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Distinct Functions and Assembly
Mechanisms of Soil Abundant and
Rare Bacterial Taxa Under Increasing
Pyrene Stresses
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Xianglong Li1,2, Zhihui Bai1,2 and Xuliang Zhuang1,2*
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Elucidating the relative importance of species interactions and assembly mechanisms
in regulating bacterial community structure and functions, especially the abundant
and rare subcommunities, is crucial for understanding the influence of environmental
disturbance in shaping ecological functions. However, little is known about how
polycyclic aromatic hydrocarbon (PAH) stress alters the stability and functions of
the abundant and rare taxa. Here, we performed soil microcosms with gradient
pyrene stresses as a model ecosystem to explore the roles of community assembly
in determining structures and functions of the abundant and rare subcommunities.
The dose–effect of pyrene significantly altered compositions of abundant and rare
subcommunities. With increasing pyrene stresses, diversity increased in abundant
subcommunities, while it decreased in the rare. Importantly, the abundant taxa exhibited
a much broader niche width and environmental adaptivity than the rare, contributing
more to pyrene biodegradation, whereas rare taxa played a key role in improving
subcommunity resistance to stress, potentially promoting community persistence and
stability. Furthermore, subcommunity co-occurrence network analysis revealed that
abundant taxa inclined to occupy the core and central position in adaptation to the
pyrene stresses. Stochastic processes played key roles in the abundant subcommunity
rather than the rare subcommunity. Overall, these findings extend our understanding of
the ecological mechanisms and interactions of abundant and rare taxa in response to
pollution stress, laying a leading theoretical basis that abundant taxa are core targets for
biostimulation in soil remediation.

Keywords: assembly processes, abundant and rare taxa, biodegradation, environmental adaptability, polycyclic
aromatic hydrocarbons

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) have been extensively researched on account of their
biotoxicity and high detection rate in the environment (Ma and Cao, 2010; Keith, 2015). Soil
is the reservoir and transfer station of PAHs in the environment, which cause great effects on
microorganisms and soil function (Crampon et al., 2018). The soil microbial community consists
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of a few taxa with high abundance (defined as abundant bacterial
taxa) and a great quantity of taxa with low abundance (defined
as rare bacterial taxa) (Hanson et al., 2012; Jousset et al., 2017),
and prior studies indicated that abundant and rare microbial
taxa often exhibited different distribution patterns and functional
traits (Xue et al., 2020; Zhao et al., 2020). To date, some studies
have evaluated the influence of PAHs on the whole bacterial
community (Gao et al., 2019) and found obvious changes in
community compositions and functions of soil microecosystems
(Lors et al., 2010; Shahsavari et al., 2019). However, it is not clear
how the abundant and rare bacterial taxa respond and adapt
to different levels of PAH disturbance in soils and, in turn, the
dose–effect of PAHs on the functions of the two subcommunities.

Recently, a growing body of research has emphasized the
ecological importance of rare taxa (Lynch and Neufeld, 2015;
Jousset et al., 2017), and distinct succession patterns and
functional characteristics were found in abundant and rare taxa
(Jia et al., 2018; Jiao and Lu, 2020b; Rocca et al., 2020). The
abundant taxa are usually perceived as the most active category in
biogeochemical cycles, especially carbohydrate metabolism, and
take up the coring niche (Jiao et al., 2017; Kurm et al., 2019; Liang
et al., 2020). Besides, due to their high abundance, the abundant
taxa might present greater survivability to environmental stresses
(Jiao et al., 2019; Jiao and Lu, 2020b). As for the rare taxa,
according to numerous studies, they serve as a reservoir of
genetic and functional diversity for the whole community and
contribute to the maintenance of microbial diversity (Jousset
et al., 2017; Rocca et al., 2020). That is, when faced with
environmental disturbance, the rare taxa could respond promptly
to maintain community stability (Ji et al., 2020; Zhang et al.,
2020). For example, some rare taxa may turn to be dominant
taxa in the community to enrich ecosystem functions for the
disturbance (Jiao et al., 2019; Du et al., 2020). The interaction and
transformation of abundant and rare bacterial taxa are critical to
maintaining soil functional redundancy and community stability
(Li et al., 2019; Liang et al., 2020). Exploring the co-occurrence
relationship and succession pattern between abundant and
rare bacterial taxa is conducive to identify the keystone taxa
in soil microecosystems, so as to better predict and restore
soil functions under different levels of PAH pollution (Stegen
et al., 2012; Jiao and Lu, 2020a). But so far, very few works
have addressed the mutual relations and succession patterns of
the abundant and rare bacteria taxa under different levels of
PAH concentrations.

Community assembly, studying the processes that shape
the traits and abundance of taxa in ecological communities,
is a key issue in evaluating the influence of environmental
pollutants on the soil bacterial community and in turn
affects the transfer and biodegradation of the pollutants
(Stegen et al., 2013; Jia et al., 2018; Guittar et al., 2019).
Since there are distinct ecological responses to environmental
changes, the abundant and rare subcommunities might be
dominated by different assembly processes under disparate
disturbances (Jia et al., 2018; Liang et al., 2020). Some
researchers suggested that abundant and rare bacterial
taxa have a similar community assembly mechanism (Liao
et al., 2017), while others reached the opposite conclusion

that there is a considerable discrepancy in the proportion
of stochastic and deterministic processes in the assembly
of abundant and rare subcommunities (Du et al., 2020;
Ji et al., 2020). Obviously, we still lack a comprehensive
understanding of the universality in community assembly
of abundant and rare bacterial communities under specific
environmental disturbances. Clarifying the essential mechanisms
for microbial succession and assembly under PAH stress has
vital importance on soil microbial remediation (Dua et al., 2002;
Gavrilescu et al., 2015).

In this study, we chose pyrene, four-aromatic ring model
compounds for PAHs, to establish a soil microcosm incubation
experiment in order to simulate different pollution levels with
the purpose of: (i) clarifying the uncertain succession patterns
(such as diversity, distribution, function) of abundant and
rare bacterial taxa under different levels of pyrene stresses;
(ii) revealing the co-occurrence relationships of the rare and
abundant bacterial taxa in response to different levels of pyrene
stresses; (iii) assessing the major processes controlling the
assembly of the abundant and rare bacterial subcommunities
along with pyrene stresses. Based on different ecological
functions and environmental adaptations of abundant and rare
bacterial taxa, we hypothesized that soil abundant bacterial
taxa may have broader adaptivity to serious PAH stresses
than rare bacterial taxa and distinct mechanisms dominated
the assembly of the abundant and rare subcommunities.
Our study could help predict the responses of soil bacteria
to environmental pollutions and understand the generation
and maintenance of bacterial functions in further in situ
bioremediation technologies.

MATERIALS AND METHODS

Soil Sampling and Experimental Setup
Surface soil samples were collected by thoroughly mixing
several soil cores from a farmland (40◦23′ E and 116◦40′ N)
in Changping District, Beijing, North China. All the samples
were packed in sterile self-sealing bags and then sent to the
laboratory immediately under dry ice conditions. The soil
samples were passed through a 2-mm sieve after naturally
air-dried under dark conditions to ensure homogeneity for
subsequent experiments. The soil had a pH of 7.9, and the
soil organic carbon and total nitrogen concentrations were 1.12
and 1.34 g kg−1, respectively. The total concentration of 16
Environmental Protection Agency (EPA) priority PAHs in this
soil was 66 µg kg−1, which was far less than the standards of
unpolluted soils (<200 µg kg−1) according to the classification
of PAH pollution levels indicated by Maliszewska-Kordybach
(1996). Besides, the soil also was below the soil pollution
risk screening values for agricultural and development land
from the Soil Environmental Quality Risk Control standard
for soil contamination of agricultural land (GB15618-2018) and
development land (GB36600-2018) issued by the Ministry of
Ecology and Environment of China.

Five treatments were carried out with six replicates:
unpolluted soil (Control Treatment) and polluted soils under
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four different pyrene concentrations (1, 10, 100, and 500 mg
pyrene per kilogram dry soil, represented by PYR1, PYR10,
PYR100, and PYR500, respectively). Pyrene-polluted soils were
prepared in reference to the method of Brinch et al. (2002).
Briefly, acetone stock solutions with different concentrations
of pyrene were prepared first and then the same volume of
stock solutions was spiked into 250-g homogenized soils.
After the acetone completely evaporated, the spiked soils were
thoroughly mixed with the remaining 750-g unpolluted soils.
Meanwhile, an equal volume solution of pure acetone was added
to the unpolluted soils in the same procedure to eliminate the
effects of acetone.

For each treatment, 10-g pretreated soils were placed in a
120-ml serum bottle; then, sterile water was used to keep the soil
moisture at about 60% every 2 days. All the microcosms were
incubated for 35 days at 25◦C in the dark. At the end of the 35-day
incubation period, the pyrene concentration in Treatment PYR1
was lower than the detection limit, and all the soil CO2 emission
rates showed a downward trend. Therefore, soil samples were
stored at−80◦C for microbial analyses.

Residual pyrene in soils was obtained by accelerated solvent
extraction (ASE 350, Dionex, Thermo Scientific, United States)
and solid-phase extraction purification and quantified by
gas chromatography coupled to mass spectrometry (GC-MS,
Shimadzu, Kyoto, Japan). The detailed parameters of GC-
MS were 50◦C hold for 2 min, rise to 180◦C at a rate of
20◦C/min, increase at 10◦C/min to 290◦C, then hold for 10 min
(Rombolà et al., 2015).

To further confirm the results that pyrene stresses influenced
the abundance of abundant and rare taxa, and the abundant taxa
played an important role in pyrene degradation, unpolluted soils
from four different places (Qingdao, Changsha, Kunming, and
Guangzhou, represented by QD, CS, KM, and GZ, respectively)
in China were collected to establish the microcosm. The PYR500
and its controls (soils without pyrene) were harvested after
35 days of cultivation and subjected to DNA extraction, 16S rRNA
gene sequencing, and the further analysis.

DNA Extraction and Illumina Sequencing
Extraction and purification of total bacterial genomic DNA from
microcosms were performed using a FastDNA R© SPIN Kit for Soil
(MP Biochemicals, United States) following the manufacturer’s
instructions. The quantity and purity of soil DNA were
determined by a Nanodrop 2000 UV-Vis Spectrophotometer
(NanoDrop Technologies, Wilmington, DE, United States). DNA
was quantified for nidA gene (pyrene dioxygenase gene) through
the primer nidA-F (5′-TTC CCG AGT ACG AGG GAT AC-3′)
and nidA-R (5′-TCA CGT TGA TGA ACG ACA AA-3′) (Ren
et al., 2016). The V3–V4 region of the bacterial 16S rRNA gene
was amplified using the primer 338F (5′-ACT CCT ACG GGA
GGC AGC AG-3′) and 806R (5′-GGA CTA CHV GGG TWT
CTA AT-3′) (Lee et al., 2017). The 20-µl PCR mixture contained
4 µl of 5 × FastPfu buffer, 2 µl of 2.5 mM dNTPs, 0.8 µl of
5 µM each primer (forward and reverse), 0.4 µl of TransStart
Fastpfu DNA polymerase, 0.2 µl of bovine serum albumin, and
10 ng of sample DNA. The PCR reaction conditions were 95◦C
for 3 min, followed by 26 cycles of 30 s at 95◦C, 55◦C for

30 s, 72◦C for 45 s, and a final extension at 72◦C for 10 min.
Each PCR product was sequenced on the Illumina MiSeq PE
300 × 2 sequencer at Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).

Sequence Analysis
The Galaxy pipeline at the Research Center for Eco-
Environmental Sciences, Chinese Academy of Sciences1,
was used to process and analyze the high-throughput sequencing
data (Feng et al., 2017). Briefly, paired-end reads were merged
to a sequence of each sample according to the overlapped
regions of reads (Zhang et al., 2017). Meanwhile, quality control
and filtering were carried out to remove reads with lengths
less than 50 bp, average score less than 20, and containing
N bases. Effective sequences of each sample were obtained
by distinguishing according to their unique barcodes and
primer sequences with Fastp (Chen et al., 2018) and FLASH
(Magoc and Salzberg, 2011). For the 30 soil samples, the
mean average length was 418.87 ± 1.09 bp, and 1,374,419
quality-filtered clean sequences were obtained, ranging from
39,134 to 51,214 with a mean of 45,814 sequences per sample.
Operational taxonomic units (OTUs) were picked using
UPARSE at 97% similarity level, and sequences were then
assigned to the SILVA reference using the RDP classifier
(Quast et al., 2013). To compare different samples, we
used a randomly selected subset of 39,134 sequences from
each sample to normalize sequencing effort across samples.
Finally, a resample OTU table was obtained for further
statistical analysis.

Data Analyses
Generally, different cutoffs of the relative abundance are applied
to distinguish abundant and rare bacterial taxa. In our study, (i)
OTUs with a relative abundance ≥ 1% in a sample were defined
as abundant bacterial taxa, (ii) OTUs with a relative abundance
< 0.01% in a treatment were defined as rare bacterial taxa, and
(iii) OTUs with a relative abundance < 1% in a treatment and
≥ 0.01% in a sample were defined as moderate taxa (Ji et al., 2020;
Liang et al., 2020; Mo et al., 2021).

Here, α-diversity indices (Shannon-Wiener and Simpson)
were calculated through the “vegan” package, and one-way
ANOVA was used to determine whether there were any
statistically significant differences among treatments, followed
by the post hoc Tukey honestly significant difference (HSD)
test. In addition, β-diversity was measured based on Bray–
Curtis dissimilarity using metaMDS in “vegan” package, and
the non-metric multidimensional scaling (NMDS) was visualized
using “ggplot2” package (Oksanen et al., 2013). Furthermore,
analysis of similarities (ANOSIM) was performed to test
whether there were significant differences in the soil bacterial
community structures at different treatments. Resistance of
abundant and rare taxa in polluted soils was calculated based
on the Shannon–Wiener index compared to the Control
(Liang et al., 2020).

1http://mem.rcees.ac.cn:8080/
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Co-occurrence network was carried out through Molecular
Ecological Network Analysis Pipeline (MENA2) based on the
Random Matrix Theory (RMT) and Spearman correlation (Deng
et al., 2012, 2016). According to the RMT-based modeling,
a cutoff was chosen to construct the network, and then
global network properties were calculated including individual
nodes’ centrality, degree, betweenness, and clustering coefficient.
Integrating all the results obtained from MENA, co-occurrence
network was visualized by Gephi.

To predict the functional composition of the microbial
community in the samples, the OTU abundance table was first
standardized to remove the influence of the copy numbers
of 16S marker gene in the species genome through Tax4Fun
(Ashauer et al., 2015). Then, the corresponding relationship
between SILVA classification and Kyoto Encyclopedia of Genes
and Genomes (KEGG) database was established to predict
microbial community function. Linear discriminant analysis
Effect Size (LEfSe) was carried out to find the functions
most likely to explain the differences among treatments
(Segata et al., 2011).

Niche width was measured according to Levins’ coefficient
(Levins, 1968):

Bi = 1
/∑r

j=1 P
2
ij

(1)

where Bi is the habitat niche width of OTUi, and Pij is the
proportion of OTUi in the total OTUs within a given resource
state j. The average number of all OTUs’ B was calculated to
represent the niche width of the bacterial community.

Threshold indicator taxa analysis (Baker and King, 2010)
was performed to analyze the threshold value of each abundant
and rare bacterial taxa in response to variation of pollutant
concentration. The z score of abundant and rare bacterial
taxa was used to integrate taxon occurrence, abundance,
and directivity.

In order to uncover the assembly mechanism of abundant
and rare subcommunities, we performed the Sloan neutral
community model (Sloan et al., 2010) and null model (Stegen
et al., 2012) using the R scripts. The neutral community model
was fitted by the nonlinear least-square fitting method, and
the 95% confidence interval was predicted by the “Hmisc”
package (Miller et al., 2016). In terms of the null model, Beta
Taxon Index (βNTI) and Raup–Crick (RCBray) were calculated
to represent phylogenetic and taxonomic diversity (Stegen
et al., 2013; Zhou and Ning, 2017). |βNTI| > 2 indicates
the dominance of deterministic processes, while |βNTI| < 2
indicates the dominance of stochastic processes. |βNTI| < 2 and
RCBray < −0.95 represent homogenizing dispersal. |βNTI| < 2
and RCBray > 0.95 represent dispersal limitation. |βNTI| < 2
and |RCBray| < 0.95 represent “undominated” assembly (mainly
consists of weak selection, weak dispersal, diversification, and/or
drift). βNTI < −2 represents homogeneous selection. βNTI > 2
represents variable selection.

2http://ieg4.rccc.ou.edu/mena

Accession Numbers
All raw sequences of Illumina sequencing in this study have been
submitted to the NCBI Sequence Read Archive (SRA) database,
and the BioProject accession numbers for this research were
PRJNA638003 and PRJNA728746.

RESULTS

Relative Abundance and Taxonomic
Compositions of Abundant and Rare
Bacterial Taxa
In order to investigate the succession of abundant and rare
bacterial taxa under different pyrene concentrations, we classified
each OTU based on the selected cutoff and calculated the total
relative abundance of abundant and rare bacterial taxa. Overall,
abundant bacterial taxa (18–37 OTUs) accounted for only a small
part of the bacterial community but represented 17.1%–43.8%
of the soil microbial community abundance. However, 6,085–
7,851 OTUs were attached to rare bacterial taxa, only accounting
for 5.3%–8.5% of all sequences. With the increasing pyrene
concentrations in soils, the proportion of abundant bacterial taxa
increased, while the relative abundance of rare bacterial taxa
decreased (Figures 1A,B; Supplementary Figure 1). Compared
with polluted soils containing pyrene, the abundant bacterial
taxa in unpolluted soil (Control) were significantly lower
regardless of pyrene concentrations. In contrast, the rare bacterial
taxa in the Treatment Control showed an opposite trend,
significantly higher than polluted soils. The majority (94.6%–
100%) of abundant bacterial taxa in polluted soils were from
unpolluted soils, with about 21.6% from initially abundant
bacterial taxa and 8.04% from initially rare bacterial taxa.
However, a large part (63.3%–82.4%) of rare bacterial taxa in
polluted soils was not detected in the original unpolluted soils
(Supplementary Table 1).

To better figure out the microorganisms’ representative
for abundant and rare bacterial taxa under different levels of
pyrene stresses, we investigated the taxonomic compositions
of the microbial community. The abundant bacterial taxa were
comprised of nine phyla, dominated by Proteobacteria and
Firmicutes, whereas up to 41 different phyla constituted the
rare bacterial taxa (Figures 1C,D). Proteobacteria accounted
for a high proportion in both abundant (28.5%–60.1%) and
rare bacterial taxa (7.2%–35.6%). Interestingly, the relative
abundance of Proteobacteria in abundant bacterial taxa
increased with pyrene concentration, while a completely
opposite trend was shown in rare bacterial taxa. As the
pyrene concentration increased, the relative proportion of
Firmicutes (19.1%–35.4%) in abundant bacterial taxa was on
a downward path. Across abundant bacterial taxa, Chloroflexi
and Deinococcus-Thermus were not involved in unpolluted
soil but present in polluted soils (1.1%–3.8% and 2.0%–6.0%
respectively), suggesting that the presence of pyrene activates
specific bacteria taxa. Certain phyla occurred only in the rare
bacterial taxa, such as Planctomycetes and Gemmatimonadetes.
Compared with Control, the relative abundances of GAL15,
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FIGURE 1 | Relative abundance for abundant (A) and rare (B) bacterial taxa and taxonomic compositions for abundant (C) and rare (D) bacterial taxa. Each sample
has six replicates, and the bar represents the standard deviation of the mean from the six replicates. Values assigned with the same letter were not significantly
different by post hoc Tukey honestly significant difference (HSD) test (p ≤ 0.05).

Omnitrophicaeta, Planctomycetes, and Fibrobacteria in the
rare subcommunity were significantly increased in PYR500. In
particular, as for PYR500, the rare bacterial taxa were dominated
by Planctomycetes (28.3%) and exhibited a higher relative
abundance than other treatments (1.5%–2.4%).

Diversities and Functions of Abundant
and Rare Bacterial Taxa Under Different
Pollution Concentrations
Pollutants significantly changed the α-diversity of abundant
and rare bacterial taxa (Figure 2A; Supplementary Figure 2).
Compared with unpolluted soils, the Shannon–Wiener index of
abundant bacterial taxa (2.16–3.96) in polluted soil increased,
whereas rare bacterial taxa (7.07–7.58) decreased (Figure 2A;
Supplementary Figure 3; ANOVA, p < 0.05). Moreover, we
observed a significant influence of the pollution concentrations
on both abundant and rare subcommunity structure based on
Bray–Curtis dissimilarity (Supplementary Figure 4; ANOSIM,
R = 0.899, p = 0.001 and R = 0.975, p = 0.001, respectively),
and particularly, rare bacterial taxa were more sensitive than
abundant bacterial taxa.

To further illustrate the differences between abundant and
rare bacterial taxa under different pollution concentrations,
community functions were analyzed by Tax4Fun based on
KEGG Ortholog database. As for the six mainly functional
categories, “Metabolism” always accounted for more than 60%
across all samples in both abundant and rare bacterial taxa,
followed by “genetic information processing” (17.4%–20.6%)
(Supplementary Figure 5A). Rare bacterial taxa had five more
functions than abundant bacterial taxa, mainly related to cellular
processes (Supplementary Figure 5B). Interestingly, compared
with Control, abundance of “Metabolism” showed an increasing
trend along with increasing pollution concentrations no matter in
abundant or rare bacterial taxa. However, there was a downturn
in “genetic information processing” of polluted soils in both
abundant and rare bacterial taxa (Figure 2B). Furthermore,
based on LEfSe analysis, many functions significantly differed
among treatments in both abundant and rare bacterial taxa
with the LDA score (log 10) > 3.0 (Supplementary Figure 6).
As for the abundant bacterial taxa, functions affiliated to the
cellular processes were more abundant in unpolluted soils, while
metabolism (related to degradation) showed a more important
position in polluted soils. Moreover, functions related to bacterial
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FIGURE 2 | Changes of the diversities and functions in abundant and rare subcommunities under different levels of pyrene stress. (A) The Shannon–Wiener index
and (B) heatmap of potential community functions based on Tax4Fun in abundant and rare subcommunities. (C) The correlation analysis between the abundance of
abundant and rare taxa and pyrene degradation rate or logarithm of nidA gene copies; the correlation analysis between resistance of abundant and rare taxa and
natural logarithm of pyrene stress concentrations.

membrane transport, such as ABC transporters, were more
prevalent in the rare bacterial taxa under pyrene stresses.

In order to further verify the metabolism functions of
abundant and rare bacterial taxa, correlation analysis between the
abundance of abundant and rare taxa and pyrene degradation
rates under different levels of pyrene stresses was performed
(Figure 2C). Obviously, the degradation rate was significantly
positively correlated with the abundance of abundant taxa
(Spearman R = 0.62, p = 0.0011), whereas it was negatively
correlated with the rare (R = −0.66, p = 0.00039). Interestingly,
the same conclusion was found in the correlation between
the copies of nidA gene (pyrene dioxygenase gene) and the
abundance of abundant (Spearman R = 0.58, p = 0.0027)
and rare (Spearman R = −0.7, p = 0.00013) taxa. When
focusing on the resistance ability of subcommunities under
stress environments, we found that the resistance of rare
subcommunity (0.8886–0.9995) was much higher than that

of abundant subcommunity (0.4481–0.7638), and both were
negatively correlated with pyrene stress concentrations (rare:
Spearman R = −0.51, p = 0.01; abundant: Spearman R = −0.47,
p = 0.02).

Co-occurrence Patterns of Abundant
and Rare Subcommunities
To better examine the interaction between microorganisms
with different abundances in the community, a subcommunity
co-occurrence network was constructed at the OTU level based
on the Spearman’s correlation relationships. The co-occurrence
network exhibited a scale-free character (Supplementary
Figure 7, R square power-law: 0.917), indicating a nonrandom
structure. In the whole network, there were about 14, 79, and
290 OTU nodes of abundant, moderate, and rare bacterial taxa,
respectively. Most abundant nodes tended to have edges with
rare nodes. Two important node-level topological features of
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FIGURE 3 | Network analysis (A) and topological relations (B–D) between abundant and rare taxa under different levels of pyrene stress. The blue and green nodes
represent abundant and rare operational taxonomic units (OTUs), respectively. All the networks were visualized by Gephi. The size of each node is proportional to its
number of connections. Node degree (B), betweenness (C), and clustering coefficient (D) of abundant and rare networks under different levels of polycyclic aromatic
hydrocarbon (PAH) stress. Asterisks indicate significance: ∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001 based on Tukey honestly significant difference
(HSD) test.

different subcommunities including degree and betweenness
were performed to further resolve the differences. The values of
node degree and betweenness were significantly higher for rare
and moderate taxa than abundant bacterial taxa (Tukey HSD,
p < 0.001 and p < 0.01 respectively), but there was no significant
difference between rare and moderate taxa in both topological
features (Tukey HSD, p > 0.05).

In order to further reveal the direct relationship between
abundant and rare bacterial taxa, co-occurrence networks
were built through linking abundant OTUs to rare OTUs
under different pollution concentrations. With the increase of
pollutant concentrations, the co-occurrence networks tended to
be simplified, among which nodes and links showed a decreasing
trend gradually (Figure 3). In particular, more nodes related to
abundant bacterial taxa showed high levels in PYR500 compared
with rare bacterial taxa. We also calculated three important node-
level topological features of different subcommunities including
degree, betweenness, and clustering coefficient (Figure 3).
Importantly, we only found that the node degree of abundant
bacterial taxa was significantly higher than that of rare bacterial
taxa in unpolluted soils. Besides PYR100, other treatments of
betweenness in abundant bacterial taxa were significantly higher
than those in rare bacterial taxa (p < 0.05), and nodes with high
betweenness had more control over the network, indicating that
more information may be passed through abundant bacterial
taxa. However, except PYR100, the clustering coefficient in
abundant bacterial taxa was significantly lower than that in rare,
suggesting that the adjacency points of rare bacterial taxa had a
higher interconnection degree.

Ecological Assembly Processes of the
Abundant and Rare Subcommunities
To examine the adaptive capacity of microorganisms in specific
PAH-polluted environments, we calculated the average niche
width of the community. Notably, along the increasing PAH
concentrations in soil, the average niche width (8.83–11.05) of
the community showed a trend of gradual increase (Figure 4A;
ANOVA, p < 0.05). When the pyrene concentrations exceeded
10 mg kg−1 soils, the bacterial community had a significantly
broader niche width than Control and PYR1 (Tukey HSD,
p < 0.05). In addition, we performed the niche width of
subcommunities to further refine the response of abundant and
rare bacterial taxa to pyrene stresses. There was a significant
difference across the niche width of three subcommunities
in all treatments, and the rare subcommunity stayed at the
narrowest niche width (Figure 4B). Interestingly, the niche width
of abundant subcommunity was significantly broader than that
of the rare subcommunity (Tukey HSD, p < 0.05), whereas it
was narrower than that of the moderate subcommunity (Tukey
HSD, p > 0.05). Moreover, we also discovered the consistent
trend for the threshold values of subcommunities to respond to
pyrene stresses in soils using threshold indicator taxa analysis
(TITAN2), which is calculated based on the sum z scores
for each taxon in subcommunities (Figure 4C). That is, the
abundant subcommunity exhibited a significantly broader range
of threshold for pyrene stresses than the rare subcommunity
(Tukey HSD, p < 0.05).

To address the effect of pyrene stresses on community
and subcommunity assembly, we performed Sloan neutral
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FIGURE 4 | The environmental adaptability of the entire bacterial community
(A) and subcommunities (B,C) under different levels of pyrene stress. The
niche width of the (A) entire community and (B) subcommunities, (C) the
environmental threshold to pyrene stresses of abundant and rare
subcommunities. Values assigned with the same letter were not significantly
different by post hoc Tukey honestly significant difference (HSD) test
(p ≤ 0.05).

community model to determine the relative importance of the
neutral processes. Along the increasing pyrene concentrations,
the goodness of fit (R2 = 0.599–0.657) of the neutral community
model displayed a downward trend (Figure 5). We discovered
that the neutral community model accounted for a large part of
the community variance (84.4%–87.6%) between the occurrence
frequency of OTUs and their mean relative abundance. There was
a gradually decreasing trend in the Nm-value with the increased
levels of PAHs pollution (Nm = 27,597–24,320). Almost all of the

abundant bacterial taxa were distributed in the 95% confidence
interval of the predicted neutral community model, whereas
majority of the rare bacterial taxa were above the predicted
occurrence frequency.

To better illustrate the differences of assembly processes
between the abundant and rare subcommunities, the null model
was performed based on the βNTI. For the entire community,
the βNTI values in Control were mainly between −2 and
2 but gradually below −2 along the pyrene concentrations
(Supplementary Figure 9A). We found that the maximum
mean βNTI values for abundant and rare subcommunities
were both in PYR500 (Supplementary Figure 8). Majority of
the βNTI values for the abundant subcommunity dominated
between −2 and +2 in all treatments, whereas the distributions
of βNTI gradually shifted with increasing pyrene concentration
in the rare subcommunity from stochastic community
assembly (−2 < βNTI < +2) to deterministic community
assembly (|βNTI| > 2). Given the Raup–Crick distance
based on taxonomic dissimilarity index, along the pyrene
concentration, the stochastic assembly (dispersal limitation,
86.7%–93.3%) occupied a large proportion in the abundant
subcommunity (Figure 6). However, the trend in the fraction of
dispersal limitation was a decrease with pyrene concentration
(from 73.3% at Control to 40% at PYR500) in the rare
subcommunity. Importantly, in polluted soils (except PYR10),
deterministic community assembly (heterogeneous selection
and homogeneous selection) contributed more variation
than stochastic community assembly (dispersal limitation).
Similarly, the proportion of deterministic community assembly
(heterogeneous selection and homogeneous selection) increased
with the pyrene concentrations (Supplementary Figure 9B).

Changes of Different Soils in Abundant
and Rare Taxa Under Pyrene Stresses
To get more evidence, we performed microcosm incubation
using four different soils and analyzed their abundant and
rare taxa. Similarly, the relative abundance of abundant
taxa in PYR500 (28.8%–76.7%) were significantly higher
than those in Control (10.1%–49.2%) across all soil samples
(p < 0.001). The rare taxa in PYR500 showed a significantly
lower relative abundance than in Control (Supplementary
Figure 10A; p < 0.01). Importantly, the pyrene dioxygenase
gene copies (nidA) were also significantly positively correlated
with abundance of abundant taxa (Supplementary Figure 10B;
Spearman R = 0.69, p = 0.013), further suggesting that the
abundant taxa played an important role in pyrene degradation.
Moreover, the rare taxa presented a significantly higher resistance
index compared with the abundant taxa (Supplementary
Figure 10C; p < 0.001), implying that the rare taxa are critical
for maintaining community stability.

DISCUSSION

Previous studies have revealed the impact of PAHs on microbial
communities (Lors et al., 2010; Niepceron et al., 2013; Crampon
et al., 2018; Li et al., 2020), but few have reported the succession
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FIGURE 5 | Neutral model (relative abundance–frequency relationships) of the entire bacterial community (A) and the abundant and rare taxa (B) under different
levels of pyrene stresses. The dashed blue line represents the 95% confidence interval above and below the prediction (the solid blue line). R2 indicates the
coefficient of the neutral fit, and Nm indicates the metacommunity size times immigration.

patterns and community assembly mechanisms of abundant and
rare bacterial subcommunities under various pyrene stresses. In
this study, microcosm was constructed to explore the strategies
of soil abundant and rare bacterial taxa in response to diverse
pyrene concentrations. Pyrene stresses increased the proportion
and diversity of abundant bacterial taxa, whereas rare bacterial
taxa presented an opposite trend. Compared with the rare
bacterial taxa, abundant bacterial taxa had better adaptive
capacity and broader niche width to PAH-polluted environment.
The abundant taxa are more likely to degrade pollutants, while
the rare taxa contribute more to community resistance. We
also reveal that distinct community assembly processes drove
the abundant and rare subcommunities under different levels of
pyrene stresses (Figure 7).

