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Editorial on the Research Topic

Multimodality imaging in cardiomyopathy

To the Editor,

Ad astra per aspera (“Through adversity, to the stars”)—Adapted from Virgil

The recent coronavirus-19 (COVID-19) pandemic brought global society to a standstill,

leading to a transformation across medicine and the retooling of cardiovascular medicine

to adopt evidence based best practices that prioritize safety, efficacy and outcomes (1). The

practice of cardiovascular imaging was truly transformed in a multitude of ways across North

America and the world, especially when stratified by modality (2, 3). Through this adversity,

multimodality cardiovascular imaging remained at the forefront of cardiovascular care by

allowing for new approaches in the assessment of cardiac structure and function, providing

mechanistic insights into pathobiology of disease. Cardiomyopathies vary widely in phenotype

and clinical expression, as well as variable genetic underpinnings vs. those resulting from

acquired states. Non-invasive imaging modalities such as echocardiography, cardiac CT (CCT),

cardiacMRI (CMR), and nuclear techniques including positron emission tomography (PET) and

SPECT imaging allow for delineation of cardiomyopathy phenotype as well as facilitating earlier

diagnosis, risk stratification, and guidance of therapeutic decisions in cardiomyopathic states.

Given the broad range of techniques available, variability in utilization, and a

range of expertise, the focus of this topic through state-of-the-art review articles

(Covas et al.; Farrell et al.; Gambahaya et al.; Glynn et al.; Heidari-Bateni et al.;

Ismail et al.; Scheel et al.; Wand et al.; Zghyer et al.) and selected original research

(4) (Bi et al.; Sperry et al.; Tian et al.) was to survey contemporary clinical application

of multimodality imaging techniques in advancing early diagnosis and management of

patients with cardiomyopathies. We presented several review articles discussing common

cardiomyopathies, specifically addressing the utility of multimodality imaging methods in early

diagnosis, serial monitoring of therapeutic efficacy, and longitudinal follow-up. We also focused

on the histopathology of each cardiomyopathic state and how imaging can unmask mechanism.

In addition, this Research Topic highlighted the role and clinical utility of measuringmore subtle

indices of myocardial function including speckle tracking strain with echocardiography and

feature tracking techniques using CMR (Tian et al.). Several reviews also described the emerging

role of myocardial mapping using CMR to quantify left ventricular fibrosis, inflammation and

edema and nuclear PET, which can yield important information in the workup of inflammatory

cardiomyopathies. We also included original work about the value of CMR in cancer patients

with presumed cardiomyopathy (Heidari-Bateni et al.). As clinical research has rapidly evolved

in the diagnosis and workup of stress (Zghyer et al.) and infiltrative cardiomyopathy such

as cardiac sarcoidosis (Wand et al.) and cardiac amyloidosis (Scheel et al.), and cardiac

manifestations from cancer (Heidari-Bateni et al.), pulmonary hypertension (Farrell et al.), HIV
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(Gambahaya et al.), pregnancy (Ismail et al.), and systemic diseases

such as scleroderma (Glynn et al.) these state-of the-art reviews

provide clinically applicable approaches to the diagnostic workup

as well as the clinical value of each imaging modality. Further,

artificial intelligence has erupted over the past decade through

the use of machine learning algorithms (5). To address this, also

included in this series, Covas et al. presented a review of recent

advances in artificial intelligence in coronary artery disease imaging

through algorithms that mimic human neural networks to improve

cardiovascular risk prediction, accuracy identify coronary artery

stenosis and allow for rapid evaluation of ischemia, flow and

atherosclerosis quantification. These reviews present new frontiers

in prevention, precision and monitoring of disease activity across

many clinically relevant cardiomyopathic states, thereby providing

practical guidance to clinicians across these conditions. Finally, these

reviews provide a critical, balanced approach to the workup of

cardiomyopathy, discussing the relative merits and weaknesses of

each imaging technique.

Our series also included several important original research

articles. In a pilotstudy by Sperry et al. evaluated the performance

of F18-florbetapir as a novel tracer to identify ATTR cardiac

amyloidosis. While data was limited by small sample size, it

presents the tip of the iceberg in new frontiers in molecular

PET imaging of amyloidosis. In a separate study, Tian

et al. demonstrated the superiority of 3D right ventricular

free wall strain over 2D free wall strain and conventional

echocardiographic functional parameters in identifying the

ischemic and non-ischemic etiologies of end-stage heart

failure. This study importantly identifies the role of non-

invasive imaging as a diagnostic tool to differentiate underlying

cardiomyopathic etiologies.

To that end, these novel multimodality technologies hold

promise for earlier diagnosis and non-invasive monitoring of cardiac

involvement in systemic inflammatory diseases that will aid in

preclinical studies, enhance patient selection, and provide surrogate

end points in clinical trials, and improve clinical outcomes. In this

post-pandemic era, ad astra per aspera, we hope this Research Topic

provides new insights into clinical practice and allows practicing

clinicians, trainees, and the global cardiovascular community to apply

these advances in cardiovascular multimodality imaging practice.
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Pilot Study of F18-Florbetapir in the
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Amyloidosis
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Mazen Hanna 1* and Wael A. Jaber 1
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Background: Cardiac amyloidosis is an increasingly recognized etiology of heart failure,

in part due to the rise of non-invasive nuclear bone scintigraphy. Molecular imaging using

positron emission tomography (PET) has promised the direct visualization of cardiac

amyloid fibrils. We sought to assess the performance of F18-florbetapir PET in patients

with a potential for cardiac amyloidosis in order to identify early disease.

Methods: We performed a pilot study of 12 patients: one with asymptomatic

transthyretin cardiac amyloidosis, seven with a potential for developing cardiac

amyloidosis (two smoldering myeloma and five with extracardiac biopsy demonstrating

transthyretin amyloid deposits and negative technetium pyrophosphate scans), and

four controls. Patients were imaged with PET/CT in listmode 10–20min after receiving

F18-florbetapir. Static images were created from this acquisition, and mean standardized

uptake values (SUVs) of the left ventricular myocardium, blood pool, paraspinal muscles,

and liver were calculated.

Results: All 12 patients demonstrated radiotracer uptake in the myocardium with mean

SUV of 2.3 ± 0.4 and blood pool SUV of 0.8 ± 0.1. The patient with cardiac amyloidosis

had SUV of 3.3, while mean SUV for patients at risk was 2.3 ± 0.4 and for controls

was 2.2 ± 0.3. After 3 years of follow-up, one patient with SUV below the mean was

subsequently diagnosed with ATTR cardiac amyloidosis.

Conclusion: In this cohort, PET with F18-florbetapir demonstrated non-specific

radiotracer uptake in the myocardium in all patients using a static image protocol; though,

the highest values were noted in a patient with ATTR cardiac amyloidosis. There was no

difference in the intensity of F18-florbetapir uptake in at-risk patients and controls. Future

studies should continue to investigate metabolic PET tracers and protocols in cardiac

amyloidosis, including in early disease.

Keywords: light chain amyloidosis, florbetaben, cardiomyopathy, technetium pyrophosphate, positron emision

tomography, ATTR
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Sperry et al. F18-Florbetapir in Early Cardiac Amyloidosis

INTRODUCTION

Cardiac amyloidosis is an increasingly recognized etiology
of heart failure (1), in part due to the rise of non-invasive
cardiac imaging such as echocardiography with longitudinal
strain, nuclear bone scintigraphy, and cardiac magnetic
resonance imaging. Echocardiography with longitudinal
strain and cardiac magnetic resonance imaging may
demonstrate findings consistent with cardiac amyloidosis
and improve prognostication, while bone scintigraphy
with technetium-based agent [pyrophosphate (PYP), 3,3-
diphosphono-1,2-propanodicarboxylic acid (DPD), and
hydroxymethylene diphosphonate (HMDP)] are highly specific
for transthyretin cardiac amyloidosis in the setting of negative
blood and urine testing for a plasma cell disorder (2). These
modalities have typically been studied in symptomatic patients,
though there is evidence that pre-symptomatic/early disease may
be detected (3). Data for direct visualization of amyloid fibrils
with amyloid-binding PET agents are emerging. Thioflavin
analogs such as F18-florbetapir have shown good discrimination
of quantitative uptake between symptomatic cardiac amyloidosis
as compared to healthy controls (3). Additional studies have
demonstrated non-cardiac uptake in patients with light chain
(AL) amyloidosis, highlighting the systemic nature of that disease
(4, 5). Though, differentiation between light chain (AL) and
transthyretin (ATTR) cardiac uptake may not be possible (6).

F18-florbetapir is FDA approved and indicated for β

amyloid imaging of the brain to estimate plaque density in
adults with cognitive impairment who are being evaluated for
Alzheimer’s Disease. As this radiotracer has demonstrated high
sensitivity in early disease, this pilot study sought to test F18-
florbetapir for early detection of cardiac amyloid deposits in
asymptomatic patients.

METHODS

A total of 12 patients were prospectively enrolled in this pilot
study and followed for 3 years. One patient was considered to
have ATTR cardiac amyloidosis, seven patients had a potential for
development of cardiac amyloidosis (two smoldering myeloma
and five with extracardiac biopsy demonstrating transthyretin
amyloid deposits and negative technetium pyrophosphate scans),
and there were four control patients. Control patients were
selected as they had negative biopsies for amyloidosis during
routine carpal tunnel release surgery without signs or symptoms
of the disease (7). This study was approved by the Institutional
Review Board and Ethics Committee at the Cleveland Clinic, and
all patients signed informed consent.

Patients were imaged using F18-florbetapir (10mCi) using
a Biograph mCT 128 (Siemens Healthineers, Malvern, PA)
PET/CT scanner with lutetium oxyorthosilicate crystals, time-
of-flight capable photomultiplier tubes with coincidence timing
resolution of 550 ps, and PET detectors covering an axial
field of view of 21.4 cm. Images were acquired in listmode
from 10 to 20min after radiotracer injection, and static images
were reconstructed by summing data including 3D iterative
time-of-flight with resolution modeling. This post-injection

time was chosen based upon prior study showing a large
differential in standardized uptake values (SUVs) between
patients and controls (8). Images were interpreted by identifying
myocardial radiotracer uptake qualitatively (present or absent)
and quantitatively using Corridor4DM software (Invia, Ann
Arbor, MI). For quantitative measures, PET images were
reoriented along the standard cardiac axes and the mean and
standard deviation of cardiac uptake in the entire myocardium
was quantified using SUVs. Regions of interest were also drawn
in the blood pool (left atrium), paraspinal muscles, and liver and
mean SUVs were calculated.

PYP scintigraphy was performed using SPECT/CT with
Siemens Symbia T6 cameras, and patients were imaged 3 h after
infusion of 20 mCi+/– 10% of technetium PYP intravenously
as previously described (9). A semiquantitative score and heart-
to-contralateral lung ratios were obtained, and studies were
considered positive if there was radiotracer uptake localized to
the myocardium on SPECT/CT images (9).

RESULTS

F18-florbetapir imaging showed visible radiotracer uptake in
the myocardium in all patients (Figure 1) with mean SUV 2.3
± 0.4. Patient 7 was asymptomatic from a cardiac perspective
with normal levels of troponin T and NTproBNP, but had a
positive PYP study (Table 1) in the setting of negative testing
for a monoclonal protein and was considered to have cardiac
amyloidosis at the time of enrollment. This patient had the
highest myocardial SUV value of 3.3. Mean SUV for patients at
risk was 2.3 ± 0.4, and for controls was 2.2 ± 0.3. All patients
had myocardial SUV values above previously described healthy
controls (SUV 1.4-1.7), and all patients had mean myocardial
counts more than 2x blood pool counts (8). Blood pool, liver, and
paraspinal muscle SUV values are also shown in the Table 1.

Of the seven patients with a potential for cardiac involvement,
two had smoldering myeloma (1 IgG lambda with free light chain
difference 873 mg/L, 1 IgG kappa with free light chain difference
339mg/L), and five hadATTRwith negative PYP scans (four with
TTR deposits in the tenosynovium (7) and one with hereditary
ATTR polyneuropathy). Patient 1 was asymptomatic from a
cardiac perspective but had an abnormal cardiac MRI with native
T1 time 1,300 msec (but without late gadolinium enhancement),
an NTproBNP above reference range (607 pg/mL), but no fat pad
or bone marrow biopsy evidence of amyloid deposits.

Patients were followed clinically for 3 years, and none
developed new symptomatic cardiac amyloidosis. Two patients
had follow-up PYP scans (Figure 1); patient 6 had Ala81Thr
mutation and developed asymptomatic PYP conversion to Grade
3 uptake 3 years after enrollment despite initial low F18-
florbetapir myocardial retention. Interestingly, F18-florbetapir
muscle uptake in the cohort was highest in this patient.

DISCUSSION

In this prospective pilot study, F18-florbetapir identified
qualitative and quantitative radiotracer uptake above previously
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FIGURE 1 | F18-florbetapir PET/CT images demonstrating identifiable myocardial uptake of radiotracer in the patient with confirmed cardiac amyloidosis by

technetium PYP (A, mean myocardial SUV 3.3), a patient with light chain MGUS and a potential for having cardiac AL amyloidosis (B, mean myocardial SUV 2.7), and

a control patient with a negative tenosynovial biopsy for amyloidosis at the time of carpal tunnel release surgery (C, mean myocardial SUV 2.0).

TABLE 1 | Summary of patients and imaging results.

F18-Florbetapir

Patient Age Sex History Visual LV

uptake

Mean SUV Heart/BP

ratio

Echo IVS Additional Imaging

LV Blood pool Paraspinal Liver

1 77 F Smoldering myeloma Yes 1.9 0.7 2.0 10.8 2.7 1.4 cm CMR abnormal

2 70 M Smoldering myeloma Yes 2.7 0.7 2.2 10.9 3.9 1.6 cm CMR normal

3 75 M ATTRv - Val30Met Yes 2.9 0.9 2.1 17.0 3.2 1.6 cm PYP negative

4 80 M ATTRwt Yes 2.2 0.8 1.7 15.0 2.8 0.9 cm PYP negative

5 72 F ATTRwt Yes 2.0 0.7 1.3 12.1 2.9 1.2 cm PYP negative

6 73 F ATTRv - Ala81Thr Yes 1.9 0.9 3.0 15.3 2.1 0.9 cm PYP negative*

7 67 M ATTRwt Yes 3.3 0.6 1.5 10.0 5.5 1.4 cm PYP positive

8 65 M ATTRwt Yes 2.4 0.6 2.1 10.9 4.0 1.3 cm PYP negative

9 83 M CTS negative Yes 2.5 0.9 0.8 14.4 2.8 N/a N/a

10 67 M CTS negative Yes 2.3 0.7 1.6 14.8 3.3 N/a N/a

11 66 F CTS negative Yes 1.8 0.8 1.3 8.3 2.3 N/a N/a

12 69 F CTS negative Yes 2.0 1.0 1.2 10.4 2.0 N/a N/a

ATTRv, hereditary transthyretin amyloidosis; ATTRwt, wild-type transthyretin amyloidosis; BP, blood pool; CA, cardiac amyloidosis; CTS, carpal tunnel surgery biopsy; IVS, interventricular

septum; LV, left ventricle; PYP, technetium pyrophosphate; SUV, standardized uptake value. *Developed Grade 3 uptake of PYP scan 3 years later.

described control levels in all 12 patients. The one patient with
technetium PYP evidence of cardiac amyloidosis did have the
highest quantifiedmyocardial SUV values. No patients developed
clinical evidence of cardiac amyloidosis over 3 years, but one
patient had asymptomatic conversion to a positive PYP scan
despite low F18-florbetapir uptake at baseline.

This pilot study raises several important questions about
cardiac amyloidosis, progression, and the utility of molecular
PET imaging for this disease. One of the most important
points to make relates to the comparison of F18-florbetapir
with SPECT-based PYP and other bone scintigraphy. PYP has
the benefit of being interpreted qualitatively on reconstructed
tomographic images, while F18-florbetapir does not. That is to
say, if SPECT PYP images demonstrate any radiotracer localized
to the myocardium, i.e., highly specific for cardiac amyloidosis
(and most likely ATTR). Yet, all patients undergoing F18-
florbetapir PET have identifiable radiotracer localized to the
myocardium that is significantly above blood pool values. Thus,
specific thresholds are needed to separate positive from negative
cases. Other protocols using a retention index could be examined
in early disease, though these protocols involve up to a 60-min
scan duration (6, 10) which may be difficult for some patients

and inefficient for lab throughput. Our protocol utilized SUV
calculation at a fixed time point 10–20min after radiotracer
injection which was based off of an analysis demonstrating good
correlation between retention index and SUV measurements (8),
and is in line with other PET protocols which generate static
images for infection and inflammation. As only small differences
were noted in F18-florbetapir myocardial SUV values, the utility
of this protocol in the detection of early cardiac amyloidosis using
this protocol appears limited.

Additionally, the speed of progression of myocardial amyloid
deposits is currently unknown. AL amyloidosis has been thought
to progress muchmore rapidly than ATTR amyloidosis; however,
patient 6 had progression of ATTR cardiac amyloidosis on PYP
nuclear scintigraphy over 3–4 years which was not preempted
by significant F18-florbetapir uptake. As both patients during
the study period with positive PYP scans were asymptomatic,
this confirms the high sensitivity of PYP in early asymptomatic
disease (11).

At this time, PET imaging with F18-florbetapir in cardiac
amyloidosis remains an imaging modality best used in clinical
research until more data accumulates regarding the best
protocol to maximize sensitivity, specificity, differentiation
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among amyloid subtypes, and ease of interpretation. Other
PET radiotracers such as the thioflavin analogs F18-florbetaben,
F18-flutemetamol, and C11-Pittsburgh compound B, and bone-
seeking agents targeting microcalcifications like F18-NaF are
similarly under investigation (12).

This pilot study is limited by an insufficient sample size
to make broad conclusions about the utility of molecular PET
imaging in cardiac amyloidosis. Further study is needed in
asymptomatic patients or those with early disease, in both the
AL and ATTR subtypes, to expand upon these findings. Repeat
imaging could shed light on subclinical progression of disease
and is an area of future research. At this time, PET imagings is
not ubiquitously available and is more costly than technetium-
based SPECT bone scintigraphy. In addition, this study also
raises additional questions regarding the potential false negative
rate of tenosynovial biopsy in our “control” patients. While
these patients had negative tenosynovial biopsies and no signs
or symptoms of amyloidosis, though unlikely, low level amyloid
infiltration could have existed in the myocardium.

CONCLUSION

In this prospective pilot study, F18-florbetapir identified
radiotracer uptake in the myocardium in early cardiac
amyloidosis, patients with a potential for developing cardiac
involvement of amyloidosis, and controls. F18-florbetapir
uptake was qualitatively noted in the myocardium above
blood pool in all patients, and there was significant overlap
among quantitative uptake. There was no difference

in the intensity of F18-florbetapir uptake in at-risk

patients and controls. Future studies should investigate
metabolic PET tracers and protocols for early detection of
cardiac amyloidosis.
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Objectives: To assess the clinical impact of Cardiovascular Magnetic Resonance (CMR)

in clinical decision making of cancer patients with a suspected cardiomyopathy in a

tertiary cancer center.

Background: Cardiomyopathies of diverse etiologies are frequently encountered in a

Cardio-Oncology practice. The clinical impact of CMR after a presumptive diagnosis of

cardiomyopathy has not been studied in cancer patients.

Methods: We reviewed data on cancer patients with presumptive diagnosis of

cardiomyopathy who underwent CMR in a tertiary cancer center. The clinical impact

of CMR was defined as either change in clinical diagnosis or management post CMR

results. Univariate and multivariate logistic regression models were used to assess

whether any of the baseline characteristics were predictive of the clinical impact of CMR.

Results: A total of 110 consecutive patients were identified. Clinical impact of CMR

was seen in 68 (62%) patients. Change in the clinical diagnosis and management was

seen in 56 (51%) and 41 (37%) of patients, respectively. The most common change

was prevention of endomyocardial biopsy in 26 patients (24%). Overall, patients with

higher left ventricular ejection fraction (LVEF) by echocardiography (echo), clinical impact

was influenced more by CMR (LVEF of 37.2 ± 12.3% vs. 51.5 ± 11.6%, p < 0.001).

Cancer diagnosis of multiple myeloma was associated with change in the management

post CMR (adjusted OR of 25.6, 95% CI 4.0–162.4, p = 0.001). Suspicion of infiltrative

cardiomyopathy was associated with a higher likelihood of change in diagnosis. Having

an LVEF≥40 by echo was associated with change in diagnosis and management

by CMR.
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Conclusions: Utilization of CMR has a significant clinical impact in cancer patients

with suspected cardiomyopathy. Patients with cancer diagnosis of multiple myeloma,

suspicion of infiltrative cardiomyopathy and those with higher LVEF by echo seem to

benefit more from CMR.

Keywords: cardiovascular magnetic resonance, cardiomyopathy, Cardio-Oncology, clinical impact,

echocardiography

INTRODUCTION

The diagnosis and management of cardiomyopathies are
important components of a Cardio-Oncology practice, given
cancer patients are at an increased risk of heart failure (HF)
(1) due to co-existing risk factors as well as cardiotoxic cancer
therapeutics. The advancement of newer cancer therapies and
improvement of survival rates, has led to an increase of
the number of patients with cancer related cardiomyopathy
(2, 3). In survivors of breast cancer, for instance, the
adjusted 3-year cumulative incidence of anthracycline associated
cardiomyopathy was calculated at 20.2 per 100 patients with
an estimated increase by 21.7 per 100 patients with addition of
trastuzumab (4).

Cardiovascular magnetic resonance (CMR) has been deemed
appropriate for initial and sequential evaluation of patients with
cardiomyopathies (specifically infiltrative, hypertrophic, and any
cardiomyopathies of unclear etiology) based on appropriateness
criteria from multimodality imaging scientific societies (5, 6).
Moreover, CMR has an emergent role in detecting cardiotoxicity-
related cardiomyopathy and other cardiovascular effects in
patients undergoing anti-cancer therapy. Data from EuroCMR
has shown that CMRhas a strong impact on patientmanagement,
showing 62% of its findings impacting patient management (7).
However, no data in cancer patients has been published in
this regard.

In the current study, we aim to assess the clinical impact
of CMR in clinical decision making for cancer patients with
suspected cardiomyopathy in a large tertiary cancer center.

METHODS

We designed a retrospective cohort study of patients treated at
the MD Anderson Cancer Center in Houston, TX, United States.
We queried a CMR imaging database from May 2015 to
September 2017 to identify consecutive patients who underwent
CMR for clinically suspected cardiomyopathy. All patients
included were receiving cancer treatment at our institution. The
study protocol was approved by the institutional review board
of MD Anderson Cancer Center. We included 110 consecutive
patients that underwent CMR in either inpatient or outpatient
settings. The diagnosis of cardiomyopathy was pre-established
clinically by chart review and available echocardiographic
findings in all inpatient cases and in the majority of outpatient

Abbreviations: CMR, Cardiovascular Magnetic Resonance; TTE, Transthoracic

echocardiogram; LVEF, Left ventricular ejection fraction; LGE, Late Gadolinium

enhancement.

cases. For a minority of cases referred from outside centers,
a recent outside hospital echocardiography record was used.
Figure 1 illustrates a summary of study design algorithm. Given
the diversity of cancer diagnosis in our cohort, we separated
them into the following groups by cancer: solid tumors (most
common was breast cancer, constituting 31% of the group),
leukemia, lymphoma, myeloma and miscellaneous (more rare
hematologic cancers).

All CMR images were acquired using a 1.5-T MRI scanner
which was either Siemens Avanto (Siemens, Erlangen, Germany)
or a 1.5-T GE AW (GE, Milwaukee, WI). All CMR exams
were protocolled for cardiomyopathy, and included the following
sequences: SSFP cines (real time cines if suspicion of constrictive
pericarditis), T1 and T2 weighted double inversion recovery (IR)
sequences, some included T2∗, T1 (native and post contrast)
and T2 mapping (Modified Look-Locker IR). Late gadolinium
enhancement (LGE) was performed for tissue characterization
using a segmented inversion-recovery sequence (in-plane spatial

resolution, 1.8 × 1.3mm; slice thickness, 8mm; temporal

resolution, 160–200ms) 10–15min after intravenous contrast
administration (gadopentetate dimeglumine, 0.125 mmol/kg).

CMR images were interpreted independently by either a

level 3 CMR board-certified cardiologist or a radiologist with

level 3 equivalent training. Studies were reviewed to assess for
image quality. Cases with poor quality studies, including those

where gadolinium-based contrast was not administered, were
excluded. For all patients, demographic and clinical variables

including age, sex, type of malignancy, comorbidities, history of

previous chemotherapy, and echocardiographic parameters were
collected by electronic chart review. Patients with insufficient

clinical data were excluded. The clinical impact of CMR was

then assessed independently and determined upon consensus by
two investigators (J.C.L., G.HB). We adopted the definitions per

Abbasi et al. (8) where they defined significant clinical impact of

CMR as either finding an entirely new diagnosis or if a change
in clinical management occurred after CMR results. Change
in diagnosis was defined as a diagnosis resulting from CMR
that was previously unconfirmed or unsuspected. Change in
management was defined as CMR results preventing or resulting
in a procedure (invasive or medical), or admission or discharge
from hospital (Figure 1). Changes in medical management that
we considered as significant was either starting guideline directed
medical treatment for heart failure or stopping it, starting or
stopping anticoagulation, but no changes in cancer treatment
were seen caused from CMR findings. Our outcomes were
predefined as either clinical impact of CMR, depending on
changes in diagnosis and changes in management. No survival
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FIGURE 1 | Algorithm of study design: cohort selection.

analyses or hard endpoints were evaluated, just utilization
endpoints as previously defined.

We evaluated patients’ baseline clinical characteristics to
assess if the clinical impact of CMR can be predicted by these
characteristics. Univariate and multivariate logistic regression
models were used to identify variables that were significantly
associated with diagnosis change (change in diagnosis vs. no
change), management change (change in management vs. no
change), or either of them (any change vs. no change). Only
variables with significant p-value in univariable analyses, or
those with a trend toward a significant p value, were used in
the multivariable analysis. Hosmer-Lemeshow test was used to
check the model adequacy. A p-value less than 0.05 indicated a
statistical significance. All statistical analyses were performed in
SAS R© Version 9.4 (SAS Institute, Cary, NC).

RESULTS

A total of 110 patients with clinical suspicion of cardiomyopathy
were identified; of those 58 (53%) were female. The average
age was 59 ± 15 years. Solid tumors were the most
prevalent malignancies (40%), followed by myeloma (19%), and
lymphoma (18%). Table 1 summarizes baseline demographic
and clinical characteristics of the patients. Indications for
CMR with respective percentage frequencies were the following:
Routine CMR for cardiomyopathy (64%), suspected infiltrative
cardiomyopathy (25%), hypertrophic cardiomyopathy (6%),
viability (3%), suspected arrhythmogenic right ventricular
dysplasia (2%) and carcinoid heart disease (1%) (see Table 2).
Following CMR, cardiomyopathies were categorized into six
different diagnostic groups as summarized in Table 3. In 27
(25%) patients with suspected iron overload cardiomyopathy,
amyloidosis, or suspectedmyocarditis, CMR showed no evidence
of cardiomyopathy (normal ejection fraction, normal T2∗

and absence of late gadolinium enhancement) despite clinical
suspicion and suggestive echocardiographic findings.

TABLE 1 | Baseline demographic and clinical characteristics of the patients.

Variable Resulta

Age (years)b 59 ± 15

Sex

Male 52 (47%)

Female 58 (53%)

Type of malignancy

Solid tumors 45 (41%)

Leukemia 14 (13%)

Lymphoma 20 (18%)

Multiple Myeloma 21 (19%)

Miscellaneous 10 (9%)

Ejection fraction by echocardiography (%)b 42± 13

Ejection fraction < 40% 32 (29%)

Diabetes 35 (32%)

Hypertension 65 (59%)

Atrial fibrillation 24 (22%)

History of chest radiotherapy 22 (21%)

History of coronary artery disease 27 (25%)

History of treatment with anthracycline 39 (36%)

aData are expressed as the number of cases (percentage of total) unless

indicated otherwise.
bData are expressed as the mean ± standard deviation.

Overall, the clinical impact of CMR was seen in 68 (62%)
patients. Results of CMR changed the diagnosis in 56 (51%), the
management in 41 (37%), and both management and diagnosis
in 29 (26%) patients. The most common clinical impact of CMR
was prevention of endomyocardial biopsy in 26 (24%) patients
by ruling out the working diagnosis of suspected infiltrative
cardiomyopathy. One noticeable finding was that in 42 patients
(38%) there was no change in diagnosis or management, and the
mean LVEF in this group by TTE was 37 ± 12% in contrast
to the 29 patients that had changes in both diagnosis and
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TABLE 2 | CMR indications.

Variable Frequency (%)

Routine CMR for cardiomyopathy 70 (64%)

Suspected infiltrative cardiomyopathy 27 (25%)

*Suspected hypertrophic cardiomyopathy 7 (6%)

*Viability 3 (3%)

*Suspected arrhythmogenic right ventricular dysplasia 2 (2%)

*Carcinoid heart disease 1 (1%)

*For further analysis these categories were included in Other CM in Table 3.

TABLE 3 | Final CMR diagnosis.

Diagnosis Frequencya

NICM 49 (45%)

ICM 8 (7%)

Cardiac amyloidosis 6 (5%)

HCM 6 (5%)

Other CM 14 (13%)

Non compaction 1 (1%)

Takotsubo 1 (1%)

Myocarditis 4 (4%)

Chagas 1 (1%)

Iron overload 1 (1%)

RV failure [PH] 3 (3%)

Constrictive pericarditis 1 (1%)

Eosinophilic CM 1 (1%)

No cardiomyopathy 27 (25%)

aData are expressed as the number of cases (percentage of total). CMR, cardiac

magnetic resonance imaging; NICM, non ischemic cardiomyopathy; ICM, Ischemic

cardiomyopathy, HCM, hypertrophic cardiomyopathy; CM, cardiomyopathy; RV, right

ventricle; PH, pulmonary hypertension.

management, whose corresponding mean LVEF by TTE was 51
± 11% (p < 0.001 by Chi-square test).

Table 4 summarizes all the management changes post CMR.
Examples of patients with change in both diagnosis and
management are summarized in Table 5. The clinical impact
of CMR is illustrated in Figure 2. To assess whether any of
the baseline characteristics can predict the clinical impact of
CMR, univariate and multivariate logistic regression models
were fitted, and they are summarized in Tables 6, 7. All
analyses demonstrated that a higher ejection fraction by
echocardiography (LVEF ≥ 40) predicts a greater clinical impact
of CMR, adjusting for type of malignancy (adjusted OR 7.09,
95% CI, 2.09–24.11, p value = 0.002 and 6.16 with 95% CI 1.47–
25.77, p value = 0.013 for change in diagnosis and management
respectively). For change in diagnosis, a suspicion of infiltrative
cardiomyopathy, when compared with routine indication of
CMR for cardiomyopathy had a higher likelihood of change in
diagnosis in the multivariate analysis for change in diagnosis
(adjusted OR: 10.03, 95% CI, 1.91–52.69, p value = 0.006), but
not in multivariate analysis for change in management.

TABLE 4 | Summary of change in management followed by CMR results

(n = 110).

Change in management Frequencya

Prevented endomyocardial biopsy 26 (24%)

Change in medications 14 (13%)

Prevented coronary angiogram or PCI 11 (10%)

Resulted in endomyocardial biopsy 6 (5%)

Resulted in LHC 4 (4%)

Hospital admission 2 (2%)

Hospital discharge 1 (1%)

Resulted in ICD implantation 1 (1%)

aData are expressed as the number of cases (percentage of total). Some patients had

change in more than one management category. CMR, cardiac magnetic resonance

imaging; PCI, percutaneous coronary intervention; LHC, left heart catheterization; ICD,

implantable cardioverter-defibrillator.

We also found that “type of malignancy” predicted change in
management post CMR. As shown in Table 7, multiple myeloma
was the cancer group associated with significant change in the
management post CMR (adjusted OR of 25.56 with 95% CI
4.02–162.44, p value= 0.001).

DISCUSSION

This study demonstrates a valuable role for CMR as part of the
assessment for suspected or known cardiomyopathy in patients
with cancer. In 62% of our patients there was a benefit from
the addition of CMR imaging in their diagnostic work up, by
achieving either a change in diagnosis or change in management.
Furthermore, we identified baseline clinical characteristics that
could predict the clinical impact of CMR. In particular, we
showed that patients with higher left ventricular ejection fraction
by echocardiography, patients with a diagnosis of multiple
myeloma as the primary malignancy and those with suspicion of
infiltrative cardiomyopathy were those in which CMR had the
most clinical impact.

CMR has proven to have an additive role in diagnosis and
management of patients with cardiomyopathy (8–10). However,
in patients with non-ischemic cardiomyopathy, its value on
routine use may be limited, given it may not yield more
specific etiologies in majority of cases (11). Which was consistent
with our findings, given routine CMR for cardiomyopathy
didn’t yield as much clinical impact as suspicion of infiltrative
cardiomyopathy. Compared to echocardiography, CMR has a
higher spatial resolution, larger field of view, highly reproducible
ventricular volumes and ejection fraction quantification (12) with
the ability for functional assessment and ability to perform tissue
phenotyping using tissue characterization sequences such T1
weighted imaging with late gadolinium enhancement (LGE) (13),
T2 weighted imaging and parametric mapping (14).

With the advancement of CMR techniques, recent multi-
society expert consensus recommendations for multimodality
imaging in cardiac amyloidosis have considered a central role for
CMR in the non-invasive diagnosis of cardiac amyloidosis (15).
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TABLE 5 | Examples of patients with (green) and without (red) changes in both diagnosis and management after CMR.

Patient description Indication for CMR CMR findings Clinical impact

68 y/o F with infiltrative ductal

carcinoma, PMHx of HLP and HTN.

LVEF of 40-45% in echo with poor

acoustic windows

Work up on etiology of

cardiomyopathy and better

assessment of EF prior to next

round of chemotherapy

Inferior wall subendocardial

infarction with partial viability in

the RCA territory

Incidental finding of ischemic

cardiomyopathy; underwent left heart

catheterization

66 y/o M with Smoldering multiple

myeloma, PMHx of diabetes. Echo

finding of LVH and diastolic

dysfunction.

Suspicion of infiltrative

cardiomyopathy based on

the echocardiogram findings

Hypertrophic cardiomyopathy;

cardiac amyloidosis ruled out

Hypertrophic cardiomyopathy: no

endomyocardial biopsy pursued

57 y/o with HTN, CLL and bladder

cancer that had an LVEF of 40-45%

by Echo

Work up on etiology

of cardiomyopathy

Mid myocardial

hyperenhancement in basal

septum. LVEF: 52%. Diagnosis

of NICM

No change in management as GDMT

for HF was started with echo results.

No change in diagnosis as echo

findings and clinical presentation

suggested NICM

62 y/o F with breast cancer and prior

treatment with anthracycline, her

Echo showed an LVEF of 39%

Work up on etiology

of cardiomyopathy

Findings suggestive of

non-ischemic cardiomyopathy.

CMR LVEF of 37%.

No change in management as GDMT

for HF was started with echo results.

Echo identified correctly the clinical

diagnosis.

CMR, cardiac magnetic resonance imaging; y/o, years old; F, female; M, male; PMHx, past medical history; HLP, hyperlipidemia; HTN, hypertension; EF, ejection fraction; RCA,

right coronary artery; MGUS, monoclonal gamopathy of unknown significance; LV, left ventricle; NICM, non-ischemic cardiomyopathy; GDMT, guideline directed medical therapy; HF,

Heart Failure.

FIGURE 2 | Clinical impact of utilization of cardiac magnetic resonance in a tertiary cancer center: 121 events in total of 66 patients.

CMR is a cornerstone test in the evaluation of patients with left
ventricular hypertrophy (LVH) phenotype on echocardiography
and suspected infiltrative cardiomyopathies, explaining why
there was a significant clinical impact in cancer patients with
suspected infiltrative cardiomyopathy particularly those with
primary multiple myeloma, given the risk to develop cardiac
amyloidosis. This might in part explain our findings of baseline
multiple myeloma predicting the clinical impact of CMR.

Multivariate analyses also revealed that the clinical impact of
CMR in both diagnosis and management is more appreciated
in patients’ groups with an echo LVEF of 40% or higher
and changes in diagnosis more likely with suspicion of
infiltrative cardiomyopathy (adjusted OR 10.03, p = 0.006).
This could be explained due to the high proportion of cases
(25%) that CMR showed no evidence of cardiomyopathy
despite clinical suspicion by TTE. This finding changes the
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TABLE 6 | Selected univariate and multivariate analysis of factors predicting diagnosis change following CMR.

Variable Univariate logistic regression model Multivariate logistic regression modelc

OR 95% CI P-value aOR 95% CI P-value

Age 1.03 0.99–1.05 0.079 1.05 1.005–1.09 0.031

Female sex 0.77 0.35–1.72 0.521

Type of malignancya

Lymphoma 0.73 0.22–2.37 0.596

Leukemia 1.94 0.54–6.91 0.308

MM 9.68 1.97–47.52 0.005

Miscellaneous 4.24 0.79–22.84 0.093

CMR indicationb

Infiltrative CM 12.29 2.66–56.83 0.001 10.03 1.91–52.69 0.006

Other 0.48 0.13–1.71 0.255 0.31 0.06–1.54 0.153

Diabetes 2.56 1.03–6.34 0.043

Hypertension 1.05 0.46–2.38 0.905

Atrial fibrillation 3.41 1.15–10.15 0.028

Echocardiographic EF 1.08 1.04–1.13 <0.001

EF≥40 5.35 1.99–14.38 0.001 7.09 2.09–24.11 0.002

EF≥50 7.21 2.60–19.98 <0.001

History of treatment with anthracycline 0.33 0.14–0.80 0.014

CMR, cardiac magnetic resonance imaging; OR, Odds Ratio; CI, confidence interval; aOR, adjusted odds ratio; EF, ejection fraction; N/A, not applicable (variable not included in the

multivariate logistic regression model); CM, cardiomyopathy. a“Solid tumor” malignancy as reference group. b“Routine CMR for cardiomyopathy” as reference group. cThe multivariate

model initiated with the following variables: age, type of malignancy, diabetes, atrial fibrillation, EF, CMR indication, and history of anthracycline use. It reduced by stepwise selection

to age, CMR indication, and EF as shown here. Same results obtained when using of EF ≥ 50% in lieu of ≥ 40% (adjusted OR of 7.57 with 95% CI 1.42–40.24, p value = 0.018 and

adjusted OR of 9.13 with 95% CI 2.23–37.45, p value = 0.002 for CM infiltrative and EF≥50, respectively).

TABLE 7 | Selected univariate and multivariate analysis of factors predicting management change following CMR.

Variable Univariate logistic regression model Multivariate logistic regression model c

OR 95 % CI P-value aOR 95% CI P-value

Age 1.01 0.98–1.04 0.443

Female sex 1.43 0.59– 3.45 0.424

Type of malignancya

Lymphoma 1.61 0.48–5.44 0.444 0.86 0.18–4.04 0.845

Leukemia 1.84 0.41–8.33 0.429 1.25 0.23–6.73 0.799

MM 18.40 3.55–95.50 0.001 25.56 4.02–162.44 0.001

Miscellaneous 4.60 0.72–29.33 0.106 3.99 0.33–48.36 0.277

CMR indicationb

Infiltrative CM 12.68 2.67–60.33 0.001

Other 0.16 0.02–1.33 0.089

Diabetes 1.90 0.71–5.06 0.199

Hypertension 1.18 0.49–2.86 0.716

Atrial fibrillation 2.03 0.62–6.67 0.246

Echocardiographic EF 1.07 1.03–1.04 0.001

EF≥40 4.54 1.60–12.86 0.004 6.16 1.47–25.77 0.013

EF≥50 5.01 1.73–14.51 0.003

History anthracycline use 0.44 0.18–1.11 0.084

CMR, cardiac magnetic resonance imaging; OR, Odds Ratio; CI, confidence interval; aOR, adjusted odds ratio; EF, ejection fraction; N/A, not applicable (variable not included in the

multivariate logistic regression model); CM, cardiomyopathy. a“Solid tumor” malignancy as reference group. b“Routine CMR for cardiomyopathy” as reference group. cThe multivariate

model initiated with the following variables: type of malignancy, CMR indication, diabetes, EF, and history of anthracycline use. It reduced by stepwise selection to type of malignancy

and EF as shown here. Same results obtained when using of EF ≥ 50% in lieu of ≥40% (adjusted OR of 16.92 with 95% CI 2.94–97.38, p value = 0.002 and adjusted OR of 3.85 with

95% CI 1.11–13.34, p value = 0.034 for MM and EF ≥ 50, respectively).
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management dramatically, as patients could be able to resume
chemotherapy promptly and without the need for treatment
of Heart failure. Conversely, the patients that did not have
significant change in diagnosis and management had lower
mean LVEF by TTE, which could suggest that in most of
these cases LV systolic dysfunction was identified appropriately
by TTE. In other words, in the context of a significant
decrease in LVEF that could be detected by TTE, CMR might
not add to the diagnosis or management. Anthracycline and
trastuzumab cardiotoxicity and related cardiomyopathies are
not well characterized in CMR by a specific patterns of LGE
or specific findings in parametric mapping (16). Conversely,
if an LVEF measurement by TTE is borderline low or in the
realm of 40%, CMR accurately differentiates true decreases
from cases of preserved LV systolic function because of its
robustness in reproducibility and less interobserver variability
in ventricular volumes and LVEF quantification. This suggest
that routine utilization of CMR for cardiomyopathy evaluation
based on echo findings might not offer clinical benefit if echo
identifies well possible etiologies such as decreased LVEF from
anthracyclines. Also suspicion of infiltrative cardiomyopathy
was associated with increased of change in diagnosis related
with CMR. Which suggests that clinical impact by CMR is
higher in patients for which iron overload cardiomyopathy
or cardiac amyloidosis must be evaluated. CMR ruled out
cardiomyopathy in 25% of patients. This has an impact
for patients’ mental wellbeing, withdrawal of heart failure
medications and resumption of lifesaving cancer therapies. In
our study, prevention of endomyocardial biopsy was found
to be the most common clinical impact of CMR comprising
24% of patients. Prevention of endomyocardial biopsy is
important in the setting of cancer particularly for those
actively receiving chemotherapy given the increased risk of
complications, mainly vascular complications and bleeding in
this vulnerable group. A cost effectiveness analysis may also
enlighten the economic benefit of using CMR as a gatekeeper for
myocardial biopsy.

In conclusion, application of CMR in Cardio-Oncology
appears to have frequent clinical impact (62% patients) on the
evaluation of confirmed or suspected cases of cardiomyopathy
in a cohort of cancer patients. Baseline systolic function from
TTE, suspicion of infiltrative cardiomyopathy and primary
malignancy type increase the likelihood of clinical impact
of the addition of CMR to the diagnostic approach. Our
findings support an important role of CMR in a Cardio-
Oncology practice. Further larger and multi-center studies
looking at hard clinical endpoints and cost-effectiveness analyses
are needed to quantify better the benefits of CMR in
these patients.

LIMITATIONS

We cannot exclude the role of selection and referral bias of
the primary cardiologist when choosing the appropriate patient
for CMR assessment; however, the studied patients represents a

heterogeneous group either referred by outpatient centers or seen
as an inpatient consult in a tertiary cardio-oncology practice.

Our study has some additional limitations. First, this is
a retrospective study which can be skewed by limitations of
medical documentation and the absence of a control group.
Second, there are some known limitations in application of
CMR such as patients with claustrophobia, prosthetic devices
or foreign bodies. Also, 11 out of 121 (9%) of scans were
excluded due to poor image quality or lack of contrast (see
Figure 1), and therefore our results may overestimate the benefit
of performing CMR.

Moreover, the economic value of CMR for all patients
with suspected cardiomyopathy is uncertain. Similarly, there
is no outcome data on survival benefit of using CMR in the
management of cardiomyopathy in cancer patients. Undoubtedly
a cost-effective analytical study or a comparative effectiveness
study with focus on survival benefit can better highlight the value
of this approach.

Clinical Perspectives
In patients with cancer and suspected cardiomyopathy, CMR
may result in change in diagnosis and management in certain
clinical scenarios. Patients with LVEF of 40% or more, those
with suspicion of infiltrative cardiomyopathy and those with
cancer diagnosis of multiple myeloma, have a higher likelihood
to benefit from the use of CMR.

Further prospective research is needed to identify the value,
including the economic burden, of the use of CMR for cancer
patients with suspected cardiomyopathy.
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Pulmonary hypertension (PH) is a clinical condition characterized by progressive

elevations in mean pulmonary artery pressures and right ventricular dysfunction,

associated with significant morbidity and mortality. For resting PH to develop, ∼50–70%

of the pulmonary vasculature must be affected, suggesting that even mild hemodynamic

abnormalities are representative of advanced pulmonary vascular disease. The definitive

diagnosis of PH is based upon hemodynamics measured by right heart catheterization;

however this is an invasive and resource intense study. Early identification of pulmonary

vascular disease offers the opportunity to improve outcomes by instituting therapies

that slow, reverse, or potentially prevent this devastating disease. Multimodality imaging,

including non-invasive modalities such as echocardiography, computed tomography,

ventilation perfusion scans, and cardiac magnetic resonance imaging, has emerged

as an integral tool for screening, classifying, prognosticating, and monitoring response

to therapy in PH. Additionally, novel imaging modalities such as echocardiographic

strain imaging, 3D echocardiography, dual energy CT, FDG-PET, and 4D flow MRI are

actively being investigated to assess the severity of right ventricular dysfunction in PH.

In this review, we will describe the utility and clinical application of multimodality imaging

techniques across PH subtypes as it pertains to screening and monitoring of PH.
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KEY POINTS

• Pulmonary hypertension is a devastating disease and early detection improves morbidity
and mortality.

• Echocardiography, computed tomography, nuclear imaging, and magnetic resonance imaging
are non-invasive imaging studies for screening, classification, prognostication, and monitoring
of pulmonary hypertension.

• New non-invasive imaging techniques such as strain imaging, 3D echocardiography, dual energy
CT, and 4D flowMRI are emerging techniques that can assist in the diagnosis and monitoring of
pulmonary hypertension.
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INTRODUCTION

Pulmonary hypertension (PH) is an insidious, highly morbid,
and heterogeneous disease that is characterized by elevations
in pulmonary arterial pressures and is classified into five
groups based on etiology (1–3). Early diagnosis and referral
are associated with better clinical outcomes, however the time
from symptom onset to diagnosis is often greater than 2
years (4–6). PH is exclusively diagnosed using confirmatory
invasive right heart catheterization (RHC) to measure mean
pulmonary artery pressure (mPAP), pulmonary capillary wedge
pressure (PCWP), and pulmonary vascular resistance (PVR)
(7). Currently, PH is defined by a mPAP >20 mmHg, a
threshold which was recently decreased from ≥25 mmHg based
on epidemiologic data demonstrating the distribution of mPAP
among healthy individuals and the significant impact of mildly
elevated pulmonary pressures on morbidity and mortality (8).

While RHC is the only method to directly measure pulmonary
and right heart pressures, it is invasive, resource intensive, and
carries procedural risk (9). As a result, in 2015, the European
Society of Cardiology/European Respiratory Society guidelines
recommended the use of a variety of non-invasive imaging
modalities to screen and risk stratify patients (10). The standard
of care for screening and classifying PH includes transthoracic
echocardiogram (TTE), chest computed tomography (CT),
ventilation perfusion (VQ) scan, RHC, and increasingly cardiac
magnetic resonance imaging (CMR). Multimodality imaging is
useful for screening, classifying, prognosticating, and monitoring
effectiveness of therapy in PH. This review seeks to describe the
current imaging modalities used in diagnosing and monitoring
the various forms of PH along with several novel imaging
modalities that may soon be incorporated into clinical practice.

METHODOLOGY

We conducted a search utilizing Medline/PubMed from
November 1989 to June 2021 to identify relevant articles.
Search terms included: pulmonary hypertension AND
echocardiography OR magnetic resonance OR computed
tomography OR nuclear OR cardiovascular imaging. Identified
articles were then evaluated, including screening of references.
Review articles, meta-analyses, and major medical society
guideline documents were also assessed. Finally, selected articles
were included if felt to be relevant in the authors’ opinion.
Data from these articles were abstracted and guided this
narrative review.

RESULTS

We identified 46 articles on echocardiography, 19 on
computerized tomography, 7 on nuclear medicine techniques
including scintigraphy, and 45 on magnetic resonance imaging
in PH.

Echocardiography
TTE is the most common imaging modality used to screen for
PH and is the mainstay for screening, monitoring of therapeutic

response, and prognostication (11). As most deaths from PH
are from right heart failure, recognizing the presence, and
quantifying the degree of right heart dysfunction, is helpful in
monitoring disease progression and prognostication. In addition
to conventional two-dimensional (2D) TTE, speckle-tracking
strain imaging and three-dimensional (3D) echocardiography are
more specialized techniques that are increasingly becoming part
of the standard of care in monitoring right heart structure and
function. Representative echocardiographic images are shown in
Figure 1.

Screening for Pulmonary Hypertension
Screening for PH using conventional TTE primarily relies upon
assessment of the right ventricular systolic pressure (RVSP),
which ismeasured from the tricuspid regurgitant (TR) jet velocity
and size/collapsibility of the inferior vena cava (IVC) to estimate
right atrial pressure (RAP) (12). Using the modified Bernoulli
equation, RVSP= 4V2 + RAP with V equaling the maximum TR
jet velocity (13). For RVSP measurements > 40 mmHg, a right
heart catherization is recommended (14). However, RVSP has
been shown in numerous studies across various PH subgroups to
poorly correlate with systolic pulmonary artery pressure (sPAP)
measured by RHC. These studies have routinely shown that RVSP
is ± 10 mmHg different to the true sPAP in approximately
50% of cases (15–18). Additionally, the ability to capture and
quantify the TR jet velocity can be technically challenging and
is estimated to be feasible in only 75% of cases (19). RVSP can be
combined with other non-invasive measures to evaluate the need
for a RHC in suspected PH (20). Additional RV hemodynamics
can also be obtained including PA end-diastolic pressure using
end-diastolic pulmonic regurgitation peak velocity, mean PA
pressure, and pulmonary vascular resistance. Lastly, early closure
of the pulmonic valve due to rapid pressure equilibration of the
RV and PA in midsystole can be detected using both M-mode or
pulse waved Doppler signal, known as the “flying W” sign (21).

Assessment of the Right Heart
The American Society of Echocardiography has standardized
measurements of right-sided cardiac structure and function
(13). Measurements include the right atrial and ventricular
area, fractional area change (FAC) as a surrogate of right
ventricular ejection fraction (RVEF), tricuspid annular plane
systolic excursion (TAPSE), RVSP, and the presence of a
pericardial effusion. A right atrial area measured at the end
of systole >18 cm2 has been independently associated with
elevated right ventricular (RV) end-diastolic pressure (RVEDP)
and mean RAP with a sensitivity of 89% and specificity of 82%
(13, 22). The RV diameter at the base is considered enlarged
when it is>42mm.However, this measure only weakly correlates
with the gold standard RV volume assessment via CMR (23,
24). Measurements based off estimations of the 2D RV area
or volume, such as FAC or RVEF, are similarly flawed when
compared to CMR techniques (25, 26) due to the complex shape
of the right ventricle (27). Eccentricity index, or interventricular
septal morphology, is a useful echocardiographic tool and
assesses the interventricular dependency of the RV:LV from the
parasternal short-axis view and is an important component of the
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FIGURE 1 | Echocardiographic images are shown in a scleroderma patient with severe pulmonary hypertension on stable therapies. (A) Apical 4 chamber view

demonstrates severe right atrial enlargement with bowing of the interatrial septum from right to left suggestive of elevated right atrial pressures. The right ventricle is

severely dilated and hypertrophied with a prominent moderator band. The left ventricle is hypertrophied and small. (B) Parasternal short-axis is shown in the same

patient with marked RV enlargement and evidence of RV pressure overload distorting the normal circular short-axis geometry of the LV. There is a small posterior

pericardial effusion present. (C) Tricuspid annular plane systolic excursion (TAPSE) utilizes M-mode techniques to measure the longitudinal motion of the basal right

ventricular wall segment during systole as an estimate of right ventricular systolic function. TAPSE is mildly reduced at 1.5 cm (normal >1.6 cm) however fractional

area change was 24% (moderate-severely reduced). (D) Right Ventricular Longitudinal Systolic Strain (RVLSS) is a recent echocardiographic advancement based on

ultrasound-myocardial tissue interactions. Each segment of the RV in this example corresponds with a strain curve with the white dotted line representing an average

of the segmental strain for the regional curves in this view. Regional RV free wall strain is reduced in the basal and midventricular wall segments with less reduction in

the apical segment. Global strain is an average of the three RV free wall segments and is −14.3%. (E) Right Ventricular Systolic Pressure utilizes the peak tricuspid

velocity to calculate the peak right ventricular systolic pressure using the modified Bernoulli equation. RVSP= [peak gradient (mmHg) = right atrial pressure + (4 ×

Peak velocity 2)]. In this example, RVSP = 57 mmHg + 15 mmHg = 72 mmHg. (F) Right atrial pressures are estimated from the IVC diameter made in subcostal view

at end-expiration. In this example, the IVC is severely dilated at 3.2 cm with minimal respiratory variation suggestive of markedly elevated right atrial pressure of

15 mmHg.

ESC/ERS recommendations for PH screening (11). The presence
of RV hypertrophy may also be seen in chronic pressure/volume
overload states.

Due to the inaccuracy of RV area and volume assessments
using 2D echocardiographic techniques, other measurements are
used to estimate RV function. Tricuspid annular plane systolic
excursion (TAPSE) measures the movement of the tricuspid
annulus toward the apex between diastole and systole in M-
mode. A measurement ≤1.7 cm is considered abnormal (28).
TAPSE has been shown to closely correlate with RVEF on
CMR and RHC (29). However, TAPSE measurements should be
interpreted with caution in patients with severe TR as they have
been shown to be less accurate in that setting (30). The Tei index,
or myocardial performance index (MPI) of the RV, is measured
using either color or tissue Doppler imaging and is a ratio of
isovolumic time, both in contraction and relaxation, to ejection
time (31, 32). Systolic wave velocity (S′) is another measure of

myocardial contraction measured from tissue Doppler imaging
and has been validated in an epidemiologic study of healthy
individuals to define normal values (33). Abnormal tissue
Doppler S′ velocity is defined as <9.5 cm/s.

Prognostication
As right heart failure is the primary cause of death among
individuals with PH, assessment of abnormalities in the
right ventricle by echocardiogram offers significant prognostic
information. RA area and estimation of right atrial pressure have
been demonstrated to be associated with mortality secondary
to right heart failure (34). RVSP has been found to be an
independent predictor of mortality in PH (35, 36) and while
neither sensitive nor specific, the presence of a pericardial
effusion has been shown to predict mortality in PH patients
(34, 37, 38).
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Recently, the REVEAL registry has included
echocardiographic assessment of pericardial effusion in
prognostic risk assessment of PAH (REVEAL risk score).
Regarding RV functional assessments in individuals with known
PH, reduced TAPSE has been shown to have a nearly four-fold
increased risk of death (39) with every 1mm decrease in
TAPSE increasing the unadjusted risk of death by 17% (40).
Myocardial performance index is associated with clinical status
and mortality, as well as change in clinical status over time in
response to therapy (31, 41).

Speckle-Tracking Echocardiography (Echo Strain

Imaging)
Strain imaging is being increasingly incorporated into clinical
practice as a measurement of RV systolic function (42). Strain (ε)
is the deformation of cardiac tissue from an applied force with ε=

(Lsystole-Ldiastole)/Ldiastole with L being length (42) and multiplied
by 100 resulting in a percentage ofmyocardial deformation across
the cardiac cycle. A positive number indicates lengthening, and a
negative number indicates shortening. Strain imaging provides a
feasible non-invasive technique to assess cardiac mechanics for
the detection of subclinical ventricular dysfunction.

Using 2D echocardiographic techniques, there are two
methods by which strain can be calculated: tissue Doppler
imaging (TDI) and speckle tracking echocardiography (STE).
TDI-derived strain calculates the rate at which a particular
segment of the myocardium moves toward or away from the
transducer (43). TDI is less commonly used since it is highly
angle dependent and requires high frame rates. In contrast, STE is
angle-independent and performed by measuring the movement,
or deformation, of ultrasound pixels over the cardiac cycle. It is
particularly helpful in the right heart as it tends to preferentially
measure speckles at the endocardial border whose longitudinal
fibers account for 80% of RV contraction. STE-derived strain can
be reported across the RV free wall regions or as an average of
visualized segments known as global longitudinal strain (GLS)
and is expressed as a percentage and a more negative number
signifies a more shortening of the myocardial segment during
systole. Worsening strain refers to a less negative number (a
lower absolute value) than expected or diminished deformation
along the longitudinal axis. GLS typically represents the basal,
midventricular, and apical RV free segments however it may
also include the basal, midventricular, and apical segments of
the interventricular septum. The latter approach, however, is less
favored due to inability to isolate RV and LV contributions (42).
The most common measurement of strain in the RV is GLS,
however individual longitudinal segmental strain is also being
investigated in PH (44).

Reduced RV function using STE GLS imaging predicts worse
clinical outcomes such as right heart failure and death in PH
across various subgroups (45–47). Additionally, a reduction
in RV free wall strain has also been shown to predict worse
outcomes in PH (48). Reduced strain is one of the earliest signs
of RV dysfunction as patients with less longitudinal deformation
had worse outcomes than matched controls with equivalent right
heart dimensions and TAPSE (49, 50).

For a strain analysis to be done, 2D echo image quality
must also be adequate at a frame rate of at least 70–90
frames per second. Strain imaging requires post processing
using dedicated software and can be performed utilizing CMR-
based techniques as well. Echo-derived strain requires specialized
software and ultrasoundmachines, which may result in increased
cost, however can typically be performed during real-time image
acquisition with minimal increase in patient exam time or
retrospectively on previously acquired images. There is also
a significant learning curve in strain analysis as automated
endocardial border definition must be verified manually by
experienced operators (51). Additionally, there is well-described
vendor-specific variability in strain measures (52) and the cutoff
values for normal and abnormal strain also depend on the
analytic software and modality, i.e., CMR vs. echo-derived
strain, being used. Longitudinal strainmonitoringmust therefore
ensure that patients’ images are analyzed using the same software
across time and should be performed by experienced operators.

Three-Dimensional Echocardiography
3D echocardiography is a state-of-the-art imaging strategy
increasingly being used in clinical practice (53). Estimations
of the RVEF have been found to be more closely correlated
to those measured by CMR (54–57). However, 3D echo
tends to underestimate the true RVEF (58). Despite this, the
accessibility of 3D echo is greater than CMR which makes
this an attractive alternative. In addition, strain imaging has
been combined with 3D echo to accurately predict RVEF
(59). 3D imaging can be performed during both 2D and
transesophageal echocardiography and is recommended in the
assessment of severe TR (60) for grading and determining
suitability for intervention.

Chest Computed Tomography Imaging
Acquiring a non-contrast chest CT scan is part of the standard
workup for the diagnosis of PH (10). The presence of lung
disease on a chest CT along with abnormalities on pulmonary
function tests can indicate PH secondary to lung disease (Group
3 PH). Along with its evaluation of the pulmonary parenchyma,
there are several findings that can screen for PH on CT. These
include the absolute size of the main pulmonary artery and its
relative size compared to the aorta. Chest CT with contrast is
also essential if acute pulmonary embolism is suspected as an
etiology of PH. New CT techniques such as dual energy CT are
also being investigated to measure lung perfusion qualitatively
and quantitatively. A representative image from a patient with
connective tissue disease- associated interstitial lung disease and
mixed PH is shown in Figure 2.

