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Editorial on the Research Topic
 Mapping psychopathology with MRI and connectivity analysis




Different connections exist between different neurons and brain regions, constituting a complex and extensive brain network. Modern brain science research shows that the realization of many higher cognitive functions relies on the synergistic cooperation between different brain regions, not just on a specific brain region. The pathogenesis of many neurological and psychiatric disorders (e.g., schizophrenia, depression, etc.) is, to some extent, due to abnormalities in the connections between related brain regions. Brain connections at the macroscale can be classified into three types: structural connectivity, functional connectivity, and effective connectivity. Structural connectivity refers to the anatomical connections between brain regions. Functional connectivity uses signals recorded from different brain regions to calculate a certain index reflecting the strength of the relationship between brain regions. In contrast, effective connectivity is a causal and directional influence. In contrast to functional and structural connectivity, effective connectivity can establish causal relationships between the actions of different brain regions and may provide insights to explore psychopathology's neural mechanisms.

The present Frontiers Research Topic entitled “Mapping psychopathology with MRI and connectivity analysis” is part of the article collection series, “Mapping psychopathology with fMRI and effective connectivity analysis” (https://www.frontiersin.org/research-topics/3471/mapping-psychopathology-with-fmri-and-effective-connectivity-analysis). This Research Topic aims to introduce the use of magnetic resonance imaging (MRI) to investigate the neural mechanisms underlying neurological and psychiatric disorders (e.g., major depressive disorder, schizophrenia, Parkinson's disease, etc.). In addition, treatment effects were taken as the focus of the Research Topic, which included neuromodulation and psychotropic drugs, on the directional coupling between brain regions and whether alterations in connectivity persisted in subjects in remission.

At the macroscale, the human brain can be considered a complex and large network system consisting of structural and functional connections of different brain regions (Zhao et al.). Neuroimaging techniques have become a powerful method to study the structure, function, and metabolism of the brain in methamphetamine users (Yang et al.). Wang et al. enrolled diffusion weighted imaging (DWI) data of 42 adults with attention-deficit/hyperactivity disorder (ADHD) and 59 typically developing adults to explore the presence of abnormal connectomes in rich club structures in the brains of adults with ADHD, and the results showed that ADHD patients had reduced density of rich clubs in central structural nodes, mainly located in the insula, bilateral precuneus, left putamen, caudate nucleus, and right calcarine (Wang et al., 2021).

Functional MRI (fMRI) has emerged as an effective technique for the study of psychiatric disorders (Agoalikum et al.). Current neuroimaging findings suggest that major depression is not a dysfunction of a single brain region but associated with brain network dysfunction. An fMRI study of patients with major depressive disorder showed a significant decrease in the amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation in the right precentral gyrus, a decrease in degree centrality in the left triangular part of the inferior frontal gyrus, and an increase in the left hippocampus after electroconvulsive therapy treatment (Li X. et al.). Agoalikum et al. used resting-state fMRI data to recognize disrupted brain connectivity differences among children, adolescents, and adults with ADHD. Their results showed that abnormal dynamic interactions and connectivity deficits were correlated with different groups and that these abnormalities differed between children, adolescents, and adults with ADHD. Li H. et al. studied changes in the functional connectivity of the vermis and brain regions in subjects with bipolar disorder at the resting state, and patients with bipolar disorder had reduced resting-state functional connectivity in the vermis and ventral prefrontal cortex compared to the HC group. A meta-analysis of patients with obsessive-compulsive disorder showed that the most consistent local connectivity abnormalities in obsessive-compulsive disorder patients occurred in the prefrontal cortex (Qing et al.). Gao et al. selected the striatum as a seed for functional connectivity analysis and found altered functional connectivity in the cortico-striatal network in patients with primary unilateral hemifacial spasm compared to healthy controls. In another study, functional connectivity changes in patients with vestibular migraine were assessed using resting-state functional connectivity analysis and compared with healthy controls. The results found that patients had reduced functional connectivity between the left inferior/middle temporal gyrus and supplementary motor area/the left superior frontal gyrus (Zhe et al.). Previous studies have confirmed that there are some changes in brain structure and function in patients with schizophrenia (Zhao et al.). Studies on local function in schizophrenia have found that cognitive dysfunction in schizophrenia is related to the function of the lentiform nucleus (Li P. et al.). Previous studies reported negative functional connectivity between the right lateral prefrontal cortex and the left putamen (Quide et al., 2013). One study found that quantitative and specific functional connectivity biomarkers may be valid radiomics signatures for individualized diagnosis of schizophrenia (Cui et al., 2018). In another study, Zhang Y. et al. found abnormal connectivity in brain language areas in patients with hallucinations.

However, the changes in the information flow, as measured by effective connectivity, of these distributed systems are still largely unknown. It has been shown that brain connectivity changes dynamically during the development of psychiatric disorders (Insel, 2010). Effective connectivity, as a type of brain connectivity, measures serve as promising biomarkers of schizophrenia (Li et al., 2017; Mastrovito et al., 2018). One study explored changes in causal connections between brain regions in adolescent-onset schizophrenia (AOS) patients and observed effective connectivity between the left superior temporal gyrus and the other four brain regions in the right hemisphere (superior frontal gyrus, angular gyrus, insula, and middle occipital gyrus) was impaired in patients with AOS. The results suggest that altered directional connectivity in the left superior temporal gyrus may have a significant effect on the development of AOS and as a possible biomarker for this disease (Lyu et al., 2021). Xi et al. obtained fMRI from first-degree relatives of patients with schizophrenia and found increased connectivity from the left anterior cingulate cortex to the right hippocampus and decreased connectivity from the right anterior cingulate cortex to the right hippocampus in patients' relatives compared to healthy controls (Xi et al., 2016). In another study, abnormalities in anterior cingulate cortex-related connections in the first schizophrenia in vivo were revealed by spectral dynamic causal modeling (Cui et al., 2015).

To summarize, this Research Topic highlights the application of MRI and connectivity analysis in the study of neurological and mental disorders. Furthermore, connectivity analysis using MRI data may provide a deeper understanding of the neural mechanisms of psychopathology.
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Objectives: To investigate changes in functional connectivity between the vermis and cerebral regions in the resting state among subjects with bipolar disorder (BD).

Methods: Thirty participants with BD and 28 healthy controls (HC) underwent the resting state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) of the anterior and posterior vermis was examined. For each participant, rsFC maps of the anterior and posterior vermis were computed and compared across the two groups.

Results: rsFC between the whole vermis and ventral prefrontal cortex (VPFC) was significantly lower in the BD groups compared to the HC group, and rsFC between the anterior vermis and the middle cingulate cortex was likewise significantly decreased in the BD group.

Limitations: 83.3% of the BD participants were taking medication at the time of the study. Our findings may in part be attributed to treatment differences because we did not examine the effects of medication on rsFC. Further, the mixed BD subtypes in our current study may have confounding effects influencing the results.

Conclusions: These rsFC differences of vermis-VPFC between groups may contribute to the BD mood regulation.

Keywords: bipolar disorder, resting state, functional connectivity, cerebellum, vermis


INTRODUCTION

Bipolar disorder (BD) is a severe psychiatric illness characterized by recurrent disturbances in sleep, behavior, perception, cognition, and mood regulation (Goodwin and Geddes, 2007). The cerebellum has long been regarded as a brain structure involved in motor systems (anterior lobe and lobule VI), there is growing contemporary evidence that it influences cognition (posterior lobe) and mood regulation (the vermis; Schutter and Van Honk, 2005; Schmahmann, 2019). The cerebellum’s involvement in mood regulation is consistent with earlier clinical studies that suggested the cerebellum functioned as an emotional pacemaker (Heath, 1977; Heath et al., 1979), as well as contemporary evidence that implicates the cerebellar vermis and fastigial nucleus as the limbic cerebellum (Schmahmann, 2001, 2004). The fastigial nucleus, one of the deep cerebellar nuclei, mediates the connection between the vermis and the cerebellar inferior peduncle and connects to the reticular formation and the limbic system through the inferior peduncle (Schmahmann, 2004). The connections between the vermis and both the reticular and limbic system imply that the vermis plays an important role in the regulation of affect (Stoodley and Schmahmann, 2009; Moulton et al., 2011). Some studies found that multi-episode BD patients have smaller vermal V2 and V3 areas via structural magnetic resonance imaging (MRI) compared to first-episode patients (DelBello et al., 1999; Mills et al., 2005). These data suggested that the vermis might therefore be subject to atrophy during BD spells. Moreover, mood disorders such as BD have been linked to impairments in anterior limbic brain structures, wherein the cerebellum may modulate mood (Strakowski et al., 2002).

Recent studies of spontaneous resting-state functional connectivity (rsFC) have focused on the BD brain network abnormalities such as abnormal rsFC in the frontotemporal system (Chepenik et al., 2010; Dickstein et al., 2010) and corticolimbic system (Anand et al., 2009). rsFC between the cerebellum and the whole brain can also be defined as the temporal dependency of their neural activation patterns by their coherence in spontaneous fluctuations in resting-state functional MRI (fMRI) signals (Buckner and Vincent, 2007). One recent MRI study found that the cerebellum and basal ganglia are closely correlated with mood states in BD, representing the altered metabolic activity of BD patients’ cerebellum (Johnson et al., 2018). Another resting-state fMRI study also found altered cerebellum-brain region connectivity in unmedicated BD (Chen et al., 2019).

In this study, we utilized a region-of-interest (ROI) based approach to examine rsFC in individuals with BD and healthy control (HC) participants. We selected the vermis as ROI and hypothesized that the BD group would show altered rsFC between vermis and cerebral regions which are involved in mood regulation compared to the HC group.



MATERIALS AND METHODS


Subjects

All BD participants were diagnosed using the Structured Clinical Interview for DSM-IV (Bell, 1994) and fulfilled DSM-IV criteria for BD in this study. Using DSM-IV criteria, psychologists of our working group recruited all BD patients from the outpatient center of the First Hospital of China Medical University and Mental Health Center of Shenyang between June 2010 and August 2018. Enrolled patients were consistently aged 18–50 years right-handed, and exhibited neither neurological illness nor head trauma involving loss of consciousness exceeding 5 min, nor any major physical disorder or contraindication for fMRI scanning. Psychologists systematically evaluated the presence or absence of Axis I Disorder for the recruited patients and assessed patients’ mood state at scanning according to the DSM-IV Structured Clinical Interview. Psychological examinations of all HCs recruited from the local community were normal, these examinations confirmed no personal histories of mental illness, mood, psychotic, anxiety, or substance misuse disorders in their first-degree family members. Thirty BD patients and 28 HCs were ultimately included in the study population (matched by age and gender, p > 0.05). Symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and the Young Mania Rating Scale (YMRS). Twenty-five (83.3%) of the BD participants were taking medication at the time of scanning. Some of the participants in this study also participated in our previous study (Xu et al., 2014). Their behavioral assessment was made by XJ. All participants were approved by the ethics committee of the first hospital of China Medical University and provided a signed, written informed consent.

At the time of scanning, five (16.7%) participants with BD met DSM-IV criteria for a depressive episode and six (20.0%) for a manic/mixed or hypomanic episode, whereas the remaining 19 (63.3%) were euthymic. Detailed demographic and clinical characteristics of the participants are presented in Table 1.

TABLE 1. Demographic and clinical data of subjects.
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MRI Scanning and Image Preprocessing

All fMRI scans were performed using a 3.0-T GE Signa System (GE Signa, Milwaukee, Wisconsin, USA) in the Department of Radiology, the First Hospital of China Medical University. The clinician asked the patients to remove any metal jewelry or accessories that might interfere with the machine and briefly introduced the procedure of MRI scanning to reduce the anxiety of patients. Foam pads were provided to reduce head motion and scanner noise when patients were lying down. Technician set the parameter of a 3D-SPGR sequence to acquire three-dimensional T1-weighted images in a sagittal orientation with the repetition time (TR) = 7.1 ms, echo time (TE) = 3.2 ms, field of view (FOV) = 24 cm×24 cm, flip angle = 15°, matrix = 256 × 256, slice thickness = 1.8 mm, no gap. The fMRI scanning was performed in darkness, and an observer stood to one side to ensure the patients kept their eyes closed, relaxing, and moving as little as possible. The slices of functional images were positioned approximately along the AC-PC line using a gradient echo-planar imaging (EPI): TR = 2,000 ms, TE = 30 ms, FOV = 24 cm × 24 cm, flip angle = 90°, matrix = 64 × 64, slice thickness = 3 mm, no gap, slices = 35. For each participant, the fMRI scanning lasted 7 min. Image preprocessing was carried out using SPM81 and DPABI (Yan et al., 2016). Preprocessing consisted of slice-time correction, motion correction, spatial normalization, and spatial smoothing full width at half maximum (FWHM = 6 mm). Movement parameters were extracted out by SPM8 for each participant, which can exclude the data sets with more than 2 mm maximum translation along the x, y, or z axes, allowing 2° of maximum rotation about three axes among each image. Further preprocessing consisted of removing linear drift through linear regression and temporal band-pass filtering (0.01–0.08 Hz) to reduce the effects of low-frequency drifts and physiological high-frequency noise.



Definition of ROIs

The vermis was divided into anterior vermis (vermis I-V) and posterior vermis (vermis VI-IX) by AAL (Anatomical automatic labelling; Pfefferbaum et al., 2011; Figure 1). For each ROI, the blood oxygen level dependence (BOLD) time series of the voxels within the ROI were averaged to generate the reference time series.


[image: image]

FIGURE 1. The generated anterior (gray) and posterior (yellow) regions of interest (ROIs) in a representative subject.



A whole-brain mask was created by taking the intersections of the normalized T1-weighted high-resolution images of all participants, which were stripped using the software BrainSuite22.



FC Analysis

A regression generalized linear model (GLM) was created for each participant, including a time series regressor for one of the two vermal subregions, and applied to each of eight nuisance covariates (white matter, cerebrospinal fluid, and six motion parameters). Correlation analysis was performed in a voxel-wise manner between the seed ROIs and the whole brain using DPABI. The correlation coefficients were then transformed to z-values using the Fisher r-to-z transformation for more conforming to Gaussian distribution. A one-sample t-test model was used to delineate the functional connectivity of each vermis ROI in the first-level analysis. Direct comparisons were conducted to identify differences in functional connectivity between BD vs. HC in the second-level random-effects analysis.



Statistical Analyses

Statistical significance was determined by a corrected P < 0.05 that combined individual voxel p(uncorrected) < 0.01 with GRF (Gaussian random field) correction for cluster-level inference of p < 0.05 (Bousse et al., 2012). Additional exploratory analyses (ANCOVA) were performed for effects of medications (overall presence or absence of medication) on the regions that showed significant differences between the HC and BD groups. Finally, significant correlations between HDRS, YMRS in the BD group, and the transformed z-scores showing significant group differences were performed using exploratory correlation analyses to identify the relationship between the symptom severity and the strength of connectivity. A two-tailed p level of 0.05 was used as the criterion of statistical significance.




RESULTS

Regions with changed vermal connectivity between the BD and HC groups are shown in Table 2. Compared to the HC group, significant differences in rsFC were observed between the anterior vermis and brain regions that included ventral prefrontal gyrus (VPFC; BA 10) and middle cingulate cortex (BA 24; Figure 2), while the posterior vermis showed significant differences in rsFC with VPFC (BA 10) in the BD group (Figure 3). In addition, there were no significant effects of medication on FC values in the regions that differed between the HC and BD groups (ANCOVA test, p > 0.05). Finally, correlation analysis was performed between the connectivity coefficient within clusters showing significant group differences and behavioral measures as assessed by HDRS, YMRS in the BD group. Analyses of correlations did not show any significant effects between functional connectivity and clinical scores (Table 3).

TABLE 2. Detailed information for clusters showing group connectivity differences in BD at the given threshold (cluster size > 297 mm3, and P < 0.00014).
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FIGURE 2. Functional connectivity between anterior vermis and ventral prefrontal cortex, middle cingulate cortex in the comparison between bipolar disorder (BD) and healthy controls (HC) groups. Error bars represent the standard deviation of Z values at the peak voxel. BD, bipolar disorder; HC, healthy control.
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FIGURE 3. Functional connectivity between the posterior vermis and ventral prefrontal cortex in the comparison between BD and HC groups. Error bars represent the standard deviation of Z values at the peak voxel. BD, bipolar disorder; HC, healthy control.



TABLE 3. The correlation between the strength of these changed connectivity regions and the clinical scores in BD group.
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DISCUSSION

The current study examined vermal connectivity in BD patients. We discovered that two cerebral regions (VPFC and middle cingulate cortex) showed decreasing connectivity with the vermis. Previous studies show that these two brain regions exhibited changed neural activity or disturbed connectivity with other cerebral regions. We initially found the connectivity pattern between vermis and these two cerebral regions was similarly disturbed in BD patients.

Previous studies proposed that the vermis can be considered as the “limbic cerebellum,” based on its regional connections with limbic structures (Schmahmann, 2001, 2004). Patients with the cerebellar cognitive affective syndrome can show emotional lability, inappropriate laughing or crying, and changes in affection, suggesting that these cerebellar-limbic connections are involved in the modulation of emotional processing (Levisohn et al., 2000). What’s more, malformations of the posterior vermis have been confirmed to be associated with emotional symptoms (Tavano et al., 2007). These studies implicated the cerebellar vermis, especially the posterior vermis play important roles in mood regulation. Interestingly, the VPFC has now also been shown to play an important role in emotion processes (Kringelbach, 2005). Many fMRI studies have found abnormal activation of the VPFC in BD during tasks (Blumberg et al., 2003; Elliott et al., 2004; Lawrence et al., 2004; Strakowski et al., 2004; Malhi et al., 2005). Abnormal VPFC neural activity and disturbed VPFC-amygdala rsFC were also observed by resting-state studies (Liu et al., 2014; Xu et al., 2014). Trait abnormalities of VPFC in BD are further supported by postmortem histopathological findings such as decreased glial density and reductions in the density of both neurons and glia (Ongur et al., 1998; Rajkowska, 2000, 2002). In our study, the entire vermis showed changed rsFC patterns with the VPFC, establishing that the decreased rsFC of vermis-VPFC plays an important role in the regulation of mood linked to the core psychopathology of BD.

Another changed connectivity region of the anterior vermis, which belongs to the anterior lobe of the cerebellum, is the middle cingulate cortex (BA 24). The function of the anterior cerebellar lobe is mainly associated with motor control (Stoodley and Schmahmann, 2009). The middle cingulate cortex area is the midsection of the cingulate gyrus in its anterior-posterior axis and appears to be involved in both motor control and cognitive tasks such as response selection, error detection, competition monitoring, and working memory (Torta and Cauda, 2011). Previous studies have consistently reported aberrant motor control presentation in BD (Manschreck et al., 2004; Krebs et al., 2010; Deveney et al., 2012; Weathers et al., 2012). Our findings combined with previous studies suggest that the anterior vermis may be involved in the motor control of BD patients, which should be further validated by future studies.

There are several limitations to this study. First, 83.3% of the BD participants were taking medication at the time of the study. Although we did not find significant effects of medication on FC values in this study, our findings may in part be attributed to treatment differences. Second, confounding effects may influence the result of mixed BD subtypes in our current study; future studies that compare subtypes in BD would likely contribute to our understanding of the underlying mechanisms of BD. Thirdly, the sample size is modest. Finally, correlation analyses did not reveal significant relationships between rsFC and symptom measures in BD. In this study, only the HDRS and YMRS symptom measurements were assessed in the BD group. Future studies should include more comprehensive symptom measurements to enhance our understanding of the relationship between symptom severity and functional connectivity as well as state vs. trait-related abnormalities in BD. Because the majority of BD participants in this study were in remitted states, our findings more likely reflect trait-related differences between BD and HC.



CONCLUSION

In summary, BD patients showed decreased rsFC of vermis and VPFC as compared to the HC group. This resting-state fMRI study suggests that the abnormal rsFC of vermis-VPFC may contribute to mood regulation in BD patients. Further work focusing on this field may contribute to our understanding of BD neuropathphysiology.
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Background: Increasing evidence suggests that the temporal and parietal lobes are associated with multisensory integration and vestibular migraine. However, temporal and parietal lobe structural and functional connectivity (FC) changes related to vestibular migraine need to be further investigated.

Methods: Twenty-five patients with vestibular migraine (VM) and 27 age- and sex- matched healthy controls participated in this study. Participants completed standardized questionnaires assessing migraine and vertigo-related clinical features. Cerebral cortex characteristics [i.e., thickness (CT), fractal dimension (FD), sulcus depth (SD), and the gyrification index (GI)] were evaluated using an automated Computational Anatomy Toolbox (CAT12). Regions with significant differences were used in a seed-based comparison of resting-state FC conducted with DPABI. The relationship between changes in cortical characteristics or FC and clinical features was also analyzed in the patients with VM.

Results: Relative to controls, patients with VM showed significantly thinner CT in the bilateral inferior temporal gyrus, left middle temporal gyrus, and the right superior parietal lobule. A shallower SD was observed in the right superior and inferior parietal lobule. FD and GI did not differ significantly between the two groups. A negative correlation was found between CT in the right inferior temporal gyrus, as well as the left middle temporal gyrus, and the Dizziness Handicap Inventory (DHI) score in VM patients. Furthermore, patients with VM exhibited weaker FC between the left inferior/middle temporal gyrus and the left medial superior frontal gyrus, supplementary motor area.

Conclusion: Our data revealed cortical structural and resting-state FC abnormalities associated with multisensory integration, contributing to a lower quality of life. These observations suggest a role for multisensory integration in patients with VM pathophysiology. Future research should focus on using a task-based fMRI to measure multisensory integration.

Keywords: vestibular migraine, cortical surface, surface-based morphometry, temporal lobe, parietal lobe, multisensory integration


INTRODUCTION

Vestibular migraine (VM) is considered to be the most common central cause of episodic vertigo, manifesting as moderately to severely intense vestibular symptoms and a migraine history. In 2012, the International Headache Society and the Ba’ra’ny Society proposed criteria for diagnosing VM as a disease entity (Lempert et al., 2012). An estimated 2.7% of adults suffer from vestibular migraines according to a recent population-based survey in the United States (Formeister et al., 2018). Women suffer from VM 2 to 3 times more frequently than do men (Neuhauser et al., 2001; Lempert and Neuhauser, 2009). VM is a disabling disorder that results in a significant burden on healthcare. Therefore, it is important to understand the pathophysiology of VM to help develop treatment plans for patients.

Previous studies indicate that the temporal lobe and the parietal lobe are associated with multisensory integration and vestibular processing (Obermann et al., 2014; Komeilipoor et al., 2017; Messina et al., 2017; Oh et al., 2018). Patients with VM have activity in the temporal and parietal lobes during VM attacks (Shin et al., 2014). Several voxel-based morphometric (VBM) studies have reported that patients with VM exhibit gray matter (GM) volume abnormalities in temporal lobe regions, including the superior temporal gyrus, middle temporal gyrus, and inferior temporal gyrus, as well as the parietal lobe (Obermann et al., 2014; Messina et al., 2017). Together, these findings strongly suggest that structural abnormalities in the temporal lobe are involved in multisensory integration, including visual, auditory, tactile, and vestibular processing (Beauchamp, 2005; Amedi et al., 2007). It is unclear, however, whether cerebral cortex characteristics alter multisensory integration and vestibular processing in brain areas during VM attacks. Surface-based morphometry (SBM) can focus on cortical structural characteristics, yielding more specific information about neurological development as well as changes in cortical function related to thinning of the cortex (Panizzon et al., 2009; Yotter et al., 2011a; Dahnke et al., 2013). Compared with VBM, SBM has been shown to be more sensitive and precise for detecting gray-matter atrophy, and it uses a completely automatic method, which provides the basis for projection-based thickness (PBT) measurement in order to obtain a local measure of GM within the cortex (Lemaitre et al., 2012; Dahnke et al., 2013). The SBM approach has been frequently used as a research method to assess cortical surface characteristics in migraine and other vestibular disorders (Komaromy et al., 2019; Nigro et al., 2019; Lai et al., 2020). However, no study to date has investigated the pattern of cerebral cortex characteristics and their changes in relation to the clinical features of VM.

Resting-state functional connectivity (FC) provides a powerful method to investigate the FC among brain regions, detecting the synchronized blood oxygen level-dependent (BOLD) signals from the seed region to the whole brain so as to locate highly correlated areas with similar characteristics (Xu et al., 2019; Niu et al., 2020). However, previous functional magnetic resonance imaging (fMRI) studies have used the amplitude of low-frequency fluctuation (ALFF) during external stimulation to assess functional changes in patients with VM. Russo et al. (2014) demonstrated that abnormal thalamic function is involved in central vestibular processing. Teggi et al. (2016) reported activation of brain areas related to integrating visual and vestibular cues in patients with VM undergoing fMRI during visual stimulation in vertigo-free periods. A fMRI study to observe treatment effectiveness found ALFF values in the left posterior cerebellum of patients with VM increased significantly after 1 month of vestibular rehabilitation training (Liu et al., 2020). Functional imaging demonstrated the cerebellum can improve vestibular functioning through a vestibular compensation mechanism. Recently, Wang et al. (2021) evaluated resting-state FC alterations in patients with VM during the interictal period. Although several fMRI studies have focused on ALFF or FC, no studies have explored FC alterations based on cortical structural abnormalities in patients with VM.

Given that previous findings have shown that changes in the gray-matter volume of the temporal and parietal lobes are related to multisensory vestibular processing in VM (Obermann et al., 2014; Messina et al., 2017; Zhe et al., 2020), we hypothesized that alterations in cerebral cortex characteristics in patients with VM could be located in brain regions associated with multisensory vestibular processing. And we also hypothesized that changes in cortical regions were accompanied by changes in FC. Therefore, in the current study, we used a whole-brain SBM technique to evaluate cortical surface characteristics in VM patients, during an interictal period, compared with healthy controls. Furthermore, we used seed-based FC to investigate whether cortical regions with structural abnormalities also exhibit FC alterations in a patient with VM. Additionally, we assessed the relationships between brain morphological or FC changes and clinical parameters.



MATERIALS AND METHODS


Subjects

Patients were recruited from the vertigo and dizziness outpatient service center of the Shaanxi Provincial People’s Hospital in China between January 2016 and October 2020, who were diagnosed with VM by a neurologist based on the International Classification of Headache Disorder 3rd edition criteria (Lempert et al., 2012). Twenty-five right-handed patients with VM (21 without aura and four with aura) and 27 healthy controls participated in this study. Patients were excluded if they had a history of other neurologic, psychiatric, audiovestibular, or systemic disorders. All patients in a symptom-free interval underwent a routine neurologic and neuro-otological examination, as well as MRI scanning, which were performed on the same day. No peripheral vestibular dysfunction was found in videonystagmography (VNG) recordings. The clinical symptoms of each patient were assessed using a Visual Analog Scale (VAS; 0 = no pain; 10 = worst possible pain), the Migraine Disability Assessment Scale (MIDAS), the Headache Impact Test-6 (HIT-6), and the Dizziness Handicap Inventory (DHI) using face-to-face interviews with a standardized questionnaire and questions (Sauro et al., 2010; Hawker et al., 2011; Balci et al., 2018). Eight of the patients with VM were treated with migraine-preventive medications and nonsteroidal analgesics. Most patients (n = 17) did not take any medication regularly.

The 27 age-, sex- and handedness-matched healthy controls were from the community. The exclusion criteria were: migraine; chronic pain; previous vestibular neuritis; Meniere’s disease; secondary somatoform vertigo; drug abuse; neurologic, mental or systemic disorders; ischemic or hemorrhagic stroke; or severe head trauma. All subjects had no structural abnormalities or white matter (WM) lesions in T2-weighted or FLAIR imaging. This study was approved by the Ethics Committee of the Shaanxi Provincial People’s Hospital. All participants provided written informed consent before entering the study.



Imaging Data Acquisition

All the images were obtained using a 3.0 T Philips Ingenia scanner with a 16-channel phased-array head coil. A high-resolution three-dimensional (3D) magnetization-prepared rapid-acquisition gradient echo (MPRAGE) T1-weighted (T1w) sequence covering the whole brain (332 sagittal slices) was collected. The acquisition parameters were: repetition time (TR) = 1,900 ms; echo time (TE) = 2.26 ms; inversion time (TI) = 900 ms; flip angle (FA) = 9°; matrix = 256 × 256; field of view = 220 × 220 mm; and 1.00 mm slice thickness with no interslice gap. Resting-state functional BOLD images were scanned using gradient echo-planar imaging with the following parameters: repetition time = 2,000 s; echo time = 30 ms; slices = 34; slice thickness = 4 mm; slice gap = 0 mm; field of view = 230 × 230 mm; matrix = 128 × 128; flip angle = 90°; and 200 volumes. For the resting-state scan, all subjects were asked to keep their eyes closed and their minds calm, and to stay awake throughout the scan. After the scan, subjects were asked whether or not they remained awake during the entire procedure.



Image Processing

Structural images were processed using CAT121 and SPM12 run in MATLAB R2014b (The MathWorks, Inc.). CAT12 provides a volume-based method for estimating regional thickness (CT) without extensive reconstruction of the cortical surface and has been shown to be a fast and reliable alternative to FreeSurfer (Paul et al., 2017; Seiger et al., 2018). Moreover, CAT12 is a fully automated method that allows the measurement of the whole brain cortical surface. For each participant, the processing pipeline included bias-field, noise removal, skull stripping, and segmentation into GM, WM, and cerebrospinal fluid (CSF). The images were finally normalized to MNI space, which uses diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) to a 1.5 mm isotropic adult template (Ashburner, 2007). Here, the CT evaluation and reconstruction of the central surface were performed in one step, based on the PBT method (Dahnke et al., 2013). Importantly, the PBT allows the appropriate handing of partial volume information, sulcal blurring, and sulcal asymmetries without explicit sulcus reconstruction (Dahnke et al., 2013). After the initial surface reconstruction, topology correction (Yotter et al., 2011b), spherical mapping (Yotter et al., 2011a), and spherical registration were conducted. In addition, CAT12 allows the estimation of other morphological indices of fractal dimension (FD), sulcus depth (SD), and gyrification index (GI), which were also calculated for each participant with default parameter settings. The calculation of CT, FD, SD, and GI was performed in subject native surface space. The images of cerebral cortex characteristics were checked for homogeneity. As all the images had high correlation values (>0.85), none of them had to be discarded. Finally, the CT images were smoothed using a Gaussian kernel with a full width at half maximum (FWHM) of 15 mm, and three other surface parameters were smoothened with an isotropic 20 mm FWHM Gaussian kernel.

All functional images were preprocessed using Data Processing and Analysis for Brain Imaging 3.02, which is based on Statistical Parametric Mapping 123. First, the first 10 volumes were removed to allow subjects to adapt to the magnetic field. Second, slice timing correction was performed to correct for the inter-slice time delay within each volume. Third, head motion >1.5 mm and translation >1.5° of rotation in any direction were excluded. Images were spatially normalized into MNI space using a standard EPI template provided by SPM12 and resliced into a voxel size of 3 × 3 × 3 mm. Finally, data were spatially smoothed using a 6-mm FWHM Gaussian kernel.

Seed-based FC analysis was performed with seeds from the SBM findings. Seeds were defined as 3-mm-radius spheres centered on the peak voxel for the CT and SD clusters showing between-group differences. The averaged time-course of each seed area was extracted, and Pearson’s correlation (r) was used to calculate the FC between the extracted time-courses and the time-courses of the entire brain in a voxel-wise manner. The individual r-maps were normalized to Z-maps using Fisher’s Z-transformation.



Statistical Analysis


Demographic and Clinical Data

A two-sample t-test was used to estimate the differences in age, sex, and years of education between the VM and healthy control groups. The statistical significance level was set at P < 0.05. These statistical analyses were performed using the SPSS software package (version 22.0).



Cortical Surface Characteristics Analysis

Cortical surface characteristics were compared between the VM patients and healthy controls using two-sample t-tests in CAT12 with age and sex as covariates. Family-wise error (FWE) correction was performed to correct for multiple comparisons; P < 0.05 was considered statistically significant. Then, the surviving clusters were reported. Finally, based on the Desikan–Killiany (DK40) atlas (Desikan et al., 2006), we extracted the mean cortical surface characteristics (CT, SD, GI, and FD) from the above mentioned significant clusters. Partial correlations adjusted for age and sex were used to analyze differences between the cortical surface characteristics of these altered regions and clinical indices (including the VAS score, disease duration, attack frequency, MIDAS score, HIT-6 score, and DHI score). The significance threshold was set at P < 0.05.



Seed-Based FC Analysis

A comparison of FC between groups was performed using a two-sample t-test within DPABI, with age and sex as covariates. Correction for multiple comparisons was performed using a Gaussian random field at P < 0.05 (voxel P < 0.001). Then, the surviving clusters were reported.

Finally, we extracted the average Z-values for each region with significant differences and performed a partial correlation analysis with patients’ clinical parameters using SPSS 22.0, controlling for age and sex. The significance threshold was set at P < 0.05.





