent on bodily action. In fact, the very language
of seeking a homeostatic set point to bring about an interoceptive
and emotional state implies that an embodied music-making
AI must be able to take action in the world to affect its own
internal states. Magenta AI:Duet, while minimally interactive,
does not have a body to take action in the world or interoceptive
processes to respond to the rhythmic and melodic content that
is co-generated by the AI and human performer. It relies on the
actions of the human duet partner. Cybraphon does take some
action in the world through the small repertoire of mechanical
actions it can make in response to its extended interoceptive
state, which itself depends on engagement of others in the
world. However, Cybraphon’s own actions have no effect on its
interoceptive states, and it cannot interact with other individuals
during its music making. The ability to act on interoceptive
processes, and interact with other individuals, may be one more
ingredient missing for successful music generation by music-
making machines.

4. ACTION AND INTERACTION

4.1. Movement in Music Generating Robots
Human music-making is, itself, “inseparable” from
movement (Keller and Rieger, 2009). Even passive music
listening is strongly rooted in motor processes in the brain
(Grahn and Brett, 2007; Gordon et al., 2018). Anticipation of
melodic, harmonic, and rhythmic content of a musical work
engages canonical emotion, reward, and motor networks in
the brain (Salimpoor et al., 2015; Vuust et al., 2022). Rhythmic
components of music are acutely associated with predictive and
motor processes (Koelsch et al., 2019; Proksch et al., 2020). In

10Listen to Cybraphon at: https://www.youtube.com/watch?v=wDyabLAzKuo.

particular, there is a human urge to move to a musical beat that
may be strongly related to the balance of sensory prediction
and prediction error elicited by rhythmic syncopation found
in musical groove, and higher levels of musical groove are
rated as more pleasurable (Janata et al., 2012; Witek et al., 2014).
Joint movement to musical rhythm can result in the co-
activation of motor networks related to the perception of
self and other (Overy and Molnar-Szakacs, 2009; Friston
and Frith, 2015), engaging the endogenous opioid system
and mirroring mechanisms which support social bonding
(Tarr et al., 2014). There has been increasing recognition of
music as an inherently enactive and interactive process, mutually
co-constituted in the actions of musicians predicting both
musical (exteroceptive) and bodily sensations (interoceptive and
proprioceptive states) (Cross, 2014; Dell’Anna et al., 2021).
Joint musical interaction is further aided by visual
(exteroceptive) information regarding the movement,
intention, and interest of each musician in addition to internal
representations of movements of the other interacting musicians
(Novembre et al., 2012, 2014). We next provide an example of
an embodied and interactive music-making AI—an improvising,
marimba-playing robot.

4.2. Shimon
Created by the Robotic Musicianship Group at Georgeia
Tech Center for Musical Technology, Shimon is trained on
an extensive repertoire of classical, jazz, and popular music.
Similar to Magenta AI:Duet, Shimon is a music-making
AI that engages in musical improvisation alongside human
performers. However, Shimon is physically embodied in a
marimba playing robot with four arms that can play melodic,
rhythmic, and multiphonic music (Weinberg et al., 2009).
Further, this robot features an expressive “face” that can move
along with a musical beat and facilitate interaction with ensemble
musicians11. Similar embodied robotic music machines have
been designed to play traditional instruments, such as piano,
violin, and flute as well as new forms of musical instruments
afforded by the different physical configurations a musical robot
can take compared to humans (Bretan and Weinberg, 2016).
These robots create “a sense of embodiment” that afford
“richer musical interactions” between human musicians and
robotic music-making AIs (Bretan and Weinberg, 2016).
For instance, Shimon nods along to the musical beat—
mimicking the human propensity to move to a beat—and
direct its attention by turning its head toward the musician
playing the most interesting (i.e., salient) musical line when
interacting in a musical ensemble (Weinberg et al., 2009).
The actions taken by the robots may not refer to any
interoceptive or emotional state internal to the robot, but
may be robustly simulating such states through their actions so
as to facilitate self-other merging and social emotions among
their human co-performers.

11Learn more about Shimon and listen to some of its music at: https://www.

shimonrobot.com/.
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5. DISCUSSION AND CONCLUSION

5.1. Additional Considerations:
Musico-Historical and Social Context
There are other aesthetic properties that an even more embodied,
embedded, environmentally interactive form of AImight succeed
at producing. Music can be judged not only by how it makes us
feel and how pleasant it sounds, but on the basis of properties
like innovativeness, subversiveness, homage to other works,
etc. For an AI to master these properties, it would have to
have an awareness of musico-historical context, beyond mere
probability distributions over the notes, rhythms, and features of
a particular song or musical style. Jerrold Levinson enumerates
musico-historical context as some personal components (a
composer’s own style, repertoire, oeuvre, and influences), and
some general components (the history of musical development,
prevalent musical styles, and influences at time of composition,
and activities of contemporary composers) (Levinson, 1980). A
musical AI might need to be socially embedded within a musico-
historical context to have mastery of these complex—and even
some more simple—aesthetic properties. A composer does not
rely on her own feelings alone, and imagine if Cybraphon could
not only monitor social media reactions, but also processed the
nature of positive and negative critiques and tracked exactly
which aspects of its compositions some listeners find annoying
or sublime. But a more robust system wherein an A.I. composer
is educated by an artistic community could develop the ability to
create beyond its teachers or its training data, and play off the
works of others in a way that adds aesthetic depth12.

All this might require engaging and participating in a musical
community rather than simply processing data.

5.1.1. Spawn
One such system has been created byHolly Herndon. The singing
AI called “Spawn” was trained on her own voice, the voices of
hermusical collaborators (Friedlander, 2019), and even the voices
of her audience (Herndon, 2019). Herndon says that as opposed
to AIs such as Bachbot that make music in one particular style,
her goal was to create an AI that can “understand the logic of a
sound sample” and thus be more adaptable (Friedlander, 2019).
A strong emphasis of the project is the “raising” of an AI by a
“community.” Herndon is careful to be transparent about the

12An important consideration, though beyond the scope of this article to discuss

in detail, is that designers have seemingly assumed that machine learning

is the correct approach to music-making AIs—indeed, all the AIs discussed

here rely primarily or exclusively on machine learning. However, for activities

that significantly involve complex mutual prediction (this is true of musical

collaboration as well as solo musical improvisation and even to some extent non-

improvisational solo performance), “learning” in this sense may not be the correct

computational approach and inference, relying on state estimation and Bayesian

filtering, may be a more appropriate paradigm that has been as-yet under-explored

(we thank an anonymous reviewer for bringing up this point).

limitations of the technology and estimates the contribution of
the AI in each musical composition at about twenty percent.

5.2. The Future of Music Machines
To conclude, while music-making AI is thriving on the progress
we have made in generative music machines, something is

yet missing. Music-making AIs are unable to reach success
by relying on brute-force rule memorization and future state
simulation in the same manner as competitive strategy game
AIs. Successful compositions by music-making AIs thus far,
while appearing autonomously generative, have required a
significant amount of human intervention. Even with this
intervention, these compositions seem to be lacking feeling,
emotion, and a focused narrative structure. We demonstrated
that human music production and perception is not merely
“in the head,” but rather involves influence from homeostatic,
interoceptive processes in which human emotion processing is
grounded. This interoceptive processing is importantly lacking in
computer programs creating musical compositions. Two music-
machines, AI Duet and Cybraphon appear to be minimally
incorporating a form of interoceptive processing, however the
former is reliant upon input from a human collaborator, and
the latter is not generative. Current music-making robots,
such as Shimon, may be more adept at mimicking actions
which, when made by a human, are rooted in emotional and
interoceptive processes—enabling rich musical interactions as
a member of a musical ensemble. Spawn is an example of a
budding musical AI which is raised by and embedded in a
community, learning, and evolving through interactions with
humans rather than from pre-composed datasets of music.
A successful music-making AI will need to build on current
generative successes, and incorporatemore thoroughly embodied
interoceptive processing of a sort that would ground the
machine’s musical output to its own internal, perhaps even
conscious, states. Essentially, they must be able to ask themselves,
“Am I Blue?.”
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Biological agents can act in ways that express a sensitivity to context-dependent

relevance. So far it has proven difficult to engineer this capacity for context-dependent

sensitivity to relevance in artificial agents. We give this problem the label the “problem

of meaning”. The problem of meaning could be circumvented if artificial intelligence

researchers were to design agents based on the assumption of the continuity of life

and mind. In this paper, we focus on the proposal made by enactive cognitive scientists

to design artificial agents that possess sensorimotor autonomy—stable, self-sustaining

patterns of sensorimotor interaction that can ground values, norms and goals necessary

for encountering a meaningful environment. More specifically, we consider whether

the Free Energy Principle (FEP) can provide formal tools for modeling sensorimotor

autonomy. There is currently no consensus on how to understand the relationship

between enactive cognitive science and the FEP. However, a number of recent papers

have argued that the two frameworks are fundamentally incompatible. Some argue that

biological systems exhibit historical path-dependent learning that is absent from systems

that minimize free energy. Others have argued that a free energy minimizing system

would fail to satisfy a key condition for sensorimotor agency referred to as “interactional

asymmetry”. These critics question the claim we defend in this paper that the FEP can

be used to formally model autonomy and adaptivity. We will argue it is too soon to

conclude that the two frameworks are incompatible. There are undeniable conceptual

differences between the two frameworks but in our view each has something important

and necessary to offer. The FEP needs enactive cognitive science for the solution it

provides to the problem of meaning. Enactive cognitive science needs the FEP to formally

model the properties it argues to be constitutive of agency. Our conclusion will be that

active inference models based on the FEP provides a way by which scientists can think

about how to address the problems of engineering autonomy and adaptivity in artificial

agents in formal terms. In the end engaging more closely with this formalism and its

further developments will benefit those working within the enactive framework.

Keywords: artificial agency, sensorimotor autonomy, the free energy principle, active inference, problem of

meaning, frame problem, relevance problem
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INTRODUCTION

The problem of meaning has haunted artificial intelligence (AI)
more or less from its inception, and it still hasn’t been solved. It
goes by a variety of names: the symbol grounding problem; the
frame problem; and the relevance problem, and it stands behind
John Searle’s famous Chinese room thought experiment (Searle,
1980). In what follows we will take the problem to be how to
engineer artificial agents that are the source of their own values,
needs and goals. Such an agent will have its own perspective
relative to which its engagements with the world are imbued
with meaning.

We take as our starting point Froese and Ziemke’s (2009)
biological principles for the design of artificial agents. First they
argued for a shift in the design process toward engineering
the appropriate conditions for an agent to self-generate and
sustain its own identity as an individual agent under precarious
conditions—a property we refer to as “autonomy” (Thompson,
2007; Di Paolo and Thompson, 2014; Di Paolo et al., 2017).
Autonomy is a property of the organization of living systems
that is introduced to explain how such systems can be self-
individuating. Biological systems possess autonomy when the
processes that make up the system form an “operationally
closed” set of mutually enabling relations. The organization
of the system as a whole is constantly regenerated by the
activities of its constituent processes. In the absence of any of
the co-enabling relations among its constituent processes, the
organization of the system would break down, and is therefore
described as “precarious”.

The second design principle they proposed is that artificial
agents should exhibit “adaptivity”: the process by which
an autonomous system regulates its interaction with the
environment so as to avoid situations that would lead to a loss
of viability, were they to be encountered. Froese and Ziemke
argued that an agent that exhibits this dual profile of autonomy
and adaptivity would have its own point of view on the world.
Relative to this point of view, actions can be evaluated as good
or bad, adequate or inadequate, successful or unsuccessful for
maintaining the organism’s viability.

In practice, it has proven difficult to design artificial
agents that satisfy the first condition of being physically
self-individuating. An alternative strategy, first proposed by
Di Paolo (2003), has therefore been to design agents that
acquire regular, relatively stable, and self-sustaining patterns
of sensorimotor engagement with their environment (Egbert
and Barandiaran, 2014; Di Paolo et al., 2017; Ramírez-
Vizcaya and Froese, 2020). Instead of building robots that
instantiate metabolic processes that self-organize to form
autonomous networks, the strategy has been to build robots
whose sensorimotor processes self-organize to form autonomous
networks. Such stable, self-sustaining patterns of sensorimotor
interaction, are the basis for what we will call “sensorimotor
autonomy”. The organization of sensorimotor behavior
can ground the values, norms and goals necessary for an
artificial agent to encounter a meaningful environment
in much the same way as biological autonomy does in
living systems.

It is this strategy for solving the problem of meaning in
artificial agents that we take up in this paper. We will consider
whether the Free Energy Principle (FEP) might provide formal
tools for modeling the conditions required for an agent to acquire
sensorimotor autonomy. The FEP states that organisms act to
keep themselves in their expected phenotypic and ontogenetic
states, and they achieve this goal by minimizing an information-
theoretic quantity referred to as “free energy”. In this specific
sense, the FEP implies that all living systems can be modeled as if
they visit a bounded and limited set of states (but not necessarily
the exact same states) if they are to continue to exist (Friston,
2019). Active inference describes the process of selecting actions
that minimize free energy over time. Could active inference
models based on the FEP be used to mathematically model
sensorimotor autonomy?

We argue first that the FEP can be applied to many systems
that do not satisfy the conditions for sensorimotor autonomy,
such as swinging pendulums and Watt governors (Kirchhoff
and Froese, 2017; Kirchhoff et al., 2018; Baltieri et al., 2020).
One can model such systems as inferring the hidden states
of their observations, and thereby treat them as if they were
engaged in updating their posterior distributions in accordance
with Bayesian inference. We go on to distinguish physical
systems like synchronizing pendulums that can be modeled
as engaging in “mere” active inference from systems that are
modeled as engaging in what we will call “adaptive active
inference”. Adaptive active inference refers to the process of
actively selecting actions that minimize expected free energy
associated with their future states (Kirchhoff et al., 2018). Mere
active inference allows one to give a description of coupled
systems (e.g., swinging pendulums) as inferring the hidden states
of one another, thus updating their posterior beliefs. However,
this is only a description. Moreover, in mere active inference,
the relevant systems cannot actively change their relation to their
environment. It is good to be able to update one’s beliefs about
the world; it is even better to be able to actively change one’s
relation to one’s environment. It is this crucial latter aspect that
is captured by shifting from mere active inference to adaptive
active inference. As an example of a model of adaptive active
inference, we describe a recent simulation of bacterial chemotaxis
(Tschantz et al., 2020). Chemotaxis is often given as a flagship
example of adaptivity. Tschantz et al. showed how their simulated
agent could learn to engage in chemotaxis by means of processes
of expected free-energy minimization. We go on to argue that
adaptive active inference may well provide formal tools for
modeling sensorimotor autonomy (drawing on previous work by
Kirchhoff et al., 2018; Ramstead et al., 2021; van Es and Kirchhoff,
2021).1

Our aim in this paper is to argue that the FEP could potentially
serve as a modeling technique for designing artificial agents

1Note that it remains an open question what the precise relation is between

the simulation-based chemical agent and actual chemical agents. There are good

reasons to think that in models of active inference agents, the similarity is

sufficiently tight to infer properties about actual chemical agents on the basis of

simulation-based models of chemical agents (see Kirchhoff et al., 2022 for further

defense of this claim).
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in accordance with enactive principles. We seek to use the
FEP to provide enactive cognitive science with formal tools for
modeling sensorimotor autonomy. Such a research programme
must however confront a number of significant challenges that
have emerged in the recent literature. We take up two in
what follows.

First, it has recently been argued that biological systems
are not well described as state-determined systems that over
time are attracted toward non-equilibrium steady-states (Froese
and Taguchi, 2019; Aguilera et al., 2021; Di Paolo et al.,
2022). These authors have argued that organisms (perhaps
in contrast to FEP-based models of agency) have a natural
history that is characterized by open-ended, unpredictable
transitions to qualitatively new regimes of order. Di Paolo
et al. (2022, p. 21) give as examples “embryogenesis, life-cycle
patterns, epigenetic variability, metamorphosis, and symbiosis.”
They argue furthermore that qualitative transformations can be
observed in the structure of behavior in the learning of skills, and
in the soft assembly of task-specific systems in tool use (Anderson
et al., 2012; Di Paolo et al., 2017). These critics have argued that
processes of historical change are essential to adaptivity but such
history-dependent processes cannot be captured in the terms of
the FEP. Once a system returns to a non-equilibrium steady-
state its history is forgotten. If these critics are correct, there
are therefore essential differences between systems that engage
in adaptive active inference, and biological agents that exhibit
sensorimotor autonomy.

Second, Aguilera et al. (2021) have argued that a free energy
minimizing system would fail to satisfy a key condition for
sensorimotor agency referred to as “interactional asymmetry”.
They show how the mathematical assumptions the FEP rests
upon only apply to systems whose interactions with the
environment are symmetrical. If Aguilera et al. are correct,
the mathematics of the FEP is not well suited for modeling
sensorimotor autonomy. The FEP doesn’t take us any further
forward in understanding the formal properties of systems that
are the source of their own values, needs and goals.

We finish up by offering reasons why the door should remain
open to a synthesis of the FEP and enactive cognitive science
we propose in our paper. First, we argue that the FEP is highly
general, applying to both systems that implement mere active
inference as well as to systems that are able to perform adaptive
active inference. We suggest this generality is an advantage of
the FEP allowing it to approximately represent a wide range
of different systems including, if the arguments of our paper
hold up, systems that fall in the region of those possessing
sensorimotor autonomy. Second, we will argue that systems that
implement adaptive active inference will tend to exhibit transient
or metastable dynamics in which there is a recurring creation
and destruction of large-scale coordination dynamics. Although
metastable systems can be described as on average revisiting their
attracting states they will avoid ever settling into any of these
attracting states. Metastable systems exhibit the kind of historical,
path-dependent learning required for acquiring a sensorimotor
identity, and becoming an agent. Thus the key question for the
FEP is whether adaptive active inference can be used to model
systems with metastable dynamics. We will provide reasons for

returning a positive answer to this question; though the work
of building such formal models, so far as we know, remains to
be done.

We conclude that the two frameworks need each other.
Enactive cognitive science needs the FEP to formally model the
properties it argues to be constitutive of agency. The FEP needs
enactive cognitive science for the solution it provides to the
problem of meaning. In the end engaging more closely with
this formalism and its further developments will benefit those
working within the enactive framework.

The Enactive Approach to the Problem of

Meaning in Artificial Intelligence
Biological agents are able to act in ways that express a sensitivity
to context-dependent relevance. Organisms engage with an
environment that is structured by their practical involvements,
cares and concerns. Minimally, organisms have a concern for
their own continued existence and their manners of living.
Organisms must for instance engage in a continuous struggle to
stave off death. Human agents are of course concerned withmuch
more than meeting basic biological needs required for survival.
Their activities are animated and driven by a variety of desires
they strive to satisfy, many of which stem from distinctively
human, sociocultural ways of living.

The problem of meaning arose in artificial intelligence in
attempting to design artificial agents that are able to act adaptively
and flexibly in dynamic complex and open-ended real-world
situations. A popular approach in artificial intelligence research
has been to build systems that learn an internal model of their
environment and that make inferences and plans on the basis of
this internal model (e.g., Lake et al., 2017). The sensitivity to what
is relevant in a perceived situation has however proved resistant
to specification in ways that could allow for this sensitivity to
be captured in an internal model. To act adaptively and flexibly
in dynamic complex environments such a system will need to
determine from its internal model what is actually relevant under
conditions of continuous change. Everything the system knows is
of possible relevance. How then does the system determine what
is of actual relevance without engaging in an exhaustive search of
everything it knows (Dennett, 1984; Dreyfus, 1992; Fodor, 2000;
Wheeler, 2005; Samuels, 2010; Vervaeke et al., 2012; Vervaeke
and Ferraro, 2013; Danks, 2014; Shanahan, 2016)? The problem
could perhaps be solved if artificial intelligence researchers could
find a way to make an internal model that represents all possible
contexts in terms of their determinate properties. However, the
environment that living beings encounter in perception is not
an environment made up of objects and properties that stand in
determinate logical relations. As we began this section by noting,
organisms perceive an environment that is structured by their
needs, cares and concerns.

In what follows we will take the problem of meaning
to be equivalent to what is sometimes called the “relevance
problem.” Thus, we will use the terms “meaning” and “relevance”
interchangeably in what follows. Meaning and relevance should
be distinguished from information which we take to refer to
statistical correlation between states of two systems (e.g., an
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organism and its environment). We take it to be uncontroversial
that statistical correlation does not suffice to make it the case
that the states of a system are meaningful for the system (Hutto
and Myin, 2013). In living systems what makes a state the bearer
of meaning is the history, dynamics and structure of the system
(Varela, 1979; Oyama, 2000; Thompson, 2007). The history and
structure of the living organism serve as the basis for needs, goals
and values that move the organism to act in its environment.
Meaning is determined by the organism’s history, dynamics and
structure. We identify meaning with relevance because we take
meaning to be brought forth by the agent through a history of
engagement with an environment that is relevant to the agent
because it is structured by the agent’s needs, concerns and values.

Froese and Ziemke (2009) argued that the problem ofmeaning
could be circumvented if artificial intelligence researchers were
to design agents based on the assumption of the continuity
of life and mind. The core idea behind life-mind continuity
is that intelligence depends upon its biological embodiment,
where embodiment is to be understood in terms of the
organizational properties of autonomy and adaptivity. The idea
of continuity is therefore that the concepts and principles
required for understanding and explaining features of mind
such as subjectivity, agency and individual identity, are also the
principles and concepts employed to explain the phenomenon of
life (Kirchhoff and Froese, 2017; Di Paolo, 2018: p.74). Agents
that are biologically embodied are the source of their own norms,
values and goals. They escape the problem of working out from
everything they know, what is relevant to their current and future
contexts of activity. Relevance is not an extra ingredient that
has to be added to what the agent already knows but is instead
intrinsic to what is perceived. To see how this follows, we must
further unpack the key concepts of biological autonomy and
adaptivity briefly encountered in our introduction.

To possess biological autonomy a system must first of all be
operationally closed. That is to say it must be organized so as
to produce “a network of precarious processes in which each
process enables at least one other process in the system and is,
in turn, enabled by at least one other process in the system”
(Di Paolo et al., 2017: p.113). The operationally closed network
has a precarious existence insofar as the constituent parts that
make up the network as a whole, are processes that stand in
co-enabling relations. Each process would break down were it
not causally enabled by the other processes in the network.
The component processes are co-enabling insofar as they work
together to produce the larger network as a whole. The self-
production of the network as a whole is a task that needs to be
continually accomplished if decay, disintegration and death are
to be avoided. The system can therefore be said to be biologically
autonomous in the sense that it is the operation of the processes
that make up the system that enable its continued self-production
and its self-distinction from its surroundings.

Systems that are biologically autonomous constitute or
produce themselves as individuals – they are self-individuating.2

2Maturana and Varela’s (1980) concept of autopoiesis is a paradigm example

of biological autonomy. An autopoietic system is composed of co-enabling

processes that form an operationally closed network, and that dynamically produce

This process of self-individuation serves as the basis for agency
– the organism is able to distinguish and actively regulate
flows of energy and matter that contribute positively to its
self-individuation, and avoid those that potentially interfere
with its biological autonomy (Varela, 1991; Di Paolo, 2005;
Thompson, 2007). The organism’s coupling with its environment
is inherently risky because of the precariousness of the processes
that produce and sustain the organism’s continued existence.
To succeed in its goal of continuously realizing processes
of self-production, the organism must be selectively open to
energetic exchanges with the environment that contribute to the
conditions of its self-production, and closed to exchanges that
threaten its self-distinction (Di Paolo, 2018: p.84). Autonomy
thus underwrites a basic biological form of normativity – the
capacity to differentiate between, and thereby regulate, flows of
matter and energy based on how well or badly they contribute
to the organism’s goal of maintaining its precarious identity.
The classic example of biological normativity, and one we will
return to later, is chemotactic behavior in which a bacterium will
move toward metabolisable compounds and move away from
metabolic inhibitors.

The biological normativity that is intrinsic to autonomy is
not dependent on the observer’s perspective on the organism’s
behavior. It is a capacity that is intrinsic to the organism’s
biological organization. The organism’s capacity to regulate and
modulate its relation to the environment is dependent on a
sensitivity to dynamical trajectories, gradients, and tendencies Di
Paolo has labeled “adaptivity”. Adaptivity is agentive in the sense
that it is a capacity the system actively exercises in changing the
parameters and conditions of the agent-environment relation in
for instance seeking out food when energy is anticipated to be
needed. This active modulation introduces an asymmetry into
the organism’s coupling with its environment, referred to in the
literature as “interactional asymmetry” (Barandiaran et al., 2009;
Di Paolo et al., 2017, §5.2.2). The organismmodulates its relation
to the environment based on its sense of whether environmental
events are good or bad for its continued existence.

Di Paolo (2005) defines adaptivity as:
“A system’s capacity, in some circumstances, to regulate its

states and its relation to the environment with the result that, if
the states are sufficiently close to the boundary of viability,

1. Tendencies are distinguished and acted upon depending on
whether the states will approach or recede from the boundary
and, as a consequence,

2. Tendencies of the first kind are moved closer to or
transformed into tendencies of the second and so future states
are prevented from reaching the boundary with an outward
velocity.” (Di Paolo, 2005: p. 438)

The reason this is important is because it implies that the
organism need not passively respond to environmental events
in a state-determined manner based only on its previous state.
The organism’s operating conditions can undergo change over

the system’s own material boundary. It should be noted that systems can be

autonomous while lacking a material boundary. This is the case for insect colonies

for instance that form autonomous social networks (Thompson, 2007: p.44).
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time based instead upon its history of interactions with its
environment. The organism can in this way have a plastic identity
that is given shape by its history of acting, and being acted
upon by its environment. Meaning can thus be understood as
actively generated or brought forth by the organism based on
the history of sensorimotor interaction with its environment
that has become sedimented in its biological organization. So
conceived, meaning does not need to be somehow added to
what the organism knows because the environment the organism
relates to is always already imbued with meaning based on the
organism’s past history of interaction.3

So far our treatment of the concepts of biological autonomy
and adaptivity has focused on processes that the organism
depends upon for its continued viability. However, the norms
relative to which the organism regulates its interactions with
the environment do not only concern its continued existence
in the here and now. The significance of sensory perturbations
for the organism go beyond their immediate bearing upon the
organism’s operationally closed organization.4 The processes that
constitute and produce the organism as an agent, include its
regular and relatively stable patterns of sensorimotor behavior.
These patterns of sensorimotor behavior have been argued to
also exhibit the key properties of autonomy—they depend upon
operationally closed sensorimotor networks made up of co-
enabling bodily and environmental processes (Di Paolo, 2005;
Barandiaran, 2008; Egbert and Barandiaran, 2014; Di Paolo et al.,
2017; Ramírez-Vizcaya and Froese, 2020). Think for example of
habits like smoking cigarettes or drinking coffee when you wake
up in the morning. These are sensorimotor patterns of behavior
that are self-sustaining, but that do not positively contribute to
maintaining the organism’s biological viability, and may even
be harmful to the organism. A pattern of behavior becomes a
self-sustaining habit when the processes that enable it—neural,
muscular and environmental—depend for their stability and
organization on the regular performance or enactment of the
pattern of behavior (Di Paolo et al., 2017: p.144; also see Egbert
and Barandiaran, 2014). Thus these processes come to form
operationally closed sensorimotor networks in much the same
way asmetabolic processes do. At the same time, the organization
of the sensorimotor network is precarious because it is at risk of
extinction if the pattern of behavior is not regularly enacted.

It has recently been proposed that sensorimotor autonomy
could serve as a design principle for artificial agents that
would allow researchers to avoid the difficult problem of
engineering systems that metabolically self-produce. Di Paolo
(2003) suggested for instance that robots could be built with

3Von Uexküll (1957) introduced the idea of a sensorimotor world (an Umwelt)

to characterize this meaningful environment. The Umwelt is the world as it is

perceived by an organism given its sensorimotor repertoire.
4Di Paolo et al. (2017) refer to Margaret Donaldson’s distinction between four

modes of human thinking about the world, which she distinguished based on the

degree of decentering from the agent’s point of view on the world in the here

and now. Humans can for instance plan for future events, and they can detach

themselves entirely from their own concerns in thinking about moral and political

values. Di Paolo et al. appeal to what they call “virtual actions” to account for the

development of these decentered modes of thinking out of sensorimotor agency

(see also Kiverstein and Rietveld, 2018). It is beyond the scope of our paper to

discuss their account of virtual actions in further detail.

mechanisms “for acquiring a way of life, that is, with habits”
(p.31). Designing agents that can acquire self-sustaining habits
will have the consequence that such agents will engage with
the world based on norms, goals and values that relate to the
sustaining of their habits. They will differentially evaluate the
situations they encounter in terms of their relevance for the
realization of processes upon which the sustaining of their habits
depend. Such an agent doesn’t relate to an action-neutral world
that stands in need of representation. It will not need to work out
from all possible responses, which responses are actually relevant
to its current situation. Instead agent and environment will form
a single system that is continuously reconfigured in ways that
allow for the sustaining of the sensorimotor autonomy of the
agent. This is, in a nutshell, the enactive proposal for how to solve
the problem of meaning in artificial intelligence.

Still a question remains of how to model sensorimotor
autonomy. The question we take up in the rest of our paper
is: could the free energy principle (FEP) provide a formal
description of the conditions for the design of an artificial agent
that possesses sensorimotor autonomy?

The Free Energy Principle: A Brief

Introduction
The FEP purports to describe the organizational properties a
system must instantiate if it is to preserve its organization over
time in its interaction with a dynamic environment. The FEP
has been argued to apply to “any biological system. . . from single-
celled organisms to social networks” Friston and Stephan (2007).
It claims that all complex adaptive systems that are able to resist
a tendency to disorder must minimize an information-theoretic
quantity known as “free energy”. Friston (2010) for instance
formulates the FEP as follows:

“The free-energy principle. . . says that any self organizing system

that is at equilibrium with its environment must minimize its free

energy. The principle is essentially a mathematical formulation

of how adaptive systems (that is, biological agents, like animals

or brains) resist a natural tendency to disorder.” (Friston,

2010: p.127).

The FEP is sometimes described as a tool the scientist employs
purely for modeling purposes. Raja et al. (2021) for instance
formulate the FEP as claiming: “Any ergodic random dynamical
system with an attractor and a Markov blanket behaves as if
it were minimizing the variational free energy of its particular
states” (p.3, our emphasis). The “as if ” qualifier here is used
to indicate that the behavior of complex adaptive systems is
modeled on the assumption that adaptive systems minimize
variational free energy. It doesn’t matter for modeling purposes
if this assumption is true. A number of papers argue on this
basis that strictly speaking the FEP has nothing to say about
the organizational properties of the complex adaptive systems it
purports to model (Ramstead et al., 2020b; van Es and Hipólito,
2020; van Es, 2021). These authors argue the FEP should be
understood in purely instrumental terms as a scientific tool
for predicting the observable behavior of adaptive systems. Our
paper is premised on the assumption that such an instrumentalist
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reading of the FEP is incorrect [for further discussion see
Andrews, 2021; Kirchhoff et al., 2022; Kiverstein and Kirchhoff,
2022]. Our aim in this paper is to consider whether the FEP
can be used to formally model sensorimotor autonomy. We take
sensorimotor autonomy to be a real organizational property that
tells us what it is for a system to be an agent. Our aim is to
consider if models based on the FEP can be taken to truthfully
represent a real organizational property of agents.

The FEP, as we will understand it, employs the mathematical
formalism of non-equilibrium steady-state (NESS) systems to
model the properties a complex adaptive system must instantiate
if it is to preserve its organization over time (Friston, 2012,
2013, 2019). Any biological system will be able to maintain
order within a boundary (modeled as a “Markov blanket,” more
on which below), separating the internal states of this system
from the external states of its environment. The FEP claims
that to maintain order within this boundary, the system must
(on average, and over time) revisit a set of sensory states
when it is perturbed by the environment. We will refer to the
set of sensory states that the system is modeled as repeatedly
revisiting over time as the “attracting set” for a given biological
system. We can think of the attracting set as a model of the
system’s extended phenotype since it will include variables for
morphological states as well as behavioral patterns that relate
to the niche the agent constructs (Friston, 2011; Kirchhoff and
Froese, 2017; Bruineberg et al., 2018; Kirchhoff and Kiverstein,
2019). A system’s attracting set will include physiological states
such as blood oxygen concentration and pressure levels and
body temperature that must be maintained within a certain
range of values if the organism is to survive. Other sensory
states belonging to a system’s attracting set relate to its niche -
fish frequent aquatic environments, while humans tend to live
on land and only occasionally find themselves underwater. The
states belonging to the system’s attracting set will therefore be
the subset of all possible states the system can occupy that are
highly probable given the system’s phenotype and the niche it
inhabits. States that fall outside the attracting set are potentially
threatening to the maintenance of order within the system
because they lead to an increase in disorder or entropy within
the system. States that lead to an increase in disorder will be
surprising or improbable for a NESS system that tends toward
an ordered set of states over time in its exchanges with the
environment. The states belonging to the system’s attracting set
are states the system expects to occupy over time.When the states
of the system fall outside of its attracting set this is therefore
surprising because the probability of finding the system in such
states is low. (“Surprise” is to be understood as the improbability
of a particular sensory state, and is not to be confused with
agent-level surprise, which occurs in response to an unexpected
conscious sensation).

The system has no tractable way of calculating whether a given
sensory state is surprising or not. This is because the probability
of a sensory state is calculated relative to a state of the possible
influences of external states of the environment on the internal
states of the system. The state space is however potentially
infinite, thus computing the probability of each sensory state by
searching through this state space will prove intractable. This

is where free energy can help, since free energy is a quantity
that can act as an upper bound on surprise. Free energy more
technically is a function of the function of sensory states that
is parameterized by the internal states of a system. Since free
energy is a function of the sensory and internal states of the
system, it is in principle computable (Friston and Ao, 2012).
Moreover, it is a quantity over which the organism has (indirect)
control since it maps onto the organism’s sensory states that it can
control through action, and internal states that admit of a certain
degree of plastic reorganization through learning. Minimizing
free energy will guarantee that sensory states remain in a high-
probability area in the system’s state space. So long as the NESS
system can keep the free energy associated with its sensory states
to a minimum, it will succeed in remaining in states that belong
to its attracting set.

The FEP states that all quantities that can change in a NESS
system will change to minimize free energy (Friston and Stephan,
2007). Free energy quantifies the mismatch between the sensory
states the system expects to sample through its actions, and
those it actually samples. The notion of “expectation” should be
understood in relation to a model that is entailed by the internal
dynamics that form in the system’s coupling with its niche. The
function of this model is to anticipate sensory perturbations
originating in the environment external to the system, allowing
the system to proactively adapt its actions to those perturbations.

The FEP models complex adaptive systems as random
dynamical systems that are attracted toward a non-equilibrium
steady-state (a NESS). The FEP assumes adaptive systems will
tend to exhibit certain dynamical flows of states over time
determined by, amongst other things, their phenotypic states,
body morphology, and their ecological niche. Generative models
are used to describe the statistics of these flows (Ramstead
et al., 2020a). For a system to tend to flow toward a NESS
by minimizing free energy is for the system to minimize the
discrepancy between the variational density (also sometimes
called the “recognitional density”) the organism instantiates in
its internal dynamics, and the true posterior or the external
dynamics in the environment. Free energy can thus be thought
of as quantifying mathematically the mismatch between the
organism’s internal dynamics and the external dynamics of its
environment (Bruineberg et al., 2018).

Friston (2013) has proposed that a living system does not have
a model of its environment but it is a model of its environment,
which highlights that the notion of “model” the FEP is premised
upon is implicit in the living system’s internal dynamics. In this
sense, there is no distinct system inside of the central nervous
system of the agent that uses a model to engage in inference. For
Friston, inference just is a description of the flow of the internal
dynamics of the living system. Friston takes the generative model
to be organized around the organism’s belief in its own continued
existence. All of the actions the organism undertakes aim at
sampling sensory states that maximize the evidence for this belief
in its continued existence, a belief Allen and Tsakiris (2018)
have referred to as the “first prior”. To minimize free energy is
at one and the same time to maximize evidence for this belief
in the living system’s continued existence. Hohwy (2016) refers
to this property of living systems whereby they act to sample
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evidence that confirms the belief in their own continued existence
as “self-evidencing”.

Free energy can be minimized in two intimately related ways
referred to as “perceptual” and “active inference”. In perceptual
inference free energy is reduced by changing the dynamics
internal to the system (Friston, 2010; Hohwy, 2013). The
internal dynamics of the system embody a model of the agent’s
econiche by means of which it can steer its actions (Friston,
2011). Perceptual inference involves plastically restructuring the
internal dynamics in such a way that the agent is better able
to accommodate external sensory perturbations arising from
the changes in its niche in the future (Friston et al., 2016).
Free energy is kept to a minimum in part by generating and
modifying an internal dynamics that closely approximates the
external environmental dynamics. We said that perceptual and
active inference are intimately related (Hohwy, 2013). This
intimate relation follows from what we have just referred to as
self-evidencing (Hohwy, 2016): the internal dynamics that are
adjusted in perceptual inference are organized around sampling
sensory evidence that confirms the agent’s belief in its own
continued existence (Fotopoulou and Tsakiris, 2017; Allen and
Tsakiris, 2018; Seth and Tsakiris, 2018).

In active inference the agent acts to sample sensory states
belonging to its attracting set (Friston et al., 2017a,b). The sensory
states that are expected given the first-prior are those that relate
to the agent’s needs, goals and intentions (Allen and Tsakiris,
2018). The agent’s continued existence will for example depend
on its meeting its biological needs for warmth, nourishment, and
attachment (Fotopoulou and Tsakiris, 2017). If the agent is to
sample sensory states that maximize the evidence for the first
prior, this will require the agent to act in ways that satisfy such
basic needs. A simple example is eating when hungry. Hunger
indicates a potential breach of essential variables relating to blood
glucose levels (i.e., a deviation from the system’s attracting set).
The action of eating helps to correct this potential breach before
it arises. With this brief summary in place we turn next to
the question of whether the FEP provides a formal description
of the conditions required for an artificial agent to possess
sensorimotor autonomy.

The Free Energy Principle: A Minimal

Condition for Sensorimotor Autonomy?
Recall our proposal is to use sensorimotor autonomy as a
biologically-based design principle for building artificial agents
(Barandiaran, 2008; Egbert and Barandiaran, 2014; Di Paolo
et al., 2017; Ramírez-Vizcaya and Froese, 2020). The idea is that
habits are self-sustaining patterns of activity that constitute a
systemic identity for the agent relative to a sensorimotor domain.
Relevance arises out of the needs, goals and interests the agent
has in sustaining its habits. Situations and activities “become
meaningful not only in virtue of their contribution to biological
survival, but also in virtue of their contribution to the stability
and coherence of a sensorimotor repertoire” (Di Paolo et al., 2017,
p.39). An agent that has sensorimotor autonomywill have its own
point of view relative to which evaluations of action possibilities
can be made in terms of their relevance for the agent. Does the

FEP provide a set of mathematical tools that can be used tomodel
sensorimotor autonomy? Is free energy minimization sufficient
for sensorimotor autonomy? The payoff for a positive answer
to this question will be formal tools that allow us to connect
meaning and relevance to a system’s intrinsic dynamics.5

The FEP is broad in terms of the systems to which it applies.
Swinging pendulums, Watt governors and pebbles have all been
argued to count as systems that can be described as minimizing
free energy in their dynamic coupling with the environment
(Kirchhoff and Froese, 2017; Kirchhoff et al., 2018; Baltieri et al.,
2020; van Es and Kirchhoff, 2021). Two coupled pendulums A
and B can, for example, be described as modeling each other’s
motion. Given the internal states of pendulum A, and the effects
of its velocity and motion on the beam from which it is hanging,
pendulum A can be said to infer the motion of pendulum B.
This is possible because the motion of pendulum A, through its
effects on the beam, enslaves the motion of pendulum B, and vice
versa. When the two pendulums come to swing in synchrony
the coupling of the two pendulums can therefore be described
in terms of free energy minimization (Bruineberg et al., 2018;
Kirchhoff et al., 2018). In line with our earlier work, we describe
this process of free energy minimization that can be observed in
non-living, and non-cognitive systems as “mere active inference”
(Kirchhoff et al., 2018). Each pendulum infers through its own
motion and the effects of its motion on the beam, the motion of
the other pendulum.

Mere active inference is qualitatively different from the
process of free energy minimization that occurs in living and
cognitive systems (Kirchhoff, 2018). Living systems are able to
sample among different options, and select the option that has
the least expected free energy.6 While the pendulums enslave
each other’s motion, living systems are able to free themselves
from their proximal conditions by selecting temporally extended
sequences of actions that minimize expected free energy
associated with future states. We have used the term “adaptive
active inference” to describe what living systems are able to
do that is missing in systems that engage only in mere active
inference (Kirchhoff et al., 2018). In adaptive active inference
sequences of actions are selected that minimize the cumulative

5Kolchinsky and Wolpert (2018) have recently explored a strikingly similar

proposal. They begin their paper by noting the difference between what they

call “semantic information” and Shannon information as a measure of statistical

correlation between two systems. They seek to provide formal tools that describe

how semantic information could be intrinsic to the dynamics of a system in a

given environment. Central to their proposal is a viability function which they

define as “the negative Shannon entropy of the distribution over the states of the

system X” (p.2). They use Shannon entropy as an upper bound on the probability

that the system occupies states belonging to its viability set in a similar fashion

to how Friston uses variational free energy in relation to a system’s NESS. An

important difference is that Shannon entropy is not computationally tractable

for the agent, whereas variational free energy represents a quantity an agent can

control through its actions. We will postpone exploring further the similarities

and differences in our proposals. What we wish to emphasize for now is that both

our proposals aim to formalize meaning (Kolchinsky and Wolpert use the term

“semantic information”) in terms of a quantitative measure of viability - in our

case variational free energy.
6The distinction between mere and adaptive active inference is formally grounded.

For discussion see Millidge et al. (2021), though they do not use our terminology

of “mere” and “adaptive” active inference.
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sum of free energy over time, a quantity referred to as “expected
free energy” (Friston et al., 2017a,b).

Adaptive active inference is distinguished from mere active
inference in aiming at the selection of actions whose sensory
effects minimize expected free energy. (Expected free energy is
the free energy expected upon executing a temporally-extended
sequence of actions.) Expected free energy is a function of
two quantities referred to as instrumental and epistemic value.7

To minimize expected free energy an agent must select action
policies (sequences of actions) that maximize both instrumental
and epistemic value. Instrumental value is maximized when
the sensory observations an agent expects to sample match its
preferred outcomes (its needs, goals and desires). Thus, acting
to maximize instrumental value can be thought of as equivalent
to goal-directed behavior. Epistemic value quantifies information
gain or the reduction of uncertainty about the hidden states
of the environment. An agent maximizes epistemic value by
maximizing the information that is gained through exploratory
actions of the environment. An active inference agent that acts
to minimize expected free energy will continuously be balancing
instrumental actions that aim at bringing about preferred
outcomes with epistemic actions that aim at uncertainty
reduction. Crucially, while this kind of epistemic (or information
seeking) foraging should on average result in the minimization
of uncertainty, there will nevertheless be short-term peaks of
uncertainty given an organism’s exploration of its surroundings.
The aim is thus to strike the right balance between the reduction
of entropy and temporarily increasing entropy. The pay-off
for finding this right balance (what is sometimes called the
“exploitation-exploration trade-off”) is that the agent will avoid
getting trapped in any local minima. They will be able to make
continuous progress and improvements in learning in ways
that are conducive to long-term free energy minimization. (For
further discussion see Kiverstein et al., 2019).

There are other points of importance to note about adaptive
active inference. First, the generative model is biased toward
sampling sensory observations thatmatch the agent’s preferences,
goals and desires (Bruineberg et al., 2018; Tschantz et al., 2020).
Second, and relatedly, epistemic actions will work in the service
of tinkering with a model that is biased toward the control of
certain sensory outcomes. As Tschantz et al. have noted, an active
inference agent will tend to forage for information in parts of the
environment expected to maximize instrumental value (Tschantz
et al., 2020: p.7). That is to say, the improvement in themodel that
epistemic actions make possible are ultimately improvements in
the service of the agent’s goals.

To minimize expected free energy the agent has to select
from among action policies, the policy that is expected to lead
to preferred outcomes and goals (Friston et al., 2017a,b; Pezzulo
et al., 2018). This might be thought to lead the active inference
agent to encounter the relevance problem once again.8 The

7For mathematical details of how epistemic and instrumental value are computed

we refer the reader to Tschantz et al. (2020, pp.25–26), and Friston et al. (2017a).

For discussion of the relation between variational and expected free energy see

Millidge et al. (2021).
8Our thanks to an anonymous reviewer for raising this objection.

agent will always be faced with an open-ended range of possible
action policies but can only search a narrow area within this
space. How then does the agent constrain the search space
to only action policies of relevance (i.e., those expected to
minimize free energy? Most active inference models up until
now have avoided this question by pre-specifying the search
space. Within this predefined search space action policies are
then selected on the basis of the agent’s belief in the precision
of the policy - the confidence the agent places in the sensory
consequences of its actions. The work of scoring action policies is
taken over by the precision estimate associated with each action
policy. Precision estimates are based on expected uncertainty
(or salience) and unexpected uncertainty (or volatility, Parr
and Friston, 2017). The higher the precision for each action
policy, the more confident the agent can be that the sensory
outcomes of its action will match its preferred outcomes. A risky
action policy is one whose sensory consequences the organism
anticipates will diverge from its preferred outcomes leading to
an increase in expected free energy. Precision estimates can
be thought of as having effects comparable to attention. They
bias action selection toward actions whose sensory consequences
are expected to minimize free energy. The “gain” is turned-up
on opportunities to bring about those sensory consequences.
Precision is decreased and the gain turned-down on actions
whose sensory consequences are associated with increases in
free energy.

Is there reason to believe that adaptive active inference will
scale-up from a predefined search space of action policies,
without the agent once again encountering the relevance
problem?9 Recall how we are proposing that artificial agents that
develop sensorimotor autonomy will circumvent the problem
of meaning. Meaning will arise out of the agent’s history of
activity in an environment structured by its needs, interests and
concerns. Meaning is not an extra ingredient the agent needs
to add to information to determine how to solve what would
otherwise be an ill-defined problem. “With ill-defined problems,
the goal-state is often murky, the initial state is unclear,” and the
operations that will take you from your initial state to your goal
state are unspecified (Vervaeke and Ferraro, 2013, p.4). Before
one can solve an ill-defined problem one must determine what
information is relevant for defining the problem. Our hypothesis
is that agents that possess sensorimotor autonomy however will
typically not encounter ill-defined problems.10 They will relate to
an environment that is already meaningful because of their past

9For recent reviews of the application of active inference models in robotics see

Lanollis et al. (2021) and Da Costa et al. (2022). We discovered these papers only

after completing the writing of this manuscript and plan to discuss them fully in

follow-up work.
10We do not claim that skilled agents never encounter ill-defined problems. We

suggest exploratory or “epistemic” actions that aim at uncertainty reduction will

provide an important part of the answer to how agents solve such problems

when they do arise (see e.g. Friston et al., 2017b). It is an important question

for further research whether agents engaging in epistemic actions to solve an ill-

defined problem would once again encounter the relevance problem. How is it

that agents performing epistemic actions to solve an ill-defined problem constrain

the space of possible solutions they sample? This question is partially addressed

by active inference models of curiosity and insight (see e.g. Friston et al., 2017a).

Thanks to one of our reviewers for raising this problem.
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history of engagement. The habits they have developed provide
them with know-how or skills that form the basis for norms
that guide the agent’s actions. Situations and activities are good
or bad, adequate or inadequate, successful or unsuccessful to
the extent that they contribute to the sustaining of the agent’s
sensorimotor identity.

We will consider next if models of adaptive active inference
could be used to formally describe the organizational property
of sensorimotor autonomy. To address this question we
need to briefly introduce the Markov blanket formalism. The
terminology of Markov blankets is borrowed from the literature
on causal Bayesian networks (Pearl, 1988; Bruineberg et al.,
2022). The Markov blanket for a node in a Bayes network
comprises the node’s parents, children and parents of its children.
The behavior of the blanketed node can be predicted from the
states of the blanket without knowing anything about the nodes
external to the blanket that are the causes of changes internal to
the network. We suggest the Markov blanket formalism can be
used to model sensorimotor autonomy. Here we make the case
only informally and schematically. It is a task for future research
to turn our philosophical argument into concrete formal models.

Our core idea is that the autonomy of the sensorimotor
network can be modeled as the nesting relations among Markov
blankets in systems that perform adaptive active inference. Each
component process in the system can be thought of as having
its own Markov blanket. Two components A and B stand in an
enabling relation when the active states of the Markov blanket
of A cause the sensory states that belong to the attracting set of
B (i.e., the sensory states that B must occupy if it is to remain
viable). B will begin to break down when the sensory states that
form its Markov blanket are improbable, departing from what
is expected given its attracting set. Thus B’s continued viability
is enabled by the active states of A. Conversely, component
B enables component A if the sensory states belonging to A’s
attracting set are made highly probable by B’s active states. So
long as the Markov blankets of each of the component processes
couple in such a way that each of the components remains in high
probability sensory states, (a condition that will be satisfied in
systems that engage in adaptive active inference) the result will be
the self-production and self-distinction of the system as a whole
(Ramstead et al., 2021; van Es and Kirchhoff, 2021). A system that
engages in adaptive active inference will succeed in maintaining
operational closure under precarious conditions.

Nave (2022) criticizes the use of Markov blankets to
model metabolic self-production. She argues that organisms
are intrinsically unstable structures that define their boundaries
while undergoing near constant material turnover. To deploy
the Markov blanket formalism we would first need to identify
the organization of the system of interest, which is a challenge
in living systems undergoing continuous material change. She
concludes that the Markov blanket formalism can only be
successfully deployed if we already know the organization of the
system we are interested in modeling. Along similar lines, Raja
et al. (2021) have argued that while the cell membrane is the
product of the activity of cells, the Markov blanket is not the
product of the activity of a cognitive system’s internal states.
They conclude: “There is nothing in the use of Markov blankets

that accounts for the fundamental features of the boundary of
self-organized, self-maintained systems” (p.28-9; cf. Suzuki et al.,
2022).

We suggest in response that the self-production of living
systems is understood as an example of autonomy (i.e.,
the production and maintenance of an operationally closed
network under precarious conditions). Such a characterization
of the organization of living systems fits perfectly with Nave’s
description of organisms as “intrinsically unstable structures -
stabilized only via their own ceaseless activity” (Nave, 2022,
preprint, p.4), and with Raja et al.’ concept of constitutive self-
organization. We have just shown informally how the Markov
blanket formalism could be applied to systems that are modeled
as engaging in adaptive active inference. To repeat the main
idea: the sensory states that define the Markov blanket for each
component of an operationally closed system will be coupled
to the active states of one or more of its enabling components.
So long as the system engages in adaptive active inference this
coupling relation will ensure that the sensory states for each
component belong to the component’s attracting set. The result
will be the self-production of the system as a whole as a unity
distinct from its environment.

As a proof of concept example of how adaptive active
inference can be used to model sensorimotor autonomy (but
not biological autonomy), consider the recent active inference
simulation of chemotaxis of Tschantz et al. (2020). “Chemotaxis”
refers to the running and tumbling movements bacteria exhibit
when they encounter a chemical gradient that is a potential
source of food (i.e., a sucrose gradient). This can be thought of
as a form of pragmatic action in which the bacterium acts to
maximize instrumental value. When bacteria sense a negative
gradient (i.e., an acid that is toxic to the bacterium), the rhythm of
the running and tumbling motions alters in such a way as to steer
the bacterium away from danger, and in search of locations were
positive gradients are to be found. This behavior can be thought
of as an epistemic action the bacterium performs to maximize
epistemic value.

Tschantz et al. simulated an active inference agent that selected
between actions by seeking to maximize both instrumental and
epistemic value. They showed that in their simulation agents
employing such a strategy were able to perform at least some
chemotaxis (i.e., running toward positive gradients, and tumbling
away from negative gradients). The strategy of minimizing
expected free energy seems to have allowed the active inference
agent to find the right balance between performing epistemic
exploratory actions of tumbling and instrumental actions of
moving forward. The agent engaged in tumbling behaviors when
it estimated there was less instrumental value in running. In
doing so it learned about the effects of tumbling, and continued
to do so until the value of tumbling becomes less than the value
of running when the agent switches its behavior.

Crucially, the value the simulated agent assigned to actions
was modeled by the change in free energy over time. The policy
of tumbling for instance decreases in value when the agent is no
longer making information gains that resolve model uncertainty,
a situation that can be understood in terms of free energy
remaining constant or increasing. The policy (i.e. sequences of
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actions expected to minimize FE) of running takes on a value
that outweighs that of tumbling when the agent expects sensory
observations that match those it prefers (i.e., a positive gradient).
The increased instrumental value of running can therefore be
equated to an expected reduction in free energy. This is important
because valence has been analyzed and modeled in the FEP
literature in terms of change in free energy over time (Joffily and
Coricelli, 2013; Van de Cruys, 2017; Kiverstein et al., 2019; Hesp
et al., 2021). “Valence” refers to the positive or negative charge of
an affective state.

The rate of change in free energy can be taken as a measure of
how well or badly the organism is faring in its interactions with
the world. When free energy is on the increase, or is not resolved
through action, this means that the agent is in a potentially
threatening situation, while when free energy is decreasing this is
feedback for the agent that it is faring well and should, if possible,
continue on the same path. We suggest then that Tschantz
et al.’ active inference agent exhibits adaptivity in its chemotactic
behavior. The active inference agent uses changes in free energy
to negotiate the trade-off between performing epistemic and
pragmatic actions, as we have just explained. The changes in free
energy over time are used by the agent as feedback that signals
how well it is doing in its goal of achieving chemotaxis, and the
simulated agent modulates its coupling with its environment on
the basis of this feedback. In the next section we take up two
objections that challenge the hypothesis we have been proposing
that the process of adaptive active inference can be used to model
sensorimotor autonomy.11

Ergodicity, Historicity and Interactional

Asymmetry
The first objection we will consider targets the ergodicity
assumption that early iterations of the free energy principle relied
upon (e.g., Friston, 2013). Briefly, “ergodicity” refers to “the time
average of any measurable function of the system converges
(almost surely) over a sufficient amount of time. This means
that one can interpret the average amount of time a state is
occupied as the probability of the system being in that state when
observed at random.” (Friston, 2013, p. 2) If ergodicity holds, the
proportion of time a system spends in any region of its phase
space is equivalent to the probability of the system occupying
this region of its phase space. For example, if the probability of a
coin landing heads is 50/50 then over the course of the time spent
flipping a coin, the coin will spend 50% of this time landing heads,
and 50% of this time landing tails. We can think of the average

11Our argument that agents with sensorimotor autonomy will circumvent the

problem of meaning shares much in common with the account of relevance

realization developed by John Vervaeke et al. in a number of publications (e.g.,

Vervaeke et al., 2012; Vervaeke and Ferraro, 2013). Vervaeke et al. understand

relevance realization in terms of the self-organizing optimisation of trade-offs

between opponent yet complementary learning strategies. An example is how

relevance could be realized in relation to the goal of threat avoidance through

optimizing the trade-off between fight and flight. Vervaeke et al. also frequently use

the example of the trade-off between exploration and exploitation. A discussion of

similarities and differences between our approaches is unfortunately beyond the

scope of this article. However, see Hovhannisyan and Vervaeke (2021) for a recent

account of how the concept of relevance realization could contribute to developing

an enactive approach to humanistic psychology.

time a system spends in any region of its phase space – the space
of all possible states of the system – as being proportional to the
attractiveness of that region. Recall the idea of an attracting set,
that living systems as random dynamic systems, will have a set
of sensory states toward which they will continually evolve over
time whenever they are perturbed. This idea has been taken by
critics to be based on the assumption that living systems literally
are ergodic.12

It has recently been argued that the enactive concept
of adaptivity is fundamentally at odds with the ergodicity
assumption (Di Paolo et al., 2022; also see Colombo and Wright,
2018; Kauffman, 2019 for a critique of ergodicity as applied to
living systems). Adaptivity, they have argued, involves changes
in the phase space of the dynamical system the organism forms
with the environment to avert the potential loss of viability
that would ensue, were the agent to remain in a steady-
state regime. The possibility of such critical transitions in an
organism’s phase space requires an understanding of the change
in internal dynamics the agent undergoes as path-dependent,
that is, as dependent on the agent’s history of interaction with
the environment. We see examples of such phase transitions
in development, in for example, “embryogenesis, life cycle
patterns, epigenetic variability, metamorphosis and symbiosis”
(Di Paolo et al., 2022: p.21). In behavior, critical transitions
occur in perceptual learning, skill acquisition, tool use and
habit formation. Over shorter time scales, changes in patterns
of effective connectivity in the brain that allow for many-to-
many mapping between neural structure and function, or what
Anderson (2014) calls “neural reuse”, depend upon such critical
transitions. In short, phase transitions are ubiquitous in living
and cognitive systems. Di Paolo et al. characterize adaptivity
in terms of phase transitions. An adaptive act is, they contend,
a phase transition in which an agent undergoes a change in
structure switching from an existing dynamical trajectory that
would lead to a loss of viability eventually if left unchecked.
The history of an organism can be described as the “cumulative
change” in the configuration of the phase space that describes the
behavior of the organism over the course of its lifetime.

Di Paolo et al. argues that this characteristic of path-
dependence, whereby the agent’s internal dynamics are
dependent on its past history of phase transitions, is
fundamentally incompatible with the idea of an attracting
set of non-equilibrium steady-states to which the organism
repeatedly returns when perturbed. A system that conserves
its organization in this way will, they argue, quickly forget its
history. The long-term average of the states the system visits
over time will be equivalent to the averaging of the states in an
ensemble of the system at a time. Di Paolo et al. take this to
describe a key difference between physical systems that tend to
conserve invariant structure and biological systems that rely
upon a continuous reconfiguration of their structure following
critical transitions. If adaptivity happens in such moments of

12The ergodicity assumption is employed as an approximation to model systemic

behavior. It requires that a system returns to approximately the same states over

time. The notion of approximate similarity however should not be mistaken for

numerical identity.
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critical transition, it would seem to follow that adaptivity cannot
be understood in terms of adaptive active inference.

First, let us agree with Di Paolo et al. that adaptivity does
indeed occur in moments of critical transition in the dynamics
of an organism-environment system (cf. Varela, 1995). Indeed
historical path-dependence has been central to how we have
analyzed meaning in this paper. We suggest the appearance of
incompatibility of adaptivity, so conceived, with the FEP may
stem from the generality of the FEP. Recall how the FEP is equally
applicable both to physical systems that engage in mere active
inference, and to biological systems which engage in adaptive
active inference. The past history of dynamical interaction is
indeed irrelevant to describing how the swinging pendulums
enslave each other over time. However, the path independence
of behavior is less obviously true of systems that exhibit adaptive
active inference.

Recall that such systems are able to strike the right balance
between the reduction of expected free energy through
instrumental actions, and temporarily increasing free energy
through exploration of the environment. To strike a balance
between exploitation and exploration an adaptive active
inference agent will need to instantiate a metastable dynamics.
Metastability is the consequence of two competing tendencies
(Kelso, 1995): the tendency of the parts of the system to separate
and express their own intrinsic dynamics, which leads to an
increase in free energy, and the tendency of the parts to integrate
and coordinate to create new dynamics, in the way that Di Paolo
et al. argue is required for adaptivity. Metastable systems are able
to transit between regions of their phase space spontaneously
without external perturbation. The structure of a metastable
system is therefore transient. Systems with metastable dynamics
avoid getting trapped in fixed-point attractors that lead to a
single outcome. The internal dynamics are instead itinerant or
wandering in a way that allows for exploratory behaviors that
temporarily increase free energy (Zarghami and Friston, 2020).
However, such temporary increases in free energy allow for just
the kind of dynamical reconfiguration that Di Paolo et al. take to
be essential for adaptivity.13

Indeed we suggest that systems that can find the right balance
between reducing and temporarily inducing increases in entropy
would need to be capable of dynamically reconfiguring their
internal dynamics in ways that fit with the context in which
they are acting. This is not to deny that the internal dynamics
of an adaptive active inference agent can never become rigid
and inflexible over time. However such rigidity is perhaps a
signature feature of psychopathologies (cf. Carhart-Harris et al.,
2014). Think for instance of obsessive compulsive disorder in

13One of our reviewers objected that random dynamical systems that tend toward

a NESS cannot possess metastable dynamics. Friston has however provided

many models of active inference that in his words “provide a key connection to

dynamical approaches to the brain that emphasize. . .metastability” (Friston, 2010,

p.134), a connection that the reviewer takes to be excluded by the derivation of

the FEP. We suspect the reviewer is confusing the mathematics that are used to

derive the FEP, which may well contain equations that fail to capture metastability,

with the use of the FEP to model systems with metastable dynamics. We will

return to this point below in responding to the challenges raised by Aguilera et al.

recent work.

which the agent finds themselves trapped in maladaptive cycles
of behavior. What is characteristic of such pathological behaviors
is a weakening of metastable dynamics that in healthy individuals
allows for finding the right balance between reducing and
increasing entropy.

To summarize our response to Di Paolo et al., we have
argued that an agent that exhibits adaptive active inference will
exhibit the historical path-dependence of behavior they take to be
required for adaptivity. Such an agent will need to exhibit path-
dependent behavior if it is to succeed in maximizing both the
instrumental and epistemic value of its action policies. Indeed,
any system that learns a model of its environment will exhibit
plastic changes in its internal dynamics. The appearance of
an incompatibility between the enactive approach to life and
cognition and the FEP stems from the generality of the FEP.
Certainly some of the systems to which the FEP applies will not be
capable of adaptivity (e.g., those that are modeled as performing
mere adaptive inference) but it doesn’t follow that no systems the
FEP is used to model could exhibit adaptivity.

We turn next to a second recent paper that also challenges
our proposal to use adaptive active inference to formally
model sensorimotor autonomy. It has been argued that to
apply the mathematics of the FEP to concrete physical systems
requires specific assumptions that do not typically apply to the
sensorimotor interactions of living systems (Aguilera et al., 2021).
Aguilera et al. argue for the opposite conclusion from the one
we have been defending, that the FEP is highly particular in
the systems to which it applies. Indeed they claim the FEP
is so particular in its requirements as to fail to pick out the
class of systems that would qualify as having sensorimotor
autonomy. Aguilera et al. make their argument by considering
the assumptions that would be required to apply the FEP to a class
of simple systems whose dynamics are described by stochastic
linear differential equations. They select such systems on the
grounds that if the assumptions of the FEP do not apply to such
simple systems, it is unlikely that they hold for more complex
non-linear systems.

Aguilera et al. begin by considering the type of sensorimotor
interface that, according to the FEP, mediates the interaction of
the internal dynamics of the agent and the external dynamics of
the environment.14 They show that the sensorimotor interface
must have two statistical properties. First, they must be described
by the Markov blanket formalism, whereby internal and external
states are conditionally independent given the sensory and
active states of a Markov blanket. Second, the sensorimotor
interface must be such that solenoidal couplings between internal
and external states are decoupled by blanket states. Aguilera
et al. define “solenoidal couplings” as arising from “dissipative
tendencies in the system” that drive a system “away from
equilibrium” (Aguilera et al., 2021: p.2). They show that any

14Aguilera et al. discuss a second assumption required for applying the FEP to

concrete systems that “implies decoupling the actions of an agent from its history

of previous states” (Aguilera et al., 2021, p.3). Their critique of this assumption

is related to that of Di Paolo et al., discussed earlier in this section, but it also

raises additional issues we cannot tackle in this paper but hope to return to in

future work.
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system that possesses a sensorimotor interface satisfying these
two statistical properties will exhibit an internal dynamics that
can be described in terms of descent on a free energy gradient.
Aguilera et al. show that to connect the average flow or
internal dynamics of a system with a gradient minimizing free
energy requires the assumption that a Markov blanket precludes
solenoidal couplings between internal and external dynamics.

The no solenoidal couplings (NSC) assumption raises
difficulties for our claim that adaptive active inference is sufficient
for adaptivity. Aguilera et al. show that a system that conforms
with the NSC assumption will possess a sensorimotor interface
that precludes adaptivity. This is because systems that satisfy
the NSC assumption will possess a sensorimotor interface that
permits only fully symmetrical interaction loops to form between
agents and environments. If systems that conform with the
FEP must exhibit fully symmetrical sensorimotor interactions
with the environment, such systems will lack adaptivity.
For adaptivity, as we have seen above, requires interactional
asymmetry between agent and environment. Adaptivity requires
that the agent be able to modulate its interaction with the
environment in such a way as to influence the constraints on the
agent’s behavior, where some of these constraints are due to the
agent, and others to its environment.15

By way of a reply, we begin by briefly considering more
carefully the claim that the sensorimotor interface implied by
the FEP can be modeled as a Markov blanket that induces
a separation described statistically in terms of conditional
independence of internal and external states. Now it is crucial
to note that the Markov blanket is not fixed once and for
all but the sensory and active states out of which it is built
continuously undergo change, based on the agent’s coupling with
its environment. The accumulation of fluctuations will gradually
render the states of the Markov blanket independent of the
initial conditions that gave rise to them. Given sufficient time,
the FEP implies that a system that minimizes expected free
energy should instantiate a probability density that converges on
aNESS. However in the intervening period of time as fluctuations
accumulate, internal and external dynamics enter into a transient
state of conditional dependence mediated by theMarkov blanket.
Thus, the Markov blanket condition, that is the conditional
independence of internal and external dynamics, is temporarily
violated. This violation of the Markov blanket condition has been
argued to allow for memory (Parr et al., 2021) but we suggest
it should also allow for a modulation of the agent-environment
relation in line with interaction asymmetry.

This takes us back to our earlier discussion of the historical
path dependence of behavior. Recall that it was the capacity of
agents that conform with the FEP to modulate the parameters
and constraints on their coupling with the environment that
was in contention in this earlier discussion. We argued that
neural processes that alter their dynamics in fluid and adaptive

15Di Paolo et al. note that the individual agent need not always be the source of

the modulation of its coupling. Other agents can also induce asymmetric changes

in dynamical constraints resulting in a modulation of the individual’s coupling

with the environment (Di Paolo et al., 2017: p.120). We set aside this important

complication here.

ways, in response to the requirements of particular contexts of
activity, are part and parcel of adaptive active inference. Such
neural processes are an essential part of selecting action policies
that maximize instrumental and epistemic value in a dynamical
environment. The model of chemotaxis of Tschantz et al. already
exhibits a bistable dynamical profile. It is able to endogenously
switch between running and tumbling based on changes in free
energy. We take this simulation as a demonstration that an agent
can be formally described in accordance with the FEP and exhibit
a minimal form of sensorimotor agency.