Pulmonary Artery Size
The diameter of the main pulmonary artery (mPA) and its size in
comparison to the ascending aorta correlate to mPAP on RHC.
In the Framingham Heart Study, the 90th percentile for mPA
diameter measured by CT was >29mm in men and >27mm
in women (61). Subsequent work has shown that a mPA >

29mm is correlated with elevated mPAP with a sensitivity and
a specificity of ∼80% and an r of 0.6 (62–66). A ratio of the
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mPA/ascending aorta >1 also correlated with elevated mPAP
with ∼70% specificity and sensitivity. The mPA size can be
enlarged in fibrotic lung disease which can confound its use as
a screen for PH in patients with these disorders. CT has not been
shown to predict PH as accurately as echo or CMR (67, 68) but its
sensitivity and specificity increase when it is combined with these
modalities for screening (69).

Dual Energy CT
Dual energy CT (DECT) is a technique that acquires CT
angiographic (CTA) images of the pulmonary vasculature at two
different energy levels after the administration of intravenous
iodine-based contrast. Due to the different attenuation properties
of iodine contrast at these two different energy levels, the quantity
of iodine inside the pulmonary vasculature, which can serve
as a surrogate for pulmonary perfusion, can be isolated and
measured. As CT scans are commonly used in the work up
of PH, DECT has the capability to be built into the screening
chest CT without extra radiation (70). DECT is primarily used
as a replacement for the V/Q scan in diagnosis of CTEPH,
but has also been investigated as a screening tool for PH and
a tool to assess the degree of PH. DECT has been shown to
have an 80% sensitivity in the diagnosis of CTEPH compared
to VQ scintigraphy (71–74) which is much improved compared
to standard CTAs (75). While this is the most useful and well-
understood utility of DECT, additional assessment of pulmonary
perfused blood volumes (PBV), representing the total amount of
iodine inside the pulmonary vasculature at a certain timepoint,
can be qualitatively and quantitatively used to screen for PH.
Patients with PH have a mosaic attenuation pattern on DECT
given the dysregulation of the pulmonary vasculature inherent
to the disease (76). Additionally, the total degree of PBV has been
shown to correlate with mPAP (77) along with the ratio of PBV to
the attenuation of the pulmonary artery (78, 79). However, many
of these findings are non-specific.

FIGURE 2 | Computed tomography (CT) images of the chest with and without

contrast are shown from a 64-year-old female with connective tissue disease,

severe interstitial lung disease, and mixed severe pulmonary hypertension are

shown. (A) Transaxial images are shown demonstrating an enlarged main

pulmonary arterial size at 3.2 cm when compared to ascending aorta size of

2.9 cm at the same level suggestive of pulmonary hypertension. There is no

evidence of pulmonary embolism with optimal contrast opacification. (B)

Transaxial images in the lung window demonstrate extensive bilateral diffuse

groundglass opacities and honeycombing. There is associated intralobular and

interstitial thickening and bronchiectasis consistent with patient’s known history

of connective tissue disease associated non-specific interstitial pneumonitis.

Scintigraphy and Nuclear Imaging
Ventilation-Perfusion (V/Q) Scans
V/Q Scintigraphy is part of the standardized diagnostic workup
of PH, specifically for diagnosis of WHO Group 4 chronic
thromboembolic pulmonary hypertension (CTEPH) (10).
CTEPH is defined as PH in the presence of mismatched perfusion
defects by V/Q scan as well as signs of thromboembolism on
CT and/or pulmonary angiography following 3 months of
therapeutic anticoagulation (10). This modality is considered to
be the standard of care in the initial evaluation for PH etiologies
due to high sensitivity and specificity in the diagnosis of CTEPH,
outperforming CTA alone (80–82).

Nuclear Medicine Techniques
Increased stress on the right heart in PH results in an increase
in myocyte glycolysis and can be measured with a radioactively
tagged glucose analog and measured by PET. Increased 2-deoxy-
2-[18F]fluoro-D-glucose (FDG) uptake in the RV is observed in
patients with PH and correlated with mPAP (83–85). Increased
FDG uptake has been found to be associated with clinical
worsening and death, and patients who respond to therapy
show decreased FDG uptake over time (86, 87). In addition,
alternatives to FDG, such as a radiotracer targeting mannose
receptors on macrophages, have been similarly observed to
detect PAH and respond to pulmonary vasodilator therapy
(88). Further, hybrid PET/MRI imaging has demonstrated that
a combination of RV ejection fraction and tracer uptake was
associated with clinical deterioration or death in PAH patients

FIGURE 3 | Positron emission tomography (PET) images are shown from a

52-year-old woman with emphysema and associated Group 3 pulmonary

hypertension presenting with acute exacerbation. 9.78 mCi 18F-FDG injected

at 119 mg/dl blood glucose level. Image acquisition 57 mins post injection. (A)

Maximum intensity projection image demonstrates FDG uptake in the

diaphragm, infrahyoid muscles, and intercostal muscles consistent with

increased work of breathing noted during examination. There is also diffuse

subcutaneous uptake, reflecting treatment with corticosteroids during the

exacerbation. (B) Transaxial images at the midventricular level demonstrate

abnormal uptake in the right ventricle. (C) Transaxial images at the level of the

main pulmonary artery (mPA) demonstrate enlarged mPA and abnormal FDG

uptake in the right ventricular outflow track.
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FIGURE 4 | Computed tomography (CT) and 99mTc-sestamibi single-photon emission computed tomography (SPECT) images from a 23-year-old woman with history

of D-transposition of the great arteries (D-TGA) status-post repair. (A) Transaxial CT angiogram image demonstrating the characteristic appearance of the pulmonary

artery and aorta after repair of D-TGA. (B) Non-contrast CT acquired at time of SPECT shows a stent in the pulmonary artery that was placed after the patient

developed severe pulmonary artery stenosis. (C) Short axis SPECT image shows normal radiotracer distribution in the left ventricle with extension of uptake into the

visualized portion of the right ventricle, consistent with pulmonary hypertension.

(89). Figure 3 demonstrates representative FDG-PET imaging
from a PH patient with emphysema.

Single-photon emission computed tomography (SPECT)
utilizes multiple different radiotracers to evaluate cardiac
perfusion and function. Analogous to PET, patients with PH
will have evidence of thickening, enlargement, and metabolic
derangement in the RV. The most commonly used radiotracers
in modern cardiac SPECT are mitochondrial imaging agents
(e.g., 99mTc-sestamibi), and their increased uptake in the RV
is reflective of both increased RV mass and increased energy
production and use (90). Figure 4 is from a patient with a
pulmonary artery stenosis and increased 99mTc-sestamibi uptake
in the RV.

Cardiac Magnetic Resonance Imaging
CMR Quantitative Assessment of Structure and

Function
CMR is a non-invasive, non-radiating imaging technique that
allows for highly reproducible tissue characterization (90),
permits assessment of radial and circumferential RV strain,
and can distinguish ischemic-perfusion vs. fibrotic processes.
CMR provides the best three-dimensional characterization of
the RV and its dynamic relationship with the LV with high
interstudy reproducibility (91). CMR also generates accurate
3D measurements of the RV throughout the cardiac cycle (92).
Right ventricular mass, volume, and function can be accurately
assessed and quantified on CMR. Additionally, evaluation
of infiltrative disease processes relevant to development of
cardiomyopathy is possible. Reduced RV ejection fraction, and
RV end-systolic volume have been shown to be independent
predictors of mortality (93–95). Reduced stroke volume has also
been correlated with mortality (96), and improvements in stroke
volume are seen in response to therapy (97, 98). Representative
CMR images are demonstrated in Figure 5.

CMR Tissue Characterization and Perfusion Imaging
In the assessment of PH, CMR can be of particular value in
patients with rheumatologic etiologies allowing for identification
of occult lesions such as myocarditis, interstitial edema,

FIGURE 5 | Cardiac Magnetic Resonance (CMR) images are shown from a

38-year-old female with idiopathic pulmonary arterial hypertension. (A)

Four-chamber bright blood CMR image from end diastole shows a dilated and

hypertrophied right ventricle at a mean pulmonary pressure of 47 mmHg. End

systolic images show leftward bowing of the interventricular septum from

elevated right ventricular pressure. (B) Late systolic images show leftward

bowing of the interventricular septum from elevated RV pressure. (C) Short

axis CMR image shows marked hypertrophy of the right ventricular free wall

and septal bowing. (D) Short axis LGE image shows prominent enhancement

at the anterior and inferior RV insertion points (asterisks).

myocardial infarction, and diffuse endocardial fibrosis (99).
Assessment of native T1 and post-contrast T1 mapping allows
for the accurate differentiation between the acute and chronic
phases in many rheumatologic disorders. Understanding to what
extent either ischemic injury or inflammation contributes to
myocardial damage and fibrosis is also important in therapeutic
interventions (100).

Late gadolinium enhancement (LGE) is a well validated
approach for the evaluation of focal myocardial scarring and
is the gold standard for in vivo assessment of replacement
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macroscopic fibrosis (99). CMR techniques can detect fibrosis in
as little as 1 cm3 of tissue with excellent agreement with histologic
studies (99, 101). Native T1 mapping and extracellular volume
(ECV) quantificationmay bemore sensitive than LGE techniques
at detecting low-grade inflammation and diffuse myocardial
fibrosis (102). In fact, in a recent study, rheumatologic patients
were found to have higher T1 and T2 values, as well as expanded
ECV compared with control subjects, with the most significant
differences between native T1 and T2, independent of the
presence of LGE (103). The extent and location of LGE in the
RV can also indicate presence of RV stress. Delayed enhancement
from gadolinium (10–20 mins after injection) is associated with
cardiac fibrosis (104). Delayed enhancementmass at the insertion
points of the RV is a sensitive and specific marker for PH
(105–108). The extent of delayed enhancement mass into the
interventricular septum is associated with worse RV function and
clinical outcomes (109–111).

Quantification of myocardial perfusion utilizing CMR
is observer-independent and highly reproducible (112).
CMR perfusion imaging may allow for the investigation of
characteristic disease-specific findings beyond the hemodynamic
derangements in loading conditions in PH. In a study of
CMR perfusion imaging in PAH patients associated with
the autoimmune disorder systemic sclerosis (SSc-PAH) vs.
those with idiopathic PAH (IPAH), RV and LV perfusion was
significantly reduced and inversely correlated with RV workload
and ejection fraction (113). Reduction in RV myocardial
perfusion reserve was significantly correlated with worse
hemodynamic profile and decreased RV function suggesting
that reduced myocardial perfusion reserve may contribute to
RV dysfunction in patients with PAH (113). CMR markers of
RV remodeling and fibrosis, including RV and LV ventricular
mass index, LGE and RV myocardial perfusion index, were also
predictive of survival and improved with PAH-specific therapies.

CMR Strain Imaging
With high spatial and temporal resolution, CMR allows for
quantification of global RV function across three coordinate
directions (circumferential, radial, and longitudinal), as well
as precise analysis of RV regional myocardial function. A
variety of approaches to strain imaging with CMR are clinically
available, including use of line tags and spatial modulation
of magnetization (SPAMM), use of radiofrequency pulses
to conduct displacement encoding with stimulated echoes
(DENSE), and use of through-plane tags by strain-encoding
(SENC), to name a few (114–116), although only a subset
have been reliably applied to a PH population. SENC is
technique with low intra- and inter-observer variabilities (117),
and is based on the acquisition of two images with different
frequency modulation, or low-tuning (LT) and high-tuning (HT)
images in the slice-selection direction representing static and
contracting tissues, respectively. Fast-SENC RV longitudinal and
circumferential strain has been utilized in PH patients allowing
for characterization of RV regional function with a unique
pattern of reduction in RV circumferential shortening (118).

Reductions in longitudinal strain correlate with RVEF and NT-
proBNP in PH (119) and have a higher sensitivity and specificity
to detect low RVEF when compared to circumferential strain.

Similar to STE-derived strain, CMR strain can be measured
using dedicated sequences such as SENC or post-processing
of cine images using feature-tracking. While CMR-derived
myocardial tissue tagging and SENC have quantitative value,
these modalities have not gained widespread clinical use due
to expertise needed in specific sequences, additional scanning
time, and the required time and cost for complex post-processing
analysis (120). Ohyama et al. recently employed an alternative
method of CMR strain known as multimodality tissue tracking
(MTT), which similar to STE, utilizes tissue patterns obtained
from cine CMR images and automatically tracks them frame
to frame using an automated matching software algorithm.
Findings from 30 PH patients demonstrated close correlation
between MTT and SENC with high reproducibility suggesting
that quantification of regional cardiac deformation using CMR
cine images is feasible without the additional limitations of other
CMR strain techniques. CMR and STE-basesd longitudinal strain
have good inter-modality agreement while both SENC- and FT-
derived circumferential strain, especially in the presence of LGE,
is better detected using CMR techniques (121).

CMR Flow and PA Vasoreactivity
2D and 4D flow characterization through the RV is a novel
technique to investigate the hemodynamics of the RV and
pulmonary artery. CINE phase-contrast MRI can be used to
quantify blood’s velocity. When velocity in one direction is
measured through a 2D plane it is called 2D flow MRI. However,
it can underestimate the peak velocity if it is not orthogonal to the
flow of interest and it cannot measure complex flow patterns with
direction change. 4D flow MRI (3D CINE phase-contrast MRI)
can analyze this through post-hoc 3D flow analysis (122). Flow
through the pulmonary artery has been found to be qualitatively
and quantitatively different in PH. Patients with PH have been
found to have a reduced velocity of blood flow through the
pulmonary artery correlating with higher pulmonary vascular
resistance (123–126). The pulmonary artery is also noted to be
less distensible in patients with PH, which may predict mortality
(127–129). There is a greater retrograde blood flow through the
PA in patients with PH (130) thought to be secondary to a
turbulent vortex. The length of time of which the vortex is present
during the cardiac cycle correlates with mPAP (131–133).

Endothelial dysfunction of the pulmonary vasculature
is thought to be the central underlying pathophysiologic
mechanism of PH and results in decreased relaxation of the
PA (134). PA endothelial function is typically measured by
invasive assessment of changes in PA in cross-sectional area and
flow in response to an endothelial-dependent stress (135, 136).
Previous work from our group utilizing the novel combination
of 3T MRI methods with isometric handgrip exercise (IHE), a
well-established endothelial-dependent stressor, demonstrated
a non-invasive method of measuring coronary endothelial
dysfunction with high reproducibility (137, 138). In recent
work from our group, we demonstrated the feasibility of the
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TABLE 1 | Characteristic imaging findings are summarized across imaging modalities.

Imaging modality Characteristic findings in pulmonary hypertension

Echocardiography Abnormal hemodynamics

Right ventricular systolic pressure > 40 mmHg and/or mean pulmonary arterial pressure > 20 mmHg

Abnormal pulmonary vascular resistance > 2 Wood Units

Dilated inferior vena cava with or without respirophasic variation: IVC diameter ≤ 2.1 cm that collapses >50% suggests

normal RAP of 3 mmHg; IVC diameter >2.1 cm that collapses <50% equivalent to RAP of 15 mmHg. In indeterminant

cases, an intermediate value of 8 mmHg may be used

Systolic flow reversal in hepatic veins suggestive of elevated right ventricular end-diastolic pressure

Abnormal right heart chamber size and function

Distortion of interventricular septal morphology suggestive of pressure volume overload

Enlargement of the right atrium in chronically elevated right ventricular filling pressures

Abnormal TAPSE ≤ 1.7 cm, tissue Doppler S’ < 9.5 cm/s, fractional area change <35%

Presence of right ventricular hypertrophy

Globally reduced right ventricular longitudinal strain with or without regional abnormalities

Abnormal regurgitant lesions

Presence of pulmonary and/or tricuspid regurgitation

Chest Computed Tomography Imaging Enlargement of main pulmonary artery in comparison to ascending aorta at same level > 1

Evaluation of lung parenchyma which may be abnormal in Group 3 pulmonary hypertension

Assessment for acute pulmonary embolism using contrast imaging

Assessment of chronic thromboembolic pulmonary hypertension in Group 4 disease

Scintigraphy and Nuclear Imaging Abnormal Ventilation-Perfusion (VQ) Scan

Presence of mismatched perfusion defects by VQ scan as well as signs of thromboembolism on CT and/or pulmonary

angiography following three months of therapeutic anticoagulation

Abnormal FDG-18 uptake

Increased FDG-18 uptake in the right ventricle and pulmonary artery

Cardiac Magnetic Resonance Imaging Abnormal right heart chamber size and function

Increased right atrial and ventricular volumes

Abnormal interventricular septal morphology suggestive of pressure/volume overload

Presence of right ventricular hypertrophy

Reflux of contrast into the hepatic veins

Decreased right ventricular function

Abnormal CMR-derived strain along both longitudinal and circumferential axis

Abnormal tissue characterization

Abnormal native T1 mapping and expanded extracellular volume suggestive of tissue inflammation seen in acute phase

Presence of late Gadolinium enhancement which can be seen at insertion points of the right ventricle and within the right

and left ventricles

Suggestive of fibrosis and tissue remodeling

Abnormal perfusion

Reduced right and left ventricular perfusion is inversely correlated with pulmonary pressures, and right ventricular workload

and ejection fraction

Abnormal flow and pulmonary arterial vasoreactivity

Reduced pulmonary arterial blood flow velocity correlates with increased pulmonary vascular resistance

Decreased pulmonary arterial distensibility

Abnormal pulmonary artery vasoreactivity suggestive of endothelial dysfunction

non-invasive measurement of PA vasoreactivity in HIV patients
with pulmonary vascular disease (139, 140).

CONCLUSION

Echocardiography, CT, nuclear imaging, and CMR are useful
for non-invasively screening, classifying, prognosticating, and

monitoring effectiveness of therapy in PH. Characteristic
findings for each modality are further summarized in Table 1.
The standardized algorithm using echocardiogram, CT scan,
and VQ scan in the initial diagnosis and classification in
PH can also be supplemented by CMR methods. While
multiple modalities exist and can complement each other in the
investigation of PH, a well-designed clinical approach should
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account for expertise and availability of necessary imaging
equipment and analytic software in a value-based framework
focused on patient-specific clinical needs and prioritizing the
minimization of imaging redundancy. Novel imaging techniques
such as strain imaging, 3D echo, DECT, FDG-PET, and 4D
flow MRI can evaluate for the severity of PH and can be used
in conjunction with standard imaging modalities to monitor
for disease progression and response to therapy. While RHC
is the gold standard in the diagnosis and monitoring of
PH, it can be supplemented by these non-invasive imaging
modalities to ensure that it is selectively and appropriately
used. Earlier detection of PA and RV dysfunction using these
common imaging modalities can lead to earlier diagnosis
and treatment of PH which has been shown to improve
clinical outcomes.
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Despite marked advances in therapeutics, HIV infection remains a leading cause of

morbidity and mortality worldwide. HIV infection is associated with cardiovascular

complications including myocardial dysfunction. The description of HIV-associated

cardiomyopathy (HIVAC) has evolved over time from a predominantly dilated

cardiomyopathy with systolic dysfunction to one of subclinical diastolic dysfunction.

Multimodality cardiovascular imaging plays an integral role in our understanding of the

etiology and pathogenesis of HIVAC. Such imaging is also essential in the evaluation

of individuals with chronic HIV disease who present with cardiac symptoms, especially

of heart failure. In the present review, we will highlight current evidence for the role of

multimodality imaging in establishing the diagnosis, etiology and pathophysiology of

HIVAC as well as guiding treatment and assessing prognosis.

Keywords: human immunodeficiency virus, cardiomyopathy, echocardiography, cardiac magnetic resonance

imaging, computed cardiac tomography

INTRODUCTION

Human immunodeficiency virus (HIV) infection remains a leading cause of morbidity and
mortality worldwide (1). Of the estimated 37.9 million people living with HIV (PWH) worldwide,
25.6 million live in sub-Saharan Africa (2). There are ∼1.2 million PWH in the United States (3).
With the widespread advent of antiretroviral therapy (ART), HIV infection has largely become a
chronic manageable condition. This is especially true in developed countries where ART is readily
accessible. However, in some parts of the developing world, ART is not readily available and
HIV remains an untreated and underrecognized condition characterized by progression to AIDS
(acquired immune deficiency syndrome) and death.

HIV infection is associated with various cardiovascular manifestations. In settings where ART is
readily accessible, PWH are living longer but continue to have chronic low-grade inflammation
despite immunosuppression (4). In addition, as patients live longer traditional comorbidities
such as hypertension, dyslipidaemia and diabetes with concomitant HIV infection contribute to
accelerated atherosclerosis leading to vascular disease including coronary artery disease (CAD) (5).
In fact, CAD has become the leading cause of cardiovascular mortality and morbidity in PWH
(6). However, in resource limited settings where ART is not readily available, pericardial disease
and myocardial disease in the form of myocarditis and cardiomyopathy are the leading causes of
cardiac disease in PWH (7).
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The presentation of myocardial disease in PWH ranges
from incidental asymptomatic findings on autopsy or
cardiovascular imaging to symptomatic heart failure. Decades
after its recognition, the etiology and pathophysiology of
HIV-associated cardiomyopathy (HIVAC) remains a topic
of intense speculation with no consensus criteria for its
definition. Nevertheless, its description has evolved from
the pre-HAART era, when HIVAC was characterized by a
dilated cardiomyopathy with systolic dysfunction associated
with end-stage HIV disease and a poor prognosis. Morbidity
and mortality occurred largely in the context of myocarditis,
opportunistic infections, toxicity from medications, nutritional
disorders, autoimmune mechanisms and inflammation. In
more recent times, subclinical diastolic dysfunction has become
the hallmark of HIVAC in individuals with treated HIV
infection (8).

Cardiac imaging plays an integral role in the assessment of
PWH who present with cardiac symptoms and signs especially
those of heart failure. In the current review, we will highlight
evidence for the role of multimodality imaging in establishing
the diagnosis, etiology, and pathophysiology of HIVAC as well
as guiding treatment and assessing prognosis.

EPIDEMIOLOGY AND PATHOGENESIS OF
HIV ASSOCIATED CARDIOMYOPATHY

The epidemiology of HIVAC has changed over the course of
time from its initial description characterized by left ventricular
(LV) systolic dysfunction to its current description of varying
levels of diastolic dysfunction. Data on the prevalence of
HIVAC is largely from studies conducted in the United States
and Europe despite the fact that more than two-thirds of
PWH are found in Sub-Saharan Africa (9). With the advent
of ART, contemporary studies show that the prevalence of
diastolic dysfunction is relatively high, with lower prevalence
of systolic dysfunction. In a recent metanalysis of 11 studies
conducted in Europe and the United States which included
2,242 mildly symptomatic and asymptomatic patients with
HIV, the prevalence of systolic dysfunction was 8.3% and
diastolic dysfunction was 43.4% (10). The Heart of Soweto
Study conducted in South Africa showed that out of 5,328
cases of newly diagnosed heart failure, 518 (9.7%) were
HIV positive. Moreover, 148 patients (29%) had systolic
dysfunction and 196 (38%) had both systolic and diastolic
dysfunction regardless of whether they were symptomatic for
heart failure (7).

The pathogenesis of HIVAC is unclear but is likely
multifactorial. Prior to the widespread implementation of ART,
systolic dysfunction was thought to be mainly due to direct viral
invasion of the myocardium, with or without myocarditis by
the HIV virus or secondary to opportunistic infections such as
toxoplasmosis and cryptococcosis (11). However, with the advent
of ART other mechanisms of myocardial involvement in HIV
infection have emerged including CAD and drug toxicity (12).
Other putative mechanisms include autoimmunity, nutritional
deficiencies and inflammation.

ECHOCARDIOGRAPHY

Echocardiography remains the first line imaging modality
in assessing myocardial function. It is readily available, cost
effective and robust in detecting both systolic and diastolic
dysfunction. Prior to HAART, HIVAC was recognized on
transthoracic echocardiography (TTE) as systolic LV dysfunction
with varying degrees of LV dilatation. However, with the onset
of HAART, HIVAC is largely recognized on TTE as subclinical
diastolic dysfunction.

A study by Hakim et al. based in Zimbabwe aimed to
determine the prevalence and characteristics of myocardial
dysfunction in acutely ill HIV positive patients admitted to
hospital. Out of a total of 151 patients, 14 (9%) had a dilated
cardiomyopathy, 33 (22%) had LV dysfunction and 9 (6%) had
isolated right ventricular (RV) dysfunction (13). These results
mirrored a similar study in the United Kingdom which showed
a relatively high prevalence of myocardial dysfunction of 26/173
(15%) patients (14). Dilated cardiomyopathy was a feature of
advanced HIV disease and mean CD4 count was 38 cells/mm3

in these patients. The HIV-HEART study assessed the prevalence
of abnormalities in cardiac structure and function in 803 PWH
in the era of ART (15). The main findings of the study included
LV dilatation in 10.1% of all PWH while 34 and 48% of patients
had systolic and diastolic dysfunction, respectively. Severe forms
of ventricular dysfunction were rare. In a large systematic review
of 54 studies looking at cardiac dysfunction in ∼125,382 PWH,
there were 12,655 cases of cardiac dysfunction (16). The authors
also found that there was a lower prevalence of LV systolic
dysfunction in those studies reporting a higher use of HAART.
LV systolic dysfunction was higher in the African region possibly
reflecting lower access to HAART. These studies highlight the
shift of HIVAC from a predominant systolic dysfunction to one
of predominant diastolic dysfunction in the post ART era.

Echocardiography has been shown to be instrumental in early
detection of cardiovascular disease and has also been helpful
for researchers to diagnose differences between heart disease in
PWH and in people without HIV. One study analyzed 1,195
participants from the Multicenter AIDS Cohort (MACS) study
who underwent TTE exams demonstrating that men with HIV
had a larger LV mass index and right ventricular size compared
to controls (17). In addition to the structural differences found
between groups, this study demonstrated that men with HIV
had higher rates of diastolic dysfunction and RV dysfunction
compared to men without HIV after adjusting for cardiovascular
comorbidities. These cardiac abnormalities were also seen in
virally suppressedmen with HIV. The study however did not find
any association between left ventricular ejection fraction (LVEF)
and HIV seropositivity. Overall, the MACS study concluded that
structural changes in HIV-positive patients may predispose them
to heart failure with preserved ejection fraction.

Other studies evaluated LV systolic function by tissue Doppler
strain echocardiography in PWH and participants without HIV.
One study demonstrated that while LVEF in PWH was slightly
lower than in patients who were uninfected, the LVEF values
were still within normal limits. However, PWHhad subtle cardiac
dysfunction, as evidenced by reduced LV strain (18). Subclinical
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LV systolic dysfunction in HIV is further supported by other
studies revealing no significant difference in conventional
echocardiographic parameters including LVEF between PWH
and people without HIV. However, the HIV population had
significantly lower mean global longitudinal strain values (GLS).
Furthermore, studies have shown that impaired GLS correlated
with decreased CD4 counts (19, 20).

Right ventricular (RV) dysfunction is relatively common in
PWH occurring largely in the setting of dilated cardiomyopathy
or with varying degrees of HIV associated pulmonary
hypertension (PH) (21). Isolated RV dysfunction has been
documented in both the pre-ART and ART eras. RV dysfunction
is associated with increased mortality in patients with PH and
other forms of heart disease (22, 23). Therefore, understanding
RV function in PWH is essential in determining the prognosis
of patients with cardiac dysfunction and potentially guiding
therapy. Prior to the widespread use of ART, smaller studies
demonstrated isolated RV dilatation in PWH (13, 14, 24). In
a more contemporary study, the prevalence of RV structural
abnormalities and RV dysfunction was determined using
echocardiography in 104 PWH on ART (25). RV dysfunction
was common, but did not always correlate with elevated
pulmonary artery systolic pressure (>35 mmHg) or LV systolic
dysfunction, suggesting that RV dysfunction in PWH may occur
independently of pulmonary hypertension or LV dysfunction.

The evidence highlights the value of echocardiography
in the evaluation of myocardial function in PWH. Studies
from the pre-HAART era demonstrate the pivotal role that
echocardiography played in diagnosing systolic dysfunction in
symptomatic patients often with advanced HIV disease. The
same remains true today, and echocardiography remains an
essential first line modality for assessing cardiac structure and
function in PWH who present with heart failure symptoms.
This non-invasive approach is important in characterizing
biventricular function and cardiac structure as well as excluding
other non-myocardial causes of symptoms. In the case of
LV systolic dysfunction, evidence-based goal directed medical
therapy should be considered per guideline recommendations
(26). Although asymptomatic diastolic dysfunction is generally
associated with an increased risk of symptomatic heart
failure and death, screening echocardiography in asymptomatic
PWH is not indicated although remains an area of active
investigation. Rather the focus should be on aggressively
managing comorbidities such as hypertension, obesity, or
diabetes which may contribute to ventricular dysfunction.

CARDIAC MAGNETIC RESONANCE
IMAGING

Cardiac magnetic resonance (CMR) has been used to detect
subtle and subclinical myocardial abnormalities, contributing
to the current understanding of the pathogenesis of HIVAC.
Untreated HIV infection is characterized by an immunodeficient
state. In contrast, patients with well-treated HIV infection
are in a state of immune activation. Several studies have
shown a correlation between elevated inflammatory biomarkers

and cardiovascular events in PWH (27). This observation
has led to the postulation that inflammation may play
an important role in the pathogenesis of HIV associated
cardiovascular disease including myocardial dysfunction. At a
cellular level, immune activation and chronic inflammation
leads to deposition of collagen and myocardial fibrosis which
is associated with an increased incidence of both systolic and
diastolic dysfunction (28).

CMR is a useful tool in assessing the role of inflammation
and fibrosis in myocardial dysfunction in PWH. CMR can detect
several components of inflammation, which include edema and
fibrosis depending on the extent of cardiac involvement and stage
of disease. Figure 1 shows CMR findings demonstrating fibrosis
by late gadolinium enhancement (LGE) in a patient with HIV as
well as markedly elevated myocardial T1 consistent with diffuse
myocardial fibrosis (29).

Several studies have looked at the role of CMR in detecting
subclinical myocardial dysfunction and fibrosis in PWH. In a
study by Holloway et al., a total of 129 asymptomatic PWH on
ART underwent CMR to assess cardiac function and myocardial
fibrosis (30). Seventy-six percent of PWH were observed to
have myocardial fibrosis predominantly in the basal inferolateral
wall as compared to 13% of control subjects. In addition,
peak myocardial systolic and diastolic strain were significantly
lower in PWH. An extension of this study demonstrated that
treated HIV infection was associated with chronic subclinical
myocardial edema and pericardial effusions (31). Another study
by Leutkens et al. studied PWH who were virally suppressed
and underwent CMR. Compared to controls, the investigators
found that PWHhad lower LV strain values and ejection fraction,
and higher myocardial inflammation by T2 weighted images.
Myocardial fibrosis on LGE was also significantly elevated in
PWH compared to controls (82% vs. 27%, p < 0.001) (32).
A more recent study in South Africa demonstrated that PWH
who were virally suppressed had greater myocardial fibrosis by
extracellular volume (ECV) fraction compared with age and sex
matched HIV negative controls. In addition, an elevated NT-
proBNP level was associated with higher ECV (3.4%; 85% CI 1.3–
5.5) (33). CMR has also played a role in tissue characterization of
the RV in PWH, by demonstrating the presence of RV fibrosis by
LGE (34). However, the clinical significance of these findings is
yet unknown.

CMR plays an important role in the evaluation of HIV
associated myocarditis. Before the introduction of ART, an early
autopsy study demonstrated myocarditis in 52% of patients
who died of AIDS (35). However, with the widespread use of
ART, the incidence of HIV associated myocarditis has declined
and the condition occurs almost exclusively in those with
advanced immunosuppression. The gold standard for diagnosing
myocarditis is endomyocardial biopsy however this techniques
is invasive and can have low diagnostic yield (36). CMR
on the other hand is a non-invasive imaging technique that
permits detection of various stages of myocarditis with excellent
diagnostic performance (37).

Measures of tissue characterization using CMR also have
prognostic value for PWH. In a recent study, CMR was
used to quantify ECV, reflective of myocardial inflammation
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FIGURE 1 | Short-axis (A), 2-chamber (B), and 4-chamber (C) late gadolinium phase-sensitive inversion recovery images show linear mid-wall enhancement in the

lateral wall of the LV (white arrows) in a patient with HIV. T1 map at the level of the mid-LV (D) shows a markedly elevated myocardial T1 time of 1,414 m/s (normal

1,052 m/s ± 23 m/s at 3 T) (E) consistent with diffuse myocardial fibrosis (29).

or fibrosis, and showed that PWH have significantly higher
ECV fraction when compared to people without HIV. The
higher ECV value corresponded to more diffuse fibrosis, and
studies have also shown a link between higher ECV values
and increased adverse cardiovascular events. A prospective
observational study evaluated the prognostic association between
CMR measures and cardiovascular outcomes including heart
failure in PWH on HAART. It was found that patients with
diffuse myocardial fibrosis on CMR had a higher rate of
cardiovascular events (38).

Lastly, novel non-contrast CMR techniques have been
developed that may help in the work up of PWH who are
prone to developing early vascular disease and microvascular
dysfunction that may contribute to the pathogenesis of
cardiomyopathy (39). Impaired coronary endothelial
function (CEF) provides a promising early indication
of coronary vascular disease in PWH. Abnormal CEF
plays a critical role in the development, progression and
clinical manifestations of coronary artery disease (CAD),
independently predicts cardiovascular (CV) events, and
is a target for medical interventions (40, 41). Using CMR
combined with isometric handgrip exercise, an endothelial
dependent stressor, studies in PWH revealed depressed
CEF (measured by stress-induced change in coronary
artery area and blood flow) compared to HIV negative
matched adults (42).

CARDIAC COMPUTED TOMOGRAPHY
AND CORONARY COMPUTED
TOMOGRAPHY ANGIOGRAPHY

Cardiac computed tomography (CT) and coronary CT
Angiography (CCTA) have emerged as important imaging
tools for evaluating both clinical and subclinical CAD in PWH.
An analysis of the MACS cohort, a large cohort of HIV infected
and matched uninfected men showed that after adjusting for
known CVD risk factors, HIV infected men had an increased
prevalence of non-calcified and mixed plaques compared to
HIV uninfected men using CCTA (43). CCTA was also used
to evaluate differences in the degree of coronary stenosis
between the two groups. After adjustment for risk factors only
a borderline association remained between HIV and increased
degree of coronary artery stenosis.

Coronary artery calcification (CAC) is a highly specificmarker
of coronary atherosclerosis and is frequently employed to screen
for CAD and assess risk for cardiovascular events (44). The
MACS study showed that after adjustments for race, age, cohort
and location, HIV infected men had a greater prevalence of CAC
than HIV uninfected men (43). However, once adjustments for
traditional CAD risk factors were made, the association between
HIV and increased prevalence of CAC was borderline. Although
coronary CT and CCTA are not indicated as screening tests in
asymptomatic PWH, results from the MACS cohort and other
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TABLE 1 | Clinical and investigational utility of cardiac imaging modalities in HIV associated cardiomyopathy.

ECHO CMR CT SCAN Nuclear Imaging

Chamber dimensions and volumes *** **** * *

Left ventricular systolic and diastolic function *** **** – *** (MUGA)

Mechanisms of ventricular dysfunction

(ischemia vs. non ischemia)

** *** * ****

Atherosclerosis – – *** –

Myocardial tissue characterisation ** **** – –

Staging and monitoring disease progress *** **** ** –

Limitations Operator dependent and

may be limited by acoustic

windows

Limited by geometric

assumptions when

assessing cardiac structure

and function

Not widely available Use of ionizing

radiation,

contrast (CTA)

Not widely available,

patient preparation

Echo, echocardiography; CMR, cardiac magnetic resonance; CT scan, computerized tomography; MUGA, multigated acquisition scan; *poor; **intermediate, ***good,

****excellent performance.

studies emphasize the importance of evaluating and modifying
traditional cardiovascular risk factors in this population.

PWH may present with symptomatic heart failure secondary
to ischemic heart disease. In this setting CCTA is useful in
the diagnostic workup of CAD. The utility of CT to establish
the diagnosis of CAD as well as its value as a gatekeeper for
invasive coronary angiography in patients with heart failure and
LV systolic dysfunction was shown in a study of 93 patients with
newly diagnosed heart failure of unknown etiology (45). If the
CAC score was 0, the diagnosis of ischemic heart failure was ruled
out; if the score was more than 0, CCTA was performed. Using
this proposed algorithm, there was a sensitivity of 100%, with a
specificity of 67% in the prediction of CAD.

NUCLEAR MEDICINE TECHNIQUES

Nuclear medicine-based techniques have the ability to identify
vascular inflammation and can permit the early detection
of vascular disease in PWH (46). The degree of uptake
of Fluorodeoxyglucose (FDG) in the carotid arteries and
aorta detected by positron emission tomography-computed
tomography (PET-CT) imaging techniques is useful in
characterizing vascular inflammation, early atheroma and
atherosclerotic plaques that are prone to rupture. One study
reported a higher uptake of FDG in the carotid arteries and
aorta of HIV infected individuals as compared to non-infected
individuals (47).The use of myocardial perfusion imaging (MPI)
with single-photon emission computerized tomography (SPECT)
and PET have been evaluated in patients with HIV and found
to have a high sensitivity and specificity in diagnosing CAD.
These nuclear imaging techniques shed light on the etiology
of cardiomyopathy by detecting cardiac stunning, presence
of scar and assessing viability in patients with HIV thereby
directing further management. In addition, the prevalence of
RV dysfunction in a population of PWH was also investigated
by radionuclide ventriculography in 95 patients (48). Although

there was no significant LV dysfunction, a small but significant
proportion of the cohort had modestly reduced RV systolic
function defined as an ejection fraction <44%.

A summary of multimodality cardiovascular imaging
techniques used for HIV-related heart disease is shown in
Table 1.

DISCUSSION: GAPS IN KNOWLEDGE AND
FUTURE DIRECTIONS

The introduction of HAART has led to a paradigm shift in
the presentation of cardiovascular disease in PWH including
that of HIVAC. Although the etiopathogenesis of HIVAC
remains unclear, multimodality imaging has played a role in
defining various putative mechanisms including inflammation
and myocardial fibrosis. Multimodality imaging is also crucial
in establishing a diagnosis of HIVAC in symptomatic patients.
Although many studies have established prognosis in HIV
patients with cardiomyopathy and systolic dysfunction, the
prognostic significance as well as progression of diastolic
dysfunction in HIVAC remains largely unknown and further
long-term studies are needed. In addition, the mechanism and
significance of right ventricular dysfunction especially in the
absence of PH and LV dysfunction should be explored further.
In summary, an approach tailored to the clinical presentation
of the patient should be used to guide the use of cardiovascular
imaging to identify myocardial dysfunction, investigate the
possible underlying causes and facilitate appropriate preventive
and evidence-based treatment for this condition.
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Cardiac sarcoidosis (CS) is an increasingly recognized cause of heart failure and

arrhythmia. Historically challenging to identify, particularly in the absence of extracardiac

sarcoidosis, diagnosis of CS has improved with advancements in cardiac imaging.

Recognition as well as management may require interpretation of multiple imaging

modalities. Echocardiography may serve as an initial screening study for cardiac

involvement in patients with systemic sarcoidosis. Cardiac magnetic resonance imaging

(CMR) provides information on diagnosis as well as risk stratification, particularly for

ventricular arrhythmia in the setting of late gadolinium enhancement. More recently,
18F-fluorodeoxyglucose position emission tomography (FDG-PET) has assumed a

valuable role in the diagnosis and longitudinal management of patients with CS, allowing

for the assessment of response to treatment. Hybrid FDG-PET/CT may also be used in

the evaluation of extracardiac inflammation, permitting the identification of biopsy sites for

diagnostic confirmation. Herein we examine the approach to diagnosis and management

of CS using multimodality imaging via a case-based review.

Keywords: cardiac sarcoidosis, sarcoid cardiomyopathy, multimodality imaging, inflammatory cardiomyopathy,

echocardiography, cardiac PET, cardiac MRI (CMR)

INTRODUCTION

Sarcoidosis is a multiorgan system disease characterized by noncaseating granulomatous
inflammation (1–3). Sarcoidosismost commonly involves the lungs or lymph nodes (2, 4). However
cardiac sarcoidosis (CS) is increasingly recognized and may occur with extracardiac findings
or, rarely, in isolation (4). Clinically, cardiac involvement may manifest with cardiomyopathy,
arrhythmia, or atrioventricular conduction disease, or CS may remain relatively subclinical (2).
While identifying CS has significant therapeutic and prognostic implications (5–7), diagnosis may
be challenging, particularly in the absence of extracardiac disease.

Diagnosis of CS traditionally requires histopathologic evidence of sarcoidosis (i.e., noncaseating
granulomas) either in the heart or another organ in addition to characteristic clinical and imaging
findings. Several diagnostic criteria for CS have been proposed, including the Japanese Ministry
of Health and Welfare (JMHW) criteria (8) and the Heart Rhythm Society (HRS) criteria (9).
The widely used HRS criteria require confirmatory cardiac histopathology to make a “definite CS”
diagnosis. When there is a histologic diagnosis of extracardiac sarcoidosis, a diagnosis of “probable
CS” can be made with the following HRS imaging criteria: reduced left ventricular ejection fraction
(LVEF) <40%, patchy uptake on dedicated 18F-fluorodeoxyglucose position emission tomography
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(FDG-PET) scan, and/or late gadolinium enhancement (LGE)
on cardiac magnetic resonance imaging (CMR) (9). However,
with advancements in cardiac imaging, and the limited diagnostic
yield of biopsy (4, 10, 11), there has been increased reliance
on imaging and clinical presentation for the diagnosis of CS
(12). More recently, the revised Japanese Circulation Society
updated criteria for CS to allow for a diagnosis of possible
or isolated CS based on imaging characteristics, including
cardiac FDG uptake, LGE on CMR, and abnormalities in
ventricular wall anatomy and function (basal thinning of the
interventricular septum, ventricular aneurysm, LVEF < 50%)
(12). Notably, while the updated Japanese criteria still include
abnormal 12-lead electrocardiogram (ECG) findings (ventricular
arrhythmias, bundle branch bock, axis deviation, pathologic Q
waves) as minor criteria for CS diagnosis (12), ECG has low
sensitivity and specificity for CS (7). HRS guidelines include
ECG as a screening tool for cardiac involvement among patients
with known extracardiac sarcoidosis, where it is best used for
screening in conjunction with echocardiography to increase
diagnostic yield (9).

Here we provide a case-based review of multimodality
cardiac imaging, specifically echocardiography, CMR, and FDG-
PET, in CS, with an emphasis on diagnostic and management
strategies (Figure 1). We also highlight the current limitations
and challenges as well as future directions of advanced cardiac
imaging in CS.

ECHOCARDIOGRAPHY

A 42-year-old male with a history of previously treated, well
controlled pulmonary sarcoidosis presents with 3 months of
progressive dyspnea on exertion, weight gain and fatigue. Physical
exam is notable for elevated jugular venous pressure, bilateral
inspiratory rales and pitting pretibial edema. He is referred for an
echocardiogram, which demonstrates low normal left ventricular
systolic function with an LVEF of 50–55%, moderate concentric
left ventricular (LV) hypertrophy, restrictive diastolic filling pattern
(mitral inflow E/A ratio 2.2) and mild hypokinesis of the right
ventricle. Global longitudinal strain (GLS) is reported at −6%
(normal < −18%). Given concern for restrictive cardiomyopathy,
he is referred for endomyocardial biopsy, which demonstrates
fibrosis without active granulomatous inflammation. Ongoing
suspicion for cardiac involvement of sarcoidosis prompts advanced
cardiac imaging, ultimately confirming a diagnosis of CS. He is
initiated on corticosteroids and mycophenolate mofetil.

Two-dimensional transthoracic echocardiography (TTE)
remains a cornerstone in the investigation of patients
with suspected CS (9). TTE is the only imaging modality
recommended by HRS guidelines for the screening of patients
with extracardiac sarcoidosis for cardiac involvement (9).
Left ventricular systolic or diastolic dysfunction, ventricular
dilatation, abnormal septal wall thickness, wall motion
abnormalities in non-coronary distributions, ventricular
aneurysms, and pericardial effusion are all findings that have
been associated with CS (Figure 2) (2, 5, 7, 13, 14). Left
ventricular hypertrophy and restrictive physiology may also

be noted (2, 11, 15), with associated biatrial enlargement and
restrictive diastolic filling pattern (as evidenced by mitral
inflow pattern with E/A ratio ≥ 2 and findings consistent with
increased left atrial pressure) (16). Several studies have identified
thickening or thinning of the septal wall as a more specific
finding for CS (17, 18). However, many patients with CS do not
manifest any of these echocardiographic abnormalities, limiting
the sensitivity of this modality for identifying CS (7, 19).

More recently, advanced techniques such as speckle tracking
echocardiography (STE) have shown promise in identifying
subclinical myocardial dysfunction in CS. The tracking of
grayscale speckles within the myocardium over the cardiac
cycle allows for assessment of myocardial deformation using
measurements such as strain, or change in length compared to
baseline length (20, 21). STE deformation parameters can assess
mechanics at the level of the cardiomyocytes and are sensitive
to histopathological changes in myocardial tissue (21). Thus,
reductions in strain, globally or over a regional area of interest,
can indicate underlying myocardial disease (20, 21).

CS is characterized by myocardial inflammation, fibrosis, and
edema (22), pathologic changes that affect tissue function and,
consequently, measures of strain before overt changes in LV
functionmight be detected by TTE. Di Stefano and colleagues, for
example, compared 23 patients with definite or probable CS and
normal LV and RV systolic function with no baseline wall motion
abnormalities to 97 healthy controls (23). The authors found
a significant impairment in left ventricular global longitudinal
strain, LVGLS (absolute LVGLS 15.9% ± 2.5 vs. 18.2% ± 2.7, P
= 0.001) and right ventricular global longitudinal strain, RVGLS
(absolute RVGLS 16.9% ± 4.5 vs. 24.1% ± 4.0, P = 0.0001)
among those with CS (23). Notably, among the larger cohort of
83 patients with definite or probable CS in this study (including
those with reduced LVEF), event rates for hospitalization or heart
failure were higher in those patients with absolute LVGLS <

14% (23).
Additionally, multiple observational studies have

demonstrated that reductions in GLS may be identified
by STE in patients with sarcoidosis without known CS or
apparent LV dysfunction, suggestive of early subclinical
myocardial dysfunction (24–27). A recent meta-analysis of
these studies found that LVGLS was significantly impaired
in patients with extracardiac sarcoidosis and normal LV
function compared with controls, and that among patients
with sarcoidosis, LVGLS was significantly reduced in patients
who experienced major cardiac events (28). These studies
suggest a potential role for STE as a more sensitive screening
tool than traditional echocardiography alone to identify
patients with extracardiac sarcoidosis at increased risk for
cardiac involvement.

Among patients with known CS, TTE and STE may
have a role in longitudinal management. Recognition of
LV dysfunction is important for implementing guideline-
directed medical therapy (GDMT) for heart failure, while
serial TTE may be used to monitor response to medications
or potentially identify candidates for advanced heart failure
therapies and devices (5, 10, 29). The role for neurohormonal
blockade to prevent maladaptive LV remodeling is not well
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FIGURE 1 | Proposed algorithm for the multimodal imaging approach to diagnosis and management of CS.

FIGURE 2 | Echocardiographic findings in cardiac sarcoidosis. (a) Left ventricular dilatation; (b) Left and/or right ventricular hypertrophy; (c) Reduced global

longitudinal strain (GLS); (d) Left ventricular wall aneurysm (arrow); (e) Pericardial effusion; (f) Valvular thickening or dysfunction.

understood for patients with impaired GLS without overt LV
dysfunction. The field of cardio-oncology, where preemptive
use of cardioprotective medications in patients receiving
cardiotoxic medications to prevent cancer treatment related
cardiac dysfunction has been more extensively evaluated, may

provide some insight (30, 31). For example, one study of
159 patients receiving potentially cardiotoxic chemotherapy
(anthracyclines, trastuzumab, or both) showed that among
patients with decreased absolute GLS by ≥ 11% relative
to baseline, those who received beta blockers demonstrated
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improvement in GLS on follow-up (32). Additional studies
are needed to explore a similar role for cardioprotective
medications among patients with CS, particularly those in
whom subclinical LV dysfunction is identified early on
cardiac imaging.

CARDIOVASCULAR MAGNETIC
RESONANCE IMAGING

A 63-year-old African American female with a history of
hypertension and dyslipidemia presents to the emergency
department with 1 week of intermittent chest pressure and
palpitations. ECG on arrival shows sinus rhythmwith a nonspecific
intraventricular conduction delay and occasional premature
ventricular contractions. Serum troponin levels are undetectable.
Chest x-ray is notable for an enlarged cardiac silhouette and hilar
lymphadenopathy. Transthoracic echocardiogram reveals global
LV systolic dysfunction with LVEF 40% and thinning of the basal
septal wall. Coronary angiography shows non-obstructive coronary
artery disease. She is referred for CMR, which shows midwall
delayed gadolinium enhancement in the inferolateral basal septal
LV, suspicious for CS. For further diagnostic evaluation, she
undergoes bronchoscopy with endobronchial ultrasound-guided
lymph node biopsy. Histopathology demonstrates macrophages
and noncaseating granulomas. Given histologic confirmation of
sarcoidosis, CMR findings and in context of borderline LV function,
electrophysiology study is performed for further arrhythmic risk
stratification and demonstrates inducible ventricular tachycardia.
She undergoes implantable cardioverted-defibrillator (ICD)
placement and initiation of immunosuppressive therapy for CS.

CMR has established a role as a highly sensitive tool with
both diagnostic and prognostic value in the management of CS.
CMR has wide application in the evaluation of nonischemic
cardiomyopathies, in part owing to the ability to identify
myocardial fibrosis by LGE (33). Midwall and subepicardial LGE,
commonly involving the basal or mid-ventricular septum, are
characteristic of CS, though other patterns have been noted
(Figure 3) (34–39). Lesions detected by LGE-CMR may be too
small to cause conduction disturbances or LV structural or
functional changes that might be identified by ECG or TTE, but
nonetheless may have clinical importance (33–35). LGE-CMR
has demonstrated increased sensitivity for cardiac involvement
among patients with sarcoidosis when compared with JMHW
criteria alone (35). In another cohort of 321 sarcoidosis patients,
among whom 96 (29.9%) met HRS criteria for CS, CMR
demonstrated the highest sensitivity (96.9%), specificity (100%),
and area under the curve (0.984) when compared to ECG, Holter
monitoring, and TTE (40). CMR can also provide comprehensive
assessment of cardiac morphology and function including left
and right ventricular systolic function, ventricular dimensions,
wall thickness, and wall motion abnormalities (41, 42). The
emerging CMR technique of strain imaging may offer another
means to assess the effect of CS on LV mechanics (43). Multiple
authors have investigated the use of CMR strain imaging for
diagnosis and prognostication (44–46). One recent study of 76
patients with CS who underwent CMR with both LGE and

longitudinal strain imaging suggested that regional longitudinal
strain was not well associated with either arrhythmic phenotype
(atrioventricular block vs. ventricular arrhythmia) or future
adverse events compared to LGE (46); however, more data are
needed to understand the potential role of CMR strain imaging
in CS.

In addition to its diagnostic utility, CMR has also
demonstrated prognostic power (35, 47–50). In an early
study by Patel and colleagues noted above, patients with LGE on
CMR had higher rates of the composite endpoint of all-cause
mortality or symptomatic arrhythmia as well as higher rates of
cardiac death (35). Likewise, in a larger cohort of 155 patients
with systemic sarcoidosis undergoing CMR for suspected cardiac
involvement, LGE was associated with an increased risk of death,
aborted sudden cardiac death, or appropriate ICD firing (HR
31.6, P = 0.0014) on multivariate analysis (48). The presence of
LGE was found to be a better independent predictor of cardiac
death than LVEF, which has previously been identified as a
predictor of mortality among patients with CS (48, 51, 52).
A recent meta-analysis including these and similar studies,
including 694 subjects in total, found an increased risk of
cardiovascular death (relative risk 10.7, 95% confidence interval
[CI] 1.34–86.3, P = 0.03) and ventricular arrhythmia (relative
risk 19.5, 95% CI 2.68–143, P = 0.003) in LGE-positive patients
compared to LGE-negative patients (49). Notably, LGE-negative
patients (495/694) had low rates of cardiovascular mortality and
ventricular arrhythmias, suggesting that LGE-CMR also confers
a high negative predictive value and that LGE-negative patients
have a favorable prognosis (49). Similarly, it has been noted that
inflammation on FDG-PET in the absence of LGE on CMR
identifies lower risk group for ventricular arrhythmias compared
to FDG positive patients with LGE (53).

LGE-CMR has a particularly nuanced role in the decision
for ICD placement among patients with CS. Persistent LVEF ≤

35% despite optimal medical therapy and immunosuppression
(if indicated), sustained ventricular tachycardia, and aborted
sudden cardiac arrest remain class I indications for an ICD
by the most recent HRS guidelines (9, 54), while class IIa
indications include patients with LVEF ≥ 35% and syncope,
evidence of myocardial scar by CMR or FDG-PET, an indication
for permanent pacing, or inducible sustained ventricular
arrhythmia on electrophysiological study (54). LGE-CMR may
identify additional patients at increased risk of sudden cardiac
death in the absence of significantly reduced LV function
(9). Interestingly, several studies have identified LGE regional
variations in risk of ventricular arrhythmias and sudden cardiac
death (46, 55). One study of 290 patients with biopsy-proven
sarcoidosis undergoing CMR for suspected cardiac involvement
found that LGE in the right ventricle was independently
associated with the combined endpoint of sudden cardiac
death or significant ventricular arrhythmia (HR 5.43, 95%
CI 1.25–23.47, P = 0.024) (55). Thus, CMR may prompt
referral for ICD for patients with higher risk LGE features.
Conversely, the 2014 HRS consensus statement indicates that
absence of LGE in patients without other class I indications
identifies patients who should not receive ICD therapy (class
III) (9).
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FIGURE 3 | Long axis (a) and short axis (b) CMR images demonstrating late gadolinium enhancement (LGE) having a patchy non-vascular midmyocardial and

sub-epicardial pattern mainly involving the basal and apical septal wall, basal-mid lateral and anterior wall, and right ventricular wall; (c) Black blood T-2 weighted CMR

images demonstrate patchy areas of predominantly midmyocardial increased signal intensity in the left and right ventricular myocardium denoting myocardial

inflammation.

LGE-CMR is not without limitations. While sensitive to
even small regions of fibrosis (34, 35), midwall enhancement
is not specific to CS and can be seen in other nonischemic
cardiomyopathies, including arrhythmogenic right ventricular
cardiomyopathy (56). Though less common, transmural
distribution or subepicardial and subendocardial distribution
of LGE (with midwall sparing), as well as multifocal LGE
may also indicate CS (5, 36). Additionally, LGE-CMR may
be less sensitive in patients in earlier stages of CS, who have
acute inflammation but have not yet developed myocardial
fibrosis (33, 43). T2-weighted imaging may increase detection
of acute inflammation, though more data are needed to
understand the role of T2 mapping in CS (44, 57). CMR
may be technically challenging in patients with permanent
pacemakers or cardiac defibrillators (43, 58). Importantly,
recent studies have demonstrated the safety of MRI in patients
with non-MRI-conditional devices using safety protocols,
which may mitigate this concern (59, 60). Finally, gadolinium
is relatively contraindicated in patients with severe renal
disease due to the risk of nephrogenic systemic fibrosis
(43, 58).

18F-FLUORODEOXYGLUCOSE POSITION
EMISSION TOMOGRAPHY

A 49-year-old male with a history of biopsy-proven pulmonary
sarcoidosis and recent complete heart block status post permanent
pacemaker presents in clinic for further evaluation of possible
cardiac involvement of sarcoidosis. ECG demonstrates sinus
rhythm with right ventricular pacing. TTE shows normal
biventricular size and function. CMR reveals LGE localized
to the basal septum. He is referred for cardiac FDG-PET,
which demonstrates patchy FDG uptake involving the basal
septal and inferolateral LV wall with co-localized perfusion
defects, concerning for active CS. A course of prednisone
and methotrexate are initiated and 4 months later FDG-
PET scan is repeated showing near resolution of cardiac

FDG uptake. Pacemaker interrogation reveals recovery of AV
node conduction.

FDG-PET with myocardial perfusion imaging has emerged
as an important imaging modality in CS, combining assessment
of active cardiac inflammation with evaluation of perfusion
(Figures 4, 5) (61, 62). 18F-FDG is a glucose analog that is readily
utilized by activated macrophages (61, 63). Accumulation of
FDG by these highly metabolic inflammatory cells within active
granulomas allows for visualization of active inflammation in
CS (22, 64, 65). Patterns of FDG uptake associated with CS
have been described as focal, focal on diffuse, or less commonly,
diffuse, though diffuse FDG uptake may be difficult to interpret
(9, 62). Hybrid PET/CT imaging facilitates identification of
alternate sources of abnormal FDG uptake, such as malignant
lesions or infections (62). Additionally, metrics to quantify FDG
uptake, such as standardized uptake values (SUVs), may aid in
interpretation and comparison of studies (62, 66, 67).

Importantly, whole-body PET can identify extracardiac
inflammation and accessible biopsy sites to confirm
histopathologic diagnosis of sarcoidosis (22, 67, 68). FDG-
PET guidance can improve the diagnostic yield of noncardiac
biopsy targets such as thoracic lymph nodes, which typically
have higher yield than endomyocardial biopsy, especially when
significantly FDG avid (67). Furthermore, assessment of the
extent and activity of extracardiac involvement may have
implications for treatment decisions (68).

It is recommended to combine 18F-FDG metabolic imaging
with myocardial perfusion imaging (MPI) using rubidium-82 or
N-13-ammonia (62, 67). Perfusion defects, related to changes in
coronary microcirculation caused by CS, typically occur in non-
coronary distributions and may represent areas of inflammation
or fibrosis (62, 69). Pairing FDG and MPI patterns can provide
information regarding the activity and chronicity of cardiac
involvement (62, 67, 70). Active inflammation may result in FDG
uptake in an area of abnormal perfusion (mismatched segment),
whereas fibrosis may cause a perfusion defect in the absence of
FDG uptake (11, 67, 68).

The sensitivity of FDG-PET for the diagnosis of CS has
been reported as 85–100% in various studies, with a specificity
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FIGURE 4 | Whole-body FDG PET (a) and axial PET and PET/CT images (c,e) following appropriate pre-test preparation demonstrating abnormal patchy increase in

FDG avidity within the right and left ventricular myocardium with subtle increase in right atrial FDG uptake. (b,d,f) Show post-treatment FDG PET/CT images in the

same patient demonstrating interval resolution of the previously seen abnormal myocardial FDG uptake. Note interval ICD placement.

FIGURE 5 | Splash images demonstrating moderate to severe transmural perfusion abnormality mainly involving the mid-base septal and inferoseptal wall (upper

row), corresponding to areas of increased FDG uptake (middle row), denoting significant inflammation causing decreased perfusion (“mismatch” pattern). Note

additional sites of increased FDG uptake without corresponding decreased perfusion such as in the mid-apical anterolateral wall.
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ranging from 39 to 100% (62, 67). One meta-analysis of
7 studies yielded a pooled sensitivity of 89% (95% CI 79–
96%) and specificity of 78% (95% CI 68–86%) (61). However,
multiple authors note that estimations of specificity may be
limited by the use of JMHW criteria as the standard in
multiple studies, which have lower sensitivity for CS than
FDG-PET (62, 67). Other diagnoses to consider in the
setting of positive FDG uptake include myocardial ischemia
with hibernating myocardium, other forms of myocarditis or
systemic rheumatologic diseases associated with myocardial
inflammation, or some arrhythmogenic cardiomyopathies (67,
71, 72).