RESULTS


Demographic and Clinical Data

There were no significant differences between the VM patients and healthy controls in age, sex, or years of education. The results are summarized in Table 1. VM patients suffered from a moderate and severe migraine burden with a mean VAS score of 4.74 ± 2.75, mean HIT-6 score of 51.56 ± 19.94, and mean MIDAS score of 54.33 ± 53.13. Their scores on the vertigo scale were moderate with a mean DHI score of 48.93 ± 16.43.

TABLE 1. Demographic and clinical characteristics of patients.
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Cortical Surface Characteristics Results

Relative to healthy comparison subjects, the VM patients showed significantly thinner CT in the bilateral inferior temporal gyrus, left middle temporal gyrus, and right superior parietal lobule (Table 2, Figure 1). Reduced SD was found in the right superior and inferior parietal lobule (Table 3, Figure 2). There was no significant intergroup difference for surface parameters GI and FD. In the VM patients, a significant negative correlation was found between DHI scores and the CT of the right inferior temporal gyrus (r = −0.542; P = 0.005; Figure 3A) and left middle temporal gyrus (r = −0.553; P = 0.004; Figure 3B). No correlation was found between abnormal SD and disease duration, attack frequency, VAS score, MIDAS score, HIT-6 score, or DHI score in the VM patients.

TABLE 2. Decreased CT in various brain regions in patients with VM.
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FIGURE 1. CT (thickness) analysis results of patients with vestibular migraine (VM) compared with healthy controls [P < 0.05, family-wise error (FWE)-corrected].



TABLE 3. Decreased SD in various brain regions in patients with VM.
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FIGURE 2. SD (sulcus depth) analysis results of patients with VM compared with healthy controls (P < 0.05, FWE-corrected).
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FIGURE 3. Correlation between the CT of the inferior (A) and middle temporal gyrus (B) and dizziness handicap inventory (DHI) score in patients with VM (P < 0.05).





Seed-Based FC Results

Patients with VM showed significantly weaker FC between the left inferior/middle temporal gyrus and the left superior frontal gyrus, supplementary motor area (Table 4, Figure 4). There were no significant group differences in FC with other seed regions (right inferior temporal gyrus, right superior, and inferior parietal lobule). No significant correlation was observed between FC alterations and clinical characteristics in patients with VM.

TABLE 4. Abnormal functional connectivity of the left inferior/middle temporal gyrus in patients with VM.
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FIGURE 4. Functional connectivity (FC) analysis results for patients with VM compared with healthy controls (P < 0.05, GRF-corrected).






DISCUSSION

As far as we know, our study is the first to directly investigate cortical surface characteristics and FC changes in patients with VM and healthy controls, as well as associations between cortical surface characteristics or FC and clinical variables. Compared with healthy controls, we found that patients with VM had decreased CT and SD in certain areas, including multisensory integration and vestibular processing regions. Additionally, we found that DHI scores and CT were significantly correlated in the right inferior temporal gyrus and the left middle temporal gyrus. Using the clusters derived from the SBM analysis as seed regions, we found significantly weaker FC between the left inferior/middle temporal gyrus and the left medial superior frontal gyrus, supplementary motor area. Our data confirmed our hypothesis that VM patients have abnormalities in cortical surface characteristics related to multisensory vestibular processing and that changes in cortical regions are accompanied by changes in FC.

The temporal lobe has been recognized as a region associated with multisensory integration, which involves auditory, olfactory, vestibular, and visual senses and the perception of spoken and written language (Kiernan, 2012). A number of studies on patients with migraine have found that CT was thinning in the temporal lobe, suggesting that the temporal lobe plays an important role in the regulation of pain (Coppola et al., 2017; Jia and Yu, 2017). Several studies have demonstrated greater interregional CT correlations in patients with migraine, specifically over temporal regions (Chong et al., 2020). Schwedt et al. (2015) found that temporal pole correlations distinguished groups of migraine patients from healthy controls. An fMRI study of 12 right-handed patients with VM, which used cold caloric stimulation, found a typical pattern of BOLD signals in temporal-parietal areas in the interictal interval, including patients with migraine without aura and healthy controls (Russo et al., 2014). A recent functional imaging study of two patients reported that the metabolism of the temporoparietal-insular areas increased during a VM attack (Fasold et al., 2002). These results suggest that some modification of structural covariance patterns in the temporal lobe is involved in pain-processing and multisensory integration (Moulton et al., 2011). The VM patients in that study also showed reduced CT in multiple areas of the temporal lobe, including the inferior and middle gyrus, compared with healthy controls, which is in line with the findings of several previous studies. Obermann et al. (2014) found that gray-matter volume was decreased in the inferior temporal gyrus, middle temporal gyrus, and the superior temporal gyrus, the middle cingulate, dorsolateral prefrontal, insular, parietal, and occipital cortices (Obermann et al., 2014). These structurally abnormal brain areas in patients with VM are involved in multisensory vestibular control, as well as pain processing and central vestibular compensation. In contrast, a recent VBM study found an increase in the temporal lobe, frontal lobe, and occipital lobe in VM patients compared with healthy controls (Messina et al., 2017). These inconsistent findings might be due to differences in sample size, attack frequency, medication status, and data acquisition and processing in the various studies.

The inferior temporal gyrus is related to visual processing (Naito et al., 2003). There is some evidence that decreased CT in the inferior temporal gyrus might contribute to abnormalities in multisensory integration of visual processing, such as amplifying vision (photophobia), hearing (phonophobia), or olfactory stimuli, which may induce an attack of VM. Repeated VM attacks over time that seem to lead to an alteration of multisensory integration of visual processing structures may provide an explanation as to why most VM patients have increased sensitivity to visual, auditory, and olfactory stimuli during VM attacks. Previous studies have also suggested that the middle temporal gyrus plays a key role in interconnecting with other multisensory cortical areas, and it is deemed to form a multisensory integrative network (Helmchen et al., 2014). The middle temporal gyrus, inferior temporal gyrus, and superior temporal gyrus, and the lateral temporal lobe play a role in the underlying connection between migraine and the vestibular system (Rocca et al., 2006; Schwedt et al., 2013; Helmchen et al., 2014). The middle temporal gyrus belongs to the temporal perisylvian vestibular cortex, which is particularly sensitive for dizziness (Kahane et al., 2010). Furthermore, CT in the inferior and middle temporal gyrus is negatively correlated with the severity of vertigo in VM patients. The DHI was used to evaluate the self-perceived handicapping effects of dizziness, which is related to the physical, emotional, and functional aspects of patients. Vertigo attacks result in subjective spatial orientation errors, surrounding environment spiraling around, and complaining of imbalance in patients. That may lead to patients who usually dare not to attempt daily activities, and experience obvious anxiety and depression which reflect the degree of vertigo. In the present study, a mean DHI score of 48.93 points was obtained. In patients with VM, as the DHI score increased, there was a decrease in life quality scales showing moderate disability in DHI. However, we did not evaluate symptoms of depression and anxiety. Thus, it is not clear whether anxiety or depression is associated with DHI in patients with VM. Future studies should clarify this. Correlations revealing a CT decrease in the temporal lobe was associated with an increased subjective intensity of vertigo in VM, which indicated that the temporal lobe is involved in the pathophysiology of patients with VM and is associated with the daily life of the patient. Therefore, CT reduction in the inferior and middle temporal gyrus is a potentially valuable morphological characteristic, which might result in central vestibular syndromes that manifest along with vertigo and dizziness. Based on all of the above discussion, our results indicate that long–term and high-frequency headaches and vertigo attacks may lead to reduced CT in multisensory integrative and vestibular processing areas in VM, reflecting abnormal brain structure due to the effects of brain disease. This has profound implications for our understanding of multisensory integrative networks in patients with VM.

The second finding of the current study is decreased CT in the superior parietal lobule. Furthermore, we found lower SD in the inferior and superior parietal lobule in patients with VM compared with healthy controls. Other studies proposed that the parietal lobule is chiefly involved in discriminating sensory features of pain (Hofbauer et al., 2001; Oshiro et al., 2007, 2009). The superior parietal lobule, as a part of the parietofrontal network, has been found to be related to the perceptual matrix of pain (Garcia-Larrea and Peyron, 2013). It also contains major parts of the sensory cortex that are involved in spatial orientation and sensory information processing and interpretation (Kamali et al., 2014). Studies have confirmed that the inferior parietal lobe belongs to part of the multisensory vestibular cortical network involved in pain and vestibular processing (Dieterich and Brandt, 2008). The parietal lobule has been implicated in VM, and some VBM studies on patients with VM have reported a lower gray-matter volume in the parietal lobes of such patients compared with controls (Obermann et al., 2014; Zhe et al., 2020). A recent fMRI study of two VM patients reported increased activity in the inferior parietal lobule during visual stimulation in a vertigo-free period (Teggi et al., 2016). Correlation analysis also revealed that decreased gray-matter volume in the parietal lobe is associated with illness duration and headache intensity in patients with VM (Obermann et al., 2014). These studies indicate that cortical abnormalities of the parietal lobe are involved in nociception and multisensory vestibular control. Our findings in VM patients implicate the parietal lobe in the modulation of pain perception and dysfunction of sensory integration.

In order to assess if these cortical structural abnormalities also exhibited FC alterations, we performed a resting-state FC study. Our results showed decreased FC between the left inferior/middle temporal gyrus and left medial superior frontal gyrus supplementary motor area in patients with VM, compared to healthy controls. The medial superior frontal gyrus is not only involved in emotional responses and feelings of pain, but also in memory, attention responses, and cognitive reactions related to pain (Bluhm et al., 2007). The study confirmed that the superior frontal gyrus is involved in the integration of somatosensory and vestibular information (Klingner et al., 2016). Our research indicates that the endogenous analgesic mechanism of VM patients is adjusted because some long–term migraine and vertigo attacks occur, altering the emotional response to pain, or reducing pain perception and cognition, which can reduce the input of pain signals. Anatomically, the SMA is located in the dorsomedial frontal cortex, which is involved in executive control (Aron and Roldrack, 2006; Li et al., 2006), pain anticipation (Koyama et al., 2005; Rainville et al., 2009), and an affective component of pain (Apkarian et al., 2005; Geha et al., 2008). Our results indicate that the FC decrease between the left inferior/middle temporal gyrus and left supplementary motor area may be related to deficits in affective pain modulation and affective pain response inhibition. In addition, the SMA is associated with auditory processing (Lima et al., 2016). Phonophobia is reported in about half of patients with VM during a vertigo attack (Neuhauser et al., 2006). Exposure to noise may cause generalized discomfort and increase the pain and vertigo of the patients with VM. Recurrent VM attacks may ultimately result in FC alterations associated with auditory processing. Thus, the FC changes may serve as a possible explanation for phonophobia when vertigo occurs (Wei et al., 2020), which provides a new clue for therapy for this syndrome.

The present study has several limitations. First, our study was conducted with a relatively small sample. Our study should have included a larger sample that was more representative of a pathological population, which would help to assure greater reproducibility of its results. Second, subgroup analyses of migraine (migraine without aura and migraine with aura) were not performed. To better elucidate the cortical morphological difference between them, future studies should compare the two types of VM, and it would be valuable to recruit a larger sample size to be able to divide participants into the subgroups “migraine without aura” and “migraine with aura.” Third, we did not examine subcortical and brain stem structures in this study; therefore, future studies need to be designed to include both. Fourth, because the sample size was relatively small, the correlation analysis was not strictly conducted with Bonferroni corrections. Fifth, we did not use an experimental task to measure multisensory integration. Finally, we did not evaluate symptoms of depression and anxiety, although previous research has reported that patients with VM have high levels of depression and anxiety (Kim et al., 2016). The burden of symptomatology can affect cortical morphology. Assessment of depression and anxiety scores should be performed in future studies.



CONCLUSION

In conclusion, we evaluated cortical structural and FC alterations in patients with VM using SBM and resting-state FC analyses, compared with healthy controls. CT and SD abnormalities were detected in the temporal lobe and parietal lobe. Furthermore, patients with VM displayed decreased FC between the left inferior/middle temporal gyrus and the left superior frontal gyrus, supplementary motor area. These regions are known to be involved in multisensory integration, vestibular processing, and pain modulation, contributing to a lower quality of life. These findings will promote our understanding of the underlying mechanism of VM, but so far an experimental task to measure multisensory integration in patients with VM has not been used. Future studies should identify brain areas associated with multisensory integration using a task-based fMRI. Moreover, further studies focusing on anxiety and depression are needed, which are bound to shed light on emotional states in patients with VM.
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Aim: This study aimed to explore the changes of cortical thickness in abstinent methamphetamine (MA) patients compared with healthy controls.

Materials and Methods: Three-tesla structural and functional magnetic resonance imaging (MRI) was obtained from 38 abstinent methamphetamine-dependent (AMD) patients and 32 demographically equivalent healthy controls. The cortical thickness was assessed using FreeSurfer software. General linear model was used to get brain regions with significant different cortical thickness between groups (p < 0.05, Monte Carlo simulation corrected). The mean cortical thickness value and functional connectivity with all other brain regions was extracted from those significant regions. Moreover, correlation coefficients were calculated in the AMD group to assess the relations between the mean cortical thickness, functional connectivity and age when they first took MA and the duration of both MA use and abstinence.

Results: The AMD group showed significant cortical thickness increase in one cluster located in the parietal cortex, including right posterior central gyrus, supramarginal gyrus, and superior parietal lobule. In addition, cortical thickness values of those regions were all significant and negatively correlated with the age when patients first used MA. The cortical thickness of right posterior gyrus were positively correlated with its functional connectivities with left middle frontal gyrus and both left and right medial orbitofrontal gyrus.

Conclusion: The higher cortical thickness in the parietal cortex of the AMD group is in agreement with findings in related studies of increased glucose metabolism and gray matter volume. Importantly, the negative correlation between parietal cortical thickness and age of first MA suggested that adolescent brains are more vulnerable to MA’s neurotoxic effect.

Keywords: methamphetamine, long-term abstinence, cortical thickness, addiction, adolescent


INTRODUCTION

Methamphetamine (MA) is an addictive psychoactive drug that has rapid onset and wreaks havoc on the nervous system. It has been widely abused and has become a global public health problem (Var et al., 2016; Darke et al., 2017). According to the Word Drug Reports in 2017, Amphetamines, including amphetamine and methamphetamine, are the second most abused stimulant group worldwide after cannabis (United Nations Office of Drugs Crime, 2017a). MA has dominated the global amphetamines market, accounting for 72% of the global seizures of amphetamines (United Nations Office of Drugs Crime, 2017b). Moreover, various physical illnesses and psychotic disorders can be caused by methamphetamine abuse (Gonzalez et al., 2004; Woods et al., 2005; Cruickshank and Dyer, 2009; London et al., 2015). Worse of all, patients often relapse when they suffer from stress and come across other high risk environments that may trigger MA relapse even after abstinence or treatment (Volkow et al., 2006; McKetin et al., 2012; Brecht and Herbeck, 2014).

Neuroimaging techniques have become powerful methods to study brain structures, functions, and metabolism in MA users. Comprehensive MA related brain structure and function changes have been found (Chang et al., 2005; Ernst and Chang, 2008; Groman et al., 2012) and some can be restored and improved to a certain extent after treatment or abstinence (Groman et al., 2012; Brooks et al., 2016; Choi et al., 2018). Our previous study investigated the gray matter volume difference between abstinent methamphetamine-dependent (AMD) patients and healthy controls (HC) using the voxel-based morphometry (VBM) method (Zhang et al., 2018). “The increased gray matter volumes in the bilateral cerebellum and decreased volumes in the right calcarine and right cuneus were found and suggested abnormal visual and cognitive functions in the AMD patients” (Zhang et al., 2018). Moreover, “the left cerebellum crus GMV was positively correlated with abstinence duration which signaled the cognitive function recovery along with the abstinence.” VBM is an efficient tool to measure structural differences and is sensitive to subtle gray matter alterations. It is more rapid and provides voxel-wise whole brain results compared to manually segmented brain regions in traditional morphometric approaches (Ashburner and Friston, 2000). Therefore, it has been extensively used in psychiatric disorder studies including substance addiction (Morales et al., 2012; Durazzo et al., 2015; Hartwell et al., 2016). As another important structural analysis method, surf-based cortical thickness measurement allows the “regional distribution and quantification of gray matter cortical loss to be specifically assessed in contrast to gyral or lobar volumetric studies which combine gray and white matter within regional volumes” (Rohrer et al., 2009). Hence, cortical thickness can also assess the brain substrates of neurodegenerative disease and provide complementary information to other imaging techniques about neuroanatomy (Rohrer et al., 2009). Therefore it has been commonly used in psychiatry and neural diseases but has not been applied toward the study of MA addiction or abstinence to our knowledge.

In this study, we investigated abnormality of cortical thickness of methamphetamine abstinence patients and its association with functional connectivity and addiction/abstinence variables to provide potential complementary structural biomarkers of MA addiction or abstinence.



MATERIALS AND METHODS


Subjects and MR Imaging Acquisition

Thirty two healthy subjects and 38 AMD subjects were recruited in this study from April 2016 to July 2017. All AMD subjects were recruited from Pingtang Mandatory Detoxification, Changsha City, Hunan Province. The inclusion and exclusion criteria for all subjects in this study were the same as our previous study (Zhang et al., 2018). AMD subjects were diagnosed using the Diagnostic and Statistical Manual on Mental Disorders (DSM-V) and after that had received a long-term (14–25 months) compulsory abstinence. In addition, for all subjects, smoking status, and alcohol consumption were recorded. For every AMD subject, the age when they first used MA, the months of MA use before their most recent abstinence and months of abstinence were also recorded.

Every subject was scanned in a 3T Siemens Skyra MRI scanner equipped with a 32-channel head coil. T1-weighted images and resting-state functional MR images were collected. The detailed MRI scanning sequences and parameters were also identical to the previous study (Zhang et al., 2018).

The study was approved by the Ethics Committees of the Second Xiangya Hospital of Central South University. Confidentiality of personal information and freedom to withdraw from the study were guaranteed.



Imaging Data Analyses

All MRI images were visually inspected by two radiologists for lesions, structural abnormalities and artifacts. No subjects were excluded.

Cortical reconstructions of the T1-weighted images were performed using FreeSurfer (version 5.3.0)1 on a Linux workstation. The detailed steps have been described by related studies (Collins et al., 2017; Perez et al., 2018). For each subject, the gray and white matter boundary derived from automatic segmentation were visually checked and was then used to identify the pial surface with a deformable surface algorithm. Cortical thickness was measured as the distance between the white matter and pial surfaces. After construction, images were then morphed and registered to an average spherical space where gyral and sulcal features were optimally aligned. Individual measures were then transformed into the average space. Cortical thickness maps were then smoothed with a 15 mm half-maximum full-width Gaussian kernel.

Functional images processing was performed with DPABI (a toolbox for Data Processing and Analysis of Brain Imaging). After preprocessing including slice timing, realign, normalization and nuisance covariates regression, functional connectivity was calculated on Anatomic-Automatic-Labeling (AAL) template.



Statistical Analysis

Demographics were compared between AMD and healthy control groups with SPSS 21.0. Age and years of education were compared using two-sample t-test while smoking status and alcohol consumption were tested using Fisher exact test. The significance level was set to p < 0.05.

QDEC tool in FreeSurfer was utilized to compare cortical thickness between two groups using a 2-class general linear model (GLM). Multiple comparisons were corrected using Monte Carlo simulation method with an initial vertex-wise threshold of p < 0.01 and vertex level corrected to p < 0.05.

Mean values were then extracted from brain regions which showed significantly different cortical thickness between the two groups. In the AMD group, we calculated the correlation coefficients of those mean cortical thickness values with patients’ age when they first used MA, the total months of MA use and abstinence. The significance level was set to p < 0.05.

The functional connectivity of significant region to any other regions on AAL template was also extracted. The correlation coefficients between these connectivity values with cortical thickness values were calculated. The significance level was set to p < 0.05.



RESULTS


Demographics

Our study included 38 AMD patients and 32 healthy subjects. As showed in Table 1, there were no significant differences between the two groups in age, years of education, smoking status or alcohol consumption.


TABLE 1. Demographic information and characterization.
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Cortical Thickness Analysis Results

In comparison with the HC group, the AMD group showed significant cortical thickness increase in one cluster in parietal cortex. The detailed location of the cluster was defined by overlapping it with AAL template. It contains three parts including right posterior central gyrus, supramarginal gyrus, and superior parietal lobule (Table 2 and Figure 1).


TABLE 2. Regions with increased cortical thickness in AMD group compared with HC group.
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FIGURE 1. Regions with increased cortex thickness in AMD group.




Correlation Analyses

In the AMD group, the mean cortical thickness of all three regions were significantly negatively correlated with the age of first MA usage: right posterior central gyrus, r = –0.635, p < 0.001; right supramarginal gyrus, r = –0.652, p < 0.001; right superior parietal lobule, r = –0.496, p = 0.002. No significant correlations were found between cortical thickness and months of MA use or months of abstinence (Figure 2).
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FIGURE 2. Significant correlations between age of first MA use and mean cortical thickness of abnormal regions in AMD group.


Intuitively, the association between cortical thickness of abnormal regions in AMD patients and the age of first MA use could be affected by the duration of MA use. Therefore, partial correlation coefficients were calculated to exclude the effect of MA use duration. Those three mean cortical thicknesses were still strongly correlated to the age of first MA use: Right posterior central gyrus, r = –0.617, p < 0.001; right supramarginal gyrus, r = –0.644, p < 0.001; right superior parietal lobule, r = –0.588, p < 0.001.

Moreover, the cortical thickness of right posterior gyrus were positively correlated with its functional connectivities to three regions including left middle frontal gyrus (r = 0.324, p = 0.047), right medial orbitofrontal gyrus (r = 0.397, p = 0.014) and left medial orbitofrontal gyrus (r = 0.334, p = 0.041).



DISCUSSION

In this study, we adopted the surface-based cortical thickness method to investigate the abnormal brain structure in abstinent methamphetamine-dependent patients. Increased cortical thickness was found in one cluster located in the right parietal cortex, including right posterior central gyrus, supramarginal gyrus, and superior parietal lobule. In addition, mean cortical thickness values of those regions were all strongly negatively correlated with age of first MA use in AMD patients. Moreover, the cortical thickness of right posterior gyrus were positively correlated with its functional connectivities left middle frontal gyrus, right medial orbitofrontal gyrus, and left medial orbitofrontal gyrus.

The higher cortical thickness in parietal cortex of the AMD group agreed with previous studies that observed increased glucose metabolism in both short and long term abstinent MA patients (Volkow et al., 2001; Berman et al., 2008) and increased gray matter (Jernigan et al., 2005) in abstinence methamphetamine patients, and the increased glucose metabolism in high dose MA treatment rats’ brains without abstinence (Thanos et al., 2016). The parietal cortex was found to be especially sensitive to methamphetamine neurotoxicity (Volkow et al., 2001). The increased cortical thickness found in this study could be explained by the growing numbers of microglia and astrocytes, which could driven by MA abuse (LaVoie et al., 2004) and were thought to increase the cerebral glucose metabolic. Moreover, the activated microglia were linked to vasculature outside of neurodegeneration regions (Bowyer et al., 2017), which could also increase the cortical thickness in parietal cortex. Although increased microglial activation along with increased brain volume were found after chronic MA treatment (Thanos et al., 2016), their causal relations have not yet been proven.

MA users have varied decision-making changes and the parietal cortex has been shown to be critical for it (Bowyer et al., 2007). Specifically, the parietal cortex activation levels have been found to be correlated to decision making of uncertainty in MA patients (Paulus et al., 2003). The parietal cortex metabolism in MA users was correlated with Grooved pegboard tasks performance, which is also involved with decision-making (Volkow et al., 2001). In addition, gene expression changes related to synaptic plasticity were also found in the parietal cortex and may be related to these behavioral outcomes (Paulus et al., 2001). Moreover, the middle frontal gyrus and medial orbitofrontal cortex are both important areas for decision making. That their connections with right posterior gyrus were positively correlated with its cortical thickness also implied the parietal cortex plays an essential role in MA addiction.

The peak intensity value of the significant cluster in our study was located in the right posterior central gyrus, which contains the primary somatosensory cortex. Besides dopaminergic and serotonergic terminals, a study on adult rats indicated that MA also has the neurotoxic effect on glutamatergic neurons in the somatosensory cortex (Pu et al., 1996). Reactive microgliosis was also observed in the somatosensory cortex (LaVoie et al., 2004).

Importantly, we found that cortical thickness of significant regions located in the parietal cortex were negatively correlated with age of first MA use with or without excluding the effect of MA use duration. In other words, the younger the patient was when starting to abuse MA, the thicker those regions were than in healthy patients no matter how long they used MA. A study by Jernigan et al. (2005) showed that nucleus accumbens volume increase associated with MA dependence has a larger effect on younger MA patients. Also, it was reported that the age when MA was first used was positively related with intracranial volume (Huckans et al., 2010). “Adolescence is a critical period of brain development as the brain undergoes dynamic synaptic reorganization and myelination” (Castellanos et al., 1999). On the one hand, environmental insults can affect brain development and cause irreversible damage to the adolescent brain (Castellanos et al., 1999; Rapoport and Brain, 2008). On the other hand, the adolescent brain can recover more effectively from lesions for its greater neuroplasticity (Lyoo et al., 2015). In the parietal cortex, increased glucose metabolism was found in brains with and without abstinence after MA treatment, and the increased gray matter volume was found in both short and long term MA abstinent patients. We speculated that the abnormal parietal cortex was mainly caused by MA exposure before abstinence. The negative correlation between age of first MA use and the cortical thickness could be interpreted as: adolescent brains are more vulnerable to MA neurotoxic effects that cause irreversible damage even after a long-term abstinence.



LIMITATION

In this study, we found higher cortical thickness in parietal cortex of the AMD group, which is agreed with the increased glucose metabolism and gray matter in related studies. However, the underlying mechanisms are still not clear. Future studies are encouraged to explore the causal relation between increased microglial activation and brain volume change or MA usage. Moreover, that the negative correlation between age of first MA use and the cortical thickness also need to be validated and explained by researches from other modalities.
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Schizophrenia is a complex mental illness with genetic heterogeneity, which is often accompanied by alterations in brain structure and function. The neurobiological mechanism of schizophrenia associated with heredity remains unknown. Recently, the development of trans-scale and multi-omics methods that integrate gene and imaging information sheds new light on the nature of schizophrenia. In this article, we summarized the results of brain structural and functional changes related to the specific single-nucleotide polymorphisms (SNPs) in the past decade, and the SNPs were divided into non-coding regions and coding regions, respectively. It is hoped that the relationship between SNPs and cerebral alterations can be displayed more clearly and intuitively, so as to provide fresh approaches for the discovery of potential biomarkers and the development of clinical accurate individualized treatment decision-making.
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INTRODUCTION

Schizophrenia is a common and complex multidimensional disease with high heredity, and genetic factors play an important role in its pathophysiological mechanism (McCutcheon et al., 2020). Understanding the genetic basis of schizophrenia is of great help to explore its pathogenesis.

In recent years, the application of trans-scale and multi-omics methods that combine gene and imaging in schizophrenia has promoted the elucidation of gene-related pathogenesis and the exploration of potential biomarkers (Reddaway et al., 2018). Trans-scale analysis is a research strategy for the joint analysis of information between different scales (van den Heuvel et al., 2019). From the macroscopic level, the human brain can be viewed as a complex network system made up of structural and functional connections between brain regions. And, from the microscopic perspective, the neurons containing dendrites and axons form a complex system of wiring which makes up the structural basis of our brain. Microscale level information, such as genetic, molecular, and cellular, can provide sufficient evidence for the construction of brain phenotypes and mechanisms of brain injury at the macroscale level (van den Heuvel et al., 2019). Multi-omics analysis is a research strategy of integrative analysis that integrates information between different disciplines. Many disciplines, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and connectomics, have made significant contributions to the study of the pathogenesis of schizophrenia (Guan et al., 2021). The multi-omics analysis strategy can provide a more comprehensive perspective on the exploration of schizophrenia pathogenesis.

With the evolvement of functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), diffusion-weighted imaging (DWI), and other sequences, alterations of brain structure and function can be displayed more accurately on MRI. Brain microstructures, such as white matter myelination, can be measured indirectly in a non-invasive manner using magnetization transfer imaging (MTI) technique (Whitaker et al., 2016). MRI plays an increasingly important role in the study of brain phenotypes and differential diagnosis of mental disorders. Previous studies have confirmed that there are some alterations in brain structure and function in patients with schizophrenia (Brown and Thompson, 2010), which may be related to clinical symptoms of schizophrenia (Cui et al., 2017; Liu et al., 2019). Another study has found out that quantitative and specific functional connectivity (FC) biomarkers could be an effective radiomics features for individualized diagnosis for schizophrenia (Cui et al., 2018). The appearance of brain phenotypes on MRI may provide clues to the differential diagnosis of schizophrenia and bipolar disorder, which overlap in risk genes and clinical symptoms. While brain disturbances in patients with bipolar disorder are primarily located in the fronto-limbic subsystems, schizophrenia is characterized by disorders of the small world and rich club and the effects still present in the unaffected offspring (Perry et al., 2019). Therefore, MRI-based imaging study has gradually become the most common method to study mental disorders at macroscale, providing connectomics and radiomics approaches.

Sinlge-nucletode polymorphisms (SNPs) are the most common genetic variation at the genome level, which are caused by the change of a single base pair in the DNA sequence. SNPs are found randomly in the coding region or the non-coding region of the gene and produce corresponding effects by affecting gene expression, mRNA processing, and protein translation (Bush and Moore, 2012; Gurung and Prata, 2015; Roy et al., 2020). According to the research, SNPs account for a large part of the genetic variation associated with schizophrenia (Pardinas et al., 2018). Although recent genome-wide association studies (GWASs) have identified many SNPs loci associated with schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics C., 2014), providing many possible genetic variation resources with biological functions for analyzing the pathogenesis of schizophrenia, the functions behind these mutations still need to be verified. Changes in genes at the molecular level may be the basis that SNPs affect the functional and structural connectivity of the brain, as well as the volume and density of gray matter and white matter.

The effects produced by SNPs represent information at the cellular, molecular, and other microscopic levels, whereas MRI can provide a macroscopic view of brain phenotypes. The approach of combining micro-level and macro-level information for research exemplifies the trans-scale research strategy. Methods that combine genetic information with imaging information fall under the umbrella of multi-omics technologies. On the one hand, the trans-scale and multi-omics analysis strategy that combines genomics, connectomics, and radiomics is instrumental to visualize the link between functional genetic variants associated with schizophrenia and the imaging phenotype. On the other hand, the trans-scale and multi-omics analysis strategy linking gene variation with brain structure and function have further contributed to the advanced studies of molecular biological mechanisms behind brain phenotypes and clinical manifestations of schizophrenia. The goal of trans-scale neuroscience of psychiatric illnesses is to deepen insights of the relationship between alterations at different scales (van den Heuvel et al., 2019). Therefore, an updated overview of trans-scale properties of schizophrenia based on multi-omics research strategies is needed.

The effect of risk genes on structural connectivity and FC during executive tasks was found in a systematic review summarized by Gurung and Prata in 2015 (Gurung and Prata, 2015). In this review, we have carefully categorized the types of brain phenotype alterations and the location of SNPs separately. For alterations in brain phenotype, we address both structural and functional aspects. Based on the location of the SNPs, we have divided them into non-coding regions and coding regions to describe, respectively. The purpose of this article is to summarize the studies on the relationship between specific SNPs loci in schizophrenia-related genes and cerebral alterations based on trans-scale and multi-omics strategies in the past decade, as well as demonstrate the advantages of trans-scale and multi-omics research strategy through the relationship between SNPs and alterations in brain phenotypes. The candidate genes are listed as follows, and the specific SNPs loci and their possible effects on trans-scale properties of schizophrenia will be discussed in detail (zinc finger protein 804A [ZNF804A], calcium voltage-gated channel subunit alpha 1C [CACNA1C], neurogranin [NRGN], cholinergic receptor, muscarinic 3 [CHRM3], oligodendrocyte lineage transcription factor 2 [OLTG2], D-amino acid oxidase activator [DAOA], D-amino acid oxidase [DAAO], Disrupted in Schizophrenia Gene 1 [DISC1], nitric oxide synthase 1 [NOS1], KIAA0319, N-Methyl D-Aspartate 1 [GRIN1], Glutamate receptor 2 [GRIA2], microRNA 137 [MIR137], metabotropic glutamate receptor 3 [GRM3], contactin-associated protein-like 2 [CNTNAP2], Neuregulin1 [NRG1], glutamate receptor delta 1 [GRID1], and cyclin M2 gene [CNNM2]) (Table 1).


Table 1. MRI studies investigating the impact of SNPs on brain.
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MRI AND SNPS IN SCHIZOPHRENIA


Brain Function and SNPs in Schizophrenia


Single-Nucleotide Polymorphisms of Non-Coding Region

In first-episode treatment-naive schizophrenia, FC network analysis has suggested significant effects of CHRM3 rs6800381 on the abnormal thalamo-orbital frontal cortex connectivity (Wang et al., 2016). Compared with C allele carriers, NRGN gene rs12807809 TT homozygotes in patients with schizophrenia have significantly lower hippocampus-seeded FC values in bilateral middle cingulate gyri and left anterior cingulate gyrus, suggesting that rs12807809 may be involved in the pathophysiological process of abnormal Papez circuit function (Zhang et al., 2019). The effects of GRIN1 rs11146020 are mainly reflected on the causality connections between the bilateral dorsolateral prefrontal cortex (DLPFC) (Cai et al., 2020b).