Aguilera et al. may respond that our argument fails since
systems that satisfy the NSC assumption must engage in
symmetrical sensorimotor interactions with the environment.
We suggest however that the systems that the FEP models are
dynamical systems that can temporarily violate the assumptions
the models rest upon, while at the same time on average and over
time conforming to those assumptions. Aguilera and colleagues
ask what assumptions are needed to apply the equations of FEP
to a specific class of systems whose dynamics are described by
stochastic linear differential equations. Such an argument seems
to assume however that in order for the FEP to be used to
represent the dynamics of physical systems, its mathematical
equations must literally be instantiated by those physical systems.
This is an example of what we have elsewhere called the “literalist
fallacy”—the fallacy of taking the properties of FEP models
to literally map onto real-world target systems (Kirchhoff et
al., 2022). We suggest instead that active inference models
based on the FEP are better conceived of as idealisations
and approximations that introduce deliberate distortions. The
Markov blanket assumption is an example of such a distortion,
which is why the systems that the FEP describes can violate
this assumption, while at the same time FEP based models can
accurately represent the longer-term dynamics of such systems.

Similar arguments can be made in response to the argument
of Di Paolo et al. that systems with an attracting set or NESS
are memoryless, and are therefore incapable of historical path-
dependent behavior. Di Paolo et al. critique trades on the
assumption that in order for the FEP to truthfully represent a
system, the properties it models must literally be instantiated by
a system. We have been arguing however that the systems the
FEP purports to model are dynamical systems that can fruitfully
be represented as tending to evolve toward states belonging to
their attracting set. The FEP can serve as the basis for models that
provide truthful but approximate and idealized representations
of such systems, including systems that instantiate sensorimotor
autonomy, if the arguments of our paper are valid. We conclude
with some additional issues for further research.

CONCLUSION

Artificial intelligence from its earlier days has struggled with the
problem of meaning. The information that computers process
does not mean anything for the system that is doing the
processing. This information only means something for the
users of these systems. We have argued that the imperative
to minimize expected free energy could serve as an intrinsic
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norm for an artificial agent. Thus adaptive active inference could
provide a formal description of the conditions an artificial agent
would need to satisfy to possess sensorimotor autonomy and
thus to perceive a meaningful environment (see Kolchinsky
and Wolpert, 2018 for a related proposal). We finished up by
considering two objections to our thesis that the imperative to
minimize expected free energy may serve as an intrinsic norm
for an agent. These objections generate a number of important
questions for further research, which we will end by highlighting.

First, we have argued that models of adaptive active
inference can be used to formally describe systems that possess
sensorimotor autonomy. However it could be objected that such
an agent could indeed be considered a model of sensorimotor
autonomy but without itself possessing this property. Just as a
model of intelligence may lack intelligence, similarly a model of
sensorimotor autonomy may not itself instantiate this property.
To genuinely instantiate such a property, it might be argued
that an agent would need to have a material body composed
of processes that self-organize to form operationally closed
networks, and that distinguish the agent as a unified individual
from its environment. The artificial agent of Tschantz et al., which
we have taken as our main example in this paper, has no material
body but exists only in silico. When it is simulating chemotaxis,
it does not engage in exchanges of matter and energy with its
environment that are part of its process of self production and self
differentiation. Thus no matter how good a model of autonomy
and adaptivity it may be, it might be argued it does not yet possess
these organizational properties.

Second, and relatedly, Froese and Taguchi (2019) have argued
that modeling autonomy and adaptivity will fail to solve the
problem of meaning. They concede that artificial agents may be
simulated that act as if they have their own intrinsic norms.
They argue however that an important disanalogy will remain
with organic life. An organism actively brings about its own
existence through engaging in metabolic activity. Its continued
existence or being is, in an important sense, a consequence of
its own doings. It is this relationship between being and doing
that makes for goals and concerns that are intrinsic to the
organism. Froese and Taguchi (2019) argue that any simulation
of artificial agency cannot be said to genuinely have a existence
that is the consequence of its own doing. They argue that
there is no room for meaning, normativity or value to make a
difference to the behavior of such agents insofar as they act in a

simulated environment that is fully deterministic. The behavior
of a simulated agent is due to dynamical constraints on its
internal and interactional dynamics, not to the agent’s bringing
forth a domain of meaningful action. Froese and Taguchi argue
on this basis that if meaning is to make a real difference to the
behavior of an agent, some indeterminacy must be built into the
agent’s engagement with its environment.

Finally, more work is needed on the challenges that arise from
applying the mathematics of the FEP to concrete sensorimotor
agents. Are systems whose dynamics are describable in terms
of non-equilibrium steady-states also capable of path-dependent
behaviors, as we have argued? If the application of the FEP to
concrete systems depends upon the NRC assumption, as Aguilera
et al. show, does it follow that all systems describable in terms
of the FEP must engage in symmetrical interactions with their
environment? Can the FEP be used to model systems with
metastable dynamics?We argued that these are related challenges
but more work is certainly required on the implications of
answering them for the FEP. While there is a good deal
more work to be done, we have argued that the synthesis
of enactive ideas with the FEP may set biologically inspired
AI research on a promising path for addressing the problem
of meaning.
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Computational models of visual attention in artificial intelligence and robotics

have been inspired by the concept of a saliency map. These models account

for the mutual information between the (current) visual information and

its estimated causes. However, they fail to consider the circular causality

between perception and action. In other words, they do not consider where

to sample next, given current beliefs. Here, we reclaim salience as an active

inference process that relies on two basic principles: uncertainty minimization

and rhythmic scheduling. For this, we make a distinction between attention

and salience. Briefly, we associate attention with precision control, i.e., the

confidence with which beliefs can be updated given sampled sensory data,

and salience with uncertainty minimization that underwrites the selection

of future sensory data. Using this, we propose a new account of attention

based on rhythmic precision-modulation and discuss its potential in robotics,

providing numerical experiments that showcase its advantages for state and

noise estimation, system identification and action selection for informative

path planning.

KEYWORDS

attention, saliency, free-energy principle, active inference, precision, brain-inspired

robotics, cognitive robotics

1. Introduction

Attention is a fundamental cognitive ability that determines which events from

the environment, and the body, are preferentially processed (Itti and Koch, 2001). For

example, the motor system directs the visual sensory stream by orienting the fovea

centralis (i.e., the retinal region of highest visual acuity) toward points of interest

within the visual scene. Thus, the confidence with which the causes of sampled visual

information are inferred is constrained by the physical structure of the eye—and eye

movements are necessary to minimize uncertainty about visual percepts (Ahnelt,

1998). In neuroscience, this can be attributed to two distinct, but highly interdependent

attentional processes: (i) attentional gain mechanisms reliant on estimating the sensory

precision of current data (Feldman and Friston, 2010; Yang et al., 2016a), and
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(ii) attentional salience that involves actively engaging with

the sensorium to sample appropriate future data (Lengyel

et al., 2016; Parr and Friston, 2019). Here we refer to

perceptual-related salience, i.e., processing of low-level visual

information (Santangelo, 2015). Put simply, we formalize

the fundamental difference between attention—as optimizing

perceptual processing—and salience as optimizing the sampling

of what is processed. This highlights the dynamic, circular

nature with which biological agents acquire, and process,

sensory information.

Understanding the computational mechanisms that

undergird these two attentional phenomena is pertinent

for deploying apt models of (visual) perception in artificial

agents (Klink et al., 2014; Mousavi et al., 2016; Atrey et al., 2019)

and robots (Frintrop and Jensfelt, 2008; Begum and Karray,

2010; Ferreira and Dias, 2014; Lanillos et al., 2015a). Previous

computational models of visual attention, used in artificial

intelligence and robotics, have been inspired (and limited) by

the feature integration theory proposed by Treisman and Gelade

(1980) and the concept of a saliency map (Tsotsos et al., 1995;

Itti and Koch, 2001; Borji and Itti, 2012). Briefly, a saliency

map is a static two-dimensional ‘image’ that encodes stimulus

relevance, e.g., the importance of particular region. These maps

are then used to isolate relevant information for control (e.g., to

direct foveation of the maximum valued region). Accordingly,

computational models reliant on this formulation do not

consider the circular-dependence between action selection and

cue relevance—and simply use these static saliency maps to

guide action.

In this article, we adopt a first principles account to

disambiguate the computational mechanisms that underpin

attention and salience (Parr and Friston, 2019) and provide

a new account of attention. Specifically, our formulation can

be effectively implemented for robotic systems and facilitates

both state-estimation and action selection. For this, we associate

attention with precision control, i.e., the confidence with

which beliefs can be updated given (current) sampled sensory

data. Salience is associated with uncertainty minimization that

influences the selection of future sensory data. This formulation

speaks to a computational distinction between action selection

(i.e., where to look next) and visual sampling (i.e., what

information is being processed). Importantly, recent evidence

demonstrates the rhythmic nature of these processes via a theta-

cycle coupling that fluctuates between high and low precision—

as unpacked in Section 2. From a robotics perspective, resolving

uncertainty about states of affair speaks to a form of Bayesian

optimality, in which decisions are made to maximize expected

information gain (Lindley, 1956; Friston et al., 2021; Sajid

et al., 2021a). The duality between attention and salience

is important for resolving uncertainty and enabling active

perception. Significantly, it addresses an important challenge

for defining autonomous robotics systems that can balance

optimally between data assimilation (i.e., confidently perceiving

current observations) and exploratory behavior to maximize

information gain (Bajcsy et al., 2018).

In what follows, we review the neuroscience of attention

and salience (Section 2) to develop a novel (computational)

account of attention based on precision-modulation that

underwrites perception and action (Section 3). Next, we

face-validate our formulation within a robotics context

using numerical experiments (Section 4). The robotics

implementation instantiates a free energy principle (FEP)

approach to information processing (Friston, 2010). This

allows us to modulate the (appropriate) precision parameters

to solve relevant robotics challenges in perception and control;

namely, state-estimation (Section 4.2.2), system identification

(Section 4.2.3), planning (Section 4.3), and active perception

(Section 4.3.3). We conclude with a discussion of the requisite

steps for instantiating a full-fledged computational model

of precision-modulated attention—and its implications in a

robotics setting.

2. Attention and salience in
neuroscience

Our interactions with the world are guided by efficient

gathering and processing of sensory information. The quality of

these acquired sensory data is reflected in attentional resources

that select sensations which influence our beliefs about the

(current and future) states of affairs (Lengyel et al., 2016; Yang

et al., 2016b). This selection is often related to gain control,

i.e., an increase of neural spikes when an object is attended to.

However, gain control only accounts for half the story because

we can only attend to those objects that are within our visual

field. Accordingly, if a salient object is outside the center of

our visual field, we orient the fovea to points of interest. This

involves two separate, but often conflated, processes: attention

and salience—where the former relates to processing current

visual data, and the latter to ensuring the agent samples salient

data in the future (Parr and Friston, 2019). That these two

processes are strongly coupled is exemplified by the pre-motor

theory of attention (Rizzolatti et al., 1987), which highlights

the close relationship between overt saccadic sampling of the

visual field and the covert deployment of attention in the absence

of eye movements. Specifically, it posits that covert attention1

is realized via processes that are generated by particular eye

movements but inhibits the action itself. In this sense, it does

not distinguish between covert and overt2 types of attention.

From a first principles (Bayesian) account, it is necessary

to separate between attention and salience because they

speak to different optimization processes. Explicitly, attention

1 Covert attention is where saccadic eye movements do not occur.

2 Overt attention deals with how an agent tracks the object with eye

movements.
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as a precision-dependent (neural) gain control mechanism

that facilitates optimization of the current sampled sensory

data (Desimone, 1996; Feldman and Friston, 2010). Conversely,

salience is associated with selection of future data that reduces

uncertainty (Friston et al., 2015; Mirza et al., 2016; Parr

and Friston, 2019). Put simply, it is possible to optimize

attention in the absence of eye movements and active vision,

whereas salience is necessary to optimize the deployment of eye

movements. In what follows, we formalize this distinction with

a particular focus on visual attention (Kanwisher andWojciulik,

2000), and discuss recent findings that speak to a rhythmic

coupling that underwrites periodic deployment of gain control

and saccades, viamodulation of distinct precision parameters.

2.1. Attention as neural gain control

Neural gain control can be regarded as an amplifier of

neural communication during attention tasks (Reynolds et al.,

2000; Eldar et al., 2013). Computationally, this is analogous

to modulating a precision term, or the inverse temperature

parameter (Feldman and Friston, 2010; Parr and Friston,

2017a). For this reason, we refer to precision and gain control

interchangeably. An increase in gain amplifies the postsynaptic

responses of neurons to their pre-synaptic input. Thus, gain

control rests on synaptic modulation that can emphasize—or

preferentially select—a particular type of sensory data. From a

Bayesian perspective (Rao, 2005; Spratling, 2008; Parr et al.,

2018), this speaks to the confidence with which beliefs can

be updated given sampled sensory data (i.e., optimal state

estimation)—under a generative model (Whiteley and Sahani,

2008; Parr et al., 2018). For example, affording high precision

to certain sensory inputs would lead to confident Bayesian

belief updating. However, low precision reduces the influence

of sensory input by attenuating the precision of the likelihood,

relative to a prior belief, and current observations would do

little to resolve ensuing uncertainty. Thus, sampled visual data

(from different areas) can be predicted with varying levels

of precision, where attention accentuates sensory precision.

The deployment of precision or attention is influenced by

competition between stimuli (i.e., which sensory data to sample)

and prior beliefs. Interestingly, casting attention as precision or,

equivalently, synaptic gain offers a coherency between biased

competition (Desimone, 1996), predictive coding (Spratling,

2008) and generic active inference schemes (Feldman and

Friston, 2010; Brown et al., 2013; Kanai et al., 2015; Parr et al.,

2018).

Naturally, gain control is accompanied by neuronal

variability, i.e., sharpened neural responses for the same task

over time. Consistent with gain control, these fluctuations in

neural responses across trials can be explained by precision

engineered message passing (Clark, 2013) via (i) normalization

models (Reynolds and Heeger, 2009; Ruff and Cohen, 2016),

(ii) temperature parameter manipulation (Feldman and Friston,

2010; Parr and Friston, 2017a; Parr et al., 2018, 2019; Mirza et al.,

2019), or (iii) introduction of (conjugate hyper-)priors that are

either pre-specified (Sajid et al., 2020, 2021b) or optimized using

uninformed priors (Friston et al., 2003; Anil Meera and Wisse,

2021). Recently, these approaches have been used to simulate

attention by accentuating predictions about a given visual

stimulus (Reynolds and Heeger, 2009; Feldman and Friston,

2010; Ruff and Cohen, 2016). For example, normalization

models propose that every neuronal response is normalized

within its neuronal ensemble (i.e., the surrounding neuronal

responses) (Heeger, 1992; Louie and Glimcher, 2019). Thus,

to amplify the neuronal response of particular neuron, the

neuronal pool has to be inhibited such that particular neuron

has a sharper evoked response (Schmitz and Duncan, 2018).

Importantly, these (superficially distinct) formulations simulate

similar functions using different procedures to accentuate

responses over a particular neuronal pool for a given neuron or a

group of neurons. This introduces shifts in precision to produce

attentional gain and the precision of neuronal encoding.

2.2. Salience as uncertainty minimization

In the neurosciences, (visual) salience refers to the

‘significance’ of particular objects in the environment. Salience

often implicates the superior colliculus, a region that encodes

eye movements (White et al., 2017). This makes intuitive

sense, as the superior colliculus plays a role in generation

of eye movements—being an integral part of the brainstem

oculomotor network (Raybourn and Keller, 1977)—and salient

objects provide information that is best resolved in the center

of the visual field, thus motivating eye movements to that

location. For this reason, our understanding of salience is a

quintessentially action-driving phenomenon (Parr and Friston,

2019). Mathematically, salience has been defined as Bayesian

surprise (Itti and Koch, 2001; Itti and Baldi, 2009), intrinsic

motivation (Oudeyer and Kaplan, 2009), and subsequently,

epistemic value under active inference (Mirza et al., 2016; Parr

et al., 2018). Active inference—a Bayesian account of perception

and action (Friston et al., 2017a; Da Costa et al., 2020)—

stipulates that action selection is determined by uncertainty

minimization. Formally, uncertainty minimization speaks to

minimization of an expected free energy functional over future

trajectories (Da Costa et al., 2020; Sajid et al., 2021a). This

action selection objective can be decomposed into epistemic and

extrinsic value, where the former pertains to exploratory drives

that encourage resolution of uncertainty by sampling salient

observations, e.g., only checking one’s watch when one does not

know the time. However, after checking the watch there is little

epistemic value in looking at it again. Generally, the tendency to

seek out new locations—once uncertainty has been resolved at
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the current fixation point—is called inhibition of return (Klein,

2000).

From an active inference perspective, this phenomenon

is prevalent because a recent action has already resolved the

uncertainty about the time and checking again would offer

nothing more in terms of information gain (Parr and Friston,

2019). Accordingly, salience involves seeking sensory data that

have a predictable, uncertainty reducing, effect on current beliefs

about states of affairs in the world (Mirza et al., 2016; Parr

et al., 2018). Thus salience contends with beliefs about data that

must be acquired and the precision of beliefs about policies

(i.e., action trajectories) that dictate it. Formally, this emerges

from the imperative to maximize the amount of information

gained regarding beliefs, from observing the environment.

Happily, prior studies have made the connection between eye

movements, salience, and precision manipulation (Friston et al.,

2011; Brown et al., 2013; Crevecoeur and Kording, 2017). This

connection emerges from planning strategies that allow the

agent to minimize uncertainty by garnering the right kind

of data.

Next, we consider recent findings on how the coupling of

these two mechanisms, attention and salience, may be realized

in the brain.

2.3. Rhythmic coupling of attention and
salience

To illustrate the coupling between attention and salience,

we turn to a recent rhythmic theory of attention. The

theory proposes that coupling of saccades, during sampling of

visual information, happens at neuronal and behavioral theta

oscillations; a frequency of 3–8 Hz (Fiebelkorn and Kastner,

2019, 2021). This frequency simultaneously allows for: (i) a

systematic integration of visual samples with action, and (ii) a

temporal schedule to disengage and search the environment for

more relevant information.

Given that gain control is related to increased sensory

precision, we can accordingly relate saccadic eye movements to

the decreased precision. This introduces saccadic suppression, a

phenomenon that decreases visual gain during eye movements

(Crevecoeur and Kording, 2017). This phenomenon was

described by Helmholtz who observed that externally initiated

eye movements (e.g., when oneself gently presses a side of an

eye) eludes the saccadic suppression that accompanies normal

eye movements—and we see the world shift, because optic flow

is not attenuated (Helmholtz, 1925). An interesting consequence

of this is that, as eye movements happen periodically (Rucci

et al., 2018; Benedetto et al., 2020), there must be a

periodic switch between high and low sensory precision, with

high precision (or enhanced gain) during fixations and low

precision (or suppressed gain) during saccades. Interestingly,

it has been shown that rather than having action resetting

the neural periodicity, it is better understood as something

that aligns within an already existing rhythm (Hogendoorn,

2016; Tomassini et al., 2017). Additionally, the rhythmicity

of higher and lower fidelity of sensory sampling has been

shown to fluctuate rhythmically around 3 Hz (Benedetto and

Morrone, 2017), suggesting that action emerges rhythmically

when visual precision is low (Hogendoorn, 2016), triggering

salience.

Building upon this, we hypothesize that theta rhythms

generated in the fronto-parietal network (Fiebelkorn et al.,

2018; Helfrich et al., 2018; Fiebelkorn and Kastner, 2020)

couples saccades with saccadic suppression causing the switches

between visual sampling and saccadic shifting. This introduces

a diachronic aspect to the belief updating process (Friston et al.,

2020; Parr and Pezzulo, 2021; Sajid et al., 2022); i.e., sequential

fluctuations between attending to current data (perception) and

seeking new data (action). This supports empirical findings

that both eye movements (Sommer and Wurtz, 2006) and

filtering irrelevant information (Phillips et al., 2016; Nakajima

et al., 2019; Fiebelkorn and Kastner, 2020) are initiated in

this cortical network. Interestingly, both eye movements and

visual filtering then propagate to sub-cortical regions, i.e.,

the superior colliculus—for saliency map composition (White

et al., 2017)—and the thalamus—for gain control (Kanai et al.,

2015; Fiebelkorn et al., 2019), respectively. Furthermore, this

is consistent with recent findings that the periodicity of neural

responses are important for understanding the relation of motor

responses and sensory information—i.e., perception-action

coupling (Benedetto et al., 2020). Importantly, theta rhythms

also speak to the speed (i.e., the temporal schedule) with which

visual information is sampled from the environment (Busch

and VanRullen, 2010; Dugué et al., 2015, 2016; Helfrich et al.,

2018). Meaning visual information is not sampled continuously,

as our visual experiences would suggest, but rather it is made of

successive discrete samples (VanRullen, 2016; Parr et al., 2021).

The prefrontal theta rhythm has been associated with

working memory (WM), a process that holds compressed

information about the previously observed stimuli, in the

sense that measured power in this frequency range using

electroencephalography increases during tasks that place

demands on WM (Axmacher et al., 2010; Hsieh and Ranganath,

2014; Köster et al., 2018; Brzezicka et al., 2019; Peters et al.,

2020; Balestrieri et al., 2021; Pomper and Ansorge, 2021).

The implication is that the neural processes that underwrite

WM may depend upon temporal cycles with periods similar

to that of perceptual sampling. Importantly, this cognitive

process is influenced by how salient a particular stimulus was

(Fine and Minnery, 2009; Santangelo and Macaluso, 2013;

Santangelo et al., 2015). Moreover, WM has been implicated

with attentional mechanisms (Knudsen, 2007; Gazzaley and

Nobre, 2012; Oberauer, 2019; Peters et al., 2020; Panichello

and Buschman, 2021). This is aligned with our account
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where we illustrate a rhythmic coupling between salience

and attention.

In summary, the computations that underwrite attention

and active vision are coupled and exhibit circular causality.

Briefly, selective attention and sensory attenuation optimize

the processing of sensory samples and which particular visual

percepts are inferred. In turn, this determines appropriateness

of future eye movements (or actions) and shapes which

prior stimuli are encoded into the agent’s working memory.

Interestingly, the close functional (and computational) link

between the two mechanisms endorses the pre-motor theory

of attention.

3. Proposed precision-modulated
account of attention and salience

Here, we introduce our precision-modulated account of

perception and action. A graphical illustration is provided

in Figure 1. For this, we turn to attention and salient action

selection which have their roots in biological processes relevant

for acquiring task-relevant information. Under an active

inference account, this attention influences (posterior)

state estimation and can be associated with increased

precision of belief updating and gain control—described

in Section 2.1. Furthermore, this is distinct from salience despite

interdependent neuronal composition and computations.

Further alignment between the two constructs can be

revealed by considering the temporal scheduling between

movement (i.e., action) and perception for uncertainty

resolution (Parr and Friston, 2019). We postulate that this

perception-action coupling is best understood as a periodic

fluctuation between minimizing uncertainty and precision

control. Subsequently, action is deployed to reduce uncertainty.

Such an alignment specifies what stimulus is selected and under

what level of precision it is processed. Parr and Friston (2019)

hypothesize that action alignment with precision is due to the

eye structure that provides precise information in the fovea and

requires the agent to foveate the most informative stimulus.

We extend this by considering the periodic deployment of

gain control with saccades (Hogendoorn, 2016; Benedetto and

Morrone, 2017; Tomassini et al., 2017; Fiebelkorn and Kastner,

2019; Nakayama and Motoyoshi, 2019).

Accordingly, our formulation defines attention as precision

control and salience as uncertainty minimization supported

by discrete sampling of visual information at a theta rhythm.

This synchronizes perception and action together in an

oscillatory fashion (Hogendoorn, 2016). Importantly, a Bayesian

formulation of this can be realized as precision manipulation

over particular model parameters. We reserve further details for

Section 4.

Summary Based upon our review, we propose a precision-

modulated account of attention and salience, emphasizing

the diachronic realization of action and perception. In the

following sections, we investigate a realization of this model for

a robotic system.

4. Precision-based attention for
Robotics

The previous section introduced a conceptual account to

explain the computational mechanisms that undergird attention

based on neuroscience findings. We focused on reclaiming

saliency as an active process that relies on neural gain control,

uncertainty minimization and structured scheduling. Here, we

describe how we can mathematically realize some of these

mechanisms in the context of well-known challenges in robotics.

Enabling robots with this type of attention may be crucial to

filter the sensory signals and internal variables that are relevant

to estimate the robot/world state and complete any task. More

importantly, the active component of salience (i.e., behavior)

is essential to interact with the world—as argued in active

perception approaches (Bajcsy et al., 2018).

We revisit the standard view of attention in robotics by

introducing sensory precision (inverse variance) as the driving

mechanism for modulating both perception and action (Friston

et al., 2011; Clark, 2013). Although saliency was originally

described to underwrite behavior, most models used in robotics,

strongly biased by computer vision approaches, focus on

computing the most relevant region of an image (Borji and Itti,

2012)—mainly computing human fixation maps—relegating

action to a secondary process. Illustratively, state-of-the-art

deep learning saliency models—as shown in the MIT saliency

benchmark (Bylinskii et al., 2019)—do not have the action

as an output. Conversely, the active perception approach

properly defines the action as an essential process of active

sensing to gather the relevant information. Our proposed

model, based on precision modulated action and perception

coupling (i) place attention as essential for state-estimation

and system identification and (ii) and reclaims saliency as a

driver for information-seeking behavior, as proposed in early

works (Tsotsos et al., 1995), but goes beyond human fixation

maps for both improving the model of the environment

(exploration) and solving the task (exploitation).

In what follows, we highlight the key role of precision

by reviewing relevant brain-inspired attention models

deployed in robotics (Section 4.1). We propose precision-

modulated attentional mechanisms for robots in three

contexts—perception (Section 4.2), action (Section 4.3) and

active perception (Section 4.3.3). The precision-modulated

perception is formalized for a robotics setting; via (i) state

estimation (i.e., estimating the hidden states of a dynamic

system from sensory signals—Section 4.2.2), and (ii) system

identification (i.e., estimating the parameters of the dynamic

system from sensory signals—Section 4.2.3). Next, we show
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FIGURE 1

A graphical illustration of the precision-modulated account of perception and action. Salience and attention are computed based upon beliefs

(assumed to be) encoded in parts of the fronto-parietal network and realized in distinct brain regions: superior colliculus (SC) for perception as

inference and thalamus for planning as inference, respectively. To deploy attentional processes e�ciently, these two mechanisms have to be

aligned, which is done rhythmically, hypothetically in theta frequency. This coupling enables the saccadic suppression phenomenon through

fluctuations in precision (on an arbitrary scale). When precision is low (i.e., the trough of the theta rhythm), the saccade emerges. Note that there

might be distinct processes inhibiting the action (e.g., covert attention), and (despite a decline in precision) saccades might not emerge in every

theta cycle. On the other hand, high precision facilitates confident inferences about the causes of visual data. Under this account, thalamus is

used for initiating gain control (or visual sampling in general) by providing stronger sensory input, while superior colliculus dictates next

saccades, that lead to most informative fixation positions.

TABLE 1 Robotics applications and their precision realizations.

Task Application Precision

manipulation

Sections

Perception State and input

estimation

Noise precision

modeling 5̃

4.2.2

System Identification Posterior parameter

precision learning 5θ

4.2.3

Exploration-exploitation

in learning

Prior parameter

precision modeling Pθ

4.2.4

Noise estimation Noise precision learning

5̃

4.2.5

Action Informative Path

Planning (IPP)

Precision optimization

(of map)

4.3.2

Active

perception

IPP with

action-perception cycle

Precision modulation 4.3.3

that precision-modulated action can be realized through

precision optimization (planning future actions—Section 4.3.2)

and discuss practical considerations for coupling with

precision-modulated perception (precision based active

perception—Section 4.3.3). Table 1 summarizes our proposed

precision manipulations to solve relevant problems in robot

TABLE 2 Precision parameters that are manipulated in Section 4.2.

Term Symbol Definition

Sensory precision 5z Inverse covariance of sensory noise

z (Equation 1).

Prior parameter precision Pθ The robot’s confidence on its prior

parameters ηθ .

Noise precision 5̃ The inverse covariance of all noises

(Equation 5).

Posterior parameter precision 5θ The robot’s confidence on its

parameter estimates.

perception and action. Table 2 provides the definitions of

precision within our mechanism.

4.1. Previous brain-inspired attention
models in robotics

Brain-inspired attention has been mainly addressed in

robotics from a “passive” visual saliency perspective, e.g., which

pixels of the image are the most relevant. This saliency map

is then generally used to foveate the most salient region.
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This approach was strongly influenced by early computational

models of visual attention (Tsotsos et al., 1995; Itti and Koch,

2001). The first models deployed in robots were bottom-up,

where the sensory input was transformed into an array of values

that represents the importance (or salience) of each cue. Thus,

the robot was able to identify which region of the scene has

to look at, independently of the task performed—see Borji and

Itti (2012) for a review on visual saliency. These models have

also been useful for acquiring meaningful visual features in

applications, such as object recognition (Orabona et al., 2005;

Frintrop, 2006), localization, mapping and navigation (Frintrop

and Jensfelt, 2008; Roberts et al., 2012; Kim and Eustice, 2013).

Saliency computation was usually employed as a helper for the

selection of the relevant characteristics of the environment to be

encoded. Thus, reducing the information needed to process.

More refined methods of visual attention employed top-

down modulation, where the context, task or goal bias the

relevance of the visual input. These methods were used, for

instance, to identify humans using motion patterns (Butko

et al., 2008; Morén et al., 2008). A few works also focused on

object/target search applications, where top-down and bottom-

up saliency attention were used to find objects or people in a

search and rescue scenario (Rasouli et al., 2020).

Attention has also been considered in human-robot

interaction and social robotics applications (Ferreira and

Dias, 2014), mainly for scene or task understanding (Kragic

et al., 2005; Ude et al., 2005; Lanillos et al., 2016), and

gaze estimation (Shon et al., 2005) and generation (Lanillos

et al., 2015a). For instance, computing where the human is

looking at and where the robot should look at or which

object should be grasped. Furthermore, multi-sensory and

3D saliency computation has also been investigated (Lanillos

et al., 2015b). Finally, more complex attention behaviors,

particularly designed for social robotics and based on human

non-verbal communication, such as joint attention, have also

been addressed. Here the robot and the human share the

attention of one object through meaningful saccades, i.e.,

head/eye movements (Nagai et al., 2003; Kaplan and Hafner,

2006; Lanillos et al., 2015a).

Although attention mechanisms have been widely

investigated in robotics, specially to model visual

cognition (Kragic et al., 2005; Begum and Karray, 2010),

the majority of the works have treated attention as an extra

feature that can help the visual processing, instead of a crucial

component needed for the proper functioning of the cognitive

abilities of the robot (Lanillos and Cheng, 2018a). Furthermore,

these methods had the tendency to leave the action generation

out of the attention process. One of the reasons for not including

saliency computation, in robotic systems, is that the majority

of the models only output “human-fixation map” predictions,

given a static image. Saliency computation introduces extra

computational complexity, which can be finessed by visual

segmentation algorithms (e.g., line detectors in autonomous

navigation). However, it does not resolve uncertainty nor

select actions that maximize information gain in the future. In

essence, the incomplete view of attention models that output

human-fixation maps has arguably obscured the huge potential

of neuroscience-inspired attentional mechanisms for robotics.

Our proposed model of attention, based on precision

modulation, abandons the current robotics narrow view of

attention and saliency by explicitly modeling attention within

state estimation, learning and control. Thus, placing attentional

processes at the core of the robot computation and not

as an extra add-on. In the following sections, we describe

the realization of our precision-based attention formulation

in robotics using common practical applications as the

backbone motif.

4.2. Precision-modulated perception

We formalize precision-modulated perception from a first

principles Bayesian perspective—explicitly the free energy

principle approach proposed by Friston et al. (2011). Practically,

this entails optimizing precision parameters over (particular)

model parameters.

Through numerical examples show how our model is able to

perform accurate state estimation (Bos et al., 2021) and stable

parameter learning (Meera and Wisse, 2021a,b). To illustrate

the approach, we first introduce a dynamic system modeled

as a linear state space system in robotics (Section 4.2.1)—we

used this formulation in all our numerical experiments. We

briefly review the formal terminologies for a robotics context

to appropriately situate our precision-based mechanism for

perception. Explicitly, we introduce: precision modeling (by

adapting a known form of the precision matrix), precision

learning (by learning the full precision matrix), and precision

optimization (use precision as an objective function during

learning). As a reminder, precision modeling is associated with

(instantaneous) gain control and precision learning (at slower

time scales) is associated with optimizing that control.

4.2.1. Precision for state space models

A linear dynamic system can be modeled using the following

state space equations (boldface notation denotes components of

the real system and non-boldface notation its estimates):

ẋ = Ax+ Bu+ w, y = Cx+ z. (1)

where A, B and C are constant matrices defining the system

parameters, x ∈ R
n is the system state (usually an unobserved

variable), u ∈ R
r is the input or control actions, y ∈ R

m

is the output or the sensory measurements, w ∈ R
n is the

process noise with precision 5w (or inverse variance 6w−1),

and z ∈ R
m is the measurement noise with precision 5z.
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For instance, we can describe a mass-spring damper system

(depicted in Figure 2B) using state space equations. A mass

(m = 1.4kg) is attached to a spring with elasticity constant

(k = 0.8N/m), and a damper with a damping coefficient (b =

0.4Ns/m). When a force (u(t) = e−0.25(t−12)2 ) is applied on

the mass, it displaces x from its equilibrium point. The linear

dynamics of this system is given by:

[

ẋ

ẍ

]

=

[

0 1

− k
m − b

m

] [

x

ẋ

]

+

[

0
1
m

]

u, y =
[

1 0
]

[

x

ẋ

]

. (2)

Note that Equation (2) is equivalent to Equation (1) with

parameters A=

[

0 1

− k
m − b

m

]

, B =
[

0, 1
m

]T
and C=

[

1 0
]

, and

state x =
[

x, ẋ
]T

.

Now we introduce attention as precision modulation

assuming that the robotic goal is to minimize the prediction

error (Friston et al., 2011; Lanillos and Cheng, 2018b; Meera

and Wisse, 2020), i.e., to refine its model of the environment

and perform accurate state estimation, given the information

available. In other words, the robot has to estimate x and

u from input prior ηu with a prior precision of Pu, given

the measurements y, parameters A, B, C and noise precision

5w and 5z. Formally, the prediction error ǫ̃ of the sensory

measurements ǫ̃y, control input reference ǫ̃u and state ǫ̃x are:

ǫ̃ =







ǫ̃y

ǫ̃u

ǫ̃x






=







ỹ− C̃x̃

ũ− η̃u

Dxx̃− Ãx̃− B̃ũ

































sensory prediction error

control input prediction

error

state prediction error

(3)

F̄ =−
1

2

∑

t

[

ǫ̃yT5̃z ǫ̃y + ǫ̃uTPũǫ̃u + ǫ̃xT5̃wǫ̃x
︸ ︷︷ ︸

precision weighed prediction error

]

−
1

2

[

ǫθTPθ ǫθ + ǫλTPλǫλ

︸ ︷︷ ︸

prior precision weighed prediction error of θ and λ

]

+
1

2
nt ln |6

X |

︸ ︷︷ ︸

state and input entropy

+
1

2
nt

[

ln |5̃z| + ln |Pṽ| + ln |5̃w|
]

︸ ︷︷ ︸

noise entropy

+
1

2
ln |6θPθ |

︸ ︷︷ ︸

parameter entropy

+
1

2
ln |6λPλ|

︸ ︷︷ ︸

hyperparameter entropy

(6)

Note that ǫ̃y = ỹ − C̃x̃ is the difference between the observed

measurement and the predicted sensory input given the state3.

Here Dx performs the (block) derivative operation, which is

3 The tilde over the variable refers to the generalized coordinates,

i.e., the variable includes all temporal derivatives. Thus, ǫ̃ is the

combined prediction error of outputs, inputs and states. For example,

the generalized output ỹ is given by ỹ = [y, y′ , y′′ ...]T , where the prime

operator denotes the derivatives. We use generalized coordinates (Friston

et al., 2010) for achieving accurate state and input estimation during the

presence of (colored) noise by modeling the time dependent quantities

(x, v, y,w, z) in generalized coordinates. This involves keeping track of

the evolution of the trajectory of the probability distributions of states,

instead of just their point estimates. Here the colored noise w and z are

equivalent to shifting up all the components in generalized

coordinates by one block.

We can estimate the state and input using the Dynamic

Expectation Maximization (DEM) algorithm (Friston et al.,

2008; Meera and Wisse, 2020) that optimizes a free energy

variational bound F to be tractable4. This is:

X =

[

x̃

ũ

]

= argmax
X

F = argmax
X

−
1

2
ǫ̃T5̃ǫ̃ (4)

Crucially, 5̃ is the generalized noise precision that modulates

the contribution of each prediction error to the estimation of the

state and the computation of the action. Thus, 5̃ is equivalent

to attentional gain. For instance, we can model the precision

matrix to attend to the most informative signal derivatives in ỹ.

Concisely, the precision 5̃ has the following form:

5̃ =







S⊗ 5z 0 0

0 S⊗ Pu 0

0 0 S⊗ 5w






, (5)

where S is the smoothness matrix. In Section 4.2.2, we show that

modeling the precision matrix 5̃ using the S matrix improves

the estimation quality.

The full free energy functional (time integral of free energy

F̄ =
∫

Fdt at optimal precision) that the robot optimizes to

perform state-estimation and system identification is described

in Equation (6)—for readability we omitted the details of the

derivation of this cost function, and we refer to Anil Meera and

Wisse (2021) for further details.

Here ǫθ = θ − ηθ , ǫλ = λ − ηλ are the prediction errors

of parameters and hyper-parameters5. F̄ consist of two main

components: i) precision weighed prediction errors and ii)

modeled as a white noise convoluted with a Gaussian kernel. The use

of generalized coordinates has recently shown to outperform classical

approaches under colored noise on real quadrotor flight (Bos et al., 2021).

4 Note that this expression of the variational free energy is using

the Laplace and mean-field approximations commonly used in the FEP

literature.

5 System identification involves the estimation of system parameters

(denoted by θ , e.g., vectorised A), given y,u, by starting from a parameter

prior of ηθ with prior precision Pθ , and a prior on noise hyper-parameter

ηλ with a prior precision of Pλ. Note that we parametrise noise precision
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precision-based entropy. The dominant role of precision—in

the free energy objective—is reflected in how modulating these

precision parameters can have a profound influence perception

and behavior. The theoretical guarantees for stable estimation

(Meera and Wisse, 2021b), and its application on real robots

(Lanillos et al., 2021) make this formulation very appealing to

robotic systems.

Note that we can manipulate three kinds of precision within

the state space formulation: (i) prior precision (Pũ, Pθ , Pλ), (ii)

conditional precision on estimates (5X ,5θ ,5λ) and (iii) noise

precision (5z ,5w). Therefore, to learn the correct parameter

values θ , we (i) learn the parameter precision 5θ , (ii) model the

prior parameter precision Pθ , and (iii) learn the noise precision

5w and 5z (parameterised using λ).

4.2.2. State and input estimation

State estimation is the process of estimating the unobserved

states of a real system from (noisy) measurements. Here, we

show how we can achieve accurate estimation through precision

modulation in a linear time invariant system under the influence

of colored noise (Meera and Wisse, 2020). State estimation in

the presence of colored noise is inherently challenging, owing

to the non-white nature of the noise, which is often ignored in

conventional approaches, such as the Kalman Filter (Welch and

Bishop, 2002).

Figure 2 summarizes a numerical example that shows how

one can use precision modulation to focus on the less noisy

derivatives (lower derivatives) of measurements, relative to

imprecise higher derivatives. Thus, enabling the robot to use

the most informative data for state and input estimation, while

discarding imprecise input. Figure 2B depicts the mass-spring

damper system used. The numerical results show that the quality

of the estimation increases as the embedding ordering increases

but the lack of information in the higher order derivatives of

the sensory input do not affect the final performance due to the

precision modulation. The higher order derivatives (Figure 2A)

are less precise than the lower derivatives, thereby reflecting the

loss of information in higher derivatives. The state and input

estimation was performed using the optimization framework

described in the previous section. The quality of estimation

is shown in Figure 2C, where the input estimation using six

derivatives (blue curve) is closer to the real input (yellow

curve) than when compared to the estimation using only one

derivative (red curve). The quality of the estimation reports

the sum of squared error (SSE) in the estimation of states and

inputs with respect to the embedding order (number of signal

derivatives considered).

To obtain accurate state estimation by optimizing the

precision parameters, we recall that the precision weights the

(5w and 5z ) using λ ∈ R
2×1 =

[

λz

λw

]

as an exponential relation (e.g.,

5w(λw) = exp(λw)In×n).

prediction errors. From Equation (3), the structural form of 5̃

is mainly dictated by the smoothness matrix S, which establishes

the interdependence between the components of the variable

expressed in generalized coordinates (e.g., the dependence

between y, y′ and y′′ in ỹ). For instance, the S matrix for a

Gaussian kernel is as follows Meera and Wisse (2022):

S =

























35
16 0 35

8 s2 0 7
4 s

4 0 1
6 s

6

0 35
4 s2 0 7s4 0 s6 0

35
8 s2 0 77

4 s4 0 19
2 s6 0 s8

0 7s4 0 8s6 0 4
3 s

8 0
7
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2 s6 0 17

3 s8 0 2
3 s

10

0 s6 0 4
3 s

8 0 4
15 s

10 0
1
6 s

6 0 s8 0 2
3 s

10 0 4
45 s

12

























, (7)

where s is the kernel width of the Gaussian filter that is assumed

to be responsible for serial correlations in measurement or state

noise. Here, the order of generalized coordinates (number of

derivatives under consideration) is taken as six (S ∈ R
7×7).

For practical robotics applications, the measurement frequency

is high, resulting in 0 < s < 1. It can be observed that the

diagonal elements of S decreases because s < 1, resulting in a

higher attention (or weighting) on the prediction errors from the

lower derivatives when compared to the higher derivatives. The

higher the noise color (i.e., s increases), the higher the weight

given to the higher state derivatives (last diagonal elements of S

increases). This reflects the fact that smooth fluctuations have

more information content in their higher derivatives. Having

established the potential importance of precision weighting in

state estimation, we now turn to the estimation (i.e., learning) of

precision in any given context.

4.2.3. System identification

This section shows how to optimize system identification

by means of precision learning (Anil Meera and Wisse, 2021;

Meera and Wisse, 2021b). Specifically, we show how to fuse

prior knowledge about the dynamic model with the data to

recover unknown parameters of the system through an attention

mechanism. This involves the learning of the (1) parameters

and (2) noise precisions. Our model “turns” the attention to

the least precise parameters and uses the data to update those

parameters to increase their precision. Hence, allowing faster

parameter learning.

For the sake of clarity, we use again the mass-spring-damper

system as the driving example (Section 4.2.1). We formalize

system identification as evaluating the unknown parameters k,

m and b, given the input u, the output y, and the general form of

the linear system in Equation (2).

Figure 3 depicts the process of learning unknown

parameters (dotted boxes denote the processes inside the

robot brain). The robot measures its position x(t) using its

sensors (e.g., vision or range sensor). We assume that the robot

has observed the behavior of a mass-spring-damper system
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FIGURE 2

An illustration of an attention mechanism for state and input estimation of a system (shown in B). The quality of the estimation improves (C) as

the embedding order (number of derivatives) of generalized coordinates are increased (A). However, the imprecise information in the higher

order derivatives of the sensory input y does not a�ect the final performance of the observer because of attentional selection, which selectively

weighs the importance a�orded to each derivative, in the free energy optimization scheme.

FIGURE 3

The schematic of the robot’s attention mechanism for learning the least precise parameters of a given generative model of a

mass-spring-damper system (shown in D). (A) Learning the conditional precision on parameters and the noise precision. (B) The free energy

optimization helping to identify the unknown system parameters. (C) The parameter learning.

before or a model is provided by the expert designer. However,

some of the parameters are unknown. The robot can reuse the

prior learned model of the system to relearn the new system.

This can be realized by setting a high prior precision on the

known parameters and a low prior precision on the unknown

parameters. By means of precision learning, the robot uses the
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sensory signals to learn the parameter precision 5θ , thereby

improving the confidence in the parameter estimates θ . This

directs the robot’s attention toward the refinement of the

parameters with least precision as they are the most uncertain.

The requisite parameter learning proceeds by the gradient

ascent of the free energy functional given in Equation (6). The

parameter precision learning proceeds by tracking the negative

curvature of F̄ as 5θ = − ∂2F̄
∂θ2

(Anil Meera and Wisse, 2021).

The learning process—by means of variational free energy

optimization (maximization)—is shown in Figure 3B. The

learning involves two parallel processes: precision learning

(Figure 3A), and parameter learning (Figure 3C). Precision

learning comprises of parameter precision learning (top

graph)—i.e., identifying the precision of an approximate

posterior density for the parameters being estimated—and noise

precision learning (bottom graph). The high prior precision

on the known system parameters (0 and 1), and low prior

precision on the unknown system parameters (− k
m ,− b

m and
1
m , highlighted in blue) directs attention toward learning

the unknown parameters and their precision. Note that in

Figure 3A, the precision on the three unknown parameters start

from a low prior precision of Pθ = 1 and increase with each

iteration, whereas the precision of known parameters (0 and

1) remains a constant (3.3 × 106). The noise precisions are

learned simultaneously, which starts from a low prior precision

of Pλw = Pλz = 1 and finally converges to the true noise

precision (dotted black line). Both precisions are used to learn

the three parameters of the system (Figure 3B), which starts from

randomly selected values within the range [−2,2] and finally

converges to the true parameter values of the system (θ3 =

− k
m = −0.5714, θ4 = − b

m = −0.2857 and θ6 = 1
m = 0.7143),

denoted by black dotted lines. From an attentional perspective,

the lower plot in Figure 3A is particularly significant here. This

is because the robot discovers the data are more informative

than initially assumed, thereby leading to an increase in its

estimate of the precision of the data-generating process. This

means that the robot is not only using the data to optimize its

beliefs about states and parameters (system identification), it is

also using these data to optimize the way in which it assimilates

these data.

In summary, precision-based attention, in the form of

precision learning, helps the robot to accurately learn unknown

parameters by fusing prior knowledge with new incoming

data (sensory measurements), and attending to the least

precise parameters.

4.2.4. Precision-modulated exploration and
exploitation in system identification

Exploration and exploitation in the parameter space can be

advantageous to robots during system identification. Precision-

based attention—here the prior precision—allows a graceful

balance between the two, mediated by the prior precision6. A

very high prior precision encourages exploitation and biases

the robot toward believing its priors, while a low prior

precision encourages exploration and makes the robot sensitive

to new information.

We use again the mass-spring-damper system example

but with a different prior parameter precision Pθ . The

prior parameters are initialized at random and learned using

optimization. Figure 4B shows the increase in parameter

estimation error (SSE) as the prior parameter precision Pθ

increases until it finally saturates. The bottom left region (circled

in red) indicates the region where the prior precision is low,

encouraging exploration with high attention on the sensory

signals for learning the model. This region over-exposes the

robot to its sensory signals by neglecting the prior parameters.

The top right region (circled in red) indicates the biased robot

where the prior precision is high, encouraging the robot to

exploit its prior beliefs by retaining high attention on prior

parameters. This regime biases the robot into being confident

about its priors and disregarding new information from the

sensory signals. Between those extreme regimes (blue curve)

the prior precision balances the exploration-exploitation trade-

off. Figure 4A describes how increased attention to sensory

signals helped the robot to recover from poor initial estimates

of parameter values and converge toward the correct values

(dotted black line). Conversely, in Figure 4C, high attention on

prior parameters did not help the robot to learn the correct

parameter values.

These results establish that prior precision modeling allows

balanced exploration and exploitation of parameter space during

system identification. Although the results show that an over-

exposed robot provides better parameter learning, we show—in

the next section—that this is not always be the case.

4.2.5. Noise estimation

In real-world applications, sensory measurements are often

highly noisy and unpredictable. Furthermore, the robot does

not have access to the noise levels. Thus, it needs to learn the

noise precision (5z) for accurate estimation and robust control.

Precision-based attention enables this learning. In what follows,

we show how one can estimate5z using noise precision learning

and that biasing the robot to prior beliefs can be advantageous in

highly noisy environments.

Consider again the mass-spring-damper system in

Figure 5B, where heavy rainfall/snow corrupts visual sensory

signals. We evaluate the parameter estimation error under

different noise conditions, using different levels of noise

6 Note that here we are using exploration and exploration not in

terms of behavior but for parameter learning. Explorationmeans adapting

the parameter to a di�erent (unexplored) value and exploitation means

keeping that value.
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FIGURE 4

(A) Lower P∧θ gives a high exploration strategy across the parameter space. (B) Precision-based attention allows exploration and exploitation

balanced model learning mediated by the prior precisions on the parameters P∧θ . (C) The higher the P∧θ , the higher the attention on prior

parameters η∧θ and the lower the attention on the sensory signals while learning.

FIGURE 5

Simulations demonstrating how a biased robot could be advantageous, especially while learning in a highly noisy environment (shown in B). (A i)

As the sensor noise increases, the quality of parameter estimation deteriorates to a point where an explorative robot generates higher parameter

estimation errors than when compared to the biased robot that relies on its prior parameters. (A ii) However, the sensor noise estimation is

accurate even for high noise environments, demonstrating the success of the attention mechanism using the noise precision.
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variances (inverse precision). For an over-exposed robot (only

attending to sensory measurements), left plot of Figure 5A, the

estimation error increases as the noise strength increases, to a

point where the error surpasses the error from a prior-biased

robot. This shows that a robot, confident in its prior model,

assigns low attention to sensory signals and outperforms an

over-exposed robot that assigns high attention to sensory

signals, in a highly noisy environment. The right plot of

Figure 5A shows the quality of noise precision learning for an

over-exposed robot. It can be seen that all the data points in

red lie close to the blue line, indicating that the estimated noise

precision is close to the real noise precision. Therefore, the

robot is capable of recovering the correct sensory noise levels

even when the environment is extremely noisy, where accurate

parameter estimation is difficult.

These numerical results show that attention mechanism—

by means of noise precision learning—allows the estimation of

the noise levels in the environment and thereby protects against

over-fitting or overconfident parameter estimation.

Summary. We have shown how precision-based attention–

through precision modeling and learning– yields to accurate

robot state estimation, parameter identification and sensory

noise estimation. In the next section, we discuss how action is

generated in this framework.

4.3. Precision-modulated action

Selecting the optimal sequence of actions to fulfill a task is

essential for robotics (LaValle, 2006). One of themost prominent

challenges is to ensure robust behavior given the uncertainty

emerging from a highly complex and dynamic real world, where

the robots have to operate on. A proper attention system should

provide action plans that resolve uncertainty and maximize

information gain. For instance, it mayminimize the information

entropy, thereby encouraging repeated sensory measurements

(observations) on high uncertainty sensory information.

Salience, which in neuroscience is sometimes identified as

Bayesian surprise (i.e., divergence between prior and posterior),

describes which information is relevant to process. We go one

step further by defining the saliency map as the epistemic

value of a particular action (Friston et al., 2015). Thus, the

(expected) divergence now becomes the mutual information

under a particular action or plan. This makes the saliency map

more sophisticated because it is an explicit measure of the

reduction in uncertainty or mutual information associated with

a particular action (i.e., active sampling), and more pragmatic

because it tells you where to sample data next, given current

Bayesian beliefs.

We first describe a precision representation usually

used in information gathering problems and then how to

directly generate action plans through precision optimization.

Afterwards, we discuss the realization of the full-fledged model

presented in the neuroscience section for active perception. We

use the informative path planning (IPP) problem, described in

Figure 6, as an illustrative example to drive intuitions.

4.3.1. Precision maps as saliency

One of the popular approaches in information gathering

problems is to model the information map as a distribution

[e.g., using Gaussian processes (Hitz et al., 2017)]. This is widely

used in applications, such as a target search, coverage and

navigation. The robot keeps track of an occupancy map and

the associated uncertainty map (covariance matrix or inverse

precision). While the occupancy map records the presence

of the target on the map, the uncertainty map records the

quality of those observations. The goal of the robot is to learn

the distribution using some learning algorithm (Marchant and

Ramos, 2014). A popular strategy is to plan the robot path such

that it minimizes the uncertainty of the map in future (Popović

et al., 2017). In Section 4.3.2, we will show how we can use the

map precision to perform active perception, i.e., optimize the

robot path for maximal information gain. Optimizing the map

precision drives the robot toward an exploratory behavior.

4.3.2. Precision optimization for action
planning

To introduce precision-based saliency we use an exemplary

application of search and rescue. The goal is to find all humans

using an unmanned air vehicle (UAV) (Lanillos, 2013; Lanillos

et al., 2014; Meera et al., 2019; Rasouli et al., 2020). We use

precision for two purposes: (i) precision optimization for action

planning (plan flight path) and (ii) precision learning for map

refinement. In contrast to previous models of action selection

within active inference in robotics (Lanillos et al., 2021; Oliver

et al., 2021) here precision explicitly drives the agent behavior.

Figure 7 describes the scenario in simulation. The seven human

targets on the ground are correctly identified by the UAV.

We can formalize the solution as the UAV actions (next flight

path) that minimize the future uncertainties of the human

occupancy map. In our precision-based attention scheme, this

objective is equivalent to maximizing the posterior precision of

the map. Figure 8 shows the reduction in map uncertainty after

subsequent assimilation of the measurements (camera images

from the UAV, processed by a human detector). The map (and

precision) is learned using a recursive Kalman Filter by fusing

the human detector outcome onto the map (and precision). The

algorithm drives the UAV toward the least explored regions in

the environment, defined by the precision map.

Furthermore, Figure 9 shows an example of uncertainty

resolution under false positives. In this case, human targets are

moved to the bottom half of the map. The first measurement

provides a wrong human detection with high uncertainty.

However, after repeated measurements at the same location in
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FIGURE 6

IPP problem for localizing human victims in an urban search and rescue scenario (Meera et al., 2019). (A) Action: a UAV, in a realistic simulation

environment, plans a finite look-ahead path to minimize the uncertainty of its human occupancy map (e.g., modeled as a Gaussian process) of

the world. The planned path is then executed, during which the UAV flies and captures images at a constant measurement frequency. (B)

Perception: after the data acquisition is complete, a human detection algorithm is executed to detect all the humans on the images. These

detections are then fused into the UAV’s human location map. The cycle is repeated until the uncertainty of the map is completely resolved (this

usually implies enough area coverage and repeated measurements on uncertain locations). The ground truth of the human occupancy map and

the UAV belief is shown in (B,C) respectively. The final map approaches the ground truth and all the seven humans on the ground are

correctly detected.

FIGURE 7

Finding humans with unmanned air vehicles (UAVs): an informative path planning (IPP) approach (Anil Meera, 2018). The simulation environment

on the left consists of a tall building at the center, surrounded by seven humans lying on the floor. The goal of the UAV is to compute the action

sequence that allows maximum information gathering, i.e., the humans location uncertainty is minimized. On the right is the final occupancy

map colored with the probability of finding a human at that location. It can be observed that all humans on the simulation environment were

correctly detected by the robot.

the map the algorithm was capable of resolving this ambiguity,

to finally learn the correct ground truth map. Hence, the

sought behavior is to take actions that encourage repeated

measurements at uncertain locations for reducing uncertainty.

Although the IPP example illustrates how to generate

control actions through precision optimization, the task, by

construction, is constrained to explicitly reduce uncertainty.

This is similar to the description of visual search described

in Friston et al. (2012), where the location was chosen maximize

information gain. Information gain (i.e., the Bayesian surprise

expected following an action) is a key part of the expected

free energy functional that underwrite action selection in active
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FIGURE 8

Variance map of the probability distribution of people location (Figure 7)—inverse precision of human occupancy map. The plot sequence

shows the reduction of map uncertainty (inverse precision) after measurements (Anil Meera, 2018).

FIGURE 9

The human occupancy map (probability to find humans at every location of the environment) at four time instances during the UAV flight

showing ambiguity resolution. The ambiguity arising from imprecise sensor measurements (false positive) is resolved through repeated

measurements at the same location. The plot sequence shows how the assimilation of the measurements updates the probability of the people

being in each location of the map (Meera et al., 2019).

inference. In brief, expected free energy can be decomposed into

two parts the first corresponds to the information gain above

(a.k.a., epistemic value or affordance). The second corresponds

to the expected log evidence or marginal likelihood of sensory

samples (a.k.a., pragmatic value). When this likelihood is

read as a prior preference, it contextualizes the imperative to

reduce uncertainty by including a goal-directed, imperative.

For example, in the search paradigm above, we could have

formulated the problem in terms of reducing uncertainty about

whether each location was occupied by a human or not. We

could have then equipped the agent with prior preferences for

observing humans.

In principle, this would have produced searching behavior

until uncertainty had been resolved about the scene; after

which, the robot would seek out humans; simply because,

these are its preferred outcomes. In thinking about how this

kind of neuroscience inspired or biomimetic approach could

be implemented in robotics, one has to consider carefully, the

precision afforded sensory inputs (i.e., the likelihood of sensory

data, given its latent causes)—and how this changes during

robotic flight and periods of data gathering. This brings us back

to the precision modulation and the temporal scheduling of

searching and securing data. In the final section, we conclude

with a brief discussion of how this might be implemented in

future applications.

4.3.3. Precision-based active perception

In this section, we discuss the realization of a biomimetic

brain-inspired model in relation to existing solutions in
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FIGURE 10

Precision-modulated attention model adapted to the action-perception loop in robotics. Each cycle consists of two steps: (1) action (planning

and execution of a finite-time look ahead of the robot path for data collection) and (2) perception (learning using the collected data). This

scheduling, using a finite time look-ahead plan, is quite common in real applications and of particular importance when processing is

computationally expensive, e.g., slow rate of classification, non-scalable data fusion algorithms, Exponential planners, etc. However, the benefits

of incorporating “optimal” scheduled loop driven by precision should be further studied.

robotics in the context of path-planning. Figure 10 compares

our proposed precision-modulated attention model—from

Figure 1—with the action-perception loop widely used in

robotics. By analogy with eye saccades to the next visual sample,

the UAV flies (action) over the environment to assimilate

sensory data for an informed scene construction (perception).

Once the flight time of the UAV is exhausted (similar to saccade

window of the eye), the action is complete, after which the map

is updated, and the next flight path is planned.

In standard applications of active inference, the information

gain is supplemented with expected log preferences to provide

a complete expected free energy functional (Sajid et al.,

2021a). This accommodates the two kinds of uncertainty

that actions and choices typically reduce. The first kind of

uncertainty is inherent in unknowns in the environment.

This is the information gain we have focused on above.

The second kind of uncertainty corresponds to expected

surprise, where surprise rests upon a priori expected or

preferred outcomes. As noted above, equipping robots with

both epistemic and pragmatic aspects to their action selection

or planning could produce realistic and useful behavior

that automatically resolves the exploration-exploitation

dilemma. This follows because the expected free energy

contains the optical mixture of epistemic (information-

seeking) and pragmatic (i.e., preference seeking) components.

Usually, after a period of exploration, the preference seeking

components predominate because uncertainty has been

resolved. Although expected free energy provides a fairly

universal objective function for sentient behavior, it does

not specify how to deploy behavior and sensory processing

optimally. This brings us to the precision modulation model,

inspired by neuroscientific considerations of attention

and salience.

Hence, there are key differences between biological and

robotic implementations of the search behavior. First, the use of

oscillatory precision tomodulate visual sampling andmovement

cycles, as opposed to arbitrary discrete action and perception

steps currently used in robotics. Second, precision modulation

influences both state estimation and action following the

same uncertainty reduction principle. Importantly, our salience

formulation speaks to selecting future data that reduces this

uncertainty. For instance, we have shown—in the information

gathering IPP example described in the previous subsection—

that by optimizing precision we also optimize behavior.

Hence, there are key differences between biological and

robotic implementations of the search behavior. First, the use of

oscillatory precision tomodulate visual sampling andmovement

cycles, as opposed to arbitrary discrete action and perception

steps currently used in robotics. Second, precision modulation

influences both state estimation and action following the

same uncertainty reduction principle. Importantly, our salience

formulation speaks to selecting future data that reduces this

uncertainty. For instance, we have shown—in the information

gathering IPP example described in the previous subsection—

that by optimizing precision we also optimize behavior.

We argue the potential need and the advantages of

realizing precision based temporal scheduling, as described

the our brain-inspired model, for two practically relevant

test cases: (i) learning dynamic models and (ii) information

seeking applications.

In Section 4.2.4, we have shown how the exploration-

exploitation trade-off can be mediated by the prior parameter
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precision during learning. However, the accuracy-precision

curve (Figure 4B) is often practically unavailable due to

unknown true parameters values, challenging the modeling of

prior precision. An alternative would be to use a precision

based temporal scheduling mechanism to alternate between

exploration and exploitation by means of a varying Pθ (similar

to Figure 10) during learning, such that system identification

is neither biased nor over exposed to sensory measurements.

In Figure 5A, we showed how noise levels influence estimation

accuracy, and how biasing the robot by modeling Pθ can be

beneficial for highly noisy environments. A precision based

temporal scheduling mechanism by means of a varying Pθ could

provide a balanced solution between a biased robot (that exploits

its model) and an exploratory one.

Furthermore, temporal scheduling, in the same way that

eye saccades are generated, can be adapted for information

gathering applications, such as target search, simultaneous

localization and mapping, environment monitoring, etc. For

instance, introducing precision-modulation scheduling for

solving the IPP, and scheduling perception (map learning) and

action (UAV flight). Precision modulation will switch between

action and perception: when the precision is high, perception

occurs (c.f., visual sampling), and when the precision is low,

action occurs (c.f., eye movements). This switch, which is often

implemented in the robotics literature using a budget for flight

time, will be now dictated by precision dynamics.

In short, we have sketched the basis for a future realization

of precision-based active perception, where the robot computes

the actions to minimize the expected uncertainty. While most

attentional mechanisms in robotics are limited to providing

a “saliency” map highlighting the most relevant features, our

attention mechanism proposes a general scheduling mechanism

with action in the loopwith perception, both driven by precision.

5. Concluding remarks

We have considered attention and salience as two distinct

processes that rest upon oscillatory precision control processes.

Accordingly, they require particular temporal considerations:

attention to reliably estimate latent states from current sensory

data and salience for uncertainty reduction regarding future

data samples. This formulation addresses visual search from a

first principles (Bayesian) account of how these mechanisms

might manifest—and the circular causality that undergirds them

via a rhythmic theta-coupling. Crucially, we have revisited the

definition of salience from the visual neurosciences; where it is

read as Bayesian surprise (i.e., the Kullback Leibler divergence

between prior and posterior beliefs). We took this one step

further and defined salience as the expected Bayesian surprise

(i.e., epistemic value) of a particular action (e.g., sampling

this set of data) (Friston et al., 2017b; Sajid et al., 2021a).

Formulating salience as the expected divergence renders it

the mutual information under a particular action (or action

trajectory) (Friston et al., 2021),—and highlights its role in

encoding working memory (Parr and Friston, 2017b). For

brevity, our narrative was centered around visual attention and

its realization via eye movements. However, this model does

not strictly need to be limited to visual information processing,

because it addresses sensorimotor and auditory processing in

general. This means it explains how action and perception can

be coupled in other sensory modalities. For instance, Tomassini

et al. (2017) showed that visual information is coupled with

finger movements at a theta rhythm.

The point of contact with the robotics use of salience

emerges because the co-variation between a particular

parameterisation and the inputs is a measure of the mutual

information between the data and its estimated causes. In

this sense, both definitions of salience reflect the mutual

information—or information about a particular representation

of a (latent) cause—afforded by an observation or consequence.

However, our formulation is more sophisticated. Briefly,

because it is an explicit measure of the reduction in uncertainty

(i.e., mutual information) associated with a particular action

(i.e., active sampling) and specifies where to sample data next,

given current Bayesian beliefs. These processes (attention and

salience) are a consequence of precision of beliefs over distinct

model parameters. Explicitly, attention contends with precision

over the causes of (current) outcomes and salience contends

with beliefs about the data that has to be acquired and precision

over beliefs about actions that dictate it. Since both processes

can be linked via precision manipulation, the crucial thing is

the precision that differentiates whether the agent acquires new

information (under high precision) or resolves uncertainty by

moving (low precision).

The focus of this work has been to illustrate the importance

of optimizing precision at various places in generative models

used for data assimilation, system identification and active

sensing. A key point—implicit in these demonstrations - rests

upon the mean field approximation used in all applications.

Crucially, this means that getting the precision right matters,

because updating posterior estimates of states, parameters and

precisions all depend upon each other. This may be particularly

prescient for making the most sense of samples that maximizes

information gain. In other words, although attention and

salience are separable optimization processes, they depend upon

each other during active sensing. This was the focus of our final

numerical studies of action planning.

To face-validate our formulation, we evaluated precision-

modulated attentional processes in the robotic domain.

We presented numerical examples to show how precision

manipulation underwrites accurate state and noise estimation

(e.g., selecting relevant information), as well as allowing

system identification (e.g., learning unknown parameters of the

dynamics). We also showed how one can use precision-based

optimization to solve interesting problems; like the informative
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path planning in search and rescue scenarios. Thus, in contrast

to previous uses of attention in robotics, we placed attention

and saliency as integral processes for efficient gathering and

processing of sensory information. Accordingly, ‘attention’ is

not only about filtering the current flow of information from

the sensors but performing those actions that minimize expected

uncertainty. Still, the full potential of our proposal has yet to

be realized, as the precision-based attention should be able to

account for prior preferences beyond the IPP problem (e.g.,

localizing people using UAVs). Finally, we briefly considered

the realization of temporal scheduling for information gathering

tasks, opening up interesting lines of research to provide robots

with biologically plausible attention.
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It appears that the free energy minimization principle conflicts with quantum

cognition since the former adheres to a restricted view based on experience

while the latter allows deviations from such a restricted view. While free energy

minimization, which incorporates Bayesian inference, leads to a Boolean

lattice of propositions (classical logic), quantum cognition, which seems to

be very dissimilar to Bayesian inference, leads to an orthomodular lattice of

propositions (quantum logic). Thus, we address this challenging issue to bridge

and connect the free energyminimization principlewith the theory of quantum

cognition. In this work, we introduce “excess Bayesian inference” and show that

this excess Bayesian inference entails an underlying orthomodular lattice, while

classic Bayesian inference entails a Boolean lattice. Excess Bayesian inference

is implemented by extending the key idea of Bayesian inference beyond

classic Bayesian inference and its variations. It is constructed by enhancing the

idea of active inference and/or embodied intelligence. The appropriate lattice

structure of its logic is obtained from a binary relation transformed from a

distribution of the joint probabilities of data and hypotheses by employing a

rough-set lattice technique in accordance with quantum cognition logic.