Important for ensuring high diagnostic accuracy of FDG-PET
is effective suppression of physiologic myocardial glucose uptake
by shifting cardiomyocytes preferentially to fatty acidmetabolism
(67). Suboptimal patient preparation may lead to diffuse FDG
uptake, limiting visualization of active sarcoid lesions or leading
to false positive results (61, 62, 73). The most recent joint
SNMMI/ASNC expert consensus statement recommendations
include two high-fat (>35 g), low carbohydrate (<3 g) meals the
day prior to the study followed by a 4–12 period of fasting;
an 18 hour fast is an alternative option (67). The adjunctive
use of unfractionated heparin immediately prior to the scan has
been described (74) but was not specifically recommended in the
SNMMI/ASNC document (67). A recent study investigating the
use of a structured preparation protocol adhering to the new
SNMMI/ASNC guidelines compared to a former less-rigorous
protocol showed that a strict high-fat, low-carbohydrate diet
with prolonged fasting, compliance reinforcement, and detailed
instructions was highly successful in suppressing physiologic 18F-
FDG uptake (91% among the structured protocol group vs. 78%
in the standard protocol group, P < 0.001) (73).

Given the limitations posed by the use of 18F-FDG in the
setting of physiologic uptake by cardiac myocytes, alternative
radiotracers have been explored to improve the specificity of
PET imaging in CS (75–81). One novel radiotracer of particular
interest is a radiolabeled somatostatin analog (68Ga-somatostatin
analog), which targets the somatostatin receptor (SSTR) 2
subtype that is highly expressed in sarcoid granulomas but not
in normal cardiac myocytes (75). Early feasibility studies suggest
somatostatin analogsmay increase diagnostic accuracy compared
to FDG-PET (77, 78); however, more data are needed to guide the
use of this modality.

When high quality imaging can be obtained, serial FDG-
PET imaging may be used to assess response to treatment and
to guide management of CS. One single-center study of 32
patients with CS who underwent FDG-PET imaging before and
after corticosteroid therapy demonstrated that 81% of patients
had a decrease in the extent and 88% experienced a decrease
in the intensity of FDG uptake on follow-up imaging (82). A
separate study of 34 patients with CS who collectively underwent
128 FDG-PET scans per an institutional management protocol
found that 94 (73%) of scans led to a change in therapy
and 42 (33%) resulted in a decrease in prednisone dose (83).
Several retrospective studies have now demonstrated the role of
serial FDG-PET in guiding immunosuppression management,
specifically the ability to taper corticosteroids while maintaining

good cardiac disease control (83–85). While SNMMI/ASNC
guidance recommends assessing change in intensity and extent
of FDG uptake on follow-up studies (67), it is also worth noting
that perfusion defects, which may be related to microvascular
compression and local ischemia, may also resolve with treatment
(62, 67). The ongoing CHASM-CS randomized clinical trial of
combination prednisone/methotrexate compared to prednisone
alone for initial treatment of active CS includes perfusion defects
on 6-month PET scan as the primary endpoint (86). Experts
recommend repeat FDG-PET imaging in a 3–6 month interval
after initiation of immunosuppressive therapy to assess for
improvement (which may guide tapering of corticosteroids and
minimize drug related side effects) vs. stability to worsening of
inflammation (possibly prompting escalation of therapy) (6, 11,
62, 68).

For patients with CS, FDG-PET imaging also conveys
important prognostic information. Blankstein et al. found that
among 118 patients referred for FDG-PET for evaluation of
possible CS, the presence of both perfusion defects and FDG
uptake was associated with increased incidence of death or
sustained ventricular tachycardia (HR 3.94, 95% CI 1.50–10.31, P
< 0.01) compared to patients with normal imaging (87). Notably,
right ventricular FDG uptake was also associated with adverse
events (HR 4.22, 95% CI 1.87–9.50, P < 0.001). Similarly, among
67 patients with CS who were referred for FDG-PET, intensity of
FDG uptake (as quantified by standardized uptake values, SUV)
was associated with increased incidence of cardiac events (88).
Other studies have noted that decrease in inflammation on serial
FDG-PET scans is associated with improvement in LVEF (89, 90).
The longer-term implications however of mildly persistent FDG
uptake or perfusion defects remain unknown in patients with
otherwise clinically controlled CS.

IMAGING IN CS: A MULTIMODALITY
APPROACH

The pathophysiology of CS lends itself to the complementary
imaging modalities of echocardiography, CMR and FDG-PET
for purposes of diagnosis, management, and prognostication. A
proposed algorithm for imaging in CS is provided in Figure 1.
Echocardiography is highly accessible and allows an initial,
urgent assessment of ventricular function, valvular disease or
pericardial effusion that may point toward specific immediate
management approaches. Advanced cardiac imaging allows for
more nuanced CS assessment. Focal inflammation identified and
quantified by FDG uptake may be prominent in early stages
of the disease, whereas fibrosis occurring later in the disease
course may be better assessed by superior spatial resolution of
CMR. Several studies have evaluated the utility of sequential
(38, 91, 92) or hybrid (93–95) CMR/PET imaging for diagnosis
of CS. In the largest of these studies, 107 patients underwent
both CMR and FDG-PET for evaluation of known or suspected
CS and imaging findings were integrated to determine the
combined likelihood of CS (no CS, possible CS, probable CS, or
highly probable CS) (38). When FDG-PET results were added
to findings from CMR, 48 patients (45%) were reclassified as
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TABLE 1 | Imaging modalities for the diagnosis and management of cardiac sarcoidosis.

Imaging

modality

Techniques Findings Clinical role Limitations

TTE 2D TTE STE • Left or right ventricular systolic/diastolic

dysfunction

• Ventricular dilatation

• Abnormal septal wall thickness

• LVH

• Wall motion abnormalities

• Ventricular aneurysm

• Pericardial effusion

• Valvular dysfunction

• Reduced GLS

• Initial screening of patients with ECS

• Serial monitoring of LV function (for purpose

of GDMT, ICD, AHF therapy)

• Reduced GLS associated with adverse

cardiac events

• Limited sensitivity/specificity

CMR LGE

T1/T2-mapping

• Midwall/ subepicardial LGE

• Patchy, non-coronary distribution

• Basal septum most commonly involved

• CS diagnosis (subacute/chronic)

• Evaluation of LV morphology/function

• Risk stratification (LGE associated

with VA/SCD)

• May be less specific for CS

• Limited sensitivity in early disease

• Challenging in patients with devices

• Gadolinium contraindicated in

advanced CKD

FDG-PET 18F-FDG MPI

Hybrid PET/CT

Whole body PET

• Focal or focal-on-diffuse FDG uptake

• FDG-avid extracardiac lesions

• Perfusion defects

• FDG/perfusion mismatch

• CS diagnosis (acute/chronic)

• Serial imaging to assess response to/titrate

of IS

• Assess ECS activity

• Identify non-cardiac biopsy sites

• Risk stratification (FDG uptake associated

with death/VA)

• Patient preparation required for adequate

glucose suppression

• May be less specific for CS

AHF, advanced heart failure; CKD, chronic kidney disease; CMR, cardiac magnetic resonance imaging; ECS, extracardiac sarcoidosis; GDMT, guideline-directed medical therapy; GLS,

global longitudinal strain; ICD, implantable cardioverter-defibrillator; IS, immunosuppression; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; MPI, myocardial

perfusion imaging; FDG-PET, 18F-fluorodeoxyglucose position emission tomography; SCD, sudden cardiac death; STE, speckle-tracking echocardiography; TTE, transthoracic

echocardiogram; VA, ventricular arrhythmia.

having a higher or lower probability of CS compared to results
from a single imaging study (38). Similarly, a small study of
patients undergoing hybrid CMR/PET imaging resulted in high
quality 18F-FDG and CMR images, demonstrating the value
of this modality for diagnosis, prognosis, and potentially cost-
saving (95). Notably, both FDG-PET and CMR are included
among HRS criteria for diagnosis of CS and carry a class IIa
recommendation for performing in patients with at least one
abnormality detected on initial cardiac screening (history, ECG,
and TTE) (9). However, given the high negative predictive value,
CMR might serve as the best initial testing option—in many
patients, a normal CMR might be sufficient to obviate the need
for further testing (62, 68). By JMHW criteria, a clinical diagnosis
of CS might be made with abnormalities on TTE and CMR in
the presence of one major clinical criterion (advanced AV block,
thinning of the basal interventricular septum, positive cardiac
Gallium-67 uptake, or LVEF < 50%) (8). Interstitial fibrosis
or monocyte infiltration on endomyocardial biopsy may also
comprise a minor criterion, with identification of noncaseating
granulomas confirming a histological diagnosis; however, the
yield of endomyocardial biopsy is often limited (9). FDG-PET
is excluded from these guidelines, with potential implications
for the sensitivity of JMHW criteria for diagnosing CS (62,
67). Importantly, advanced imaging modalities of CMR and
FDG-PET are both incorporated into the more recent Japanese
Circulation Society guidelines as major criteria for a diagnosis of
CS (12), reflecting the value of these tests in evaluating patients
with suspected CS.

Beyond confirming a diagnosis, the management of CS
also relies heavily on multimodality imaging. As previously
detailed, FDG-PET has shown to be an effective tool for
monitoring response to and tailoring immunosuppression. Serial
echocardiographic evaluation is invaluable for longitudinal
assessment of LV function to guide GDMT and, if needed,
identify candidates for advanced therapies including left
ventricular assist devices and orthotopic heart transplant (4,
5, 11). Another important decision point pertains to ICD
therapy and is again highly reliant on imaging findings to guide
management. Echocardiography and CMR are essential for risk
stratification of patients with CS to classify those at highest risk
of sudden cardiac death (4, 9, 54).

CONCLUSIONS

CS is a disease of complex pathophysiology that is well-suited
to a multimodality imaging approach for purposes of diagnosis,
treatment, and prognostication. Together, TTE, CMR and FDG-
PET provide complementary clinical information that allows
for a comprehensive understanding of the extent of cardiac
involvement for each individual patient (Table 1). Ongoing
studies involving more advanced imaging techniques—including
speckle-tracking echocardiography and hybrid CMR/PET
imaging—may provide additional insights. Further studies are
needed to best employ these more advanced modalities for
optimal management of CS.
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Stress cardiomyopathy (Takotsubo syndrome) is a reversible syndrome stemming from

myocardial injury leading to systolic dysfunction and is usually noted in the setting of a

stressful event, be it an emotional or physical trigger. While the exact pathophysiology

behind stress cardiomyopathy is yet unknown, there is ample evidence suggesting

that neurocardiogenic mechanisms may play an important role. Although historically

stress cardiomyopathy was generally thought to be a relatively benign condition, there

is growing recognition of the cardiovascular complications associated with it despite its

reversibility. Our review aims to shed light onto key cardiovascular imaging modalities

used to diagnose stress cardiomyopathy while highlighting the role that imaging plays

in assessing disease severity, identifying complications, dictating treatment approaches,

and in short-term and long-term prognosis.

Keywords: cardiomyopathy, CMR (cardiovascular magnetic resonance), echocardiography, stress

cardiomyopathy, imaging

BACKGROUND

Takotsubo syndrome, also known as stress cardiomyopathy (stress CM), apical ballooning
syndrome, or broken heart syndrome, is increasingly recognized as an important cause
of acute reversible myocardial injury and acute systolic dysfunction (1). The origin
of the name “takotsubo” refers to octopus traps used in Japan, which resemble the
apical ballooning pattern often observed on fluoroscopic left ventriculogram in the classic
presentation of stress CM (2). Previously thought to be a rare diagnosis, stress CM
currently comprises around 2% of all the patients presenting with concern for acute coronary
syndrome (ACS) (3).

Stress CM was initially thought to be a relatively benign, reversible condition, but as prevalence
has increased it has become apparent that it is often associated with significant morbidity and
mortality (1). There is increasing recognition of associated cardiovascular complications such as
left ventricular (LV) outflow tract obstruction, mitral regurgitation, and heart failure which may all
lead to cardiogenic shock (4).

In an era where the application of multimodality cardiovascular imaging has been increasing,
our review will aim to highlight the diagnosis of stress CM with a particular focus
on imaging.

50

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.799031
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.799031&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:allison.hays@gmail.com
https://doi.org/10.3389/fcvm.2021.799031
https://www.frontiersin.org/articles/10.3389/fcvm.2021.799031/full


Zghyer et al. Cardiovascular Imaging in Stress Cardiomyopathy

DEFINITION AND DIAGNOSIS

Stress CM is defined as a syndrome of transient and acute LV
systolic and diastolic dysfunction usually related to a profound
emotional or physical stress within the prior 5 days (1, 5).
The syndrome is suspected when observed regional wall motion
abnormalities (RWMA) cannot be explained by corresponding
coronary artery occlusions. The typical pattern of LV RWMA
that is described includes apical hypokinesia, akinesia, or
dyskinesia which gives the apical ballooning shape with relative
basal hyperkinesis. Other forms of stress CM include “reverse
Takotsubo” or “atypical Takotsubo” which are characterized by
mid-ventricular or basal hypokinesis (6). Focal stress CM is
another rare form described by its focal LV RWMA which
makes it very hard to distinguish frommyocarditis or myocardial
infarction (7). Clinically, stress CM often presents with ST-
segment changes on electrocardiography (ECG), elevation
in troponins, a significant increase in serum natriuretic
peptides, and characteristic imaging findings. However, coronary
angiography remains an essential diagnostic modality to
definitively exclude ischemic etiologies for RWMA (1).

Multiple diagnostic criteria have been proposed: the most
commonly used are the Heart Failure Association of the
European Society of Cardiology diagnostic criteria for Takotsubo
Syndrome (8), the International Takotsubo Diagnostic Criteria
(InterTAK) (9), and the Revised Mayo Clinic Criteria (10).
The criteria are summarized in Table 1. The Japanese Society
of Echocardiography (JSE) and the European Association of
Cardiovascular Imaging (EACVI) published a joint consensus
document in 2020 providing a comprehensive review of the
various cardiovascular imaging modalities that can be utilized
in diagnosing and prognosticating stress CM. They incorporated
the InterTAK criteria into a simplified diagnostic algorithm that
helps evaluate chest pain and/or dyspnea and rule out several
cardiac causes before getting to stress CM (11).

PATHOPHYSIOLOGY

The exact pathophysiology leading to stress CM still remains
unknown. There is a known neuro-cardiovascular link that
may contribute to stress CM, but recently neuroimaging studies
have given us more insight (12). The central autonomic nervous
system (CANS) is vital for cardiovascular regulation. Prior to
adopting the terms Takotsubo and stress CM, clinicians have
identified instances of transient systolic dysfunction as well as
dynamic EKG changes in relation to intracranial pathology such
as stroke or hemorrhages (12). This phenomenon has been later
described as “neurogenic stunning” and was also seen in patients
undergoing electroconvulsive therapy (ECT) (13). As described
by de Chazal et al. in a recent review, in the acute phase,
there is increased blood flow in the hippocampus, brainstem,
and basal ganglia with return to normal upon resolution of
the syndrome (1). However, it is still unknown why some
emotional stressors cause myocardial dysfunction while other
stressors do not. Stress induces activation of complex neocortical
limbic pathways which leads to the activation of brainstem
noradrenergic neurons and stress related neuropeptides

TABLE 1 | The table below summarizes the diagnostic criteria for stress

cardiomyopathy.

Heart Failure Association-European Society of Cardiology Criteria

• Transient RWMA in LV or RV which are frequently but not always accompanied

by a stressor

• The RWMA usually extends beyond a single coronary artery with circumferential

involvement of the segments involved

• The absence of acute coronary syndrome

• New and reversible electrocardiographic abnormalities

• Significantly elevated serum natriuretic peptides

• Mildly elevated cardiac enzymes

• Recovery of LV systolic function on cardiac imaging at follow-up (3–6 months)

International Takotsubo Diagnostic Criteria (InterTAK Diagnostic Criteria)

• Transient LV dysfunction presenting with apical ballooning or mid-ventricular,

basal, or focal wall motion abnormalities. RV involvement can be present too.

The regional wall motion abnormalities usually extend beyond a territory of a

single coronary artery

• An emotional physical or combined trigger precedes the symptoms, however

not obligatory

• Neurologic disorders as well as pheochromocytoma may serve as triggers for

stress cardiomyopathy

• New ECG abnormalities are present

• Cardiac biomarkers are moderately elevated, but natriuretic peptides are

significantly elevated

• Significant coronary artery disease is not a contradiction in Takotsubo syndrome

• Patients have no evidence of infectious myocarditis

• Postmenopausal women are predominantly affected

Revised Mayo Clinic Criteria

• Transient hypokinesis, akinesis, or dyskinesis of the LV with or without apical

involvement, the RWMA extends beyond a single coronary artery distribution; a

stressful trigger is often but not always present

• Absence of obstructive coronary artery disease or angiographic evidence of a

plaque rupture

• New ECG abnormalities or moderate elevation in cardiac biomarkers

• Absence of pheochromocytoma or myocarditis

(NPY) produced by the arcuate nucleus of the hypothalamus.
Acute stressors induce brain activation, which increases the
bioavailability of norepinephrine, cortisol, and NPY. Both
circulating epinephrine and norepinephrine released from the
medulla of the adrenal glands or locally from sympathetic nerve
terminals are known to be significantly increased during the
acute phase of stress CM. The catecholamine and NPY surge
can lead to the apical ballooning physiology through multiple
mechanisms including direct catecholamine toxicity, epicardial,
and microvascular coronary spasm or vasoconstriction, and
increased cardiac afterload (14). Experimental data have shown
that β2-adrenoceptors are more frequently expressed in an apical
than the basal segment of the LV, while a reverse distribution is
present for norepinephrine β1-adrenoceptors and sympathetic
and sympathetic nerve terminals of the neuro-cardiac axis,
which are dense at the base but not the apex (15). Previously,
it was widely thought that the catecholamine surge is solely
responsible for the cardiomyopathy; however, it is increasingly
recognized that alternate mechanisms may play more of
a role. Catecholamine levels often increase in response to
cardiac dysfunction and hypotension. It is not yet clear how
norepinephrine and NPY contribute mechanistically to stress
CM. One hypothesis maintains that the cardio-depressant effects
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of catecholamines may lead to supply demand mismatch at the
level of the myocardium and eventually myocardial stunning
(1). Thus, it is plausible that in individuals with higher levels of
NPY/norepinephrine, an intense stressor may predispose them
to develop stress CM (1).

RISK FACTORS

Estrogen deficiency in post-menopausal women appears to be
one of the strongest risk factors associated with stress CM. This
is often superimposed on a background of anxiety or panic
disorder (16). Diabetes has also been described as a risk factor,
as 10–25% of all the patients presenting with stress CM have
concomitant diabetes (17). One of the non-cardiac risk factors
frequently associated with stress CM is asthma, particularly
after the use of medical interventions such as beta-2 agonists,
racemic epinephrine, and intubation. It is not fully understood
whether it is the asthma itself or the treatment that triggers the
syndrome (18). Marijuana use is also associated with stress CM
with a subsequent highermortality (19). Prior studies suggest that
cannabinoids induce NPY expression from the arcuate nucleus
of the hypothalamus which can lead to neurogenic myocardial
stunning (20). Finally, as we continue to assimilate further data
on the COVID-19 pandemic, there is increasing evidence of
acute or chronic cardiac injury in the setting of a COVID-19
infection. Although stress CM has been reported in the setting
of COVID-19, other pathologies as a cause of cardiac injury
aremore common including supply/demandmismatch ischemia,
microvascular thromboses, myocarditis, or cytokine storm from
a hyperinflammatory state (21–24).

ECHOCARDIOGRAPHIC FINDINGS

Left Ventricular Wall Motion and Systolic
Function
In the acute phase of stress CM, an echocardiographic assessment
is an essential first step toward the diagnosis. The typical
echocardiographic findings are characterized by the presence of
a large area of dysfunctional myocardium which extends beyond
one coronary artery territory. In classic stress CM, symmetrical
wall motion abnormalities are seen with akinesis or dyskinesis of
the apical and mid-ventricular segments of the anterior, lateral,
septal, and inferior walls with hyperdynamic function of the
basal segments (25) (Figure 1). Other variants such as “mid-
ventricular” or “inverted” stress cardiomyopathy can also be
seen. The mid-ventricular variant is characterized by akinesis
of the mid-ventricular segments with mild hypokinesis or
normal contraction of the apical segments and hypercontractility
of the base. The inverted variant has two different forms:
the first manifests as preserved apical function and severe
hypokinesis of the rest of the walls while the second form is
characterized by hypokinesis only in the basal segments (often
called “reverse Takotsubo”) (25).

Echocardiography also demonstrates reduced LV ejection
fraction (EF) with variable severity and in most cases recovers
as the myocardial stunning resolves (2). The degree of the

EF reduction varies depending on the level of myocardial
impairment which can often correspond with pre-existing
comorbidities, sex, and age. While the degree of myocardial
impairment can sometimes be severe, this is not typically
reflected by the degree of elevation of cardiac biomarkers,
which may be only modestly elevated. The discrepancy between
troponin levels and RWMAs can help clinicians to differentiate
between ACS and stress CM. More recently, the product of
Troponin I level and echocardiographic LVEF has been utilized as
an index to differentiate stress CM from ST elevation myocardial
infarction (STEMI). A value ≥250 is indicative of a STEMI, with
a sensitivity and specificity of 95 and 87%, respectively (26).

Left ventricular EF has been found to be an independent
predictor of major cardiovascular complications and can help
identify stress CM patients at higher risk particularly in those
aged >75 years (27). Elderly patients demonstrate significantly
lower LV systolic function compared to younger patients (defined
as <75 years) (25). If RWMAs persist, then it is reasonable
to evaluate with a cardiac MRI to rule out necrosis or
other pathologies.

Assessment of LV longitudinal strain may have an important
prognostic value in the acute phases of stress CM. Decreased
global longitudinal strain (GLS) in patients with stress CM was
found to correlate with higher in-hospital mortality (28).

LV Diastolic Function
LV diastolic dysfunction is common in stress CM (29). Global
diastolic dysfunction has been observed in some patients in the
early phases of stress CM which is evident by impaired left
ventricular relaxation and increased E/e’ ratio, a non-invasive
marker of LV filling pressures (30, 31). In the Takotsubo Italian
Network (TIN) registry, E/e’ ratios were higher in patients
who went on to develop acute decompensated heart failure
and was found to be an independent predictor of in-hospital
mortality (32). Of all the complications associated with stress
CM, acute decompensated heart failure is the most common
early complication; thus, an early assessment of the E/e’ ratio
may allow for early identification of patients at higher risk
of decompensation and could serve as a useful tool to guide
management. As E/e’ ratio elevations can be transient, the ratio
itself could be used as a marker for functional recovery when
followed serially across the course of the syndrome.

Mitral Regurgitation (MR)
The mechanism of MR in stress CM is not completely
understood. Systolic anterior motion of the anterior mitral leaflet
(SAM) has been reported in 40–50% of patients with stress CM
andmay be associated with significantMR (33) (Figure 1). MR in
stress CM is typically described in cases where reduction in LVEF
is severe and LV volume is high and likely represents functional
MR due to papillary muscle displacement and tethering of the
mitral leaflets in the setting of a dilated and dysfunctional LV
(33). In the TIN registry, the presence of MR appeared to be a
powerful prognostic marker associated with cardiogenic shock
and in-hospital morbidity and mortality (32).
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FIGURE 1 | Echocardiographic images of a person with stress cardiomyopathy with left ventricular outflow track obstruction (LVOT) and systolic anterior motion

(SAM) of the mitral valve. The apical-4-chamber view in diastole (A) and systole (B) and 2-chamber view in diastole (C) and systole (D) showing classic apical

ballooning with akinesis and hyperdynamic basal segments. (E,F) Illustrate SAM and turbulence across the LVOT indicative of LVOT obstruction.

LV Outflow Tract Obstruction (LVOTO)
LVOTO, diagnosed by echocardiogram, may result from
basal hypercontractility with or without systolic anterior
motion of the anterior mitral leaflet causing dynamic
obstruction of the LV outflow tract (LVOT), and is seen in
as many as 12.5–25% of cases (32, 34). Significant LVOTO
is described as a peak instantaneous LVOT gradient ≥ 30
mmHg. The LVOT gradient has important clinical and
therapeutic implications in patients with stress CM; in this
cohort, inotropic agents and diuretics should be avoided
as the basal hypercontractility induced by catecholamines
and the reduction in preload can lead to an exacerbation
in gradient with subsequent hemodynamic collapse and
cardiogenic shock. LVOTO is associated with increased
LV afterload and systolic wall tension which may lead to
subendocardial ischemia. In this setting, beta blockade may
be beneficial in reducing inotropy and reduced myocardial
demand. Alpha-1 agonism with phenylephrine can increase
systemic vascular resistance and thus help reduce the effect
of dynamic LVOT obstruction, ultimately reducing LV
afterload and wall stress (25). Patients with severe LVOTO
and stress CM are at higher risk for free wall rupture and life-
threatening arrhythmias.

Right Ventricular (RV) Function
Electrocardiographic signs of RV strain warrant special attention
with regards to evaluation of RV function in stress CM.

The prevalence of RV involvement has been reported to
be around 14% in one study; however, this may be an
underestimation due to difficulty imaging the RV (25). In
patients with biventricular ballooning, RV contraction often
mirrors that of the LV (35). The pattern described is the
opposite of the well-described McConnell’s sign seen in
massive pulmonary emboli which manifests itself as RV apical
hyperkinesis and basal and mid hypokinesis to akinesis. The
pattern of RV involvement was eventually called “reverse
McConnell’s sign” (36). There is conflicting evidence on
whether RV involvement predicts worse outcomes. In the TIN
registry, RV involvement was more prevalent in patients with
major complications. No significant correlation has been found
between tricuspid annular systolic excursion (TAPSE) and major
adverse events (32).

Contrast Echocardiography
Per the updated American Society of Echocardiography
guidelines (2018) and European Association of Cardiovascular
Imaging (2017) guidelines, contrast echocardiography is
a recommended tool to evaluate for the presence of an
LV thrombus in situations where it is not detected on
non-contrast echocardiography (37). However, if contrast
echocardiography fails to detect a thrombus in cases with a
high clinical suspicion for a thrombus, cardiac MRI would
provide a higher sensitivity and specificity at detecting
LV thrombi.
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CARDIAC MAGNETIC RESONANCE
IMAGING (CMR)

Cine CMR Sequence
Cine CMR sequences allow for more detailed assessment of LV
and RV function, ventricular wall motion abnormalities, and
possible complications of stress CM (38, 39). While the “apical
ballooning” pattern of wall motion accounts for around 75–80%
of patients, stress CM can also present in the form of other
less common variants, namely the mid-ventricular variant or the
inverted variant which are discussed earlier (40, 41) (Figure 2).
The cine sequence can also be used to demonstrate LVOTO with
or without systolic anterior motion of the mitral valve leaflet as
well as functional mitral regurgitation (39). These complications
can be further assessed with phase contrast velocity imaging
in order to generate quantitative values such as LV outflow
tract gradient.

Additionally, CMR allows for more quantitative assessment
of RV function. RV involvement has been assessed by CMR
in multiple studies: patients with RV dysfunction were older,
had with longer hospital stays, had more frequent preceding
stressful events, had significantly more pleural effusions, and
had a lower LV EF compared to those that did not have RV
involvement (41, 42).

Recently, CMR post-processing techniques called
feature/tissue tracking CMR (FT-CMR) have been developed
that enable strain analysis for the quantification of myocardial
deformation. A study by Stiermaier et al. evaluated 141 patients
with stress CM and found that reduced global circumferential
(GCS) and global longitudinal strain (GLS) were associated
with the apical ballooning variant while reduced global radial
strain (GRS) was associated with the basal ballooning variant
(43). Additionally, the study posited that GLS may be useful as a
prognostic indicator as LV strain measures worse than −14.75%
were associated with adverse outcomes (43).

Myocardial Edema
In the setting of myocardial injury, tissue inflammation may
increase resulting in localizedmyocardial edema (41). Changes in
the tissue water content can be evaluated via a CMR T2-weighted
imaging protocol (Figure 3) which allows for assessment of
the distribution of myocardial edema and can be helpful in
differentiating between cardiac pathologies such as stress CM,
ACS, and myocarditis.

By employing the black blood T2-weighted (fast spin echo)
triple-inversion recovery (IR) sequence, fat, and flowing blood
can be suppressed allowing the contrast signal to differentiate
between normal myocardium and edematous tissue (44). This
process can be quantified by calculating the ratio of the signal
intensity (SI) between the myocardium and skeletal tissue, with a
cut-off value of over 1.9 considered significant for edema.

The pattern of edema in stress CM classically overlaps with
the dysfunctional ventricular regions noted on the cine CMR
sequence and does not correspond to territories served by
epicardial vessels that would generally be seen in ACS (41). The
signal distribution tends to be transmural and circumferential
over the affected area, unlike in myocarditis where it tends to be

more diffuse and heterogenous with a propensity to have higher
signal intensity in the sub-epicardial or mid-myocardial tissue.

It is important to note, however, that T2-weighted triple IR
can be prone to artifacts from various factors such as arrhythmias,
blood pooling, or breathing motion artifact. Therefore, studies
investigating techniques that use motion correction algorithms
such as extracellular volume (ECV) mapping and parametric T1
or T2 mapping have shown to improve diagnostic accuracy and
provide further quantitative evidence in evaluating myocardial
edema (15, 45–47). In patients with myocardial infarction, the
intensity of T2 signaling tends to take months or even years to
decline in the infarcted and surrounding tissue depending on
the severity of the injury. In stress cardiomyopathy, there has
been variable data with some studies showing a normalization
of signaling as the myocardial function returns to normal, while
other studies have shown a slower return to baseline, despite
recovery in LV myocardial function (15, 45–48). These novel
techniques could prove to be viable alternatives to evaluate
myocardial inflammation and characterize disease severity
without using gadolinium contrast and warrant further studies
with larger patient cohorts.

Although the pathophysiology of myocardial inflammation
in stress CM is not well-known, increased myocardial edema
on imaging may indicate a direct inflammatory process from
the syndrome, a secondary effect stemming from elevated
sympathetic drive, or microvascular ischemia associated with
stress CM (41, 48, 49).

Late Gadolinium Enhancement (LGE)
The use of gadolinium-mediated myocardial enhancement
has been used to delineate areas of myocardial scarring or
replacement fibrosis stemming from myocardial injury and
inflammation. Conventionally, when using LGE to delineate
areas of fibrosis in patients with a history of myocardial infarction
or myocarditis, a threshold of 5 standard deviations (SDs) above
the signal intensity seen in remote, unaffected tissue is used to
define significant enhancement. In areas affected by myocardial
infarction, the LGE pattern is generally predominant in the
subendocardial tissue and can spread transmurally depending
on the extent of injury, while in myocarditis the distribution
tends to dominate in the sub-epicardial region (updated Lake
Louise consensus criteria) (50). Previously, it was thought that
the absence of LGE was a pathognomonic feature of stress CM
that differentiated it from other pathologies such as myocardial
infarctions or myocarditis; however, several studies have now
shown that stress CM does present with a certain degree of
LGE that is usually of reduced intensity compared to other
conditions that cause fibrosis (41, 51, 52). Eitel et al. showed no
evidence of LGE in any of the 239 patients assessed in one study,
while lowering the threshold to 3 SD showed positive findings
in 22 patients (9%) (41). These patients had higher troponin
levels at presentation compared to those that had negative LGE
but there were no differences in the LV ejection fraction, end-
diastolic volume, or end-systolic volume. Another study similarly
revealed that changing the SD threshold for LGE may yield
different results (53).
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FIGURE 2 | A comparison of vertical long axis CMR cine sequence images on diagnosis and at 3-month follow-up showing a recovery of wall motion abnormalities.

The four sets of images display four different variants associated with stress CM. The pink asterisk denotes a pericardial effusion. Yellow arrows indicate apical

akinesis while the black arrows indicate RV apical akinesis in the biventricular ballooning variant. Figure adapted from Figure 2 on Clinical Characteristics and

cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy by Eitel et al. (41).

There are various theories as to what causes the delayed
enhancement, with some studies suggesting a delayed washout

of contrast due to the presence of myocardial inflammation and
interstitial edema. Other studies have used immune-histological
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FIGURE 3 | T2-weighted sequences demonstrating variability in signal intensity based on the affected myocardial regions. The color coding resembles varying signal

intensity ratios between myocardium and skeletal tissue with blue indicating a ratio ≥ 1.9 (indicating edema) while yellow/green indicates a ratio <1.9, indicative of

normal myocardium. These images illustrate predominant myocardial edema in the mid-ventricular and apical segments. Adapted from Clinical Characteristics and

cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy by Eitel et al. (41).

evidence to show that affected areas in stress CM have increased
collagen-1 which could be indicative of a fibrotic process (52, 53).
Perhaps the low level of LGE reflects the reversibility of stress CM
and near or complete resolution, which is an essential diagnostic
component of this condition. In ischemic cardiomyopathies
or non-ischemic cardiomyopathies such as sarcoidosis, higher
degrees of LGE are often associated with poorer prognoses due
to irreversible myocardial injury (54). In one study, stress CM
patients with LGE had a higher frequency of cardiogenic shock
and had a slower recovery of wall motion compared to those that
did not display LGE (53). Therefore, extent of LGE on CMRmay
represent a useful prognostic marker in stress CM.

Early Gadolinium Enhancement (EGE)
Within 1–3min of gadolinium administration, EGE can be
accessed via a high T1 inversion time. This technique is essential
for the identification of LV thrombus. Thrombi are characterized
by having no gadolinium uptake and are seen as a hypodense
mass (almost black) in contrast to the gray myocardium.
Important CMR parameters are summarized in Table 2.

NUCLEAR IMAGING

Recent studies have reported a role for nuclear imaging findings
in the diagnosis of stress CM. Single photon emission computed
tomography can assess cardiac stunning using 201 Thallium
or 99m Technetium-labeled radiopharmaceuticals and 123I-
metalodobenzyl-guanidine (I-123 MIBG) (55). In addition, 18F-
fluorodeoxyglucose (FDG) positron emission tomography can be

TABLE 2 | Important CMR parameters for the evaluation of stress CM.

Imaging sequence Clinical significance

Cine CMR (balanced Steady State

Free Precession/SSFP)

Assessing wall motion abnormalities

Feature/Tissue tracking CMR

(FT-CMR)

Quantifying regional and global strain

patterns

T2-weighted triple inversion recovery Identifying areas with myocardial

edema and distribution pattern

T1 or T2 mapping Quantitative assessment of myocardial

edema

First pass perfusion Assessing perfusion defects

Early gadolinium enhancement Ruling out LV thrombus

Late gadolinium enhancement Assessing extent of regional

inflammation and fibrosis

used to detect myocardial glucose metabolism (56). In the acute
and sub-acute phases of stress CM, the affected segments of the
myocardium show defects in FDG and MIBG despite normal to
slightly reduced perfusion (57). MIBG is a norepinephrine analog
and uses the same mechanism of norepinephrine in the uptake
and storage in presynaptic vesicles. After adrenergic stimulation,
MIBG is released in the synaptic cleft but is not metabolized by
monoamine oxidase (MOA) and catechol-O-methyltransferase
(COMT) enzymes (58). MIBG is also labeled with iodine-123
(123I) as a radiotracer due to its suitability for imaging. With
such properties, it is possible to evaluate the cardiac uptake of
theMIBG and its distribution (59). Visually and quantitively, two
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parameters are analyzed: heart to mediastinal ratio (H/MR) and
myocardial washout rate (WR) (59).

The evaluation of stress CM by I-123 MIBG scintigraphy
demonstrates a defect in MIBG uptake at the level of the apex.
Semi-quantitative measures also demonstrate a reduction in
H/MR and an increase in washout (59). The use of nuclear
imaging for the diagnosis of stress CM is promising but given the
presence of alternative more accessible modalities, it is not the
first line imaging modality for diagnosis.

CARDIAC MULTI-DETECTOR COMPUTED
TOMOGRAPHY

Cardiac multi-detector computed tomography (MDCT) is a
comprehensive imaging modality that is used to assess cardiac
function as well as coronary artery lesions (55). MDCT
can provide valuable information regarding RWMA and can
immediately rule out a coronary artery lesion with a high
negative predictive value (60). In clinical practice, excluding the
possibility of coronary obstruction or acute plaque rupture with
MDCT still remains a challenge (55). Cardiac MDCT may be a
promising imagingmodality in the evaluation of suspected stress-
induced cardiomyopathy. Cardiac MDCT may in particular be
an appealing imaging modality when there is a clinical need to
evaluate the coronary arteries at the same time or when there is a
contraindication to MRI.

COMPLICATIONS

Although the hallmark of stress CM is that myocardial
function returns to normal within weeks, many patients endure
complications related directly to stress CM or comorbid medical
conditions and can have significant morbidity and mortality in
the inpatient setting (Figure 4).

Acute Heart Failure
Systolic heart failure is the most common complication
encountered by these patients in the acute setting, with an

FIGURE 4 | Summary of common in-hospital complications associated with

stress CM.

incidence ranging between 3 and 46% (3, 32, 61, 62). This
can occur as a result of depressed LV systolic function or
secondary to other associated complications such as LVOTO or
functional mitral regurgitation. Some patients have progression
of heart failure to cardiogenic shock requiring inotropic or
vasopressor support or even mechanical support via intra-aortic
balloon pumps (IABP) or extracorporeal membrane oxygenation
(ECMO), with a very small proportion of cases resulting in death.
Biventricular involvement has a tendency to occur in the elderly
population, is associated with lower LV ejection fraction, and
is an independent predictor of adverse cardiovascular outcomes
(41, 63). These patients tend to have longer and complicated
hospital stays and have shown to have higher rates of in-hospital
and long-term morbidity and mortality (64).

LV Thrombus and Systemic Emboli
Formation of an LV thrombus is a relatively rare but significant
complication associated with stress CM, particularly with the
apical ballooning variant. Studies have shown an incidence
between 2 and 9.2% of patients (65–68). In these cases,
likelihood of clot formation is increased due to blood stasis
from apical hypokinesis/akinesis increased stasis; furthermore,
the adrenergic surge that is often thought to be a contributing
mechanism behind stress CM could potentially cause endocardial
damage that may initiate a thrombotic process. Stress CM
patients with LV thrombus are at increased risk for systemic
emboli including cerebrovascular embolic events, which can
occur in around 17–25% of cases (66, 68).

Arrhythmias
As cardiac arrhythmias are important potential complications
of stress CM that could arise in the acute setting, patients
need to be monitored closely via telemetry and serial ECGs in
order to evaluate for abnormal rhythms and a prolonged QT
interval. Atrial fibrillation can occur in ∼4.5–25% of patients
and is the most common arrhythmia seen in stress CM patients
(69–71). Rarely, patients may develop more dangerous cardiac
arrhythmias such as ventricular tachycardia or torsades de
pointes, especially if a prolonged QT interval >500ms is present
(72, 73). In one study, men were more likely to have cardiac
arrhythmias and a higher incidence of cardiac arrest compared
to women (69).

TREATMENT

Acute Heart Failure and Cardiogenic Shock
To date, there have been no large randomized controlled
trials investigating various therapies that are commonly used
for the treatment of acute heart failure in stress CM. The
primary goal of therapy is to address any acute complications
that arise, prophylactically treat to minimize risks of certain
complications such as thromboembolism, and closely follow the
patient throughout the course of the disease until full recovery
and/or normalization of cardiac function. In determining the
course of therapy, it is important to delineate the pattern
of cardiomyopathy and identify certain features such as the
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presence of LVOTO that may require adjustment in medication
regimen (Figure 5).

In a patient with normal cardiac output, the standard of
treatment involves use of diuretics in order to achieve euvolemia
and afterload reduction with arterial vasodilators (e.g., ACE-
inhibiters, angiotensin-receptor blockers, angiotensin receptor-
neprilysin inhibitor, hydralazine) (1, 74). In patients who are
hemodynamically stable with LVOTO, the use of beta-blockers
has a negative inotropic effect on basal hypercontractility and
reduces the obstruction. In the case of LVOTO, the use of nitrates
in order to lower filling pressures may have negative effects by
worsening the LVOT gradient and should be avoided (74).

When treating a patient with cardiogenic shock, the approach
to therapy is heavily predicated on the presence or absence
of LVOT obstruction. In the absence of LVOT obstruction,
inotropic agents such as dobutamine or milrinone can be used
to augment cardiac output. Vasopressors such as norepinephrine
or vasopressin can be utilized as a second-line agent. There have
been retrospective studies and case series suggesting the safety
and feasibility of using levosimendan (a Ca2+ sensitizer) as a
potential alternative inotropic agent (75, 76); however, clinical
trials are needed to further study this agent before adoption in
clinical practice. Several case reports have detailed complex stress
CM cases requiring mechanical circulatory support via IABP or
percutaneous left ventricular assist devices (such as Impella) until
recovery (77, 78).

If LVOTO is present independent of concurrent mitral
regurgitation, the use of inotropic support can increase basal
hypercontractility and worsen the LVOTO, potentially worsening
cardiogenic shock. These patients benefit from measures such
as administration of IV fluids and/or the use of low-dose

FIGURE 5 | Cine CMR horizontal long-axis view illustrating the systolic “jet”

seen in LVOT (white arrow) with concurrent systolic anterior motion of the

mitral leaflets (green arrow) and functional mitral regurgitation (red arrow).

Adapted from Figure 6 in Plácido et al. (39).

beta-adrenergic antagonists such as metoprolol or esmolol for
the purpose of negative inotropy on the hyperdynamic basal
myocardium which can reduce the LVOT obstruction. Extreme
caution must be practiced with use of beta blockers, however, as
despite their benefit in reducing LVOTO they can be potentially
detrimental by reducing cardiac output further due to negative
inotropy. Other therapeutic agents include vasopressors such
as phenylephrine or vasopressin which can be administered
to increase systemic vascular resistance and thereby reduce
obstruction at the LVOT (1). In refractory cases, ECMO may be
used to provide support (79).

Much like with acute management of stress CM, chronic
management of stress CM has limited evidence with no official
guidelines in place to date. There have been several studies
ranging from case series to retrospective studies to meta-analyses
investigating various heart failure drugs. Some studies favor
ACE-inhibitors and angiotensin receptor blockers over beta
blockers in terms of potential long-term mortality benefit while
others have shown no significant findings (40, 80, 81). The
general approach to chronic care of stress CM patients has been
to initiate guideline-directed medical therapy as indicated in the
care of the general cardiomyopathy patient. In patients with
concurrent coronary artery disease, guideline-directed use of
aspirin and statin therapies is likely beneficial as well (74).

Thromboembolism
In the 2013 ACCF/AHA guidelines for the management of
STEMI, there is a Class IIb recommendation to consider
prophylactic anticoagulation in patients with anterior wall
myocardial infarctions resulting in hypokinetic or akinetic wall
motion abnormalities that could pose a potential high risk of
LV thrombus formation (82). In a review article by Heckle et
al. (66), data compiled from four studies showed a prevalence of
9.2% for thromboembolic events in patients with stress CM. The
study posited that an event rate of 9.2% would roughly equate to
a score of at least 5 on the CHA2DS2-Vasc scoring system used
to determine the need for anticoagulation in patients with atrial
fibrillation; therefore, this could theoretically be extrapolated
to initiate prophylactic anticoagulation in patients with stress
CM (66). To date, there have not been any randomized clinical
trials investigating the efficacy of anticoagulation and duration
of therapy as a therapeutic or even prophylactic approach to
patients with a LV thrombus in the setting of stress CM.
Prior retrospective studies have suggested the use of systemic
anticoagulation for at least 3 months in patients with a confirmed
LV thrombus.

PROGNOSIS

A retrospective, international, multi-center study by Templin
et al., utilized a database called the International Takotsubo
Registry to identify risk factors for stress CM as well as and
predictors of clinical outcomes in these patients (40). In the study,
21.8% of patients had in-hospital complications including death,
which was similar when compared to those with ACS. A multi-
variate analysis in this study revealed that physical triggers, acute
psychiatric disorders (including anxiety, adjustment disorder,
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and severe stress), or neurologic disorders (including stroke/TIA,
seizures, and headache disorders); a first troponin level>10 times
the upper limit of normal; and an LVEF of <45% were all noted
to be predictors of higher incidence of in-hospital complications
and death. Conversely, older age (>70 years) and the presence
of an emotional trigger were associated with a lower incidence of
in-hospital complications and death; however, other studies have
revealed higher rates of complications in older patients (27, 83).

In-hospital mortality rates for stress CM have ranged between
2 and 5% (32, 83–85). A study in Japan by Isogai et al. (86)
compared patients with stress CM due to an out-of-hospital
causative factor with those who developed stress CM during
hospital admission and found that in-hospital stress CM patients
had higher a proportions of co-morbidities along with higher
in-hospital mortality (17.9 vs. 5.4%, p < 0.001). Presenting
in an unstable condition (i.e., post-cardiac arrest or shock
requiring pressor support) or having other non-cardiac acute co-
morbidities were also associated with a higher risk of in-hospital
mortality. In analyzing long-term outcomes, some studies have
shown a higher mortality in patients with stress CM compared to
a general age and gender-matched population while others have
shown no differences in the long term (87, 88).

Data on recurrence have been limited but current evidence
reports a recurrence rate of around 2–4% per year and up to
as high as 20% in 10 years (40, 88, 89). There are reports
of recurrence presenting with a different anatomical variant of
stress CM. Some patients may continue to experience symptoms
such as fatigue, shortness of breath, chest pain, and exercise
intolerance evenwith recovery of LVEF (1). There is also evidence

that patients can experience psychiatric consequences such as
post-traumatic stress disorder as a long-term complication of
stress CM (90).

CONCLUSION

As featured comprehensively in this review, cardiovascular
imaging plays a vital role in stress CM and offers many
facets of benefits ranging from the initial diagnosis to long-
term outcomes. Echocardiography and certain sequences in
CMR enable us to differentiate between variants of stress CM,
characterize severity of left ventricular dysfunction and identify
prognostic features such as LVOTO, mitral regurgitation and RV
involvement that often drive our course of therapy. Additionally,
several CMR sequences such as feature/tissue tracking, T1/T2
mapping are useful in providing qualitative and quantitative
evidence of myocardial injury and degree of inflammation on
a cellular and tissue level that can then be translated into
prognostic information. As we begin to understand that stress
CM is not a benign condition and can often have serious
complications in the acute and chronic setting similar to more
common cardiac pathologies such as ACS, there is a strong call
for further large scale trials in order to investigate and refine our
diagnostic and therapeutic approach to this disease.
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Background: The thioflavin T derivative, 11C-Pittsburgh-B (PIB), is used for Alzheimer’s

disease imaging because it specifically binds to β-amyloid protein deposits in the brain.

The aim of this study was to estimate the diagnostic value of combined 11C-PIB positron

emission tomography/magnetic resonance (PET/MR) in cardiac amyloidosis (CA).

Methods: We enrolled 23 heart failure patients with suspected CA based on

echocardiographic and electrocardiograph findings. All patients underwent cardiac
11C-PIB PET/MR and non-cardiac biopsy within one week. We also enrolled eight

healthy volunteers that underwent cardiac 11C-PIB PET/MR as a control group. The

cardiac magnetic resonance (CMR) protocol included cine imaging, late gadolinium

enhancement (LGE), and native and post-contrast T1 mapping. Extracellular volume

(ECV) was measured using pre- and post-contrast T1 mapping images. LVEF, IVSD,

LVPW, LVmass, LVESV, LVEDV, native T1 value, ECV, and maximum uptake of myocardial

tissue-to-blood background ratio (TBR) values were obtained from PET/MR images in all

patients and healthy subjects.

Results: Thirteen out of twenty-three heart failure patients were clinically diagnosed

with CA. The remaining 10 patients were CA-negative (non-CA patient group). Twelve

of the thirteen CA patients showed diffuse transmural LGE patterns, whereas LGE was

either absent or patchy in the non-CA patients. The diagnostic sensitivity and specificity

of TBRmax were 92.3 and 100%, respectively, at a cut-off value of 1.09. Several CMR

imaging parameters (LVEF, IVSD, LVmass, LVEDV, LVESV, LVPW, native T1 value and

ECV) and TBR showed significant differences between CA patients, non-CA patients,

and healthy controls (P < 0.05). Native T1 mapping values positively correlated with

TBRmax values in CA and non-CA patients (r = 0.38, P = 0.0004).

Conclusions: 11C-PIB PET/MRI is a valuable tool for the accurate and non-invasive

diagnosis of CA because it distinguishes CA patients from non-CA patients and healthy

subjects with high specificity and sensitivity. Moreover, native T1 mapping values

positively correlated with TBRmax values in CA and non-CA patients. In the future, larger

cohort studies are necessary to confirm our findings.

Keywords: 11C-PIB, PET/MR, cardiac amyloidosis, non-invasive diagnosis, LGE, ECV, TBR
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INTRODUCTION

Amyloidosis refers to a group of systemic diseases caused
by extracellular and/or intracellular accumulation of insoluble
misfolded amyloid protein fibrils, which progressively damage
the structure and function of related organs (1). Cardiac
amyloidosis (CA) is a type of restrictive cardiomyopathy caused
by the accumulation of misfolded amyloid protein deposits
in the myocardium (2). Heart failure is the main cause of
death and morbidity in CA patients, which manifests either
as a primary disease or as part of systemic amyloidosis (3).
Endocardial biopsy (EB) is the current gold standard for the
clinical diagnosis of myocardial amyloidosis (4). However, EB is
an invasive procedure that cannot be performed routinely. EB
is also associated with high false-negative biopsy interpretation
rates.Moreover, it does not provide sufficient clinical information
regarding the status of the disease and is not effective for
determining prognosis or response to treatment.

Cardiovascular magnetic resonance (CMR) imaging with
late gadolinium enhancement (LGE) is the most commonly
performed non-invasive technique for characterizing myocardial
tissue abnormalities in a wide spectrum of cardiomyopathies
(5). Although multiple LGE distributions have been described
for cardiac amyloidosis, sub-endocardial and transmural LGE
patterns are most commonly observed in cardiac amyloidosis
and serve as diagnostic markers (6). However, LGE-CMR is
not amenable for the early recognition of mild myocardial
amyloidosis during differential diagnosis (7, 8). LGE-CMR is
also not suitable for suspected CA patients with severe renal
impairment (9, 10). Non-contrast T1 mapping is performed
before administering contrast agents to quantify the direct
signal from the myocardium (11). Several studies have shown
that native T1 values are slightly elevated in focal and diffuse
fibrosis (12, 13), edema, and inflammation (14). Boomen et al.
reported that myocardial T1 values were significantly higher
for patients with amyloidosis, including those without any
confirmed cardiac involvement through biopsy or decreased
cardiac function (15). However, a major disadvantage of native
T1 mapping is that the results can vary significantly based on
the type of scanners and magnetic field intensities (1.5T vs. 3T)
used for the analysis. ECV (extracellular volume) is another
early marker of cardiac involvement in patients with amyloidosis
(confirmed by biopsy) and is more reproducible than absolute
T1 values (16). However, in the absence of biopsy confirmation,
ECV values may overlap with other cardiomyopathy pathologies

and limit the specificity of ECV in the early detection of
amyloidosis (8).

The thioflavin-T derivate, 11C-Pittsburgh B (PIB), is used

for the diagnostic imaging of patients with Alzheimer’s disease

because it binds with high-affinity to fibrillar β-amyloid
protein deposits in the brain (17). Amyloid positron emission
tomography (PET) imaging can be used for quantitative analysis
of cardiac amyloidosis because it shows high sensitivity and
specificity for amyloid protein deposits (18). This feature can be
useful for the early diagnosis of CA.

The aim of this study was to assess the diagnostic accuracy
of combined 11C-PIB positron emission tomography/magnetic

resonance (PET/MR) in a cohort of patients with heart failure
and suspected cardiac amyloidosis.

MATERIALS AND METHODS

Patients
Twenty-three patients with heart failure and suspected CA
diagnosed with echocardiography and electrocardiograph were
enrolled in this retrospective study at the First Medical Center
of PLA General Hospital between May 1, 2017 and December
31, 2019. Diagnostic criteria included the thickening of the
wall of the ventricular septum plus any two of the following
criteria: (a) Ultrasound showed characteristic enhanced echo,
such as Granular echo, Speckled echo or Ground glass echo;
(b) Unexplained low voltage <0.5mV in the limb leads of
the 12-lead electrocardiogram; (c) Left ventricular diastolic
function decreased; (d) or Left atrium enlarged. A series
of 11C-PIB PET/MR, echocardiography, extra-cardiac biopsy,
and laboratory tests were performed. Eight healthy volunteers
without any signs or symptoms of cardiac disease were also
enrolled (5 males and 3 females; age range: 41–65 y). The non-
CA patients and healthy subjects were considered as the control
group. We compared 11C-PIB uptake in the myocardium and
the values of several CMR imaging parameters between the
patients with CA and control subjects to establish cutoff values.
Written informed consent was obtained from all patients prior
to recruitment. This study was approved by the Human Ethics
Committee of the Chinese PLA General Hospital.

11C-PIB PET/MR Scanning Parameters
Simultaneous 11C-PIB PET and CMR of the heart were
performed using a 3T hybrid PET/MR system (Biograph
mMR, Siemens Healthineers, Erlangen, Germany). All study
subjects were injected with 555 MBq of 11C-PIB through the
antecubital vein, and PET data was acquired in list mode
using a 20min table time. The acquisition was started 30
mins after the administration of 11C-PIB. PET images were
reconstructed with a 256 × 256 matrix with the ordered-subset
expectation maximization method (4 iterations, 8 subsets), and
post-smoothing was performed using a 4mm Gaussian filter.
PET images of 5mm slice thicknesses were then displayed
along the transversal, coronal, and sagittal planes. Attenuation
correction was performed using the respiratory-gated 2-point
Dixon sequence, which was acquired before injection of the
gadolinium contrast medium. The Dixon imaging parameters
were as follows: repetition time (TR) = 3.6ms; echo time (TE)1
= 1.23ms; TE2 = 2.46ms; field-of-view = 500 × 500mm; and
flip angle (FA)= 10◦.

Each CMR series was acquired during the expiratory phase
with breath holding. The heart was localized by first acquiring
two-dimensional (2D) scout images in the transversal, coronal,
and sagittal planes. CMR cine images were acquired using
ECG-gated 2D-segmented balanced steady-state free precession
(bSSFP) sequence. Two-, three-, and four-chamber long-axis
and 10–12 short-axis slices covering the LV were acquired to
evaluate cardiac motion and function. The key parameters were
as follows: TR/TE = 3.3/1.43; FA = 55◦–70◦; voxel size = 1.6 ×
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1.6× 6.0 mm3; temporal resolution= 45.6ms; bandwidth= 962
Hz/pixel. The 5(3)3 and 4(1)3(1)2 MOLLI sequence acquisition
schemes were used for native T1 and post-contrast T1 mapping,
respectively. Identical images were obtained from the basal, mid,
and apical short axis slices of the ventricle and the 4-chamber
long-axis slices (19, 20). The parameters were as follows: TR/TE
= 2.7/1.12ms; FA = 35◦; voxel size = 1.4 × 1.4 × 8.0 mm3.
LGE images were generated using a 2D phase-sensitive inversion-
recovery (PSIR) gradient-echo pulse sequence with the following
parameters: TR/TE = 5.2/1.96ms FA = 20◦; voxel size = 1.4 ×

1.4× 8.03 mm.

PET/MRI Analysis
PET activity was measured within the LV myocardium by
analyzing fused and co-registered PET and LGE-MR images.
Myocardial PET uptake was quantified using standard uptake
values (SUV) and target-to-background ratio (TBR) after
correcting for the blood-pool activity in the descending thoracic
aorta. The standard uptake value (SUV) of the myocardium
was measured by drawing the contour of the whole LV at an
approximate thickness of 10mm from base to apex. Maximal
SUV (SUVmax) was defined as the voxel with the highest uptake
among all the volumes of interest (VOIs) analyzed. Mean SUV
(SUVmean) was defined as the average SUV of the total voxels
in the VOI. The maximal myocardium to blood cavity ratio
(TBRmax) was defined as the maximal SUV of the myocardial
VOI divided by the mean SUV of the descending thoracic
aorta VOI.

CMR functional parameters, native T1, and ECV were
measured semi-automatically using a dedicated CMR software,
cvi42 version 5.3 (Circle Cardiovascular Imaging, Calgary,
Canada) (5). LV ejection fraction (LVEF) and standard
parameters of the cardiac structure such as LV mass, ventricle
volume, inter-ventricular septum thickness (IVSD), and left
ventricular posterior wall thickness (LVPW) were measured by
tracing the endocardial and epicardial borders in the long-
axis and short axis cine images at the end-systolic and end-
diastolic timepoints. T1 values of global LV were obtained by
drawing contours around the endocardium and epicardium
as well as indicating the inter-ventricular septum on pre-
contrast T1 mapping images with indexing for the hematocrit.
Native T1 and ECV of global LV were measured by drawing
contours around the endocardium and epicardium as well
as indicating the inter-ventricular septum on pre-contrast
and post-contrast T1 mapping images with indexing for the
hematocrit. Global LV native T1 and ECV values were used for
further analyses. All 11C-PIB PET/MR images were analyzed
independently by two experienced investigators in nuclear
medicine independently. All disagreements were resolved in
consultation with a third investigator.

Statistical Analysis
The continuous variables are presented as means ± SD and
compared between control and CA patient groups using the
Mann–Whitney U test. Receiver operating characteristic (ROC)
curves were used to determine the diagnostic TBRmax and
native T1 values for CA. Spearman’s correlation analysis was

performed to determine the degree of association (Spearman’s
r value) between native T1 value and TBRmax. P < 0.05 was
considered statistically significant. All statistical analyses were
performed using the R 4.0.1 Statistical Package (the R foundation
for Statistical Computing, Vienna, Austria) and SPSS software
v.24.0 (Statistical Package for Social Science; IBM, Chicago,
IL, USA).

RESULTS

Baseline Characteristics
Among the 23 enrolled patients with heart-failure suspected
of having CA, thirteen patients were diagnosed with CA.
Ten patients with CA were diagnosed by typical non-
invasive detection of cardiac involvement by CMR LGEs and
positive Congo-red staining of abdominal fat pad biopsies
and bone marrow; 2 patients with CA were diagnosed by
diffuse sub-endocardial or transmural LGEs and at least
one of the monoclonal protein tests being reported as
abnormal (21); 1 patient with CA was diagnosed by a positive
abdominal fat pad biopsy, positive genetic test for amyloid, and
typical echocardiography patterns, including >12mm thick left
ventricular wall and the appearance of grain scintillation in
the myocardial wall. The remaining 10 cases were diagnosed
as different types of cardiomyopathy: dilated cardiomyopathy
(DCM, n = 2), rheumatic heart disease (RHD, n = 1), valvular
heart disease (VHD, n = 1), hypertensive heart disease (HHD,
n = 3), and hypertrophic cardiomyopathy (HCM, n = 3). The
baseline characteristics of the enrolled patients are summarized
in Table 1.

Comparison of Clinical and Biochemical
Biomarkers Between CA and Non-CA
Patients
We did not observe any significant differences in age between
CA patients, non-CA patients, and healthy subjects (P > 0.05).
The BMI values of non-CA patients were significantly higher
compared with the CA patients and healthy subjects (P =

0.033). We also did not observe any significant differences in
the serum cardiac troponin-I (cTnI), calcium, and creatinine
values between CA patients and non-CA patients (P > 0.05).
CA patients showed significantly higher levels of NT-proBNP
(13011.46 ± 11726.99 pg/mL vs. 4709.30 ± 5428.82 pg/mL, P
= 0.036) and blood-free light chain kappa/lambda (1.88 ± 5.77
vs. 0.85 ± 0.31 mg/dL, P = 0.021) compared with the non-
CA patients. The 13 CA patients were classified under NYHA
classification I (n = 0), II (n = 2), III (n = 5), and IV (n = 6),
respectively (Table 2).