Broader Environmental Adaptations of
Abundant Bacterial Taxa in Response to
Pyrene Stresses
Increasing evidence has demonstrated the appreciable impact
of PAHs on soil ecological functions (Wang et al., 2017; Liu
et al., 2020). Numerous studies focused on the effects of PAH
pollution in the natural environment on microbial community,
but the dose–effects of pollutants are easily overlooked. Besides,
although it has been well accepted that soils contaminated
by PAHs have distinctive bacterial diversity and taxonomic
compositions (Crampon et al., 2018; Ahmad et al., 2019), much
less attention has been paid to the succession patterns (such as
diversity, distribution, function) of abundant and rare bacterial
taxa under different levels of pyrene stresses, not to mention their
environmental adaptation.

Here in our study, results showed that there were markedly
different succession patterns between the abundant and rare
bacterial taxa under different levels of pyrene stresses. In terms
of α diversity, the Shannon–Wiener index of rare bacterial taxa
decreased with the increased pyrene concentrations, while the
abundant bacterial taxa presented an opposite trend (Figure 2A;

Supplementary Figure 3). Interestingly, the α diversity of the
rare bacterial taxa was higher than the abundant bacterial taxa
in all treatments (Supplementary Figures 2, 3), suggesting
that the rare bacterial taxa made more contributions to the
composition of overall community (Xue et al., 2018; Du et al.,
2020). Due to their high diversity, the rare bacterial taxa could
increase the functional redundancy of the community, further
providing wider ecological buffering space to strive against a
changing environment (Hausmann et al., 2016; Jiao et al., 2017;
Kurm et al., 2019).

As to the distribution, the abundant and rare bacterial
taxa significantly separated along the pyrene concentration
gradients, the abundant bacterial taxa had a gradual increase
in the proportion (Figure 1). The new abundant bacterial
taxa in polluted soils mainly came from the rare and
moderate bacterial taxa in unpolluted soil, primarily belonging
to Alphaproteobacteria, Gammaproteobacteria (Proteobacteria),
and Bacilli (Firmicutes) (Supplementary Table 1). A wave of
recent studies suggested that the rare bacterial taxa could act
as the “seed bank,” which plays an insurance effect on the
whole community (Rocca et al., 2020). Our results supported
prior studies reporting that the rare bacterial taxa have an
opportunity to be activated to maintain the stability of the
bacterial community under pollution stresses (Jousset et al.,
2017). Intriguingly, four OTUs (OTU_2, OTU_27546, OTU_3,
and OTU_8) belong to the rare species in uncontaminated
soil before and turned into abundant under pyrene stresses
(Supplementary Table 1). OTU_2 and OTU_27546 are aligned
to Burkholderiaceae, while OTU_3 and OTU_8 belong to
Paenibacillaceae and Bacillaceae, which all are known as
typical PAH-degrading bacteria and carried several diverse
ring-cleaving dioxygenase genes (e.g., 1,2 dioxygenase and 3,4-
dioxygenase) (Ghosal et al., 2016; Li et al., 2018; Morya
et al., 2020). However, most of the rare bacterial taxa
in polluted soils were absent from the original unpolluted
soil and have some unique phyla, such as Planctomycetes
and Gemmatimonadetes, indicating that the rare bacterial
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FIGURE 6 | The fraction of assembly mechanism in abundant (A) and rare (B) subcommunities based on the null model.

FIGURE 7 | Functions of the abundant and rare bacterial taxa to adapt to pyrene stresses.

taxa have environmental specificity under PAH selection
(Kurm et al., 2019).

Historically, several studies have shown the occurrence of
microbial adaptation in the environment after exposure to a
xenobiotic chemical (Itrich et al., 2015; Poursat et al., 2019).
PAH stresses altered the dynamic balance of abundant and rare
bacterial subcommunities, further influencing environmental
adaptation (Xue et al., 2018; Jiao and Lu, 2020b). Here,
we discovered that the abundant bacterial taxa have broader
adaptability to pollution stresses from two different aspects. First,
the abundant bacterial taxa possess broader niche width than the
rare, which was consistent with previous research (Figure 4B;
Du et al., 2020; Jiao and Lu, 2020a). The niche width is an
index of biodiversity of biological utilization resources, which
means that the abundant bacterial taxa have the ability to make
efficient use of various resources and survive in a more diverse
environment compared with the rare bacterial taxa (Godoy et al.,

2018). A prior study has demonstrated that many relatively
abundant soil bacterial phylotypes could be found across a
wide range of soils, suggesting the stronger environmental
adaptability of abundant bacterial taxa (Delgado-Baquerizo et al.,
2018). Moreover, the abundant bacterial taxa presented a higher
response threshold to pyrene stresses, which proved that they can
have a relatively durable survivability in polluted environment
from another perspective (Figure 4C; Baker and King, 2010).
Second, according to the correlation-based network analysis, we
found that majority of the abundant bacterial taxa tend to be
connected with the rare bacterial taxa, inferring that the two
subcommunities were simultaneously affected by pyrene stresses
(Figure 3). This is also demonstrated by the simplification of
the network structures between abundant and rare bacterial taxa
along the pyrene gradient. The topology of network could reflect
the interaction among taxa, for example, node degree can indicate
the links, and the node betweenness represents the impact on
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connected nodes (Feng et al., 2017). Our results showed that the
node degree and betweenness of the abundant subcommunity
were higher than those of the rare subcommunity, indicating
that the abundant bacterial taxa were inclined to occupy the
core and central position in adaptation to the PAH stresses
(Du et al., 2020).

Previous studies have shown that microorganisms can adapt
to the environment by regulating their functions (Roller et al.,
2013; Tikariha and Purohit, 2019). Based on the predicted
subcommunity functions, the abundant bacterial taxa showed
gradually enhanced metabolic functions along the PAH gradient
and higher than that of the rare bacterial taxa. Importantly,
functions related to xenobiotics biodegradation and metabolism
(such as PAHs) and metabolism-specific simple carbohydrates
(such as lipid, amino acids, and vitamins) presented higher
relative abundance in the abundant subcommunities than
the rare subcommunities (Figure 2B). This is similar to
a previous work that concluded that high abundance taxa
in polychlorinated biphenyl (PCB)-contaminated soils were
relevant to PCB degradation (Xu et al., 2020). The enhanced
xenobiotics metabolic capacity in abundant bacterial taxa was
conducive to survival in different levels of pyrene stresses.
Both pyrene degradation rate and nidA gene copies (pyrene
dioxygenase gene) were significantly positively correlated with
abundance of abundant taxa, negatively relative to the rare
(Figure 2C), further proving abundant taxa rather than the
rare taxa played an important role in PAH degradation. On
the other hand, functions affiliated with membrane transport,
particularly the ABC transporters, which are important for
tolerance to many different kinds of pollutants, were more
prevalent in the rare communities (Figure 2B). Meanwhile,
the rare subcommunity displayed higher resistance than the
abundant under different levels of pyrene stresses (Figure 2C).
Together, these results indicated that the abundant bacterial taxa
may play an important role in the degradation of pollutants, while
the rare bacterial taxa play a key role in improving community
tolerance (Jiao et al., 2017).

Distinct Assembly Mechanisms of
Abundant and Rare Subcommunities
Under Pyrene Stresses
The assembly process of microbial community can inevitably
affect the diversity and composition of soil microbiome, thus
influencing the functions of soil microecosystem (Leibold et al.,
2017). Therefore, a deeper knowledge of assembly mechanisms
of abundant and rare subcommunities under pyrene stresses
will lead to a better understanding of the adaptability of
bacterial abundance to environmental disturbances. The neutral
community model is a prediction model based on neutral
theory, which is an effective method to infer whether the
stochastic process is dominant in the community assembly
(Sloan et al., 2010). Our results clearly showed that almost
all the abundant bacterial taxa were present in the predicted
neutral region, while most of the rare bacterial taxa were
above the predicted neutral region (Figure 5). The neutral
community model could not explain 100% of the variation

in the microbial community, suggesting that there may be
other community assembly mechanisms that lead to non-
neutral distribution (Dini-Andreote et al., 2015; Hou et al.,
2020). We further performed the null model to elucidate the
assembly mechanism of abundant and rare subcommunities
(Stegen et al., 2013; Wang et al., 2021). In terms of unpolluted
soils, stochastic processes (mainly dispersal limitation, more
than 70% and 90%, respectively) participated in shaping both
abundant and rare subcommunity assemblies (Figure 6). As for
the abundant subcommunity, dispersal limitation was always
dominant, independent of the PAH concentrations. However,
the prominent role of deterministic processes in shaping the
rare subcommunity assembly emerged along the pyrene stresses,
except PYR10. As expected, due to their essentially low relative
abundance and narrow niche width, the rare bacterial taxa are
more sensitive to environmental filtering and less competitive
than the abundant bacterial taxa (Lynch and Neufeld, 2015;
Liang et al., 2020; Rocca et al., 2020). Importantly, the abundant
bacterial taxa with a broader niche width are likely to make
competitive use of various resources and adapt well to specific
ecosystems through active growth and high abundance (Li
et al., 2019; Jiao and Lu, 2020a). This indicates that PAH-
induced taxa assembly has a great influence on the composition
of bacterial subcommunities. As for the stochastic processes
dominated in rare PYR10, we consider it as the turning point
of steady state, with uncertainty, because the Shannon–Wiener
index drops off a cliff in rare bacterial taxa of PYR10, whereas
there was no similar phenomenon in abundant bacterial taxa.
Considering the results of the neutral model and null model, we
revealed that the stochastic process and deterministic process,
respectively, dominate the assembly of abundant and rare
bacterial subcommunities in PAH-polluted soils.

In summary, our study provides a better understanding
of succession patterns and subcommunity assembly processes
underlying the abundant and rare bacterial taxa under different
levels of pyrene stresses and reveals the importance of the
abundant bacterial taxa on the maintenance of community
stability and adaptation to harsh environments. The abundance,
diversity, and metabolism of specific carbohydrates in the
abundant bacterial taxa rose across the increasing pyrene
concentrations. Higher abundance and broader niche width are
beneficial for the abundant bacterial taxa to cope with pyrene
stresses. The rare bacterial taxa with higher phylogenetic diversity
serve as a “seed bank” and play a crucial role in improving
community stress resistance. Stochastic processes were dominant
in driving the assembly of the abundant subcommunity, whereas
the relative importance of deterministic processes progressively
increased with pyrene stresses. The results based on the abundant
and rare bacterial taxa may conduce to broaden our horizon
about understanding the assembly and maintenance of bacterial
diversity and function responses to pollution stresses.
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treatment. Comparison of potential functions in abundant and rare
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subcommunities. Network and topological relation in the whole communities. NTI
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on the null model. The NTI value and fraction of assembly mechanism in entire
community based on the null model. Changes of different soils in abundant and
rare taxa under pyrene stresses.

Supplementary Table 1 | Information of abundant OTUs in treatments.
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Evaluating the Assembly Dynamics in
the Human Vaginal Microbiomes
With Niche-Neutral Hybrid Modeling
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Institute of Zoology, Chinese Academy of Sciences, Kunming, China, 2 Center for Excellence in Animal Evolution
and Genetics, Chinese Academy of Sciences, Kunming, China

Using 2,733 longitudinal vaginal microbiome samples (representing local microbial
communities) from 79 individuals (representing meta-communities) in the states of
healthy, BV (bacterial vaginosis) and pregnancy, we assess and interpret the relative
importance of stochastic forces (e.g., stochastic drifts in bacteria demography, and
stochastic dispersal) vs. deterministic selection (e.g., host genome, and host physiology)
in shaping the dynamics of human vaginal microbiome (HVM) diversity by an integrated
analysis with multi-site neutral (MSN) and niche-neutral hybrid (NNH) modeling. It was
found that, when the traditional “default” P-value = 0.05 was specified, the neutral drifts
were predominant (≥50% metacommunities indistinguishable from the MSN prediction),
while the niche differentiations were moderate (<20% from the NNH prediction). The
study also analyzed two challenging uncertainties in testing the neutral and/or niche-
neutral hybrid models, i.e., lack of full model specificity – non-unique fittings of same
datasets to multiple models with potentially different mechanistic assumptions – and
lack of definite rules for setting the P-value thresholds (also noted as Pt-value when
referring to the threshold of P-value in this article) in testing null hypothesis (model).
Indeed, the two uncertainties can be interdependent, which further complicates the
statistical inferences. To deal with the uncertainties, the MSN/NNH test results under a
series of P-values ranged from 0.05 to 0.95 were presented. Furthermore, the influence
of P-value threshold-setting on the model specificity, and the effects of woman’s
health status on the neutrality level of HVM were examined. It was found that with
the increase of P-value threshold from 0.05 to 0.95, the overlap (non-unique) fitting
of MSN and NNH decreased from 29.1 to 1.3%, whereas the specificity (uniquely
fitted to data) of MSN model was kept between 55.7 and 82.3%. Also with the rising
P-value threshold, the difference between healthy and BV groups become significant.
These findings suggested that traditional single P-value threshold (such as the de facto
standard P-value = 0.05) might be insufficient for testing the neutral and/or niche neutral
hybrid models.

Keywords: unified neutral theory of biodiversity and biogeography, multi-site neutral model, niche-Neutral hybrid
model, human vaginal microbiome, bacterial vaginosis, hierarchical Dirichlet process
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INTRODUCTION

The relationship between human vaginal microbiome (HVM)
and women’s health has been investigated since the 1980s, when
clinical microbiologists had postulated that the diversity and
possibly stability of vaginal microbiome are involved in the
occurrence/recurrence of bacterial vaginosis (BV) (e.g., Sobel,
1999; Fredricks et al., 2005; Fredricks, 2011; Ma et al., 2012).
Those studies are among the earliest ecological approaches to
diseases now often referred to as the human MADs (microbiome-
associated diseases) with an ever more rapidly growing list
including BV, IBD (inflammatory bowel disease), periodontitis,
cystic fibrosis (CF), psoriasis and many others (Lynch and
Pedersen, 2016; Knight et al., 2017; Young, 2017; Gilbert et al.,
2018). The metagenomics technique and the launch of the
human microbiome project (HMP) and MetaHIT (metagenome
of human intestinal tract) have revolutionized the investigation
of the human microbiome and associated diseases during the
last decade or so. Nevertheless, many questions in the field are
still open and new more complex questions are being raised.
In the case of BV and vaginal microbiome, as described by
Fredricks (2011) who borrowed Winston Churchill’s words for a
very different topic, “BV remains a riddle, wrapped in a mystery,
and inside an enigma.” A recent characterization “that BV is
not a single entity, but a syndrome linked to various community
types that cause somewhat similar physiological symptoms.” by
Ma et al. (2012) reflects the state-of-the-art understanding of
BV etiology. Obviously, although the importance of vaginal
microbiome ecology in BV etiology is repeatedly confirmed, the
mechanistic relationship between BV and HVM is far from clear.
A pair of questions of fundamental importance: what are the
underlying mechanisms driving the dynamics of HVM and what
are their implications to the occurrence/recurrence of BV, are still
largely unanswered.

Addressing the question of community assembly and diversity
maintenance, the essential ingredients of community structure
and dynamics, has attracted extensive attention and also led
to vigorous debate (Alonso et al., 2006; McGill et al., 2006;
Chisholm and Pacala, 2010; Rosindell et al., 2011). Two leading
and competing theories in this field have been the traditional
niche theory with a history back to the 1910s (Grinnell, 1917;
Hutchinson, 1957; Holt, 2009) and more recent neutral theory
(Hubbell, 2001). Both theories were invented to explain a familiar
phenomenon on the earth, which was described by Darwin
(1859) in the last paragraph of his “On the Origin of Species”
as “It is interesting to contemplate a tangled bank, clothed with
many plants of many kinds, with birds singing on the bushes, with
various insects flitting about, and with worms crawling through
the damp earth, and to reflect that these elaborately constructed
forms, so different from each other, and dependent upon each
other in so complex a manner, have all been produced by laws
acting around us.” In modern ecological terminology, entangled
bank is essentially the concept of ecological community. Darwin
was wondering how diverse lives (species) could coexist and
form a beautiful entangled bank, while his theory stipulated
the universal struggle for life as a consequence to natural
selection. The classic niche theory assumed that each species

has its own niche in which its individuals are adapted to live
and prosper, and the entangled bank consists of many different
niches suitable for many different species. In terms of niche
theory, deterministic traits a species possess or selective niche
forces play critical roles in driving the assembly of an ecological
community as well as the maintenance of diversity after the
community is established.

In the late 1990s, Hubbell (2001) challenged the traditional
niche view by proposing the unified neutral theory of biodiversity
and biogeography (UNTB). Different from traditional niche
theory, the UNTB was formulated as a probability distribution
model, which can be fitted with the species abundance
distribution data (the number of each species in a community),
obtainable by sampling ecological communities, and rigorously
tested statistically. The theory assumes that the individuals of
all species in a community are demographically equivalent,
but their birth/death rates are stochastic, which means birth-
death, migration, and speciation are all random events.
Consequently, random drift and dispersal play critical roles in
driving community assembly and diversity maintenance. Some
researchers argued that the concept of species equivalence is
“flawed” given the existence of niche differences and competitive
asymmetries among species. Nevertheless, the stochasticity in
species demography (particularly of single-cell microbes) is also
a biological reality and its role may not be ignored in many
communities. In reality, both deterministic niche forces and
stochastic neutral forces may be in effect in setting the rules
of community assembly and diversity maintenance, and it may
be the hybrid effects that shape the community dynamics. For
this reason, in the last decade and so, several hybrid models
that integrate neutral and niche effects have been developed
(e.g., Tilman, 2004; Ofiteru et al., 2010; Stokes and Archer, 2010;
Jeraldo et al., 2012; Pigolotti and Cencini, 2013; Tang and Zhou,
2013; Fisher and Mehta, 2014; Kalyuzhny et al., 2014a,b, 2015;
Matthews and Whittaker, 2014; Noble and Fagan, 2015). As to
the debates on the usefulness and validity of the UNTB, using
an analogy, in modern statistics (especially in biostatistics), it
has been widely recognized that many datasets do not follow the
Gaussian distribution (the normal distribution); nevertheless, few
statisticians would question the foundational role of the Gaussian
distribution, not to mention its validity. Similarly, the merits
and unique advantage of UNTB as a null model for testing the
significance of stochastic drift and dispersal have been firmly
established and widely applied in the community ecology of
plants and animals.

In the present study, we use a pair of models, the first a
multi-site neutral model (Harris et al., 2017) and the second,
a niche-neutral hybrid model (Tang and Zhou, 2013), to
evaluate the relative significance of neutral and niche effects
in shaping the dynamics of HVM. We further investigate
the difference in the neutral-niche continuum between BV
patients and healthy women. Our approach is different from
most existing applications of neutral or hybrid models in the
following three aspects.

First, most existing neutral or niche-neutral hybrid models
use spatially implicit/explicit community/metacommunity data,
whereas we use longitudinal (time-series) sampling of the
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community/metacommunity. In spatially explicit models, the
metacommunity consists of multiple local communities, which
are connected with each other through dispersal and migration.
In temporal (time-series) models, the metacommunity consists
of a series of “snapshots” of the same community at different
time points, i.e., the time-series data obtained from sampling
the vaginal microbiome of a subject at different time points in
this study. Indeed, previously, Kalyuzhny et al. (2014a,b, 2015)
used time-series data to perform dynamic analysis of the niches
versus neutrality and they termed the analysis as a generalized
neutral theory for explaining the static and dynamic properties of
ecological communities. A reason we did not adopt their models
is that the models we use in this study, as explained below,
are truly multi-site mechanistically, which are mapped to the
time-series points in our study.

Second, we use a truly multi-site neutral (MSN) model of
UNTB, which was developed by Harris et al. (2017) to overcome
the severe computational limitation of existing neutral theory
models when the number of local communities is large and
the migration rates among the local communities are different
(Etienne, 2007, 2009a,b). The core technique Harris et al.
(2017) developed was to approximate the multi-site UNTB
model with the hierarchical Dirichlet process (HDP) and use
an efficient Bayesian machine-learning algorithm. With their
approach, fitting even the largest dataset can be performed in
a reasonable amount of time. This important computational
advance enables us to build a UNTB model for each subject by
utilizing the time series sampling of her vaginal microbiome.
This capability is of significant practical importance given the
established connection between BV and the diversity of the
vaginal microbiome, in particular, a long-standing puzzle in BV
etiology – the rise of species diversity associated with BV (e.g.,
Sobel, 1999; Fredricks et al., 2005; Fredricks, 2011; Ma et al., 2012;
Ma and Ellison, 2018, 2019).

Third, we also apply the niche-neutral hybrid (NNH) model
by Tang and Zhou (2013) to further assess the neutral-niche
hybrid effects in shaping the dynamics of HVM diversity. A major
reason we prefer this hybrid model to other existing hybrid
models (e.g., Tilman, 2004; Ofiteru et al., 2010; Stokes and Archer,
2010; Jeraldo et al., 2012; Pigolotti and Cencini, 2013; Tang and
Zhou, 2013; Fisher and Mehta, 2014; Kalyuzhny et al., 2014a,b,
2015; Matthews and Whittaker, 2014; Noble and Fagan, 2015) is
because both MSN and NNH use exactly the same data collection
methods – either multi-site or multi-time-point sampling. The
only essential difference between the neutral-niche hybrid model
(NNH) and multi-site neutral model (MSN) is the assumption
that niche differences exist among local communities in NNH,
while the MSN assumes no niche differentiation. In a time-
series setting, the NNH model can tell us whether deterministic
forces (similar to habitat selection in a spatial setting) such as
when changes in the host’s physiology significantly influence the
dynamics of vaginal microbiome diversity over time.

In summary, by building and testing the MSN and NNH
models for each subject, we are able to evaluate the relative
importance of stochastic forces (e.g., neutral dispersal, drift, and
stochastic diversification) vs. deterministic forces (e.g., microbial
interactions, host genome and physiology, menses, etc.) in

shaping the dynamics of community diversity. Furthermore, if
we treat BV or health status as part of the host physiology,
testing the MSN/NNH models can reveal the impact of BV on
the dynamics of the HVM diversity (assuming that diversity
change is the consequence of BV), or reveal the diversity changes
that induce BV (assuming that diversity change is the cause of
BV). Regardless of the causal assumption, our approach offers a
useful tool for evaluating the mechanisms (niche vs. neutral) of
the dynamics of HVM diversity as well as the factors affecting
the balances between different mechanisms. We demonstrate our
approach (see Figure 1) by using the datasets (see Table 1) from
three separate longitudinal studies on the HVM, including 79
subjects sampled at 2,733 time points (Gajer et al., 2012; Ravel
et al., 2013; Romero et al., 2014).

MATERIALS AND METHODS

Human Vaginal Microbiome (HVM)
Datasets and Analysis Strategy
Table 1 below listed the three published datasets (groups) of
the HVM (human vaginal microbiome), which are reanalyzed
in this study to perform the niche-neutral theoretic analysis.
Figure 1 is a diagram illustrating the background, objectives and
the integrated niche-neutral approach to achieving the objectives
of this study outlined previously. Two mathematical models:
the multi-site neutral model (MSN) by Harris et al. (2017) and
niche-neutral hybrid model (NNH) by Tang and Zhou (2013),
are used to fit the same HVM datasets. Both the models are
extensions or derived from Hubbell (2001) unified neutral theory
of biodiversity and biogeography (UNTB). Brief description of
the MSN and NNH models as well as their fittings is presented in
Table 1. It is noted that these datasets are from three independent
studies: minor difference in sequencing protocols may exist. For
this reason, the samples from each of the 79 individuals are
modeled independently. With the independent modeling, the
influence from sequencing protocols should have minimized.

The Multi-Site Neutral Model (MSN) by
Harris et al. (2017)
Hubbell’s Unified Neutral Theory of Biodiversity
(UNTB)
The UNTB conceptually distinguishes between metacommunity
dynamics from local community dynamics coupled to
metacommunity through migrations. The theory assumes
that both the dynamics are driven by similar neutral processes,
except that in metacommunity speciation, rather than migration
are in operations (Hubbell, 2001, 2006). The neutral process
or ecological equivalence between species implies that the
demographic rates (birth/death) of all species are stochastic but
equivalent on per capita basis (Harris et al., 2017). There are three
key parameters (elements) with the UNTB, the immigration
rate (Ii), which controls the coupling of a local community to
the metacommunity. Another is the speciation rate, also known
as the fundamental biodiversity number (θ), which can be
interpreted as the rate at which new individuals are added to the
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FIGURE 1 | A diagram illustrating the background, objectives and the integrated niche-neutral theoretic-approach to achieving the objectives of this study based on
2,733 longitudinal metagenomics (16S-rRNA) samples collected from 79 women (including BV patients).

TABLE 1 | The datasets of multi-site HVM (human vaginal microbiome) datasets utilized for testing the MSN (multi-site neutral) and NNH (niche-neutral hybrid) models.

Datasets *N **S Sample description Sources

ABV (Asymptomatic Bacterial
Vaginosis)

6 66∼70 Ravel et al. (2013) sampled and DNA-pyrosequenced the vaginal microbiota of
a cohort of 25 subjects over a 10-week period, consisting of 15 SBV, 6 ABV,
and 4 healthy subjects (HEA-1). Total 16S-rRNA reads = 8,757,681, Average
reads = 5285, The dataset is available from:
https://doi.org/10.1186/2049-2618-1-2

Ravel et al. (2013)
Microbiome

SBV (Symptomatic Bacterial Vaginosis) 15 59∼70

HEA-1 (Healthy 1) 4 66∼69

HEA-2 (Healthy 2): “32-healthy” cohort
of HVMC study

32 25∼33 Gajer et al. (2012) sampled and DNA-pyrosequenced the vaginal microbiota of
a cohort of 32 healthy individuals (HEA-2). Total 16S-rRNA reads = 2,522,080
from 937 samples; Average reads = 2692. The OTU table is available at:
doi: 10.1126/scitranslmed.3003605

Gajer et al. (2012)
Science Translational
Medicine

PREG (Pregnancy) 22 3∼8 The vaginal microbiomes of a cohort of 22 normally pregnant women were
sampled 6 times (for each individual) and DNA pyrosequenced. Total 16S-rRNA
reads = 567,448; Average reads = 4082; The dataset is available at:
https://doi.org/10.1186/2049-2618-2-4

Romero et al. (2014)
Microbiome

Total or range 79 3∼70 A total of 79 meta-communities and 2,733 local communities (time-series samples) were sampled to
conduct the tests.

*N = the number of subjects (individuals) included in each dataset. **S = the approximate number of time points when samples of the HVMC were taken from
each individual.
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metacommunity due to speciation. The third aspect of the UNTB
is to assume that the SAD (species abundance distribution) of
each community sample can be described by the multinomial
(MN) distribution, formally:

Xi ∼ MN(Ni, πi) (1)

where Ni is the size of i-th local community, πi is a vector of
the probability of observing a particularly species at i-th local
community (Harris et al., 2017).

UNTB-HDP (Hierarchical Dirichlet Process) Limit to
Metacommunities
A fully general case of fitting multiple sites (local communities)
UNTB with potentially different immigration rates is
computationally extremely challenging (actually intractable)
even for small number of sites, and approximate algorithms must
be utilized (Harris et al., 2017). Harris et al. (2017) developed
an efficient Bayesian fitting framework by approximating the
neutral models with the hierarchical Dirichlet process (HDP).
The approximation was able to encapsulate the three essential
elements of Hubbell (2001) UNTB, as stated above, but offers an
efficient Bayesian fitting strategy for the multi-site UNTB.

Sloan et al. (2006, 2007) showed that for large local population
sizes, assuming a fixed finite-dimensional metacommunity
distribution with S species present, the local community
distribution, π, can be approximated by a Dirichlet distribution
(Sloan et al., 2006, 2007). But it was Harris et al. (2017) who
developed the general framework for approximating the UNTB
computationally efficiently. Assuming there is a potentially
infinite number of species that can be observed in the local
community, then the stationary distribution of observing local
population i is a Dirichlet process (DP), i.e.,

πi| Ii, β ∼ DP(Ii, β) (2)

where β = (β1, ..., βS) is the relative frequency of each species in
the metacommunity, and Ii is the immigration rate.

At the metacommunity level, a Dirichlet process can still be
used, but the base distribution is simply a uniform distribution
over arbitrary species labels. The metacommunity distribution is
then a purely stick breaking process, i.e.,

β ∼ Stick(θ) (3)

where θ is the fundamental biodiversity number. θ is a
function of speciation rate (s) in the form of θ = (s/(1−
s)(N − 1), where N is the size of metacommunity (i.e., the
fixed number of individuals in the metacommunity). The total
number of species (S) in the metacommunity proportionally
increases with θ. In addition, when θ increases, the SAD
(species abundance distribution) is increasingly skewed to low
abundance rare species (Harris et al., 2017). Note that speciation
in the metacommunity is a counterpart of migration in a
local community, except that the speciation is in operation
on a longer timescale than migration. For this reason, both
immigration rate (Ii) and biodiversity number θ have similar
structure in their models. Specifically, Ii = (mi/(1−mi)(Ni −

1), where mi is the immigration probability to local community

i, and Ni is the local community size. Obviously, when Ii →∝,
the stationary distribution of local community should approach
the metacommunity distribution since that means migration
probability is equal to 1, i.e., all members in the local community
are immigrants. When Ii → 0, local community can become
dominated by a single species (Harris et al., 2017).

Given that both local community and metacommunity are
approximated with Dirichlet processes, the problem can be
formulated as a hierarchical Dirichlet process (HDP) (Teh et al.,
2006; Harris et al., 2017). Alternatively, Dirichlet process (DP)
can also be formulated as the so-called Chinese restaurant
process, from which the Antoniak equation can be derived. The
Antoniak equation represents the number species (S) observed
following N draws from a Dirichlet process with biodiversity
number θ, and is with the following form:

P(S |θ, N ) = s(N, S)θS 0(θ)

0(θ+ N)
(4)

where s(N, S) is the unsigned Stirling number of the first kind and
0(.) denotes the gamma function (Antoniak, 1974).

Gibbs Sampler (MCMC Algorithm) for the UNTB-HDP
Model
The full UNTB-HDP model is obtained by combining previous
equations (1–3) and also the distribution models of biodiversity
number (θ) and immigration rate (Ii), both of which are assumed
to follow Gamma distribution. Harris et al. (2017) developed
an efficient Gibbs sampler for the UNTB-HDP approximation,
which is a type of Bayesian Markov Chain Monte Carlo (MCMC)
algorithm and can be summarized as the following four sampling
steps, including sampling the biodiversity parameter, sampling
the metacommunity distribution, sampling the immigration rate,
and sampling the ancestral states. Harris et al. (2017) found
through experiments that to ensure sampling was performed
with the stationary distribution, 50,000 Gibb samples for each
fitted dataset were necessary with the first 25,000 iterations
removed as burn-in. The results are reported as the median
values over the last 25,000 samples with upper and lower credible
limits (Bayesian confidence) given by 2.5 and 97.5% quantiles
of those samples.

Fitness Tests for the UNTB-HDP Multi-Site Neutral
(MSN) Model
To determine whether an observed dataset fits the UNTB-HDP
multi-site neutral (MSN) model (hereafter shortened as MSN
model), Harris et al. (2017) proposed a similar Monte Carlo
significance test to that used by Etienne (2007). Furthermore,
Harris et al. (2017) also developed a procedure to test for the
local neutral community assembly but with a fitted possibly
non-neutral metacommunity because of the hierarchical nature
of the MSN model. Specifically, with Harris et al. (2017) MSN
model, two-level tests (local community and metacommunity
levels) for neutrality can be performed. For both the tests, samples
were generated from N = 2,500 sets of fitted MSN parameters,
which were selected from every tenth iteration of the last 25,000
Gibbs samples (a total of 50,000 samples were simulated, and
the first 25,000 samples were discarded as burn-in). N = 2,500
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is chosen to compute the pseudo P-values for conducting
the neutrality test (Harris et al., 2017). In addition, for each
observed community sample, there is the actual log-likelihood
L0. Two additional parameters θ and M are particular worthy
of mentioning: θ is the median of the fundamental biodiversity
parameters computed from 25,000 times of simulations, and
M-value is the average of the medians of the migration rates of
local communities in each metacommunity, also computed from
25,000 times of simulations.