KEYWORDS

free energy minimization, quantum cognition, Bayesian inference, rough set, lattice

theory

Introduction

Cognitive predictive behaviors that are found in brain function, biological

information processing, and cognitive sciences have been recently described and

explained using the free energy minimization principle (Friston et al., 2006; Friston and

Kiebel, 2009a,b). However, related cognitive phenomena such as sensory illusions (e.g.,

due to ambiguity such as in the Necker cube), the conjunction fallacy (e.g., “Linda’s

fallacy”), the order effect in questionnaire responses, context-dependent decision-

making, and the “Guppy effect” in complex concept conjunction and disjunction

have been recently described and explained by using quantum cognition principles

(Khrennikov, 2001, 2010, 2021; Aerts, 2009; Aerts et al., 2012, 2013, 2019; Busemeyer

and Bruza, 2012; Haven and Khrennikov, 2013; Asano et al., 2015; Bruza et al., 2015;

Dzhafarov et al., 2016; Ishwarya and Kumar, 2020a,b). Moreover, recent developments
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in quantum measurement theory provide a general

mathematical framework that can accommodate the question

order effect and the response replicability effect as well as their

combinations. Thus, the generalization of theWang–Busemeyer

quantum-cognition postulates for quantum-like modeling of

decision-making and psychology is achieved. An up-to-date

discussion of these recent developments and an introduction to

this “theory of quantum instruments” can be found in Ozawa

and Khrennikov (2021).

It has come to our attention through a reviewer’s suggestion

that in a recent publication (Zhang, 2021a,b), a newly

proposed analytical quantum computing paradigm, called

“quantum intelligence” (QI), aims at elucidating the notion of

causality concerning the underlying logic of the phenomena

under scrutiny.

Predictive algorithms and coding that deal with large

problems, i.e., problems that require too much computation

to obtain an optimal solution, meet the seriously challenging

problem of reducing the search area for the solutions to make

their implementation manageable or even possible. Bayesian

inference is one of the most powerful techniques that can solve

this problem (Arecchi, 2003, 2011). Moreover, it is well known

that Bayesian inference can be accurately formulated as an

instance, or a case of the free energy minimization principle

(Friston et al., 2006; Friston, 2010). The efficacy of Bayesian

inference is because it only focuses on an a priori probability

distribution assumed by the already given or realized events.

These events have been “experienced,” “realized,” or “recorded,”

as given, but there is no requirement that all events from such

an a priori distribution have been “realized.” The relevant events

could all, in principle, be hypothetical. In the context of the

free energy principle, the prior distribution is implemented

by a generative model of the action of the environment on a

Markov blanket. As this action is generated outside the Markov

blanket, by the dynamics of the environment, it is unobservable

“in principle,” i.e., under this prior. Therefore, such actions

are duly ignored; obviously, this inherent aspect of Bayesian

inference helps to reduce the search space. This is the essence

of Bayesian inference.

Furthermore, an embodied mind and/or intelligence (Varela

et al., 1991; Varela, 1997) can augment and complement

the process of Bayesian inference in biological information

processing and even overcome some of its drawbacks (Seth

and Friston, 2016; Allen and Friston, 2018; Seth and Tsakiris,

2018; Yon et al., 2019; Walsh et al., 2020). For example, let

us assume that you are familiar only with the front face of

your preferred singer, say through some photos. Now imagine

that you encounter that singer on a street in a town; then,

you would naturally be impelled to move your body to try

to see the front face. Since you have experienced more front-

face photos than photos from other angles, Bayesian inference

would ignore the face data that have been experienced less often,

and this would make the relation between the singer in the

street and the familiar front-face image retrieved by memory

stronger; eventually, this would result in the recognition that

this person is indeed your preferred singer, provided that the

match is close enough. This is a result of the fact that you cannot

identify the face seen from an angle (because of uncertainty,

missing data, or the frame problem), which implies that there

is a disadvantage to Bayesian inference. Moving your body

to see the front face of the singer implies that action-motion

control and determining the correct placement of the body can

address this disadvantage of Bayesian inference. This is called

active or embodied inference. Therefore, since embodiment

complements and reinforces Bayesian inference, one can state

that a stubbornly predictive coding is stably generated in the

brain. These ideas are also implemented in robotics (Linson

et al., 2018; Çatal et al., 2021).

While Bayesian inference seems to be flexible and to

be far from rigorous logical thinking, it entails nothing but

classical logic, or in other words, Boolean algebra, in which

any phenomenon can be explained by a combination of atomic

propositions taking the values yes or no and subject to the law

of excludedmiddle (i.e., classical logical reductionism). Bayesian

inference itself is not flexible in its logic, but it is a flexiblemethod

to determine within a predictive area what can be assessed and

accepted by classical Boolean algebra (Arecchi, 2003, 2011; Gunji

et al., 2017, 2020). In that sense, an image encoded inside the

brain and an object existing outside of the brain must have a

one-to-one correspondence through predictive coding.

In contrast, quantum cognition focuses on the other side

of brain-function phenomena and/or cognition (Khrennikov,

2001, 2021; Aerts, 2009; Aerts et al., 2012, 2013, 2019; Haven

and Khrennikov, 2013; Asano et al., 2015; Bruza et al.,

2015). Quantum cognition describes and explains cognition,

apprehension, comprehension, perception, and decision-

making by using the basic formalism and conceptual logical

and mathematical framework of quantum mechanics. It is

not concerned with the physical basis of quantum processes

in the brain’s microscopic dynamics, and it does not apply

quantum mechanics to macroscopic phenomena such as

cognition and perception. This is why the quantum cognition

community argues in favor of quantum mechanics being

properly utilized only as a mathematical tool to model cognitive

phenomena. Quantum logic, on which quantum cognition

is based, fundamentally differs from Boolean logic (Boolean

algebra). While Boolean logic has the structure of a rather

simple complemented distributive lattice, quantum logic has the

structure of a non-distributive lattice, i.e., a more complicated

orthomodular lattice. This more complex structure implies that

the cognition of multiple events entails a kind of resonance. This

means that these multiple events interfere with each other due to

the non-distributive nature of their logical evaluation, resulting

in mutual or multi-interdependence. Resonance typically

implies a non-linear interdependence (here in evaluating

probabilities); distributive lattices have linear dependencies for
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their propositions and hence no resonance-type effects. The

distributive law guarantees the independence of its reduced

atomic events or, in other words, atomic propositions. In

contrast, a non-distributive lattice guarantees the emergence

of interactions among reduced atomic events, which entails

resonance-like aspects for the probability of independent events.

This can explain cognitive illusions such as the conjunction

fallacy, in which the joint probability of the occurrence of events

A and B is larger than that of the occurrence of A.

Quantum logic (i.e., an orthomodular lattice) results from

a property of Hilbert space for the operators in quantum

mechanics. While there is no fundamental physical reason

to assume Hilbert space in a macroscopic universe, classical

mechanics can still be formulated in a Hilbert space framework,

as Koopman and Von Neumann proposed in the 1930s.

However, this results in an operational probabilistic theory

endowed with a classical Boolean algebra, which is complete as

a lattice. The dependence on the Hilbert space framework for

quantum cognition was considered a problem, or at least an

inconvenience, in assigning meaning to the related operators

and spaces. Quantum logic has been exemplified by Dirac’s

famous 3-polarizer experiment, but recently (Zhang, 2021a),

an analysis for bipolar crisp and fuzzy sets has provided new

insights into the old question. Indeed, as is well known, fuzzy

set theory models vagueness by membership measures, while

rough sets model incomplete information by bounding it with

a lower and an upper approximation. Therefore, it would be

very interesting to consider our previous work on rough set

approximation and quantum cognition (Gunji and Haruna,

2010; Gunji et al., 2016; Gunji and Nakamura, 2022a,b) in this

new light in future investigations. This could prove instrumental

in taking further steps toward a deeper understanding of the

interrelation of Bayesian inference and causal inference.

However, it has been recently verified that quantum logic, or

orthomodular lattices, can be constructed without Hilbert space.

First, this was achieved (Gunji et al., 2016) by the extension

of Arecchi’s idea of inverse Bayesian inference (Arecchi, 2003,

2011), and then it was achieved by the idea of ambiguity

between what is inside and outside of a context (Gunji and

Haruna, 2022; Gunji and Nakamura, 2022a,b). It can be achieved

with respect to “rough set” lattices—a kind of special coarse-

graining operation on regular sets—based on a binary relation.

Quantum logic without Hilbert space has also been achieved

by using category theory (Heunen and Vicary, 2019). This

implies that there is now a clear and reasonable foundation

by which quantum logic structures can readily be applied to

macroscopic phenomena. Now, we can turn to the following

questions that arise:

How are Bayesian inference and quantum cognition

interrelated in macroscopic world phenomena?

While classic Bayesian inference leads to Boolean logic,

in which classical logical reductionism holds, quantum logic

can never be compatible with classical logical reductionism.

Does this imply that the coexistence of Bayesian inference and

quantum logic in a macroscopic setting entails an antinomy?

How is Bayesian inference, which can be cast in a free-

energy-principle form, interrelated with quantum logic or

orthomodular lattices? If a datum is not related to the prior,

then there is no context or its probability is recorded as zero.

In other words, the probability of an event outside the context

is almost zero. Thus, the underlying logic leads to a Boolean

lattice. In contrast, quantum logic (or an orthomodular lattice)

allows for contextuality since it accepts the non-zero probability

of an event even outside the originally set context. We show here

that such a non-zero probability of an event outside the original

context can be obtained from an “excessive Bayesian procedure”

or, in other words, an “extended Bayesian inference”. This entails

a variation of the so-called “Bayesian-Inverse-Bayesian” non-

linear loop (Gunji et al., 2016; Basios and Gunji, 2021). It

might seem paradoxical, but upon closer examination, it is

not. Although a one-to-one correspondence is enforced within

the context, the non-zero probability of an event outside the

given context can still be readily obtained. Stubborn predictive

coding is resistant to change, and seemingly paradoxically, it

not only affords but also actually gives rise to the possibility of

considering other “outsider” events in addition to the events

inside the context. This results in an instance of quantum logic.

This article is organized as follows: First, we show the

relationship between the free energy minimization principles—

Bayesian inference and Boolean algebra. Second, we implement

an excess Bayesian procedure and demonstrate how the

relationship between the datum and hypothesis is changed

through this procedure. Third, we show that the excess

Bayesian procedure entails an orthomodular lattice as a quasi-

disjoint union of Boolean algebras. Therefore, in conclusion,

we establish that this implies that quantum cognition and the

free energy principle are connected to each other via an excess

Bayesian procedure.

Quantum cognition, orthomodular
lattice (quantum logic), and free
energy minimization

Quantum cognition, which is a new trend in cognitive

science, is based on the notion of probability in quantum

mechanics. Since any state of an event is defined as a vector

of complex numbers, the probability of an event is expressed

as the norm of the vector, as in quantum mechanics. Since

the effect of quantum entanglement plays an essential role in

calculating the joint probability, quantum cognition can explain

various cognitive illusions. However, quantum cognition uses

quantum mechanics not as a physical foundation of cognition

but as information theory.

The orthomodular lattice is directly obtained from quantum

mechanics; a lattice is an ordered set that is closed with respect to
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binary operations,meet and join (Appendix A). Given a complex

number linear space, an element of an ordered set is defined by

a set of vectors, and the order relation is defined by inclusion.

For any set of vectors, a set of vectors that are orthogonal to

the vectors is defined as an orthocomplement of them. Themeet

of sets of vectors is defined by their intersection, and the join

of sets is defined by the composition of the orthocomplement

of their union. Thus, an ordered set can be verified as an

orthocomplemented lattice. Since a linear vector space is

equipped with a Hilbert space, an orthocomplemented lattice is

verified as an orthomodular lattice. If inclusion is regarded as a

sequence of premises and consequences and meet and join are

regarded as logical conjunction and disjunction, respectively, an

orthomodular lattice is reformalized as quantum logic.

While quantum cognition and the orthomodular lattice were

originally derived from quantum mechanics equipped with a

Hilbert space, it has been verified that an orthomodular lattice

can be obtained without a Hilbert space, and various cognitive

illusions can be explained by subjective probability defined in

an orthomodular lattice without a Hilbert space. This implies

that quantum cognition may be established by an orthomodular

lattice alone, without a Hilbert space.

Free energy minimization is a theory by which cognitive

brain function is systematically explained, and it is based on

Bayesian inference. The term free energy originates from the

fact that the upper bound of the cost function that reveals the

difficulty in predicting the sensory input is called variational

free energy. First, we spell out how free energy minimization

is related to Bayesian inference and how it is disconnected

from quantum cognition. It is well known that the free energy

minimization principle implies Kullback–Leibler divergence

between the a priori probability and the a posteriori probability

under the minimization of predictive error (Friston and Kiebel,

2009a,b). It is expressed as

min
(

KLD
[

p (u) ‖ p (u|s)
]

− ln p (s)
)

(1)

Where, KLD
[

p (x) ‖ q (x)
]

=
∑

i p (xi) log
p(xi)
q(xi)

is the

Kullback–Leibler divergence between the two given probability

distributions, p, q, and the random variable is x, while s is the

given datum that has been experienced, and lnp (s) is the surprise

resulting from a given experience (i.e., the predictive error),

which is minimized. It is easy to see that KLD
[

p (x) ‖ q (x)
]

= 0

if, and only if, p (x) = q (x) almost everywhere.

Thus, the minimizing procedure (1) implies that the a

priori probability coincides with the a posteriori probability.

Here, we show that this procedure is nothing other than classic

Bayesian inference. Since probability changes over time in

Bayesian inference, let us introduce time as a suffix for the

probability. The variables d and h represent the datum and

hypothesis, respectively. The probability of datum d at time step

t is represented by Pt
(

d
)

, and that of hypothesis h at time step

t is represented by Pt
(

h
)

.

The conditional probability Pt
(

h|d
)

represents the

probability of h under the experience of d. Since hypothesis h is

the probability distribution of the data, hypothesis h is expressed

in terms of the likelihood of data as Pt
(

d|h
)

.

From the definition of the conditional probability of A given

B, expressed as P (A|B), we have P
(

d
∣

∣h
)

=
P(d,h)
P(h)

and P
(

h
∣

∣d
)

=

P(d,h)
P(d)

, so one obtains via Bayes’ theorem that

P
(

h
∣

∣d
)

P
(

d
)

= P
(

d
∣

∣h
)

P
(

h
)

(2)

This is consistent with non-Bayesian probability theory

when there is no iteration over time. However, because

P
(

d
)

=
∑

k P
(

d|hk
)

P
(

hk
)

, and because we do have an iterative

procedure over time in our case, with a time step t, we obtain for

Pt
(

h
)

the following expression:

Pt
(

h
∣

∣d
)

=
Pt

(

d|h
)

Pt
(

h
)

∑

k P
t
(

d|hk
)

Pt
(

hk
) (3)

One might regard the calculation using Equation 3 as

Bayesian inference, yet this is not a genuine Bayesian inference

just because it is consistent with ordinary probability theory. The

essence of Bayesian inference is that it allows us to compute,

starting from a given a priori probability, a resulting a posteriori

probability such that

Pt+1 (

h
)

= Pt
(

h|d
)

(4)

This is the goal of free energy minimization. The probability

of the hypothesis h under a specific experience d is generalized

as the probability of the hypothesis independent of experience.

The relation between data and hypotheses is analogous

to the relationship between objects outside the brain

and their representations (or “images”) inside the

brain. Let us consider a set of hypotheses and data,

H =
{

h1, h2, . . . , hN
}

,D =
{

d1, d2, . . . , dN
}

. A one-to-

one correspondence between hypotheses and data is expressed

by using the likelihood of a hypothesis and the probability of

this hypothesis. The likelihood is expressed as

Pt
(

di
∣

∣hj
)

∼ 1.0,
(

i = j
)

;Pt
(

di
∣

∣hj
)

∼ 0.0,
(

i 6= j
)

. (5)

This one-to-one correspondence between hypotheses and

data implies Pt
(

h
)

j =
1
N .

Therefore, the joint probability of a hypothesis is

expressed as

Pt
(

di, hj
)

= Pt
(

di
∣

∣hj
)

Pt
(

hj
)

∼
1

N
,
(

i = j
)

; Pt
(

di, hj
)

∼ 0.0,
(

i 6= j
)

. (6)

The joint probability between a hypothesis and data is

transformed into a binary relation R ⊆ H × D such that
(

h, d
)

∈ R if Pt
(

d, h
)

> θ ; otherwise,
(

h, d
)

/∈ R,.
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FIGURE 1

A diagonal relation and its corresponding lattice, which is a

Boolean lattice. The lattice is shown here as a Hasse diagram, in

which the elements of the lattice (a subset of D) are represented

by black circles, and if one element is smaller than another

element (i.e., one set is included in the other) and no element

exists between them, then they are connected by a line, and the

larger one is shown above the smaller one.

This results in a diagonal relation, as shown in Figure 1. This

construction of a binary relation can be generalized to any joint

probability between a hypothesis and data. In Figure 1, H =
{

h1, h2, . . . , h7
}

,D =
{

d1, d2, . . . , d7
}

, and from Equation 6,

Pt
(

di, hi
)

∼ 0.143; Pt
(

di, hj
)

∼ 0.0. Thus, given θ = 0.1, we

obtain
(

di, hi
)

∈ R ⊆ D×H for i = 1, 2, . . . , 7 and
(

di, hj
)

/∈ R

for i 6= j.

Now, given a binary relation between a hypothesis and data,

one can estimate a logical structure with respect to a lattice (see

Appendix A). There are several ways to construct a lattice from

a binary relation, where a concept is defined as a fixed point with

respect to certain defined operations. This has the result that a

concept is expressed as a pair of a subset of the hypotheses, H,

and a subset of the data, D. Since such a concept formulation

for a rough set lattice is consistent with the “concept” discussed

in cognitive linguistics, we apply the rough set lattice formalism

and theory for a binary relation.

Given a set of hypotheses H, a set of data D, and a relation

R ⊆ H×D, two operations, the upper and lower approximations

(Appendix B) are defined as follows. For ∀X ⊆ D, the upper

approximation of X with respect to a hypothesis is defined by

H∗ (X) = {T ∈ H|s ∈ X, sRT} (7)

For ∀Y ⊆ H, the lower approximation of Y with respect to the

data is defined by

D∗ (Y) = D− {s ∈ D|T ∈ H − Y , sRT} (8)

where H − Y represents the complement of Y in the set H.

A collection of fixed points of the composition of the two

operations (7) and (8) is called a rough set lattice (Yao, 2004;

Gunji and Haruna, 2010; see Appendix-B) and is described as

L =
{

X ⊆ D
∣

∣D∗

(

H∗ (X)
)

= X
}

(9)

As shown in Appendix A, a lattice is defined by an ordered set

that is closed with respect to specific binary operations,meet and

join. In a rough set lattice, L is a subset of the power set of D and

is closed with respect to join and meet. While there are other

methods for constructing a lattice from a binary relation, such

as the lattice of formal concept analysis that was developed to

deal with cognitive memory (Kumar et al., 2015; Shivahare and

Cherukuri, 2017), we used a rough set lattice for reasons based

on cognitive linguistics.

In the ideal case of a diagonal relation, as shown in Figure 1,

one obtains a Boolean lattice (Appendix A) of a rough-set lattice.

First,D∗

(

H∗
(

{di}
))

= D∗

(

{hi}
)

= {di} for any i = 1, 2, . . . , 7.

Thus, a singleton set of any element of D satisfies Equation 9

and is an element of a rough set lattice. Since a Boolean lattice

is expressed as a power set of D, any subset of D is an element

of L. This is easy to verify since for any subset of D, such as

X = { di, dj, . . .},

D∗

(

H∗ (X)
)

= D∗

(

{hi, hj, . . .}
)

(10)

and since for any k ∈ {1, 2, ..., N} ,
(

hk, dk
)

∈ R, and
(

hs, dk
)

/∈

R,
(

s 6= k
)

. Indeed, for any subset of D,

D∗

(

{hi, hj, . . .}
)

= D−

{

s ∈ D|T ∈
{

hi, hj, . . .
}

, sRT
}

= D−
{

di, dj, . . .
}

=
{

di, dj, . . .
}

(11)

where
{

di, dj, . . .
}

is the complement of
{

di, dj, . . .
}

.

This implies that for any X ⊆ D,

D∗

(

H
∗

(X)

)

= X (12)

Therefore, L is the same as the power set of D, and meet

is defined by intersection while join is defined by union. A

Boolean lattice is a classical set-theoretic logic, and any concept

within this logic, as defined above, can be expressed as a

combination of logical atoms (i.e., the next least element of D),

which in turn implies that any such concept can be reduced

to atoms. This is why the Boolean lattice is simply classical

logical reductionism. In the Hasse diagram of Figure 1, all

elements of the rough set lattice defined by the power set of

D =
{

d1, d2, . . . , d7
}

are represented by black circles. The least

element is the empty set, and the elements, called atoms, just

above the least element are {d1},
{

d2
}

, . . . , {d7}. Then, the

elements just above the atoms are all combinations of atoms,

such as
{

d1, d2
}

,
{

d1, d3
}

, ...,
{

d2, d3
}

, . . . , {d6, d7}. The

lattice contains all subsets of D, and the top element (i.e., the

greatest element) is D.

A Boolean lattice is mathematically defined as a distributive

complemented lattice.Meet and join constitute distributive laws

for any element of the Boolean lattice. A complemented lattice

implies that for any element there is at least one complement of

it such that the meet of the element and its complement is the

least element of the lattice, and their join is the greatest element

of the lattice. In a Boolean lattice, for any element of the lattice,
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FIGURE 2

Snapshots of the joint probability between data and hypotheses. The probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black. By following the thick arrow, the binary relation R is obtained. The pale blue cells represent the domain in the

relation, which is ignored by Bayesian inference.

there is a unique complement called the orthocomplement (see

Appendix A).

Now, instead of an ideal diagonal relation, let us consider

a binary relation between hypothesis and datum through

Bayesian inference. Given an ideal diagonal relation as an initial

condition, a specific sequence of data, d ∈ DE ⊆ D, is

given to obtain a decision-making system based on Bayesian

inference. Figure 2 shows some snapshots, in the form of a

heatmap, of the joint probabilities of hypotheses and data.

In Figure 2, H =
{

h1, h2, . . . , h10
}

,D =
{

d1, d2, . . . , d10
}

,

and initially, Pt=0
(

di|hi
)

= 0.8, and in the case of i 6=

j, Pt=0
(

dj|hi
)

= 1−0.8
9 = 0.022. The probability of

each hypothesis is such that Pt=0
(

h
)

= 0.1. The temporal

development follows Equations 3, 4, where specific data, d in

Pt
(

h
∣

∣d
)

, are given at each time. In the top row in Figure 2,

a specific d is randomly given from a subset of D such as

D −
{

d8, d9, d10
}

=
{

d1, d2, . . . , d7
}

. Since the probability of

d is calculated cumulatively, as time proceeds, the probability

converges to the actual situation: Pt
(

d8
)

= Pt
(

d9
)

=

Pt
(

d10
)

=0.0, and Pt
(

ds
)

=1/7=0.14 with s 6= 8, 9, 10.

If at time step t, dswith s 6= 8, 9, 10 is given, Pt
(

h
∣

∣ds
)

=

Pt(ds|h)P
t(h)

∑

k P
t(ds|hk)Pt(hk)

is calculated for any h. From this, Pt+1
(

h
)

=

Pt
(

h|ds
)

is obtained by Equation 9. Finally, Pt+1
(

d, h
)

is

calculated by Pt+1
(

d
)

Pt+1
(

h
)

. Each matrix of Figure 2 is

obtained as a heatmap, in which if Pt+1
(

d, h
)

≥ 0.01, the cell

is painted black; if 0.01 > Pt+1
(

d, h
)

≥ 0.008, it is painted

pink; if 0.008 > Pt+1
(

d, h
)

≥ 0.002, it is painted orange; if

0.002 > Pt+1
(

d, h
)

≥ 0.0006, it is painted pale yellow; and

otherwise, it is painted white.

It is easy to see that data that have not been experienced

or realized and their corresponding hypotheses are ignored

through Bayesian inference. Therefore, a binary relation

R is readily obtained for any di ∈ DE,
(

hj, di
)

∈

R,
(

i = j
)

;
(

hj, di
)

/∈ R,
(

i 6= j
)

, as shown in the right row of

Figure 2. Henceforth, we call any such relation a sub-diagonal

relation since a full diagonal relation holds only for a subset

of D.

A rough set lattice corresponding to a sub-diagonal relation

is also a Boolean lattice, the same as the lattice shown in Figure 1.

It is easy to see that for any X ⊆ DE, D∗

(

H∗ (X)
)

= X, and

for any Y ⊆ DE, D∗

(

H∗ (Y)
)

= D∗ (∅) = ∅. Therefore,

D∗

(

H∗ (X ∪ Y)
)

6= X ∪ Y , which implies that a rough-set

lattice for a sub-diagonal relation on DE is the power set of DE.

Obviously, this is nothing more than a Boolean lattice by itself.

The diagonal relation that entails a Boolean lattice also implies a

one-to-one correspondence between objects and representations

(or “images”), which is actually the basis for decision-making

based on classical logical reductionism. When a decision-maker

searches for an optimal solution through Bayesian inference,

the domain in which the one-to-one correspondence holds is

restricted to a small part of a whole binary relation. That small

area results in a sub-diagonal relation, which helps the decision-

makers avoid redundant searches. In other words, Bayesian

inference is essentially the core of “stubborn empiricism.” While

many researchers claim that predictive coding in the brain

is flexible and plastic, with respect to search strategies in a

changeable environment, Bayesian inference itself sticks to a

“stubborn” optimization process.
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Excess Bayesian inference and
quantum logic

Compared to Bayesian inference, or its equivalent free

energy minimization, quantum cognition claims remarkably

better flexibility and deviates from classical optimization in

terms of decision-making processes. One of the most intriguing

examples is the so-called “guppy effect,” which shows the essence

of the conjunctive fallacy: given two events that are independent

of each other, the joint probability of the two events occurring

simultaneously is smaller than the probability of every single

event (Aerts et al., 2012). The probability of an unknown person

being male, represented by P
(

male
)

, is 1
2 , and the probability

that the person is born in March, P
(

March
)

, is 1
12 . Therefore,

since the probability that the person is male and is born inMarch

is P
(

male ∧March
)

= 1
24 , we have

P
(

male ∧March
)

<P
(

male
)

, P
(

male ∧March
)

<P
(

March
)

(13)

The guppy effect contradicts this situation. If someone is

asked to give an example of a fish, most likely, the person

will respond with tuna, mackerel, or a similar example, and

the probability that the person will give the example of a

guppy, the popular pet fish that gave its name to this effect

in the original publication, is very small. The probability of

recalling the datum “guppy” when the prompt “fish” is given is

represented by Pguppy
(

fish
)

. Analogously, if someone is asked to

give an example of a pet, the person might respond with a cat

or a dog, and probability of recalling Pguppy
(

pet
)

is very small.

However, if specifically asked to recall a pet fish, the person could

recall the guppy with high probability, and this implies

P
(

pet ∧ fish
)

> P
(

fish
)

, P
(

pet ∧ fish
)

> P
(

pet
)

(14)

This is the guppy effect.

In quantum cognition, quantum mechanics is used as the

basis of information theory. An event is defined as a vector

in Hilbert space, and the probability of an event is defined

by the square of the norm of its vector. The guppy effect, in

which a joint probability is larger than the probability of a single

event, can be explained by the entanglement of events. Thus, we

arrive at the realization that the probabilities of events are not

independent of each other and are in fact an interaction among

events. Their “entanglement” can occur through an effect outside

the diagonal relation that results from classic Bayesian inference.

The difference between Bayesian inference and quantum

cognition is clearly shown in terms of lattice theory. As

mentioned previously, Bayesian inference entails a Boolean

lattice. In quantum mechanics, one can define a set of vectors,

X, as an element of a lattice, and an orthocomplement of X,

represented by X⊥, is defined by the set of vectors whose inner

product with any vector of X is zero (i.e., the two vectors are

orthogonal to each other). Meet, again, is defined here by the

intersection, and join is defined by the orthocomplement of the

union. In Hilbert space, the resulting lattice is known to be an

orthomodular lattice (Appendix A), which is essentially what

quantum logic is. As mentioned previously, it has been recently

demonstrated that quantum logic (an orthomodular lattice) can

be constructed without a Hilbert space using category theory

and/or lattice theory.

Since an orthomodular lattice is a non-distributive lattice,

not all events and phenomena can be explained by a

combination of logical atoms. In other words, the orthomodular

lattice conflicts with the classical logical reductionistic approach

supported by classical Boolean lattice theory. It can indeed

accommodate flexible and plastic inference processes and

interactions of thoughts concerning multiple events. In that

sense, an orthomodular lattice or quantum logic not only

conflicts with Boolean lattice theory but also surpasses it.

Thus far, we have obtained a lattice from a binary

relation between data and hypotheses, and we have shown

that Bayesian inference entails a Boolean lattice. Moreover, as

has been clearly seen, Bayesian inference plays an essential

role in human decision-making. Therefore, any other decision-

making process that should be added to the Bayesian inference

process must preserve and accommodate Bayesian inference

itself. However, since decision-making based on quantum logic

conflicts with decision-making based on Bayesian inference,

these two decision-making processes might seem to be in

conflict with each other. Therefore, the problem that arises is to

determine what kind of process entailing quantum logic could

be added to the basic Bayesian process.

Here, we define the excess Bayesian process, by which the

tendency to stick to experience based on Bayesian inference is

enhanced rather than canceled. The excess Bayesian process is

defined by the detection of data that have been experienced

and actually contracts the universe of discourse based on

experience. Since the probability of a specific datum that is not

observed decreases to almost 0.0 through Bayesian inference,

only the joint probabilities of specific pairs of datums and

hypotheses remain, which is called the effective domain. The

excess Bayesian process regards the effective domain as a set

consisting of all joint probabilities and modifies the likelihood

function of the hypothesis so that it is contained in the effective

domain. Therefore, the joint probability in the effective domain

is divided by the summation of those joint probabilities in the

effective domain. This is defined below, and the algorithmic

representation is shown in Appendix C. While excess Bayesian

inference has sometimes been referred to as inverse Bayesian

inference (Gunji et al., 2016), inverse Bayesian inference is

formalized so that it is symmetrical to Bayesian inference

(Gunji et al., 2018, 2021). Since Bayesian inference uses a

set of hypotheses to infer the environment by changing the

probability of the hypotheses, the hypotheses are required to be

sufficiently different from each other that each is sensitive to the
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environment. Therefore, each hypothesis hi is required to have

a sharp peak in the diagonal element datum di. If the effective

domain of the data is a subset of the set of all data, the likelihood

of a hypothesis must be contained in the effective domain. This

is simply an extension of Bayesian inference, and that is why

it is called an excess Bayesian process. Therefore, we formulate

the abovementioned excess Bayesian process as follows: Given a

joint probability, Pt
(

di, hj
)

, i = 1, 2, . . . ,N; j = 1, 2, . . . ,N, a

binary relation is obtained by a given threshold value θ :

(

hj, di
)

∈ Rt , ifPt
(

di, hj
)

> θ;
(

hj, di
)

/∈ Rt , otherwise (15)

The detection of data is defined by taking a diagonal

element
(

hi, di
)

and considering inverting the relation either

from
(

hi, di
)

∈ Rt to
(

hi+1, di+1
)

/∈ Rt or from
(

hi, di
)

/∈ Rt

to
(

hi+1, di+1
)

∈ Rt . This is expressed as a setMtsuch that

M
t = {Mk =

(

hi, di
)

∣

∣

∣

(

(

hi, di
)

∈ Rt ∧
(

hi+1, di+1
)

/∈ Rt
)

∨

(

(

hi, di
)

/∈ Rt ∧
(

hi+1, di+1
)

∈ Rt
)}

(16)

where if Mk =
(

hi, di
)

and Mk+1 =
(

hj, dj
)

, then i < j. When

the Bayesian inference is expressed as Equations 3, 4, some

data are ignored, which decreases the probability of Pt
(

di, hj
)

when di is not found under the given circumstances. A set

M
t assigns a subset of the relation of diagonal elements. By

constructing the set Mt , we contract the universe of discourse

depending on experience. In non-Bayesian probability theory,

the following holds:

P
(

h, d
)

= P
(

h|d
)

∑

k

P
(

d, hk
)

(17)

the following equation also holds:

P
(

d
)

=
∑

k

P
(

d, hk
)

=
∑

j

P
(

dj
)

(18)

The contraction of the universe depending on experience is

implemented as follows: we assume that according to the belief

that the universe consists only of experiences, the probability of

the data that have been experienced is 1.0. That is,

P
(

d
)

=
∑

k

P
(

d, hk
)

= 1.0 (19)

Substituting Equation 19 with Equation 17 and introducing

an iterative process as before, with a given time step t, the

newly contracted universe considering the data that have been

experienced is denoted at each time step by d′, and one obtains

Pt+1 (

h, d
)

= Pt
(

h
∣

∣d
)

=
Pt

(

h, d
)

Pt
(

d
′) (20)

The probability of the contracted data, Pt
(

d′
)

, at each time

step is calculated within the contracted universe of discourse by

Equation 16, so we have

Pt
(

d
′
)

=
∑q

j=p
Pt

(

hj, d
)

(21)

where the domain of summation of Pt
(

hj, d
)

is given by

p = πMk, q = πMk+1with Mk,Mk+1 ∈ M
t , k = 1, 2,

. . . , m− 1 (22)

which assigns either the relation {
(

hi, di
)

∈ Rt} that has been

experienced or the relation {
(

hi, di
)

/∈ Rt} that has not been

experienced, where

πMk = π
(

hi, di
)

= i (23)

which assigns the index of the diagonal element. ForMm ∈ M
t ,

Mm = (hN , dN ), and then p = πMm−1, q = N. In the

excess Bayesian procedure, first, Pt
(

d
)

, as a part of the universe,

is regarded as a universe, which entails Pt
(

d
)

= 1.0, which

cancels any effect of Pt
(

d
)

. Then, in turn, the data that have been

experienced are denoted by d′, and then Pt
(

d′
)

is calculated

from the small area assigned by Equation 16. The following

mnemonic expression might help us understand the basis of the

excess Bayesian inference:

P
(

h, d
)

=
P

(

h, d
)

P
(

d
) P

(

d
)

(24)

While Equation 24 is indeed trivial, P
(

d
)

in the numerator

on the right-hand side must be regarded as 1.0, and P
(

d
)

in

the denominator on the right-hand side must be regarded as

Pt
(

d
′
)

. Thus, we obtain Equation 20.

By using Equation 22 or 23, the joint probability is obtained

by summation with respect to the hypotheses, so now it reads as:

Pt+1 (

h, d
)

= Pt
(

h
∣

∣d
)

=
Pt

(

h, d
)

Pt
(

d
′) =

Pt
(

h, d
)

∑q
j=p P

t
(

hj, d
)

(25)

Symmetrically, the joint probability is obtained by summation

with respect to the data, so now it reads as:

Pt+1 (

h, d
)

= Pt
(

d
∣

∣h
)

=
Pt

(

h, d
)

Pt
(

h′
) =

Pt
(

h, d
)

∑q
j=p P

t
(

h, dj
)

(26)

Using Equations 25, 26, not only the joint probability in the

assigned area but also the joint probability outside the assigned

area is normalized. Therefore, the effect of Bayesian inference

contributes to the area outside the originally assigned area. The

algorithmic representation of excess Bayesian inference is shown

in Appendix C.

Figure 3 shows how Equations 25, 26 play a role in

calculating the joint probability. This is a result of numerical

Frontiers inNeurorobotics 08 frontiersin.org

275

https://doi.org/10.3389/fnbot.2022.910161
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Gunji et al. 10.3389/fnbot.2022.910161

FIGURE 3

Snapshots of the joint probabilities of data and hypotheses and their corresponding relation R. The articulation of the data and hypotheses with

respect to the diagonal elements is determined by Equation 22. The joint probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black. The last diagram in the sequence ordered by the arrows represents a binary relation. A black cell at (h,d)

represents (h,d) ∈ R, and a white cell represents (h,d) /∈ R.

simulation in which after the classic Bayesian process is used

in the first 30 steps, the newly introduced excess Bayesian

process, defined by Equations 25, 26, is implemented. In

Figure 3, H =
{

h1, h2, . . . , h20
}

,D =
{

d1, d2, . . . , d20
}

,

and initially, Pt=0
(

di|hi
)

= 0.8; in the case of i 6=

j, Pt=0
(

dj|hi
)

= 1−0.8
19 = 0.011. The probability of each

hypothesis is such that Pt=0
(

h
)

= 0.05. The time development

follows Equations 3, 4, where a specific data value, d in

Pt
(

h
∣

∣d
)

, is given at each time. In Figure 2, the specific d is

randomly given from a subset of D, such as D − E with

E =
({

d3, d4, d5, d6
}

∪
{

d15, d16, d17, d18, d19, d20
})

. Since

the probability of d is calculated cumulatively, as time proceeds,

the probability converges to the situation; Pt
(

du
)

= 0.0 for

du ∈ E , and Pt
(

ds
)

=1/10=0.10 for ds /∈ E. However,

Bayesian inference is adopted only for 30 time steps. If at time

step t, ds /∈ E is given, then Pt
(

h
∣

∣ds
)

=
Pt(ds|h)P

t(h)
∑

k P
t(ds|hk)Pt(hk)

is calculated for any h. From this, Pt+1
(

h
)

= Pt
(

h|ds
)

is

obtained by Equation 9. For the first 30 time steps, Pt+1
(

d, h
)

is calculated by Pt+1
(

d
)

Pt+1
(

h
)

. Each matrix in Figure 3 is

obtained as a heatmap, in which if Pt+1
(

d, h
)

≥ 0.01, the cell

is painted black; if 0.01 > Pt+1
(

d, h
)

≥ 0.008, it is painted

pink; if 0.008 > Pt+1
(

d, h
)

≥ 0.002, it is painted orange; if

0.002 > Pt+1
(

d, h
)

≥ 0.0006, it is painted pale yellow; and

otherwise, it is painted white.

In the excess Bayesian process, M
t is determined to

assign data that have been experienced. When an element

of M
t = {M1 =

(

h1, d1
)

, M2 =
(

h3, d3
)

, M3 =
(

h6, d6
)

, M4 =
(

h12, d12
)

} is chosen, one obtains

p = πMk, q = πMk+1. As shown in Figure 3, a square whose

vertices are
(

hp, dp
)

,
(

hp, dq−1
)

,
(

hq−1, dp
)

,
(

hq−1, dq−1
)

becomes the diagonal relation that is defined by

Equation 15. Squares are added due to this diagonal

relation, such as the square whose vertices are {
(

h1, d1
)

,
(

h1, d2
)

,
(

h2, d1
)

,
(

h2, d2
)

}, {
(

h3, d3
)

,
(

h3, d5
)

,
(

h5, d3
)

,
(

h5, d5
)

}, {
(

h6, d6
)

,
(

h6, d11
)

,
(

h11, d6
)

,
(

h11, d11
)

}, and

{
(

h12, d12
)

,
(

h12, d20
)

,
(

h20, d12
)

,
(

h20, d20
)

}, and consists of
(

hi, dj
)

∈ R. The above example demonstrates how the joint

probabilities of data and hypotheses in the area assigned by

the data that have been experienced and their corresponding

hypotheses are normalized by dividing those probabilities by
∑q

j=p P
t
(

hj, d
)

and
∑q

j=p P
t
(

h, dj
)

. Finally, each cell in the

relation is painted black if Pt+1
(

d, h
)

≥ 0.0006; otherwise, it is

painted white.

This normalization procedure enhances the diagonal

relationship between the data and hypotheses beyond the

experienced domain, which implies an explicit one-to-one

correspondence between the data and hypotheses. In addition,

the joint probabilities outside the diagonal relation are no longer

negligibly small values. In Bayesian inference, only a diagonal

relation is accessible as obtained, and any pair of data and

hypotheses outside a diagonal relation are necessarily ignored;

therefore, their joint probabilities almost disappear. In contrast,

during the excess Bayesian inference process, pairs of data and

hypotheses outside the diagonal relation are also enhanced, and

the corresponding joint probabilities are increased. Although

this might seem paradoxical and counterintuitive, it is indeed
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FIGURE 4

Snapshots of the joint probabilities of data and hypotheses and their corresponding relation R. The articulation of the data and hypotheses with

respect to the diagonal elements is determined by Equation 23. The joint probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black (left). A black cell at (h,d) represents (h,d) ∈ R, and a white cell represents (h,d) /∈ R (center right).

true that overestimating one’s own experience allows alternative

possibilities to emerge outside the given experience.

We previously showed that the psychological origin of

quantum mechanics and/or quantum logic results not from a

poor choice of basis vectors but from generating a context in

which an object outside a brain is uniquely connected with a

representation inside a brain, where outside the context, the

object is connected to all images and the image is connected

to all objects (Gunji and Haruna, 2022; Gunji and Nakamura,

2022a,b). In other words, there is a one-to-one relation within

each context, and outside the context (i.e., background), objects

are connected to all representations and vice versa. Since

a one-to-one relation entails a Boolean algebra, this system

entails multiple Boolean algebras connecting via the least and

the greatest elements resulting from the background. This

is the implementation of quantum logic without a Hilbert

space. In this paper, we added another explanation for the

psychological origin of quantum logic by introducing the excess

Bayesian process.

The results from a numerical simulation of the excess

Bayesian inference are shown in Figure 3, where the domain

assigned by data that have been experienced is determined

by Equation 22, which articulates the relationship between

data that have been experienced and data that have not been

experienced, and through this articulation, it assigns the vertex

of the diagonal relation. Finally, the joint probabilities of the

data and hypotheses entail, by induction, certain binary relations

consisting of multiple diagonal relations and newly formed

relations outside the diagonal relations, where pairs
(

hi, dj
)

outside the diagonal relations remain in their corresponding

relations R.

Figure 4 shows the results from numerical simulations of

the excess Bayesian inference, where the domain assigned by

the experienced data is determined by Equations 22, 23, in

which only data that have been experienced are assigned as

articulated. Therefore, diagonal elements whose data have been

experienced constitute a diagonal relation, while those whose

data have not been experienced constitute the background

outside the diagonal relations. Similar to Figure 3, any
(

hi, dj
)

outside the diagonal relations is in R. The central diagram

in Figure 4 shows a large area consisting of cells representing
(

h, d
)

∈ R, which contains diagonal cells. In this relation,

for some d, any h is in a relation such that
(

h, d
)

∈ R,

and for some h, any d is in a relation such that
(

h, d
)

∈ R.

These pairs of
(

h, d
)

∈ R can be canceled out with respect

to a given rough-set lattice approximation because for some

d such that any h has a relation to it, D∗

(

H∗
(

{d, . . .}
))

=

D∗ (H) = D is not an element of a lattice. Thus, a d

such that any h has a relation to it and an h such that

any d has a relation to it can be mutually removed from

a relation R. The diagram on the right in Figure 4 shows

such a relation, where the redundant rows and columns have

been removed.

Figures 5, 6 show a corresponding lattice obtained from the

relation in Figure 3, where this lattice is defined by Equations 7–

9. It is easy to see that they are the same kind of orthomodular

lattices that correspond to quantum logic. Figure 5 shows

a relation between the data and the hypotheses and their

corresponding sublattices. When we focus on the 3× 3 diagonal

relation between {d21, d22, d23} and {h21, h22, h23}, the it is easy

to see that

D∗

(

H∗
(

{d21, d22}
))

= D∗

(

{h21, h22} ∪ {h21, h22, h23}
)

= D−

(

{

d21, d22
}

∪
{

d23
}

)

=
{

d21, d22
}

and that for a subset of D, X, consisting of elements belonging

to different diagonal relations, Equation 12 does not hold, since

D∗

(

H∗ (X)
)

= D.

Let us also note here that D∗

(

H∗
(

{d21, d22, d23}
))

= D.

Therefore, this 3 × 3 diagonal relation yields the power set of

{d21, d22, d23} except for
{

d21, d22, d23
}

. Thus, if the greatest

element is represented by D, the 3 × 3 diagonal relation entails

a 23-Boolean lattice. These considerations are general; therefore,

an n× n diagonal relation entails a 2n-Boolean lattice.
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FIGURE 5

Relation between data and hypotheses consisting of (2× 2) , (3× 3) , (9× 9) , (6× 6) diagonal relations and their corresponding Boolean lattices.

All relations outside the diagonal relations constitute the greatest element, which fuses all the other Boolean lattices.

FIGURE 6

Disjoint union of some Boolean lattices, the least and greatest elements of which are common to all Boolean lattices. This is obtained from the

relation shown in Figure 5.

Figure 6 shows the whole construction of a lattice

corresponding to a whole relation. Each black circle represents

an element of a (sub)lattice that is a subset of D. The greatest

element and the least element are represented by white circles,

and they are connected to the least and the greatest element

of each Boolean lattice by broken lines, which implies that the

greatest element of each Boolean lattice is the same as D and

that the least element of each Boolean lattice is the empty set.
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Thus, one can say that the whole structure is a disjoint union

of multiple Boolean (sub)lattices except for the least and the

greatest element. It can be straightforwardly verified that this

is an orthomodular lattice of the kind that is well known from

quantum logic (see Appendix A).

Therefore, classical Bayesian inference gives rise to a

Boolean lattice, while excess Bayesian inference gives rise to

an orthomodular lattice. This is because classical Bayesian

inference ignores the outside of the diagonal relation, which

leads to a Boolean lattice. This implies that a decision-

maker who applies a classical logical reductionistic approach

to restricted pairs of data and hypotheses that are being

experienced ignores the pairs of data and hypotheses that

are not being experienced. In contrast, a decision-maker who

not only uses classical Bayesian inference but augments it via

an excess Bayesian inference process can enhance the basic

one-to-one correspondence between the data and hypotheses

by normalization within the domain of experience. This

leads to multiple sub-relations, which are diagonal relations

and relations that constitute the background of the diagonal

relations. If the background consists of no relation [i.e.,
(

h, d
)

/∈ R], multiple (sub)diagonal relations constitute the

one diagonal relation expressing the Boolean algebra. However,

if the background consists of relations [i.e.,
(

h, d
)

∈ R],

this same background plays a key role in constituting the

common greatest element by which multiple Boolean lattices

are fused.

Since any element except for the least and greatest elements

has a unique complement in each Boolean sublattice, any

element can be regarded as an orthocomplement. Indeed, if

an element and its orthocomplement in the lattice, such as

those shown in Figure 6, can be compared with each other and

with respect to the order, they are both in the same Boolean

lattice participating as a sublattice, and then the distributive law

holds for the element and its orthocomplement. This is why the

orthomodular law holds for that lattice. Therefore, the result

is that excess Bayesian inference can entail and accommodate

quantum logic.

Discussion and conclusion

We initially investigated the claim that the cognitive

perspective based on the free energy principle could seemingly

conflict with quantum cognition since the former tends toward

optimization by removing redundant search space and the

latter tends toward ambiguous and non-optimal decision-

making. Since the free energy principle mathematically and

formally includes classical Bayesian inference as an instance,

one can estimate via optimization techniques the distribution

of the joint probability of data and hypotheses, and this

can be expressed as a binary relation. If the data and

hypotheses are replaced by objects outside the brain and

representations (or “images”) inside the brain, respectively, and

if symmetry between objects and images is assumed, one can

logically evaluate the hidden structure between objects and

representations, “images,” with respect to a Boolean lattice

structure. In this sense, one can estimate how a Boolean

lattice (i.e., classical logic) and an orthomodular lattice (i.e.,

quantum logic) can arise from a given inference system.

We also examined how these considerations can bridge the

considerations of the free energy principle with those of

quantum cognition. After a reviewer’s comment (we thank them

for this remark), it has come to our attention that bipolar fuzzy

relations (Zhang, 1998, 2021a,b) should be considered and that

comparing our previously proposed rough set approximation

with respect to quantum cognition might enhance its scope

by enabling a way to connect Bayesian inference and causal

inference. Although this new development is beyond the

scope of the present study, we maintain an interest in future

investigations that could shed some light on the epistemological

and ontological bases of quantum cognition and cognition

at large.

Applying the free energy principle consists of minimizing

the difference between the conditional probability under

a given experience and the marginal probability via the

minimization of the prediction error. Compared to cortical

processes, in predictive coding, the former process is considered

a classical Bayesian inference that has to be interpreted

as a hierarchical top-down process, and the latter process

is interpreted as a hierarchical bottom-up process. This is

based on the premise that when new data are received and

prediction errors are detected, the prediction errors lead to

a modification of the prediction system. In other words,

top-down Bayesian inference can make a system “see” new

data through the old filters based on previous experiences.

Thus, a system is subject to unavoidably becoming stuck

in previous experience. Moreover, active inference (embodied

cognition) is also a top-down process that enhances the

Bayesian inference process. To receive data that are consistent

with previous data, the top-down process makes the body

move and act accordingly. This leads to stubborn inference

based on experience. In this sense, an active inference might

deploy a certain kind of possible excess Bayesian inference

process. In other words, the active inference is a flexible

interface based on a body between the environment and

a stubborn inference system. This has been described as

embodied intelligence.

In our work, we propose that excess Bayesian inference plays

a key role in the process of cognition, much greater than that

of active inference. This is because classical Bayesian inference

restricts the domain of joint probabilities of data and hypotheses,

while excess Bayesian inference realizes and enforces a one-

to-one correspondence between data and hypotheses beyond

the initially restricted domain. Therefore, this is called excess

Bayesian inference. Our proposed process is implemented via
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a stepwise, iterative renormalization of the joint probability at

each step divided by the sum of all joint probabilities in a

restricted domain. This renormalization is achieved with respect

to data and hypotheses independently, and these processes

are not performed simultaneously. For any data, the joint

probability is renormalized with respect to the hypotheses, and

for any hypotheses, the joint probability is renormalized with

respect to the data. Therefore, the effect of renormalization,

which is inherent in the process of excess Bayesian inference,

can influence not only the initially restricted domain but

also the domains outside the initial domain. This implies

that excess Bayesian inference can bring out non-zero joint

probabilities that are noted as significant even outside the

initially restricted domain, a potential that classical Bayesian

inference lacks.

The distribution of the joint probabilities of data and

hypotheses is expressed as a binary relation if a threshold

value is introduced to distinguish a relation from the lack

of a relation. Although Bayesian inference is expressed as a

simple diagonal relation, excess Bayesian inference is expressed

as multiple (sub)diagonal relations whose backgrounds consist

of relations. The relations between the data and hypotheses

are transformed into an algebraic structure called a lattice,

and one can estimate the differences between classical Bayesian

inference and the newly proposed excess Bayesian inference in

terms of the lattice structure, each reflecting its underlying

logical structure. Classical Bayesian inference is expressed as

a simple Boolean lattice (classical logic), and excess Bayesian

inference is expressed as an orthomodular lattice (quantum

logic). This, in turn, implies that excess Bayesian inference

can bridge the Boolean lattice structure of the classic Bayesian

inference by encompassing a wider orthomodular lattice similar

to those of quantum logic. From these considerations, we

conclude that the basis of quantum cognition results from a

radical extension of the Bayesian inference framework rather

than simply alternative versions of classic Bayesian inference

and that the free energy minimization principle can be bridged

with quantum cognition via the proposed excess Bayesian

inference scheme.
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An enactivist-inspired
mathematical model of
cognition

Vadim Weinstein*, Basak Sakcak and Steven M. LaValle*

Center for Ubiquitous Computing, Faculty of Information Technology and Electrical Engineering,

University of Oulu, Oulu, Finland

In this paper we start from the philosophical position in cognitive science

known as enactivism. We formulate five basic enactivist tenets that we have

carefully identified in the relevant literature as the main underlying principles

of that philosophy. We then develop a mathematical framework to talk about

cognitive systems (both artificial and natural) which complies with these

enactivist tenets. In particularwe pay attention that ourmathematicalmodeling

does not attribute contentful symbolic representations to the agents, and that

the agent’s nervous system or brain, body and environment are modeled in a

way that makes them an inseparable part of a greater totality. The long-term

purpose for which this article sets the stage is to create a mathematical

foundation for cognition which is in line with enactivism. We see two main

benefits of doing so: (1) It enables enactivist ideas to be more accessible

for computer scientists, AI researchers, roboticists, cognitive scientists, and

psychologists, and (2) it gives the philosophers a mathematical tool which can

be used to clarify their notions and help with their debates. Our main notion is

that of a sensorimotor systemwhich is a special case of a well studied notion of

a transition system. We also consider related notions such as labeled transition

systems and deterministic automata. We analyze a notion called su�ciency

and show that it is a very good candidate for a foundational notion in the

“mathematics of cognition from an enactivist perspective.” We demonstrate

its importance by proving a uniqueness theorem about the minimal su�cient

refinements (which correspond in some sense to an optimal attunement of an

organism to its environment) and by showing that su�ciency corresponds to

known notions such as su�cient history information spaces. In the end, we tie

it all back to the enactivist tenets.

KEYWORDS

enactivism, transition systems, automaton, cognitive modeling, information spaces,

robotics

1. Introduction: Mathematizing enactivism

The premise of this paper is to lay down a logical framework for analyzing

agency in a novel way, inspired by enactivism. Classically, mathematical and logical

models of cognition are in line with the cognitivist paradigm in that they rely on the

notion of symbolic representation and do not emphasize embodiment or enactment

(Newell and Simon, 1972; Fodor, 2008; Gallistel and King, 2009; Rescorla, 2016).
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FIGURE 1

The environment, body, and nervous system (or brain) will be

modeled as inseparable parts of a coupled transition system.

Cognitivism presumes that the world possesses objective

structure and the contentful information of this structure is

acquired and represented by the cognitive agent. This aligns well

with the classical model-theoretic paradigm. In this paradigm

a formal language is describing a static model (such as when

sentences in the language of rings describe algebraic structures—

such as rings).

In the cognitivist analogy, the agent possesses (“in its head”)

formulas of the language and the model is the world or the

environment of the agent. If the formulas possessed by the agent

hold in the model, then the agent’s representation of the world is

correct; otherwise, it is incorrect. Such view of cognitive agency

is rejected by the enactivists either weakly or strongly depending

on the branch of enactivism. For example, radical enactivism

(Hutto and Myin, 2012, 2017) rejects this view strongly. Our

question for this paper is: What would the mathematical logic

of cognition look like, if even the radical enactivists were to

accept it?

We do not take part in the cognitivist-enactivist, or

the representationalist-antirepresentationalist debate (Pezzulo

et al., 2011; O’Regan and Block, 2012; Gallagher, 2018;

Fuchs, 2020). Rather, we take a somewhat extreme enactivist

and antirepresentational view as our axiomatic starting point

and as a theoretical explanatory target. Then we develop a

mathematical theory that attempts to account for cognition in

a way congruent with this view. Even though most forms of

enactivism (even radical ones) have room for representation, it

is not our main goal at the moment to bridge the gap between

“basic minds” and “scaffolded minds,” to use terminology of

(Hutto and Myin, 2017). Thus, in this terminology, we are going

to explore a mathematical (only) of basic minds.

The following “axioms” we take as fundamentals for our

work:

(EA1) Embodiment. “From a third-person perspective the

organism-environment is taken as the explanatory unit”

(Gallagher, 2017). The environment, the body, and the

nervous system are inseparable parts of the system

which they form by coupling; see Figure 1. They cannot

be meaningfully understood in isolation from each

other. “Mentality is in all cases concretely constituted

by, and thus literally consists of, the extensive ways

in which organisms interact with their environments,

where the relevant ways of interacting involve, but are

not exclusively restricted to, what goes on in brains”

(Embodiment Thesis Hutto and Myin, 2012).

(EA2) Groundedness. The brain does not “acquire” or “possess”

contentful states, representations, or manipulate

semantic information in any other way. “Mentality-

constituting interactions are grounded in, shaped by,

and explained by nothing more, or other, than the

history of an organism’s previous interactions. Nothing

other than its history of active engaging structures or

explains an organism’s current interactive tendencies.”

[Developmental-Explanatory Thesis (Hutto and Myin,

2012)].

(EA3) Emergence. The crucial properties of the brain-body-

environment system from the point of view of

cognition emerge from the embodiment, the brain-

body-environment coupling, the situatedness, and the

skills of the agent. The agent’s and the environment’s

prior structure come together to facilitate new structure

which emerges through the sensorimotor engagement.

“[T]he mind and world arise together in enaction, [but]

their manner of arising is not arbitrary” (i.e. it is

structured) (Varela et al., 1992).

(EA4) Attunement. Agents differ in their ways of attunement

and adaptation to their environments, and in the skills

they have. A skill is a potential possibility to engage

reliably in complex sensorimotor interactions with the

environment (Gallagher, 2017).

(EA5) Perception. Sensing and perceiving are not the same

thing. Perception arises from skillful sensorimotor

activity. To perceive is to become better attuned to the

environment. O’Regan and Noë (2001) and Noë (2004)

“Perception and action, sensorium and motorium, are

linked together as successively emergent and mutually

selecting patterns.” Varela et al. (1992).

The mathematics we use to capture those ideas is a mixture

of known and new concepts from theoretical robotics,

(non-)deterministic automata and transition systems theory,

and dynamical systems (Goranko and Otto, 2007). It will also

build upon the information spaces framework, introduced in

LaValle (2006) as a unified way to model sensing, actuation, and

planning in robotics; the framework itself builds upon earlier

ideas such as dynamic games with imperfect information (von

Neumann and Morgenstern, 1944; Başar and Olsder, 1995),

control with imperfect state information (Kumar and Varaiya,

1986; Bertsekas, 2001), knowledge states (Lozano-Pérez et al.,

1984; Erdmann, 1993), perceptual equivalence classes (Donald
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and Jennings, 1991; Donald, 1995), maze and graph-exploring

automata (Shannon, 1952; Blum and Kozen, 1978; Fraigniaud

et al., 2005), and belief spaces (Kaelbling et al., 1998; Roy and

Gordon, 2003).

Although information spaces refer to “information,” they

are not directly related to Shannon’s information theory

(Shannon, 1948), which came later than von Neumann’s use

of information in the context of sequential game theory.

Neither does “information” here refer to content-bearing

information. One important intuition behind the information

in information spaces is that more information corresponds to

narrowing down the space of possibilities (for example of future

sensorimotor interactions).

The main mathematical concept of this paper is a

sensorimotor system (SM-system), which is a special case of a

transition system. Sensorimotor systems can describe the body-

brain system, the body-environment system as well as other

parts of the brain-body-environment system. Given two SM-

systems they can be coupled to produce another (third) SM-

system. Mathematically, the coupling operation is akin to a

direct product. We introduce several notions that describe the

coupling of the agent and the environment from an outside

perspective (not from the perspective of the agent or the

environment). The main notion is that of sufficiency. In some

sense it guarantees that the coupling is of “high fidelity.” It does

not compare “internal” models of the agent to “external” states

of affairs. Rather it asks whether the way in which the agent

engages in sensorimotor patterns is well structured. The notion

of sufficiency compares the sensorimiotor capacity of the agent

to itself by asking whether the past sensorimotor patterns (in a

given environment) determine reliably the future sensorimotor

patterns. We then introduce several related notions. The degree

of insufficiency is a measure by which various agents can be

compared in their coupling versatility (Def 4.11). Minimal

sufficient refinement is a concept that can be used in the

most vivid ways to illustrate how the sensorimotor interaction

“enacts” properties of the brain-body-environment system.

The notion of minimal sufficient refinement ties together

mathematics of sensorimotor systems and the philosophical

ideas of emergence, structural coupling and enactment of the

“world we inhabit” (cf. Varela et al., 1992); see Example 4.25.

We prove the uniqueness of minimal sufficient refinements

(Theorem 4.19) and point out their connection to the notions

of bisimulation and sufficient information mappings. Strategic

sufficiency is a mathematically more challenging concept, but

has appealing properties in the philosophical and practical sense.

A sensor mapping is strategically sufficient for some subset of

the state space G, if that sensor can (in principle) be used by

the agent to reach G 1. Again, any sensor mapping has minimal

strategic refinements, but this time they are not unique. Different

1 This idea of a reachable set G is the simplest way to formalize

a�ordances.

minimal refinements in this case can be thought of as different

adaptations to the same environmental demands.

Mathematically, sufficiency is a relative concept to some

known notions in theoretical computer science and robotics:

that of bisimulation in automata and Kripke model theory

(Goranko and Otto, 2007), and sufficient information mappings

in information spaces theory (LaValle, 2006).

Minimal sufficient refinements lead to unique classifications

of agent-environment states that “emerge” from the way in

which the agent is coupled to the environment, not merely from

the way the environment is structured on its own. Thus, the

world is simultaneously objectively existing (from the global

“god” perspective), but also “brought about” by the agent.

This should be enough to answer the two questions

that, according to Paolo (2018), any embodied theory of

cognition should be able to provide precise answers to: What

is its conception of bodies? What central role do bodies

play in this theory different from the roles they play in

traditional computationalism?

Section 2 introduces the basics of transition and SM-

systems, their coupling, and other mathematical constructs such

as quotients. Section 3 illustrates the introduced notions with

detailed examples. Section 4 introduces the notion of sufficiency,

sufficient refinements, and minimal sufficient refinements. We

will prove the uniqueness theorem for the latter and illustrate

the notions in a computational setting. We will explore the

importance of sufficiency and related notions for the enactivist

way of looking at cognitive organization. Finally, Section 5 ties

the mathematics back to the philosophical premises.

2. Transition systems and
sensorimotor systems

At the most abstract level, the central concept for our

mathematical theory is that of a transition system. This is a

standard definition from automata theory (for instance Goranko

and Otto, 2007):

Definition 2.1. A transition system is a triple (X,U,T) where X

is the state space (mathematically it is just a set), U is the set of

names for outgoing transitions (another set), and T ⊆ X×U×X

is a ternary relation.

The intuitive interpretation of (X,U,T) is that it is possible

to transition from the state x1 ∈ X to the state x2 ∈

X via u ∈ U iff (x1, u, x2) ∈ T. We use the notation

x1
u
→ x2 to mean that (x1, u, x2) ∈ T. Our notion of

transition system is often called a labeled transition system in

the literature, because each potential transition has a name or

label, u ∈ U. However, we drop the term “labeled” because in

Section 2.5 we will introduce a version of transition systems

in which the states are relabeled, thereby introducing a new

kind of labeling. Note that when working with such transition
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systems as modeling agency, we are safely within the realm

of the Developmental-Explanatory Thesis (EA2). The following

definitions are standard (although we do not restrict X to

be finite):

Definition 2.2. Let X = (X,U,T) and X ′ = (X′,U′,T′)

be transition systems. An isomorphism is a bijective function

f : X → X′ such that for all x1, x2 ∈ X and u ∈ U we have

(x1, u, x2) ∈ T ⇐⇒ (f (x1), u, f (x2)) ∈ T′. A simulation is a

relation R ⊆ X × X′ such that for all (x1, x
′
1) ∈ R, all u ∈ U

and all x2 ∈ X, we have that if (x1, u, x2) ∈ T, then there exists

x′2 ∈ X′ with (x′1, u, x
′
2) ∈ T′ and (x2, x

′
2) ∈ R. A bisimulation

is a relation R such that both R and RT = {(y, x) :(x, y) ∈ R} are

simulations.

The notation X ∼= X ′ means that X , X ′ are isomorphic,

and X ∼ X ′ means that there is a bisimulation R such that

X = dom(R) and X′ = ran(R). We speak of automorphism and

autobisimulation, if X = X ′.

We are ready to make the first observation:

Proposition 2.3. If X ∼= X ′, then X ∼ X ′.

Proof: Let f be an isomorphism f : X → X′. Then R =

{(x1, x2) ∈ X × X′ | x2 = f (x1)} is a bisimulation.

2.1. Transition systems as a unifying
concept

There are several ways in which transition systems and their

relatives appear in the literature relevant to us.

Examples 2.4. Let (X,U,T) be a transition system.

1. Let x0 ∈ X and F ⊆ X. Let T̂ : X × U → P(X) be defined

by T̂(x, u) = {x2 ∈ X | x1
u
→ x2}. Then (X,U, T̂, x0, F) is a

nondeterministic automaton. If in addition X andU are finite,

then it is a nondeterministic finite automaton (NFA).

2. Let T̃ : X × X → P(U) be the function T̃(x1, x2) = {u ∈

U | x1
u
→ x2}. Then T̃(x1, x2) is the set of all u that take

x1 to x2. Then, (X, T̃) is a labeled directed graph in which

the labels are subsets of U. Another way to think of it is as a

labeled directed multigraph: the multiplicity of the edge from

x1 to x2 is n = |T̃(x1, x2)| and these n edges are labeled by the

labels from the set T̃(x1, x2).

3. If for all x1 ∈ X and u ∈ U there is a unique x2 ∈ X with

x1
u
→ x2, let τ : X × U → X be the function defined such

that τ (x1, u) = x2 iff x1
u
→ x2. Let x0 ∈ X and F ⊆ X.

Then (X,U, τ , x0, F) is a deterministic automaton, and if X

and U are finite, then it is a deterministic finite automaton

(DFA). Without F, (X,U, τ , x0) also satisfies the definition of

the temporal filter of LaValle (2012, 4.2.3). In this case X is the

information space or the I-space (usually denoted by I instead

of X), and U is the observation space (usually denoted by Y

instead of U).

2.2. Information spaces and filters

We can reformulate the notion of a history information space

introduced by LaValle (2006) as follows. In this context, X is an

external state space that characterizes the robot’s configuration,

velocity, and environment, U is an action space, f is a state

transition mapping that produces a next state from a current

state and action, h is a sensor mapping that maps states to

observations, and Y is a sensor observation space. As in LaValle

(2006), for each x ∈ X, let 9(x) be a finite set of “nature sensing

actions” and for each x ∈ X and u ∈ U let 2(x, u) be a finite

set of “nature actions.” Let X9 = {(x,ψ) | ψ ∈ 9(x)} and

let h : X9 → Y be a “sensor mapping” where Y is a set called

the “observation space.” Let X2 = {(x, u, θ) | θ ∈ 2(x, u)}

and let f : X2 → X be the “transition function.” The following

definition is an adaptation from LaValle (2006).

Definition 2.5. A valid history I-state for X,9 ,2, f is a sequence

(u0, y0, . . . , uk−1, yk−1) of length 2k for which there exist x̄ =

(x0, . . . , xk−1), ψ̄ = (ψ0, . . . ,ψk−1) and θ̄ = (θ0, . . . , θk−2)

such that for all i < k we have

1. θi ∈ 2(xi, ui),

2. if i < k− 1, then xi+1 = f (xi, ui, θi),

3. ψi ∈ 9(xi),

4. yi = h(xi,ψi).

In this case we say that (u0, y0, . . . , uk−1, yk−1) is witnessed by x̄,

ψ̄ and θ̄ .

Now let I be the set of all valid history I-states for X,9 ,2, f .

For all k ∈ N, all x̄ ∈ Xk−1, all ψ̄ = (ψ0, . . . ,ψk−1) and

all θ̄ = (θ0, . . . , θk−2), let I
k(x̄, ψ̄ , θ̄) be the set of all valid

paths (u0, y0, . . . , uk−1, yk−1) witnessed by x̄, ψ̄ , and θ̄ . Now let

T ⊆ I × (U × Y)× I be defined by

T =
{

(η, (u, y), η′) | there exist k ∈ N,

x̄ = (x0, . . . , xk−1), ψ̄ = (ψ0, . . . ,ψk−1),

θ̄ = (θ0, . . . , θk−2), θ ∈ 2(xk−1, u) and ψ ∈ 9(f (xk−1, u, θ))

such that

η ∈ Ik(x̄, ψ̄ , θ̄) ∧ η′ ∈ Ik+1(x̄′, ψ̄ ′, θ̄ ′),

where x̄′ = x̄⌢(f (xk−1, u, θ)), ψ̄
′ = ψ⌢(ψ), and θ̄ ′ = θ⌢(θ)

}

.