However, some SNP genotypes are not associated with changes of FC in patients with schizophrenia, demonstrating the uncertainty of genetic factors at the molecular and cellular levels. For example, left Broca superior/inferior parietal network and bilateral Wernicke-frontoparietal network are related to KIAA0319 SNPs (rs2038136, rs2038137) only in controls, respectively, but not in schizophrenia (Jamadar et al., 2013).



Single-Nucleotide Polymorphisms of Coding Region

Chen et al. identified that rs1344706 within intron 2 of the ZNF804A gene played a role in degree centrality in the precuneus, an important hub of the whole-brain network, in patients with schizophrenia (Chen et al., 2018). The investigation on the relationship between rs1059004 polymorphism which locates in the 3′-untranslated region (3′UTR) intronic region of the OLIG2 gene and the whole-brain FC in patients with first-episode schizophrenia reveals that the FC strength decreased both in patients with schizophrenia and healthy controls with risk A allele and there is at some level a positive relationship between FC strength and verbal fluency score in patients, suggesting that there are synergistic effects between rs1059004 polymorphism and brain connections (Cai et al., 2020a). Compared with C allele homozygote, patients with schizophrenia with risk A allele have significantly lower nodal efficiency in the right precuneus and left middle temporal pole (Lv et al., 2020). Using brain connectivity network properties, “AG” carriers of DAOA rs2391191 have higher connectivity density and larger global efficiency than “AA” carriers (Liu et al., 2014).

For the CACNA1C rs1006737, the risk allele carriers (AA/AG) show decreased connectivity between the left precentral gyrus/inferior frontal gyrus and superior temporal gyrus vs. non-risk allele homozygotes (GG) in schizophrenia, thus presenting abnormal verbal fluency (Tecelao et al., 2019). ZNF804A rs1344706 seems to play an important role in FC between the left hippocampus and right DLPFC, which may serve as the brain mechanism of rs1344706 in schizophrenia (Zhang et al., 2018). However, during a working memory task, seeded connectivity analysis of the homozygous control group of the risk allele (AA) demonstrate a disruption in right DLPFC–left hippocampal formation coupling when compared with the other genotype groups, but there is no effect of genotype in patients with schizophrenia (Rasetti et al., 2011). FC between the right inferior frontal gyrus and bilateral DLPFC is reduced in the risk allele carriers (the TT/TC group) of NOS1 gene rs3782206 in both Stroop task and resting state, suggesting a relevance of rs3782206 to cognitive functions and neural mechanisms at the inferior frontal gyrus (Zhang et al., 2015). Significant association is also detected between the right precuneus inferior frontal gyrus functional connection and the DISC1 rs821617 in patients with schizophrenia (Gong et al., 2014). For DAAO rs3918346 genotype, there are verbal fluency task-dependent changes of FC between the left precuneus and distributed networks including left and right precuneus, left putamen, right posterior cingulate gyrus, left caudate and right angular gyrus, and between the right posterior cingulate and right precuneus and left insula among patients with schizophrenia (Papagni et al., 2011). Similar to the effect of KIAA0319 SNPs (rs2038136,rs2038137) genotype, the influence of SNP rs4504469 located at the exon of KIAA0319 coding region on the left Broca upper/lower parietal network and bilateral Wernicke-frontalparietal network is reflected only in controls (Jamadar et al., 2013). In addition to investigating the influences of SNP rs11146020, which is located in the non-coding region of GRIN1, Cai et al. (2020b) found that SNP rs3813296 located in the intron region of GRIA2 also has certain effects on the causality connections which located on the descending pathway from DLPFC to the striatum and thalamus in patients with schizophrenia. In the meantime, the interaction effects of rs11146020 and rs3813296 on causality connectivity are mainly located in the upstream pathway from the bilateral pallidum to the right caudate and the bilateral DLPFC, and negatively correlated with the Mayer–Salovey–Caruso emotional intelligence test, managing emotions score.




Brain Structure and SNPs in Schizophrenia


Single-Nucleotide Polymorphisms of Non-Coding Region

As for structural connectivity and brain structure, MRI studies are helpful to explore biological clues about the genetic underpinnings of structural connectome deficits in schizophrenia (Voineskos, 2015). For the NRG1 rs35753505 genotype, fractional anisotropy in the anterior cingulum of patients with schizophrenia with the T allele is significantly lower than that of patients with schizophrenia with CC genotype and healthy controls with T allele (Wang et al., 2009). On the basis of previous studies, Nenadic et al. (2012) found that the SNP rs3814614 located in the GRID1 promoter region affected the gray matter density in the right medial cerebellum and a region of the medial parietal cortex. Moreover, the cerebellar cluster gray matter density of TT homozygous patients was the highest, CT heterozygote was the intermediate, and CC homozygote was the lowest, showing significant interaction effects of group × genotype (Nenadic et al., 2012). These findings contribute to our understanding of the mechanisms of the abnormal cortical–subcortical brain networks in schizophrenia with the involvement of the NRGN. Apart from the effect on FC, the NRGN rs12807809 genotype is also associated with the morphological and structural changes of the cerebral cortex. The frontal, parietal, and temporal cortices of patients with schizophrenia with TT genotype were extensively thinned, and there are also thalamic shape abnormalities in the regions involving pulvinar and medial dorsal nuclei (Thong et al., 2013). Furthermore, patients with schizophrenia carrying risk T allele have a smaller gray matter volume in the left anterior cingulate cortex, compared to non-risk C allele carriers (Ohi et al., 2012).



Single-Nucleotide Polymorphisms of Coding Region

The minor allele of rs7808623, located in the intronic region of GRM3 gene, is associated with higher white matter integrity in the anterior thalamic radiation and the corticospinal tract, as well as a series of tracts connecting the frontal cortex to the cerebellum (Mounce et al., 2014). This study indirectly mirrors the importance of GRM3 in maintaining white matter integrity. For MIR137 rs1625579 genotype, patients with schizophrenia with risk T allele homozygous genotype decreased fractional anisotropy values in both right orbitofrontal region and left striatum compared to G allele/A allele carriers (Kuswanto et al., 2015). There are some correlations between CNTNAP2, also known as Neurexin 4 (NRXN4), rs2710126 genotype and fractional anisotropy in the uncinate fasciculus (Clemm von Hohenberg et al., 2013). Despite the lack of association between ZNF804A rs1344706 and white matter integrity in schizophrenia (Wei et al., 2013), T allele carriers present higher white matter density in the left prefrontal lobe and bilateral hippocampi (Wei et al., 2012). Compared with non-risk A allele carriers, patients with schizophrenia with G/G genotype of risk variant rs7914558 which is located in intron1 of the CNNM2 have smaller gray matter volumes in the bilateral inferior frontal gyri, especially the orbital region (Ohi et al., 2013). Among the effects of GRIA2 gene rs3813296 on white matter (Cai et al., 2020b), the most significant effect is located on the bilateral superior corona radiata fibers. Compared with the TT genotype, patients with GT genotype have a significantly larger volume of the superior corona radiata, which leads to the dispersion of the connection strength between the left DLPFC and the right caudate (Cai et al., 2020b). This is seemingly the factor that patients with GT genotype have a decrease in connection strength between the two areas. All the above research results provide a possible mechanism underlying the association between cerebral abnormalities and schizophrenia at the level of genetic polymorphisms.





DISCUSSION

Based on the genetic variation data provided by GWAS research results, the current research takes the common SNPs in the whole genome as the objects to carry out association analysis at the overall level, and looks for the SNPs and susceptibility genes related to schizophrenia. The discovery of SNPs function increases the understanding of the association between functional genetic variation and imaging phenotypes related to schizophrenia from the gene level, and may also provide important clues about the anatomical heterogeneity of schizophrenia. Microscopic level alterations in gene function provide theoretical support for macroscopic level alterations in brain phenotype (van den Heuvel et al., 2019). The application of multi-omics method combining gene and MRI in schizophrenia intuitively reveals the possible pathogenesis related to genes from the perspective of brain structure and function changes (Figure 1). In particular, using genetic imaging strategies, especially based on the high-quality images presented by MRI techniques, to investigate the influence of genetic factors on brain phenotypes will help to study schizophrenia in a more integrated perspective. The key of the trans-scale and multi-omics research strategy is to synthesize the information of different scales and different disciplines, so as to provide the most comprehensive way to explain the nature of schizophrenia (Guan et al., 2021). A recent review systematically summarizes the application of multi-omics approaches in schizophrenia in terms of pathogenesis, disease typing, clinical grading, risk prediction, and precision interventions (Guan et al., 2021). Compared to the information provided by a single discipline, the combination of genetic data and imaging data can provide us with more comprehensive information. In other words, the trans-scale information provided by multi-omics methods can deepen the understanding of the pathophysiological mechanism of clinical symptoms of schizophrenia, and can provide new clew for the stratification of patients and high-risk groups and the development of more accurate risk and treatment response biomarkers. The analytical framework that combines clinical data from multi-view biclustering analysis with gene expression levels allows for the accurate identification of subtypes of schizophrenia (Yin et al., 2019). Protein interactome can be used to describe polygenic associations between antipsychotic drug targets and risk genes, and help to develop new targets for the treatment of negative symptoms and cognitive impairment in schizophrenia (Kauppi et al., 2018). Clinical transformation is one of the ultimate goals of all research. The heterogeneity of schizophrenia is indirectly reflected by the multiple imaging features exhibited by patients with schizophrenia. Different genotypes of patients also have different brain phenotypes, which show individualized characteristics in neuroimaging. This heterogeneity between different scales indirectly suggests that clinicians need to design more individualized and precise clinical decisions.
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FIGURE 1. Shaping the trans-scale and multi-omics properties of schizophrenia via magnetic resonance imaging and single-nucleotide polymorphisms (SNPs). R, right; L, left; ACC, anterior cingulate cortex; MPC, medial parietal cortex; SCR, superior corona radiata; IFG, inferior frontal gyrus; FA, fractional anisotropy; GMD, gray matter density; GMV, Gray matter volume; WMV, white matter volume.


Most recently, functional striatal abnormalities have been developed as a new neuroimaging biomarker for the identification, prognosis, and subtyping of schizophrenia based on brain function (Li et al., 2020). Loci of striatal hyperactivity recapitulate the spatial distribution of dopaminergic function and the expression profiles of polygenic risk for schizophrenia. Furthermore, by applying a novel machine learning method, 413 genetic factors related to schizophrenia across 13 brain regions can be obviously identified (Huckins et al., 2019). The expression of schizophrenia-related genes is reflected in the whole neurodevelopmental process: some during specific stages of pregnancy, and others during adolescence or adulthood. Genetic influence on schizophrenia paves the way for the potential application of MRI in schizophrenia (Jiang et al., 2020). A network fusion-based approach has been applied to integrate three types of data, including genetic, epigenetic, and neuroimaging data, for the diagnosis and prediction of patients with schizophrenia (Su-Ping et al., 2016). For example, adolescents in a high-risk state can be screened by identified risk factors for schizophrenia, so as to predict and intervene at early stage in the future for adolescents who may suffer from schizophrenia. Future research will place more emphasis on integrated analysis of information across different dimensions supported by trans-scale and multi-omics technologies (van den Heuvel et al., 2019; Guan et al., 2021). This new trans-scale and multi-omics methods give us unprecedented power to understand the nature of schizophrenia.

But so far, this combination method has only played a hint and reference role in the pathogenesis of schizophrenia. Most of the studies involved in this article are hypothetical, only with the help of imaging methods to observe changes in brain structure and function in the presence of a specific SNPs. The researchers did not conduct animal experiments to confirm that the changes shown in the images were induced by the specific SNPs. This is a common problem in related research fields. At the same time, due to the complexity and genetic heterogeneity of schizophrenia, there are differences among regions, races, and populations. Therefore, experiments need to reduce the contingency and increase the universality of results. In addition, the sample size of most studies is relatively small, especially the studies on the effects of the relationship between genes and structure on the brain are based on healthy people. It is necessary to increase the sample size for the verification of the results. Furthermore, future research will place more emphasis on integrated analysis of information across different dimensions supported by trans-scale and multi-omics technologies. This is a great challenge to be faced in future research. It is also important to note that the use of antipsychotic drugs can lead to some alterations in the brain phenotype of patients with schizophrenia (Guo et al., 2019; Wang et al., 2019). Future studies need to be aware of whether or not patients with schizophrenia have been treated with antipsychotic medication when discussing changes in their brain phenotypes.

All in all, the new trans-scale and multi-omics methods give us unprecedented power to understand the nature of schizophrenia, which will promote the identification of biomarkers and risk prediction ability, provide help for the multigene strategy of heterogeneous dissection of schizophrenia, and further promote the implementation of individualized accurate diagnosis and treatment.
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Background: A large amount of resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed abnormalities of regional homogeneity (ReHo, an index of localized intraregional connectivity) in the obsessive-compulsive disorder (OCD) in the past few decades, However, the findings of these ReHo studies have remained inconsistent. Hence, we performed a meta-analysis to investigate the concurrence across ReHo studies for clarifying the most consistent localized connectivity underpinning this disorder.

Methods: A systematic review of online databases was conducted for whole-brain rs-fMRI studies comparing ReHo between OCD patients and healthy control subjects (HCS). Anisotropic effect size version of the seed-based d mapping, a voxel-wise meta-analytic approach, was adopted to explore regions of abnormal ReHo alterations in OCD patients relative to HCS. Additionally, meta-regression analyses were conducted to explore the potential effects of clinical features on the reported ReHo abnormalities.

Results: Ten datasets comprising 359 OCD patients and 361 HCS were included. Compared with HCS, patients with OCD showed higher ReHo in the bilateral inferior frontal gyri and orbitofrontal cortex (OFC). Meanwhile, lower ReHo was identified in the supplementary motor area (SMA) and bilateral cerebellum in OCD patients. Meta-regression analysis demonstrated that the ReHo in the OFC was negatively correlated with illness duration in OCD patients.

Conclusions: Our meta-analysis gave a quantitative overview of ReHo findings in OCD and demonstrated that the most consistent localized connectivity abnormalities in individuals with OCD are in the prefrontal cortex. Meanwhile, our findings provided evidence that the hypo-activation of SMA and cerebellum might be associated with the pathophysiology of OCD.

Keywords: obsessive-compulsive disorder, resting-state functional magnetic resonance imaging, localized connectivity, regional homogeneity, meta-analysis, seed-based d mapping


INTRODUCTION

Obsessive-compulsive disorder (OCD), a common mental illness characterized persistent intrusive thoughts (obsessions) and/or ritualized repetitive behaviors (compulsions) (Stein et al., 2019), has a lifetime prevalence rate of 2 to 3% (Ruscio et al., 2010). OCD usually has an onset in childhood and turns into a chronic course (Ruscio et al., 2010). Despite its high disability rate and the resultant social burden, the neuropathology of OCD is still not fully understood. Thus, identifying the neural correlates of OCD is of paramount significance to elevate the diagnostic specificity and improve the treatment efficacy of this disorder.

The development of multimodal magnetic resonance imaging (MRI) techniques and neuroimage analytical approaches have greatly advanced our understanding of the neurobiological substrates regarding OCD in the past few decades (Dougherty et al., 2018). Previous structural MRI meta- and meta- analytical publications have indicated the key role of the cortico-striato-thalamo-cortical (CSTC) network in the pathophysiology of OCD (Radua and Mataix-Cols, 2009; Rotge et al., 2010; de Wit et al., 2014; Fouche et al., 2017; Hu et al., 2017). Meanwhile, it is reported that multiple phenotypic subtypes of OCD might have different structural neural substrates (Dougherty et al., 2018). For example, Hirose et al. found a negative association between washing symptom dimension score and the right thalamic gray matter as well as a significant negative correlation between hoarding symptom dimension score and the left angular white matter in OCD patients (Hirose et al., 2017). In terms of the functional MRI (fMRI) researches in OCD, the results appear to be highly heterogeneous. For example, patients with OCD showed abnormal activation of mesolimbic and ventral striatal circuitry during reward-based spatial learning (Marsh et al., 2015). One experiment testing the error monitoring function revealed hyperactivation of the right amygdala and the subgenual anterior cingulate cortex in OCD patients compared with healthy control subjects (HCS) (Grutzmann et al., 2016). Another fMRI study examining decision making function found that OCD patients showed hypo-activation in the ventromedial orbitofrontal cortex (Norman et al., 2018). The discrepancies between these fMRI studies might be attributed to sample size, clinical heterogeneity (such as medication strategies and comorbidity profiles) and experimental paradigm, which dramatically affected the fMRI findings.

Rather than traditional task-based fMRI, the resting-state fMRI (rs-fMRI) is a commonly used neuroimaging approach to explore the brain function alterations in normal and disease states without performing any task (Biswal, 2012). The amplitude low-frequency Puctuation (ALFF) is a commonly used rs-fMRI parameter that could provide information of regional activation of brain (Fox and Raichle, 2007) while an improved measure named fractional amplitude of low-frequency fluctuation (fALFF) has been put forward as a normalized version of ALFF (Zou et al., 2008). Previous investigations have demonstrated alterations of (f)ALFF in a range of brain regions including the classical CSTC circuits and some newly found brain areas such as the parietal lobe, temporal lobe and the cerebellum (Hou et al., 2012; Fan et al., 2017; Gimenez et al., 2017; Qiu et al., 2017). Besides the (f)ALFF, functional connectivity (FC), a valid rs-fMRI index reflecting the level of integration of local activity across brain regions (Buckner et al., 2013), has been widely adopted to investigate the neural pathogenesis of OCD (Gursel et al., 2018). Previous FC studies have identified that, besides the classical CSTC circuitry, the between-network hypoconnectivity of triple-network (salience, frontoparietal and default-mode networks) might also get involved in the psychopathology in OCD (Gursel et al., 2018). Though explorations of network-level neural function abnormalities in OCD have achieved remarkable progress, the local neural dysfunction of this disorder received less attention.

Regional Homogeneity (ReHo), a rs-fMRI parameter characterizing the local synchronization of spontaneous blood oxygen level-dependent signal fluctuation among neighboring voxels within a given cluster, offered new chance to investigate the localized connectivity disruptions in patients without a priori constraints (Zang et al., 2004). A large amount of rs-fMRI studies have revealed abnormalities of ReHo in OCD, However, the findings of these ReHo studies have remained inconsistent and controversial. For example, one study reported that OCD patients exhibited higher ReHo in the right cerebellum (Ping et al., 2013) while another study identified lower ReHo in the bilateral cerebellum of OCD patients (Hu et al., 2019). Thus, it was necessary to perform a quantitative overview of ReHo findings in OCD.

To our knowledge, Hao et al. published a meta-analysis concerning ReHo alterations in OCD via seed-based d mapping (SDM) approach (Hao et al., 2019). Nevertheless, there were two major shortcomings in their study. First, according to SDM designers' suggestion, the minimum of 10 studies was recommended for SDM meta-analyses (Carlisi et al., 2017; Muller et al., 2018). However, only eight datasets were included in their meta-analysis (Hao et al., 2019). Second, Hao et al. did not to evaluate the association between the clinical variables and ReHo alterations because the included studies were too few (less than 9 studies) to perform meta-regression analysis (Radua and Mataix-Cols, 2009). Therefore, we conducted an updated voxel wise meta-analysis to identify the most robust ReHo abnormalities in OCD patients compared with the controls using the Anisotropic effect size version of the seed-based d mapping (AES-SDM). This new version of SDM method has several advantages such as: (i) avoiding any voxel appearing significant in opposite directions; (ii) reconstructing both positive and negative differences in the same signed differential map; (iii) combining the reported peak coordinates with statistical parametric maps. Additionally, we performed meta-regression to explore the potential effects of clinical features on reported ReHo alterations.



MATERIALS AND METHODS


Data Source

Systematic searches of the online database including PubMed, EMBASE and Web of Science (from January 2000 to December 2020) were conducted. The keyword searches were performed using the following terms: (“obsessive-compulsive disorder” or “OCD”) plus (“resting-state functional magnetic resonance imaging” or “rs-fMRI”) or (“regional homogeneity” or “ ReHo”) or (“localized connectivity”). We also screened the reference lists of relevant articles in order to obtain additional literature.



Studies Selection and Data Extraction

A study was considered for inclusion if it (i) was a research paper and published in English; (ii) reported ReHo comparison between patients with OCD and HCS; (iii) provided 3-dimensional coordinates of ReHo abnormalities in stereotactic space at the whole-brain level; (iv) adopted significance thresholds for data that were corrected for multiple comparisons. In some cases, we obtained additional details which were essential for the meta-analysis by contacting the corresponding authors. Exclusion criteria were: (i) the article type of the study is not original investigation; (ii) the peak coordinates of the ReHo alterations could not be retrieved; (iii) the study was based on region of interest (ROI) analytical approach; (iv) the data overlapped with those of another publication. We performed the current meta-analysis based on the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) (Radua, 2021). The coordinates regarding the ReHo changes between OCD patients and HCS in each included study were independently extracted by two investigators. Meanwhile, clinical features (including the sample size, age, gender, illness duration, symptom severity and medication status) and methodological issues (such as the MRI scanner, analytical software, smoothing kernel, number of foci and the threshold for multiple comparison correction) were extracted. If agreement was not obtained, then another author mediated.



Voxel-Wise Meta-Analysis

Using the AES-SDM software, we conducted the voxel-wise meta-analysis to explore the most robust ReHo abnormalities in patients with OCD compared with HCS based on the selected studies. Meanwhile, we performed a whole-brain jackknife sensitivity analyses to evaluate the reliability of the main effect. Afterwards, we conducted subgroup meta-analysis of unmedicated OCD patients and the subgroup meta-analysis regarding the threshold for correction was also performed. Subsequently, between-study variance was analyzed in order to assess significant heterogeneity of ReHo abnormalities. The kernel size and thresholds for the main effect and heterogeneity analysis were set as follows: full-width at half-maximum = 20 mm; anisotropy = 1.0, voxel P = 0.005, peak height threshold = 1, cluster extent = 100 voxels. We also performed Egger's test for the evaluation of publication bias. Finally, the meta-regression analyses were performed to examine the potential effects of clinical variables (such as symptom severity and illness duration) on the reported ReHo changes. It should be noted that a more conservative threshold (P < 0.0005) was used for meta-regression analysis in order to achieve the optimal balance of sensitivity and specificity as suggested by previous publication (Wise et al., 2016). All the analyses are performed according to the AES-SDM tutorial (http://www.sdmproject.com/software/Tutorial.pdf).




RESULTS


Included Studies and Sample Characteristics

Our search strategy identified a total of 60 studies. Of these, 11 ReHo studies were chosen for further consideration after primary screening. Among the 11 ReHo investigations, One study adopted an ROI analytical method instead of a whole-brain approach (Chen et al., 2016c). Another study recruited samples that were overlapped with previous publication (Chen et al., 2016b). Therefore, these two studies were excluded from the current meta-analysis. Ultimately, 9 original investigations (Yang et al., 2010, 2015, 2019; Ping et al., 2013; Chen et al., 2016a; Niu et al., 2017; Bu et al., 2019; Hu et al., 2019; Xia et al., 2020) met the inclusion criteria (see Figure 1 for details). No additional articles were found in the reference lists of the included studies. One investigation included two different subgroups of OCD patients (autogenous-type OCD and reactive-type OCD, two different types of obsessions in OCD proposed by Lee and Kwon, 2003; Xia et al., 2020). We treated this investigation as two unique datasets, with each patient subgroup selected independently in the current meta-analysis. Therefore, a total of 10 datasets comprising 359 OCD patients and 361 HCS were included in our meta-analysis, along with 80 coordinates extracted from these 10 datasets. There was no significant difference between the two groups in terms of age and sex. The mean age was 27.35 years in the OCD patient group vs. 26.56 years in the HCS group while there were 142 (39.6%) female OCD patients vs. 149 (41.2%) female HCS. The demographic details from all recruited studies were well-described in the Table 1 while the technical details of the included studies were available in the Table 2.


[image: Figure 1]
FIGURE 1. Flow diagram regarding the identification and attrition of studies. OCD, obsessive-compulsive disorder; ReHo, regional homogeneity; ROI, region of interest; rs-fMRI, resting-state functional magnetic resonance imaging.



Table 1. Demographic and clinical characteristics of ReHo studies on OCD in the current meta-analysis.
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Table 2. Technical details of ReHo studies on OCD in the current meta-analysis.
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Regional ReHo Differences Between Patients With OCD and HCS

Compared with HCS, patients with OCD showed higher ReHo in the bilateral inferior frontal gyri (IFG) and orbitofrontal cortex (OFC). Meanwhile, lower ReHo was identified in the supplementary motor area (SMA) and bilateral cerebellum in OCD patients (see Figure 2 and Table 3 for details). All aforementioned clusters did not reveal significant statistical heterogeneity between studies (p > 0.005). Additionally, none of the clusters showed significant publication bias in the Egger's test (p > 0.05).


[image: Figure 2]
FIGURE 2. Results of the meta-analysis of whole-brain ReHo studies in patients with OCD. Regions of ReHo alterations in patients with OCD relative to HCS were shown on the three-dimensional T1-weighted template images from software (MRIcroN). Higher ReHo was shown in red color while lower ReHo was displayed in blue color. HCS, healthy control subjects; OCD, obsessive-compulsive disorder; ReHo, regional homogeneity.



Table 3. Statistical concurrence observed across ReHo studies on OCD.
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Subgroup Meta-Analyses

The subgroup meta-analyses showed that the main findings above remained highly reproducible when only the 8 ummedicated OCD datasets or only the 9 datasets using the threshold of 0.05 for multiple comparison corrections were analyzed (Table 4). Unfortunately, we failed to perform the subgroup meta-analyses regarding other clinical subtypes or imaging methodologies because there were not enough primary datasets.


Table 4. Sensitivity analyses of clusters with altered ReHo between OCD patients and controls from 9 included studies (10 datasets) in the current meta-analysis.
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Sensitivity Analyses

As displayed in the Table 3, the whole brain jackknife sensitivity analyses indicated that higher ReHo in the left IFG and lower ReHo in the SMA were highly replicable, because these two findings were consistent throughout all the 10 combinations of 9 datasets. The lower ReHo in the bilateral cerebellum failed to emerge in one of the study combinations while the higher ReHo in the right IFG and OFC failed to emerge in two of the study combinations. The detailed results of the whole brain jackknife sensitivity analyses were shown in the Table 4.



Meta-Regression Analysis

The clinical Information of the patients with OCD including the age, gender, symptom severity and illness duration was available for all the 10 datasets. Using a stringent threshold of P < 0.0005 to minimize spurious findings, our meta regression revealed that samples with longer illness duration of OCD patients had more decreased ReHo in the OFC, which had been found as anomalous in the main effect. That is, the illness duration was negatively associated with the ReHo in the OFC (x = 0, y = 46, z = −2; SDM-Z = −3.304, P = 0.000005677; 428 voxels) (Figure 3). Other relevant clinical variables were not correlated, at least linearly, with OCD-related ReHo alterations.


[image: Figure 3]
FIGURE 3. Results of meta-regression analysis illustrating a negative association between the ReHo in the OFC and the illness duration in patients with OCD. The effects sizes were extracted to create the plots in the graph and each study is represented as a dot, with dot size reflecting sample size: large dots indicate samples with over 40 patients; medium dots, samples with 20–40 patients; and small dots, samples with under 20 patients. OCD, obsessive-compulsive disorder; OFC, orbitofrontal cortex; ReHo, regional homogeneity.





DISCUSSION

The current study integrated rs-fMRI publications for a meta-analysis of ReHo differences between OCD patients and HCS. Using AES-SDM approach, our meta-analysis identified that patients with OCD showed higher ReHo in the bilateral IFG and OFC. Meanwhile, lower ReHo was identified in the SMA and bilateral cerebellum in OCD patients. These findings remained stable when jackknife sensitivity analyses were performed, which suggested that the results of our meta-analysis were robust and reliable.

In line with the classical CSTC model of OCD, we identified higher ReHo in the bilateral IFG and OFC in OCD patients relative to the HCS. The prefrontal dysfunction is widely considered to be implicated in the psychopathology of OCD (Pauls et al., 2014). Localized connectivity dysfunction in bilateral IFG might be associated with impairments of cognitive control, which had been consistently reported in OCD patients (Shin et al., 2014). Previous multicenter mega-analytical publication has demonstrated smaller gray matter volume in bilateral IFG in OCD patients while the current study revealed higher ReHo in the bilateral IFG (de Wit et al., 2014). We speculated that the hyper-activation of bilateral IFG is a compensatory response to the gray matter structural deficits of IFG. It is reported that the OFC plays an essential role in reward processing (Milad and Rauch, 2012). Recent meta-analysis has demonstrated lower fractional anisotropy in the left orbitofrontal white matter of OCD patients, which was negatively and independently associated with symptom severity and illness duration in patients with OCD (Hu et al., 2020). One animal experiment indicated that giving repeated stimulation to the OFC of the mice could lead to persistent OCD-like behaviors (Ahmari et al., 2013). Grover et al. found that high-frequency neuromodulation of OFC could improve obsessive-compulsive behavior (Grover et al., 2021). In the current study, higher ReHo in the OFC may be related the behavioral deficits of OCD patients since OCD patients perform poorly on tasks that require adjusting responses based on changing reward feedback (Marsh et al., 2015). Additionally, our meta-regression analysis showed a negative correlation between the illness duration and the ReHo in the OFC. Previous study demonstrated a negative association between disease duration and ReHo value in the bilateral OFC in OCD patients at the whole-brain level (Niu et al., 2017). Yun et al. performed a multicenter study and found the centrality of orbito-frontal cortical surface areas was negatively correlated with OCD illness duration (Yun et al., 2020). Based on the evidence above, we proposed that the OFC might be related to the illness chronicity in OCD. However, this meta-regression finding should be interpreted with caution since two datasets (Ping et al., 2013; Chen et al., 2016a) in the current meta-analysis included OCD patients who were on stable doses of serotonin reuptake inhibitors at the time of the MRI scanning. Beucke et al. reported that antidepressant medication might affect the neural function within the CSTC circuits in OCD (Beucke et al., 2013). Therefore, further studies would be warranted to clarify our meta-regression finding.

It should be noted that prior meta-analysis reported decreased ReHo in the left caudate nucleus (Hao et al., 2019) while our meta analysis identified no ReHo alterations in the striatum. One possible reason accounting for the inconsistency is the differences of included datasets. A larger number of datasets was included in the current meta analysis (N = 10) than in the previous publication (N = 8). As suggested by Radua and his colleagues, the minimum of 10 studies was essential for the reliability of performing the SDM meta-analysis (Carlisi et al., 2017; Muller et al., 2018). Therefore, we confirmed the validity of the current meta-analysis.

The SMA is considered to be implicated in movement initiation and inhibition, response selection, and motor planning (Bonini et al., 2014). A task-based MRI study demonstrated that OCD patients and their siblings showed greater activity in the left SMA during successful inhibition paradigm relative to HCS, indicating that the SMA hyperactivity is a neurocognitive endophenotype of OCD (de Wit et al., 2012). Another study found that increased correlation of the error-related negativity in the event-related potential and activation of SMA might indicate stronger recruitment of proactive control in OCD (Grutzmann et al., 2016). Our meta-analysis revealed lower ReHo in the SMA, suggesting that hypo-activation of the SMA might be involved the pathophysiology of OCD.

Another interesting finding is that we identified lower ReHo in the bilateral cerebellum in OCD patients. Besides the traditional role of motor control, researches have proved that the cerebellum is involved in cognitive control (Buckner, 2013) and information processing (Ramnani, 2006). In fact, the cerebellum offers output to the cerebral cortex and tunes sensory input for facilitating behavioral adjustment in response to feedback (Gao et al., 2018). Sha et al. reported greater somatomotor-cerebellar connectivity in OCD patients and highlighted somatomotor-cerebellar circuits as potential targets for novel treatments in OCD (Sha et al., 2020). One study demonstrated decreased dynamic amplitude of low-frequency fluctuation (dALFF) of cerebellum in drug-naive OCD patients using the sliding-window approach (Liu et al., 2021). Meanwhile, another rs-fMRI study identified decreased cerebellar-cerebral functional connectivity in executive control and emotion processing networks in OCD patients (Xu et al., 2019). Taken collectively, our meta analysis emphasized the role of cerebellum in the pathogenesis of OCD.

In terms of the significance of ReHo alterations, previous investigations suggested that the index of ReHo could contribute the blood oxygenation level dependent (BOLD) fluctuations at the baseline (Anderson et al., 2014). An elevation of prefrontal ReHo might suggest an pronounced participation of this brain region in the neurophysiological functions such as the rumination (Dar and Iqbal, 2015) while a reduction of ReHo usually occurs alongside an increase in distributed connectivity during late neurodevelopment (Fair et al., 2007; Supekar et al., 2009).