To test the neutrality at the metacommunity level, PM , which
is “the proportion of the simulated neutral samples with their
likelihoods not exceeding the observed data likelihood” (Harris
et al., 2017). The computation of PM is as follows: Assume LM
is the median of the log-likelihoods of the simulated neutral
metacommunity samples, and NM is the number of simulated
neutral metacommunity samples, having their log-likelihoods
satisfying L≤ L0 (where L is the simulated likelihood and L0 is the
actual likelihood as mentioned previously), then the PM = NM/N
is a pseudo P-value for testing the neutrality at metacommunity
level. If PM > 0.05, the metacommunity appears to satisfy the
MSN model, according to Harris et al. (2017).

To test the neutrality at the local community level, PL, which is
the proportion of the simulated locally neutral samples exceeding
the observed data likelihood (Harris et al., 2017). It is computed
as follows:

Assume LL is the median of the log-likelihoods of the
simulated local community samples, and NL is the number of
simulated local community samples, having their likelihoods not
exceeding the L0, then PL = NL/N, is the pseudo P-value for
testing the neutrality at the local community level. If PL > 0.05,
the local community appears to satisfy the neutral model. Readers
are referred to Harris et al. (2017) for the detailed algorithm and
computational procedures (including the software in C language)
for fitting the MSN model, which we used for analyzing HVM
datasets in this study.

The Niche-Neutral Hybrid (NNH) Model
by Tang and Zhou (2013)
Tang and Zhou (2013) proposed a hybrid niche-neutral model by
revising Volkov et al. (2007) neutral model for multiple discrete
communities. Volkov et al. (2007) assumed that the inter-species
interactions in a steady-state community may be ignored, and all
species in the community become functionally equivalent. They
further assumed that birth and death probabilities of a species
with n individuals are bn = b(n+ γ) and dn = dn, respectively,
where b and d are the per-capita density-independent birth and
death rates, and γ is a parameter for immigration. The migration
was assumed to be species-independent, corresponding to
immigration from a time-averaged metacommunity in a species-
symmetric manner. This treatment of migration, in effect,
ignored any immigration between local communities within the
metacommunity, and also, the rates of immigration considered
were small. By solving the master equation for the dynamics of
a species, Volkov et al. (2007) obtained the probability that a
species has n individuals, which follows the negative binomial

distribution:

p(n) =
(1− x)γ

0(γ)

xn

n!
0(n+ γ) (5)

where x is the ratio of the per capita birth to death rate (i.e.,
b/d, a measure of the lifetime reproductive success), and 0(z) =∫
∞

0 tz−1e−tdt, which is equal to (z-1)! for integer z. They further
obtained the mean number of species with abundance n:

< ϕn >= θ
xn

n!
0(n+ γ) (6)

where θ is the fundamental biodiversity parameter, and S is the
number of observed species.

Tang and Zhou assumed that a semi-isolated local community
consists of K non-overlapping niches. Within each niche, a
number of species follow their own neutral rules independent of
the other K-1 niches. By applying Volkov et al. (2007) neutral
model for multiple discrete communities to a single niche of the
community, Tang and Zhou (2013) derived the expected number
of species with abundance n in niche i as:

< ϕn,i >= θi
xn

i
n!

0(n+ γi) (7)

where θi is the biodiversity parameter for niche i, xi is the ratio
of per capita birth to death rates of each species in niche i, and
γi is a parameters for immigration of niche i. The total expected
number of species with abundance n in the community consisting
of K niches is represented by the following equation:

< ϕn;K >=

K∑
i=1

< ϕn,i > (8)

Note that Eq. 8 is a summation of Eq. 7 across K niches, i.e.,
summing up all species with an abundance of n across all K
niches. The following Chi-squared test statistic is utilized to
determine the goodness-of-fitting for the niche-neutral hybrid
model, i.e.,

χ2
=

∑
n

(En − On)
2

En
(9)

where En is the expected number of species with abundance n, On
is the observed number of species with abundance n.

To test the niche-neutral hybrid effects with Tang and Zhou
(2013) NNH model, we computed the following items (listed in
Supplementary Table 2 of the online supplementary information
(OSI) and partially in Table 3), including: the average number of
individuals per niche (local community) in each metacommunity
(J), the average species numbers per niche (local community) in
each metacommunity (S), the average fundamental biodiversity
parameter per niche (local community) in each metacommunity
(θ), the average of the migration coefficients (m), the average
of the birth to death ratio (x), the average of the migration
rate (γ). To conduct the χ2-test at the meta-community level,
we computed χ2-value [Eq. 9] and associated P-value. To test
the neutrality at a local community level, Volkov et al. (2003,
2007) approach for fitting the relative species abundance (RSA)
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distribution to their neutral model is adopted. Specifically,
we computed and reported (see the last two columns in
Supplementary Table 2 and Table 3) the number and percentage
of local communities (niches) that passed the local neutrality test.

The P-value of the Chi-squared test is then used to determine
whether or not Tang and Zhou (2013) hybrid model is suitable for
a series of microbial communities sampled from each individual.
In the case of our time-series microbiome datasets, we treat
each time point as a niche occupied by a local microbial
community and fit the neutral model for each local community.
Specifically, at the metacommunity level, if P-value > 0.05,
then the metacommunity appears to satisfy the NNH, and the
metacommunity assembly is co-driven by both niche and neutral
processes, which also implies that the metacommunity itself does
not satisfy the neutral theory, but within each niche, the local
community is neutral. If P-value < 0.05, the metacommunity
does not seem to satisfy the NNH, which also implies that
within each niche, the local community is not neutral either, and
the metacommunity assembly is solely influenced by the niche
process. Readers are referred to Tang and Zhou (2013) for the
detailed algorithm and computational procedures (including the
software) for fitting the NNH model, which we used for analyzing
HVM datasets in this study.

Model Specificity and P-Value Threshold
Setting in Testing the Null Models
Two uncertainties have been well recognized in testing the
neutral theory and niche-neutral hybrid models including the
previous MSN and NNH models. One is the lack of full
model specificity in fitting the neutral and/or niche-neutral
hybrid models such as MSN/HHH models, and another is
the lack of definite rules for setting the P-value thresholds

in testing null models. What makes the statistical inferences
more difficult is the potential interdependence between both
uncertainties. There are no silver bullets to resolve them for
various reasons including the complexity of the problem per se
and limitations of the P-value setting in frequentist approaches
to statistical inferences. In this article, no perfect solutions are
offered, but we present two measures to relieve both issues.
First, to evaluate the specificity of the MSN/NNH models, we
classify the model-fittings as four possible categories: MSN-
only, NNH only, both MSN & NNH, neither MSN nor MSN,
and further observe the change of category proportions when
P-value thresholds were specified differently. This allows us, at
the minimum, to have an educated guess for the specificity of
each model, particularly under different confidence levels (P-
values). Second, besides testing the null models (MSN/NNH)
under the traditional “default” P-value = 0.05, the results of
model testing under a series of P-value thresholds are presented
and analyzed. The variable P-value thresholds allow us to assess
the goodness-of-fitting of the MSN/NNH models under various
levels of confidence.

RESULTS

The Niche-Neutral Continuum in Shaping
the HVM Dynamics Evaluated Under
Traditional “Default” P-Value Threshold
Supplementary Table 1 in the OSI listed the full test results for
the MSN with five HVM (human vaginal microbiome) datasets
(groups) outlined in Table 1. Table 2 below was excerpted from
Supplementary Table 1 to exhibit the results of 9 selected meta-
communities. Similarly, Table 3 below exhibited the results of

TABLE 2 | Fitting the HDP-MSN (hierarchical Dirichlet process approximated multi-site neutral model) (Harris et al., 2017) to the HVM (human vaginal microbiome)
datasets for selected individuals, excerpted from Supplementary Table 1 in the OSI*.

Datasets Case No. L0 θ M-Value Meta-Community Local Community

LM NM N PM LL NL N PL

ABV S12 −7164.578 17.818 11.849 −8855.097 2437 2500 0.975 −7387.665 2158 2500 0.863

SBV S5 −5929.666 15.552 7.295 −7861.124 2469 2500 0.988 −6220.505 2339 2500 0.936

S3 −1749.538 4.759 5.645 −1945.254 1715 2500 0.686 −1781.817 1672 2500 0.669

S17 −10498.771 8.166 920.730 −6555.105 0 2500 0.000 −2900.912 0 2500 0.000

Healthy-1 S7 −7330.538 12.554 17.957 −10193.354 2475 2500 0.990 −7530.997 2096 2500 0.838

Healthy-2 #400 −1609.574 12.332 9.409 −3248.037 2500 2500 1.000 −1766.803 2330 2500 0.932

#401 −3002.396 23.955 6.088 −4053.368 2495 2500 0.998 −3362.560 2492 2500 0.997

Pregnancy N002 −325.419 12.392 2.623 −447.710 2384 2500 0.954 −403.615 2378 2500 0.951

N003 −581.146 13.098 7.923 −687.729 2099 2500 0.840 −648.312 2244 2500 0.898

*N = 2,500 is the number of Gibb samples selected from 25,000 simulated communities (i.e., every tenth iteration of the last 25,000 Gibbs samples, a total of 50,000
simulations were performed and with the first 25,000 discarded as burn-in), and the N is used to compute the pseudo P-value below for conducting the neutrality test.
L0 is the actual (observed) log-likelihood. θ is the median of biodiversity parameters computed from 25,000 times of simulations. M-value is the average medians of the
migration rates of local communities in each metacommunity, also computed from 25,000 times of simulations. LM is the median of the log-likelihoods of the simulated
neutral metacommunity samples; and NM is the number of simulated neutral metacommunity samples with their likelihoods satisfying the L < L0 (L is the simulated
likelihood and L0 is the actually observed likelihood), PM = NM/N is the pseudo P-value for testing the neutrality at metacommunity level; if PM > 0.05, the metacommunity
is indistinguishable from the prediction of the MSN model. LL is the median of the log-likelihoods of the simulated local community samples, and NL is the number of
simulated local community samples with their likelihoods not exceeding the L0. PL = NL/N, is the pseudo P-value for testing the neutrality at the local community level; if
PL > 0.05, the local community is indistinguishable from the neutral model. See Figure 2 for an example of successfully fitting to the MSN model.
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TABLE 3 | Fitting the NNH (niche-neutral hybrid) model (Tang and Zhou, 2013) to the HVM (human vaginal microbiome) datasets for selected individuals, excerpted from
Supplementary Table 2 in the OSI*.

Datasets ID J S θ m x γ R2 χ 2 P-value Npass %(pass)

ABV S12 5261.723 23.043 9277.776 0.000 0.691 0.488 0.996 52.253 0.000 22 46.8

SBV S5 4647.896 18.042 466.265 0.001 0.643 0.557 0.983 154.291 0.000 18 37.5

S3 164.000 8.455 4.032 0.007 0.803 1.236 0.981 0.925 0.996 11 100.0

S17 5852.400 23.940 571.207 0.000 0.724 0.531 0.986 74.385 0.000 33 66.0

Healthy-1 S7 5902.193 20.421 650.047 0.000 0.687 0.462 0.986 87.923 0.000 13 37.1

Healthy-2 #400 2737.111 14.444 6.379 0.001 0.688 1.730 0.944 23.091 0.027 3 33.3

#401 2614.200 22.933 7.292 0.000 0.760 1.242 0.983 12.745 0.310 13 86.7

Pregnancy N002 4278.000 14.500 24.256 0.000 0.541 0.890 0.974 209327 0.000 1 50.0

N003 4215.500 22.500 3.432 0.000 0.762 1.973 0.851 5.358 0.913 4 100.0

*J: the average number of individuals per niche (local community) in each metacommunity, S: the average species numbers per niche (local community) in each
metacommunity, θ: the average fundamental biodiversity parameter per niche (local community) in each metacommunity, m: the average of the migration coefficients, x:
the average of the birth to death ratio, γ: the average of the migration rate, R2: the goodness-of-fitting index, χ2-value: the χ2-value of chi-squared test for observed
value against predicted value, P-value for the χ2-test; when P-value > 0.05, the metacommunity satisfies the NNH model. The last two columns are the number and
percentage of local communities (niches) that passed the local neutrality test. Note that R2 = 1 resulted from approximation with four effective digits only (e.g., 0.99995,
exact 1 is nearly impossible to achieve). See Figure 3 for an example of successfully fitting to the NNH model. Note that we use the P-value (FDR) after the FDR control
was imposed to determine the outcome of testing the NNH model.

FIGURE 2 | An example of human vaginal microbial metacommunity
(Subject#s35: disease status = SBV) showing successful fitting to the MSN
(multi-site neutral) model: the observed species (relative) abundance is
estimated from 68 sampling times of the HVM of the subject, and the
predicted species abundance is from 25,000 times of MSN simulations.

9 selected meta-communities from Supplementary Table 2 in
the OSI, where the full results for fitting the NNH model were
listed. Figures 2, 3 illustrated two examples of fitting the MSN
and NNH, respectively.

To better illustrate the full results in Supplementary
Tables 1, 2 with Tables 2, 3, we selected 4 meta-communities
from each of the five HVM datasets, corresponding to the 4
possible outcomes of testing the MSN and NNH simultaneously
(i.e., passing MSN or NNH alone, passing both or passing
neither). With this scheme, a maximal number of 20 (4×5)
samples could be selected, and it turned out that 11 of the
combinations were missing from the results, leading to only 9
meta-communities being selected in Tables 2, 3, respectively. The
table legends were noted at the bottom sections of Tables 2, 3
below. Tables 2, 3, therefore, offer windows to inspect the

FIGURE 3 | An example of human vaginal microbial metacommunity
(Subject#s3: disease status = SBV) showing successful fitting to the NNH
(neutral-niche hybrid) model: the observed number of species is estimated
from approximately 59 sampling times of the HVM of the subject, and the
predicted species number is from the NNH simulations.

parameters and infer findings from fitting the MSN/NNH
models. To inspect the complete test results of the 79 meta-
communities and 2,733 local communities, readers are referred
to Supplementary Tables 1, 2 in the OSI.

We now try to draw a big picture from the test results
(Supplementary Tables 1, 2 and Tables 2, 3) by computing
the statistics of the passing rates from testing the MSN
and NNH models. Recall that they use exactly the same
data formats, i.e., with exactly the same specification for the
local community and metacommunity. For example, with the
dataset of “32-healthy” cohort, 32 subjects represented 32 meta-
communities, and each metacommunity contained 25–33 local
communities (or 25–33 niches in the case of NNH) given
that each subject was sampled 25–33 times. Table 4 (also see
Figure 4) below exhibited the passing rates for both MSN
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TABLE 4 | The passing percentages for testing the MSN (multi-site neutral) and
NNH (niche-neutral hybrid) models with the HVM datasets, summarized from
Supplementary Tables 1, 2 and a series of the P-value thresholds (Pt ) for testing
MSN/NNH were set to Pt=0.05, 0.5, 0.9 or 0.95.

Microbiome*N Meta community Local community

0.05 0.5 0.9 0.95 0.05 0.5 0.9 0.95

The passing percentage (%) of MSN (Multi-site neutral) model

ABV 6 100 67.7 33.3 16.7 100 50 0 0

SBV 15 86.7 80 26.7 13.3 86.7 66.7 13.3 6.7

HEA-1 4 100 100 75 75 100 100 50 25

HEA-2 32 100 100 90.6 75 100 100 75 65.6

Pregnancy 22 100 100 86.4 68.2 100 100 31.8 13.6

Overall 79 97.3 89.5 62.4 49.6 97.3 83.3 34.0 22.2

The passing percentage (%) of NNH (Niche-neutral hybrid) model

ABV 6 0 0 0 0 81.4 57.9 19.9 14.1

SBV 15 6.7 6.7 6.7 6.7 74.0 55.2 23.9 14.8

HEA-1 4 0 0 0 0 59.2 39.8 21.0 10.6

HEA-2 32 53.1 15.6 3.1 3.1 78.8 68.1 32.5 19.8

Pregnancy 18 27.8 16.7 16.7 5.6 44.9 35.6 22.2 9.3

Overall 75 17.52 7.8 5.3 3.08 67.6 51.3 23.9 13.7

*N is the number of meta-communities (the number of individual subjects)
investigated in each dataset.

(the left) and NNH (the right) models; for each model, the
passing rate at metacommunity level and local community
level was listed separately. Note that in Table 4, the passing
percentages for MSN/NNH corresponding to a series of P-value
thresholds were presented, but here we only explain the result
from the traditional “default” threshold (P = 0.05) and the

results for other threshold values are explained in the following
discussion section.

First, regarding the overall performance of the MSN model,
97.3% of meta-communities and local communities passed the
neutrality test, respectively. The range of neutrality percentage
was 86.7–100% across five datasets. Therefore, the stochastic
neutral forces seem to play a dominant role in shaping the
assembly of HVMs. At a local community level, the performance
of NNH is significantly lower than that of MSN, with local
neutrality passing the neutrality test at rate of 67.6%. However,
at the metacommunity level, NNH also exhibited a moderate
17.5% of passing rate. Overall, niche differentiations appear to be
moderate in the HVMs. In summary, the above findings indicate
that both neutral and niche forces are in effect in shaping the
community dynamics in the HVMs, but the neutral effects seem
to play a dominant role.

The Effects of BV on the Neutral-Niche
Continuum in the HVM
We further investigated the influence of BV (bacterial vaginosis)
including both SBV (symptomatic BV) and ABV (asymptomatic
BV) on the balance between neutral and niche forces in
shaping the HVM dynamics by performing Fisher’s exact test
and Student’s t-test. The Fisher’s exact test was performed to
evaluate the effect of BV on the rate of passing the neutrality
test (MSN) or testing the niche-neutral hybrid effect (NNH)
at the metacommunity level (the left side in Table 5), and
Student’s t-test on the passing rate of neutrality test at the local
community level with either MSN or NNH model (the right side
in Table 5). Similar to the previous sub-section, here we only

FIGURE 4 | Bar chart showing the passing percentages of testing the MSN and NNH models (when P-value = 0.05) for each human vaginal microbiome dataset
(group), respectively: for each group, the passing percentages for both meta- and local-community of each model (MSN or NNH) were exhibited.

Frontiers in Microbiology | www.frontiersin.org 9 August 2021 | Volume 12 | Article 69993926

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-699939 August 16, 2021 Time: 13:50 # 10

Ma Assembly Dynamics in Vaginal Microbiomes

TABLE 5 | The P-values from testing the difference between various groups (ABV, SBV, HEA-1, HEA-2, and HEA) in their passing rates (from testing the MSN/NNH
models) with Fisher exact test for the meta-community or Student’s t-test for the local community (#,∗ ).

Models P-value from Metacommunity (Fisher Exact Test) P-value from Local community (Student’s t-Test)

Treatment #Pt = 0.05 #Pt = 0.95 Treatment #Pt = 0.05 #Pt = 0.95

MSN ABV vs. HEA-1 1.000 0.559 ABV vs. HEA-1 1.000 1.000

ABV vs. HEA-2 1.000 0.228 ABV vs. HEA-2 1.000 1.000

SBV vs. HEA-1 1.000 0.127 SBV vs. HEA-1 1.000 1.000

SBV vs. HEA-2 1.000 0.021 SBV vs. HEA-2 1.000 1.000

ABV vs. SBV 1.000 1.000 ABV vs. SBV 1.000 1.000

ABV vs. HEA (HEA-1++HEA-2) 1.000 0.230 ABV vs. HEA (HEA-1+HEA-2) 1.000 1.000

SBV vs. HEA (HEA-1+HEA-2) 1.000 0.022 SBV vs. HEA (HEA-1+HEA-2) 1.000 1.000

BV vs. HEA (HEA-1+HEA-2) 1.000 0.011 BV vs. HEA (HEA-1+HEA-2) 1.000 1.000

HEA-1 vs. HEA-2 1.000 1.000 HEA-1 vs. HEA-2 1.000 1.000

NNH ABV vs. HEA-1 1.000 1.000 ABV vs. HEA-1 0.017 0.476

ABV vs. HEA-2 1.000 1.000 ABV vs. HEA-2 0.000 0.280

SBV vs. HEA-1 1.000 1.000 SBV vs. HEA-1 0.299 0.548

SBV vs. HEA-2 1.000 1.000 SBV vs. HEA-2 0.000 0.105

ABV vs. SBV 1.000 1.000 ABV vs. SBV 0.044 0.677

ABV vs. HEA (HEA-1+HEA-2) 1.000 1.000 ABV vs. HEA (HEA-1+HEA-2) 0.000 0.408

SBV vs. HEA (HEA-1+HEA-2) 0.517 1.000 SBV vs. HEA (HEA-1+HEA-2) 0.000 0.182

BV vs. HEA (HEA-1+HEA-2) 1.000 1.000 BV vs. HEA (HEA-1+HEA-2) 0.000 0.145

HEA-1 vs. HEA-2 1.000 1.000 HEA-1 vs. HEA-2 0.017 0.113

#The P-value thresholds for testing the MSN/NNH models were set to 0.05 and 0.95, corresponding to the two column heads “P = 0.05” and “P = 0.95”; be noted that
they are column heads and are totally different the P-values in the table entries that are from Fisher or t-tests. *The HEA1 group has 4 subjects only, and we suggest
following the inferences from the HEA2 (32 subjects) or HEA (=HEA1+HEA2) in case there were conflicting results between HEA1 with the other groups. Shaded entries
are comparisons with significant differences (P ≤ 0.05).

analyze the BV effects under traditional P-value = 0.05 threshold
and delay the analyses under alternative P-value thresholds to the
discussion section.

Interestingly, both MSN and NNH exhibited slightly different
results regarding the effects of BV status on the passing
percentages of model tests. At the local community level, there
appears to be significant differences in BV (SBV) and HEA
(healthy groups) (P-value < 0.05, Table 5) according to the
NNH model. However, at the metacommunity level, regardless
of the MSN or NNH, the differences between various groups
were statistically insignificant. The lack of difference between the
HEA and pregnancy groups is also expected. Romero et al. (2014)
defined a normal pregnancy as a woman with no obstetrical,
medical or surgical complications, and delivered at term (38 to
42 weeks) without complications. The pregnancy group studied
by Romero consisted of 22 normal pregnancies. Therefore, it
appears that no statistically significant differences were detected
between various groups in terms of MSN or NNH testing except
for NNH at local community scale.

DISCUSSION

With traditional neutral theory of biodiversity, the spatially
explicit or implicit model describing the metacommunity
consisting of multiple local communities is the most frequently
used metacommunity model for testing neutrality (Hubbell,
2001; Rosindell et al., 2011, 2012; Ma, 2020). The use of
longitudinal community/meta-community samples to perform

dynamic analysis of the niches vs. neutrality and to further
assess and interpret the community static and dynamic properties
by harnessing the neutral theory has been few but can be
equally effective (Kalyuzhny et al., 2014a,b, 2015). The integrated
modeling with MSN/NNH in previous sections demonstrated
another approach to generalizing the neutral-theoretic analysis to
temporal meta-communities. Furthermore, we take advantages
of a recent advance in computational statistics made by Harris
et al. (2017) HDP-MSN machine learning algorithm. The
HDP-MSN overcomes a significant computational bottleneck
that existed in estimating the migration rates (m) when the
number of local communities is large, which prevented large-
scale testing of the UNTB with truly multi-site datasets.
Nevertheless, truly multi-site datasets are scarce, especially in the
studies of the human microbiome, where community samples
are usually taken from unrelated individuals, and therefore
dispersal (migration) among individuals is unlikely to occur
on ecological timescales. In this study, we use the time-series
sampling data in place of spatial sampling data. That is, the
vaginal microbial community of each subject was sampled in
patients at varying numbers of time points (6–60, see Table 1).
By using time-series data with the MSN and NNH models,
one can effectively evaluate the levels of stochastic neutral
forces and deterministic niche forces in driving the community
dynamics. In the case of time-series data, stochastic neutral
forces may include stochastic fluctuations in demography (in
the birth-death processes of bacterial cell divisions and deaths),
which is the analog to ecological drift in neutral theory. The
deterministic forces in time series data can include diversity- or
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TABLE 6 | Comparative summary of the performances of MSN and NNH models fitted to the human vaginal microbiome datasets of 79 subjects (meta-communities),
summarized from Supplementary Tables 1, 2, under different Pt-value thresholds for testing MSN/MMH models.

Microbiome Meta-Community MSN only NNH only Both MSN & NNH NOT (MSN, NNH)

N % N % N % N %

Pt = 0.05

ABV 6 6 100.0 0 0.0 0 0.0 0 0.0

SBV 15 12 80.0 0 0.0 1 6.7 2 13.3

HEA-1 4 4 100.0 0 0.0 0 0.0 0 0.0

HEA-2 (32-Cohort) 32 15 46.9 0 0.0 17 53.1 0 0.0

Pregnancy 22 17 77.3 0 0.0 5 22.7 0 0.0

Overall 79 54 68.4 0 0.0 23 29.1 2 2.5

Pt = 0.5

ABV 6 4 66.7 0 0.0 0 0.0 2 33.3

SBV 15 11 73.3 0 0.0 1 6.7 3 20.0

HEA-1 4 4 100.0 0 0.0 0 0.0 0 0.0

HEA-2 (32-Cohort) 32 27 84.4 0 0.0 5 15.6 0 0.0

Pregnancy 22 19 86.4 0 0.0 3 13.6 0 0.0

Overall 79 65 82.3 0 0.0 9 11.4 5 6.3

Pt = 0.9

ABV 6 2 33.3 0 0.0 0 0.0 4 66.7

SBV 15 4 26.7 1 6.7 0 0.0 10 66.7

HEA-1 4 3 75.0 0 0.0 0 0.0 1 25.0

HEA-2 (32-Cohort) 32 28 87.5 0 0.0 1 3.1 3 9.4

Pregnancy 22 17 77.3 1 4.5 2 9.1 2 9.1

Overall 79 54 68.4 2 2.5 3 3.8 20 25.3

Pt = 0.95

ABV 6 1 16.7 0 0.0 0 0.0 5 83.3

SBV 15 2 13.3 1 6.7 0 0.0 12 80.0

HEA-1 4 3 75.0 0 0.0 0 0.0 1 25.0

HEA-2 (32-Cohort) 32 24 75.0 1 3.1 0 0.0 7 21.9

Pregnancy 22 14 63.6 0 0.0 1 4.5 7 31.8

Overall 79 44 55.7 2 2.5 1 1.3 32 40.5

dominance-dependent regulatory forces for community stability
(dynamics) (Ma and Ellison, 2018, 2019).

As explained in the previous section of results, the results
from the integrated niche-neutral hybrid analyses under a default
P-value = 0.05 with MSN and NNH models in this study seem
to suggest that neutral drifts play a dominant role in driving
the community dynamics of the HVM, while the deterministic
niche differentiation is moderate (approximately 17% in terms of
passing NNH test). As further elaborated below, the assessment
of the relative significance of neutral vs. niche may be strongly
influenced by the model-choice (MSN or NNH) and P-value
thresholds. It should also be reiterated that the conclusions
obtained from this study are from analyzing the temporal
dynamics data of the HVM, rather than from analyzing spatial
metacommunity samples as usually performed in community
ecology. In other words, the local communities in our analyses
are simply the snapshots of an individual woman’s vaginal
microbiome dynamics. Therefore, niche differentiations are also
“temporal differentiations,” which might be relatively weak due
to the nature of longitudinal observations. Future studies with
“orthodox” spatial metacommunity samples should shed a more
comprehensive picture on the community assembly and diversity

maintenance of the HVMs. In the remainder of this article, we
discuss two uncertainties regarding the test of the neutral and/or
niche-neutral hybrid models.

First, it is well known that a significant challenge in
investigating the mechanisms of community assembly or
distinguishing the neutral from niche effects is that multiple
independents models with possibly different ecological
assumptions about the mechanisms may produce similar
goodness-of-fittings to the same datasets, which is termed the
lack of full model specificity in previous sections. This can make
the inferences of definite mechanisms from different models
difficult since the mapping from assumptions to mechanisms
may not be one-to-one. Table 6 listed the breakups of successful
fittings of the MSN/NNH models with P-value thresholds of
0.05–0.95, classified as four groups including successfully fitted
to “MSN-only,” “NNH-only,” “both MSN & NNH,” and “neither
MSN nor NNH.” Here, we first discuss the breakups when
P-value threshold for testing the MSN/NNH model is set to
0.05, and the other thresholds are discussed shortly below. As
exhibited in Table 6, overall, the “MSN-only group” (fitted to
MSN uniquely) takes about 68% (ranged between 47 and 100%)
of all cases and “both MSN & NNH” group (non-unique fittings)
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FIGURE 5 | Bar chart showing the passing percentages of testing the MSN and NNH models (when P-value = 0.95) for each human vaginal microbiome dataset
(group), respectively: for each group, the passing percentages for both meta- and local-community of each model (MSN or NNH) were exhibited.

takes about 29%, (ranged between 0 and 53%) and in less than
3% cases (2 out of 79 individuals) neither MSN nor NNH model
was fitted successfully. Therefore, in the majority (68% or 54 out
of 79 individuals), the MSN model was able to uniquely interpret
the neutral dynamics of the HVMs, when the P-value threshold
for testing MSN/NNH was set to 0.05.

Second, another dilemma that may lead to uncertainty in
testing the neutral or niche-neutral hybrid models is the choice
of P-value threshold. Traditionally, the P-value was set to 0.05 in
testing the neutral theory; when P > 0.05, the null hypothesis or
model (satisfying the MSN or NNH model) cannot be rejected.
In other words, when P > 0.05, the observed community is
considered indistinguishable from what the theoretical model
predicts. In previous sections, P-value = 0.05 was termed
traditional “default.” However, one may set P-value to other
threshold values. The higher the P-value is, the more likely (the
higher likelihood) that the community is consistent with the
model prediction. That is, when the P-value is set to higher
threshold values, it is more difficult to reject the null model. In
terms of the neutrality test based on the MSN model, it implies
that accepting neutral hypothesis is more reliable (conservative).
In terms of the NNH model, it implies that accepting non-
neutrality (niche differentiation) is more reliable (conservative).
Consequently, when larger P-value thresholds are adopted, the
confidence (reliability) to accepting the null model (MSN or
NNH) is raised and the confidence to reject the null model
(MSM or NNH) is lowered. Table 4 listed the passing percentages
(strictly, should be stated as percentage indistinguishable from
model prediction) from testing MSN/NNH when P-value was set
to 0.05, 0.5, 0.9, and 0.95, respectively. Obviously, as shown in
Table 4, higher P-values correspond to a lower passing percentage

of MSN-neutrality tests. When the P-value threshold was raised
to 0.95, the passing percentage of MSN-neutrality test declined
to approximately 50%, while the percentage was 97.3% when the
P-value = 0.05. Raising the P-value threshold from 0.05 to 0.95 is
a rather dramatic increase of the confidence level for not rejecting
the null neutral model (or accepting the null model), still nearly
half the metacommunities (microbiomes of individuals) passed
the MSN model, suggesting that the neutral drifts indeed play a
significant role in shaping the dynamics of the HVM.

An interesting observation is that, when the P-value threshold
was set to default 0.05 (Table 4), the passing percentages of
MSM testing were not significantly different between different
treatments (see Table 5 for Fisher’s exact test). However, when
the P-value threshold was set to 0.95 (Figure 5), the differences
between the BV group (including ABV and SBV) and healthy
groups (HEA1, HEA2, and pregnancy) were significant (13.3–
16.7% vs. 68.2–75%). The healthy groups exhibited significantly
more neutral communities than BV groups (Table 5). This
result is actually puzzling. A traditional view has been that the
vaginal microbiomes associated with BV usually have higher
community diversity than the healthy counterparts, possibly due
to the loss of dominant species such as Lactobacillus (e.g., Ma
et al., 2012). Since communities with dominant species tend to
contain more asymmetric interactions, they could be less likely
neutral. Therefore, this puzzling result appears to contradict
with the traditional view. Of course, the relationship between
dominant species and non-neutrality is not necessarily positive;
we hope that future more mechanistic studies will resolve the
apparent inconsistency.