Here, x⌢y is the concatenation of sequences x and y. Then

(I ,U × Y ,T) is the history I-space transition system.

Suppose for each x, y ∈ X there is at most one u ∈ U with

x
u
→ y. Let

ET = {(x, y) ∈ X2 | ∃u ∈ U(x
u
→ y)},

and let l : ET → U be defined so that l((x, y)) is the unique u

such that x
u
→ y. Then (X,ET , l, x0) with x0 ∈ X is a passive

I-state graph as in O’Kane and Shell (2017, Def 1).

The following definition is more of a notational than

mathematical value.
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Definition 2.6. Let X = (X,U,T) be a transition system. If for

all (x, u) ∈ X × U there is a unique y ∈ X with (x, u, y) ∈ T,

then we denote the function (x, u) 7→ y by τ , and write (X,U, τ )

instead of (X,U,T). In this case we call X an automaton. Note

that usually in computer science literature an automaton is finite

and also has an initial state and a set of accepting states, but we

do not have those in our definition.

For automata we also use the notation x ∗ u = τ (x, u) and if

ū = (u0, . . . , uk−1), then x ∗ ū is defined by induction for k > 1

as follows: x ∗ (u0, . . . , uk−1) = (x ∗ (u0, . . . , uk−2)) ∗ uk−1.

Examples 2.7. Automata and transition systems can model

agent-environment and related dynamics.

1. If (X, ·) is a group, U ⊆ X is a set of generators, and τ (x, u) =

x · u, then (X,U, τ ) is an automaton. For example, consider

the situation in which X = Z × Z and U = {a, b, a−1, b−1}

in which a = (1, 0) and b = (0, 1). Thus, X is presented with

generators a, b, and relation a ·b = b ·a. This models an agent

moving without rotation in an infinite 2D-grid and the agent

can move left, right, up and down. There are no obstacles.

The standard Cayley graph is equivalent to the graph based

representation of the automaton.

2. LetU∗ be the set of all finite sequences (“strings”) of elements

of U. If ū = (u0, . . . , uk−1) ∈ U∗ and uk ∈ U, we denote by

ū⌢uk the concatenation (u0, . . . , uk−1, uk). If ū0, ū1 ∈ U∗,

then ū0
⌢ū1 is similarly the concatenation of two strings. The

operation of concatenation turns U∗ into a monoid. Suppose

τ : X×U∗ → X is an action of the monoidU∗ on Xmeaning

that it satisfies τ (τ (x, ū), ū′) = τ (x, ū⌢ū′) and τ (x,∅) =

x. Then the automaton (X,U, τ ) is a discrete-time control

system. A sequence of controls ū = (u0, . . . , uk−1) produces

a unique trajectory (x0, . . . , xk), given the initial state x0 by

induction: xi+1 = τ (xi, ui) for all i < k.

3. Consider an automaton (X,U, τ ) in which U is a group,

and τ is a group action of U on X. In some situations

it can be natural to consider the set of motor-outputs of

an agent to be a group: the neutral element is no motor-

output at all, every motor-output has an “inverse” for which

the effect is the opposite, or negating (say, moving right as

opposed to moving left), the composition of movements is

many movements applied consecutively. The action τ of U

on X is then the realization of those motor-outputs in the

environment. In realistic scenarios, however, this is not a

good way to model the sensorimotor interaction because of

the following reason. Suppose the agent has actions “left”

and “right,” but it is standing next to an obstacle on its left.

Then moving “left” will result in staying still (because of the

obstacle), but moving “right” will result in actually moving

right, if there is no obstacle at the right of the agent. In

this situation the sequence “left-right” results in a different

position of the agent than the sequence “right-left,” so if “left”

and “right” are each other’s inverses in G, then the axioms of

group action are violated.

4. Note that if T = ∅, then (X,U,T) is a transition system.

5. LetX = {0, 1}∗ as in (2),U = {0}, and (x, 0, y) ∈ T if and only

if |y| = |x|+1, then (X,U,T) is a transition system, where |x|

is the length of the string x.

6. If (X,U,T) is a transition system and E ⊆ X an equivalence

relation, then (X/E,U,T/E) is a transition system, where

X/E = {[x]E | x ∈ X} and T/E = {([x]E, u, [y]E) | (x, u, y) ∈

T}, and / denotes a quotient space; see Definition 2.33.

2.3. Sensorimotor systems

Next, we will define a sensorimotor system, which is a special

case of a transition system. Following the tenet (EA1) that

“environment is inseparable from the body which is inseparable

from the brain,” our sensorimotor systems can model any part of

the environment-body-brain coupling. Themodel that describes

the environment differs from the one that describes the agent

merely in the type of structure it possesess, but not in an essential

mathematical way.

SM-systems can be thought of as a partial specification

of (some part of) the brain-body-environment coupling.

Physicalist determinism demands that under full specification2

we are left with a deterministic system. A specification is partial

when it leaves room for unknowns in some, or all, parts of

the system.

Definition 2.8. A sensorimotor system (or SM-system) is a

transition system (X,U,T) where U = S × M for some sets S

andM, which we call in this context the sensory set and themotor

set, respectively.

The interpretation is that if x
(s,m)
−→ y, then s is the sensation

that either occurs at x, or along the transition to the next state

y, and m the motor action which leads to the transition. We

will show later how SM-systems can be connected together

(Definition 2.22) to form coupled systems. Sometimes an SM-

system is modeling a brain-body totality, and other times it is

modeling body-environment totality. A coupling between these

two will model the brain-body-environment totality. This is a

flexible framework which enables enactivist-style analysis. We

do not assume that the agent “knows” the effect of a givenm ∈ M

or that the “meaning” of a given s ∈ S. The sets S and M

are purely mathematical sets denoting the interface between the

agent and the environment from the third person perspective.

In fact, the sensory andmotor components can be decoupled

which might be more natural from the mathematics’ point of

view in some cases. The following shows that we can look at it

both ways.

2 This means a full specification of the environment, the agent’s body,

its brain, their coupling, as well as the initial states.
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Definition 2.9. An asynchronous SM-system is a transition

system (X,U,T) such that there exist partitions U = S ∪M and

X = Xs ∪ Xm such that for all (x, u, y) ∈ T we have

1. if x ∈ Xs, then u ∈ S,

2. if x ∈ Xm, then u ∈ M, and

3. x ∈ Xm ⇐⇒ y ∈ Xs.

Thus, the state space of a sequential SM-system contains separate

sensory states andmotor states.

Definition 2.10. Suppose E is an equivalence relation on a setX.

We say that a map f : X → X is E-preserving if for all x, y ∈ X,

we have xEy ⇐⇒ f (x)Ef (y).

There is a natural correspondence between SM-systems and

their asynchronous counterpart:

Theorem 2.11. Let SM and aSM be the classes of SM-systems

and asynchronous SM-systems, respectively. There are functions

F : SM→ aSM and G : aSM→ SM such that

1. F and G are isomorphism and bisimulation preserving,

2. restricted to finite systems, F and G are polynomial-time

computable, and restricted to the infinite ones they are Borel-

functions in the sense of classical descriptive set theory (Kechris,

1994).

Proof: See Appendix B.

Another type of a system, which is in a similar way

equivalent to a special case of an SM-system, is a state-labeled

transition system which we will introduce next, and prove a

similar result, Lemma 2.19.

2.4. Quasifilters and quasipolicies

The amount of information specified in a given SM-system

depends on which part of the brain-body-environment system

we are modeling. At one extreme, we specify the environment’s

dynamics down to the small detail and leave the brain’s dynamics

completely unspecified. In this case the SM-systemwill have only

one sensation corresponding to each state and the transition to

the next state will be completely determined by knowing the

motor action. This is, in a sense, the environment’s perspective.

At the other extreme, we specify the brain completely, but leave

the environment unspecified. We “don’t know” which sensation

comes next, but we “know” which motor actions are we going

to apply. This is in a sense the perspective of the agent. The

first extreme case is the perspective often taken in robotics

and other engineering fields when either specifying a planning

problem (Ghallab et al., 2004; Choset et al., 2005; O’Kane

and LaValle, 2008), or designing a filter (Hager, 1990; Thrun

et al., 2005; LaValle, 2012; Särkkä, 2013) (also known as sensor

fusion). This is why we call SM-systems of that sort quasifilters

(Definition 2.12). The other extreme is the perspective of a

policy. The policy depends on sensory input, but the motor

actions are determined (by the policy). This is why we call the

SM-systems of the latter sort quasipolicy. The “quasi-” prefix is

used because both are weaker and more general notions than

those that appear in the literature; see Remarks 2.20 and 2.21.

Another way to look at this is the dichotomy between

virtual reality (VR), and robotics. In virtual reality, scientists

are designing the (virtual) environment for an agent whereas

in robotics they are typically designing an agent for an

environment. In the former case the agent is partially specified:

the type of embodiment is known (S and M are known) and

some types of patterns of embodiment are known (eye-hand

coordination). However, the specific actions to be taken by the

agents are left unspecified. The job of the designer is to specify

the environment down to the smallest detail, so that every

sequence of motor actions of the agent yields targeted sensory

feedback. The VR-designer is designing a quasifilter constrained

by the partial knowledge of the agent’s embodiment and internal

dynamics. The case for the robot designer is the opposite. She

has a partial specification of the robot’s intended environment

and usually works with a complete specification of the robot’s

mechanics. She is designing a quasipolicy. For VR-designers

the agent is a black box; for roboticists the agent is a white

box (Suomalainen et al., 2020) (unless the task is to reverse

engineer an unknown robot design). For the environment, the

roles are reversed. A similar dichotomy can be seen between

biology (in which the agent is a black box) and robotics (in which

it usually is a white box).

All the definitions in this section are new.

Definition 2.12. Suppose that (X, S × M,T) is an SM-system

with the property that for all x1 ∈ X there exists sx1 ∈ S such

that for all x2 ∈ X and all (s,m) ∈ S×M we have that x1
(s,m)
−→ x2

implies s = sx1 . Then, (X, S×M,T) is a quasifilter.

In a quasifilter the sensory part of the outgoing edge is

unique. The dual notion (quasipolicy) is when the motor part

is unique:

Definition 2.13. Suppose that (X, S × M,T) is an SM-system

with the property that for all x ∈ X there exists mx ∈ M such

that for all y ∈ X and all (s,m) ∈ S ×M we have that x
(s,m)
−→ y

impliesm = mx. Then, (X, S×M,T) is a quasipolicy.

Before explaining the connections between quasifilter and a

filter and quasipolicy and a policy, let us define projections of the

sensorimotor transition relation to “motor” and to “sensory”:

Definition 2.14. Given an SM-system (X, S×M,T), let

TM = {(x,m, y) ∈ X ×M × X | ∃s ∈ S(x, (s,m), y) ∈ T}

TS = {(x, s, y) ∈ X × S× X | ∃m ∈ M(x, (s,m), y) ∈ T}.

These are called the motor and the sensory projections,

respectively of the sensorimotor transition relation. They are
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also called themotor transition relation and the sensory transition

relation, respectively. The corresponding transition systems

(X,M,TM) and (X, S,TS) are called the motor and the sensory

projection systems.

Definition 2.15. Given a transition system (X,U,T), and x ∈ X,

let OT(x) ⊆ U be defined as the set OT(x) = {u ∈ U | (∃y ∈

X)(x
u
→ y)}. Combining this notation with the one introduced

in Example 2.4(2), given x, y ∈ X, we have

OT(x) =
⋃

y∈X

T̃(x, y).

For a transition relation T ⊆ X × (S × M) × X, define its

transpose by Tt ⊆ X×(S×M)×X such that Tt = {(x, (m, s), y) |

(x, (s,m), y) ∈ T}. Note that (Tt)t = T. For a subset of a

Cartesian product A ⊆ S × M, let A1 be the projection to the

first coordinate A1 = {s ∈ S | (∃m ∈ M)((s,m) ∈ A)} and

A2 the projection to the second one: A2 = {m ∈ M | (∃s ∈

S)((s,m) ∈ A)}.

Mathematically coupling of two transition systems is

symmetric [see Theorem 2.24(3)], but from the cognitive

perspective there is (usually) an asymmetry between the agent

and the environment (which can be evident from some specific

properties of the agent and of the environment). Because

of the partial symmetry, many properties of an agent can

dually be held by the environment and vice versa. The

following proposition highlights the duality between quasipolicy

and quasifilters: reversing the roles of the environment and

the agent.

Proposition 2.16. For an SM-system X = (X, S × M,T) the

following are equivalent:

1. X is a quasifilter,

2. X t = (X, S×M,Tt) is a quasipolicy,

3. OTS = (OT(x))2 = (OTt (x))1 is a singleton for each x ∈ X.

Similarly,X is a quasipolicy if and only if OTM (x) = (OT(X))1 is

a singleton for each x ∈ X.

Proof: A straightforward consequence of all the definitions.

2.5. State-relabeled transition systems

It will become convenient in the coming framework to assign

labels to the states. The elements x of the state spaceX are already

named; thus, our labeling can be more properly considered as a

relabeling via a function h :X → L, in which L is an arbitrary

set of labels. This allows partitions to be naturally induced over

X by the preimages of h. Intuitively, this will allow the state

space X to be characterized at different levels of “resolution” or

“granularity.” Thus, we have the following definition:

Definition 2.17. A state-relabeled transition system (or simply

labeled transition system) is a quintuple (X,U,T, h, L) in

which h : X → L is a labeling function and (X,U,T) is a

transition system.

We think of state-relabeled to be a more descriptive term, but we

shorten it in the remainder of this paper to being simply labeled.

Remark 2.18. In an analogy toDefinition 2.6, a labeled transition

system is a labeled automaton, if T happens to be a function;

in other words, for all (x, u) ∈ X × U there is a unique

y ∈ X with (x, u, y) ∈ T. In this case we may denote this

function by τ : (x, u) 7→ y and work with the labeled automaton

(X,U, τ , h, L). For example, the temporal filter in Section 2.1 is a

labeled automaton.

The isomorphism and bisimulation relations are defined

similary as for transition systems, but in a label-preserving way.

One intended application of a labeled transition system

(X,U,T, h, L) is that h is a sensor mapping, L is a set of sensor

observations, and U is a set of actions. Thus, actions u ∈ U

allow the agent to transition between states in X while h tells

us what the agent senses in each state. We intend to show that

this can be seen as a special case of an SM-system by proving

a theorem similar to Theorem 2.11, but stronger, namely these

corresponces preserve isomorphism:

Lemma 2.19. Let F be the class of quasifilters, P the class of

quasipolicies, and L the class of labeled systems. Then there are

one-to-one maps

LTSP : P → L and LTSF : F → L

such that

1. LTSP and LTSF are isomorphism and bisimulation preserving,

2. restricted to finite systems, LTSP and LTSF are polynomial-

time computable, and restricted to the infinite ones they are

Borel-functions in the sense of classical descriptive set theory.

Proof: See Appendix B

Remark 2.20. Let X = (X, S ×M,T) be a quasifilter and X ′ =

LTSF(X ) = (X,M,TM , h, S) as in Lemma 2.19. Suppose further

that for each x, y ∈ X there is at most one u ∈ U with x
u
→ y. Let

ET = {(x, y) ∈ X2 | ∃u ∈ U(x
u
→ y)},

Then (X,M,ET , x0) coincides with the definition of a filter

(O’Kane and Shell, 2017, Def 3). If it is also an automaton,

meaning that above we replace “at most one” by “exactly

one,” then every sequence of motor actions (m0, . . . ,mk−1)

determines a unique resulting state xk−1 ∈ X. This is analogous,

and can be proved in the same way, as the fact that each

sequence of sensory data determines a unique resulting state in

Remark 2.21 below.

Remark 2.21. Usually, a policy is a function which describes how

an agent chooses actions based on its own past experience. Thus,

ifM is the set of motor commands and S is the set of sensations,
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a policy is a function π : S∗ → M where S∗ is the set of finite

sequences of sensory “histories”; see for example (LaValle, 2006).

Now, suppose that an SM-system X = (X, S × M,T) is a

quasipolicy in the sense of Definition 2.13 and let x 7→ mx be

as in that Definition. Assume further that X is an automaton

(Section 2.1) and let τ : X× (S×M)→ X be the corresponding

transition function so that for all x ∈ X and (s,m) ∈ S ×M we

have (x, (s,m), τ (x, (s,m))) ∈ T. Let x0 ∈ X be an initial state.We

will show how the pair (X , x0) defines a function π : S∗ → M

in a natural way. Let s̄ = (s0, . . . , sk−1) ∈ Sk be a sequence of

sensory data. If k = 0, and so s̄ = () = ∅, let π(s̄) = mx0 . If

k > 0, assume that π(s0, . . . , sk−2) and xk−1 are both defined

(induction hypothesis). Then let xk = τ (xk−1, (mxk−1 , sk−1))

and π(s0, . . . , sk−2, sk−1) = mxk . The idea is that because of the

uniqueness of mx, a sequence of sensory data determines (given

an initial state) a unique path through the automaton X .

2.6. Couplings of transition systems

The central concept of this work pertaining to all principles

(EA1)–(EA5) is the coupling of SM-systems. We define

coupling, however, for general transition systems with the

understanding that our most interesting applications will be

for SM-systems where U0 = U1 = S × M. The idea is

that in every transition there is a sensory component and

a motor component. The set S could be thought of as all

possible events that trigger afferent nervous signals, or their

combinations. The elements of M are those events that are

triggered by efferent nervous signals. This is an abstract space

and in transitioning from one state to another some subset of

S × M is “active.” If we know little of what kind of sensory

data the agent receives during the transition, then that transition

will occupy a subset of S × M whose projection to the S-

coordinate is large. If, on the other hand we know a lot,

and can specify the exact sensory data, then the projection

to the S-coordinate is small. Vice versa, if we do not know

which motor actions lead from one state to another, then the

projection of the corresponding subset to the M-coordinate is

large etc. This was made more precise in Section 2.4. The fact

that the transition consists of pairs (s,m) where s is a sensory

input and m is a motor command does not mean that the

agent is equipped with the semantics of what m “means,” or

what it “does” in the world. The effect of m is “computed”

by the environment and the agent only receives the next “s”

as the feedback. It might have been more intuitive, but more

cumbersome to make this definition in terms of functions that

map events of the environment to sensory stimuli and internal

events of the nervous system to motor actions, and further

functions that map the motor actions to the actual events in

the environment, etc., but from the point of view of essential

mathematical structure these extra identifications wouldn’t add

anything qualitatively new.

Definition 2.22. Let X0 = (X0,U0,T0) and X1 = (X1,U1,T1)

be two transition systems. The coupled system X0 ∗ X1 is the

transition system (X,U,T) defined as follows: X = X0 × X1,

U = U0 ∩ U1, and

T = T0 ∗ T1 = {((x0, x1), u, (y0, y1)) | (x0, u, y0)

∈ T0 ∧ (x1, u, y1) ∈ T1}.

Equivalently, for all ((x0, x1), (y0, y1)) ∈ (X0 × X1)
2 we have

T̃((x0, y0), (x1, y1)) = T̃0(x0, x1) ∩ T̃1(y0, y1)

(recall the T̃ notation from Example 2.4(2)).

Example 2.23. A simple example of coupling is illustrated in

Figure 2.

Mathematically the coupling is a product of sorts. If we think

of one transition system as “the environment” and the other as

“the agent,” then the coupling tells us about all possible ways

in which the agent can engage with the environment. The fact

that the state space of the coupled system is the product of the

state spaces of the two initial systems reflects the fact that the

coupled system includes information of “what would happen” if

the environment was in any given state while the agent is in any

given (“internal”) state.

We immediately prove the first theorem concerning

coupling:

Theorem 2.24. Suppose that Xi = (Xi,Ui,Ti) and X ′i =

(X′i ,U
′
i ,T
′
i ) for i ∈ {0, 1} are four SM-systems. Then the following

hold:

1. If Xi
∼= X ′i for i ∈ {0, 1}, then X0 ∗ X1

∼= X ′0 ∗ X
′
1.

2. If Xi ∼ X ′i for i ∈ {0, 1}, then X0 ∗ X1 ∼ X ′0 ∗ X
′
1.

3. X0 ∗ X1
∼= X1 ∗ X0.

Proof: See Appendix B

Coupling provides an interesting way to compare SM-systems

from the “point of view” of other SM-systems. For example,

given an SM-system E one can define an equivalence relation

on SM-systems by saying that I ∼E I ′, if E ∗ I = E ∗ I ′. If

E is the “environment” and I , I ′ are “agents,” this is saying that

the agents perform identically in this particular environment. Or

vice versa, for a fixed I , the relation E ∗ I = E ′ ∗ I means that

the environments are indistinguishable by the agent I .

Remark 2.25. In the definition of coupling we see that the

two SM-systems constrain each other. This is seen from

the fact that in the definition we take intersections. For

example, when an agent is coupled to an environment, it

chooses certain actions from a large range of possibilities.

In this way the agent structures its own world through

the coupling (EA3). To make this notion further connect

to enactivist paradigm, we invoke the dynamical systems
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FIGURE 2

(A) States and actions for the transition system X0 that describes a 2-by-2 grid. 8 actions populating the set M = {m0, . . . ,m7} correspond to a

move (to a neighbor cell if possible) either sideways or diagonally. Suppose S is a singleton such that S = {s}. Then, in the following, ui

corresponds to the transition ui = (mi, s) for i = 1, . . . , 7. (B) Transition system X1. (C) Transition system X0. (D) The coupled system X0 ∗X1.

approach to cognition (Tschacher and Dauwalder, 2003).

An attractor in a transition system X = (X,U,T) is

a set A ⊆ X with the property that for all infinite

sequences

x0
u0
→ x1

u1
→ · · · xk−1

uk−1
→ xk

uk
→ · · ·

there are infinitely many indices n such that xn ∈ A. There could

be other possible definitions, such as “for all large enough n,

xn ∈ A”. For the present illustration purposes it is, however,

irrelevant. It could be the case that A ⊆ X is not an attractor

of X , but after coupling with X ′ = (X′,U′,T′), A × X′ may

be an attractor of X ∗ X ′. Thus, if X is the environment and

X ′ is the agent and A is a set of desirable environmental states,

then we may say that the agent is well attuned to X , if A was

not initially an attractor, but in X ∗ X ′, then A × X′ becomes

one. It could also be that the agent needs to arrive to A while

being in a certain type of an internal state B ⊆ X′, for example,

if A is “food” and B is “hungry”. Then it is not important

that A × X′ is an attractor, but it is imperative that A × B

is one.

2.7. Unconstrained and fully constrained
SM-systems

Aswementioned before, the information specified in an SM-

system depends on which part of the brain-body-environment

system we are modeling. In the extreme case we do not specify

anything, except for the very minimal information. Consider a

body of a robot for which the set of possible actions (or motor

commands) is M and the set of possible sensor observations

is S. Suppose that is all we know about the robot. We do not

know what kind of environment it is in and we do not know

what kind of “brain” (a processor or an algorithm) it is equipped

with. Thus, we do not know of any constraints the robot may

have in sensing or moving. We then model this robot as an

unconstrained SM-system:

Definition 2.26. An SM-system (X, S × M,T) is called

unconstrained iff for all x ∈ X, we have OT(x) = S ×M; recall

Definition 2.15.

Unconstrained systems have the role of a neutral element

with respect to coupling (Proposition 2.29). We now show that

given all unconstrained SM-systems with shared M and S are

mutually bisimulation equivalent:
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Proposition 2.27. Suppose that X = (X, S × M,T) and X ′ =

(X′, S×M,T′) are unconstrained systems. Then X ∼ X ′.

Proof: See Appendix B

There are many intuitions behind the above. An

unconstrained system is one where anything could happen:

the agent might perform any actions in any order and the

environment could provide the agent with any sensory data.

Such a world is reminiscent of white noise. Such a system is

only interesting from an abstract mathematical perspective, it

is in some sense “maximal”. The content of Proposition 2.27

is that such systems are indistinguishable from each other.

An unconstrained system has a similar role with respect

to all SM-systems as the free group has to other groups,

although we haven’t made this universality claim precise in

the present paper. Intuitively it means that every possible

agent-environment combination can be found as a subsystem

(or possibly a quotient) of the unconstrained one. The term

“unconstrained” refers in particular to that when coupled to

other systems, this system doesn’t constrain them, so it acts in

the same way as 0 in arithmetic addition (Proposition 2.29).

The opposite is the fully constrained system (Definition 2.31,

Proposition 2.32). In that case, the intuition is the opposite: in

environments where nothing happens and actions do not have

any effects, any agent is as good as any other and vice versa:

agents that don’t do anything are equivalent.

Corollary 2.28. The SM-system ε = ({0}, {0} × (S×M)× {0}})

is the unique, up to bisimulation, unconstrained system.

Proposition 2.29. Let ε be as in Corollary 2.28 and let X =

(X, S×M,T) be any SM-system. Then X ∗ ε ∼= X .

Corollary 2.30. If X and X ′ are SM-systems and X ′ is

unconstrained, then X ∗ X ′ ∼ X .

Proof: By Corollary 2.28 X ′ ∼ ε, So by Theorem 2.24 we have

X ∗X ′ ∼ X ∗ε. However, by Proposition 2.29,X ∗ε ∼ X ; thus,

X ∗ X ′ ∼ X .

The opposite of an unconstrained system is a fully

constrained one:

Definition 2.31. An SM-system (X, S×M,T) is fully constrained

iff T = ∅.

Proposition 2.32. Dually to the propositions above, we have that

(1) all fully constrained systems are bisimulation equivalent to

each other, (2) the simplest example being λ = ({0}, S×M,∅), and

(3) if X = (X, S×M,T) is another SM-system, then X ∗ λ ∼ λ.

All transition systems are in some sense between the

fully constrained and the unconstrained, these being the two

theoretical extremes.

2.8. Quotients of transition systems

When considering labelings and their induced equivalence

relations, it will be convenient to develop a notion of quotient

systems, analogous to quotient spaces in topology. SupposeX =

(X,U,T) is a transition system and E is an equivalence relation

on X. We can then form a new transition system, called the

quotient of X by E in which the new states are E-equivalence

classes and the transition relation is modified accordingly.

The following definition of a quotient is standard in Kripke

model theory, especially bisimulation theory:

Definition 2.33. SupposeX = (X,U,T) and E are as above. Let

X/E = {[x]E | x ∈ X}, in which each [x]E is an equivalence

class of states x under relation E, and T/E = {([x]E, u, [y]E) |

(x, u, y) ∈ T}. Then X /E = (X/E,U,T/E) is the quotient of

(X,U,T) by E.

The following definition is inspired by the idea of sensory

pre-images, see LaValle (2019), but is also needed for technical

reasons.

Definition 2.34. Given any function h : X → L, denote by Eh

the inverse-image equivalence: Eh = {(x, y) ∈ X2 | h(x) = h(y)}.

We will denote the equivalence classes of Eh by [x]h instead of

[x]Eh if no confusion is possible.

The equivalence relation Eh partitions X according to the

preimages of h, as considered in the sensor lattice theory of

LaValle (2019). The partition of X induced by h directly yields

an quotient transition system by applying the previous two

definitions:

Definition 2.35. Let X = (X,U,T) be a transition system and

h : X→ L be any mapping. Then define X /h to be X /Eh where

we combine Definitions 2.34 and 2.33.

Proposition 2.36. If h is one-to-one, then X /h ∼= X .

Proof: h is one-to-one if and only if Eh is equality, in which case

it is straightforward to verify that the function x 7→ [x]Eh is an

isomorphism.

For h : X → L, the transition system (X/h,U,T/h) is

essentially a new state space over the preimages of h. In this case

X /h is called the derived information space (as used in LaValle,

2006). More precisely:

Proposition 2.37. Let L′ = ran(h) ⊆ L. Define

T′ = {(l, u, l′) ∈ L′ × U × L′ | (h−1(l), u, h−1(l′)) ∈ T/h}

= {(h(x), u, h(y)) | (x, u, y) ∈ T}.

Then (X/h,U,T/h) is isomorphic to (L′,U,T′) via the

isomorphism f : [x]Eh 7→ h(x).

Proof: See Appendix B
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The intuitive meaning of the quotient is the following. There

is a Soviet comedy film from the 1970’s where the main character

ends up in an apartment in Leningrad, while he thinks that he is

actually in Moscow. The apartement in Leningrad is identical to

his home in Moscow and he cannot distinguish between them.

He thinks for a while that he is at his home in Moscow while

being in an apartment in Leningrad. Even his key from Moscow

worked for the Leningrad apartment. The pun is that in Soviet

times all houses were built according to the same blueprint. Now,

before he realized his situation, as far as he was concerned, he

was in Moscow. He thought he came to the same place in the

evening as in the morning, while he actually didn’t. The idea

of the quotient captures exactly that: We identify those states

that “look the same” (the label is the same) even though they

are actually different states. In fact, let us look at a cognitive

system on several levels of granularity: When I type on my

laptop at home or in a cafeteria, my fingers experience the

keyboard in (approximately) the same way. As far as my fingers

(and associated motor areas) are concerned, we can identify all

situations where they are pressing keys on my keyboard. On a

higher level, I might be coming home after a 10 h time and

experience as if I am in the same place, but we all know that

the planet, on which my home is, has moved, so I actually am

not in the same place, just like the main character in the movie

referenced above.

3. Illustrative examples of
SM-systems

We next illustrate how sensorimotor systems model

body-environment, brain-body, and brain-body-environment

couplings. Consider a body in a fully understood and specified

deterministic environment. In this case the body-environment

system will be modeled by a quasifilter, Definition 2.12. Instead

of using the quasifilter definition, we work with a labeled

transition system which, according to Proposition 2.19, is

equivalent. According to the assumption of full specification, we

will in fact work with labeled automata.

The body has a set M of possible motor actions each of

which has a deterministic influence on the body-environment

dynamics. Denote the set of body-environment states by E0.

Whenever a motor action m ∈ M is applied at a body-

environment state e ∈ E, a new body-environment state

A(e,m) ∈ E is achieved. At each state e ∈ E the body

senses data σ (e). Denote the set of sensations by S. In this

way, the labeled automaton E0 = (E,M,A, σ , S) models this

body-environment system. This model is ambivalent toward the

agent’s internal dynamics, its strategies, policies and so on, but

not ambivalent toward its embodiment and its environment’s

structure. In fact, it characterizes them completely.

Alternatively, consider a brain in a body, and suppose that

the brain is fully understood and deterministic (for example,

perhaps it is designed by us), but we do not know which

environment it is in. We model this by an SM-system which is

a quasipolicy. Again, by the analogous considerations as above,

we work directly an equivalent labeled automaton specification.

Denote the set of internal states of the brain by I. The agent’s

internal state is a function of the sensations; therefore, let B : I×

S → I be a function (B stands for brain) that takes one internal

state to another based on new sensory data. At each internal

state, the agent produces a motor output which is an element

of the set M; therefore, let µ : I → M be a function assigning a

motor output to each internal state. Now, I = (I, S,B,µ,M) is a

labeled transition system modeling this agent. It is ambivalent

toward the type of the environment the agent is in, but it is

not ambivalent toward the agent’s internal dynamics, policies,

strategies and so on; in fact, it determines them completely.

Now, the coupling of the environment E and the agent A is

the SM-system obtained as

LTS−1F (E) ∗ LTS−1P (A).

The sensory and motor sets S and M capture the

interface between the brain and the environment because they

characterize the body (but not the embodiment).

Example 3.1. Consider an agent that has four motor outputs,

called “up” (U), “down” (D), “left” (L), and “right” (R), and there

is no sensor feedback (this defines the body). In Corollary 2.28

we gave a minimal example of an unconstrained SM-system. On

the other extreme one can give large examples. For instance the

free monoid generated by the setM = {U,D, L,R}.

LetX be the set of all possible finite strings in the four “letter”

alphabet M, let T = {(x,m, y) | x⌢m = y}. “No sensor data”

is equivalent to always having the same sensor data; thus, we

can assume that S = {s0} is a singleton and the sensor mapping

h : X → S is constant.3 The resulting unconstrained transition

system U = (X,T,M, σ , S) can be represented by an infinite

quaternary tree, shown in Figure 3A.

Suppose that this body is situated in a 2 × 2 grid. The body

can occupy one of the four grid’s squares at a time, and when it

applies one of the movements, it either moves correspondingly,

or, if there is a wall blocking the movement, it doesn’t. This

defines the body-environment system. The set of states is now E

and has four elements corresponding to all the possible positions

of the body. The transition function A : E ×M → E tells where

to move, and the rest is as above. The system E = (E,A,M, σ , S)

is shown in Figure 3B. Let us now look at the agent. Suppose that

it applies the following policy: (1) In the beginning move left; (2)

if the previous move was to the left, then move right, otherwise

3 We do not mean to say that no data is always the same as some other

data. We are talking here about an agent that never receives any data, or

an agent that always receives the same data. Thus, it cannot rely on any

“change” between having and not having any sensory input. Thus, there

is no “presense in absence” paradox here.
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FIGURE 3

(A) Having motor commands and no sensory feedback leads to an infinite tree automaton. (B) Once the body is coupled with a 2× 2 grid

environment, a four-state automaton results.

move left. This can be modeled with a two-state automaton

I = (I, S,B,µ,M) where I = {L,R}, S = {s0}, B(L, s0) = R,

B(R, s0) = L, µ(L) = l and µ(R) = r. Now, the coupling

LTS−1F (E) ∗ LTS−1P (I) is an automaton that realizes the policy

in the environment, as shown in Figure 4A.

If the agent has a different embodiment in the same

environment, then all of the automata will look different.

Suppose that instead of the previous four actions, the agent

has two: “rotate 90-degrees counterclockwise” (C),“forward one

step” (F). Note that these are expressed in the local frame of

the robot: It can either rotate relative to its current orientation,

or it can move in the direction it is facing; the previous

four actions were expressed as if in a global frame or the

robot is incapable of rotation. Under the new embodiment, the

unconstrained automaton with no sensor feedback is an infinite

binary tree, with every node having two outgoing edges, labeled

C and F, respectively, instead of the quaternary infinite tree

depicted on Figure 3A. Instead of the four-state automaton of

Figure 3, the automaton describing the environment transitions

is a 16 state-automaton, because the orientation of the agent

can now have four different values. See Figure 4B. Finally

the automaton describing the internal mechanics of the agent

I is a quasipolicy in these two actions, and finally, the

coupling corresponds essentially to taking a path in the 16-state

automaton above.

Note that there is a bisimulation between U and E which

reflects the fact that from the point of view of an agent they

are indistinguishable. This is natural because there is no sensory

data, so from the agent’s viewpoint it is unknowable whether or

not it is embedded in an environment. A bisimulation is given as

follows: Let y0 ∈ Y be the top-right corner and x0 ∈ X the root

of the tree. Define R ⊆ X × Y be the minimal set satisfying the

following conditions:

1. (x0, y0) ∈ R.

2. If (x, y) ∈ R andm ∈ M, then (T(x,m),U(y,m)) ∈ R.

Example 3.2. The 16-state automaton of Example 3.1 has

four automorphisms corresponding to the rotation of the

environment by 90 degrees counterclockwise. Each of those

automorphisms corresponds to an auto-bisimulation. Mirroring

is not an automorphism because the agent’s rotating action fixes

the orientation of the automaton.

Example 3.3. Figure 5 shows an example of how an automaton

with non-trivial sensing could look. Jumping a little bit ahead, it

will be seen that the labeling provided by h in this figure is not

sufficient (a notion introduced in Definition 4.2).

4. Su�cient refinements and degree
of insu�ciency

This section presents the concept of sufficiency, which will be

the main glue between enactivist philosophy and mathematical

understanding of cognition. In Section 4.1 we introduce the

main concepts and explain its profound relevance to enactivist

modeling and how it can be a precursor to the emergence

of meaning from meaningless sensorimotor interactions. In

Section 4.2 we introduce the notion of minimal sufficient

refinements, prove a uniqueness result about them, and show

how they are connected to the classical notions of bisimulation

as well as derived information state spaces4.

4 There could be an interesting relationship between this concept and

the free energy principle proposed by K. Friston. A systemwhich is attuned

to its environment in a su�cient way can be interpreted by an inspector

as a system that is making ] predictions about its environment.
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FIGURE 4

(A) A two-state automaton results from the realized policy. (B) If there are only two actions (rotate 90 degrees counterclockwise and going

straight) then the second automaton has 16 states instead of four as in Figure 3B.

4.1. Su�ciency

The following consider the main definition of this work. It is

based on the idea of sufficiency in LaValle (2006, Ch.11).

Definition 4.1. Let (X,U,T) be a transition system and E ⊆

X × X an equivalence relation. We say that E is sufficient or

completely sufficient, if for all (x, y) ∈ E and all u ∈ U, if

(x, u, x′) ∈ T and (y, u, y′) ∈ T, then (x′, y′) ∈ E.

This means that if an agent cannot distinguish between

states x and y, then there are no actions it could apply to later

distinguish between them. To put it differently, if the states are

indistinguishable by an instant sensory reading, then they are

in fact indistinguishable even through sensorimotor interaction.

This is related to the equivalence relation known as Myhill-

Nerode congruence in automata theory.

The equivalence relation of indistinguishability in the

context of sensorimotor interactions is at its simplest the

consequence of indistinguishability by sensors. Thus, we define

sufficiency for labelings or sensor mappings:

Definition 4.2. A labeling h : X → L is called sufficient (or

completely sufficient) iff for all x, y, x′, y′ ∈ X and all u ∈ U,

the following implication holds:

(h(x) = h(y) ∧ (x, u, x′) ∈ T ∧ (y, u, y′) ∈ T)⇒ h(x′) = h(y′).

Proposition 4.3. If (X,U, τ ) is an automaton, then h : X→ L is

sufficient if and only if for all x, y ∈ X and all u ∈ U, we have that

if h(x) = h(y), then h(τ (x, u)) = h(τ (y, u)).

FIGURE 5

Consider the automaton E of Figure 3B from Example 3.1, but

assume that the agent can “smell” a di�erent scent in the

top-left corner. This can be modeled by having a two-element

set S = {0, 1} instead of a singleton, and h : X→ {0, 1} such that

h(x) = 0 i� x is not the top-left corner. The state with a scent

is shaded.

Proof: Checking the definitions.

The above proposition is saying that when the sensorimotor

system is deterministic, then sufficiency is equivalent

to predictability.

There is a connection with the classical notion of

bisimulation in classical transition systems theory (recall

Definition 2.2):
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Proposition 4.4. An equivalence relation on a state space of

an automaton (X,U, τ ) is sufficient if and only if it is an

autobisimulation.

Proof: See Appendix B.

The above proposition can intuitively be interpreted as

saying that a sufficient relation is one where different states

with the same label are not only indistinguishable on their own,

but are actually indistinguishable even by their consequences.

Starting from one of two states with same labels, there is no

way to ever find out which one of them it was, no matter how

much will the agent investigate its environment, compare to the

discussion in the end of Section 2.8.

Proposition 4.5 below is an important proposition on which

the idea of derived I-spaces and combinatorial filters builds upon

(LaValle, 2006, 2012; O’Kane and Shell, 2017), although as far as

the authors are aware, in the literature, only the “if ”-direction is

mentioned.We say that a transition system (X,U,T) is full, if for

all x1 ∈ X and all u ∈ U there exists at least one x2 ∈ X with

(x1, u, x2).

Proposition 4.5. Suppose X = (X,U,T) is a transition system.

Let h : X → L be a labeling. Then X /h is an automaton if and

only if X is full and h is sufficient.

Proof: See Appendix B.

The above proposition brings together the ideas of a

quotient, automaton and sufficiency. The idea of the quotient

is that indistinguishable states can be in some circumstances

considered the same and the idea of an automaton is that it

is deterministic. The above proposition says that as far as the

agent is concerned, if it equalizes indistinguishable states, then

the world looks deterministic from the agent’s perspective if and

only if the underlying labeling satsifies Definition 4.2.

The sufficiency of an information mapping was introduced

in LaValle (2006, Ch 11), and is encompassed by a sufficient

labeling in this paper. In the prior context, it has meant that

the current sensory perception together with the next action

determine the next sensory perception. The elegance with

respect to our principle (EA2) is that sufficiency is not saying

that the agent’s internal state corresponds to the environment’s

state (as is in representational models). Nor is it saying that

the agent predicts the next action. It is saying, rather, that

the agent’s current sensation together with a choice of a

motor command determine the agent’s next sensation; and this

statement is true only as a statement made about the system

from outside, not as a statement which would reside “in the

agent.” The sensation may carry no meaning at all “about”

what is actually “out there.” However, if the agent has found

a way to be coupled to the environment in a sufficient way,

then sensations begin to be about future sensation. In this way

meaning emerges from sensorimotor patterns. This relates to

(EA3) and somewhat touches on the topic of perception (EA5).

Furthermore, the property of determining future outcomes is

related to (EA4) because that is what skill is. There is no

potential to reliably engage with the environment in complex

sensorimotor interactions, if the sensations do not reliably follow

certain historical patterns.

Thus, the notion of sufficiency is considered by us to be

of fundamental importance for enactivist-inspiredmathematical

modeling of cognition. The violation of sufficiency means

that the current sensation-action pair does not correlate with

the future sensation, making it harder to be attuned to the

environment. Having a different sensation following the same

pattern can be seen as a primitive notion of a “surprise.” This can

be seen as aligning with the predictive coding and the free energy

principle from neuroscience (Rao and Ballard, 1999; Friston and

Kiebel, 2009; Friston, 2010), although our framework leaves the

space to a clean non-representational interpretation while this

is not obvious for these other frameworks. Does the notion of

sufficient labelings capture the same ideas in amore general way?

This is an open question for further research.

A generalization of sufficiency is n-sufficiency, in which the

data of n previous steps is needed to determine the next label.

Here, we define an n-chain.

Definition 4.6. An n-chain in X = (X,U,T) is a sequence

c = (x0, u0, · · · , xn−1, un−1, xn) ∈ (X × U)n × X

such that xi
u
→ xi+1 for all i < n. If n = 0, then by convention

c = (xn). Let E ⊆ X × X be an equivalence relation. Let k <

n. We say that two n-chains c = (x0, u0, . . . , xn−1, un−1, xn),

c′ = (x′0, u
′
0, . . . , x

′
n−1, u

′
n−1, x

′
n) are (T,E, k)-equivalent if for all

i < k, we have ui = u′i and (xi, x
′
i) ∈ E. An∞-chain is defined

in the same way as n-chain, except the sequences are infinite,

without the “last” xn.

Definition 4.7. For a transition system X = (X,U,T), an

equivalence relation E on X is called n-sufficient if there are no

two (T,E, n)-equivalent n-chains

c = (x0, u0, . . . , xn−1, un−1, xn) and

c′ = (x′0, u
′
0, . . . , x

′
n−1, u

′
n−1, x

′
n)

such that (xn, x
′
n) /∈ E. A labeling h : X→ L is called n-sufficient

if Eh is n-sufficient (Recall Definition 2.34).

Proposition 4.8. An equivalence relation E is 0-sufficient if

and only if there is only one E-equivalence class, and a labeling

function h is 0-sufficient if and only if it is constant.

Proof: See Appendix B

Proposition 4.9. An equivalence relation E (resp. a labeling h) is

sufficient if and only if it is 1-sufficient.

Proof: See Appendix B
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Proposition 4.10. Suppose n < m are natural numbers. If a

labeling h is n-sufficient, then it is m-sufficient. The same holds

for equivalence relations.

Proof: See Appendix B

This enables us to define the degree of insufficiency:

Definition 4.11. The degree of insufficiency of the labeled

automaton X = (X,U, τ , h, L) is defined to be the smallest n

such that h is n-sufficient, if such n exists, and ∞ otherwise.

Denote the degree of insufficiency of X by degins(X ), or

degins(h) if only the labeling needs to be specified andX is clear

from the context.

The intuition is that the larger the degree of insufficiency of

an environment X , the harder it is for an agent to be attuned to

it. We talk more about the connection between attunement and

sufficiency in the following sections.

4.2. Minimal su�cient refinements

In this section we prove that the minimal sufficient

refinements are always unique (Theorem 4.19). This will follow

from a deeper result that the sufficient equivalence relations

form a complete sublattice of the lattice of all equivalence

relations. This does not hold for n-sufficient equivalence

relations for n > 1 (Example 4.20).We will then explore how the

minimal sufficient refinements can be thought of as an enactive

perceptual construct that emerges from the body-environment,

brain-body, and brain-body-environment dynamics. The idea is

that a minimal sufficient refiniment corresponds to an optimal

attunement of the agent to the base labeling which corresponds

to some minimal information that the agent is interested

in the environment, such as death or life, danger or safety

information. It is “optimal” by minimality and “attunement” by

sufficiency. Our Theorem 4.19 states that such attunement is

mathematically unique.

Definition 4.12. An equivalence relation E is a refinement of

equivalence relation E′, if E ⊆ E′, also denoted E′ 6r E. A

labeling function h is a refinement of a labeling function h′, if

Eh is a refinement of Eh
′
.

An important interpretation of the concept of a refinement

is that a better sensor provides the agent with more information

about the environment5. Each sensor mapping h induces a

partition of X via its preimages, and refinement applies in

the usual set-theoretic sense to the partitions when comparing

sensors mappings. If a sensor mapping h is a refinement of

h′, then it enables the agent to react in a more refined way to

5 Here we are not talking about contentful or semantic information, but

merely about correlational information in the philosophical sense.

nuances in the environment. Using the partial ordering given by

refinements, we obtain the sensor lattice (LaValle, 2019).

By a referee’s request, let us give a couple of

biological examples.

Example 4.13 (First biological example). There is an accepted

theory that primates see red color wavelength, because it enables

them to distinguish ripe fruit from non-ripe. Assuming this

theory is true, it is an example of a refinement which is to

some extent “minimal” and to some extent “sufficient” (of

course strictly speaking it is neither – in the same way as

there is no ideal circle in the physical world). The minimality

is seen in this example, because we perceive other things as

red, even if it is completely unnecessary (certainly unnecessary

to tell the ripeness of fruits). So we are not distinguishing

“too much.” On the other hand, perceiving red color is a

refinement of ripe/non-ripe which is only detected through

stomach ache after the fruit has been already consumed. And it

is sufficient in the sense that it is predictive of the original “base”

labeling (ripe/non-ripe).

Example 4.14 (Second biological example). Where our eyes

look depends on the position of our head as well as the position

of our eyes. Despite this, “looking up” (or “left,” “right” etc..)

are not ambiguous, even though these can be achieved with

virtually infinitely many different head-eye configurations. One

way to understand how this invariance could emerge is through

minimal sufficient refinements. Suppose at birth, every head-

eye configuration is considered as a separate state, but we label

them by what we see in any given (stable) situation. A minimal

sufficient refinement of that labeling will never distinguish

between different states in which the eyes are pointing in the

same direction. So then, by learning the minimal sufficient

refinements, the agent may learn eye-direction invariance.

4.3. Lattice of su�cient equivalence
relations

Please refer to Appendix A in the Supplementary material

for notations and definitions used in this section.

We will prove in this section that if (X,U, τ ) is an

automaton, the sufficient equivalence relations form a complete

sublattice of (E(X),⊆). Given an automaton X = (X,U, τ ),

denote by E
U,τ
suf

(X) ⊆ E(X) the set of sufficient equivalence

relations on X. When U and τ are clear from the context, we

write just Esuf(X) = E
U,τ
suf

(X).

Theorem 4.15. Suppose (X,U, τ ) is an automaton and suppose

that E ⊆ Esuf(X) is a set of sufficient equivalence relations. Then
∧

E and
∨

E are sufficient. Thus, (Esuf(X),⊆) is a complete

sublattice of (E(X),⊆).

Proof: See Appendix B.
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Suppose that a labeling h is very important for an agent.

For example, h could be “death or life,” or it could be relevant

for a robot’s task. Suppose that h is not sufficient. The robot

may want to find a sufficient refinement of h. Clearly a one-

to-one h′ would do. However, assume that the agent has to

use resources for distinguishing between states; thus, the fewer

distinctions the better. This motivates the following definition.

Recall Definition 4.12 of refinements.

Definition 4.16. Let (X,U,T) be a transition system and E0 ⊆

X × X an equivalence relation. A minimal sufficient refinement

of E0 is a sufficient equivalence relation E which is a refinement

of E such that there is no sufficient E′ with E0 6r E
′ <r E.

Given a labeling h0 of a transition system (X,U,T), a

minimal sufficient refinement of h0 is a labeling h such that Eh

is a minimal sufficient refinement of Eh0 (recall Definition 2.34).

Example 4.17. Let X = (X,U, τ ) be an automaton where

X = {0, 1}∗, U = {0, 1} and τ (x, b) = x⌢b (concatenation of

the binary string x with the bit b). Let h(x) = 1 if and only if the

number of ones and the number of zeros in x are both prime;

otherwise h(x) = 0. Then the only sufficient refinements of h are

one-to-one.

Example 4.18. Let X be as above and let h : X→ {0, 1} be such

that if |x| is divisible by 3, then h(x) = 1; otherwise, h(x) = 0.

Then h is not sufficient. Let h′ : x 7→ {0, 1, 2} be such that

h′(x) ≡ |x| mod 3.

Then h′ is a minimal sufficient refinement of σ .

Theorem 4.19. Consider an automaton X = (X,U, τ ) and let

E0 be an equivalence relation on X. Then a minimal sufficient

refinement of E0 exists and is unique.

Proof: See Appendix B

Theorem 4.19 fails, if “automaton” is replaced by “transition

system,” or if “sufficient” is replaced by “n-sufficient” for n > 1

(recall Definition 4.7)

Example 4.20 (Failure of uniqueness for n-sufficiency). Let X =

{0, 1, 2, 3, 4, 5}, U = {u0} and

τ (0, u0) = 1, τ (1, u0) = 2, τ (2, u0) = 2,

and

τ (3, u0) = 4, τ (4, u0) = 5, τ (5, u0) = 5.

Let E0 be an equivalence relation on X such that the equivalence

classes are {0, 1, 3, 4}, {2} and {5}. Then this relation is

not 2-sufficient, because (0, u0, 1, u0, 2) and (3, u0, 4, u0, 5) are

(T,E0, 2)-equivalent, but 2 and 5 are not E0-equivalent. Let

E1,E2 ⊆ E0 be equivalence relations with equivalence classes

as follows:

E1 :{0, 1}, {3, 4}, {2}, {5},

E2 :{0, 4}, {1, 3}, {2}, {5}.

Then E1 and E2 are refinements of E0. They are both 2-sufficient,

because there doesn’t exist any (T,E1, 1) or (T,E2, 1) equivalent

2-chains. They are also both 6r-minimal with this property

which can be seen from the fact that they are actually 6r-

minimal refinements of E0 as equivalence relations (not only as

sufficient ones).

Example 4.21 (Failure of uniqueness for transition systems). Let

X = {0, 1, 2, 3, 4}, U = {u0} and T = {(0, u0, 3), (2, u0), 4}.

Let E0 be the equivalence relation with the equivalence classes

{0, 1, 2}, {3} and {4}. Then E0 is not sufficient, because (0, 2) ∈

E0, but (3, 4) /∈ E0. Let E1 and E2 be the refinements of E0 with

the following equivalence classes:

E1 :{0, 1}, {2}, {3}, {4},

E2 :{0}, {1, 2}, {3}, {4}.

Now it is easy to see that both E1 and E2 are sufficient

refinements of E0, and by a similar argument as in Example 4.20

they are both minimal. The reason why this is possible

is the odd behavior of the state 2 which doesn’t have

out-going connections. Such odd states are the reason

why the decision problem “Does there exist a sufficient

refinement with k equivalence classes?” is NP-complete for finite

transition systems (O’Kane and Shell, 2017).

Remark. It is worth noting that Theorems 4.15 and 4.19 do

not assume anything about the cardinality of X or of U, other

structure on them (such as metric or topology) nor anything

about the function τ or the relation E0. Keeping in mind

potential applications in robotics,X andU could be, for instance,

topological manifolds, and τ a continuous function, or X could

be a closed subset ofRn,U discrete and τ a measurable function,

or any other combination of those. In each of those cases, the

sublattice of sufficient equivalence relations is complete, as per

Theorem 4.15, and every equivalence relation E0 on X admits a

unique minimal sufficient refinement as per Theorem 4.19.

Recall Definition 2.10 of an equivalence relation preserving

function. We say that an equivalence relation E on X is closed

under f : X → X if for all x ∈ X, we have (x, f (x)) ∈ E. If E

is closed under f , then f is E-preserving: given (x, x′) ∈ E, we

have (x, f (x)), (x′, f (x′)) ∈ E, because E is closed under f . Now

by transitivity of E we have (f (x), f (x′)) ∈ E, so f is E-preserving.

Definition 4.22. Let f : X → X be a bijection. The induced

orbit equivalence relation is the relation Ef on X defined by

(x, x′) ∈ Ef ⇐⇒ (∃n ∈ Z)(f n(x) = x′), in which f n(x)

is defined by induction as: f 0(x) = x, f n+1(x) = f (f n(x)),

f n−1(x) = f−1(f n(x)).

Theorem 4.23. If f is an automorphism of the automaton

(X,U, τ ), then Ef is a sufficient equivalence relation.
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Proof: See Appendix B

Theorem 4.24. Let X = (X,U, τ ) be an automaton and E

be an equivalence relation on X. Suppose f : X → X is an

automorphism such that E is closed under f . Let E′ is the minimal

sufficient refinement of E. Then E′ is closed under f and E 6r

E′ 6r Ef .

Proof: See Appendix B

Example 4.25. Consider the environment which is a one-

dimensional lattice of length five, E = {−2,−1, 0, 1, 2}, in which

the corners “smell bad”; thus, we have a sensor mapping h : E→

S, S = {0, 1} defined by h(n) = 0 ⇐⇒ |n| = 2; see Figure 6A.

Consider two agents in this environment. Both are equipped

with the same h sensor, but their action repertoires differ. Both

have two possible actions. One has actions L = “move left one

space” and R = “move right one space,” and the other one

has actions T = “turn 180 degrees” and F = “go forward

one space.” Let M0 = {L,R} and M1 = {T, F}. Thus, these

agents have a slight difference in embodiment. Although both

of them can move to every square of the lattice in a very similar

way (almost indistinguishable from the outside perspective), we

will see that the differences in embodiment will be reflected

in that the minimal sufficient refinements will produce non-

equivalent “categorizations” of the environment. The structures

that emerge from these two embodiments will be different. These

agents enact different environments, although physically the

environments are the same, as congruent with tenet (EA3).

First, we define the SM-systems that model these agents’

embodiments in E. The first agent does not have orientation. It

can be in one of the five states, and the state space is X0 = E

(Figure 6B). For the second agent, the effect of the F action

depends on the orientation of the agent (pointing left or pointing

right). Thus, there are ten different states the agent can be

in, yielding X1 = E × {−1, 1} (Figure 6C). The effects of

motor outputs are specified completely (L means moving left,

and so on), whereas the agent’s internal mechanisms are left

completely open, so our systems will be quasifilters. According

to Remark 2.18, we can work with a labeled automaton instead.

Hence, let τ0 : X0 × M0 → X0 be defined by τ0(x, L) =

max(x − 1,−2) and τ0(x,R) = min(x + 1, 2). For the

other agent, let τ1((x, b),T) = (x,−b) and τ1((x, b), F) =

(min(max(x + b,−2), 2), b). Now we have labeled automata

X0 = (X0,M0, τ0, h, S) and X1 = (X1,M1, τ1, h, S).

It is not hard to see that the one-to-one map h0 : X0 →

{−2,−1, 0, 1, 2} with h0(x) = x is a sufficient refinement of

h which is minimal (see Figure 7A). Thus, every state needs

to be distinguished by the agent for it to be possible to

determine the following sensation from the current one. The

derived information space automaton X0/h0 isomorphic to X0

(Proposition 2.36).

For the second automaton, consider the labeling h1 : X1 →

{−2,−1, 0, 1, 2} defined by h1(x, b) = b · x (see Figure 7C).

Claim. h1 is a minimal sufficient refinement of h in X1.

Proof: See Appendix B

Both minimal sufficient labelings, h0 and h1 have five values;

thus, they categorize the environment into five distinct state-

types. However, the resulting derived information spaces are

different in the sense that the quotients X0/h0 and X1/h1 are

not isomorphic; compare Figure 7B with Figure 7D.

Example 4.26. Figure 8A shows a filtering example from Tovar

et al. (2014). More complex versions have been studied more

recently in O’Kane and Shell (2017), and are found through

automaton minimization algorithms and some extensions. It

can be shown that this example’s four-state derived information

space depicted on Figure 8B corresponds to the unique minimal

sufficient refinement of the labeling that only distinguishes

between “are in the same region” and “are not in the same

region.” To see this, first note that this labeling is sufficient

(since it can be represented as an automaton, this follows from

Theorem 4.5). It follows from Theorem 4.19 that if this labeling

is not minimal, then there is a minimal one which is strictly

coarser, and so can be obtained by merging the states in the

automaton of Figure 8B. This is impossible: the state T cannot

be merged with anything because it violates the base-labeling;

if, say Da and Dc, are merged, then transition a will lead to

inconsistency as it can lead either to Db (from Dc) or to T

(from Da). This proves that this derived information space is

indeed minimal sufficient, and by Corollary 4.19 there are no

others up to isomorphism.

4.4. Computing su�cient refinements

This section sketches some computational problems and

presents computed examples. The problem of computing the

minimal sufficient refinement in some cases reduces to classical

deterministic finite automaton (DFA) minimization, and in

other cases it becomes NP-hard (O’Kane and Shell, 2017).

Consider an automaton (X,M, τ ) and a labeling function h0,

and the corresponding labeled automaton described using the

quintuple (X,M, τ , h0, L). Suppose that the automaton (X,M, τ )

corresponds to that of an body-environment system. Hence,

X corresponds to the states of this coupled system. Suppose

h0 is not sufficient and consider the problem of computing

a (minimal) sufficient refinement of h0, that is, the coarsest

refinement of h0 that is sufficient.

Despite the uniqueness of the minimal sufficient refinement

of h0 (by Corollary 4.19), we can argue that the formulation of

the problem, in particular, the input, can differ based on the level

at which we are addressing the problem (for example, global

perspective, agent perspective or something in between). Since

the labeled automaton corresponding to an agent-environment

coupling is described from a global perspective, the input to an
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FIGURE 6

(A) One-dimensional lattice environment described in Example 4.25. (B) State space of the agent 0. (C) State space of the agent 1. The states for

which the value of the sensor mapping is 0 are shown in black.

FIGURE 7

(A) State space of the agent 0 categorized by h0, states that belong to the same class are colored with the same color. (B) Resulting quotient

X0/h0 for the agent 0. (C) State space of the agent 1 categorized by h1, states that belong to the same class are colored with the same color. (D)

Resulting quotient X1/h1 for the agent 1.

algorithm that addresses the problem from this perspective is the

labeled automatonA = (X, τ ,M, h0, L) itself. Then, the problem

is defined as givenA computeA′ = (X,M, τ , h, L) such that h is

the minimal sufficient refinement of h0.

A special case of this problem from the global perspective

occurs if the preimages of h0 partition X in two classes

which can be interpreted as the “accept” and “reject” states,

for example, goal states at which the agent accomplishes

a task and others. Furthermore, suppose that the initial

state of the agent is known to be some x0 ∈ X. Then,

computing a minimal sufficient refinement becomes identical

to minimization of a finite automaton, that is, given a DFA

(X,M, τ , x0, F) in which x0 is the initial state and F is the set

of accept states find (X′,M, τ ′, x′0, F
′) such that no DFA with

fewer states recognizes the same language. Existing algorithms,

for example Hopcroft (1971), can be used to compute a

minimal automaton.

Here, we also consider this problem from the agent’s

perspective for which the information about the environment

states is obtained through its sensors, more generally, through

a labeling function. Note that by agent’s perspective we do

not necessarily imply that the agent is the one making the

computation (or any computation) but it means that no further

information can be gathered regarding the environment other

than the actions taken and what is sensed by the agent. At

this level we address the following problem; given a set M of

actions, a domain X, and a labeling function h0 defined on X,

compute theminimal sufficient refinement of h0. The crux of the

problem is that unlike the global perspective described above,

the labeled automaton A is not given, in particular, the state

transitions are not known a priory. Instead, the information

regarding the state transitions can only be obtained locally by

means of applying actions and observing the outcomes, that is,

through sensorimotor interactions. Hence, the current body-

environment state is also not observable. To show that an

algorithm exists to compute a sufficient refinement of h0 at

this level, we propose an iterative algorithm (Algorithm 1) that

explores X through agent’s actions and sensations by keeping

the history information state, that is, the history of actions and

sensations (labels). We then show, by empirical results, that the

Frontiers inNeurorobotics 18 frontiersin.org

299

https://doi.org/10.3389/fnbot.2022.846982
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Weinstein et al. 10.3389/fnbot.2022.846982

FIGURE 8

(A) Two point-sized independent bodies move along continuous

paths in an annulus-shaped region in the plane. There are three

sensor beams, a, b, and c. When each is crossed by a body, its

corresponding symbol is observed. Based on receiving a string

of observations, the task is to determine whether the two bodies

are together in the same region, with no beam separating them.

(B) The minimal filter as a transition system has only 4 states: T

means that they are together, and Dx means that are in di�erent

regions but beam x separates them. Each transition is triggered

by the observation when a body crosses a beam.

sufficient refinement computed by Algorithm 1 is minimal for

the selected problem.

1: Input: h0, l0, M

2: Initialize: H← ∅, h← h0, s← s0

3: for each step do

4: m← policy(s)

5: apply action m and obtain resulting s′

6: add (s,m, s′) to H

7: if ∃(s,m, s′′) ∈ H such that s′ 6= s′′ then

8: h← split(h, s)

9: if there are labels that can be merged then

10: h← merge(h,H, h0)

11: s← s′

Algorithm 1.

The functioning of Algorithm 1 is as follows. Starting from

an initial sensation s0 = h(x0), the agent moves by taking an

action6 given by the mapping policy : L → M. Particularly, we

used a fixed policy which samples an action m from a uniform

distribution over M for each s ∈ S. In principle, any policy

that ensures all states that are reachable from x0 will be visited

infinitely often should be enough. The history information state

is implemented as a list, denoted by H, of triples (s,m, s′) such

that s = h(x) and s′ = h(x′) in which x′ = τ (x,m). At each

step, it is checked whether the current sensation is consistent

with the history (Line 7). Current sensation is inconsistent with

the history if there exists a triple (s,m, s′′) in the history such that

6 This can either be in a real environment or in a realistic simulation.

s′ 6= s′′. If it is not consistent then the label is split, which means

that h−1(s) is partitioned into two parts P and Q. In particular,

we apply a balanced random partitioning, that is, we select P and

Q randomly from a uniform distribution over the partitions of

h−1(s) that have two elements with balanced cardinalities. The

labeling function is updated by a split operation as

h(x) : =















sQ if x ∈ Q

sP if x ∈ P

h(x), otherwise.

Recall that labels or subscripts do not carry any meaning from

the agent’s perspective.

Even a trivial strategy that splits the preimage of the

label seen at each step would succeed computing a sufficient

refinement. However, this would result in h being a one-to-

one mapping. Hence, the finest possible refinement. Splitting

only at the instances when an inconsistency is detected might

reach a coarser refinement that is sufficient but there might be

more equivalence classes than the ones induced by the minimal

sufficient refinement of h0. Therefore, a merge operation is

introduced (Line 10). Let s and s′ be two distinct labels for which

∃s′′ ∈ h0[X] such that h
−1(s) ⊆ h−10 (s′′) and h−1(s′) ⊆ h−10 (s′′).

Let t denote a triple in H and let tk, k = 1, 2, 3, denote the kth

element of that triple. Suppose s′ = s, if there are at least N

number of triples inH such that for each triple t, (t1, t2) = (s,m)

and ∀m ∈ M and ∀t, t′ ∈ H such that (t1, t2) = (t′1, t
′
2) = (s,m)

it is true that t3 = t′3 then labels s and s′ are merged. The merge

procedure goes through all labels and updates h as

h(x) : =







s if h(x) ∈ {s, s′}

h(x) otherwise.

for each pair of labels s and s′ that satisfies the aforementioned

condition. Note that in principle, one can merge two labels

regardless of the number of occurrences in the history. However,

we noticed that this can result in oscillatory behaviour between

split and merge operations especially for states that are reached

less frequently. At present, we considered N as a tunable

parameter and we know that it depends on the cardinality of

the state space X such that larger the number of states, larger

N should be. The problem of defining N as a function of the

problem description remains open.

In the following, we present an illustrative example to

show the practical implications of the previously introduced

concepts in Section 4.2. In particular, we show how a simple

algorithm like Algorithm 1 can be used by a computing unit

which relies only on the sensorimotor interactions of an agent

to further categorize the environment such that there are no

inconsistencies in terms of the actions taken by the agent and

the resulting sensations with respect to an initial categorization

induced by h0 (Figure 9C).
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FIGURE 9

(A) Cheese maze defined in Example 4.27 (B) Labeled automaton with initial labeling h0 corresponding to the cheese-maze example. (C)

Minimal su�cient refinement of h0. Self-loops at the leaf nodes are not shown in the figure.

Example 4.27. Consider an agent (a mouse) that is placed

in a maze where certain paths lead to cheese and others do

not (see Figure 9A). At each intersection the agent can go

either left or right and it can not go back. Hence, at each

step the agent takes one of the two actions; go right or go

left. Figure 9B shows the corresponding automaton with 15

states describing the agent-environment system together with

the initial labeling h0 that partitions the state space into states

in which the agent has reached a cheese (light blue) and others

(dark blue). The initial state x0 is when the agent is at the

entrance of the maze. Once the end of the maze is reached (a

leaf node) the state does not change regardless of which action

is taken. After a predetermined number of steps the system

reverts back to the initial state, similar to an episode in the

reinforcement learning terminology (see, for example, Sutton

and Barto, 2018). However, despite the system going back to

the initial state the history information state still includes the

prior actions and sensations. Figure 10 reports the updates of

h, initialized at h0, by Algorithm 1 being run for 1,000 steps. It

converged to a final labeling h (Figure 10R), that is the minimal

sufficient refinement of h0, in 435 steps. For 20 initializations

of Algorithm 1 for the same problem, on average, it took 364

steps to converge to a minimal sufficient refinement of h0

(Figure 9C).

We have also applied the same algorithm to variations of this

example with different depths of maze and different number of

cheese and cheese placements (varying h0). Empirical evidence

shows that the same algorithm was capable of consistently

finding the minimal sufficient refinement of the initial labeling.

However, it is likely that it might fail for more complicated

problems, for example, when the number of actions are

significantly larger. It remains an open problem finding a

provably correct algorithm for computing the minimal sufficient

refinement of h0 from the agent’s perspective.

4.5. Su�ciency for coupled SM-systems

Section 2 introduced SM-systems, including the special

class of quasifilters. We showed that quasifilters can be

thought of as labeled transition systems, and we worked

with such systems in Sections 4, 4.4. Let us see how

do the concepts introduced in those sections work for

SM-systems. We also defined coupling of SM-systems

(Definition 2.22), but we have not defined what it means

for a coupling to be “good.” We will use sufficiency to approach

this subject.