Several limitations of the current meta-analysis should be addressed. First, our meta-analysis was performed on the basis of stereotactic coordinates extracted from each included dataset instead of raw brain maps (Radua et al., 2012), which might result in less accurate findings. Second, as the number of datasets included in our meta analysis was small, we failed to perform subgroup meta-analyses. Third, the potential effects of drug treatment could not be fully ruled out since a majority of studies employing OCD patients who were on drug treatment. Future ReHo studies recruiting unmedicated OCD patients are still needed to verify the reproducibility of the findings in the current meta analysis. Forth, it should be pointed out that all the included studies were conducted in China, which limited the generalizability of the our findings to other populations. Finally, the meta-regression results should be regarded as preliminary finding rather than conclusive evidence because the number of eligible studies for meta-regression analysis is limited.

In summary, the current meta-analysis presented a quantitative overview of ReHo findings in OCD and demonstrated that the most consistent localized connectivity abnormalities in individuals with OCD are in the prefrontal cortex. Additionally, our findings provided evidence that the hypo-activation of SMA and cerebellum might be associated with the pathophysiology of OCD, which might give additional explanation to the well known CSTC model of OCD.
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Attention deficit hyperactivity disorder (ADHD) is one of the most widespread mental disorders and often persists from childhood to adulthood, and its symptoms vary with age. In this study, we aim to determine the disrupted dynamic functional network connectivity differences in adult, adolescent, and child ADHD using resting-state functional magnetic resonance imaging (rs-fMRI) data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years). We hypothesized that functional connectivity is time-varying and that there are within- and between-network connectivity differences among the three age groups. Nine functional networks were identified using group ICA, and three FC-states were recognized based on their dynamic functional network connectivity (dFNC) pattern. Fraction of time, mean dwell time, transition probability, degree-in, and degree-out were calculated to measure the state dynamics. Higher-order networks including the DMN, SN, and FPN, and lower-order networks comprising the SMN, VN, SC, and AUD were frequently distributed across all states and were found to show connectivity differences among the three age groups. Our findings imply abnormal dynamic interactions and dysconnectivity associated with different ADHD, and these abnormalities differ between the three ADHD age groups. Given the dFNC differences between the three groups in the current study, our work further provides new insights into the mechanism subserved by age difference in the pathophysiology of ADHD and may set the grounds for future case-control studies in the individual age groups, as well as serving as a guide in the development of treatment strategies to target these specific networks in each age group.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders worldwide, characterized by inattentive, hyperactive, or impulsive behaviors (American Psychiatric Association., 2000). ADHD mostly affects children, but often persists to adulthood (Danielson et al., 2018). The Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) classified ADHD into 3 sub-types, namely; hyperactive/impulsive (HI), inattentive (IA), and combined (C) type. ADHD prevalence in children, adolescents, and adults is 9.5, 11.4, and 4.4%, respectively (Gimpel and Kuhn, 2000; Barbaresi et al., 2002; Kessler et al., 2006; Wolraich et al., 2011), with its symptoms varying from one age group to the other (Katragadda and Schubiner, 2007).

Functional magnetic resonance imaging (fMRI) has become a popular technique for studying brain diseases or disorders such as ADHD. The majority of these ADHD fMRI studies have followed a task-based approach, aiming to examine how brain function may be modulated by group status during cognitive task performance. This approach is designed to isolate specific cognitive processes that may be linked to or modified by ADHD symptoms or treatment. In recent times, however, there has been an overwhelming interest in an alternative method called resting-state functional magnetic resonance imaging (rs-fMRI). The term “resting state” is misleading because the brain is never at rest (Stark and Squire, 2001; Raichle, 2006). It is often used to denote a task-free procedure where participants are asked to lie still in a scanner, with their eyes either opened or closed, and not think about anything specific. Resting-state fMRI gives a measure of brain neurophysiology that is not dependent on task-directed cognitive processes. Moreover, the discovery of the default mode network of brain structures, which is said to be active during the resting state and show dynamic negative correlations with task-related regions, has opened up new areas of investigation (Raichle et al., 2001; Greicius et al., 2003) and has raised interesting questions with regards to abnormal patterns of brain activation in patients with ADHD.

Under resting-state conditions, intrinsic networks obtained from rs-fMRI correlate with low frequency BOLD signal fluctuations between regions of the brain (Biswal et al., 1995; Fox and Raichle, 2007; Khundrakpam et al., 2016). It has been demonstrated that the human brain is functionally organized into a hierarchy of large-scale connectivity networks (Meunier et al., 2009). Abnormal functional connectivity (FC) within the default mode, executive control, salience, and attention-related networks were observed in ADHD patients (Sidlauskaite et al., 2016; Bos et al., 2017). These networks are said to be associated with symptoms of ADHD, such as impairment of executive function processing and distractibility (Francx et al., 2015; Zhao et al., 2017). Significant differences were also observed between child and adolescent ADHD patients within the default mode and frontoparietal networks (Park et al., 2016), which are also said to be highly associated with ADHD symptoms (Buckner et al., 2008; Andrews-Hanna, 2012; Ptak, 2012). These and several other studies have found significant differences both between ADHD patients and healthy control subjects and also among ADHD patient groups, but most of these studies are based on the assumption that FC is static throughout the whole scan time and, therefore, calculate FC using the entire time course. Even though static functional network connectivity (sFNC) has been used to successfully determine brain abnormalities in ADHD and other neurological diseases, it has ignored the fact that different neural activities can occur at different points in time.

Having proven that FC of the resting brain is indeed dynamic (Fox et al., 2005), methods have been in development since 2010 to depict the time-varying network connectivity in rs-fMRI and to capture the network activity of the brain in more detail (Chang and Glover, 2010; Sakoǧlu et al., 2010).

In recent times, some researchers have observed time-varying connectivity patterns among intrinsic networks in mental disorders, such as schizophrenia and bipolar disorder, that cannot be detected using sFNC (Damaraju et al., 2014; Rashid et al., 2014). Dynamic functional network connectivity (dFNC) has yielded fascinating results in several brain disorders, showing the within and between network disconnections that may be unknown or uncertain (Damaraju et al., 2014; de Lacy et al., 2017; de Lacy and Calhoun, 2018). Previous works using task-based regions of interest suggest lagging strength in frontal-parietal-striatal-cerebellar connections in ADHD, with implications mainly in the frontoparietal, ventral attention, and default mode networks (Cortese et al., 2012; Hart et al., 2012, 2013).

Even though dFNC has been employed to study the differences between healthy control subjects and patients in several mental disorders including ADHD, no study has employed dFNC to access network connectivity differences between child, adolescent, and adult ADHD patients. Given that ADHD symptoms vary among the three age groups, identifying network disruptions specific to each age group will provide new insights into the pathophysiology of ADHD and may set the grounds for future case-control studies in the individual age groups, as well as serving as a guide in the development of treatment strategies to target these specific networks in each age group. We, therefore, performed dFNC using group independent component analysis (GICA), sliding window correlation, and K-means clustering to explore network connectivity differences in ADHD between these three age groups. We hypothesized that dFNC can capture the time-varying characteristics of fMRI data perculiar to the three ADHD age groups.



MATERIALS AND METHODS


Data Acquisition

Unprocessed resting-state fMRI data of ADHD patients (158 subjects) were obtained from the New York University Child Study Center for the ADHD-200 Global Competition and UCLA dataset (Bilder et al., 2016). The NYU dataset is made up of 45 child ADHD patients, and 73 adolescent ADHD patients. The UCLA dataset is made up of 40 adult ADHD patients. Both datasets are made openly to researchers online. All participants used in the current study were diagnosed with ADHD and their symptom scores have been used for the correlation analysis in the current study. Detailed information about the subjects can be found in Table 1.


TABLE 1. Data demographics.

[image: Table 1]
For the adult dataset, MRI data were acquired on one of two 3T Siemens Trio scanners, located at the Ahmanson-Lovelace Brain Mapping Center (Siemens version syngo MR B15) and the Staglin Center for Cognitive Neuroscience (Siemens version syngo MR B17) at UCLA. Functional MRI data were collected using a T2∗-weighted echo-planar imaging (EPI) sequence with the following parameters: slice thickness = 4 mm, slices = 34, TR = 2 s, TE = 30 ms, flip angle = 90°, matrix 64 × 64, FOV = 192 mm. Additionally, a T2-weighted matched-bandwidth high-resolution anatomical scan (with the same slice prescription as the fMRI scan) and MPRAGE were collected. The parameters for the high-resolution scan were: 4 mm slices, TR/TE = 5,000/34 ms, 4 averages, matrix = 128 × 128, 90-degree flip angle. The parameters for MPRAGE were the following: TR = 1.9 s, TE = 2.26 ms, FOV = 250 mm, matrix = 256 × 256, sagittal plane, slice thickness = 1 mm, 176 slices. For the child and adolescent datasets, MRI data were obtained using Siemens Magnetom Allegra Syngo Mr 2004a. FMRI data were collected using an echo-planar imaging sequence with the following parameters: slice thickness: 4 mm, Slices: 33, TR: 2,000 ms, TE: 15 ms, Rotation = 90°, FoV phase: 80.0%, FoV read = 240 mm. In addition, T1-weighted images were acquired using the following parameters: Slice thickness = 1.33 ms, TR = 2,530,ms, TE = 3.25,ms, rotation = 0 degrees, FoV phase = 100.0%, FoV read = 256 mm.



Data Preprocessing

For the adult dataset, the first 2 time points were removed, leaving final time points of 150. For the pediatric (adolescent and child) datasets, the first 26 time points were removed to ensure that all the data have equal time points since the time courses are used in the dFNC calculations. The same preprocessing steps were done for all subjects, including slice time correction, realignment, co-registration of T1 images to corresponding functional images, segmentation, normalization by Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) (Ashburner, 2007), and resampling to 3 × 3 × 3 mm voxels, nuisance covariates regression using Friston 24 (Friston et al., 1996), and spatial smoothing with a 6 mm full width half maximum (FWHM) Gaussian kernel. Pediatric and adult datasets were preprocessed separately to ensure that the right template is generated for normalization. Subjects with a maximum translation > 2 mm or rotation > 2° were excluded from further analysis, leaving a total of 114 subjects. The final data used for further analysis included 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years). All preprocessing steps were performed using the data processing assistant for resting-state fMRI, advanced edition (DPARSFA) in the DPABI toolbox (Yan et al., 2016).



Group Spatial Independent Component Analysis

Data were decomposed into functional networks using a group-level spatial ICA as implemented in the GIFT toolbox.1 A relatively high model order with 60 components was performed using the Infomax algorithm with a best-run selection from 10 randomly initialized analyses to achieve a functional parcellation of refined cortical and subcortical components corresponding to known anatomical and functional segmentations (Himberg et al., 2004; Li et al., 2007; de Lacy and Calhoun, 2018). To make sure that all components selected were intrinsic component networks (ICNs), sorting was performed using a combination of visual inspection and quantitative metrics. For each of the 60 components, spectral metrics of (1) fractional amplitude of low-frequency fluctuations (fALFF) and (2) dynamic range were generated. Generally, independent components representing brain networks are said to have higher values in these spectral metrics, whereas noise components are said to have lower values (Allen et al., 2011, 2012). Hence, we checked the spectral metrics of each component, and only components with high values in these spectral metrics were retained for further scrutiny. Components were also visually inspected, and their peak coordinates were used to determine their correspondence with gray matter. Components with poor overlap with the cerebral gray matter or low spectral metrics were discarded. The remaining 50 components represented the intrinsic networks (INs) used in this study.



dFNC Analysis

The selected components underwent additional post-processing (linear detrending, despiking, and low-pass filtering with a high-frequency cutoff at 0.15 Hz) to remove any remaining sources of noise. DFNC was estimated based on the sliding window approach. Based on previous studies (Allen et al., 2014; Klugah-Brown et al., 2019; Sanfratello et al., 2019), we selected a window width size of 22 TRs = 44 s, and sliding steps of 1 TR, resulting in 128 windows. This was obtained for all 114 subjects to give a total of 14,592 instances (114 subjects × 128 windows). For each window, FNC was estimated between ICNs from a regularized inverse covariance matrix using the graphical LASSO method (Friedman et al., 2008). An L1 norm was placed on the inverse covariance matrix to promote sparsity, and the regularization parameter (lambda) was optimized for each subject. The dFNC values were Fisher-Z transformed. In brief, the graphical LASSO method is a method used for learning the structure in an undirected Gaussian graphical model, which uses L1 regularization in controlling the number of zeros in the precision matrix Θ = Σ–1. Kindly refer to Meinshausen and Bühlmann (2006); Yuan and Lin (2007), and Banerjee et al. (2008) for more information.

K-means clustering was used to cluster all dFNC windows based on the correlation distance. Clustering numbers from 2 to 10 were selected, representing cluster states. For each k, the clustering algorithm was repeated 500 times to increase the chances of escaping local minima, with random initialization used to obtain the state cluster centroids. The optimal number of clusters was estimated using the elbow criterion and silhouette algorithms. An optimal K = 3 was obtained using these two methods. Also, subjects were well distributed among these three clusters, which is better for pattern evaluation. Only the selected 50 ICNs were used in the clustering, resulting in a total of [50 × (50–1)]/2 = 1,225 features. These features were then used for the dynamic FNC analysis between the three groups.

Functional network connectivity, fraction of time, mean dwell time, transition probability, degree-in, and degree-out were compared between the three age groups in each state. Correlation analyses were also performed to determine the impact of age, overall ADHD severity, hyperactivity severity, and inattentive severity on fraction of time and mean dwell time of each age group in each cluster state. All statistical analyses were performed using MATLAB (Mathworks Inc., United States). Age, gender, and mean framewise displacement (mean FD) were used as covariates for statistical analyses. Furthermore, given that our data was obtained from different sites, and several studies have shown the effect of multi-site in different ADHD age groups (Hong et al., 2017; Zhou et al., 2019), we regressed out the effect of site in our analyses. In brief, the NYU dataset (consisting of the pediatric dataset) was represented as site one (1), whiles the UCLA dataset (consisting of the adult dataset) was represented as site two (2). Thus, each subject in the NYU and UCLA datasets were labeled 1 and 2, respectively, and used as covariates in our statistical analysis to regress out site effects. False discovery rate (FDR) was used for multiple comparison corrections. Figure 1 shows the schematic diagram of the analysis pipeline.
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FIGURE 1. Schematic diagram of the analysis pipeline. Rs-fMRI data was preprocessed and subjected to spatial group ICA resulting in 50 intrinsic component networks. Static FNC was then estimated. For dFNC, the sliding window approach was adopted and clustered using K-means to obtain 3 cluster states. Based on these three cluster states, five measures of dynamism were computed in native space.





RESULTS


Spatial ICA and ICNs

Spatial maps of the ICNs and their time courses were decomposed using GICA. The selected 50 ICNs were further categorized into nine networks based on their anatomical and functional properties, including the sensorimotor network (SMN), visual network (VN), default-mode network (DMN), central executive network (CEN), cerebellum network (CBN), subcortical network (SC), auditory network (AUD), frontoparietal network (FPN), and salience network (SN). The identified ICNs with their activation peaks primarily fell on the gray matter (Supplementary Figure 2).



Dynamic FNC States

Three reoccurring dFNC states over time were identified using K-means clustering and the cluster centroid of each dFNC state is shown in Figure 2. All three states showed positive connectivity within the VN. States 1 and 3 showed positivity connectivity within the DMN, with state 1 distinguishing itself with negative connectivity between some ICNS of the CBN, AUD, and VN with other networks. States 2 and 3 showed positive connectivity within the VN and SMN, with state 2 showing strong positive connectivity within these two networks than state 3, but some ICNs showed strong negative connectivity within these two networks. State 2 also showed strong positive connectivity between the SMN and VN, with the CBN showing antagonism with other networks in this state.
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FIGURE 2. Percentage of occurrence. The median of all subjects together with the total number and percentage of occurrences are displayed in each state. (A–C) Represent states 1–3. The connectivity pattern varies among the three cluster states with state 2 showing more connectivity than states 1 and 3.




Group Differences in dFNC States

To find out if there are significant dFNC differences between the three age groups, two-sample t-tests were done between 1. Adolescents vs. children 2. Adults vs. children 3. Adults vs. adolescents.


Adolescents vs. Children

Figure 3A demonstrates significant differences (p < 0.01, FDR corrected) between adolescent and child ADHD groups. Relative to child ADHD patients, adolescent ADHD patients showed increased network connectivity between the DMN and CEN, DMN and SC, and DMN and SN in state 1. Compared to Child ADHD patients, adolescent ADHD patients exhibited increased network connectivity between the SMN and SC in state 2.
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FIGURE 3. Group differences among the three age groups. (A) Adolescent vs. Child ADHD patients. (B) Adult vs. Child ADHD patients. (C) Adult vs. Adolescent ADHD patients. Two out of the three clusters showed significant differences between child and adolescent ADHD patients, whiles all three clusters showed significant differences between child/adolescent and adult ADHD patients (P < 0.01, FDR corrected). The red squares indicate increased network connectivity whiles the blue squares indicate decreased network connectivity.




Adults vs. Children

The results of the two-sample t-test between adults and children are shown in Figure 3B. All three clusters were found to show significant differences between the two groups (p < 0.01, FDR corrected). Relative to child ADHD patients, adult ADHD patients showed increased network connectivity between the SMN and VN, SMN and DMN, SMN and SC, and between the AUD and SC, AUD and DMN, AUD and SN, AUD and FPN, and FPN and CBN in state 1. In state 2, the connectivity pattern changed, with increased network connectivity between the DMN and SMN, DMN and VN, DMN and CBN, DMN and AUD, DMN and FPN, and DMN and SN in adult ADHD patients relative to child ADHD patients. The connectivity pattern again changed in state 3 with more network connectivity differences between the two groups. The DMN showed increased connectivity with the CEN, SC, AUD, FPN, and SN, whiles the VN showed decreased connectivity with the SC in adult ADHD patients relative to child ADHD patients. Compared to the child group, increased connectivity was found within the SMN and AUD, and between the SMN and AUD, SMN and SN, AUD and CBN, AUD and FPN, and AUD and SN in the adult group in state 3.



Adults vs. Adolescents

All three cluster states showed significant differences between the 2 groups (p < 0.01, FDR corrected) (Figure 3C). In state 1, adult ADHD patients showed increased network connectivity within the AUD, and between the AUD and DMN relative to their adolescent counterparts. Compared to adolescent ADHD patients, increased network connectivity was found within the VN in adult ADHD patients in state 2. Relative to adolescents ADHD patients, adult ADHD patients again showed increased network connectivity within the AUD, between the DMN and SMN, DMN and CBN, and between the DMN and SN in state 3. Also, in state 3, increased network connectivity was observed between the FPN and VN, FPN and CBN, and FPN and SC in adult ADHD patients relative to adolescent ADHD patients. The DMN connectivity difference between the two groups varies across the 3 states. Interestingly, the FPN showed no significant connectivity differences between the 2 groups in states 1 and 2 but showed significant connectivity differences with the VN, CBN, and SC in state 3.




Fluidity Measures

The mean dwell time, which is the mean time spent in one state before moving to the next state, was compared between the three age groups using two-sample t-tests (Figure 4A). In state 1, the child group showed the highest mean dwell time, whiles the adult and adolescent groups showed the highest mean dwell times in states 2 and 3, respectively. However, significant differences were observed between only adult and adolescent, and adult and child ADHD pairs in states 1 and 2 (FDR corrected), with no significant mean dwell time differences between adolescent and child ADHD patients in all three cluster states.
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FIGURE 4. State vectors for temporal analysis. (A) Mean dwell times in the three cluster states. (B) Fraction of time spent by each group in the three states. The blue, red, and ash bars represent adult, adolescent, and child ADHD patients, respectively. Asterisk indicates P < 0.05, FDR corrected and two asterisks indicate P < 0.001, FDR corrected.


The proportion of time each subject stayed in each state within the whole scan duration was defined as the fraction of time in that state. Figure 4B shows the fraction of time spent in each state over the whole time series. Two-sample t-tests were performed to determine the differences in fraction of time between the three age groups. Significant differences in fraction of time were found between adult and adolescent, and adult and child pairs in only states 1 and 2 (FDR corrected). There was no significant fraction of time difference between adolescent and child ADHD pair in any of the three cluster states.

The average transition matrices and transition probabilities of each age group are shown in Figure 5, which represent the probability of changing from one state to the other. The red squares along the main diagonals represent a high probability of staying in a particular state, hence, the deeper the red square, the higher the probability of staying in a particular state. The blue squares represent the probability of moving between states, hence, the lighter the blue square, the higher the probability for subjects to move between states. The light blue square in the column of state 2 and the row of state 3 (Figure 5A), indicates a high probability of adult subjects moving between these two states, which is evident in the adult mean dwell time and fraction of time spent in these two states. Likewise, adolescent and child patients have high probabilities of moving between states 1 and 3 (Figures 5B,C), which is evident in the mean dwell time and the fraction of time they spent in these two states.
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FIGURE 5. The average transition matrix and transition probabilities of each age group. (A–C) Represent the average matrix for adult, adolescent, and child ADHD patients, respectively.


The total frequency of transitions from other states into a particular state (referred to as degree-in) (Figure 6A) and the total frequency of transitions from a particular state into other states (referred to as degree-out) (Figure 6B) was calculated for the three groups in all three states and two-sample t-tests were used to determine the differences between the three groups. Significant degree-in differences were found between adult and adolescent, and adult and child pairs in state 1 (P < 0.05, FDR corrected), whiles state 2 shows significant differences between only adult and child pair (P < 0.001, FDR corrected) (Figure 6A). However, both states 1 and 2 showed significant degree-out differences between adult and adolescent, and adult and child ADHD pairs (Figure 6B). No significant differences were found between adolescent and child ADHD patients in both degree-in and degree-out.
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FIGURE 6. State vectors degree of transitions. (A) Frequency of transitions into each state. State 1 showed significant differences in both adult vs. adolescent, and adult vs. child pairs, whereas, state 2 showed significant differences between only adult vs. child ADHD patients. (B) Frequency of transitions out of each state. States 1 and 2 showed significant differences between both adult vs. adolescent, and adult vs. child pairs. Asterisk indicates significant states (p < 0.05, FDR corrected), two asterisks indicate significant differences with threshold p < 0.001, FDR corrected.




Correlation Analyses

Correlation analyses were performed to determine the impact of age, overall ADHD severity, hyperactivity severity, and inattentive severity on fraction of time and mean dwell time for each age group in each cluster state using gender and age as covariates. No significant correlations were found between fractions of time and mean dwell time for the above-mentioned measures in all three states in adult ADHD patients. A significant positive correlation was found between overall disease severity and fraction of time in state 2 in the child group (Figure 7A). In the adolescent group, mean dwell time in state 1 was positively correlated with overall disease severity and hyperactivity severity (Figures 7B,D), whiles faction of time in this same state was positively correlated with only hyperactivity severity (Figure 7C).
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FIGURE 7. Scatter plots of the correlation analyses. (A) Positive correlation between fraction of time spent in state 2 and child disease severity. (B) Positive correlation between mean dwell time in state 2 and adolescent disease severity. (C) Positive correlation between fraction of time spent in state 1 and adolescent hyperactivity severity. (D) Positive correlation between mean dwell time in state 1 and adolescent hyperactivity severity.





DISCUSSION

In this study, we investigated time-varying network connectivity patterns and network disruptions in child, adolescent, and adult ADHD patients using ICA, sliding windows, and K-means clustering. Our analysis revealed the following results: (1) unique state network alterations between the resting-state networks were found in all the three groups of ADHD patients with disruption occurring mainly in lower-order functional networks including SMN, AUD, VN, and CBN, while higher-order networks (DMN, SN, CEN, and FPN) showed rather sparse and low connectivity; (2) changes in state vectors as a measure of dynamic changes were obtained for the three groups including mean dwell time, fraction of time spent, number of transitions across states, and total transition measure by the degree in and out of state; (3) mean dwell time was positively correlated with overall disease severity and hyperactivity severity in only the adolescent group, whiles fraction of time was positively correlated with overall severity in the child group and hyperactivity severity in the adolescent group.

To the best of our knowledge, our work is the first to explore dFNC of the three ADHD age groups, adding to the increasing literature on the evidence of dFNC (Chang and Glover, 2010; Sakoǧlu et al., 2010; Allen et al., 2014; Damaraju et al., 2014; Rashid et al., 2014; Klugah-Brown et al., 2019) and how it can capture disruption among ADHD patient across different age ranges. The implications of functional interconnections between resting-state networks have gained full attention over the years and have become a robust tool to investigate brain disorders (find extensive review and meta-analysis in Cortese et al., 2021). However, these studies rely on the assumption that the FC derived static throughout scanning time. In contrast to this assumption, it’s been since 2010 that the brain states are more dynamic across time and that a time-varying approach may provide a better view of this phenomenon (Chang and Glover, 2010; Sakoǧlu et al., 2010), as well as being able to capture the dynamic connectivity patterns across time.

Three reoccurring states were found using K means clustering, and the connectivity patterns were relatively similar across the groups in all three states (Supplementary Figure 3). We observed varying connectivity patterns across states with each state exhibiting different occurrences denoted by a percentage of the total instances for all groups and subjects (Figure 2). The measurement taken over longer time windows summarize anatomical connectivity, which reflects RSNs. However, measurements taken over shorter window times accentuate the small departure from the RSN pattern, forming new functional networks from different nodes for a short period and then returning to the RSN pattern. Even though certain functional networks are often repeated in time, their exact organization or arrangement at a particular point depends on the part of the dynamic repertoire being explored (Deco et al., 2011), this results in the differences in the dynamic patterns of the three cluster states. The connectivity patterns within and between lower-order networks was in contrast with disruption expected suggested to occur within and between FPN and other higher-order networks in ADHD (Gao et al., 2019) networks including DMN, FPN, and CEN, this suggests that although altered differences occurred, it did not represent case-control patterns but rather reflected age-driven association among the ADHD groups. The higher-order networks on the contrary showed a rather weaker hyperconnectivity among the groups for all three states. The hyperconnectivity found within and between the SMN, VN, and AUD in the highly connected state 2, highly synchronous patterns were different, with generally more sparse connections in state 3 within the DMN, and between the DMN and FPN compared to state 2. The DMN which is involved in self-referencing and abrupt inattentiveness (Buckner et al., 2008; Fox et al., 2015; Bozhilova et al., 2018) exhibited weaker within and between connectivity is consistent with previous studies in ADHD reflected declining capacity to integrate within network activities similar to those found in case-control groups (Lin and Gau, 2015). In addition, the relatively low connectivity between the FPN and DMN resonates with Castellanos et al. (2008) study in which using resting-state fMRI they showed an anticorrelation between the above networks and suggested that the observed pattern reflected a decline in the attention processes in ADHD which is subserved by the higher-order network in FPN.

On the group comparing of the k-mean clusters and the group level connectivity difference, we found different state patterns peculiar to each group. Supplementary Figure 3 shows the group-specific centroids indication the number of subjects contributing to each state. Following the clusters for each state, the group spatial group differences were generally hyperconnected, Figure 3A demonstrates two significant states between adolescents and child ADHD with increased connectivity between the DMN and CEN, SC, and SN. As indicated in the above paragraph, the inattention modulated by DMN is linked with the FPN, however, in both states, the connectivity with the CEN only re-echoed the control networks which are altered involving SN and SC. Inattention has been suggested to be increased in DMN with lower-order networks such as the SC in a task-based study (Oldehinkel et al., 2016) which is parallel with our result. Figure 3B shows connectivity differences between adult and child ADHD, in all three states we found the DMN hyperconnection with yet the lower-order networks including AUD and SMN, and also between the lower-order network (SC, VN), altered activation in the occipital regions and disconnections between the occipital cortex and frontal cortex in child and adolescent ADHD patients has been reported in previous studies (Mazaheri et al., 2010; Kröger et al., 2014). Disruptions of the VN have also been reported in ADHD patients (Benli et al., 2018), indicating that the VN plays an important role in ADHD. In state 2, the DMN connected with the FPN, AUD, and within the DMN, which is evident in the task-positive network relating to disrupted attention maintenance, and signifying inattention was revealed in the following review (Luman et al., 2010). Relative to adolescent ADHD patients, increased connectivity was found within the VN in adult ADHD patients. In state 3, Adult ADHD showed increased connectivity between the SMN and DMN relative to child ADHD patients. The connectivity pattern was similar to the state but had a widespread connection between the lower-order networks. Both DMN and FPN were also present, however, there was no connection between them, which is in contrast with the previous notion that these networks provided the core role in the attention and self-referential system in children and adolescents (Houck et al., 2011). For adults and adolescents, we also found all the three states were significant with less connectivity within each state, Figure 3C. All connections were in the low-order networks; AUD and VN, in states 1 and 2, respectively. State 3 expressing comparatively more connectivity and was between DMN and the lower-order networks. The phenomenon is similar to those found in the other age groups, however, adults compared to adolescents seem to have a less significant connection across all networks. This may suggest that the transition from adolescence to adulthood had little influence on the overall connectivity pattern in ADHD. In brief for the spatial connectivity difference between each pair of groups, the DMN representing a higher-order network was disrupted. Also, FPN connectivity was most evident between the adolescent and children relative to adults and other groups. This pattern of connectivity suggests that DMN or self-referential modulated inattention in all groups. thus, the DMN has been reported to be disrupted in several ADHD studies (Cortese et al., 2012; Hart et al., 2013; Park et al., 2016; Qian et al., 2019), and significant connectivity differences across the three age groups found in the current study completed the previous studies.

In our state vector analysis, several temporal measures were captured across all states for each group. Firstly, both the dwell time and fraction of time showed significance between each pair of groups in states 1 and 2 except state 3 Figure 4, which reflected correspondence with the spatial results in which for each paired group the connectivity was more in tasks negative network (DMN) and signifies that mental state was not fully represented over all states. Similarly, the likelihood of transition among states showed a corresponding temporal pattern as shown in Figure 5. In addition, to further characterize the temporal dynamics with the disease scores, we performed a correlation between each score and the transition vectors. As displayed in Figure 7, the adolescent group disease severity and hyperactivity positively correlated with state 1 vectors (mean dwell time and a fraction of time spent), suggesting that duration of occupied state corresponded to disease, and as the mental state changes the severity increases. Also, child disease severity exhibited a positive relationship with the proportion of time spent in state 2. Adults group showed no significance for all measures across groups in each state. These finding implied that the disruption in children and adolescents were more prevalent and showed more dynamic relations relative to adults. Although not clear, we posit that adult ADHD is reduced, reflecting symptom decline in this age group (Katragadda and Schubiner, 2007; Volkow and Swanson, 2011; McCarthy et al., 2012).

Although we showed both temporal and spatial dFNC among the three groups, the result should be interpreted carefully. Firstly, the sample size was a limitation in this study, as connectivity tend to be more stable with an increasing number of participants, we were not able to investigate whether our relatively small sample influence the result presented, we suggest that future studies use larger sample sizes to determine the dFNC differences between the three ADHD age groups. Secondly, albeit the control of sex variable in the individual group analysis, the male to female ratio in the adult dataset was not the same as relative to child and adolescent datasets, which may interfere with brain state, future studies may consider recruiting more samples to include balanced sex ratio.

In sum, this study investigated the temporal and spatial dynamics of ADHD patients. Nine networks were identified using group ICA. Higher-order networks including the DMN and FPN and lower-order networks comprising the SMN, VN, and AUD were frequently distributed across all states and were connected within and between networks. We also found significant differences in measures such as mean dwell time, fraction of time, degree-in, and degree-out among the three age groups. Generally, all groups did not make full significant temporal transitions, only states 1 and 2 exhibited dynamic variability among the three groups. Our findings imply abnormal dynamic interactions and disconnectivity associated with ADHD. However, these abnormalities differ between the three ADHD age groups, especially when compared between child/adolescent and adults. Overall, the current work highlighted the dynamic properties of the brain captured through sliding window correlations. Furthermore, given the dFNC differences among the three groups, our work provides new insights into the mechanism subserved by age difference in the pathophysiology of ADHD and may set the grounds for future case-control studies in the individual age groups, as well as serving as a guide in the development of treatment strategies to target these specific networks in each age group.
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Introduction: Cognitive decline is the core schizophrenia symptom, which is now well accepted. Holding a role in various aspects of cognition, lentiform nucleus (putamen and globus pallidus) dysfunction contributes to the psychopathology of this disease. However, the effects of lentiform nucleus function on cognitive impairments in schizophrenia are yet to be investigated.

Objectives: We aim to detect the fractional amplitude of low-frequency fluctuation (fALFF) alterations in patients with schizophrenia, and examine how their behavior correlates in relation to the cognitive impairments of the patients.

Methods: All participants underwent magnetic resonance imaging (MRI) and cognitive assessment (digit span and digit symbol coding tests). Screening of brain regions with significant changes in fALFF values was based on analysis of the whole brain. The data were analyzed between Jun 2020 and Mar 2021. There were no interventions beyond the routine therapy determined by their clinicians on the basis of standard clinical practice.