The Echocardiography Diagnositic
Parameters and PET/MR Structural and
Functional Parameters
The echocardiography data for CA patients and non-CA patients
are summarized in Table 3. There were no differences in the
echocardiographic parameters between the CA patients and the
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TABLE 1 | Comparison of the baseline clinical data and 11C-PIB PET/MR parameters between patients with and without cardiac amyloidosis (CA).

Patient no. Age Sex Diagnosis ECG low NYHA functional Urine Blood Biopsy Biopsy 11C-PIB PET/MR

voltage class IFE IFE (bone marrow) (abdominal wall)
Visually PET positive TBR T1 native ECV

1 68 M CA + II - NA NA + Yes 3.69 1,525 47

2 67 M CA + IV + - NA + Yes 8.08 1,487 52

3 64 M CA - III + + NA + Yes 1.77 1,496 50

4 64 F CA + IV + + + + Yes 1.30 1,503 51

5 61 F CA + III + + NA + Yes 1.82 1,506 61

6 76 F CA + IV NA + NA - Yes 5.11 1,432 45

7 51 M CA - III - + + - Yes 2.02 1,506 52

8 71 M CA + III - - + + Yes 1.21 1,507 65

9 63 M CA + III NA - + + Yes 2.44 1,456 51

10 61 M CA + IV - - + + Yes 2.24 1,601 54

11 67 F CA + IV + - + + Yes 2.75 1,537 56

12 44 F CA - II - - NA - No 1.29 1,433 52

13 60 M CA - IV - - NA + No 0.92 1,432 38

14 33 M HHD - II - - NA + No 0.91 1,419 NA

15 68 M HHD - IV - - NA + No 0.94 1,378 32

16 55 M DCM - III - - NA - No 0.89 1,315 37

17 70 F RHD + III - - NA + No 0.87 1,420 29

18 58 M VHD - IV NA - NA + No 0.79 1,349 27

19 73 F HCM - I - - NA + No 0.89 1,402 34

20 28 M HCM - II - NA NA + No 0.78 1,427 33

21 32 F HCM - II - - + - No 0.82 1,363 31

22 67 F DCM - III - - NA - No 0.91 1,363 40

23 56 F HHD + III - - + - No 0.94 1,467 NA

ECG, electrocardiograph; NYHA, new york heart association; IFE, immunofixation electrophoresis; PET, positron emission tomography; TBR, tissue-to-blood background ratio; ECV, extracellular volume; M, male; F, female; HHD,

hypertensive heart disease; DCM, dilated cardiomyopathy; RHD, rheumatic heart disease; VHD, valvular heart disease; HCM, hypertrophic cardiomyopathy.
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TABLE 2 | Baseline clinical characteristics of patients with cardiac amyloidosis (CA), those without CA (non-CA), and healthy control subjects.

Characteristics CA (n:13) Non-CA (n:10) Controls (n:8) P

General parameters

Age (years) 62.9 ± 8.2 54.0 ± 17.0 47.9 ± 13.8 0.105

Female/Male 5/8 5/5 3/5

BMI (kg/m2 ) 22.30 ± 3.04 26.52 ± 4.28 23.84 ± 2.62 0.033

HTN/CHD/DM/Arrhythmia/AF 11/3/1/5/6 7/2/4/4/1 - -

Biomarkers

cTnI (ng/ml) 0.13 ± 0.14 0.07 ± 0.07 - 0.166*

NT-proBNP (pg/ml) 13011.46 ± 11726.99 4709.30 ± 5428.82 - 0.036*

Calcium (mg/ml) 2.17 ± 0.11 2.16 ± 0.15 - 0.879*

Creatinine (mg/ml) 117.16 ± 78.90 129.79 ± 70.43 - 0.605*

Blood free light chain Kap/Lam (mg/dl) 1.88 ± 5.77 0.85 ± 0.31 - 0.021*

CMR parameters

LVEF (%) 48.1 ± 9.4 42.2 ± 15.1 65.2 ± 1.8 <0.001

LV mass (g) 164.3 ± 42.0 181.9 ± 70.1 94.2 ± 22.8 0.002

LVEDV (ml) 101.6 ± 28.2 180.8 ± 67.7 94.0 ± 16.7 0.001

LVESV (ml) 53.9 ± 22.9 108.8 ± 67.4 32.8 ± 8.7 <0.001

IVSD (cm) 15.0 ± 1.6 12.0 ± 2.9 9.0 ± 1.8 <0.001

LVPW (cm) 10.3 ± 2.2 9.8 ± 3.0 7.9 ± 0.9 0.030

Native T1 value (ms) 1493.9 ± 48.1 1390.3 ± 44.8 1264.6 ± 25.6 <0.001

ECV 51.9 ± 6.7 32.5 ± 3.8 - <0.001

TBR 2.66 ± 1.99 0.85 ± 0.06 0.88 ± 0.07 <0.001

BMI, body mass index; HTN, hypertension; CHD, coronary heart disease; DM, diabetic mellitus; AF, atrial fibrillation; cTnI, cardiac troponin; NT-proBNP, N-terminal pro-B-type

natriuretic peptide; CMR, cardiac magnetic resonance; LVEF, left ventricular ejection fraction; LVEDV, left ventricle end-diastolic volume; LVESV, left ventricle end-systolic volume;

IVSD, interventricular septal thickness at diastole; LVPW, left ventricular posterior wall thickness; ECV, extracellular volume; TBR, maximum target-to-background ratio. The symbol *

represents the comparison between the two groups.

TABLE 3 | Echocardiography data from CA patients and non-CA patients.

Clinical diagnositic of cardiac amyloidosis

Yes (n = 13) No (n = 10) P

Ventricular septum wall thickness, mm 15.0 ± 2.4 13.4 ± 2.0 0.103

LV ejection fraction, % 47.0 ± 11.8 47.8 ± 14.9 0.887

LV end-diastolic volume, ml 83.2 ± 28.4 134.4 ± 44.0 0.003

Decrease of LV 9 7 -

Diastolic function

Enlargement of LA 12 7 -

Granular echo 11 6 -

Speckled echo 1 - -

Ground glass echo 1 - -

LVEF, left ventricular ejection fraction.

non-CA patients, except for a significant difference in the LV end-
diastolic volume (83.2 ± 28.4 vs. 134.4 ± 44.0ml, P < 0.05). We
observed significant differences among several CMR parameters
(LVEF, IVSD, LVmass, LVEDV, LVESV, LVPW, native T1 value,
and ECV) and TBR between CA patients, non-CA patients, and
healthy subjects (P < 0.05; Table 2). PET data showed that the
maximal myocardial 11C-PiB uptake was significantly higher in
the CA patients compared with the non-CA patients and healthy
subjects (0.88± 0.07) (2.66± 1.99 vs. 0.85± 0.06 vs. 0.88± 0.07;
P < 0.05; Figure 1A). The native T1 values were significantly

higher in the CA patients compared with the non-CA and healthy
subjects (1493.9 ± 48.1 vs. 1390.3 ± 44.8 vs. 1264.6 ± 25.6; P <

0.05; Figure 1B). The ECV values were significantly higher for
the CA patients compared with the non-CA patients (51.9 ± 6.7
vs. 32.9± 4.2; P < 0.05; Figure 1C).

Twelve of the thirteen CA patients showed characteristic LGE
patterns including diffuse transmural myocardial enhancement,
typical subendocardial ring enhancement, and heterogeneous
transmural LGE pattern. Only one patient did not show any
characteristic LGE pattern. Gadolinium-enhanced CMR was not

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 March 2022 | Volume 9 | Article 83057267

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bi et al. PIB PET/MR for CA

FIGURE 1 | Comparison of (A) TBR, (B) T1 mapping, and (C) ECV values between CA patients, non-CA patients, and healthy control subjects. CA, cardiac

amyloidosis; TBR, maximum target-to-background ratio; ECV, extracellular volume. (A) PET data showed that the TBR was significantly higher in the CA patients

compared with the non-CA patients and healthy subjects (2.66 ± 1.99 vs. 0.85 ± 0.06 vs. 0.88 ± 0.07; P < 0.05). (B) The native T1 values were significantly higher in

the CA patients compared with the non-CA and healthy subjects (1493.9 ± 48.1 vs. 1390.3 ± 44.8 vs. 1264.6 ± 25.6; P < 0.05). (C) The ECV values were

significantly higher for the CA patients compared with the non-CA patients (51.9 ± 6.7 vs. 32.9 ± 4.2; P < 0.05).

performed in 2 non-CA patients because of significant azotemia
(creatinine clearance < 30 ml/kg/min). In the remaining 8
non-CA patients, we observed patchy LGE enhancement patterns
including discrete areas of LGE or diffuse areas of LGE in
less than half of the short axis images (Table 4). LGE patterns,
T1 mapping, and PET images of a representative CA patient
are shown in Figure 2. Visual inspection of PET images
demonstrated positive 11C-PIB uptake in 12 out of 13 CA
patients. However, none of the non-CA patients and healthy
subjects showed any visible 11C-PIB uptake.

ROC curve analysis using a TBR cutoff value of 1.09 showed
that the area under the curve (AUC) value for discriminating CA
patients from the controls (10 non-CA patients and 8 healthy
subjects) was 0.99 (95% CI: 0.96–1.00) with a sensitivity of 92%
(95% CI: 62–100%) and specificity of 100% (95% CI: 78–100%)
(Table 4). The positive predictive value (PPV) using a TBR cutoff
value of 1.09 was 100% (95% CI: 70–100%) and the negative

predictive value (NPV) was 95% (95% CI: 72–100%). The PPV,
AUC, sensitivity, and specificity values for both ECV and TBR
were similar at the ECV cutoff value of 42.5, but NPV [89%
(95% CI: 51%–99%)] was lower than TBR. The AUC value for
discriminating CA patients from controls using a T1 mapping
cutoff value of 1,429.5 was 0.98 (95% CI: 0.96–1.00) with a
sensitivity of 100% (95% CI: 72–100%) and specificity of 94%
(95% CI: 71–100%). The positive predictive value with this cutoff
was 93% (95% CI: 64–100%) and the negative predictive value
was 100% (95% CI: 77–98%). The other CMR parameters are
shown in Table 5.

False-positive 11C-PIB PET/MR scan results were not
observed in any of the non-CA patients and healthy subjects
using a TBR cut-off value of 1.09. In contrast, one CA
patient (Patient #13) showed a false-negative 11C-PIB PET/MR
result (maximal LV myocardium to blood cavity ratio of 0.92)
(Figure 3). We observed positive ECV and native T1 mapping
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TABLE 4 | Baseline late gadolinium enhancement (LGE) patterns for all cardiac amyloidosis (CA) and non-CA patients based on 11C-PIB PET/MR data.

Patients Diagnosis 11C-PIB PET/MR

Uptake LGE pattern

1 CA Yes Diffuse transmural myocardial enhancement

2 CA Yes Diffuse transmural myocardial enhancement

3 CA Yes Diffuse transmural myocardial enhancement

4 CA Yes Subendocardial ring enhancement

5 CA Yes Diffuse transmural myocardial enhancement

6 CA Yes Diffuse transmural myocardial enhancement

7 CA Yes Diffuse transmural myocardial enhancement

8 CA Yes Subendocardial ring enhancement

9 CA Yes Heterogeneous transmural enhancement

10 CA Yes Subendocardial ring enhancement

11 CA Yes Subendocardial ring enhancement

12 CA No Diffuse transmural myocardial enhancement

13 CA No Negative

14 HHD No Not done because of azotemia

15 HHD No Left ventricular apex subendocardium enhancement

16 DCM No Enhancement of the left ventricular septal middle layer

17 RHD No Negative

18 VHD No Enhancement of the left ventricular septal middle layer

19 HCM No Enhancement of the junction between interventricular septum and inferior wall

20 HCM No Negative

21 HCM No Enhancement of the medial anterior wall and inferior wall papillary muscle

22 DCM No Enhancement of apex, anterior wall papillary muscle, interwall and inferior wall subendocardium

23 HHD No Not done because of azotemia

LGE, late gadolinium enhanced.

values in a PET-negative CA patient who did not show a typical
CMR LGE pattern for cardiac amyloidosis, thereby prompting
false-positive diagnosis of CA. We did not observe any false
positive cases in the non-CA and healthy control groups with a
ECV cut-off value of 42.5, but the CA patient with false-negative
11C-PIB (Patient #13) also showed false-negative ECV result.
None of the CA patients were false-negative and none of the
healthy subjects were false-positive when the cut-off value for
native T1 mapping was 1,429.5ms However, one non-CA patient
showed false-positive result because the native T1 mapping value
was 1467ms. The 11C-PIB PET result of this patient was negative,
and MR LGE was not performed on this patient because of renal
insufficiency. A positive correlation between native T1 mapping
value and TBR in CA and non-CA patients was also observed (r
= 0.38, P= 0.0004, Figure 4).

DISCUSSION

Our study demonstrated that 11C-PIB PET/MR was a highly
sensitive and accurate method to confirm cardiac amyloidosis.
Moreover, we demonstrated that a combination of TBRmax
values derived from 11C-PIB PET scans, T1 mapping values, and
ECV values derived fromCMR can be used for accurate diagnosis
of CA.

CA is caused by extracellular and intracellular accumulation
of insoluble and misfolded fibrillar amyloid protein and shows
clinical features resembling restrictive cardiomyopathy (2).
Endomyocardial biopsy, the gold standard for diagnosis of CA,
is invasive and cannot be performed routinely (22). Moreover,
focal myocardial biopsy does not provide information regarding
the overall myocardial amyloid load and active accumulation
of the amyloid protein. Therefore, there is an urgent need
for techniques that can accurately and non-invasively confirm
cardiac amyloidosis in clinical settings. Previous studies (23, 24)
have demonstrated that 11C-PIB PET/CT is a valuable tool
for the non-invasive diagnosis of CA with ≥ 95% sensitivity
and specificity (18). Our study showed that 11C-PIB PET
distinguishes CA patients from both non-CA patients and
healthy controls with 94% sensitivity and 100% specificity.
Moreover, 11C-PIB-PET was 99% accurate in the positive
diagnosis of CA. Rosengren et al. demonstrated that 11C-PIB-
PET detected CA in different amyloid subtypes with 89 to 100%
accuracy in a dual-center setting (25). Therefore, our results are
consistent with these previous findings and suggest that 11C-PIB
PET is an independent diagnostic indicator of CA.

LGE-CMR has shown great promise in clinical diagnosis
and prognosis because it offers high spatial resolution and the
ability to identify pathology in the extracellular space (26). CA
patients show diverse patterns of late gadolinium enhancement,
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FIGURE 2 | Representative 11C-PiB PET/MR, electrocardiogram, and histologic photomicrograph of one CA patient. (A) Late-gadolinium enhancement (LGE)-CMR

image demonstrates a diffuse transmural enhancement pattern. (B) Native T1 mapping shows that the myocardial T1 value was 1,569ms. (C) The PET/MR image of

the myocardium shows strong uptake of 11C-PIB in the left ventricle (LV) and right ventricle (RV). (D) The electrocardiogram (12-lead) shows low voltage in the limb

leads. (E) Histopathologic examination shows positive Congo red staining and amyloid deposits in the adipose tissue.

TABLE 5 | Differential diagnostic efficiency of TBR and CMR parameters between cardiac amyloidosis (CA) patients and control subjects (non-CA patients‘ and healthy

subjects).

Cutoff Sensitivity (%) 95% CI (%) Specificity (%) 95% CI (%) AUC 95% CI (%)

TBR 1.09 92 62–100 100 78–100 0.99 0.96–1.00

T1 mapping value 1,429.5 100 72–100 94 71–100 0.98 0.95–1.00

ECV 42.5 92 62–100 100 78–100 0.99 0.96–1.00

IVSD (cm) 13.4 100 71–100 83 57–96 0.91 0.79–1.00

LVPW (cm) 8.9 85 54–97 67 41–86 0.71 0.52–0.90

LVEF () 51.4 77 46–94 72 46–89 0.66 0.46–0.86

LVESV (ml) 64.2 85 54–97 39 18–64 0.53 0.32–0.74

LVEDV (ml) 104.1 77 46–94 72 46–89 0.70 0.51–0.89

LV mass (g) 128.4 85 54–97 67 41–86 0.67 0.47–0.87

AUC, area under the curve; CI, confidence interval; TBR, maximum target-to-background ratio; ECV, extracellular volume; IVSD, interventricular septal thickness at diastole; LVPW, left

ventricular posterior wall thickness; LVEF, left ventricular ejection fraction; LVESV, left ventricle end-systolic volume; LVEDV, Left ventricle end-diastolic volume.

such as global subendocardial enhancement, transmural LGE,
and patchy focal LGE. In some CA cases, it is very difficult
to quantify the degree of abnormality based on LGE-CMR. A
recent meta-analysis of seven published studies showed that the
accuracy of CMR-based LGE in the positive diagnosis of CA was
high with 85% sensitivity and 92% specificity. In our study, 12
out of 13 CA patients showed global left ventricular LGE, a typical
enhancement pattern of cardiac amyloidosis. In non-CA patients,
we did not observe any typical CA enhancement. However, some
patients showed patchy enhancement characteristics, which were
indistinguishable from non-CA patients.

The native T1 value has been proposed as a quantitative
parameter for evaluating CA with diffuse disease. Furthermore,

native T1mapping eliminates the need for gadolinium and can be
used as an alternativemethod for assessing CA patients with renal
insufficiency (27). ECV is more reproducible than absolute T1
mapping values. Moreover, ECV is more advantageous than LGE
because it can quantify expansion of the extracellular space based
on the region of interest drawn on the ECV maps. Our study
showed that the diagnostic accuracy of native T1 values and ECV
were significantly higher than the other CMR parameters, with
the AUC value of ECV being the highest. However, at a molecular
level, both native T1 mapping and ECV are not specific to
amyloidosis (6, 28). In contrast, 11C-PIB PET is a useful method
for direct evaluation of overall myocardial amyloid load in
cardiac amyloidosis. In our study, the diagnostic accuracy of both

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 83057270

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bi et al. PIB PET/MR for CA

FIGURE 3 | Myocardial LGE, T1 mapping, and PET images from the false-negative CA patient. (A) A late gadolinium enhancement image shows a diffuse transmural

delayed enhancement pattern in the myocardium. (B) The native T1 value was 1,401ms. (C) 11C-PiB PET staining of the myocardium was negative.

FIGURE 4 | Correlation between T1 mapping and maximum target-to-background ratio (TBR) in patients with (CA) and without cardiac amyloidosis (non-CA).There is

a positive correlation between native T1 mapping value and TBR in CA and non-CA patients (r = 0.38, P = 0.0004).

TBR and ECV was 99%. Native T1 showed higher sensitivity (100
vs. 94%) and lower specificity (94 vs. 100%) than TBR and ECV.
In our study, one CA patient (Patient #13) was false-negative
for both 11C-PIB PET and ECV. The CMR result of this patient
did not show any LV LGE, but the nativeT1 mapping results
were positive. Therefore, patient #13 was positively diagnosed
as CA based on the native T1 mapping data. The cases of
patients #14 and #23 demonstrated unique superiority of 11C-
PIB PET for differential diagnosis of cardiac amyloidosis from
other cardiomyopathies in the setting of significant azotemia, a
clinical condition that prevents contrast-enhanced CMR from
being performed. Although the native T1 mapping results
were positive for patient #23, the PET results were negative.
Therefore, patient #23 was classified as non-CA based on the
PET results.

We also analyzed the correlations between TBR values derived
from 11C-PIB PET and native T1. Our analysis showed that TBR
and native T1 in PET/MR can be used to diagnose CA patients
that cannot undergo delayed enhancement because of renal
insufficiency. Hence, the combination of the 2 diagnostic indices
played a complementary role and improved the diagnostic
accuracy of CA. We did not obtain ECV values for some patients
who did not undergo delayed enhancement. Both ECV and
TBR showed the same AUC (0.99), sensitivity (92%), specificity
(100%) and PPV (100%). However, ECV showed lower NPR
compared with TBR (89 vs. 95%). This suggested that ECV can
be used as an independent diagnostic index for CA.

There are several limitations to this study. Firstly, the sample
size of study subjects was small. Therefore, our results need
to be confirmed in large cohort studies. Secondly, we could
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not complete typing of myocardial amyloidosis in this study
because (1) endomyocardial biopsies were not performed for
some patients; (2) bone marrow biopsies were performed for
only a few patients; and (3) laboratory tests for urine and blood
IFE were not performed for all patients. Fontana et al. (29)
showed that native T1 values were relatively higher, and ECV
values were lower patients with immunoglobulin light chain
amyloidosis compared with those with transthyretin amyloidosis
(ATTR). Ezawa and Katoh (24) showed that 11C-PIB uptake
was lower in patients with ATTR compared with the patients
with AL. Therefore, the diagnostic value of 11C-PIB PET/MR
imaging for CA requires further evaluation according to the
cardiac amyloidosis type because the underlying mechanisms are
not completely known. Finally, normal ranges vary for different
CMR systems and T1 mapping sequences (30). Normal T1 values
are higher when measured at 3T with different sequences and
typically with newer versions of mapping compared with older
ones. This is a significant obstacle to using native T1 mapping
in clinical practice. Therefore, uniform guidelines and normal
ranges need to be established for different CMR techniques
and sequences so that data can be compared between different
patients that have undergone MRI scans at different facilities.

Although endomyocardial biopsy is the golden standard for
diagnosis of CA, extrapolating the amyloid content in line
with the biopsy sample to the entire heart may be inaccurate,
especially in the early CA when the amyloid deposits may not
be extensive or diffuse (31). Quantification of amyloid burden is
currently based on assessment of wall thickness, LV mass, ECV,
or semi-quantitative index on amyloid PET imaging (32). 11C-
PIB PET/MR offers substantial advantages. It is non-invasive,
quantitative, fuses quantitative parameters of PET and MR to
estimate whole-heart cardiac amyloid burden, and can be easily
repeated to monitor response to therapy. For patients clinically
suspected of CA with heart failure 11C-PIB PET/MR is valuable
in CA patients with contraindications to gadolinium (due to renal
dysfunction). Our study confirms that 11C-PIB PET/MR multi-
parameter imaging provides additional evidence for the diagnosis
of CA in the absence of LGE. Moreover, the high sensitivity
and specificity of 11C-PIB PET/MR make it possible to detect
CA early.

CONCLUSIONS

In conclusion, this study showed that 11C-PIB PET/MR
accurately diagnosed cardiac amyloidosis with high sensitivity
and specificity. 11C-PIB PET/MR showed structural and
functional changes in CA patients and helped to accurately

determine the location and extent of amyloid protein deposition.

Our study also demonstrated the advantages of using multiple
parameters and multi-sequence imaging characteristics of CMR
in combination with the high specificity of 11C-PIB PET for the
accurate diagnosis of CA.
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Coronary artery disease is a leading cause of death worldwide. There has been a myriad

of advancements in the field of cardiovascular imaging to aid in diagnosis, treatment,

and prevention of coronary artery disease. The application of artificial intelligence in

medicine, particularly in cardiovascular medicine has erupted in the past decade. This

article serves to highlight the highest yield articles within cardiovascular imaging with

an emphasis on coronary CT angiography methods for % stenosis evaluation and

atherosclerosis quantification for the general cardiologist. The paper finally discusses the

evolving paradigm of implementation of artificial intelligence in real world practice.

Keywords: artificial intelligence, machine learning, coronary artery disease, cardiovascular imaging,

atherosclerosis

INTRODUCTION

Artificial intelligence (AI) is a broad term that refers to computing that can perform complex
human-like tasks (1). Machine learning (ML) is a subset of AI which encompasses a growing
collection of algorithms that is divided into supervised learning, unsupervised learning, semi
supervised learning, and reinforcement learning (2, 3). Supervised learning refers to learning from
labeled examples, while unsupervised and reinforcement learning performs unlabeled learning and
learning from pattern recognition (4). Further subsets of ML include Deep Learning (DL), which
uses complex data sets which mirror human neural networks (5). Human cognition is finite, but
the use of AI may allow for improved discrimination and evaluation of these immense datasets (6).
At the same time, the “black-box” nature of AI can lead to uncertainty in clinical practice in part
due to the complexity of the algorithms, unrecognized bias and application to appropriate clinical
needs (7).

The application of AI in cardiology has increased exponentially annually, specifically
in the diagnosis of coronary artery disease (CAD). These novel approaches may enhance
future implementation of the new 2021 American College of Cardiology/American Heart
Association Chest Pain Guideline that elevate the role of imaging to Class I recommendation
in both acute and stable chest pain in intermediate risk patients (8). Current investigations
aim to augment and enhance current risk-based approaches through the analysis of
multiomic data sets, while also recently showing promise in the direct image interpretation
of cardiac and coronary structures through a myriad of approaches (9). Between 2001
and 2015 the proportion of AI/ML related articles in relevant journals per month was

74
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0.1% in relation to the total number published in the journals.
This increased to 16.2% per month by 2020 (1). Literature
search was completed on PubMed and EMBASE databases by
searching “artificial intelligence” or “machine learning” AND
various terminology related to cardiology such as “cardiac,”
“cardio,” “cardiology,” “infarct,” “valve,” “cardiosurgical,” etc. (1).
Over the past 5 years there were over 3,000 papers published in
Pubmed related to AI/ML learning in cardiovascular medicine
(4). In cardiovascular imaging specifically, there’s been increases
in non-invasive coronary imaging including applications of
coronary artery plaque, automated calcium scoring, perivascular
fat attenuation and machine learning based image enhancement
as well in the application of nuclear imaging, and myocardial
perfusion to large data sets to improve risk enhancement. This
review article serves to summarize the recent advancements
(Table 1) of Artificial Intelligence in respect to coronary artery
disease (CAD) and imaging.

CORONARY ARTERY DISEASE RISK
PREDICTION

Current prevention guidelines incorporate the use of the pooled
cohort equation for adults aged 40–75 with non-traditional
cardiovascular risk factors to determine a 10 year risk of cardiac
events (19). The pooled cohort equation creates a simplified
risk score with a finite number of variables; however the
simplification of the approach may overestimate cardiovascular
risk in certain populations (20, 21). Multiple studies have
sought to enhance the risk prediction model. AI has been
particularly impactful in the area of improved cardiovascular risk
prediction (16). Nakanishi et al. demonstrated that ML using
logistic regression modeling that incorporate multiple clinical
and cardiac computed tomography (CT) variables was superior
in predicting 10 year coronary artery disease death [area under
the curve (AUC)= 0.86] than clinical data alone (AUC= 0.835),
coronary artery calcium (CAC) alone (AUC = 0.816), or ML CT
(AUC = 0.827) (12). This model used a total of 77 variables [46
clinical such as atherosclerotic cardiovascular disease (ASCVD)
risk score, sex, age] and 31 CT variables from CAC scan
to train the machine learning algorithm. Similarly, Motwani
et al. (22) demonstrated that ML incorporating 25 clinical
and 44 coronary computed tomography angiography (CCTA)
parameters better predicted 5 year mortality than current clinical
or imaging metrics. This study involved 10,030 patients, and
ML exhibited a higher AUC compared with Framingham Risk
Score (FRS) (ML 0.79 vs. FRS 0.61) or CCTA severity scores
such as segment stenosis score (SSS) (ML 0.79 vs. SSS 0.64) (22).
Al’Aref studied 13,054 patients in The Coronary CTAngiography
Evaluation For Clinical Outcomes (CONFIRM) registry. ML
with CAC performed the best in predicting obstructive CAD
on CCTA (AUC 0.881) compared to ML alone (AUC =

0.682) and CAD consortium clinic score +CACS (0.866) (3).
These models demonstrate the potential to improve predictive
models. By incorporating numerous variables, both clinical and
imaging, these machine learning algorithms can better predict
cardiovascular mortality. Therefore, in addition to current tools

such as the 10-year ASCVD risk, CAC score, and CCTA, these
models can prove to add invaluable information in assessing a
patient’s cardiovascular risk.

CORONARY STENOSIS

The recent 2021 American Heart Association/American College
of Cardiology/Multisociety Guideline for the Evaluation and
Diagnosis of Chest Pain redefines the presence of coronary artery
disease as obstructive (≥50% stenosis) and non-obstructive
(<50%) stenosis (23). In the realm of invasive and non-invasive
coronary angiography (via CCTA), the evaluation of coronary
artery stenosis requires visual analysis by a trained provider
(18, 24). However, there can be inter-provider variability in
interpretation of these studies in real world practice. Lu et
al. (25) showed in the analysis of the Prospective Multicenter
Imaging Study for Evaluation of Chest Pain (PROMISE) trial,
coronary CTA scans read by both core laboratory and local
site readers, 41% of the scans were in discordance regarding
the presence of significant stenosis (defined as stenosis ≥50%).
There remains great interest in identifying solutions that
allow for improved reproducibility. AI has shown promising
advancements in the detection of obstructive CAD. In 2015,
Kang et al. (26) demonstrated that machine learning algorithms
allowed for the detection of both obstructive (≥50% stenosis)
and non-obstructive (<50% stenosis) lesions with an AUC
of 0.94. In addition, Freiman et al. (27) used a deep sparse
autoencoder—mixed structure regularization approach in 90
subjects and observed an AUC that ranged from 0.78 to
0.94 for discrimination of mild stenosis <30% to severe
stenosis ≥70%.

More recently, the CT Evaluation by Artificial Intelligence for
Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY)
multi-center study compared AI to level 3 (L3) readers in
detecting coronary artery stenosis on CCTA (11). AI analysis
(Figure 1) showed 99.7% accuracy in detecting >70% stenosis
and 94.8% accuracy in detecting >50% stenosis. Among the
vessels analyzed, the mean difference in maximal diameter
stenosis between AI and L3 readers was minimal at −0.8 %. AI
analysis to determine the Coronary Artery Disease Reporting
and Data System (CAD-RADS) categorization compared to L3
readers was also examined. AI generated a CAD-RADS score
that was in agreement with the readers in 78% of scans, and
generated a score that was in agreement within 1 category
in 98% of the scans. A subsequent analysis by Griffin et al.
evaluated a multi-center cohort of patients undergoing core-
lab quantitative invasive angiography (QCA) and found that AI
CCTA had high diagnostic accuracy when compared to QCA in
detecting >50% stenosis (AUC 0.88) and >70% stenosis (AUC
0.92) (10). The analysis time was approximately 10 mins, which
represents an improvement over the several hours that previous
methods have required. The deep convolutional neural network
based approach utilized in these studies has been cleared by the
Food and Drug Administration (FDA), and is clinically available
and are expected to enable widespread generalizability of the
studied approaches.
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TABLE 1 | Summary of high-yield artificial intelligence/machine learning studies in coronary artery disease imaging.

Study Population Method Application AI method Performance*

Griffin et al. (10) Diverse stable chest pain

patients from 23 global sites

undergoing CCTA plus

quantitative coronary

angiography, stress testing

and fractional flow reserve

(CREDENCE study)

Direct image analysis using

a series of validated

convolutional neural

networks for AI-guided

evaluation of coronary

segmentation, lumen wall

evaluation and plaque

characterization of CCTA

images

Ground truth: Core-Lab

quantitative coronary

angiography and invasive

fractional flow reserve for

identification of % coronary

stenosis and adverse

plaque characteristics in

comparison to in

Validated convolutional

neural network models;

Image analysis 10 mins

Accuracy, sensitivity,

specificity of 86%, 94%,

82% for ≥70% stenosis.

Intra-class correlation of

0.73; For false positive

AI-CCTA (≥70% by

AI-CCTA, QCA < 70%),

66% of vessels had FFR <

0.8

Choi et al. (11) Acute and stable chest pain

patients from 3 international

centers undergoing CCTA

(CLARIFY study)

Direct image analysis using

a series of validated

convolutional neural

networks for AI-guided

evaluation of coronary

segmentation, lumen wall

evaluation and plaque

characterization of CCTA

images.

Ground truth: Level 3 Expert

consensus for identification

of % coronary stenosis and

adverse plaque

characteristics

Validated convolutional

neural network models;

Image analysis 10 mins

Accuracy, sensitivity,

specificity for ≥70%

stenosis was 99.7, 90.9,

99.8%. Mean difference for

maximal diameters stenosis

−0.8% (95% CI 13.8% to

−15.3%)

Nakanishi et al. (12) Asymptomatic adults

without known CHD, part of

CAC Consortium, n =

66,636

Coronary artery calcium and

clinical variables. 77

variables incorporated,

including ASCVD risk score,

age, sex, race, CACS, and

the number, volume and

density of CAC plaques

Risk prediction for ASCVD

related death and CHD

related death

ML using a 10-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble algorithm

AUC 0.845 and 0.860 for

ML predicting CVD death

and CHD death respectively,

compared to 0.821 and

0.835 for clinical data alone,

and 0.781 and 0.816 for

CAC score alone

Al’Aref et al. (3) Stable patients with

suspected CAD, from

CONFIRM registry, n =

13,054

Coronary artery calcium and

clinical variables. 25 clinical

variables used, including

age, gender, diabetes

mellitus, hypertension,

cholesterol levels

Prediction of obstructive

CAD on CCTA

ML using a gradient

boosting algorithm. A

ten-fold cross validation

framework was used to train

and evaluate the model

AUC 0.881 for ML + CACS,

compared to ML alone

(0.773), CAD consortium

clinical score (0.734), and

with CACS (0.866)

Hu et al. (13) Stable patients with

suspected CAD from the

REFINE SPECT registry, n =

1980

Stress/rest 99mTc-sestamibi/

tetrofosmin MPI with

SPECT, followed by invasive

coronary angiography within

6 months. 18 clinical, 9

stress test, and 28 imaging

variables utilized

Early coronary

revascularization (ECR)

prediction for stable patients

after stress testing

ML using a ten-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble LogitBoost

algorithm

AUC of ECR prediction by

ML (0.812)

Oikonomou et al. (14) Patients with stable chest

pain referred for CCTA, n =

1575

CCTA, including

perivascular adipose tissue

data, and clinical variables.

5-year MACE risk prediction

(cardiac death, non-fatal MI,

late revascularization,

non-cardiac death)

ML using random forest

algorithm and repeated

five-fold cross-validation

MACE prediction with and

without addition of

perivascular adipose tissue

data (AUC 0.880 vs. 0.754)

(Continued)
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TABLE 1 | Continued

Study Population Method Application AI method Performance*

Betancur et al. (15) Patients who underwent

clinically indicated exercise

or pharmacologic stress

myocardial perfusion

SPECT imaging, n = 2,619

Rest/stress 1-day
99mTc-sestamibi imaging. 28

clinical variables, 17 stress

test variables, and 25

imaging variables used.

3-year MACE risk

prediction, including

all-cause mortality, non-fatal

myocardial infarction,

unstable angina, or late

coronary revascularization

ML using a ten-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble LogitBoost

algorithm

MACE prediction by ML

(AUC 0.81), vs. automated

stress TPD (0.73) and

physician interpretation

(0.64)

Motwani et al. (16) Stable patients with

suspected CAD, from

CONFIRM registry, n =

10,030

Clinical and CCTA data. 25

clinical and 44 CCTA

parameters evaluated,

including segment stenosis

score, segment involvement

score, number of segments

with non-calcified, mixed or

calcified plaques, age, sex,

gender, and FRS

Risk prediction of 5-year

all-cause mortality of CAD

ML using a 10-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble algorithm

AUC 0.79 for ML predicting

5-year all cause mortality vs.

FRS (0.61) and CCTA

severity score (0.64 for SSS)

Arsanjani et al. (17) Stable patients with

suspected CAD, n = 713

Rest201Thallium/stress
99mTechnetium with SPECT,

followed by invasive

coronary angiography within

3 months. 33 total clinical,

stress test, and imaging

variables utilized.

Early coronary

revascularization prediction

for stable patients after

stress testing

ML with model building

using an ensemble

LogitBoost algorithm and a

ten-fold cross validation

framework to train and

evaluate the model

Receiver operator

characteristic AUC of 0.81

for ML, vs. 0.81 for reader

1, 0.72 for reader 2, and

0.77 for standalone

measure of perfusion

Kang et al. (18) Patients who underwent

clinically indicated CCTA,

n = 42

CCTA patient datasets, with

visual identification of

lesions with stenosis ≥25%

by three expert readers,

using consensus reading

Automated CCTA reading to

detect both obstructive

(stenosis ≥50%) and

non-obstructive (stenosis

25–50%) CAD.

ML incorporating a

learning-based method and

an analytic method. A

ten-fold cross validation

framework was used to train

and evaluate the model

Receiver operator

characteristic AUC of 0.94

for detecting obstructive

and non-obstructive lesions

*All values statistically significant, p < 0.05.

ML, machine learning; AUC, area under curve; CACS, coronary artery calcium score, ASCVD, atherosclerotic cardiovascular disease; CHD, coronary heart disease; CCTA, coronary computed tomography angiography; CAD, coronary

artery disease; FRS, Framingham risk score; SSS, segment stenosis score; FRP, fat radiomic profile; MPI, myocardial perfusion imaging; ECR, early coronary revascularization; TPD, total perfusion defect.
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FIGURE 1 | Case example of AI-guided coronary computed tomography angiography. Using a series of validated convolutional neural network models (including

VGG19 network, 3D U-Net, and VGG Network variant) for image quality assessment, the machine learning algorithm (Cleerly, New York, NY) selects the best series,

identifies and labels all of the major epicardial coronaries and their side branches, determines centerlines, performs coronary segmentation and labeling and then

performs a rapid assessment of % stenosis, plaque volume and of adverse plaque characteristics. The data is then displayed in a graphical output to allow for clinical

review.

FIGURE 2 | New paradigm of AI guided coronary artery disease imaging. An

artificial intelligence (AI) guided approach to coronary artery disease in CAD

imaging opens several new frontiers in the evaluation and treatment of

atherosclerosis. These include the evaluation of rapid disease progressors,

accessing response or non-response to statin and other lipid lowering

therapies, improved prediction of ischemia, enhanced selection for guideline

based invasive angiography and prognostication of major adverse

cardiovascular events.

CORONARY ATHEROSCLEROSIS
QUANTIFICATION

Beyond coronary stenosis or coronary artery calcium
contemporary evidence has shown that the quantification
of adverse atherosclerotic plaque characteristics enhances
prognostication of patients at elevated risk for acute coronary
syndrome (ACS) (28). Rosendael et al. (29) showed that calcium
density (calculated from semi-automated software) can be
associated with ACS risk. In this study, patients with and without
ACS had similar calcified plaque volume. However, those who
experienced ACS had less highly dense plaque, termed by the
authors as “1K plaque” (HU > 1,000) than ACS-free subjects,
suggesting that 1K plaque has lower risk for acute plaque rupture.
The SCOT-HEART trial showed that low-attenuation plaque
(HU < 30) was associated with three times the risk of coronary
heart disease death or nonfatal MI (30). Other features of plaques
which contribute to the prognosis of CAD were studied by Yang
et al. (31). The investigators used machine learning to analyze
vessels in CCTA that had low fractional flow reserve (FFR)
(≤0.80). In these vessels, adverse plaque features beyond lumen
area which were found to be associated with low FFR vessels
that included: percent atheroma volume, fibrofatty/necrotic
core volume, plaque volume, proximal left anterior descending
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coronary artery involvement, and remodeling index. Al’ Aref et
al. (32) trained a machine learning model to detect culprit lesions
(which had been confirmed on invasive coronary angiography)
by combining quantitative and qualitative plaque features on
CCTA. The machine learning model yielded an area under the
curve of 0.77 for identifying the culprit lesion, significantly
outperforming other models that were based solely on diameter
stenosis or high-risk plaque features.

Quantification of plaque and identifying high risk plaque
features is time consuming, often taking several hours for a
single study, and requires a high level of expertise in a dedicated
research core lab limiting such application to real world practice
(33). Machine learning offers tremendous potential to allow for
interpretation of imaging matrices that encompass the millions
of pixels required to fully quantify atherosclerotic plaque from
CCTA data in the clinical world. The aforementioned CLARIFY
study by Choi et al. and the subsequent evaluation by Griffin
et al. has evaluated a broad range of atherosclerosis plaque
features using AI analysis (11, 34). Subsequent initial analysis
has further shown that AI detected high risk features, such as
lumen volume and low-attenuation, more often than experienced
level 3 readers as well as accuracy when compared to fractional
flow reserve. Furthermore, the analysis was performed as little as
under 10 mins.

There are a number of important ongoing applications of
plaque quantification. Budoff et al. (35) demonstrated that in
CAD patients with elevated triglyceride levels and already taking
a statin, icosapent ethyl significantly decreased the volume of
low-attenuation plaque compared to placebo over an 18 month
period. The application of well-validated AI guided approach to
atherosclerosis quantification may enable important advances in
assessing the response to preventive therapies.

NUCLEAR MYOCARDIAL PERFUSION
IMAGING

AI has also been applied to the field of nuclear medicine
(36). Its utility has been demonstrated in the evaluation of
coronary artery disease via single photon emission computed
tomography (SPECT). Hu et al. studied 1980 patients with
suspected CAD (37). Those patients underwent SPECT imaging
and later invasive coronary angiography. ML utilized multiple
clinical, imaging, and stress test variables to predict the need for
early coronary revascularization (ECR). On a per vessel basis, ML
better predicted the need for ECR (AUC = 0.79) vs. Regional
Stress Tissue perfusion deficit (TPD) (AUC = 0.71), combined
view TPD (AUC = 0.71), or ischemic TPD (AUC = 0.72). This
was also true on a per patient basis (AUC = 0.81). Interestingly,
ML also outperformed expert nuclear readers on the need for
ECR in a per patient basis. Arsanjani et al. showed that machine
learning can improve the accuracy of SPECT in identifying
significant CAD (≥70% stenosis). AI performed with similar, if
not better, accuracy (87%) in detecting these lesions compared to
two expert readers (86 and 82%) (38). A similar study found that
support vector machines algorithm was superior to two expert
readers in detecting obstructive CAD (AUC 0.92 vs. 0.87 and

0.88) (39). Betancur et al. also showed that compared to current
clinical method (total perfusion deficit), deep learning was able
to predict obstructive CADwith more accuracy per patient (AUC
0.80 vs. 0.78) and also per vessel (AUC 0.76 vs. 0.73) (14). While
identifying obstructive CAD is certainly important, what is of
greater clinical value is predicting those patients who will go
on to have adverse outcomes. In one study, machine learning
demonstrated superiority to visual analysis by physicians in
predicting 3-year major adverse cardiovascular events (MACE)
(AUC 0.78 vs. 0.65). When incorporating clinical information
(age, gender, risk factors, family history) into the algorithm,
machine learning performed with even greater accuracy in
predicting MACE (AUC 0.81) (40).

Furthermore, Alonso et al. showed that by analyzing SPECT
data, a machine learning model outperformed logistic regression
in predicting cardiac death (AUC 0.83 vs. 0.76) (13). In analyzing
patients with obstructive CAD, AI has also proven its ability
to predict those that may require intervention in the future.
Arsanjani et al. (41) explored the utility of AI in predicting the
need for revascularization. The researchers discovered that by
incorporating clinical parameters such as age, smoking history,
hypertension, diabetes, and family history, machine learning
algorithm could predict the need for revascularization with
similar or better accuracy compared to two expert readers
(AUC 0.81 vs. 0.81 and 0.72). As AI interpretion of nuclear
imaging continues to improve, its clinical value may increase the
automated identification of ischemia beyond currently available
perfusion mapping.

CORONARY FLOW

In 2011, the non-invasive evaluation of fractional flow reserve by
computed tomography (FFRCT) was introduced into the field of
cardiac imaging by the DISCOVER-FLOW trial (42). Machine
learning has been subsequently applied to the analysis of non-
invasive coronary flow (43). The MACHINE registry was the first
study comparing CT FFR from machine learning algorithm vs.
CT FFR from computational fluid dynamics (CFD) algorithm
(15). The study demonstrated that machine learning CT FFR
algorithm distinguished functionally significant obstructive CAD
equally well as FFR derived from a hybrid CFD approach. Tesche
et al. (44) found that machine learning CT FFR had a per-
lesion sensitivity of 79% and specificity of 94% in detecting
lesion-specific ischemia. The area under the curve for detecting
lesion-specific ischemia was 0.89 for machine learning CT FFR,
equal to CFD CT FFR (AUC 0.89) and significantly higher than
CCTA (AUC 0.61) and quantitative coronary angiography (AUC
0.69). The diagnostic value of machine learning CT FFR was also
studied by Dugua et al. (17), who retrospectively investigated
patients with symptoms of ACS who were worked up with CCTA
followed by invasive coronary angiography. The investigators
identified non-culprit lesions (≥ 25% stenosis, not intervened
on during invasive coronary angiography). In an average of 19.5
month follow-up period, 14 patients (29%) suffered a MACE
due to these non-culprit lesions. The mean FFR CT for these
non-culprit lesions was 0.78, therefore showing that FFR CT ≤
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80% in patients with symptoms consistent with ACS can be a
predictor of future MACE. These studies show the clinical utility
of machine learning FFR CT, which also has the potential to be
more efficient. Calculating FFR CT using computational flow
dynamics is technologically demanding and can take up to 10
mins (15). On the other hand Itu et al. (45) demonstrated how
machine learning models could generate FFR CT in as little
as 2.4 s. Mannil et al. (46) conducted a proof-of-concept study
showing that machine learning and texture analysis of low-dose
cardiac CT was able to detect myocardial infarction that was not
visible to radiologists.

PERIVASCULAR ADIPOSE INFLAMMATION
BY CT

Vascular inflammation is a significant contributor to
atherosclerosis and plaque destabilization (47). Perivascular
Adipose Tissue (PVAT) can be monitored by CT fat attenuation
to predict coronary artery disease due to the inflammatory effects
from the vessels to the PVAT (48, 49). Higher fat attenuation
index (FAI) is associated with increased cardiovascular mortality
(50). One study found that there is higher FAI in culprit lesions
compared to non-culprit lesions in ACS (51, 52). Oikonomou
et al. (53) studied the use of ML in PVAT in three different
studies/methodologies for enhanced cardiac risk prediction
beyond looking at the coronary vessel anatomy and risk factors.
The first study analyzed 167 patients undergoing cardiac surgery.
PVAT was biopsied for transcriptional factors and CT scan to
image the PVAT was performed. This demonstrated a non-
invasive method of detecting and adipose tissue microvacuolar
remodeling by correlation with increased levels of Collagen
Type 1 Alpha 1 Chain (53). Study 2 analyzed the Fat Radiomic
Profile (FRP) of 1,575 patients from the SCOT-HART trial and
concluded that high FRP (designated as ≥ 0.63) was associated
with a 10.8 fold increase of MACE after adjustment for risk
factors (53). Lastly in study 3, 44 patients with acute myocardial
infarctions (AMI) underwent CT scans on admission and 6
months later. The authors found that there were higher FRP
values consistent with adverse PVAT remodeling with persistence
at 6 months compared to perivascular Fat attenuation index
(FAI) which was present at only with initial presentation of
AMI (53).

EPICARDIAL FAT QUANTIFICATION

In multiple studies, the location of the epicardial fat, particularly
in the left atrioventricular groove has been a modest predictor of
obstructive CAD (54, 55). In a study by Commanduer et al. (56),
deep learning to quantify epicardial adipose tissue (EAT) was
compared to quantification from two expert readers. 70 patients
underwent non-contrast calcium scans and correlation of EAT
volumes with deep learning quantification highly correlated with
expert readers R= 0.973 and R= 0.979; p< 0.001. Deep learning
quantification was also associated with increased non-calcified
plaque on subsequent CCTA (5.7 vs. 1.8%, p = 0.026). Deep
learning quantification was performed with a mean of 1.57 s ±
0.49 s compared to 15 mins for expert readers.

CORONARY ARTERY CALCIUM

Increased coronary artery calcium has demonstrated to have
important prognostic significance across age and diverse ethnic
groups (57–59). In addition, CAC now has an important
guideline-level role in risk-stratification and treatment decisions
of CAD for patients at intermediate risk. For example, in non-
diabetic adults aged 40–75 with LDL-C between 70 and 189
mg/dl and a 10-year ASCVD risk between 7.5 and 19.9%, current
guidelines encourage the use of CAC score to guide clinicians on
de-risking patients or initiating intensive lipid lowering therapy
(60). Typically, calcium scores are obtained from regular dose,
ECG-gated chest CT’s and require some degree of manual input
(the provider selecting/confirming areas of calcification and the
software subsequently generating a calcium score).

There has been recent interest in using artificial
intelligence/machine learning to allow for the automated
quantification of coronary artery calcium as well as incorporating
a calculated coronary artery calcium score to improve current
risk prediction models. Isgum et al. (61) demonstrated that
coronary artery calcium score can also be obtained from
low-dose chest CT performed for lung cancer screening in
the smoking population. Investigators identified CAC with a
statistical pattern recognition system, and then utilized support
vector machines to correctly classify cardiovascular risk category
in 82% of the subjects based on Agatston score. The accuracy
of fully automated calcium scores from low-dose CT has also
been evaluated in other studies. Takx et al. (62), examined
automatic calcium scores derived from low-dose CT. There was
good reliability between fully automated calcium scores and
reference scores set by human readers (kappa 0.85). Most of the
discordance was due to the automated method failing to detect
calcifications in the right coronary artery. Isgum et al. (63), also
yielded similar results. The study showed agreement of CVD
risk category (based on Agatston score) not only between fully
automatic and manual calcium scores derived from low dose
CT (kappa 0.89), but also between fully automatic calcium score
from low dose CT and calcium score from dedicated calcium
scoring CT (kappa 0.74). Winkel et al. (64) used deep-learning
software to calculate vessel-specific CAC sub-scores (right
coronary artery, left main, left main, left anterior descending,
and circumflex). The risk class assignment determined by AI
showed agreement with that of human readers (kappa = 0.91).
Given the association of smoking history with cardiovascular
disease, and the abundance of lung cancer screening CT scans,
the ability to automatically estimate calcium scores from such
scans could provide the added benefit of identifying patients at
increased cardiovascular risk.

ETHICS, LIMITATIONS AND STANDARDS
OF ARTIFICIAL INTELLIGENCE IN CAD
IMAGING

The ease in which ML can acquire data can present ethical
dilemmas. Big data can be analyzed in minutes (11) raising
issues such as proper consent and safe storage of protected
health information (PHI). The “black box” nature of AI may
lead to uncertainty for physicians seeking to apply these
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approaches to practice. Clinicians must be aware of the specific
validation of AI (65) and the limitations to avoid unintended
extrapolation and biased results. As automated analysis improves
to better address gaps in expert level care, the field of
cardiovascular imaging training may be inadvertently depleted
of the “Human Neural Network” when there is overreliance
on AI to create the foundations of analyzing images (66). The
use of AI in cardiovascular medicine needs to be tailored to
specific patient-centered goals to avoid unintended or false
discoveries (9).

In the imaging of coronary artery disease, it is important to
establish appropriate ground truth standards such as quantitative
coronary angiography, fractional flow reserve and invasive
ultrasound. In addition, new artificial intelligence and machine
learning based approaches should be validated in randomized
controlled trials (RCT). An RCT in which one arm receives usual
care and the other arm receives AI assisted care can be extremely
influential and may be a novel trial approach to further create an
evidence base for the use AI in clinical practice. It is important
that these tools are vetted by the Food and Drug Administration
and similar regulatory bodies, through peer-reviewed studies as
well as through the professional societies. The field will also need
to further develop models for integration into clinical practice,
its use as a clinical decision support tool as well as addressing
scenarios in which the AI/ML tool disagrees with clinical readers.
It is also expected there may be clinical scenarios in which the
AI/ML has not been fully trained. For example, in an acute
coronary syndrome, the AI/ML may be able to identify severity
of stenosis and adverse plaque characteristics, but not recognize
a coronary artery dissection. With its various application to
cardiovascular medicine, there will be a continued and ongoing
need to apply ethnical and scientific standards in AI/ML in
coronary imaging.

CONCLUSIONS

The promise of artificial intelligence lies in leveraging modern
algorithms to improve decision making and risk prediction
beyond current models that are patient-centered (Figure 2) (11).
In the opinion of this author group, the recently validated
stenosis and atherosclerosis quantification methods discussed
in this paper, with their FDA approval and clinical availability
represent a practice ready approach. Application of an AI/ML
guided CCTA approach opens several new frontiers in the
assessment and treatment of atherosclerosis. Specific examples
include the opportunity to evaluate rapid disease progressors
and those that do not respond to lipid lowering therapies.
AI/ML may also allow for non-invasive evaluation of those
that demonstrate plaque regression after intensified, personalized
medical therapies. AI/ML guided atherosclerosis evaluation may
better predict ischemia as well as those patients that will require
invasive angiography

A future paradigm includes utilization of AI so that
the cardiologist may use the AI/ML guided information to
make improved clinical decisions and enhance patient-centered
outcomes. With continued research in the field and promising

outcomes it is expected that the next decade will see AI applied
broadly in clinical practice to allow improved outcomes while
care remains led by the cardiovascular clinician.
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Objective: The combination of hypertension and obesity is a major cause of
cardiovascular risk, and microvascular changes and subclinical dysfunction should be
considered to illustrate the underlying mechanisms and early identification, thereby
developing targeted therapies. This study aims to explore the effect of obesity on
myocardial microcirculation and left ventricular (LV) deformation in hypertensive patients
by cardiac magnetic resonance (CMR).

Methods: This study comprised 101 hypertensive patients, including 54 subjects
with a body mass index (BMI) of 18.5–24.9 kg/m2 and 47 subjects with a BMI
≥25 kg/m2, as well as 55 age- and sex-matched controls with a BMI of 18.5–
24.9 kg/m2. Myocardial perfusion indicators [upslope, time to maximum signal intensity
(TTM), maximum signal intensity (Max SI)] and LV strains [radial, circumferential, and
longitudinal global peak strain (PS), peak systolic strain rate (PSSR), and peak diastolic
strain rate (PDSR)] were measured.

Results: Upslope was numerically increased in obese patients but statistically
decreased in non-obese patients compared with controls. Longitudinal PS deteriorated
significantly and gradually from controls to non-obese and obese hypertensive patients.
Longitudinal PSSR and PDSR were significantly decreased in obese hypertensive
patients compared with the other two groups. BMI was associated with upslope
(β = −0.136, P < 0.001), Max SI (β = −0.922, P < 0.001), longitudinal PSSR (β = 0.018,
P < 0.001), and PDSR (β = −0.024, P = 0.001). Myocardial perfusion was independently
associated with longitudinal PSSR (TTM: β = 0.003, P = 0.017) and longitudinal PDSR
(upslope: β = 0.067, P = 0.020) in hypertension.
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Conclusion: Obesity had adverse effects on microvascular changes and subclinical
LV dysfunction in hypertension, and BMI was independently associated with
both myocardial perfusion and LV deformation. Impaired myocardial perfusion was
independently associated with subclinical LV dysfunction in hypertension.

Keywords: hypertension, obesity, left ventricular deformation, myocardial perfusion, magnetic resonance
imaging

INTRODUCTION

Hypertension and obesity are well-recognized global health
concerns, and the two conditions often coexist (1–3). Both
hypertension and obesity are associated with an increased
risk of cardiovascular morbidity and mortality in isolation,
and when combined the cardiovascular risk increases (4).
Myocardial microcirculatory damage is an important mechanism
of myocardial impairment (5) that is associated with cardiac
dysfunction (6), poor prognosis (7), and adverse outcomes
(8). Although abnormalities of myocardial perfusion and left
ventricular (LV) function have been demonstrated separately
in hypertension (9, 10) and obesity (11, 12) separately, their
combined effects are still poorly investigated. Elucidation
of the interaction between obesity and hypertension may
provide insights into mechanisms underlying the impairment of
myocardial microcirculation and cardiac function, and may help
in identifying patient subgroups that could benefit from early
prevention and treatment.

Cardiac magnetic resonance (CMR) imaging has been
increasingly used to evaluate myocardial microcirculation and
cardiac function with high reproducibility. First-pass CMR
imaging allows non-invasive assessment of myocardial perfusion
during the transit of contrast agent and has been increasingly
used in recent years to detect microvascular dysfunction (13,
14). In addition, conventional functional parameters are not
sensitive enough to detect minor abnormalities of LV function,
such as left ventricular ejection fraction (LVEF), which may
mask the impairment in the preclinical stage (15). CMR feature
tracking (CMR-FT) can drive LV deformation indicators using
only clinical routine cine images, and has been well established
as a sensitive technique for evaluating subclinical LV dysfunction
(16, 17).

Therefore, we aimed to evaluate myocardial microcirculation
and LV function by CMR first-pass perfusion and CMR-FT
imaging in hypertensive patients without or with obesity, as well
as to explore the relationship between myocardial perfusion, LV
strains and BMI.

MATERIALS AND METHODS

Ethical Considerations
This study was approved by the Biomedical Research Ethics
Committee of the West China hospital of Sichuan University
(Approval No. 2019-756) and was conducted in accordance
with institutional guidelines. All patients gave their informed

consent for contrast-enhanced CMR examination. All patient
information was used only for research purposes.

Study Population
We retrospectively identified patients with essential hypertension
from consecutive hospitalized subjects who underwent contrast-
enhanced CMR for suspected cardiomyopathy at our hospital
from January 2016 to May 2021. Hypertension was defined
as clinical systolic blood pressure (SBP) ≥140 mmHg and/or
diastolic blood pressure (DBP) ≥90 mmHg or a previous
diagnosis of essential hypertension or usage of antihypertensive
medication. The exclusion criteria included coronary artery
disease, myocardial infarction, severe arrhythmias, symptoms
of heart failure or LVEF <50%, cardiomyopathy, severe
valvular disease, congenital heart disease, diabetes diseases,
estimated glomerular filtration rate (e-GFR) <30 ml/min, severe
hepatopulmonary dysfunction, underweight (BMI <18.5 kg/m2),
and poor image quality. Ultimately, 101 hypertensive patients
(51 [50.49%] females; mean age, 54.56 ± 15.33 years) were
included in the final analysis. Then, the hypertensive patients
were categorized into two groups (without and with obesity)
according to World Health Organization (WHO) BMI standards
(18) for Asian populations. The hypertensive patients without
obesity group comprised those with a BMI of 18.5 kg/m2–
24.9 kg/m2 (n = 54), and the hypertensive patients with
obesity group comprised those with a BMI ≥25.0 kg/m2

(n = 47). For comparison, 55 age- and sex- matched
controls (33 [60.0%] females; mean age, 53.54 ± 10.08 years)
were identified though subjects who underwent contrast-
enhanced CMR during the study period. All these individuals
had BMIs of 18.5 kg/m2–24.9 kg/m2 and no evidence of
hypertension. Moreover, the aforementioned exclusion criteria
for the hypertensive group also applied to the control
group. Demographic and clinical data within 1 month of
the CMR examination were collected through a review of
electronic medical charts.

Cardiac Magnetic Resonance Imaging
Acquisition
Cardiac magnetic resonance scans were performed on a 3.0 T
whole-body scanner MAGNETOM Trio Tim (Siemens Medical
Solutions, Erlangen, Germany). Patients were placed in the
supine position with a dedicated two-element cardiac-phased
array coil attached.