Let E = (E, (S × M),T) and I = (I, S × M,B) be

SM-systems. We think intuitively of E as “the environment”

and I as the “agent,” even though they share the set of

sensorimotor parameters S × M. When is the coupling E ∗

I “successful”? Given another I ′ = (I′, S × M,B′), how

can we compare I and I ′ in the context of E? The coupled

system E ∗ I is not labeled; therefore, we cannot apply the

definition of sufficiency. However, as soon as we apply some

labeling to it, we can. There are many different ways to

do it, intuitively corresponding to the “agent’s perspective,”

the “environment’s perspective” and a “god’s perspective” (or

“global perpsective”).

The first one is the labeling h : E × I → I, which is the

projection to the right coordinate, hI(e, i) = i. The second one

is the projection to the left coordinate hE(e, i) = i, and the

third one is the labeling of states by themselves, hG(e, i) = (e, i).

Clearly, hG is a refinement of both hE and hI . Yet another option

is to use the sensory data as labelings, which is a coarser labeling

than hI . Or perhaps there was already a labeling h : E → S to

begin with, so thenwe can ask about the property of ĥ : E×I→ S

defined by ĥ(e, i) = h(e). We focus on what we called the agent’s

perspective, hI , for the rest of this section.

Recall Definition 4.11 of the degree of insufficiency. Given

SM-systems E (environment) and I (agent), we can ask what

is the degree of insufficiency of hI in E ∗ I? The smaller the
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FIGURE 10

(A) Labeled automaton with labefigure/ling function h = h0; same colored states belong to the figure/same equivalence class. (B–Q) Updating h

by Algorithm 1 through splitting and merging of the labels. (R) Labeled automaton with the labeling function h that is the minimal su�cient

refinement of h0.

degree, the better the agent is attuned to the environment. This

says something about the way in which the agent is adapted

or attuned to the environment without attributing contentful

states or representations to the agent in alignment with (EA2)

and (EA4).

Let E , I , and I ′ be SM-systems. When is degins(E ∗

I , hI) < degins(E ∗ I ′, hI′ )? Of course, if I is fully constrained

(Definition 2.31), then degins(E ∗ I) = ∞. This corresponds to

the agent never engaging in any sensorimotor interaction with

the environment. No wonder that it can always “predict” the
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result of such passive existence. Assume, however, that there

some constraints on the coupling. For example, we may demand

that the agent must regularly visit states of some particular type

to survive. Subject to such constrains, what can we say about

degins(E ∗ I)? This seems to be a good preliminary notion7

of attunement.

5. Discussion

In the introduction we defined our basic enactivist tenets:

(EA1) Embodiment and the inseparability of the brain-body-

environment system,

(EA2) Grounding in sensorimotor interaction patterns, not in

contentful representations.

(EA3) Emergence from embodiment, enactment of the world,

(EA4) Attunement, adaptation, and skill as possibilities to

reliably engage in complicated patterns of activity with

the environment.

(EA5) Perception as sensorimotor skills.

We developed amodel of sensorimotor systems and coupling for

which the purpose is to account for cognition mathematically,

but in congruence with the principles (EA1)–(EA5). The

principle (EA1) is intrinsic in the ways SM-systems are supposed

to model brain-body and body-environment dynamics. The

central ingredient is the control set S×M in all of those systems

which include “motor” and “sensory” part; it is impossible

in our framework to model say the environment without

acknowledging the way in which the body is part of it. The

approach that the actions of an agent depend solely on the

history of its sensorimotor interactions with the environment,

our approach is well in the scope of (EA2). We do not assume

any representational or symbolic content possessed by the

SM-systems. We do not evaluate them normatively by the

“correctness” of their internal states, but rather by the ways

in which they are, or can be, coupled to the environment and

whether their sensory apparatus generates a sufficient sensor

mapping or not. Coupling of SM-systems is defined so that two

systems constrain each other. Thus, when an agent is coupled

to the environment, they constrain each other, thereby creating

new global properties of the body-environment system.

The principle (EA4) is mostly discussed in connection

with minimal sufficient refinements. Given a labeling, or a

categorization, or an equivalence relation on the state space,

one can ask how well does this labeling “predict itself.”

The interpretation of this labeling can be anything from a

sensor mapping to the labeling of environmental states by the

internal states of the agent which coincide with them (this is

not representation, this is mere co-occurence; see enactivist

interpretation of the place cells in Hutto and Myin (2017) for

7 Further research will indicate how much of this will be accepted by

the most radical enactivists.

comparison). A sufficient sensor mapping can be achieved in

many different ways. In Section 4.4 we present a way in which

the agent “develops” new sensors to be better attuned to the

environment and in that way finds a sufficient sensor mapping.

Another way for the agent would be to learn to act in a way

that excludes “unpredictability.” Both are examples of situations

where the agent “structures” its own body-environment reality

and gains skill. Finally, perception (EA5) can be understood as

sensorimotor patterns on a microlevel. On the other hand, the

agent engage in a sensorimotor activity locally without making

big moves, such as moving the eyes without moving the body.

The result of such sensorimotor interaction is another labeling

function on a macro level.

In this paper, we not only presented mathematical

definitions, but proved a number of propositions and theorems

about them. There would be (and we hope there will be!) much

more of them, but they did not fit in this expository work for

which the main purpose was to demonstrate the connection

of the mathematics in question with the enactive philosophy

of mind.

We have already developed more concepts and theorems

on top of this framework, including notions of degree

of insufficiency, universal covers, hierarchies, and strategic

sufficiency, but these are omitted here due to space limitations.

In other, more mathematical work, we plan to concentrate

on working out mathematical and logical details of the proposed

theory as well as applying the ideas to fundamental questions

in robotics and autonomous systems, control theory, machine

learning, and artificial intelligence.
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Embodiment enables
non-predictive ways of coping
with self-caused sensory stimuli
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Living systems process sensory data to facilitate adaptive behavior. A given

sensor can be stimulated as the result of internally driven activity, or by purely

external (environmental) sources. It is clear that these inputs are processed

di�erently—have you ever tried tickling yourself? Self-caused stimuli have been

shown to be attenuated compared to externally caused stimuli. A classical

explanation of this e�ect is that when the brain sends a signal that would

result in motor activity, it uses a copy of that signal to predict the sensory

consequences of the resulting motor activity. The predicted sensory input

is then subtracted from the actual sensory input, resulting in attenuation

of the stimuli. To critically evaluate the utility of this predictive approach

for coping with self-caused stimuli, and investigate when non-predictive

solutions may be viable, we implement a computational model of a simple

embodied system with self-caused sensorimotor dynamics, and use a genetic

algorithm to explore the solutions possible in this model. We find that in

this simple system the solutions that emerge modify their behavior to shape

or avoid self-caused sensory inputs, rather than predicting these self-caused

inputs and filtering them out. In some cases, solutions take advantage of the

presence of these self-caused inputs. The existence of these non-predictive

solutions demonstrates that embodiment provides possibilities for coping with

self-caused sensory interference without the need for an internal, predictive

model.

KEYWORDS

sensory attenuation, embodiment, evolutionary robotics, ego-noise, self-other

distinction, sensorimotor feedback, computational model, prediction

1. Introduction

The remarkable adaptive behavior displayed by living organisms would not be

possible without the capacity to respond to sensory stimuli appropriately. The same

sensors can be stimulated due to external (environmental) causes, as well as by

internally driven activity. Intuitively, it seems like responding appropriately must require

distinguishing the two. We can hear sounds in the world around us, but we can also

hear our own voice when talking, and our own footsteps when walking. We can see our

environment, but we can also see our own bodies. Not only do we perceive both the world

and the results of our own actions, but the exact same sensory stimulus can be caused by

an external event, or by our own activity. For example the sight of a hand being waved

before your eyes could be your own hand or a friend snapping you out of a daydream.
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However, we typically have no trouble telling the difference.

Indeed, the phenomenology of a self-caused stimulus can be very

different from that of an externally caused one. A great example

of this is the sensation of touch, which can reduce you to helpless

laughter when externally applied—but trying to tickle yourself

just isn’t the same! (Blakemore et al., 2000). Understanding

exactly how these inputs are processed differently can facilitate

building artificial systems as capable and flexible as living ones.

One concrete way this has been studied is in research on

the sensory attenuation of self-caused stimuli, where researchers

have investigated how these stimuli are perceived as diminished

in comparison to externally caused stimuli (Hughes andWaszak,

2011). This is clearly demonstrated in the force-matching

paradigm. Here an external force is applied to a subject’s finger,

after which they must use their other hand to recreate that force

as precisely as possible. This takes place under two conditions.

In the direct condition, the subject applies force to their finger

in a manner as close as possible to pressing on their own

finger (given the constraints of the experimental apparatus). In

the indirect condition, they apply the force via a mechanism

located elsewhere, such as a lever to one side. Healthy subjects

consistently apply too much force when pressing directly on

their finger, indicating that the perceived force is attenuated

compared to the other conditions (Pareés et al., 2014). The

classical explanation of this effect is that when the brain issues

a motor command, it uses a copy of that command to predict

the sensory consequences of the resulting motor activity. The

predicted sensory input is then subtracted from the actual

sensory input, resulting in the attenuation of the stimulus

(Klaffehn et al., 2019). This is a representationalist explanation in

that it explicitly posits that the brain contains an internal model

used to simulate the motor system (Wolpert et al., 1995).

While there is indeed evidence to support the presence

of neural correlates of motor activity subsequently influencing

sensory perception in different species, specifically via corollary

discharge circuits (Crapse and Sommer, 2008), the aim of this

paper is to interrogate the necessity and utility of internal

representations in general and internal predictive models in

particular for maintaining adaptive behavior in the presence of

self-caused sensory interference. We examine the predict-and-

subtract explanation of the sensory attenuation phenomena by

using a genetic algorithm (GA) to explore the viable solutions

in a dynamical model of a simple embodied system with non-

trivial self-caused sensorimotor dynamics, where the task the

controller must solve relies on engaging with an environmental

stimulus, while its own motor activity also directly stimulates its

environmental sensors. Here we focus on the classical, predict-

and-subtract approach, which would in theory perfectly solve

the interference problem that we have designed, though our

GA instead finds alternative, non-predictive solutions which

leverage the system’s embodiment.

In general, expected stimuli produce a reduced neural

response (de Lange et al., 2018). This has been explained in terms

of an internal predictive model (e.g., Blakemore et al., 1998,

2000; Wolpert and Flanagan, 2001; Bays et al., 2005; Kilteni and

Ehrsson, 2017, 2022; Kilteni et al., 2020; Lalouni et al., 2021).

This type of explanation has been described as “cancellation

theory,” where expected sensations are suppressed (Press et al.,

2020). In the interest of completeness, we should mention

that there are other predictive accounts of perception, such

as Bayesian predictive processing, where attention also plays a

major role (Friston, 2009; Clark, 2013; de Lange et al., 2018). The

roles of prediction in Bayesian and cancellation theories have

been considered contradictory, and “opposing process theory”

is one attempt to reconcile them (Press et al., 2020). These

alternative approaches are somewhat orthogonal to this project,

as they address different potential roles for prediction, whereas

we aim to engage with the classical account by investigating

the role of embodiment in coping with self-caused sensory

interference in a context where prediction and subtraction of

that interference is a perfect solution. Likewise, while externally-

caused stimuli can also be attenuated, for instance when

expected (de Lange et al., 2018), or during movement (Kilteni

and Ehrsson, 2022), this paper focuses specifically on coping

with self-caused stimuli by modeling a task which requires

responsiveness to environmental sensor stimulation despite the

presence of self-caused sensory interference.

The problem of ego-noise in robotics hints at why

subtracting out self-produced stimuli seems like a natural thing

for the brain to do. Ego-noise refers to self caused noise,

including that of motors. This noise can interfere with the

data collecting sensors of a robot, and the straightforward

engineering solution is to cancel out the noise. The explicitly

representational and predictive explanation of the sensory

attenuation effect meshes well with this engineering perspective,

and has informed a predictive approach to dealing with ego-

noise (Schillaci et al., 2016). We cite Schillaci et al. here as

an illustration that this exact approach has indeed been used

in recent work in robotics, and thus our results should have

relevance to the field. Of course this is not the only approach

to dealing with the general problem of making the self-other

distinction in robotics—see for instance Chatila et al. (2018) and

Kahl et al. (2022).

In our model, the embodiment is a simple, simulated, two-

wheeled system with a pair of light sensors. It is coupled

to a controller—a continuous-time, recurrent neural network

(CTRNN)—which determines its motor activity. The sensory

input to this robot is a linear combination of environmental

factors (a function of its position relative to a light) and a

self-caused component—a function of the robot’s motor activity.

This model is designed to allow both representationalist

and non-representationalist solutions to emerge. For the

representationalist predict-and-subtract solution to be viable in

this model, two criteria need to be met. Firstly, the controller

must be able to model the interference. As the controller

is a CTRNN, which is a universal approximator of smooth
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dynamics (Beer, 2006), it can indeed model the interfering

dynamics, which are produced by simple, smooth functions.

Secondly, the interference must be able to be removed from

the input, given a prediction of the interference. Since the

interference is summed with the actual sensor data, it can be

removed by subtracting a prediction of the interference from the

sensory inputs. This explicitly representational solution would

fit with the classical explanation of sensory attenuation. Non-

representationalist solutions that take advantage of the system’s

embodiment are also possible in this model, since the interfering

dynamics are a function of the system’s motor activity, and are

coupled to the controller in a tight sensorimotor loop, embracing

the situated, embodied and dynamical (SED) approach. In

the classical account, the environmental stimulation of the

sensor can be treated as independent of the system’s activity,

and the self-caused stimulation of the sensor is similarly

compartmentalized—the decision to take a particular action

is made independently of its incidental sensory consequences,

and compensation for these consequences is left to downstream

predictive and subtractive processes. In contrast with this

approach, modeling how embodied systems are coupled

to their environment, in particular how both the system’s

environmentally and self-caused sensory inputs are influenced

by the system’s own motor activity, enables additional ways of

coping with self-caused stimuli, as will be seen in our results.

Following the evolutionary robotics methodology we

explore the space of possible solutions using a genetic algorithm

(GA) (Harvey et al., 2005). We then analyze the behavioral

strategies of controllers tuned to successfully accomplish a task

(phototaxis), in the presence of several different forms of motor-

driven sensory interference. This permits us examine a range

of ways embodied systems may cope with different self-caused

sensory stimuli, and reveals that a number of alternatives to the

classical predict-and-subtract approach are viable in our model.

Clearly the simulated robot and neural network controller

that we are investigating are very different from humans and

their brains. This limits the ability to make direct predictions

about humans based on the results found in our model—we

don’t expect to find people using exactly the same strategies used

by the two-wheeled robot. Nevertheless, this type of model can

highlight how the solutions found by evolution are not always

the same as the solutions that might be identified by a human

engineer. As argued by Thompson et al. (1999), humans need

to understand what they engineer, to divide and subdivide the

problem and solution into smaller units until those units are

simple enough to address directly. For example, dividing the

problem of coping with self-caused stimuli from the general

problems of perception and action, and further dividing it into

the prediction and subtraction of self-caused stimuli. Natural

or artificial evolution, on the other hand, is under no such

constraint. The solutions it finds are the result of iterative

improvement with no need for understanding, simplification or

compartmentalization. Accordingly, it can find solutions that are

“messy” and difficult, perhaps in some cases even impossible, for

us to understand. Our evolutionary robotics model, like others

before it (Beer, 2003; Phattanasri et al., 2007; Beer and Williams,

2015), allows us to see that there are alternatives to how

an engineer might approach solving this particular problem.

Furthermore, it allows us to generate concrete examples of

alternative strategies for solving the problem at hand, and due to

the simplicity of the model these examples are easier to analyze

and come to understand than the incredibly complex behavior

found in living systems.

In Section 2 we explain the model we developed and the

GA we use to optimize its parameters. Then in Section 3

we present the results of our investigation, describing each

form of interference used, and explaining the behavior of the

most successful system evolved to perform phototaxis in the

presence of each form of interference. Finally in Section 4 we

summarize the different behaviors evolved to cope with these

forms of interference, and discuss how these findings can inform

our understanding of the role embodiment plays in coping

with self-caused sensory stimuli. We draw attention to how

the problem of disentangling self-caused and environmental

stimulation of the sensors is made easier for embodied systems

by the influence embodied systems have over both self-caused

and environmental stimulation of their sensors, and we argue

that, for embodied systems, this problem need not require the

use of an internal model.

2. Model and methods

In this section we first describe our model of an embodied

system with self-caused, motor-driven sensory interference,

which must perform a task where clear perception of the

environment is beneficial. We then describe the genetic

algorithm (GA) that we use to investigate how embodied systems

can cope with self-caused sensory input.

2.1. Model

We model a simple light-sensing robot, controlled by a

neural network, where the robot’s light sensors can also be

directly stimulated by the robot’s own motor activity. The two-

wheeled robot moves about an infinite, flat plane. It has a pair

of directional light sensors, and the environment contains a

single light source. Over the course of a single simulation, this

light source’s position remains fixed. The robot is controlled

by a continuous-time, recurrent neural network (CTRNN).

Motor-driven interference is ipsilateral and non-saturating, and

is determined by one of three different functions, which are

detailed in the Experiments section. Figure 1 provides a visual

overview of the model architecture. As the model is fully

deterministic, the course of each simulation is fully determined
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by the robot’s initial distance from and orientation toward the

light. In each simulation, the robot begins at the origin (0, 0),

facing toward positive y, and initial conditions are varied by

positioning the light at a different (x, y) coordinate.

2.1.1. Embodiment

The robot is circular, with two idealized wheels situated on

its perimeter π radians apart, at −π/2 and π/2 relative to its

facing. The wheels can be independently driven forwards or

backwards. Its two light sensors are located on its perimeter at

−π/3 and π/3 relative to its facing. The environment it inhabits

is defined entirely by the spatial coordinates of the single light

source. The robot’s movement in its environment is described

by the following set of equations:

ẋ = (mL +mR) cos(α) (1)

ẏ = (mL +mR) sin(α) (2)

α̇ = (mR −mL)r (3)

Where x and y are the robot’s spatial coordinates, and α is

the robot’s facing in radians. mL and mR are the robot’s left and

right motor activation, respectively, and are always in the range

[−1, 1]. The values ofmL andmR are specified by the controller,

which is described later. r = 0.25 is the robot’s radius. We

simulate this system using Euler integration with1t = 0.01.

Physically this describes positive motor activation turning

its respective wheel forwards, and conversely for negative motor

activation. If the sum of the twomotors’ activation is positive, the

robot as a whole moves forwards with respect to its facing, while

if it is negative, the robot moves backwards. The amount that

the robot turns is also determined by the relationship between

the two wheels.

The robot’s two light sensors are located at the coordinates

(x+ cos(α+ θ)r, y+ sin(α+ θ)r), where θ is the sensor’s angular

offset. For the left sensor, θ = π/3 and for the right sensor,

θ = −π/3. The environmental stimulation of the sensors is

given by:

s =
(b · ĉ)+

1+ D2
ǫ (4)

Where b = [cos(α + θ), sin(α + θ)] is the unit vector pointing

in the direction the sensor is facing, and c is the vector from the

sensor to the light, with ĉ denoting that the vector is normalized

to have a unit length. That is ĉ = c/|c|, where |c| is themagnitude

of c. The symbol · denotes the dot product of the two vectors, and

the superscript + indicates that any negative values are replaced

with 0. D is the Euclidean distance from the sensor to the light,

and ǫ = 5 is a fixed environmental intensity factor. sL denotes

the activation of the left sensor, with θ = π/3, while sR denotes

the activation of the right sensor, θ = −π/3.

The numerator is maximized at 1 when the sensor is

directly facing the light, and minimized at 0 when the sensor

is facing π/2 radians (90◦) or more away from the light. The

denominator is minimized at 1 when the distance from the

sensor to the light is 0. This means that the activation of a sensor

grows both as the sensor faces more toward the light, and as the

sensor approaches the light (so long as it is facing less than π/2

radians away from the light).

2.1.2. Controller

The controller is a continuous-time recurrent neural

network (CTRNN) defined by the state equation below,

following Beer (1996):

τiẏi = −yi +

N
∑

j=1

ωjiσ (yj + βj)+ Ii (5)

HereN = 10 denotes the number of neurons in the network.

yi indicates the activation of the ith neuron. The parameter

τi is the time constant of that neuron, where 0 < τi < 3,

while the parameter βi is its bias, where −5 < βi < 5. Ii

is any external input to the neuron. σ (x) = 1/(1 + e−x) is

the standard logistic activation function for neural networks,

and is a sigmoid function in the range [0, 1]. ωji is a weight

determining the influence of the jth neuron on the ith neuron,

where−5 < ωji < 5.

Two neurons are designated as input neurons, and all their

incoming interneuron weights ωji are set to 0, including the

recurrent weight ωii. With the robot described above, neurons

1 and 2 are designated as input neurons, and I1 = wIsL, while

I2 = wIsR, where wI = 5 is a fixed input scaling weight.

These are the only neurons which receive an external input, so

I3..N = 0 always.

Two neurons are designated as output neurons (neurons 9

and 10), and their activation values y are treated as the output

of the network. In our case, yN−1 and yN provide the valuesmL

and mR, respectively. Output is scaled to be in the range [−1, 1]

by the function:

o(y) =
2

1+ exp(
−y

√
ωmax

)
− 1 (6)

Where ωmax = 5 denotes the maximum weight value ω

permitted for a node in this CTRNN. The two output neurons do

not receive stimulus from the input neurons. That is if j ∈ {1, 2}

and i ∈ {9, 10} then ωji = 0. The remaining six neurons

are interneurons, each of which receives inputs from all other

neurons in the network. This neural network architecture is

illustrated in Figure 1.
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FIGURE 1

An embodied model with motor-driven sensory interference. This model is used throughout the paper. It consists of three parts—the “brain,” the

“body” and the “world.” The brain is a continuous-time, recurrent neural network (CTRNN), with 6 fully connected interneurons, 2 sensor

neurons which project to all interneurons, and 2 motor neurons which project to and receive projections from all interneurons. The motor

neurons determine the activation of the body’s 2 motors. The body’s position and orientation relative to the single light source in the

environment determine the activation of its 2 light sensors. The value received at a given point in time by the right sensor neuron is a linear

combination of the right light sensor activation, and a function ψ of the right motor’s activation, representing self-caused sensory

stimulation—and likewise for the left sensor, sensor neuron, and motor.

2.1.3. Motor-driven interference

Perception necessarily involves both the system and its

environment. Nevertheless, we can consider the degree to which

the activity of the system or environment contributes to a given

stimulus. Let us take three very different points in this space. (1)

If our robot passively sat still, while a light in the environment

turned on and off, the change in the light sensors’ activations

would primarily be due to external causes—the robot’s own

activity would not play a role. (2) On the other hand, in

the model described above, all changes in the light sensors’

activations are the result of a change in the relationship between

the light’s position and the robot’s position and facing. Because

the light is static, the change is induced by the robot’s activity,

but determined by the robot’s spatial relationship with its

environment. (3) At the other end of the scale from (1), consider

the case where the robot inhabits a lightless environment in

which its sensors are directly and exclusively stimulated by its

own motor activity. In this case, neither external causes, nor

the relationship between the system and the environment play

a role—the change in the sensors’ activation is due solely to the

robot’s own activity.

For living systems in the real world, none of these three

points are typically possible—for (1) perception is rarely (if

ever) purely passive, for (2) movement will likely involve self-

produced sensations even if the environment is passive, and

for (3) self-produced sensations will depend on environmental

conditions. Nevertheless, our own experiences may lie closer

to one of these points than to another. Consider the visual

experience of (1) sitting watching a movie (a passive experience,

yet one whose visual sensations will still depend on activities

like movement or blinking), (2) turning to look around the

otherwise still room briefly (where the visual stimulation is

largely determined by the spatial relationship between the eyes

and the room, but still influenced by changes in the environment

like the ongoing movie, and self-produced sensations like the

peripheral vision of bodily movement), then (3) scratching your

nose (where a change in visual stimulation is caused by your own

hand entering the visual field, but depends also on static and

dynamic environmental factors like the general lighting of the

room and the flickering light of the movie screen).

In the model described so far, there is no possibility for

directly self-caused stimuli like (3). This is precisely the kind

of self-caused sensory input we are concerned with here, so

we extend the model with an interference function ψ(m). The

various interference functions we study are described in Section

(3). The interference function is used in a new sensory input

equation:

s′ = λψ(m)+ (1− λ)s (7)

Where s is the original light sensor activation, m is the

ipsilateral motor’s output, and λ is a scaling term controlling how

much of the sensory input is due to the environment, and how
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much is due to the system’s motor activity. Substituting for the

original input neuron equations, this gives:

I1 = ωIs
′
L = ωI(λψ(mL)+ (1− λ)sL) (8)

I2 = ωIs
′
R = ωI(λψ(mR)+ (1− λ)sR) (9)

This combination of motor-driven interference with sensor

activity is additive and non-saturating. That is, the interference

ψ(m) can never be so high that change in the environmental

stimulation s of the sensor does not result in a change in s′. This

means that if ψ(m) can be predicted by the network, then this

value can simply be subtracted from the input neuron’s output

to other nodes. This mapping also uses the ipsilateral motor to

generate interference for each sensor. This was chosen for two

reasons. Firstly, it is physically intuitive. Secondly, because the

motor neurons have recurrent connections to the interneurons,

this means that the neural activity determining mL and mR

[and thus ψ(mL) and ψ(mR)] contributes to the interneurons’

synaptic inputs, making prediction easier.

To summarize, we start with a model of a two-wheeled robot

with two light sensors, controlled by a CTRNN. In this model,

changes in a light sensor’s activation are purely the result of the

robot’s position and orientation changing relative to the light.

We extend this model by adding a function which, given amotor

activation value, produces an interfering output. Instead of the

input neurons of the controller directly receiving the current

activation of the light sensor, the light sensor’s activation is first

combined with this interference. The parameter λ controls the

weighting given to the sensor activation vs. the interference in

this combined term. For example, with λ = 0.05, instead of

the light sensor’s true reading s, the controller receives 0.95s +

0.05ψ(m). The interference functions ψ(m) are described in the

Section 3.

2.2. Methods

Parameters for the CTRNN controller were evolved

using a tournament based genetic algorithm (GA) based on

the microbial GA (Harvey, 2011). The GA operates on a

population, which consists of a number of solutions specifying

the parameters for the CTRNN. In a tournament, two

randomly chosen solutions from the population are evaluated

independently. Their fitness is compared, and then in the

reproduction step the lower scoring solution is removed from

the population and replaced by a mutated copy of the higher

scoring solution. Our microbial GA differs from the classic

presentation in that it ensures that each member of the

population participates in exactly one tournament before the

reproduction step is performed for the entire population. This

allows generations of the population to easily be counted.

The following parameters were evolved for each node i in

the CTRNN: the time factor τi, the bias βi, and a weight vector

specifying the incoming interneural weights for node i, where

ωji refers to the weight applied to the connection from j to i.

Each evolvable parameter of the network is encoded in the

genome as a single 32 bit floating point number in the range

[0, 1]. The weights and biases are translated from gene g to

phenotype ω or β via the linear scaling function (ωmin +

ωmax)g + ωmin, where ωmin and ωmax are the minimum and

maximum neural weights, respectively –5 and 5, while for τ we

use the exponential mapping e3g/10.

The reproduction procedure used, based on the result of a

tournament, is to remove the loser from the population, and add

in its place a copy of the winning genome. Each gene in this copy

is then mutated by the function

m(g) = ((g + Xµ)+ 1) mod 1 (10)

Where X ∼ N (0, 1) is a random variable drawn from a

normal distribution with a mean of 0 and a standard deviation

of 1, µ = 0.2 is the mutation factor, and the result is scaled by

adding 1 and taking the modulo with 1 to ensure the result is in

the range [0, 1].

In all cases the system was evolved to perform phototaxis

using the following fitness function:

∑T
t=0 d(xt , yt)

2t
∑T

t=0 t
(11)

Where t is the time at the current integration step, T is

the trial duration, and d(x, y) is the euclidean distance from

the point (x, y) to the light. The squared distance is used

rather then the actual distance here solely for computational

efficiency. Multiplying the distance by the current time means

that minimizing distance later in the trial is more important to

the fitness score than doing so earlier is. The final distance is

the most important, while the original distance from the light at

t = 0 is completely disregarded. However, improvement at any

time is always relevant: t = 99 is almost as important as t = 100.

In each trial, the robot begins at the origin. Each generation,

four light coordinates are stochastically generated. The first

coordinate is chosen uniformly at random to lie on a circle of

radius 3 centered on the origin. The other three coordinates

lie on the same circle and form a square with the first. Each

solution in the population has its fitness score calculated for

each of the four light coordinates. These scores are combined

before comparison in the tournament. This means that a

given solution’s score may go up or down from generation

to generation, as it may perform better or worse on that

generation’s set of light coordinates. This helps prevent the GA

becoming stuck in a local optima.

A population of 50 individuals was used. The trial duration

was chosen to allow enough time for robust phototaxis to

be selected for, either 10 or 20 time units depending on the

interference function. The GA was allowed to run for a sufficient
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number of generations for fitness gains to plateau and for the

population of solutions to converge.

3. Experiments

To investigate how embodied systems cope with motor-

driven interference, we began by using the GA to find

parameters that would allow a CTRNN controller to perform

phototaxis in the basic model with λ = 0 (i.e., with no

motor-driven sensor interference). The population of controllers

that were the product of this GA run are taken as the

ancestral population for the subsequently evolved populations

in Experiments 2–4. That is, parameters for these populations

were evolved starting from this ancestral population, rather

than starting from a new, random population. We chose to

use an ancestral population, rather than evolving subsequent

populations from scratch, in order to allow for direct

comparison between the behavior of the systems optimized with

and without the presence of motor-driven interference. The

results of Experiment 1 are presented in Section 3.1.

In addition to Experiment 1 with the basic version of the

model where λ = 0 (and therefore s′ = s), we consider

three further versions of the model in Experiments 2–4, each

corresponding to a different interference functionψ(m). We use

λ = 0.5 with each of these three functions. In turn we consider:

(i) a threshold-like sigmoidal function, whose interference can

be completely avoided by appropriately modified behavior; (ii)

a form of unavoidable interference, taking the square of the

motor activity; and (iii) a time-dependent interference function,

a sine wave whose frequency depends on the motor activity,

which eliminates a degree of control that was present with the

squared interference. The three interference functions used for

these experiments can be seen in Figure 2, and are introduced

and explained in more depth in Sections 3.2–3.4, where the

corresponding results are also presented.

3.1. Experiment 1: Phototaxis without
interference

A highly fit population of controllers was evolved to

perform phototaxis in the basic model, with no motor-

driven interference. Evolution of this population began from

a population of solutions with uniformly random interneuron

weight and time constant values, and with center-crossing biases

(Mathayomchan and Beer, 2002). A trial duration of 10 time

units was used. After evolution, genomes for this population are

highly convergent, indicating that the population has become

dominated by a single solution. Examining the fittest member

of this population, we found that the controller reliably brought

the robot close to the light across a collection of light coordinates

representative of those used during evolution (Figure 3). The

robot’s behavior results in it remaining close to the light even

over time periods orders of magnitude longer than the trial

duration used during evolution. This indicates that the solution

produces a long term, stable relationship with the environmental

stimulus.

The ancestral solution’s behavior is well preserved in

the descendent populations evolved to handle the various

interference functions studied. Understanding how this solution

works is helpful for understanding how the descendent solutions

handle motor-driven sensory interference.

The ancestral solution’s behavior can be divided into 2

phases:

A) The approach phase, where the robot makes its way close to

the light. This phase has to account for the light starting at

an unknown point relative to the robot.

B) The orbit phase, where the robot’s long-term periodic

activity maintains a close position to the light.

Note that this two phase description does not imply

switching between two different sets of internal rules. These

phases are driven by the ongoing relationship between the robot

and its environment, and are better thought of in dynamical

systems terms as a transient and a periodic attractor.

The orbit phase (Phase B) is simpler to explain, so we will

begin with it. Here we can approximate the robot’s behavior with

a simple program:

1. Approach the light while driving backwards, such that you

will pass the light with the light on your right hand side.

2. When the light abruptly enters your field of vision, it causes

a spike in your right sensor: quickly respond by switching to

driving forwards instead, turning gently to the left.

3. After driving forward has brought the light behind you and

out of the sensor’s field, go to 1.

We observed this behavior across all the light coordinates

we examined. Figure 4 and the corresponding caption explains

how this behavior applies to the trajectory for a specific light

coordinate, showing how the simple program described above

matches its behavior. The left sensor is completely uninvolved

in this process. In fact for some initial light positions, namely

when the robot begins with the light on its right, the left sensor is

also completely uninvolved in the approach phase. That is, if the

left sensor is completely deactivated throughout certain trials,

the trajectory is completely identical to if it were active.

The approach phase (Phase A) often consists of simply

driving forwards, and then continuing to drive forwards until

the right sensor is not stimulated. Thereafter the procedure for

Phase B is followed, with the approach differing from the orbit

primarily in that the amount of time spent on each step of the

‘program’ while approaching the light varies more than it does

when the robot is stably orbiting the light. This is what we see in

trajectory shown in Figure 4, and in all conditions when the left

sensor is not stimulated. However in conditions when the left
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FIGURE 2

Plots of the interference functions used in Experiments 2–4. (A,B) Plot pure functions of m corresponding to Equations (12) and (13)

(Experiments 2 and 3, respectively). (C) Plots a function of time that depends on the cumulative history of m, Equation (14) (Experiment 4). The

blue line is the interference, while the orange line is the motor activity.

FIGURE 3

Spatial trajectories for the best individual from the ancestral

population for 12 di�erent light coordinates. The robot always

begins at the origin, facing toward positive y (upwards). Stars

mark the final position reached during the trial duration used

during evolution. The colored circles show the light position for

the correspondingly colored trajectory. The triangles along the

trajectories point in the direction the robot is facing. They are

plotted at uniform time intervals, so more spaced out triangles

indicate faster movement.

sensor is stimulated during the approach phase, the left sensor

is involved in guiding the robot into a state where Phase B takes

over. This can be seen in Figure 5.

This solution is an instance of a more general robust

strategy for performing phototaxis in this model, which can be

summarized even more simply as:

• If you don’t see the light, drive backwards (it must be

behind you).

• If you do see the light, drive forwards until you can’t see it

any longer.

The reason this does not result in just driving backwards

and forwards along the same arc is that the robot turns

a different amount when driving forwards vs. when driving

backwards. The turn amount is determined by mR − mL,

while the direction of travel is determined by whether mR +

mL is negative or positive. When adjusting motor activity to

change directions, it’s trivial to also change the amount of turn.

Of course this general strategy is not a complete description

of the robot’s behavior, the effect of sensor stimulation can

be time dependent and differ for the left and right sensors.

Particularly during Phase A, the approach to the light, the exact

trajectories taken by the robot depend on continually regulating

the 2 independent motors’ speed and direction of activity to

perform both gradual turns and sharp changes in direction

via 3 point turns with sufficient precision to reliably enter

Phase B and maintain it. However, we see this general strategy

well preserved in populations descendent from this ancestral

population as well as evolved independently in non-descendent

populations.

To summarize, the ancestral solution takes advantage of

the particular nature of its sensors, driving backwards so

that the sensors are stimulated sharply. It adjusts its motor

activity in response to this sharp stimulation in such a way

that the stimulation is extinguished. This environmentally

mediated negative feedback loop plays a critical role in enabling

the system to remain stably in close proximity to the light

source. Capturing this type of natural feedback loop is a

strength of modeling work following the SED approach. In the

subsequent sections, we will see the role this pattern of behavior

plays in coping with additional self-caused interference, and

how this behavior is modified when this population of

solutions is taken as the ancestral population for subsequent

optimisation via the GA with the addition of motor-driven

interference.
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FIGURE 4

Detail of the orbit phase (Phase B) for the ancestral solution. The plots marked (A) Show the ancestral solution when the light is at coordinates

(0, 3)—position 12 in Figure 3. The highlighted sections of these figures mark the time period 10–13, which is shown in more detail in (B). The

vertical line in B(i,ii) marks the peak of right sensor activation, which corresponds to the + in B(iii). The activity shown in (B) corresponds to the

Phase B program (see main text). Before t = 11, the robot drives backwards, passing the light on its right side. As the right sensor is stimulated,

the robot changes direction, driving forwards. After the right sensor stimulation peaks and dies down, the robot changes direction again,

reversing toward the light. (A) Show how the process repeats.

3.2. Experiment 2: Avoidable interference

Having evolved a system to perform phototaxis

in the absence of directly self-caused sensory stimuli,

we take this population of solutions as the ancestral

population for subsequent evolution in the presence

of motor-driven interference functions to begin

investigating how embodied systems can cope with

this type of interference. In this section we describe

the first form of self-caused sensory interference

modeled, and how the ancestral solution is modified to

accommodate it.

The simplest possible interference would be adding a

constant value to all the sensor inputs. However this would

not depend on the system’s motor activity. Therefore the first

ψ(m) that we model is a threshold-like interference function,

where interference is maximized when motor activation is above

a threshold value, and≈ 0 elsewhere. To achieve this effect with

a smooth function, we use a relatively steep sigmoidal function,

with the equation:

ψ(m) =
1

1+ exp(−k(|m| − p))
(12)

Where exp(x) = ex and |m| is the absolute value of m,

and where k = 50 is the term controlling the steepness of the

sigmoid’s transition from 0 to 1, while p = 0.5 determines the

midpoint of the transition. So when m < −0.5 or m > 0.5:

ψ(m) ≈ 1 and when−0.5 < m < 0.5: ψ(m) ≈ 0. This function

is unique among the three in that were the system to constrain
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FIGURE 5

An example approach phase (Phase A) for the ancestral solution which is guided by the left sensor. (A–C) Show the sensorimotor activity of the

ancestral solution when the light is at coordinates (0, –3), position 6 in Figure 3. (D) Plots the spatial trajectory of the robot. The vertical lines in

plots (A–C) show the peaks in sensor activity. These correspond to the + markers in (D). Initially the robot drives backwards. The left sensor

stimulation between t = 2 and t = 8 is associated with the robot to driving forwards while turning strongly to the left. Once this turn has oriented

the robot such that the right sensor is being stimulated and the left sensor is no longer being stimulated, the robot drives forward until the right

sensor is no longer stimulated. From here, this is just the same Phase B behavior presented in Figure 4.

its motor activity to the appropriate range, it would avoid

the interference altogether. We will refer to the interference

generated by this function as avoidable or sigmoidal interference.

With motor activity capped at 50%, motor-driven

interference can be avoided, and phototaxis can still be

performed, just more slowly. Moving more slowly comes at

a cost to fitness though, since the fitness function (Equation

11) rewards reaching the light quickly. Therefore, a predict-

and-subtract solution to the interference which preserves

the speed of the high-performance ancestral solution should

outperform a solution which simply avoids the interference.

However, we instead found that the fittest solution from the 5

populations evolved to perform phototaxis with the sigmoidal

interference functionmodifies the motor activity of the ancestral

solution significantly.

Figure 6 illustrates how the characteristic motor activity of

the solution evolved with sigmoidal interference differs from

that of the ancestral solution. Keeping in mind that the ancestral

solution often involved minimal environmental stimulation of

the left sensor, we observe that the left motor in this evolved

solution never produces interference. This comes at the cost

of greatly decreased absolute motor activity relative to the

ancestral solution. The ancestral solution’s left motor activity

ranges widely, from –0.96 to 0.10 with a median of –0.82, close

to the maximum possible absolute value of 1. See Figure 4A(ii)

for ancestral motor activity as a time series. In contrast, the left

motor activity of this solution ranges only between –0.42 and

–0.32 with a median value of –0.38. Time series of this motor

activity can be seen in Figures 8A(iv),B(iv). This drastic decrease

in motor activity lowers the speeds attainable by the robot,

but prevents motor-driven interference with the left sensor.

While the activity of the left motor is kept below the threshold

for producing interference at all times, keeping the left sensor

free of interference, the right motor does produce interference.

The distribution of right motor activity is bimodal, with peaks

just below the interference threshold of 0.5, and close to its

maximum value of 0.84. This bimodal distribution is the result

of this solution producing two distinctly different orbit types.

The orbiting behaviors of this system are of interest because

they demonstrate ways in which a long term, stable relationship

with an environmental source of sensor stimulation can be

maintained in a model with motor-driven sensor interference.

As with the ancestral population, a trial duration of 10 time

units was used for this population. Due to the decreased overall

motor activation relative to the ancestor, and the consequently

decreased speed, the robot does not get as close to the light in

that time as the ancestor did. This means that what has been

selected for by the genetic algorithm here is modification of

the approach phase to maintain accuracy in the presence of

this novel interference. However, due to a sufficiently accurate

approach and the evolved regulation of the motor-driven

interference, stable orbits are still achieved across all light
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FIGURE 6

Motor activity for the 12 light positions shown in Figure 3 for time 20 to time 50 (integration steps 2,000–5,000), for the evolved solution to each

experiment. This is one way of visualizing aspects of the ancestral behavior that have (and have not) been modified by further evolution in the

presence of an interference function. The boxes extend from the first to the third quartile of the motor activity, and contain a yellow line

showing the median, and a green × showing the mean. The whiskers extend to 1.5 times the inter-quartile range. The half-violin plot to the right

of each box plot estimates the distribution of the motor activity, while to the left is a scatter plot of each simulated moment of motor activity

with randomized horizontal placement. The column labeled control plots exactly the same information for the fittest solution evolved with

λ = 0.5 and the null interference function ψ (m) = 0, showing the scope of change seen simply due to the presence of λ and to genetic drift. (A)

plots the motor activity for the left motor of each system, while (B) plots this information for the right motor. Of particular relevance to the

solutions cataloged in this paper are the depressed (absolute) left motor activation with sigmoidal interference and the corresponding bimodal

distribution of right motor activity; the reduced range of left motor activity with squared interference, and the fact that the right motor activation

with squared interference continues to cover a wide range; and the reduction in low (absolute) values of motor activity with the sinusoidal

interference function.

positions in the very long term. Unlike the ancestor, we see

two distinctly different orbit behaviors. Across all interference

functions we refer to those orbits reminiscent of the ancestral

solution, involving forward and backward motion around the

light, as Type 1 orbits, and to orbits which loosely circle

the light while driving forwards as Type 2 orbits. These are

easily distinguished visually (see Figure 7). As with the ancestor,

approaches can broadly be divided into those guided by the left

sensor, and those that are not. In the majority of cases for this

solution, the approach phase preceding Type 1 orbits is guided

exclusively by the right sensor, while Type 2 orbits tend to follow

a left sensor guided approach phase.

Type 1 orbits come much closer to the light. They display

similar sensorimotor behavior to the ancestor’s orbit behavior

(Phase B), maintaining a stable relationship to the light by

repeatedly driving backwards and forwards, albeit with greatly

reduced motor activity compared to the ancestor. Figure 8A

shows a typical example of sensorimotor activity for Type

1 orbits. Right motor-sensor interference is almost entirely

avoided. A very low amount (not visible in the figure) coincides

with the robot driving forwards slowly. This interference is

necessary because the left motor’s activity is negative, and is

maintained very closely to the threshold for interference, so the

right motor’s positive activity cannot be raised sufficiently highly

to drive forwards without producing at least a small amount of

interference.We summarize this orbit strategy as performing the

known good ancestral strategy while constraining motor activity

to avoid sensor interference.

Type 2 orbits loosely circle the light, and are very different

from the ancestral orbit behavior. Figure 8B shows an example

of typical sensorimotor activity for this type of orbit. These

orbits do not involve environmental stimulation of the right

sensor, instead the left sensor is stimulated throughout the

orbit phase. Unlike Type 1 orbits, where the relationship to

the light is maintained by repeatedly driving forwards and

backwards, the robot exclusively drives forwards. It does so

very quickly, producing high right motor-sensor interference.

We characterize this orbit strategy as keeping “one eye on
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FIGURE 7

Two distinct types of orbits are visible in the spatial trajectories

for the best individual from populations evolved with sigmoidal

interference (Equation 12). Type 1 orbits, reminiscent of the

ancestral solution, are seen for Lights 11, 12, 1, 2, 3, and 4. Type

2 orbits, which feature a forward moving, counter-clockwise

orbit of the light are seen for Lights 5, 6, 7, 9, and 10. For Light 8,

an approach typical of a Type 2 orbit instead puts the robot in

position for a Type 1 orbit.

the prize,” where the left sensor, facing the light, is kept free

of interference. Meanwhile the right sensor, facing away, is

continually stimulated by the right motor’s activity. This orbit

strategy is uniquely enabled by the ipsilateral nature of the

motor-driven sensory interference.

In the presence of this threshold based interference, the

best solution found by our GA when modifying the ancestral

population to accommodate this interference constrains the

ancestral solution’s motor activity to avoid interference while

performing the same function of phototaxis, using (in some

situations) the same basic strategy. This approach contrasts with

the predict-and-subtract approach of modifying the controller

to subtract the anticipated interference from the sensor neurons’

outputs, allowing the behavior of the ancestral solution to

be performed without modification. This suggests that in our

model such solutions are far closer in evolutionary space to the

ancestral solution than a predict-and-subtract solution would

be. The relevance of this to the evolutionary history of biological

control systems is unclear, however it may suggest that adjusting

neural activity to accommodate a novel form of motor-driven

sensory interference would involve regulation of the behavior

producing that interference in addition to or instead of the

neural subtraction of internally predicted interference. This

demonstrates that behavior modification does indeed work

as a solution to motor-driven sensory interference, and that

the precise way in which behavior is modified can depend

heavily on the particularities of the sensorimotor contingency

in question. Specifically we have seen how two ways of

compensating for motor-driven sensory interference emerged

in our model. Firstly, motor activity may be constrained to

ranges that minimize or avoid interference with the sensors.

Secondly, interference can be avoided for only one sensor, which

is kept trained on relevant environmental stimuli. This permits

unconstrained use of motor activity which interferes with the

other sensor. While this robot is clearly much simpler than a

human, this demonstration of how pre-existing behavior can

be modified to avoid the effects of novel, self-produced sensory

interference may suggest a role for such solutions in other

contexts, such as less complex organisms (including perhaps our

deep evolutionary past) and simple robots.

3.3. Experiment 3: Unavoidable
interference

Sigmoidal interference certainly does not exhaust the

possibilities for modeling interference, nor does it capture

the fact that many self-caused stimuli cannot be avoided

when taking action. Therefore, we also model non-avoidable

interference, where the interference increases with the absolute

magnitude of the motor activation. To minimize discontinuities

in the system, and to ensure the interference can be

approximated by the CTRNN controller, we use a smooth

function—the square of the motor activity:

ψ(m) = m2 (13)

We will refer to the interference generated by Equation

(13) as unavoidable or squared interference. Like the avoidable,

sigmoidal interference function modeled previously, the

magnitude of the interference correlates with the magnitude

of the motor activity. However, unlike with the avoidable

interference function, now all changes in motor activity produce

a corresponding change in the sensory interference.

Examining the fittest solution produced by the GA’s

modification of the ancestral solution, we again find the ancestral

solution well preserved. A trial duration of 20 time units

was used during evolution to compensate for any decreased

speed compared to the ancestor. The general strategy of

approaching the light while driving backwards is maintained,

however motor activity has changed to accommodate the

addition of the squared interference function. The left motor’s

activity is now constrained to a much smaller range (see

Figure 6A), which lowers interference dramatically compared

to the interference that would be produced by the ancestral

solution’s motor activity (see Figure 9A). The right motor

generates significant interference, but we find that rather than

destructively interfering with the sensor in such a way that the

environmental stimulus is masked, this motor-driven sensor
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FIGURE 8

Two distinct orbit types produce the bimodal right motor activity distribution seen for the solution evolved with sigmoidal interference in

Figure 6B. (A) The type 1 orbit, which alternates between driving forwards and backwards to stay close to the light. (B) The type 2 orbit, where

the robot exclusively drives forwards during the orbit phase. (i) The spatial trajectory of the robots, (ii,iii) the robots left and right sensor activities

respectively, and (iv) the robots’ left and right motor activations. The black line in (ii,iii) shows the environmental stimulation of the sensor, while

the grey line and corresponding shaded region shows the total activation of the sensor when both the environmental and motor-driven

stimulation are combined. Note the minimization of interference during the Type 1 orbit, in contrast with high level of right sensor interference

during the Type 2 orbit.

stimulation is actually constructive in that it synchronizes with

and amplifies the environmental stimulus’s effect on the sensor.

Figure 6B makes it clear that the right motor’s activity has not

been lowered or even constrained to a tighter range the way

the left motor’s has—though we still see a slight reduction in

interference compared to what the ancestral solution would

produce (see Figure 9B). How the system performs so accurately

in the presence of this interference becomes clear when we

consider the relationship between the right motor activity and

the right sensor. As with the ancestor, the robot approaches

the light while driving backwards, in such a way that the light

enters the right sensor’s field from it’s blind spot at very close

proximity to the sensor. Figure 10A shows an example of this

approach. When the light enters the right sensor’s field, its

activation immediately spikes. In response, the right motor’s

activity also spikes, causing the robot to drive forwards, and

also causing a spike of interference in the same sensor. This is

a version of the ancestral Phase B orbit behavior, executed with

reduced baseline motor activity, and high right motor activity

coordinated with right sensor stimulation. By keeping motor

activity at a low baseline and interacting with the environment in

such a way that environmental stimuli are sharp and intense, this
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FIGURE 9

Motor-driven interference is reduced in Experiment 2 relative to the ancestral population. The figure shows ψ (m) = m2 for the 12 light

coordinates shown in Figure 3, for 20 < t < 50. (A) Note primarily the lowered mean, median and maximum interference with the left motor.

Despite the right motor’s activity being spread across a wider range than either ancestor or control (see Figure 6), this spread is to low motor

activity values, decreasing maximum right motor-sensor interference. (B) However, the right motor activity has definitely not been suppressed

the way the left has, and the systems successful performance in the presence of this interference ultimately depends on the coordination of

right motor-sensor interference with environmental stimulation of the right sensor (see main text).

solution facilitates distinguishing environmental stimuli from

low levels of self-caused background noise. By then coordinating

motor activity with elevated environmental stimulation of the

ipsilateral sensor, motor-driven interference can be raised to

high levels without interfering with the system’s function,

“hiding” in the shadow of the environmental stimulus. Not

only does this activity not interfere with perception of the

environment, the stimulation caused by right motor’s activity

actually reinforces and amplifies the environmental stimulus’s

effect on the sensor above the maximum level it would be able

to achieve on its own.

Since right sensor stimulation leads to right motor activity,

which in turn leads to more right sensor stimulation, we should

address the possibility of a self-sustaining positive feedback loop.

This possibility is limited by two forms of negative feedback.

The system’s relationship to the light source is structured in

such a way that elevated right motor activity in response to

the environmental stimulus moves the right sensor away from

the light, eliminating that stimulus. This is environmentally

mediated negative feedback. It is complimented by internal

negative feedback. Figure 11A shows how a spike in right sensor

stimulation causes an initial strong response in motor activity.

However, despite continued stimulation at an elevated level,

sufficient to saturate the output of the sensor neuron, motor

activity quickly falls from the initial peak. Thus, both internal

and environmentally mediated negative feedback play a role in

preventing this orbit behavior from being disrupted by motor-

driven positive feedback.

As we also saw with sigmoidal interference, this solution

realizes a second orbit pattern of Type 2. Positive rather than

negative feedback plays a dominant role in this orbit, which

comes into effect when the robot is close to the light, but the

light is on its left (see Figure 10B). The system’s response to

left sensor stimulation does not feature the internal negative

feedback that right sensor stimulation does, and it produces

a response in both right and left motor activity. This in turn

produces interference in both sensors. The ultimate effect is that

the robot drives forwards in a counter-clockwise orbit around

the light. This keeps the left sensor continually stimulated by

the light, while the right sensor is continually stimulated by the

right motor’s activity. In this case we have an environmentally

mediated, positive feedback loop, where left sensor stimulation

causes the robot to turn toward that stimulus, and the resulting

motor-sensor interference produces the same effect.
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FIGURE 10

Spatial trajectories and sensorimotor activity showing a Type 1 and Type 2 orbit for the solution evolved with squared interference. Subfigures

are labeled as in Figure 8. (A) Shows a Type 1 orbit reminiscent of the ancestral solution, where motor activity is coordinated with sharp spikes of

environmental stimulation of the right sensor. A(iii) Shows how elevated right motor interference coincides with environmental right sensor

stimulation, amplifying it. The spiking activity is characteristic of negative feedback in this solution, where action resulting from sensor

stimulation leads to the stimulus diminishing. (B) Shows a Type 2 orbit, where the robot orbits while driving forwards. B(iv) Shows how the motor

activity plateaus during the orbit, with high right motor interference seen in B(iii). This is associated with positive feedback in this solution, where

sensor stimulation leads to activity prolonging that stimulation.

The way this system has been parametrized by the GA

relies on the presence of motor-driven stimulation to perform

phototaxis. Recall that the ancestor evolved to have zero left

sensor activation in many situations, with a left sensor guided

approach phase (Phase A) for a number of initial light positions.

This trait remains in a way, where the left sensor is often

completely free of environmental stimulation, and the left motor

activity is constrained to produce lower levels of interference.

Nevertheless, this interference plays an important role. Figure 12

illustrates how removing the motor-driven sensor stimulation

from just the left sensor causes the approach phase to fail

in the majority of cases, succeeding only when its trajectory

inadvertently brings it close to the light. This is not unexpected,

given that the system was optimized for the presence of motor-

driven interference. However, it means that accurate control of

the system’s motor activity has been optimized in such a way that

it now depends on perceiving the direct sensory effects of its own

activity. Like the right motor, the left motor responds to sensor

stimuli, though in a smaller range and with elevated negative

rather than positive activation. This plays an interesting role in

the system’s response to right sensor stimulation (as in the Type

1 orbit shown in Figure 10A). Note how the coordinated peaks

of right environmental and motor-driven sensor stimulation

coincide with elevated left motor activity and corresponding

motor-driven left sensor stimulation. Figure 11 shows how the

presence of left motor-sensor interference amplifies and extends
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FIGURE 11

The magnitude and duration of the initial motor response to sensor stimuli are strengthened by the presence of left motor interference.

Sensorimotor activity and sensory neuron output time series are shown for the solution evolved with squared interference (Equation 13), when

the right sensor is presented with an artificial environmental stimulus, which spikes and plateaus around t = 8. (A) Shows the response under the

condition of evolutionary adaptation for the robot, with motor interference present. (B) Shows the response when the left motor-sensor

interference is removed. The duration and intensity of the motor response to the stimulus is diminished without the interference, indicating that

the interference plays a functional role in the evolved behavior. Additionally, it can be seen that the response to sudden right sensor stimulation

is accompanied by internal negative feedback—even when the stimulation persists, motor activity quickly falls from the initial peak.

the initial motor activity response to right sensor stimulation.

This demonstrates not only a specific way in which the system

has been optimized for the presence of interference, but also how

self-caused stimuli can play a directly functional role in behavior.

To summarize, we see the ancestral strategy is well preserved

in this evolved solution. This solution can be characterized

as minimizing interference to an extent, as we also saw in

the case of sigmoidal interference. We also see a condition

where motor-driven sensor interference does not need to

be minimized, namely when it can be made to coincide

temporally with environmental stimulation of the same sensor.

Here the onset of the environmental stimulus prompts the
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FIGURE 12

When motor-driven interference is removed, the behavior

evolved with squared interference fails. Spatial trajectories for 12

light coordinates (Figure 3) are plotted with all motor-sensor

interference removed. The approach phase now only succeeds

in two out of 12 cases, where the blind approach brings the

robot close to the light. The orbit phase only succeeds in one of

these two cases.

interfering motor activity, and a combination of internal and

environmentally mediated negative feedback extinguishes both

interfering activity and stimulus. In this case the motor-

driven stimulation does not interfere with perception of the

environmental stimulus, instead reinforcing and amplifying

it. This obviates the need to distinguish or subtract the

self-caused stimulus from the environmental. Separately, we

also see that a stable, periodic orbit phase can be facilitated

by positive feedback. Finally, we found that while left motor-

sensor interference is confined to a narrow range, the system has

been optimized to rely on its presence and even incorporate it

functionally.

3.4. Experiment 4: Time dependent
interference

With both of the preceding interference functions, if the

motor activity is held constant, then the interference will also

take on a constant value. Since the interference is additive

and non-saturating, subtracting a constant term can remove

the interference and leave only the environmental signal—no

prediction required. In general a CTRNNwith a sufficiently high

bias β for the input neurons can do this, though in our case

the maximum value we permit the GA to assign to β is too

low to fully compensate for maximal interference. Nevertheless,

solutions to the previous two interference functions have

shown both the utility of avoiding or minimizing motor-sensor

interference, as well as the role that holding motor activity and

its corresponding interference constant can have in constructing

long-term stable relationships with environmental sources of

sensor stimulation. With the following function it is not possible

for the interference to plateau at a constant value. It describes

a sine wave with a maximum of 1 and a minimum of 0, whose

frequency is determined by the motor activation:

ψ =
sin(c)+ 1

2
(14)

ċ = (b+ |m|)r (15)

Here c gives the phase of the sinusoidal, capturing the

previous values of m. b = 0.1 determines the base frequency

of the sinusoidal in the absence of any motor activity, while

r = 8 is the frequency range term determining the maximum

frequency the sinusoidal can reach. The effect of adding 1 and

dividing by 2 is simply to shift the wave from the range [−1, 1]

to the range [0, 1]. This equation essentially advances through a

standard sine wave at a rate determined by the motor activity.

As with the previous interference functions, the interference for

a given sensor is calculated from the ipsilateral motor, such that

when computing the interference for the left sensor we have

m = mL, and for the right sensorm = mR.

Unlike the previous interference functions, this is not purely

a function of the motor activity, such that if you know m at

time t, you know ψ at time t. Instead it is a function of time,

depending on the prior history of the system, specifically on

all the previous motor activity up to the current time. More

importantly for our purposes, if the input is held constant,

the output continues to vary over time. We will refer to the

interference generated by Equation (14) as time dependent or

sinusoidal interference. A trial duration of 20 time units was used

during evolution for this interference function.

Using this time dependent interference function we find that

while avoiding interference, minimizing it, or holding it constant

are all important ways of coping with self-caused stimuli,

they are not the only ways. Timescale differences between the

frequency of the motor-driven interference and the frequency

of environmental stimulation of the sensor can be exploited to

distinguish the two, and behavior can shape both interference

and environmental stimuli to amplify these differences.

In this system the environmental signal is able to be

detected despite the presence of interference, due to differences

in timescale between the motor-driven interference and the

frequency of environmental stimulation of the sensors. First

let’s demonstrate that the system actually can respond to

environmental stimuli. Figure 13 illustrates how a spike in

environmental stimulation of the left sensor has an excitatory

effect on both motors, causing the system to switch from driving

backwards to driving forwards. Observing the behavior of the
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FIGURE 13

Sensorimotor activity and sensory neuron output time series are shown for the solution evolved with sinusoidal interference (Equation 14), (A)

The left sensor is presented with a spike in environmental stimulation at around t = 28. (B) The neural response to the environmental stimulus is

clearly visible—prolonged saturation of the left sensor neuron’s output function (see Equation 5). (C) The spike of environmental sensor

stimulation causes the robot to drive forward instead of backwards for a time, demonstrating that the system can respond to environmental

stimuli.

output functions of this system’s two sensor neurons, we found

elevated neural biases β compared to the ancestral solution:

remembering that −5 ≤ β ≤ 5, we observe 4.67 and 3.73 for

the left and right motor, respectively, compared to –0.75 and

0.99 in the ancestral solution. These sensor neuron biases are

calibrated such that (A) with no environmental stimulation, the

neuron’s output function ismaximized only with the peaks of the

sinusoidal interference, and (B) when combined with sufficient

environmental stimulation, the troughs of the sinusoidal

interference are high enough that the output function is

maximized continually. This can be seen in the neural response

to environmental stimulation shown in Figure 13B. This makes

the environmental signal detectable despite the continuously

varying interference. This solution is made possible by the large

difference in timescale between the frequency of the sinusoidal

interference and the frequency with which the sensor receives

the environmental stimulation. In this system, the frequency

of the interference can be an order of magnitude higher than

the frequency of environmental stimulation, as can be seen in

Figure 14. This difference in timescale means that the minimum

value of the sinusoidal interference is bound to coincidemultiple

times with each period where there is no environmental sensor

stimulation. This means that a drop in neuron firing always

coincides with the absence of environmental sensor stimulation,

so over time the system can reliably respond to environmental

stimuli.

While the evolution of our model was constrained in such a

way that it could not implement it, there is another solution for

filtering out interference of a sufficiently high timescale relative

to the frequency of environmental sensor stimulation that peak

interference is guaranteed to coincide with all instances of

environmental stimulation. The maximum bias of nodes in our

model was constrained to the maximum weight of a single

incoming connection (5), which is lower than the product of

the environmental intensity factor with the input scaling factor

applied to inputs to the sensor neurons (5 × 5 = 25). However,

Frontiers inComputer Science 18 frontiersin.org

323

https://doi.org/10.3389/fcomp.2022.896465
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Garner and Egbert 10.3389/fcomp.2022.896465

FIGURE 14

Spatial trajectories and sensorimotor activity for the solution evolved with squared interference. Subfigures are labeled as in Figure 8. The sensor

plots show how the relatively slowly changing environmental sensor stimulation raises the minima of the high frequency interference, allowing

the environmental stimulus to be responded to despite the interference. The di�erence in timescale that makes this possible is clearly visible

here. Responsiveness to the environment is most clearly visible in A(iv), where more positive motor activity is associated with environmental

stimulation of the left or right sensor. The continual oscillations in motor activity (most clearly visible in the gray net motor activity line) are

driven by the high frequency interference. These oscillations produce the elliptical Type 2 orbit seen in B(i).

a sufficiently high bias (around 12) can indeed induce the

sensor neurons’ output function to only be maximized when

environmental stimulation is high.

These two ways of adjusting the neural biases demonstrate

how a large difference in timescale between environmental

signal and interference means that over time it is possible to

extract the environmental signal from the summation of the two.

However, such differences in timescale are not guaranteed, and it

is here that the embodied nature of this system comes into play.

The robot’s motor activity actually amplifies any pre-existing

difference in timescale, as typical motor activity is constrained to

higher absolute ranges than the ancestral solution—see Figure 6.

Due to the way this time dependent interference periodically

saturates the input neurons, the system is not sensitive to

environmental stimuli spikes that are of sufficiently low duration

to perfectly coincide with motor interference peaks as the

corresponding input neuron’s output function would already be

saturated. Note that spikes of this duration do reliably induce

a motor response in the other systems we’ve examined in this

paper. This represents a problem for the ancestral solution’s

strategy of taking advantage of sharp spikes in the right sensor.

Significantly—and despite the system’s elevated right motor

activity—this system’s Type 1 orbit is much slower than the

ancestor’s, with the periods of environmental stimulation of
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the sensor lasting for longer. This avoids the problem of the

environmental stimulus being too short duration, and further

amplifies the differences in time scale. So when it comes to

distinguishing environmental and self-caused stimuli, the motor

activity of the system not only shapes the self-caused stimuli to

facilitate this, it shapes the environmental stimuli too.

As with the unavoidable squared interference, the behavior

of this system depends on the presence of its motor-

driven interference. For example, with the left motor-sensor

interference removed, environmental stimulation of the left

sensor inhibits rather than excites the activation of both motors.

Significantly, in the absence of environmental stimulation, the

motor activity and corresponding interference of this system

features a long transient before settling into lower magnitude

oscillations, and this transient is restarted by environmental

sensor stimulation. This effect can be seen in Figure 13. These

prolonged effects of momentary environmental stimulation are

not seen in the systems examined in Experiments 1–3. They

mean that the frequency of the motor-driven interference varies

significantly both during the approach to the light and during

Type 1 orbits. Altogether these qualities demonstrate that the

evolved behavior of this system depends on its motor-driven

interference, emphasizing that even interference as seemingly

unruly as this can be incorporated into successful behavior.

To summarize, this system has the ability to respond to

environmental stimuli despite continually varying sinusoidal

interference. Rather than subtracting out the motor-driven

interference, the behavior of the system is deeply entangled

with it, displaying oscillatory motor activity driven by the

interference and prolonged transient motor activity following

activation of the motors in response to stimuli. Additionally,

whether an environmental stimulus is excitatory or inhibitory

depends, respectively on the presence or absence of motor-

driven sensor stimulation. This demonstrates that rather than

suppressing self-caused stimuli, proper functioning for some

systems relies on the presence of self-caused stimuli. In this

system we see responsiveness to the environment facilitated

by a fixed solution that is implemented at the evolutionary

timescale, rather than prediction and subtraction of self-caused

stimuli on the timescale of actions. Because of the difference in

timescale between the frequency of the sinusoidal interference

and the frequency of environmental stimulation, a CTRNN

neuron can be parametrized such that the maximization of

its output function only coincides with environmental sensor

stimulation, or such that the minimization of its output function

only coincides with the absence of such stimulation. Most

significantly for the role of embodiment in coping with self-

caused sensory stimuli, we see that this difference in time scale

between motor-driven and environmental sensor stimulation

is amplified by the system’s behavior, which both elevates the

frequency of motor-driven sensory stimulation and lowers the

frequency of environmental sensor stimulation.

4. Discussion

One explanation of the sensory attenuation effect is that

self-caused sensory stimuli are predicted internally using a copy

of the relevant neural outputs, and then subtracted out of the

sensory inputs (Wolpert et al., 1995; Miall and Wolpert, 1996;

Roussel et al., 2013; Klaffehn et al., 2019). This may well be

the case, but even in a model where this predict-and-subtract

mechanism would be a perfect solution, our GA instead found

other viable alternatives. We have shown that a neural network

controller can be successfully adapted to handle several different

forms of motor-driven sensory interference, and significantly,

the adaptations we have cataloged here do not rely on predicting

this interference. We now summarize these adaptations.

Avoidance: When self-caused sensory interference is only

triggered by certain motor outputs, and if the task at hand

can be accomplished while avoiding those outputs, it may be

easiest for a control system to simply modify its behavior to

avoid motor-sensor interference. We saw this emerge when our

model was evolved with sigmoidal interference. It is not clear

whether we should expect this avoidance approach to scale well

to a more numerous and complex arrangement of sensors and

motors, though it seems that the problem of prediction would

also become more complex in such circumstances. In the special

case where there are multiple independent sensors and motors,

where each motor interferes with only one sensor, an alternative

solution is possible. If the task can be accomplished using only

one sensor, then only one source of interference needs to be

regulated. Doing so permits the other motors to operate freely

over a wider range of activity. We describe this strategy as

“keeping one eye on the prize”. This is arguably just avoiding the

interference, with extra steps. We again saw this strategy used in

the case of sigmoidal interference.

Where interference is unavoidable but the magnitude of

the interference does depend on motor activity, motor activity

can be constrained to ranges that limit the quantity of

interference, reducing its magnitude relative to environmental

stimuli. This is used in the case of the unavoidable squared

interference.