Results: There were 136 patients (75 men and 61 women, 24.1 ± 7.4 years old) and 146 healthy controls (82 men and 64 women, 24.2 ± 5.2 years old) involved in the experiments seriatim. Patients with schizophrenia exhibited decreased raw scores in cognitive tests (p < 0.001) and increased fALFF in the bilateral lentiform nuclei (left: 67 voxels; x = −24, y = −6, z = 3; peak t-value = 6.90; right: 16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The fALFF values in the bilateral lentiform nuclei were positively correlated with digit span-backward test scores (left: r = 0.193, p = 0.027; right: r = 0.190, p = 0.030), and the right lentiform nucleus was positively correlated with digit symbol coding scores (r = 0.209, p = 0.016).

Conclusion: This study demonstrates that cognitive impairments in schizophrenia are associated with lentiform nucleus function as revealed by MRI, involving working memory and processing speed.

Keywords: schizophrenia, lentiform nucleus, cognition, magnetic resonance imaging, phenotype


INTRODUCTION

Schizophrenia is a chronic mental illness affecting more than 20 million people all over the world (James et al., 2018). In schizophrenia, cognitive decline is a phenomenon related to the disorder. Schizophrenia has been considered to be a cognitive illness (Kahn and Keefe, 2013), in which cognitive decline is the core symptom (Kahn, 2019). Most recent longitudinal studies have shown 10- and 20-year progressive decline in cognitive functioning in patients with schizophrenia and other psychotic disorders (Zanelli et al., 2019; Fett et al., 2020). Cognitive function is impaired across almost all domains (Kern et al., 2011; Georgiades et al., 2017; Zhang et al., 2019) and contributes substantially to the long-term outcome associated with schizophrenia (Lepage et al., 2014; Mucci et al., 2021), highlighting cognitive symptoms as important targets for treatment.

Previous studies have demonstrated that patients with first-episode schizophrenia showed cognitive deficits across all cognitive domains, particularly in processing speed (Kern et al., 2011; Georgiades et al., 2017; Zhang et al., 2019). Working memory is the impaired cognitive domain that enters most frequently in the second position (Kern et al., 2011; Georgiades et al., 2017), and it is a neurocognitive impairment that differs between first-episode and chronic schizophrenia (McCleery et al., 2014). Taken together, we selected digit span (working memory) and digit symbol coding tests (processing speed) in this study. Taking the dysconnection hypothesis (Friston et al., 2016) and the therapeutic value of neuromodulation (Guan et al., 2020; Xiu et al., 2020) into consideration, neuroimaging study is urgently needed. However, the underlying brain structural and functional mechanisms for the cognitive symptoms remain to be identified (McCutcheon et al., 2020).

As a part of the basal ganglia, the lentiform nucleus (LN) is a lens-shaped, bilateral structure in the basal ganglia bounded by the internal and external capsules and has three components: the internal and external globus pallidus and the putamen (Hibar et al., 2013). The LN is implicated in several degenerative and psychiatric disorders (Obeso et al., 2000; Ellison-Wright et al., 2008). The housing of dopaminergic neurons in the LN explains its involvement in the neuropathology of schizophrenia, as a dopaminergic disorder (Brisch et al., 2014). Basal ganglia dysfunction has been suggested to be involved in the cognitive impairments of schizophrenia, as the dysfunction of cortical, striatal, and thalamocortical dopamine signaling circuits could lead to cognitive deficits (Simpson et al., 2010; Krabbe et al., 2015). Although the studies have suggested that the LN might be functionally linked to cognitive function in schizophrenia including attention, working memory, reward, and executive functions (Vatansever et al., 2016), the direct evidence remains unclear and has yet to be determined, especially in in vivo study with patients.

Magnetic resonance imaging (MRI) techniques provide promising tools to allow for exploring neural underpinnings behind this disease. Among these studies, the basal ganglia attracted particular attention, as it seems to be associated not only with the clinical manifestation of the disease but also cognitive information processing (Delvecchio et al., 2018). Previous studies prefer to focus on the structural changes of the LN area, but a few studies have shown a significant correlation between subcortical regions of interest in function (Luo et al., 2018; Fan et al., 2019; Tikasz et al., 2019). Hartberg et al. (2011) have proved that there is a negative correlation between putamen volume and verbal memory in patients with schizophrenia. Previous studies have been focused on either the functional striatal abnormalities instead of LN function in schizophrenia patients or exploring the correlation between striatal structural changes and working memory function. Further studies are needed to show the direct relationship between LN and cognitive function in schizophrenia patients.

Both the amplitude of low frequency fluctuations (ALFF) and the fraction amplitude of low frequency fluctuations (fALFF) can reflect the intensity of spontaneous activity in brain areas. The fALFF is a modified index of the ALFF, being less likely to produce any noise and more sensitive and specific to the detection of spontaneous brain activities in comparison to the ALFF (Chai et al., 2020). Many studies have found that the fALFF is associated with cognitive symptoms of schizophrenia (Fryer et al., 2015; Sui et al., 2015). A recent study, aimed to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls, has found that fALFF features were more sensitive to cognitive domain differences (Sui et al., 2018).

Therefore, we aim to detect fALFF alterations in patients with schizophrenia. Specifically, given the involvement of the LN in the pathophysiology of schizophrenia, abnormal functioning of the LN can be strongly associated with the development of cognitive impairment. In the current study, we used the fALFF to determine the relevance of abnormal LN function on cognitive impairments in schizophrenia.



MATERIALS AND METHODS


Participants

This study was approved by the Institutional Ethics Committee, First Affiliated Hospital (Xijing Hospital) of the Fourth Military Medical University. Each participant gave written informed consent after receiving a complete description of this study. Between April 8, 2015 and June 18, 2020, 141 patients with schizophrenia were recruited from the Department of Psychiatry at Xijing Hospital. There were also 146 matched healthy controls, who were enrolled through advertising. The participants were diagnosed on the basis of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and consensus diagnoses were made by two experienced clinical psychiatrists using all the available information. At the time of scanning, all the subjects underwent the Positive and Negative Syndrome Scale (PANSS) and cognitive assessment (digit span and digit symbol coding test). They were all right-handed, and their biological parents were of the Han Chinese ethnic group. The exclusion criteria for patients were as follows: (1) the presence of another psychiatric disorder; (2) a history of repetitive transcranial magnetic stimulation, transcranial current stimulation, or behavioral treatment; (3) a history of clinically significant neurological, neurosurgical, or medical illnesses; (4) substance abuse within the prior 30 days or substance dependence within the prior 6 months; (5) pregnancy or any other MRI contraindications, e.g., cardiac pacemakers and other metallic implants; (6) unwillingness to undertake the scanning. Exclusion criteria for healthy controls were as follows: (1) the presence of any psychotic syndrome; (2) a history of receiving antipsychotics, repetitive transcranial magnetic stimulation, transcranial current stimulation, or behavioral treatment; the remaining (3), (4), (5), and (6) were the same as the exclusion criteria for patients.



Cognitive Assessment

We used the Wechsler Adult Intelligence Scale revised in China (WAIS-RC) to assess cognition by digit span (forward and backward) and digit symbol coding tests. For the forward digit span task, the subject was initially required to repeat a string of numbers after the researcher read them out. If the subject is able to repeat the string correctly, then they would be asked to proceed to the next string, which would have its length increased by one; if not, a second test would be conducted with a different string of digits of the same length. If the subject is correct, the test continues with a longer string, otherwise, the test stops and the length of the string is recorded. With the backward digit span test, the subjects were asked to repeat from the last number to the first after hearing a string of numbers, and the rest of the process was consistent with the forward test. In the digit symbol coding test, the subject is required to define 10 different symbols for 10 numbers from 0 to 9. The subject is asked to write the corresponding symbols under disordered numbers within 90 s, and the number of characters written correctly is recorded. Ultimately, digit symbol coding and digit span-forward data were available for 132 patients and 56 healthy controls. In addition, one patient rejected the digit span-backward test.



Image Acquisition

A General Electric (GE) Discovery MR750 3.0 T scanner was used to acquire images at the Department of Radiology at Xijing Hospital with a standard 8-channel head coil. A T1-weighted anatomical imaging (TR = 8.2 ms, TE = 3.2 ms, slice thickness = 1.0 mm, field of view [FOV] = 256 mm × 256 mm, matrix = 256 × 256, and flip angle = 12°) and resting-state functional MRI (TR = 2,000 ms, TE = 30 ms, slice thickness = 3.5 mm, FOV = 240 mm × 240 mm, matrix = 64 × 64, and flip angle = 90°) were performed. Further details about image acquisition are detailed in previous articles (Cui et al., 2019b; Liu et al., 2019). Participants were instructed to relax with their eyes closed but keep from falling asleep during their MRI scan.



Data Processing

The data processing was performed using the Data Processing Assistant for Resting-State fMRI Advanced Edition (DPARSFA) V4.41 with the previously published protocols (Cui et al., 2019a). First, the first 10 time points were discarded to ensure the stability of the magnetic field. Second, slice timing correction and realignment (subjects with maximum motion > 2 mm or 2° were excluded) were performed. Five patients were excluded from the study because of excessive head motion, resulting in 136 patients who were included in the following analysis. Third, the nuisance covariates that included six head motion parameters, cerebrospinal fluid signals, white matter signals, and global mean signals were regressed from the data as corrected values. Fourth, T1-weighted images were coregistered to the realigned functional images. Fifth, the coregistered images were normalized to Montreal Neurological Institute space and resampled to 3 mm × 3 mm × 3 mm voxels. Sixth, the volumes were smoothed with a Gaussian kernel (8 mm full-width half-maximum, FWHM).



Fractional Amplitude of Low Frequency Fluctuations Analysis

We used the ALFF for directly observing local field spontaneous neural activity (Logothetis et al., 2001). The ALFF values of the subjects were calculated using the DPARSFA V4.4 (see text footnote 1). The ALFF calculation was performed using previously published protocols (Cui et al., 2019a). Finally, a filtering band-pass (0.01–0.08 Hz) was performed after calculating the ALFF. To overcome the limits of the ALFF approach, a ratio of the power of each frequency at a low-frequency range to that of the entire frequency range, known as fALFF, was obtained for the following statistical analysis (Yang et al., 2018).



Statistical Analysis

For voxel-based comparison of the fALFF, a two-sample t-test in SPM12 software2 was used to test the statistical significance between patients and controls. A p < 0.05 (FWE correction) with a cluster size of more than 15 was considered as the statistical significance for the fALFF analysis. The comparison of demographical data and correlation analyses were performed in the Statistical Product and Service Solutions (SPSS, version 22.0). Demographical characteristics (age, gender, and education) and Jenkinson’s mean frame-wise displacement were regarded as covariates. A region of interest was created using the significant clusters of group comparison to extract the fALFF values. We used Pearson correlation coefficients to assess the clinical relevance between the fALFF value of the LN (putamen and globus pallidus) and cognitive capacity in patients (significance was set at p < 0.05).




RESULTS


Demographical and Clinical Characteristics

Table 1 presents the demographic and clinical characteristics of the participants. Apart from the level of education, there was no statistically significant difference in other characteristics between patients and healthy controls.


TABLE 1. Demographical and clinical characteristics.
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Cognitive Impairments

The digit symbol coding and digit span-forward data for 132 patients and 56 controls were available. As for digit span-backward, there was one patient who refused to take the test. Two-sample t-testing showed significant differences in the cognitive tests (digit symbol coding, digit span-forward, and digit span-backward) between the two groups (p < 0.001; Figure 1).
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FIGURE 1. Cognitive impairments in patients with schizophrenia. Comparison of digit symbol coding test (t = –13.985, p = 3.503E-29) and digit span raw scores (forward: t = –5.745, p = 4.7247E-8; backward: t = –10.225, p = 9.7559E-20) between patients and controls.




Disrupted Fractional Amplitude of Low-Frequency Fluctuation

In the whole-brain analysis, the regions with altered fALFF values are shown in Figure 2. Briefly, schizophrenia patients exhibited increased fALFF in the left LN (67 voxels; x = −24, y = −6, z = 3; peak t-value = 6.90) and the right LN (16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The brain regions with decreased fALFF values included the right anterior occipital gyrus (36 voxels; x = 33, y = −84, z = −12; peak t-value = 6.42), left middle occipital gyrus (17 voxels; x = −30, y = −90, z = −3; peak t-value = 5.93), left superior occipital gyrus (16 voxels; x = −9, y = −90, z = 9; peak t-value = 5.83), and right lingual gyrus (20 voxels; x = 12, y = −84, z = −9; peak t-value = 5.55).
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FIGURE 2. Altered fALFF in patients compared to healthy controls. Patients with schizophrenia exhibited increased fALFF in the bilateral LN.




Correlation Between Fractional Amplitude of Low-Frequency Fluctuation and Cognitive Function

The fALFF values were extracted according to the mask of the bilateral LN (significant clusters of group comparison). We calculated the correlation between the cognitive scores and fALFF values in the LN of the patients and reported the (uncorrected) p-values because our hypothesis directly concerned these two selected regions of interest (Figure 3), as previously performed (Li et al., 2017). Considering that the scaled score tends to decrease the diversity of data, we used the raw score to present the subtle discrepancies among subjects (Xie et al., 2021). Correlation analysis showed that the digit span-backward test was positively correlated with the fALFF values (the left LN: r = 0.193, p = 0.027; the right LN: r = 0.190, p = 0.030). In addition, a positive correlation between the right LN and digit symbol coding was also demonstrated (r = 0.209, p = 0.016). However, when assessing the correlation between the digit span-forward test and the fALFF values of the LN, there was no significant association.
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FIGURE 3. Correlation between fALFF and cognitive impairments in patients with schizophrenia. Digit span-backward test and digit symbol coding were positively correlated with fALFF values in the LN. LNL, left LN; LNR, right LN.





DISCUSSION

In the current study, we observed that patients and healthy controls had statistically significant differences in cognitive function. Schizophrenia patients exhibited increased fALFF in the bilateral LN. On the contrary, the brain regions with decreased fALFF included the bilateral occipital gyrus and the right lingual gyrus. Furthermore, the digit span-backward test was positively correlated with the fALFF values of the bilateral LN, and the fALFF values of the right LN were positively correlated with the digit symbol coding test.

Previous studies have shown that cognitive function is decreased in schizophrenia patients, including memory impairment, deficits in attention, and general cognition (Koshiyama et al., 2018). Although there are several neuropsychological tests for measuring processing speed impairment, which is the largest single deficit in cognitive function in schizophrenia, a meta-analysis has demonstrated that a digit symbol coding task is the most sensitive test to apply to patients with schizophrenia (Dickinson et al., 2007), and that it reflects processing speed. Moreover, digit span (forward and backward) could reflect the function of cognition especially with working memory (Conklin et al., 2000). It has been reported that memory impairment is a severe cognitive dysfunction in schizophrenia (Toulopoulou et al., 2003). Our study is consistent with previous studies showing the dysfunctional changes in cognitive function, especially in the memory of schizophrenia patients (Chen et al., 2016).

Among the different brain structures, the basal ganglia, as the subcortical nuclei rich in dopaminergic neurons, is an important structure for the neuropathology of schizophrenia, as a well-established dopaminergic disorder (Brisch et al., 2014). The basal ganglia are composed of the caudate nucleus, the LN (putamen and the globus pallidus), and the substantia nigra. The LN, as part of the basal ganglia, is not only important for the motor system but also plays a role in cognitive functions, including working memory, executive function, reward, and learning (Schroll et al., 2015). Dopamine is known to play a major part in regulating a number of cognitive functions that are impaired in schizophrenia, and research should now shift focus toward a better understanding of the role of specific striatal pathways in cognition (Conn et al., 2020; Martel and Gatti McArthur, 2020). A recent study concluded that striatal dysfunction contributes to cognitive difficulties in schizophrenia, which is supported by previous histological and neuroimaging evidence (Avram et al., 2019). Many previous studies have focused on the structural changes of LN in schizophrenia (Luo et al., 2018; Takahashi et al., 2020). Hashimoto et al. (2009) showed that schizophrenia patients had significantly lower fractional anisotropy values in the bilateral globus pallidus and left thalamus compared to controls, suggesting that schizophrenics might have microstructural abnormalities in the globus pallidus and thalamus. However, the functional role of the LN and how it affects cognitive function remains largely unknown. Several similar studies have been focused on the basal ganglia but not on the LN. And some studies have focused on the symptoms assessed by PANSS but not on cognitive function. Therefore, the direct evidence remains unclear whether the LN is linked to certain cognitive functions and has yet to be determined, especially in in vivo studies with patients. The purpose of the present study was to provide this evidence.

One of the main results of our study showed increased fALFF in the bilateral LN. Gong et al. (2020) also showed increased ALFF in the LN in schizophrenia patients compared with healthy controls. Another previous study found that the ALFF increased in the parietal lobule and was correlated with decreased social cognition (Sui et al., 2015). Moreover, our result showed decreased fALFF in the bilateral occipital gyrus, which is consistent with a previous study, showing that the decreased fALFF were mainly in the posterior parietal cortex and occipital cortex (Xu et al., 2015). In addition, schizophrenia patients had greater thalamic connectivity with the occipital gyrus (Ferri et al., 2018). Furthermore, abnormal morphology of the occipital gyrus may be a marker of psychiatric illness (Maller et al., 2017). A pronounced decline in gray matter volume was observed in the bilateral occipital lobe in genetic high-risk individuals and first-episode schizophrenia patients (Zhao et al., 2018). Therefore, the regional functional changes of certain brain areas, especially in the LN, might be important brain neuroimaging markers for schizophrenia patients.

Another major result of our study was the correlation between the bilateral LN and the digit span-backward test. The LN, as part of the cortico-striato-thalamocortical circuits, is important for cognitive functions, especially the attention, working memory, reward, and executive functions (Rabinovici et al., 2015; Vatansever et al., 2016). As mentioned above, the digit span backward test could reflect the function of working memory. Our result indicated the LN is correlated with working memory. In previous schizophrenia studies, there have been reports of negative performance-related functional connectivity between the left putamen and the right ventrolateral prefrontal cortices (Quide et al., 2013). Our previous study also proved the importance of putamen in positive symptoms (Cui et al., 2016, 2017), and in disease identification and the treatment response prediction of schizophrenia (Cui et al., 2018, 2020). Thus, our results add to the importance of the LN in schizophrenia, especially in cognitive function. Of note, our current results did not show a significant correlation between the digit span-forward test and the fALFF values of the LN. Our observation of the results may reflect the unique disease-related abnormalities of the LN.

Our study reflects some limitations. First, a previous study has demonstrated cognitive impairment in schizophrenia as a mediator to influence the association between negative symptoms and hippocampal morphometry (Duan et al., 2021). However, our study only focused on the relationship between the fALFF of the LN and cognitive impairments, and we were not able to answer how the LN contributes to cognitive impairments in schizophrenia. Further MRI-guidance and navigation studies combined with neuromodulation will be needed for answering this question (Wu et al., 2021). Second, antipsychotic treatments modify abnormal cerebral function in schizophrenia (Duan et al., 2020), but the effects of medication and whether the other cognitive function was affected were not investigated in the current study.



CONCLUSION

In conclusion, the present investigation found the association between increased fALFF values in the bilateral LN and cognitive performance in schizophrenia patients. These findings may contribute to our understanding of the LN in schizophrenia and shed light on the development of psychological strategies to improve cognitive function via the new target.
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Objective: Hemifacial spasm (HFS) is a kind of motor disorder, and the striatum plays a significant role in motor function. The purpose of this study was to explore the alterations of the cortical-striatal network in HFS using resting-state functional magnetic resonance imaging (fMRI).

Methods: The fMRI data of 30 adult patients with primary unilateral HFS (15 left-side and 15 right-side) and 30 healthy controls were collected. Six subregions of the striatum in each hemisphere were selected for functional connectivity (FC) analysis. One-sample t-test was used to analyze the intragroup FC of the HFS group and the control group. Two-sample t-test was used to compare the difference of FC between the two groups. The correlation between the abnormal FC and severity of HFS was evaluated by using the Spearman correlation analysis.

Results: Compared with the controls, the striatal subregions had altered FC with motor and orbitofrontal cortex in patients with HFS. The altered FC between striatal subregions and motor cortex was correlated with the spasm severity in patients with HFS.

Conclusion: The FC of the cortical-striatal network was altered in primary HFS, and these alterations were correlated with the severity of HFS. This study indicated that the cortical-striatal network may play different roles in the underlying pathological mechanism of HFS.

Keywords: hemifacial spasm (HFS), striatum, functional connectivity, motor disorder, resting-state fMRI


INTRODUCTION

Hemifacial spasm (HFS) is a syndrome of involuntary contraction of facial muscles innervated by ipsilateral facial nerves (Palacios et al., 2008), which can gradually affect facial expressive muscles and platysma muscles (Lu et al., 2014). Primary HFS is believed to be caused by vascular compression of the facial nerve at its root exit zone (Hermier, 2018), but the central mechanism is still not clear. Studies have found that depression and anxiety are more common in patients with HFS (Huang et al., 2009; Rudzińska et al., 2012). Striatum plays a prominent role in modulating motor activity and higher cognitive function (Rosen and Williams, 2001). However, the exact neural mechanism of the striatum in the regulation of motor in patients with HFS still remains unexplored. Early identification of functional changes in the cortical-striatal loop of patients with HFS can help to understand disease pathogenesis and achieve early diagnosis as well as effective treatments. This study was aimed to investigate the altered cortical-striatal network in patients with primary HFS, using resting-state functional magnetic resonance imaging (fMRI).

As part of the extrapyramidal system, the striatum is integral to the motor, cognitive, and emotion regulation functions (Di Martino et al., 2008). The subregions of the striatum, such as putamen, caudate, and ventral striatum, also are associated with different brain functions. Previous anatomical and neuroimaging studies of the striatum have shown that the putamen mainly receives projections from the sensorimotor cortex, and the caudate receives projections from the associated cortex, while the ventral striatum receives projections from the medial prefrontal cortex, orbitofrontal cortex (OFC), and limbic system (Lehericy et al., 2004; Draganski et al., 2008; Choi et al., 2012).

Based on these facts, striatum would be able to exhibit profound influences in motor disorders. For example, as one part of the striatum, putamen can regulate the amplitude and velocity of muscle contraction via the cortical-striatal loop and the dopamine system, and therefore plays a significant role in some motor disorders, including Parkinson’s disease and Huntington’s disease (Grillner et al., 2005; Loonen and Ivanova, 2013). The abnormal functional connectivity (FC) between the striatum and the motor cortex was also found in patients with motor disorders (Hacker et al., 2012; Unschuld et al., 2012; Luo et al., 2014). In Parkinson’s disease, after the substantia nigra degeneration, the content of dopamine in the striatum is also decreased (Schroeder et al., 2020), and in addition to the abnormal striatum-substantia nigra loop, the cortex-striatum loop may also be abnormal (Helmich et al., 2010). These results further highlight the significance of the striatum in the development of motor disorders. Besides, the researchers have used FC analysis to study the function of striatal subregions in healthy people (Di Martino et al., 2008), patients with Parkinson’s disease (Helmich et al., 2010; Hacker et al., 2012), depression (Gabbay et al., 2013; Felger et al., 2016), autism (Padmanabhan et al., 2013), and obsessive-compulsive disorder (Harrison et al., 2009), and the mechanisms of central alterations in different subregions of the striatum have been revealed.

Current resting-state fMRI studies of HFS are limited, and the results are diverse. The regional homogeneity (ReHo) index has been used in most previous studies to indicate time-domain coherence between neighboring voxels in the brain. Researchers have found ReHo abnormalities in the motor cortex, frontal lobes, and cerebellum in patients with HFS (Tu et al., 2015; Wei et al., 2015; Lu et al., 2018), and no ReHo alterations in the striatum, probably due to the small sample size and the different meanings between the analysis indexes, i.e., ReHo and FC. However, one study reported that patients after infarction of the caudate, one of the subregions of the striatum, presented with HFS, suggesting that the striatum may play an important role in the development of HFS (Arunabh, Jain and Maheshwari, 1992). In addition, another study on facial nerve palsy found altered FC between the striatum and motor cortex after facial muscle paralysis, further affirming the relationship between the striatum and facial muscle movement (Song et al., 2017). To the best of our knowledge, there are few earlier studies on HFS using the FC analysis method. One study showed abnormalities in FC between the thalamus and parietal cortex in patients with HFS (Niu et al., 2020), but it did not explore the central changes of the striatum in this dyskinesia. HFS is a kind of facial movement disorder, it is not clear that how the striatum regulates the motor function of patients with HFS before and after the onset of its symptoms, and in this study, we focused on striatal function in patients with HFS.

In this study, we performed FC analysis of 12 striatal subregions in patients with HFS. We hypothesized that in patients with chronic primary HFS, the FC between the striatum and motor cortex and FC between striatal subregions will be changed. Since long-term HFS may result in psychological problems, such as depression and anxiety (Bao et al., 2015), we also hypothesized that the FC between the striatum subregions and the emotion-related cortex will be altered in patients with HFS. Furthermore, we explored the relationship between altered FC and clinical characteristics in patients with HFS.



MATERIALS AND METHODS


Subjects

A total of 60 subjects were selected from a total of 64 participants, and 4 subjects (3 patients with HFS and 1 healthy control) were excluded from the analysis due to excessive head motion (translational movement > 2 mm or rotation > 2°). Then, 30 patients with HFS (15 left-side HFS, 15 right-side HFS, 12 men, 18 women, age 48.87 ± 10.61 years) were enrolled from 2017 to 2019 in the Department of Neurosurgery, China-Japan Friendship Hospital. HFS was diagnosed by two experienced neurologists based on clinical symptoms and history. The severity of HFS was assessed using the Cohen spasm scale (0–4 scores, with higher scores indicating more severe spasm) (Cohen et al., 1986). The inclusion criteria for patients were as follows: (1) adult patients with primary unilateral HFS, (2) without craniocerebral lesions and mental disorders, no use of psychotropic drugs, and (3) being right-handed. The exclusion criteria for patients were as follows: (1) with bilateral HFS, (2) having contraindications to MRI examination, and (3) with excessive head motion. Notably, 30 age-, sex-, education-matched healthy controls (12 men, 18 women, age 47.63 ± 13.29 years) were recruited from the society. The inclusion criteria for healthy controls are as follows: (1) aged 18 years old or above, (2) absence of neurological and mental disorders, and (3) being right-handed. The demographic and clinical characteristics of participants are shown in Table 1. This study was approved by the Ethics Committee of our hospital, and all subjects have given informed consent before the experiment.


TABLE 1. Demographic and clinical characteristics of participants.

[image: Table 1]


Magnetic Resonance Imaging Data Acquisition

The experiment was carried out on the 3.0 T MRI scanner (GE, Discovery MR750, Milwaukee, United States) with an 8-channel phased-array head coil. The resting-state fMRI with a single-shot gradient recalled echo-planar imaging sequence was performed with the following recipe. The repetition time (TR) was 2,000 ms, while the echo time (TE) was set to 30 ms. The slice thickness was chosen to be 3.5 mm with a spacing of 0.7 mm. The matrix of the image was 64 × 64, while the field of view (FOV) was 224 mm × 224 mm. The flip angle was 90°, and the number of excitations (NEX) was set to 1. A total of 8 min were consumed for each data with 34 slices and 240 time points. T2WI scan was used to exclude the cerebral organic lesions. 3D T1WI anatomic images were reconstructed using three-dimensional fast spoiled gradient-echo sequences (3D FSPGR), and the TR of which was 6.7 ms, while the TE was set to minimum full. The matrix was changed to 256 × 256 with a FOV of 256 mm × 256 mm. Furthermore, the slice thickness was chosen as 1.0 mm, while the NEX remained to be 1.



Data Preprocessing

To unify the affected side of the patients, the T1WI and fMRI data with left HFS (15 cases) and matched controls (15 cases) were flipped from left to right before preprocessing (Song et al., 2017). In this study, “right” was defined as the ipsilateral side, and “left” was defined as the contralateral side for the flipped data. The preprocessing was conducted using the software of Data Processing Assistant for Resting-State fMRI (DPARSF) (Yan et al., 2016) in the following steps. First, the DICOM data were converted to NIFTI format and the first 10 time points for each file were removed. Second, the timing correction and realignment were carried out, the T1WI to the mean functional image was co-registered, and the DARTEL tool to compute transformations from individual native space to Montreal Neurological Institute (MNI) space was used (Yan et al., 2017). The subjects with head motion exceeding 2 mm or 2° were excluded. Then, the spatial smoothing using a 4-mm Gaussian kernel was performed and the low-frequency drift and high-frequency noise using band-pass filtering (0.01–0.1 Hz) were removed. Finally, the Friston 24-parameter model was used to regress out head motion effects. In this step, the white matter signal, cerebrospinal fluid signal, and global signal were regressed as covariates.



Definition of the Region of Interest

The regions of interest (ROIs) were determined by the “Define ROI” module using DPARSF software, based on the radius and MNI spatial coordinates. According to the previous study, six striatal subregions of each hemisphere were selected as ROIs, and the radius of each ROI was set to 3 mm. The MNI coordinates of the ROIs were as follows: dorsal caudal putamen (DCP, ± 28, 1, 3), dorsal rostral putamen (DRP, ± 25, 8, 6), ventral rostral putamen (VRP, ± 20, 12, − 3), dorsal caudate (DC, ± 13, 15, 9), inferior ventral striatum (VSi, ± 9, 9, −8), and superior ventral striatum (VSs, ± 10, 15, 0) (Song et al., 2017). The diagram of ROIs is shown in Figure 1.
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FIGURE 1. The ROI schematic diagrams of striatal subregions. ROI, region of interest; I, ipsilateral; C, contralateral; DCP, dorsal caudal putamen; DRP, dorsal rostral putamen; VRP, ventral rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; VSs, superior ventral striatum.




Analysis of Functional Connectivity Based on Voxel-Wise

First, the time course of the average BOLD signal was extracted from each ROI. Then, the Pearson’s correlation between the time course of each ROI and the time course of all other voxels in the brain was calculated. Fisher z transformation was performed to improve the normal distribution of the data. Then, the correlation map, that is, the FC map of the whole brain was generated for further statistical analysis.


Intragroup Functional Connectivity Analysis

To explore the intragroup FC patterns of the cortical-striatal network, one-sample t-tests (default mask) were performed in the HFS group and the HC group. The statistical threshold was set at z > 3.6594 and cluster size of >6 mm3, which corresponded to a corrected P < 0.001. This correction threshold was determined using Monte Carlo simulations with the program AlphaSim in AFNI (Ledberg et al., 1998).



Between-Group Functional Connectivity Analysis

To determine the FC differences of the cortical-striatal network between the two groups, two-sample t-tests were performed at each FC map of 12 ROIs (default mask). The Gaussian random field (GRF) method was used for multiple comparison corrections, and the statistical threshold was set at voxel-level P < 0.005 and cluster-level P < 0.05. The DPABI software was used to perform the statistical analysis of FC.



Correlation Analysis

The z value of brain regions with significant changes in the HFS group was extracted to explore the relationship between the severity of HFS and altered connectivity. Then, the Spearman correlation analysis was performed using GraphPad Prism 6.0 software to evaluate the correlation between abnormal FC and spasm severity in patients with HFS. The age, sex, education, and duration were regressed as covariates. We also explored the relationship between duration and spasm severity through Spearman correlation analysis, and the age, sex, and education level were regressed as covariates as well. A total of 14 correlations were performed, with 13 abnormal FCs correlating with spasm severity, and, finally, 1 correlation was performed between spasm severity and disease duration. The false discovery rate (FDR) method was used to correct the results of the correlation analysis for multiple comparisons.



Analysis of Functional Connectivity Based on Regions of Interest-Wise

The FC between the striatal ROIs was also calculated. After Fisher z transformation, a 12 × 12 FC matrix was generated for every subject. A total of 66 z values were constructed, and each z value stands for the FC between two brain regions. Two-sample t-tests were performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, United States) to compare the difference of FC between the HFS group and the HC group. Age, gender, and education were regressed as covariates. FDR correction was used to control false positives for multiple comparisons, and the statistical threshold was set at P < 0.05.



RESULTS


Clinical Results

There were no significant differences in sex, age, and education level between the HFS group and the HC group (P > 0.05) (Table 1).



Intragroup Functional Connectivity in the Cortical-Striatal Network

The intragroup FC maps of the cortical-striatal network were similar in the HC and HFS groups, which is consistent with previous studies (Di Martino et al., 2008; Song et al., 2017; Dong et al., 2019). The putamen ROIs had strengthened connectivity with the insula, middle cingulate cortex (MCC), precuneus, and supplementary motor area (SMA) (Figure 2A). The DC ROIs had strengthened connectivity with the anterior cingulate cortex (ACC) and superior frontal gyrus (SFG). The ventral striatum ROIs had strengthened connectivity with ACC and OFC (Figure 2B). In this study, these intragroup maps were merely for visualizing FC in the two groups.
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FIGURE 2. Intragroup FC in the cortical-striatal network. The FC maps of the cortical-striatal network in the HC group and HFS group were similar (AlphaSim correction, P < 0.001, cluster size > 6 mm3). (A) The putamen ROIs had strengthened connectivity with the insula, MCC, precuneus, and SMA. (B) The dorsal caudate ROIs had strengthened connectivity with the ACC and SFG. The ventral striatum ROIs had strengthened connectivity with ACC and OFC. The color bar represents the t value. FC, functional connectivity; HC, healthy control; HFS, hemifacial spasm; MCC, middle cingulate cortex; SMA, supplementary motor area; ACC, anterior cingulate cortex; SFG, superior frontal gyrus; OFC, orbitofrontal cortex; I, ipsilateral; C, contralateral; DCP, dorsal caudal putamen; DRP, dorsal rostral putamen; VRP, ventral rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; VSs, superior ventral striatum.