The adoption of different P-value thresholds may also affect
the previously discussed specificity (uniqueness) of MSN/NNH
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model fittings. Table 6 shows the breakups of four categories
(MSN-only, NNH-only, both MSN & NNH, neither MSN nor
NNH) under different P-values ranging from P-value = 0.05
to 0.95. It appears that the model specificity of MSN seems to
increase with the increase of P-value threshold adopted. This
result should be expected since the increased P-value should raise
the confidence level for accepting the null (MSN or NNH) model,
and the passing percentages judged with higher confidence would
decline accordingly.

Finally, the two previously discussed uncertainties associated
with testing the neutral or niche-neutral hybrid models can
be interdependent and proper resolving them requires both
ecological science and statistical art. There may not be
a perfect solution for resolving those issues due to both
the ecological complexity and the limitation of frequentist
statistical approaches. The art lies in balancing the trade-off
between reliability (confidence) in hypothesis testing and model
specificity. It is hoped that the demonstrative analysis and
discussion included in this study with the HVMs will also
be useful for other ecological and evolutionary modeling of
biodiversity and biogeography.
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Microbial communities normally comprise a few core species and large numbers of satellite 
species. These two sub-communities have different ecological and functional roles in 
natural environments, but knowledge on the assembly processes and co-occurrence 
patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated 
the ecological processes and co-occurrence relationships of the core and satellite bacterial 
sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies 
indicated that the core and satellite bacterial sub-communities have similar dominant 
phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities 
were less diverse and exhibited a stronger distance-decay relationship than the satellite 
sub-communities. In addition, topological properties of nodes in the network demonstrated 
that the core sub-communities had more complex and stable co-occurrence associations 
and were primarily driven by stochastic processes (58.19%). By contrast, the satellite 
sub-communities were mainly governed by deterministic processes (62.17%). Overall, 
this study demonstrated the differences in the core and satellite sub-community assembly 
and network stability, suggesting the importance of considering species traits to understand 
the biogeographic distribution of bacterial communities in high-altitude lakes.

Keywords: core and satellite sub-communities, biogeographic patterns, community assembly, co-occurrence 
patterns, Tibetan lakes

INTRODUCTION

In natural ecosystems, bacteria within a metacommunity could be  partitioned into different 
ecological assemblages, such as abundant or rare sub-communities and core or satellite 
sub-communities in light of potential importance for the community function (Unterseher 
et  al., 2011; Jeanbille et  al., 2016; Lindh et  al., 2017). Defining OTUs as abundant and rare 
taxa are often conducted on the relative abundance of each taxa (Campbell et  al., 2011; 
Alonso-Sáez et  al., 2015), while the division of the core and satellite taxa is based on 
occurrence in addition to abundance (Magurran and Henderson, 2003; Hu et  al., 2017b). 
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The latter combines the positive feedback effect between 
abundance and occurrence, which could improve predictions 
and interpretations of patterns in biodiversity reacting to 
environmental change (Lindh et  al., 2017). The core 
sub-communities are composed of the dominant species that 
are widely distributed and play a key role in the cycle of 
elements (Fuhrman, 2009; Pedrós-Alió, 2012), whereas the 
satellite sub-communities occur in low abundance and few 
locations and conduct specific metabolic functions, which 
constitute the seed bank of biodiversity (Pester et  al., 2010; 
Van Der Gast et  al., 2011; Lindh et  al., 2017; Gendron et  al., 
2019). Up to now, this classification has proved to be a useful 
tool for understanding ecological principles of microorganisms, 
and has been applied in marine (Lindh et  al., 2017) and 
rivers (Hu et al., 2017b) ecosystems, but has only infrequently 
been implemented in lake ecosystems.

Previous studies have reported that deterministic processes 
and stochastic processes play important roles in the regulation 
of spatial distribution of bacterial communities in natural 
environments (Sloan et  al., 2006; Ofiţeru et  al., 2010; 
Langenheder and Székely, 2011; Lindström and Östman, 2011; 
Lindström and Langenheder, 2012; Liao et  al., 2016a,b). 
Deterministic processes refer to environmental filtering and 
biotic interactions influencing the fitness of microbial 
communities and determine the composition and abundance 
of microbes (Campbell et al., 2011; Gilbert et al., 2012; Zhang 
et al., 2014). Conversely, stochastic processes include dispersal 
limitation and random changes in species relative abundance, 
and therefore, changes in community composition are 
unpredictable (Hubbell, 2001; Dini-Andreote et  al., 2015; Li 
et  al., 2019). Recently, some studies have identified that 
different properties or traits of microbial sub-communities 
may assemble by different or same mechanisms (Pandit et al., 
2009; Langenheder and Székely, 2011). For instance, the core 
and satellite sub-communities in a salinity-influenced watershed 
of China were mainly droved by deterministic processes (Hu 
et  al., 2017b). The core sub-communities in arbuscular 
mycorrhizal fungi (AMF) were mainly influenced by 
deterministic processes related to soil properties, whereas the 
satellite sub-communities were considerably influenced by 
stochastic processes (Barnes et al., 2016). However, it remains 
unclear whether assembly processes of the core and satellite 
sub-communities in Tibetan lakes are similar or different 
when the range of distances over hundreds of kilometers? 
The ecological strategy can be  elucidated by the contribution 
of deterministic and stochastic processes to microbial 
community assembly (Kraft et  al., 2015; Jiao and Lu, 2020). 
Microorganisms with microscopic sizes and high dispersal 
capacity could display complex interaction webs within an 
ecological niche, which are also key to maintaining microbial 
community structure (Faust and Raes, 2012). Co-occurrence 
network analysis provides powerful support for revealing the 
complex microbial community structure and interactions 
among microorganisms, which could reflect shared niches 
among community members in the real world (Faust and 
Raes, 2012; Mikhailov et  al., 2019; Mingkun et  al., 2020). 
Hu et al. (2017b) demonstrated that due to different ecological 

niches, core and satellite sub-communities play different roles 
in the co-occurrence network and have different network 
topological characteristics.

In this study, we  used 454 pyrosequencing of the bacterial 
16S rRNA gene to investigate the diversity and composition 
of core and satellite bacterial sub-communities in 47 lake water 
samples of 30 lakes located on the Tibetan Plateau. The Tibetan 
Plateau has the largest number of plateau lakes group in the 
world (Zhang et  al., 2011). A most recent study about the 
biogeography of microbial communities in Tibetan lakes reported 
that bacterial communities were mainly controlled by salinity-
driven deterministic processes (Liu et  al., 2020). Although the 
useful information gained from this study, the spatial distribution 
patterns, community assembly mechanisms, and the 
co-occurrence patterns may be  different due to their different 
roles of the core and satellite bacterial sub-communities in 
the Tibetan lakes. Therefore, we sort to determine and compare 
the biogeographic patterns and underlying mechanisms for the 
core and satellite bacterial sub-communities at a regional scale. 
Specifically, we  tested the following three hypotheses: (1) core 
and satellite taxa exhibit different biogeographic patterns in 
lakes on Tibetan Plateau; (2) core and satellite sub-communities 
assembly driven by divergent processes; and (3) compared to 
satellite, core sub-communities show a discrepant co-occurrence  
pattern.

MATERIALS AND METHODS

Study Area and Sampling
We investigated surface water from 30 Tibetan lakes in 2012, 
China (Supplementary Figure S1). These lakes are characterized 
by high-altitude location (above 3,900 meters), which covered 
an area from 79.81'E to 96.82'E longitudinally and 28.27'N to 
34.58'N latitudinally. The mean annual air temperature of the 
lakes ranged from −9°C to +2°C, and the surface area ranged 
from 8 to 2062 km2 (Supplementary Table S1).

In total, 47 water samples were collected from 30 Tibetan lakes. 
The Schindler sampler was used to collect approximately 1 L surface 
water samples (∼0.5 m depth) from twenty lakes, respectively. 
Duplicate samples were collected at the same time from same 
points from 10 lakes, AGC, BC, BGC, DZC, GZC, NMC, PE, 
PMYC, Yamdrok, and ZGTC (Supplementary Table S1). Water 
samples from each site for bacterial community analyses were 
pre-filtered through 20 μm mesh (Millipore, United  States) for 
removal of the large plankton and particles, and all filtrates were 
subsequently filtered through a 0.22 μm polycarbonate membrane 
(Millipore, united states). Afterward, the membranes were put in 
sterile 2 ml microcentrifuge tubes and were stored at −80°C for 
DNA extraction. Latitude, longitude, and altitude were measured 
using the Global Positioning System during the field work.

DNA Extraction, Bacterial 16S rRNA 
Amplification, and 454 Sequencing
Microbial DNA was extracted from filters using a FastDNA® 
Spin kit (MP Biomedicals, Santa Ana, CA) according to the 
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manufacturer’s instructions. It was checked for concentration 
and purity using a NanoDrop Spectrophotometer (ND-1000 
Thermo Fisher Scientific, Wilmington, DE, United  States). The 
V4-V5 region of the bacterial 16S rRNA genes was amplified 
using the primer pair 515F (5'-GTGCCAGCMGCCGCGGTAA-3') 
and 907R (5'-CCGTCAATTCMTTTRAGTTT-3'; Christopher 
et  al., 2011). An aliquot of 10 ng purified DNA template from 
each sample was amplified in triplicate in a 50 μl reaction system. 
The amplification conditions were as follows: 30 cycles of 
denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and 
extension at 72°C for 30 s, with a final extension at 72°C for 
10 min (Liu et  al., 2019b). Then, triplicate PCR products for 
each sample were pooled in equal quantity and purified using 
agarose gel DNA purification kits (TaKaRa, Japan). Finally, 
running on a Roche FLX 454 pyrosequencing machine (Roche 
Diagnostics Corporation, Branford, CT, United  States; Liu et  al., 
2016). Raw sequence reads have been submitted to NCBI 
(BioProject ID PRJNA306720).

Processing of Pyrosequencing Data
Paired-end reads were quality trimmed using Trimmomatic 
v0.30 (Bolger et al., 2014) and combined using FLASH software 
(Magoč and Salzberg, 2011). The raw sequences data were 
subsequently analyzed by using QIIME v1.9.0 (Caporaso et  al., 
2010). The reads which had ambiguous bases and mismatches 
to the barcode or primers or chimeric characteristics were 
discarded. Then, the sequences were clustered into OTUs using 
UPARSE algorithm in USEARCH v 11.0.667 with a 97% 
threshold of sequence similarity (Edgar, 2013). Representative 
sequences of each OTU were aligned using PyNAST (DeSantis 
et  al., 2006). Taxonomic identity of each phylotype was 
determined using the SILVA 132 database (Quast et  al., 2013) 
via the RDP classifier (Wang et al., 2007). Before tree construction, 
the filter_alignment.py script in qiime1was used to remove 
highly variable regions, and then, a phylogenetic tree was 
constructed based on Neighbor-joining method (Saitou and 
Nei, 1987). All eukaryote, chloroplasts, mitochondria, and 
unknown sequences were culled before the OTU table was 
generated. To avoid biases generated by differences in sequencing 
depth and to make samples comparable, samples were randomly 
rarefied to the minimum number of retrieved sequences in 
the whole sample (2210). After taxonomies had been assigned, 
we  deleted all archaea OTUs and obtained 5,233 OTUs and 
103,870 sequences.

Core and Satellite Sub-Community 
Classification
The Poisson model of species abundance was examined by 
Krebs’ method, and the dispersion index was tested by Chi-square 
test to partition the bacteria into the core and satellite 
sub-communities (Van Der Gast et  al., 2011; Hu et  al., 2017b). 
Bacterial taxa that occurred only in a single sample were 
excluded from this analysis because their distributed in space 
would have no variance. Briefly, OTU occurrence plotted against 
the index of dispersion (the ratio of variance to the mean 
abundance) for each OTU, taking 2.5% of the χ2 distribution 

as the confidence limit. OTUs that below the interval following 
a random distribution were considered as satellite 
sub-communities, whereas above were non-randomly distributed 
core sub-communities. Calculations were performed using the 
“vegan” and “plyr” R packages (Hu et  al., 2017b).

Distance Decay of the Community 
Dissimilarity
To evaluate the distance decay of community similarity, the 
linear regression between ln-transformed geographic distances 
and the Bray-Curtis dissimilarities was generated based on 
ordinary least squares. The relationships were evaluated using 
the Mantel test. The statistical significance of such comparisons 
was determined using 999 permutations and the analyses were 
performed using the “mantel” function of the “vegan” package 
in R (Jiao et  al., 2020). Permutation test was used to test for 
significant differences between slopes in the “simba” R package 
(Nekola and White, 1999). Geographical distance between 
samples was calculated from the latitude and longitude 
coordinates using the “geosphere” packages (Hijmans, 2019). 
Bray-Curtis dissimilarities were based on the core and satellite 
OTU tables using the vegdist function in the “vegan” package 
(Zhu et  al., 2019).

Phylogenetic Null Model Analysis
Null model was used to quantify the contribution of different 
ecological processes (stochastic and deterministic; Stegen 
et al., 2013, 2015). This approach uses the beta mean nearest 
taxon distance (βMNTD) to represent the pairwise 
phylogenetic turnover between communities, and beta-nearest 
taxon index (βNTI) to represent the environmental impacts 
calculated by the standard deviation of the observed βMNTD 
from the βMNTD of the null model. When beta-nearest 
taxon index (βNTI) < −2 and ≥ 2 was identified as 
homogeneous selection and heterogeneous selection, 
respectively. Moreover, 999 random permutations of 
communities generate a null distribution of Bray-Curtis 
dissimilarity, and a Raup-Crick metric (RCbray) is subsequently 
calculated by comparing empirically observed Bray-Curtis 
and simulated null distribution. The |βNTI| < 2 and 
RCbray < −0.95 or the |βNTI| < 2 and RCbray ≥ 0.95 RCbray were 
identified as homogenizing dispersal and dispersal limitation, 
respectively. When the |βNTI| < 2 and |RCbray| < 0.95 were 
identified as “Undominated” (Dini-Andreote et  al., 2015; 
Stegen et  al., 2015; Isabwe et  al., 2019). To demonstrate 
which process contributed more to the DDR slopes between 
the core and satellite sub-communities, samples controlled 
by dispersal limitation and heterogeneous selection were 
separately extracted from both sub-communities according 
to the results of Stegen’s null model. Then, the DDR slopes 
were calculated separately.

Habitat Niche Breadth
Niche breadth is often used to identify different levels of habitat 
specialization, which is a crucial trait that affects the relative 
importance of selection and dispersal limitation affecting 
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communities (Pandit et  al., 2009; Logares et  al., 2013; 
Liao et  al., 2016a). Niche breadth was calculated using Levins’ 
niche breadth (Levins, 1968) index (B):

B
P

j

i
N

ij

=

=∑
1

1
2

where Bj represents the habitat niche breadth; Pij is the 
mean relative abundance of OTU j in lake i (i.e., one of 
the 30 water samples); and N is the total number of 
communities. A high B-values indicate a wide range of 
OTUs and even distribution, representing wide habitat niche 
breadth and more metabolic flexibility at the community 
level (Wu et  al., 2018).

Network Construction
We used network analysis to examine co-occurrence networks 
of core and satellite sub-communities. To reduce noise and 
complexity of the datasets, we  kept OTUs that appeared 
in ≥5 samples for network analysis. Spearman’s rank 
coefficients (ρ) between those OTUs were calculated pairwise 
by the “Hmisc” package in an R environment. Only robust 
correlations with Spearman’s correlation coefficients (ρ) > 0.6 
and false discovery rate-corrected values of p < 0.01 were 
used to construct networks (Hu et  al., 2017a). Each node 
represents one OTU, and each edge represents a strong 
and significant correlation between two nodes. Network 
visualization was performed using the interactive platform 
Gephi (0.9.2). We  use the “igraph” R package to calculate 
the node-level network topologies features (node degree, 
betweenness centrality, closeness centrality, and transitivity) 
and were examined by Kruskal-Wallis test to measure 
differences (Bastian et al., 2009; Mo et al., 2020). In addition, 
“igraph” package was used to calculate and compare the 
topology characteristics of the real networks and 10,000 
Erdős-Rényi random networks, which had the same number 
of nodes and edges as the real networks (Jiao et  al., 2020). 
To understand the stability of the core and satellite networks, 
two indices were used to characterize the stability, including 
robustness and vulnerability. Natural connections were 
used to assess network stability by removing nodes in the 
network to evaluate the rate of robustness degradation 
(Peng and Wu, 2016). Network vulnerability is expressed 
as the maximal vulnerability of nodes in the network  
(Yuan et  al., 2021).

Statistical Analyses
Diversity index was analyzed using “vegan” package in the 
R environment (R Core Team, 2013). Kruskal-Wallis test 
was performed with the PAST software to compare the 
α-diversity and niche differences of the core and satellite 
sub-communities and to identify the significantly and 
differentially abundant phyla/classes and genera between the 
core and satellite sub-communities. All the R analyses were 
performed in version 3.6.1.

RESULTS

OTUs Composition and Diversity of the 
Core and Satellite Sub-Communities
After removing low quality sequences, a total of 103,870 reads 
were obtained in this study and clustered into 5,233 OTUs 
(Table  1). Good’s coverage ranged from 86 to 96%, indicating 
that sequences identified in these samples represent the majority 
of bacterial sequences present in the collected water samples 
(Supplementary Table S2). A positive relationship between 
the mean abundance of OTUs and their occurrence was observed 
(R2 = 0.24, p < 0.001; Figure  1A). The 1,276 OTUs fit a χ2 test 
were defined as the satellite sub-communities that with 4,500 
(4.33%) reads. In contrast, the remaining 809 OTUs (93,493 
reads), surpassing 2.5% confidence limit line of χ2 distribution, 
formed core sub-communities and accounted for 90.01% of 
the total reads (Table  1; Figure  1B).

In all taxa, Proteobacteria, Bacteroidetes, and Actinobacteria 
were the dominant phyla in the core and satellite sub-communities, 
together accounting for 71 and 78.62% of each sub-community 
sequences, respectively (Supplementary Table S3). Cyanobacteria 
was significantly abundant in the core sub-communities, while 
Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, 
Gemmatimonadetes, Thermi, and TM7 were found to be significantly 
dominant in the satellite sub-communities (Kruskal-Wallis test, 
p < 0.05; Figure 2). At the genus level, 43 genera showed significant 
differences between the two sub-communities (p < 0.05; 
Supplementary Figure S2). Among them, the genera Arthrobacter, 
B-42, Loktanella, and Rhodobacter harbored a higher abundance 
in the satellite sub-communities, while some genera, such as 
Planococcus, Psychroflexus, and Synechococcus exhibited significantly 
higher abundances in the core sub-communities. The α-diversity 
indices of the core and satellite sub-communities were compared 
based on Chao1 and Shannon indices (Figure  3). Both Chao1 
and Shannon indices of the satellite sub-communities were 
significantly higher than those of the core sub-communities (p < 0.001).

Geographic Patterns of the Core and 
Satellite Sub-Communities
Distance-decay relationship (DDR) is a fundamental pattern 
in ecology, in which community similarity decreases as the 
geographic distance increases. In the current study, although 
the significant positive DDRs (Mantel p < 0.05; Figure  4) were 
observed, the fitness values were relatively low (R2 < 0.1), 
indicating weak relationship of community dissimilarity with 
geographic distance for the core and satellite sub-communities. 
Meanwhile, the slope of DDRs was significant (p < 0.01) steeper 
for the core sub-communities (0.019) than that of the satellite 
sub-communities (0.004).

TABLE 1 | The number of OTUs and sequences of the core and satellite 
bacteria sub-communities.

Taxa OTU number Sequence number

ALL OTUs 5,233 103,870
Core OTUs 809 (15.46%) 93,493 (90.01%)
Satellite OTUs 1,276 (24.38%) 4,500 (4.33%)
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Niche Breadth and Ecological Processes 
Underlying the Core and Satellite Sub-
Communities
The niche breadth (B) analysis indicated that the average niche 
breadth for the core communities (4.11) was significantly wider 

than that of the satellite communities (2.65; p < 0.001; 
Supplementary Figure S3).

The results of the null model quantify the relative contributions 
of major ecological processes of the core and satellite 
sub-communities in the Tibetan lakes (Figure  5). We  found 

A B

FIGURE 1 | Distribution (A) and dispersion (B) of the core and satellite OTUs in the Tibetan lakes. (A) The OTU occurrence (number of samples in which a given 
OTU was detected) plotted against the mean relative abundance of each OTU across samples. The red line represents the linear regression model fit to species 
abundance distribution. (B) The OTU occurrence plotted against the index of dispersion for each OTU calculated as variance to mean ratio of abundance for each 
OTU. The red line represents 2.5% confidence limit for the χ2 distribution.

FIGURE 2 | The relative abundance of the 18 common phyla and the classes of Proteobacteria within the core and satellite communities. Asterisks indicate 
significant differentially abundant phyla/class between the core and satellite bacterial sub-communities (p < 0.05).
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A B

FIGURE 3 | Comparison of α-diversities of the core and satellite bacterial sub-communities. (A) Chao1 index and (B) Shannon index.

A

B

FIGURE 4 | The relationship between geographic distances and Bray-Curtis dissimilarities of the (A) core and (B) satellite bacterial sub-communities. The red line 
in each plot represents a linear regression model fit to Ln (geographic distance+1) vs. Ln (Bray-Curtis community dissimilarity). Gray band around the line indicates 
95% confidence interval. Asterisks denote significant different between slopes (p < 0.01).
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that heterogeneous selection was the most important process 
structuring of the core and satellite bacterial sub-communities 
(41.26 and 55.32% of the overall community turnover, respectively). 
Dispersal limitation and undominated showed similar relative 
importance in shaping the core sub-communities (32.56% vs. 
21.74% of the turnover; Figure  5A). In contrast, undominated 
process contributed about 27.38% to shaping the satellite 
sub-communities, while that of dispersal limitation process was 
less than 5.5% (Figure 5B). Generally, the results recommended 
that stochastic processes explained a higher proportion of the 
core sub-community variations than deterministic processes, 
while satellite sub-communities were primarily affected by 
deterministic processes. As shown in Supplementary Figure S4, 
core sub-community turnover that controlled by dispersal 
limitation process showed a negative distance-decay slope (−0.004), 
while satellite sub-community turnover showed a slight positive 
distance-decay slope (0.001). On the contrary, core sub-community 
turnover governed by heterogeneous selection process was 
significantly higher (p < 0.05) than that of satellite sub-communities 
(Supplementary Figure S4).

Co-occurrence Network of the Core and 
Satellite Sub-Communities
The whole network included 5,145 associations among 518 
microbial OTUs and exhibited scale-free characteristics (Power 
law: R2 = 0.71). Meanwhile, the real network exhibited higher 
values of average clustering coefficient (0.58 vs. 0.04), average 
path length (5.99 vs. 2.41), and modularity (0.64 vs. 0.19) than 
those of the respective Erdős-Rényi random, suggesting the 
real network was non-random and modular structure (Table 2). 
We  identified 423 and 95 core and satellite OTUs throughout 
the whole network, respectively (Figure  6A). In addition, the 
degree, betweenness, closeness, and eigenvector showed 
significantly higher values in the core sub-communities bacterial 
co-occurrence patterns than that in the satellite sub-communities 

in the Tibetan lakes (p  < 0.01; Figure  6B). The core 
sub-communities co-occurrence network exhibited higher 
robustness structure and lower network vulnerability compared 
to the satellite sub-communities (Supplementary Figure S5), 
indicating that the core sub-community network was more stable.

DISCUSSION

Community assembly mechanisms can predict community 
changes in space and time gradients, influence hydro-
biogeochemical function, and have potential implications for 
ecosystem function and biodiversity conservation (Jiang and 
Patel, 2008; Hanson et al., 2012; Nemergut et al., 2013; Graham 
and Stegen, 2017). In this study, we  used null model and 
network analysis to quantify the relative importance of ecological 
processes in shaping the core and satellite sub-communities 
and explore bacterial co-occurrence in the Tibetan lakes.

Biogeographical Patterns of the Core and 
Satellite Communities
In this study, our results showed that both of the core and 
satellite bacterial sub-communities displayed significant DDRs 
(Mantel p < 0.05; Figure  4). This implies that the core and 
satellite bacterial sub-communities were not a random collection 
of taxa (Liu et  al., 2015). This was consistent with previous 
studies on freshwater lakes, reservoirs, and marine environments 
(Galand et  al., 2009; Liu et  al., 2015; Liao et  al., 2017) and 
provided further evidence from Tibetan lakes. However, within 
this general pattern, we  also observed that the DDR slope of 
the core sub-communities was steeper than that of the satellite 
sub-communities, suggesting that the spatial turnover rate of 
the core sub-communities is higher than the satellite counterparts. 
This finding is consistent with the research results on bacterial 
communities in the reservoirs and rivers (Liu et  al., 2015). 

A B

FIGURE 5 | Delineation of the assembly processes underlying the core (A) and satellite (B) bacterial sub-communities. The percentage of turnovers governed by a 
process is used to represent its relative importance in community assembly. Low percentage contributions (<1.5%) are not shown.
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However, our results are opposite to an earlier study which 
revealed that the satellite taxonomic communities had higher 
spatial turnover rates than core counterparts in Yongjiang river 
watershed of China (Hu et al., 2017b). This contrary conclusion 
might be  ascribed to the different research zones and habitat 
types. In Hu et  al. (2017b)’s study, 29 river surface water were 
consideration. However, in the present study, 30 Tibetan lakes 
were studied, which exhibited larger geographic gradient.

Ecological Processes Underlying the 
Assembly of the Core and Satellite 
Communities
Studies have shown that environmental filtering or dispersal-
related processes can generate the DDRs of bacterial 
communities (Lindström and Östman, 2011; Liu et al., 2015). 
The process of environmental filtering generally differentiates 
microbial composition among locations, which will tend to 
produce a distance-decay relationship. By contrast, high 
dispersal will weak or eliminate the distance-decay relationship 
by counteracting compositional differentiation and the 
distance-decay relationship should be stronger when dispersal 
is more limited (Hanson et  al., 2012). To identify the main 
reason underpinning the different DDR between the core 
and satellite sub-communities, we  used a null model that 
did not involve spatial and explanatory variables. Our results 
suggest that the heterogeneous selection was the most 
important process in structuring the core and satellite 
sub-communities (41.26% vs. 55.32%). In heterogeneous 
selection, the slope of the core sub-communities exhibited 
significantly higher (p < 0.05) than satellite sub-communities, 
while DDR controlled by dispersal limitation showed an 
opposite trend in the core and satellite sub-communities 
(Supplementary Figure S4). This could imply the important 
role of heterogeneous selection in shaping the different DDR 
slopes between the core and satellite sub-communities. A 
possible explanation for this might be  due to environmental 
heterogeneity and the capability differences in the response 
to environmental change (Morrissey et  al., 2019). Another 
possible explanation for this is that differences in species 

of the core and satellite sub-communities may form different 
cell size communities, generating the discrepant assembly 
mechanisms. Cell size has often been regarded as an important 
factor in affecting the metabolic versatility (Farjalla et  al., 
2012) and dispersal potential (Liu et al., 2019c) of organisms. 
The metabolic activities and dispersal abilities due to the 
effect of cell size may affect stochasticity or deterministic 
adequacy for explaining their community assembly (Zinger 
et  al., 2019; Gao et  al., 2020). Finally, the 21.74 and 27.38% 
undominated processes that contributed to the assembly of 
the core and sub-communities, indicating that these 
sub-communities were shape by a more complex assembly 
mechanism (Mo et  al., 2018).

Bacterial sub-communities with wider niche breadth may 
have greater potential for dormancy (Wu et  al., 2018; Mo 
et  al., 2020). Thus, differences in niche breadth due to 
different species taxa and abundance in the core and 
satellite sub-communities (Supplementary Figure S2; 
Supplementary Table S3) can produce different dormancy 
strategies. The core sub-communities with wider niche breadth 
are more susceptible to enter dormancy of their cells than 
the satellite sub-communities, and reducing the active taxa 
affected by deterministic processes. This is an important 
metabolic strategy for microbial cells to manage with 
environmental stress and less vulnerable to deterministic 
processes (Lennon and Jones, 2011; Masanori et  al., 2011; 
Nemergut et  al., 2013).

Co-existence Patterns of the Core and 
Satellite Communities
Co-occurrence networks can partially reveal complex interactions 
within microbial communities and have been considered to 
be  an important tools for investigating potential interactions 
within microbial food webs (Faust and Raes, 2012; Liu et  al., 
2019a; Du et  al., 2020). Network topology features can reflect 
the complex interactions between microorganisms in the 
community. The present study showed that the core 
sub-communities have significantly higher network topology 
than satellite (Figure  6B). This suggests that there are stronger 
and more complex webs of interaction in the core than in 
the satellite sub-communities. Specific properties promoted 
community stability in co-occurrence networks, and competition 
could also increase the stability of the community structure 
(Ghoul and Mitri, 2016). More complex network structure 
indicates stronger connections between competitors and more 
efficient resource transfer (Morriën et  al., 2017; Yao et  al., 
2019). The core sub-community network had higher connectivity 
than satellite networks (Supplementary Figure S5A), which 
suggests that it was more efficient at transferring information, 
energy, and resources. On the other hand, the simple network 
structure also reflects the fragility of the satellite bacterial 
sub-community structure in the case of ecosystem perturbations 
(Wang et  al., 2018). In addition, our study also supports to 
Ghoul and Mitri’s (2016) argument that increasing the 
complexity of a co-occurrence network leads to more stable 
co-existence patterns.

TABLE 2 | Topological properties of co-occurrence networks of the Tibetan lake 
bacterial communities and their corresponding random networks.

Network properties Value

Empirical network

 Nodes 518
 Edges 5,145
 Average clustering coefficient 0.58
 Diameter 9.73
 Average path length 5.99
 Average degree 19.86
 Modularity 0.64
 Power-law model 0.71

Random networks

 Average clustering coefficient 0.04 ± 0.001
 Average path length 2.41 ± 0.001
 Modularity 0.19 ± 0.003
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CONCLUSION

In summary, this study has provided a better understanding of 
assembly mechanisms and co-occurrence patterns of the core and 
satellite bacterial sub-communities across multiple Tibetan lakes. 
Our results demonstrated that the core bacterial sub-communities 
exhibited similar biogeographic patterns to the satellite counterparts, 
but their patterns were generally shaped via different assembly 
mechanisms. For the core sub-communities, stochastic processes 
played important roles, while deterministic processes are of 
importance in shaping the satellite sub-community assembly. The 
co-occurrence pattern of the core sub-communities was more 
complex and more stable. Therefore, in future studies, bacterial 
community should be  distinguished by traits of taxa in order to 
obtain comprehensive understanding of the biogeography and 
co-occurrence patterns of lake bacterial community.

Although the ecological model used can provide the in-depth 
results on the community assembly mechanisms, we acknowledge 
some limitations in the study. For example, the null model relies 
more on phylogenetic tree and lacks an explanation of the results 
through environmental factors. Therefore, it is necessary to use 
the null model and environment factors analysis at the same 
time in the subsequent research in order to obtain richer conclusions.
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Energy Availability Determines
Strategy of Microbial Amino Acid
Synthesis in Volatile Fatty Acid–Fed
Anaerobic Methanogenic
Chemostats
Jian Yao, Yan Zeng, Miaoxiao Wang* and Yue-Qin Tang*
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In natural communities, microbes exchange a variety of metabolites (public goods)
with each other, which drives the evolution of auxotroph and shapes interdependent
patterns at community-level. However, factors that determine the strategy of public
goods synthesis for a given community member still remains to be elucidated.
In anaerobic methanogenic communities, energy availability of different community
members is largely varied. We hypothesized that this uneven energy availability
contributed to the heterogeneity of public goods synthesis ability among the members
in these communities. We tested this hypothesis by analyzing the synthetic strategy
of amino acids of the bacterial and archaeal members involved in four previously
enriched anaerobic methanogenic communities residing in thermophilic chemostats.
Our analyses indicate that most of the members in the communities did not possess
ability to synthesize all the essential amino acids, suggesting they exchanged these
essential public goods to establish interdependent patterns for survival. Importantly, we
found that the amino acid synthesis ability of a functional group was largely determined
by how much energy it could obtain from its metabolism in the given environmental
condition. Moreover, members within a functional group also possessed different amino
acid synthesis abilities, which are related to their features of energy metabolism. Our
study reveals that energy availability is a key driver of microbial evolution in presence
of metabolic specialization at community level and suggests the feasibility of managing
anaerobic methanogenic communities for better performance through controlling the
metabolic interactions involved.