A standard ECG-triggering device was simultaneously used.
Localizers were used to determine the cardiac axes. To achieve
complete and high-quality LV coverage, CMR images were
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acquired from the base to the apex during multiple breath-
holding periods. To analyze cardiac function and myocardial
strain, a balanced steady-state free-precession (bSSFP) sequence
(repetition time [TR]/echo time [TE]: 2.81/1.22 ms, flip
angle: 40◦, slice thickness: 8 mm, field of view [FOV]:
250 × 300 mm, matrix size: 208 × 139) was used to obtain
8–12 continuous cine images of the long-axis, short-axis, 2-
chamber, and 4-chamber views. For perfusion imaging, a
contrast dose of 0.2 ml/kg gadobenate dimeglumine (MultiHance
0.5 mmol/mL; Bracco, Milan, Italy) was injected into the
right antecubital vein using an automated injector (Stellant,
MEDRAD, Indianola, PA, United States) at a flow rate of
2.5–3.0 ml/s, followed by a 20 ml saline flush at a rate of
3.0 ml/s. Resting perfusion images were acquired concurrently
with intravenous contrast agents in three stand- and short-
axis slices (apical, middle, and basal) and in one 4-chamber
view slice by inversion-recovery echo-planar sequence (TR/TE:
163/1.12 ms, flip angle: 10◦, slice thickness: 8 mm, FOV:
360 × 270 mm, matrix size: 256 × 192). Each set of first-
pass perfusion images was acquired in 80 cardiac cycles. To
exclude myocardial infarction, late gadolinium enhancement
(LGE) imaging was obtained at an average of 10–15 min after
contrast injection by segmented-turbo-FLASH–phase-sensitive
inversion recovery (PSIR) sequence (TR/TE: 750/1.18 ms, flip
angle: 40◦, slice thickness: 8 mm, FOV: 400 × 270 mm, matrix
size: 256 × 148).

Cardiac Magnetic Resonance Imaging
Analysis
All CMR data were transferred to a dedicated software
program (CVI42 version 5.9.1, Circle Cardiovascular Imaging,
Inc., Calgary, Canada) and measured by two experienced (at
least 2 years of CMR experience) investigators blinded to
the clinical profiles of the subjects. For measurement of left
ventricular (LV) function parameters, we manually delineated
the endocardial and epicardial contours in serial short-axis
slices at the end-diastolic and end-systolic, and then left
ventricular end diastolic volume (LVEDV), left ventricular
end systolic volume (LVESV), left ventricular stroke volume
(LVSV), LVEF and left ventricular mass (LVM) were calculated
automatically. LVEDV, LVESV and LVM were indexed to
body surface area (LVEDVI, LVESVI and LVMI, respectively).
The LV remodeling index was calculated as LVM divided
by LVEDV.

For semiquantitative analysis of LV myocardial perfusion,
we manually delineated the endocardial contours, epicardial
contours, and a region of interest drawn in the LV blood
pool in all of the first-pass perfusion images of the basal, mid
and apical short-axis slices. A 16-segment mode (Bull’s eye
plot) was constructed based on AHA standard segmentation
recommendations, including six basal segments, six middle
segments, and four apical segments (19). Subsequently, a
myocardial signal intensity-time curve was generated, and the LV
segmental perfusion parameters [upslope, max signal intensity
(Max SI), and time to maximum signal intensity (TTM)] were
obtained automatically.

Cardiac magnetic resonance feature tracking (CMR-FT)
was used for the analysis of LV myocardial strain. We
manually delineated the endocardial and epicardial contours
in long-axis 2-chamber, 4-chamber, and serial short-axis slices
at the end-diastole phase, which was the reference phase, in
a 3-dimensional (3D) tissue tracking module. Then, the LV
global myocardial strain parameters (radial, circumferential,
and longitudinal global peak strain (PS), peak systolic strain
rate (PSSR), and peak diastolic strain rate (PDSR)) were
acquired automatically.

Reproducibility of Left Ventricular Strain
and First-Pass Myocardial Perfusion
Parameters
After 1 month, 30 patients (20 hypertensive subjects, 10
controls) were randomly selected and LV strain and first-
pass myocardial perfusion parameters were measured
again by the same radiologist to evaluate the intraobserver
variability. The parameters were measured again as
above by a second blinded investigator to determine the
interobserver variability.

Statistical Analysis
All statistical analyses were performed with R version 3.6.3
(The R Foundation, Vienna, Austria). Continuous variables are
presented as the mean ± standard deviation and categorical
variables are presented as frequencies (%). The Kolmogorov–
Smirnov test was used to assess the normality of the distribution
of continuous variables. Normally distributed continuous
variables among groups were compared by one-way analysis of
variance (ANOVA) followed by the least-significant difference
(LSD) test. Comparisons of non-normally distributed continuous
variables among groups were performed by the Kruskal-Wallis
rank test. Categorical variables were compared by the Chi-
square test. Correlations between myocardial perfusion and
LV strain parameters were analyzed by Pearson correlation
analysis. Univariable linear regression analyses were performed
to demonstrate the relationship between candidate factors
and myocardial perfusion/LV strain parameters. Age, sex and
variables with a P-value <0.1 in the univariable analyses were
entered into a stepwise multivariable linear regression analysis.
The inter- and intraobserver variabilities for reproducibility
were evaluated using the intraclass correlation coefficient (ICC).
For all statistical analyses, a P-value <0.05 was considered
statistically significant.

RESULTS

Baseline Characteristics
Table 1 presents the demographic and clinical characteristics
of the study population. BMI and BSA were significantly
higher in hypertensive patients with obesity than in the
other two groups (all P < 0.05). Office SBP and DBP
were significantly higher in hypertensive patients with or
without obesity than in controls (all P < 0.05); office
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TABLE 1 | Baseline characteristics.

Controls (n = 55) Hypertensive patients without obesity
(n = 54)

Hypertensive patients with obesity (n = 47) P

Demographics

Age, years 53.54 ± 10.08 54.15 ± 16.18 55.02 ± 14.46 0.862

Sex 0.288

Male, n (%) 22 (40.0%) 24 (44.4%) 26 (55.3%)

Female, n (%) 33 (60.0%) 30 (55.6%) 21 (44.7%)

BMI, kg/m2 22.49 ± 1.75 22.70 ± 1.46 27.57 ± 2.20*§ <0.001

BSA, m2 1.62 ± 0.13 1.59 ± 0.14 1.79 ± 0.18*§ <0.001

Hemodynamic variables

Heart rate, bpm 71.03 ± 10.52 75.98 ± 16.46 77.02 ± 15.14 0.161

Office SBP, mmHg 114.55 ± 10.33 138.98 ± 23.57* 143.13 ± 17.78* <0.001

Office DBP, mmHg 73.49 ± 10.98 82.54 ± 16.59* 91.34 ± 15.68*§ <0.001

Laboratory data

TG, mmol/L 1.46 ± 0.81 1.61 ± 1.48 1.98 ± 1.77 0.156

TC, mmol/L 4.53 ± 1.08 4.36 ± 0.82 4.66 ± 1.08 0.301

HDL, mmol/L 1.37 ± 0.38 1.61 ± 1.42 1.25 ± 0.45*§ 0.018

LDL, mmol/L 2.68 ± 1.00 2.41 ± 0.68 2.78 ± 0.86 0.082

eGFR, mL/min/1.73 m2 90.62 ± 13.95 91.16 ± 24.70 91.98 ± 20.14 0.965

Medication usage

ACEI, n (%) – 4 (7.4%) 4 (8.5%) 1.000

ARB, n (%) – 17 (31.5%) 14 (29.8%) 0.854

Beta-blockers, n (%) – 18 (33.3%) 15 (31.9%) 0.880

CCB, n (%) – 19 (35.2%) 28 (59.6%)§ 0.014

Diuretics, n (%) – 4 (7.4%) 4 (8.5%) 1.000

Duration of hypertension, years – 5.88 ± 7.93 6.23 ± 5.35 0.124

BMI, body mass index; BSA, body surface area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, plasma triglycerides; TC, total cholesterol; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor
blocker; CCB, Calcium channel blocker
*P < 0.05 versus controls.
§P < 0.05 versus hypertensive patients without obesity.

DBP was significantly higher in hypertensive patients with
obesity than in those without obesity (P = 0.003). High-
density lipoprotein (HDL) was significantly increased in
hypertensive patients without obesity compared with the other
two groups. Calcium channel blocker use was more common
in obese patients than in non-obese patients (P = 0.014).
No significant differences were found in in sex, age, heart
rate or other laboratory data among the three groups. There
were no significant differences in other medication usage or
duration of hypertension between hypertensive patients with and
without obesity.

Comparison of Cardiac Magnetic
Resonance Findings Between Groups
As shown in Table 2, LVEDVI and LVESVI were significantly
higher in hypertensive patients without obesity than in the other
two groups (all P < 0.05). LVMI was significantly higher in
hypertensive patients than in controls (both P < 0.05). The
LV remodeling index was gradually increased in non-obese
and obese hypertensive patients compared with controls (all
P < 0.005).

Hypertensive patients without obesity had numerically higher
upslope and Max SI values than controls (upslope: 2.83 ± 0.89

vs. 2.56 ± 0.86, P = 0.084; Max SI: 26.24 ± 7.96 vs. 23.26 ± 6.32,
P = 0.073). Hypertensive patients with obesity had a significantly
reduced upslope compared with the other two groups, and a
significantly decreased Max SI compared with patients without
obesity (all P < 0.05) (Figures 1, 2).

Longitudinal PS significantly and gradually deteriorated
from controls to patients without obesity to patients with
obesity (all P < 0.05). Longitudinal PSSR and PDSR were
significantly decreased in hypertensive patients with obesity
compared with the other two groups (all P < 0.05). In addition,
circumferential PDSR was significantly decreased in hypertensive
patients with obesity compared with controls (P = 0.005). No
significant differences were seen in other parameters among
the three groups.

Associations Between Perfusion and
Deformation Parameters in Non-obese
and Obese Hypertensive Patients
Among hypertensive patients, TTM was correlated with all
strain parameters (all P < 0.05) (Supplementary Figure 1).
In addition, there were significant correlations between
upslope and longitudinal PS, PSSR and PDSR (all P < 0.05).
Univariable linear regression analyses between potential
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TABLE 2 | Comparisons of CMR findings between controls, non-obese and obese patients.

Controls (n = 55) Hypertensive patients without obesity (n = 54) Hypertensive patients with obesity (n = 47) P

Conventional LV function

LVEF,% 64.45 ± 5.08 62.57 ± 6.06 62.65 ± 7.10 0.239

LVEDVI, ml/m2 74.51 ± 13.58 84.24 ± 19.66* 74.00 ± 19.47§ 0.004

LVESVI, ml/m2 26.83 ± 6.27 34.19 ± 11.06* 28.32 ± 10.03§ < 0.001

LVSV, ml 77.53 ± 15.96 81.56 ± 21.85 82.88 ± 24.26 0.757

LVMI, g/m2 47.02 ± 14.26 61.00 ± 19.35* 62.06 ± 23.26* < 0.001

LVremodeling index, g/mL 0.64 ± 0.18 0.73 ± 0.19* 0.85 ± 0.25*§ < 0.001

Myocardial perfusion

Upslope 2.56 ± 0.86 2.83 ± 0.89 1.90 ± 0.60*§ < 0.001

TTM, s 26.94 ± 10.04 26.94 ± 12.53 32.05 ± 13.65 0.059

Max SI 23.26 ± 6.32 26.24 ± 7.96 20.61 ± 6.33§ 0.001

LV strain

PS,%

Radial 35.81 ± 8.31 34.80 ± 9.14 33.17 ± 8.83 0.221

Circumferential −20.58 ± 2.66 −20.20 ± 3.25 −20.31 ± 3.14 0.798

Longitudinal −14.32 ± 2.28 −13.10 ± 3.12* −11.72 ± 2.82*§ < 0.001

PSSR, 1/s

Radial 1.92 ± 0.52 1.92 ± 0.63 1.81 ± 0.71 0.619

Circumferential −1.00 ± 0.36 −1.04 ± 0.26 −1.06 ± 0.23 0.813

Longitudinal −0.84 ± 0.20 −0.78 ± 0.22 −0.68 ± 0.17*§ < 0.001

PDSR, 1/s

Radial −2.40 ± 0.89 −2.17 ± 0.88 −2.00 ± 0.61 0.086

Circumferential 1.23 ± 0.25 1.15 ± 0.30 1.07 ± 0.26* 0.018

Longitudinal 0.91 ± 0.24 0.82 ± 0.22 0.67 ± 0.22*§ < 0.001

LV, left ventricular; EF, ejection fraction; EDVI, end diastolic volume index; ESVI, end systolic volume index; SV, stroke volume; MI, mass index; TTM, time to maximum
signal intensity; Max SI, maximum signal intensity; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak diastolic strain rate *P < 0.05 versus controls §P < 0.05
versus hypertensive patients without obesity.

FIGURE 1 | Representative first-pass myocardial perfusion MR images and signal intensity-time curves of a control subject (A,D), a hypertensive patient without
obesity (B,E) and a hypertensive patient with obesity (C,F).
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FIGURE 2 | Comparisons of first-pass perfusion (A–C) and left ventricular strains (D–F) between groups.

influencing factors and perfusion/strain parameters are shown in
Supplementary Table 1.

looseness1 Multivariable linear regression analyses (Table 3)
showed that BMI was significantly associated with myocardial
perfusion (upslope: β = −0.136, P < 0.001, model R2 = 0.214;
Max SI: β = −0.922, P < 0.001, model R2 = 0.172) and
LV strains (longitudinal PSSR: β = 0.018, P < 0.001, model
R2 = 0.245; longitudinal PDSR: β = −0.024, P = 0.001, model
R2 = 0.278) in hypertensive patients (Figure 3). After adjustment
for perfusion, there was a significant association between BMI
and longitudinal PS after adjustment for perfusion (β = 0.493,
P = 0.022, model R2 = 0.496). The association between BMI and
longitudinal PSSR remained significant (β = 0.016, P = 0.009,

model R2 = 0.326), while the association between BMI and PDSR
was absent (β = −0.013, P = 0.132, model R2 = 0.385). In addition,
multivariable linear regression analyses including both BMI and
all perfusion parameters revealed that myocardial perfusion was
significantly associated with longitudinal PSSR (TTM: β = 0.003,
P = 0.017) and longitudinal PSDR (upslope: β = 0.067, P = 0.020)
in hypertension (Figure 4).

Intra- and Interobserver Variability
There was excellent intra- and interobserver variability for
first-pass perfusion (ICC = 0.900–0.980) and LV deformation
indicators (ICC = 0.850–0.977) (Table 4).
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TABLE 3 | Multivariable linear regression analyses in hypertensive patients.

Upslope TTM Max SI

Model 1 β (95% CI) P R2 β P R2 β P R2

BMI −0.136 (−0.189, −0.084) <0.001* 0.214 – – 0.067 −0.922 (−1.385, −0.458) <0.001* 0.172

Longitudinal PS Longitudinal PSSR Longitudinal PDSR

β (95% CI) P R2 β P R2 β P R2

Model 2

BMI – – 0.385 0.018 (0.005–0.030) <0.001* 0.245 −0.024 (−0.037, −0.010) 0.001* 0.278

Model 3

BMI 0.493 (0.079, 0.906) 0.022* 0.496 0.016 (0.004, 0.028) 0.009* 0.326 −0.013 (−0.028, 0.002) 0.132 0.385

Upslope – – – – 0.067 (0.011, 0.124) 0.020*

TTM – – 0.003 (0.000, 0.006) 0.017* −0.002 (−0.006, 0.001) 0.156

Max SI 0.184 (−0.035, 0.402) 0.095 – – – –

BMI, body mass index; PDSR, peak diastolic strain rate; PSSR, peak systolic strain rate; PS, peak strain; TTM, time to maximum signal intensity; Max SI, maximum
signal intensity.
Age, sex, and factors with p < 0.1 in the univariable analysis were included in the multivariable analysis.
Model 1: Association between BMI and perfusion parameters in hypertension.
Model 2: Association between BMI and longitudinal strain/strain rates in hypertension.
Model 3: Association between perfusion parameters and longitudinal strain/strain rates in hypertension.
*P < 0.05.
–Factors not incorporated into the final regression equation.

FIGURE 3 | Relationship between BMI and myocardial perfusion/LV deformation in hypertensive patients.

DISCUSSION

In this work, we used contrast-enhanced CMR and found
that (1) myocardial perfusion was slightly increased in
hypertensive patients without obesity but significantly
decreased in hypertensive patients with obesity; (2)
subclinical LV function gradually decreased from controls
to hypertensive patients without and with coexisting
obesity; and (3) myocardial microcirculatory damage was

independently associated with subclinical LV dysfunction in
hypertensive patients.

The Combined Effects of Obesity and
Hypertension on Myocardial
Microcirculatory Damage
The pathophysiology of cardiomyopathy related to obesity
and hypertension is complex and multifactorial. Among these,
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FIGURE 4 | Relationship between myocardial perfusion and LV deformation in hypertensive patients.

TABLE 4 | Inter- and intra-observer variability of CMR first-pass perfusion and LV
strain parameters.

Variable Intra-observer (n = 30) Inter-observer (n = 30)

ICC 95%CI ICC 95%CI

First-pass perfusion parameters

Upslope 0.960 0.917–0.981 0.980 0.959–0.991

TTM 0.951 0.899–0.976 0.953 0.903–0.977

Max SI 0.900 0.801–0.951 0.973 0.944–0.987

Strain parameters

PS,%

Radial 0.950 0.899–0.976 0.930 0.858–0.966

Circumferential 0.924 0.847–0.917 0.854 0.716–0.928

Longitudinal 0.946 0.942–0.987 0.857 0.721–0.929

PSSR, 1/s

Radial 0.887 0.777–0.945 0.879 0.762–0.941

Circumferential 0.938 0.874–0.970 0.842 0.694–0.921

Longitudinal 0.973 0.944–0.987 0.922 0.842–0.962

PDSR, 1/s

Radial 0.977 0.952–0.989 0.850 0.709–0.926

Circumferential 0.889 0.780–0.945 0.877 0.757–0.939

Longitudinal 0.932 0.863–0.967 0.925 0.849–0.964

LV, left ventricular; EF, ejection fraction; EDVI, end diastolic volume index; ESVI, end
systolic volume index; SV, stroke volume; MI, mass index; TTM, time to maximum
signal intensity; Max SI, maximum signal intensity; PS, peak strain; PSSR, peak
systolic strain rate; PDSR, peak diastolic strain rate.

microvascular abnormalities are an important disorder in
both conditions with certain common pathological changes:
endothelial dysfunction, microvascular remodeling and
rarefaction (20). Some previous studies revealed no obvious
difference in the resting myocardial perfusion between
hypertensive and normotensive subjects (21, 22), while other
studies reported significantly increased resting myocardial
perfusion in hypertensive patients due to an adaptive mechanism
(23, 24). Our results showed slightly increased resting myocardial
perfusion in hypertensive patients without obesity compared
with controls, but this difference did not reach statistical

significance. Regarding the effects of obesity alone on myocardial
microvascular damage, Bajaj et al. (11) reported that coronary
microvascular dysfunction was independently associated with
elevated BMI in patients with suspected coronary artery disease
based on clinical symptoms. Such association was also confirmed
in persons without traditional coronary artery disease risk
factors (25). Considering the shared pathophysiology of obesity
and hypertension above, we hypothesized that the obesity
status contributes to the aggravation of the microcirculatory
dysfunction by hypertension.

Although a combined effect of obesity and diabetes on
damage to myocardial microcirculation has been reported
(14), whether such an effect would be observed among
obese individuals with hypertension is still unclear. Our
findings demonstrated that hypertensive patients with obesity
had significantly decreased perfusion compared with both
controls and hypertensive patients without obesity even in
the resting state, suggesting that the coexistence of obesity
may amplify the microcirculatory damage in hypertension.
This result may help to provide a better understanding
of the possible mechanisms of the combined effect of
hypertension and obesity on the myocardium. In addition,
coronary microvascular dysfunction was reported to be a
better risk marker of adverse outcomes than BMI and other
traditional risk factors (11), which provides a direction for
tailoring therapeutic strategies for hypertensive patients
with obesity.

The Combined Effects of Obesity and
Hypertension on Left Ventricular
Deformation Deterioration
The results of our study showed that hypertensive patients
without obesity had significantly decreased strain values
but preserved LVEF compared with control subjects, which
confirmed the value of CMR-FT based myocardial deformation
analysis in the detection of early and subtle LV dysfunction
with previous studies (26, 27). A previous CMR-FT study (10)
demonstrated decreased global longitudinal, circumferential and
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radial PS in essential hypertension. In the present study, the
global strain decreased longitudinally but was preserved radially
and circumferentially, consistent with an echocardiographic
strain study by Sera (28). This difference suggests that
longitudinal PS may be a more sensitive indicator than radial
and circumferential PS for identifying the subclinical LV systolic
dysfunction. This may be because the myocardium producing
longitudinal stress mainly exists in the endocardium (29),
which is generally reported to be the first site of myocardial
ischemia (30).

Previous epidemiologic studies have provided substantial
evidence that obesity could worsen cardiac function (31, 32).
If there is hypertension at the same time, it also promotes
the deterioration of cardiac function due to the chronic
hemodynamic burden and central pressure overload (33).
However, a previous study (34) showed that the presence of
hypertension and obesity had no obvious effect on systolic
function by LVEF. In this context, we have further examined
the simultaneous presence of hypertension and obesity on
the subclinical systolic function. Our results showed that
in obese hypertensive patients, longitudinal PS was further
decreased, and longitudinal PSSR began to be significantly
impaired, despite comparable LVEF. These results suggest
that subclinical systolic dysfunction caused by hypertension
was further aggravated with obesity. This may be attributed
to interrelated factors such as various neurohormonal and
metabolic abnormalities, abnormalities in microvasculature and
cardiac remodeling (4). In addition, these results also indicate
that CMR-FT technique allows for early detection of subclinical
systolic dysfunction, thus enabling timely intervention to prevent
disease progression.

In addition, the occurrence of longitudinal and
circumferential PDSR impairment in obese patients indicated
an adverse effect of hypertension and combined obesity on
subclinical diastolic dysfunction. Consistently, Kim et al.
(34) demonstrated that obesity and hypertension intensified
diastolic dysfunction by echocardiography. A previous study (35)
showed that there was limited interaction on pathophysiological
changes between obesity and hypertension in the development
of diastolic function. Specifically, hypertension triggered
apoptosis, inflammation and fibrosis, while obesity triggered
oxidative stress and hypertrophic remodeling. The aggravation
of subclinical LV diastolic dysfunction may provide a perspective
in comorbidity-specific characterization.

Associations Between Myocardial
Perfusion, Left Ventricular Deformation
and Body Mass Index in Hypertensive
Patients
Multivariable stepwise regression analysis revealed that BMI
exerted negative impacts on both myocardial perfusion and
LV function. The negative effect of BMI on longitudinal
PSSR and PDSR indicated that BMI was an important
factor influencing LV systolic and diastolic function. In
addition, we found that BMI was significantly associated
with longitudinal PS in model adjustment with perfusion

with improved model fit. With the increase in BMI, LV
hypertrophic remodeling was noticeably intensified in
hypertensive patients. Although the association between
BMI and longitudinal PDSR lost significance after correction
for myocardial perfusion, we assume that BMI is more likely
to be higher in patients with lower perfusion, which also
shows more severe diastolic dysfunction. Considering that
microcirculation damage and subclinical LV systolic and
diastolic dysfunction are predecessors of poor outcomes, these
results emphasize the clinical implications of the adverse effects
of obesity and the importance of weight management for
hypertensive patients.

The present study found an independent association between
TTM and longitudinal PSSR in hypertension, which is in
accordance with previous evidence regarding diabetes by Liu et al.
(6). Consistently, Li et al. demonstrated a significant association
between impaired myocardial perfusion and subclinical systolic
function in hypertension (24). In addition, previous studies
have indicated an association between resting regional perfusion
abnormalities and impaired diastolic function in consecutive
patients who underwent single-photon emission computed
tomography (SPECT) (36, 37). Our study also analyzed
possible associations between perfusion and diastolic function in
hypertension and found a similar association between upslope
and longitudinal PDSR. These findings might suggest a possible
mechanistic link between myocardial perfusion impairment
by hypertension and subclinical LV systolic and diastolic
dysfunction. Further investigation into underlying mechanisms
and optimal treatment are warranted to improve LV function and
prognosis for patients with essential hypertension.

Limitations
There are several limitations of this study. First, this is
a retrospective single-center study with inherent limitations.
Therefore, further large-scale, multicenter, prospective research is
needed to validate our results. Second, patient BMI was measured
before CMR, and the predisease BMI and dynamic changes in
BMI were not recorded and discussed in this study. Further
studies are warranted to investigate the impact of dynamic
changes in BMI on myocardial microcirculation and cardiac
function. Third, the present study assessed only myocardial
perfusion at rest, since stress perfusion has contraindications
and potential risks. However, even in the resting state, the
additive effect of hypertension and obesity on myocardial
microcirculation has been proven.

CONCLUSION

Obesity had an additive deleterious effect on myocardial
microcirculation and LV function in patients with hypertension,
and BMI was associated with myocardial microcirculation and
LV function. Impaired myocardial perfusion was associated with
subclinical LV dysfunction in hypertensive patients. These results
emphasize the adverse effects of obesity and the importance of
weight management for hypertensive patients and may imply
mechanistic perspectives that could help in early diagnosis
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and the development of therapeutic strategies, thus improving
prognosis for hypertensive patients.
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Cardiac amyloidosis (CA) is an infiltrative cardiomyopathy resulting from deposition of
misfolded immunoglobulin light chains (AL-CA) or transthyretin (ATTR-CA) proteins in
the myocardium. Survival varies between the different subtypes of amyloidosis and
degree of cardiac involvement, but accurate diagnosis is essential to ensure initiation
of therapeutic interventions that may slow or potentially prevent morbidity and mortality
in these patients. As there are now effective treatment options for CA, identifying
underlying disease pathogenesis is crucial and can be guided by multimodality
imaging techniques such as echocardiography, magnetic resonance imaging, and
nuclear scanning modalities. However, as use of cardiac imaging is becoming
more widespread, understanding optimal applications and potential shortcomings is
increasingly important. Additionally, certain imaging modalities can provide prognostic
information and may affect treatment planning. In patients whom imaging remains
non-diagnostic, tissue biopsy, specifically endomyocardial biopsy, continues to play an
essential role and can facilitate accurate and timely diagnosis such that appropriate
treatment can be started. In this review, we examine the multimodality imaging approach
to the diagnosis of CA with particular emphasis on the prognostic utility and limitations of
each imaging modality. We also discuss how imaging can guide the decision to pursue
tissue biopsy for timely diagnosis of CA.

Keywords: cardiac amyloidosis, echocardiography, cardiac magnetic resonance imaging (CMR), endomyocardial
biopsy, cardiac scintigraphy, nuclear imaging

INTRODUCTION

Systemic amyloidosis is terminology for a broad spectrum of diseases that result from the
aggregation of misfolded proteins. Cardiac amyloidosis (CA) occurs when amyloid fibrils
accumulate in the myocardium often resulting in a restrictive cardiomyopathy (1–3). The two most
common proteins that lead to CA include monoclonal immunoglobulin light chains (AL-CA) and
transthyretin (ATTR-CA). AL-CA is rare with an incidence of 10–12 per million person-years and a
slight male predominance (4). ATTR-CA, on the other hand, has a significant male predominance
and is likely more common than reported and as such, a true estimate of prevalence is difficult
(2). An autopsy study of individuals greater than 80 years old found ATTR-CA in 25% of subjects,
though only a subset of those were thought to be clinically relevant (5). The misfolded amyloid
fibrils in ATTR-CA can either occur due to an age-related phenomenon, known as wild-type CA
(wtATTR), or related to a genetic variant, known as hereditary CA (hATTR). There are more
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than 130 TTR mutations identified, with the most common
mutation in the United States being Val122Ile, present in 3–4% of
African Americans (6). While the amyloid fibril deposition in AL
and ATTR-CA can be systemic (it is the cardiac involvement that
determines prognosis). Survival for treated AL-CA has improved
with advances in chemotherapy (7). ATTR-CA survival varies
between subtypes, but in general is 3–5 years without treatment
(2). With the advancements in the treatment of both AL and
ATTR-CA, there is a need for increased recognition of this
condition. Additionally, the efficacy of available therapies for CA
is far more favorable if instituted earlier in the disease course,
highlighting the need for early diagnosis and treatment.

Although direct tissue characterization with organ biopsy
had historically been the mainstay for diagnosis of CA, more
recently non-invasive cardiac imaging algorithms have become
the cornerstone of evaluation (8, 9). These algorithms are
typically predicated on establishing suspicion for CA based
on clinical factors and complementing that with imaging
findings. If imaging affirms clinical suspicion, laboratory
evaluation, and nuclear techniques or tissue biopsy are
needed to determine specific amyloidosis subtype (8–10).
However, the test performance characteristics and prognostic
utility are evolving given more widespread application and
treatment. In this review, we examine the multimodality
imaging approach to the diagnosis of CA. We highlight
the evolution in diagnostic performance, complementary
information, and prognostic utility of each modality as
well as emerging imaging techniques in the diagnosis and
management of CA. Finally, we focus on how multimodality
imaging can guide clinicians on when to pursue tissue biopsy
in select cases.

CLINICAL RECOGNITION OF CARDIAC
AMYLOIDOSIS

Cardiac amyloidosis is under-recognized and the diagnosis often
delayed, with the majority of patients experiencing greater
than 10 healthcare interactions in the 3 years before accurate
diagnosis (2). CA should be suspected in any patient presenting
with heart failure (HF), a non-dilated left ventricle (LV),
and unexplained left ventricular hypertrophy (LVH). However,
as disease prevalence may increase with age, particularly for
wtATTR, patients may have co-morbid conditions such as
hypertension, ischemic heart disease, or aortic stenosis that
confound the diagnosis. Therefore, it is important to maintain
a high index of suspicion and also screen for other cardiac
clues that may suggest underlying ATTR-CA as the driver of HF
(Table 1). Additionally, there are non-cardiac manifestations of
CA that may precede overt cardiac symptoms and recognition
of such clues may allow for an earlier diagnosis of ATTR-CA
(Table 1). AL amyloidosis is a systemic condition, and may
present with proteinuria, macroglossia, periorbital purpura, or
neuropathy. Once AL-CA is suspected, clinicians should aim to
confirm the diagnosis within 1–2 weeks, as AL-CA should be
considered a diagnostic emergency due to the rapid progression
of disease without treatment.

TABLE 1 | Cardiac and non-cardiac clinical clues for possible ATTR-CA.

Non-imaging cardiac red flags for
ATTR-CA

Non-cardiac red flags for ATTR-CA

Intolerance of GDMT Polyneuropathy

Persistent low-level troponin elevation Autonomic dysfunction/Orthostatic
hypotension

Unexplained AV block Bilateral carpal tunnel syndrome

Family history of cardiomyopathy Lumbar spine stenosis

HFpEF diagnosis in the absence of risk
factors

Diarrhea alternating with constipation

GDMT, guideline directed medical therapy for heart failure; HFpEF, heart failure with
preserved ejection fraction.

ECHOCARDIOGRAPHY

Transthoracic echocardiogram (TTE) is a mainstay of initial
HF evaluation and a common imaging modality that will raise
initial diagnostic suspicion of CA (Table 2). Patients undergoing
echocardiography eventually diagnosed with CA will likely fall
into two categories: (1) symptomatic, with clinical clues to
suggest underlying CA as part of evaluation for congestive HF
or (2) asymptomatic but at risk for CA because of known non-
cardiac AL amyloid involvement or family history of hATTR
with known genotype positivity (Figure 1). While TTE is a
widely available and helpful diagnostic test that may raise the
initial suspicion for CA, demonstration of tissue uptake of the
specific type of abnormal protein, either with advanced imaging
or biopsy, will always be needed to confirm a diagnosis of CA.
Abnormal parameters commonly seen on echocardiography are
summarized in Figure 2.

Morphologic Changes
LVH is the hallmark finding of CA on echocardiography
and is generally considered a prerequisite to pursuing
further investigation for CA in patients not otherwise at
risk (Figures 3A,B). LVH is defined as septal or posterior LV wall
thickness greater than 1.1 cm in men and greater than 1.0 cm in
women (11). LVH represents either increased muscle mass (true
hypertrophy) or increased presence of a non-muscle substance
like amyloid fibrils (pseudohypertrophy). LVH in CA is typically
concentric and symmetric but asymmetric hypertrophy can
also be seen (12, 13). A normal wall thickness in a patient with
known AL amyloidosis traditionally signified a lack of cardiac
involvement but very early involvement of disease is also possible
in this circumstance (14, 15).

Typically, LVH in ATTR-CA is slowly progressive, allowing
for early detection of disease prior to significant symptom onset.
In a study by Itzhaki Ben Zadok et al., echocardiograms in AL
and ATTR-CA patients analyzed in the years prior to a formal
diagnosis found LVH ≥ 12 mm in 79% of patients more than
3 years prior to diagnosis (16). Additionally, ATTR-CA patients
developed LVH earlier than AL-CA patients prior to their formal
diagnosis, possibly related to the rapid disease progression seen
with AL-CA as compared to ATTR-CA (12). LVH, especially mild
LVH (wall thickness < 1.5 cm), can have many causes including
hypertensive heart disease (HHD), hypertrophic cardiomyopathy
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TABLE 2 | Comparison of each imaging modality with their specific findings in cardiac amyloidosis as well as their relative strengths and weakness.

Imaging modality Findings in cardiac amyloidosis Strengths Limitations

Echocardiography LVH Readily available No differentiation between CA subtypes

Small LV cavity Cheap Variable image quality

Large atria High temporal resolution Early findings in CA non-specific

RV/LV systolic dysfunction Identify other causes of LVH (AS, HCM, etc.)

Abnormal LV diastolic function No radiation

Abnormal strain Patient ease

Pericardial/pleural effusion

Magnetic resonance imaging (MRI) Similar morphologic findings to echocardiography (Figure 2) Reproducible Expensive

Late gadolinium enhancement in atria and ventricles Direct tissue characterization Limited availability

Pericardial/pleural effusion No radiation Special expertise required

Atria dysfunction Identify other causes of LVH (HCM, infiltrating disease) Multiple patient specific exclusions
(implants, claustrophobia, etc.)

Interatrial septum thickening Higher spatial resolution and multi-dimensional strain

Abnormal strain

Cardiac scintigraphy (PYP, DPD, and HDMP) Increased radiotracer uptake Cheap Radiation

Increased H/CL ratio Widely available Mostly qualitative

Ease of interpretation Genetic variant uptake variability

Differentiate amyloid subtype

PET imaging Increased radiotracer uptake Quantitative assessment Radiation

Differentiate amyloid subtype Expensive

AS, aortic stenosis; H/CL, heart/contralateral; HCM, hypertrophic cardiomyopathy; LV, left ventricle; LVH, left ventricular hypertrophy; PET, positron-emission tomography.
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FIGURE 1 | Proposed algorithm for diagnosis of cardiac amyloidosis. Algorithm for patients being assessed for cardiac amyloidosis based on heart failure or risk
factors for AL or ATTR-CA. EMBx, endomyocardial biopsy; CMR, cardiac magnetic resonance imaging; LVH, left ventricular hypertrophy; SIFE, serum protein
electrophoresis with immunofixation; TTE, transthoracic echocardiogram; UIFE, urine protein electrophoresis with immunofixation.

(HCM), aortic stenosis, or other infiltrative cardiomyopathies
but if additional clinical or morphologic features consistent
with CA are present (Table 1), further testing for CA should
be pursued. Characteristic echocardiographic findings combined
with epidemiologic and clinical clues frequently differentiates
between other causes of LVH but overlap can still exist and
may requiring additional diagnostics, such as cardiac magnetic
resonance imaging (CMR) or genetic testing, to aid diagnosis
(Table 3). Of note, low voltage on electrocardiogram (ECG)
especially in the setting of LVH on imaging was once considered
a hallmark sign of CA but many studies demonstrate this only
occurs in a minority of CA patients and may be a finding
suggestive of advanced disease (17–19). Sensitivity of low voltage
on ECG for CA can be increased by using a Sokolow-Lyon index
of ≤ 15 mm (sum of S wave in V1 plus R wave in either V5 or
V6, whichever is larger; >35 mm indicates true LV hypertrophy)
or combining objective measures of ECG voltage and LV mass
based on imaging (17, 20).

While LVH is universal in the current diagnostic paradigm for
CA, other morphologic changes occur with variable frequencies
in CA (Figure 2). LV cavity size is generally normal or decreased
(15, 21), except in the rare circumstance where CA develops after
development of an unrelated dilated cardiomyopathy. Compared

to other causes of LVH, a small LV cavity size may point more
toward CA (7). LV mass index (LVMI), a specific measure of LVH
utilizing LV wall thickness and cavity dimension, also tends to
be higher in CA compared to other causes of LVH (18). More
so, right ventricular hypertrophy (RVH) and significant left atrial
enlargement (left atrial volume index, LAVI ≥ 47 mL/m2) may
be a more specific sign for CA in those patients with LVH (18, 22,
23). Thickened cardiac valve leaflets related to amyloid deposition
have been observed in some patients, but is subjective given
lack of defined parameters. Pericardial or pleural effusion is also
common, and has been described in up to 50% of patients with
CA (24, 25).

Many studies initially described increased echogenicity or
“sparkling” of the myocardium on TTE in patients with CA
(25–28). Advances in image processing has made this feature
less pronounced. Contemporary studies have also shown that
this is fairly subjective between readers and less common than
previously reported (18).

Diastolic Function
Aberrations in Doppler based diastolic parameters in CA was
recognized soon after this technology was developed (29). These
abnormal parameters include shorter deceleration time (DT),
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FIGURE 2 | A Venn diagram comparing echocardiogram (echo) and cardiac
magnetic resonance (CMR) characteristics seen in cardiac amyloidosis.
ECV, extra cellular volume; EF, ejection fraction; FAC, fractional area change;
GLS, global longitudinal strain; LGE, late gadolinium enhancement; LV, left
ventricle; LVEDD, left ventricular end diastolic diameter; LVEDVi, left ventricular
end diastolic volume index; LVH, left ventricular hypertrophy; LVMI, left
ventricle mass index; MAPSE, mitral annular plane systolic excursion;
MV, mitral valve; nl, normal; RV, right ventricle; TAPSE, tricuspid annular plane
systolic excursion.

higher E/A, and higher E/e′ (Figure 4). A limitation for diastolic
assessment in CA is atrial fibrillation, a common comorbidity in
this condition (30). CA typically leads to more severe diastolic
dysfunction compared to other causes of LVH (18, 21, 23)
and diastolic parameters may worsen with disease progression
(10, 15, 31). Chacko et al. (32) showed that a spectrum of
diastolic function exists even within ATTR-CA and depending
on the underlying genetic variant, if present. Despite having
similar wall thickness, wtATTR patients had worse diastolic
function compared to Thr60Ala hATTR patients, though both
had better diastolic function than Val122Ile hATTR patients
(32). The variations in diastolic function based on genetic

subtype correlated with differences in symptoms, biomarkers,
and mortality (32).

Systolic Function
Early models classified CA as a “diastolic heart failure” with
systolic dysfunction being a later manifestation of disease (15).
However, even early CA may have subtle abnormalities in systolic
function. Left ventricular ejection fraction (LVEF) in CA can be
normal or low-normal, though typically lower as compared to
other causes of LVH (18, 21–23). Mitral annular plane systolic
excursion (MAPSE) is frequently abnormal in CA especially as
HF develops but this is not performed on routine TTEs and may
be a late manifestation of disease (33). Tissue Doppler measuring
mitral annular velocity (S′) is another marker of systolic function
and a cutoff ≤ 6 cm/s performed well as a screening test for
possible CA in a population of patients with severe aortic stenosis
(34). The presence of RV systolic dysfunction in CA, which
may occur due to direct amyloid infiltration or related to left
heart disease in CA, is currently an area of active investigation.
Both AL and ATTR-CA patients have been shown to have lower
RV fractional shortening and tricuspid annular plane systolic
excursion (TAPSE) compared to patients with alternative causes
of LVH (35, 36). Licordari et al. examined 37 patients with a
known pathogenic TTR variant with no or minimal symptoms
and found that in those with CA, echocardiographic markers of
RV function were already impaired in this early stage of disease
(37). RV dilation is non-specific and can be seen later in the
disease course as well (38).

Strain Imaging
Left ventricular strain imaging using speckle tracking
echocardiographic techniques measures the regional and
global deformation of the myocardium (19, 39). The reduction in
strain and strain rate occurs before overt myocardial dysfunction
allowing for earlier detection of systolic dysfunction (14). Initial
studies of strain in CA demonstrated clear differences between
patients without CA and those with CA even in the absence of

FIGURE 3 | Representative echocardiographic images from a patient with cardiac amyloidosis. (A) Apical 4-chamber view showing moderate concentric left
ventricular hypertrophy with more prominent proximal septal hypertrophy, significant bi-atrial enlargement, and diffusely thickened atrioventricular valves.
(B) Parasternal long axis view showing large pleural effusion, moderate concentric hypertrophy, small left ventricular end diastolic diameter (LVEDD), and right
ventricle outflow track dilation. (C) Subcostal view demonstrating significant right ventricular hypertrophy, biatrial enlargement, and interatrial septal thickening.
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TABLE 3 | Clinical and echocardiographic characteristics of alternative causes of
left ventricular hypertrophy beyond cardiac amyloidosis.

Hypertrophic
disease

Clinical clues Echocardiographic clues

Fabry disease Childhood to adulthood Concentric/symmetric LVH

X-linked inheritance Papillary hypertrophy

Abdominal pain Papillary position variants

Angiokeratomas RV hypertrophy

Kidney abnormalities Regional strain
abnormalities

Hypohidrosis Occasional areas of LV
thinning

Conduction disease

Hypertrophic
cardiomyopathy

Childhood to adulthood Most commonly
asymmetric LVH

Sudden cardiac death Apical/mid-cavity variants

Often inherited Apical aneurysm

ECG pattern often Papillary position variants

characteristic MV abnormalities

Mitral regurgitation

Hypertensive heart
disease (HHD)

Long-standing
documented HTN

Non-specific

Strong family history HTN

Multiple anti-hypertensives

Athlete’s heart Endurance/high-intensity
exercise

Eccentric hypertrophy (LV
dilation)

Resting bradycardia RV dilation/hypertrophy

Atrial dilation

Non-compaction
sometimes seen

Friedreich ataxia Usually
childhood/adolescent

Asymmetric or concentric
LVH

Autosomal recessive Dilated variants

Gait ataxia

Vision/hearing problems

Nystagmus

Danon disease Childhood/adolescent Non-compaction

X-linked inheritance

Skeletal myopathy

Cognitive impairment

Pre-excitation on ECG

Left ventricular
non-compaction
(LVNC)

Childhood to adulthood Non-compaction

Thromboembolic events Colour Doppler of
hypertrophy for flow

Malignant arrhythmias Contrast usage may help

Hypereosinophilic
cardiomyopathy

Hypereosinophilic state Restrictive

Thromboembolic events Endomyocardial thickening

Fulminant to indolent LV/RV thrombi

MV/TV entrapment

Mitochondrial
cardiomyopathies

Childhood Non-compaction

Often maternal inheritance

Multiple distinct syndromes

Myopathy

(Continued)

TABLE 3 | (Continued)

Hypertrophic
disease

Clinical clues Echocardiographic clues

Stressors worsen
symptoms

RASopathies Childhood Other heart defects

(Noonan, etc.) Myopathy

Developmental delay

Often characteristic
appearance

HTN, hypertension; LV, left ventricle; LVH, left ventricular hypertrophy; MV, mitral
valve; RV, right ventricle; TV, tricuspid valve.

overt HF (15). Furthermore, CA patients with HF have worse
strain compared to those who were asymptomatic, suggesting
that abnormal strain may occur as a continuum related to disease
severity (15).

As strain imaging was increasingly used in CA, a distinct
pattern of “relative apical sparing,” referring to a reduced
longitudinal strain (LS) rate in the basal to mid-ventricular
segments of the LV compared to the apical segments, was
recognized (Figure 3C). While strain was already shown to be
reduced in CA compared to other causes of LVH (21), this
pattern may be of additive diagnostic value for CA. Relative apical
longitudinal strain (RALS; = [average apical LS]/[average basal
LS + average mid LS]) is an objective measure of the apical
sparing pattern. Using a cutoff off of RALS > 1, CA could be
differentiated from other causes of LVH with a sensitivity > 90%
and specificity >80% in 55 AL and ATTR-CA patients (19).
However, a slightly larger study that included AL-CA, wtATTR,
and hATTR demonstrated apical sparing in a minority (48%)
of patients (39). This may be due to early studies on LS in CA
including predominantly AL-CA patients since this phenomenon
is less common in ATTR-CA (19). Another explanation for these
differences is that apical sparing may vary based on disease
stage. Therefore, while an apical sparing pattern can certainly
be seen in CA and may enhance the likelihood of diagnosis,
the absence of this pattern should not eliminate the possibility
of a CA diagnosis. Additional novel echocardiographic markers
have been derived from strain imaging to help differentiate
CA from other causes of LVH including the LVEF to global
longitudinal strain (GLS) ratio (EFSR). A study comparing
CA to HHD and HCM patients showed an EFSR > 4.1 had
sensitivity and specificity of 90% for detecting CA in this
population (18).

Right ventricular strain can also be measured on
echocardiogram; however, this technique is not used in
widespread clinical practice. Palomero and colleagues (40)
evaluated RV strain in a group of AL and ATTR-CA patients
(n = 78) compared to controls. All patients had reduced
biventricular function and LV apical sparing. Notably an RV
apical sparing pattern was only seen in AL-CA patients. AL-CA
patients also had worse RV function measured by traditional
parameters, which could support worsening RV function existing
on a continuum of disease severity (40).
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FIGURE 4 | Doppler and longitudinal strain abnormalities in patients diagnosed with cardiac amyloidosis. (A) Mitral inflow and mitral annular tissue Doppler showing
pseudonormal diastolic filling (Grade 2) and high E/e′ signaling elevated left atrial pressures. (B) Mitral inflow pulse wave Doppler of patient in atrial fibrillation
demonstrating short deceleration time (DT) (normal 130–220 ms). (C) Peak systolic longitudinal strain map demonstrating reduced longitudinal strain in basal and
mid ventricular segments with relative apical sparing.

In addition to the atrial morphologic changes that can
be seen as a secondary hemodynamic consequence from any
cause of ventricular impairment, there is increasing evidence
to suggest CA can also impair atrial function as measured by
atrial strain. Diagnostically, left atrial strain can help differentiate
CA from other causes of LVH (41–43). Multiple studies have
demonstrated significant reduction in left atrial strain parameters
in both AL and ATTR-CA compared to HHD despite similar
degrees of LV wall thickness. Left atrial strain outperformed
LV RALS in discriminating between disease states (41, 43).
Another study also showed that while both ATTR-CA and
HCM patients have reduced peak LA strain compared to
controls, the degree of reduction was greater in ATTR-CA
patients providing another potential discriminatory variable (42).
Atrial strain correlates with other echocardiographic markers of
disease burden (41). Furthermore, both LA and right atrial (RA)
strain have prognostic value for CA patients and independently
predict mortality (44). Atrial strain techniques are mostly
isolated to research protocols but with a growing body of
evidence demonstrating diagnostic and prognostic utility, clinical
application will likely increase in the coming years.

Multi-Parametric Scores
The multitude of abnormal echocardiographic parameters seen
in CA has led to the development of multi-parametric scores for
the diagnosis of CA. These may be particular importance in early

disease when the echocardiographic changes are subtle and less
specific (10, 45). Boldrini et al. (22) studied >1,000 patients who
either had proven systemic AL amyloidosis or LVH suspicious
for possible CA who then underwent subsequent work-up with
myocardial or non-myocardial biopsy. Patients with suspected
ATTR-CA underwent bone scintigraphy and 85% of patients also
underwent CMR. For patients with AL amyloidosis, there was
higher specificity for cardiac involvement, with more points using
relative wall thickness (RWT = 2 × PWd/LVEDD, >0.52, two
points), E/e′ (>10, two points), TAPSE (≤19 mm, one point),
and LS (≥−14%, one point). For patients referred with LVH and
possible CA, more points increased specificity for CA using RWT
(>0.6, three points), E/e′ (>11, one point), TAPSE (≤19 mm, two
points), LS (≥−13%, one points), and septal longitudinal systolic
apex-to-base ratio (SAB, >2.9, three points). SAB is a measure
similar to RALS as a measure of apical sparing (22).

Aimo and colleagues developed a simpler echocardiographic
score to maximize specificity of the diagnosis. The Amyloidosis
Index (AMYLI) score equals RWT × E/e′, with its main
limitation being the exclusion of patients in atrial fibrillation
during echocardiogram. A cutoff < 2.36 in patients with systemic
AL amyloidosis and <2.22 in unexplained LVH excluded CA
(22). The AMYLI score was compared to the two scoring systems
developed by Boldrini et al. and demonstrated non-inferiority
for the exclusion of CA (23). CA is primed for the use of
multi-parametric echocardiography scores and we suspect the
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applicability of such scores will continue to increase. These
scores help to objectify the echocardiographic parameters many
clinicians may notice by clinical gestalt but can be overlooked
in combination. More widespread use could decrease delays in
diagnosis and treatment.

Prognosis
The prognostic significance of echocardiographic findings in
CA has been long recognized (31). In early studies, the most
useful echocardiogram predictor of mortality was E/A closely
followed by shorter DT and lower fractional shortening (15, 31).
These same parameters correlate with HF severity and mortality.
Contemporary studies added apical LS and lower LVEF as an
independent predictor of major adverse cardiac events (MACE)
in patients with CA (39). RV function in CA has also been shown
to predict mortality with lower TAPSE and RV strain correlating
with MACE in some studies (36). A recent study consisting
predominantly of AL-CA patients demonstrated the prognostic
significance of both RA and LA strain (44). It remains to be seen
how these prognostic echocardiographic measures are affected by
CA treatment and specifically if these parameters may be helpful
in predicting treatment response.

Emerging Techniques
Despite increasing knowledge about numerous
echocardiographic changes in CA, final diagnosis is contingent
on further testing based on level of suspicion, which may vary
from clinician to clinician. Multiparametric scores can help
streamline this diagnostic assessment, but may not be readily
applied in clinical practice, and still relies on maintaining an
underlying diagnostic suspicion for CA (2). Machine learning
(ML) provides the potential to bridge this important diagnostic
pitfall. ML methodology refers to a computational approach
that incorporates a multitude of complex data structures to
agnostically identify relationships commonly seen in disease
patterns without explicit instruction. The variable and diverse
echocardiographic changes seen in CA, even in early disease,
could potentially be detected by ML and signal to clinicians
to consider further testing. Goto et al. (46) performed a large
multicenter study using ML techniques of both ECG and
echocardiograms in CA. They used a video-based model for
echocardiography using a single apical 4-chamber view. Their
model was able to detect CA by echocardiography with a
C-statistic ≥ 0.85 at each site up to 1 year prior to diagnosis.
Additionally, their model was able to discriminate CA from
other diseases causing LVH including HCM, HHD, and end-
stage renal disease with C-statistic ≥ 0.90 at each site. Their
model outperformed two expert echocardiography readers
in diagnostic accuracy. The area under the curve (AUC) for
differentiating between causes of LVH ranged between 0.87 and
0.96 at each institution which is comparable or higher than
the AUC for similar populations using the multiparametric
scores developed by Boldrini and Aimo (22, 23). The ECG
model also performed well on its own across sites. When
combining ECG and echocardiography in a step-wise fashion,
they demonstrated a positive predictive value (PPV) of nearly
75% across two sites (46). A layered testing and referral algorithm

using ML on initial ECG and subsequent echocardiography holds
promise in detecting more CA cases and earlier in the disease
course. However, as with all testing modalities, the impact on
performance with more widespread use will need to be examined.

MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) utilizes strong magnetic
fields in different orientations to excite hydrogen atoms then
measures the emitted signal as they relax. Hydrogen atoms in
different tissues have distinct excitation and relaxation properties
based on their surrounding structure making it possible
to characterize tissue properties. CMR was first employed
over 3 decades ago and has been used for diagnosis and
prognostication with increasing frequency in multiple cardiac
conditions. Given the high chamber fidelity, it is considered
the gold standard for chamber size quantification and EF
measurement. CMR is less subject to limitations in image
quality compared to echocardiogram, but requires a higher
level of expertise, is costlier, and is not as widely available
(Table 2). The main patient-related limitations to CMR are
body habitus, claustrophobia, non-MRI compatible metallic
implants, and severe renal dysfunction if gadolinium-based
contrast agents are to be used.

Cardiac magnetic resonance may be utilized in the initial
evaluation of CA or to supplement initial diagnostic suspicion
of CA based on echocardiogram in select patients (Figure 1).
Acquisition of CMR should ideally not delay diagnosis of CA,
as additional modalities are typically necessary to confirm a
diagnosis of CA prior to initiating treatment. CMR is excellent
at demonstrating morphologic changes in CA, similar to
echocardiogram and therefore, is very beneficial in patients
with poor acoustic windows on echocardiogram. CMR adds
significant information on tissue characterization of the
myocardium compared to echocardiogram (Figure 2), which
is enhanced with the use of gadolinium-based contrast agents.
Additionally, improved tagging and strain techniques in CMR
allow for more detailed myocardial deformation analysis than
currently provided by echocardiography. CMR technology is
continually improving as novel techniques and applications are
being developed. Representative CMR images for a patient with
CA are shown in Figure 5.

Morphologic Changes
As with echocardiogram, LVH is the hallmark finding of CA
on CMR regardless of the underlying type of CA. In studies
comparing findings on CMR in patients with CA to those of
healthy volunteers, patients with CA had higher LVMI, lower
LV end diastolic volume index (LVEDVI), and lower LVEF
(47). However, in one study of 36 patients with HF and either
myocardial biopsy or autopsy evidence of CA (n = 11) or extra
cardiac biopsy plus LVH on echocardiogram, nearly one-third
of patients had normal LVMI by CMR (47). This suggests that
CA may be present to some extent without frank hypertrophy as
measured by LVMI on CMR. There may also be differences in the
degree of LVH on CMR between the types of CA, with wtATTR
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FIGURE 5 | Representative cardiac magnetic resonance images (CMR) from patients with cardiac amyloidosis. (A) T2 TRUFI 4-chamber view showing biventricular
hypertrophy, biatrial enlargement, and pericardial effusion. (B) T1 4-chamber view late post-contrast image in a patient with ATTR-CA showing diffuse atrial LGE
(arrowheads) and left ventricular subendocardial LGE (arrows). (C) T1 short-axis late post-contrast image in a patient with AL-CA showing diffuse LGE of the left
ventricle.

generally having higher LVMI, possibly related to the elderly
demographic and longer asymptomatic disease state compared to
AL-CA (48). CMR can help differentiate between CA and other
diseases that cause LVH. Specifically, compared to HHD controls,
patients with CA have been shown to have lower LVEF and right
ventricular ejection fraction (RVEF), higher LVMI, higher RV
mass, and greater degree of RVH on CMR (49–52). Differences
in degree of RVH may also exist between types of CA, occurring
less commonly in AL-CA (53).

While both right and left ventricular changes can be
seen on echocardiogram, CMR outperforms echocardiogram
at assessment of atrial abnormalities. Increased interatrial (IA)
septum thickness originally had promise as a fairly specific
finding in CA compared to other causes of LVH (49, 50, 54).
Proposed IA thickness cutoffs ranged from greater than 5 to
6 mm. Contemporary studies do not show this finding with
as high of frequency possibly because of earlier CA diagnosis
(47). Additionally, there may be differences in frequency of
increased IA thickness based on type of CA, with this being
more common in wtATTR (48). Kwong and colleagues recently
demonstrated lower total LA emptying in the setting of higher
LA volumes in CA compared to those with HHD and non-
ischemic cardiomyopathy (55). This, in addition to other LA
parameters, had high likelihood ratios in differentiating CA from
other disease states. Given the unique atrial abnormalities that
may be present in CA, imaging of the atria should be given special
attention in patients undergoing evaluation for CA.

Echocardiography, as compared to CMR, remains the
preferred modality for examination of diastolic filling patterns.
Rubinshtein et al. (56) compared diastolic function in patients
with CA utilizing echocardiography and CMR. In general, E/A
was lower by CMR compared to echocardiography but DT
correlated well across both imaging modalities. However, there
was a subset of patients in whom diastolic dysfunction assessment
significantly differed across the imaging modalities, with the
more severe pattern identified by echocardiogram (56). Without
significant leaps in CMR technology and given the improvements
in time resolution on echocardiogram, echocardiogram will likely

remain as the preferred modality for assessment of diastolic
dysfunction in CA and other disease states.

Tissue Characterization
The major strength of CMR as compared to echocardiogram in
evaluation of CA lies in the superior detection of myocardial
tissue properties. A typical CMR sequence for CA will start
with cine images in various orientations to assess function and
other static measurements. After these are obtained, most of the
remaining sequences are designed to assess various properties of
tissue. Amyloid fibril deposition in the myocardium alters the
myocardial tissue and therefore CMR characteristics such as T1
relaxation and T2 decay. T1 relaxation varies between tissues
based on the time it takes for hydrogen atom spin to reorient in
the direction of applied magnetic field after it was altered with
a perpendicular radiofrequency pulsation. In the heart, fat and
gadolinium (Gd), if used, have short T1 and will appear bright
in these sequences. Tissue T2 decay is based on the time it takes
for a hydrogen atom to spin out of phase. Fat and water have
long T2 and will appear bright on these sequences. The addition
of Gd based contrast agents enhances tissue characterization.
Traditionally, Gd contrast was used to detect areas of increased
extracellular space that may be caused by fibrosis or ischemic
scar. These areas had delayed wash-out of contrast, known as
late gadolinium enhancement (LGE). In CA, this likely works
in a similar manner, but there also appears to be altered Gd
kinetics caused by the amyloid fibrils (50). However, the early
work on CMR in CA was marked by inconsistencies leading to
disparate conclusions for LGE assessment. Additionally, there are
a number of operator-dependent factors in CMR imaging such as
amount of time delay from injection to imaging and the selection
of time intervals based on initial images. Over time, more
standardized CMR imaging protocols were developed for CA that
have allowed for more uniform interpretation of the results.

The extracellular localization of Gd-based contrast agents
made contrast-enhanced CMR the initial technique of interest
in CA. Early (<5 mins) after contrast injection, patients affected
by CA frequently (60–90%) have abnormal enhancement of the
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myocardium (47, 50). Maceira et al. (50) noted shorter T1 times
of the myocardium with a cut-off of 535 ms having a sensitivity
and specificity of 86% and 75%, respectively, for distinguishing
CA from HHD controls. However, they also noticed increased
contrast clearance from the blood pool leading to higher T1
times. By taking the difference between the subendocardial T1
(smaller in CA) and blood T1 (higher in CA) sensitivity and
specificity for detection of CA compared to controls increased to
90% and 87%, respectively (50). Initial studies examining LGE in
CA found this phenomenon in a majority (>70%) of CA patients
(50, 54). However, the reported patterns of LGE differed possibly
due to varying patient populations and technical differences in
image acquisition, including in myocardial nulling. In traditional
CMR imaging, “nulling” is an operator dependent process
where an inversion time is selected to “null” or “make black”
normal myocardium. Incorrect selection can actually reverse
signals which confounds interpretation. Therefore “nulling” can
be different in a diffuse myocardial process where there may
be no normal myocardium. Multiple studies have noted more
difficulty with this process for CA patients (54, 57). Phase-
sensitive inversion recovery (PSIR) is a newer CMR sequence that
negates this issue of improper nulling and can allow for more
consistency. Fontana et al. showed traditional techniques using
operator nulling were discordant from T1 maps the majority of
the time whereas PSIR was fully concordant (58). These issues
stress the importance of experienced CMR operators as well as
the use of operator independent CMR protocols for accurate
detection of CA.