Group Differences of Functional Connectivity in the Cortical-Striatal Network


Dorsal Caudal Putamen

The contralateral DCP had significantly decreased FC with ipsilateral SFG, SMA, and precentral gyrus, respectively, in the HFS group compared with the HC group (Figures 3A, 4A and Table 2).
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FIGURE 3. Altered FC in the cortical-striatal network (putamen, caudate, and inferior ventral striatum ROIs). In the HFS group compared with the HC group: (A) The FC between contralateral DCP and ipsilateral SFG was decreased. (B) The FC between contralateral DRP and contralateral MFG was increased. (C) The FC between contralateral DC and bilateral cerebellum was decreased. (D) and (E) The ipsilateral VSi showed increased FC with bilateral OFC and SMA. The color bar represents the t value. FC, functional connectivity; ROIs, regions of interest; HFS, hemifacial spasm; HC, healthy control; C, contralateral; I, ipsilateral; DCP, dorsal caudal putamen; DRP, dorsal rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; SFG, superior frontal gyrus; MFG, middle frontal gyrus; OFC, orbitofrontal cortex; SMG, supramarginal gyrus; SMA, supplementary motor area.



[image: image]

FIGURE 4. Altered FC in the cortical-striatal network. Boxplots with between-group differences for 13 significant cluster. In the HFS group compared with the HC group: (A) The FC between contralateral DCP and ipsilateral SFG was decreased. The FC between contralateral DRP and contralateral MFG was increased. The FC between contralateral DC and bilateral cerebellum was decreased. (B) The ipsilateral VSi showed increased FC with bilateral OFC and SMA. The FC between ipsilateral VSi and ipsilateral SMG was decreased. (C) The FC between contralateral VSi and bilateral OFC was increased. The FC between contralateral VSi and ipsilateral SOG was decreased. The FC between ipsilateral VSs and bilateral SMA was increased. The FC between contralateral VSs and ipsilateral SOG was increased. FC, functional connectivity; HFS, hemifacial spasm; HC, healthy control; C, contralateral; I, ipsilateral; B, bilateral; DCP, dorsal caudal putamen; SFG, superior frontal gyrus; DRP, dorsal rostral putamen; MFG, middle frontal gyrus; DC, dorsal caudate; Cereb, cerebellum; VSi, inferior ventral striatum; OFC, orbitofrontal cortex; SMA, supplementary motor area; SMG, supramarginal gyrus; SOG, superior occipital gyrus; VSs, superior ventral striatum.



TABLE 2. Altered FC in the putamen and caudate ROIs between two groups.
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Dorsal Rostral Putamen

The contralateral DRP had significantly increased FC with contralateral middle frontal gyrus (MFG) and SFG, in the HFS group compared with the HC group (Figures 3B, 4A and Table 2).



Ventral Rostral Putamen

There was no significant alteration in FC between VRP and cerebral cortex in the HFS group compared with the HC group.



Dorsal Caudate

The contralateral DC had significantly decreased FC with bilateral cerebellar lobule VIII, IX, and contralateral cerebellar crus II, in patients with HFS than that in controls (Figures 3C, 4A and Table 2).



Inferior Ventral Striatum

In the HFS group compared with the HC group, the ipsilateral VSi had significantly increased FC with bilateral OFC, paracentric lobule, and SMA (Figures 3D,E, 4B and Table 3), while the FC between ipsilateral VSi and superior marginal gyrus (SMG) was significantly decreased (Figures 4B, 5A and Table 3); the FC between contralateral VSi and bilateral OFC was significantly increased (Figures 4C, 5B and Table 3), while the FC between contralateral VSi and ipsilateral superior occipital gyrus (SOG) was significantly decreased (Figures 4C, 5C and Table 3).


TABLE 3. Altered FC in the ventral striatum ROIs between two groups.
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FIGURE 5. Altered FC in the cortical-striatal network (inferior and superior ventral striatum ROIs). In the HFS group compared with the HC group: (A) The FC between ipsilateral VSi and ipsilateral SMG was decreased. (B) The FC between contralateral VSi and bilateral OFC was increased. (C) The FC between contralateral VSi and ipsilateral SOG was decreased. (D) The FC between ipsilateral VSs and bilateral SMA was increased. (E) The FC between contralateral VSs and ipsilateral SOG was increased. The color bar represents the t value. FC, functional connectivity; ROIs, regions of interest; HFS, hemifacial spasm; HC, healthy control; I, ipsilateral; C, contralateral; VSi, inferior ventral striatum; VSs, superior ventral striatum; SMG, supramarginal gyrus; OFC, orbitofrontal cortex; SOG, superior occipital gyrus; SMA, supplementary motor area.




Superior Ventral Striatum

The ipsilateral VSs showed significantly increased FC with bilateral SMA and paracentric lobule, in the HFS group compared with the HC group (Figures 4C, 5D and Table 3). The FC between contralateral VSs and ipsilateral SOG in patients with HFS was significantly increased than that in controls (Figures 4C, 5E and Table 3).



Correlation Between Spasm Severity and Functional Connectivity and Duration

The FC between contralateral DCP and ipsilateral SFG was negatively correlated with the Cohen spasm scores (r = −0.433, P = 0.0168 uncorrected) (Figure 6A). Furthermore, the FC between ipsilateral VSi and contralateral OFC showed positive correlation with the Cohen spasm scores (r = 0.6739, P < 0.0001 uncorrected) (Figure 6B). There was no correlation between the duration and the spasm severity (r = −0.2327, P = 0.2158 uncorrected) (Figure 6C). After FDR correction, there was no significant correlation between abnormal FCs and spasm severity.
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FIGURE 6. The correlation relationship between spasm severity and altered FC and duration. (A) The FC between contralateral DCP and ipsilateral SFG was negatively correlated with the Cohen spasm scores (r = −0.433, P = 0.0168 uncorrected). (B) The FC between ipsilateral VSi and contralateral OFC showed positive correlation with the Cohen spasm scores (r = 0.6739, P < 0.0001 uncorrected). (C) There was no correlation between the duration and the spasm severity (r = − 0.2327, P = 0.2158 uncorrected). FC, functional connectivity; DCP, dorsal caudal putamen; SFG, superior frontal gyrus; VSi, inferior ventral striatum; OFC, orbitofrontal cortex.




Within the Striatal Network

Compared with the HC group, the ipsilateral DCP in the HFS group showed increased FC with ipsilateral DRP and VRP (P = 0.0053, P = 0.0272 uncorrected), and the FC between contralateral DCP and contralateral VRP was also increased (P = 0.017 uncorrected) (Figure 7). After FDR correction, there was no significant difference in FC within the striatal network between the HFS group and the HC group.
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FIGURE 7. The FC maps of the striatal network. (A) and (B) The FC matrix map of the striatal network in the HFS group and the HC group. The color bar represented the mean z value. (C) The group differences of the FC within the striatal network between the two groups. The color bar represents the P value. (D) In the HFS group compared with the HC group: The ipsilateral DCP showed increased FC with ipsilateral DRP and VRP. In addition, the FC between contralateral DCP and contralateral VRP was increased. * indicates P < 0.05 (uncorrected). FC, functional connectivity; HFS, hemifacial spasm; HC, healthy control; DCP, dorsal caudal putamen; DRP, dorsal rostral putamen; VRP, ventral rostral putamen.




DISCUSSION

This study investigated the functional alterations of the cortical-striatal network in patients with HFS and their relationship with clinical manifestations. Compared with the controls, the striatal subregions had altered FC with motor and OFC in patients with HFS. Furthermore, the FC between the ventral striatum and motor cortex was positively associated with the severity of HFS. Finally, our results suggest that the cortical-striatal network may play differential roles in the underlying pathological mechanism of HFS.


Increased Functional Connectivity of the Cortical-Striatal Network in Patients With Hemifacial Spasm

As we know, this is the first resting-state fMRI study to examine intrinsic cortical-striatal connectivity in HFS. The emotion-related cortex showed significantly increased FC with the ventral striatum and putamen, in patients with HFS compared with the controls. The orbitofrontal lobe and the VSi are involved in emotional activities (Di Martino et al., 2008; Accolla et al., 2016). The structural and functional abnormalities of those regions were found to be widespread in patients with depression (Botteron et al., 2002; Bremner et al., 2002; Taylor et al., 2003; Ballmaier et al., 2004). Long-term HFS may lead to anxiety and depression (Bao et al., 2015). The increased connectivity between the VSi and orbitofrontal lobe may be associated with the poor mental status of patients with HFS. The SOG was located in the visual network, and studies have found that this area was involved in facial expression and emotion processing (Tao et al., 2013). We speculated that the increased functional activity of these regions in patients with HFS may be related to abnormal facial expressions. In addition, the putamen had increased FC with MFG and SFG, which may be associated with the depression and other adverse emotions of the patients with HFS, and it is consistent with previous studies in patients with depression (Fitzgerald et al., 2006). In summary, the ventral striatum was mainly involved in emotional activities, while the putamen may also involve in emotional activities in addition to motor function.



Decreased Functional Connectivity of the Cortical-Striatal Network in Patients With Hemifacial Spasm

We also found that the FC between the putamen and the ipsilateral motor cortex was decreased in the HFS group, and so does the FC between the caudate and the cerebellum. It was known that the precentral gyrus was the first somatic motor area, and the SFG was the premotor area. One side of the cerebral motor area dominates the contralateral body movement, but the muscles involved in associated movement are dominated by bilateral motor areas, such as extraocular muscles and masticatory muscles (Desai et al., 2013). The decrease of FC between the putamen and ipsilateral motor area may be a compensatory mechanism to inhibit facial muscle spasms. In addition, the cerebellum is an important motor regulation center. The cerebellum may be involved in the processing of movement, cognition, and emotion by forming loops with the brain, and structural or functional abnormalities in these loops may contribute to the development of motor disorders (e.g., ataxia) (D’Angelo and Casali, 2013). Abnormalities in the connectivity between brain regions within the loops can lead to disorders that are associated with loop dysfunction. The cerebellum may form a loop with the cortical-caudate, which is involved in the motor regulation of HFS, and the diminished connectivity may be a consequence of the dysfunction of the caudate-cerebellar loop. To sum up, in addition to the putamen, other parts of the striatum, such as the caudate, may be involved in the pathological process of HFS. Different cortical-striatal loops may be involved in motion monitoring, error detection, and correction (Song et al., 2017).



Increased Functional Connectivity Within the Striatal Network in Patients With Hemifacial Spasm (Uncorrected, P < 0.05)

In this study, we found no significant differences in FC within the striatal network between the two groups (FDR correction, threshold P < 0.05). However, using a less conservative threshold (P < 0.05), we found that the FC between the putamen ROIs was increased in patients with HFS compared with the controls. Interestingly, a study of the striatal network in facial palsy found the decreased FC between the putamen and the ventral striatum (uncorrected) (Song et al., 2017), which is the opposite of our results. We know that facial palsy and facial spasm are two motor disorders with opposite manifestations, the former shows reduced or no movement of the affected facial muscles and the latter shows excessive movement. In addition, the connectivity within the striatal network is also consistent with clinical manifestations, i.e., being diminished in facial palsy and increased in facial spasm. Therefore, we speculated that the putamen plays an important role in the motor function of facial muscles, and the increased or decreased FC between the putamen and other seeds within the striatum may respond to the increased or decreased motor signals in this neural circuit, thus resulting in different motor states of the facial muscles.



Limitations

There were several limitations in this study. First, the sample size of this study was small, including patients with left HFS and right HFS. To control the problem on the different sides of the lesion, we flipped the left HFS group from left to right. In the future, the changes of brain functional networks in patients with left and right HFS can be studied separately on the basis of expanding the sample size. Second, this study used a cross-sectional study design to explore the changes of the cortical-striatal network in patients with HFS. Longitudinal studies can be conducted in the future to explore the mechanism of brain network changes in different stages of HFS. Finally, previous studies and our study have all found functional abnormalities in the emotion-related cortex in patients with HFS. Therefore, increasing the evaluation of the psychological status of patients may make the results more reliable, which can be added in further studies.



CONCLUSION

Primary unilateral HFS induces several FC alterations in the cortical-striatal network, specifically, the striatal subregions have altered connectivity with motor and OFC in patients with HFS, respectively. The severity of HFS is associated with these functional alterations. This study provides significant evidence that the altered cortical-striatal connectivity is involved in differential neural mechanisms of motor and emotional dysfunction in patients with HFS.
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Major depressive disorder (MDD) is one of the most widespread mental disorders and can result in suicide. Suicidal ideation (SI) is strongly predictive of death by suicide, and electroconvulsive therapy (ECT) is effective for MDD, especially in patients with SI. In the present study, we aimed to determine differences in resting-state functional magnetic resonance imaging (rs-fMRI) in 14 adolescents aged 12–17 with MDD and SI at baseline and after ECT. All participants were administered the Hamilton Depression Scale (HAMD) and Beck Scale for Suicide Ideation (BSSI) and received rs-fMRI scans at baseline and after ECT. Following ECT, the amplitude of low frequency fluctuation (ALFF) and fractional ALFF (fALFF) significantly decreased in the right precentral gyrus, and the degree centrality (DC) decreased in the left triangular part of the inferior frontal gyrus and increased in the left hippocampus. There were significant negative correlations between the change of HAMD (ΔHAMD) and ALFF in the right precentral gyrus at baseline, and between the change of BSSI and the change of fALFF in the right precentral gyrus. The ΔHAMD was positively correlated with the DC value of the left hippocampus at baseline. We suggest that these brain regions may be indicators of response to ECT in adolescents with MDD and SI.

Keywords: MDD, adolescent, ALFF, degree centrality, resting-state fMRI, suicidal ideation, electroconvulsive therapy


INTRODUCTION

Suicide is an important global health concern cited as the 20th leading cause of death worldwide. Major depressive disorder (MDD) is a major risk factor for suicide (Kessler et al., 2005); previous research has reported that approximately 15% of patients with MDD die by suicide (Chen and Dilsaver, 1996; Angst et al., 2013). Moreover, suicide in adolescents has become a severe public health and social dilemma. A 2013 survey of thousands of teenagers found that one in eight demonstrated suicidal ideation (SI; Nock et al., 2013). SI is defined as “thoughts about death, dying, plans for suicide, or desire for death” (Miller et al., 2018; Levi-Belz et al., 2019), it is strongly predictive of death by suicide (Klonsky et al., 2016). Additionally, MDD with SI is related to higher rates of poor treatment response (Szanto et al., 2003), and is thought to have different neuropsychological correlates compared to MDD without SI (Marzuk et al., 2005). Therefore, measuring SI in patients with MDD is necessary and may help determine the risk of suicide.

There are many challenges in the treatment of MDD in adolescents. Importantly, adolescents do not exhibit the same symptoms as adults, resulting in difficulties in diagnosis (Lee et al., 2019). Some adolescents with depressive symptoms develop bipolar disorder (BD; Egeland et al., 2000), comorbid borderline personality disorder (Horesh et al., 2003), SI, or non-suicidal self-injury (NSSI; Huang et al., 2021); all of which increase the difficulty of treatment.

Electroconvulsive therapy (ECT) has been found to be effective in schizophrenia, depression, and eating disorders (Pagnin et al., 2004; Sanghani et al., 2018; Pacilio et al., 2019). For different psychiatric illnesses or age groups with SI, ECT can be an effective and appropriate treatment option (Ghaziuddin et al., 2020; Meyer et al., 2020). ECT is also considered a treatment option for adolescents with MDD, especially for adolescents with MDD and SI or related behaviors (Puffer et al., 2016; Mitchell et al., 2018). A previous study has found that adolescents with mood disorders who were administered ECT demonstrated a reduction in SI and NSSI (Ghaziuddin et al., 2020).

MRI is widely used to evaluate brain change in MDD patients after ECT, Wilkinson et al. (2017) found ECT induced hippocampal volume changes in MDD patients, a systematic review of fMRI showed the amplitude of low frequency fluctuations (ALFF) changed widely across the brain, such as orbital gyrus, inferior frontal gyrus, precentral gyrus, etc. (Porta-Casteràs et al., 2020). ALFF is an rs-fMRI-derived measure that reflects the magnitude of spontaneous blood-oxygen-level-dependent (BOLD) signal (Nugent et al., 2015). The fractional ALFF (fALFF) is one of the most common metrics used to quantify these oscillations (Zou et al., 2008); however, both have been used to infer brain activity in psychiatric disorders with or without suicidal behaviors (Bu et al., 2019; Lan et al., 2019; Zhang et al., 2020). One recent study investigated ALFF in depressed patients with SI and found higher ALFF values in the right hippocampus and bilateral thalamus and caudate compared to patients without SI (Lan et al., 2019). In addition, Liu et al. (2015) found that a reduction in depressive symptoms was negatively correlated with increased ALFF in the left hippocampus after eight ECT sessions. Degree centrality (DC), which focuses on the relation of a voxel with the connectivity of the entire network (Buckner et al., 2009), can also be used to measure brain function. Gao et al. (2016) found compared with controls, depressive subjects showed decreased DC in the right parahippocampal gyrus, and elevated DC in the left inferior frontal gyrus.

In the present study, we examined whole brain ALFF/fALFF and DC among adolescents with MDD and SI. We hypothesized that: (1) ECT would make ALFF/fALFF and DC changes in adolescents MDD with SI; (2) ECT-induced brain function changes may be the treatment mechanism for MDD with SI.



MATERIALS AND METHODS


Participants

The present study included 14 adolescents with MDD and SI aged 12–17 years. The participants were recruited from the inpatient clinics at the Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, China. The presence or absence of diagnoses was independently determined by two experienced psychiatrists using the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID).

Clinical symptoms were assessed with the 17-item Hamilton Depression Rating Scale (HAMD-17; Hamilton, 1960). The Chinese version of the instrument has been found to be reliable and valid (Zhao and Zheng, 1992). SI intensity was assessed with the Beck Scale for Suicide Ideation (BSSI; Beck et al., 1979). The BSSI is a 19-item self-report measure designed to assess the current attitude, behaviors, and plan to commit suicide. All items are rated on a 3-point scale of intensity and generate a total score from 0 to 38. The results of the BSSI were confirmed by two psychiatrists through a clinical interview. The Chinese version of the BSSI shows acceptable reliability and validity (Li et al., 2010).

Participants were excluded if they: (1) had a neurological or serious physical condition, any history of alcohol or drug abuse, any other somatic diseases, or morphological anomalies of the brain; (2) had any surgically placed electronic or metal materials that might interfere with fMRI assessment; (3) took medications in recent five drug half-life; or (4) had head motion exceeding 3 mm in translation or 3° in rotation.

The present study protocol was approved by the Human Research and Ethics Committee of the First Affiliated Hospital of Chongqing Medical University (no. 2017-157). Written informed consent was obtained from all adolescents and their caregivers.



Electroconvulsive Therapy

All patients underwent modified bi-fronto-temporal ECT that was conducted using a Thymatron DGx (Somatics, LLC, Lake Bluff, IL, USA) at the First Affiliated Hospital of Chongqing Medical University (Du et al., 2016). The first three courses of ECT took place on continuous days; the remaining courses of ECT were performed every 2 days, with a break on weekends. After 2 weeks, the ECT was complete. The first energy for ECT was determined according to the patient’s age: energy percent = age × 0.5%. The stimulation energy was adjusted based on the seizure time. The energy was increased by 5% in the subsequent treatment if the seizure time was <25 s. Anesthesia was induced with succinylcholine (0.5–1 mg/kg) and diprivan (1.5–2 mg/kg). All the patients received antidepressants, with sertraline (n = 9, 64.3%), fluoxetine (n = 5, 35.7%). Ten patients received antipsychotics, with quetiapine (n = 4, 28.6%), olanzapine (n = 4, 28.6%), aripiprazole (n = 2, 14.3%). Two patients received propranolol (n = 2; 29.5%).



Acquisition of rs-fMRI Data

MR images were obtained using a 3T GE Signa HDxt scanner (General Electric Healthcare, Chicago, IL, USA) with an 8-channel head coil. Participants were instructed to relax with their eyes closed, stay awake, and avoid thinking as much as possible. None of the patients reported falling asleep during the scan. Foam pads and earplugs were used to fix their heads to minimize head motion and reduce machine noise, respectively. The echo-planar imaging pulse sequence parameters were as follows: repetition time (TR) = 2,000 ms; echo time (TE) = 40 ms; field of view (FOV) = 240 × 240 mm2; matrix = 64 × 64; flip angle = 90°; slice number = 33; slice thickness/gap = 4.0/0 mm; scanner time = 8 min; and 240 volumes. Three-dimensional T1-weighted MR images were used for rs-fMRI co-registration TR = 24 ms; TE = 9 ms; FOV = 240 × 240 mm2; matrix = 256 × 256; flip angle = 90°; and slice thickness/gap = 1.0/0 mm.



Image Preprocessing

All data preprocessing was performed in MATLAB (MathWorks, Natick, MA, USA) using DPARSF (version 4.3; Data Processing Assistant for Resting-State fMRI1), which is based on SPM122. The first five time points were discarded to allow for signal equilibration. Images were then corrected for slice timing and head motion. Functional images were spatially normalized to the Montreal Neurological Institute space and resampled at 3 × 3 × 3 mm3. Nuisance regression was performed using the 24 head motion parameters, white matter, and cerebrospinal fluid signals as covariates. Linear trends were removed. Finally, the images were bandpass filtered (0.01–0.1 Hz) to reduce low-frequency drift and high-frequency physiological noise.



Calculation of rs-fMRI Measures

The ALFF measures regional spontaneous neural activity (Zang et al., 2007). Each preprocessed fMRI data set was transformed to a frequency domain with a fast Fourier transformation. The square root of the power spectrum was calculated, and the ALFF was obtained as the averaged square root across 0.01–0.1 Hz. The ALFF value of each voxel was then divided by the global mean ALFF value for each participant to reduce the global effects. ALFF was computed as the mean power spectrum in a specific low-frequency band (0.01–0.1 Hz; Zang et al., 2007), and the fALFF was the ratio of the power spectrum in the low-frequency band (0.01–0.1 Hz) to the entire frequency range (Zou et al., 2008). The fALFF value of each voxel was then divided by the global mean fALFF value for each participant to reduce the global effects.

The DC measures the mean correlation between a given region of interest (ROI) and all other ROIs in the functional brain network (Zang et al., 2004). An ROI with a higher DC value suggests that it is more functionally connected with other ROIs than one with a lower DC value. In graph theory, DC is defined as the number (binary graph) or the sum of weights (weighted graph) of edges connecting to a node. Here, we computed Pearson’s correlation coefficients between the BOLD time courses of all pairs of voxels and obtained a whole gray matter functional connectivity matrix for each participant. For a given voxel, DC was computed as the sum of positive functional connectivity above a threshold of 0.25 between that voxel and all other voxels within the gray matter (Buckner et al., 2009; Zuo et al., 2012). The individual level DC map was converted into a z-score map by subtracting the mean of the brain mask DC and dividing by the standard deviation of the whole brain mask DC.



Statistical Analysis

To investigate the differences in the demographics and clinical characteristics of the patients, pre/post-treatment, the paired sample t-test was used for continuous variables. The paired sample t-test was performed in SPM12 to examine differences in ALFF, fALFF, and DC between participants pre/post-treatment. All other statistical analyses were conducted using SPSS (version 25.0; IBM, Armonk, NY, USA) with a statistical significance of P < 0.05 [false discovery rate (FDR) corrected].

At baseline, Pearson correlation analyses were performed to examine the correlations between the mean value of measures in the brain regions showing significant differences and clinical symptoms (HAMD/BSSI). After treatment, Pearson correlation analyses were used to examine whether the changes of these measures were correlated with the changes in clinical symptoms. Changes in HAMD (ΔHAMD) and BSSI (ΔBSSI) were calculated using the following equations:
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Pearson correlation analyses were also used to examine whether these measures at baseline were correlated with changes in clinical symptoms (ΔHAMD/ΔBSSI).




RESULTS

The psychological measurements and demographic data are listed in Table 1. Compared to post-treatment, participants pre-treatment demonstrated more severe symptoms according to HAMD and BSSI scores. There were significant improvements in HAMD scores (P < 0.001) and BSSI scores (P < 0.001; Table 1).

TABLE 1. Demographics and clinical characteristics pre/post-treatment.
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Compared to pre-treatment, adolescents post-treatment exhibited decreased ALFF and fALFF in the right precentral gyrus (Precentral_R; Figures 1, 2A, 3, 4A; Table 2). Moreover, post-treatment, decreased DC values were found in the left triangular part of the inferior frontal gyrus (Frontal_Inf_Tri_L) and increased DC values in the left hippocampus (Hippocampus_L; Figures 5, 6A,B; Table 2).
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FIGURE 1. The post-treatment adolescents with MDD exhibited a significantly decreased ALFF in the right precentral gyrus (Precentral_R). ALFF, amplitude of low frequency fluctuation; MDD, Major depressive disorder.




[image: image]

FIGURE 2. (A) Post-treatment, adolescents exhibited a significantly decreased ALFF in the right precentral gyrus (Precentral_R). (B) The negative correlations between ΔHAMD and ALFF of the Precentral_R at baseline. HAMD, Hamilton depression scale.
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FIGURE 3. Post-treatment, adolescents exhibited a significantly decreased fALFF in the right precentral gyrus (Precentral_R). fALFF, fractional ALFF.
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FIGURE 4. (A) Post-treatment, adolescents exhibited a significantly decreased fALFF in the right precentral gyrus (Precentral_R). (B) The negative correlations between the ΔBSSI and ΔfALFF in the Precentral_R.



TABLE 2. Significant differences in ALFF, fALFF, and DC between depression adolescents pre/post-treatment.
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FIGURE 5. Post-treatment, adolescents exhibited decreased DC in the triangular part of the left inferior frontal gyrus (Frontal_Inf_Tri_L) and increased DC in the left hippocampus (Hippocampus_L).
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FIGURE 6. (A) Post-treatment, adolescents exhibited decreased DC in the triangular part of the left inferior frontal gyrus (Frontal_Inf_Tri_L). (B) Post-treatment, adolescents exhibited increased DC in the left hippocampus (Hippocampus_L). (C) Our correlation analysis showed that ΔHAMD was positively correlated with the DC value of Hippocampus_L at baseline.



We found significantly negative correlations between the ΔHAMD and ALFF of the Precentral_R at baseline (r = −0.5990, P = 0.0236; Figure 2B) and between the ΔBSSI and the change of fALFF in the Precentral_R (r = −0.6302, P = 0.0157; Figure 4B). In addition, correlation analysis demonstrated that ΔHAMD was positively correlated with the DC value of the Hippocampus_L at baseline (r = 0.5480, P = 0.0425; Figure 6C).



DISCUSSION

In our present study, in a sample of adolescent patients with MDD and SI, the severity of both MDD and SI substantially decreased after 2 weeks of ECT. Previous studies have found that 2 weeks of repetitive transcranial magnetic stimulation could decrease HAMD scores significantly in adults with increased regional function in the left dorsolateral prefrontal cortex (Zheng et al., 2020), but did not discuss SI. Shen et al. (2015) found that 2 weeks of pharmacological therapy could alter DC in the middle frontal gyrus and precuneus; however, this study also lacked focus on SI. Post-ECT, our present study found changed brain function in the precentral gyrus, hippocampus, and the triangular part of the inferior frontal gyrus, which may indicate the mechanism of action behind the efficacy of ECT in adolescents with MDD and SI.

Studies have demonstrated that the hippocampus has been linked to mood disorders that begin during adolescence, which show major cognitive and emotional disturbances (Masi and Brovedani, 2011; Hueston et al., 2017). Other previous studies have found that ECT induces structural changes in the hippocampus (Redlich et al., 2016; Sartorius et al., 2016). The most consistent finding from previous studies on the hippocampus depicted substantial reductions in hippocampal volume in MDD patients compared to healthy controls, which increased following ECT (Boccia et al., 2015; Arnone et al., 2016; Peng et al., 2016). Tendolkar et al. (2013) found bilateral volume increases in the hippocampus after ECT, which was further verified to occur in the right hippocampus by Abbott et al. (2014). Smaller hippocampal volumes were found in patients with MDD and a history of SA compared to those without SA (Colle et al., 2015). Therefore, this may indicate that a potential mechanism underlying ECT in MDD is through the increase in hippocampal volume.

Additional previous studies have found that DC differed between in psychiatric disorders; One study demonstrated that DC changes in the hippocampus are related to delayed encephalopathy after carbon monoxide poisoning (DEACMP). Compared with healthy controls, DEACMP patients with cognition disturbances displayed significantly decreased DC values in the right hippocampus but increased DC values in the right inferior frontal gyrus, which is inconsistent with our results (Wu et al., 2020). This inconsistency may be related to differences in characteristics or diseases, but can also indicate that abnormal brain function in the hippocampus may present as changed DC. An additional study found that decreased DC values in the frontoparietal network could distinguish patients who had experienced SA from those with SI, but it focused on adults and lacked longitudinal data (Wagner et al., 2021). A 2-week pharmacological therapy for MDD patients found correlations in baseline DC with changes in the HAMD scores, including in the precuneus, supramarginal gyrus, middle temporal, but not in the hippocampus, this might be due to different treatment compared with our study (Shen et al., 2015). In the present study, we also found decreased DC in the inferior frontal gyrus post-ECT, which was consistent with previous studies demonstrating that patients with past SA had abnormal brain activity and DC values were found in the inferior frontal gyrus (Makris et al., 2007; Wagner et al., 2021). Wu et al. (2021) found patients with MDD showed abnormal DC in the prefrontal cortex (PFC), and the DC of PFC was negatively correlated with the course of the disease, not with the HAMD scores, however, these results should be interpreted cautiously with ours. Therefore, further studies are needed.

Previous studies found that patients with MDD have altered ALFF/fALFF in various regions, such as the precentral gyrus. Wang et al. (2012) found that patients with MDD demonstrated increased ALFF in the right fusiform gyrus, but no change in the precentral gyrus; however, the fALFF in patients was significantly increased in the right precentral gyrus compared to healthy controls. For MDD patients with SI, Chen et al. (2021) found higher mfALFF of the right middle temporal pole gyrus in the SI group compared with the NS group, similar results were not found in the precentral gyrus, but a positive correlation between depression score and mfALFF was found in the right postcentral gyrus, showed high HAMD scores correlated with higher mfALFF, which was similar with our study. Kong et al. (2017) found that older patients with MDD administered ECT demonstrated decreased ALFF values in the precentral gyrus compared to pre-treatment, which is consistent with our results. We suggest that lower ALFF/fALFF in the precentral gyrus may indicate better outcomes for patients with MDD.

Several studies have focused on the changes of ALFF/fALFF in adolescents with MDD pre/post-treatment, with treatment options being pharmacotherapy, psychotherapy, or pharmacotherapy combined with psychotherapy. Kim et al. (2018) found behavioral difficulties in adolescent bullies with depressed mood, and after cognitive behavioral therapy (CBT), decreased fALFF in the inferior parietal lobule and the lingual, interior frontal, and middle occipital gyri were demonstrated. Shu et al. (2020) found that in young patients with MDD and SA after CBT and antidepressant co-therapy, fALFF in the left middle occipital cortex and left precuneus were significantly increased in the CBT group compared with the healthy control group. Fan et al. (2013) found SA patients had increased ALFF in the right superior temporal gyrus relative to non-suicidal patients. Cao et al. (2016) found the SA group showed increased zALFF in the right superior temporal, left middle temporal, and left middle occipital gyri in young patients with MDD aged 15–29 years, but additional research is lacking.

These aforementioned studies are only partly consistent with our current research. This may be related to different treatment options, methods of patient evaluation, the severity of disease, and diagnosis. Notably, it can be difficult to distinguish unipolar from bipolar depression in adolescents. There are limited studies that aim to understand the efficacy of ECT using fMRI in adolescents with MDD and SI; our results suggest that changes in ALFF/fALFF and DC after ECT in various brain regions may be a potential mechanism behind the efficacy of ECT in adolescents with MDD and SI.


Limitations

Several limitations of our current study should be noted. First, our sample size was small, possibly due to concerns about ECT side effects. Second, there was a lack of healthy controls to compare the brain function with the patient group at baseline; therefore, further research is needed.