Minimization and avoidance could be seen as special cases

of causing the interference to plateau at a constant value. If

interference is additive and non-saturating, as it is in our

model, it can be eliminated by simply subtracting a constant

term from the input. In general this is trivial for a CTRNN.

However even without subtracting the interference out directly,

constant interference just shifts an environmental stimulus’s

contribution to the sensor to a higher range, which does not

actually change the information available when the interference

is non-saturating.

Coordination: The timing of motor-driven interference

with a sensor may be regulated to coincide with environmental

stimulation of that same sensor. One way to look at this
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is that the detection of a sufficiently ‘loud’ environmental

stimulus renders any coincident interference irrelevant. With

a one dimensional sensor like those used in this model, the

interference is actually constructive, that is the coincidence of

motor-driven and environmental stimuli amplifies the effect

of the environmental stimulus on the sensor. If the response

to such a stimulus tends to diminish that stimulus (negative

feedback), as we see when stimulation of the sensor causes

the robot to turn away from the light, then this strategy

of coordination can play a powerful role in establishing a

stable relationship with environmental stimuli. This can be

effectively combined with a strategy of avoiding or minimizing

interference, which we saw with the squared interference

function. The constructive interference we saw here may not

be possible with more complex collections of sensors, where

environmental and self-caused stimulation do not interact as

straightforwardly as in our model. This is not to say that non-

predictive, embodied solutions would not be found in such

situations. On the contrary, discovering solutions afforded by

richer embodiments may be a fruitful avenue for future work.

Time scale differences: The previous solutions don’t work

for interference which is continually varying in such a manner

that the interference’s minima and maxima are not under direct

control of the motors. However, if such interference is of a high

enough frequency relative to the frequency of environmental

sensor stimulation, then this difference in time scale can be

leveraged to separate interference from environmental stimuli.

Slowly varying stimuli can be perceived through quickly varying

interference, which we saw with the sinusoidal interference

function. The evolved behavior we saw with this interference

function elevated the frequency of motor-driven stimulation

further, amplifying this differential.

Shaping environmental stimuli: Time scale differences

are a case of natural differences between the characteristics

of the interference and the environmental stimuli. So far

we’ve described how the system can shape the interference to

minimize its negative effects or make it easier to distinguish

from the environmental stimuli. However, the ancestral

solution demonstrates that the shape that environmental sensor

stimulation takes depends on the system’s activity—sharp

spikes in sensor stimulation are produced by passing close

to the light while driving backwards. With the sinusoidal

interference function, we found that sharp spikes could be

lost in the high frequency interference, and that in addition

to the system’s behavior raising the frequency of the motor-

driven interference, its behavior also lowered the frequency

of environmental stimulation. Embodied systems can reliably

respond differently to environmentally and self-caused stimuli

because the characteristics of both forms of stimuli are at least

partially determined by the system’s own activity.

Removing motor-driven interference from a system

optimized to perform a task in the presence of that interference

does not necessarily improve performance, and may instead

degrade it significantly. Instead the successful phototactic

behavior of the systems we’ve studied often incorporates

interference functionally. Coordination of interference with

environmental sensor stimulation is one case of this, where

the coordination amplifies the stimulus, but we also saw how

the response to environmental stimulation of one sensor can

be mediated by motor-driven stimulation of the contralateral

sensor. This suggests that it is a mistake to view the problem

of coping with self-caused sensory stimuli as primarily about

subtracting out the interference—even viewing it in terms of

perceiving the environment clearly despite the interference

may be going too far. It’s natural to think of the phototaxis

task this way, but the evolutionary algorithm we used selected

purely for phototactic ability, and as we’ve seen this can involve

incorporating motor-driven interference into behavior. Despite

our attempt to set up a model and problem where sensory

attenuation is a perfect solution, the solutions cataloged here

for coping with self-caused sensory interference do not align

with the sensory attenuation phenomena that has been studied

experimentally (e.g., Pareés et al., 2014), raising the broad

question of what conditions would lead to sensory attenuation

emerging.

This all reinforces that prediction and subtraction cannot tell

the whole story when it comes to coping with self-caused sensory

stimuli. In some ways this is obvious, as self-caused sensory

stimuli are involved in a range of activities in which they do not

play an interfering role. For example, the sensation of self-touch

when kneading an aching muscle, or occlusion of the visual

field when engaging in visually guided reaching and grasping. In

these activities, self-caused sensory stimuli are actually desirable.

Nevertheless, our model shows that even in situations where

clear perception of the environment is prima facie desirable,

self-caused sensory stimuli may not play an entirely interfering

role. Furthermore, we see that even when responsiveness to the

environment is needed, prediction and subtraction are not the

only game in town.

How do these results actually relate to the predictive account

of coping with self-caused stimuli? A criticism of our results may

be that the problems being solved in our model are insufficiently

“representation-hungry” to require prediction. Representation-

hungry problems are those that seem to require the use of

internal representations to be solved, defined by Clark and

Toribio (1994) to be a problem where one or both of the

following conditions hold. Condition one is that the problem

involves reasoning about absent, non-existent, or counterfactual

states of affairs. Condition two is that the problem demands

selective sensitivity to parameters whose sensory manifestations

are “complex and unruly” - that is, the system must be able to

treat differently inputs whose sensory manifestations are highly

similar, and conversely be able to treat similarly inputs whose

sensory manifestations are very different. We actually agree that

our model does not solve a representation-hungry problem,

and in fact see this is a primary contribution of our results. In
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general, coping with self-caused sensory stimuli need not be a

representation-hungry problem.

How we process self-caused stimuli is often taken to involve

an internal predictive model (e.g., Roussel et al., 2013; Klaffehn

et al., 2019). Prediction itself is a task which meets Clark and

Toribo’s first condition, since prediction inherently involves

states of affairs that do not yet exist. However, the fundamental

problem the predictive model is being used to solve meets only

the second criteria, that is treating differently self-caused and

externally-caused inputs whose sensory manifestations may be

identical. Otherwise identical inputs can be distinguished by

predicting, based on an internal model, whether an input is self-

caused or externally-caused. If prediction is necessary then the

problem of coping with self-caused stimuli would seem to meet

the criteria for representation-hunger.

The way self-caused stimuli have been studied

experimentally highlights what we see as a key limitation

of the representational paradigm. Experiments such as

force matching (intentionally and justifiably) aim to isolate

specific psychological phenomena and neural mechanisms.

We would like to suggest that doing so may naturally lead

to overemphasizing the role of these studied mechanisms

when extrapolating explanations back from the experiment

to real world behavior. Specifically, a limitation of the force

matching experiment is the highly constrained motor outputs

of the subject—the subject is responding to one specific

stimulus (force applied to a finger) with a very limited range

of motor outputs, either pressing on that finger or moving

a mechanism with their other hand (Pareés et al., 2014).

In contrast, coping with analogous perceptual problems in

the “real world” might tend to take advantage of their less

constrained sensorimotor coupling with the environment—but

this wouldn’t show up in force matching experiments. This

is not a criticism of the experiments, but we do suggest that

evolutionary robotics models like this one can help highlight

that behaviors depending on a more dynamical, ongoing, and

open ended context may play important roles in problem-

solving, which may not manifest clearly in the deliberately

restricted range of sensorimotor interactions possible in tightly

controlled experiments. Under laboratory conditions, a strict

interpretation of Clark and Toribio’s second criteria may

hold—where self-caused and externally-caused stimuli are

identical to the extent that only knowledge over and above their

sensory manifestations can distinguish them. However, the

everyday problem of coping with self-caused sensory stimuli

occurs outside the lab, where these stimuli are part of our

ongoing sensorimotor activity. In this case our model has

shown that there are diverse ways to perform successfully and

even to disentangle self-caused and externally-caused stimuli.

A key part of this is that both types of stimuli are shaped by

our own activity, and thus encountered on our own terms. In

these circumstances, the strict definition is unlikely to hold,

as we can shape both self and externally caused stimuli to

differentiate them.

While the problem of distinguishing truly identical

sensory inputs may well be representation-hungry, our model’s

embodiment allows it to shape its inputs such that they are

distinguishable by non-predictive means. Thus, we grant that

our model does not capture a strictly representation-hungry

problem, a conclusion directly supported by our results. This is a

not a limitation of this study, it’s a feature. Our model shows that

representational cognition is not necessary in general to cope

with self-caused stimuli, because of the capabilities afforded by

embodiment. In effect, this shrinks the set of human capabilities

which are taken to require representational cognition.

The idea of representation-hunger highlights a long

running critique of embodied cognition, where solving tasks

in representation-free, embodied ways aren’t considered

central examples of what we really mean by cognition. A

distinction is drawn between tasks solvable via online and

potentially representation-free sensorimotor processing, and

offline cognition operating on internal, representational

models (Zahnoun, 2019). It is worth noting that similarly

minimal, CTRNN controlled models have successfully solved

problems with requirements like memory without the use of

internal representations. Beer and Williams (2015) demonstrate

how a robot can both remember a cue and categorize a

subsequent probe relative to that cue by offloading memory

to the environment and structuring its relationship with its

environment to facilitate direct perception on the relative

difference between cue and probe. It was only when the robot’s

ability to move while being presented with the cue was removed

that information about the cue was retained internally in the

neural activation. Studies like this push back at the idea that

internal representation is necessary to solve problems requiring

responses to abstract or absent stimuli, by showing that other

possibilities are facilitated by the way embodiment structures

the ongoing relationship between controller and environment.
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Philosophical and theoretical debates on the multiple realisability of the

cognitive have historically influenced discussions of the possible systems

capable of instantiating complex functions like memory, learning, goal-

directedness, and decision-making. These debates have had the corollary of

undermining, if not altogether neglecting, the materiality and corporeality of

cognition—treating material, living processes as “hardware” problems that can

be abstracted out and, in principle, implemented in a variety of materials—

in particular on digital computers and in the form of state-of-the-art neural

networks. In sum, the matter in se has been taken not to matter for cognition.

However, in this paper, we argue that the materiality of cognition—and the

living, self-organizing processes that it enables—requires a more detailed

assessment when understanding the nature of cognition and recreating it in

the field of embodied robotics. Or, in slogan form, that the matter matters for

cognitive form and function. We pull from the fields of Active Matter Physics,

Soft Robotics, and Basal Cognition literature to suggest that the imbrication

between material and cognitive processes is closer than standard accounts

of multiple realisability suggest. In light of this, we propose upgrading the

notion of multiple realisability from the standard version—what we call 1.0—

to a more nuanced conception 2.0 to better reflect the recent empirical

advancements, while at the same time averting many of the problems that

have been raised for it. These fields are actively reshaping the terrain in

which we understand materiality and how it enables, mediates, and constrains

cognition. We propose that taking themateriality of our embodied, precarious

nature seriously furnishes an important research avenue for the development

of embodied robots that autonomously value, engage, and interact with the

environment in a goal-directed manner, in response to existential needs of

survival, persistence, and, ultimately, reproduction. Thus, we argue that by

placing further emphasis on the soft, active, and plastic nature of the materials

that constitute cognitive embodiment, we can move further in the direction of

autonomous embodied robots and Artificial Intelligence.

KEYWORDS

multiple realisability, fine-grained functionalism, functionalism, soft robotics, active

matter physics, basal cognition, artificial intelligence, embodied cognition
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Introduction

Standard approaches to understanding cognition—and the

wider goal of recapitulating it on simulated platforms or in

the field of robotics—have tended to neglect the importance of

the materiality of the body and its relevance for constraining,

enabling, and mediating cognition. This contention is centred

right at the origin of the cognitive sciences and is typically

framed in terms of multiple realisability. It is often argued,

then, that cognition is a species of software that, in principle,

is instantiable in any back-of-the-envelope set of materials so

long as they are “suitably organized” (Putnam, 1975). As Hilary

Putnam once put it, “We could be made of Swiss cheese and

it wouldn’t matter” (Putnam, 1975: 291). Although few authors

would defend this version of multiple realisability (MR) today

(see Polger and Shapiro, 2016 for a state-of-the-art discussion

of the philosophical literature), the belief that the materiality

of cognition is mostly a “hardware” problem with the truly

interesting explanandum being cognitive “software” that sits

above still permeates much of the theoretical and philosophical

literature. However, as we will see below, much turns on what

it means to be “suitably organized” and it is by no means clear

that any pell-mell set of materials could instantiate the complex

dynamics on which cognition depends.

Thus, by making recourse to recent experimental, material,

and theoretical developments in active matter physics and

soft robotics, in this paper we argue that the separation of

non-mental, living “hardware” and cognitive “software” has

grown increasingly suspect—and that a harder pivot toward the

materiality of the body and cognition is now needed. In other

words, what we are claiming is not (or not simply) that the

body matters to cognition (a view that tacitly supposes the body

in service of a more or less higher-order, more or less unified,

cognitive subject), but rather that the body itself—at varying

levels of organization—exhibits cognitive capacities through

and through: from cellular activities entrained to regulating

morphology, development, and intercellular communication;

to tissue complexes and system functioning; through to more

baroque appearances of cognitive sophistication encapsulated

in cephalopod, arthropod, avian, and mammalian brains—

Darwin’s “endless forms most beautiful” (Origin of Species). In

a slogan expressed elsewhere (Levin, 2019, 2020; Levin and

Dennett, 2020), this is cognition all the way down, not just

proprietary to a unified subject. Making sense of the theoretical

commitment behind this claim and how it contributes to

the development of intelligent machines is the main goal of

our paper. It is thus worth clarifying at the outset that our

discussion of robotics pertains to what we could consider

Autonomous Robots (AR), i.e., autonomous embodied systems

capable of recursive self-organization, goal-directedness, and

agency—the ability to flexibly and actively select goals relative

to its “existential needs” (Froese, 2016; Egbert, 2022) and remain

the kind of system it is (Man and Damasio, 2019). The key here,

as we see it, is to understand how thematter matters to being this

kind of system.

The picture we would like to work against is one of

neurocentrism that cleaves neuronal (and cognitive) activity

from the living, developmental, and morphogenetic processes

for which nervous systems originally evolved (see Lyon, 2006;

Van Duijn et al., 2006; Keijzer et al., 2013; Newman, 2016,

2019, 2022; Levin, 2019, 2020; Fields and Levin, 2020; Sims,

2020, 2021; Fields et al., 2021; Jekely, 2021; Lyon et al.,

2021; Wan and Jekely, 2021). It is this sense in which we

think the tacit commitments of MR—the in principle cleaving

of active, living processes and cognitive ones—deserve a

reconsideration. As Peter Godfrey-Smith remarks, philosophers

and cognitive scientists tend to operate with a “picture in

which living activity is a kind of non-mental substrate, and

then evolution lays a computer—the nervous system—on top

of the merely living, after which cognition and subjective

experience result” (Godfrey-Smith, 2016a: 496). This can be seen

in the very structure of the cognitive sciences and its lack of

(explicit) emphasis on the life sciences. That is, while biological

perspectives have influenced theorising about the mind [e.g.,

autopoiesis (Varela et al., 1993; Weber and Varela, 2002) and

enactivism (Di Paolo et al., 2017)], they have not furnished

real competitive alternatives to more mainstream cognitivism

and computationalism [see Meyer and Brancazio (2021) for

an insightful discussion]. To this day, it is common to see

neurons and the brain—the “stuff” of cognition—almost wholly

abstracted from the life processes in which they are embedded.

Here, we hope to cast doubt on the (un)happy divorce

between material and cognitive processes by suggesting that

looking toward recent developments in soft robotics (Man and

Damasio, 2019; Blackiston et al., 2021; Bongard and Levin, 2021;

Kaspar et al., 2021; Kriegman et al., 2021), active matter physics

(Hanczyc and Ikegami, 2010; Needleman and Dogic, 2017;

McGivern, 2020; Egbert, 2021), and basal cognition research

(Lyon, 2006, 2015; Van Duijn et al., 2006; Newman, 2016, 2019,

2020, 2021; Levin, 2019, 2020; Bechtel and Bich, 2021; Lyon

et al., 2021) complicates any cleaving of cognition from its living,

material context. In light of recent empirical advancements,

we argue now is a good time to revisit our philosophical

assumptions regarding the MR of the cognitive and suggest

that a more promising path in the development of AR and

Artificial Intelligence (AI) is to take the materiality of cognition

more, not less, seriously—a position explicitly disallowed in

standard philosophical positions on MR. Our argument thus

consists of two interlocked moves: first, we identify a set of

assumptions that structure the debate on MR and that generate

strong intuitions regarding the mental-physical interaction that

have historically discouraged taking the materiality of cognition

seriously. Second, we propose a path to AR that explores a more

thoroughgoing, “radically embodied” approach: one that does

not see the body as a “non-mental” substrate on top of which

cognitive software (the nervous system) is placed, but instead
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depicts cognition as a more fundamental feature of cellular

(read: living) activity and self-organizing processes in far-from-

equilibrium conditions that are then scaled up in appropriate

ways to arrive at more sophisticated multicellular animals.

At this point, it is worth being explicit about three things.

First, we draw a strong connection between living and cognitive

processes—consistent with much of the literature on the so-

called life-mind continuity thesis (Maturana and Varela, 1980;

Thompson, 2010; Sims, 2021). Prima facie, this would seem to

undermine our goal of constructing AR, as it would suggest

some of the prototypical cognitive behaviours we see in certain

soft-bodied robots and active material systems (examined in

Section Active matter and soft robotics: Novel approaches to

cognition and embodied robotics) cannot qualify as such due

to their non-living nature. We believe this problem can be

ameliorated, however, by adopting a conception of cognition

that depicts the living and developmental side of the process

as a more general feature of self-organizing systems in far-

from-equilibrium thermodynamic states that must act in a

denumerable set of ways to remain the kind of system it

is. Simply put: we accept here a view of “life” which does

not presuppose particular material foundations (e.g., carbon-

based), but rather takes it to be an organizational feature (cf.

Moreno and Mossio, 2015). Under this view, then, cognition

can be seen as tailored for the homeostatic processes that

underpin goal-directed, autonomous, and agentic behaviour

(see Pezzulo et al., 2015), and a non-living system would fall

closer to the cognitive the more it embodies such dynamics.

This brings us to the second consideration, namely, that

the lynchpin for our discussion of cognition turns around

the notion of “existential needs” and can be explicated,

following Lyon et al. (2021), in relation to the set of sensory

and information processing mechanisms organisms have for

familiarising themselves, valuing, and interacting actively with

the environment in order to meet the existential needs of

survival, persistence, growth, and reproduction. In the literature,

this is often called basal cognition, as it refers to a set

of mechanisms and capacities with highly ancient, highly

distributed origins. We earmark this for now and return to

it in Section How fine-grained functional details matter to

cognition for a more nuanced discussion. Lastly, it is important

to clarify the scope of the present paper. While we engage

a diverse range of empirical literature—from active matter

physics to soft robotics—we ultimately position the paper at

a theoretical level that targets the metatheoretical assumptions

that scaffold debates on cognition and mind in Robotics

and AI. Stated differently, what we are trying to target is

a certain set of assumptions and presuppositions that have

historically dominated this field, which complicate taking the

materiality of embodiment further than is currently being

explored in emerging areas of the life and mind sciences.

However, while the present piece is considered theoretical, we

believe it encourages actionable and implementable possibilities

for creating autonomous systems by incorporating elements of

self-organizing dynamical systems (Pfeifer et al., 2007)—as is

increasingly explored within the domain of active matter physics

and soft robotics.

Our focus on existential needs depends on recent research

advocating for taking the materiality of our embodiment

further than mainstream embodied cognition has commonly

done (cf. Müller and Hoffman, 2017). We thus place a

premium on the very processes, goals, and demands of a

living body that are normally elided from more theoretical

meditations on the cognitive. A similar approach has been

proposed by Man and Damasio (2019) who suggest we

transition away from the hard parts that typify traditional

roboticist approaches to fragile, vulnerable, and soft materials

characteristic of organismic embodiment. The fundamental

innovation introduces homeostasis and risk-to-self as the

warp and weft of cognitive embodiment: “These machines

[our AR] have physical constructions—bodies—that must be

maintained within a narrow range of viability states. . . Rather

than up-armouring or adding raw processing power to achieve

resilience, we begin the design of these robots by, paradoxically,

introducing vulnerability” (Man and Damasio, 2019: 449).

Indeed, similar to Man and Damasio, we believe a shift from

embodied (simpliciter) AI to homeostatic and precarity driven

AI is the key requirement for the coming generations of

AR. This puts more emphasis on the material processes and

material situation than simply focusing on embodiment full

stop. The second notion we depend on has already been

mentioned: that of precarity. Tom Froese has argued that

the nature of our embodied precariousness (risk-to-self) is

essential for agency and the problem of meaning [we might

call this a species of the frame problem (McCarthy and Hayes,

1969): why would an artificial agent come to care about

its existence and actions on which it depends?]. He writes,

“The precariousness that is intrinsic to all organismic, and

therefore also of all mental, existence is the original reason

why things matter to that individual being” (Froese, 2016:

34). That is, organisms are cognitive agents with meaningful

engagements with the world because, and not in spite of,

their fundamentally precarious nature. Importantly, this can

be also expressed in terms of values and value-realising, which

some believe to be the main force driving and organizing

action in cognitive agents (cf. Hodges and Baron, 1992; Hodges

and Raczaszek-Leonardi, 2021). Precarity is the minimal form

of valence, hence enabling cognition and agency (cf. Lyon

and Kuchling, 2021). Thus, if “the problem with AI”, as

John Haugeland famously put it, “is that it doesn’t give a

damn” (Haugeland, 1998), then we explore how an active

matter lens focusing on specific material reconfigurations that

enable systems to maintain themselves in far-from-equilibrium

conditions can make headway on this most defining of problems

for computer science: autonomous robots that might one day

give a damn.
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The structure of this paper will be as follows. In Section

Traditional vs. fine-grained functionalism we briefly overview

some of the theoretical and philosophical literature on MR

before suggesting that the tenability of its more radical iterations

turns on a few key (and, as we would like to suggest, misguided)

assumptions that are in need of a rethink in light of recent

theoretical and empirical advancements. Instead, we aim to put

forward a version of MR that both takes the materiality of

cognition seriously and allows for cognition to be instantiable in

alternative media. Section Active matter and soft robotics: Novel

approaches to cognition and embodied robotics turns toward the

state-of-the-art research to suggest that the domains of active

matter physics and soft robotics encourage us to reformulate

how we understand the mental-physical interaction. Finally, in

Section How fine-grained functional details matter to cognition

we defend a “cognition all the way down” approach to the

development of bio-inspired AI.

Traditional vs. fine-grained
functionalism

Before putting forward our positive proposal, we need

to highlight some of the deeply entrenched philosophical

assumptions of the current programme of artificial intelligence

that we believe to be detrimental.

The methodology of contemporary AI research is built

on top of the philosophical programme of functionalism in

philosophy of mind. Functionalism was developed in the second

half of the 20th century in response to the issues surrounding

the physicalist mind-brain identity theories dominant at the

time. In the late 1960s Hilary Putnam advanced a novel

line of thought, which sought to establish that mental states

(and properties) are functional states. From the onset of

this view functions, understood as causal mappings between

sensory inputs, other internal states, and behavioural outputs

(Levin, 2021), were defined in broadly computational terms.

This allowed philosophers to disentangle cognition from its

neurophysiological, material basis and argue that psychological

(which was the main term used for what we call “cognition”)

processes are “General” (see Polger and Shapiro, 2016: 15), i.e.,

shared across species, and in fact that psychological functions

can be realised by entirely distinct types of systems—not only

differently organized animal brains but also a variety of non-

biological systems. A special case of interest concerned digital

computers, which seem under this view to be well suited for

realising psychological processes. This is the idea that has come

to be known as the claim of “multiple realisability” (MR) of

psychological states.

As Chirimuuta (2018) observes, functionalist theory of

mind and the concept of multiple realisability hold a unique

status in philosophy as views to which a “near majority

of philosophers have subscribed to, and for more than one

generation”. However, in an important book, Polger and Shapiro

(2016) argue that the view of multiple realisability is not, in

fact, borne out by the empirical evidence accrued over time.

The main thrust of Polger and Shapiro’s arguments is aimed at

the tenuous distinction between inherent superficial variation

in the biological world and deeper differences which are in fact

responsible for the multiple realisation of cognitive functions.

This in fact turns out to be damning regardless of whether

one assumes that mental states are multiply realisable functions

(the ontological, objective stance) or whether one argues that

they can be explained as multiply realisable functions (the

epistemological, subjective view).1 Their points are targetted

at what can be called “MR 1.0” (Chirimuuta, 2018) and, in

result, call for a rejection of traditional functionalism. MR 1.0

is, Polger and Shapiro argue, untenable given contemporary

empirical evidence.

The functionalist account has suffered from other important

theoretical criticisms as well, among which we may highlight

the dual objection that functionalism is either (1) too liberal

under one reading or else (2) too chauvinistic under another;

and, what is more, there are no other interpretations available

to it. Following the first option, under which functionalism fails

to specify any restriction on the domain of physical systems, it

will assign mindedness to entities that should not be viewed as

minded. In fact, an important argument in this vein comes from

Putnam himself, who later in his life rejected the computational

theory of mind. Putnam (1988) proves the theorem that “[e]very

ordinary open system is a realisation of every abstract finite

automaton”, which would lead to an uncontrolled expansion

of systems that we should consider as realising cognitive

functions—contrary to our experience with the world. The

opposite argument has been initially suggested by Ned Block.

Block (1978) argues that any version of functionalism that avoids

liberalism by opting for some set of physical specifications

falls into biological chauvinism and hence denies mentality to

creatures that we would ordinarily consider as such. His reason

for the claim is the thought that one could always conceive of

some system that would fail to meet the physical constraints and

yet intuitively seem to possess psychological states.

However, despite the problems with traditional

functionalism, the conviction that multiple realisability is

an important feature of the cognitive remains widespread

among researchers. In fact, it plays a significant role not only in

1 We are grateful to an anonymous Reviewer for pointing out that

the ontological and epistemological interpretations of the claims of

functionalism and MR are often conflated and prompting us to clarify our

position. One could take this argument further, along the lines of what

the Reviewer suggests, to point out that science is not in the business

of making ontological claims, except only for practical purposes. While

some of the authors of this paper are sympathetic to this view, we believe

our discussion of traditional vs. fine-grained functionalism is appropriate

regardless of one’s views on metaphysics of science.
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the study of cognition but in the life sciences at large. This led

Chirimuuta to propose that instead of rejecting MR altogether,

we need to carefully update this notion to account for the role

that functional thinking beyond traditional functionalism plays

in biology.

Chirimuuta’s conception of “MR 2.0” is grounded in

observations of how the consideration that certain biological

processes are best described as functions that can in principle

be multiply realised is an important assumption that allows

scientists to make decisions with regard to what physical

properties can be safely ignored in their experiments, reducing

the complexity of the problem to be studied. This conception of

MR, or so Chirimuuta suggests, allows us to maintain that “[i]t

can both be true that thematerial fromwhich the nervous system

is built (i.e., living, metabolizing cells) is crucial to their function

and that those functions are multiply realised” (Chirimuuta,

2018: 411). In particular, this view lets us appreciate that

the Heraclitean nature of biological material—its ability to

preserve integrity through “continual turnover of matter and

energy” (Chirimuuta, 2018: 411)—is crucial for understanding

the functioning of cognition [as Godfrey-Smith (2016a) also

argues], but at the same time a roadblock to the success of purely

reductive methodologies, as this constant shifting obfuscates

functionally relevant patterns which occur at a meso-level

of description.

This updated view of MR is, in fact, compatible with the

idea of “fine-grained functionalism” advanced byGodfrey-Smith

(2016a). While Godfrey-Smith explicitly rejects the idea of

MR, his arguments are aimed at the concept of MR 1.0. The

traditional functionalist account, which builds on the older

concept of MR, can be characterised, in Godfrey-Smith’s terms,

as “coarse-grained functionalism.” The two are distinguished

by the level of organization that they focus on in identifying

and characterising the relevant states and processes. Godfrey-

Smith accepts a multi-layered view of reality and concedes

that “[t]here are reasonable coarse-grained senses of ‘learn’

and ‘perceive’ in which anything with the right coarse-grained

functional profile, including a robot, does learn and perceive”

(Godfrey-Smith, 2016a: 501). However, he moves on to argue,

the systems that we know to be cognitive and proto-cognitive,

i.e., a variety of organisms, have an entirely different fine-

grained make-up. Not only is it important that in living systems

“the information processing side of its activity is integrated

with the metabolic side” (Godfrey-Smith, 2016a: 502) but the

small spatio-temporal scale at which cellular metabolism occurs

has several unique characteristics. In particular, the cells are

full of a molecular storm with “unending spontaneous motion

[...]. Larger molecules rearrange themselves spontaneously and

vibrate, and everything is bombarded by water molecules, with

any larger molecule being hit by a water molecule trillions of

times per second.” The ubiquitous electrical charge is just one

form of energy present, as chemical, kinetic, and electrostatic

energy are constantly transduced into one another. Each part

of the cell is subject to forces stronger than it can exert and

causality is best perceived as “biasing tendencies in the storm,

nudging random walks in useful directions” (Godfrey-Smith,

2016a: 485–487). Cellular metabolism arises from this material

volatility and constant flux and, as Godfrey-Smith underscores,

principles governing it remain crucial for the processes that

constitute cognition, due to their co-evolution.

While the exact dependence of the mind on these low-

level processes remains an open question, Godfrey-Smith argues

that fine-grained functionalism can account for the failure

of traditional functionalist approaches to understanding and

engineering minds. Consider a machine—a computer—or a

cyborg; even if it has similar coarse-grained functions, it will

be lacking the fine-grained functions which depend on the

living (i.e., far from thermodynamic equilibrium) organization

of biological organisms. It may be capable of “sensing” or

“learning”, but these terms, or so Godfrey-Smith argues, are

broad and coarse-grained, such that they do not rely on a

similarity between the fine-grained functional profiles of sensing

machines and sensing humans. Reality is multi-scaled and so

focusing only on the scale of such coarse-grained properties will

not yield the kind of understanding of cognitive processes we

need to build intelligent artificial machines.

For Godfrey-Smith this view leads to a rejection of

MR altogether but that is the case only for the traditional

conception we call “MR 1.0”. “The finer-grained features are

not merely ways of realising the cognitive profile of the system.

They matter in ways that can independently be identified as

cognitively important”, he argues (Godfrey-Smith, 2016a: 503).

He indicates the inherent historicity of neurons—the change

in their functional profile resulting from their own activity—

as an example. This argument paves the way for Chirimuuta’s

upgraded notion of MR 2.0, which would hold that fine-grained

functions and the material basis of cognition need to be centred

in their own right, but could still, at least in principle, be

multiply realised. Interestingly, a related point has in fact been

a source of criticism for Godfrey-Smith’s view raised by Brunet

and Halina (2020), who discuss the existence of molecular

machines—computers which preserve some of the low-level

characteristics indicated by Godfrey-Smith—as an argument

for the possibility of developing artificial sentience, which

Godfrey-Smith appears to deny. However, given the discernible

compatibility of Chirimuuta’s MR 2.0 with Godfrey-Smith’s fine-

grained functionalism, it is more useful to consider Godfrey-

Smith’s rejection of contemporary approaches to AI to be

concerned solely with their focus on coarse-grained functions.

To this list of grievances with regard to the traditional

functionalist assumptions underpinning the current AI

frameworks we may add one more, namely, that the coarse-

grained functions they try to realise in silico are inherently

highly complex. These are usually specific to a human way of

engaging with the world, loaded with folk-psychological ideas,

and disjointed from their evolutionary and developmental
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trajectory. In result, they are disconnected from the various

scaffolds that biological intelligences use for the same purpose.

This means that when trying to implement a particular

psychological function in a computer AI researchers face a

much more difficult problem than the one that evolution

faces. If this consideration is correct, a “molecular computer”

of the sort examined by Brunet and Halina (2020) would

not be sufficient to be deemed a promising candidate for

sentience, as developing the requisite coarse-grained functions

on this platform would constitute a similarly difficult problem

as in the case of silicon-based computing. This is because

Brunet and Halina’s view relies on the implicit distinction

between the computational “hardware” of molecular computers

and cognitive “software” (problematised in the introduction

and discussed in greater detail in Section How fine-grained

functional details matter to cognition). They are interested

in the possibility of designing “universal Brownian circuitry

capable of extracting useful computation from nano-scale

fluctuations” (Brunet and Halina, 2020: 233) and instantiating

cognitive processes on top of this circuitry. But that means

that their understanding of the functions of cognition remains

coarse-grained and hence disjointed from the properties of

fine-grained functions. As a result, an AI researcher working on

this platform would face a problem as difficult as when working

on computing platforms employing standard, von Neumann

architecture. The necessary missing step, consistent with

fine-grained functionalism, seems to be the use of competent,

intelligent parts in the manner suggested by work within basal

cognition (e.g., Levin, 2019). We will explore this view in

detail in Section How fine-grained functional details matter

to cognition.

It is important to note that while both Godfrey-Smith and

Chirimuuta leave their claims about the relevance of materiality

for cognition at a pretty abstract and general level, we believe

that several interconnected research fields—particularly active

matter physics and soft robotics that are the focus of the current

paper—allow for substantiating these claims further. Notably,

doing so lets us draw some initial hypotheses about what

“suitable organization” presumed by fine-grained functionalism

could consist in and how metabolism may fit into this picture.

We turn to the discussion of these disciplines in the next section.

Active matter and soft robotics:
Novel approaches to cognition and
embodied robotics

In the previous section we overviewed some of the

contemporary literature on MR, specifically regarding the

cognitive.We referenced the fact that some of the basic pretenses

of MR 1.0 seem to have grown increasingly suspect in light

of empirical advancements in the cognitive and life sciences.

Indeed, the crux—for our argument—is the condition that

the material configurations instantiating cognition be “suitably

organized”, a requirement that is a lot more stringent than

proponents of MR 1.0 would allow. To this end, we began to

suggest that recent developments in the areas of soft robotics and

active matter physics hint that, while dimensions and aspects

of cognitive systems can be manifested in alternative media,

they do so insofar as they approximate the organizational,

living, and developmental dynamics to organismic cognition—a

position that we have called fine-grained functionalism.2 Thus,

this section turns toward the empirical basis for something like

fine-grained functionalism to adumbrate how thematerial out of

which embodied agents are constituted is integral to sustaining

the self-organizing dynamics on which cognition depends. Our

main goal, then, is to suggest how a more thoroughgoing,

“radically embodied” approach to AR and AI supplies the

requisite tools to advance the field toward intelligent, plastic, and

adaptive machines (Man andDamasio, 2019; Pishvar andHarne,

2020; Kaspar et al., 2021).

Before continuing, it is worth anticipating briefly why

this approach is, or so we want to suggest, a more thoroughly

embodied approach than previous iterations of embodied

cognitive science. Consider how multicellular agents are

themselves constituted out of highly competent, cognitive

units (Baluška and Levin, 2016; Levin, 2019, 2020, 2021; Levin

and Dennett, 2020; Lyon et al., 2021). In other words, the

cognitive cogency of the higher-level (in this case, multicellular)

agent depends on the scaling up (see Section How fine-

grained functional details matter to cognition) of the cognitive

processes—agency, goal-directedness, decision-making,

memory, learning—found in the dynamics of constituent

(somatic) cells. As we will see (in Section Soft robotics),

individual cells are remarkable structures that, due to their

regulatory and organizational dynamics, maintain internal

milieu viability and their connectivity with other cells in the

extracellular tissue complex with precision and flexibility.

Reminiscent of 19th century theories of the “cell state”

(Reynolds, 2007), our approach thus positions organismic

cognition as emblematic of the homeostatic and self-organizing

2 What we mean by “approximate” here is that such systems need

not necessarily meet all the criteria that characterise the organizational,

living, and developmental dynamics of organismic cognition, and yet they

can still exhibit interesting properties, which allows researchers to home

in on the causal structure of cognition. In a sense, this is reminiscent

of the role of idealisations in scientific modelling (see Potochnik, 2017;

except that here such an approximating physical system would be

considered both the “model” and the phenomenon model). This is not

an exhaustive characterisation, partly because of what an anonymous

reviewer has pointed out, namely, that some of the di�culties involved in

this project stem from not having any generally accepted cases of non-

biological cognition–and even cases of non-human cognition are deeply

contested. However, this issue does not detract from the core arguments

of the paper and so amore in-depth discussionwill be left for future work.

Frontiers inNeurorobotics 06 frontiersin.org

335

https://doi.org/10.3389/fnbot.2022.880724
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Harrison et al. 10.3389/fnbot.2022.880724

processes that typify all living units. Or, as Man and Damasio

put it, “high-level cognition [is] an outgrowth of resources

that originated to solve the ancient biological problem of

homeostasis” (Man and Damasio, 2019: 447)—hence, cognition

all the way down.3

As it happens, the building of higher-level cognitive agents

out of progressively smaller—but still cognitive—units and parts

is precisely the perspective being taken up in the domain of soft

robotics and synthetic biology. Ebrahimkhani and Levin (2021)

provide a flavour of this style of argumentation:

“One feature of bioengineering at the meso-scale that is

unique. . . is the fact that bioengineers build out of parts

that are themselves highly competent, for example, cells that

have their own internal homeostatic and signalling systems.

Thus, the experiments that are done with biological parts

have the potential to help understand how swarm intelligence

plays out at the tissue level to solve morphogenetic problems.

Such advances. . . act as an inspiration for novel architectures

in machine learning, artificial intelligence, and resilient

autonomous swarm robotics.”

Indeed, this bio-inspired approach feeds well into current

ambitions of developing AR and unconventional computing

platforms (e.g., Jones, 2015). The key is how the above sciences

emphasise the importance of an active matter approach. Rather

than the inert, hard, and passive parts traditionally used

in robotics, active matter approaches indicate how the very

materiality of the system can perform complex feats that obviate

the need for overarching or centralised control (Bechtel and

Bich, 2021; Kaspar et al., 2021). In what follows, we survey the

fields of active matter physics and soft robotics to then return in

Section How fine-grained functional details matter to cognition

to our fine-grained functionalist take on how the matter matters

for life and cognition. By now, it should be clear that in arguing

this position we are not being substantialists: it is not this or

that type of matter (say, carbon) that is important, but the

matter insofar as it can sustain organizational complexity of the

right sort.

Active matter

Active matter physics (AMP) is a vibrant field of research

that has received significant attention in recent decades (see

Baez, 2021). Theoretically, it sits at the intersection of physics

and biology and deals with materials and material systems

that are intrinsically out of thermodynamic equilibrium. Some

3 As an anonymous Reviewer pointed out, this approach is also

supported by the claims made by the proponents of the Free Energy

Principle framework (e.g., Friston, 2019). Exploring this topic in su�cient

depth, however, would require a separate paper, and hence we have to

refrain from expanding on this connection here.

examples of these are field-responsive matter, hydrogels, and

piezoelectricmaterials, while activematter systems are those that

harness properties of such materials to drive their distinctive

non-equilibrium behaviour. These include the actomyosin

cytoskeleton (Needleman and Dogic, 2017; Jülicher et al.,

2018), cellular activities (Fodor and Marchetti, 2018), swarming

behaviour (biofilms, multicellular bodies: Wioland et al., 2016;

Kempf et al., 2019), and even macroscale organizations such

as avian murmurations and herds of animals (Cichos et al.,

2020). Although this might appear to be a heterogeneous

set, these systems exhibit the broad commonality that their

individual units (motor proteins, cells, individual organisms)

are themselves highly competent, active contributors to group

dynamics (Needleman and Dogic, 2017).

For example, it is increasingly common to viewmulticellular

bodies as a kind of swarm behaviour (Arias Del Angel

et al., 2020), which depends on the intrinsically active

nature of constituent cells. Indeed, Arias Del Angel et al.

(2020) have commented on how facultative multicellularity

in both protists and prokaryotes depends on active, field-

responsive, and internally driven physical processes of

constituent parts, remarking that the overall organismic form

hinges on the interplay of the inherent physical properties

and agent-like competency of cells making decisions in a

context-sensitive and flexible manner. In contrast, then, to

passive systems (e.g., the Rayleigh-Bénard cell) that receive

energy exogenously at a boundary condition, active matter

systems—of which organisms and certain designed systems

are paragons—themselves consist of units that are internally

driven (Batterman, 2021). Crucially, Needleman and Dogic

(2017) remark that active units are capable of self-organization,

whereas passive units can only self-assemble. In the context of

being “suitably organized” what we see is that not any back-

of-the-envelope set of materials can sustain the organization

dynamics on which life and, we add, cognitive processes

depend—instead, to be suitably organized one must have

self-organization, and it is here that an active matter approach

is most pertinent.

Seeing how the dichotomy of active and passive structures

underpins much of the literature in AMP, it is worth explicating

further what marks out the former exactly. In their influential

review of AMP, Marchetti et al. (2013) write that active matter

systems consist of the following features:

“They are composed of self-driven units. . . each capable of

converting stored or ambient free energy into systematic

movement. The interaction of the active particles with each

other, and with the medium they live in, give rise to highly

correlated collective motion and mechanical stress. Active

particles are generally elongated and their direction of self-

propulsion is set by their own anisotropy rather than fixed by

an external field (Marchetti et al., 2013: 1144).”
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The key distinction we wish to draw out here is that

being an active matter system relies on two features: (i) the

energetic nature of the constituent units (actively converting

ambient energy as opposed to being driven solely by energetic

contributions at an external boundary conditions) and (ii) their

inherent shape (anisotropy) influencing the systematicity or

directionality of how energy is used—“geometry of [its] interface

shape can control sensitivity to the environment” (Hanczyc and

Ikegami, 2010). The example of the Rayleigh-Bénard cell will

help draw out the important difference between the two types

of material configurations (i.e., passive vs. active).

Rayleigh-Benard cells are a paradigmatic case of non-

equilibrium activity. These are familiar to anyone who has

ever added cool oil or water to an evenly heated pan. The

sudden encounter of the droplets with a hot surface drives

a phase transition that constrains the activity of individual

water molecules. The result is a highly ordered hexagonal

structure that is continuously sustained so long as energy input

is consistent. Some commentators remark on how structures like

the Rayleigh-Bénard cell represent the precursor dynamics from

which goal-directedness endogenously emerges (Juarrero, 2015),

and they are hence common reference points in discussions

of emergence, agency, and goal-directedness (cf. Moreno and

Mossio, 2015).

Despite its relevance as a model for far-from-equilibrium

processes, the Rayleigh-Bénard cell does not qualify as an

example of an active matter system. The reason for this

has already been suggested above, but Needleman and Dogic

make it clear: “Rayleigh-Bénard patterns are non-equilibrium

dissipative structures, but each convection roll is composed

of passive molecules, and the entire system is driven away

from equilibrium by energy provided through an external

macroscopic boundary” (Needleman and Dogic, 2017: 1-2).

They meet neither requirement (i), as they are composed of

energetically passive molecules, nor requirement (ii), as their

shape is a result of the motion guided by an external energy

gradient, in no way dependent on inherent properties of the

medium itself—which, without influence, would immediately

relax into an amorphous shape as normally water molecules on

a pan tend to do. Contrastively, active matter physics addresses

the activity of thousands of nanoscale molecular motors

that interact to create mesoscale, self-organizing structures.

Common examples span the living and non-living domains,

including model systems such as self-propelled oil droplets

(Hanczyc and Ikegami, 2010; Hanczyc, 2011; Cejkova et al.,

2014), active microtubule networks (Sanchez et al., 2012),

cytoplasmic flow (Mogilner and Manhart, 2018), and the

eukaryotic cytoskeleton (Brugues and Needleman, 2014). More

recently, active materials have been exploited in soft robotics

(Ebrahimkhani and Levin, 2021), computer science (Jones,

2015), and AI (Kaspar et al., 2021) as a way to overcome the

many resource constraints that have long plagued the fields. The

key point can be expressed as follows: “The cellular cytoskeleton,

cells, and entire tissues [as exemplary active materials] are

driven away from equilibrium by the continuous motion of

thousands of constituent nanoscale molecular motors, protein-

based machines that transform chemical energy into mechanical

motion” (Needleman and Dogic, 2017: 2). Intriguingly, this is

a point that has echoes in Section Traditional vs. fine-grained

functionalism in our discussion of fine-grained functionalism

and the relevance of spatial scale: “Metabolic processes in

cells occur at a specific spatial scale, the scale measured in

nanometres. . . In that context and at that scale, matter behaves

differently than how it behaves elsewhere. . . . There is unending

spontaneous motion that does not need to be powered by

anything external” (Godfrey-Smith, 2016a: 485). At larger, more

coarse-grained scales, these complex and systematic processes

do not occur. Already, then, we come to see how fine-grained

structural details matter for sustaining self-organizing dynamics

at a wider variety of scales.

Of course, what is central to the discussion of fine-

grained functionalism is the connection between these active

material processes and prototypical instances of cognition,

such as goal-directedness, memory, learning, agency, systematic

directionality, and so on. As it happens, recent work on active

materials has begun to show the variety of ways in which some

individual—and sometimes multiple—capacities are present in

non-living systems, a discovery that has led some to speculate

that AMP is revealing not only the physics of life (Popkin,

2016), but the physics of cognition as well (McGivern, 2020).

To wrap up the discussion of AMP, then, we make a more

direct connection to work on basal cognition and the concept

of existential needs introduced above.

Capacities of non-living activematter systems that have been

particularly illuminating are those of autonomous movement,

environmental sensing, coordinated action, and problem solving

(McGivern, 2020). The ability to accomplish these feats

importantly depends on thematerial situation of both the system

in question (swarming nanobots, self-propelled oil droplets)

and the environment where it finds itself. In self-propelled oil

droplets, for example, researchers introduce internal convection

currents that create a bifurcation between systematic internal

activity and its viscous medium. The droplet’s movement is

driven by a convective flow that has an uneven influence on

the inside of the droplet, which helps create a feedback system

between its internal dynamics and the medium external to it (so-

called Marangoni flows; see Hanczyc and Ikegami, 2010 for a

review). Although this is a simple system, Hanczyc and Ikegami

(2010) suggest that it serves as a model system for understanding

the origins of chemotaxis in unicellular organisms, as the droplet

must continuously navigate gradients to find the chemicals that

sustain its internally driven dynamics: “The system becomes

sustainable by circulating the reactants and products effectively

as organized by the convective flow” (Hanczyc and Ikegami,

2010: 236). As we can see, it meets both conditions of active

matter listed above: (i) its constituent particles are internally
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energetically driven in that they tap into reservoirs of (Gibbs)

free energy available within the system, and (ii) its droplet shape

results from the inherent properties of the oil (its viscosity

and surface tension) and its relation to the medium in which

it is embedded; moreover, the geometric configuration of the

oil droplet actively contributes to the distinctive capacities it

exhibits. This is an intriguing model system for our purposes,

as it places a premium on active materials and constituent

units that spontaneously self-organize and, given the right

guidance and influence from designed experimental parameters,

can sustain itself for significant periods of time. Although

not elaborated here, the case of oil-droplets also underlines

the way in which the inherent shape (“geometry-induced

fluctuations”; Hanczyc and Ikegami, 2010) of an active unit

determines locomotion and, in bacteria, chemotaxis. Moreover,

a mechanical pushing of the cytoplasmic sol of a cell (as in the

social amoeba Dictyostelium) elicits directional and coordinated

motion (see Dalous et al., 2008; Boussard et al., 2021). Thus,

the properties exhibited in active matter systems, such as

oil droplets, highlight the material basis for capacities found

throughout the living domain.

AMP shifts our focus on the study and development of

minimally cognitive systems (that is, systems that exhibit

prototypical features of cognition such as directional

locomotion, memory, or learning) in two important ways.

First, it does not aim to replicate paradigmatically intelligent

behaviour modelled on human activity (playing chess, say)

and instead emphasises environmentally embedded behaviour

with wide distribution in the natural world (McGivern, 2020).

Secondly, and perhaps most centrally for our argument on

MR 2.0, “work on active materials is not specifically aimed

at computational characterisations of behaviour” (McGivern,

2020: 442), i.e., it does not rely on coarse-grained functions

of the medium of interest, but rather builds on simpler,

well-established principles from areas such as condensed

matter physics, building a bottom-up description of activities

of systems of interest. Work within AMP, then, demonstrates

how harnessing the physical processes and active materials that

underlie organismic behaviour contributes to and mediates the

cognitive sophistication we find in the biological domain—

suggestive of how such principles can, and are, being exploited

in the domain of artificial and designed soft robotic systems,

which we turn to shortly.

Before continuing, however, it is worth dwelling on the

aspect of AMP that we see as central to the discussion of

cognition that forms the remainder of this paper. Recall from

the introduction that our understanding of cognition revolves

around the fulcrum of existential needs and how capacities such

as agency, goal-directedness, and self-maintenance are the basis

for further cognitive sophistication.Matthew Egbert has recently

argued that non-biological model systems—such as our humble

oil droplet—serve as ideal testbeds for exploring thematerial and

thermodynamic basis of these existential needs: “conditions that

must be met for [that system] to persist and. . . behave in ways

that satisfy those needs” (Egbert, 2021: 5).

There are two ways to understand existential needs vis-à-

vis any object or system, the first rather banal and the second

more critical for the kinds of systems we explore in this paper.

The first is the sense in which, trivially, any object must have

existential needs to be what it is. A table cannot be heated above

a certain temperature or subject to a certain amount of pressure

and still remain a table. But, and this is the more important

point, there are crucial differences between what is required

of garden-variety non-dissipative objects like rocks, tables, and

chairs to be what they are and self-organizing, self-maintaining

dissipative systems in far-from-equilibrium conditions. The

difference in existential needs for the two types of systems is

captured as follows:

“[Non-dissipative entities] are merely passively stable,

whereas dissipative structures are constantly falling apart

and yet persist thanks to processes of repair, replacement,

or reconstruction. This means that existence for passively

stable entities is the absence of a destructive event. In

contrast, for dissipative structures, existing is a process—and

a process that must continue for the system to persist (Egbert,

2021: 5).”

Importantly, processes have quantifiable and measurable

rates that open dissipative structures to a study of how viable

such a system is, that is, how well it persists despite the tendency

to degrade. As Egbert notes, there is no equivalent measurement

for passively stable systems: their existence is not a process and

does not require the same set of behaviours and activities that

active matter systems engage in. We can therefore agree with

Godfrey-Smith when he writes “macroscopic machines provide

a poor model for the material basis of living activity and for

the material basis of mental activity in living beings like us”

(Godfrey-Smith, 2016a: 489).

Our discussion of AMP furnishes one strand of the argument

for fine-grained functionalism, namely, that the fine-grained

material and thermodynamic details of living systems matter

a great deal more than common assumptions on the MR of

the cognitive might prima facie suggest. Indeed, organisms

are subject to what physicists call the “tyranny of scales”—

they are sensitive to, and influenced at, every order of scale,

from the nanoscale to the mesoscale, and for multicellular

agents like ourselves, the macroscopic scale. These are highly

sensitive coordinated structures, and there is no non-arbitrary

point below which the physics no longer matters to manifesting

the distinctive cognitive capacities that contribute to a living

system’s survival. Although our discussion of cognition has been

minimal in this section, we turn now to soft robotics to see how

these insights are being actively taken up in designing intelligent

synthetic machines.
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Soft robotics

Soft robotics is a sub-discipline of robotics and artificial

intelligence that explores how intelligent, adaptive, and plastic

behaviour emerges out of the inherently active, precarious, and

soft parts that constitute such systems. It is a discipline that

examines how to construct systems that exploit the physical laws

and tendencies at play at every level of scale. In other words,

it investigates how organisms are embedded and subjected to a

“tyranny of scales” that must be accommodated and exploited

to meet their existential needs (Ebrahimkhani and Levin, 2021)

and how one may apply these insights to the creation of

intelligent machines.

Tellingly, Shah et al. remark that the inspiration for

soft bodied robots comes from the highly integrated nature

of biological cognition: “In these integrated living systems,

intelligence, memory, learning, behaviour, and body structure

are all intertwined and emerge from the multiscale dynamics

of the same robust and highly fault-tolerant medium” (Shah

et al., 2021: 1). This is put in contrast with the standard

hard (and passive) components that constitute more standard

roboticist approaches. Standard approaches have had some

success in the form of modular parts that can be added or

taken away depending on the task (such as passive conforming

grippers and certain algorithms that can re-adapt to distinct

tasks). But even in cases where these techniques might achieve

certain adaptive ends, they “operate under the assumption

that the robot’s body is only reconfigured or reshaped due to

external forces, and do not explore the possibility of synthetic

machines that actively grow, regenerate, deform, or otherwise

change the resting shape of their constituent components”

(Shah et al., 2021: 2). Contrastively, as we saw above, the

field of AMP begins to highlight the way in which organism

morphologies and bodies are inherently active structures that

respond proactively to changing environmental situations—

a form of adaptiveness that depends crucially on the highly

active processes that comprise cellular structures, multicellular

integration, and cognitive capacities such as goal-directedness

and agency. This picks up on a point made earlier: a key feature

of organismic cognition and an insight that has been actively

taken up in soft robotics is that higher-level cognition relies on

constituent parts that are themselves highly competent.

Here, we focus on how the concept of existential needs,

raised in the introduction, is critical for the creation of artificial

machines capable of autonomously selecting actions required

for self-maintenance. In other words, in contrast to passively

maintained robots that must be externally guided and directed

toward goals, tasks, or functions, it is suggested that (i) the

inherent vulnerability of soft embodiment coupled with (ii)

thermodynamic processes that are required tomaintain a system

in such a state would endow an artificial agent with the kind

of autonomous self-maintenance and self-organization that are

important for cognition (cf. Bickhard, 1993). Only then would

these designed systems have real “skin in the game” (cf. Bongard

and Levin, 2021). To put the matter differently, to design

machines capable of autonomous decision-making, behaviours

must have consequences for how the system can and should act

in the world. We have introduced this idea previously in terms

of precarity and risk-to-self (in Section Introduction), and with

the analysis of active matter above we may further specify the

details of what precarity would mean for a machine. Man and

Damasio (2019) indicate, in terms intriguingly close to Egbert’s

paper cited above, that we can understand how feelings emerge

from a physiological investigation of life regulation. Feelings,

they argue, are not sufficiently approximated by arbitrary reward

or loss functions of standard approaches to AI, since the worldly

risks and consequences should directly impact the continued

existence of the machine. The quality of feeling “is the harbinger

of the good or bad outcome relative to survival” (Man and

Damasio, 2019: 446). They argue—and we concur—that it is

only at the point when the machine can consistently strive for

continued existence that true agency may arise.

It is important to note that what we mean here by “life

regulation” is not biology-restricted, but rather is the upshot

of a far-from-equilibrium system working against the tendency

toward dispersal. The suggestion we would like to make here

is that to be this kind of system—a system for which there

can be situations that matter to it—it must be a self-organizing

one constituted by active physical processes inherent to the

materiality of the system in question. Soft robotics, then, is in

the business of identifying how the material aspects of the body

exploit physical laws to expand robot functionality (Shah et al.,

2021: 2).

For example, Pishvar and Harne (2020) note that soft

robotics incorporates field-responsive smart matter that can

induce an internal flux in response to an applied field that tailors

material characteristics of the media, influencing its function

and behaviour. As they write, “When responding to applied

fields, a multitude of internal changes are possible in soft, smart

matter” (Pishvar and Harne, 2020: 1). The range of adaptability

is thus expanded when one incorporates material properties that

are themselves active contributors to overall robot functionality,

in contrast to standard hard parts used in robotics, whose

adaptability—in the rare cases when they are adaptable—is due

to pressure driven forces at an external boundary condition.

More recently, Kaspar et al. have argued that “synthetic matter

that itself shows basic features of intelligence would constitute

an entirely new concept for AI” (Kaspar et al., 2021: 345). They

dub this pivot in AI and robotics the “rise of intelligent matter”

and reiterate the point that incorporating active materials into

AI and robotics programmes would expand robot functionality

“far beyond the properties of static matter” (Kaspar et al., 2021:

345). Examples of such smart, active matter systems include

artificial thermoregulating skin (Kanao et al., 2015), emergent

swarming activity of concerted nanobots (Wu et al., 2021),

and xenobots that sit at the intersection of bio- and artificial
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engineering (Ebrahimkhani and Levin, 2021; Kriegman et al.,

2020, 2021; Blackiston et al., 2021). All authors appear to be in

agreement that incorporating the smart and active propensities

of soft matter is crucial for achieving autonomous behaviour in

the domain of robotics (Pishvar and Harne, 2020; Kaspar et al.,

2021)—a suggestion we will turn toward in the next section on

the fine-grained functionalism approach to AR.

Summary

To wrap up briefly, the fields of active matter physics and

soft robotics are working lock and step to uncover the diverse

functionality, adaptability, and plasticity inherent to certain

materials that remain in far-from-equilibrium conditions. They

are thus fields that explicitly consider the thermodynamic

situation of the system in question. An upshot of this is that

not any sort of material can accomplish the diverse behaviour

or cognitive sophistication exhibited in the biological domain.

In other words, to be “suitably organized” requires attention to

the media out of which the system of interest is constituted:

the matter matters for cognition and is not a dimension of

robot functionality that can be abstracted out. Indeed, the

conclusion we wish to draw from this literature is that more

attention should be paid to the material basis of cognition than

is commonly done.

Given the importance of the above two testbeds for exploring

the nature of cognition, it is crucial to explicitly articulate the

connections that can be drawn between active matter physics

and soft robotics. Our reasoning for progressing from the former

to the latter is that active matter physics deals with far-from-

equilibrium dynamical systems, writ large, and the materials

and material constellations that can sustain self-organizing

processes on time scales relevant to the biological world. It is

precisely these processes that are then exploited and harnessed

in guided assembly to arrive at the sophistication we find

in the field of soft robotics (Ebrahimkhani and Levin, 2021).

While prima facie it might appear that the two fields can work

in isolation, Pfeifer et al. suggest why this is not advisable:

“it [is] clear that autonomous agents display self-organization

and emergence at multiple levels: at the level of induction

of sensory stimulation, movement generation, exploitation of

morphological and material properties, and interaction between

individual modules and entire agents” (Pfeifer et al., 2007:

1088)4. In other words, active matter physics in tandem with

soft robotics furnishes not only the empirical testbeds for

craftingmore sophisticated autonomous agents, but also renders

4 An interesting context here, also explored in Pfeifer’s work (e.g.,

Pfeifer and Scheier, 1999), is the increasing popularity of “morphological

computation” (see also Müller and Ho�man, 2017). For a discussion of

morphological computation in the context of basal cognition (see Rorot,

2022).

tractable notions of emergence and self-organization that are of

relevance not only to bodily maintenance and self-preservation,

but also cognition and the behaviour required to keep such

systems viable. In the following section, then, we dovetail the

pieces of the argument laid out thus far to advocate for an

emerging approach to the development of AI and AR that

stems from fine-grained functionalism suggested in Section

Traditional vs. fine-grained functionalism and the results of

AMP and soft robotics discussed in the current section; a

paradigm that appreciates the importance of the materiality

of cognition.

How fine-grained functional details
matter to cognition

In this paper, we explore the possibility of developing

autonomous robots capable of prototypical forms of valuing

and engaging with the world in a goal-directed manner. To

this end, we adopted the notion of precarity (i.e., “risk-to-self ”)

and focused on the existential needs of a system to remain

in a far-from-equilibrium state. We saw that a step in this

direction requires rethinking some of our basic assumptions

regarding matter and its relation to cognition, which remain

deeply embedded in existing approaches to the mind and

brain sciences, as well as in approaches to AI and robotics.

Indeed, rather than a “layered-cake” model of levels that renders

higher-level cognitive phenomena as resting autonomously from

and “on top” of its substrate (i.e., “hardware”), we set out to

complicate this picture by emphasising the (bio)physical nature

of the structures that support, enable, and implement cognition.

What we want to suggest is that more attention must be paid to

the fine-grained details of the system when understanding and

studying cognition—and then recreating it in alternative media.

This is the crux of the fine-grained functionalism introduced

in Section Traditional vs. fine-grained functionalism. Although

it is common to see biologists and philosophers emphasise

the “Heraclitean” nature of biological matter and metabolism,

we believe recourse to the fields of active matter physics

and soft robotics situates fine-grained functionalist views on

a sturdied empirical testbed. Thus, the developments in these

disciplines enable an exploration and substantiation of claims

about precarity and existential needs vis-à-vis cognition, which

so far we have explored mostly in the abstract.

In this section, we weave the threads of the argument

together to argue that creating AR capable of valence and

goal-directedness requires us to think about the organizational

and material dynamics of the embodied system in a more

thoroughgoing way. In other words, what we are suggesting

is not (or not simply) that the body simpliciter matters to

cognition, as advocates of sensorimotor coordination have

long held (see Van Duijn et al., 2006). Rather, we argue

for a multiscale account in which cognitive and agent-like
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competency is present at nearly every level of a biological

heterarchy capable of sustaining the appropriate organization—

cells, tissues, networks, the whole organism, and even swarming

behaviour of eusocial species (Levin, 2019). In contrast to views

that situate cognition as exclusively proprietary to a higher-

level organism, we present an account in which the scale and

“selfhood” of the cognitive agent are highly malleable, plastic,

and vacillatory.

We therefore argue for taking embodied approaches further

than is commonly done in two important respects. First, in

the multiscale approach just outlined: higher-level systems

(organisms or future soft robots) themselves consist of highly

active and competent cognitive units. The preservation of

cognitive functionality at varying spatiotemporal scales is indeed

a crucial aspect of evolvability and robustness in organisms

(Levin, 2020). Cognition is then regarded as “an outgrowth

of resources that originated to solve the ancient biological

problem of homeostasis” (Man and Damasio, 2019: 447). It is

construed as an activity of self-organizing and self-maintaining

processes fundamental to all living organisms, and that is then

appropriately scaled up throughout a biological heterarchy, an

idea we explore further below. Second, and here we loop back

to fine-grained functionalism, these cognitive capacities depend

crucially on the material and (bio)physical details that are

standardly abstracted out or relegated to a “hardware” problem.

These two central themes are discussed in the remainder of

this section.

Scaling cognition all the way down—and
back up again

Organismic embodiment is characterised by highly plastic

and adaptive parts responding in a coordinated manner to wider

organism-level goals. Empirically, this increasingly seems to rely

on essentially cognitive units and intelligent parts—i.e., cells,

tissues, networks—acting in a concerted manner that involves

an “inter-penetrating, concurrent operation of numerous layers

of cognition within the same living system” (Levin, 2021: 4);

that is, it involves cognitive units maintaining some degree of

flexibility, agency, and goal-directedness that is executed in local

and global contexts. In biology, this is often on display in the

morphogenetic and ontogenetic unfolding of the organism—a

complex process that requires cognition to be tailored to both

scale-specific as well as scale-free needs in regulating organism

development. Indeed, the ability of organisms to plastically

change shape throughout their life cycle is the current envy

of soft roboticists, where developing shape-changing robots is

a frontier in the field (Shah et al., 2021). Here, we explore

the phenomenon of shape-shifting, as it helps illustrate how

morphogenetic and homeostatic goals pursued at each level can

give rise to robust and flexible behaviour at a variety of scales.

As suggested, an organism’s ability to arrive at complex

morphogenetic outcomes depends on the interpenetration of

these functionalities at a range of spatial and temporal scales, as

well as the elasticity and robustness of a (predominantly soft)

medium. This contrasts with standard roboticist approaches

that incorporate hard parts [“up-armouring”, as Man and

Damasio (2019) phrase it] and assumes that bodies are only

reconfigured due to external forces, effectively neglecting the

active and proactive responsiveness that typifies biological media

and serves as the foundation for homeostatic, self-organizing

processes. Indeed, hard-clad robots might experience change

at the movement of a joint, but none within the stuff that

constitutes it. Contrastively, biological and soft robotics systems

“[change] shape at all relevant scales, globally and locally” (Shah

et al., 2021: 10). What is important here is that this process is

effectuated through the nested hierarchical structure in which

every level can pursue its own local (morphogenetic) goals. The

morphogenetic (shape-shifting) outcome of this process is thus

not only materially and physically active, but an expression of

the cognitive coordination to be found throughout the organism.

This is in sharp contrast with current robotics, which largely uses

unintelligent parts (Shah et al., 2021).

We can call these systems exemplars of “coordinated

structures”, following Kelso (2016), which are endogenously self-

organized systems determined by their own dynamics. Indeed,

a characteristic feature of such structures is that they do not

depend on an exogenous “ordering influence” (Kelso, 2016: 491),

and some have remarked on how this form of self-organization

is the basis for higher-level features of autonomy, agency,

and goal-directedness (Juarrero, 2015). Perhaps unsurprisingly,

the requirements for coordinated structures are parallel to

the defining features of active matter systems, suggestive of

the relevant building blocks for engineering artificial analogs

that could come to endogenously self-organize to create novel,

agentic, and goal-directed structures. It should be clear that the

vision of cognition we have in mind here is one in which the

system itself has real “skin in the game”, and therefore requires

this minimum degree of autonomy (Bechtel and Bich, 2021).

Importantly, this focus on internal coordination echoes the

prominent view that cognition—as it evolved—initially emerged

in the course of evolution for coordinating cellular metabolisms

and ultimately multicellular (more minimally, intercellular)

activity, particularly spatial and temporal coordination across

parts of the system—a position Keijzer et al. call the “Skin

Brain thesis” (Keijzer et al., 2013; Jékely et al., 2015). The

primacy of internal coordination hints at the profound relevance

of electrical oscillatory activity found in biological bodies (cf.

SELFOs, see Hanson, 2021), which has been put forward as one

of the central mechanisms of synchronization—an important

topic that future work will explore in detail. Furthermore, the

path of engineering intelligent systems from self-organizing and

coordinating intelligent parts, while perhaps not the only one,

becomes a clearly feasible approach for researchers, since we see
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that in the history of life this trajectory has in fact led to the

emergence of cognition.

The shifting local and global coordination of the system (i.e.,

organism) exemplifies the distributed approach to cognition

we have defended herein. It requires that constituent cells and

parts maintain certain aspects of cognitive function—memory,

learning, agency, decision-making—at least in the service of

their own form and function. Levin captures this point well

when he writes that “somatic cells did not lose their behavioural

plasticity . . . to become parts of metazoan swarms (bodies):

they scaled them to enable pursuit of larger goals consisting of

creation and upkeep of massively complex anatomies” (Levin,

2019: 5).

Thus, the concept of scaling up, which we have relied on

throughout this paper, rests on the idea that multicellularity

is itself a highly complex and competitive “environment”

that requires local and global morphogenetic goals consisting

of trade-offs and top-down constraints between small-scale

outcomes and organismic level development. We have already

suggested that we can understand this principle of scaling up

in terms of internal coordination determined by endogenous

dynamics but building on the concept of active matter can help

elaborate the idea further.

We can identify an appropriately scaled-up active matter

system when two conditions are met: (1) the system is not

wholly determined by local causes (see Kelso, 2016), that is, the

system behaves in relation to non-local causes; and (2) it exhibits

goal-directedness as a coherent unit. Internal coordination

results from the conjunction of these conditions and, hence, is

inseparable from cognition as we explore it here. Our reliance

on active matter is motivated by our fine-grained functionalist

claims, which we turn to below.