With time and newer techniques, two predominant patterns
of LGE in CA emerged including a global subendocardial
pattern and a diffuse transmural pattern. These likely exist on a
continuum from subendocardial to transmural enhancement as
the disease progresses (59). Global subendocardial enhancement
differs from subendocardial enhancement seen in aborted
myocardial infarction as the latter correlates with vascular
territories of the infarcted vessel. One study evaluating use of
CMR for work-up of restrictive cardiomyopathy with associated
LVH demonstrated a sensitivity of 80% and specificity of 94%
for a global subendocardial LGE pattern compared to the gold-
standard of endomyocardial biopsy in diagnosing CA (57).
Similar performance in detecting cardiac involvement was seen
for any LGE pattern in a group of systemic AL patients (48).
Different subtypes of CA are known to demonstrate LGE patterns
with varying frequencies. Dungu et al. (53) examined 100 patients
with CA, with all but 1 having LGE. The “classic” subendocardial
pattern was seen in 39% of AL-CA and 12% of ATTR-CA whereas
a transmural involvement of affected segments occurred in 37%
of AL-CA and 90% ATTR-CA and. A global LGE pattern was
seen in 4% of AL-CA patients and 22% ATTR-CA (53). Similar
frequencies and distributions were seen in other studies (58, 60).
Additionally, a greater degree of LGE was present in ATTR-CA
compared to AL-CA.

Based on this, the Query Amyloid Late Enhancement (QALE)
tool, a semi-quantitative way to assess degree of LGE, was
developed. In short axis, the LV is divided into three segments
(base, mid, and apex) and each segment is scored from 0 to 4
(0 = no LGE, 1 = non-circumferential subendocardial OR patchy

LGE, 2 = circumferential subendocardial LGE, 3 = any transmural
LGE, and 4 = circumferential transmural LGE). An additional six
points is added if RV LGE is present, which is more common in
ATTR-CA (48, 60). A QALE ≥ 13 predicted ATTR-CA over AL-
CA with a sensitivity of 82% and specificity of 76%. Combining
QALE with age and interventricular septal wall thickness in a
logistic probability unit increased sensitivity and specificity to 87
and 96%, respectively (53). In addition to being able to distinguish
between ATTR-CA and AL-CA LGE patterns may vary between
wtATTR and hATTR (48, 60).

Atrial LGE may also be a useful diagnostic marker in CA.
Kwong et al. found left atrial LGE in 78% of CA patients
compared to 14% of HHD patients and 9% of patients with non-
ischemic cardiomyopathy (55). This study also demonstrated
increased discriminatory power of having multiple LA segments
with LGE in CA compared to non-amyloid HF. More so,
interatrial LGE may be more common in ATTR-CA compared to
AL-CA (55). While CMR can be suggestive of a specific subtype
of CA, further testing is needed to definitively identify causative
protein (Figure 1).

While use of Gd contrast is preferred in the CMR evaluation
of CA, severe renal dysfunction, a common co-morbidity in
CA, may preclude use. However, novel T1 mapping sequencing
techniques that do not utilize contrast have shown to be useful
in identifying CA compared to other forms of HF. In one
particular study, the T1 signal was higher in a cohort of AL-
CA patients compared to healthy volunteers and in patients with
aortic stenosis (61). Other studies have shown consistently higher
global T1 values in ATTR-CA as compared to non-CA controls
(62). While global T1 values are beneficial, regional T1 variations
in CA are also seen. Similar to the pattern seen with other imaging
parameters, higher T1 in basilar segments compared to apical
segments is commonly seen and can help differentiate CA from
other disease states where T1 may be increased (63, 64). Regional
areas of higher T1 correlates with lower strain in the same
segment as well as extracellular volume (ECV) and LGE (63, 65).
Incremental increases in basal and mid T1 correlates with higher
mortality as well (64). Acquiring T1 mapping signals to detect
CA is not usually standard CMR protocol so referring physicians
would need to specify CMR indication and potentially discuss
with the radiologist about required sequences to aid in diagnosis.

Emerging Techniques
Quantification of myocardial ECV, a marker of myocardial tissue
remodeling, is a relatively novel technique that is becoming
more widespread in diagnosis and prognostication of CA. ECV
is similar to T1 but the latter incorporates extracellular and
intracellular factors and is heavily influenced by water content
like in edema. CA is a complex interplay between amyloid fibrils,
cardiomyocytes, and edema, which all affect T1 signal. Therefore,
ECV is likely superior in providing a true quantification of
amyloid burden (66). CA patients have consistently elevated ECV
compared to healthy and other disease state controls. In a study
by Kim et al. (67), the degree and relative distribution of increased
ECV varied by LGE pattern. In patients with diffuse transmural
LGE, the basal segments had higher ECV compared to the apex.
The opposite was seen in healthy controls who tended to have a
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higher ECV at the apex. Conversely, patients with subendocardial
or other patterns of LGE had no base-apex variation in ECV,
despite having higher absolute values of ECV in all segments
compared to healthy controls, likely indicating diffuse amyloid
deposition but to a lesser degree than in individuals with diffuse
transmural LGE (67). Finally, elevated ECV was detected in
patients with a high probability of CA in the absence of LGE likely
indicating early disease (66).

Strain imaging using CMR is evolving and may overcome the
technical challenges of echocardiographic strain. Contrary
to echocardiography, strain analysis with CMR is not
reliant on imaging plane and therefore can be evaluated
in multiple dimensions with greater certainty providing a
more complete picture of myocardial function. Kim and
colleagues (67) demonstrated worse peak strain in all dimensions
(circumferential, radial, and longitudinal) in patients with CA
compared to healthy controls. Additionally, a continuum of
worsening strain was demonstrated from focal or patchy LGE
to diffuse LGE. There was also a correlation between basal peak
circumferential strain and basal ECV supporting the theory
that amyloid burden is the primary driver of abnormal strain
(67). These techniques also allow for strain analysis in the more
complex geometry of the right ventricle.

In addition to multi-dimensional strain analysis, CMR strain
techniques have higher spatial resolution than echocardiography
thereby providing information on complex strain relationships,
like twisting and shearing, throughout the entire thickness of
the myocardium. Early CMR strain techniques used deformable
registration algorithms (DRAs) that relied on the routinely
obtained cine images. Newer techniques utilize changing
magnetic fields and radiofrequency (RF) pulses along with
time delays between generation and detection to measure
deformation. Some of these create local alternations in tissue
signal with magnetic fields and RF pulses creating an array over
the myocardium. Through the cardiac cycle, movement of each
part of the array can then be tracked and deformation parameters
determined. The strain of myocardium can also be encoded in
the detected signal after excitation either using stimulated echo
(DENSE) or unbalanced gradient pulse during excitation and
again prior to detection (strain-encoded, SENC). These latter
techniques have higher spatial resolution than tagged techniques
as each pixel is “encoded” with strain data instead of artificially
creating a strain array (68). All of these techniques require
special imaging protocols and therefore expertise in performing
them. These special protocols will also add imaging time which
could affect patient comfort. As advanced CMR strain techniques
become more widely used in CA, the impact of specific strain
patterns on symptoms and prognosis should become more
evident and may eventually help guide treatment.

Prognosis
Many morphologic and tissue characteristics seen on CMR
have prognostic significance. Understanding prognosis based on
these findings may inform treatment decisions while framing
expectations for patients and families. It remains to be seen how
pre-treatment imaging characteristics may guide prognosis in the
era of contemporary therapy for CA.

Like echocardiography, static dimensions and function
parameters on CMR have been shown to correlate with mortality
in CA. Abnormal LVEF or RVEF generally indicates worse
prognosis with degree of systolic dysfunction correlating with
increased morbidity and mortality (47, 52). Lower indexed RV
volumes (RVESVi or RVEDVi) were also associated with worse
survival in CA and can be consistently measured with CMR (51,
52). The prognostic significance of LGE is mixed in the literature,
likely related to inconsistencies in imaging protocol as well as
variable follow-up lengths across studies. In general, the presence
of LGE predicts a worse prognosis in CA compared to the absence
of LGE (51, 58). Fontana et al. showed a clear relationship with
mortality at 24 months in a large study of both AL and ATTR-CA
based on LGE pattern including 92% survival in those without
LGE, 81% survival with subendocardial LGE, and 61% survival
with transmural LGE (51, 58, 60). Conversely, RV LGE was a
consistent predictor of worse prognosis (47, 51, 52, 69). More
so, higher mortality rates have been demonstrated in individuals
with higher ECV, again reflecting disease burden (60). Early
studies showed reduced ECV in response to treatment, suggesting
this could be a marker of treatment efficacy (66, 70). Overall, the
prognostic significance of LGE and ECV is not surprising as they
function as surrogate markers of total amyloid burden within a
progressive disease process.

NUCLEAR IMAGING

In medicine, nuclear imaging techniques are ubiquitous
with diverse indications. The fundamental principle involves
radioactive labeling of a tracer that has affinity for a specific
organ or disease process. Use of nuclear imaging in CA provides
certain advantages over echocardiography and CMR including:
(1) diagnostic specificity for type of amyloid fibril uptake and
(2) detection of early or subclinical disease which may allow
for earlier treatment. Additionally, nuclear techniques, and
particularly positron emission tomography (PET), in additional
to CMR, incorporate semi-quantitative measurements, which
may be followed for treatment response in AL-CA and the
now more readily treatable ATTR-CA. The main nuclear
imaging technique being used in the diagnosis of CA is cardiac
scintigraphy using labeled phosphonate tracers; however, PET
imaging is emerging with growing interest.

Cardiac Scintigraphy
Phosphonate molecules labeled with a radioactive tracer,
usually technetium-99m (99mTc), combined with a nuclear
detector, was originally developed for bone imaging. Increased
uptake represented areas of higher bone turnover in fractures,
metastases, and osteomyelitis. Affinity of phosphonate tracers for
amyloid deposition in soft tissue has been recognized for more
than 3 decades (71). The exact mechanism of this affinity is
unclear, but is thought to result from calcium deposition within
amyloid fibrils (72).

Similar to early CA research in echocardiography and
CMR, initial studies examining cardiac scintigraphy in CA
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were limited due to a low number of patients and ill-
defined patient populations that leaned heavily toward AL-CA.
Additionally, despite consistent demonstration of deposition in
other organs affected by amyloidosis with multiple different
phosphonate tracers, cardiac uptake was inconsistent (71, 73).
Despite these early limitations, with improved patient selection,
the usefulness of cardiac scintigraphy for diagnosis of ATTR-
CA became evident.

Three main phosphonate tracers are labeled with 99mTc
in routine clinical practice for CA: 3,3-diphosphono-
1,2-propanodicarboxylic acid (DPD), hydroxymethylene
diphosphonate (HMDP), and pyrophosphate (PYP). The
selection of radiotracer type is generally based on availability
although research continues on inter-radiotracer performance.
DPD is most commonly used in Europe whereas PYP is generally
used in the United States (74). HMDP is less studied than
the other two radiotracers and therefore the performance
characteristics are considered less refined. Cardiac or chest
single-photon emitted computed tomography (SPECT) and
planar images are typically obtained 1 hour after radiotracer
injection. Imaging can be delayed to 3 hours if persistent
blood pool activity is noted, however. Planar imaging is rapid,
and allows for visual interpretation and quantification of the
degree of myocardial uptake. SPECT imaging is necessary
to simultaneously perform to confirm uptake is seen in the
myocardium and not in the blood pool or an extra cardiac focus
(75, 76).

The major breakthrough in cardiac scintigraphy imaging for
CA came from the hypothesis that variable uptake in earlier
studies resulted from different amyloid protein composition (77).
In 2005, Perugini and colleagues were the first to demonstrate
this in a study of 25 patients (15 ATTR-CA) where sensitivity
and specificity of 100 and 100%, respectively, was shown for
distinguishing ATTR-CA from AL-CA (77). Genotyping and
immunohistochemistry served as the gold standard and scan
positivity was based on qualitative analysis of uptake using a
scoring system that is still applied in clinical practice: grade 0 = no
cardiac uptake and normal bone uptake; grade 1 = cardiac uptake
intensity less than bone uptake; grade 2 = cardiac uptake intensity
similar to bone uptake; and grade 3 = cardiac uptake intensity
greater than bone uptake or even absent bone signal (72). In their
initial study, a scan was considered positive if above a grade 0.
Examples of scan results in ATTR-CA are shown in Figure 6.

To limit inter-observer variability and provide more
quantitative rigor, ratios of heart to other body part uptake are
also used, with the most common in modern practice being
heart-to-contralateral chest ratio (H/CL) (Figures 6B,D) (78,
79). The initial study had excellent differentiation of AL-CA from
ATTR-CA (78) using a cutoff of H/CL ≥ 1.5, but subsequent
studies fall short on sensitivity while maintaining high specificity
(79). Per current guidelines, H/CL ≥ 1.5 is positive, < 1.0 is
negative, and in between is equivocal (75). Some physicians use
a cutoff of H/CL ≥ 1.3 to increase sensitivity (80). Other signal
ratios are scattered throughout the literature including heart to
whole body (H/WBR) and heart to skull (H/S).

The high sensitivity and specificity of DPD seen in the initial
study is stunning and ultimately was not nearly as stark for larger

DPD studies or the other radiotracers. In other studies, a subset of
patients with AL-CA ranging from 32% to 41%, had myocardial
uptake with DPD on cardiac scintigraphy (81–83). With PYP,
one study showed 17% of AL-CA patients had grade ≥ 2 uptake
(78). HMDP use may lead to less uptake for AL-CA, but this is
at the cost of lower sensitivity for diagnosis of ATTR-CA (72,
83). Larger studies pooling the main radiotracers demonstrate
that ≥grade 1 on bone scintigraphy has a sensitivity > 99% and
specificity 68% for diagnosis of ATTR-CA (74). Using grade 2/3
increases specificity to 87% at the cost of lower sensitivity to 91%
(74). A meta-analysis pooling 529 patients across 6 studies found
similar sensitivity and specificity of 92% and 95%, respectively
(72). All patients in the large study by Gillmore et al. (74)
underwent appropriate screening for AL-CA, but the methods in
each study included in the meta-analysis are less clear. Treglia
et al. also pooled the cohorts based on radiotracer used with
grade 2/3 considered positive: DPD (sensitivity 95%, specificity
88%), PYP (sensitivity 87%, specificity 75%), HMDP (sensitivity
86%, specificity 98%) (72). In current clinical practice, grade
2/3 is considered positive, grade 0 is negative and grade 1 is
equivocal and needs to be interpreted within the specific clinical
context (Figure 6A).

Fortunately, the diagnostic accuracy of cardiac scintigraphy
can be greatly enhanced with the addition of appropriate
serologic work-up to rule out systemic AL amyloidosis. This
includes serum free light chain measurement and ratio along with
serum and urine electrophoresis with immunofixation. If these
tests are normal, abnormal cardiac scintigraphy with grade of 2 or
3 uptake has a specificity of 100% for ATTR-CA (74). This stresses
the importance of appropriate serologic work-up before pursuing
and certainly before interpreting cardiac scintigraphy for possible
ATTR-CA (Figure 1).

While specificity in this scenario approaches 100%, the
sensitivity is <100%, highlighting the possibility of missing a
diagnosis of ATTR-CA. Reasons why certain patients may have
a false negative scan are under active investigation. One obvious
reason is the increased recognition of CA leading to earlier
diagnostic work-up. Degree of amyloid deposition along with
clinical and biomarker characteristics correlate with Perugini
grade (74, 83). These characteristics also correlate with degree
of amyloid deposition on CMR (58). The initial use in more
advanced disease led to high sensitivity and specificity but more
contemporary ordering practices aimed at early diagnosis may
have less uptake which may not be detectable below a certain
amount of total amyloid deposition (74, 80–82). However, the
lower sensitivity is not entirely explained by early disease as some
patients with advanced disease by symptoms and other imaging
have grade 0/1 uptake (83, 84).

There is building evidence that different ATTR genetic
variants may lead to more or less radiotracer uptake. Therefore,
some variants may lead to grade 0/1 uptake despite a heavy
burden of disease. Musumeci and colleagues (84) retrospectively
examined 19 DPD and HMDP scans over nearly 2 decades in
hATTR patients with a Phe64Leu variant. Seventeen (85%) of
these patients had grade 0/1 uptake (84). Alternatively, patients
with Val122Ile, in a different study had grade 3 uptake (83).
Ser77Tyr also seems to have reduced frequency of high-grade
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FIGURE 6 | Example results of pyrophosphate (PYP) scan in two patients diagnosed with ATTR-CA. (A) Grade 1 (negative) scan with (B) H/CL = 1.4 in a patient
later diagnosed by endomyocardial biopsy. (C) Grade 3 (positive) PYP scan with (D) H/CL = 2.26.

uptake but the data are limited (60). Genotyping is often
performed after clinical and imaging diagnosis so a “negative”
cardiac scintigraphy is not likely to trigger genetic testing (85).
It is incumbent on the physician to pursue additional testing in
those patients whom clinical suspicion remains even if cardiac
scintigraphy is negative or equivocal.

Alternatively, some patients without suspicion of CA may
undergoing cardiac scintigraphy for another indication and be
found to have positive myocardial uptake. Two recent studies
have examined the frequency of grade 2/3 cardiac uptake on
patient scans performed for indications other than evaluation of
CA. Soumalainen et al. (80) looked at 2,000 patients undergoing
HMDP scans mostly for prostate and breast cancer. They found
grade 1 in 16.7%, grade 2 in 2.7%, and grade 3 in 0.8% of
this cohort. Additionally, 2.4% of patients had an H/CL ≥ 1.3
suggestive of ATTR-CA. Notably, of those with suspected ATTR-
CA (grade 2/3), 41% had a history of HF prior to scan (80).
Bianco et al. found a prevalence of 0.54% grade 2/3 uptake
on 3,228 scans performed over 5 years using DPD or HDMP
at their center (86). With higher clinical suspicion, ATTR-CA
may have been suspected in some of these patients as 48% had
prior HF, 34.8% had known neuropathy, and 21.7% had carpal
tunnel syndrome. However, 21.7% were entirely asymptomatic
highlighting the existence of an asymptomatic disease state
during which treatment could prevent disease progression (86).

Prognosis
The prognostic significance of cardiac scintigraphy ordered
for assessment of CA is limited by the qualitative nature of
the grading system although semi-quantitative results provide

more granularity. Using semi-quantitative analysis, generally
higher heart to other structure ratios is associated with a worse
prognosis. Galat and colleagues found a H/S (heart to skull)
ratio ≥ 1.94 had a higher chance of major cardiovascular event
(MACE) along with NYHA III or IV symptoms (83). Another
early study found that H/WB (heart to whole body) ratio > 7.5
was associated with worse prognosis (81).

For incidentally discovered myocardial uptake, the presence
of myocardial uptake still portends a worse prognosis. In one
study, 51% of patients died over a mean 4 years of follow-up,
9% of which were classified as related to a cardiac cause. Grade 3
uptake and H/CL≥ 1.3 were predictors of mortality on univariate
analysis and grade 3 uptake remained a mortality predictor on
multivariate analysis (80). These patients likely had undiagnosed
ATTR-CA which progressed in follow-up ultimately leading to
death. If myocardial uptake is incidentally found, complete work-
up including serologic screening for AL disease and genetic
testing should be facilitated.

Currently there is no known utility of repeating scans for
assessment of disease burden, but this is not yet studied in the
current era of ATTR-CA treatment. One potential scenario for
a repeat scan may be if a prior scan was negative despite a
known ATTR genotype positivity and a repeat scan is done after
some interval to assess for CA; though the optimal time frame is
unknown and likely depends on the age of the patient as well as
specific family history (81).

Positron Emission Tomography
Positron emission tomography (PET) imaging has many
established cardiovascular disease indications, but use in CA is
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emerging. Like cardiac scintigraphy, the goal of PET is to have
high fidelity to identify the type of amyloid fibril protein but also
to have a more quantitative method to assess amyloid burden
and response to treatment. Prior to determining its role in the
latter, optimally performing radiotracers for AL and ATTR-CA
amyloidosis need to be identified.

Multiple pilot studies using different radiotracers have been
studied using either fluorine-18 (18F) or carbon-11 (11C), with
18F being more common (87–90). Fludeoxyglucose (FDG) is a
commonly encountered compound in oncology but its use in CA
is not established (91). In contrast to bone scintigraphy, some
PET radiotracers like 18F-florbetaben may have more affinity
for AL-CA compared to ATTR-CA. Myocardial tracer retention
(MTR) is calculated using standardized uptake value (SUV) in
the early time frame (0–5 mins) and a delayed time frame (15–
20 mins) then expressed as a percentage. In a small study inclusive
of 22 patients with CA, eight patients with AL-CA had a median
MTR of 66% compared to 42% in the five patients with ATTR-
CA (p < 0.01). In non-CA patients, median MTR was 27% (91).
A sensitivity and specificity of 100% and 100%, respectively, for
ruling out amyloidosis was achieved with MTR ≤ 36%. An MTR
cutoff ≤ 52% could differentiate ATTR-CA from AL-CA with a
sensitivity of 100% and specificity of 89% (91). Another study
by Genovesi et al. (92) performed dynamic and static imaging
at various time points after injection. All patients (AL, ATTR,
other) had early uptake but AL-CA patients had a higher degree
of early uptake. AL-CA patients then had much more retention
of radiotracer throughout the imaging time compared to ATTR-
CA which washed out much quicker (92). Larger confirmatory
studies are needed but PET imaging has the potential to serve
as the first non-invasive modality of diagnosing AL-CA and may
decrease the need for biopsy in some patients.

Simultaneous imaging of patients using PET and CMR has
also been under investigation in CA. Albuizi and colleagues
used PET and CMR technology in 27 patients with strong
suspicion of CA using 18F-NaF after a promising proof of
concept study. Though qualitative measures were unreliable to
distinguish CA subtypes, with semi-quantification comparing
the myocardium to blood pool (M/B ratio), there was increased
relative uptake in ATTR-CA patients compared to AL-CA and
non-CA patients. An M/B ≥ 0.90 was able to differentiate ATTR
from AL-CA with a sensitivity and specificity of 81% and 100%,
respectively (93). The simultaneous use of PET and CMR could
allow for identification of morphologic and tissue characteristic
changes supporting the presence of CA, then utilizing PET to
identify the CA subtype.

PET results have been shown to correlate to findings on
other imaging modalities including echocardiography, CMR, and
cardiac scintigraphy. MTR had a positive correlation with apical
sparing, E/e′, and wall thickness along with a negative correlation
with TAPSE and LVEDV on echocardiography (91). PET had
94% concordance regarding extent of affected myocardium on
CMR. Interestingly, in one patient, a positive PET study did not
have any CMR abnormalities, which may point to a role in earlier
diagnosis. Cardiac scintigraphy (DPD) matched PET results in
81% of patients. Notably all ATTR-CA patients in this study had
grade 3 uptake (91).

Follow-up PET scans do not have a defined role in clinical
practice, but this remains a promising avenue of future study.
In the study by Kircher et al. (91), four patients had repeat
PETs either for treatment follow-up or restaging. In all cases,
imaging findings correlated with clinical status. One patient had
a repeat scan after approximately 1 year of treatment with ATTR
stabilizer, Tafamidis, showing stable MTR and correlating with
stable HF symptoms as well. One patient had improvement
in biomarkers but worsening clinical status which correlated
with a higher MTR on follow-up scan; this patient went on
to receive a heart transplant (91). Repeat PET scans may
serve as a way to assess response to treatment and decide if
escalation or alternatives are needed. The main limitation to
PET in this context will be cost, availability, and radiation
exposure. As experience accumulates, the impact of genetic
variant on radiotracer uptake will also need to be investigated
given the emerging data seen with cardiac scintigraphy. Finally,
the prognostic implications of PET imaging in CA have not been
investigated beyond anecdotal reports.

ROLE OF ENDOMYOCARDIAL BIOPSY
IN CARDIAC AMYLOIDOSIS DIAGNOSIS

Once a clinical suspicion of CA is established, further testing
focuses on culprit protein identification. All patients need a
serologic assessment of AL amyloidosis consisting of serum
light chain measurement and ratio (kappa/lambda ratio), and
urine and serum electrophoresis with immunofixation (Figure 1).
If any of these tests are abnormal, AL amyloidosis must
be expeditiously evaluated with tissue biopsy and referral
to hematologic oncologist. An abnormal kappa/lambda ratio
(>1.65–3.1) in the absence of a monoclonal gammopathy on
protein electrophoresis may create a diagnostic dilemma in
those with renal dysfunction, as the kidneys are responsible
for clearing light chains. In this setting, clinical correlation

FIGURE 7 | Endomyocardial biopsy pathology in a patient with cardiac
amyloidosis. Congo red stain at 10×x magnification showing apple-green
birefringence under polarized light consistent with amyloid deposition.
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is recommended to determine suspicion for AL amyloidosis,
which can then guide further diagnostic testing (76). If serologic
testing for AL amyloidosis is all within normal limits, AL-CA is
effectively ruled out and cardiac scintigraphy can be performed
to assess for ATTR-CA (Figure 1). If this is positive (grade 2/3),
a diagnosis of ATTR-CA can be made without further testing. If
cardiac scintigraphy is negative or equivocal, echocardiography,
CMR, and patient history needs to be reviewed and referral
for tissue biopsy should be considered for patients with
ongoing clinical suspicion for CA. While rare, endomyocardial
biopsy may also detect dual pathology of AL and ATTR-CA,
further highlighting the importance of pursuing biopsy in the
appropriate clinical context.

The site chosen for tissue biopsy varies by center. Abdominal
fat pad biopsy may be first pursued as this is a minimally
invasive and well-tolerated procedure. However, sensitivity is
very poor for ATTR-CA and ranges considerably for AL-
CA (94–96). Therefore, if negative, endomyocardial biopsy
ought to be pursued for definitive diagnosis. In modern
practice, most endomyocardial biopsies are performed on the
RV septum through venous access. The major complication
of RV biopsy is cardiac perforation leading to tamponade.
Minor complications of biopsy include ventricular arrhythmias,
access site bleeding, arterial injury, pericardial effusion, and
conduction disturbances. Major complications occur on <1% of
RV biopsies and minor complications occur in 2–5% of cases
(97). CA is a diffuse process so diagnostic yield is greater than
patchier myocardial processes and with adequate samples, the
sensitivity and specificity approach 100% and 100%, respectively.
In very early disease, amyloid deposition may be patchy thereby
decreasing yield but these situations are likely rare. CA will
classically have the appearance of Congo red staining on
histology, with an apple-green birefringence appearance under
polarized light (Figure 7). Once amyloidosis is identified on
tissue biopsy, the tissue should be then be typed with either mass
spectrometry or immunohistochemistry to further determine
subtype (96).

All patients diagnosed with ATTR-CA, whether non-
invasively or with biopsy, must undergo genetic testing to
establish a diagnosis of either hATTR or wtATTR. Genetic testing
is typically performed with salivary kit testing and in conjunction
with genetic counseling. Identification of hATTR can trigger
cascade screening in family members.

CONCLUSION

CA is underdiagnosed but improved treatment options have
created a diagnostic imperative for earlier and more widespread
recognition. Non-invasive evaluation is the backbone of this
process and multiple imaging modalities are integral to
this process including echocardiography, CMR, and nuclear
techniques. CA must first be recognized based on clinical
clues and supportive echocardiogram or CMR features. Once
CA is suspected based on these imaging modalities, serologic
markers, nuclear imaging, and in some cases tissue biopsy
allow for on culprit protein identification. Specificity for subtype
of CA is high using this algorithm but sensitivity falls short
for multiple reasons still being investigated. Endomyocardial
biopsy continues to play a pivotal role in CA work-up for a
subset of patients in whom CA subtype is unclear or high
suspicion remains despite negative or equivocal serologic and
imaging work-up. Recognizing when biopsy should be pursued
can decrease treatment delays and ultimately increase life
expectancy in CA patients.
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Systemic sclerosis (SSc) is a complex connective tissue disease with multiple clinical and
subclinical cardiac manifestations. SSc can affect most structural components of the
heart, including the pericardium, myocardium, valves, and conduction system through a
damaging cycle of inflammation, ischemia, and fibrosis. While cardiac involvement is the
second leading SSc-related cause of death, it is frequently clinically silent in early disease
and often missed with routine screening. To facilitate identification of cardiac disease in
this susceptible population, we present here a review of cardiac imaging modalities and
potential uses in the SSc patient population. We describe well-characterized techniques
including electrocardiography and 2D echocardiography with Doppler, but also discuss
more advanced imaging approaches, such as speckle-tracking echocardiography,
cardiovascular magnetic resonance imaging (CMR), and stress imaging, among others.
We also suggest an algorithm for the appropriate application of these modalities in the
workup and management of patients with SSc. Finally, we discuss future opportunities
for cardiac imaging in SSc research to achieve early detection and to optimize treatment.

Keywords: cardiovascular imaging, systemic sclerosis (scleroderma), echocardiography, cardiovascular
magnetic resonanace, scleroderma heart disease

INTRODUCTION

Cardiac complications from systemic sclerosis (SSc) are numerous and often underdiagnosed.
These complications are either a direct result of SSc on the myocardium, or indirect effects
of other organ involvement [pulmonary arterial hypertension (PAH), interstitial lung disease
(ILD), or renal crisis, etc.) (1). Direct myocardial manifestations of SSc include microvascular
coronary artery disease, cardiac fibrosis, myocarditis, left and right ventricular systolic and diastolic
dysfunction, pericardial disease, and conduction abnormalities (Figure 1) (2). When present,
cardiac involvement predicts worse survival (3). In two meta-analyses of observational studies,
cardiac deaths represented the most frequent cause of death in SSc, accounting for 20–29% of all
deaths (4, 5). Early screening and detection of cardiac abnormalities is thus vitally important in SSc.
Cardiac imaging is utilized extensively for that purpose.

As cardiac imaging techniques have progressed, they have allowed for new insights into the
pathophysiology, diagnosis, and treatment of SSc. While two-dimensional echocardiography (2DE)
remains the most utilized modality, tissue doppler imaging (TDI), speckle-tracking imaging
(STE), and cardiac magnetic resonance imaging (CMR) all have growing importance. In the
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present review, we will discuss the most recent data regarding
the epidemiology, diagnosis, and management of cardiac
complications of SSC, highlighting the evolving role that cardiac
imaging plays in diagnosis and management.

EPIDEMIOLOGY

The prevalence of cardiac involvement in SSc is difficult to define
for a number of reasons – rates vary depending on the methods
used, signs and symptoms of cardiac disease can be subtle leading
to underestimation, and symptoms of cardiac involvement are
often attributed to pulmonary, musculoskeletal, or esophageal
involvement. Rates of cardiac involvement vary depending on
which manifestation is being considered. Broadly speaking, rates
range from as low as 7% to as high as 44% depending on the study
(6, 7). Major risk factors for cardiac involvement include male
sex, African-American ethnicity, diffuse cutaneous SSc, older
age at disease onset, tendon friction rubs, abnormal nail-fold
capillaroscopy, and worse quality-of-life scores (6).

RIGHT VENTRICULAR DYSFUNCTION
AND PULMONARY HYPERTENSION

In patients with SSc, right ventricular (RV) dysfunction is more
common than left ventricular (LV) dysfunction and may exist
due to primary myocardial involvement, increased pulmonary
vascular resistance (PVR), or a mixture of both (2, 8, 9). RV
function may occur early in the disease course (2, 9, 10) and
myocardial fibrosis may be responsible for both diastolic and
systolic dysfunction (2, 8, 11). While RV dysfunction is often
associated with abnormal pulmonary artery (PA) pressures and
PAH, myocardial fibrosis may directly lead to RV dysfunction
and elevated right atrial pressure (RAP) even in the absence of
elevated PA pressures (11).

In patients with SSc, pulmonary hypertension (PH) may
manifest through various pathologic mechanisms, and can be
categorized into one or more of the five WHO Groups of PH.
SSc associated-PAH (SSc-PAH) is considered WHO Group 1 PH
and may be the result of direct remodeling of the pre-capillary
pulmonary arterioles, or rarely be attributable to pulmonary
veno-occlusive disease/pulmonary capillary hemangiomatosis
(PVOD/PCH). It is a leading cause of mortality in SSc patients,
with an incidence of 8–13% (12, 13) and is more commonly
associated with limited cutaneous systemic sclerosis (lcSSc) (14),
Patients with SSc-PAH have a poor prognosis in comparison
to SSc patients without PAH, with 3 year survival of only 52%
(14–16). Several studies have demonstrated that the intrinsic RV
dysfunction in SSc patients leads to worse outcomes in SSc-PAH
in comparison to idiopathic PAH (2, 13, 17). One year mortality
for SSc-PAH has been found to be 30%, while one year mortality
for those with idiopathic PAH is 15% (17). Mortality rates remain
high despite therapy (14).

Systemic sclerosis associated PH can also occur in the setting
of capillary loss and hypoxemic respiratory failure as a result of
ILD, categorized as WHO Group 3 PH. PH due to ILD is more

common in patients with diffuse cutaneous systemic sclerosis
(dcSSc) (18). In addition, patients with SSc may have evidence
of left ventricular systolic and diastolic dysfunction, leading to
WHO Group 2 PH. Rarely, patients with SSc may develop
chronic thromboembolic pulmonary hypertension (CTEPH) and
be classified as WHO Group 4 PH. Distinguishing among the
different mechanisms of SSc associated PH is important as
treatment and prognosis are impacted by a timely and accurate
diagnosis (14, 19, 20).

In recent years, there has been a greater focus on
understanding the pathophysiologic mechanisms driving RV
dysfunction and PH associated with SSc patients, as well as the
poor outcomes linked to the presence of PH in this patient
population. Essential to this focus is the thorough investigation
of the etiology of PH in patients with SSc, which often includes
diagnostic tests such as full pulmonary function testing, including
diffusion capacity for carbon monoxide (DLCO) for PH-ILD,
ventilation perfusion scanning (V/Q scan) for CTEPH, and
computed tomography scanning for radiographic correlates of
PVOD/PCH (19). Cardiac imaging is frequently used for this
purpose as well as diagnosing and monitoring disease status.
2DE and cardiovascular magnetic resonance (CMR) are the most
common imaging modalities used. Notably, STE is a novel way
to detect RV dysfunction earlier and its role in SSc associated RV
dysfunction and PH is currently being studied. It is important
to screen patients for PH and RV dysfunction early, as studies
have demonstrated improved survival and improved treatment
response in SSc-PAH patients with mild hemodynamics and
symptoms (14, 21).

Evaluation
Given the high prevalence of RV dysfunction and PH in patients
with SSc, current guidelines recommend echocardiographic
screening of all SSc patients in order to detect and implement
PH therapy as early as possible (22). In select patients, further
imaging with CT or CMR may be helpful.

Echocardiography
Transthoracic echocardiography (TTE) is widely available and
accessible to patients, making it an optimal screening tool for
RV dysfunction and PH. Evidence of RV dysfunction on 2DE
include RV dilation, flattening of interventricular septum (D-
Sign) suggestive of RV pressure or volume overload, and reduced
semi quantitative measures of RV function [i.e., tricuspid annular
systolic planar excursion (TAPSE) and fractional area of change
(FAC)]. Significant RV dysfunction has been defined as TAPSE
less than 1.7 cm and FAC less than 35% (10).

Transthoracic echocardiography can also be used to
distinguish WHO Group 1 PH from WHO Group 2 PH in
patients with SSc. For example, echocardiographic findings
suggestive of left heart disease, such as left atrial dilatation,
abnormal markers of diastolic dysfunction (i.e., elevated E/e’
ratio, reduced mitral annular tissue doppler velocities), or
evidence of LV dysfunction, may be indicative of post-capillary
PH (WHO Group 2 PH). On the other hand, echocardiographic
markers demonstrating elevated PA pressures, RV dilation,
and/or RV dysfunction, in the absence of left heart disease,
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FIGURE 1 | Manifestations of cardiovascular disease in systemic sclerosis.

is more suggestive of pre-capillary PH (WHO Group 1 PH).
Additional measures such as RV outflow tract (RVOT) systolic
doppler flow velocity notching and RVOT acceleration time may
also be useful in differentiating pre- versus post-capillary PH (23).

Right atrial and RV chamber enlargement in SSc are directly
related to onset of heart failure symptoms as well as mortality
(10). In addition, measurements of RV systolic function such as
TAPSE, tissue Doppler of the tricuspid annulus S’, RV FAC, and
Tei index all correlate with decreased survival (10). Argula et al.
demonstrated an improvement in TAPSE after medical therapy in
patients with IPAH, while patients with SSc-PAH had worsening
tricuspid regurgitant jet velocity and larger right heart chamber
size after therapy (24). The attenuated response to PH therapy
in the SSc population, demonstrated through echocardiographic
markers, may signal the presence of intrinsic RV dysfunction in
SSc-PAH patients in comparison to IPAH patients (13, 25).

Both RV systolic and diastolic dysfunction are prevalent in SSc
patients (8). When compared to controls, Muene et al. showed
that SSc patients had significantly reduced RV contractility
(p < 0.001) and larger RA area. In addition, 25% of SSc
patients had abnormal RV diastolic dysfunction compared to
0% in controls, as measured by trans-tricuspid E/A ratio (8).
Although patients with SSc-PAH demonstrate greater prevalence
of reduced RV contractility and diastolic dysfunction, patients
with SSc who did not meet diagnostic criteria for PAH still had
abnormalities in both RV systolic and diastolic dysfunction (8).

Abnormal echocardiographic findings can also be
demonstrated early in the disease course, even before signs
or symptoms manifest themselves (26). In a study by Pigatto
et al., 45 SSc patients without any signs or symptoms of heart
disease or PH were compared to 43 healthy controls, using both
2DE and three-dimensional echocardiography (3DE). The SSc
patients were found to have a significant increase in RV volume
and reduced RV ejection fraction as determined by 3DE. Doppler
measurements demonstrated an increased systolic pulmonary
artery pressure (sPAP) in SSc patients in comparison to the
control group. In addition, the changes were more pronounced

in patients with lcSSc than dcSSc (26). This study underscores
the need for screening for RV dysfunction and PH in this patient
population even in the absence of symptoms.

Speckle Tracking Echocardiography
Although RV dysfunction and PH in SSc is common and is
a large determinant of long term prognosis, it often remains
undetectable despite the use of 2D echocardiography. Most 2DE
measures of RV function are limited by the complex shape of the
RV, load dependency, and suboptimal reproducibility. STE avoids
some of these pitfalls and can be used to detect subtle changes in
global and regional RV systolic function that may be undetectable
by conventional echocardiographic measures (10).

RV longitudinal systolic strain (RVLSS) has been shown to
be more abnormal in SSc when compared to controls, despite
comparable traditional echocardiographic parameters of RV
function between groups (Figure 2) (27). For example, a study
by Zairi et al. revealed a 3.3 fold increased risk of subclinical
RV systolic impairment in SSc patients, manifested by more
abnormal RVLSS, in comparison to controls (-18.2 vs. 22.3%;
p = 0.012) (27). Meanwhile, multiple authors have illustrated a
regional pattern of abnormal RVLSS seen in SSc patients (10,
28, 29). In a study by Mukherjee et al., 138 SSc patients were
compared to 40 healthy non-SSc controls. While both TAPSE and
RV FAC were normal in both groups, RVLSS was found to be
abnormal in SSc patients, independent of PH and SSc phenotype.
Specifically, a regional pattern of abnormal strain was seen in SSc
patients, with increased strain in the basal segment and decreased
strain in the apical and mid segments. Some hypothesize that
the basal segment is hyperkinetic early in the disease course, and
as PH develops, the ability of the basal segment to compensate
decreases and RV failure ensues, suggesting a “two hit” hypothesis
in which pre-existing RV contractile dysfunction may predispose
to further dysfunction after PH occurs (28). While STE is a
promising technique for detecting unique patterns of early,
subclinical RV dysfunction in SSc patients, more evidence is
needed to discern its role in this population.
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FIGURE 2 | Abnormal speckle tracking strain in diffuse cutaneous systemic sclerosis. (A) Example of reduced right ventricular free wall strain (normal <-20%) and
(B) reduced left atrial reservoir strain (normal >39%) from the apical four chamber view in patients with systemic sclerosis. The white curve represents the average of
the peak systolic strain curves. RV, right ventricle; LA, left atrium.

Exercise Echocardiography
Recent studies have investigated whether exercise
echocardiography can unmask PH in SSc patients potentially
leading to earlier diagnosis and therapy for patients with SSc-
associated PH. A study by Rallidis et al. investigated 49 patients
with SSc undergoing exercise stress echocardiography, and
found that post-exercise TR velocity > 3.4 m/s had a sensitivity
of 90.5% and a specificity of 80% in detecting PH, as confirmed
with right heart catheterization (RHC) (30). In addition, a study
by Mukherjee et al. used STE to demonstrate that SSc-PAH
patients had diminished RV contractile reserve in response to
exercise (29). The authors demonstrated that all patients with
SSc had regional abnormalities in RVLSS at rest, but patients
with elevated RV systolic pressure (defined by RV systolic
pressure ≥35 mmHg) lacked an ability to increase both global
and regional strain with exercise. This finding suggests a lack of
RV contractile reserve in these patients likely due to intrinsic
myocardial dysfunction (29).

Although exercise-induced PH has clinical and prognostic
significance in patients with cardiopulmonary conditions, there
remains a lack of standard definition for exercise-induced PH
and a lack of standard measures for how the RV and pulmonary
vasculature respond to exercise (14). Further study is needed to
determine the utility of exercise echocardiography in unmasking
PH, as well as the use of exercise echocardiography in assessing
RV and PV contractile reserve.

Cardiovascular Magnetic Resonance
Cardiovascular magnetic resonance is the gold standard for
measuring RV size and function and is superior in terms
of reproducibility to 2DE in that it does not require a
suitable acoustic window for measuring RV size, geometry,
and function. CMR cine imaging provides excellent spatial
resolution and free breathing sequences provides real-time
physiologic assessment of the interventricular septal dynamics.
While some interventricular septal flattening is expected
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during inspiration to accommodate the increased volume of
blood, significant interventricular septal flattening is indicative
of a dysfunctional RV. Although evaluation of myocardial
fibrosis with late gadolinium enhancement (LGE) is useful
for the LV, it is challenging with the RV due to the RV’s
thin myocardium. Therefore, high resolution T1 mapping
and myocardial extracellular volume (ECV) have emerged as
useful techniques in detecting diffuse RV fibrosis, even in
the absence of PH. CMR measures of myocardial fibrosis,
such as T1 mapping and ECV, are valuable to detect fibrosis
early in the disease course, which can potentially alter
therapy and prevent worsening RV dysfunction (Figure 3)
(2, 11, 31–36). A study by Chaosuwannakit et al. found
that 21% of patients with SSc who underwent CMR had
RV dilation despite not meeting criteria for PH suggesting
the presence of intrinsic RV dysfunction – perhaps due to
fibrosis – in these patients (37). It is hypothesized that
myocardial fibrosis reflects a cellular response to increased RV
afterload, but more investigation is needed to understand if
myocardial fibrosis on CMR signals an adaptive or maladaptive
response (35).

While STE is shown to be beneficial in assessing subclinical
RV dysfunction in SSc-associated PH, CMR-derived strain has
also exhibited utility in assessing patients’ response to PH
therapy (38). Measurements of strain and strain rate can be
obtained using tissue-tracking CMR. In the ATPAHSS-O trial,
21 treatment naïve patients with SSc were analyzed using pre
and post-treatment CMR examinations. The study found a
significant improvement in measures of RVLSS, RV peak systolic
longitudinal strain rate, RV peak longitudinal atrial-diastolic
strain rate, and RV peak circumferential early diastolic strain
rate after 36 weeks of treatment. Notably, improvements in RV
and LV strain also correlated with improvements in clinical
outcomes (38).

Computed Tomography
When evaluating a SSc patient using CT, increased PA diameter
(>29 mm), septal flattening, and increased RV-LV ratio suggest
elevated pulmonary artery pressures (2, 22). High resolution
CT (HRCT) is used to assess for interstitial lung disease and
for signs of PVOD that can complicate SSc-PH diagnosis and
therapy (2, 39). Interstitial changes are visible on HRCT in up
to 80% of SSc patients, while ILD is clinically apparent in up to
40% of patients (14). While ILD is common in SSc, there is no
validated definition of the optimal threshold of lung involvement
to differentiate SSc-PH associated with ILD from SSc-PAH (14).
It has been demonstrated that combined fibrosis and emphysema
is associated with an increased risk of PH (14, 39–41), and
several studies have demonstrated poorer survival with SSc-PH
associated with ILD compared to SSc-PAH, making an accurate
diagnosis important (42, 43).

Right Heart Catheterization
Right heart catheterization remains the gold standard for
hemodynamic assessment of PH (2). Per the 2015 ESC/ERS
Guidelines for the diagnosis and treatment of pulmonary
hypertension (22), the decision to pursue a RHC depends on

three scores which include (1) peak tricuspid regurgitation
velocity; (2) the presence of at least 2 PH signs on TTE
[from two different categories among (a) the ventricles, (b)
the pulmonary artery, and (c) the inferior vena cava and right
atrium]; and (3) the presence of CTEPH or PAH risk factors or
associated conditions. For patients with high echocardiographic
probability of PH based on echo criteria (1 and 2 above), RHC
is recommended. When the probability of PH is intermediate
by echo but CTEPH or PAH risk factors are present, RHC
should be considered. In patients with symptoms such as
exertional dyspnea, angina, syncope, and exercise intolerance that
remain unexplained after initial cardiopulmonary evaluation,
RHC should be considered, especially when SSc is suspected or
confirmed.

Patients are often first screened with echocardiography, and
recommendations suggest referral for RHC if the tricuspid
regurgitant velocity is more than 2.8 m/s, or more than 2.5 m/s
if signs or symptoms of PH are present (2, 44). Because patients
with SSc can develop PH through a variety of pathophysiologic
mechanisms, RHC is recommended for confirmation of elevated
PA pressures on 2DE and to differentiate between different
mechanisms of PH (2, 22).

LEFT VENTRICULAR DYSFUNCTION

Left ventricular dysfunction in systemic sclerosis is most likely a
result of microvascular disease and inflammation. Most patients
do not have appreciable CAD (45). Autopsies of myocardial tissue
from SSc patients show focal areas of pathology, ranging from
contraction band necrosis to replacement fibrosis in the tissue
(45). Early detection of fibrosis may assist clinicians in identifying
those SSc patients at risk of arrythmia, rehospitalization, and
cardiovascular mortality (46).

Left ventricular involvement in SSc includes primarily
diastolic dysfunction, and, in some cases, restrictive
cardiomyopathy. Several studies show that overtly decreased left
ventricular ejection fraction (LVEF) is a relatively uncommon
feature of SSc (7, 47–50). Non-invasive identification of LV
abnormalities through imaging may have substantial diagnostic
as well as prognostic benefits to clinicians and patients, as further
elucidated below.

Evaluation
Echocardiography in SSc remains the best initial tool for
the evaluation of LV disease, due to its low cost, lack
of radiation, and extensive evidence base, as noted below.
Tissue Doppler and STE, specifically, are sensitive tests
for uncovering subclinical LV dysfunction, which may be
suggestive of microvascular disease. Guidelines recommend
asymptomatic patients with SSc receive yearly echocardiography
by trained sonographers following a standardized Scleroderma
Doppler Echocardiography Protocol, which includes multiple
standardized 2D echo and Doppler images (51). In select patients,
further imaging with CT or cardiac MRI may be helpful, though
the literature is less clear on specific recommendations regarding
these modalities.
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FIGURE 3 | Diffuse interstitial fibrosis of the right ventricle using cardiovascular magenetic resonance imaging. (A) Four chamber cine showing enlarged right
ventricle and circumferential pericardial effusion (∗). (B) Native T1 map showing increased T1 time (diffuse fibrosis) in right ventricular myocardium compared to left
ventricular myocardium. RV, right ventricle; LV, left ventricle. Note: this image is reproduced with permission from Belin et al. (11).

Echocardiography
Compared to healthy patients, patients with SSc undergoing
echocardiography show impaired LV diastolic function noted by
multiple measures. Structurally, LV hypertrophy appears more
common in SSc than controls (52). Patients with SSc also have
higher E/e’ ratios (53) (representing higher LV filling pressures)
and increased isovolumetric relaxation times compared to
controls (48). Interestingly, abnormal E/e’ ratio [defined as
transmitral to mitral annular early diastolic velocity ratio (54)]
was also associated with duration of recognized SSc disease in
months, as well as mean duration of Raynaud’s phenomenon,
suggesting temporal relation in SSc-related fibrotic disease of
different organs (49). Additionally, certain measurements may
also predict mortality in SSc patients. One study utilizing lateral
tissue Doppler early mitral annular (e’) velocity found that
each standard deviation decrease in e’ (suggesting impaired LV
relaxation) was associated with increased risk of death in SSc
patients at 1.9 ± 1.3 years (55). Thus, 2DE with tissue Doppler
analysis can provide important structural clues that can correlate
to disease progression as well as provide important prognostic
information.

Speckle Tracking Echocardiography
Systemic sclerosis patients also show differences in strain imaging
via echocardiography as compared to controls. Studies have
shown both regional and global LV longitudinal systolic strain
(LVLSS) is significantly lower in SSc patients than controls and
is most pronounced in the endocardial layer of the LV (56,
57). Furthermore, SSc patients with lower global LVLSS were
more likely to have elevated C-reactive protein values suggesting
greater inflammation. LVLSS also appears to worsen in SSc
patients over time (56, 58).

Lindholm et al. showed that SSc patients with PAH had the
lowest LVLSS when compared to both SSc patients without
PAH as well as controls, suggesting that PAH may be a co-
contributor to apparent LV disease in this population (59).
Similarly, SSc patients with hypertension had a higher prevalence
of diastolic dysfunction and worse LVLSS when compared to
SSc patients without hypertension and controls with and without

hypertension (60). Thus, STE can help identify subclinical cardiac
disease in SSc, and can also be used to show the incremental
effects of other medical conditions on an already vulnerable
myocardium.

Cardiovascular Magnetic Resonance
Similar to RV pathology, CMR provides information on LV
dysfunction beyond echocardiography in patients with SSc. In a
study evaluating 41 patients with SSc, Tzelepis et al. identified
mesocardial LGE in a linear pattern located in the basal and
midcavity segments of the LV. Patients with a greater than 15-
year duration of Raynaud’s phenomenon had a greater number
of enhancing segments than those with a shorter duration of
Raynaud’s. Furthermore, those with abnormal Holter monitor
results [defined as conduction delay or block, intermittent bundle
branch block, ventricular arrythmias (mono- or polymorphic,
or >100/day premature ventricular contractions {PVCs}), or
ventricular tachycardias] over 24 h also had a greater number of
enhancing segments suggesting an association between degree of
fibrosis and arrhythmias (61).

As mentioned earlier, ECV can identify diffuse fibrosis even in
patients with normal echocardiograms and without any evidence
of LGE on CMR. Thuny et al. showed that SSc patients with
normal echocardiograms had significantly higher global LV ECV
than age matched healthy controls and that global LV ECV
significantly correlated with the grade of diastolic dysfunction
(62). Another study found that, in addition to higher ECV,
SSc patients also had less myocardial blood flow augmentation
(measured by CMR perfusion imaging) when experiencing a
cold pressor test (hand immersion in cold water) compared to
healthy controls. This muted vasodilatory response was favored
to represent microvascular dysfunction in this population (63).
Higher baseline ECV also correlates to risk of cardiovascular
events among SSc patients with normal echocardiograms who
are monitored over time. In a study of 50 patients with dcSSc,
Markousis-Mavrogenis et al. found that baseline LGE, LV mass,
T2 mapping (a measure of edema) and ECV values were all
significant predictors of CV complications (arrythmia, heart
failure, pulmonary hypertension, and/or sudden cardiac death)
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over 1.2 years, including when data were controlled for sex, age,
and duration of disease (64).

Similar to stress echocardiography, stress CMR may be
more sensitive than rest CMR in detecting subclinical disease.
Asymptomatic patients with SSc show evidence of significantly
decreased myocardial perfusion on adenosine stress CMR when
compared to controls, even when there is no difference on rest
CMR (65). An additional study found that, of those patients
with stress CMR perfusion defects, none had correlating stenotic
lesions on coronary CT, suggesting that microvascular disease,
rather than epicardial CAD, may be the primary driver of
hypoperfusion in SSc (66).

PERICARDIAL DISEASE

Pericardial disease is a common feature of scleroderma,
with manifestations including pericardial inflammation,
effusion, fibrinous pericarditis, pericardial adhesions, and rarely
constrictive pericarditis or tamponade (1, 67). The prevalence
of clinically apparent pericardial disease is 5–16%, but autopsy
studies suggest the incidence of asymptomatic involvement
may be higher (1). Contemporary imaging studies suggest the
incidence of pericardial effusion is between 15 and 19% (68, 69).
Large effusions and those complicated by tamponade are rare but
associated with poor outcomes (70). Drainage of these effusions
or creation of a pericardial window in the context of associated
PAH is associated with significant mortality (70, 71). Constrictive
pericarditis represents a challenging diagnosis in this population
as clinical symptoms may not be present until right-heart failure
develops, and symptoms may overlap with signs of PAH and
SSc-associated cardiomyopathy. For this reason, among others, a
multimodality imaging approach is important in the assessment
of pericardial disease (72).

Evaluation
The diagnostic approach for patients with pericardial disease
and SSc is the same for those without associated SSc. All
patients should receive an electrocardiogram and transthoracic
echocardiogram. In select patients, further imaging with CT or
CMR may be helpful.

Electrocardiography
In acute pericarditis, the EKG may demonstrate classic findings
such as diffuse ST segment elevations and PR segment
depressions, but up to 40% present with atypical and non-
diagnostic findings (73). For those with small to moderate
pericardial effusions, there may be no EKG changes. In large
pericardial effusions, low voltage and electrical alternans may be
present (74).

Echocardiography
2DE is considered the first line imaging modality in almost all
types of pericardial disease because it is safe, readily available, and
quick to perform (74). 2DE allows for detection of pericardial
effusion and assessment of effusion size. It also can assess for
hemodynamic features of tamponade, including diastolic collapse

of right-sided chambers, significant respirophasic changes across
the mitral and tricuspid valves, and ventricular interdependence
with abnormal septal bounce during inspiration (75). Tissue
Doppler imaging is especially helpful in the diagnosis of
constrictive pericarditis. A high early (E) velocity, shortened
deceleration time, and reduced atrial (A) wave are characteristic.
With inspiration, mitral inflow velocity typically falls by 25–
40%, while tricuspid velocity increases by 40–60% (75). STE may
also be useful in this assessment, with reduced circumferential
strain and preserved global longitudinal strain consistent with
constriction (75). In addition, 3DE is useful in better delineating
the extent of pericardial thickening and the exact size, location,
and extent of stranding within the pericardial effusion (76).
Because many patients with acute pericarditis may have a normal
2DE (75), additional imaging modalities such as CMR or CT may
be helpful if clinical suspicion is high.

Computed Tomography
Computed tomography attenuation of the pericardium is similar
to the myocardium so visualization of the pericardium can
be challenging on CT. However, pericardial calcifications are
well visualized on CT. CT density measurements facilitate the
characterization of pericardial fluid; low density fluid [0–20
Hounsfield Units (HU)] is typical, while hemorrhagic effusions
or those associated with bacterial infections may have densities
of 50 HU or more (74). Because of the similar attenuation
of myocardium and pericardium on CT, echocardiography and
CMR are typically preferred.

Cardiovascular Magnetic Resonance
Due to its high inherent tissue contrast, excellent spatial and
temporal resolution, and ability to reconstruct in multiple planes,
CMR is well-suited for the evaluation of pericardial disease (77).
While not necessary for the diagnosis of acute pericarditis, CMR
can be helpful for those with incessant (ongoing symptoms >4–
6 weeks, but <3 months), recurrent, or chronic (>3 months) of
symptoms, or those in which clinical suspicion is high but initial
evaluation (EKG, echo) has been negative. Pericardial thickening
is readily viewed, and pericardial edema and inflammation
can be evaluated by both T2-weighted LGE imaging (77). Fat
suppression can increase the specificity of these findings. CMR
has been used to guide steroid therapy in recurrent pericarditis,
leading to lower overall steroid doses without an increased risk of
constrictive pericarditis or need for pericardial window, and with
lower rates of recurrence (78).

Constrictive pericarditis typically presents with thickening
of the pericardium, which is best appreciated on T1-weighted
imaging. However up to 18% of patients may have normal
pericardial thickness (79). Pericardial fusion in the absence
of active inflammation and parietal-visceral adherence are
indicative of constrictive pericarditis (80, 81). Hemodynamic
indicators of constriction are also well visualized on CMR;
respiratory flow variation across the mitral valve greater than 25%
is sensitive and specific for constriction, as is increased relative
septal excursion (82, 83). While echocardiography remains the
standard, consider CMR imaging when concern for pericarditis
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TABLE 1 | Applications, strengths, and weaknesses of common diagnostic modalities in scleroderma heart disease.

Imaging Modalities Adjunctive Modalities

SSc Disease
Process

Echo CT CMR EKG RHC

RV Dysfunction Initial screening tool.
Assesses for:
• chamber enlargement
• diastolic dysfunction (TV E/A)
• systolic function (TAPSE,

FAC, RVEF by 3DE)
• RV hemodynamics (RVSP)
• subclinical disease (strain,

exercise stress echo)

Often in conjunction
with pulmonary
imaging. Assesses for:
• Chamber size,

hypertrophy
• RVEF
• RV pressure and

volume overload (septal
flattening, increased
RV-LV ratio)

Gold standard for assessing RV
given complicated 3D
geometry. Assesses for:
• chamber enlargement
• diastolic dysfunction (RV mass,

hypertrophy)
• systolic function (RVEF)
• RV hemodynamics (RVSP)
• subclinical disease (strain)
• fibrosis and edema (T1

mapping, T2 mapping, ECV)

Signs of RVH, RV
strain

Direct measurement of
RV systolic and
diastolic pressure,
assessment of cardiac
output

PAH Initial screening tool. Provides
estimates of PASP based on
TV regurgitant jet velocity.

Cannot directly
estimate pressure but
may demonstrate
increased PA diameter
and signs of RV strain.

Like echo, provides estimates
of PASP using estimates of TV
regurgitant jet velocity.