Keywords: thermophilic methanogenic community, functional groups, available energy, amino acids synthesis
strategy, amino acids exchange

INTRODUCTION

In most natural environments, microbial individuals rarely live alone but co-colonize with
other species to form complex communities. Members in these communities are connected
through intricate interaction networks. These interactions not only influence the growth and
survival of individual member, but also scale up to determine the assembly and functions
of the whole community (Zengler and Zaramela, 2018). Among diverse modes of microbial
interactions, exchange of public goods (PGs) among different members is one of the most pervasive
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(Mitri and Foster, 2013), in which one member secretes
metabolites to environment that benefit other members in the
community. In turn, this community member can also obtain
production from others. Previous studies suggest that many
biologically essential metabolites can be shared as PGs, such as
amino acids (AAs) (Mee et al., 2014; Embree et al., 2015; Hubalek
et al., 2017), vitamins (Croft et al., 2005; Rodionova et al.,
2015), siderophores (Kramer et al., 2020), and other cofactors
(Jones, 1967). Associated with PG sharing, several genomic
investigations indicate that many microorganisms in diverse
environments [such as methanogenic chemostats (Hubalek et al.,
2017), oil reservoir (Liu et al., 2018), and human gut (Soto-Martin
et al., 2020)] contain only a small set of genes that encode these
public functions, so they must survive by exchanging PGs with
other members. This phenomenon reflects that PG sharing is
a main force to drive the microbial genomic evolution (Morris
et al., 2011) and play important roles in governing the assembly
of the community (Zengler and Zaramela, 2018). Nevertheless,
studies also suggest that the retained public functions of these
auxotrophies were highly diverse (Hubalek et al., 2017; Liu
et al., 2018; Soto-Martin et al., 2020). Given a strain residing
in a community, we still lack knowledge to explain why it
possesses the ability to execute the observed set of public
functions (Zengler and Zaramela, 2018). The cause of this
Gordian knot is that whether autonomously producing a specific
PG benefits the community member itself is determined by
many unknown biotic and abiotic factors present in complex
natural communities. Uncovering these factors is crucial for
understanding microbial evolution at community scale, as well
as uncovering the assembly rule of microbial community with
complex interaction networks.

The Black Queen Hypothesis (BQH) formulated by Morris
et al. (2012) emphasizes that whether retaining (or loss of) a
specific public function is selectively favored is determined by the
traits of this function, including its energy cost, its essentiality,
and its leakiness. A number of studies validated this prediction
through theoretical models (Oliveira et al., 2014; Estrela et al.,
2016; Mas et al., 2016; Zomorrodi and Segrè, 2017; Pacheco
et al., 2019; Meijer et al., 2020; Wang et al., 2021), as well as
experiments using synthetic microbial communities composed
of engineered microbial auxotrophies (Mee et al., 2014; Pande
et al., 2014; Cooper et al., 2019). These studies indicate that a
leaky and essential public function was easier to be retained if
the energy cost of performing this function is lower. Several
studies extended the BQH framework to explain the scenario
when multiple public functions can be shared, suggesting that the
costs of all the function would profoundly affect the strategies
of the strains involved (Mee et al., 2014; Embree et al., 2015).
However, these studies simply assumed that the community
members possessed similar metabolic functions except for their
specific public functions. In addition, many studies explored
the PG exchange strategies among community members in
complex natural communities, such as anaerobic hydrocarbon-
degrading community (Embree et al., 2015), freshwater mixed
culture (Garcia et al., 2015), and kefir microbial community
(Blasche et al., 2021). These studies showed that complex PG
exchange relationships between community members were

important causes for the stable coexistence of diverse species.
Unfortunately, the factors that drive to these complex modes of
PG exchange have not been fully revealed.

In complex natural community, the fitness of different
members are highly varied and affected by complex factors, such
as ecological niche (Neis et al., 2015), energy availability (Zengler
and Zaramela, 2018), temporal shifts in community composition
(Merchant and Helmann, 2012), and spatial structure (Allen
et al., 2013). The fitness variation may also influence the strategies
of PG production of the members involved. For example, if a
community member possesses an ecological niche that could
gain more energy to support PG production, it may possess
ability to perform more public functions, even for those costly
ones, because producing these PGs may only consume a relative
smaller set of energy accounting for the overall energy it could
obtain. Extending the framework of BQH, this hypothesis can be
formulated as follows:

p ∝
ea
c

(1)

This relationship depicts that, in a complex community, the
probability of whether a member can perform a public function
(p) is (1) negatively correlated with the energy cost of the
function (c) and (2) positively correlated with the overall energy
availability for a member (ea).

In this study, we set out to test this hypothesis in anaerobic
methanogenic communities (AMCs). Compared with other
communities, the available energy is relatively limited in the
AMC system and thus plays fundamental roles in driving the
evolution of the community members involved (Lyu et al.,
2018), as well as being associated with the metabolic interactions
among these members (Jackson and McInerney, 2002; Nobu
et al., 2020). In our previous works, we enriched four AMCs
in thermophilic methanogenic chemostats supplemented with
acetate, propionate, butyrate, or isovalerate as sole carbon source
(accordingly, the four chemostats were simplified as ATL, PTL,
BTL, and VTL thereafter) (Zheng et al., 2019; Chen et al.,
2020a,b). Because AA is one type of important public functions
that have been reported in many microbial communities [e.g.,
in ocean (Barbara and Mitchell, 2003) and in human gut (Perna
et al., 2019), as well as other AMC systems (Embree et al., 2015;
Hubalek et al., 2017)], we analyzed the abilities of AA synthesis
of syntrophic acetate-oxidizing bacteria (SAOBs) involved in
our enriched AMCs and found that AA synthesis ability was
deficient in most of the SAOBs in our AMCs (Zeng et al., 2021).
However, SAOBs represent only a subset of community members
in AMCs. The PG synthesis strategies of other groups, as well as
the underlying determinants, still remain poorly understood.

Several functional groups dominated our four AMCs. In ATL,
Methanosarcina can directly utilize acetate for methanogenesis
through the acetotrophic pathway. In addition, the H2
and CO2 generated from acetate oxidation by SAOBs can
also be utilized by Methanosarcina, Methanomassiliicoccus,
Methanothermobacter, Methanobacterium, and Methanoculleus
to produce methane (Supplementary Table 1). In PTL, one
additional group of bacteria, syntrophic propionate-degrading
bacteria (SPOB), is active to degrade propionate to acetate
(Supplementary Table 1 and Figure 1B). Similarly, syntrophic

Frontiers in Microbiology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 74483445

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-744834 September 28, 2021 Time: 15:0 # 3

Yao et al. Amino-Acid Synthetic Strategies of Anaerobes

FIGURE 1 | Proposed main carbon flow in methanogenic process in the four anaerobic chemostats (Chen et al., 2020a, b; Zheng et al., 2019). The ATL (A), PTL
(B), BTL (C), and VTL (D) represent the thermophilic methanogenic chemostats supplemented with acetate, propionate, butyrate, and isovalerate as sole carbon
source, respectively.

butyrate-degrading bacteria (SBOB) degrade butyrate to acetate
in BTL (Supplementary Table 1 and Figure 1C), whereas
syntrophic isovalerate-degrading bacteria (SVOB) degrade
isovalerate to acetate in VTL (Supplementary Table 1 and
Figure 1D). In particular, microorganisms from different
functional groups possess different energy availability, which
is determined by the substrate availability (i.e., the fatty acids)
in different environments, as well as their features of energy
metabolisms. We thus expected to know whether the strategies
of AA synthesis of the members in these functional groups are
correlated with their energy availability, as well as the energy
cost of the AA synthesis, which can be directly applied to
test our hypothesis.

To this end, in this study, we analyzed the ability of AA
synthesis of the communities in our methanogenic chemostats
using our previously assembled metagenomic genomes, as well
as the associated metatranscriptomic data.

MATERIALS AND METHODS

Settings of the Chemostats Containing
the Anaerobic Methanogenic
Communities
In our previous work, four thermophilic (55◦C) methanogenic
chemostats (ATL, PTL, BTL, and VTL, fed with acetate,
propionate, butyrate, and isovalerate as sole carbon sources,
respectively) were built and operated at a low dilution rate
(0.025 day−1, hydraulic retention time (HRT) = 40 days). The
ATL and PTL were seeded with sludge from an anaerobic
digester treating kitchen waste, whereas BTL and VTL were
seeded with sludge from an anaerobic reactor treating swine
manure. The total organic carbon (TOC) of synthetic wastewater
fed to each chemostat was 8,000 mg L−1 (Supplementary
Figure 1). These chemostats were stably operated over 200

days, and the biogas production was maintained at a constant
level, and no fatty acids were accumulated in each chemostat.
During the stable operation of these reactors, sludge samples
were collected from ATL (days 306 and 307), PTL (day 223, 293,
and 318), BTL (day 251 and 252), and VTL (day 295 and 296).
The details about metagenomic and metatranscriptomic sample
preparation, sequencing, assembly, and binning are available in
the Supplementary Methods. More details about the operation
and performance of chemostats are described in previous works
(Chen et al., 2020a,b; Zeng et al., 2021).

Analysis of Amino Acid Synthesis
Strategy in the Extracted
Metagenome-Assembled Genomes
Two hundred twenty-seven high-quality metagenome-assembled
genomes (MAGs, contamination < 10%, completeness > 70%)
were recovered in our previous study (see Supplementary
Figure 2 for details about MAGs) (Chen et al., 2020a,b; Zeng
et al., 2021), and raw sequence data were accessible at http://
bigd.big.ac.cn/gsa (accession no. CRA004311). On the basis of
these data, the gene sets related to AA synthesis were searched
in these MAGs, by performing functional annotation on KEGG
Automatic Annotation Server (Moriya et al., 2007). If an MAG
had all the genes involved in the synthetic pathway of an
AA (see Supplementary Figure 3 for the complete synthetic
pathway of all the AAs), it was defined to possess the ability to
synthesize this AA at genomic level, denoted by the blue box in
Supplementary Figure 4.

Metatranscriptomic sequencing of these communities was
also performed in our previous study (raw sequence data are
accessible at http://bigd.big.ac.cn/gsa, accession no. CRA004311).
RPKM-NM (Zheng et al., 2019; Chen et al., 2020a,b) values of
all the genes involved in AA synthesis were extracted from our
previous datasets (Supplementary Tables 2–5). To quantify the
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activity of synthesis of an AA in our MAGs at transcriptional
level (activitya.a.), RPKM-NM values of all genes involved in its
synthetic pathway were summed and divided by the number of
genes, formulated as follows:

Activitya.a. =
∑n

1 RPKM − NMgene i

N(steps)
(2)

In order to compare the overall AA synthesis activity among
different MAGs, we defined the relative AA synthesis activity
(RAa.a.) as follows:

RAa.a. = Activitya.a ×
MAGi reads∑n
1 MAGi reads

(3)

Here,MAGi reads represents the total number of reads that can be
mapped to metatranscriptomic data for all genes in the ith MAG.

We quantified the relative contribution of AA synthesis of
each functional group by defining Contributionf .g. based on
RAa.a. as follows:

Contributionf .g. =
∑j

1 RAa.a. of MAGi∑n
1 RAa.a. of MAGi

(4)

Here, j represents the number of MAGs within a functional
group; n represents the number of all MAGs.

Statistical Analysis
The significance analysis of the difference in AA synthesis
ability among different functional groups is performed using the
“stats” package (4.0.2) of R (4.0.2) through analysis of variance.
Correlation analyses were performed using Pearson correlation
method using the cor.test() function of the stats package (4.0.2)
in R (4.0.2).

RESULTS

Overall Strategy of Microbial Amino Acid
Synthesis in the Four Anaerobic
Methanogenic Communities
In our previous study, we recovered 57, 63, 52, and 55 high-
quality MAGs from four enriched AMCs residing in ATL,
PTL, BTL, and VTL, respectively. Nineteen MAGs were
identified as methanogens at genus level, including four
Methanomassiliicoccus (ATL89, PTL47, BTL15, and VTL23),
four Methanosarcina (ATL14, PTL77, BTL39, and VTL53),
one Methanobacterium (VTL28), six Methanothermobacter
(ATL45, PTL2, PTL149, BTL70, VTL26, and VTL90), and
four Methanoculleus (ATL103, PTL54, BTL76, and VTL77).
Forty MAGs (out of 208 bacterial MAGs in total) were
identified as potential SAOBs, because these MAGs contain
genes encoding the WL or WL–glycine cleavage pathway, as
well as complementary NADPH reoxidation and H2/formate-
generating enzymes (Zeng et al., 2021). Similarly, one, two,
and one MAGs were identified as SPOB, SBOB, and SVOB,
respectively, including Pelotomaculum (PTL62) (Chen et al.,
2020b), unclassified Clostridiales (VTL56) (Chen et al., 2020a),
Syntrophomonas (BTL36) (McInerney et al., 1981), and

Syntrophothermus (BTL6) (Luo et al., 2002). Meanwhile, we
also found that many MAGs were highly abundant in the four
AMCs, but did not contain the genes involved in the above
core methanogenic pathways, which we defined as “noncore
functional bacteria,” including 45 MAGs in ATL, 55 MAGs in
PTL, 40 MAGs in BTL, and 42 MAGs in VTL. Notably, in each
AMC, none of the community members contains all the genes
responsible for the synthesis of 20 essential AAs (Supplementary
Figure 4). The prevalent lack of AA synthesis capacity among
MAGs suggested that metabolic interdependency relying
on PG sharing is essential for the survival of these MAGs
in our four AMCs.

In order to depict the complex interaction modes of
AA sharing in our AMCs, we evaluated the potential
complementarity in AA synthesis between every two MAGs
in each AMC (Figure 2 and see Supplementary Methods for
details about calculation). When an MAG contains all the
genes encoding the enzymes used for the synthesis of an AA, it
potentially “contributes” this AA to support the growth of other
MAGs. In contrast, if an MAG does not contain these genes, they
must “obtain” AAs produced by other MAGs. For each MAG,
we counted how many AAs it could “contribute” to each MAG
as the “contribute strength” (denoted as a link starting from the
red patch in Figure 2). Similarly, we counted how many AAs
it must “obtain” from one of the other MAGs as the “obtain
strength” (denoted as a link ending in the blue patch in Figure 2).
Then, the potential interactive connections between every pair
of MAGs in each AMC were built. As shown in Figure 2, several
MAGs tended to “contribute” more to others, whereas several
MAGs “obtain” most of AAs from other members. To quantify
this feature; we defined the contributing index (ci) of an MAG
as the ratio of the summary of “contribute strength” to the
summary of the “obtain strength” (see Supplementary Figure 5
for details). When the ci value (Supplementary Table 6) of an
MAG was over 1, we defined it as a “contributor.” In contrast,
MAGs with a ci less than 1 were defined as “beneficiaries.” We
found that the number of “contributors” MAGs was lower than
that of “beneficiaries” MAGs in every AMC (17 against 40 in
ATL, 23 against 40 in PTL, 22 against 30 in BTL, and 21 against
34 in VTL), and the overall abundance of “contributors” was
also lower than that of “beneficiaries” in ATL (32 < 59%), PTL
(35 < 52%), BTL (37 < 59%), and VTL (42 < 49%). However,
at transcriptional level, the total activity of “contributors” was
higher than that of “beneficiaries” in ATL (50 > 42%), PTL
(56 > 31%), and VTL (62 > 30%), except in BTL (27 < 71%).
These results suggest that in AMCs, a minority of MAGs
contribute to producing the majority of AAs to support the
growth of the whole community, and these MAGs exhibit higher
metabolic activities, which may facilitate the production of AAs.
This phenomenon is very similar to the findings in other natural
communities (Embree et al., 2015; Liu et al., 2018).

Effect of Biosynthetic Cost on the
Strategies of Amino Acid Synthesis
Previous studies showed that, in natural communities, the
frequency of members that could synthesize an AA is negatively
correlated with its energy cost (Mee et al., 2014). Thus, we
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FIGURE 2 | Potential complementarity in amino acid (AA) synthesis among the community members in each chemostat. The ATL, PTL, BTL, and VTL represent the
thermophilic methanogenic chemostats supplemented with acetate, propionate, butyrate, and isovalerate as sole carbon source, respectively. The internal tree
diagram depicts the phylogenetic relationship among the community members. The outer colored donuts indicate different functional groups, as shown in the left of
each figure. All the members are connected by the lines reflecting their functional complementarity. Each link starts from an metagenome assembled genomes
(MAG) that “contributes” AAs (labeled with the red patch) and ends with an MAG that “obtains” the AAs (labeled with the blue patch). The strength of the relationship
is characterized by the thickness of the line. An additional diagram is given in Supplementary Figure 5. Accordingly, the width of red patch for a given MAG
indicates its potential to “contribute” AAs to the community, whereas the width of blue patch for a given MAG indicates its potential to “cheat” AAs from the
community. Dark green and purple bubbles in the outside concentric rings indicate the abundance and overall activity of community members, respectively.

next tested whether this observation was also the case in our
AMCs. To evaluate the energy cost of AAs, we followed the
framework proposed by Akashi and Gojobori (2002), which
assessed the net ATP consumption in the synthetic pathway
of each AA. Our results indicated that, generally, the number
of MAGs that synthesize the expensive AAs (e.g., histidine
and tryptophan) was less than that of MAGs synthesize the
inexpensive ones at genome level and transcriptome level (e.g.,
glutamate and glutamine; Figures 3A,B), consistent with the
findings in previous studies. Statistically, the number of MAGs
containing synthesis genes of an AA was negatively correlated
with the function cost of the AA (Supplementary Figure 6A).

Nevertheless, 77 and 70 MAGs possessed genes to synthesize
phenylalanine and tyrosine, respectively, which was higher
than the number of MAGs that possessed genes to synthesize
relatively inexpensive histidine (38 MAGs) and isoleucine (46
MAGs) (Supplementary Figure 6A), seemly contradictory to
the previously proposed rule. Interestingly, we found that the
genes encoding AA synthesis in these 77 and 70 MAGs were
lowly transcribed (Supplementary Figure 6B), suggesting that
MAGs in our AMCs adapted a regulatory strategy to decrease
the synthetic activity of these two costly AAs and thus saved
energy for their better survival. Combining metagenomic and
metatranscriptomic data, we defined an “expression ratio” to
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FIGURE 3 | The total number of MAGs which can synthesize each amino acid
in different chemostats at genome level (A) and transcriptome level (B). The
ATL, PTL, BTL, and VTL represent the thermophilic methanogenic
chemostats supplemented with acetate, propionate, butyrate, and isovalerate
as sole carbon source, respectively. “N_MAGs_mg” represents the number of
MAGs that can synthesize each amino acid at genome level. “N_MAGs_mt”
represents the number of MAGs that can synthesize each amino acid at
transcriptomic level.

quantify the synthetic activity of synthesizing an AA in our
communities (see legends to Figure 4 for details). Pearson
correlation test showed a significant negative correlation between
the expression ratio of AAs and their biosynthesis cost in ATL
(p = 0.03, r = −0.78), PTL (p = 0.0009, r = −0.68), BTL
(p = 0.07, r = −0.40), and VTL (p = 0.0002, r = −0.75; Figure 4).
These results indicate that our AMCs have been optimized at
transcriptional level to reduce the metabolic burden. Therefore,
function cost is a key driver that affects the strategy of PG
production of the MAGs in our AMCs.

Strategies of Amino Acid Synthesis of
Different Functional Groups
We next focused on the second point of our hypothesis, that is, to
test whether the strategies of AA synthesis of the members in each
function group were correlated with its energy availability. In
general, the relative contributions of different functional groups

to each AA were largely varied (Figure 5 and Supplementary
Figure 7). SAOBs and methanogens made major contributions
to the synthesis of most AAs in ATL, but their contributions
reduced in other chemostats, especially in PTL and BTL. As
acetate is the main energy source for SAOBs and methanogens
(Zheng et al., 2019; Chen et al., 2020a,b), this phenomenon
might be related to the differences in the energy (acetate)
availability in different chemostats. Under the same TOC fed
to each chemostat, as acetate was supplied as the substrate
in ATL, the energy (acetate) availability of the methanogenic
group (SAOBs and methanogens) in ATL was higher than that
in other chemostats, which enabled SAOBs and methanogens
in ATL to maintain the highest activity of AA synthesis. In
PTL, BTL, and VTL, acetate was generated as an intermediate
of carbon metabolism. Theoretically, one-, two-, and three-
molecule acetate can be produced from one-molecule propionate,
butyrate, and isovalerate by SPOB, SBOB, and SVOB, respectively
(Figure 1). Therefore, the carbon converting ratios of propionate
to acetate is 2/3, that of butyrate to acetate is 4/4, and that for
isovalerate is 6/5. As a result, the accessibility of acetate in VTL
was higher than that in PTL and BTL, which enabled SAOBs and
methanogens in VTL to obtain more energy from methanogenic
metabolism to maintain the higher activity of AA synthesis
than that in PTL and BTL. Similarly, the SPOB, SBOB, and
SVOB made important contributions to synthesize several costly
AAs (histidine, tyrosine, and phenylalanine), which may also be
due to their higher energy availability deriving from the direct
degradation of the supplying carbon sources (i.e., propionate,
butyrate, or isovalerate). In summary, the AA synthesis ability of
these functional groups was affected by their energy availability,
consistent with the prediction of our hypothesis.

Moreover, we also found that the noncore functional group
contributed to synthesizing every AA, especially playing a leading
role in the synthesis of those costly AAs, such as histidine,
tyrosine, phenylalanine, and tryptophane (Figure 5). This result
suggests that those taxa that do not contribute to core metabolism
of anaerobic methanogenesis are indispensable in PG synthesis
to support other community members, which may explain why
these groups always possess considerable abundance in AMCs
(Rivière et al., 2009; Krakat et al., 2011; Tang et al., 2011).

Strategy of Amino Acid Synthesis Within
Different Functional Groups
Despite common features of AA synthesis strategies of the
community members in each functional group, our further
analyses also indicate that, within a same functional group,
strategies of AA synthesis are also considerably different among
members (Supplementary Figure 4). In order to explore whether
these intragroup differences were also associated with energy
availability, we further compared the AA synthesis ability of
MAGs within each functional group.

Amino Acid Synthesis in Syntrophic Acetate
Oxidation Bacterias
To investigate the factors that affect the strategy of AA
synthesis in SAOBs, we first arranged the strategy of AA
synthesis of the MAGs of SAOBs according to their phylogenetic
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FIGURE 4 | Relationship between the amino acid expression ratio and biosynthetic cost of each amino acid. The ATL, PTL, BTL, and VTL represent the thermophilic
methanogenic chemostats supplemented with acetate, propionate, butyrate, and isovalerate as sole carbon source, respectively. The shaded area represents the
95% confidence region. The biosynthetic cost of each amino acid is represented by the number of high-energy phosphate bonds sacrificed in the biosynthetic
pathway (Akashi and Gojobori, 2002). The expression ratio is defined as follows: Expression ratio = N(NAGMT)

N(MAGMG)
. N(MAGMT ) represents the number of MAGs in which

the genes responsible for the synthesis of the corresponding AA were actively transcribed. N(MAGMG) is the number of MAGs that contain all the genes required for
synthesizing the corresponding AA. Abbreviations of the amino acids: alanine (A), arginine (R), asparagine (N), aspartate (D), cysteine (C), glutamine (Q), glutamate
(E), glycine (G), histidine (H), isoleucine (I), leucine (L), lysine (K), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan (W), tyrosine (Y), and
valine (V).

relationships (Figure 6). We found that higher-cost AAs
(e.g., histidine, isoleucine, tyrosine, and phenylalanine) were
synthesized by a small number of MAGs (8 MAGs) that
possessed lower relative abundance, whereas the lower-cost
AAs could be synthesized by the majority of members with
higher abundance. This result indicates that the strategy of AA
synthesis within the group of SAOBs was also affected by the
biosynthetic cost.

In addition, relative abundance of MAGs that possessed genes
to synthesize a larger set of AAs was lower than that of MAGs
that possess genes to synthesize only few AAs (Figure 6; left).
Pearson correlation test further suggested that from a genomic
perspective, the number of AAs that an MAG can synthesize was
negatively correlated with its relative abundance in all the four
AMCs (Figure 7; for ATL, p = 0.57, r = −0.2; for PTL, p = 0.01,
r = −0.76; for BTL, p = 0.0001, r = −0.96; for VTL, p = 0.14,
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FIGURE 5 | The contributions of different functional groups to amino acid synthesis in each chemostat. The ATL, PTL, BTL, and VTL represent the thermophilic
methanogenic chemostats supplemented with acetate, propionate, butyrate, and isovalerate as sole carbon source, respectively. We quantified the relative
contribution of AA synthesis of each functional group by defining Contributionf .g.. Details on the definition are described in “Materials and Methods” section. More
details about the contributions of different functional groups to the synthesis of each AA are shown in Supplementary Figure 7.

r = −0.47). Similarly, we also found this negative correlation
at the transcriptomic level (Supplementary Figure 8). As we
mentioned previously, acetate was supplied as the substrate in
ATL, and thus, SAOBs in ATL possess higher energy availability.
Higher energy availability causes SAOBs with different AA
synthesis ability hold similar fitness, which might result in similar
relative abundance of SAOBs in ATL (Figure 7A). Similarly,
SAOBs in VTL possessed higher energy availability than those
in PTL and BTL, which might cause the observed negative

correlation being weaker in VTL than that in PTL and BTL
(Figures 7B–D). Taken together, energy (acetate) availability
determines whether an organism with a specific synthesis strategy
(synthesize more AAs) is favored.

Amino Acid Synthesis in Methanogens
We then turned to investigate the factors that affect the strategy
of AA synthesis in methanogens. As shown in Figure 8, all
methanogens in our four AMCs did not contain complete
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FIGURE 6 | The strategy of amino acid synthesis of syntrophic acetate oxidating bacteria (SAOBs) in different chemostats. The blue squares represent the presence
of AA synthesis genes in the corresponding MAGs, whereas the red squares represent the activity of AA synthesis at transcriptomic level. Phylogenetic relationships
among these MAGs are shown on the left side. On the right side, the cyan disks represent the abundance of the MAGs, whereas the yellow disks represent their
transcriptional activities. The overall landscape of AA synthesis in SAOB MAGs is summarized on the top of the figure. Here, blue frames represent the number of
MAGs containing the synthetic genes of the corresponding AA, and the red column represents the number of MAGs that actively transcribed the corresponding AA.

gene set encoding the enzyme of synthesizing those costly AAs
(i.e., phenylalanine, tyrosine, histidine, and tryptophan), which
indicate that the biosynthetic cost of AAs also had significant
impacts on the AA synthesis strategies of methanogens.

Interestingly, MAGs belonging to Methanosarcina
could synthesize more kinds of AAs and showed higher
activity at transcriptomic level than other methanogens
(Figures 8B,C). We previously found that, in our AMCs,
whereas other methanogen taxa, such as Methanoculleus
and Methanothermobacter, produced methane only by
hydrogenotrophic pathway, Methanosarcina produced methane
through both hydrogenotrophic and acetotrophic pathways
(Zeng et al., 2021; Figure 1). In a previous study, we found that
Methanosarcina mostly obtain energy through the acetic acid

pathway (Zeng et al., 2021). As acetate was more available than
hydrogen for the methanogens (because acetate was supplied
as substrate or as a main intermediate), Methanosarcina could
gain more energy from its methanogenic metabolism, possessing
higher energy availability. Moreover, MAGs belonging to
Methanoculleus in our thermophilic AMCs exhibited different
AA synthesis strategies with those in mesophilic AMCs reported
previously (Embree et al., 2015). While Methanoculleus in those
AMCs could synthesize six AAs, including glutamate, glutamine,
asparagine, aspartate, glycine, and serine, Methanoculleus
in our AMCs could only synthesize alanine (Figure 8A).
Through calculation of Gibbs free energy, we found that less
energy could be generated in hydrogenotrophic pathway in
thermophilic condition than that in mesophilic condition
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FIGURE 7 | The correlation between the relative abundance and the ability of amino acid synthesis of the MAGs belonging to SAOB at genomic level in ATL (A), PTL
(B), BTL (C), and VTL (D). The ATL, PTL, BTL, and VTL represent the thermophilic methanogenic chemostats supplemented with acetate, propionate, butyrate, and
isovalerate as sole carbon source, respectively. The “N_amino acids_mg” represents the number of amino acids that can be synthesized by each MAG at genomic
level. The shaded area represents the 95% confidence region.

(Supplementary Table 7). Therefore, Methanoculleus possessed
lower energy availability in thermophilic condition, which might
result in less capability of AA synthesis. In summary, these results
suggest that strategies of the AA synthesis of methanogens are
also largely affected by energy availability.

Furthermore, we observed a strong AA synthesis
complementarity between MAGs belonging to Methanosarcina
and those belonging to Methanomassiliicoccus (Figure 8A).
Methanosarcina and Methanomassiliicoccus are frequently
observed to co-occur in anaerobic methanogenesis systems
(Wang et al., 2019; Wang F. et al., 2020), including our AMCs
(Zheng et al., 2019; Chen et al., 2020a,b). Previous studies
suggest that this co-occurrence is possibly due to the potential
methyl supply of Methanosarcina to Methanomassiliicoccus
(Dong et al., 2017). Here, in our studies, we proposed that
the complementarity in PG synthesis and the associated
metabolic interdependency might be another reason for
their co-occurrence.

Amino Acid Synthesis in Noncore Functional Bacteria
As the noncore functional bacteria held a considerably high
abundance and made essential contributions to the AA

production in our AMCs (Figure 5 and Supplementary
Figure 9), we analyzed the factors that affect the strategy of
AA synthesis in these MAGs. At phylum level, these MAGs
were mainly classified into Proteobacteria, Planctomycetes,
Chloroflexi, Bacteroidetes, Firmicutes, and Actinobacteria. The
AA synthesis ability of MAGs within this group was largely
varied. The MAGs with relatively higher AA synthesis ability
were mainly from Firmicutes, Proteobacteria, and Chloroflexi
(Supplementary Figure 9). We found that 20 of these
MAGs contained genes encoding acetyl-coenzyme A synthetase
(Acs), acetate kinase (Ack), and phosphate acyltransferase
(Pta), and their encoding genes were also highly transcribed
(Supplementary Figure 9 and Supplementary Table 8). These
enzymes are reported to catalyze the conversion of acetate to
acetyl-CoA. Higher expression of these genes suggested that these
MAGs could directly obtain energy from the metabolism of
acetyl-CoA, resulting in higher energy availability of them than
other noncore functional bacterial MAGs. Correlation analysis
further showed that the AA synthesis ability of the “noncore”
MAGs is significantly positively correlated with their metabolic
activities of converting acetate to acetyl-CoA (Supplementary
Table 9). We thus speculated that the strategies of AA synthesis
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FIGURE 8 | The amino acid synthesis of methanogens in different reactors. (A) The blue squares represent the presence of AA synthesis genes in the corresponding
MAGs, whereas the red squares represent the activity of AA synthesis at transcriptomic level. Phylogenetic relationships among these MAGs are shown on the left
side. On the right side, the cyan disks represent the abundance of the MAGs, whereas the yellow disks represent their transcriptional activities. The overall landscape
of AA synthesis in methanogen MAGs are summarized on the top of the figure. Here, blue frames represent the number of MAGs containing the synthetic genes of
the corresponding AA, and the red column represents the number of MAGs that actively transcribed corresponding AA. (B) Summary of the AA synthesis ability of
different methanogen taxa. The black frame represents the number of amino acids that the corresponding MAG can synthesize at genomic level, whereas the
color-filled column represents the number of amino acids, of which the synthetic genes were actively transcribed in the corresponding MAG. (C) Comparison of
relative AA synthesis activity (RAa.a) of methanogens from different genera in each chemostat. The ATL, PTL, BTL, and VTL represent the thermophilic methanogenic
chemostats supplemented with acetate, propionate, butyrate, and isovalerate as sole carbon source, respectively.

in these noncore functional bacteria were also affected by
energy availability.

DISCUSSION

Here, we systematically probed the AA synthesis strategies of
community members in four AMCs. We found that energy

availability and energy cost of AA synthesis are key drivers to
shape the abilities of AA synthesis in AMCs.