CONCLUSION

We found decreased ALFF/fALFF in the right precentral gyrus, decreased DC in the triangular part of the left inferior frontal gyrus and increased DC in the left hippocampus in adolescents with MDD and SI after ECT. ALFF in the right precentral gyrus at baseline and DC in the left hippocampus at baseline, changes in fALFF in the right precentral gyrus were correlated with treatment outcome. We suggest that these brain regions may be potential indicators of ECT response in adolescents with MDD and SI.
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Schizophrenia patients with auditory verbal hallucinations (AVHs) are diseased groups of serious psychosis with still unknown etiology. The aim of this research was to identify the neurophysiological correlates of auditory verbal hallucinations. Revealing the neural correlates of auditory hallucination is not merely of great clinical significance, but it is also quite essential to study the pathophysiological correlates of schizophrenia. In this study, 25 Schizophrenia patients with AVHs (AVHs group, 23.2 ± 5.35 years), 52 Schizophrenia patients without AVHs (non-AVHs group, 25.79 ± 5.63 years) and 28 healthy subjects (NC group, 26.14 ± 5.45 years) were enrolled. Dynamic functional connectivity was studied with a sliding-window method and functional connectivity states were then obtained with the k-means clustering algorithm in the three groups. We found that schizophrenia patients with AVHs were characterized by significant decreased static functional connectivity and enhanced variability of dynamic functional connectivity (non-parametric permutation test, Bonferroni correction, p < 0.05). In addition, the AVHs group also demonstrated increased number of brain states, suggesting brain dynamics enhanced in these patients compared with the non-AVHs group. Our findings suggested that there were abnormalities in the connection of brain language regions in auditory verbal hallucinations. It appears that the interruption of connectivity from the language region might be critical to the pathological basis of AVHs.

Keywords: schizophrenia, auditory verbal hallucinations, dynamic functional connectivity, static functional connectivity, k-means clustering


INTRODUCTION

Schizophrenia is a mental illness, but its harm has been seriously underestimated due to its low incidence and small number of direct deaths. In fact, schizophrenia is highly disabling, has a significant impact on families and society, and is prone to relapse. Clinically, it is often manifested as different syndromes with different symptoms, involving various disorders in perception, thinking, emotion, behavior and other aspects, as well as the disharmony between psychological activities and the environment. Among the above-mentioned symptoms, auditory verbal hallucinations probably occurred among 60–80% of schizophrenia patients (Saha et al., 2005; Petrolini et al., 2020; Sun et al., 2021). Auditory verbal hallucinations (AVHs) is one of the main symptoms of schizophrenia and serves as an important clinical index for the diagnosis of schizophrenia. It refers to hearing without corresponding external sound stimulation acting on the auditory organs. Twenty-five percent of auditory verbal hallucinations patients are chronic and difficult to cure (Allen et al., 2012; Koops et al., 2016). It has been confirmed that schizophrenia patients have structural abnormalities of the brain, but the nature of abnormalities is not consistent (Cui et al., 2017b; Nakahara et al., 2018; Wei Y. et al., 2018).

The content of AVHs often involves threatening or commanding to the patient, or talking about the patient’s thoughts, or commenting on the patient’s behavior, which brings great mental suffering to the patient (Garwood et al., 2015). Especially when under the control of commanding auditory hallucinations, patients may break out strong aggressive or destructive behaviors, thus endangering themselves, families or even the social surroundings due to some sudden self-injury or wounding violence. Auditory verbal hallucinations in schizophrenia are serious psychosis with still unknown etiology. Although after more than 20 years of neuroimaging research, people still do not know the neurophysiological mechanism of auditory verbal hallucinations. Revealing the neural mechanism of AVHs is not only of great clinical significance, but also of great importance as to explore the pathophysiological mechanism of schizophrenia. In recent years, various neuroimaging technologies have been used in the research related to AVHs, and many breakthroughs have been made, which not only provide important bases for the diagnosis and treatment of schizophrenia with AVHs, but also provide vital support in revealing the mechanism of AVHs. Through a series of studies, the neural mechanism of AVHs has also made fruitful progresses. It is found that AVHs are highly correlated with the structural and functional changes in brain regions related to speech generation and perception (Barber et al., 2021). Relevant research results have proved that the formation of AVHs is mainly related to the left middle temporal gyrus, the left temporal parietal lobe, and the left inferior frontal lobe (Zhang et al., 2017; Zhuo et al., 2021). Recent studies have also shown that the cortical thickness in the frontal and temporal cortical areas of patients with AVHs is thinner. Voxel-based morphological studies reported that the severity of auditory hallucinations was associated with the temporal lobe, including the primary and secondary auditory cortex. FMRI studies found that AVHs were related to the over activation of left inferior frontal cortex and left middle temporal cortex. Meta analysis also showed that AVHs were highly correlated with left inferior frontal gyrus and left inferior parietal lobe (Kühn and Gallinat, 2012; Cui et al., 2016, 2018).

The cause of auditory hallucination is much more complex than regional brain abnormalities. Many neuroimaging studies suggest that cognitive dysfunction could not simply be attributed to the structural lesions and functional disorders in a single brain region or several brain regions (Karnath et al., 2018; Herbet and Duffau, 2020). Cognitive dysfunction is often caused by abnormal connections between brain regions. Therefore, it is not enough just to understand the pathogenesis of auditory hallucinations by merely studying the abnormalities in specific brain regions of schizophrenia patients with AVHs (Diederen et al., 2012; Sehatpour et al., 2020).

Most fMRI studies (Chang et al., 2017; Mallikarjun et al., 2018; Geng et al., 2020) investigating functional connectivity (FC) in schizophrenia and hallucinations have employed a static connectivity approach, whereby FC is averaged over scan time. There is substantial evidence for abnormal FC in schizophrenia, but findings vary widely. Dynamic functional connectivity is an extension of traditional static functional connectivity, as this analysis allows exploration of temporal changes in connectivity. Weber et al. (2021) found that hallucination severity did not show a significant relationship with dynamic FC.

Although previous studies have shown that the emergence of AVHs is related to the changes in the connectivity of brain language networks, there are only a few systematic studies on how the changes in the structural and functional connections of brain language regions in schizophrenia patients lead to AVHs, as well as whether these abnormalities have their internal relationship. In this study, static connectivity analysis and dynamic connectivity analysis were complemented. We believe that studying the connectivity of brain language network might shed light on the revelation of the neuropathological mechanism of auditory hallucinations, which is also of great significance in the diagnosis and treatment of schizophrenia patients with auditory verbal hallucinations.



MATERIALS AND METHODS


Participants

Twenty-five schizophrenia patients with auditory verbal hallucinations, 52 schizophrenia patients without auditory verbal hallucinations and 28 healthy subjects were enrolled. All subjects participated in the experiment voluntarily and signed the informed consent form before the experiment. Two weeks before the scan, the patients stopped taking psychotropic drugs. The experiment was approved by the Ethics Committee of the Fourth Military Medical University. All patients were diagnosed by two senior clinical psychiatrists in the Department of Psychosomatics, Xijing Hospital of the Fourth Military Medical University according to DSM-IV standards. Participants’ information is shown in Table 1.


TABLE 1. Demographic data of the three groups.
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Data Acquisition

The MRI data were collected from a 3.0-Tesla SIEMENS Magnetom Trio Tim scanner in Xijing Hospital. Resting-state fMRI images were acquired with an echo planar imaging (EPI) sequence using the following parameters: repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, matrix = 64 × 64, slice thickness = 4 mm, slice number = 33, and field of view (Fov) = 220 mm × 220 mm. The subjects were told to lie still in the scanner, eyes closed, but not to fall asleep. We collected 240 fMRI scans for each subject.



Data Preprocessing

fMRI images were preprocessed with the statistical parametric mapping software package (SPM12)1 and the Gretna toolbox.2 Due to magnetic field instability, the first ten functional images were discarded and the remaining 230 scans from each subject were excluded in further analyses. Slice timing and realignment were first performed to correct for differences in acquisition time of slices and head motion, respectively. One patient without AVHs and one healthy control were excluded from further analyses due to excessive head motion (>3 mm translation or 3°rotation). fMRI images were then normalized into standard MNI space with a T1 unified segmentation strategy and then spatially smoothed with a Gaussian kernel filter of 6 mm full-width half-maximum (FWHM). After temporally detrending, nuisance signals including head motion profiles (using Friston-24 parameters), as well as signals from the white matter and cerebrospinal fluid (CSF) were regressed out. Since previous studies were controversial on whether the global signal should be regressed out, two preprocessing strategies were used, and we investigated functional connectivity both with and without global signal regression. Then, a band-pass filter was applied to remove low-frequency (<0.01 HZ) drift and high-frequency (>0.1 HZ) physiological noises. Finally, data scrubbing was performed to reduce the impact of head motion on the fMRI data. In specific, frames with frame-wise displacement (FD) greater than 0.5 were interpolated with data from one previous time point and two subsequent time points.



Dynamic Functional Connectivity Analysis

Dynamic functional connectivity analysis was performed by using a sliding-window algorithm with the DynamicBC toolbox.3 After preprocessing, the brain was parcellated into 246 regions of interest (ROIs) according to the Brainnetome atlas.4 Mean time course of each ROI was obtained and we then investigated whole-brain functional connectivity by calculating the correlation between time courses of any pair of ROIs within each time window. In specific, functional connectivity within a time window whose length was 50 TR was first calculated. This window was then slid and functional connectivity matrix within each of a series of consecutive windows was obtained. Two different settings of the overlap between two neighboring windows were adopt in the current study. We first used the default setting of 0.6 (according to a step of 20 TR) provided by the DynamicBC toolbox. This step has also been conducted in previous studies (Shakil et al., 2016; Wei L. et al., 2018; Guo et al., 2020). Totally 10 time windows under this setting were obtained. In addition, another setting of the overlap (0.9) and obtained 37 time windows were also employed, benefiting with a better time resolution for researchers to investigate the dynamics in functional connectivity. In addition to dynamic functional connectivity matrices, a static functional connectivity matrix for each subject was also calculated by setting the window width to be 230 TR. Non-parametric permutation test was used to compare the static and dynamic functional connectivity maps in AVHs patients, non-AVHs patients, and healthy subjects. Bonferroni correction was used to correct for multiple comparison.



Dynamic Functional Connectivity States

Dynamic functional connectivity states were obtained by the k-means clustering algorithms. The distance between two brain functional connectivity patterns was measured by the correlation between them. The maximum number of states was set as 10, and the optimal number of states then automatically estimated by the DynamicBC toolbox which averaged the optimal number of states estimated according to silhouette, Calinski-Harabasz, and Davies-Bouldin values.




RESULTS


Static Functional Connectivity

We used a permutation test to compare static functional connectivity patterns among AVHs patients, non-AVHs patients, and healthy subjects. Without global signals regression, there were 2 connections with significant difference between the AVHs group and the non-AVHs group, 59 connections with significant difference between the AVHs group and the NC group, and 9 connections with significant difference between the non-AVHs group and the NC group (p < 0.05, Bonferroni corrected; Table 2 and Figure 1). With global signal regression, there were 5 connections with significant difference between AVHS and non-AVHs group, 23 connections with significant difference between AVHs and NC group, and 36 connections with significant difference between non-AVHs and NC group (p < 0.05, Bonferroni corrected; Table 3 and Figure 2). Although the between group differences with and without global signal regression consistently suggested mainly reduced static functional connectivity in patients with AVHs, compared to SZ patients without AVHs. Interestingly, without global signal regression, patients with AVHs only demonstrated reduced static functional connectivity compared with the other two groups. The involvement of global signal regression seemed to result in more enhanced connectivity in the AVHs group when compared with patients without AVHs and healthy controls.


TABLE 2. Differences in static functional connectivity without global signal regression.
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FIGURE 1. Group differences in static functional connectivity without regressing out global signal. (A) AVHs group compared with non-AVHs group; (B) non-AVHs group compared with NC group; (C) AVHs group compared with NC group. Increased connectivity is shown in red and decreased connectivity is shown in blue.



TABLE 3. Differences in static functional connectivity with global signal regression.
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FIGURE 2. Comparison of the static functional connectivity of the three groups after global signal regression. (A) Static functional connections with enhanced connectivity in the non-AVHs group compared with the NC group; (B) Static functional connections with reduced connectivity in the non-AVHs group compared to the NC group; (C) Static connections with enhanced connectivity in AVHs group compared with NC group; (D) Static connections with reduced connectivity in AVHs group compared with NC group; (E) Compared with non-AVHs group, static connections with significant differences in AVHs group. Red represents increased connectivity and blue represents decreased connectivity.




Dynamics of Functional Connectivity

The differences in the dynamics of whole-brain functional connectivity between the three groups were accessed by comparing the variance of dynamic functional connectivity matrices. For each connection, we calculated the variance of this connection over all the sliding windows to quantify its variability. Then a non-parametric permutation test was used to compare dynamics of functional connectivity of the three groups (P < 0.05; Bonferroni correction; Tables 4–7 and Figures 3–6). As shown in Figures 3–6, SZ patients with and without AVHs showed differences in functional connectivity compared with the healthy controls. The AVHs group consistently demonstrated enhanced dynamics in functional connectivity compared with the non-AVHs group under different settings of overlap between neighboring windows, as well as with different data preprocessing strategies.


TABLE 4. Significant differences in variances of the dynamic functional connectivity matrices obtained without regressing out global signal (overlap = 0.6).
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TABLE 5. Significant differences in variances of the dynamic functional connectivity matrices obtained without regressing out global signal (overlap = 0.9).
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TABLE 6. Significant differences in variances of the dynamic functional connectivity matrices obtained with global signal regression (overlap = 0.6).
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TABLE 7. Significant differences in variances of the dynamic functional connectivity matrices obtained with global signal regression (overlap = 0.9).
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FIGURE 3. Comparison of dynamic differences in functional connectivity without global signal regression (overlap = 0.6). (A) AVHs group compared with the non-AVHs group; (B) AVHs group compared with the NC group; (C) non-AVHs group compared with the NC group. Increased connectivity shown in red and decreased shown in blue.
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FIGURE 4. Comparison of dynamic functional connectivity without global signal regression (overlap = 0.9). (A) AVHs group compared with the non-AVHs group; (B) AVHs group compared with the NC group; (C) non-AVHs group compared with the NC group. Increased connectivity was shown in red and decreased shown in blue.
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FIGURE 5. Comparison of dynamic differences in functional connectivity with global signal regression (overlap = 0.6). (A) AVHs group compared with the non-AVHs group; (B) AVHs group compared with the NC group; (C) non-AVHs group compared with the NC group.
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FIGURE 6. Comparison of dynamic differences in functional connectivity with global signal regression (overlap = 0.9). (A) AVHs group compared with the non-AVHs group; (B) AVHs group compared with the NC group; (C) non-AVHs group compared with the NC group. Increased connectivity shown in red and decreased shown in blue.




Dynamic Functional Connectivity States

The optimal number of dynamic function connection states estimated by k-means algorithm is 3 for AVHs group, 2 for non-AVHs group, and 3 for NC group. Figure 7 shows the spatial patterns of these three groups of brain states. From Figure 7 we observed that the number of optimal states estimated in the AVH group was higher than that in the non-AVH group. This observation is also robust under different setting of overlap (overlap = 0.9) seen in Supplementary Figure 1–3, suggesting that the resting-sate functional connectivity of the AVHs group seems to be alternating among more brain states than that of the non-AVHs group. This finding is also in line with our observation of increased variance of dynamic functional connectivity matrices, suggesting enhanced brain dynamics in patients with AVHs.


[image: image]

FIGURE 7. Patterns of dynamic functional connectivity states in the AVHs, non-AVHs groups and NC groups without global signal regression (overlap = 0.6).





DISCUSSION

In this study, we examined the differences in static FC. Importantly, we also examined the differences in dynamic FC. The results showed that compared with NC, both AVHs group and non-AVHs group showed only decreased static functional connectivity when without global signal regression. Instead, resulting in increasing connectivity between the two groups with global signal regression, most of the static functional connectivity in the AVHs group showed decreased connectivity compared to the non-AVHs group.

In general, The AVHs group consistently demonstrated enhanced dynamics in functional connectivity compared with the non-AVHs group under different settings of overlap between neighboring windows, as well as with different data preprocessing strategies (with/without global regression; overlap=0.6/0.9). These findings suggested that patients with AVHs are characterized by reduced strength of static functional connectivity, accompanied with enhanced dynamics of functional connectivity.

From the analysis of functional connectivity, we found that auditory hallucinations in patients with schizophrenia may be related to abnormal functional connectivity among the frontal lobe, temporal regions and parietal regions. In fact, auditory verbal hallucinations are considered to be a disease caused by the patient’s inability to recognize the internal language generated by the brain (Anthony, 2004; Zhuo et al., 2021). This loss of cognitive internal language ability is highly correlated with the frontal cortex of speech generation and the temporal and parietal regions of sensory processing (Frith, 2005). With the proposal of “abnormal connection hypothesis,” the connection between these language brain regions is becoming ever more important in the study of auditory hallucinations (Li et al., 2017). In this study, we studied and compared the whole brain functional connectivity and patterns of schizophrenia patients with and without auditory hallucinations and normal subjects.

Compared with non-AVHs group, the AVHs group were characterized by significantly enhanced static functional connectivity among Frontal Gyrus, Inferior Parietal Lobule, and Hippocampus. The above brain areas are related to language acquisition and language understanding, which further imply that there were abnormalities in the connection of brain language regions in auditory hallucinations (Vercammen et al., 2010; Clos et al., 2014). FMRI study found that the decrease of functional connection between temporal and parietal lobes in patients with AVHs was positively correlated with the severity of auditory hallucinations (Vercammen et al., 2010). This study also revealed that many of the connections demonstrated increased variability in the AVHs group compared with the non-AVHs group. The above findings are consistent with some research results (Cui et al., 2017a; Barber et al., 2021), indicating that AVHs have something to do with dysfunction of the regions involving speech imagery, production, and monitoring, and schizophrenia patients with AVHs showed deficit communication between the brain network.

Our findings are a little different from previous results. These contradictory results may be related to the heterogeneity of schizophrenia and the sample size. The characteristic of this study is to directly compare AVHs and non-AVHs and reveal the pathophysiological basis of auditory hallucinations intuitively.

There are several potential limitations of the current study. First, schizophrenia patients with AVHs may hallucinate or fall asleep during the scan, thus losing control over the design of the resting state. Second, small sample sizes may lead to reduced reliability of inter-group differences. The correlation strength between auditory hallucination phenotype and language-related regions in schizophrenia patients has yet to be studied by expanding the sample size.



CONCLUSION

The results showed that the connectivity of most static functional connections was significantly reduced, and the dynamic of functional connections was significantly increased in the AVHs group under the two preprocessing strategies. In a cluster analysis of the two groups based on the dynamic nature of functional connectivity, schizophrenia patients with AVHs shifted between more brain states. The results suggest that significant changes in functional connectivity of the brain may contribute to the study of pathophysiological mechanisms of schizophrenia patients with AVHs and the diagnosis of AVHs.
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Background: Postpartum depression (PPD) is a common disorder with corresponding cognitive impairments such as depressed mood, memory deficits, poor concentration, and declining executive functions, but little is known about its underlying neuropathology.

Method: A total of 28 patients with PPD and 29 healthy postpartum women were recruited. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed in the fourth week after delivery. Individual local activity of PPD patients was observed by regional homogeneity (ReHo) during resting state, and the ReHo value was computed as Kendall's coecient of concordance (KCC) and analyzed for differences between voxel groups. Correlations between ReHo values and clinical variables were also analyzed.

Result: Compared with healthy postpartum women, patients with PPD exhibited significantly higher ReHo values in the left precuneus and right hippocampus. ReHo value was significantly lower in the left dorsolateral prefrontal cortex (dlPFC) and right insula. Furthermore, ReHo values within the dlPFC were negatively correlated with the Edinburgh PPD scale (EPDS) score. The functional connectivity (FC) of the right hippocampus to the left precuneus and left superior frontal gyrus (SFG) was stronger in patients with PPD than that in controls.

Conclusion: The present study provided evidence of aberrant regional functional activity and connectivity within brain regions in PPD, and it may contribute to further understanding of the neuropathology underlying PPD.

KEYWORDS
  postpartum depression, regional functional connectivity, ReHo, fMRI, functional connectivity


1. Introduction

Postpartum depression (PPD) has been reported in 10–20% of new mothers within the first 4 weeks following delivery, which is a major public health concern that has significant consequences for mothers, their children, and their families (Gress-Smith et al., 2012). Rates of hospitalization, self-harm, and maternal suicide are increased among depressed women during the peripartum period (Lindahl et al., 2005). Infants with mothers affected by PPD are more likely to suffer infant abuse or infanticide, less infant weight gain, and increased rates of hospitalization (Gress-Smith et al., 2012). PPD further harms infants in their subsequent development of cognition, emotion, and behavior during childhood and adolescence (Gress-Smith et al., 2012).

Although the devastating sequelae of PPD have been comprehensively studied, the diagnosis and pathophysiology of this disease, especially its neuropathology, are not well defined (Duan et al., 2017). Findings from clinical studies and laboratory rodent models highlight that alterations in activation of brain areas during PPD likely alter key neural networks associated with women's maternal care, empathy, stress, motivation, emotional reaction to stimulus valence, learned reward, and executive functioning (Pawluski et al., 2017). As the most important and useful tool to noninvasively study the functions of the brain, functional magnetic resonance imaging (fMRI) has become more commonly used. Physicians use fMRI to detect cerebral blood-oxygenation-level dependent (BOLD) activity in response to changes in neural activity (Logothetis et al., 2001) either with activation or at rest. The studies using fMRI with activation were to investigate differences in mothers' brain responses to infant and non-infant cues. Neural activation between PPD and healthy mothers differs in response to infant- and non-infant-related cues, such that activity in the specific brain regions will increase in response to a non-infant emotional cue but decrease in response to an infant-related emotional cue (Moses-Kolko et al., 2010; Silverman et al., 2011; Barrett et al., 2012; Laurent and Ablow, 2012b; Wonch et al., 2016).

The other studies used resting-state fMRI (rs-fMRI) to analyze women's brain resting state. An advantage of rs-fMRI is that it can clarify how PPD may affect a mother's baseline brain activity at rest and provide a comprehensive understanding of neural circuitry dysfunction in mothers with PPD. Rs-fMRI has been applied to detect spontaneous neural brain activity and functional connectivity (FC) in PPD using the resting-state functional connectivity (RSFC) (Deligiannidis et al., 2013, 2019; Chase et al., 2014), the dynamic amplitude of low-frequency fluctuations ALFF analysis (Cheng et al., 2022b), regional homogeneity (ReHo) analysis (Xiao-Juan et al., 2011), voxel-mirrored homotopic connectivity (Zhang et al., 2020), dynamic functional connectivity (FC) (Cheng et al., 2022b), functional connectivity density (FCD) (Cheng et al., 2021), and functional connectivity strength (FCS) (Cheng et al., 2022a). At rest, women with PPD showed decreased corticocortical and corticolimbic connectivity. More specifically, the women with PPD showed significantly weaker connectivity among the amygdala (AMG), anterior cingulate cortex (ACC), dorsal lateral prefrontal cortex (dlPFC), and the hippocampus compared with non-depressed postpartum women (Deligiannidis et al., 2013). In addition, they showed negative connectivity between the posterior cingulate cortex (PCC) and AMG (Chase et al., 2014). The area of the dorsomedial prefrontal cortex (dmPFC) has greater connectivity with the rest of the default mode network (DMN) and reduced connectivity with the precuneus, posterior cingulate cortex, and supramarginal gyrus/angular gyrus regions in women with PPD (Deligiannidis et al., 2019). PPD mothers exhibited increased FC between the subgenual anterior cingulate cortex (sgACC) and ventral anterior insula and disrupted FC between the sgACC and middle temporal gyrus. The changes in dynamic FC between the sgACC and superior temporal gyrus could differentiate PPD and HCs (Cheng et al., 2022b). Patients with PPD showed specifically weaker long-range FCD in the right lingual gyrus (L.G.R), functional couplings between LG.R and dmPFC, and left precentral gyrus and specifically stronger functional coupling between LG.R and right angular. Moreover, the altered FCD and RSFC were closely associated with depression and anxiety symptoms load (Cheng et al., 2021). PPD group showed specifically higher FCS in right parahippocampus, and perceived social support mediated the influence of FCS in the right cerebellum posterior lobe on depression and anxiety symptoms (Cheng et al., 2022a). Compared with healthy controls (HCs), mothers with PPD showed significantly increased posterior cingulate and medial frontal gyrus and decreased temporal gyrus ReHo (Xiao-Juan et al., 2011). Patients with PPD exhibited significantly decreased voxel-mirrored homotopic connectivity values in the bilateral dmPFC, dorsal anterior cingulate cortex (dACC), and orbitofrontal cortex (Zhang et al., 2020). Compared to the relative wealth of data available for major depression, fMRI studies of PPD were limited in number and design. It seems reasonable to conduct studies using a variety of rs-fMRI techniques to help identify neuroimaging signatures for PPD.

In this study, we focused on the homogeneity of regional activity by investigating changes in ReHo, which is distinct from mainstream methods of measuring long-range connections using the amplitude of low-frequency fluctuations. ReHo is a highly sensitive, reproducible, and reliable index of local activity and can reflect functional similarities in brain activities among neighboring voxels located within a short range (Ji et al., 2020). Decreases or increases in ReHo are thought to, respectively, reflect spontaneous neural hypoactivity or hyperactivity in a given regional brain area (Jiang and Zuo, 2016). Here, we collected a dataset from 57 participants, including 28 patients with PDD and 29 HCs. We calculated individual local activity by ReHo and explored their potential correlations with the clinical symptoms. We further used the brain areas with abnormal ReHo values in PPD as the region of interest (ROI) and conducted FC analysis. We tested the following hypotheses: (1) the PPD group showed abnormal ReHo in DMN and limbic system compared to HCs; (2) the alterations of ReHo would be related to Edinburgh postpartum depression scale (EPDS) score; and (3) the brain regions with abnormal ReHo in DMN and the limbic system showed the aberrant FC.



2. Material and methods


2.1. Participants

This study included 57 participants (28 patients with PDD and 29 HCs) who were recruited from the Department of Obstetrics of Shandong Second Provincial General Hospital and the Department of Obstetrics of the 960th Hospital of the PLA Joint Logistics Support Force. Two experienced senior associate chief physicians of neurology confirmed their diagnoses by using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and Chinese Classification and Diagnostic Criteria of Mental Disorders, 3rd edition (CCMD-3). Inclusion criteria for patients were as follows: new mothers (a) whose age ranged from 21 to 38 years, in the fourth week after delivery; (b) with first-episode, treatment-naive PPD patients; (c) with EPDS score of ≧ 13; (d) with no other medical or mental illness history; (e) with no substance abuse or substance dependent; (f) with no contraindications of an MR examination; and (g) with no organic abnormalities for MRI routine series. The EPDS score was assessed 1 h before the image acquisition. Inclusion criteria for HCs were as follows: new mothers (a) whose age ranges from 21 to 38 years, in the fourth week after delivery; (b) with no current or previous history of depressive episodes; (c) with EPDS score < 3; and (d)–(g) were same to the PPD group. This study was approved by the ethics committee of the Shandong Second Provincial General Hospital and all participants provided written informed consent.



2.2. Image acquisition

All fMRI data were acquired on a 3.0T MR system (Discovery MR750, General Electric, Milwaukee, USA) with a standard eight-channel head coil. During scanning, all participants were instructed to lie quietly and remain still with their eyes closed and heads fixed in place by foam pads to minimize head movement.

High-resolution structural T1-weighted scans (Three-dimensional Brain Volume, 3D BRAVO) were performed using the following parameters: time repetition (TR) = 8.2 ms, time echo (TE) = 3.2 ms, flip angle = 12°, the field of view (FOV) = 240 mm × 240 mm, slices = 115, voxel size = 1 mm, and thickness = 1.0 mm. Resting-state BOLD MR images were acquired with the following parameters: TR = 2,000 ms, TE= 40 ms, flip angle = 90°, FOV = 240 mm × 240 mm, resolution = 64 × 64, voxel size = 3.75 mm, thickness = 4.0 mm, no interspace, slices = 41, gradient echo-planar volumes = 200, and duration was 6 min 40 s. In addition, routine MRI data were collected to exclude anatomic abnormality among all participants.



2.3. Data preprocessing

The fMRI data preprocessing was conducted using the Data Processing Assistant for rs-fMRI (DPARSF) and rs-MRI data analysis toolkit (REST) (http://www.restfmri.net), which are based on Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm). First, the first ten volumes were discarded. Second, the slice-time corrected images were realigned to the first volume for slice-timing correction. For head motion correction, all subjects with a head motion > 1.5° rotation and 1.5 mm translation were excluded. For the frame-wise displacement estimates, we used a volume censoring technique (“scrubbing”) (Power et al., 2012) to eliminate the potential impact of sudden motions or moderate motions on the FC. We normalized motion-corrected functional images to a standard EPI template in the Montreal Neurological Institute space by applying the parameters of structural image normalization and resampling the normalized images to 3 mm isotropic voxels. After linear detrend, the data were band-pass filtered (0.01–0.08 Hz) to eliminate physiological noise. Several sources of spurious covariates along with their temporal derivatives, including the six head motion parameters, global mean, white matter, and cerebrospinal fluid, were removed.



2.4. ReHo analysis

The ReHo value was computed as KCC in rs-fMRI (Zang et al., 2004). A KCC was assigned to a given voxel by calculating the KCC of the time series of this voxel with 26 nearest neighbors. A higher KCC indicates a higher synchronization. We obtained the standardized KCC value by dividing the KCC value of each voxel by the average value of the whole brain. The KCC program was coded in MATLAB (The MathWorks, Inc., Natick, MA). Thus, an individual ReHo map was generated for each subject. Finally, we smoothed all individual ReHo maps by using a 4-mm full-width at half-maximum Gaussian kernel.

The variables, including age and clinical symptom scores between PPD and the control group, were analyzed by the Mann–Whitney U-test in SPSS version 18.0 (SPSS Inc., Chicago, IL, USA). The differences in the delivery method were determined using chi-square tests. The threshold was set at p < 0.05. With age as a covariate, a two-sample t-test was performed using the REST1.8 software to determine significant voxel-based differences in ReHo value between the two groups. The resulting statistical map was set at q < 0.05 for multiple comparisons (FDR corrected, cluster size > 55 voxels) using the REST1.8 software.



2.5. FC analysis

We used the brain clusters with significantly different ReHo values between PPD and HCs as the ROIs. FC analyses were performed using the default FC processing pipeline in the REST toolbox. In this processing pipeline, white matter, cerebral spinal fluid noise, and global mean signal were removed through regression after spatially smoothing (4-mm full-width at half-maximum). The mean time series from each ROI was calculated by averaging the time series of all the voxels within that region. The seed-based FC analysis was computed between the seed reference time course and that of each voxel in the brain in a voxel-wise way. Finally, the Fisher r-to-Z transformation was used to transform correlation coefficients to Z values. FDR correction (q < 0.05) was performed for multiple comparisons.



2.6. Correlation analysis between the brain and clinical characteristics

In this study, we performed a correlation analysis between clinical characteristics and brain functional metrics, including ReHo and FC strength. The mean ReHo in each between-group significant cluster was extracted for each subject. After seed-based FC analysis, the mean FC within each between-group significant cluster was extracted. Finally, Pearson correlation analyses were performed between the mean ReHo or FC strength in each cluster and the EPDS scores in the PPD with HCs group using the SPSS version 18.0 software with significance at p < 0.05.




3. Results


3.1. Demographic and clinical characteristics

A total of 28 PPD patients and 29 HCs were enrolled in the final analyses of this study. All the participants were right-handed. We found no significant differences in age, educational level, delivery method, delivery time, or feed options among the PPDs and controls. Patients with PPD showed significantly higher EPDS scores than HCs (t = 36.514, p < 0.001), as shown in Table 1.


TABLE 1 Demographic factors and clinical data.

[image: Table 1]



3.2. Intergroup differences in ReHo values

The PPD group exhibited higher ReHo in the left precuneus and right hippocampus. ReHo was significantly lower in the left dlPFC and right insula (Figure 1). Specific ReHo values of the PDD groups are listed in Table 2.


[image: Figure 1]
FIGURE 1
 Comparisons of rs ReHo values between patients with PPD and HCs. The PPD group exhibited higher ReHo in left precuneus and right hippocampus. ReHo was significantly lower in left dlPFC and right insula. Warm color represents significantly increased ReHo, and cool color represents significantly decreased ReHo. dlPFC, dorsolateral prefrontal cortex; HCs, healthy controls.



TABLE 2 Regional homogeneity values in brain regions showing significant group differences.
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3.3. Correlations between ReHo and clinical characteristics

The ReHo values within the left dlPFC were significantly negatively correlated with EPDS scores in the PPD group (r = −0.513, p = 0.005) (Figure 2). There were no significant correlations among the ReHo values in any other regions and EPDS scores in PPD and HC groups.


[image: Figure 2]
FIGURE 2
 The ReHo values within the left dlPFC were significantly negatively correlated with the EPDS scores in the PPD group (r = −0.513, p = 0.005). There were no significant correlations between the ReHo values within the left dlPFC and EPDS scores in HCs group (r = −0.189, p = 0.326). dlPFC, dorsolateral prefrontal cortex; EPDS, Edinburg postpartum depression scale; HCs, healthy controls.




3.4. Seed-based FC analysis

We used four brain regions (left dlPFC, left precuneus, right hippocampus, and right insula) with significantly different ReHo values between PPD and HCs as seeds in the FC analysis of the whole brain. In the PPD group, the right hippocampus (seed region) showed increased FC with the left precuneus and left superior frontal gyrus (SFG) compared with HCs. The left precuneus (seed region) showed increased FC with the right hippocampus compared with HCs (Figure 3 and Table 3). There were no other significantly different FCs in any ROIs with the whole brain between the two groups.