Signs of RVH, RV
strain

Gold standard for
hemodynamic
assessment of PH.
Allows for differentiation
among WHO groups

LV Dysfunction Initial screening tool.
Assesses for:
• chamber enlargement
• diastolic dysfunction (MV E/A)
• systolic function (LVEF by

3DE)
• subclinical disease (strain)
• contractility via stress echo

Adjunct tool in selected
cases. Assesses for:
• chamber enlargement
• systolic function (LVEF)
• epicardial coronary

disease (coronary CT)

Adjunct tool in selected cases.
Assesses for:
• chamber enlargement
• diastolic dysfunction (LV mass,

LV hypertrophy, LA size)
• systolic function (LVEF)
• subclinical disease (strain)
• fibrosis and edema (LGE, T1

mapping, T2 mapping, ECV)
• perfusion via stress cMR

Signs of LVH Assessment of cardiac
output and wedge
pressure, which can
reveal elevated LV filling
pressures in diastolic
dysfunction and PVH
due to left heart disease

Pericardial
Disease

Initial screening tool.
Assesses for:
• effusion
• tamponade (diastolic collapse

of RV, respirophasic changes
across MV and TV, ventricular
interdependence)
• constriction (high E velocity,

reduced A wave, decreased
MV inflow velocity, increased
TV velocity)

Pericardial
calcifications, density
assessment of fluid

Adjunct tool in selected cases.
Assesses for:
• effusion
• pericardial thickening
• pericardial edema and

inflammation (T2 images, LGE)
• constriction (respiratory flow

variation across the mitral valve,
septal excursion)

Diffuse ST
segment
elevations and PR
segment
depressions,
electrical alternans
and low voltage in
large effusions

End-diastolic
equalization of
pressures across
cardiac chambers in
constriction; the
stiffened pericardium
limits expansion and
exerts equal pressure
on all chambers
(requires concurrent
R + LHC)

Arrhythmia Provides initial assessment of
cardiac structure and function
in the setting of arrhythmia

N/A Edema (T2 ratio) and fibrosis
(%LGE) may predict ventricular
arrhythmias

PVCs, conduction
disease, atrial and
ventricular
arrhythmias

N/A

Strengths Cheap, widely available. No
radiation

Evaluation of underlying
etiology of RV
dysfunction/PAH (ILD,
CTEPH). Not reliant on
acoustic windows

Not reliant on acoustic
windows. No radiation. Images
can be reconstructed in any
plane

Cheap, widely
available

Gold standard
assessment for PH

Limitations Complex geometry of RV
limits evaluation. Operator
dependent. Requires
adequate acoustic windows.
Novel techniques such as
STE require additional time,
resources, and expertise

Radiation exposure.
Limited assessment of
hemodynamics. Motion
artifact particularly at
high heart rates

Limited availability. Expensive.
Significant expertise required in
acquisition and interpretation.
Long examination time.
Requires frequent breath
holding. Sensitive, but findings
often non-specific for SSc and
require careful clinical
correlation

Not highly sensitive
or specific for any
disease

Provides no information
about morphology.
Invasive

SSc, systemic sclerosis; echo: echocardiography; CT, computed tomography; cMR, cardiovascular magnetic resonance; EKG, electrocardiography; RHC, right heart
catheterization; RV, right ventricle; TV, tricuspid valve; E/A; peak velocity in early diastole (E wave) to peak velocity flow in late diastole (atrial contraction, A wave); TAPSE,
tricuspid annular plane systolic excursion; FAC, fractional area change; EF, ejection fraction; 3DE, three-dimensional echocardiography; RVSP, right ventricular systolic
pressure; LV, left ventricle; ECV, extracellular volume; RVH, right ventricular hypertrophy; PAH, pulmonary arterial hypertension; PASP, pulmonary artery systolic pressure;
PA, pulmonary artery; WHO, World Health Organization; MV; mitral valve; LVEF, left ventricular ejection fraction; LGE, late gadolinium enhancement; LVH, left ventricular
hypertrophy; PVH, pulmonary venous hypertension; PVC, premature ventricular contractions; ILD, interstitial lung disease; CTEPH, chronic thromboembolic pulmonary
hypertension; PH, pulmonary hypertension; STE, speckle-tracking echocardiography.
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is high but echocardiography is unrevealing, or when symptoms
of pericarditis persist or recur over months.

Catheterization
Invasive hemodynamic measurement of right and left ventricular
pressure measurement is also important in the assessment
of constriction. The “dip and plateau” sign (end-diastolic
equalization of pressures), while not specific to constriction, can
help confirm the diagnosis in the right clinical context (74).

ARRHYTHMIA

Electrophysiologic studies of patients with SSc report conduction
defects, arrhythmia, and autonomic dysfunction in up to 51%
of patients (6). Atrial and ventricular ectopy, atrial fibrillation

and flutter, supraventricular tachycardia, ventricular tachycardia,
and atrioventricular block have all been associated (6). In a
recent study from a Danish cohort, there was a nearly two-
fold relative risk increase for incident atrial fibrillation and
flutter as well as pacemaker or ICD placement in patients with
SSc compared to age-matched controls (84). In the EUSTAR
database, arrhythmias caused 6% of SSc-related deaths, behind
only pulmonary fibrosis and PAH (85). The mechanism of
this is thought to be multifold- the direct consequences of
microvascular injury, the effects of fibrosis in the conduction
system and myocardium, and autonomic dysfunction (51, 86).
Importantly, autonomic dysfunction occurs early in the disease
course, even before the development of fibrosis or other
visceral manifestations. Low heart rate variability is a marker of
autonomic dysfunction and is correlated with pre-clinical cardiac
involvement (86).

FIGURE 4 | Algorithm for screening and workup of cardiovascular disease in SSc patients. CMR, cardiovascular magnetic resonance; SSc, systemic sclerosis; EKG,
electrocardiogram; LV, left ventricle; RV, right ventricle; RHC, right heart catheterization; LHC, left heart catheterization; EP, electrophysiology; CTA, computed
tomography angiography; PAH, pulmonary arterial hypertension; SPECT, single photon emission computed tomography.
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Evaluation
Arrhythmia is assessed by EKG and cardiac monitoring as
indicated. 2DE and CMR can be useful adjuncts to detect
structural or functional disease that may contribute to the
arrhythmia.

Electrocardiography
Screening EKG should be performed in all patients with SSc
(51). While not a particularly sensitive test, this can help
identify both conduction abnormalities and signs of hypertrophy
as well as chamber enlargement. Right bundle branch block
has been associated with a greater than five-fold increase in
mortality risk, thought to be reflective of either underlying
lung pathology or cardiac involvement (87). In a study of
100 SSc patients investigated with new onset heart failure,
56% had EKG abnormalities and 24% had PVCs. The PVC
burden corresponded positively with high-sensitivity troponin
and negatively with LV ejection fraction. Seven patients in this
study either suffered sudden cardiac death or required ICD
placement; the presence of more than 1190 PVCs/day identified
these patients with a sensitivity of 100% and specificity of 83%
(88). Prolonged QTc interval and QT dispersion may also predict
ventricular arrhythmias, as might an abnormal signal-averaged
EKG (SAE) (89, 90). Holter monitoring should be utilized if
there is any clinical concern for conduction abnormality, and
there should be a low threshold for implantable loop recorder
placement in the appropriate clinical context (51).

Echocardiography and Cardiovascular
Magnetic Resonance
All patients with scleroderma should receive a routine screening
echo, regardless of the presence or absence of arrhythmia.
The recently published Scleroderma Arrhythmia Clinical Utility
Study (SAnCtUS) evaluated 150 consecutive SSc patients assessed
with 24-h Holter and CMR, looking at markers of LV function,
edema (T2 mapping) and fibrosis (LGE). T2 mapping and LGE
were significant predictors for ventricular arrhythmias, but not
supraventricular arrhythmias. Using these CMR variables, the
study developed the SAnCtUS score to predict risk of ventricular
arrhythmia. The authors found that those with the highest score,
independent of ejection fraction or the presence of ventricular
tachycardia on baseline Holter, were 3.86 times more likely to
have sustained ventricular tachycardia or sudden cardiac death
at one year compared to those with lower scores (91). These
data suggest a possible role for CMR to risk stratify patients
for life threatening arrhythmias in the future, but this requires
further evaluation and prior to incorporation into routine
clinical care.

As evident in the discussion above, cardiac imaging modalities
offer different but often complementary data in the evaluation
of the SSc patient. Understanding the strengths and weaknesses
of each diagnostic test is necessary when deciding how best
to manage a particular symptom or abnormal finding. We
have summarized the utility of each modality, along with
their strengths and weaknesses, for the most common cardiac
complications of SSc in Table 1.

Given the abundance of diagnostic options, some nuance is
required when approaching a patient with newly diagnosed with
SSc. Due to the high prevalence of subclinical cardiac disease in
SSc and the low risk and relatively low cost of EKG, BNP or
NT-proBNP, and echocardiography, it is reasonable to perform
these tests annually. Echocardiography should be performed with
Doppler and STE when possible. If further imaging is needed,
patients with SSc should be referred to a cardiologist, preferably
one with expertise in SSc cardiac disease, who can help guide
appropriate and cost-effective management. With that in mind,
it is worth noting that that CMR must be interpreted with care.
CMR is highly sensitive, but abnormalities found in SSc such as
LGE, elevated ECV, and abnormal strain, are not specific for SSc
and can be found in a number of diseases (92). Imaging findings
must be interpreted while considering the entirety of the clinical
context to ensure accurate diagnosis. For this, among other
reasons, referral to a cardiologist with SSc experience is ideal.

Of course, the approach will depend on which signs and
symptoms are present, as well as the resources and expertise of a
given center. With those caveats, we have outlined our approach
to cardiac evaluation of the SSc patient in Figure 4. While this
approach is based on the current literature, further studies are
needed to determine whether this strategy is one that is centered
on improvement in patient outcomes.

FUTURE DIRECTIONS

There are many novel therapeutics under investigation for
use in scleroderma. While none appear specifically targeted
toward myocardial involvement, they may impact cardiac disease
through anti-inflammatory, anti-fibrotic, vascular/endothelial
pathways (93, 94). Cardiovascular imaging has the potential to
play an important role in the evaluation of these agents.

Cardiovascular imaging is increasingly being considered as
an adjunct to clinical trials. Imaging can help improve patient
selection by identifying those with the therapeutic target (i.e.,
pericardial inflammation or RV systolic dysfunction). It can help
determine the baseline distribution of prognostic factors (such
as myocardial fibrosis) in treatment and control arms and help
shed light on mechanism of disease or response to therapy (95,
96). It can also serve as a measure of efficacy in phase II or
phase III trials, helping inform larger randomized controlled
trials of hard clinical outcomes. For all these reasons, imaging
may play an increasingly important role in the evaluation of
therapeutics for SSc.

As an example, a recent meta-analysis identified reduced RV
ejection fraction and increased RV volumes as markers of risk for
clinical worsening and mortality in patients with PAH; markers
that could potentially be used as end points in clinical trials
(97). In patients with SSc-PAH, Sato et al. showed that upfront
combination therapy with tadalafil and ambrisentan improved
CMR-derived LV and RV strain and this correlated with
improvement in clinical outcomes, including WHO functional
class, 6MWD, NT-proBNP, and invasive hemodynamic markers
(38). However, these data were all collected as small case-control,
case series, or single-arm studies. Incorporating CMR data into
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randomized, double-blind, placebo-controlled trials of SSc-PAH
therapies with both imaging and clinical outcomes may yield
vital information. First, it would help definitively establish the
relationship between imaging markers of disease and clinical
endpoints. Second, as discussed above, it may help establish
meaningful thresholds in CMR markers for clinical monitoring
or future trials, as well as mechanistic insights into PAH
pathophysiology.

While PAH has served a model for this discussion, one can
imagine CMR being incorporated into randomized controlled
trials of other SSc-related cardiac pathology. For instance,
randomized controlled trials examining treatment effects of novel
anti-inflammatories in SSc-related pericarditis may measure
recurrence rates and persistence of symptoms as well as CMR
markers of pericardial inflammation on follow-up. Trials of novel
anti-fibrotics such as pirfenidone in SSc-related cardiac fibrosis
may assess arrhythmia burden as well as CMR measures of
fibrosis. By including these imaging endpoints, trials can help
definitively connect imaging to outcomes, enabling confident use
of surrogate endpoints going forward and facilitating clinical
monitoring of disease.

Use of artificial intelligence continues to proliferate in
imaging generally and it will undoubtedly impact SSc care.
Already deep learning techniques are being used to aid in
tissue segmentation and identification of fibrosis (98). Given
the prominent role fibrosis plays in SSc and particularly
arrhythmia risk, automated techniques may allow for earlier
identification of at risk individuals. Algorithms are being

developed to aid in motion and deformation pattern analysis (98),
which may allow for earlier detection of subtle abnormalities,
especially in the geometrically complex RV. Finally, learning
algorithms combining both clinical and imaging may be helpful
in guiding treatment selection and predicting response (98).
Given the complexity of the disease and its multiple treatment
options, SSc may prove a fertile ground for these types
of studies.

CONCLUSION

Cardiac complications of SSc are common, varied, and impact
heavily on patient outcomes. We have reviewed the evidence
supporting the use of cardiac imaging in the evaluation and
management of SSc heart disease and have offered our own
approach to caring for the SSc patient based on current literature.
While cardiac imaging is already foundational in that evaluation,
we anticipate it will assume growing importance in the years
to come.

AUTHOR CONTRIBUTIONS

PG, SH, and TH contributed to the literature review and
drafting the manuscript and figures. BF provided editorial
revision. All authors contributed to the article and approved the
submitted version.

REFERENCES
1. Champion HC. The heart in scleroderma. Rheum Dis Clin North Am. (2008)

34:181–viii.
2. Rangarajan V, Matiasz R, Freed BH. Cardiac complications of systemic

sclerosis and management: recent progress. Curr Opin Rheumatol. (2017)
29:574–84. doi: 10.1097/BOR.0000000000000439

3. Nihtyanova SI, Schreiber BE, Ong VH, Rosenberg D, Moinzadeh P, Coghlan
JG, et al. Prediction of pulmonary complications and long-term survival in
systemic sclerosis. Arthritis Rheumatol. (2014) 66:1625–35. doi: 10.1002/art.
38390

4. Komócsi A, Vorobcsuk A, Faludi R, Pintér T, Lenkey Z, Költo G, et al.
The impact of cardiopulmonary manifestations on the mortality of SSc: a
systematic review and meta-analysis of observational studies. Rheumatology
(Oxford). (2012) 51:1027–36. doi: 10.1093/rheumatology/ker357

5. Elhai M, Meune C, Avouac J, Kahan A, Allanore Y. Trends in mortality in
patients with systemic sclerosis over 40 years: a systematic review and meta-
analysis of cohort studies. Rheumatology. (2011) 51:1017–26. doi: 10.1093/
rheumatology/ker269

6. Bissell LA, Md Yusof MY, Buch MH. Primary myocardial disease in
scleroderma-a comprehensive review of the literature to inform the UK
systemic sclerosis study group cardiac working group. Rheumatology (Oxford).
(2017) 56:882–95. doi: 10.1093/rheumatology/kew364

7. Fernández-Codina A, Simeón-Aznar CP, Pinal-Fernandez I, Rodríguez-
Palomares J, Pizzi MN, Hidalgo CE, et al. Cardiac involvement in systemic
sclerosis: differences between clinical subsets and influence on survival.
Rheumatol Int. (2017) 37:75–84. doi: 10.1007/s00296-015-3382-2

8. Meune C, Khanna D, Aboulhosn J, Avouac J, Kahan A, Furst DE, et al. A
right ventricular diastolic impairment is common in systemic sclerosis and
is associated with other target-organ damage. Semin Arthritis Rheum. (2016)
45:439–45. doi: 10.1016/j.semarthrit.2015.07.002

9. Meune C, Allanore Y, Devaux JY, Dessault O, Duboc D, Weber S, et al. High
prevalence of right ventricular systolic dysfunction in early systemic sclerosis.
J Rheumatol. (2004) 31:1941–5.

10. Mukherjee M, Chung SE, Ton VK, Tedford RJ, Hummers LK, Wigley FM,
et al. Unique abnormalities in right ventricular longitudinal strain in systemic
sclerosis patients. Circ Cardiovasc Imaging. (2016) 9:e003792. doi: 10.1161/
CIRCIMAGING.115.003792

11. Belin RJ, Varga J, Collins JD, Freed BH. Right ventricular cardiomyopathy
in systemic sclerosis. Rheumatology (Oxford). (2017) 56:1045–7. doi: 10.1093/
rheumatology/kew494

12. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis,
1972-2002. Ann Rheum Dis. (2007) 66:940–4. doi: 10.1136/ard.2006.066068

13. Tedford RJ, Mudd JO, Girgis RE, Mathai SC, Zaiman AL, Housten-
Harris T, et al. Right ventricular dysfunction in systemic sclerosis-associated
pulmonary arterial hypertension. Circ Heart Fail. (2013) 6:953–63. doi: 10.
1161/CIRCHEARTFAILURE.112.000008

14. Haque A, Kiely DG, Kovacs G, Thompson AAR, Condliffe R. Pulmonary
hypertension phenotypes in patients with systemic sclerosis. Eur Respir Rev.
(2021) 30:210053. doi: 10.1183/16000617.0053-2021

15. Kylhammar D, Persson L, Hesselstrand R, Radegran G. Prognosis and
response to first-line single and combination therapy in pulmonary arterial
hypertension. Scand Cardiovasc J. (2014) 48:223–33. doi: 10.3109/14017431.
2014.931595

16. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey
CS, et al. Predicting survival in pulmonary arterial hypertension: insights from
the registry to evaluate early and long-term pulmonary arterial hypertension
disease management (REVEAL). Circulation. (2010) 122:164–72. doi: 10.1161/
CIRCULATIONAHA.109.898122

17. Cucuruzac R, Muntean I, Benedek I, Mester A, Rat N, Mitre A, et al. Right
ventricle remodeling and function in scleroderma patients. Biomed Res Int.
(2018) 2018:4528148. doi: 10.1155/2018/4528148

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 March 2022 | Volume 9 | Article 846213123

https://doi.org/10.1097/BOR.0000000000000439
https://doi.org/10.1002/art.38390
https://doi.org/10.1002/art.38390
https://doi.org/10.1093/rheumatology/ker357
https://doi.org/10.1093/rheumatology/ker269
https://doi.org/10.1093/rheumatology/ker269
https://doi.org/10.1093/rheumatology/kew364
https://doi.org/10.1007/s00296-015-3382-2
https://doi.org/10.1016/j.semarthrit.2015.07.002
https://doi.org/10.1161/CIRCIMAGING.115.003792
https://doi.org/10.1161/CIRCIMAGING.115.003792
https://doi.org/10.1093/rheumatology/kew494
https://doi.org/10.1093/rheumatology/kew494
https://doi.org/10.1136/ard.2006.066068
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000008
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000008
https://doi.org/10.1183/16000617.0053-2021
https://doi.org/10.3109/14017431.2014.931595
https://doi.org/10.3109/14017431.2014.931595
https://doi.org/10.1161/CIRCULATIONAHA.109.898122
https://doi.org/10.1161/CIRCULATIONAHA.109.898122
https://doi.org/10.1155/2018/4528148
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-846213 March 25, 2022 Time: 16:39 # 12

Glynn et al. Cardiovascular Imaging in SSc

18. Badesch DB, Tapson VF, McGoon MD, Brundage BH, Rubin LJ, Wigley FM,
et al. Continuous intravenous epoprostenol for pulmonary hypertension due
to the scleroderma spectrum of disease. A randomized, controlled trial. Ann
Intern Med. (2000) 132:425–34. doi: 10.7326/0003-4819-132-6-200003210-
00002

19. Attanasio U, Cuomo A, Pirozzi F, Loffredo S, Abete P, Petretta M, et al.
Pulmonary hypertension phenotypes in systemic sclerosis: the right diagnosis
for the right treatment. Int J Mol Sci. (2020) 21:4430. doi: 10.3390/
ijms21124430

20. Bourji KI, Kelemen BW, Mathai SC, Damico RL, Kolb TM, Mercurio V, et al.
Poor survival in patients with scleroderma and pulmonary hypertension due
to heart failure with preserved ejection fraction. Pulm Circ. (2017) 7:409–20.
doi: 10.1177/2045893217700438

21. Humbert M, Yaici A, de Groote P, Montani D, Sitbon O, Launay D, et al.
Screening for pulmonary arterial hypertension in patients with systemic
sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis
Rheum. (2011) 63:3522–30. doi: 10.1002/art.30541

22. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al.
2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary
hypertension: the joint task force for the diagnosis and treatment of pulmonary
hypertension of the European society of cardiology (ESC) and the European
respiratory society (ERS): endorsed by: association for European paediatric
and congenital cardiology (AEPC), international society for heart and
lung transplantation (ISHLT). Eur Heart J. (2016) 37:67–119. doi: 10.1093/
eurheartj/ehv317

23. Takahama H, McCully RB, Frantz RP, Kane GC. Unraveling the RV ejection
Doppler envelope: insight into pulmonary artery hemodynamics and disease
Severity. JACC Cardiovasc Imaging. (2017) 10(10 Pt B):1268–77. doi: 10.1016/
j.jcmg.2016.12.021

24. Argula RG, Karwa A, Lauer A, Gregg D, Silver RM, Feghali-Bostwick C, et al.
Differences in right ventricular functional changes during treatment between
systemic sclerosis-associated pulmonary arterial hypertension and idiopathic
pulmonary arterial hypertension. Ann Am Thorac Soc. (2017) 14:682–9. doi:
10.1513/AnnalsATS.201608-655OC

25. French S, Amsallem M, Ouazani N, Li S, Kudelko K, Zamanian RT, et al.
Non-invasive right ventricular load adaptability indices in patients with
scleroderma-associated pulmonary arterial hypertension. Pulm Circ. (2018)
8:2045894018788268. doi: 10.1177/2045894018788268

26. Pigatto E, Peluso D, Zanatta E, Polito P, Miatton P, Bourji K, et al. Evaluation of
right ventricular function performed by 3D-echocardiography in scleroderma
patients. Reumatismo. (2015) 66:259–63. doi: 10.4081/reumatismo.2014.773

27. Zairi I, Mzoughi K, Jnifene Z, Kamoun S, Jabeur M, Ben Moussa F, et al.
Speckle tracking echocardiography in systemic sclerosis: a useful method for
detection of myocardial involvement. Ann Cardiol Angeiol (Paris). (2019)
68:226–31. doi: 10.1016/j.ancard.2018.08.027

28. Mercurio V, Mukherjee M, Tedford RJ, Zamanian RT, Khair RM, Sato T,
et al. Improvement in right ventricular strain with ambrisentan and tadalafil
upfront therapy in scleroderma-associated pulmonary arterial hypertension.
Am J Respir Crit Care Med. (2018) 197:388–91. doi: 10.1164/rccm.201704-
0789LE

29. Mukherjee M, Mercurio V, Hsu S, Mayer SA, Mathai SC, Hummers LK,
et al. Assessment of right ventricular reserve utilizing exercise provocation in
systemic sclerosis. Int J Cardiovasc Imaging. (2021) 37:2137–47. doi: 10.1007/
s10554-021-02237-9

30. Rallidis LS, Papangelopoulou K, Anthi A, Tsangaris I, Varounis C, Makavos
G, et al. The role of exercise Doppler echocardiography to unmask pulmonary
arterial hypertension in selected patients with systemic sclerosis and equivocal
baseline echocardiographic values for pulmonary hypertension. Diagnostics
(Basel). (2021) 11:1200. doi: 10.3390/diagnostics11071200

31. Barison A, Gargani L, De Marchi D, Aquaro GD, Guiducci S, Picano
E, et al. Early myocardial and skeletal muscle interstitial remodelling in
systemic sclerosis: insights from extracellular volume quantification using
cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. (2015)
16:74–80. doi: 10.1093/ehjci/jeu167

32. Hromadka M, Seidlerova J, Suchy D, Rajdl D, Lhotsky J, Ludvik J, et al.
Myocardial fibrosis detected by magnetic resonance in systemic sclerosis
patients – relationship with biochemical and echocardiography parameters.
Int J Cardiol. (2017) 249:448–53. doi: 10.1016/j.ijcard.2017.08.072

33. Jankowich M, Abbasi SA, Vang A, Choudhary G. Right ventricular fibrosis is
related to pulmonary artery stiffness in pulmonary hypertension: a cardiac
magnetic resonance imaging study. Am J Respir Crit Care Med. (2019)
200:776–9. doi: 10.1164/rccm.201903-0580LE

34. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Rai AB, Matthews PM,
et al. Subclinical myocardial inflammation and diffuse fibrosis are common
in systemic sclerosis–a clinical study using myocardial T1-mapping and
extracellular volume quantification. J Cardiovasc Magn Reson. (2014) 16:21.
doi: 10.1186/1532-429X-16-21

35. Simpson CE, Hassoun PM. Myocardial fibrosis as a potential maladaptive
feature of right ventricle remodeling in pulmonary hypertension. Am J Respir
Crit Care Med. (2019) 200:662–3. doi: 10.1164/rccm.201906-1154ED

36. Terrier B, Dechartres A, Gouya H, Ben Arfi M, Berezne A, Regent A, et al.
Cardiac intravoxel incoherent motion diffusion-weighted magnetic resonance
imaging with T1 mapping to assess myocardial perfusion and fibrosis in
systemic sclerosis: association with cardiac events from a prospective Cohort
study. Arthritis Rheumatol. (2020) 72:1571–80. doi: 10.1002/art.41308

37. Chaosuwannakit N, Makarawate P. Value of cardiac magnetic resonance
imaging in systemic sclerosis. Reumatologia. (2018) 56:92–8. doi: 10.5114/
reum.2018.75520

38. Sato T, Ambale-Venkatesh B, Lima JAC, Zimmerman SL, Tedford RJ, Fujii T,
et al. The impact of ambrisentan and tadalafil upfront combination therapy on
cardiac function in scleroderma associated pulmonary arterial hypertension
patients: cardiac magnetic resonance feature tracking study. Pulm Circ. (2018)
8:2045893217748307. doi: 10.1177/2045893217748307

39. Gunther S, Jais X, Maitre S, Berezne A, Dorfmuller P, Seferian A, et al.
Computed tomography findings of pulmonary venoocclusive disease in
scleroderma patients presenting with precapillary pulmonary hypertension.
Arthritis Rheum. (2012) 64:2995–3005. doi: 10.1002/art.34501

40. Antoniou KM, Margaritopoulos GA, Goh NS, Karagiannis K, Desai SR,
Nicholson AG, et al. Combined pulmonary fibrosis and emphysema in
scleroderma-related lung disease has a major confounding effect on lung
physiology and screening for pulmonary hypertension. Arthritis Rheumatol.
(2016) 68:1004–12. doi: 10.1002/art.39528

41. Cottin V, Nunes H, Brillet PY, Delaval P, Devouassoux G, Tillie-Leblond I, et al.
Combined pulmonary fibrosis and emphysema: a distinct underrecognised
entity. Eur Respir J. (2005) 26:586–93. doi: 10.1183/09031936.05.00021005

42. Launay D, Humbert M, Berezne A, Cottin V, Allanore Y, Couderc LJ, et al.
Clinical characteristics and survival in systemic sclerosis-related pulmonary
hypertension associated with interstitial lung disease. Chest. (2011) 140:1016–
24. doi: 10.1378/chest.10-2473

43. Mathai SC, Hummers LK, Champion HC, Wigley FM, Zaiman A, Hassoun
PM, et al. Survival in pulmonary hypertension associated with the scleroderma
spectrum of diseases: impact of interstitial lung disease. Arthritis Rheum.
(2009) 60:569–77. doi: 10.1002/art.24267

44. Khanna D, Zhao C, Saggar R, Mathai SC, Chung L, Coghlan JG, et al.
Long-term outcomes in patients with connective tissue disease-associated
pulmonary arterial hypertension in the modern treatment era: meta-
analyses of randomized, controlled trials and observational registries. Arthritis
Rheumatol. (2021) 73:837–47. doi: 10.1002/art.41669

45. Bulkley BH, Ridolfi RL, Salyer WR, Hutchins GM. Myocardial lesions of
progressive systemic sclerosis. A cause of cardiac dysfunction. Circulation.
(1976) 53:483–90. doi: 10.1161/01.cir.53.3.483

46. Mueller KA, Mueller II, Eppler D, Zuern CS, Seizer P, Kramer U, et al. Clinical
and histopathological features of patients with systemic sclerosis undergoing
endomyocardial biopsy. PLoS One. (2015) 10:e0126707. doi: 10.1371/journal.
pone.0126707

47. Guerra F, Stronati G, Fischietti C, Ferrarini A, Zuliani L, Pomponio G, et al.
Global longitudinal strain measured by speckle tracking identifies subclinical
heart involvement in patients with systemic sclerosis. Eur J Prev Cardiol.
(2018) 25:1598–606. doi: 10.1177/2047487318786315

48. Kepez A, Akdogan A, Sade LE, Deniz A, Kalyoncu U, Karadag O,
et al. Detection of subclinical cardiac involvement in systemic sclerosis by
echocardiographic strain imaging. Echocardiography. (2008) 25:191–7. doi:
10.1111/j.1540-8175.2007.00582.x

49. Poanta L, Dadu R, Tiboc C, Rednic S, Dumitrascu D. Systolic and diastolic
function in patients with systemic sclerosis. Eur J Intern Med. (2009) 20:378–
82. doi: 10.1016/j.ejim.2008.10.011

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 March 2022 | Volume 9 | Article 846213124

https://doi.org/10.7326/0003-4819-132-6-200003210-00002
https://doi.org/10.7326/0003-4819-132-6-200003210-00002
https://doi.org/10.3390/ijms21124430
https://doi.org/10.3390/ijms21124430
https://doi.org/10.1177/2045893217700438
https://doi.org/10.1002/art.30541
https://doi.org/10.1093/eurheartj/ehv317
https://doi.org/10.1093/eurheartj/ehv317
https://doi.org/10.1016/j.jcmg.2016.12.021
https://doi.org/10.1016/j.jcmg.2016.12.021
https://doi.org/10.1513/AnnalsATS.201608-655OC
https://doi.org/10.1513/AnnalsATS.201608-655OC
https://doi.org/10.1177/2045894018788268
https://doi.org/10.4081/reumatismo.2014.773
https://doi.org/10.1016/j.ancard.2018.08.027
https://doi.org/10.1164/rccm.201704-0789LE
https://doi.org/10.1164/rccm.201704-0789LE
https://doi.org/10.1007/s10554-021-02237-9
https://doi.org/10.1007/s10554-021-02237-9
https://doi.org/10.3390/diagnostics11071200
https://doi.org/10.1093/ehjci/jeu167
https://doi.org/10.1016/j.ijcard.2017.08.072
https://doi.org/10.1164/rccm.201903-0580LE
https://doi.org/10.1186/1532-429X-16-21
https://doi.org/10.1164/rccm.201906-1154ED
https://doi.org/10.1002/art.41308
https://doi.org/10.5114/reum.2018.75520
https://doi.org/10.5114/reum.2018.75520
https://doi.org/10.1177/2045893217748307
https://doi.org/10.1002/art.34501
https://doi.org/10.1002/art.39528
https://doi.org/10.1183/09031936.05.00021005
https://doi.org/10.1378/chest.10-2473
https://doi.org/10.1002/art.24267
https://doi.org/10.1002/art.41669
https://doi.org/10.1161/01.cir.53.3.483
https://doi.org/10.1371/journal.pone.0126707
https://doi.org/10.1371/journal.pone.0126707
https://doi.org/10.1177/2047487318786315
https://doi.org/10.1111/j.1540-8175.2007.00582.x
https://doi.org/10.1111/j.1540-8175.2007.00582.x
https://doi.org/10.1016/j.ejim.2008.10.011
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-846213 March 25, 2022 Time: 16:39 # 13

Glynn et al. Cardiovascular Imaging in SSc

50. Wranicz J, Zielinska M, Cygankiewicz I, Dziankowska-Bartkowiak B, Sysa-
Jedrzejowska A. Early cardiovascular involvement in patients with systemic
sclerosis (SSc). Med Sci Monit. (2002) 8:CR78–82.

51. Bissell LA, Anderson M, Burgess M, Chakravarty K, Coghlan G, Dumitru RB,
et al. Consensus best practice pathway of the UK systemic sclerosis study
group: management of cardiac disease in systemic sclerosis. Rheumatology
(Oxford). (2017) 56:912–21. doi: 10.1093/rheumatology/kew488

52. Papagoras C, Achenbach K, Tsifetaki N, Tsiouris S, Fotopoulos A, Drosos AA.
Heart involvement in systemic sclerosis: a combined echocardiographic and
scintigraphic study. Clin Rheumatol. (2014) 33:1105–11. doi: 10.1007/s10067-
014-2666-3

53. Cadeddu C, Deidda M, Giau G, Lilliu M, Cadeddu F, Binaghi G, et al.
Contractile reserve in systemic sclerosis patients as a major predictor of global
cardiac impairment and exercise tolerance. Int J Cardiovasc Imaging. (2015)
31:529–36. doi: 10.1007/s10554-014-0583-9

54. Santas E, Garcia-Blas S, Minana G, Sanchis J, Bodi V, Escribano D, et al.
Prognostic implications of tissue Doppler imaging-derived e/ea ratio in acute
heart failure patients. Echocardiography. (2015) 32:213–20. doi: 10.1111/echo.
12617

55. Hinchcliff M, Desai CS, Varga J, Shah SJ. Prevalence, prognosis, and factors
associated with left ventricular diastolic dysfunction in systemic sclerosis. Clin
Exp Rheumatol. (2012) 30(2 Suppl. 71):S30–7.

56. Stronati G, Manfredi L, Ferrarini A, Zuliani L, Fogante M, Schicchi N, et al.
Subclinical progression of systemic sclerosis-related cardiomyopathy. Eur J
Prev Cardiol. (2020) 27:1876–86. doi: 10.1177/2047487320916591

57. Karadag DT, Sahin T, Tekeoglu S, Isik OO, Yazici A, Eraldemir FC, et al.
Evaluation of left and right ventricle by two-dimensional speckle tracking
echocardiography in systemic sclerosis patients without overt cardiac disease.
Clin Rheumatol. (2020) 39:37–48. doi: 10.1007/s10067-019-04604-3

58. Spethmann S, Rieper K, Riemekasten G, Borges AC, Schattke S, Burmester GR,
et al. Echocardiographic follow-up of patients with systemic sclerosis by 2D
speckle tracking echocardiography of the left ventricle. Cardiovasc Ultrasound.
(2014) 12:13. doi: 10.1186/1476-7120-12-13

59. Lindholm A, Hesselstrand R, Radegran G, Arheden H, Ostenfeld E. Decreased
biventricular longitudinal strain in patients with systemic sclerosis is mainly
caused by pulmonary hypertension and not by systemic sclerosis per se. Clin
Physiol Funct Imaging. (2019) 39:215–25. doi: 10.1111/cpf.12561

60. Mercurio V, Hinze AM, Hummers LK, Wigley FM, Shah AA, Mukherjee
M. Essential hypertension worsens left ventricular contractility in systemic
sclerosis. J Rheumatol. (2021) 48:1299–306. doi: 10.3899/jrheum.200873

61. Tzelepis GE, Kelekis NL, Plastiras SC, Mitseas P, Economopoulos N, Kampolis
C, et al. Pattern and distribution of myocardial fibrosis in systemic sclerosis: a
delayed enhanced magnetic resonance imaging study. Arthritis Rheum. (2007)
56:3827–36. doi: 10.1002/art.22971

62. Thuny F, Lovric D, Schnell F, Bergerot C, Ernande L, Cottin V, et al.
Quantification of myocardial extracellular volume fraction with cardiac MR
imaging for early detection of left ventricle involvement in systemic sclerosis.
Radiology. (2014) 271:373–80. doi: 10.1148/radiol.13131280

63. Galea N, Rosato E, Gigante A, Borrazzo C, Fiorelli A, Barchetti G, et al.
Early myocardial damage and microvascular dysfunction in asymptomatic
patients with systemic sclerosis: a cardiovascular magnetic resonance study
with cold pressor test. PLoS One. (2020) 15:e0244282. doi: 10.1371/journal.
pone.0244282

64. Markousis-Mavrogenis G, Bournia VK, Panopoulos S, Koutsogeorgopoulou
L, Kanoupakis G, Apostolou D, et al. Cardiovascular magnetic resonance
identifies high-risk systemic sclerosis patients with normal echocardiograms
and provides incremental prognostic value. Diagnostics (Basel). (2019) 9:220.
doi: 10.3390/diagnostics9040220

65. Gyllenhammar T, Kanski M, Engblom H, Wuttge DM, Carlsson M,
Hesselstrand R, et al. Decreased global myocardial perfusion at adenosine
stress as a potential new biomarker for microvascular disease in systemic
sclerosis: a magnetic resonance study. BMC Cardiovasc Disord. (2018) 18:16.
doi: 10.1186/s12872-018-0756-x

66. Giacomelli R, Di Cesare E, Cipriani P, Ruscitti P, Di Sibio A, Liakouli V,
et al. Pharmacological stress, rest perfusion and delayed enhancement cardiac
magnetic resonance identifies very early cardiac involvement in systemic
sclerosis patients of recent onset. Int J Rheum Dis. (2017) 20:1247–60. doi:
10.1111/1756-185X.13107

67. Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol.
(2014) 6:993–1005. doi: 10.4330/wjc.v6.i9.993

68. Meune C, Avouac J, Wahbi K, Cabanes L, Wipff J, Mouthon L, et al. Cardiac
involvement in systemic sclerosis assessed by tissue-doppler echocardiography
during routine care: a controlled study of 100 consecutive patients. Arthritis
Rheum. (2008) 58:1803–9. doi: 10.1002/art.23463

69. Hachulla AL, Launay D, Gaxotte V, de Groote P, Lamblin N, Devos P, et al.
Cardiac magnetic resonance imaging in systemic sclerosis: a cross-sectional
observational study of 52 patients. Ann Rheum Dis. (2009) 68:1878–84. doi:
10.1136/ard.2008.095836

70. Dunne JV, Chou JP, Viswanathan M, Wilcox P, Huang SH. Cardiac tamponade
and large pericardial effusions in systemic sclerosis. Clin Rheumatol. (2011)
30:433–8. doi: 10.1007/s10067-010-1667-0

71. Hemnes AR, Gaine SP, Wiener CM. Poor outcomes associated with drainage of
pericardial effusions in patients with pulmonary arterial hypertension. South
Med J. (2008) 101:490–4. doi: 10.1097/SMJ.0b013e31816c0169

72. Verhaert D, Gabriel RS, Johnston D, Lytle BW, Desai MY, Klein AL. The
role of multimodality imaging in the management of pericardial disease.
Circ Cardiovasc Imaging. (2010) 3:333–43. doi: 10.1161/CIRCIMAGING.109.
921791

73. Chiabrando JG, Bonaventura A, Vecchié A, Wohlford GF, Mauro AG, Jordan
JH, et al. Management of acute and recurrent pericarditis: JACC state-of-
the-art review. J Am Coll Cardiol. (2020) 75:76–92. doi: 10.1016/j.jacc.2019.
11.021

74. Cosyns B, Plein S, Nihoyanopoulos P, Smiseth O, Achenbach S, Andrade MJ,
et al. European association of cardiovascular imaging (EACVI) position paper:
multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging.
(2014) 16:12–31. doi: 10.1093/ehjci/jeu128

75. Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B, et al. American
society of echocardiography clinical recommendations for multimodality
cardiovascular imaging of patients with pericardial disease: endorsed by the
society for cardiovascular magnetic resonance and society of cardiovascular
computed tomography. J Am Soc Echocardiogr. (2013) 26:965–1012.e15. doi:
10.1016/j.echo.2013.06.023

76. Veress G, Feng D, Oh JK. Echocardiography in pericardial diseases: new
developments. Heart Fail Rev. (2013) 18:267–75. doi: 10.1007/s10741-012-
9325-z

77. Ho N, Nesbitt G, Hanneman K, Thavendiranathan P. Assessment of
pericardial disease with cardiovascular MRI.Heart Fail Clin. (2021) 17:109–20.
doi: 10.1016/j.hfc.2020.08.008

78. Alraies MC, AlJaroudi W, Yarmohammadi H, Yingchoncharoen T, Schuster
A, Senapati A, et al. Usefulness of cardiac magnetic resonance-guided
management in patients with recurrent pericarditis. Am J Cardiol. (2015)
115:542–7. doi: 10.1016/j.amjcard.2014.11.041

79. Talreja DR, Edwards WD, Danielson GK, Schaff HV, Tajik AJ, Tazelaar
HD, et al. Constrictive pericarditis in 26 patients with histologically normal
pericardial thickness. Circulation. (2003) 108:1852–7. doi: 10.1161/01.CIR.
0000087606.18453.FD

80. Aquaro GD, Barison A, Cagnolo A, Todiere G, Lombardi M, Emdin M. Role
of tissue characterization by cardiac magnetic resonance in the diagnosis of
constrictive pericarditis. Int J Cardiovasc Imaging. (2015) 31:1021–31. doi:
10.1007/s10554-015-0648-4

81. Power JA, Thompson DV, Rayarao G, Doyle M, Biederman RW. Cardiac
magnetic resonance radiofrequency tissue tagging for diagnosis of constrictive
pericarditis: a proof of concept study. J Thorac Cardiovasc Surg. (2016)
151:1348–55. doi: 10.1016/j.jtcvs.2015.12.035

82. Thavendiranathan P, Verhaert D, Walls MC, Bender JA, Rajagopalan S, Chung
YC, et al. Simultaneous right and left heart real-time, free-breathing CMR flow
quantification identifies constrictive physiology. JACC Cardiovasc Imaging.
(2012) 5:15–24. doi: 10.1016/j.jcmg.2011.07.010

83. Bolen MA, Rajiah P, Kusunose K, Collier P, Klein A, Popović ZB, et al.
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A Rare Case of Isolated Right
Ventricular Non-compaction With the
Novel TTN Mutation
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Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China

Isolated right ventricular non-compaction (RVNC) is rare yet life-threatening if left
untreated, especially when accompanied by ventricular tachycardia. We describe a
rare case of isolated RVNC, presenting as a prominent and excessive trabeculation
of the right ventricle (RV), with an abnormal electrocardiogram. The transthoracic
echocardiography, computed tomography, and ventricular angiography results clearly
demonstrated an isolated spongy RV, both anatomically and functionally. Genetic
testing identified a missense mutation of TTN. Combined, the diagnosis of RVNC
was established. The subsequent combination of heart failure therapy, antiarrhythmic,
and anticoagulation therapy were effective with a favorable outcome. This case report
describes the possible etiology, manifestation, characteristic images, and problematic
diagnostic criteria of the isolated RVNC. This case also emphasizes the necessity for
comprehensive cardiac screening in familial cardiomyopathy.

Keywords: non-compaction, ventricular tachycardia, TTN, spongy heart, trabeculae

INTRODUCTION

Ventricular non-compaction remains a genetically and phenotypically heterogeneous myocardial
disorder with multiple possible concomitant phenotypes (1). Pathologically, it is characterized
by excessive trabeculae and deep intertrabecular recesses in the ventricle. Non-compaction refers
to the cessation of compaction of the loosely interwoven meshwork of myocardial fibers during
intrauterine life, typically occurring in the left ventricle or bi-ventricle, and isolated RVNC is
rare. The pathogenesis of ventricular non-compaction remains unclear. Genetics is believed to
play an important role since genetic defects account for almost 40% of patients with ventricular
non-compaction. However, studies have demonstrated that acquired causes are also expected,
specifically in sporadic adults (2). Symptomatic individuals with ventricular non-compaction
present varying degrees of heart failure, systemic thromboembolism, arrhythmia, or sudden cardiac
death (SCD). Here, we present a case of an isolated RVNC, in which the first manifestation was
syncope caused by VT.

CASE DESCRIPTION

A 61-year-old female patient was admitted to our hospital with exertional dyspnea and lower-
extremity edema for 3 months. The patient’s past medical history revealed hypertension for over
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20 years, treated with oral nifedipine. Six years ago, the patient
was admitted to a local hospital with several episodes of
syncope. The patient noted feeling palpitation accompanied
by perspiration and chest tightness; the symptoms had
been recurrent. After admission to the local hospital, the
patient underwent electrocardiogram (ECG) examination,
echocardiography, and ventricle angiography. The ECG
suggested VT and the ventricle angiography showed dilated right
ventricle (LV) (Figure 1). Echocardiography revealed normal
LV size and function. The initial diagnoses made by the local
hospital were cardiomyopathy (undefined class) with VT. To
reduce the risk of SCD, the patient received a single-chamber
implantable cardioverter-defibrillator (ICD) at the local hospital.
A single lead was also implanted in the RV (Supplementary
Figure 1). Four years after the ICD implantation, the patient
felt palpitations accompanied by discomfort in the precordial
area. The ICD program recorded an attack of VT, which was
terminated by ICD shock. The patient had no recurrence of such
symptoms before admission to our hospital since then.

After admission to our hospital, physical examination showed
severe pitting lower extremity edema. The laboratory test results
were as follows: NT-proBNP, 1930.84 pg/ml (limit of reference,
0–125 pg/ml); troponin I, 472 ng/L (0–30.9 ng/L); fibrin
degradation products, 49.33 µg/ml; and D-dimer, 17.23 ug/ml
(0–0.5 µg/ml). Transthoracic echocardiography (TTE) revealed
enlarged RV (RA, 36 mm; RV, 46 mm), right heart failure
(tricuspid annular plane systolic excursion 9 mm, Tei index
0.27, RV-fractional area changes 22%), and typical features of
spongy heart in the RV, including protruding trabecular muscles
and deep intertrabecular recesses communicated with the RV
cavity. Furthermore, the measured ratio of non-compacted to
compacted myocardium (NC/C) was 2.7:1 (Figure 2). These
findings suggested non-compaction in the RV. Furthermore,
there were systolic blue regurgitation signals detected at the
tricuspid orifice with a Vmax of 2.7 m/s, indicating tricuspid
insufficiency (TI).

Ensuing, we reviewed the videos of coronary angiography
from the local hospital, which demonstrated a smooth intima
and no stenosis, excluding the possibility of obstructive
coronary artery disease (Supplementary Figure 2). Ventricular
angiography revealed a dilated RV, excessive trabeculae,
and deep recesses with the feather-like retention of the
contrast agent at the apex and outflow tract of RV. No
abnormality was observed in the LV (Figure 3). However, the
characteristic features of RVNC failed to attract the attention of
the local doctors.

Due to the ICD, cardiac magnetic resonance (CMR) was
not feasible; it was then substituted by Contrast Computed
tomography (CT). The Contrast CT revealed multiple,
protruding, low-density intracardiac trabeculae, high-density
contrast agent in the intertrabecular recesses and RV cavity.
The LV myocardium is slightly thickened, and the trabeculae is
normal (Figure 4). Genetic testing identified a novel mutation
(c.16799T > C/p.L5525S) in the exon 58 of titin gene (TTN,
Ref Seq NM_001256850), which was predicted to be probably
damaging by in silico prediction tools Polyphen2. The genetic
implications further established the diagnosis of RVNC. Finally,

isolated RVNC was diagnosed correctly by imaging and genetic
testing results.

Subsequently, the patient was treated with loop diuretics
for volume management, oral sacubitril/valsartan sodium
for ventricular remodeling, amiodarone and metoprolol for
arrhythmia and ICD shock prevention, and warfarin for
embolism prevention. The patient’s clinical symptoms markedly
improved during hospitalization and within the 6 months of
follow-up. The detailed timeline of this patient from symptom
onset to follow-up is illustrated in Figure 5.

DISCUSSION

Isolated RVNC is not commonly reported. Ventricular non-
compaction is associated with life-threatening complications,
such as VT and systemic thromboembolism. The diagnosis
of ventricular non-compaction was not considered by the
local hospital when the patient manifested several episodes
of syncope. Fortunately, the patient was treated in time and
an ICD implantation was conducted to reduce the risk of
SCD. The diagnostic criteria for ventricular non-compaction
rely on non-invasive imaging examinations, such as TTE and
CMR, which focus on the trabecular in the ventricle and the
ratio of NC/C. At present, there are no diagnostic criteria
for RVNC, and the diagnostic criteria for left ventricular
non-compaction (LVNC) are mostly adopted clinically. Even
so, overdiagnosis and overtreatment cannot be avoided. The
prevalence rates in healthy populations who fulfill diagnostic
criteria for LV non-compaction, proposed by Petersen et al.
(3) (a ratio of NC/C greater than 2.3 at end-diastole) is
up to 43%, raising concern about its disease status and the
potential for overdiagnosis (4). Thus, population screening
is generally ineffective. During the patient’s hospitalization, a
final diagnosis of isolated RVNC was made by a combined
examination of ventricular angiography, TTE, and CT. For
the differential diagnosis, it is necessary to distinguish RVNC
from arrhythmogenic right ventricular cardiomyopathy (ARVC).
ARVC mainly involves the RV and is characterized by gradual
replacement of myocardial tissue by fibrous fat. In our case, the
imaging results indicated the structure of the RV was excessive
trabeculae and deep recesses, which did not conform to the
pathological changes of ARVC. CMR could visualize ventricular
structure and the tissue characterization clearly enough to
distinguish between the two diseases. However, CMR was not
performed in our hospital because of the non-diamagnetic
model of the patient’s ICD, and discontinuation of ICD during
CMR scanning would put the patient at risk of ventricular
tachycardia/fibrillation. A lack of CMR results is indeed a
limitation of our case report. This case illustrates the crucial
role of combined imaging examinations in the diagnosis of
rare cardiomyopathy.

As the proband, the patient declared no history of syncope
or SCD in her family. TTE screening was performed and
no characteristic excessive trabeculae and deep intertrabecular
recesses were found in any of the first-degree family members.
Despite this, genetic testing in the setting of pathological
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FIGURE 1 | Holter electrocardiogram (ECG) on admission showed three consecutive episodes of ventricular premature beats (A) and ventricular tachycardia
(VT) (B); Twelve-lead ECG after VT termination indicated sinus rhythm (C).

FIGURE 2 | Transthoracic echocardiography (TTE) shows three anatomical components, including thin compacted layer, prominent intracardiac trabeculae (the red
arrow) and deep intertrabecular recesses. The measured ratio of non-compacted to compacted myocardium was 2.7:1 (A); Color Doppler echocardiography reveals
deep recesses communicated with the Right ventricle (RV) cavity (the green arrow) (B).

non-compaction may contribute to the exact diagnosis and
identification of at-risk relatives. Recently, accumulating studies
have reported the genotype-phenotype correlations in patients
with LVNC (2, 5). Ventricular non-compaction phenotype
has been associated with more than 70 genes, such as
MYH7, ACTC1, MYBPC3, TNNT2, TPM1, and TTN (6, 7).
Among them, sarcomere genes, relevant for the structure of
contractile and non-contractile elements with single missense
mutations, are most commonly detected, accounting for the

majority of genetic etiology of ventricle non-compaction (2,
8). The sarcomere gene consists of MYH7, MYBPC3, TTN,
ACTC1, and so on (9). A meta-analysis indicated that the
most frequently mutated genes in patients with LV non-
compaction were TTN (11%), showing a pooled frequency
of 11% (95% CI 4–29%) (10). In addition, sporadic cases
of LVNC are prevalent in adults, indicating the contribution
of acquired causes (2). Hence, the presumed mechanism of
right heart failure in our patient is that the TTN gene
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FIGURE 3 | Right ventricle (RV) angiography revealed a dilated RV, excessive trabeculae and deep recesses with the retention of contrast agent at the apex and
outflow tract of RV (A) (yellow arrow: trabeculae; red arrow: deep intertrabecular recesses), while no abnormality in left ventricle (LV) (B).

FIGURE 4 | Contrast Computed tomography (CT) revealed abnormally dilated right ventricle (RV) and right atrium (RA), multiple protruding low-density intracardiac
trabeculae attached to wall of the RV, and the high-density contrast agent in intertrabecular recesses and RV cavity (A–F) [green arrow: trabeculae (A–F); red arrow:
ICD lead (A,C,E)]; The left ventricle (LV) myocardium is thickened, and the trabeculae is normal (A–F).

missense mutation may terminate the compaction process
of endocardial muscle trabecular muscle and result in non-
compaction in RV, leading to reduced RV systolic function and
severe right heart failure.

At present, the association between the clinical prognosis
and genetics of non-compaction in adults remains controversial.
Previous follow-up data on individuals with LVNC suggested no
correlation between increased trabeculation and the development
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FIGURE 5 | The detailed timeline of this patient from the symptom onset to follow-up. ECG, electrocardiogram; VT, ventricular tachycardia; TTE, transthoracic
echocardiography; ICD, implantable cardioverter-defibrillator; RV, right ventricle; CT, computed tomography; LV, left ventricle; RVNC, right ventricular
non-compaction.

of diseases or adverse events (2, 11, 12). However, other evidence
indicated carriers of pathogenic variants were more likely to
develop adverse outcomes compared with non-carriers (58.5% vs.
25.8%; P < 0.01), and close follow-up for carriers was beneficial
(1). Differences in screening genes and end points might partially
explain the difference in these controversial results between these

studies. Determining whether gene testing in adults with non-
compaction can contribute to diagnostic issues and whether
it benefits clinical treatment remains to be a major challenge
for cardiologists.

Currently, there is no effective treatment for ventricular non-
compaction. Strategies of therapy for confirmed patients are
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mainly targeted at the three major complications: heart failure,
arrhythmia, and thromboembolism. After ICD implantation
and pharmaceutical treatment as previously discussed,
the symptoms of our patient improved significantly, with
a good prognosis.

CONCLUSION

We report a rare case of isolated RVNC that survived several
episodes of syncope caused by VT. The patient was treated in time
and correctly diagnosed through multi-imaging examinations
and genetic testing. We recommended comprehensive cardiac
screening for family members for earlier diagnosis and
identification of at-risk relatives.

Isolated RVNC is rarely reported in current literature, causing
possible underestimation of the incidence and severity of
RVNC. Therefore, it is essential to identify and diagnose RVNC
in clinical work.
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Myocardial Mechanics by 2- and
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Echocardiography in Patients With
an Ischemic or Non-ischemic
Etiology of End-Stage Heart Failure
Fangyan Tian1,2,3,4†, Ying Gu4†, Yanting Zhang1,2,3†, Bei Zhang4, Yuji Xie1,2,3, Shaomei Yu4,
Shuangshuang Zhu1,2,3, Wei Sun1,2,3, Shan Cheng4, Mingzu Qian1,2,3, Yixia Lin1,2,3,
Wenqian Wu1,2,3, Yali Yang1,2,3, Qing Lv1,2,3, Jing Wang1,2,3, Li Zhang1,2,3* , Yuman Li1,2,3* and
Mingxing Xie1,2,3*
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Background: The aims of our study were (1) to assess the right ventricular (RV)
myocardial mechanics by two-dimensional (2D) and three-dimensional (3D) speckle-
tracking echocardiography (STE) in patients with an ischemic or non-ischemic etiology
of end-stage heart failure (HF) and (2) to explore which RV index evaluated by 2D- and
3D-STE was the most powerful indicator for identifying the ischemic and non-ischemic
etiologies of end-stage HF.

Methods: A total of 96 patients with left ventricular ejection fraction (LVEF) < 30% were
enrolled in our study: 42 patients (mean age, 52 ± 10 years; 9.5% female) with ischemic
cardiomyopathy and 54 patients (mean age, 46 ± 14 years; 16.7% female) with non-
ischemic cardiomyopathy. A total of 45 healthy subjects (mean age, 46 ± 13 years;
24.4% female) served as controls. The longitudinal strain of the RV free wall (RVFWLS)
was determined by both 2D- and 3D-STE.

Results: Compared to controls, patients with an ischemic or non-ischemic etiology
of end-stage HF had lower 2D-RVFWLS, 3D-RVFWLS and RV ejection fraction
(RVEF) values (P < 0.05). Patients with non-ischemic cardiomyopathies (NICMs)
had significantly lower 3D-RVFWLS and RVEF values than in those with ischemic
cardiomyopathies (ICMs), whereas 2D-RVFWLS and conventional RV function
parameters did not differ between the two subgroups. RVEF was highly related to 3D-
RVFWLS (r = 0.72, P < 0.001), modestly related to 2D-RVFWLS (r = 0.51, P < 0.001),
and weakly related to conventional RV function indices (r = –0.26 to 0.46, P < 0.05).
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Receiver operating characteristic curve analysis revealed that the optimal 3D-RVFWLS
cut-off value to distinguish NICM from ICM patients was –14.78% (area under the
curve: 0.73, P < 0.001), while 2D-RVFWLS and conventional RV echocardiographic
parameters did not.

Conclusion: Our study demonstrated the superiority of 3D-RVFWLS over 2D-RVFWLS
and conventional RV function indices in identifying the ischemic and non-ischemic
etiologies of end-stage HF. These findings support the idea that 3D-RVFWLS may be a
promising non-invasive imaging marker for distinguishing NICM from ICM.

Keywords: three-dimensional, two-dimensional, speckle tracking echocardiography, right ventricular function,
strain, heart failure

INTRODUCTION

Right ventricular (RV) function has a powerful capability
for risk-stratifying patients with heart failure (HF) (1–3).
In these patients, indeed, the presence of RV dysfunction
is associated with adverse outcomes (4, 5). Non-ischemic
cardiomyopathies (NICMs) are the most frequent cause of HF
and death, and patients with NICMs have a poorer outcome
than those with ischemic cardiomyopathies (ICMs) (6). For
this reason, accurately distinguishing the non-ischemic and
ischemic etiologies of HF is of great clinical significance.
Coronary angiography, as the gold-standard modality for
diagnosing ICM, is not used in every case due to its
invasiveness, requirement of ionizing radiation, and high cost
(7). Therefore, it is crucial to explore other non-invasive
parameters to discern between the ischemic and non-ischemic
etiologies of HF.

Echocardiography, which is readily available and relatively
inexpensive, is considered a first-line modality for assessing
ventricular performance. Nevertheless, completing an accurate
assessment of RV function by traditional echocardiography is
challenging because of its complex structure, contraction pattern,
and response to overload. Two-dimensional (2D) speckle-
tracking echocardiography (STE) is an angle-independent,
less load-dependent technique that allows for the earlier
identification of subtle RV dysfunction. It has been demonstrated
to be a more reliable and accurate tool for RV function assessment
than conventional RV function indices (8–10). However, this
algorithm, based on the 2D plane, has limitations, which lead to
the loss of a portion of the real motion due to out-of-plane motion
(11). Recently, three-dimensional (3D) STE has emerged to
overcome these limitations (12). Its accuracy and reproducibility
in quantifying RV function have been verified in patients with
pulmonary hypertension, transplanted hearts, and hypoplastic
left heart syndrome after Fontan palliation (13–15). However,
the possibility of interrogating RV mechanics in patients with
end-stage HF using 3D-STE has hitherto not been explored.

Thus, the purposes of our study were (1) to assess RV
myocardial mechanics using 2D- and 3D-STE in subjects with
an ischemic or non-ischemic etiology of end-stage HF and (2)
to explore which RV index evaluated by 2D- and 3D-STE has the
potential to differentiate between the ischemic and non-ischemic
etiologies of end-stage HF.

MATERIALS AND METHODS

Study Subjects
This was a prospective study of 109 consecutive patients
with end-stage HF who required heart transplantation (HT)
and were enrolled in this study at the Wuhan Union
Hospital from June 2018 to July 2021. All patients had
severely impaired left ventricular (LV) function [LV ejection
fraction (LVEF) < 30%] (16), and their New York Heart
Association (NYHA) functional class was III or IV. Patients
were assigned to the ICM group if they had a prior history
of myocardial infarction/revascularization and/or if they had
significant coronary artery stenosis (≥50%) in ≥ 1 epicardial
coronary vessel on angiography. Patients were classified as having
NICM if they had none of these features (17). Exclusion criteria
included an anomalous origin of the coronary artery, cardiac
arrhythmia, and poor echocardiographic image quality.

Separately, we enrolled a control group of 45 healthy
volunteers with a similar age and sex breakdown with no
cardiovascular disease on the basis of clinical examination,
electrocardiography, echocardiography, and chest X-ray
imaging. This study was approved by the ethics committee of
Tongji Medical College, Huazhong University of Science and
Technology, and written informed consent was obtained from
all participants.

Standard Echocardiography
All patients underwent transthoracic echocardiograms using
the Philips EPIQ7C ultrasound machine (Philips Medical
Systems, Andover, MA, United States). LV and RV parameters
were measured according to the guidelines of the American
Society of Echocardiography (18). The RV base diameter
(RVD1), mid-diameter (RVD2), and length diameters (RVD3)
were acquired from the RV-focused apical 4-chamber view.
The RV fractional area change (FAC) was defined as the
RV end-diastolic area – RV end-systolic area)/end-diastolic
area × 100%. The tricuspid annular peak systolic excursion
(TAPSE) was measured using M-mode echocardiography.
The right-side index of myocardial performance (RIMP)
was determined using tissue Doppler imaging. Peak systolic
(s’) tricuspid lateral annular velocities were also assessed
by tissue Doppler imaging. The apical 4-chamber view
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FIGURE 1 | 2D-STE showing RV endocardial border and the longitudinal strain values (A) and longitudinal strain curves (B).