Extending the Framework of the Black
Queen Hypothesis
The BQH provides an explanation for evolution of metabolic
interdependency at community level. The basic framework of
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BQH states that the benefit of not carrying a public function is
determined by the saving energy that results from not performing
the function. In the recent models and experiments, this benefit
was formulated by roughly assessing the energy cost of the
public function. For example, the cost of synthesizing an AA
was assessed by the ATPs it would consume in the enzymatic
reactions (Akashi and Gojobori, 2002). However, our results
suggest that more factors should be included to evaluate this
benefit in complex communities.

First, estimating cost by the amount of ATP consumption
ignored many aspects involved in AA synthesis. For example,
synthesis of glutamate consumes 15.3 ATPs, which is much
higher than those of serine and glycine. According to the theory
developed in previous studies (Estrela et al., 2016; Mas et al.,
2016; Pacheco et al., 2019; Wang et al., 2021), the community
members that can synthesize glutamate should be less than the
ones that can synthesize serine and glycine. However, in our
study, more MAGs synthesized glutamate rather than serine and
glycine, which is also the case in other similar investigations
(Mee et al., 2014). This phenomenon suggests that the cost of
glutamate synthesis might be overestimated. In the estimation
by Akashi et al., the ATP consumption of the synthesis of
AA precursor (generated from the central carbon metabolism,
such as Embden–Meyerhof–Parnas pathway, tricarboxylic acid,
and the pentose phosphate cycles) was also taken into account.
However, at community level, microorganisms could obtain
precursor metabolites directly secreted by other community
members (Zengler and Zaramela, 2018). Therefore, the energy
cost in precursor metabolites should be prudently considered
when evaluating the function cost. However, the accurate and
quantitative assessment of the AA synthesis cost still faces
obstacles. For example, it is difficult to quantify the exchange
of precursor metabolites for AA synthesis among community
members and identify all the AA biosynthesis pathways in a given
member without comprehensive physiological investigation of
it. More efforts should be made to overcome these obstacles in
further studies.

Second, our results suggest that community members could
also regulate the energy cost of a public function at transcriptomic
level. This regulation occurred in the synthesis of two aromatic
AAs, tyrosine and phenylalanine, whose encoding genes were
considerably highly abundant but lowly transcribed in our
systems (Supplementary Figure 6). Previous studies have
revealed that the transcription of the related genes is regulated
by a repressor, TrpR (Otwinowski et al., 1988). We searched our
meta-omics data and found the identified trpR genes were highly
active in the four MAGs (ATL5, ATL46, BTL5, and PTL65) that
possessed genes to synthesize both tyrosine and phenylalanine
(Supplementary Table 10). This result suggests that these MAGs
could repress the transcription of these genes to decrease its
energy cost. We proposed that this strategy may be, to some
extent, better than directly losing the functional genes, by which
microorganisms could actively change their metabolic states of
PG production when facing fluctuated environmental conditions.
Therefore, it is important to consider transcriptional physiology
of community members when evaluating the benefit of not
carrying a public function in complex communities.

Finally, our results indicate that if a community member
could gain more energy in the habitat or niche it occupied,
it possessed higher ability to produce more costly PGs. This
phenomenon was also observed in other systems. For instance,
in oil reservoir, aerobic microorganisms that possessed higher
energy availability retained higher ability for synthesizing
AAs and vitamins than anaerobic microorganisms (Liu et al.,
2018). In the methanogenic system enriched by Zhu et al.
(2020), Coprothermobacter proteolyticus DTU 632 lacked efficient
pathway for electron disposal and the pathway of energy
metabolism (acetate catabolism), so relied on other community
members for those expensive AAs to reduce the energy burden.
Therefore, estimating the benefit of function deficiency in a
complex community should not only consider how much energy
(ATP) is required for a member to perform a public function,
but should also assess how much of the total energy this member
can obtain from its overall metabolism. We thus propose that the
ratio of essential function cost (c) to the overall energy availability
of a member (ea) is a better indicator to quantify the benefit of
function deficiency.

Implications From Phylogenetic
Conservatism of Amino Acid Synthesis
Strategy
A central goal in microbial ecology is to reveal the relationship
between community composition and the community
functioning (Zhou, 2009; Krause et al., 2014; Martiny et al.,
2015). The key to achieving this goal is to understand whether
the function traits of a microorganism are correlated with its
phylogeny (Philippot et al., 2010; Martiny et al., 2013; Louca
et al., 2018). Our results indicate that the strategies of AA
synthesis of MAGs of SAOB and methanogens in our AMCs
were clustered according to their phylogenetic relatedness
(Figures 6, 8), despite that these MAGs came from different
chemostats initialized with different seedings (Chen et al.,
2020a,b). For example, ATL90, BTL14, PTL86, and VTL38
(bacterial MAG) in ATL, BTL, PTL, and VTL adapted totally the
same strategy of AA synthesis; that is, they only autonomously
synthesized glutamate, cysteine, and alanine. Similarly, in all
the four chemostats, Methanothermobacter and Methanosarcina
MAGs (archaeal MAG) could only synthesize alanine, whereas
all Methanosarcina could synthesize a variety of AAs, including
alanine, glutamate, aspartate, glutamine, proline, methionine,
valine, leucine, arginine, and isoleucine. This result suggests
that the function of AA synthesis in microorganisms is highly
phylogenetically conserved and may be mostly shaped by
vertical inheritance driven by long-term nature selection, but
not by rapid convergent evolution through random gene loss
or horizontal gene transfer (Martiny et al., 2013). On the one
hand, this result suggests that the evolution of PG (AA) exchange
in AMCs is mostly driven by nature selection, such as the
adaptive gene loss characterized by BQH (Morris et al., 2012).
This observation is different from the cases in several other
environments, for example, in the host-associated environments,
which is driven by random genetic drift (Nilsson et al., 2005;
Kuo et al., 2009). On the other hand, as previous studies
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also suggest that the traits of energy metabolism (anaerobic
methanogenesis) in AMCs are also phylogenetically conserved
(Martiny et al., 2013; Evans et al., 2019), we hypothesized that
AA synthesis ability of microorganisms in AMCs is coevolved
with their core energy metabolism to achieve optimal survival
strategy. For microorganisms that can only obtain limiting
energy, they save energy from AA synthesis for their better
growth/survival. For microorganisms that can obtain more
energy from its core metabolism, they may retain more AA
synthesis genes to increase its own autonomy, reducing its risk
facing against environmental fluctuations. Nevertheless, this
hypothesis requires further examination.

Metabolic Interdependency Affects the
Performance of the Anaerobic
Methanogenic Communities
Anaerobic methanogenic communities play important roles in
treating our waste and driving global carbon cycles (Zhang et al.,
2021). In AMCs, syntrophic fatty acid–oxidizing bacteria and
methanogens cooperate to perform the conversion of fatty acids
to methane, acting as the core functional groups (Nobu et al.,
2015). However, it was confusing why the community members
that are not involved in the core metabolism were present in
the AMCs and how they contribute to the development and
function of the AMCs (Ruiz-Sánchez et al., 2019; Wang P. et al.,
2020). Our results suggest that those noncore functional bacteria
are crucial for producing the costly AAs (tryptophan, tyrosine,
histidine, and phenylalanine) that support the survival of the
core functional groups. In addition to the AA exchange, several
studies also indicate that methanogens also rely on those noncore
members for vitamins (Hubalek et al., 2017), another type of
PG widespread in natural microbial communities (Rodríguez-
Fernández et al., 2018). Therefore, by contributing PGs, those
previously thought “noncore” members actually plays a “core”
role on the development of the AMCs, which further influences
the metabolic efficiency of the AMCs. This finding suggests
a novel insight on managing these AMCs for better output:
manipulate those “noncore” members to contribute more public
secretions; the methanogenic groups may perform better to
treat our waste.

In addition, the mode of metabolic interdependency might
be one of the causes for the vulnerability of AMCs (De
Vrieze et al., 2012; Zhu et al., 2020). Our results suggest that
those essential and costly AAs (tyrosine, histidine, tryptophan,
and phenylalanine) were produced by only a few community
members with lower abundance and activity. These low abundant
members may be easily lost when the communities undergo
environmental fluctuations. Without supplying the essential AAs,
the fitness of the functional groups, especially the methanogens
that possess low ability of AA synthesis, would rapidly decrease,
resulting in the collapse of the community (Chen et al., 2008).
In other words, the production of those costly AAs is highly
limited in AMCs. Therefore, artificially feeding these AAs to
the system is a potential strategy to increase the stability and
robustness of AMCs.

Nevertheless, several studies indicate that community with
such mode of metabolic interdependency can also benefit
community stability. For example, computational simulation in
one recent study found that the community with interdependent
pattern has better resistance to nutrient disturbances than the
community composed of only the autonomous population that
can produce all PGs (Wang et al., 2021). Because the resources
that were originally wastefully allocated to produce redundant
PGs were saved to fight against the harsh environmental change,
energy supply is even more limited in the AMCs, and thus,
the energy saving by function loss may be selectively favored
at the community level in anaerobic environment during long-
term evolution.

Limitations of This Study
Despite these encouraging findings, we acknowledge four
limitations of our study. First, we reconstructed the AA synthesis
pathway of MAGs based on the KEGG database and determined
the AA synthesis capacity of MAGs based on the expression of the
pathway in MAGs. This approach is widely used in recent studies
(Embree et al., 2015; Liu et al., 2018; Chen et al., 2020a; Zhu
et al., 2020). However, it can be misleading due to the incomplete
collection of metabolic pathways in the public databases and
the limitations of our current understanding on biological
metabolic pathways. Moreover, following classical knowledge,
we assumed that the 20 AAs are essential to the growth of
all the microorganisms. However, recent studies suggest that
several bacteria and archaea grow without providing some of
these “essential” AAs. For example, (Price et al., 2018) found that
heterotrophic bacteria from 10 different genera annotated as AA
auxotroph in IMG1 could survive independently without extra
AA supplement. Therefore, more culture-dependent experiments
are required to advance our understanding on microbial
metabolism of AAs and then guide our further analysis of AA
exchange in complex microbial communities.

Second, we estimated the potential metabolic exchange of AAs
between every two MAGs based on whether these MAGs carried
out and expressed the related genes. However, this analysis is
not enough to thoroughly understand their interactions. For
example, the efficiency of PG exchange is largely affected by the
transport of the PG across the cells (Kanzaki and Anraku, 1971),
the diffusion rate of the PG (Julou et al., 2013), and the spatial
positioning of different members (Allen et al., 2013). While the
effects of these factors can hardly be achieved by bioinformatics
investigations, culture-dependent studies could be adapted to
quantify these effects. For example, combination of FISH and
NanoSIMS technologies could be used to visualize the relative
positioning of different community members in the AMCs, as
well as measuring the distribution of PG in situ. We expect that
these studies could further advance our understanding on PG
exchange in AMCs.

Third, based on previous studies, we proposed a formula(
p ∝ ea

c
)

to depict how the abilities of AA synthesis of a
microorganism were determined. Unfortunately, because of the
rapidity and complexity of the biological metabolic process,

1https://img.jgi.doe.gov/
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we did not directly quantify energy availability of different
microorganisms in our system and also lacked a precise way
to measure function costs of the AA synthesis as described
previously. Therefore, we did not test our hypothesis from
a quantitative perspective. We expect further studies being
set out to build the quantitative framework based on our
proposed formula.

Finally, although the noncore functional bacteria play
important roles in producing several costly AAs, the energy
sources of these bacteria are still unclear. Our results suggest that
some of these bacteria may acquire energy from metabolizing
acetyl-CoA, but the conversion of acetate to acetyl-CoA
consumes ATPs. The energy balance of the metabolism still
required further investigation. Moreover, many noncore bacteria
that did not contain these acetate acetylation genes were also
considerably abundant in the AMCs. We hypothesized that
these noncore bacteria might also scavenge by-products or the
dead biomass of the core functional taxa. However, further
experiments are still required to provide direct evidence for
these hypotheses.

CONCLUSION

In summary, we revealed that metabolic interdependency based
on AA exchange is prevalent in AMCs and is fundamental to
connect different functional taxa through complex interaction
webs. For the first time, we proposed that the strategy of public
functions in a member residing in a community is largely
influenced by how much energy it could acquire, which is
determined by the niche it occupied and its metabolic strategy in
specific environmental conditions. This finding shed light on how
energy availability acts as a driving force of microbial evolution in
complex microbial communities and also provides novel insights

on how to manage AMCs and address grand challenges facing
against environmental pollution.
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Intensive studies have evaluated abiotic factors in shaping host gut microbiota.
In contrast, little is known on how and to what extent abiotic (geochemical
variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors
assemble the gut microbiota over shrimp ontogeny. Considering the functional
importance of gut microbiota in improving host fitness, this knowledge is fundamental
to sustain a desirable gut microbiota for a healthy aquaculture. Here, we
characterized the successional rules of both the shrimp gut and rearing water
bacterial communities over the entire shrimp farming. Both the gut and rearing
water bacterial communities exhibited the time decay of similarity relationship,
with significantly lower temporal turnover rate for the gut microbiota, which were
primarily governed by shrimp age (days postlarval inoculation) and water pH.
Gut commensals were primary sourced (averaged 60.3%) from their younger
host, rather than surrounding bacterioplankton (19.1%). A structural equation
model revealed that water salinity, pH, total phosphorus, and dissolve oxygen
directly governed bacterioplankton communities but not for the gut microbiota. In
addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton
communities. The gut microbiota tended to be governed by variable selection
over shrimp ontogeny, while the rearing bacterioplankton community was shaped
by homogeneous selection. However, the determinism of rare and stochasticity of
abundant subcommunities were consistent between shrimp gut and rearing water.
These findings highlight the importance of independently interpreting host-associated
and free-living communities, as well as their rare and abundant subcommunities
for a comprehensive understanding of the ecological processes that govern
microbial successions.

Keywords: shrimp gut microbiota, bacterioplankton community, temporal succession, SourceTracker, ecological
processes, rare and abundant sub-communities
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INTRODUCTION

Litopenaeus vannamei is one of the most valuable shrimp species
in aquaculture globally, while its production is being threatened
by diverse diseases. It is now widely recognized that the gut
microbiota contributes indispensable roles in sustaining host
health (Xiong, 2018). For this reason, intensive studies have
focused on factors shaping the gut microbiota, including life
stage (i.e., larva, juvenile, or adult), disease (Lu et al., 2022), and
surrounding environmental factors (Xiong et al., 2017; Hou et al.,
2018). In contrast, we know little about how the biotic sources,
e.g., younger host, affect the shrimp gut microbiota.

It is supposed that aquatic animals have a close association
with their surrounding water microbiomes (De Schryver et al.,
2014). However, survey studies show that the gut microbiota of
shrimp is distinct from that in rearing water and/or sediment
(Huang et al., 2018; Song et al., 2020). Our recent work evaluates
to what extent rearing water and sediment bacterial communities
affect the gut microbiota of shrimp, illustrating that shrimp
acquire little of their gut commensals from rearing water (Xiong
et al., 2019b). Instead, 66.7% gut commensals of the adult
shrimp are derived from their juveniles (Zhang et al., 2021).
In accordance, ample evidence has shown that the structures
of gut microbiota are differed significantly along shrimp life
stages, which are distinct from those in the rearing water (Burns
et al., 2016; Yan et al., 2016; Zhang et al., 2018). In this
context, temporal changes in the shrimp gut microbiota are
not parallel with those in rearing bacterioplankton. However, it
seems that the gut microbiota of larval shrimp is more similar
with the rearing bacterioplankton community, compared with
the adults (Burns et al., 2016; Xiong et al., 2018). A possible
explanation is that the selection on external taxa is increased as
host matured (Xiong et al., 2019a; Xiao et al., 2021). However,
the deteriorated water quality imposes stress on shrimp, which in
turn depresses their capability of filtering on external taxa (Xiong
et al., 2017). For example, nutrient accumulation in rearing
water significantly alters shrimp gut microbiota at later farming
stage (Lucas et al., 2010; Zhang et al., 2014; Xiong et al., 2016).
Accordingly, there is non-linear trend in the relative importance
of deterministicity in governing the gut microbiota over shrimp
development (Xiong et al., 2019b). It is now recognized that
the gut microbiota is conjointly affected by rearing geochemical
variables, bacterioplankton, and host development (Xiong et al.,
2019b; Xiao et al., 2021), while little is known on the interplay
among these variables. Theoretical evidence has proposed that
the successional pattern of host-associated (e.g., gut microbiota)
communities is distinct from that of free-living bacteria
(e.g., bacterioplankton) (Baselga, 2010; Xiong et al., 2019b),
whereas experimental evidence is lacking. For these reasons, it
remains unclear how and to what extent the gut microbiota
is affected by rearing bacterioplankton community as shrimp
aged, whereas this knowledge is fundamental for sustaining a
health aquaculture.

A microbial community is comprised by a large number
of rare species and a few highly abundant taxa (Brown
et al., 2014). It is becoming clear that rare biosphere is
functionally and ecologically important in a given community

(Lynch and Neufeld, 2015). For example, rare taxa serve a
reservoir that can quickly respond to environmental changes,
thereby promoting community stability in a wide variety of
ecosystems (Shade et al., 2014). Additionally, rare subcommunity
also contributes dispensable roles in nutrient cycling (Pester et al.,
2010). Available studies have depicted that the freeing-living
rare and abundant communities exhibit contrasting assembly
processes (Mo et al., 2018). However, it remained uncertain
whether the host-associated counterparts are ruled by the same
ecological processes, as what has been observed for freeing-
living community.

An ultimate goal of microbial ecology is to predict the
responses of microbial communities to changing environments,
yet this goal is difficult to achieve. One reason for this challenge is
that there are two types of ecological processes, deterministicity
and stochasticity, governing the microbial assembly (Van Der
Gast et al., 2008). Deterministic processes include abiotic/biotic
selection and biological interaction, while stochastic processes
(also known as neutral processes) include dispersal-related
processes and ecological drift (Venkataraman et al., 2015; Zhou
and Ning, 2017). It has been perceived by ecologists that
both deterministic and stochastic processes occur simultaneously
in assembling local communities (Chase, 2010; Zhou et al.,
2014), whereas no consensus has emerged regarding their
relative importances. For a given community, if it is tailored
by the dominance of deterministic processes, the temporally
successional trend is predictable (Vanwonterghem et al., 2014).
Intriguingly, it has been shown that the degrees of deviation in
the gut microbiota from the successional trajectory as host aged
are positively associated with the severity of the shrimp disease
(Xiong et al., 2015). In this regard, it is essential to explore the
underlying ecological processes governing the succession of gut
microbiota over shrimp ontogeny.

Herein, we explored the successional rules of both the gut
and the rearing water bacterial communities over the entire
shrimp farming. The main purposes were (1) to evaluate the
interplay among biotic (shrimp age), abiotic (water geochemical
variables) factors, bacterioplankton community, and the shrimp
gut microbiota; (2) to quantify the relative importances of
external and internal sources to the gut microbiota over
shrimp ontogeny; (3) to compare the underlying ecological
processes governing the shrimp gut and rearing water bacterial
communities, including total, abundant, and rare communities,
by integrating multiple ecological approaches.

MATERIALS AND METHODS

Experimental Design and Sample
Collection
Larval shrimp (L. vannamei) were introduced into 60 identical
greenhouse ponds (concrete and rectangular, 30 m × 60 m,
with a depth of 1.2 m) on April 8, at Zhanqi, Ningbo,
eastern China (29◦32′N, 121◦31′E). One week later, both shrimp
and rearing water samples were collected with an interval of
6–10 days from six selected ponds over the entire shrimp
farming (from 15 April to 10 July). In order to remove
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microorganisms and suspended particles, rearing seawater was
disinfected with sodium hypochlorite and alum and then aerated
in open reservoirs for 3 weeks before usage. To reduce the
spatial variability, water samples were collected from four
representative points (similar locations in all ponds) and then
pooled to compose one biological sample for a given pond.
Water samples were stored in an icebox and were transported
to laboratory for further processing. In total, we collected 144
samples (6 replicates × 12 samplings × 2 habitats) for microbial
community analysis.

Water temperature (WT), pH, salinity (SAL), and dissolved
oxygen (DO) were recorded in situ using corresponding
probes (Oxi 340i; WTW, Weilheim, Germany) at a depth of
50 cm (below water surface). The concentrations of water
total phosphorus (TP) and total nitrogen (TN) were analyzed
following seawater analysis standard of China (AQSIQ, 2007).

DNA Extraction, Amplification, and
Sequencing
To collect microbial cells, 0.5 L of water sample was prefiltered
through nylon mesh (100 µm pore size) and subsequently
filtered onto a 0.22-µm membrane (Millipore, Boston, MA,
United States) on the sampling day. To obtain high efficiency
of DNA extracts, the pooled number of shrimp individuals was
decided on the basis of their intestine size. Specifically, every
three, two, or one intestine from larval, juvenile, or adult shrimp
was pooled to compose one biological sample for each pond,
respectively. The filters and shrimp intestines were placed into
sterile tubes and were stored at –80◦C.

Genomic DNA (gDNA) was extracted using a FastDNA
Spin kit (MP Biomedicals, Carlsbad, CA, United States)
following the manufacturer’s protocols. The V3–V4 regions
of bacterial 16S rRNA gene were amplified by primers:
341F (5′−CCTAYGGGRBGCA-SCAG−3′) and 806R
(5′−GGACTACNNGGGTATCTAA-3′). For each sample,
triplicate 50 µl PCRs were performed which contained 25 ng
DNA extracts as template with the following conditions: 25
cycles of denaturation at 95◦C for 30 s, annealing at 55◦C for
30 s, and extension at 72◦C for 45 s, with a condition of 72◦C
for 10 min for the final elongation step. The triplicate amplicons
for each sample were pooled and purified using a PCR fragment
purification kit. Equimolar amounts of amplicons from each
sample were pooled and then were sequenced in a single run
using the Illumina MiSeq platform (Illumina, San Diego, CA,
United States), resulting in 2× 300 bp paired-end reads.

Processing of Illumina Sequencing Data
The paired-end reads were joined and assigned to samples based
on barcode. The merged sequences were analyzed using the
QIIME2 pipeline (Caporaso et al., 2010). Specifically, sequences
at < 200 bp in length, showed ambiguous bases, or had a mean
quality score < 20 were filtered. Then, sequences were binned
into operational taxonomic unit (OTU) with 97% cutoff using
UCLUST (Edgar, 2010). The most abundant sequence from each
OTU was selected as representative and then was taxonomically
assigned a closed reference (Greengenes Database, release 13.8)

(DeSantis et al., 2006), which enables each identified OTU to
have a close relative. After the taxonomy had been assigned,
Archaea, Chloroplast, unclassified Bacteria, as well as singletons,
were excluded from subsequent analysis.

Statistical Analysis
We defined OTUs with a mean relative abundance of ≥ 0.01%
across the samples as “abundant” OTUs, whereas OTUs with a
mean relative abundance of < 0.001% as “rare” OTUs follow
the criterion as described elsewhere (Logares et al., 2014;
Liu et al., 2015).

All statistical analyses were performed in the R-environment1

unless otherwise indicated. To improve normality and
homoscedasticity, bacterial communities were Hellinger
transformed, while environmental variables were normalized by
using function decostand in package vegan. Heatmap was used
to depict the abundance of the top 20 dominant bacterial genera
in the shrimp gut microbiota and those in the bacterioplankton
communities. Paired t-test (pond served a conditional factor)
was used to evaluate the significance (p < 0.05 level) of diversity
between gut and corresponding water bacterial communities at
each sampling. A non-metric multidimensional scaling (NMDS)
analysis was used to compare the differences in the structures of
rearing water and shrimp gut bacterial communities based on
Bray-Curtis distance. The significance between groups was tested
using an analysis of similarity (ANOSIM) (Anderson, 2010).
Permutational multivariate analysis of variance (perMANOVA)
was conducted to quantify the relative contributions of habitat
(gut or water), shrimp age (days postinoculation), and their
interaction to the variations in bacterial community using the
“adonis” function (Anderson, 2010).

The time decay of similarity relationship was used to compare
the temporal turnover rate (the slope of the regression) between
the gut and water bacterial communities over shrimp farming
(Xiong et al., 2014). To account for zero similarity values,
bacterial community similarity and lag of shrimp age were
ln transformed (Talbot et al., 2014). Here, we treated pond
as a conditional factor, thereby enabling us to compare the
significance (paired t-test) in turnover rate between gut and
rearing water communities. The multiple regression on distance
matrices (MRM) was further used to determine variables that
triggered the temporal turnover of bacterial communities. This
approach offers advantages over the traditional partial Mantel test
to investigate linear, non-linear or non-parametric relationships
between a multivariate response distance matrix and any number
of explanatory distance matrices (Legendre et al., 1994; Lichstein,
2007). To minimize the collinearity between environmental
factors, we used variable clustering to assess the redundancy
of variables by the “VARCLUS” procedure in package Hmisc
before applying MRM. Then, a matrix randomization procedure
with standardized predictor variables was implemented using
package ecodist (Goslee and Urban, 2007). To reduce the effect
of spurious relationships between variables, we ran the MRM test
twice, after removal of insignificant variables by the first run. The
results were reported from the second run. A structural equation

1http://www.r-project.org
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model (SEM) was used to uncover the interplay among rearing
water geochemical variables, bacterioplankton and gut bacterial
communities, and shrimp age in AMOS 23.0 (IBM, Chicago, IL,
United States) (Byrne, 2001).

SourceTracker analysis was employed to quantify the relative
contributions of both external (rearing water bacterioplankton
community) and internal (the gut microbiota of adjacent younger
shrimp) resources to the shrimp gut microbiota (Knights
et al., 2011). This approach analyzed the relative abundance
of each OTU share in water or younger shrimp gut with
older ones, to calculate the probability that each OTU detected
in the shrimp gut was sourced from the rearing water or
adjacent younger shrimp.

To evaluate the phylogenetic community assembly, the
“standardized effect size” of phylogenetic community structure
(ses.MNTD) was calculated for non-random phylogenetic
relatedness (MNTD) by the difference between phylogenetic
distances in the observed communities vs. null communities
generated with 999 randomizations, divided by the standard
deviation of phylogenetic distances in the distribution using the
Picante package (Kembel et al., 2010; R Core Team, 2013). For
a given community, ses.MNTD value less than –2 indicates that
the community is more phylogenetically related than expected
by chance (determinism), whereas ses.MNTD value greater
than +2 indicates that a community is less closely related
than expected by chance (stochasticity) (Webb et al., 2002;
Stegen et al., 2012). Pairwise phylogenetic turnover between
communities was calculated as the MNTD metric (βMNTD)

using the “comdistnt” function (abundance.weighted = TRUE) in
package picante (Kembel et al., 2010). The community assembly
processes were further evaluated by βNTI using the “ses.mntd”
function (Kembel et al., 2010) and a null modeling approach
(Stegen et al., 2012), respectively. βNTI (the difference between
the calculated βMNTD and the null-model estimation) values
were quantified by either accounting for βNTI is the number
of standard deviations that the observed βMNTD is from the
mean of the null distribution. A value of βNTI of > 2 or < –2
indicates greater than or less than the expected phylogenetic
turnover, respectively (Stegen et al., 2012).

RESULTS

Temporal Successions of Shrimp Gut and
Rearing Water Bacterial Communities
In total, 3,842,244 high-quality sequences, with 17,385–
36,579 sequences per sample (mean ± standard deviation,
26,868 ± 4,620) were collected across the enrolled 143 samples.
After rarefaction, we obtained 32,811 OTUs in the analysis.
Diversity of the gut microbiota was temporally stable over
shrimp ontogeny, whereas bacterioplankton diversity linearly
increased over the same timeframe, as supported by both
Shannon and phylogenetic diversity indices (Supplementary
Figure 1). The NMDS biplot depicted that the gut microbiota
were distinct from bacterioplankton communities (Figure 1).
There were sequential successions of both the gut microbiota

FIGURE 1 | Non-metric multidimensional scaling (NMDS) ordinations showing the structures of total, abundant and rare communities. NMDS ordination of the total,
abundant, and rare bacterial communities in both the shrimp gut and rearing water (A–C), shrimp gut (D–F), rearing water (G–I) based on Bray-Curtis similarity,
respectively. Samples were coded and colored by habitat and shrimp life stage, of which G and W indicate shrimp gut and water, respectively.

Frontiers in Microbiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 75275063

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-752750 October 4, 2021 Time: 16:30 # 5

Zhang et al. Succession of Shrimp Gut Microbiota

and bacterioplankton communities during shrimp farming, as
evidenced by increased distances along NMDS axis 1 (Figure 1).
These differences were confirmed by the ANOSIM, illustrating
that shrimp gut bacterial communities were significantly distinct
between every paired age (Supplementary Table 1). In contrast,
there were no significant differences between some adjacent pairs
of bacterioplankton communities, e.g., W28 vs. W21, W56 vs.
W49, W77 vs. W70, and W93 vs. W87 (Supplementary Table 2).
Furthermore, perMANOVA revealed that both habitat (shrimp
gut or rearing water) and shrimp age significantly (p < 0.001 in
both cases) contributed to the variations in bacterial community.
Shrimp age exerted consistently higher importances than habitat
in governing the total, abundant, and rare bacterial communities
(Table 1). Both the gut microbiotas and bacterioplankton
communities exhibited significant time decay of similarity
relationship. The temporal turnover rate of bacterial community
in shrimp gut (–0.290 ± 0.127) was significantly (paired t-test,
p = 0.001) lower than that in rearing water (–0.827 ± 0.083)
(Figure 2). MRM revealed that the temporal succession was
primarily governed by shrimp age, water temperature, and pH
(Table 2). Notably, each of the three variables exerted higher
contributions in governing the bacterioplankton communities
compared with the gut microbiota (Table 2), suggesting that
bacterioplankton communities were more strongly affected
by environmental factors. The MRM model explained 66%
(p < 0.001) variation in bacterioplankton community, while only
21% (p < 0.001) in the gut microbiota. Additionally, shrimp
age contributed larger partial regression coefficients in shaping
abundant subcommunities than corresponding rare counterparts
in both the gut and rearing water.

Factors Governing the Temporal
Successions of Bacterial Community
A forward selection procedure identified four water variables
(TP, DO, pH, salinity) and shrimp age that significantly
contributed to the variations in bacterial community (p < 0.01)
(Supplementary Figure 2 and Supplementary Table 3). The
four water variables were significantly associated with shrimp
age, which were attributed to the temporal dynamics of water
variables during shrimp farming. Bacterioplankton community
was positively correlated with salinity (λ = 0.28, p = 0.007),
pH (λ = 0.23, p = 0.002), and DO (λ = 0.14, p = 0.048), and

TABLE 1 | Quantitative effects of sampling time and habitats on variation in
community composition using non-parametric permutational multivariate analysis
of variance (perMANOVA) with adonis function.

Age Habitats Age:habitats

R2 P R2 p R2 p

Community structure

Total 0.306 <0.001 0.150 <0.001 0.431 <0.001

Rare 0.116 <0.001 0.022 <0.001 0.138 <0.001

Abundant 0.315 <0.001 0.167 <0.001 0.455 <0.001

The R2 values represent the proportion of the community variation constrained by
each variable or their interaction.

FIGURE 2 | Time-decay relationship for shrimp gut microbiota and
bacterioplankton communities. The x-axis is log in days postlarval shrimp
inoculation, and y-axis is log (similarity) calculated using the Bray-Curtis
distance (R = 0.407, p = 0.001).

was negatively affected by TP (λ = –0.34, p < 0.001) (Figure 3
and Supplementary Table 3). Shrimp age was significantly
associated with bacterioplankton community (0.50). The gut
microbiota was affected by the combination of direct (0.34)
and weak indirect (0.09) effects of shrimp age (Figure 3 and
Supplementary Table 3). Notably, bacterioplankton community
contributed a weak and insignificant direct effect on the assembly
of shrimp gut microbiota. As expected, abundant and rare
subcommunities exhibited significant and positive contributions
to corresponding total bacterial communities, with much higher
contributions of the abundant subcommunities (Figure 3 and
Supplementary Table 3).