For now, it is important to emphasise that developmental

bioelectricity has been identified as the predominant mechanism

behind locally and globally coordinated morphogenetic,

developmental, and cognitive outcomes—realising the scaling

up of parts into wholes. Bioelectrically coordinated and

integrated cells (in the form of an organism or a colony of

organisms, as in bacterial biofilms) meet the conditions for a

scaled up system laid out above in that (1) the activity of cells

often results from information about occurrences happening

in a distant part of the integrated system and (2) each part

coordinates its actions with others, so that the system as a

whole exhibits a consistent behavioural pattern (see Arias Del

Angel et al., 2020 for an insightful discussion of this in relation

to the social amoeba Dictyostelium). Thus, the bioelectrical

activity that has often been associated with nervous activity

is increasingly seen as an exploitation of highly preserved,

ancient, and widely distributed cellular functions and capacities

(Prindle et al., 2015)—and we extend the discussion to suggest

that this itself hinges on more general properties of cellular,

biological, and living material dynamics. This is what in

developmental biology (Newman, 2019, 2022, 2021) has been

called “biogeneric” processes, indicative of how biological

functionality in the service of homeostatic, morphogenetic,

and developmental goals is an exploitation of general physical

principles of viscoelastic media and oscillatory activity. This

again draws a strong connection between the “physics of life”

and “physics of cognition” we hinted at above.

Indeed, if—as this research suggests—neurons are

specialised exploitations of bioelectrical mechanisms, it is

more fitting to see the nervous system as initially (both

evolutionarily and ontogenetically) more a matter of “pulling

the organism together” than as specialised for higher-level

cognitive functions (cf. Fields et al., 2020). Again, pulling from

Levin, we see that “neural networks control the movement

of a body in three-dimensional space; this scheme may be an

evolutionary exaptation and speed-optimization of a more

ancient, slower role of bioelectrical signalling: the movement of

body configuration through anatomical morphospace during

embryogenesis, repair, and remodelling” (Levin, 2019: 5).

The truly innovative move in the literature on basal

cognition (that is, cognition as situated in more “primitive”

organisms and cellular activities), then, is the explicit

recognition of the cognitive (or proto-cognitive; Godfrey-

Smith, 2016a,b, 2017) nature of the activities identified above.

Indeed, examples of memory in social bacteria (Dinet et al.,

2021), learning in unicellulars and protists (Gershman et al.,

2021), decision-making in acellular and cellular slime moulds

(Arias Del Angel et al., 2020; Smith-Ferguson and Beekman,

2020; Boussard et al., 2021) have all been identified in non-

neural organisms, and it is known that constituent cells in

metazoan swarms (i.e., multicellular animals) actively and

adaptively manage their morphology, behaviour, and physiology

as needed for survival. Again, this is cognition within and

throughout biological bodies and therefore is suggestive of a

more thoroughly embodied cognition insofar as higher-order

organized wholes are dependent on constituent units and parts

maintaining, in certain crucial respects, cognitive capacities of

far more ancient origins. The ability of evolution and hence

organisms to exploit the material properties of cellular processes

to yield coordinated wholes is the current envy of soft robotics

approaches that still rely on guided self-assembly to arrive at

robot functionality (Ebrahimkhani and Levin, 2021).

As we have already hinted in Section Traditional vs. fine-

grained functionalism, this differs dramatically from extant AI

and robotics approaches that do not avail themselves of such

techniques, in that goals can be pursued both at the wider level of

the whole organism, at the tissue complex level, and the level of

cellular homeostasis and intercellular coordination. Indeed, “the

ability of each nested level to have its own local morphogenetic

goals. . . contrasts with today’s robots, which are largely made of

unintelligent parts” (Shah et al., 2021: 10). To conclude, then, we

loop back to our fine-grained functionalism claims to highlight

the close imbrication between cognitive capacities of interest in

the design of AR (agency, goal-directedness, memory, learning,
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self-maintenance) and fine-grained aspects of the materials

that should, we suggest, be the focus of current and coming

robotics approaches.

Fine-grained functions of soft materials

Fine-grained functionalism rests on the crucial observation

that cognition is not temperature. Allow us to explain. When we

approach cognitive systems and try to individuate the functions

they perform, we always do so at a particular level of granularity

that reflects certain aspects of the observer (their interests,

needs, pragmatics, assumptions) and not the cognitive system

observed. Philosopher of science Angela Potochnik phrases

this as a matter of reading our assumptions of the multilevel

nature of the world into the phenomena of investigation,

imposing an artificial hierarchy on a complex system where

there may not be one (cf. Bechtel and Bich, 2021; Potochnik,

2021). Crucially, these different granularities do not simply

map onto the distinction between macro- and microstates that

some branches of physics find useful. Cognitive functions, such

as learning, memory, decision-making, are not macrostates

realised by (possibly very different) physical microstates in the

way that the same temperature can be realised by various

distributions of thermal energy across molecules—even if we

may observe these functions in equal part in a variety of natural

and engineered systems.

What we mean to say, then, is that non-biological passive

materials (in our case, materials that cannot sustain self-

organizing dynamics in far-from-equilibrium conditions) will

not do the same things as soft biological counterparts: “They

will be functionally different, not merely different in “hardware”

or “make up”’ (Godfrey-Smith, 2016a: 501). For functional

equivalence, their material structure and organization must

occupy specific spatial and temporal scales to endogenously

accomplish self-maintenance and self-organization. The main

upshot of this view is that fine-grained functional properties

of living systems, such as metabolism and recursive self-

maintenance, matter quite a deal more than is commonly

supposed in debates on the MR of the cognitive. In other

words, if cognition depends on suitably organized, endogenously

driven internal dynamics of cellular activity and the appropriate

scaling up into even smarter wholes, we begin to see the way

such details become the foundation of the cognitive—and, by

extension, central to the approach to engineering AR that we

advocate. There are two considerations with which wewould like

to conclude.

First, fine-grained functionalism imposes clear constraints

on what sorts of materials are capable of instantiating

cognition—without falling into the biological chauvinism

typically (and erroneously) associated with this type of view.

The required platform must be able to sustain self-organizing

dynamics in far-from-equilibrium conditions on temporal and

spatial scales that make it susceptible to physical forces,

constraints, and tendencies that are not found at larger spatial

scales—the scale of standard machines to which biological

cognition is traditionally compared (Nicholson, 2014). These

conditions are met by soft, active materials: a domain of

materials science that continues to grow in popularity since

its inception in the 1990s. From a physicist’s perspective,

exemplary soft materials such as “[c]olloids, polymers and

surfactants, sometimes also known as ‘complex fluids’, have one

characteristic in common: they involve a mesoscopic length

scale between the atomic (∼1 nm) and the bulk (∼1mm). On

this intermediate length scale, one finds structures such as

suspended particles/droplets, macromolecular coils, and self-

assembled structures such asmicelles and bilayers” (Poon, 2000).

The ability to self-assemble into vesicles is especially interesting,

as, according to some researchers (see Kauffman, 1993), such

structures form a necessary step in the emergence of life, since

they allow for the prebiotic system enclosed within to control its

interactions with molecules in the environment and, in result,

to remain at the boundary between subcritical and supracritical

behaviour. As stated throughout, we do not preclude the

possibility of non-living cognitive systems. Indeed, crucial points

of our argument turn on the blurring of cherished distinctions

between paradigmatically living and non-living systems.

What we do want to highlight, however, is that a non-

living system is cognitive the more it approximates dynamical

features of living activity—that such activities (which we broadly

associate with self-maintenance and, eventually, homeostasis

via metabolic activity) are the fount from which higher-level

cognition emerges. The overlap in the dynamics between

living and non-living systems constrains the types of materials

that can enter a concerted organization able to sustain itself

recursively and endogenously. While common reference points

in philosophical debates on MR 1.0 consist of cognition being

instantiated by (inter alia) tumbling beer bottles, frenzied radio

signalling between denizens of the Chinese nation, and, of

course, Swiss cheese, it is clear from what we have argued

that these are not the kinds of things that can sustain self-

organization endogenously. Matter behaves differently at the

scale of objects normally invoked to support intuitions on MR,

reaffirming the point expressed above that these materials will

not do the same thing as the molecular motors, nanoscale

molecules, and field-responsive materials we find at length

scales well below that of everyday familiarity. Dislodging our

intuitions about the MR of the cognitive, and upgrading

from MR 1.0 to MR 2.0, enables us to attentively observe

the behaviour of matter at nano and mesoscales to more

properly assess how proto-cognitive capacities relate to the

frenzied activity of fine-grained features of the system—not

treating them as “noise” or obfuscating complexity to be

abstracted out.

What we do want to highlight, then, is that an active

matter approach oriented around soft materials could begin to

Frontiers inNeurorobotics 14 frontiersin.org

343

https://doi.org/10.3389/fnbot.2022.880724
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Harrison et al. 10.3389/fnbot.2022.880724

approximate these features in non-living systems and media—as

the exciting field of soft robotics is beginning to show (Section

Soft robotics above). Hence, an attempt to design and engineer

an artificial cognitive system in such materials would tend to

fall closer to cognition than extant hard-part robotic systems.

Soft materials and our active matter lens provide (some of)

the resources to better assess the “suitably organized” claim

so often made in debates on multiple realisability. As already

mentioned, this allows us to resist biological chauvinismworries,

while also delimiting the kinds and configurations of systems

that can be autonomous cognitive agents, hence neutralising

the liberalism charge as well. That is, as stated earlier, the

active matter lens allows us to argue both that the materiality

of cognition matters and that the cognitive can be realised

in alternative media (Chirimuuta, 2018; Brunet and Halina,

2020).

These considerations bring us to the second important

insight granted by the perspective of fine-grained functionalism.

It constrains how we should approach the task of engineering

AR, defining a feasible—at least so we hope—research strategy.

Developing artificial cognition once we have rejected the

“hardware/software” distinction renders the concept of Artificial

General Intelligence (AGI)—a Holy Grail of present-day AI

researchers (explicitly embraced by companies such as OpenAI

and DeepMind)—misguided. AGI can be understood as “loosely

speaking, AI systems that possess a reasonable degree of self-

understanding and autonomous self-control, and have the

ability to solve a variety of complex problems in a variety

of contexts, and to learn to solve new problems that they

didn’t know about at the time of their creation” (Goertzel

and Pennachin, 2007). The view that emerges from the

“cognition all the way down” approach is that cognition

is not “General” in this sense—cognition is not a single

programme that can be applied to a variety of contexts, in

the way that the programme MuZero (Schrittwieser et al.,

2020) is able to master a variety of video and traditional

games without explicit presentation of the rules. Rather,

cognition results from the orchestration of a vast amount of

single-purpose, specialised processes that co-depend on each

other across spatial and temporal scales—single cells coming

together into larger and larger ensembles. These processes

undergo constant rearrangements and shifts, balancing on

the boundary of criticality, striving to remain far from

thermodynamic equilibrium. What “Generality” the system and

its parts exhibit results from constant flux, from its Heraclitean

nature, where constant change is required to remain in the

same place.

Hence, the task of engineering AR must not be approached

from the top-down, and not only because of the high

computational complexity of coarse-grained cognitive

functions (discussed in Section Traditional vs. fine-grained

functionalism). Soft materials need to be engineered into

simple “proto-cognitive” units which then need to be

scaled up into higher-level systems. While we believe that

to a large degree appropriate scaling up requires self-

organization, the researcher still remains largely in control

of this process, as they can influence and shape the fitness

landscape of emerging autonomous embodied robots,

guiding them toward meta-stable states that they deem

beneficial or useful. In fact, to a degree even an external

re-arrangement of the emerging self-organized system may

be enough to push it in a particular direction, in a manner

similar to how surgical intervention into grown tissue

makes possible the creation of xenobots (Kriegman et al.,

2020).

This would mean that the task of developing AR doing

a wide range of things—whether that would be driving cars,

repairing spaceships, performing surgeries, or accompanying us

at the table—is likely beyond the limits of what is attainable

in the lifetime of the current generation of AI researchers.

We believe, however, that the strategy remains similar whether

one focuses on this kind of blue-sky research, or rather

seeks to achieve more proximal goals that are already stated

in the literature among the things engineers are working

toward. These more feasible applications, specifically in the

case of xenobots, include “intelligent drug delivery”, “internal

surgery”, identifying cancer or processing of toxic waste

products (listed by Kriegman et al., 2020), as well as “cleaning

microfluidic chambers” and “environmental sensing” (suggested

by Blackiston et al., 2021). The common approach to the

development of such machines focuses on what conditions

would be required for the system to believe this task to be

“good”—not in terms of arbitrary reward functions, but in

terms of risks and opportunities, or fitness landscapes. One

way to accomplish this goal may be in parallel to raising

and educating a child (cf. Ciaunica et al., 2021). In contrast

to standard approaches in contemporary AI research, which

may be more accurately compared with operant conditioning,

raising a child consists more in creating—and removing—

affordances in the social and physical environment of the

baby. We create opportunities, control some of the risks,

but in the end it is the child that must take up any

particular affordance in order to best learn it. We reward,

correct, and punish, but most often we do so implicitly, by

accident, and to a much lesser degree than in the case of AI

systems. These sparse rewards can be taken to serve more

to structure the fitness landscape that the child explores, to

boost its internal reward and motivation systems, than to

provide a reward or loss function that learning can entirely

depend upon.

The approach toward AR we suggest is similar. In the—

paradoxically—simplest case where we rely on living soft

materials as building blocks, we can observe an application

of this strategy in the case of the aforementioned xenobots.

In a virtual cyborg-like setup, they explore in simulation

their expected fitness landscape guided by some simple
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tasks and then, in vivo, the simple self-organized structure

is finessed through external means. The resulting living

robot is capable of surprisingly complex behavioural feats,

as it forages throughout its simple environment on a Petri

dish, coordinating its behaviour with others, and—when

presented with an opportunity of interacting with “naive” stem

cells—replicating into active organisms, similar in form and

abilities (Kriegman et al., 2021). Xenobots, in fact, offer an

initial hint that an approach along the lines we suggested

here is feasible and may well lead to the development

of workable AR, even if with only limited applications to

begin with.

Summary

In sum, transitioning toward AR capable of selecting

their own goals requires incorporating “dynamic materials

that possess a substantial degree of conformational freedom,

mobility, and exchange of nanoscale components” (Kaspar

et al., 2021: 353). In other words, developing these autonomous

systems calls for attending to the fine-grained functional

profile of embodied active materials that do not themselves

depend on exogenous control. This is in fact one of the

main outstanding problems in synthetic biology and soft

robotics, as current model systems are not capable of self-

organizing in a coordinated manner across the nano and

mesoscales, instead relying on researchers painstakingly guiding

the process to a desired state. In point of fact, how

organisms themselves are able to develop toward species-

invariant morphological outcomes is itself an open question

of momentous importance in biology. However, there is hope

that exploiting what we already know about multicellular

development and the physical principles of self-organization—

paying attention to appropriate “scaling up” of intelligent

parts into wholes—can help make way on this in the

synthetic domain.

Our suggestion, then, follows recent lines of research

that emphasise the importance of constructing machines

that themselves comprise smart, active, and, in some cases,

cognitive parts. Sometimes this is phrased as a matter of

“off-loading” computation from centralised computers to

the body, though the language of embodied computation

is ambiguous and difficult to specify technically [see

Nakajima et al. (2015) and Müller and Hoffman (2017)

for divergent stances on this]. What does seem crucial

for this next stage of designed soft robots is the ability to

achieve global coordination in a more autonomous and

self-organized manner, something currently out of reach

but hopefully not for too long, as that is itself an active area

of research.

Conclusion

We opened this paper with the suggestion that to

create autonomous embodied robots capable of valuing and

engaging with the world in a goal-directed manner requires

incorporating several dimensions of biological endowment.

In particular, we looked at the notion of precarity (“risk-

to-self ”) and the related notion of existential needs. The

proposal here has been that AI and AR come to autonomously

value and interact with the world the more they approach

biological analogs thereof–and the closer they approximate

the dynamics that introduce the possibility of existential

consequences for its actions. In other words, the proposal

here has been to develop cognitive sophistication within

alternative media by incorporating dimensions of vulnerability,

precarity, and existential needs that emanate from the system’s

own internal dynamics with a denumerable set of actions

that must be taken for this system to remain in far-from-

equilibrium conditions.

To this end, we set out to dislodge several key assumptions

embedded in the cognitive sciences that undermine the crucial

role materiality plays in instantiating, mediating, and enabling

cognitive form and function–specifically by proposing a fine-

grained functionalist approach that treats the more minute

properties of the system as central for cognitive function.

The fields of active matter physics and soft robotics have

begun to blur long-held dichotomies between hardware and

software, living and non-living, machine and organism, and so

on. But rather than reducing organisms to an anachronistic

understanding of mechanism or matter, these fields have

begun to actively question our understanding of materiality

entirely. What we find, then, is not the hard, inert, and

wholly passive parts standardly associated with machines and

robots—but an inherent activity suffused throughout certain

materials that, when brought into concerted, guided, and

orchestrated engagement with one another via bioelectricity,

can manifest and expand machine functionality in a manner

unavailable to paradigms that do not avail themselves of

these techniques. To construct autonomous robots, then,

we propose an explicitly thermodynamic conception of life

and mind that expands the domain of both terms. In

effect, the view we have tried to articulate is one in

which the mind is more material, and the material more

mental, than is commonly believed—a view that is more

at home in 18th and 19th century romanticist thought and

American pragmatism (e.g., Charles Sanders Peirce) than it

is with 20th century reductive theories of matter. When we

shift our perspective away from one in which higher-level

cognition sits across a divide from inert, passive matter to

a view in which materiality is already pregnant with the

possibility of the mental, we believe we move one step
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closer to the goal of creating autonomous and hence actually

intelligent machines.
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We suggest that the influence of biology in ‘biologically inspired robotics’ can

be embraced at a deeper level than is typical, if we adopt an enactive approach

that moves the focus of interest from how problems are solved to how

problems emerge in the first place. In addition to being inspired bymechanisms

found in natural systems or by evolutionary design principles directed at

solving problems posited by the environment, we can take inspiration from

the precarious, self-maintaining organization of living systems to investigate

forms of cognition that are also precarious and self-maintaining and that

thus also, like life, have their own problems that must be be addressed if

they are to persist. In this vein, we use a simulation to explore precarious,

self-reinforcing sensorimotor habits as a building block for a robot’s behavior.

Our simulations of simple robots controlled by an Iterative Deformable

Sensorimotor Medium demonstrate the spontaneous emergence of di�erent

habits, their re-enactment and the organization of an ecology of habits

within each agent. The form of the emergent habits is constrained by the

sensory modality of the robot such that habits formed under one modality

(vision) are more similar to each other than they are to habits formed under

another (audition). We discuss these results in the wider context of: (a)

enactive approaches to life and mind, (b) sensorimotor contingency theory,

(c) adaptationist vs. structuralist explanations in biology, and (d) the limits of

functionalist problem-solving approaches to (artificial) intelligence.

KEYWORDS

enactive robotics, sensorimotor contingencies, problem-solving, habits, IDSM,

sensorimotor autonomy
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1. Introduction

Artificial Intelligence and the scientific approach to mind

(what is known as cognitive science) was born (or rather raised)

as a problem solving discipline (Newell et al., 1958; Putnam,

1965; Fodor, 1968). Deprived of life, the machine metaphor

was one of symbol manipulation and rationality (deductive,

inferential, heuristic or otherwise). The unprecedented potential

of Universal Turing Machines (computers) was the driving

metaphor to study the mind. The software, the mind,

was the problem solving method, the hardware, the brain,

its implementation.

Alternative conceptions of the mind were available at the

origins of Artificial Intelligence and Robotics (Grey Walter,

1950; Ashby, 1952) but the rapid success of computer science

left them aside. Over time, the limitations of the problem-

solving centered computational theory of the mind became

apparent and the biologically inspired, embodied and later

enactive conceptions of the mind gained momentum. We are

now immersed in a mesh of hybrid architectures, applied to a

wide range of practices, from industrial to scientific modeling

applications, and a new summer of Artificial Intelligence

is rising, with robotics as a major container of social and

technological expectations.

There are good reasons for why problem-solving attracts

so much attention from researchers, but it is pertinent to ask:

what aspects of minds are omitted or obscured by the problem-

solving focused perspective? what can life teach us about what

intelligence holds before and beyond problem-solving? and even

when problem solving is addressed . . . how is it that natural

agents have and become concerned by their own problems?

This paper has two goals. The first is to argue that by

abandoning problem solving (or at least putting it down for

a time), other useful explanatory targets and ways to explain

minds are given space to emerge.

The second, more specific goal is a case in point: we use

simulated robots to show how sensorimotor contingencies

influence the formation of self-maintaining patterns of

sensorimotor activity “habits” in regular ways that depend

upon sensory modality. By de-emphasizing problem solving,

we are able to take a fresh look at the relationship between

sensory modalities, sensorimotor contingencies and habitual

behaviors. But to explain these results, we first need to provide

more context.

The paper proceeds as follows. The next section explains

what we mean by “problem-solving,” why it has been a popular

target within the cognitive sciences, and what we see as the

primary disadvantage of excessive attention being given to

the topic. We then explore the intimate relationship between

robotics and biologically inspired and embodied problem-

solving paradigms. Section 2.3 introduces the enactivist

concept of autonomy, providing an alternative framework for

developing Sensorimotor Contingency Theory outside of the

problem-solving approach. The remainder of the paper presents

and analyzes a simulation model that is used to explain: (i) that

robots must first have their own problems instead of solving

those posited by external observers; (ii) that, in doing so, they

must assert a way of life whose structure and form must be

taken as the object of study. We finally discuss some of the larger

implications of our enactive approach in connection with wider

theories of biological explanation and inspiration.

2. From problem solving to enactive
robot

2.1. Problem-solving in minds and
machines

We use the term “problem-solving” to refer, in a broad and

inclusive manner, to the kinds of things that we associate with

being capable or clever. Nowadays, for many, “the ability to

solve problems is not just an aspect or feature of intelligence—

it is the essence of intelligence” (Hambrick et al., 2020, p.553).

It is certainly not a new idea. The very birth of Artificial

Intelligence owes much to it (Newell et al., 1958). As Newell and

Simon later stated: “Since ability to solve problems is generally

taken as a prime indicator that a system has intelligence, it

is natural that much of the history of artificial intelligence is

taken upwith attempts to build and understand problem-solving

systems” (Newell and Simon, 1976, p. 120). The task of artificial

intelligence was thus to devise potential solution-generators and

to design tests that could evaluate them. This assumed that the

problem space was well fixed so that solutions could both be

evaluated and generated. Decades later, Artificial Intelligence

handbooks still devote their first central sections to problem

solving (e.g., see part II of Norvig and Russell, 2021, 4th edition).

A problem is a context in which behaviors can be evaluated

according to a norm of success at “solving” the problem.

Problems vary from being trivial to challenging to impossible

as the proportion of behaviors that are good (out of all

possible behaviors) shrinks. They include “high-level” human

problem-solving, such as the skills that are taught in schools or

universities, as well as embodied problems such as balancing on

two feet or swimming efficiently. For a system to be evaluated in

terms of problem-solving, one must first have the specification

of the context and of a normative evaluation so that behaviors

within that context can be compared as more or less successful.

Defined as such, just about anything can be seen as a problem

solver. A bottle lid solves the problem of preventing spills; a car’s

differential solves the problem of distributing force effectively to

its wheels; a computer program solves the problem of beating a

human at chess.

Herein lies both the advantage and the disadvantage of

placing problem solving at the center of the cognitive sciences:

almost anything can be evaluated in terms of its problem solving
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ability. On the one hand this is a great boon. Quantifying

problem solving ability is relatively straight-forward and the

ability to quantify how effective a system is at solving one

or more problems facilitates technoscientific progress where

measurements can play an important role in defining progress.

This is apparent in artificial intelligence (AI) research where

benchmarks such as chess and other games (Canaan et al.,

2019), hand-writing recognition (e.g., Graves and Schmidhuber,

2009), image classification, speech recognition, etc. (e.g., MLPerf

benchmarks MLPerf, 2021), are used to quantify progress.

Problem-solving similarly provides metrics for studying the

minds in psychology and neuroscience, where problem-solving

related notion of ‘tasks’ (e.g., the Simon task) are used to

structure human activity and performance related metrics

such as reaction speed or error rate are seen as providing

key insights into how our minds operate (Simon and Wolf,

1963).

The ease of measuring problem-solving ability

sometimes leads to it (problem-solving ability) becoming

the explanandum—the thing we strive to understand. This

is seen in research questions like: How do people recognize

faces so well? How do babies come to understand the motives

of other people? How do we play chess? How can we make

a safe self-driving car? etc. Problem-solving also sometimes

becomes the explananda—the terms in which we explain what

minds are, how they work, or what they do. Evolutionary

psychology (Pinker, 1997; Buss, 1998), for example, emphasizes

the evolutionary advantage of problem-solving ability and

in this context, explanations that are provided in terms of

problem-solving ability are seen as complete, as evolution

can be invoked to explain why such mechanisms exist. The

evolutionary advantage of having a mind is in its contribution

to problem solving and therefore, minds are best understood as

problem solving machines.

However, it has been argued that: “The essence of

intelligence is to act appropriately when there is no simple

pre-definition of the problem or the space of states in

which to search for a solution. Rational search within a

problem space is not possible until the space itself has

been created, and is useful only to the extent that the

formal structure corresponds effectively to the situation”

(Winograd and Flores, 1987, p.98). Thus, even from a

problem solving perspective, intelligence is not really the

capacity to solve a problem but to bring a situation into a

fabricated frame where it can be treated as a problem to

be solved.

Moreover, the problem with excessive focus upon problem-

solving is that there are other unique and important features

of minds that are worthy of study—features that may only

indirectly relate to problem-solving ability or perhaps not at all.

The problem, in a nutshell, is the conflation of (i) “problem-

solving ability” with (ii) all of the other phenomena associated

with “being a mindful body.”

The mainstream computational functionalist approach to

the mind (Putnam, 1965; Fodor, 1968) doesn’t really help much

addressing what mindful bodies are beyond problem-solving

devices. For Putnam, the very definition of the mental is always

in reference to a Turing machine table that works out rational

transitions (e.g., computing and storing preferences over a utility

function or solving problems in problem representation space).

Deviations from this rationality are treated as pathological. All

humanmental life is, according to Putnam, not perfectly normal,

thus relatively pathological. Putnam acknowledges “our model

is an overly simple and overly rationalistic one in a number

of respects. However, it would be easy, in principle, although

perhaps impossible in practice, to complicate our model in

all these respects—to make the model dynamical, to allow for

irrationalities in preference, to allow for irrationalities in the

inductive logic of the machine, to allow for deviations from

the rule: maximize the estimated utility. But I do not believe

that any of these complications would affect the philosophical

conclusions reached in this paper” (Putnam, 1965, p. 43).

Deviations from the abstract rational rule are pathological.

Explanation lies on the pure domain of abstract problem solving,

the deviations make it all more complicated (as if dirt in the

form of a set of exceptions where to be added to the pure

explanation) but change fundamentally nothing. As we are

about to see, embodied approaches, and particularly enactivism,

bring these “pathological” expressions to the center of the

explanation (of which rational thinking is the complicated

achievement) turning it into the core constitution of mind.

Biologically inspired robotics has a lot to contribute in

this direction.

2.2. From biologically inspired
problem-solving to enactive robotics

Enactivism was born under the conviction that robotics, as

a field, would require, or even force, cognitive science to move

beyond the problem-solving framework:

The assumption in CS [Cognitive Science] has all along

been that the world can be divided into regions of discrete

elements and tasks to which the cognitive system addresses

itself, acting within a given “domain” of problems: vision,

language, movement. Although it is relatively easy to define

all possible states in the “domain” of the game of chess,

it has proven less productive to carry this approach over

into, say, the “domain” of mobile robots. Of course, here

too one can single out discrete items (such as steel frames,

wheels and windows in a car assembly). But it is also clear

that while the chess world ends neatly at some point, the

world of movement amongst objects does not. It requires

our continuous use of common sense to configure our world

of objects. (Varela, 1992, p.251)
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Yet, moving away from the problem-solving paradigm has

taken a long path, most of which, rather than abandoning

problem-solving has deeply transformed the way we understand

how nature solves those problems. In a sense, biologically

inspired robotics has mostly followed the problem-solving

approach and biological inspiration has focused on picking up

biological mechanisms to solve problems: from the internal

neuronal inspiration of artificial neural networks since its

early conception (Rosenblatt, 1958) to their later development

(Rumelhart et al., 1988) to the embodied strategies that either

transform the problems to be solved by their “brains” or have

outsourced the computational load of the problem solving to

body and world (Pfeifer and Scheier, 2001). What radically

distinguished biologically inspired robotics from GOFAI (Good

Old Fashioned Artificial Intelligence) was a change of focus

from the abstract to the concrete, from the symbolic to the

sensorimotor and from the rational to the practical know-how

of situated action. Despite the emphasis on self-organization,

agent-environment emergence of behavioral functioning (Steels,

1990) embodiment and situated action (Maes, 1990), etc. the

main goal was still to build robots capable of solving behavioral

problems. After all, to put it with biologically-inspired roboticist

Barbara Webb: “The sensorimotor problems faced by animals

and by robots have much in common” (Webb, 1995, p. 117)

and, not only can animals help us devise robots that solve

problems in a biologically inspired manner, but also solving a

sensorimotor problem with the robot could help us understand

how the animal solves it; like “[d]etecting which ear is closer

to the sound” which “is a non-trivial problem for the cricket”

(Webb, 1995, p. 120).

Other trends of biological inspiration have built upon

evolutionary theory itself and artificially evolved brains or

brains and bodies to solve the problems (encoded as fitness

function) in what is commonly known as evolutionary robotics

(Cliff et al., 1993; Nolfi et al., 2016). Random variations

to the parameters of robotic brain’s and bodies are selected

against a fitness function that operates as the benchmark of

the problem to be solved. Despite the problem-solving focus

that is almost inherent in artificial evolutionary optimization

techniques, evolutionary robotics served to disclose a number

of principles of behavioral self-organization that non-linear,

fine grained agent-environment coupling display when artificial

evolution can freely explore the solution space without the

prejudices inherent to the human design (Harvey et al., 1997).

Some of these approaches entail radical departures from

core assumptions of the computational functionalist theory of

the mind: cognitive processing does not only occur in the head

and the body must be integrated as a key feature of cognitive

problem solving (not simply as an executioner of the solution

representation worked out in the head or a sensory transmitter

of the problem into it); agent-environment interactions can self-

organize with little if any representations; material bodily and

interactive constitution are not mere implementation details

of abstract capacities but intrinsic part of the problems and

solutions that cut across them.

But enactive robotics moves yet further into biological

inspiration. On the one hand there are enactive approaches

that have attempted to introduce more of the living body of

natural intelligence into robotics by including self-organized

mechanical, soft bodies (Man and Damasio, 2019) or even

chemical bodies (Damiano and Stano, 2021). But also, and

perhaps most relevant for enactive theory transferring to the

robot what metabolism has to offer to anchor intrinsic needs

or emotional feedback (Ziemke and Lowe, 2009). There is

however another enactive path that brings into robotics some

principles of living organization and, more specifically, the

autonomy of behavior, a way of life for robots, not as somehow

transferred from the biological body, but enacted at the scale of

brain-body-world dynamics (Barandiaran and Moreno, 2006).

Some forerunners of this inspiration are no doubt Ross Ashby

on the organism-centered inspiration of adaptive controllers

as machines capable to remain homeostatic in the face of

perturbations (Ashby, 1952) and Grey Walter’s “life imitating”

robots “designed to illustrate the uncertainty, randomness, free

will or independence so strikingly absent in most well-designed

machines” (Grey Walter, 1950, p. 44).

More recent development of this line of inspiration on

natural and biological principles for the design of robots came

hand in hand with the development of a theory of autonomous

behavior and agency (Smithers, 1997), organismically inspired

robotics (Di Paolo, 2003), and habit-centered enactive robotics

(Egbert and Barandiaran, 2014).

2.3. Enactivism and the autonomy of
sensorimotor life

Varela, Thompson and Rosch opened up a new way of

thinking in 1991. Their enactive approach conceives that

“cognitive structures emerge from the recurrent sensorimotor

patterns that enable action to be perceptually guided” (Varela

et al., 1991, p.173). They later stated that: “[C]ognition

is no longer seen as problem solving on the basis of

representations; instead, cognition in its most encompassing

sense consists in the enactment or a bringing forth of a

world by a viable history of structural coupling” (Varela

et al., 1991, p.205). The enactive approach thus emphasizes

sensorimotor coupling and the recurrent patterns that emerge

from agent-environment interactions.

This way Varela overcame the operational (en)closure of

the nervous system that served as his main analogy with the

organization of the living, captured (together with Humberto

Maturana) within the theory of autopoiesis. Ever since, the

relationship between the self-organizing nature of nervous
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activity and that of behavior became to some extent problematic

(see Barandiaran, 2017 for a discussion).

Inspired by Maturana and Varela, Tim Smithers re-states

the need for biologically inspired autonomy in robotics, in

the context of the impossibility to design robot agents from a

problem-solving stand point:

Designing and building autonomous agents thus

becomes the problem of designing and building processes

that can support and maintain this kind of identity

formation through interaction: processes that, through

interaction, are continuously forming the laws of interaction

that can sustain and maintain the interaction needed to

form them. In other words, we need interaction processes

that can support the self-construction and maintenance of

interaction processes through interaction, in essentially the

same way that the material and energy interaction processes

of single cells can be understood as being involved in the

continual forming of the mechanisms that support this

interaction. Such systems will thus be self-law making as

well as self-regulating, in essentially the same way as we can

understand biological systems and autonomous city states.

(Smithers, 1997, p.102)

This analogy between metabolic autonomy and the

autonomy of behavior was further explored in Di Paolo (2003).

According to this view, enactivism needs not be committed to

build bio-chemically living robots (provided that this is possible

or even desirable) but to endow a robot with a way of life. This

intuition was further explored in Barandiaran (2007, 2008).

Sensorimotor Contingency Theory can further enrich this

approach. It uses regularities in the ways that motor activity

affect sensory activity (sensorimotor contingencies) to explain

the qualities of perceptual experience (O’Regan and Noë, 2001).

Empirical research involving sensory substitution, sensory

modification, psychophysics has informed the development of

sensorimotor contingency theory (SMCT), which attempts to

explain diverse aspects of perceptual experience, including why

certain sensory modalities have a particular “feel” to them; how

it is possible to make one experience one sensory modality (e.g.,

touch) in a way that feels more like another (e.g., sight); and the

conditions in which subjects are (or are not) capable of adapting

to major transformations to their sensorium. The key idea in

SMCT is the role that action plays in perception: a classical

enactive theme (Noë, 2004).

Using variations of the basic theme of how motor activity

modifies sensory input, a set of robotic architectures wheremade

using sensorimotor contingencies as building blocks for robotic

design (Maye and Engel, 2013; Jacquey et al., 2019). But these

are hardly enactive in the sense of the deep biological inspiration

that the enactive approach can offer.

Perhaps the best way to explore such potential is to bring

forth the concept of sensorimotor autonomy (updated and

refined from a previous proposal of Mental Life and also

explored in more detail on the concept of Sensorimotor Life):

the capacity of an agent to sustain and regulate the structures

that generate behavior. This definition echoes the metabolism-

based definitions of life as far-from-thermodynamic equilibrium

chemical systems capable of maintaining the network of

chemical reactions that constitute it (Gánti, 1975; Maturana and

Varela, 1980; Rosen, 1991; Ruiz-Mirazo et al., 2004; Luisi, 2006).

The basic constituent of sensorimotor autonomy is a

sensorimotor structure (a behavioral scheme or habit) made

possible by both a set embodied-neural pathways and a set

of sensorimotor contingency relationships. Think of it as

a coordination pattern that emerges out of environmental,

sensorimotor and neural (or behavior generating) mechanisms.

Now, if this structure is far-from-equilibrium or, said differently,

if let alone it tends to extinguish or vanish, and if the very

enactment of the sensorimotor scheme reinforces itself by

repetition or by satisfying certain conditions that feed-back

into its supporting structure (e.g., reinforcement of synaptic

connections by Hebbian learning or reward reinforcement),

then we have first sense of self-maintenance that is characteristic

of habits. The more the habit is enacted the more it is

strenghthened, the stronger it is the more likely it is to be

enacted. That is the virtuous (or vicious!) self-sustaining nature

of the habit.

We can now go back to the original, albeit obscure and

self-referential, intuition of roboticist Tim Smithers and his

idea of the autonomy of behavior based on the “processes

that, through interaction, are continuously forming the laws

of interaction that can sustain and maintain the interaction

needed to form them.” These laws or norms are nothing other

than the very conditions under which the habit is viable, that

it can persist and sustain itself. This is a strong analogy with

(metabolic) life that opens up the very possibility of having a

problem of your own and having to solve it. The problem for

the precarious, self-maintaining autonomous cell is persistence,

avoiding decay and disintegration (see Barandiaran and Egbert,

2013 for a more detailed analysis). The same goes for the

precarious, self-maintaining nature of a habit, and ultimately of

autonomous sensorimotor life (see Barandiaran, 2008; Di Paolo

et al., 2017). This approach also opens up a new mode of

explanation that is characteristic of biological thinking and can

be applied to sensorimotor dynamics: focusing on the nature

and structure of constraints rather than the problems they are

suppose to be adapted to solve. We return to these themes in the

discussion section.

In what follows we introduce habit-based enactive robotics

to illustrate and further develop the points we have briefly

outlined. Inspired by SMC and enactive principles we build

robots that are capable of generating spontaneously a complete

ecology of habits that display structural constraints within

the sensorimotor space. The results will help us discuss how

enactive robotics can contribute to a new understanding of mind
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and cognition with a deeper biological inspiration than what

problem-solving can provide.

3. Model

3.1. Overview

The computational model simulates a two-wheeled robot

that moves around a two-dimensional environment. The robot

has two independently controlled motors; one for each of its

wheels, allowing it to move forwards or backwards in a straight

line or to turn in a variety of arcs, or on the spot. The robot’s

motors are controlled by an iterant deformable sensorimotor

medium (IDSM) (Egbert and Barandiaran, 2014)—a habit-

forming controller that is described in detail below.

The robot’s environment is periodic in the sense that

when the robot moves off one side of the environment, it

appears on the opposite side. A stimulus source is also located

in the environment. This source, which moves around the

environment, can be thought of as simultaneously emitting a

sound tone and a source of light, but in any given trial the robot

is only capable of perceiving one of those sensory modalities

(light or sound). We now present each element of the simulation

in detail.

The robot and its environment are simulated using Euler

forward integration with a time step of1t = 0.01. Thus, a single

time-unit consists of 100 iterations, and the IDSM is updated

every iteration.

3.2. Stimulus

The stimulus source moves around the environment in a

circle. Each rotation, it slows to a stop at its left-most position,

before accelerating again to complete another rotation. This

trajectory is specified by the following equations which describe

the stimulus’s position (sx, sy) as a function of time (t):

sx =
1

2
+ cos(

t

10
+ sin(

t

10
)) (1)

sy =
1

2
+ sin(

t

10
+ sin(

t

10
)). (2)

3.3. Robot

The simulated robot (Figure 1) has two independently

controlled motorized wheels. It’s position changes according to

the following differential equations,

dx

dt
= ks cos(α)(ml +mr) (3)

dy

dt
= ks sin(α)(ml +mr) (4)

FIGURE 1

The simulated two-wheeled robot. The variable α specifies the

orientation of the robot (direction of forward travel). The robot’s

sensors are located on its periphery with the parameter β

specifying the o�set of the sensors from the direction the robot

is facing.

dα

dt
= ks

(mr −ml)

2R
, (5)

where x and y are the robot’s position in the environment; α is

its heading; ks = 0.25 scales the speed of the motors; R = 0.05

is the robot’s radius; and the variables ml and mr represent the

velocities of the robot’s left and right wheel motors.

We consider two robot sensor configurations. “Visual”

robots have two directional sensors. The excitation of each, V ,

is the product of an attenuation factor due to distance from

that sensor to the stimulus, and an attenuation factor due to

misalignment between the orientation of the sensor and the

relative direction of the stimulus. This second attenuation factor

is calculated by taking the scalar product of a unit vector that

points from the sensor to the stimulus and Eo, a unit vector that

specifies the direction that the sensor is facing.

Formally,

V =
0.25

0.25+ ‖Er‖2
︸ ︷︷ ︸

distance

(

Er

‖Er‖
· Eo

)+

︸ ︷︷ ︸

orientation

, (6)

where Er is a vector that describes the position of the stimulus

relative to the sensor; ‖r‖ is the magnitude of that vector;

and the + superscript indicates that negative values within the

parentheses are truncated to zero. The excitation of these sensors

is thus highest when the sensor is close to the stimulus and

directly facing it.

“Auditory” robots have two sensors that respond to the rate

at which the sensor is approaching or moving away from the

stimulus source. This is analogous to the Doppler effect whereby

the perceived frequency of a sound when approaching is higher

than when moving away from the listener. The excitation of an

auditory sensor, A, is given by:

A =
1

2
+ k

d||r||

dt
(7)
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where the first term can be thought of as the tones natural

pitch which is offset by the relative speed of the sensor and

the stimulus scaled by k = 3
4 to keep the magnitude of the

sensor (given the relative speeds of the robot and the stimulus)

within a similar range of excitation values as simulated for the

visual sensor.

To address the periodic boundaries of the environment,

auditory sensors always use the nearest stimulus source as

defined by the minimum image convention and visual sensors

calculate the combined effect of 5 stimuli: one in the simulated

space and four virtual copies of the sensor offset north, south,

west and east of the simulated space arena by one arena width.

This means that if, for example, a visual robot is close to

the north boundary of the arena and facing north it can still

see stimuli.

Visual sensors are offset from the direction the robot is

facing by βv = π/5 (see Figure 1). Auditory sensors are offset

by βa = π/2. The orientation of visual sensors is α ± βv, i.e.,

perpendicular to the tangent of the robot’s circular body at that

position, facing outwards. Auditory sensors have no orientation.

3.4. IDSM

3.4.1. Overview

The IDSM is a robot controller intended to capture the

idea of a self-maintaining pattern of sensorimotor activity.

Inspired by the habitual behavior of people and by the enactivist

concept of “autonomous” self-sustaining sensorimotor systems

(see e.g., Di Paolo et al., 2017), the IDSM was designed such

that patterns of sensorimotor activity reinforce the mechanisms

that produce them (Egbert and Barandiaran, 2014; Egbert and

Cañamero, 2014; Egbert, 2018). The IDSM has been used to

explore how a habit-based individual can be trained to perform

different tasks (Egbert and Barandiaran, 2014); how different

forms of motor babbling can bias the subsequent formation

of habits (Zarco and Egbert, 2019); how the essential variables

of a biological autonomous system can be shared with the

essential variables of a sensorimotor autonomous system (Egbert

and Cañamero, 2014) and the extent to which IDSM-based

sensorimotor autonomous systems can be considered to be

adaptive (Egbert, 2018). In the present paper, we use the IDSM

in a new way: to show, in a formal model, how sensorimotor-

contingencies can play an essential role of sculpting the form

of habits without themselves being explicitly internalized or

represented by the “brain” or “controller” of an embodied agent.

The IDSM works by recording trajectories taken through

sensorimotor space, i.e., how the sensorimotor state changes for

various experienced sensorimotor states. When a sensorimotor

state is experienced that is similar to one that has been

experienced in the past, the motors of the robot are actuated

in a way similar to how they were actuated in that previous

experience. Memories of previous trajectories are gradually

forgotten, unless they are reinforced by re-enactment and so the

only patterns of behavior that can persist for long periods of time

are those that are re-enacted. When the sensorimotor state is

in an unfamiliar (or forgotten) state, motor activity is random.

The IDSM used in this paper is very similar to that described in

Egbert (2018). Any differences between the model here and that

in Egbert (2018) are explicitly highlighted below.

A useful metaphor for understanding how the IDSM works

is the paths that form on university campuses, where paths

taken by students crossing a grassy field between academic

buildings trample and kill the grass. The emergent dirt paths

influence the trajectories taken by subsequent students, but the

grass also regrows, so only emergent paths that are regularly

traveled can persist in the long-term. This is essentially how

the IDSM operates, but the trajectories taken and the paths that

form are in sensorimotor space, rather than on a university

campus. The dynamic also relates to the self-reinforcing nature

of habitual behavior, where repeated performance of patterns

of behavior (e.g., the direction you look when crossing the

street; smoking a cigarette; or a tendency to worry) increases

the likelihood of similar behavior being performed in the future.

And to reiterate: the IDSMwas designed to capture the enactivist

concept of autonomy (a precarious self-maintaining system) in

a sensorimotor system—see Di Paolo et al. (2017).

More formally, the IDSM can be thought of as a function,

f , that transforms the robot’s current sensorimotor state into

an “output,” i.e., the next moment’s motor state: ft(St ,Mt) →

Mt+1. As this function is applied, the function itself also changes

as a function of the current state of sensors and motors and

the current state of the function: 1f
1t = g(f , S,M, 1S

1t ,
1M
1t ).

This change, which we shall now describe, was engineered so

that sensorimotor state trajectories would bias the system to

increase the likelihood that similar sensorimotor trajectories will

be repeated in the future.

3.4.2. Tracking sensorimotor trajectories

As the robot’s sensorimotor state changes, the IDSM

maintains a set of records called “nodes.” Each node describes

the sensorimotor-velocity (i.e., the rate of change in all sensors

and motors) for a particular sensorimotor-state at the moment

that the node was created. Each node,N, is a tuple,N = 〈p, v,w〉,

where p represents the sensorimotor state associated with the

node (referred to as the node’s ‘position in sensorimotor space’);

v indicates the sensorimotor velocity when the node was created;

and w indicates the weight of the node, a value that changes

dynamically and is used to scale the overall influence of the node.

We shall refer to these components using a subscript notation,

where the position, SM-velocity vector, and weight of node N

are written as Np and Nv and Nw, respectively.

As a robot controlled by the IDSM moves through

sensorimotor states, new nodes are created recording the

sensorimotor velocities experienced at different sensorimotor

states. Specifically, when a new node is created, its Np is set
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to the current sensorimotor state; its Nv is set to the current

rate of change in each sensorimotor dimension, and its initial

weight, N0
w.

The two vector terms (Np and Nv) can be thought of as

existing within an abstract sensorimotor space (ASMS). A many

to one mapping transforms any given position in the ASMS to a

specific sensorimotor state, according to:











3(µl)

3(µr)

σl

σr











=











ml

mr

sl
sr











(8)

where µl,µr , σl, and σr indicate a position in the four

dimensional ASMS; the vector on the right indicates the

sensorimotor state (i.e., the actual state of left-motor, right-

motor, left-sensor, and right-sensor) associated with that ASMS

position; and3(x) = sin[(4+x)2πx3] is the non-linear function

plotted in Figure 2. The purpose of this mapping is to avoid

prescribing a characteristic rate of motor change, and instead

to allow the IDSM to autonomously find habits with rates of

motor change that are neither too fast nor too slow. Different

regions of ASMS correspond to different rates of motor change.

For instance, when abstract motor state x / 0.5, a small change

in that state variable corresponds to a small change in 3(x),

the actual motor state (see the difference between the red circle

and red X in Figure 2), where an equivalent change in x when

x ' 0.7 corresponds to a greater change in the actual motor state

(blue circle and X in Figure 2). When the sensorimotor state

of the robot is unfamiliar, changes in motor activity are driven

randomly (as explained below) and this3mapping allows these

random changes in sensorimotor space to correspond to slow

or fast changes in motor state. By exploring different parts

of the abstract sensorimotor state, the IDSM can experiment

with sensorimotor patterns with different rates of change until

ones that are self-reinforcing emerge. The ASMS is also treated

as periodic so as to avoid the IDSM getting stuck at motor

boundaries (as discussed in Egbert, 2018). ASMS state variables,

µl,µr , σl, σr all ∈ [0, 1] and the ASMS distance functions

(described below) adhere to the minimum-image convention.

New nodes are added when the density of nodes near the

current sensorimotor state is less than a threshold value, i.e.,

when ψ(x) < kt . Loosely speaking, ψ is a measure of how

‘familiar’ the current sensorimotor state is, as estimated by

summing a non-linear function of the distance (Equation 11)

from every node with a positive weight to the current

sensorimotor state. Formally,

ψ(x) =
∑

N

ω(Nw)d(Np, x) (9)

ω(Nw) =







1 if Nw > 0

0 otherwise
(10)

FIGURE 2

Abstract motor-state to motor-state mapping. Changes made

to low abstract motor state [e.g., red circle and (X)] produce less

change in actual motor state (3(x)) than when the abstract

motor state is high (e.g., blue circle and X).

where x represents the current ASMS position, kt is a threshold

parameter describing maximum node-density at which new

nodes will be created and d() is the following non-linear ASMS-

distance function.

d(Np, x) =
2

1+ exp(kd||Np − x||2)
(11)

3.4.3. Nodes influence the sensorimotor state

One time unit after a node has been created, it is added to

the set of ‘activated’ nodes that influence the sensorimotor state

according to:

m =
1

φ(x)

∑

N

ω(Nw)d(Np, x)( Nv
︸︷︷︸

vel.

+A(Np − x,Nv)
︸ ︷︷ ︸

attraction

)µ (12)

This equation describes a weighted average of the influence

of all of the nodes. The influence of each individual node is

the sum of its “velocity” factor and its “attraction” factor. The

velocity factor is simply the Nv vector (i.e., the sensorimotor

velocity recorded when the node was created). The attraction

factor is defined by

A(a,Nv) = a−

(

a ·
Nv

||Nv||

)

Nv

||Nv||
(13)

and it causes the sensorimotor state to move toward the node.

The attraction term is included to cause the system to move

toward more familiar regions of sensorimotor space and to

help stabilize patterns of repeated behavior (see Egbert and

Barandiaran, 2014, 2015). The µ superscript in Equation (12)

expresses that the IDSM only (directly) controls the motor

components of the sensorimotor state. The sensory components

are the result of the robot’s relation to its environment and

so are not directly controlled by the IDSM, but are, of

course, influenced by the motor dynamics, indirectly through
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the sensorimotor contingencies determined by the robot’s

environment and body.

The influence of each node is attenuated by a non-linear

function of the distance between the node and the current

sensorimotor state. This attenuation is expressed by the term

d(Np, x) and it means that nearby nodes affect the sensorimotor

state and farther away nodes have little influence. The influence

is also attenuated by a threshold function of weight, [ω(Nw)]

such that only positively weighted nodes affect the motor

state. Previous versions of the IDSM had a more complicated

sigmoidal function in place of the simpler threshold function

used here (Equation 10). Note that the degradation of the nodes

and the threshold function of Equation (10) mean that when

nodes are not visited for a long period of time they cease to

have any influence whatsoever. Nodes that have degraded to this

point essentially cease to exist.

After a node is created, its weight changes according to:

dNw

dt
= −k↓ + k↑d(Np, x) (14)

In this equation, the first term represents a steady

degradation of the node’s influence and the second term

represents a strengthening of the node that occurs when the

current sensorimotor state is close to the node’s position.

The influence of all nodes is summed and then scaled by the

local density of nodes,

φ(x) =
∑

N

ω(Nw)d(Np, x)
∣

∣

∣

activated nodes
(15)

This equation looks similar to that used to calculate ψ

(Equation 9), but is different in thatψ describes the local density

of all nodes, where as φ describes the local density of activated

nodes only.

3.4.4. Random motor activity

When the local density of activated nodes is low, motor

behavior is random. This is accomplished by defining of a

“switch” value, s, which specifies when the behavior is to be

random and when it is to be controlled by the influence of the

IDSM’s nodes. The following equation expresses that s is 1 when

φ is low and 0 when φ is high; and that it moves between these

values in a smooth, sigmoidal manner:

s =
1

1+ exp(Rg(φ(x)− Rt))
(16)

Here, Rg and Rt are parameters that specify the threshold

of familiarity and the discreteness of the transition between

random and non-randommotor activity. This value is then used

to switch between randommotor activity (r), and IDSM’s output

(m), thus:

dµ

dt
= (1− s)m+ sr. (17)

where the random motor activity vector, r is varied over time

to produce a random walk in motor space as follows: every

iteration, there is a Rp chance that the components of r will

be assigned random values selected from a normal distribution

with a standard deviation of Rσ . The value of the Rσ and other

parameters can be found in Table 1.

4. Experiments and results

We now present two computational simulations of this

model where we vary the sensory modality of the robot

to explore how sensorimotor contingencies constrain the

forms of the sensorimotor habits that can emerge and self-

stabilize. The simulated robots and their environments are

identical except that one robot’s sensors are visual (as described

above) and the other’s are auditory. Formally, the only

difference between these simulations is the equations that

describe the stimulation of the robot’s left and right sensors

(Equations 6, 7).

To generate the data presented below, we ran 10 trials of each

condition (i.e., we simulated 10 auditory robots and 10 visual

robots) and for each condition, we selected a trial that displayed

a wide variety of habits, and for which the simulated agent

returned to one or more habits that it performed earlier but

had stopped performing for some period of time. Not all trials

did this—some instead rapidly fell into a pattern of behavior

that was stable for the duration of the simulation. Data for all

of the simulations is available at [DATA STORE LOCATION].

The analysis below covers visual simulation #9 and auditory

simulation #0.

We now present an overview of the behaviors demonstrated

by these two robots.

4.1. Visual sensors

The path taken by the visual robot through its environment

is displayed in Figure 3A. This is a complicated and difficult

to visualize trajectory, but it in fact involves several distinct

repeated patterns of sensorimotor behavior (Figures 3B–H). To

identify these, we first plotted the proximity of each of the

IDSM’s nodes to the robot’s sensorimotor state over the course of

the simulation (Figure 4). In this time series, it is easy to observe

segments of time in which a particular set of nodes is repeatedly

visited. For instance, when 750 / t / 1, 200, there are a few
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TABLE 1 Parameters.

Parameter Value Description

ROBOT

Rs 0.25 Robot speed

Rd 0.1 Robot diameter

Ro π/5 Offset of sensors from center line of robot

Rf 0.25 Falloff of sensor excitation with distance

LIGHT

Lv 0.1 Light velocity scale constant

Lr 1/3 The radius of the light’s circling motion

IDSM

kd 500 Fall-off of non-linear ASMS distance measure

k↓ 5 Node weight decay rate

k↑ 2000 Node-reinforcement rate constant

kt 1 Node-density threshold parameter, influencing when new nodes are to be added

N0
w 1000 Node weight upon creation

MOTOR BABBLING

Rp 0.1 Chance of random reassignment of random-motor walk direction and velocity

Rσ 0.25 Standard deviation of random motor components

Rt 1 Node-density threshold parameter, influencing when motor activity is random

Rg 20 Steepness of transition between random and IDSM driven motor activity

nodes with indices close to 5,000 that are repeatedly visited (tan

horizontal sequence of dots), and the same set of nodes are

briefly revisited three times in the final 500 time units of the

simulation. We manually identified these repeated patterns of

sensorimotor activity, and assigned each pattern a label and a

color (the example just provided is labeled “D” and colored tan).

Times when the robots behavior is not clearly repeated were

not assigned a label and are marked with a light gray color. To

be clear, repetitions were identified in sensorimotor space (via

the identification of repeatedly visited nodes), not in physical

space. Returning to Figure 3, we can see that when the robot is

performing the D pattern, it is moving around the environment,

regularly turning in loops with squarish corners. Figure 5 shows

how the state of the sensors, motors and the distance between

the stimulus and the robot as the trial progresses.We can see that

each of the colored regions tend to occupy particular regions of

the sensorimotor space (the sensorimotor ‘habitat’ of the habit—

see Buhrmann et al., 2013) and certain patterns of behavior

involve the robot pursuing the moving light (e.g., F-behavior)

while others avoid it (e.g., D-behavior).

Each of patterns B–H can be construed as a potential habit,

i.e., a pattern of autonomous, self-maintaining sensorimotor

activity. To justify this claim, we observe that

1. A node can persist for an extended time if and only if it is

regularly “visited,” i.e., if and only if the robot’s sensorimotor

state regularly comes sufficiently close to the node such that

the node’s weight always kept above zero.

2. The robot’s sensorimotor trajectory depends upon the nodes

in that (a) the nodes directly control how the motor

components of the sensorimotor state change, and (b)

the nodes indirectly constrain and influence the sensory

components via their effect upon the motors.

From these observations it follows that the nodes enable

the very thing that they depend upon to persist and reflexively,

the enactment of the pattern of behavior enables the very

thing that it depends upon (the nodes) for its persistence.

Similar to a model of biological autopoiesis (Varela et al., 1974),

where inherently unstable components such as metabolism and

membrane are mutually enabling, the components of these

patterns of behavior in this model are in a relationship of mutual

interdependence and support, and thus can be considered

autonomous under some readings of the enactivist literature.

The behavior itself is operationally closed entity (a “unity”),

constituted by inherently unstable components (the nodes and

the sensorimotor trajectory) and yet persists thanks to its own

enactment or performance.
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More detailed analysis of the operational closure of these

systems is outside the scope of the present paper (but see Egbert,

FIGURE 3

The trajectory taken by the visual robot (A), broken down into 8

patterns of repeated sensorimotor activity, i.e., habits (B–H). The

portions of the trajectory where the robot’s behavior is not

clearly repetitious are included in plot (I). Each of the nine plots

shows the full 1× 1 arena. Video showing this trial is available at

https://www.youtube.com/watch?v=2v1TyvKz9qw.

2018 for initial analysis of the precarious autonomy of a simple

IDSM-based habit). We can see the basic idea however, when we

consider how the weight of the nodes changes as time passes in

the simulation (see Figure 6). Recalling that when the weight of

a node reaches zero, that node ceases to exist, it is clear that only

nodes that are regularly visited can persist in the long term. For

a collection of nodes to be visited, the sensorimotor trajectory

must move in a particular trajectory and the sensorimotor

trajectory is largely determined by the activity of nodes. It

follows from this that the only way that a pattern of behavior can

persist is if it is one that causes the repeated revisitation of its

constituent nodes. We can also note that this self-reinforcement

of a habit need not be constant or contiguous. For example, the

B-habit (red) is established early in the simulation [t ≈ 250)]

and then is not visited again until t ≈ 1, 250, where it is

enacted a few times and the nodes are reinforced such that they

survive until close to the end of the simulation. The parameters

that prescribe the rates of node weight reinforcement (k↑) and

degradation (k↓) determine how regularly patterns of behavior

must be enacted if they are to persist.

4.2. Auditory sensors

We performed a similar analysis on the auditory robot.

Figure 7A shows the complete path taken by the auditory robot

in its environment, broken down by habit (Figures 7B–H).

Figure 8 shows the weight of each node which also provides

FIGURE 4

Node proximity during the course of the visual robot’s simulation. The darker the point in this plot, the closer that node is to the robot’s

sensorimotor state at that point in time. The larger colored points indicate the index of the node that was closest (in sensorimotor state) to the

robot’s sensorimotor state at that time. The color of the closest-node points indicates the habit that those nodes are associated with. These

colors match those in Figure 3.
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FIGURE 5

State of sensors and motors for the simulation of the visual robot.

FIGURE 6

Node weight during the course of the visual robot’s simulation. The weight of each node (shades of gray) are shown as time progresses during

the simulation. After most nodes appear, their weights decay (become lighter as time passes), but some nodes are regularly visited and their

weights are reinforced (long gray horizontal lines). The closest node at any time is plotted in color, just as in Figure 4.
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FIGURE 7

Spatial trajectory taken by the auditory robot (A); broken down

into “habits” i.e., self-reinforcing patterns of behavior (B–H); and

portions of the trajectory not associated with any habits (I). Each

of the nine plots shows the full 1× 1 arena. Video showing this

trial is available at https://www.youtube.com/watch?v=

If_WeclEtCM.

an indication for how close each node is to the current

sensorimotor state of the robot and the timeseries plots for the

auditory robot are shown in Figure 9. It is worth noting that

though these patterns of behavior may seem random, they all

(both visual and auditory) relate to the moving stimulus source

in regular, non-random ways. The regularities in the interaction

with the stimulus are much more easily seen in the animations

linked to in the captions of Figures 3, 7).

4.3. Comparison of sensorimotor
structures

Even when two behavior’s functions are the same (e.g., they

both accomplish taxis) the forms of the underlying sensorimotor

habit can be different. As a case in point, we can compare

auditory habit E with visual habit F. In both cases, the robot

circles around the stimulus, maintaining a similar approximate

distance from the stimulus as the stimulus moves in spurts

around the environment. When we look at the two patterns of

sensorimotor activity (Figure 10), we see two different pictures.

Each row of this visualization shows the spatial trajectory

of the robot (left) followed by four projections of the 4D

sensorimotor trajectory of the robot and it is obvious that

the two sensorimotor trajectories are qualitatively different.

The auditory pattern involves less diversity in the range of

states visited; the mean and other statistical properties of the

sensorimotor trajectories are also clearly different, etc. But every

habit in this model is unique—how much of the difference

between these habits is simply due to the fact that they are

different habits, and how much is due to the difference in the

robot’s sensorimotor modalities?

To address this question, we can look at projections of the

sensorimotor trajectories of all of the habits of the visual robot

(Figure 13) and observe that there are regularities in the forms

of the habits of this robot. This is most readily seen in the left-

sensor vs. right-sensor projection (upper right) which reveals

elements of this robot’s sensorimotor contingencies, including

aspects of both its sensorimotor habitat and environment

(Buhrmann et al., 2013) of the robot. Specifically, the bilateral

symmetry of the robot’s embodiment result in a (statistical)

mirror symmetry across the left sensor = right sensor diagonal.

The directionality of the visual sensors and their different

orientations mean that it is impossible (in the environment with

a single stimulus) to maximally stimulate both left and right

sensors concurrently, leading to the L-shape apparent in upper-

right plot of Figure 13, with arcs that pass between the stems of

the L as the robot turns such that the stimulus moves from being

in front of one sensor to in front of the other. These features are

also found in the other nine visual robot trials.

Similar plots for the auditory robots (Figure 14) also

reveal regularities. Like the visual robot, the auditory robot’s

embodiment is bilaterally symmetric and so it has the same

symmetry across the diagonal in left-sensor/right-sensor plot,

but the non-directionality of the auditory sensors and the fact

that their excitation does not fall off with distance make other

aspects of the sensorimotor activity different. The auditory

trajectories tend to repeat patterns of diverging from a center

point in short arcs in a pattern of returning and diverging

again, in a different direction. These dynamics can be seen in

greater detail in Appendix A, which shows the projection in

sensorimotor space of each habit individually.

Sensors and motors are involved in a recursive relationship

of influence, where sensors influence motors (via the controller)

and motors influence sensors (via the effect of actions upon the

environment and the agent’s relationship to the environment).

It therefore would make sense that the constraints imposed

upon sensory dynamics by different sensory modalities would

constrain the motor dynamics. In other words, under one

sensory modality, certain motor trajectories will be more readily

repeated (and thus stabilized) than others, and which motor

trajectories are more readily repeated would depend upon the

sensory modality.

We do, in fact, see differences in the distributions of motor

states between the two sensory conditions (Figure 11). Visually,

we can see that the distributions of motor (and abstract motor)

states in the visual robots seem different than that of the

auditory robots (Figure 11); and the distributions of motor

states within these groups in independent runs of the visual

trial seem more similar to each other (Figure 12) than they are
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FIGURE 8

Node weights with nodes closest to the current sensorimotor state of the auditory robot highlighted and marked by color of habit.

FIGURE 9

State of sensors and motors for the simulation of the auditory robot.
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FIGURE 10

Contrasting the sensorimotor dynamics of two “circling” habits. In both cases, the robot circles the stimulus, but they use di�erent sensory

modalities to do so. The patterns of sensorimotor activity are clearly di�erent despite the external “functional” description of the behavior.

to the other group. We confirmed the statistical significance

of these differences by using Kullback–Leibler divergence to

assess the distributional conformity of 50 visual trials and 50

auditory trials. The within-group (intra-modal) distributions

were significantly more similar than the between-group (inter-

modal) distributions form (t = –4.67, p = 0.0114) and for µ (t =

–8.507, p = 0.0215).

In the absence of the self-reinforcing dynamic of the IDSM,

habits, motor activity would be random, in which case we would

expect the same distribution of motor states in both sensory

modalities. The histograms in (new) (Figures 11, 12) show that

this is not the case, and thus provide support for the claim that

the sensorimotor contingencies implicit in the different sensory

modalities constrain not only the sensory dynamics, but also

motor dynamics—and in doing so, they play an important role

of constraining the form of emergent autonomous sensorimotor

dynamics.

The primary point that we wish to communicate using

this model is that sensorimotor contingencies influence which

patterns of autonomous sensorimotor behavior can emerge and

persist. It is worth emphasizing that the plots in Figures 10,

13, 14 are not plots of the sensorimotor contingencies of the

robot—they are plots of the robots’ self-maintaining habits.

Nevertheless, we see in these plots the influence of sensorimotor

contingencies—the way that the contingencies have constrained

the set of habits that can form and self-stabilize, producing the

regular patterns described in the paragraphs above.

The two different sensory modalities entail two different

sets of sensorimotor contingencies. The different sensorimotor

contingencies each imply a different set of possible self-

stabilizing habits, and so the habits that form with one sensory

modality are more similar to each other than they are to the

habits that form with the other sensory modality. Two visual

habits will be different from each other, but they will generally

be more similar to each other than auditory habits. This is

what we mean by the claim that the form of sensorimotor

habits are constrained by their sensory modality and it is

apparent in the regularities described above and seen in

Figures 13, 14. In this account, sensorimotor contingencies play

an important role. They influence the form of the emergent

autonomous sensorimotor strutures, but the rules themselves

are not internalized or learned in any other way.

5. Discussion

5.1. Solving somebody else’s problems vs.
having your own problems

The robots we have just presented display a number of

interesting and challenging features for traditional problem-

solving centered artificial intelligence (biologically inspired or

otherwise). We see in this model how sensorimotor dynamics

can have problems of their own. As we have seen AI and robots

more specifically are generally built to solve problems. But whose

problems? Perhaps the engineers’ problems or those of their

clients, perhaps animal problems that require robotic models

to be better understood, maybe societies problems but certainly
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FIGURE 11

Histograms showing di�erence in distributions of sensorimotor states for 50 visual and 50 auditory trials. As expected, the di�erent sensory

modalities produce di�erent distributions of the sensor state. It can also be seen that in visual trials, the abstract motor-state tended to be higher

(corresponding to faster rates of motor state change—see Figure 2) and the motor state tended to be more extreme.

not those of the robot itself. It is thus important to distinguish

between having one’s problem vs. being able to solve a problem.

A bacterium that swims up a gradient toward the resources it

needs to survive is doing both. It has a problem (it needs food

to persist) and it solves that problem by navigating through

its environment. AI, on the other hand, is capable only of the

former. A “self-driving” car that takes me to a restaurant dinner

is solving a problem (my need for food), but that problem is

mine, and not the car’s.