FIGURE 2 | 3D-STE offline analysis. (A) Setting reference points. (B) RV endocardial border identification and tracking. (C) Generating longitudinal strain of the RV
free wall and RV volume curve.

was used for 2D-STE analysis, and 3D full-volume data
were obtained from the apical 4-chamber view with four
consecutive cardiac cycles.

Speckle-Tracking Echocardiography
2D-STE and 3D-STE analyses were performed using commercial
software (4D-RV Function Analysis and 4D-LV Analysis
version 3.1 software for 3D-STE and 2D Cardiac Performance
Analysis for 2D-STE; Tom Tec Imaging Systems, Munich,
Germany). For 2D-STE analysis, RV endocardial tracings were
manually performed in the apical 4-chamber view. The software
automatically tracked the speckle patterns in the myocardium.
The endocardial border could be manually modified if necessary.
Ultimately, the software generated the longitudinal strain curves
and longitudinal peak systolic strain values of 6 segments of
the RV. The 2D longitudinal strain of the RV free wall (2D-
RVFWLS) was defined as the mean value of three segments
of the RV free wall (Figure 1). For 3D-STE analysis, the
operator set reference points (i.e., the center of the mitral
annular line to the apex of the LV, the center of the tricuspid

annular line to the apex of the RV, landmarks corresponding
to the aortic annulus diameter, and the anterior and posterior
junctions of the RV free wall with the interventricular septum
and the septum-to-RV free wall) in 6 planes. Subsequently,
the RV endocardial border was automatically identified by
the software. Then, the software automatically tracked the RV
endocardial border throughout the cardiac cycle, although the
operator could manually adjust the RV contours if necessary.
Finally, the software produced the RV end-diastolic volume
(RVEDV), RV end-systolic volume (RVESV), RV stroke volume
(RVSV), RV ejection fraction (RVEF), and 3D longitudinal
strain values of the RV free wall (3D-RVFWLS) (Figure 2).
We determined the RVEDV index (RVEDVI), RVESV index
(RVESVI) normalized to BSA. Similarly, the operator set
reference points (the center of the mitral annular line to the
apex of the LV) in the apical 4-, 2-, and 3-chamber views.
Then, the LV endocardial border was automatically identified
by the software, and a manual adjustment was performed
if necessary. Finally, the LVEDVI (ml/m2 = LVEDV/BSA),
LVESVI (ml/m2 = LVESV/BSA), LV mass index (LVMI)
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(g/m2 = LVM/BSA), and LV global longitudinal strain (LVGLS)
were obtained. The frame rate range of the 3D STE images was
set at approximately 20 Hz or more.

Cardiac Magnetic Resonance Imaging
Analysis
A total of 28 patients underwent cardiac magnetic
resonance (CMR) examinations to assess RVEF within
1 day of echocardiography since CMR was regarded
as the gold standard for RV systolic function. CMR
imaging was analyzed using conventional CMR software
(Argus; Siemens Medical Solutions, Erlangen, Germany).
RV endocardial contours were manually traced on all
short-axis slices on the end-diastolic and end-systolic
frames by an experienced operator who was blinded to
echocardiographic measurements. Finally, the software
automatically obtained the CMR-RVEF.

Right Heart Catheterization
All patients underwent right heart catheterization before
HT. A Swan-Ganz catheter were used to acquire cardiac
hemodynamic data. Right atrial pressure and pulmonary artery
pressure were obtained from right heart catheterization.

Statistical Analysis
Continuous variables are expressed as mean± standard deviation
values, non-normal distribution of continuous data are expressed
as median (IQR),and categorical variables are expressed using
frequency (percentage) values. Statistical significance was
assessed by 1-way ANOVA followed by the Bonferroni post hoc
test or by Student’s t-test when only two groups were compared.
For non-normally distributed data, Man-Whitney U test and
Kruskal-Wallis test were used. Logistic regression analysis was
used to evaluate the effect of explanatory variables. To calculate
the sensitivity and specificity at various cutoff levels for the
selected parameters, receiver operating characteristic (ROC)
curves were used. Pearson’s correlation coefficient was used for
the assessment of correlations. Bland–Altman analysis and the
intraclass correlation coefficient (ICC) to assess the consistency
between 2D- and 3D-STE parameters were applied (19). The
SPSS version 22.0 software (IBM Corporation, Armonk, NY,
United States) and MedCalc version 19.0.4 software (MedCalc
Software, Ostend, Belgium) were used for statistical analyses.
A P value of < 0.05 in a two-sided test was considered to be
statistically significant.

Reproducibility Analysis
The intra- and inter-observer variability of 2D- and 3D-STE
parameters were evaluated by Bland–Altman analysis and the
ICC. To assess the reproducibility, 20 patients were randomly
selected from our study. For the assessment of intra-observer
variability, the data were re-analyzed by the same investigator
after 1 month. For the evaluation of inter-observer variability,
the second investigator re-analyzed the data while blinded to the
values obtained by the first investigator.

RESULTS

Clinical and Echocardiographic
Characteristics
Following the exclusion of five patients with poor image
quality, two with one-vessel coronary artery disease, and
six with cardiac arrhythmias, 96 patients were included in
our analysis. Of these 96 patients, 42 had ICM and 54 had
NICM. The mean age of patients with end-stage HF was
48± 13 years, and 83 (86.5%) were men. Eighty (83.8%) patients
had NYHA functional class IV. Tricuspid regurgitation (TR)
was absent in 22 (22.9%), mild in 29 (30.2%), moderate in 17
(17.7%), and severe in 28 (29.2%) patients with end-stage HF,
respectively. The clinical and echocardiographic data of the
study participants are listed in Table 1. Sex, age, body surface
area, prevalence of hypertension and diabetes, NYHA functional
class, medical therapy, proportion of implantable cardioverter-
defibrillator/cardiac resynchronization therapy-defibrillator
(ICD/CRT-D) and laboratory data were not statistically different
among the three groups. Patients with NICM had lower systolic
and diastolic blood pressure values compared to the ICM and
controls (P < 0.001), although they remained within the normal
ranges. Compared to the controls, patients with ICM and NICM
had increased RVEDVI, RVESVI, RVD1, RVD2, RVD3, RIMP,
LVEDVI, LVESVI and LVMI values (P < 0.05), and decreased
LVEF, LVGLS, TAPSE, RVFAC, tricuspid s’, RVEF, 2D-RVFWLS,
and 3D-RVFWLS values (P < 0.05). Patients with NICM
had decreased 3D-RVFWLS and RVEF values, and increased
RVEDVI and RVESVI compared to those with ICM (P < 0.05);
however, no significant differences in LVEDVI, LVESVI,
LVMI, LVEF, RVD1, RVD2, RVD3, conventional RV function
parameters (TAPSE, RVFAC, tricuspid s’, and RIMP), LVGLS
and 2D-RVFWLS between the two subgroups were identified
in our study. The severity of TR was similar between the ICM
and NICM subgroups. CMR and right heart catheterization data
were not significantly different between the groups (Table 2).
In addition, we compared RVFWLS between patients with and
without ICD/CRT-D, and our results revealed that 3D-RVFWLS
and 2D-RVFWLS values did not differ between patients with and
without ICD/CRT-D.

After adjustment for age, systolic and diastolic blood
pressure, RVEDVI, RVESVI, RVEF, only 3D-RVFWLS
remained significantly associated with NICM (odds ratio: 0.79;
95%CI:0.684–0.912; P = 0.001). 3D-RVFWLS, 2D-RVFWLS,
LVGLS, and conventional RV function echocardiographic
parameters were entered into ROC analysis to distinguish NICM
and ICM patients from each other. ROC analysis revealed that
the optimal cutoff value of 3D-RVFWLS was –14.78%, with a
sensitivity of 85.2% and a specificity of 50.5%, for distinguishing
between the ischemic and non-ischemic etiologies of end-
stage HF (area under the ROC curve, 0.73; 95% confidence
interval, 0.63–0.82; P < 0.001) (Figure 3). 2D-RVFWLS, LVGLS,
and conventional RV echocardiographic parameters failed to
distinguish NICM patients from ICM patients.

Figure 4 presents Bland–Altman analysis and correlation plots
for RVFWLS as measured by 2D- and 3D-STE. 3D-RVFWLS
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TABLE 1 | Clinical and echocardiographic characteristics of patients and normal
controls.

Variables Controls (n = 45) ICM(n = 42) NICM (n = 54) p

Female (%) 11 (24.4%) 4 (9.5%) 9 (16.7%) 0.141

Age (years) 46 ± 13 52 ± 10 46 ± 14 0.052

Body surface area
(m2 )

1.64 ± 0.40 1.73 ± 0.19 1.66 ± 0.33 0.582

Systolic blood
pressure (mmHg)

116 ± 7 116 ± 21 101 ± 19*† <0.001

Diastolic blood
pressure (mmHg)

75 ± 8 74 ± 18 66 ± 12*† <0.001

Hypertension 19 (45.2%) 15 (27.8%) 0.076

Diabetes mellitus 14 (33.3%) 9 (16.7%) 0.058

NYHA functional
class, n (%)

0.581

III 6 (14.3%) 10 (18.5%)

IV 36 (85.7%) 44 (81.5%)

Medical therapy (n,
%)

Beta-blockers 42 (100%) 54 (100%)

ACE inhibitors/ARBs 42 (100%) 54 (100%)

Loop diuretics 41 (97.6%) 52 (96.3%) >0.999

Aldosterone
antagonists

40 (95.2%) 51 (94.4%) >0.999

ICD/CRT-D 3 (7.1%) 9 (16.7%) >0.999

Laboratory data

Hemoglobin (g/L) 124.00 ± 17.78 133.46 ± 23.25 0.085

Total cholesterol
(mmol/L)

3.03 (2.19, 3.52) 3.12 (2.63, 3.86) 0.357

Triglyceride (mmol/L) 1.37 (1.02, 2.13) 1.07 (0.81, 1.84) 0.715

Creatinine (µmol/L) 88 (78.2, 103.6) 85.8 (70.4, 105.85) 0.380

Echocardiography

LVEDVI (ml/m2 ) 48 (40, 56)∧† 124 (91,141) 143 (120, 167) <0.001

LVESVI (ml/m2 ) 15 (12,19)∧† 95 (77, 108) 105 (84, 135) <0.001

LVEF (%) 67.51 ± 4.41∧† 25.19 ± 6.39 24.54 ± 6.06 <0.001

LVMI (g/m2 ) 86 (73, 92)∧† 177 (169, 216) 203 (185, 249) <0.001

LVGLS (%) –21.92 ± 2.59∧† –6.16 ± 2.05 –7.46 ± 2.17 <0.001

RVD1 (mm) 27.51 ± 4.32∧† 36.24 ± 6.83 36.94 ± 9.60 <0.001

RVD2 (mm) 27.93 ± 4.05∧† 32.69 ± 8.17 32.66 ± 9.60 <0.001

RVD3 (mm) 66.76 ± 8.04∧† 76.48 ± 9.76 80.91 ± 12.27 <0.001

Mild TR (n, %) 15 (33.3%) 14 (25.5%) 0.388

Moderate TR (n, %) 5 (11.1%) 12 (21.8%) 0.156

Severe TR (n, %) 9 (20%) 19 (35.2%) 0.095

TAPSE (mm) 21.48 ± 2.76∧† 12.76 ± 2.46 11.99 ± 2.40 <0.001

RVFAC (%) 46.87 ± 4.67∧† 27.25 ± 5.79 25.03 ± 5.63 <0.001

RIMP 0.36 ± 0.03∧† 0.59 ± 0.05 0.67 ± 0.03 <0.001

Tricuspid s’ (cm/s) 12.84 ± 1.98∧† 9.05 ± 2.74 9.90 ± 2.66 <0.001

2D-RVFWLS (%) –23.38 ± 8.90∧† –14.29 ± 4.90 –13.24 ± 3.49 <0.001

RVEDVI (ml/m2 ) 47 (39,57)∧† 65 (50,76) 76 (53,100) * <0.001

RVESVI (ml/m2 ) 26 (21,29)∧† 46 (32,53) 53 (38,72) * <0.001

RVSV (ml) 44 (33,55)∧† 38 (24,45) 34 (24,42) 0.002

RVEF (%) 53.14 ± 4.49∧† 31.87 ± 9.68 28.09 ± 6.87* <0.001

3D-RVFWLS (%) –23.78 ± 2.15∧† –15.36 ± 4.76 –11.92 ± 2.81* <0.001

Data are mean ± SD, n (%), or median (IQR).
*P < 0.05 for ICM vs. NICM.
∧ P < 0.05 for ICM vs. controls.
†P < 0.05 for NICM vs. controls.
ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ICD,
Implantable cardioverter defibrillator; CRT-D, cardiac resynchronization therapy-
defibrillation; RV, right ventricular; LV, left ventricular; MI, mass index; EDVI,
end-diastolic volume index; ESVI, end-systolic volume index; SV, stroke volume; EF,
ejection fraction; RVD1, right ventricular basal diameter; RVD2, right ventricular mid
diameter; RVD3, right ventricular longitudinal dimension; TR, tricuspid regurgitation;
TAPSE, tricuspid annular plane systolic excursion; FAC, fractional area change;
RIMP, right-side index of myocardial performance; Tricuspid s’, tricuspid annulus
systolic velocity; 3D, three dimensional; 2D, two dimensional; RVFWLS, right
ventricular free wall longitudinal strain.

TABLE 2 | Cardiac magnetic resonance and right heart catheterization
characteristics of patients.

Variables ICM (n = 42) NICM (n = 54) p

Cardiac magnetic resonance

CMR-RVEF (%) (n) 14 (11,31) (8) 15 (11,22) (20) 0.739

Right heart catheterization

Systolic PAP (mmHg) 45 ± 16 42 ± 15 0.313

Diastolic PAP (mmHg) 75 ± 18 66 ± 12 0.852

Mean PAP (mmHg) 30 ± 11 28 ± 12 0.591

RAP (mmHg) 10 (7,13) 9 (7,12) 0.780

Data are mean ± SD or median (IQR). CMR-RVEF, cardiac magnetic resonance-
right ventricular ejection fraction; PAP, pulmonary arterial pressure; RAP, right atrial
pressure.

FIGURE 3 | Receiver operating characteristic curves of 3D-RVFWLS for
distinguishing NICM from ICM.

was strongly related to 2D-RVFWLS (r = 0.70, P < 0.001).
Good consistency for RVFWLS as assessed by 2D- and 3D-STE,
respectively, was noted (ICC, 0.70; 95% CI, 0.59–0.79).

Relationships Between RV Ejection
Fraction, Two-Dimensional- and
Three-Dimensional-Speckle-Tracking
Echocardiography, and Conventional RV
Echocardiographic Indices
The relationships between RVEF, 2D- and 3D-STE, and
conventional RV echocardiographic parameters are shown in
Figure 5. RVEF was highly correlated with 3D-RVFWLS
(r = 0.72, P < 0.001), modestly correlated with 2D-RVFWLS
(r = 0.51, P < 0.001); and weakly associated with RVFAC (r = 0.46,
P < 0.001), TAPSE (r = 0.37, P < 0.001), RVEDVI (r = –
0.26, P = 0.017), RVESVI (r = –0.45, P < 0.001), and RVSV
(r = 0.38, P < 0.001). Meanwhile, RVEF was not associated
with RVD1, RVD2, RVD3, RIMP, or tricuspid s’. Moreover, 3D-
RVFWLS correlated better with RVEF than 2D-RVFWLS and
the conventional RV indices with RVEF (r = 0.72 vs. –0.26 to
0.51, P < 0.05). In addition, we found that CMR-RVEF was
modestly correlated with 3D-RVFWLS (r = 0.53, P = 0.004),
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FIGURE 4 | 2D-3D longitudinal strain of RV free wall correlation plots (A) and Bland–Altman plots (B). 3D-RVFWLS and 2D-RVFWLS values are absolute values.

and weakly associated with 2D-RVFWLS (r = 0.49, P = 0.008)
(Supplementary Figure 1).

Reproducibility
The reproducibility of 2D- and 3D-STE parameters is shown in
Table 3. 2D- and 3D-STE parameters had good intra- and inter-
observer reproducibility, as evidenced by a higher ICC, small bias,
and limits of agreement.

DISCUSSION

To our knowledge, this may be the first investigation to
comprehensively assess RV function in patients with ischemic
and non-ischemic etiologies of end-stage HF using 2D- and 3D-
STE and conventional echocardiographic parameters. The main
findings of our study were as follows: (1) patients with ischemic

FIGURE 5 | The correlations of RVEF with 3D-RVFWLS, 2D-RVFWLS and
conventional echocardiographic parameters. The association between the
3D-RVFWLS (A), 2D-RVFWLS (B), RVFAC (C), TAPSE (D), and RVEF.
3D-RVFWLS and 2D-RVFWLS values are absolute values.

or non-ischemic etiology of end-stage HF had diminished 2D-
and 3D-RVFWLS compared to healthy controls; (2) patients
with NICM had lower 3D-RVFWLS compared to ICM patients,
although no significant difference in 2D-RVFWLS between these
two subgroups was noted in our study; and (3) more importantly,
ROC analysis revealed that 3D-RVFWLS displayed the potential
for distinguishing NICM patients from ICM patients, while 2D-
RVFWLS and conventional RV echocardiographic parameters
did not. Therefore, 3D-STE may be superior to 2D-STE for
distinguishing between the non-ischemic and ischemic etiologies
of end-stage HF.

RV Strain in Patients With End-Stage
Heart Failure
Our results showed that 2D- and 3D-STE parameters were
reduced in patients with ischemic or non-ischemic etiology of
end-stage HF compared to healthy controls. These results are
consistent with prior findings gathered using 2D-STE (20, 21).
Our results have, for the first time, demonstrated that patients

TABLE 3 | Intraobserver and interobserver reproducibility.

Variables ICC (95% CI) Bias Limits of agreement

Intraobserver

RVEDV 0.98 (0.94–0.99) 4.2 –17.5, 25.9

RVESV 0.97 (0.93–0.99) 3.2 –14.7, 23.1

RVSV 0.93 (0.83–0.97) –0.03 –12.2, 12.1

RVEF 0.89 (0.74–0.96) –0.7 –7.8, 6.4

3D-RVFWLS 0.94 (0.84–0.97) 0.4 –1.8, 2.54

2D-RVFWLS 0.95 (0.88–0.98) 0.9 –0.9, 2.7

Interobserver

RVEDV 0.94 (0.87–0.98) 6.8 –25.6, 39.2

RVESV 0.93 (0.84–0.97) 5.9 –21.9, 33.7

RVSV 0.92 (0.82–0.97) 0.8 –11.8, 13.5

RVEF 0.86 (0.68–0.94) –0.6 –7.7, 6.6

3D-RVFWLS 0.91 (0.79–0.96) 0.5 –2.0, 3.0

2D- RVFWLS 0.90 (0.76–0.96) 0.8 –1.8, 3.3

Abbreviations as in Table 1.
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with end-stage HF have diminished 3D-RVFWLS. Several
mechanisms may contribute to RV dysfunction in end-stage HF
patients, including impaired LV function, elevated pulmonary
arterial pressure, RV myocardial ischemia, and neurohormonal
interactions (22). Patients with end-stage HF present with
depressed LV function. Ventricular interaction could influence
RV strain through the interventricular septum. RV failure in
terms of histology includes rarefaction of myocardial capillaries
and myocardial fibrosis (23, 24). Myocardial fibrosis results in
myocardial remodeling and stiffness elevation, presenting with
ventricular chamber enlargement and systolic dysfunction.

RV Mechanics in Patients With Ischemic
and Non-ischemic Etiologies of
End-Stage Heart Failure
Differentiating NICM patients from ICM patients is essential on
account of the different prognoses and treatment strategies for
each group (18). Although the diagnosis is generally made by
computed tomography angiography or coronary angiography,
it is not practical for every patient to undergo an imaging
study using angiography because of its radioactivity, invasiveness,
and other contraindications. Therefore, it is critical to identify
non-invasive parameters to distinguish between NICM and
ICM. In our study, both algorithms provided substantially
different results for patients with NICM and those with ICM,
respectively. For example, we found that 3D-RVFWLS was
lower in patients with NICM than those with ICM, but no
difference in 2D-RVFWLS between the two subgroups was
observed. With the use of 2D-STE algorithms, where speckles
are only tracked in 2D planes, only a portion of the real
myocardial motion is tracked. Thorstensen et al. reported 3D
strain of left ventricle did not show incremental diagnostic
value to the other modalities in patients with recent myocardial
infarction, but patients with poor echocardiographic image
quality were not excluded in their study and their study did
not compare RV strain (25). A recent observation suggested
that NICM exists as an intrinsic injury of the RV myocardium
(21), and this proposal is compatible with our study findings
revealed by 3D-STE. In contrast, in a small observational
cohort of 40 patients with HF (including 20 with ICM and
20 with NICM), no significant difference in LVGLS obtained
by 3D-STE between the ICM and NICM subgroups was
noted (26). Another study, by Shanbhag et al., that followed
a community-based sample of older adults for a median
of 5.8 years showed that patients with NICM had a worse
prognosis than those with ICM (6). Likewise, Meng et al.
also demonstrated that patients with HF with poor clinical
outcomes displayed impaired 3D-RVFWLS and RVEF compared
to those without clinical events (27). Our findings provide
direct evidence to support the aforementioned results. The fact
that patients with NICM exhibited a poorer prognosis than
those with ICM may be the reason why they also presented
with more severely impaired 3D-RVFWLS. Moreover, ROC
analysis revealed that the 3D-RVFWLS parameters had a good
capacity for distinguishing NICM patients from ICM patients,
while 2D-RVFWLS and conventional RV echocardiographic

parameters failed to differentiate NICM patients from ICM
patients. Therefore, 3D-RVFWLS may be a useful alternative
to coronary angiography for distinguishing NICM from ICM,
particularly among patients with end-stage HF who cannot
undergo coronary angiography.

Comparisons of
Three-Dimensional-Speckle-Tracking
Echocardiography and
Two-Dimensional-Speckle-Tracking
Strain Parameters
Owing to the complex geometry of the RV, 3D-STE has no
geometric assumptions or out-of-plane motion of speckles,
allowing for a more accurate assessment of myocardial
performance by overcoming the limitations of 2D-STE. There
were significant correlations between the RVFWLS values
obtained by the 2D and 3D modalities. These findings were
consistent with those of previous studies in patients with
pulmonary hypertension (28). RV contraction occurs primarily
in the form of longitudinal shortening (29). The longitudinal
shortening of the RV free wall contributes to 80% of the RV
stroke volume and may indicate the global RV function (30, 31).
2D-RVFWLS has been reported to exhibit prognostic value in
various diseases, including HF (32–34). The good correlation and
consistency of RVFWLS obtained by 2D- and 3D-STE suggest
that 3D-STE may be a choice for RV function quantification and
prognostic stratification.

Correlations of RV Strain Parameters
With RV Ejection Fraction
Our findings showed that there was a significant correlation
between CMR-RVEF and 2D- and 3D-RVFWLS. This is
compatible with findings of previous research, which
demonstrated that CMR-RVEF was strongly related to 2D-
RVFWLS (35). 3D echocardiography has been demonstrated to
be more accurate than 2D echocardiography in the evaluation
of RV function in patients with HF (36). RVEF as measured by
3D echocardiography has a great correlation with CMR-RVEF
values (37) and has been considered a major determinant of RV
systolic function in the updated 2015 recommendations (38). In
this study, we also demonstrated that 3D-RVFWLS had a better
association with RVEF than 2D-RVFWLS and conventional RV
echocardiographic parameters.

Clinical Implications
Unlike structurally normal hearts, patients with end-stage HF
present with marked ventricular remodeling that may be better
served by the 3D algorithm. Although 3D-STE has a theoretical
superiority over 2D-STE for RV quantification, head-to-head
comparisons between 3D-STE and 2D-STE for assessing RV
strain in patients with end-stage HF have not yet been performed.
Our results demonstrated the superiority of 3D-STE over 2D-
STE and conventional RV echocardiographic indices in reflecting
the RV myocardial pathophysiology in relation to the ischemic
and non-ischemic etiologies of end-stage HF. Considering that
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3D-STE better detects the changes in RV strain compared to 2D-
STE in patients with ischemic and non-ischemic etiologies of
end-stage HF, it should be the optimal choice for the assessment
of RV strain in patients with end-stage HF. Additionally, we
noted that 3D-RVFWLS was significantly related to 2D-RVFWLS
and RVEF, and there were good consistency for RVFWLS as
assessed by 2D- and 3D-STE, only 3D-RVFWLS can distinguish
NICM patients from ICM patients, while 2D-RVFWLS and RVEF
failed to distinguish these. Therefore, we suggest that 2D-STE and
3D-STE values should not be used interchangeably in patients
with end-stage HF.

Limitations
The present study had several limitations. First, 3D-STE analysis
requires better image quality and experienced operators, and the
technique is in its infancy and not yet widely validated for clinical
use. Second, 3D-STE is hindered by low frame rates, which may
have an effect on strain values. Third, we enrolled only patients
with end-stage HF in this study, which may have led to a selection
bias and an inability to generalize our findings to all patients
with HF. Fourth, some patients with end-stage HF who were RV-
paced or in a clinically critical state were not deemed suitable
to undergo CMR examinations, so we could not obtain CMR
data from all included patients. Fifth, although 3D-RVFWLS can
distinguish NICM patients from ICM patients, while specificity
of 50.5% is not so good. Sixth, 3D-STE parameters have vendor
dependency (39); thus, our findings may not apply when using
technology from other vendors. Ultimately, our study is a single-
center observation with a relatively small number of patients.
Future multicenter investigations with larger study populations
are needed to confirm the superiority of 3D-STE over 2D-STE in
quantifying RV performance in patients with end-stage HF.

CONCLUSION

Our study demonstrated the superiority of 3D-RVFWLS
over 2D-RVFWLS and conventional RV echocardiographic
indices in identifying the ischemic and non-ischemic etiologies
of end-stage HF. These findings indicate that 3D-RVFWLS
may be a promising non-invasive imaging marker for
distinguishing NICM from ICM.
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Pregnancy is associated with profound hemodynamic changes that are particularly
impactful in patients with underlying cardiovascular disease. Management of pregnant
women with cardiovascular disease requires careful evaluation that considers the well-
being of both the woman and the developing fetus. Clinical assessment begins before
pregnancy and continues throughout gestation into the post-partum period and is
supplemented by cardiac imaging. This review discusses the role of imaging, specifically
echocardiography, cardiac MRI, and cardiac CT, in pregnant women with valvular
diseases, hypertrophic cardiomyopathy, and aortic pathology.
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INTRODUCTION

Pregnancy is associated with profound hemodynamic changes that significantly impact the
cardiovascular system. These changes are particularly impactful in women with underlying heart
disease. Management of pregnant women with cardiovascular abnormalities requires consideration
of the well-being of both the woman and the developing fetus. Clinical evaluation, starting before
and then continuing throughout pregnancy, is the foundation of this management with imaging
playing a key role in patient risk stratification and monitoring. This review discusses the role
of imaging for pregnant women with valvular diseases, hypertrophic cardiomyopathy, and aortic
pathology. We will begin with a brief overview of general patient assessment and discussion of the
value added by different imaging modalities.

A BASIC APPROACH TO PATIENT MANAGEMENT AND
IMAGING SELECTION

Preconception evaluation of possible maternal and fetal risks during pregnancy is important to help
tailor plans for maternal and fetal monitoring and identify the level of care needed during labor and
in the post-delivery period. Maternal cardiac risk can be assessed using three main models including
the World Health Organization (WHO) risk model, the Cardiac Disease in Pregnancy (CARPREG)
risk score and the Zwangerschap bij Aangeboren HARtAfwijkingen I (ZAHARA) risk score (1–
3). The three models share common features, such as incorporating lesion-specific predictors, but
differ in a few key areas (1, 2). The World Health Organization (WHO) classification categorizes
women into four different classes based on specific congenital and acquired heart disease, with

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 August 2022 | Volume 9 | Article 834738143

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.834738
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcvm.2022.834738
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.834738&domain=pdf&date_stamp=2022-08-03
https://www.frontiersin.org/articles/10.3389/fcvm.2022.834738/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-834738 July 28, 2022 Time: 16:9 # 2

Ismail et al. Pregnancy: Valvulopathy, Aortopathy, and Hypertrophic Cardiomyopathy

WHO Class IV being the highest risk for mortality where
pregnancy is contraindicated. The CARPREG risk score
emphasizes left-sided cardiac obstruction in stratifying pregnant
women for adverse cardiac and fetal outcomes. The ZAHARA
risk score includes all moderate and severe valvular lesions and
mechanical valves in the risk prediction model (1). Assessment
of risk is of course based on careful clinical assessment, but
necessarily includes non-invasive imaging.

The choice of imaging modality first depends on the pathology
or pathophysiology to be evaluated. Echocardiography remains
the mainstay for assessment of valvular disease and non-ischemic
cardiomyopathies but is less comprehensive for assessment
of aortopathy (4). Advanced imaging modalities including
contrast-enhanced computed tomography (CT) and magnetic
resonance imaging (MRI) provide important corroborating
and incremental information, particularly in patients with
suspected or known aortopathy. MRI and CT provide primarily
anatomic information, although cardiac MRI can provide
valuable physiologic information as well. Table 1 summarizes the
advantages and disadvantages of imaging modalities.

The choice of imaging modality is therefore based on the
reliability and accuracy of the modality for evaluation of
the pathology in question, as well as safety for the mother
and fetus. Echocardiography has essentially no safety concerns
for the mother or fetus during pregnancy and remains the
fundamental imaging modality for assessment of myocardial
and valvular disease. However, imaging may be limited due
to patient positioning and the gravid uterus (4). In particular,
echocardiographic visualization of the aorta is often limited to the
aortic root and proximal ascending aorta (Figure 1). Although
echocardiography offers the greatest safety from a procedural
standpoint, this must be weighed against the risk of missed or
inadequately-characterized aortic pathology. We briefly review
the existing data regarding use of CT and MRI in pregnancy.

Clinical MRI at 1.5 T has not been proven to confer
any significant risk on the fetus. Studies performed at 3 T
are considered safe at up to 30 min of scan time (5).
A non-contrast cardiac MRI can provide a significant amount
of clinically important information: accurate evaluation of
cardiac chamber sizes, quantification of flows and regurgitant
volumes, and delineation of aortic anatomy. The risk-benefit
ratio for gadolinium-based contrast agents, on the other hand,
is less clearly defined. One study found that gadolinium
exposure during gestation was associated with an increased
risk of stillbirth, neonatal death, and certain rheumatologic,
dermatologic, and inflammatory conditions, therefore, guidelines
recommend avoiding routine administration of GBCAs to
pregnant patients (5, 6).

Cardiac CT uses ECG-gating to obtain high quality images
of the heart and surrounding vasculature. Prospective gating
provides a “freeze frame” evaluation of the heart and dramatically
reduces radiation doses - approximately 1 milligray (mGy) to the
fetus. Retrospective gating allows for evaluation of cardiac wall
and valve motion but at approximately 3 mGy to the fetus (7). In
general, the risk of malignancy due to radiation depends both on
dose and life expectancy after radiation. Thus, for a given dose
of radiation, a young woman of child-bearing age is at higher risk

of eventually developing malignancy from medical radiation than
an older, post-menopausal woman. When radiologic studies are
necessary, the goal is to follow the ALARA (as low as reasonably
achievable) principle, minimizing radiation dose as much as
possible while still obtaining diagnostic images. The risks of
ionizing radiation to a fetus vary with gestational age and dose. In
general, doses of < 50 mGy pose insignificant risk to the fetus (8).

For conditions discussed in this review, CT scanning must
be performed with contrast agents to provide diagnostically
meaningful images. Iodinated contrast media can cross the
placenta but there have been no proven adverse effects on fetal
development. Therefore, contrast-enhanced CT scanning should
not be withheld from a patient due to pregnancy (7). Rather,
risk-benefit discussions should be held, comparing the theoretical
risks to the fetus against the risks to both the patient and fetus if
a crucial diagnosis is missed.

With an understanding of the value added by different
imaging modalities, we will next discuss the management of
specific conditions.

AORTIC VALVE DISORDERS

Aortic Valve Stenosis
Cardiac output and stroke volume increase during pregnancy and
reach their peak during the second to third trimester. Output
and stroke volume may be increased up to 45% in a normal
pregnancy and an estimated additional 15% higher in twin
pregnancy (9, 10). These hemodynamic changes lead to increases
in valvular gradients (11). Women with severe aortic stenosis
(AS) are more likely to develop heart failure and adverse fetal
outcomes including preterm birth and low birth weight (12). As
hemodynamics change during pregnancy, so too does the risk
of heart failure, particularly during the period from the second
trimester through the first 24–72 h postpartum (13).

Congenital aortic stenosis can be seen from bicuspid aortic
valve, subvalvular, and supravalvular stenosis, but overall is well-
tolerated during pregnancy (14). Additionally, bicuspid aortic
valve and associated aortopathy or coarctation of the aorta may
be seen together in women with Turner’s syndrome (15).

Preconception Planning
The diagnosis of severe AS is made by echocardiography
using standard methods to determine aortic valve gradients.
Symptomatic severe aortic stenosis is a particularly high-risk
condition (12). For example, the estimated risk of primary cardiac
events in a woman with severe, symptomatic aortic stenosis
using the CARPREG II score is 10%. In circumstances where
pregnancy is deemed high risk for maternal and or fetal mortality,
a collaborative approach with obstetric and cardiovascular
specialists should include discussion of non-surgical or surgical
intervention (16). Contraceptive approaches should also be
discussed for high-risk women of child-bearing age (17).

Asymptomatic women with severe aortic stenosis are also not
without significant risk. Although data are limited, evaluation
with exercise echocardiography or cardiopulmonary exercise
testing is recommended to evaluate the hemodynamic response

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 August 2022 | Volume 9 | Article 834738144

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-834738 July 28, 2022 Time: 16:9 # 3

Ismail et al. Pregnancy: Valvulopathy, Aortopathy, and Hypertrophic Cardiomyopathy

TABLE 1 | The advantages and the disadvantages of each imaging modality in pregnancy.

Modality Echocardiography Contrast-enhanced CT MRI without contrast

Pathology
evaluated

• Valve stenosis
• Valvular regurgitation
• Proximal aortopathy
• Ventricular function

• Aortopathy (full visualization) • Ventricular function and specific cardiomyopathies
• Aortopathy (full visualization)
• Valve dysfunction

Advantages • Easily available
• No ionizing radiation
• No gadolinium-based contrast

• Excellent resolution
• Complete visualization of aorta

• Excellent resolution
• No ionizing radiation
• Complete visualization of aorta

Disadvantages • Acoustic windows may be
compromised during pregnancy

• Limited visualization of thoracic aorta

• Ionizing radiation
• Intravenous contrast for

assessment of aorta

• Relatively long scan times
• Image quality adversely affected by arrhythmias

FIGURE 1 | Visualization of the aorta with echocardiography. Standard parasternal and suprasternal notch views (periphery) leave a significant portion of the aorta
unvisualized. Computer tomography (CT) or magnetic resonance imaging (MRI) can visualize the aorta in three dimensions (center) and allows for comprehensive
evaluation of anatomy.

to increased demand. Women with bicuspid aortic valve,
without or without significant aortic stenosis, should have careful
assessment of the thoracic aorta before pregnancy (16).

During Pregnancy
Given the dynamic physiological changes throughout pregnancy,
clinical monitoring and serial echocardiography are appropriate.
Clinical evaluation should assess for development of AS
symptoms such as fatigue, shortness of breath, syncope,
presyncope, or other heart failure symptoms (18).

Echocardiography once every trimester is generally adequate
and most importantly, is recommended at the time of peak
hemodynamic load estimated to be at about 32 weeks gestation
(13). Congenital bicuspid aortic valve is associated with
coarctation of the aorta in about 10% of patients and aortopathy
is common. Therefore, the aorta should be carefully examined by
echocardiography as well. Transesophageal echocardiography is
safe in pregnancy but the aspiration risk is somewhat elevated
compared to normal due to an increase in intra-abdominal
pressure (19).
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Cardiac CT is usually not necessary for diagnosis or planning
management of AS but can be considered in women with
bicuspid aortic valve when evaluation for aortopathy is indicated.
A low radiation CT with a fetal dose of 0.01–0.66 mGy can
be used to evaluate for aortic diameters before and during
pregnancy (20). MRI generally does not add significantly to
diagnosis or management of AS during pregnancy, and usually
is not required or advised unless other diagnostic imaging
are insufficient. Cardiac catheterization is rarely needed for
diagnosis, but necessary if intervention must be performed for
severe symptomatic AS in pregnancy. Fetal exposure to radiation
from cardiac catheterization is low – the abdomen, if unshielded,
receives 1.5 mGy on average with less than 20% reaching the
fetus (21).

Management
Increased blood volume in pregnancy causes elevated gradients
across the stenosed aortic valve and may result in development of
decompensated heart failure (HF). Management includes use of
loop diuretics for relief of vascular congestion, but they should
be used with caution to avoid hypoperfusion of the placenta.
According to the ACC/AHA guidelines, women with valvular
disease undergoing uncomplicated vaginal delivery or Cesarean
section do not require prophylactic antibiotics (16).

In severely symptomatic women with aortic stenosis who do
not respond to medical management, aortic balloon valvuloplasty
or transcatheter valve replacement can be considered in patients
with favorable anatomy (11, 22). If aortic valvuloplasty is
determined to be the best management approach, the best timing
is after organogenesis is complete which is after the 4th month
of pregnancy (21). There are limited data on these interventional
approaches, but case reports suggest their feasibility. Berry et al.
reported a case of a 33 year-old woman at 22 weeks gestation
with a 21-mm Carpentier Edwards Magna valve bioprosthetic
aortic valve who developed progressive symptomatic AS during
her pregnancy and a mean aortic valve gradient of 61 mmHg. She
successfully underwent a valve-in-valve transcutaneous aortic
valve replacement using a 20-mm Edwards Sapien 3 valve with
significant improvement in clinical symptoms and reduction
of the mean aortic valve gradient to 23 mmHg. At 37 weeks
gestation, she delivered a healthy baby by Cesarean section (11).
Orwat et al. reported a successful aortic balloon valvulotomy in
a woman with severe AS at 20 weeks of gestation leading to
symptomatic systolic heart failure. Pregnancy was subsequently
uneventful though she required aortic valve replacement 1
month after delivery for recurrent symptoms (12). Surgical
aortic valve replacement during pregnancy is exceptionally
rare because of the reported risk of fetal mortality associated
with cardiopulmonary bypass but has also been reported with
success (23).

Labor and Delivery
The hemodynamic changes of pregnancy peak during labor and
delivery with an increase in stroke volume and cardiac output
up to 80% immediately following delivery in response to pain,
bleeding, uterine contraction, and anxiety (10, 24). It is estimated
that uterine contraction leads to approximately 300–500 ml of

placental blood autotransfusion to the systemic circulation which
contributes to the increase in both systolic and diastolic blood
pressure (10).

In general, vaginal delivery is preferred and Cesarean delivery
is not generally recommended unless there is severe aortic
stenosis (21, 24). Compared to women with moderate valve
disease, those with severe AS have a higher rate of Cesarean
section (75.0 vs. 48.3%). Lower birth weight infants were more
common in severe AS (35 vs. 6%), believed to be related to the
hemodynamic compromise in severe AS that leads to decreased
utero-placental blood flow. These infants usually have a lower
Apgar score (< 7) (12).

Post-Partum Period
In patients with severe AS or symptomatic moderate AS, a 31%
increase in complications has been reported in the early post-
partum period (i.e., within 24–72 h of delivery) secondary to
fluid shifts. These complications include arrhythmia, pulmonary
congestion, death, or need for cardiac intervention. There is also
an increased chance of deterioration of the diseased aortic valve
weeks or months after delivery (25).

Aortic Valve Regurgitation
Pregnant women with aortic regurgitation are at low risk for
cardiac complications and generally tolerate pregnancy, likely
due to a decrease in afterload that reduces regurgitant volume
(24). Nonetheless, data suggest that a dilated left ventricle with
depressed function may predict an increased likelihood of adverse
events (26). Aortic regurgitation may be secondary to bicuspid
aortic valve with associated aortopathy which are discussed
elsewhere in this review.

MITRAL VALVE DISORDERS

Mitral Valve Stenosis
Mitral stenosis most commonly occurs because of rheumatic
heart disease, uncommon in developed countries but an
important cause in developing nations and in major cities
with significant immigrant populations (Figure 2). Congenital
mitral stenosis due to parachute mitral valve is rare, and
uncommonly seen in adult patients without prior repair. Heart
failure symptoms related to mitral stenosis may appear when
the mitral valve orifice area is reduced to < 2 cm2 (27). The
increased stroke volume and cardiac output of pregnancy may
unmask previously asymptomatic mitral valve disease (24, 28).
The increasing transmitral valve gradient during pregnancy
may lead to pulmonary vascular congestion and pulmonary
hypertension. Moreover, the increased heart rate associated
with pregnancy limits diastolic filling which further worsens
pulmonary edema (29).

Preconception Planning
A multidisciplinary team consisting of an obstetrician (preferably
a high-risk specialist), cardiologist, and anesthesiologist should
be involved in the initial evaluation of women with mitral
valve stenosis and should follow her closely throughout
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FIGURE 2 | Mitral stenosis: Representative parasternal long axis view during
showing mitral stenosis in a woman with rheumatic heart disease. Both
leaflets are affected with thickening and also restriction of their movement.

pregnancy and the post-partum period. The clinical evaluation
should include an echocardiogram ideally performed at 6 to
12 months prior to pregnancy. Exercise stress echocardiography
may provide additional hemodynamic information in patients
without significant symptoms or questionable severity of mitral
stenosis (16, 21).

Women should be counseled on the maternal and fetal
adverse outcomes associated with mitral stenosis. Left heart
obstruction that results from severe mitral stenosis results
in uteroplacental insufficiency which consequently leads to
increased fetal morbidity and mortality including intrauterine
growth retardation (IUGR), low birth weight, preterm delivery
and fetal death (30).

The adverse effects in women with mitral stenosis are related
to the severity of mitral stenosis and the patient’s NYHA class
(27). Increased cardiovascular demand during pregnancy is very
poorly tolerated in women with severe mitral stenosis and may
result in rapid deterioration of NYHA class (31). More severe
stenosis, NYHA III-IV symptoms, LVEF < 40%, and prior
cardiac all events are all predictors of adverse cardiac events
during pregnancy (28). According to The American College of
Cardiology/American Heart Association (ACC/AHA) guidelines,
pregnant women who have symptomatic moderate to severe
mitral stenosis defined as mitral valve area (MVA) ≤ 1.5 cm2 or
mean gradient ≥ 5 mmHg are advised to undergo percutaneous
balloon mitral valvuloplasty prior to planning conception
(16). Women with mitral stenosis on anticoagulation present
significant issues during pregnancy. Pregnancy is associated with
hypercoagulability and therfore increases the risk of thrombosis
which persists up to 12 weeks into the postpartum period.
Therefore, it is strongly advised that anticoagulation with heparin
bridge to warfarin be resumed in the immediate postpartum
period after assessment of bleeding risk and it can be generally
started at 6–8 h after uncomplicated vaginal delivery and at
24–36 h after a Cesarean section (32, 33).

During Pregnancy
Valve gradients in mitral stenosis increase with increased
stroke volume and cardiac output. Thus, for any severity of
mitral stenosis, the increased cardiac output occurring during
pregnancy results in increased gradients and may cause the
severity of mitral stenosis to be overestimated. Therefore, mitral
valve assessment should include measurement of mitral valve
area, preferably using a method that involves measuring the
increased stroke volume (28, 34). Echocardiography once every
trimester is generally adequate although consideration must be
given to changes in clinical status or symptoms (13). The role of
MRI and CT is limited. Mitral valve area can also be obtained by
planimetry on cardiac MR or CT, but in general these modalities
have limited utility for valve assessment in pregnancy.

Management
Pregnancy is generally well tolerated in women with mild or
moderate mitral valve stenosis. Women with severe MS should
decrease their physical activity and are advised to bedrest
during the latter stages of pregnancy (35). Heart failure and
pulmonary edema tend to appear during the second or third
trimester at the peak increase in cardiac output. In addition
to bedrest, management of symptomatic patients should always
start with conventional medical therapy for mitral stenosis,
including diuretics for volume management and beta-blockade
to decrease heart rate and improve diastolic filling. Beta blockers
that are safe in pregnancy include propranolol and metoprolol
as they do not pose significant fetal adverse effects (36) while
atenolol is associated with more fetal growth retardation (28).
Diuretics should be used with caution to avoid placental
hypoperfusion. All women with mitral stenosis, regardless of
severity, should be evaluated for atrial fibrillation. Cardioversion
of atrial fibrillation is safe in pregnancy if needed to prevent
systemic embolization and to improve left ventricular filling
(29). Either warfarin < 5 mg daily and/or low molecular weight
heparin can be used for anticoagulation (37).

If intervention is deemed necessary in women with refractory
symptoms, the second trimester is the preferred timing. In
women without significant mitral regurgitation, percutaneous
balloon mitral valvuloplasty results in substantial decrease
in valve gradient and increased valve area (38). Open
commissurotomy has similar success rate to percutaneous
balloon valvuloplasty but poses a high, 8 times greater, risk of
fetal loss. Mitral valve replacement is usually the last resort in
severe cases in which the valve is not amenable to percutaneous
intervention due to heavy calcification or if a mural thrombus is
present. Surgical mitral valve replacement carries 1.5–5% risk of
maternal mortality and 16–33% risk of fetal loss (29).

Labor and Delivery
Vaginal delivery under epidural anesthesia is generally
recommended unless otherwise obstetrically contraindicated.
Epidural anesthesia reduces tachycardia secondary to labor
pain and therefore reduces left atrial pressure and the risk of
pulmonary edema during labor. For women in NYHA classes
III or IV, invasive hemodynamic monitoring during labor
and delivery is helpful in guiding fluid and drug therapy (29).
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The goal is to allow for uterine contraction while minimizing
maternal Valsalva maneuver during expulsive effort. The use of
epidural boluses in incremental doses allows for supplemental
instrumentation in the second stage of labor to shorten this
stage, and most importantly, the slow anesthetic onset allows for
maternal compensation to prevent profound hypotension (39).
In addition, epidural anesthesia provides segmental blockade
which preserves the lower extremity muscle tone, decreasing the
incidence of deep venous thrombosis (40).

Post-Partum Period
There is a sudden increase in preload during and immediately
after delivery due both to relief of pressure of the uterus
on the venous circulation and to autotransfusion from the
placenta to the maternal central circulation. This may lead
to severe pulmonary edema in women with mitral stenosis,
and consequently the risk of maternal death is highest during
labor and the immediate post-partum period. The increased risk
may persist for 24–72 h after delivery until stabilization of the
maternal hemodynamic shift (29).

Mitral Valve Regurgitation
Mitral regurgitation is most commonly due to mitral valve
prolapse (Figure 3). Indeed, primary mitral valve prolapse
(MVP) due to myxomatous valve disease is the most common
valvular disease in pregnancy (41). MVP is usually suspected
or diagnosed with clinical findings of systolic click and mitral
regurgitant murmur, but these findings may not be classical in
pregnancy because of the volume increases and lower systemic
resistance that occur in pregnancy (42, 43). The diagnosis is
confirmed and the severity of mitral regurgitation ascertained by
echocardiography (Figure 3).

In the absence of other cardiovascular pathology, the majority
of pregnant women with MVP and mild or moderate mitral
regurgitation have an uneventful pregnancy. Asymptomatic
women with mitral valve prolapse and chronic, severe
regurgitation usually tolerate pregnancy without significant
complication although the increased cardiac volume may be
associated with signs and symptoms of volume overload and
atrial fibrillation. This can generally be managed with careful
diuresis and beta blockers (16, 42, 44). Metoprolol can be safely
used in pregnancy but may be associated with fetal bradycardia
so should be used judiciously.

Women with mitral regurgitation, depressed LV function,
and pulmonary hypertension with pulmonary artery systolic
pressure > 50 mm Hg are at high risk for development of
heart failure during pregnancy. It is highly recommended that
those patients be referred to a specialized valve center for
consideration of surgical intervention. Similarly, patients with
severe regurgitation and refractory heart failure should also be
referred to a specialized valve center (16).

Right-Sided Valvular Heart Disease
Disease affecting the right-sided cardiac valves occurs much
less commonly than left-sided cardiac valves. Involvement
of the tricuspid and pulmonic valves in complex congenital
heart disease is beyond the scope of this review. Acquired

FIGURE 3 | Mitral valve prolapse: Still images with and without color Doppler
in a woman with mitral valve prolapse affecting the posterior leaflet. The
posterior leaflet bows beyond the mitral annular plane and produces an
anteriorly-directed jet of mitral regurgitation.

forms of tricuspid valve disease include tricuspid stenosis,
a rare complication of rheumatic heart disease, and nearly
always occurs with mitral and/or aortic valve involvement.
Tricuspid stenosis is usually well tolerated in pregnancy, and the
coexistent left sided disease (most commonly mitral stenosis)
presents the major issues as discussed above (45). Significant
tricuspid regurgitation is also quite uncommon in the absence of
congenital heart disease or pulmonary hypertension. The latter
poses a particularly high risk to the mother and fetus, and severe
pulmonary hypertension should be considered a contraindication
to pregnancy. In general, isolated tricuspid regurgitation does
not impose clinically significant hemodynamic burden during
pregnancy (24).

Isolated pulmonic stenosis is rare and if present is it usually
due to branch pulmonary artery stenosis which in turn increases
pressure gradient across the pulmonic valve (46). Pulmonic
stenosis of mild or even moderate severity may be undetected
until adulthood. Severe pulmonic stenosis most commonly
occurs in the setting of complex congenital heart disease,
typically Tetralogy of Fallot and is beyond the scope of this
paper. Pulmonic valve regurgitation without coexistent complex
congenital heart disease or pulmonary hypertension is also very
uncommon. In general, pulmonic regurgitation with normal
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right ventricular function is also very well tolerated in pregnancy
but is largely influenced by coexistent structural disease (47).

Mechanical Heart Valves
Mechanical heart valves that necessitate the use of
anticoagulation present additional challenges in managing
valvular disease in pregnant women. The hypercoagulability
associated with pregnancy poses added risk of valve thrombosis.
The goal of adequate anticoagulation to prevent valve thrombosis
must be balanced with avoiding fetal adverse outcomes.
Echocardiography provides important information about
prosthetic valve anatomy and function (21). As previously
discussed, the increased stroke volume and cardiac output
associated with pregnancy can be expected to cause increased
transvalvular gradients that should not be misinterpreted as valve
dysfunction. Cardiac CT, when performed with retrospective
gating, can be used to assess valve motion, though at the cost
of radiation (48). Fluoroscopy is another tool for assessment of
mechanical valve motion (21). Cardiac MRI has limited use for
valve assessment due to magnetic artifact (49).

Warfarin continued throughout pregnancy provides the best
protection to the pregnant woman but carries a risk of fetal
teratogenicity demonstrated by studies showing that warfarin
leads to fetal birth defects if used in the first trimester
particularly between weeks 6–12 (50). Current American College
of Cardiology/American Heart Association (ACC/AHA) valvular
heart disease guidelines recommend the use of warfarin at a
daily dose of ≤ 5 mg/day throughout pregnancy, provided
adequate anticoagulation is achieved (16). Warfarin at this low
dose has been associated with better fetal outcomes and is
comparable to low molecular weight heparin (LMWH) (32).
Pregnant women who require higher warfarin dosage to maintain
a therapeutic anticoagulation are recommended to be switched to
low molecular weight heparin given subcutaneously every 12 h,
and Anti-Xa levels monitored 4–6 h after a dose (goal range: 0.8–
1.2 U/ml) (33). In women on anticoagulation, Cesarean delivery
is recommended due to increased risks of neonatal intracranial
bleeding during vaginal delivery (21).

In women with mechanical valves, combined hormonal
contraception such as pills, patches and vaginal rings carry an
increased risk of thrombosis and their use should be discouraged.
In contrast, copper intrauterine devices and subcutaneous
implants which contain single etonogestrel hormone are safe
and are long acting to prevent unintended pregnancy for cardiac
patients (51).

Hypertrophic Cardiomyopathy
Preconception Planning
Women with hypertrophic cardiomyopathy should be
carefully counseled regarding the risk of HCM in the baby.
Nonetheless, pregnancy is generally well-tolerated in patients
with hypertrophic cardiomyopathy (52). One study evaluating a
cohort of 100 women noted two deaths during pregnancy, both
of whom were known to be high risk. One woman had sudden
death four days post-partum and was known to have massive
left ventricular hypertrophy (i.e., wall thickness 30 mm) with a
resting left ventricular outflow gradient of 115 mmHg. The other

patient with a particularly malignant family history with eight
deaths in young relatives died of ventricular arrhythmia during
pregnancy (53). This study illustrates the importance of risk
stratification of women with HCM before pregnancy to identify
features such as extreme left ventricular hypertrophy, strong
family or personal history of sudden cardiac death, syncope, or
identified arrhythmias on cardiac monitoring. Echocardiography
is recommended in the current guidelines for managing HCM,
particularly when new symptoms develop during pregnancy.
Patients known to be high risk should also undergo regular
echocardiograms while pregnant to assess for significant changes
in outflow gradients or left ventricular function (21, 54).

Cardiac MR is not specifically recommended by current
HCM guidelines for pregnant women or women who may
become pregnant. However, CMR does offer advantages over
echocardiography, for example by visualizing maximal wall
thickness, detection of apical aneurysms, and identification of
late gadolinium enhancement (Figure 4) (55). Each of these
features has been associated with adverse outcomes in the
general HCM population and may plausibly be associated with
higher risk during pregnancy. CT has limited recommendations
in the guidelines and essentially is considered appropriate for
patients who cannot undergo CMR but require imaging beyond
echocardiography (56).

During Pregnancy, Labor, Delivery, and Post-Partum
Period
The increased blood volume occurring in pregnancy is often
associated with reduced left ventricular outflow gradient. On the
other hand, the increased volume may also result in heart failure
in women with severe diastolic dysfunction (57). Diuretics can be
used judiciously in women with evidence of vascular congestion
(58). Echocardiography may be helpful in management to
distinguish symptoms occurring as a normal consequence of
pregnancy (for example, dyspnea) and those occurring due to
HCM. Thus, evaluation of left ventricular outflow gradient and
detection of mitral regurgitation due to systolic anterior motion
of the mitral leaflet provide important management adjuncts (59).
Most women can undergo uncomplicated vaginal delivery and
Cesarean section is reserved for high-risk patients (54).

Aortopathy
Aortopathy is common in women with bicuspid aortic
valve, Marfan’s syndrome, Ehlers–Danlos type IV, Loeys–Dietz
syndrome and Turner’s syndrome. The risk of aortic dissection
may be significant and related to the degree of aortic dilation
(60–62). The risk of dissection appears to be highest during
the third trimester, labor and delivery and during the early
postpartum period (63). Cardiovascular imaging screening plays
a particularly important role in management of these women
to assure early identification, need for elective treatment, and
avoidance of complications (Figure 1) (64).

Preconception Planning
Identification of aortopathy and assessment of severity of aortic
dilation is crucial in preconception planning. Bicuspid aortic
valve is the most common congenital heart disease (aside
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FIGURE 4 | Late gadolinium enhancement (LGE) image from a cardiac magnetic resonance image in the three-chamber view showing significant fibrosis in the
anteroseptum of a patient with hypertrophic cardiomyopathy. Image courtesy Arlene Sirajuddin, MD.

from mitral valve prolapse) observed in adults, occurring
in 1–2% of the population. BAV can be associated with
coarctation of the aorta and aortic dilatation, even with
normal valve function. Less common abnormalities such
as Marfan’s syndrome, Ehlers–Danlos type IV, Loeys–Dietz
syndrome and Turner’s syndrome, are also associated with aortic
aneurysm and risk of dissection (63). Echocardiography
is recommended for evaluation of the aortic root and
proximal ascending aorta. Aortic dilatation involving the
distal ascending aorta, arch and descending thoracic is often
not well visualized by echocardiography. Therefore, a thorough
evaluation of the aorta with CT or MRI in patients with
possible aortopathy is strongly recommended for appropriate
pre-conception counseling (21). Imaging and prophylactic
aortic surgery for an aortic aneurysm can lead to better
outcomes and reduce the risk of aortic dissection later in
pregnancy. Pregnancy is not recommended in patients with
severe dilatation of the aorta in heritable thoracic aortic
disease such as Marfan syndrome > 45 mm, bicuspid aortic
valve > 50 mm or > 27 mm/m2 BSA, or Turner syndrome
ASI > 25 mm/m2 BSA (21).

During Pregnancy
Women with aortic size < 4.0 cm are generally at low risk,
but body surface area must be considered (21). Given the

morbidity and possible mortality associated with aortic dilation
and dissection, radiation concerns should not deter clinicians
from proceeding with CT angiography. MRI with or without
contrast is also an option based on local availability and expertise.

Pregnant women with aortopathy should undergo serial
echocardiography. Echocardiography should be performed
monthly in women with significant aortic dilatation (4–4.5 cm
for Marfan’s syndrome, 4.5–5.0 cm for bicuspid aortic valve), but
is reasonable to be performed every 12 weeks in women with
mild aortic dilation. If necessary, because of poor visualization by
echocardiography (Figure 1), location of the aortic dilation, or
suspected progression, cardiac MRI without contrast can be used
for further assessment and follow up (21, 64).

Management
Close monitoring, strict blood pressure control, and beta blockers
are highly advised throughout pregnancy, particularly among
patients with high risk aortopathy (21, 65).

Surgical management is considered when progressive
dilatation is observed and in type A aortic dissection
and should be planned before fetal viability in the
second trimester (62). In cases when progressive
dilatation is seen after fetal viability, Cesarean section
is recommended followed by aortic reconstructive
surgery (63).
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Labor and Delivery/Post-Partum Period
The goal is to minimize cardiovascular stress, therefore women
are advised to continue beta blocker therapy in the peripartum
period. Vaginal delivery with expedited second-stage using
epidural anesthesia and instrumental delivery is advised in cases
with an ascending aorta diameter between 4.0–4.5 cm to prevent
abrupt increases in blood pressure and hence reduce risk of
dissection. On the other hand, Cesarean delivery is strongly
advocated when the aortic diameter exceeds 4.5 cm or in patients
with Ehlers–Danlos syndrome type IV due to the high risk
of dissection. The increased risk of dissection persists in the
postpartum period, and women are recommended to be followed
by echocardiography in the immediate post-partum period and
6 months after delivery (21).

CONCLUSION

Women with significant valvular heart disease, hypertrophic
cardiomyopathy, and aortopathy require careful monitoring that
becomes even more important during pregnancy. Careful clinical
and appropriate imaging are relevant for risk stratification and
surveillance during pregnancy and in the post-partum period.

Echocardiography is the foundation of cardiac imaging
during pregnancy. In the conditions described in this
review, echocardiography offers safe, readily-available, and
diagnostic information to aid in patient management. However,
echocardiography may be limited due to acoustic windows and

image quality. MRI, including cardiac MRI, performed without
gadolinium, can safely offer important diagnostic information,
particularly in patients with aortopathy. Cardiac MRI may aid in
preconception management of patients with HCM by clarifying
anatomy and assisting with risk stratification. Finally, CT with
intravenous contrast can provide accurate evaluation of the entire
aorta, particularly when performed in an ECG-gated manner.
CT is ideally performed prior to conception for assessment
of risk in patients with known or suspected aortic disease. If
deemed necessary during pregnancy, prospective ECG-gating
can dramatically reduce the amount of radiation delivered to the
patient and fetus.
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