Sources of Shrimp Gut Commensals
Over Shrimp Ontogeny
The relative proportion of shared OTUs between shrimp
gut and rearing water was negligible, ranged from 0.26 to
2.11% (Supplementary Figure 3). Thus, the rearing water
bacterioplankton community contributed minor role in affecting
the shrimp gut microbiota. To test whether gut microbiota
parallelly changed with rearing water bacterial communities
along shrimp farming, temporal dynamics of the top 20 dominant
bacterial genera in the shrimp gut were compared with those in
the rearing water (Figure 4). The relative abundances of Vibrio,
Salinivibrio, and Haloferula genera were abundant in shrimp gut
but were rare in rearing water. Only six dominant bacterial genera
in shrimp gut, such as Ruegeria, Marivita, and Flavobacterium,
were positively correlated with these in bacterioplankton
communities, but not for the other 12 genera, including Vibrio
and Pseudoalteromonas (Figure 4A). A similar pattern was
observed for the most rare 20 bacterial genera in the shrimp
gut, in which only genera of Sedimentibacter, Cupriavidus,
and Marinobacterium were significantly associated with these
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TABLE 2 | Results of the multiple regression on distance matrices (MRM) for shrimp gut, bacterioplankton, and their abundant and rare communities.

Habitat Gut Rearing water

Total Rare Abundant Total Rare Abundant

R2 = 0.21 p < 0.001 R2 = 0.03 p < 0.001 R2 = 0.15 p < 0.001 R2 = 0.66 p < 0.001 R2 = 0.27 p < 0.001 R2 = 0.65 p < 0.001

Age 0.181 <0.001 0.007 0.001 0.118 <0.001 0.421 <0.001 0.229 <0.001 0.541 <0.001

WT 0.093 0.01 ND ND 0.089 <0.001 0.301 <0.001 ND ND 0.299 <0.001

pH 0.029 0.04 0.009 0.002 0.024 0.008 0.364 <0.001 ND ND 0.358 <0.001

SAL NS NS ND ND ND ND 0.514 <0.001 0.198 <0.001 0.5 <0.001

BOD NS NS ND ND ND ND 0.216 0.002 ND ND 0.216 <0.001

DO ND ND ND ND ND ND 0.258 <0.001 0.13 <0.001 0.256 <0.001

TP ND ND 0.014 <0.001 ND ND ND ND 0.076 <0.001 ND ND

TN ND ND 0.001 NS ND ND 0.254 <0.001 ND ND ND ND

ND, not determined (removed by the VARCLUS results); NS, not significant.

FIGURE 3 | Structural equation modeling (SEM) shows the effect of environmental factors and bacterioplankton community on shrimp gut community. The numbers
on arrows indicate standardized path coefficients. Arrow widths show the strength of the causal relationship. Arrows in blue and red indicate the effects on the
bacterioplankton community and the shrimp gut microbiota, respectively. Solid and dashed lines indicate positive and negative correlations, respectively. *p < 0.05,
**p < 0.01, ***p < 0.001.

in rearing water (Figure 4B). Overall, the compositions and
abundances of the bacteria in gut were insignificantly affected by
the rearing bacterioplankton community over shrimp ontogeny.

SourceTracker analysis was used to quantify the relative
contribution of external sources (rearing water) on the shrimp
gut microbiota at each sampling (Figure 5A). In general, larval
shrimp (breeding days less than 35) sourced little commensals
from rearing water compared with juveniles and adults,
with the exception on day 56. Bacterioplankton community
contributed 43.3% (averaged contribution) of the species to
shrimp gut microbiota, whereas most of the source was unknown
(Figure 5A). When integrating the adjacent younger shrimp as
an internal source for the gut microbiota in the model, the
relative contribution of rearing water to gut microbiota sharply
decreased to 19.1% (averaged proportion, ranged from 1.22 to
54.7%). Instead, gut commensals were primarily derived from

the adjacent younger shrimp, with an averaged contribution
of 60.3%. Accordingly, the proportion of unknown source of
gut microbiota sharply decreased to 20.5% (Figure 5B). Taken
together, the majority of gut commensals sourced little species
from surrounding species pool, which were temporally sustained
over shrimp ontogeny.

Ecological Processes Govern the
Successions of Bacterial Community
The ses.MNTD values of gut and rearing water bacterial
communities were significantly lower than zero, suggesting that
the two communities tended to be phylogenetically clustering
(Supplementary Figure 4). Additionally, most of the βNTI values
of gut microbiotas and bacterioplankton communities were less
than –2, indicating that the dominant role of deterministic
processes assembled the gut microbiota and bacterioplankton
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FIGURE 4 | The relative abundances of the top abundant 20 bacterial genera (A) and the most rare 20 bacterial genera (B) in the gut and those in bacterioplankton
communities. Pearson’s correlations and the significances of the genera between shrimp gut and rearing water are shown on the right.

community (Supplementary Figure 5). To evaluate the trends
of ecological processes over shrimp ontogeny, βNTI values
were regressed against the lag of shrimp age. The temporal
trends of βNTI were different between shrimp gut and rearing
water bacterial communities (Figure 6). Specifically, there was
a significant and positive correlation (R = 0.16, p = 0.034)
between βNTI values of the total gut microbiota as shrimp aged
(Figure 6A), whereas those of total bacterioplankton community
exhibited the opposing trend (R = –0.22, p = 0.003) (Figure 6B).
There were no significant correlations between βNTI values of
the abundant subcommunities in gut or rearing water during
shrimp farming. In addition, most of the βNTI values of
abundant subcommunity were between –2 and 2, indicating the
dominant role of stochastic processes in assembling abundant
subcommunity (Figures 6C,D). In contrast, the βNTI values of
rare subcommunities in both the gut (R = –0.25, p = 0.001)

and rearing water (R = –0.61, p < 0.001) significantly decreased
over the same timeframe, which tended to be less than –2
(Figures 6E,F).

DISCUSSION

Despite recent progress, little is known about the underlying
ecological processes governing the successional patterns of
host-associated microbes, especially their abundant and rare
counterparts. To address this pressing knowledge gap, we
explored how and to what extent abiotic (water geochemical
variables) and biotic (i.e., younger shrimp, host age, and
rearing bacterioplankton community) factors affected the gut
microbiota over shrimp ontogeny. In addition, we quantified the
relative contributions of external (rearing water) and internal
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FIGURE 5 | SourceTracker analyzes the relative contribution of external (rearing water) (A) and internal (gut commensals of the adjacent younger shrimp) sources (B)
to the shrimp gut commensals.

(adjacent younger shrimp gut microbiota) sources on the shrimp
gut commensals. These findings yield novel insights into the
assembly of gut microbiota over shrimp ontogeny from an
ecological perspective. It is worthy to note that we used OTU
clustering methods instead of the more recently developed
amplicon sequence variants (ASVs). However, it has been shown
that all α and β diversity metrics are highly positively correlated
(r > 0.90) between samples analyzed with either ESVs or
traditional OTUs. ESV or OTU methods often reveal similar

ecological results, with indistinguishable statistical inferences
(Glassman and Martiny, 2018). Similarly, a recent study depicts
that OTUs and ASVs produce comparable shrimp microbiota
(García-López et al., 2021). Thus, standard microbial community
analyses are not overly sensitive to the particulars of binning
approaches (Glassman and Martiny, 2018). In addition, we used a
closed reference for taxonomical assignment, which has excluded
spurious taxa. For these reasons, our findings are not biased by
OTU clustering methods.
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FIGURE 6 | Relationship between βNTI values of bacterial community over shrimp ontogeny. The horizontal dashed lines indicate the βNTI values of –2 and +2. An
individual community below or above the two dashed lines indicates that determinism dominantly governs the community assembly, while between the two dashed
lines indicates that stochasticity is dominant. The relationship between βNTI and differences in days gut microbiota (A–C) and bacterioplankton community (D–F)
was fitted using linear regression.

Succession Pattern Between
Bacterioplankton Community and
Shrimp Gut Community
The diversity of shrimp gut microbiota was relatively stable,
whereas the surrounding bacterioplankton diversity increased
linearly during shrimp farming. Additionally, the diversity in
gut microbiota was generally lower than that in corresponding
bacterioplankton community (Supplementary Figure 1),
in accordant with the notion that hosts select a subset
of surrounding taxa that colonize into their gut (Zoqratt
et al., 2018). In contrast, the linearly increased diversity of

bacterioplankton could be attributed to the accumulation of
nutritional sources along shrimp farming (Supplementary
Figure 2), leading to the diversification of microbes. Both
the shrimp gut microbiota and bacterioplankton community
exhibited sequential changes over shrimp ontogeny (Figure 1).
Consistently, there is ample evidence that the gut microbiota
is primarily affected by host age in diverse aquatic animals
(Burns et al., 2016; Yan et al., 2016). Given the sequential
changes in both the gut microbiota and bacterioplankton
communities (Figure 1), we compared temporal turnover rate
of the two communities. Bacterioplankton community exhibited
significantly steeper turnover (more rapid deviation from original
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to new state) than gut microbiota (Figure 2), indicating that
host-associated communities are more temporally stable than
free-living counterparts. This finding was further supported by
the MRM model, revealing that the succession of gut microbiota
(R2 = 0.21) were less explained by the shrimp age, compared
with that of bacterioplankton community (R2 = 0.66) (Table 2).
It seems that host gut offers a relatively stable microenvironment
for commensals. Consistent with this assertion, it has been
shown that fish gut is a more suitable environment than external
skin mucus (Sylvain et al., 2020). In other words, gut microbiota
experiences regular incremental shifts such as the maturity of
physiology and immunity over shrimp ontogeny. Additionally,
the rapid succession of bacterioplankton community could be
attributed to temporally varied water geochemical variables
during shrimp farming (Supplementary Figure 2), instead of
direct role of shrimp age itself (see details in Figure 3), although
we have tried to minimize colinearity among environmental
factors. Indeed, the important role of shrimp age in governing
both communities did not completely rule out the effects of
other factors. We also detected that water temperature and
pH strongly affected the temporal successions of total and
abundant bacterial communities in both habitats but not
the rare subcommunities (Table 2). Water temperature and
pH have been extensively observed as key factors in shaping
bacterioplankton community (Luo et al., 2019; Nyirabuhoro
et al., 2019). Interestingly, shrimp are poikilotherms, while
their gut microbiotas are sensitive to changes in rearing water
temperature (23.8–30.7◦C) (Supplementary Figure 2). Changes
in the environmental temperature of aquaculture water could
affect the metabolic and physiological functions of shrimp,
thus indirectly alter the gut microbiotas. In accordance, it has
been shown that water temperature affects feeding, growth, and
survival of Litopenaeus vannaei. Rearing water temperature was
positively associated with the abundances of anaerobes and the
anaerobic Bifidobacterium (Li et al., 2018). Considering the
functional importance of gut microbiota in host health, this
pattern may partially explain why a sudden change in water
temperature generally causes shrimp disease (Estrada-Perez
et al., 2020). Furthermore, water temperature could directly alter
the bacterioplankton community (Yang et al., 2018), which in
turn affects shrimp gut microbiota. It is worthy to emphasize that
lifestyle is also key factor in shaping the gut microbiota of shrimp
(Cornejo-Granados et al., 2018). More specifically, there are
distinct gut microbiotas between wild and aquacultured shrimp
(Cornejo-Granados et al., 2017), low- and high-salinity–cultured
shrimp (Hou et al., 2020), and freshwater and marine conditions
(Cornejo-Granados et al., 2018). In this regard, follow-up
investigations following a spatial sampling strategy is needed to
test whether the pattern observed here is shared between culture
ecosystems or ecosystem dependent.

Interplay Among Geochemical Factor,
Bacterioplankton Community, and Gut
Microbiota Over Shrimp Ontogeny
SEM uncovered that rearing water salinity, pH, TP, and
DO were the key determinants in driving the succession

of bacterioplankton communities (Figure 3), corroborating
recent studies obtained in shrimp, crab, and tilapia aquaculture
conditions (Giatsis et al., 2015; Yang et al., 2018; Dai et al., 2020;
Hou et al., 2020). Water DO, pH, and salinity directly affected
the structures of bacterioplankton community (Figure 3), in
accordance with the notion that bacterioplankton communities
are extremely sensitive to subtle environmental changes (Or
et al., 2012; Yang et al., 2018). In aquaculture ecosystem, the
level of water phosphorus is usually low, thus bacterioplankton
communities often experience P-unsaturation (Duhamel et al.,
2021). Accordingly, the concentration of TP was significantly
and positively correlated with the structures of bacterioplankton
community (Liu et al., 2019). However, we found that a sharp
increase in TP at the later farming stage exerted a negative effect
on bacterioplankton communities (Figure 3 and Supplementary
Figure 2). In contrast, there were negligible and insignificant
effects of water salinity, pH, TP, and DO on the gut microbiota
(Figure 3 and Supplementary Table 3). A possible explanation
for this pattern is that host could buffer external environmental
change. As a result, the gut microbiota is less affected by water
geochemical factors. Bacterioplankton community only exerted a
weak direct effect on the gut microbiota, compared with shrimp
age (Figure 3). Consistently, ample evidence has shown that the
gut microbiota in aquatic animals is distinct from surrounding
environments (Zhang et al., 2018, 2021; Xiong et al., 2019b). It
has been proposed that hosts selectively filter particular bacteria
from the rearing environments, rather than randomly ingesting
surrounding taxa (Stephens et al., 2016; Yan et al., 2016). In
accordance, shrimp age (a proxy of gut maturity) is the main
biological variable governing the succession of gut microbiota
(Figures 2, 3 and Table 2). Together, changes in the geochemical
variables strongly affect the structures of bacterioplankton
community during shrimp farming, whereas the gut microbiota
does not simply mirror the rearing bacterioplankton community.

Shrimp Gut Commensals Sourced From
Their Larvae
Although shrimp live in rearing water, relative abundances of
the top 20 bacterial genera in shrimp gut were insignificantly
associated (12 in 20 cases) with those in bacterioplankton
community (Figure 4). For example, Vibrio genus was
predominant in shrimp gut but was rare in rearing water. This
is consistent with previous studies showing that the dominant
genera are distinct between shrimp gut and rearing water
and sediment (Zhou et al., 2021). Vibrio and Photobacterium
members are long known to be opportunistic pathogens in
shrimp aquaculture (Manilal et al., 2010). Nevertheless, the
majority of vibrios are not pathogenic, many are commensal or
even beneficial, including the carbon cycle and osmoregulation
(Johnson, 2013). Indeed, Vibrio species have been frequently
detected as a dominant population in shrimp gut (Chaiyapechara
et al., 2012). In accordance, a few vibrio strains, e.g., Vibrio
alginolyticus UTM 102, have been applied as probiotics in shrimp
aquaculture (Balcázar et al., 2007). Similarly, Photobacterium
strains are common in the intestinal contents of marine animals
(Chaiyapechara et al., 2012). In addition, Ruegeria, Marivita,
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and Flavobacterium harbor the specific ability in degrading
organic matter (Williams et al., 2012; Sun et al., 2019; Huang
et al., 2020), which were enriched at the late stage of aquaculture
water (Figure 4). The relative abundance of Pseudoalteromonas
in shrimp gut was negatively associated with that in rearing
water (Figure 4). Consistently, Pseudoalteromonas strains have
been successfully used as probiotics in shrimp farming. In these
regard, shrimp could select some beneficial commensals that
improve their fitness.

Furthermore, we evaluated the contribution of internal
sources (gut commensals of younger host) on the shrimp gut
microbiota. Theoretically, aquatic animals are born without
microorganisms, thus their gut commensals should source
from the surrounding environments after birth (Yan et al.,
2016). However, the majority of gut commensals of shrimp
gut microbiota sourced from their younger host, rather than
bacterioplankton communities (Figure 5), which reinforces
the importance of the gut microbiome in younger host
(Kerr et al., 2015). Similarly, it has been shown that shrimp
acquires a small proportion of commensals from rearing water
over development (Xiong et al., 2019b). The contribution of
surrounding bacterioplankton communities on gut commensals
markedly varied over shrimp ontogeny (Figure 5). We propose
several explanations for this pattern. According to the co-
evolution hypothesis (McFall-Ngai et al., 2013), it is mandatory
for larva to recruit suitable taxa that expand the range of
diet digestion due to incomplete digestive system. Thus, to
improve hosts’ fitness, the colonization of gut commensals is
filtered from rearing species pool as a result of deterministic
processes. However, as host matures, the initial “winners” could
be reassembled, thereby resulting in host stage-specific gut
microbiota (Stephens et al., 2016; Yan et al., 2016). Additionally,
temporal dynamics of environmental variables directly alter
the bacterioplankton communities (Figure 4), leading to non-
linear contribution of bacterioplankton communities to gut
microbiota along shrimp farming. The skewed source pattern
on day 56 could be induced by sudden increase in TP content
and the low level of DO (Figure 2). In accordance, the SEM
uncovered that water TP and DO exerted indirect effects on
the gut microbiota (Supplementary Table 3). However, there
were still a high proportion of “unknown” sources (Figure 5),
which could be attributed to the uncollected species pools, e.g.,
diet, air and farmer. Together, gut commensals primarily source
from adjacent younger shrimp. In this regard, we propose the
isolation of probiotics from larval gut, which could be persist over
shrimp ontogeny.

Ecological Processes Governing the
Assembly of Bacterial Community
Bacterioplankton communities are more closely phylogenetically
clustered than the gut microbiotas, as supported by significantly
lower mean value of ses.MNTD (Supplementary Figure 4),
as observed in the present study and elsewhere (Xiong et al.,
2019b). In addition, the βNTI values of gut microbiota and
bacterioplankton community divergently changed during shrimp
farming (Figures 6A,B), though both communities exhibited
sequential shifts in the community structure (Figures 1, 2). The

gut microbiota tended to be governed by variable selection (βNTI
values > 2), while the bacterioplankton community was affected
by homogeneous selection (βNTI values < –2) (Figures 6A,B).
The logic behind this may be that shrimp has not reached full
maturity, though we collected samples over an entire shrimp
farming (Lucas et al., 2010). Consistent with this assertion,
the gut microbiota significantly changed between every paired
sampling (Supplementary Table 1). Similarly, it has been shown
that the succession of shrimp gut microbiota is more driven by
species replacement than bacterioplankton community (Xiong
et al., 2019b). In contrast, geochemical variables of rearing water
were relatively stable at the later farming days (Supplementary
Figure 2), thus bacterioplankton communities were governed
by homogeneous selection. Accordingly, the structures of
bacterioplankton community were comparable between some
adjacent pairs (Supplementary Table 2). Thus, host-associated
and free-living bacterial communities are governed by different
ecological processes. Considering the functional importance
of gut microbiota in host health, additional works are
required to explore the underlying ecological processes in
governing the overlooked host-associated microbes. Notably,
rare subcommunities in both the gut and rearing water were
affected by homogeneous selection (Figures 6E,F), whereas
their abundant counterparts were shaped by random processes
(Figures 6C,D). Rare members serve as “seed bank” in a given
community, which could switch to abundant taxa in response to
changing environments (Magurran and Henderson, 2003). That
is, rare taxa adapt to specific conditions that are strongly selected
by external factors. In accordance, rare subcommunities were
governed by deterministic processes (Figure 6). Corroborating
recent works, rare subcommunity shown to be dominated
by deterministic processes, while abundant subcommunity is
influenced largely by stochastic processes in agricultural soils
(Jiao and Lu, 2020) and freshwater ecosystems (Liu et al.,
2015). The broad fitness of abundant taxa facilitates their
successive establishment across a wide range of environmental
conditions (Wan et al., 2021), e.g., variations in host maturity
and geochemical factors here. By this logic, the abundant
subcommunities are less affected by local variables, leading
to the predominance of stochasticity (Figure 6). That is, no
phylogenetic signs were detected for abundant communities.
Consistently, there is ample evidence that rare taxa exhibit
greater sensitivity to environmental factors than abundant species
(Mo et al., 2018). Under these scenarios, it seems that the rare
subcommunities are governed by deterministic processes, while
the assembly of their abundant counterparts was stochastic across
habitats, such as host gut and rearing water here.

CONCLUSION

Host-associated bacterial community is more temporally stable
than their free-living counterpart, as supported by the significant
lower temporal turnover rate. In accordance, the gut microbiota
is less affected by the rearing water geochemical variables,
compared with bacterioplankton community. Intriguingly, the
shrimp gut microbiota does not simply mirror the rearing
bacterioplankton communities. Instead, gut commensals mainly
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inherit from their younger shrimp, rather than the rearing
water. It seems that host-associated and free-living microbes
are assembled by divergently ecological processes. That is, the
gut microbiota is governed by variable selection over shrimp
ontogeny, while the rearing bacterioplankton community is
shaped by homogeneous selection. However, the determinism
of rare and stochasticity of abundant subcommunities are
consistent between shrimp gut and rearing water. These findings
greatly broaden our understanding on the underlying ecological
processes governing the temporal successions of host-associated
and free-living microbial communities.
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Seagrass meadows, as typical “blue carbon” ecosystems, play critical ecological roles in the 
marine ecosystem and decline every year. The application of biochar in soil has been proposed 
as a potential soil amendment to improve soil quality and mitigate global climate change. 
The effects of biochar on soil bacterial activities are integrally linked to the potential of biochar 
in achieving these benefits. However, biochar has been rarely applied in marine ecosystems. 
Whether the application of biochar could work on the seagrass ecosystem remained 
unknown. In this study, we investigated the responses of sediment and rhizosphere bacterial 
communities of seagrass Thalassia hemprichii to the biochar addition derived from maize at 
ratios of 5% by dry weight in the soil during a one-month incubation. Results indicated that 
the biochar addition significantly changed the sedimental environment with increasing pH, 
total phosphorus, and total kalium while total nitrogen decreased. Biochar addition significantly 
altered both the rhizosphere and sediment bacterial community compositions. The significant 
changes in rhizosphere bacterial community composition occurred after 30 days of incubation, 
while the significant variations in sediment bacterial community composition distinctly delayed 
than in sediment occurred on the 14th day. Biochar application improved nitrification and 
denitrification, which may accelerate nitrogen cycling. As a stabilizer to communities, biochar 
addition decreased the importance of deterministic selection in sediment and changed the 
bacterial co-occurrence pattern. The biochar addition may promote seagrass photosynthesis 
and growth by altering the bacterial community compositions and improving nutrient circulation 
in the seagrass ecosystem, contributing to the seagrass health improvement. This study 
provided a theoretical basis for applying biochar to the seagrass ecosystem and shed light 
on the feasible application of biochar in the marine ecosystem.
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INTRODUCTION

Seagrasses are the only marine flowering plants found along 
temperate and tropical coastlines worldwide, and seagrass 
meadows are one of the most widespread coastal habitats on 
earth (Cullen-Unsworth and Unsworth, 2018). Seagrass meadows 
play critical ecological roles in the marine ecosystem (Cullen-
Unsworth and Unsworth, 2018). However, like many of the 
world’s natural habitats, seagrass meadows are in decline, with 
estimated global losses of ~7% annually since 1990 (Waycott 
et al., 2009). Poor coastal water quality and coastal development 
are among the primary drivers of their loss (Waycott et  al., 
2009). Anthropogenic pollution and global climate change 
altered the sedimental environment and nutrient cycles of the 
seagrass ecosystem (Short and Neckles, 1999; Harris et  al., 
2021). Strategies need to be implemented to relieve the pressure 
on seagrass.

Biochar is a carbon-rich coproduct resulting from pyrolyzing 
biomass in oxygen-limited conditions (Lee et  al., 2010). It is 
also a stable carbonaceous material with an extensive surface 
area and active functional groups (Spokas, 2010). The biochar 
application in the soil is evaluated globally to improve soil 
fertility (Novak et  al., 2009). Recently, researchers have shown 
an increased interest in biochar amendments because it could 
promote additional photosynthetically fixed carbon into the soil, 
where it may contribute to longer-term carbon storage and 
thus mitigates increasing atmospheric CO2 concentrations (Schmidt 
and Noack, 2000; Lehmann et  al., 2006; Lehmann, 2007; Woolf 
et  al., 2010). It is generally accepted that biochar is mainly 
unavailable to soil microbes, but it can induce changes in soil 
physicochemical properties and the introduction of metabolically 

available labile carbon compounds associated with the biochar, 
which may shift the soil microbial community composition and 
abundance (Grossman et  al., 2010; Anderson et  al., 2011). The 
variations mentioned above may well affect nutrient cycles or 
soil structure and indirectly affect plant growth (Yu et al., 2021).

Sediment, especially the rhizosphere of plants, is a complex 
and heterogeneous hotspot inhabited by various microorganisms, 
including bacteria, fungi, protists, nematodes, and viruses (Dodd 
et  al., 1987; Huang et  al., 2014; Wei et  al., 2017; Pratama 
et  al., 2020). Plants provide a multitude of niches for 
microorganisms’ growth and proliferation. Lennon and Jones 
(2011) noted that the physicochemical properties of the soil, 
together with plant species, dominated where members of 
microorganisms can grow and thrive. Vice versa, soil microbial 
communities play central roles in most biogeochemical and 
ecological processes (Bardgett and van der Putten, 2014). They 
can form complex co-associations with plants and have essential 
roles in promoting the productivity and health of the plant 
in natural environments (Trivedi et  al., 2020). Among the 
plant-associated microbiota, bacteria are the most dominant 
form. Thus, information on bacteria community composition, 
diversity, and their determinants is critical for understanding 
responses of plant microbial symbiont to environmental changes. 
Moreover, Martin et  al. (2020) found that microbial indicators 
could detect the potential stress in the seagrass ecosystem 
while other seagrass health metrics failed to detect.

So far, biochar has been widely studied in terrestrial ecosystems 
(Laird et  al., 2010; Song et  al., 2020; Owsianiak et  al., 2021), 
and biochar application in soil has been proven to be an effective 
method for enhancing nutrient cycling, and they could mediate 
biochar-plant root interactions and ultimately affected root 
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growth and overall plant performance (El-Naggar et  al., 2019; 
Purakayastha et  al., 2019). Zhang et  al. (2018) found that the 
soil microbial activities increased and community structure 
changed under biochar amendment, which benefited the soil 
carbon sequestration and farmland systems stability and promoted 
soil nutrients cycling, thus improving crop yields. Plant stress 
is one of the major problems encountered in plant growth, 
and Kavitha et al. (2018) found biochar displayed great potential 
to mitigate plant stresses for both biotic and abiotic types of 
stresses. However, biochar application was mainly investigated 
in terrestrial agriculture and freshwater ecosystems, while for 
the marine environment, the information was rare. Given the 
functions of biochar to the terrestrial ecosystems, whether 
biochar could be  applied to the marine seagrass ecosystem and 
get similar results. If biochar could promote the seagrass 
ecosystem, such as optimization of nutrient cycles and promotion 
of seagrass growth, it may be  a solution to mitigate seagrass 
stresses under anthropogenic activities and global climate change.

In the present study, biochar was added as a soil amendment 
with the intention to improve the health condition of seagrass. 
The high-throughput DNA gene sequencing has been used to 
investigate the influence of biochar on the bacterial community, 
which indirectly explains biochar’s effect on seagrass. The 
purpose of this study was to synthesize responses of seagrass 
sediment and rhizosphere bacterial community structure shifts 
and activities to biochar addition comprehensively. We  have 
a hypothesis that if biochar addition could optimize the sediment 
and rhizosphere bacterial community structure of seagrass in 
the marine ecosystem and indirectly ameliorate the health status 
of seagrass? The result of this study could contribute to further 
biochar application in the seagrass ecosystem.

MATERIALS AND METHODS

Sample Collection, Microcosm Setup, and 
Experimental Design
Biochar was pyrolyzed from maize straw in this study. The 
maize straw was firstly pre-crushed, dried at 80°C, passed 
through a 2-mm sieve, and then pyrolyzed at 600°C for 1 h 
in the oven. Biochar pH was 9.0 approximately, which was 
measured with the standard procedure referred to ASTM (2017).

Seagrass Thalassia hemprichii were collected at Xincun Bay, 
Hainan province, China, (18°24′48″ N, 109°59′2″ E) on 13th 
June 2018. The in situ sediment was collected, extracting the 
surface layer (up to 10 cm deep) simultaneously. The samples 
were collected, stored in sterile sealing bags, and immediately 
transported to the laboratory.

The culture experiment was conducted indoors with constant 
room temperature at Tropical Marine Biological Research Station 
in Hainan, Chinese Academy of Sciences, from June 13, to 
July 19, 2018. Six independent microcosms manufactured by 
rectangular glass aquaria (24 L capacity, 30 cm height × 40 cm 
length × 20 cm width) were used for the experiment. Each 
microcosm contained about 10 cm of sediment (about 10 kg 
wet weight) and 10 L of artificial seawater, configured according 

to the ambient salinity (28.2 PSU) in the lab. Seagrasses were 
then transported into the glass vessels, where they were 
maintained for 1 week of indoor acclimation.

After the acclimation period, three aquaria with non-biochar-
added soil were set as the blank control groups, while three 
aquaria with biochar-added soil with a final concentration of 
5% were set as biochar addition groups. Each aquarium had 
an independent air pump providing proper aeration. The 
temperature was maintained at 29.0°C with a slight fluctuation 
(±0.5°C), close to the ambient temperature at the collection 
site (29.5°C). The lab allowed us to control incident light 
(270 μmol photons m−2  s−1) above the saturation irradiance 
for these plants (Pérez and Romero, 1992) on a 12-h:12-h 
light: dark photoperiod. In order to better mimic the 
environmental conditions and eliminate artificial disturbances, 
no extra nutrients were added to the samples during the 
experiments, and the seawater overlying sediment was renewed 
every week with 0.2 μm membrane filtered seawater.

Samples used for bacterial and physicochemical analysis 
were collected simultaneously on the 1st, 14th, and 30th days. 
Sediment samples at each aquarium were collected from 
unvegetated areas. Rhizosphere sediment samples include the 
root of seagrass and soil that adheres to roots. After sampling, 
each sample was thoroughly homogenized using a sterilized 
spoon. All samples consisted of four types, including the 
rhizosphere sediment of blank control (RSC), the sediment of 
blank control (SC), the rhizosphere sediment of experiment 
group (RSB), and the sediment of experiment group (SB). 
“Soil” refers to both the sediment and rhizosphere sediment 
in afterward description.

All samples for DNA analysis were kept in sample protectors 
(TaKaRa, Dalian, China), frozen immediately, and stored at 
−80°C until further analysis. The temperature and salinity of 
the seawater adjacent to seagrass samples (within 3 cm) were 
measured using a YSI 6600V2 water quality sonde (YSI, Yellow 
Springs, OH, United  States). Dissolved oxygen (DO) 
concentrations and pH values were measured using a portable 
pH/DO Meter (Thermo Fisher Scientific, MA, United  States). 
Inorganic nutrients in seawater, including ammonium (oxidized 
by hypobromite), nitrate (diazotizing with sulfanilamide), nitrite 
[colored N-(1-naphthyl)-ethylenediamine-dihydrochloride], and 
phosphate (colored molybdophosphoric blue), were measured 
using standard methods as described previously with 
spectrophotometer (Huang et  al., 2003). Chemical data [Total 
nitrogen (TN), total phosphorus (TP), total kalium (TK), available 
nitrogen, available phosphorus, available kalium, and nitrate-
nitrogen (NO3-N)] of sediments were determined by using 
standard oceanographic methods with ultraviolet 
spectrophotometry method (General Administration of Quality 
Supervision, Inspection and Quarantine of the People’s Republic 
of China, 2002). The rapid light curve (RLC) function of the 
Diving-PAM (Diving-PAM, Walz, Germany) was used to measure 
in situ photosynthetic performance (based on the effective 
quantum yield of PSII [Y] values) of intact seagrasses that were 
placed in small incubating chambers, and the rate of electron 
transport between photosystem II and photosystem I (ETR) 
was measured and used as a proxy for the photosynthetic rate.
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DNA Extraction, PCR, and Sequencing
The bacterial 16S rRNA gene (total bacterial composition) was 
amplified using universal 16S rRNA gene (V4-V5) primers 
515F-Y (5′-GTGYCAGCMGCCGCGGTAA) and 926R 
(5′-CCGYCAATTYMTTTRAGTTT). PCR cycling was performed 
in reaction mixtures consisting of 25 μl Ex Taq (2×; TaKaRa, 
Dalian, China), 1 μl of forward primer (10 μm), 1 μl of reverse 
primer (10 μm), and 1 μl of DNA in a 50-μl final volume. The 
PCR amplification program was as follows: initial denaturation 
at 94°C for 5 min, followed by 35 cycles of denaturation at 
94°C for 30 s, annealing at 54°C for 45 s and extension at 
72°C for 45 s, and final elongation at 72°C for 10 min. Libraries 
were constructed from the purified PCR products of each 
sample. The DNA was then purified with a Promega Wizard 
DNA Clean-Up System (Madison, WI, United States). Sequencing 
was performed on the Illumina MiSeq platform 2 × 250 bp.