The enactive robots presented in this paper where not

designed to do anything, to solve any problem. None of our

analysis was described in terms of success or failure at the

performance of a task. The architecturemakes habits emerge and

with them a basic sense of having a problem: the habit needs to

enact itself in order to persist. The norms of behavior here are

thus only in terms of the persistence of the behavior itself (and

concurrently the mechanism that produces it). Surely, life is full

of problems, we certainly have enough with our own and don’t

need to be concerned with creating new ones . . . unless we want

to understand what it is to have a problem and how life is, itself,

a source of problems. Enactivism embraces a deep conception of

life as the self maintenance of a network of precarious processes.

In this sense life is inherently a source of problems. By making

it possible for habits to emerge and sustain their own existence

through recurrent sensorimotor interaction we have shown how

this conception of life can be practically transferred to a “way of

life” in sensorimotor robotics.

A research program on enactive robotics can and must

address how sensorimotor life is a source of problems. We can

move beyond the single habit and envision how the network of

habits that constitutes the agents can display emergent problems

of its own: that of keeping the whole network alive, coping with

variations on the way the environment affords or precludes to

enact them. This line of enquiry requires further work but the

present model requires little development to start addressing it.

5.2. Constraints and form in biological
and behavioral explanation

Biological inspiration in robotics can also move beyond

the analogy between metabolic or physiological life and its
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FIGURE 12

Histograms showing in-group similarity in sensorimotor state for visual trials (left) and auditory trials (right).

sensorimotor counterpart. In particular the models presented

and analyzed in this paper show how sensorimotor life and

the problems that emerge within are constrained by sensory

embodiment and how such constraints constitute an important

part of what it means to explain life.

Whether it is understood as more fundamental-than,

complementary-to or directly at odds-with (Newman, 2018)

natural selection, it is the repeated, regular, robust and often

phylogenetically independent appearance of forms or structures

in biology what becomes in itself an object of study that

cannot be reduced-to or deduced-from life as a response to

environmental problems. In this sense biologically inspired

enactive robotics can learn from biological development and

its organization and import into psychology some explanatory

strategies followed by biologists. Darcy Thompson, René

Thom, Pere Albert, etc. all conceived biological forms to be

both explananda and explanans on themselves. Homologies,

analogies, inherency, are all concepts directed to capture the

re-emergence of certain forms (and functions!) in biological

organisms. The notion of constraint plays here a fundamental

role. The way in which different layers of materiality and self-

organization limit and channel the emergence of viable forms is

essential to biological explanation.

If biological inspiration within the problem-solving

paradigm concluded that the material embodiment of

robots permits to offload and transform the problems to be

solved, the biological inspiration of the enactive paradigm

can conclude that the embodiment loads and informs the

problems that constitute the sensorimotor agent. As we

have seen, sensory modalities constraint motor trajectories,

which in turn, shape how habits get stabilized. Thus, in

a way that parallels the explanatory role of constrains in

evolution, we can hypothesize that behavioral variability is

not free (to explore potential solutions to cognitive problems)

but is constrained and channeled by the embodiment of

the agent.

Now, before the advent and widespread influence of

evolutionary theory in biology, the latter synthesis with

molecular biology and subsequent expansion to psychology,

sociology and even epistemology, or philosophy more generally,

the concept that was key for the continuity between life and

mind was that of habit.

5.3. Enactive robotics revisited

There are different takes on how enactivism translates into

robotics. As mentioned in the introduction it is possible to

simply reject representational functionalism, or to claim for

the importance of embodiment, or to demand that robot be

endowed with living bodies, or to introduce some feedback

mechanisms that parallel those provided by emotion bearing

bodies. We have taken a different approach—that envisioned

by Smithers (1997) and latter developed by Di Paolo (2003),

Barandiaran andMoreno (2006), and Barandiaran (2008). What

a research programme in enactive robotics entails is the study

of the organization of sensorimotor life: the form of viability

of different habits, the topology of the network of habits that
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FIGURE 13

Sensorimotor dynamics for the visual robot. These plots show motor trajectories in abstract sensorimotor space (upper left); two projections of

the actual sensorimotor trajectories of the robot (upper and lower right); and the mapping function, 3, that transforms the abstract motor state

to an actual motor state (see Section 3.4.2). Colors indicate habits as in previous plots.

unfolds over development, the shape of the habitat that is thus

constructed, the structure of the world that is experienced.

Habit-based robots as designed here are capable of individuating

habits and of creating an ecology of habits that can easily be

understood as a form of sensorimotor self.

Not only has enactivism informed robotics (Ziemke and

Lowe, 2009; Vernon, 2010) but robotics has often served

enactivism (Beer, 1995; Di Paolo, 2003; Aguilera et al., 2016)

by clarifying its claims, pushing theoretical development,

operationalizing its concepts or penetrating diverse problems.

The model we developed here can be aligned with the latter.

It can be used to clarify and make explicit the often obscure

original formulation of enactivism that “cognition in its most

encompassing sense consists in the enactment or bringing forth

of a world by a viable history of structural coupling” (Varela et al.,

1991, p. 205). We have shown how a robot endowed with an

IDSM can bring into being a number of habits, the world that

it brings forth is the habitat, more specifically, the structured

set of sensorimotor contingencies that the agent inhabits or

enacts. This habitat must be viable in the sense that habits

must be sustainable and results from a (developmental) history

of sensorimotor (structural) coupling. And in so doing, we

have demonstrated how sensorimotor contingencies can directly

constrain or “sculpt” the form taken by sensorimotor habits

without requiring any virtualization, i.e., without any internal

model or representation of the sensorimotor contingency.

Perhaps it is worth clarifying why the nodes do not

constitute an internal model or representation. The nodes do not

stand-for something else other than the sensorimotor dynamics

they partake in. It is not possible to operate upon the nodes

in a decoupled offline mode that is not itself the enactment of

a behavior, and there is not additional module or subsystem
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FIGURE 14

Sensorimotor dynamics for the auditory robot. This figure is the same as Figure 13 but plotted for the auditory robot.

“consuming” such nodes to carry out any further operation. In

these ways, the nodes do not represent a behavior or habit, but

they embody it—they constitute the habit together with elements

of the robot’s bodily and environmental dynamics.

6. Conclusion

A central focus across the cognitive sciences is upon

problem-solving ability and tremendous progress has beenmade

in understanding how to mechanize problem solving. Much

of AI and robotics research is validated by how well some

artifact (neural network, human being, robot, etc.) performs

at a problem-solving task (chess, maze navigation, bipedal

walking, etc.).

However, the conflation of “problem-solving ability” with

all of the phenomena associated with ‘being a mindful body

leaves out a number of features that demand be put at

the center of (enactive) theorizing: historicity, embodiment,

habitat, precariousness, identity, norm-establishing, etc. All

these dimensions of mental life are worthy of study and

remain outside of the problem-solving frame that scaffolded the

development of Artificial Intelligence and Robotics.

We have here presented a set of robots with different sensory

modalities that spontaneously develops a complex ecology of

sensorimotor habits. These are constrained by the sensory

modality of the robot and give rise to sensorimotor habitats

of specific forms. The very nature of habits thus developed,

understood as self-sustaining forms of sensorimotor activity, has

shown how robots must first have their own problems instead

of solving those posited by external observers; and, that, in

doing so, they must assert a form of life whose structure and

topology must be taken as the object of study. In particular we

have seen how the form of sensory embodiment shapes potential

sensorimotor contingencies and these constraint the shape and

type of sensorimotor habits that emerge during development.
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To be alive is not a computable function but the way in

which materiality (implementation), behavior and function are

deeply intertwined. What was once claimed as the triumph

of functionalism as the clear conceptual separation between

matter, behavior and machine state transitions is now its deepest

weakness. The enactive approach brings all three together again.

To be fair it is not the materiality of the robot’s “body” that is a

stake here (neither does the simulation itself possess any body

beyond the computer in which the simulation was carried out,

not the physical body, e.g. wheels and sensors, would be at stake

was the robot to be implemented in real life), but the materiality

of the sensorimotor mapping, its precarious existence, its fading

structural stability.

Perhaps the “artificial sciences” (AI, artificial life, robotics,

exploratory computational modeling, etc.) would benefit from

similarly investing more time in targets other than problem-

solving ability. Biologists are sometimes accused of suffering

“physics envy”—i.e., wishing that the objects of their study were

more easily and completely summarized by simple, provable

equations. Perhaps we enactivist and embodied researchers

can be accused of “problem-solving envy” a desire for our

artifacts and theories to be equally or more capable of solving

problems as the expert systems or disembodied neural networks

of other problem-solving focused approaches. And perhaps

this envy is a distraction, and impeding our progress toward

understanding minds. In fact, robotics cannot only reveal itself

as an engineering practice directed at solving problems but also

as a philosophical practice aimed at posing the right problems.

This is a contribution that enactive robotics is ready to do.
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Appendix A

FIGURE A1

Projections of the sensorimotor trajectories of the visual robot. Colors and letters (B–H) are included to facilitate comparison with Figure 3. (A)

Shows the superposition of trials (B–H).
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FIGURE A2

Projections of the sensorimotor trajectories of the visual robot. Colors and letters (B–H) are included to facilitate comparison with Figure 7. (A)

Shows the superposition of trials (B–H).
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Although the increase in the use of dynamical modeling in the literature on

cultural evolution makes current models more mathematically sophisticated,

these models have yet to be tested or validated. This paper provides a testable

deep active inference formulation of social behavior and accompanying

simulations of cumulative culture in two steps: First, we cast cultural

transmission as a bi-directional process of communication that induces a

generalized synchrony (operationalized as a particular convergence) between

the belief states of interlocutors. Second, we cast social or cultural exchange

as a process of active inference by equipping agents with the choice of who to

engage in communication with. This induces trade-o�s between confirmation

of current beliefs and exploration of the social environment. We find that

cumulative culture emerges from belief updating (i.e., active inference and

learning) in the form of a joint minimization of uncertainty. The emergent

cultural equilibria are characterized by a segregation into groups, whose belief

systems are actively sustained by selective, uncertainty minimizing, dyadic

exchanges. The nature of these equilibria depends sensitively on the precision

a�orded by various probabilistic mappings in each individual’s generative

model of their encultured niche.

KEYWORDS

active inference, generalized synchrony, communication, social dynamics, cumulative

culture, complex systems

1. Introduction

The study of cultural evolution examines how processes of transmission and selection

at the individual level bring about population level patterns of cultural change. As a

general overarching trend, models of cultural evolution have seen a steady increase

in complexity, resulting from specialized theories from social psychology on the
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interconnected dynamics of culture. For instance, a recentmodel

of cultural systems (Jansson et al., 2021) applied a framework

that implements the structural dependencies between cultural

traits and the emergent ways that these dependencies influence

the acquisition of cultural transmission.

Another step in the direction of increasing the complexity

and systems view of culture has been the investigation of the

relationship between population structure and the capacity for

a culture to accumulate beneficial cultural traits over time

(i.e., cultural accumulation), which has been a particular topic

of interest in the past decade. Although some empirical tests

provide support for the hypothesis that effective population size

constraints cumulative cultural evolution (Derex and Mesoudi,

2020), there is contradictory evidence regarding the relationship

between population size and cultural accumulation (Kempe and

Mesoudi, 2014). Another study theorizing about the foundations

for the uniquely human capacity for cultural accumulation

suggests that this capacity is rooted in a unique foraging

niche which can still be observed in few hunter-gatherer

populations. This niche, encompassing social interactions

such as cooperation with unrelated individuals and social

division of labor, underlies a task specialization which spreads

cultural knowledge across individuals. This task division, a

multilevel social structure which evolved as an adaptation to the

environment, may explain human collective intelligence and its

unique capacity for sophisticated cumulative culture (Migliano

and Vinicius, 2022).

While the increase in the use of dynamical modeling

in the literature on cultural evolution makes current models

more mathematically sophisticated, these models have yet to

be tested or validated (Kashima et al., 2017). Review of the

literature reveals that one line of research that has been

especially fruitful in that it can be validated experimentally

are Bayesian models that create detailed models of cognition

and have had remarkable success in producing predictions

qualitatively in accord with experimental results (Kempe and

Mesoudi, 2014). Currently these models have only been

applied to relatively low level cognitive processes, but the

creation of high level cognitive maps at the individual level

as well as modeling the emergence of cultural change on

the population-wide dynamics represents a promising line of

future work.

The dynamics underlying the evolution of culture consist

of three processes that are typically studied separately: the

introduction of novel beliefs and practices to a culture (i.e.,

innovation), the transmission of established beliefs and practices

within a population (i.e., innovation diffusion), and changes

in their prevalence (Kashima et al., 2019). The term “cultural

transmission” typically denotes the transference and spread

of any particular fashion, ideology, preference, language, or

behavior within a culture (Creanza et al., 2017). A prominent

stream of quantitative models for cultural transmission are

inspired by epidemiology, and convert models used for

predicting the spread of a virus to formalize the spread of an

idea (Bettencourt et al., 2006).

While the comparison of an idea to a (non-mutating)

virus has its benefits from a formal perspective, it implies the

controversial notion that an idea is simply copied during its

transmission through cultural exchange between individuals.

This notion is not only intuitively insufficient for a realistic

characterization of communication dynamics, but also conflicts

with established theoretical models of transmission on these

same grounds.

Current literature in cultural psychology indicates that

rather than being simply duplicated during transmission,

cultural beliefs and practices are modified through the active

interpretation of each individual (Kashima et al., 2019).

Furthermore, psychological research indicates that effective

human communication can be characterized by (usually only

partially) common realities in which conversation partners share

an intersubjective reference frame (Clark and Brennan, 1991;

Echterhoff et al., 2009). Accordingly, conversation partners have

to be understood as active participants that co-create these

partially shared reference frames in a self-organizing fashion

over the course of each interaction. Intersubjective theories of

communication aim to account for those underlying dynamics

that—slightly paradoxically—both enable and (to some extent)

require the co-creation of (partially) shared reference frames

amongst interlocutors. In contrast, traditional formulations have

tended to oversimplify communication in terms of back-and-

forth exchanges based on (largely) fixed symbolic meaning

systems, implicitly presupposing those shared reference frames

in an ad-hocmanner.

The theory of cumulative culture (Stout and Hecht, 2017;

Dunstone and Caldwell, 2018) expands on the notion that

progressive alterations of cultural beliefs and practices are

intrinsic to all cultural exchanges because they are embodied,

expressed, and interpreted differently by each individual

participant of the ensemble (Dean et al., 2014). While efficient

cultural exchanges do tend to be grounded in similar physical

substrates across and within individuals (e.g., facial expressions,

body language, etc.), the high abstraction levels and malleability

of these substrates render cultural dynamics in a different class

than phenomena that are wholly dependent on consistency

across genetic substrates, such as sexual reproduction and

disease spread. Of course, genetics does play a crucial role in the

range of phenomena associated with gene-culture co-evolution,

but that will be explored in future work.

Although there appears to be some degree of consensus on

the intrinsic complexity of culture, it remains an outstanding

challenge to provide convincing quantitative accounts of its

full glory (Buskell et al., 2019). This article aims to act as a

stepping stone toward tackling this challenge of characterizing

cumulative culture by developing a multi-agent model based

on deep active inference account. This work was developed

by reformulating and greatly expanding upon a much shorter
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conference contribution that was previously published by the

two lead authors (Kastel and Hesp, 2021) and publicly available

as an open-source preprint. The three Figures that were adapted

or reprinted from that conference paper have been highlighted

(Figures 2, 8, 9). Textual overlap has been minimized and

reprinted Figures have been highlighted where relevant.

2. Methods

An emerging conclusion from the literature is that the term

“transmission” for describing the spread of cultural information

seems impoverished, as it leaves out the retention of cultural

information. As implied by active inference—and theoretical

models of communication—the acquisition of cultural beliefs

is as fundamental to the understanding of cultural information

spread as their transmission. For this reason, we will henceforth

be referring to what is known in the literature on cultural

transmission as communication, or more technically: the local

dynamics of cumulative culture. Although we will use the

term “communication” and “transmission” interchangeably in

this paper, It is important to note that communication does

not always imply cultural transmission. Cultural transmission,

also known as cultural learning, refers to the learning of

social behaviors that occurs in every new generation in a

particular society (Nicol, 1995). Since cultural transmission

only occurs when social behaviors or beliefs are learned,

communication only truly implies transmission when what

is being communicated has been picked up and solidified

in the receiver’s cognitive model. We assume this kind of

communication in our simulations, which is why under our

account communication does imply transmission.

Conversely, cultural transmission can occur without

communicating information through language. It has been

suggested that humans learn the social behaviors of their

culture through immersive participation in cultural practices

that selectively shape attention and behavior. This is a form of

implicit learning, where agents infer other agents’ expectations

about the world and how to behave in a social context. It

is even argued that implicit learning of information about

other people’s expectations constitutes the primary domain

of statistical regularities that humans leverage to predict

and organize behavior (Veissière et al., 2020). Although

cultural transmission does not necessarily require verbal

communication, we assume this kind of communication in

our simulations.

2.1. Simulating the local dynamics of
communication

In our model, cultural transmission is cast as the

mutual attunement of actively inferring agents to each other’s

internal belief states. This builds on a recent formalization of

communication as active inference (Friston and Frith, 2015)

which resolves the problem of hermeneutics, (i.e., provides a

model for the way in which people are able to understand

each other precisely, despite lacking direct access to each other’s

internal representations of meaning) by appealing to the notion

of generalized synchrony as signaling the emergence of a shared

narrative to which both interlocutors refer. From the perspective

of active inference, agents of a socio-cultural system infer the

belief states of those in their environment and update their

own representations accordingly. An emergent property of this

bi-directional inference—and implicit belief updating—is the

synchronization of belief states among the cultural ensemble

(Palacios et al., 2019).

In nature, generalized synchrony emerges from a specific

coupling between the internal states of dissipative chaotic

systems (Pikovsky et al., 2003). As a fundamental concept in

complex systems theory closely related to stochastic resonance

(Nicolis and Nicolis, 2012), it is typical of complex nonlinear

dynamics that afford the coexistence of chaotic and ordered

subsystems (also called chimera patterns; see, e.g., Zakharova,

2020; Haugland, 2021). In active inference, the coupling of

agents’ internal states is made possible through communication,

as it allows interlocutors to mutually influence each other

and enter into a bidirectional action-perception cycle that

can be described as coupled dynamical systems (Friston and

Frith, 2015; Constant et al., 2018). When active inference

agents engage in the coupled dynamics of communication,

generalized synchrony between their internal states emerges

from their mutual efforts to minimize uncertainty—as scored

mathematically with (variational) free energy. Put simply,

generalized synchrony ensures the greatest mutual predictability

error resolves the greatest amount of collective uncertainty.

Our model of communication builds on the notion of

generalized synchrony to suggest that the emergence of

synchrony from the coupled communication of active inference

agents may be operationalized as a particular convergence

between their respective generative models. That is, when

we simulate the belief-updating dynamics of communicating

agents, the cultural reproduction of a particular idea takes

the form of a learnable convergence between their respective

belief states (expressed as generative models) and distinct

representations combine into one synchronized, shared model

of the world.

Formally, our model defines perceptual inference in terms of

a coupling parameter linking the internal states of interlocutors

through dialogue (Figure 1). Also understood as sensitivity to

model evidence (A1), perceptual inference is a direct and explicit

form of coupling that occurs over the span of a single dialogue

such that it is hypothesized to modulate agents’ convergence of

internal belief states during communication.

While throughout the narrative of this paper we have

characterized the alternative “idea” as having actual content, we
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have intentionally left it unspecified such that it could also be

taken to simply refer to a blanket disagreement with the ideas

or practices representing the “status quo.” In that sense, it is

consistent with simulation work on social dynamics suggesting

that cultural extremism can arise without the formulation of

alternatives (e.g., see Kashima et al., 2021).

2.2. Simulating the global dynamics of
cumulative culture

Cultural beliefs and practices spread within a society

through communication, a process which we have referred to

as the local dynamics of cumulative culture. This description is

appropriate because the accumulated outcomes of each (local)

dyadic interaction collectively determine the degree to which an

idea is prevalent in a culture. Moving from local communication

dynamics to the prevalence of a communicable idea—in a

cumulative culture—is what we will refer to as the global

dynamics of cumulative culture.

In our simulations of a cumulative culture, 50 active

inference agents simultaneously engage in local dyadic

communication as illustrated. Forty-nine of our 50 agents were

initialized as adhering to a similar idea, which could be regarded

as the status quo (indicated with the color red later on), while

the initial strength of their adherence to this consensus varied

across individuals because we generated the parameters of

their generative models from various probability distributions

to characterize variability in the population (described in the

Appendix). The same holds for other modulators of cognitive,

affective, and behavioral variability, such as (1) expectations

about each other’s expressions, (2) habit formation, and (3)

emotional valence states (all described below). Jointly, the

emergent effects of these individual differences gave rise to

factions that vary in their adherence to the current consensus,

in a way reminiscent of political diversity in real-life cultural

environments: strict conservatives, centrists, and skeptics (see

also Figure 6 below). In order to illustrate this spectrum, we

introduced one agent (labeled “rogue agent” in Figure 6) whose

idea strongly contradicted the consensus and who was fully

resistant to the consensus idea. When we introduced this agent

adhering to a divergent idea to the population, it propagated

via pseudo-random engagements of agents in dialogue. In this

simulated world of actively inferring agents, their individual

mental (generative) models were slightly modified with every

interlocutor they encounter, as their distinct representations

converged to a shared narrative (Friston and Frith, 2015;

Constant et al., 2019). The attunement of interlocutors to

each other’s generative models on the (local) microscale thus

translated over time and with multiple encounters into collective

free energy minimization on the (global) macroscale.

3. A generative model of
communication

For a formal (variational free energy) proof of principle,

we offer an active inference account of cultural dynamics.

A foundational step in this endeavor is the formulation of

generative models underlying the decision making of agents that

can be deployed in simulations.

Active inference assumes that the brain-body systemmimics

a Bayesian inference machine by embodying a model of itself

acting in the world and using local observations to secure

evidence for that model. This model is “generative” in that it

generates predictions of what observational data should look

like, given that the model is correct. Predictions are compared

with actual observations and any discrepancies (known as

“prediction errors”) are used to update the generative model

(Smith et al., 2019). This (Bayesian belief) updating can be at

a fast timescale corresponding to inference about the hidden

causes of observations—or at a slow timescale corresponding

to learning the parameters of the generative model, which

best explain the inferred causes. For an elaboration on the

mathematical foundations of active inference, the reader is

referred to Friston K. et al. (2017).

In our simulations, agents attempt to convince each other

of a cultural belief under generative models that operate with

local information only. We formulate these generative models

as a partially observed Markov decision process (MDP), where

beliefs take the form of discrete probability distributions (for

technical details on MDPs in active inference, see Hesp et al.,

2019). To simulate active inference under these models, one

specifies variables—such as hidden states (x, s), observable

outcomes (o) and one-step action policies (u)—alongside

parameters specifying the probabilistic relationships between the

variables in question.

Agents’ recollection of a visit is thus an expression of

humans’ innate ability to infer each other’s expectations, which

makes human cognition, sociality, and culture possible at all

(Veissière et al., 2020). This rests on the idea that humans, having

evolved to rely on elaborate and highly coordinated action, have

expectations regarding other agents’ sharing aspects of their

own generative model, and thereby believing that other agents

have those expectations as well. These carefully and implicitly

coordinated and co-constructed expectations allow agents from

a particular culture to learn what to expect from each other

and leverage those expectations to act accordingly in their

environment. In our model these expectations are manifested

as agents’ information and preference-seeking, which are biased

toward the selection of similar interlocutors to engage with,

in conversation.

MDPs allow for the construction of a deep hierarchical

model comprising nested levels of complexity. Below we will
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FIGURE 1

Communication Coupling Parameters. Our model defines two groups of parameters that couple the internal states of agents: Learning and

inference. Perceptual learning (A2) is the learning of associations between emotional valence and belief states that guide the long term actions

of our agents who hold and express beliefs. This learning happens at slow time scales, accumulating across multiple interactions and used to

modify models over extended periods of exchange. Perceptual Inference (A1)—namely, sensitivity to model evidence—operates on fast time

scales and is direct and explicit to agents during dialogue. Importantly, we hypothesized that without precise evidence accumulation, agents

would be insensitive to evidence regarding the belief state of the other, and their internal states would not converge.

describe those levels and detail the cognitive processes that take

place within each one (Figure 2).

For our simulations, six kinds of matrices were

parameterized (A, B, C, E, C, and G) using two kinds of

concentration parameters (α,ε) for Dirichlet distributions, and

temperature and rate parameters for precision terms (indicated

with γ ; see Figure 3 and Appendix A9).

3.1. Perceptual inference

The first level of this generative model captures how

agents process belief claims they are introduced to through

conversation with other agents. The perception of another’s

beliefs requires prior beliefs (represented as likelihood mapping

A1) about how hidden states (s1) generate sensory outcomes (o).

Specifically, our agents form expectations about the likelihood

of encountering expressions of particular ideas, given their

beliefs about the degree of consensus in the agent’s social

circles and their past experiences with individual agents.

Parameterizing this (likelihood) mapping in terms of precision

can be understood as parameterizing each agents’ sensitivity

to the claims of others. High precision here corresponds with

high sensitivity to claims. The likelihood precisions for each

agent were generated from a continuous gamma distribution,

which was skewed in favor of high sensitivity to evidence at the

population level (see Figure 2: Perception).

3.1.1. Perceptual inference as a coupling
parameter

The sensitivity to another agent’s claims (A1), represents

the explicit coupling between interlocutors, in terms of how

much belief updating one agent can induce in another agent.

It is a key element in our simulations (Figure 1). We call

this parameter explicit because it modulates the direct (i.e.,

explicitly articulated) and immediate (i.e., occurs over the

course of a single interaction with an agent) influence of

agents’ claims on the beliefs of others (Friston and Frith,

2015). In other words, sensitivity to claims—encoded by the

likelihood precision—couples the belief states of interlocutors

via their claims or utterances to each other (Figure 8). Crucially,

belief updating depends not only on their adherence to

each other’s claims but also a certain (varying) degree of

commitment to their own beliefs. The balance is determined

by each agents’ sensitivity to sensory evidence; i.e., the claims

of interlocutors.

Technically, we can describe belief updating in terms of the

generative model in Figure 3 as follows:

• Initial higher-level core support for the idea at the

beginning of the simulation (T = 1):

P(x
(2)
core,T=1) = Cat(D(2)) (1)
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FIGURE 2

A generative model of communication. This Figure was reprinted from an open-source preprint of a conference paper, with permission of the

authors (Figure 1 of Kastel and Hesp, 2021). Variables are depicted as circles, parameters as squares and concentration parameters as dark blue

circles. Visualized on a horizontal line from left to right, states evolve in time. Visualized on a vertical line from bottom to top, parameters

underwrite a hierarchical structure that corresponds to levels of cognitive processing. Parameters are listed on the left of the generative model

and variables are on the right.

• Evolving higher-level beliefs after each meeting (T > 1),

introducing volatility over time:

P(x
(2)
core,T |x

(2)
core,T−1) = Cat(B(2)) (2)

• Initializing lower-level beliefs about the claims of others,

based on higher-level (cross-meeting) beliefs:

P(x
(1)
idea

) = Cat(x
(2)
core,T) (3)

• Updating beliefs about the other agent’s belief based on

their claims (Appendix A7), within the current meeting:

Q(x
(2)
idea

) = Q(x
(1)
idea

) = Cat(oexpr) (4)

• Updating of core belief based on claims of self and another

agent after each meeting (detailed descriptions of the

computations involved in this belief updating can be found

in the Appendix):

Q(x
(2)
core) = σ (ln x

(2)
core + γ

(2)
A,self

ln oexpr,self

+γ
(2)
A,other

ln oexpr,other) (5)

3.2. Anticipation

At the first level, our generative model specifies the agents’

beliefs about how hidden states (detailed in Appendix A2) evolve

over time. The precision of state transition probabilities in

B1 (Figure 3C) specifies the volatility of an agent’s meeting

location (s2) and beliefs in particular claims (s1) [B1]. For

each agent, this precision parameter is sampled from a gamma

distribution, determining the a priori probability of changing

state, relative to maintaining a current state. Note that belief

states themselves are defined on the continuous range (0, 1)

(i.e., as a probability distribution on a binary state), such that

repeated state transitions tends to result in a continuous decay

of confidence over time, in the absence of new evidence (where

the rate of decay is inversely proportional to the precision of B1)

(see Figure 2: Anticipation).

3.3. Action

After inferring and anticipating hidden states, our agents

conduct deliberate actions to minimize expected free energy (the

generative model for action is detailed in Appendixes A4, A5).

At each time point, a policy (u) is chosen out of a set of

possible action sequences. In our simulations, two types of

actions are allowed: selecting an agent to meet at each given

time point (u2) and selecting a specific claim to express in

conversation (u1). The first allowable action covers 50 possible

outcomes (one for each agent in the simulation) while the
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FIGURE 3

Generative model parameters. (A) The A1 matrix specifies an agents’ perception of an interlocutors’ expressed beliefs. The precision of this

likelihood mapping determines the agent’s sensitivity to these expressions. (B) The A2 matrix represents what the agent has learned about the

mapping between her high and low level beliefs. (C) The B matrix, or state transition probabilities, represent what the agent has learned about

how hidden states evolve over time. The precision of B matrices can be understood as encoding the volatility of belief states. (D) The E1 matrix is

one of two habitual contributions to action selection. It covers two possible outcomes for expressing beliefs. This contribution is specified on a

continuous range between (0,1), where the extremes correspond to either complete confidence in denying or supporting the claim. (E) The E2

matrix is the second habitual component for action, and it holds 50 possible outcomes for meeting selection (i.e., the probability for meeting

each agent in the population). (F) The expected free energy of allowable policies (i.e., choices or actions) is indicated with G, which entails two

components: 1. expected risk (the KL-divergence from the C matrix and biasing toward confirming one’s preferred ideas) and expected

ambiguity, which biases toward meeting new agents with unknown beliefs. Note: The purpose of this Figure is to draw the attention of the

reader to the general form of the matrices shared across the simulated agents. The tables are left empty because, for any individual agent in the

simulated population, each of these objects contains specific numbers, which are initially generated procedurally from various probability

distributions (described in the text) and change throughout the simulation as the agents interact in their shared environment. Specific numbers

could at best describe only one particular agent at a given instance of time (which does not represent the entire population). Furthermore, the

probability distributions used to generate initial values do not reflect the additional steps required such as, e.g., the renormalization procedures

involved in applying a softmax operator. Finally, it would also occlude the fact that certain entries (e.g., the expected free energy) will vary over

time during a simulation.

second corresponds to denying or supporting the claim. In

order to simulate variability in an agents’ confidence in a belief

claim, the claim is generated for each conversation from a beta

distribution that is parameterized by the speaker’s (phenotype-

congruent) action model. Each policy under the G matrix

(Figure 3F) specifies a particular combination of actions, and

the policy that minimizes expected free energy is chosen (see

Figure 2: Action).

3.3.1. Habitual belief expression and meeting
selection

At the low level of cognitive control, each agent starts with

a baseline prior expectation concerning the probability of a

particular policy being selected (action prior probabilities [E1

and E2], Figures 3D,E). This parameter can be understood as

modeling a habitual cognitive process, where an agent’s current

one-step policy (u) is biased toward previously selected actions
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(u1, u2). In our simulations, agents observe and track previous

actions via the accumulation of a concentration parameter (ε),

thus enabling continued updates to action priors, which can

either strengthen or weaken previous habits (details for habit

learning of belief expression and meeting selection are provided

in Appendix A8).

3.3.2. Voluntary belief expression

At the high level of cognitive control, agents incorporate

a series of processes underlying the selection of a particular

claim for expression (u2). In addition to habitual factor (E),

this selection involves several considerations. First, an agent

considers their core belief state (x), and the way this state a priori

maps on to one of two discrete emotional valence states (s2)

via a likelihood mapping [A2] (Figure 3B). Emotional Valence

(EV) is defined as the extent to which an emotion is positive

or negative (Russell and Barrett, 1999), such that agents’ core

beliefs are a priori associated with either positive emotional

valence or negative emotional valence (with some probability).

As a minimal form of vicarious learning, the initial mapping is

further updated based on associations agents observe between

their interlocutors’ expressed claims and EV-value (details of the

generative process underlying belief expression and emotional

valence are provided in Appendix A6). The initial mapping

therefore involves minimal precision for the expected EV for the

alternative belief since agents are first introduced to this belief

(and associated EV) during the simulations. For this reason, the

initial likelihood mapping between states is updated throughout

our simulation via a crucial concentration parameter (α) which

will be elaborated on under level 4.

The inferred EV state is then used to generate an action

precision (γ ) such that positive EV generates high confidence in

action selection (u1) and negative EV generates low confidence.

Higher confidence values produce higher precision on the

expected free energy (G) for one’s belief claim expressed in the

current conversation.

EV states are generated from core belief states, using a

(learnable) likelihood mapping:

P
(

x
(1)
sat |x

(2)
core

)

= Cat
(

A
(2)
sat

)

(6)

Confidence of belief expression is generated using a Gamma

distribution, where the rate parameter βexpr is the Bayesian

model average of β(+,−) values associated with high and

low satisfaction:

P
(

γexpr
)

≈ Ŵ

(

1, βexpr

)

(7)

βexpr = β(+,−) · x
(1)
sat (8)

where β(+,−) = [0.25; 2.0]

The expression of beliefs is guided by current core beliefs

(scaled with satisfaction-dependent γexpr) and by habitual belief

expression Eexpr (scaled with a fixed parameter γE,expr):

P
(

uexpr|γexpr
)

= σ

(

−γexpr ln x
(2)
core + γE,exprEexpr

)

(9)

The intrinsically stochastic and itinerant nature of the

generative process of communication is modeled by using a

two-dimensional Dirichlet distribution to generate observed

expressions on the range (0,1), where each agent’s belief

expression prior P
(

uexpr|γexpr
)

is used to specify their

concentration parameters (multiplied by 12 to reduce variance):

oexpr = Dir(12uexpr) (10)

3.3.3. Voluntary meeting selection

While the choice of interlocutor is predetermined in a

dyad, our multi-agent simulations required a specification of

the process behind agents’ selection of a conversational partner

(s3) at each of the (hundred) time points. Building on previous

work on active inference navigation and planning (Kaplan and

Friston, 2018), meeting selection in our model is represented

as a preferred location on a grid, where each cell on the grid

represents an agent to meet (Figure 4).

Importantly, agents differ in their action model of which

agent to visit at each time point. Their individual choices

are guided by expected free energy G (Figure 3F) which

entails maximizing the expected utility of an action (known as

pragmatic value) as well asmaximizing the expected information

gain (known as epistemic value). These two values constrain

each other such that maximizing both simultaneously is partially

(but not entirely) paradoxical (as illustrated in Figure 4).

These constraints may also be understood as formalizing

the exploration-exploitation trade-off, where epistemic value

(exploration) refers to the benefit of searching to get a better

estimation of promising areas that offer pragmatic value

(exploitation) (Friston and Frith, 2015).

Mathematically, action selection was formalized as follows:

P
(

uvisit|γG,visit
)

= σ
(

−γG,visitGvisit + γE,visitEvisit
)

(11)

Here, Gvisit represents the expected free energy:

Gvisit = oexpr,visit · (ln oexpr,visit − Cidea)+H · xidea,visit (12)

An agent traveling to visit:

x
(1)
idea,visit

= B
(1)
visitx

(1)
idea,home

(13)

Expectations about the support for an idea expressed by each

potential agent one could visit:

oexpr,idea = A
(1)
idea

x
(1)
idea,visit

(14)
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FIGURE 4

A simplified example of exploitation- and exploration-driven strategies for meeting selection. This Figure illustrates the behavioral di�erences

between the extreme cases of being fully driven by exploitation (Left) or exploration (Right). Each cell on the grid corresponds to a potential

interlocutor for these agents, who make decisions in three consecutive time steps (t = 1, 2, 3) and have previously engaged with three other

interlocutors (marked with blue rectangles), where we use the shorthand klC to indicate the pragmatic component of the expected free energy

Gpragmatic,visit = oexpr,visit · (ln oexpr,visit − Cidea), which corresponds to the KL divergence between expectations about the interlocutor at that

location (as informed by previous visits) and the preferred ideas of our agents, such that lower values correspond to a better match. Cells that

are visited during t = 1, 2, 3 are filled with granite. The exploitation-driven agent (Left) simply revisits three times a known interlocutor with the

lowest KLC. In contrast, the exploration-driven agent (Right) prefers novel visits and switches to an unknown agent every time step. In the

simulations presented later, agents will dynamically balance these two strategies as their preferences themselves evolve over time.

Individual preferences about the support for the idea:

Cidea = ln
(

A
(2)
C x

(2)
core

)

(15)

Finally, expectations about a potential reduction in

ambiguity about the support for an idea by a particular agent

reflects one’s recollection about their most recent visit to this

other agent. Hj = 0 if an agent can remember a recent visit (i.e.,

there is no ambiguity left to reduce), and 0.1 otherwise.

Crucially, both types of (information and goal seeking)

preferences are absorbed into expected free energy. Pragmatic

value translates into a bias toward meeting agents with

similar beliefs at a given time point. This bias reflects the

widely observed phenomenon in psychology research that

people’s choices tend to be biased toward confirming their

current beliefs (Nickerson, 1998). Confirmation bias, or a

state-dependent preference (C) for meeting “belief compatible”

agents, biases action selection through the risk component of

expected free energy (G) (Figure 3F). Under active inference, a

preference for meeting agents with similar beliefs increases the

propensity for generalized synchronization, which underwrites

the emergence of (expected free energy reducing) shared

expectations (Hesp et al., 2019).

In contrast, emphasizing epistemic value translates into a

bias toward meeting agents whose beliefs are unknown at a

given time point. This bias reflects the extent to which agents

are driven by the minimization of the ambiguity component

of expected free energy (G; Figure 3F) about the beliefs of

other agents. Novelty seeking, or a proclivity for encountering

novel agents with unknown beliefs is a strategy for maximizing

information gain. Also understood as intrinsically motivated

curiosity behavior (Friston K. J. et al., 2017), maximization

of epistemic value helps individuals to better predict the

consequences of their actions (e.g., when they decide which

agent to meet) as they reduce uncertainty about hidden states

of their environment, whether real or imagined (e.g., in this case

it refers to the ideas supported by other agents).

Because of our method of procedural generation of various

(hyper)parameters from various probability distributions

(described in more detail in the Appendix), a continuous

spectrum of cognitive, behavioral, and affective tendencies

emerged in our simulations due to the large variety of

possible combinations. In principle one could obtain any

range of behaviors from this method of procedural generation

based on a set of probability distributions for all these

hyperparameters, which could hence be fitted to population

data. A full-blown analysis of all the emergent variability

in the simulated populations is beyond the scope of the

current paper.

For the sake of our demonstration, a clear distinction

between agents with high and low confirmation bias was

introduced in our simulations by drawing individualized
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FIGURE 5

Two sets of expectation values of the Dirichlet distributions used to generate top-down likelihood mappings A(2)
C , from core beliefs about ideas

X(2) to preferences concerning expressed ideas Cidea, representing the two distinct populations for which parameters were initialized with

di�erent degrees of confirmation bias. Weak confirmation bias (Left) corresponded to mild preferences for observed expressions to confirm

core beliefs, while strong confirmation bias (Right) corresponded to a strong preference for observed expressions to confirm core beliefs

(essentially a one-to-one mapping).

hyperparameters from two distinct sets of Dirichlet distributions

(illustrated in Figure 5; described in the Appendix) to obtain

each agent’s likelihood mapping from higher-level core beliefs

to lower-level preferences concerning observed expressions. The

resulting distinct populations could have emerged from, e.g.,

cultural segregation where different cultural subgroups have

developed different priorities in guiding social interactions—

in this case guided more or less strongly by confirmation of

core beliefs.

Novelty-seeking tendencies were not explicitly coded and

simply emerged from the parameters that regulate the relative

impact of epistemic vs. pragmatic value in the expected free

energy, although it should be clear that high confirmation bias

tends to suppress novelty-seeking. In Figure 6, the distinction

between “strict conservatives,” “centrists,” and “skeptics” was

used to qualitatively describe the emergent continuous spectrum

purely for communicative purposes and should not be taken as

a definite discretization.

3.4. Perceptual learning

On this level of belief updating, agents learn contingencies;

for example, how core belief states (specified in Appendix A1)

change over time (B2) (Figure 3C). This is the highest level

of cognitive processing, where agents learn (as detailed in

Appendix A3). By talking with other synthetic agents and

inferring their emotional and belief states, our agents learn

associations between EV and beliefs via a high level likelihood

mapping (A2), (updated via concentration parameter α). The

updating of the likelihood mapping between beliefs and claims,

is detailed in Appendix A7. This kind of learning is important

because it provides our agents with certainty, regarding the

emotional value they can expect from holding the alternative

belief to the status quo, which has low precision at the beginning

of the simulation (before the population is introduced to an

agent proclaiming this belief).

3.4.1. Perceptual learning as a coupling
parameter

The learning of associations between belief and emotional

valence states may be understood as a form of implicit coupling

between agents (Figure 1), in that it represents an indirect and

secondary influence of one agent’s internal state on another.

That is, sensitivity to each others’ mental states is made possible

only through inferences about the others’ emotional state (in

the absence of any overt or observable evidence for that

emotional state).

In contrast to perceptual inference, learning occurs at slow

time scales as mutual minimization of prediction error brings

about a convergence in the parameters of hierarchical models
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that generate mutually sympathetic (or possibly empathetic)

predictions. Parameter learning accumulates across multiple

interactions, modifying generative models over a long period

of time as opposed to being immediately expressed in agents’

behavior. This is why perceptual learning does not bring about

an immediate convergence or synchrony between interlocutors’

internal states, but is only expressed in agents’ adapted behavior

over time.

Individuals vary in the degree to which they are sensitive

to the information gained by learning associations between

belief states and their potential emotional outcomes. This

variation is represented in each agent’s categorical probability

distribution A2 that is updated throughout the simulation via

a concentration parameter (α) as they accumulate information

with every agent they meet. Updates to the A2-concentration

parameters model the way in which agents’ associations between

belief and emotional states are based on implicit observations of

others’ emotional states.

The prior for this likelihood mapping is specified in terms of

a Dirichlet distribution:

P
(

A
(2)
sat

)

= Dir
(

α
(2)
sat

)

(16)

The associated approximate posterior accumulates the

precision-weighted counts of correspondences between

observed expressions and satisfaction levels:

Q
(

A
(2)
sat

)

= Dir
(

α
(2)
sat + γ

(2)
A oexpr ln x

(1)
sat

)

(17)

3.5. Simulated process summary for
multi-agent social dynamics

For additional clarity, we provide a verbal and graphical

summary of multi-agent social dynamics in our simulations.

The “community square” (depicted in Figure 6) contained 50

social agents with deep generative models (identical structure +

individualized parameters), simulating how they mingled (step

1) and conversed daily (step 2) about two mutually exclusive

ideas (“red” and “blue”), as illustrated in Figure 7.

3.5.1. Simulated dynamics within days

Within each day, every agent engages in steps 1 and 2,

generating:

• Expected support for idea (from self and others)

• Expected claim expressions (from self and others)

• Current claim preferences

• Current valence state

• Current action model precision

• Memory of most recent visit of other agents

• Current selection of an agent to visit

FIGURE 6

A depiction of the community square with its initial opinion

distribution: One idea (red) was supported by almost all agents,

with some variation due to individualized model parameters,

roughly dividing into “strict conservatives,” “centrists,” and a few

“skeptics.” At first, the alternative idea (blue) is supported by only

one, stubborn agent (“rogue”).

• Expressed opinions (when visiting and when visited)

• Expressed affective cues (when visiting and when visited)

3.5.2. Simulated dynamics across days

Across days, every agent maintains (implicit) beliefs about

the following:

• Support for idea from self and others

• Habits of expressed support (self)

• Recency of visits to and from others

• Visitation habits of self (dirichlet counts)

• Affect-idea associations (dirichlet counts)

4. Results

Active inference allows us to formulate a normative and

explainable account of cultural information spread through

communication by casting cultural transmission as a bi-

directional communicative process that entails a particular

convergence between distinct conveyors and conveners of

cultural information. We provide a proof of concept for this

formalization of communication dynamics by simulating a

dialogue between active inference agents holding distinct beliefs

and trying to convince each other of their own beliefs.

Modeling the global dynamics of a cumulative culture (i.e.,

the accumulation of cultural information over a manifold of

transmissions), was modeled such that—at each time point all
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FIGURE 7

A diagram illustrating the steps of the generative model. (Left) Lower level Step 1: Interlocutor selection. Each day, each agent selects one

interaction partner (selecting themselves means staying home). Agents cannot see each other’s “opinion” before conversing. Meeting selection

was conditioned on: (1) Habitual visitation drives, depending on past actions. (2) Deliberate drives, conditioned on: (2a) Expected (mis)match

between expressed opinions (pragmatic value) and (2a) expected reduction in uncertainty about opinions of other agents, depending on one’s

memory of recent visits (epistemic value). (Right) Lower level Step 2: Conversation with a selected agent. Each meeting consisted in exchanges

of expressed support for an idea [in the range (0,1)] and a�ective cues [negative-positive, in the range (0,1)]. Expressed support was conditioned

on: (1) Expression habits formed during past conversations, (2) one’s current support for the idea. Expressed a�ective cues were conditioned on

one’s current valence state. A�ect played a role during Steps 1 and 2: Relative reliance on habitual tendencies vs. deliberation (expected free

energy G) was regulated via action model precision. The latter was conditioned on one’s current valence state, which was conditioned on one’s

current support of an idea, depending on previously learned associations between expressed ideas and concurrent a�ective cues (from oneself

and others).

50 agents engaged in dialogue at least once (by selecting a

conversation partner).

4.1. Local dynamics of coupled
communication

4.1.1. The emergence of generalized synchrony
from coupled communication

In nature, generalized synchrony emerges from sparse

coupling between the internal states of dissipative chaotic

systems (Pikovsky et al., 2003). In our model, generalized

synchrony within a social system is operationalized as

a convergence between belief states held by interlocutors

(Figure 1). In other words, generalized synchrony between

mutually inferring agents is understood as signaling a form

of cultural reproduction of beliefs, namely, a mechanism by

which previously distinct internal states merge and combine into

one. This convergence is made possible through a particular

coupling between the internal states of cultural entities, under

which generalized synchrony is an emergent phenomenon.

We hypothesized that without active perception and mutual

model updating, belief convergence would be precluded, since

interlocutors’ inner states would be inaccessible to each other.

That is, agents’ ability to actively infer hidden states in the

world and update their own model according to the sensory

evidence they receive is the foundation for achieving generalized

synchrony in a social system.

Our results indicate that agents’ ability to listen and attune

to the claims of their partner is indeed limited to the extent

that they are sensitive to sensory evidence from their encultured

environment (Figure 8).

To understand the implications of these findings, it is

important to shed light on the way they tie in to previous

work on active inference communication. In Friston and

Frith (2015) provided evidence for the notion that generalized

synchrony becomes altogether unattainable when agents do

not possess sufficiently similar generative models. Our results

go beyond this and provide evidence for the idea that

only when generalized synchrony is attainable (i.e., when

interlocutors possess sufficiently similar generative models),

communication underlies a convergence between agents’ belief

states. Our simulations should therefore be understood as taking

Frontiers inNeurorobotics 12 frontiersin.org

383

https://doi.org/10.3389/fnbot.2022.944986
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kastel et al. 10.3389/fnbot.2022.944986

FIGURE 8

Sensitivity to observable evidence modulates the level of social coupling between agents in dialogue. This Figure and its legend were adapted

from an open-source preprint of a conference paper, with permission of the authors (Figure 2 of Kastel and Hesp, 2021). In our simulations,

communicated cultural information takes the form of an internal belief state held by agents with a certain probability described under the A1

matrix (Figure 3A). While this internal state is defined as a binary variable, an agent’s beliefs are given by a categorical probability distribution that

can take on any real number in the range (0,1). This figure shows the belief states (vertical axes) of two agents (represented in blue and pink) as

they engage in dialogue across 18 time steps (horizontal axis). When the likelihood precision is low for both agents (Left) their internal states are

very weakly coupled, such that each agent sticks to their own belief and does not attune to the claims of the other. In contrast, when both

agents have high precisions (Right) their engagement in mutual attunement is facilitated and their beliefs converge onto one shared belief,

which is then installed in both of their generative models as a shared narrative.

generalized synchrony for granted while providing evidence for

the premise that the level to which agents’ beliefs converge (i.e.,

the level of synchrony between their internal states) is modulated

by their sensitivity to model evidence (A1).

4.2. Global dynamics of cumulative
culture

Our simulations of a cumulative culture should be

understood as modeling the dynamics of a culture that is the

sum (or accumulation) of modifications to cultural beliefs and

practices over time (Figure 9). While the local dyadic dynamics

simulated in the previous section illustrate convergence to

shared belief states held by individual agents, our global

simulations leverage this synchronization to evince emergent

dynamics within the population. We now review the key

(predicted and) emergent phenomena we observed under this

model of cumulative culture:

4.2.1. The introduction and spread of a novel
belief induces segregation within a population

When a divergent (non status quo) belief state propagates

within our synthetic population, it brings about segregation

into sub-groups. Qualitatively, this is represented as a visible

separation between two groups of agents: those that hold a belief

that approximates the status quo (presented in red), and those

that approximate the alternative, divergent belief (presented

in blue).

In active inference, this communicative isolation (where

agents gradually form groups of individuals they would prefer

to converse with) can be explained by the attunement of

interlocutor’s generative models on the microscale, which

translates over time—and with multiple encounters—into

collective free energy minimization on the macroscale. On the

microscale, local efforts to minimize free energy are expressed

as agents’ disinclination for meeting interlocutors that hold

intractably divergent beliefs. On the macroscale, these local

efforts translate into a global collective behavior of self organized

separation between incongruent groups of agents, such that

communicative isolation best ensures both local and collective

free energy minimization. In other words, when an intractable

divergent belief propagates within a homogenous population,

communicative isolation between incongruent groups emerges

as a strategy to minimize expected free energy, while the same

strategy homogenizes the belief states of agents within congruent

groups. It is interesting to reflect on the observation that the

size of the two groups was roughly equivalent; a phenomena that

characterizes many instances of cultural convergence (Myerson

and Weber, 1993); e.g., the voting in the UK for Brexit.

4.2.2. Local psychological biases modulate
population level segregation

The above simulations also show how differences in

parameters that determine levels of confirmation bias
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FIGURE 9

The emergence of cumulative culture. This Figure and its caption were adapted from an open-source preprint of a conference paper, with

permission of the authors (Figure 3 of Kastel and Hesp, 2021). These plots depict the evolution of population-averaged support (black line) with

regards to the idea that represents the initial status quo (top indicates 100% support, bottom indicates 0% support) over time (horizontal axes)

along with individual core beliefs (shown in the underlying scatter plot, explained below) in three simulations, for which only the relative size of

the subgroup with high confirmation bias was modulated [(A): 5%, (B): 15%; (C): 85%]. The underlying scatter plots indicate the core beliefs of

individual agents by means of their vertical location as well, with a color scale for additional clarity (red indicating maximal support for the status

quo, blue maximal support for the novel idea). (A) Simulation of a Cumulative Culture: In this reference simulation, half of all agents are

parameterized with high confirmation bias. When a divergent belief state (blue) is introduced to the status quo population (red) at the first time

step, it spreads through it via agents in dialogue that cumulatively change the belief structure within the population. Notably, the introduction of

a divergent belief seems to split the population into two subgroups: those supporting the new idea, and those adhering to the previous status

quo. This e�ect is modulated by agents’ individual strategies for choosing which interlocutors to engage with (s3). (B) High levels of novelty

seeking in the population: When only 15% of agents are parameterized with high confirmation bias, the population exhibits high levels of novelty

seeking and ends up being divided in favor of the divergent belief state, with more agents eventually holding this belief than the status quo. (C)

High levels of confirmation bias in the population. When 85% of agents are parameterized with high confirmation bias, the population is divided

in favor of the status quo belief, with more agents holding to this belief than the new and divergent belief.

(manipulated directly through A
(2)
C ; see Figure 5) and novelty

seeking (emerging from G) affect the segregation within the

population into groups of agents holding either congruent

beliefs or the alternative belief. When confirmation bias is

relatively low (Figure 9B), the population evolves such that the

majority of agents end up subscribing to the alternative belief.

However, when confirmation bias is relatively high (Figure 9C),

the majority of agents remains convinced of the previous

status quo.

These results indicate that confirmation bias suppresses

tendencies of the population as a whole toward the adoption

of an idea that diverges from the status quo. When the

confirmation-driven fraction of the population is relatively low

(15%), we naturally observe more novelty-seeking behaviors,

indicating agents are more “open-minded” and willing to

meet with agents of unknown beliefs. They are intrinsically

encouraged by their own curiosity to expose themselves to

novel expressions. Once such agents become convinced by such

interactions, they can start to popularize it for the rest of

the population. If the population is, however, made up of a

majority of agents driven by confirmation bias, they do not

engage as much with the alternative belief and popularization

is precluded.

These results are reminiscent of the widely used “adopter

categories” theory, a theoretical framework outlined by Everett

Rogers in his book “Diffusion of Innovations” which defines

five groups in terms of their relative precession in adopting an

innovation (Rogers et al., 2014). According to this framework,

the first two groups to adopt an innovation are innovators and

early adopters, which make up 2.5 and 13.5% of the population,

respectively (Sahin, 2006). Our results appear to be consonant

with the finding that relatively small numbers of early adopters

and innovators play a significant role in the propagation of

an innovation to other segments of the population (Dedehayir

et al., 2017). One explanation for this phenomenon is that

innovators and early adopters communicate innovations and

their relative advantages to other segments of the population,

thereby popularizing them.
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5. Discussion

In this paper, we provide an active inference framework

for the emergence of a cumulative culture from joint

communication dynamics. The principal achievement of this

framework is that it offers an overarching, quantitative and

multiscale account against which multiple hypotheses from

different domains of the social sciences may be universally

tested. This accomplishment has the potentiality to bring

the replication crisis faced by the psychological and social

sciences in the past decade, a step closer to a resolution. A

formal, standardized model of cultural evolution can evoke such

an outcome as personal intuitions and culturally biased folk

theories that currently make results difficult or impossible to

reproduce, will become anchored to an objective and universally

agreed upon verifiable account.

Notably, our framework offers a multiscale approach to the

understanding of cultural evolution processes, as expressed in at

least three ways. Firstly, it refers to the intrinsically hierarchical

nature of the generative models themselves characterizing

affective, cognitive, and behavioral dynamics (described at

length in the text and summarized in Figure 2). Secondly,

we combined this with the hierarchical nature of the dyadic

interaction process (described at length in the text and

summarized in Figure 7). Thirdly, these dyadic interactions

were contextualized by a multi-agent setting for which

parametrizations themselves were generated procedurally from

population-level distributions of hyperparameters (described

at length in the text and Appendix, illustrated in Figure 6)

and including two subgroups (described in Figure 5). Our

simulations depict cultural dynamics that arise from one another

to form nested levels of hierarchical organization, quintessential

to complex dynamical systems. This novel way of modeling

cultural dynamics across layers of organization accord nicely

with new approaches to artificial intelligence that originate

from the notion that intelligence emerges as much from

cells and societies as it does from individuals. The emerging

field of biologically inspired artificial intelligence involves

computational approaches that model biological systems on

various layers of organization. Such artificial intelligence systems

include: cellular systems; neural systems; immune systems; bio-

mimetic, epi-genetic and evolutionary robots as well as collective

systems. In this section we will discuss the specific implications

of our multilevel cultural simulations on the field of biologically

inspired artificial intelligence.

5.1. Communication models for
biologically inspired artificial intelligence

Traditionally, AI has been concerned with representing

the behaviors and architectures of human cognition. The

preoccupation with human intelligence stems from the widely

accepted notion that despite being neither the strongest nor the

fastest species on earth, humans occupy a distinctly dominant

position. Intellectual in nature, this dominance has previously

been attributed to our culture, morality and language. However,

in most of these social-cultural capacities, great apes share

striking similarities with humans, yet still do not show human

level intelligence, which leaves social scientists wondering about

the underlying roots and causes of human intelligence. Recent

studies show that despite their striking similarity to humans

in most social-cultural domains, great apes are not cognitively

equipped for the kinds of social coordination with others

that is evident in humans (Krupenye et al., 2016; Tomasello,

2018). These findings suggest that humans might owe their

remarkable intelligence to their unique ability to coordinate their

behavior through joint communication and other (non verbal)

cultural exchanges.

The idea that humans’ cognitive skills are the result of shared

intentionality, coordination, communication and social learning

is known as the ontogenetic adaptation hypothesis (Tomasello,

2020). This theory stipulates that animals use social learning

to gather information from their conspecifics about challenges

in their environment while avoiding some of the energetic and

time costs associated with a-social, trial and error learning

(Clark and Dumas, 2016). According to this, social interactions-

and specifically, communication and coordination- are a crucial

component of human intelligence.

This makes a strong case for the use of communication

models as inspiration for the development of socially intelligent

artificial agents. Indeed, equipping artificial agents with the

ability to accurately coordinate and communicate with other

agents in their environment may well be a crucial missing piece

in the modeling of advanced- human level- cognitive abilities.

By modeling the underlying dynamics of social communication

and coordination as we have in this paper, we bring to

light an otherwise unexplored topic, which may be one of

the most promising directions for achieving human level

machine intelligence.

5.2. Cumulative culture models for
biologically inspired artificial intelligence

The social sciences are on the verge of a revolution,

where researchers begin to have a more complex understanding

of the ways in which cultural practices and social choices

interplay with, and shape human experiences. Specifically, it

is becoming clear that individual intelligence is not what

makes us- above other species- uniquely intelligent. Rather,

the last decade has brought with it the notion that the

cumulative nature of human culture is responsible for our

exceptional cognitive capabilities and intelligence as a species.
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This capacity to acquire- across generations- highly evolved

and complex social systems such as language, cities and

technologies, are said to have sharpened humans’ cognitive

capacities and survival strategies in a way that no other

species has ever had the privilege to experience (Henrich,

2015).

Other related theories suggest that individuals are not “the

brains” behind a creative idea, but that innovation is in fact

a product of a collective cultural brain (Muthukrishna and

Henrich, 2016). According to this, The ideas of individuals

do not stand in competition or comparison with other agents

in the population, but are better understood as a nexus for

previously isolated ideas within it. This collective approach to

cultural innovation is supported by empirical findings showing

that innovation rates are higher in cultures with high sociality

(i.e., large and highly interconnected populations that offer

exposure to more ideas), transmission fidelity (i.e., better

learning between agents) and transmission variance (i.e., a

willingness to somewhat deviate from the accepted learned

norms) (Muthukrishna and Henrich, 2016).

Although the capacity for cumulative culture (i.e., the

capacity to acquire complex social systems through learning that

accumulates across generations) in animals remains contentious

(Dean et al., 2014), their expression of collective intelligent

systems in swarms (Chakraborty and Kar, 2017), ant-colonies

(Blum, 2005), flocks of birds (Boucherie et al., 2019), schools of

fish (Boucherie et al., 2019) and other social systems, is evident

in nature and has become an integral part in the field of artificial

intelligence as more andmore high complexity problems require

bio-inspired solutions that are achievable within a reasonable

period of time.

To the extent that the cumulative and collective nature of

culture provides an accurate account of intelligence, as theories

suggest, investigating the underlying mechanisms of intelligence

may be informed by the investigation of complex social-cultural

systems. In this case, providing a quantitative and measurable

account of the way a “collective brain” emerges from simple,

local rules of operation (namely, joint communication), as we

have illustrated in this paper, becomes invaluable in the pursuit

of machine intelligence.

5.3. Embodied active inference for
biologically inspired artificial intelligence

Embodied cognition is the theory that many elements of

cognition are shaped by elements of the entire body of the

organism. While emphasizing the circular causality between the

environment and the individual, social embodiment suggests

that embodiment in social beings plays a significant role and

improves upon social interactions. Justifications for social

embodiment are that different body states (such as postures

and facial expressions) enhance the communicative skills

of embodied agents and consequently, play a central role

in social information processing such that interactions

between embodied agents and humans are facilitated

(Bolotta and Dumas, 2021).

A natural speculation may be that robots have better skills of

communication and inter-robot social inference and expression

than digital avatars, since they can use their bodies for behavioral

expression and coordination with other robots. However, we

argue that despite lacking a physical body, active inference

avatars are embodied in that the computational formalism that is

applied to them (namely, active inference) implies embodiment.

Technically, what this means is that active inference agents in

our simulations adhere to three formal conditions for having

embodied cognition:

1. They have a perceptual system which allows them to gather

culturally relevant information from their surroundings.

This is evident in the first layer (“perception”) of the

hierarchical structure of the generative model of the agents

(Figure 2).

2. They have a motor system that allows them to communicate

their internal states to their social environment. This is

evident in the third layer (“action”) of the hierarchical

structure of the generative model of the agents

(Figure 2).

3. They are situated in their environment such that they are

able to manipulate their dynamic surroundings through

their actions. This is evident in agents’ ability to listen

and attune to each others’ belief expression in a way

that allows for a coupling of their internal states and

the emergence of generalized synchrony between them

(Figure 8).

The fact that agents under the active inference formulation

conform to these three conditions is non trivial, and it points

to the fact that these agents could not be simply replaced by

any hypothetical- non embodied- simulated intelligent being.

In other words, our simulations would not make sense unless

applied to a population that adheres to the certain criteria

aforementioned. We could only apply our simulations to

agents that adhere to all these conditions (i.e., have embodied

cognition), or our simulations simply would not work. In this

sense, our agents may not be physically embodied robots, but

we argue that- by definition- as active inference agents capable

of perceptions and actions in a situated environment, they are

software embodied agents. Had we put this software into social

robots that had the hardware equivalent of “ears” and “mouths,”

we would be able to produce embodied robots in a way that

would improve their social interactions. Crucially, we argue here

that embodiment must be present in both the software and the

hardware for social interactions of agents to be enhanced by it,

and that the active inference formalism implies embodiment for

the former.
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5.4. Limitations and future research

Although this paper provides important insights into the

underlying dynamics of social-cultural systems, it entails certain

limitations that will now be outlined and may be addressed in

future research.

First, our communication simulations assume that social

exchange is limited to a dyad, when in fact generalized

synchrony in nature may occur between multiple coupled

systems. Our formulations of the exchange of social information

as communication therefore represent only a specific case

of generalized synchrony that might highlight a much more

encompassing phenomenon. As an example, through social

media, cultural information can reach large populations at a

given time point. The idea that generalized synchrony between

inferring agents may go beyond the emergent behavior of

two communicators and exist between ensembles of coupled

self organizing systems has also been considered in the active

inference literature (Palacios et al., 2019).

Second, while we provide a formulation of the way

modifications to cultural information occur during

communication (i.e., the transmission of social information)

and we have simulated the emergence of cumulative culture

from these dynamics (i.e., the prevalence of social information),

we have not provided an account of the way novel social

information is introduced into a population to begin with. We

have assumed that belief states are gradually modified with every

cultural exchange, such that the outcome of this exchange may

be considered novel by virtue of it being a unique recombination

of existing beliefs and practices. Future research may focus on

asking important questions like: Why are we inclined to say

that innovation is a unique event that does not occur with every

cultural transmission? More importantly, how can we define

and even model the difference between a slight modification to

a cultural trait and innovation?

The importance of identifying exactly what constitutes

innovation and how to model its emergence is critical for

an accurate understanding of socio-cultural dynamics because

it would bring the circular dynamics of a complex culture

to a required close (Figure 10). Under such an account,

not only would cumulative culture naturally emerge from a

complex network of agents engaged in joint communication

(as shown in this proposal), but innovation would emerge

from cumulative culture and underlie communication in a

repeating, recursive loop that is the hallmark of complex

dynamical systems.

In the simulation environment presented here, efficient

communication could be considered, to some extent, as

reflecting local communicative needs and these needs are

grounded in properties of this socio-cultural environment.

However, the environment itself does not impose any of

the practical constraints known to drive real-life human

behaviors (e.g., need for food, warmth, hygiene). Previously,

FIGURE 10

The circular dynamics of cultural evolution.

researchers have argued that practical benefits in adapting to the

environment tend to accelerate the repetition and widespread

adoption of cultural practices (Kashima et al., 2019). In future

work, the authors aim to expand on these notions by enriching

the simulated environment with actual practical constraints.

In the current work, emotional valence was tied to action

confidence in a top-down manner (it affected action-model

precision for both meeting selection and expression) but not

in a bottom-up manner (e.g., based on action outcomes).

For the sake of simplicity, influences on emotional valence

were purely associative (i.e., based on emotional expressions

of conversation partners). Therefore, one natural and valuable

extension of these simulations in future work would be to

fully incorporate the recursive and principled formulation of

emotional valence that has been derived from deep active

inference (Hesp et al., 2021), which naturally tracks changes

in subjective fitness. This recurrent formulation, in particular

when combined with imagination-induced affect (see Hesp

et al., 2020), will specifically benefit from the grounding of

these simulated cultural exchanges in a more elaborate virtual

environment combined with agents that have actual bodily and

social needs such that subjective fitness estimates (based on

action-model precision) come to confer some practical relevance

(as described in the preceding paragraph).

Finally, another limitation of our simulations is that the

agents’ freedom for choosing the interlocutors they want to

engage with, might bias cultural transmission in a way that

does not apply to some forms of social interaction. Specifically,

meeting selection, or the freedom to voluntarily select the

transmitting interlocutor, does not extend to social interactions

in which agents do not have a choice in determining the source

of their cultural learning. For example, during development,

children are constantly exposed to individuals, social situations,

cultural practices, and conversations that they do not voluntarily

select. In this case, it is the Parents’ culturally dominant

behaviors that play a central role in the development of children’s

internalization of cultural beliefs, rather than the voluntary

actions of their children (Fernald and Morikawa, 1993; Senzaki

et al., 2016).
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6. Conclusion

In this paper, we employed a Bayesian framework—known

as active inference—to formally account for the dynamics

underlying (local) communication and (global) cumulative

culture dynamics, thus contributing to the ever-growing body

of research on multi-agent Bayesian models (e.g., Gunji et al.,

2018) and collective active inference (e.g., Friedman et al.,

2021; Heins et al., 2022) Under our account, the social

“transmission” of cultural information has been cast as a

fundamentally bidirectional process of communication, which

has been shown in the previous active inference literature

to induce a generalized synchrony between the internal

(belief) states of agents holding sufficiently similar generative

models. Building on this work, we operationalized generalized

synchrony as a particular convergence between the internal

states of interlocutors, and show that it depends sensitively

on the precision of observation or likelihood mappings in

a generative model of communicative exchange. When we

simulate a population of agents that simultaneously engage in

communication over time, cumulative culture emerges as the

collective behavior brought about by local belief updating (active

inference and learning in a dyadic setting). Our simulations

show that when a divergent belief is introduced to the status quo,

it spreads within the population and brings about a collective

behavior characterized by a certain degree of segregation

between different belief groups. The level to which the status

quo population defects to the divergent belief is mediated by

local psychological biases for confirmation bias (as directly

manipulated) and novelty seeking (as emergent from procedural

generation of parameters). These cultural (c.f., voting) equilibria

are minimizers of collective or joint free energy that emerge

from the imperative to minimize uncertainty and surprise in

dyadic exchanges.
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