[image: Figure 3]
FIGURE 3
 (A) Brain regions showing aberrant FC with right hippocampus (seed region) in the PPD group compared with HCs. Warm color represents significantly increased FC. The FC of the right hippocampus to the left precuneus and left SFG was stronger in patients with PPD than in HCs. (B) Brain regions showing FC with left precuneus (seed region) in the PPD group compared with HCs. Warm color represents significantly increased FC. The FC of the left precuneus to right hippocampus was stronger in patients with PPD than in controls. FC, functional connectivity; HCs, healthy controls; SFG, superior frontal gyrus.



TABLE 3 Significant differences in FC between PPD and HCs.
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3.5. Correlations between FC and clinical characteristics

There were no significant correlations among the FC values in any regions and EPDS scores in PPD and HC groups.




4. Discussion

This study measured the ReHo value using rs-fMRI and correlations among abnormal ReHo values within regions and clinical characteristics in patients with PPD. In this study, we observed the following: (1) ReHo value was higher in the left precuneus and right hippocampus and lower in the left dlPFC and the right insula in the PPD group; (2) ReHo value within the left dlPFC was significantly negatively correlated with EPDS scores in the PPD group, with age as covariates; and (3) the right hippocampus showed increased FC with the left precuneus and left SFG compared with HCs.

The precuneus is a key component of the DMN (Utevsky et al., 2014) and a critical hub with dense and widespread connectivity in human whole-brain structural and functional networks. The precuneus plays a pivotal role in a wide spectrum of functions, including cognition, memory retrieval, self-consciousness, visuospatial imagery, emotional judgment, and self-referential processing (Cavanna and Trimble, 2006). The alterations in the precuneus might be associated with thought-action fusion disturbance, self-referential processing ruminations, and the dysregulation of the sensory part of the fear network, which might be the putative biomarker for depression and anxiety (Lai, 2018). The higher ReHo in the left precuneus and the stronger FC between the precuneus and hippocampus were found in patients with major depressive disorder (MDD) (Yang et al., 2015; Cheng et al., 2018; Xiao et al., 2021). In this study, we found higher ReHo in the left precuneus and stronger connectivity between the left precuneus and right hippocampus in patients with PPD. The earlier fMRI studies of PPD showed a negative coupling between the precuneus and right AMG region and dmPFC (Chase et al., 2014; Deligiannidis et al., 2019). The abnormal function and connectivity in the left precuneus might explain depression and anxiety among PPD.

As the core region in the limbic system and DMN, the hippocampus plays a very important role in memory, regulation of motivation, stress, and emotion (Eichenbaum, 2013). Patients with MDD have shown to have impaired FCs of the hippocampus, which might explain the memory deficits and depression experienced by patients with MDD (Hao et al., 2020). We observed decreased FC in the left hippocampal-ROI to the bilateral middle frontal gyrus, as well as in the right hippocampal-ROI to the right inferior parietal cortex (IPC) and the cerebellum in patients with MDD compared to the HCs (Cao et al., 2012). Here, we found higher ReHo in the right hippocampus in PPD and stronger connectivity between the left precuneus and right hippocampus. Subjects with PPD had already shown the attenuation of connectivity between the dlPFC and hippocampus (Deligiannidis et al., 2013). The abnormal activity and functional connections of the hippocampus might also be evidence of the depression experienced by patients with PDD.

It is worth noting that both the left precuneus and right hippocampus are important regions in DMN (Zhang et al., 2021). Altered spontaneous neural activities and altered FC between the left precuneus and right hippocampus indicate DMN dysfunction in patients with PPD. It is known that depression symptoms are associated with excessive self-focus, a tendency to engage oneself in self-referential processing (Mor and Winquist, 2002). DMN is responsible for spontaneous cognition, self-referential processing, and emotional regulation (Ho et al., 2015). After taking this evidence into consideration, it is hypothesized that aberrant DMN function may lead to self-referential processing abnormally integrating with biased emotional memory in PPD. Failure of DMN deactivation during emotional or cognitive tasks has been proposed as a possible mechanism acting in PPD.

In the frontal lobe, the dlPFC acts as a key node of the brain networks, including the extrinsic mode network (Hugdahl et al., 2015) and cognitive control network (Cole and Schneider, 2007). It has been implicated in cognitive, affective, sensory processing, and emotional regulation, such as attention, value encoding (Liu et al., 2016), working memory, creativity (Liu et al., 2015), decision-making (Rahnev et al., 2016), reappraisal, expectation, and desire for relief (Sevel et al., 2016). Functional imaging studies have shown decreases in regional cerebral blood flow and metabolism in dlPFC, especially on the left side among patients with depression (Dolan et al., 1993). SFGs are a crucial part of the dlPFC (Xiong et al., 2019). The SFG is generally considered a core brain region in the cognitive control system (Niendam et al., 2012) for emotion regulation-related processes (Frank et al., 2014), which are influential factors for depressive symptoms. In this study, we reported that patients with PPD had lower ReHo in left dlPFC than HCs and stronger connectivity between left SFG and right hippocampus. Previous studies have shown that women with PPD showed significantly weaker connectivity among the AMG, ACC, dlPFC, and hippocampus than HCs (Deligiannidis et al., 2013). We also found significant correlations between ReHo values in dlPFC regions and EPDS scores in the PPD group. Higher EPDS scores correlated with lower ReHo values in dlPFC regions. Based on the previous studies (Mayberg, 1997; Mayberg et al., 1999), depression is associated with increased activation in the subcortical and ventral frontal system (subgenual cingulate, ventral insula, hippocampus, ventral frontal, and hypothalamus implicating in the production of normal and abnormal affective states) and relatively decreased activation in the dorsal frontoparietal system (e.g., dlPFC, dorsal ACC, IPL, and PCC implicating in the cognition and regulating the parameters of affective states) (Xiong et al., 2019). This process may be derived from the bottom-up pathway from the limbic areas, through the cingulate and subcortical regions, to the PFC and frontal lobe finally (Disner et al., 2011). Although we have observed stronger connectivity between left SFG and right hippocampus in PPD, inhibited activations of high-order regions (specifically in dlPFC) attenuate the cognitive control of the top-down system and allow the bottom-up hyperactivation (hippocampus) preserved. In addition, the hypoactivation of the dlPFC has been related to an impairment of cognitive control that may favor rumination, which is considered one of the key factors in the onset and maintenance of depression. All results suggested that many symptom profiles of patients with PPD, such as depression and impaired concentration, might be due to the hypofunction of the left dlPFC.

The human insula is implicated as a major multimodal network hub with connections to the frontal, parietal, temporal, and limbic areas (Dionisio et al., 2019). It is a key component of the fronto-limbic circuit and involves a large variety of complex functions, including pain, cognition, memory, emotion, and self-recognition (Augustine, 1996; Nieuwenhuys, 2012). The right insula is involved in sensory function, pain, and saliency processing (Dionisio et al., 2019). The altered functional activity and connectivity of the insula have been observed in patients with depression (Iwabuchi et al., 2014). Patients with MDD have been shown to have reduced ReHo in the right insula (Liu et al., 2010), which correlated with anxiety and hopelessness (Yao et al., 2009). We found lower ReHo in the right insular of patients with PPD. This is the first study that has found the reduced activity of the right insula in PPD by rs-fMRI. In task-based fMRI studies, the mothers with PPD showed decreased insula activation in response to cries (vs. non-cry control and other infant cries), emotional faces (vs. cries/emotional faces of other infants) (Laurent and Ablow, 2012a), and expressions of joy (Fiorelli et al., 2015). These patients showed increased insular activity, especially on the right side, when exposed to negative words or negative stimuli (Silverman et al., 2007). It was also observed that mothers with PPD had decreased AMG-right insular cortex connectivity when viewing their infants compared to other infants (Duan et al., 2017). Therefore, the PPD group may have impaired function in this region. Due to the insula's wide range of functions regarding pain, emotional processing, memory, attention, and cognition, the decline of right insular activity might be related to the PPD's diverse symptoms.

Many brain regions such as the hypothalamus, AMG, anterior cingulate, orbitofrontal cortex, and dlPFC, as well as the insula and striatum, have been shown to be involved in the pathogenesis of PPD and are also linked to mothering (Stickel et al., 2019). Our study showed abnormal activities in the left dlPFC, left precuneus, right hippocampus, and right insula in patients with PPD, which were in accordance with the reported regions. We also noticed an earlier study that showed different brain regions with abnormal ReHo including the posterior cingulate, medial frontal, and temporal gyrus (Xiao-Juan et al., 2011). Our study was conducted with sample sizes over two times larger than the earlier study (10 patients with PPD). Furthermore, we conducted the seed-based FC analysis and found the right hippocampus showed increased FC with the left precuneus and left SFG in the PPD group compared with HCs. All our results point to a plausible underlying functional foundation of the neural mechanism in the course of PPD. The four regions with abnormal ReHo values and the altered FC were associated with many brain networks including DMN, fronto-limbic circuit system, and cognitive control network. Our results might suggest the abnormal neuro-activity in these brain networks in patients with PPD, which might help better understand the underlying neuropathology of the disease. However, the present study had some limitations. First, we need additional recruitment and further exploration to verify our results. Second, the study lacked the comparison between the pre- and post-treatment of PPD patients and could not provide the imaging change of the above brain areas after treatment. Third, the study lacked participants' other demographic factors that might influence the results of the study, such as smoking, number of pregnancies, and the presence of underlying diseases. In conclusion, our study provided evidence of aberrant ReHo and FC within brain regions in PPD, and it may contribute to identifying the neuroimaging signatures of patients with PPD for diagnosis and a better understanding of the neuropathology underlying PPD.
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Brain regions Peak MNI Cluster voxels T Z P

R Superior parietal lobule 28 —51 49 382 5.02 4.48 0.000
Inferior parietal lobule 32 —60 47 382 4.91 4.39 0.000

Note: MINI, Montreal Neurological Institute; R, right: SD, sulcus depth.
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Seed points Brain region BA Peak MNI Cluster voxels T

L Inferior/midde temporal gyrus L Medial superior frontal gyrus 9 -9 51 33 248 554
L Supplementary motor area 6 -9 18 69 75 —5.12

Note: MNI, Montreal Neurological Institute; R, right.
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Characteristics VM (1 =27) HC (n = 25) Pvalue
Mean & SD Mean & SD

Sex (female/male) 27/4 25/4 091

Age (years) 38.22 +10.58 37.28+ 11.45 0.76

Education (years) 13,89+ 8,61 1440 +2.48 0.56

Disease duration (years) 915+ 7.58

Headache frequency (number) 6,67+ 4.93

VAS 474+ 275

MIDAS 54.33+53.13

HIT-6 51,56+ 19.94

DHI 48.93 + 16.43

Note: VM, vestibuiar migraine; HC, healthy control; VAS, Visual Analog Scale (0 = no pain,

Impact Test-

I, Dizziness Handicap Inventory.

10 = worst possible pair); MIDAS, Migraine Disabilty Assessment Scale; HIT-6, Headache
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Brain regions Peak MNI Cluster voxels T z P
R Inferior temporal gyrus. 63 —36 -22 149 5.88 4.74 0.000

Superior parietal lobule 24 —63 50 68 5.06 4.60 0.000
L Inferior temporal gyrus. —56 —38 —14 102 5.19 4.51 0.000

Middle temporal gyrus —56 —38 —14 102 5.19 4.51 0.000

Note: MNI, Montreal Neurological Institute; R, right: L, Left: CT, thickness; VM, vestibular migraine.
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Seed region Area with altered FC = Peak MNI coordinates = Cluster size (mm?3) Peak T-value FC direction
7
Right hippocampus | Left precuneus -6 -51 30 268 435 PPD > HC
Left superior frontal gyrus 24 33 36 104 4.03 PPD > HC
Left precuneus Right hippocampus 26 -5 -23 109 4.67 PPD > HC
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Characteristic Healthy control (HC, n = 29) Postpartum depressed (PPD, n = 28) p-value

Mean (SD) Percent (%) Mean (SD) Percent (%)

Age (years) 28.56 (4.57) 29.27 (4.72) 0.82
Right handedness 29 100 20 100

Socioeconomic status 181.64 (4.60) 182.84 (3.26) 0.26
(thousand RMB)

Education (years) 11.28 (3.74) 11.85 (3.26) 0.60
Cesarean 10 345 1 39.2 0.87
Breastfeeding 29 100 28 100

Primi para 14 483 15 53.6 0.90
EPDS 0.79 (0.96) 14.97 (1.66) 0.00

SD, standard deviation; RMB, Renminbi; EPDS, Edinburgh postpartum depression scale.
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Brain region Peak MNI coordinates Cluster size (mm?) Peak T-value ReHo

direction
Left dorsolateral 54 12 30 190 -3.07 PPD < HC
prefrontal cortex
Right insula 2 -3 ~15 55 -3.75 PPD < HC
Left precuneus -1 —63 12 120 452 PPD > HC
Right hippocampus 33 -12 -18 89 223 PPD > HC

MNI, Montreal Neurological Institute.
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Measures Brain regions Voxel size Peak T value MNI coordinates

Decreased

ALFF Precentral_R 71 4.40 46 —12 46
fALFF Precentral_R 52 510 59 -9 51
DC Frontal_inf_Tr_L 70 5.65 —45 42 6
Increased

DC Hippocarpus_L 105 6.40 —27 —39 0

Note: DC. degies cantrality: MNI, Montreal Newrological sttt
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Voxels PV.X PVY PV Z H Brain regions (AL atlas) BA T
Anterior verrmis

104 -6 68 7 L Ventral prefrontal cortex (Frontal_superior_medial) 10 —5.080

190 7 —16 a2 R Midde cingulate cortex (Cingulum_middie) 23 —4.160
Posterior verrmis

201 -4 69 5 L Ventral prefrontal cortex (Frontal_superior_medial) 10 —4.430

PV: peak voxel.
within a dltister).

X, Y, Z: coordinates in the Montreal Neurological Institute space. BA: Brodmann area. T: T values from a t-test of the peak voxel (showing greatest statistical difference
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Brain regions Clinical scores

HDRS P YMRS P
Changed connectivity with the anterior vermis
Vertral prefrontal cortex -0.307 0332 ~0.434 0218
Middle cingulate cortex ~0532 0143 0425 0544
Changed connectivity with the posterior verrmis
Ventral prefrontal cortex —0.631 0095 0154 0510

The numbers in the table are Pearson’s correlation coefficients.
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Healthy Bipolar disorder P

N 28 20

Age years, mean £SD)  31.38+8.08 3051 +£8.79
Sex (male: female) 13:15 18:12
HDRS (mean + SD) 0.40+0.77 9.71 1042
YMRS (mean + SD) 0.06+0.35 6.43+9.33
Medication(yes/no) NA 25/5
Typical antipsychotics (\) NA 18
Anticonvulsant () NA 14
Lithiun salts () NA 5
Antidepressants (N) NA 11

SD, standard deviation; HDRS, Hamilton Depression Rating Soale; YMRS, Young Mania
Rating Seale: NA, nat applicable: N. itrmiber.
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Characteristic Pre-treatment (1 = 14) Post-treatment (1 = 14) P
Age, mean (SD), y 14.57 (1.45) /

Sex (Male/Female) 5/9 5/9

Education years, mean (SD), y 835 (1.39) /

HAMD, mean (SD) 30.14 3.78) 1136 313 <0.001
BSSI, mean (SD) 2143 3.67) 6.03(3.58) <0.001

Note: HAMD, Hamilton depression scale; BSSI, Beck scale for suicide ideation; SD, Standard deviation.
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AVHs Non-AVHs NC p

No. 25 52 28 -
Age 23.20 25.79 26.14 0.06
Gender (male/female) 15/10 28/24 15/13 0.283

AVHSs, Schizophrenia patients with auditory verbal hallucinations; non-AVHS,
Schizophrenia patients without auditory verbal hallucinations; NC, Healthy subjects
without schizophrenia.
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Schizophrenia patients Healthy controls

Age, vy

Gender, M/F?
Education, y?
Status, FE/NFE
Medication, U/T
lllness duration, mon
PANSS score
Positive
Negative
General

Total

Data are shown in mean (standard deviation).
FE, first episode; NFE, non-first episode; U, untreated;

aTwo-sample t-test.
bpearson Chi-Square test.

(n =136)

24.1(7.4)
75/61
12 (3)
101/35
27/109
14.7 (22.7)

21.7 (5.3)
20.2 (7.3)
43.7 (8.3)
85.6 (14.3)

(n = 146)

24.2 (5.2)
82/64
15 (3)

~ O~ O~~~ o~~~

T, treated.

p-values

0.922
0.864
<0.001
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ADHD group Adults Adolescents Adolescents P-value

(n =39) (n =40) (n = 40)
Gender (M/F) (20/19) 31/9) (26/9)
0.026224
Age (years) 31.59+10.13 14.11+1.83 8.64 £0.81 <0.00001
Data range (years) 21-50 11.41-17.61 7.24-9.98
OA score 63.49 + 4.99 70.18 + 46 70.74 £ 7.81
H score 31.57 £4.63 65.95+11.89 66.69 + 12.69
IA score 35.77 £2.78 68.88+9.16 69.89 +£8.87

One-ANOVA was used to determine group differences. OA, Overall severity; H,
Hyperactivity severity; IA, Inattentive severity.
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Variable HFS (n = 30) HC (n=30) Two-sample

(mean + SD) (mean =+ SD) t test
P value
Sex (male/female) 12/18 12/18 —
Age (years) 48.87 £ 10.61 47.63 £ 13.29 0.693
Education (years) 11.67 £4.24 13.50 £ 4.35 0.087
Duration (years) 570 £5.24 N/A —
Cohen spasm severity (scores)  2.57 + 0.73 N/A —

HFS, hemifacial spasm; HC, healthy control; SD, standard deviation.
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ROIs Contrast Brain region Cluster size Peak t value MNI coordinates (mm)
X y z
DCP_C HFS < HC | superior frontal gyrus 55 —4.8035 21 —-12 69
DRP_C HFS > HC C middle frontal gyrus 64 5.0707 —45 42 24
DC_C HFS < HC B cerebellum posterior lobe 165 —4.8075 9 —-57 —51
HFS < HC C cerebellum crus2 76 —4.4086 —42 —75 —48

FC, functional connectivity; ROIs, regions of interest; C, contralateral; DCP dorsal caudal putamen; DRP, dorsal rostral putamen; DC, dorsal caudate; HFS, hemifacial

spasm; HC, healthy control; MNI, Montreal Neurological Institute.
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ROIs Contrast Brain region Cluster size Peak t value MNI coordinates (mm)

X y z

VSi_| HFS > HC | orbitofrontal cortex 107 4.681 9 30 —-18
HES > HC C orbitofrontal cortex 166 4.4424 —21 33 -18
HFS > HC B supplementary motor area 56 5.0717 3 -21 66
HFS < HC | supramarginal gyrus 71 -5.2399 54 —30 24

VSi_C HFS > HC | orbitofrontal cortex 94 4.6397 9 27 —24
HFS > HC C orbitofrontal cortex 58 4.0489 —-12 36 —-15
HFS < HC | superior occipital gyrus 71 -4.3179 33 —78 45

VSs_| HFS > HC B supplementary motor area, paracentral 76 4.534 -3 -21 66

lobe
VSs_C HFS > HC | superior occipital gyrus 59 4.629 21 —87 3

FC, functional connectivity; ROIs, regions of interest; |, ipsilateral; C, contralateral; \/Si, inferior ventral striatum; V/Ss, superior ventral striatum; HFS, hemifacial spasm; HC,
healthy control; MNI, Montreal Neurological Institute.
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SNP ID Gene Location Patients/controls Findings References

Functional connectivity

156800381 CHRM3 Non-coding region ~ 161/150 FC between the left rectus and right Wang etal. (2016)
thalamus (as quantitative traits)
1512807809 NRGN Non-coding region ~ 59/99 FC between the hippocampus and bilateral  Zhang et al. (2019)

midde cingulate gyri and left anterior
cingulate gyrus (TT < CC/CT)

rs11146020 GRINT Non-coding region 56/0 Causality connections between the left and Cai et al. (2020b)
tight dorsolateral prefrontal cortex

152038136, KIAA0319 Non-coding region ~ 28/27 Resting-state network in language-related  Jamadar et zl. (2013)

152038137; regions (no affection)

151344706 ZNF804A Coding region 52/128 Degree centrality in the precuneus (AA > Chen et al. (2018)
CC/CA)

151344706 ZNFB04A 92/99 FC between the left hippocampus and right ~ Zhang et al. (2018)
DLPFC (AA < CC/CA)

rs1344706 ZNFB04A 78/158 (working FC of the right DLPFC and left hippocampal ~ Rasetti et al. (2011)

memory) formation (contrast CC > CA > AA)
151059004 oLiG2 Coding region 55/53 FC between left offactory cortex, left Cai et al. (2020a)

parahippocampal gyrus, left middie
temporal pole, bilateral hippocampus, and
bilateral amygdla (M/CA < CC)

151059004 oLiG2 4047 Nodal efficiency in the right precuneus and L et al. (2020)
left middle temporal pole (CA<CC)

s2391191 DAOCA Coding region 11/9 Connectivity density and larger global Liu et al. (2014)
efficiency (AG > AA)

151006737 CACNAIC Coding region 54/80 (verbal fluency FC between the left precentral gyrus/inferior  Tecelao et al. (2019)

task) frontal gyrus and superior temporal gyrus

(AMVAG < GG)

153782206 NOST Coding region 78/0 (Stroop); 76/0  FC between the right IFG and bilateral Zhang et al. (2015)

DLPFC in the Stroop task and the resting
state (TT/CT < CC)

15821617 Disct Coding region 46/24 FC between the right precuneus and inferior ~ Gong et al. (2014)
frontal gyrus (AA < AG/GG)
153018346 DAAO Coding region 40/48 (verbal fluency  FC between the left precuneus and a Papagni et al. (2011)
task) distributed network (TT/CT < CC)

FC between the right posterior cingulate and
tight precuneus and left insuia (TT/CT > CC)

154504469 KIAA0319 Coding region 2827 Resting-state network in language-related  Jamadar et al. (2013)
regions (no affection)

13813206 GRIA2 Coding region 55/0 Descending pathway from the prefrontal Cai et al. (2020b)
lobe to the striatum (GT < TT)

111146020 GRINT Non-coding region Interaction effect: ascending pathway from  Cai et al. (2020b)

55/0 the bilateral pallidum to the right caudate

and the bilateral dLPFC

153813296 GRIA2 Coding region

Structural connectivity

135753505 NRGT Non-coding region  36/31 FAin the anterior cingulum Wang et al. (2009)
(TT/TC < CC)

157808623 GRV3 Coding region 74/87 FAin the anterior thalamic radiation and Mounce et al. (2014)
corticospinal tract, as well as a series of
tracts connecting the frontal cortex to the.
cerebellum (GG > TG > TT)

151625579 MIR137 Coding region 83/63 FAin both right orbitofrontal region and left  Kuswanto et al. (2015)
striatum(TT < GT)

rs2710126 CNTNAP2 Coding region 44/81 FAin the uncinate fasciculus Clemm von Hohenberg
(AA < AG, AA < GG) etal. (2013)

rs1344706 ZNF804A Coding region 100/69 FA, axial diffusivity, radial diffusivity, and Wei et al. (2013)

mean diffusivity (no association)
Brain structure
1512807809 NRGN Non-coding region ~ 91/65 Cortical thinning: frontal, parietal, and Thong et al. (2013)
temporal cortices (TT)
Thalamic shape abnomaities: regions
related to pulvinar and medial dorsal nuclei

T
99/263 Gray matter volume in the left anterior Ohietal. 2012)
cingulate cortex (TT < TC < CC)
153814614 GRIDT Non-coding region ~ 62/54. Gray matter density in the right medial Nenadic et al. (2012)

cerebellum and an area in the medial parietal
cortex between the central and precuneal
regions
(in the cerebellar: CC < CT)
(in the parietal: CC > CT)

151344706 ZNF804A Coding region 80/69 White matter density in the left prefrontal Wei et al. (2012)
lobe and bilateral hippocampus
(TT/GT > GG)

157914558 CNNM2 Coding region 173/449 Gray matter volumes in the bilateral inferior  Ohi et al. (2013)
frontal gyri
(GG < GA/AA)

153813296 GRIA2 Coding region 55/0 White matter volume in the superior corona ~ Cai et al. (2020b)
radiata
@T>T

FC, functional connectivity; FA, fractional anisotropy; CHRMS, cholinergic receptor; muscarinic 3; CNTNAP?, contactin-associated protein-like 2; COMT, catechol-O-methyltransferase;
DAAC, d-amino acid oxidase; DAOA, d-amino acid oxidase activator; DISCT, disrupted in schizophrenia gene 1; DLPFC, dorsolateral prefrontal cortex; FA, fractional anisotropy; FC,
functional connectivity; IFG, inferior frontal gyrus; NOST, nitric oxide synthase 1; NRGN, neurogranin; RS, resting state; ZNF804A, zinc finger protein 804A.






OPS/images/fnhum-15-739175/crossmark.jpg
©

2

i

|





OPS/images/fnhum-15-705863/fnhum-15-705863-g001.jpg





OPS/images/fnhum-15-705863/fnhum-15-705863-g002.jpg
Corr
P-value

0.496

0.002

r
8

Corr

0.652

T T T T 1
[4 9T ve e ['k4 8l

(ww) 8|nqo| |ejaued Jouadns jybu

JO SSBUNOI} [BOILI0D UBB

P-value < 0.001

8'C

9T 144 (44 [1k4 8l

(ww) sniAB jeuibieweldns Jybu
JO SSBUXDIY} [EDI}OD UBS

’
cee,
o
— i
o=} /
™ O . !
© S ./ o
Qv o/
' g ]
=2 we,/ oo
33 .
(GF e/ o
o . / .
o o o
! .
od
. s. .
>
e e
o
o
1 .
o«
L
T T T T T
8'C 9c Ve cc (14 8l

(wiw) snJAB |esyuao Jousysod Jybu
1O SS8UNDIY) [BD1OD UBSI\

20 25 30 35

15

20 25 30 35

15

25 30 35
Age of first MA use

20

15

Age of first MA use

Age of first MA use





OPS/images/fnhum-15-705863/fnhum-15-705863-t001.jpg
Group AMD

N 38
Age/year 33.1£6.0
Education/year 87+21
Smoking (Yes/No) 371
Drinking (Yes/No) 13/25
Age of first MA use 26.0+6.9
Months of MA use 642 +£34.2
Months of abstinence 191 +27

HC

32
345+7.0
9.6+24
30/2
8/24

0.3532
0.1132
0.589P
0.443°

aTwo-sample t-test.

bFisher exact test. Significant level was set at p < 0.05. There are no statisti-
cally significant differences between AMD and HC group based on demographic

information and characterization.
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Brain region (AAL) Volume (mm?3) p Peak talairach coordinates
X Y z
Right posterior central gyrus (peak location) 134713 0.0474* 54.2 -14.6 34.4

Statistical threshold was p < 0.05 corrected for multiple comparisons by Monte Carlo simulation method; Coordinates are located in Talairach space. AAL, Anatomic-
Automatic-Labeling template. *p < 0.05.
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Sociodemographic characteristics Clinical characteristics: OCD participants only

Study No. of subjects Mean age (yrs) Female (%) Mean  Mean  Mean  Mean  Medication

ilness ~ Y-BOCS ~ HAMA  HAMD status (%)

ocD HCSs ocD HCS ocD HCs duration score score 'score
(yrs)

Yang et al., 2010 22 2 31.18 3086 636 636 388 3227 85 636 Drug-naive
Ping et al., 2013 20 20 27.4 276 20 20 7.34 235 12.9 12 o7
Yang etal., 2015 22 22 30.95 2952 455 455 822 24.43 11.81 852 Drug-free
Chenetal, 2016a 30 30 2628 2817 20 23 554 23.77 128 108 067
Niu etal., 2017 2 25 24.19 2268 308 52 5.49 22.92 1435 1558 Drug-naive
Bu otal., 2019 54 54 30.41 2839 7.1 37.1 8.15 20.72 924 819 Drug-free
Hu etal, 2019 8 8 29.16 27.88 36.4 36.4 7.32 21.47 878 874  Drug-free
Yang et al., 2019 15 30 28.77 2823 60 33.3 7.15 25 6.54 723 Drug-free
¥ia et al., 2020" 40 70 2248 2093 45 55.7 4.08 21.63 NA NA  Drugfree
Xia et al. > 42 70 2276 20.93 50 86.7 433 226 NA NA Drug-free

HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale; HCS, healthy control subjects; OCD, obsessive-compulsive disorder; ReHo, regional homogeneity;
Y-BOCS, Yale-Brown Obsessive Compulsive Scale.

#Subgroup of autogenous-type OCD patients.

“Subgroup of reactive-type OCD patients.
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Study

Yang etal., 2010
Ping et al., 2013
Yang et al., 2015
Chen etal., 2016a
Niu et al., 2017
Bu etal., 2019

Hu etal., 2019
Yang etal., 2019
Xia et al., 2020
Xia et al,, 2020*

MRI Scanner

15T (GE)
30T (Siemens)
3.0T (Semens)
30T (GE)
30T (GE)
30T GE)
30T (GE)
30T (Siemens)
30T (Siemens)
30T (Siemens)

Software

SPM8
SPMS
SPMS
SPM8
SPM8
SPM8
SPM8
DPABI-V
SPM12
SPM12

Smoothing (FWHM)

10mm
4mm
4mm
4mm
4mm
8mm
8mm
4mm
6mm
6mm

Coordinate System

MNI
MNI
MNI
MNI
MNI
MNI
MNI
MNI
MNI
MNI

Foci

p-value (correction)

P < 0.05 (AlphaSim corrected)
p < 0.05 (AlphaSim corrected)
P < 0.05 (AlphasSim correctec)
P < 0.05 (AlphaSim corrected)
P < 0.005 (AphaSim correctec)
p < 0.05 (FOR corrected)

P < 0.05 (FWE corrected)

P < 0.05 (GRF corrected)

P < 0.05 (FDR corrected)

P < 0.05 (FOR corrected)

DPABY, date processing and analysis for brain imaging; FDR, false discovery rate; FWE, family wise error; FWHW, fullwidlth at half meximum; GRF, Gaussian random field; MNI, Montreal
Neurological Institute; OCD, obsessive-compuisive disorder; ReHo, regional homogeneity; SPM, statistical parametric mapping; T, Tesla.
#Subgroup of autogenous-type OCD patients.
*Subgroup of reactive-type OCD patients.
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Region

Higher ReHo (OCD > HCS)

Left inferior frontal gyrus

Right inferior frontal gyrus

Left orbitofrontal gyrus.

Lower ReHo (OCD < HCS)
Right supplementary motor area

Left cerebellum
Right cerebellum

Local maximum

MNI Coordinates

—a8 34 0
48 36 -10
-10 50 —16
6 —20 66
—14 —52 —24
20 -58 —26

SDM-Z

3.203

1.942

1.792

—1.996

—1.6058
—1.604

~0

0.000668841

0.001478572

0.000082057

0.001129702
0.001129702

Number of voxels

2023

408

587

1443

269
160

Cluster

Breakdown (number of voxel)

Left inferior frontal gyrus (1663)
Left middie frontal gyrus (202)
Leftinsula (158)

Right inferor frontal gyrus (70)
Right middle frontal gyrus (38)
Left orbitfrontal gyrus (339)
Right orbitfrontal gyrus (248)

Left paracentral lobule (327)
Left supplementary motor area (129)
Right paracentral lobule (363)

Right precentral gyrus (96)

Right supplementary motor area (528)
Left cerebellum (269)

Left cerebellum (160)

HCS, healthy control subjects; MNI, Montreal Neurological Institute; OCD, obsessive-compulsive disorder; ReHo, regional homogeneity; SDM, seed-based d mapping.

Jackknife sensitivity
analysis (combination of
studies detecting

the differences)

10 out of 10

8outof 10

8outof 10

10 out of 10

9outof 10
9outof 10
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Analysis

Jackknife sensitivity analysis (discarded study)
Yang et al., 2010

Ping et al., 2013

Yang et al., 2015

Chen etal., 2016a

Niu etal., 2017

Bu etal, 2019

Hu etal, 2019

Yang et al., 2019

Xia et al., 2020%

Xia et al., 2020*

Subgroup analysis

Studies including unmedicated OCD patients (N = 8)
Studies corrected using threshold of 0.05 (N = 9)

LeftIFG

<K<K <<<<<<

<

Right IFG

<< <<=<=<zZz<<

z

Left OFG

ZzZ < << <<<<<

<

Right SMA

<< << << <<<<

<

Left cerebellum

<< <Z<<<<<=<

<

Right cerebellum

<< <Z<<<<<<

<

IFG, inferior frontal gyrus; N, no; OCD, obsessive-compuilsive disorder; OFG, orbitofrontal gyrus; ReHo, regional homogeneity;. SMA, supplementary motor area; Y, yes.

#Subgroup of autogenous-type OCD patients.
*Subgroup of reactive-type OCD patients.
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