Amplicon bioinformatic analysis was accomplished with 
EasyAmplicon v1.0 (Liu et al., 2021). Paired-end sequence data 
were merged, quality filtered, and dereplication using VSEARCH 
v2.15 subcommand –fastq_mergepairs, −fastx_filter and –
derep_fulllength, respectively (Rognes et  al., 2016). Then, the 
non-redundancy sequences are denoising into amplicon sequence 
variants (ASV) with USEARCH v10.0 (Edgar, 2010; via unoise3), 
and then, the singletons and chimeric sequences were removed. 
Chimera was removed by VSEARCH –uchime_ref against with 
SILVA database (Quast et al., 2013). Feature tables were created 
by vsearch –usearch_global. The USEARCH sintax algorithm 
classified the taxonomy of the features (ASVs) in RDP training 
set 16 (Cole et  al., 2014). Samples were rarefied to 10,392 
sequences per sample. The soil microbiome data set has been 
deposited in the NCBI Sequence Read Archive under accession 
number PRJNA750881.

PICRUSt2
Functional predictions of the microbial community were 
conducted using Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States 2 (PICRUSt2) and 
the default analysis parameters (Douglas et al., 2020). PICRUSt2 
uses the following tools and algorithms: HHMER, EPA-NG, 
GAPPA, and castor to align ASVs to reference sequences, place 
them into a reference tree, and perform hidden-state prediction 
functions (Eddy, 1998; Louca and Doebeli, 2018; Barbera et al., 
2019; Czech et  al., 2020; Douglas et  al., 2020), respectively. 
Functional prediction analysis was performed at the gene-level 
(KEGG orthologs) and the pathway-level (Meta Cyc; Kanehisa 
and Goto, 2000; Karp et  al., 2002). The nearest sequenced 
taxon index (NSTI) value is calculated to evaluate the prediction 
accuracy, and lower value means higher accuracy. In this study, 
NSTI values were 0.15 ± 0.002 (mean ± s.e., n = 39). The gene 
table was compared with KEGG pathways related to nitrogen 
metabolism (KO00910). As a result, a total of 18 nitrogen 
cycling genes (KOs) were chosen for subsequent analyses. The 
details of these genes (KOs) were shown in 
Supplementary Table S2. Furthermore, 30 genes involved in 
the carbon fixation, phosphorous, and sulfur metabolism were 
also selected for subsequent analyses.

Statistics Analysis
The phylogenetic diversity index (alpha diversity) and rarefaction 
curves were calculated based on the rarefied ASV table using 
the “vegan” R package in R software (version 4.0.4; Oksanen 
et  al., 2015). All heatmap was generated using the “pheatmap” 
package in the R environment (R Core Team, 2018). The 
correlation between environmental variables and community 
composition was calculated using the “ggClusterNet”1 R package 
in R software (version 4.0.4) with mantel test. Statistical analysis 
of metagenomic profiles (STAMP) was conducted to analyze 
the abundance profile. A two-sided Welch’s t test carried by 
STAMP was used to identify distinct taxonomic compositions 
and metabolic pathways between blank control and experiment 
group (Parks et  al., 2014; Li et  al., 2020a).

To compare the β diversity of communities, non-metric 
multidimensional scaling ordination (nMDS) analyses were 
conducted based on Bray-Curtis similarity. Furthermore, an 
analysis of similarity (ANOSIM) was used to statistically test 
for significant differences in bacteria communities among groups, 
based on different times and treatments. In this analysis, 
complete separation is indicted by R = 1, whereas R = 0 suggests 
no separation. Both nMDS and ANOSIM were performed in 
PRIMER 7.0 (Clarke and Gorley, 2015).

Ecological Processes Influencing Bacterial 
Community Assembly
The null model (NM) was used to quantify the contributions 
of different ecological processes (stochastic vs. deterministic) 
to bacterial community structure (Stegen et  al., 2013). The 
NM is pattern-generating model that deliberately exclude a 
mechanism of interest and allow for randomization tests of 
ecological and biogeographic data, a framework to quantitatively 
infer community assembly mechanisms by phylogenetic bin-based 
null model analysis (iCAMP) was used (Ning et  al., 2020). 
We calculated the framework for bacterial community assembly 
in soil with the “iCAMP” R package2, and the results showed 
the relative importance of different processes in the turnover 
of each bin within each group of samples.

Co-occurrence Network
A valid co-occurrence correlation was assigned between bacterial 
community composition if the spearman’s correlation coefficient 
(r) was greater than 0.6 with an adjusted value of p < 0.01. Topological 
characteristics were calculated to describe the complexity of gene 
co-occurrence networks, including average degree (avgK, which 
is a key topological property to describe how well a node is 
connected to the others, higher avgK value means a more complex 
network), clustering coefficient (CC, which is used to measure 
the extent of module structure present in a network), characteristic 
path distance (CPD, which is the average value of the distances 
between every two nodes in a network, higher CPD value means 
a reduced coupling among nodes in a network), and network 
density (ND, which is closely related to the average degree).

1 https://github.com/taowenmicro/ggClusterNet
2 https://github.com/DaliangNing/iCAMP1
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The topological role of each ASV was determined according 
to the Zi degree (how well a node is connected to other 
nodes in the same module) and Pi degree (how well a node 
is connected to the nodes in other modules; Xun et  al., 2017). 
According to the suggested Zi and Pi degree thresholds (Olesen 
et al., 2007), all ASVs were categorized into four subcategories: 
peripherals (Zi ≤ 2.5 and 0 ≤ Pi ≤ 0.62), connectors (Zi ≤ 2.5 and 
Pi > 0.62), module hubs (Zi > 2.5 and Pi ≤ 0.62), and network 
hubs (Zi > 2.5 and Pi > 0.62). Overall, the correlations were 
calculated using the psych package (version 1.8.12; Revelle, 
2017) in R software (version 4.0.4). The networks were visualized, 
and the topological characteristics were calculated using Gephi 
software (version 0.9.2; Bastian et  al., 2009).

RESULTS

Responses of the Environment to Biochar 
Addition
The environmental parameters of the water, sediment, and 
seagrass samples were shown in Supplementary Figure S1. 
The addition of biochar significantly increased sediment pH 
from 7.94 ± 0.21 (mean ± s.e.) to 8.31 ± 0.08 (mean ± s.e.). Total 
phosphorus, available phosphate, total kalium, and available 
kalium of sediment were also significantly increased with biochar 
addition on day 30 (p < 0.05). Total nitrogen of the sediment 
was significantly decreased with biochar addition on day 30 
(p < 0.05). There was no significant difference in the final NO3-N 
concentration between control and biochar addition groups in 
sediment (Supplementary Figure S1). Biochar addition 
significantly increased the photosynthetic rate of seagrass from 
0.76 ± 0.006 (mean ± s.e.) to 0.78 ± 0.003 (mean ± s.e.) on day 30.

Community Structure and Diversity
Bacterial community profiling of 18 sediments (three replications 
for biochar addition and three replications for control at three 
time points) and 21 rhizosphere samples (three replications 
for biochar addition and four replications for control with 
three time points) were conducted to investigate the effects 
of biochar on the structure of bacterial communities. The 
bacterial community profiling yielded 405,288 high-quality 
sequences. A total of 7,357 bacterial ASVs were identified 
across all samples (Supplementary Table S1). For α-diversity 
analyses, the communities were rarified to 10,392 sequences 
per sample, which captured most of the observed ASV richness 
(Supplementary Figure S2). The sediment bacterial community 
profiling yielded 6,206 ASVs with 187,056 sequences, while 
the rhizosphere bacterial community got 7,198 ASVs with 
218,232 sequences (Supplementary Table S1).

The Shannon index, providing an estimate of alpha diversity 
in each sample, ranged from 6.72 to 7.45 with a mean of 
7.17 ± 0.19 (mean ± s.e.) and did not differ significantly between 
the control and treatment group (p > 0.05; Supplementary  
Figure S3). Other alpha diversity indices (including ACE and 
Simpson) also did not show significant differences within and 
between groups (ANOVA, p > 0.05).

Seagrass rhizosphere sediment and sediment presented 
different microbial habitats with specific bacteria 
(Supplementary Figure S4). The differences between bacterial 
communities (β-diversity) were visualized and quantified using 
the dendrogram cluster for 12 subgroups from the control 
and biochar addition groups based on Bray-Curtis similarity 
(replicates were combined into one subgroup; Figure  1A). 
Bacterial communities of rhizosphere sediment and sediment 
were clearly separated into two clusters. It revealed that there 
were obvious differences between rhizosphere sediment and 
sediment bacterial communities. The result of nMDS also 
appeared to be  two clearly differentiated plates (Figure  1C).

The result of nMDS (constrained by treatment) and ANOSIM 
highlighted the biochar effect on all bacteria communities 
(Figure  1C). Pairwise tests revealed significant differences 
(p < 0.05) between SB and SC, while there were no significant 
differences between RSB and RSC. Meanwhile, it also revealed 
that the community composition changed significantly 
with time.

Relative Abundance of the Different 
Classification Level
In general, most bacteria were gram-negative (91.49% ± 0.29 
and 85.97% ± 1.16% for rhizosphere and sediment bacterial 
communities, respectively; Figure  1B). Phylum Bacteroidetes 
(6.74% ± 0.96 and 11.03% ± 1.37% for rhizosphere and sediment 
bacterial communities, respectively) and Proteobacteria 
(73.54% ± 3.11 and 67.26% ± 1.48% for rhizosphere sediment 
and sediment bacterial communities, respectively) were the 
most two abundant phyla for all the samples (Figure  1B). 
Phylum Cyanobacteria was much more abundant in the 
rhizosphere sediment (6.07% ± 2.22%) than sediment 
(2.25% ± 1.16%).

At the phylum level, Phylum Deferribacteres and Fusobacteria 
decreased significantly with biochar addition for rhizosphere 
sediment bacterial communities on day 30. While for sediment 
bacterial communities, Phylum Actinobacteria decreased, while 
Acidobacteria and Aminicenantes increased significantly with 
biochar addition on day 14 (Figure  2A).

Moreover, Class Deferribacteres, Deltaproteobacteria, and 
Fusobacteriia decreased significantly with biochar addition for 
rhizosphere sediment bacterial communities on day 30. Compared 
with the control group, the relative abundance of Class 
Alphaproteobacteria with biochar addition group was lower, 
while Class Gammaproteobacteria were higher on day 14 for 
sediment bacterial communities (Figure  2B).

At the ASV level, ASV7606 affiliated with the Phylum 
Actinobacteria showed significant differences between the control 
and biochar addition groups for both rhizosphere sediment 
and sediment bacterial communities. In addition, ASV7641 
(Phylum Proteobacteria), ASV6824 (Phylum Fusobacteria), and 
ASV3977 (Phylum Bacteroidetes) presented significant differences 
between groups for rhizosphere sediment bacterial communities. 
In contrast, ASV7384 (Phylum Bacteroidetes) and ASV5617 
(Phylum Proteobacteria) exhibited differences for sediment 
bacterial communities (Figure  2C).
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Relative Abundances of Genes Involved in 
the Nutrient Cycle
The relative abundances of genes involved in carbon fixation, 
phosphorus and sulfur metabolism, and nitrogen cycle were 
predicted by PICRUSt2 (Supplementary Figure S5A). The 
abundance of some function genes (e.g., acsB for carbon fixation; 
ugpQ, glpA, glpD, and glpK for phosphorus metabolism; sat_met3 
and cysH for sulfur metabolism; nifD, nirK, and nosZ for 
nitrogen cycle) was significantly different between the rhizosphere 
sediment and the sediment bacterial communities 
(Supplementary Figure S5B).

As illustrated in Supplementary Figure S6, both the 
rhizosphere sediment and sediment bacterial communities 
showed a significant positive correlation (p < 0.05) with NO3-N. 
Therefore, in order to better identify the effect of biochar on 
nitrogen cycling genes, relative changes of nitrogen cycling 
genes between control and biochar addition groups were 
calculated in Figure  3. Effects of biochar addition on nitrogen 
cycling genes of the rhizosphere sediment and sediment were 
different. In sediment, these genes appeared significantly different 
on day 14 principally. For instance, the nitrogen fixation genes 
(nifH, nifD, and nifK) were restrained by biochar addition, 

A

B

C

FIGURE 1 | (A) Dendrogram cluster for 12 combined samples based on Bray-Curtis similarity. (B) Histogram showing the relative abundance of different 
subgroups (Phylum and Class level), G+ means Gram-positive bacteria while G− means Gram-negative bacteria. (C) Non-metric multidimensional scaling 
ordinations (nMDS) for bacteria communities of 39 samples. [Table in the figure were analysis of similarities (ANOSIM) of bacterial communities. SB, Sediment 
bacteria of treatment groups; SC, sediment bacteria of control groups; RSB, rhizosphere bacteria of treatment groups; RSC, rhizosphere bacteria of control groups].
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and denitrification genes (narG, narH, and narI) and nitrification 
genes (nrxA and nrxB) were significant increased on day  14. 
In the rhizosphere sediment, the biochar exerted a primary 
effect on day 30, and the abundance of nitrogen fixation genes 
(nifH, nifD, and nifK) was decreased. Besides, biochar addition 
also significant decreased the abundance of dissimilatory nitrate 
reduction genes (nrfA and nrfH).

Ecological Processes Influencing Bacterial 
Community Assembly
It has been proved that both niche and habitat filtering have 
effects on bacterial community structure. Null model analysis 
was used to disentangle the relative importance of stochastic 
and deterministic processes (homogenous and heterogeneous 
selections) in the microbial assembly within biochar addition 
sediment of seagrass (Stegen et  al., 2013). The determinism 
process showed a stronger impact on the community assembly 
for bacteria than stochasticity in all groups, and heterogeneous 
selection dominated the deterministic process (Figure  4A). 
Compared to sediment bacterial communities, the determinism 
process showed a stronger impact on rhizosphere bacterial 
communities. Biochar addition led to a higher relative importance 
of stochasticity in sediment on day 30, while there was barely 
any effect on rhizosphere bacterial communities (Figure  4B).

Co-occurrence Patterns of the Bacterial 
Communities
The bacterial community composition co-occurrence networks 
were constructed to identify the ecological interplay between 
co-occurrence taxa (Figure  5). Network topological features 
showed that the co-occurrence pattern in the rhizosphere 
sediment differed from the sediment network. There was a 
substantial change in the rhizosphere sediment bacterial 
community network with biochar addition, while the network 
topological features showed a minor fluctuation. After filtering 
most ASVs of low abundance, the final network had 180, 158, 
187, and 174 nodes for RSC, RSB, SC, and SB, respectively. 
Network density, clustering coefficient, and average numbers 
of degrees were lower, while module numbers were higher for 
RSB than RSC (Supplementary Table S3).

The modular structure of the co-occurrence network was 
compared between RSC, RSB, SC, and SB. The RSC, RSB, SC, 
and SB networks parsed into three, six, five, and five major 
modules (modules with nodes number more than 10% of total 
nodes number), respectively, which accounted for 87.8, 77.2, 
64.2, and 75.9% of their corresponding networks. The modules 
of RSC and RSB were primarily occupied by Class 
Deltaproteobacteria and Gammaproteobacteria, while the 
modules of SC and SB were primarily occupied by Class 

A B C

FIGURE 2 | Heatmap of differences between different groups at Phylum (A), Class (B) and ASV (C: 30 ASVs with the highest relative abundance) level, 
respectively. The value represented by the color was calculated by Welch’s t test in STAMP, value >0 (red) means control group has a higher abundance, while value 
<0 (blue) means biochar addition group has a higher abundance. (*p < 0.05).
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Deltaproteobacteria, Gammaproteobacteria, and Bacteroidetes 
(Supplementary Figure S7).

Topologically, the nodes represent distinct roles in the 
network. Ecologically, module hubs and connectors signify 
generalists, network hubs indicate supergeneralists, while 
peripherals represent specialists. Keystone taxa were identified 
and displayed via Zi-Pi plots (Supplementary Figure S8). There 
were no module hubs and network hubs for all networks 
(Supplementary Figure S8). About 16.7, 8.9, 16.6, and 14.4% 
of ASVs in the RSC, RSB, SC, and SB were connectors, 
respectively, and most of them were affiliated with the Phylum 
Proteobacteria (Supplementary Table S4).

DISCUSSION

Biochar Addition Changed the 
Environment and Improved the 
Photosynthetic Rate of Seagrass
Biochar addition changed some environment variables 
significantly in this study. There was a significant pH increase 
with biochar addition. Over time, the pH of biochar in the 
sediment may change and either decrease or increase depending 
on the biochar type. Nguyen and Lehmann (2009) observed 

a pH decrease with mineral-poor oak wood biochar from pH 
4.9 to 4.7, but an increase with mineral-rich corn stover biochar 
from pH 6.7 to 8.1 during one-year incubation. The driving 
force behind a pH decrease is the oxidation of carbon to form 
acidic carboxyl groups (Cheng et al., 2006), whereas the increase 
in pH is likely related to the dissolution of alkaline minerals. 
Elevated pH caused by biochar addition might benefit bacteria 
over fungi (Rousk et  al., 2009).

Biochar can affect the microbially-mediated transformation 
of nutrients significantly in the soil, and it could increase the 
adsorption of NO3-N (Van Zwieten et  al., 2010) and the soil 
contents of NO3-N and TN (Li et  al., 2020b). However, there 
was a minor decrease for NO3-N while a significant decrease 
for TN with biochar addition in this study. In agricultural systems, 
the higher concentrations of available kalium would likely encourage 
plant uptake of NO3-N (Chan et  al., 2007), which led to a 
lower concentration of NO3-N in the sediment of biochar addition 
groups. Van Zwieten et al. (2010) also found that biochar addition 
could increase kalium, which was consistent with our results.

Supplementary Figure S1 presents that the phosphorus in 
the sediment significantly increased in the biochar addition 
group. Moreover, Lu et  al. (2020) found that the biochar 
addition increased the abundance of genes involved in inorganic 
phosphate solubilization and organic phosphorus mineralization, 

FIGURE 3 | Relative changes of N-cycling genes in rhizosphere and sediment. For each subfigure, the value represented by the color was calculated by Welch’s  
t test in STAMP, colors indicate relative differences in gene abundance between the biochar addition groups and control groups, value >0 (red) means biochar 
addition group has a higher abundance, while value <0 (blue) means control group has a higher abundance. (*p < 0.05).
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but not those involved in phosphorus transportation of the 
phosphorus cycling. The microbial activities related to organic 
phosphorus mineralization were enhanced by biochar addition 
(Masto et  al., 2013). Besides, biochar addition at a rate of 
20 g kg−1 soil increased acid phosphatase activity (+32%) and 
alkaline phosphatase activity (+22.8%; Masto et  al., 2013).

On day 30, there was a significant increase in the biochar 
addition group’s in situ seagrass photosynthetic performance, 
of which a higher value means a strong photosynthetic 
performance. Higher photosynthetic performance could enhance 
seagrass growth and optimize CO2 utilization. This result was 
consistent with our hypothesis that biochar addition would 
improve the health of the seagrass.

Biochar Addition Changed the 
Rhizosphere Sediment Bacterial 
Community Composition With Delayed 
Effect, but Not Alpha Diversity
Biochar addition could significantly change the bacterial 
community compositions (Lehmann et  al., 2011; Xu et  al., 

2014; Zhang et  al., 2018; Wei et  al., 2020). The specific sets 
of microbes in the rhizosphere and sediment demonstrated 
clear separation by compartment in the nMDS plot. This 
distinctiveness of the plant rhizosphere microbiome was also 
found in previous studies (Bulgarelli et  al., 2012; Lundberg 
et al., 2012; Peiffer et al., 2013; Yeoh et al., 2015; Zarraonaindia 
et  al., 2015; Hartman et  al., 2017). Plants recruit a rhizosphere 
sediment microbiome in their early life stages from a larger 
pool of sediment microbes. The initial composition of this 
sediment microbial pool is the most influential factor determining 
the composition of rhizosphere sediment microbial communities 
(Hartman et  al., 2018). Therefore, the investigation on the 
response of both rhizosphere sediment microbiome and sediment 
microbes to the biochar addition was necessary. In this study, 
biochar exerted distinct effects on sediment bacterial communities 
than rhizosphere sediment bacterial communities. The differences 
between the control and biochar addition groups appeared on 
day 30 for rhizosphere sediment bacterial communities and 
day 14 for sediment bacterial communities. Taken together, 
biochar may have a direct and rapid effect on the sediment 
bacterial communities, and the change of sediment bacterial 

A B

FIGURE 4 | Relative importance of different ecological processes in response to biochar addition. (A) Community assembly processes of bacterial community from 
different groups. (B) Changes of determinism and stochasticity; Data are presented as mean values ± SD. Error bars represented standard deviations; For RC, n = 6 
comparisons among four biologically independent samples at each time point; For SC, RB and SB, n = 3 comparisons among three biologically independent 
samples at each time point. [Determinism: HoS + HeS; stochasticity: DL + HD + DR (Ning et al., 2020)].
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pool led to rhizosphere sediment bacterial communities change 
with a “delayed effect.”

Biochar addition could increase the sediment bacterial alpha 
diversity in constructed wetlands (Deng et al., 2019) and improve 
microbial activity in PAH-stressed soil (Li et al., 2020b). However, 
there were no significant differences in alpha diversity between 
control and biochar addition groups in this study. This may 
be explained by the different environments and different biochar 
properties. Effects of biochar application on soil bacterial 
community structure variations and activities remain controversial 
under different biochar characteristics, soil properties, and 
experiment conditions. The role of biochar in soil biological 
processes, therefore, represents a frontier in soil science research 
with many unexplained phenomena awaiting exploration.

Three Patterns of Bacterial Groups 
Induced by Biochar Addition
Phylum Bacteroidetes and Proteobacteria were the two most 
abundant phyla detected in this study. Their dominance was 

also observed in previous large-scale surveys of soil 
microorganisms (Fierer et al., 2007; Lauber et al., 2009). While 
this study reported the general characteristics of bacterial 
communities, it also revealed some specific patterns. For example, 
biochar addition groups with the oligotrophic environment had 
a higher relative abundance of Acidobacteria in sediment on 
day 14, which preferred oligotrophic soils (Fierer et  al., 2007), 
and they did not seem to have outcompeted in soils of high 
CO2 concentration plots despite with the increased flux of C 
(Austin et  al., 2009).

In the present study, there were three changing patterns of 
all subgroups based on three sampling time points: Pattern 1: 
Rhizosphere sediment and sediment bacterial subgroups had 
consistent variation trend; Pattern 2: rhizosphere sediment and 
sediment bacteria subgroups had reverse variation trend; and 
Pattern 3: no correlation between changes of rhizosphere sediment 
and sediment bacteria subgroups (Supplementary Figure S9).

Pattern 1: The biochar addition may create a similar 
environment for some subgroups, and the relative abundance 
of these subgroups will increase or decrease depending on the 

FIGURE 5 | Species-species and species-environment association network. A connection stands for a strong (Spearman’s |r| > 0.6) and significant (value of 
p < 0.01) correlation.
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environment and their competitor in the same niche with a 
similar trend in rhizosphere sediment and sediment. For example, 
biochar addition caused the relative abundance of phylum 
Actinobacteria to decrease on day 14 while increasing on day 
30, and that of phylum Cyanobacteria increased on day 14 
while decreasing on day 30  in both rhizosphere and sediment.

Pattern 2: The biochar addition may create an uneven 
environment and have different effects on the sediment and 
rhizosphere sediment. Subsequently, some bacterial groups 
moved from the rhizosphere sediment to the sediment, while 
some bacterial groups moved from the sediment to the 
rhizosphere sediment driven by environmental factors. For 
example, biochar addition caused a decrease in the relative 
abundance of Phylum Fusobacteria and Aminicenantes in the 
rhizosphere sediment while an increase in sediment on day 
30. Fusobacteria is a phylum of obligately anaerobic bacteria 
commonly found in marine sediment environments (Hofstad 
et  al., 1991), and they have putative hydrocarbon-degrading 
qualities (Gutierrez et  al., 2016). On the other hand, Phylum 
Aminicenantes exhibited the highest relative abundance in 
hydrocarbon-impacted environments, followed by marine 
habitats (especially hydrothermal vents and coral-associated 
microbiome samples; Farag et  al., 2014). Taken together, a 
possible reason for this might be that biochar addition increased 
hydrocarbon concentration in the sediment or decreased 
hydrocarbon concentration in the rhizosphere sediment, which 
led to some hydrocarbon-related bacteria moving away from 
the rhizosphere.

Pattern 3: These subgroups may be  governed by pattern 1 
and pattern 2 with a combined effect, making their variation 
trends irregular. For example, Phylum Proteobacteria showed 
a similar variation trend before day 14, while had a reverse 
trend on day 30. In this study, only three sampling times 
were set. To further investigate the variation trends of different 
subgroups, more time points needed to be  set.

Biochar Changed Nutrient Cycles, 
Especially the Nitrogen Cycle
Biochar addition significantly changed some bacterial groups 
involved in nutrient cycling. For example, the relative abundance 
of Phylum Deferribacteres decreased significantly with biochar 
addition in rhizosphere sediment bacterial communities on 
day 30. The previous study showed that Phylum Deferribacteres 
might have the nifH gene, which is important for nitrogen 
fixation (Zehr et  al., 2003). Moreover, the relative abundance 
of Phylum Actinobacteria decreased significantly with biochar 
addition on day 14 for sediment bacterial communities. In 
the rhizosphere sediment, the enrichment of Actinobacteria 
could improve bacterial activity and nutrient cycling (Koranda 
et  al., 2011; Zhang et  al., 2019). Compared with the control 
group, the relative abundance of Class Alphaproteobacteria 
was lower on day 14 for sediment bacterial communities in 
the treatment group. Bacteria of Class Alphaproteobacteria 
frequently adopted an intracellular lifestyle as plant mutualists 
or plant or animal pathogens (Batut et  al., 2004). A variety 
of metabolic strategies are found in this class, including 

photosynthesis, nitrogen fixation, ammonia oxidation, and 
methylotrophy (Williams et  al., 2007).

The microbiota, mainly bacteria and archaea, drives the soil 
nitrogen cycle. Many investigations have been carried out on 
the effects of biochar application on soil microbiota (Kolton 
et  al., 2011; Chen et  al., 2012), and biochar addition improved 
the nitrogen cycle by changing the bacteria community composition 
(Chan et  al., 2007, 2008; Major et  al., 2009). Biochar addition 
restrained nitrogen fixation genes while promoting the transform 
between NO3-  and NO2-  in this study. Furthermore, Xiao et al. 
(2019) found that biochar addition significantly increased the 
abundance of ammonia-oxidizing archaea (AOA), nirK, nirS, 
and nosZ by an average of 25.3, 32.0, 14.6, and 17.0%, respectively. 
Biochar addition may improve both nitrification and denitrification 
and accelerate nitrogen cycling. The increased activity of nitrifying 
microorganisms in biochar may be  due to the increase of 
ammonium nitrogen and DOC contents (Mierzwa-Hersztek et al., 
2018). At the same time, DOC drives the turnover of C and 
N in microorganisms, which stimulates the growth of 
microorganisms and promotes the activity of denitrifying enzymes 
(Xiao et  al., 2019). Furthermore, nitrification is an acidifying 
process (Bolan et  al., 1991). The alkaline biochar may create 
much more favorable conditions for nitrifiers and then increase 
nitrification rates due to its liming effect (Prommer et  al., 2014; 
Ulyett et  al., 2014). Nishio (1996) and Rondon et  al. (2007) 
found biochar addition to soil increased biological nitrogen 
fixation. In addition, Wu et  al. (2020) found biochar decreased 
the diversity of the diazotrophic community and altered diazotroph 
community structure during composting. Biochar changed the 
community structure of nitrogen-fixing bacteria, but the effect 
on nifH gene abundance was not clearly determined.

NO3-N but Not pH as the Key Driver of 
Both Rhizosphere Sediment and Sediment 
Bacteria Communities
Recent studies suggested that the richness and diversity of the 
soil bacterial communities were strongly related to soil pH 
(Nicol et al., 2008; Lauber et al., 2009; Li et al., 2020b). However, 
there was no significant correlation between the bacterial 
community’s taxonomical composition and pH. The “size-
plasticity” hypothesis argues that smaller individuals are less 
environment filtered than larger individuals because smaller 
individuals are more likely to have plasticity in metabolic 
abilities (Finlay, 2002; Langenheder et  al., 2005). Therefore, 
bacteria may exist widely in such a narrow pH range, suggesting 
that the selection pressure of pH was invisible on the 
bacterial community.

In our result, both the rhizosphere sediment and sediment 
bacterial communities showed a significant positive correlation 
(p < 0.05) with NO3-N concentration. One possible explanation 
was that biochar directly affected NO3-N concentration (Sui 
et  al., 2021); then, NO3-N acted on bacterial communities. 
Another explanation was that biochar could act on nitrogen-
related bacteria and seagrass (Lehmann et  al., 2011; Yu et  al., 
2021), and the variations in bacteria and seagrass changed the 
concentration of NO3-N afterward.
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Biochar as a Stabilizer to the Original 
Environment
In this study, the distinct community assembly pattern of 
bacterial communities could be  mainly explained by 
deterministic processes rather than stochastic processes, which 
supported the result found by Logares et  al. (2013) that 
deterministic processes dominated the biogeography of bacterial 
communities which exposed to progressive long-term 
environmental change in coastal lakes. Previous studies also 
showed bacteria were predominantly structured by selection, 
while microeukaryotes were mainly structured by drift (Logares 
et  al., 2018; Mo et  al., 2020).

The biochar addition barely had any effect on the 
community assembly pattern of seagrass rhizosphere sediment 
bacterial communities, and it even led to a decreased 
importance of deterministic processes in sediment bacterial 
communities. Logares et  al. (2018) found three phases of 
a community that changed after a disturbance. Phase 1: 
Stochastic processes initially governed by microbial community 
assembly. Phase 2: Changes in the local environment 
progressively increased the importance of deterministic 
selection. Phase 3: The emergence of stable environments 
led to stable levels of deterministic selection. Selection derived 
from the variations in the reproductive success across 
individuals and species caused by the biotic and abiotic 
pressures; the constant and reduced importance of 
deterministic selection meant biochar addition might act as 
a stabilizer to the original environment.

Biochar Addition Changed the Bacterial 
Co-occurrence Pattern
From the perspective of biotic factors, the relationships between 
microorganisms exert considerable influence and are also an 
important aspect of selection pressures. Network structure has 
important implications for the co-occurrence of species and 
their stability (Bascompte et  al., 2003). The RSC network 
structure was more complex than RSB with more nodes and 
edges, while there were slight differences between SC and SB 
(Figure 5, Supplementary Table S3). In general, a more complex 
network structure may indicate more stable co-existence patterns, 
and a stable co-occurrence pattern mirrored fewer dynamic 
characteristics to some extent (Costa et  al., 2006). Thébault 
and Fontaine (2010) demonstrated that high connectivity 
promoted community stability in mutualistic networks. SB had 
a lower network density and clustering coefficient with higher 
module numbers, which meant that the community was separated 
into more independent groups.

There were several keystones in our network, and all of 
them were connectors. The loss of these species may lead 
to the breakdown of the ecological networks and modules 
(Guimerà and Amaral, 2005). Therefore, these potential key 
species might be  crucial in maintaining the stability of the 
bacterial communities. The identified connector taxa in the 
RSC/RSB and SC/SB were quite different, but they were 
primarily from Phylum Proteobacteria. Hence, they may have 
similar ecosystem functions.

However, these modules from all networks did not necessarily 
reflect their taxonomic classification. Most bacterial interactions 
were stronger between phyla/classes than within phylum/class, 
which provided evidence that the bacterial community structure 
is shaped by environmentally driven functional characteristics 
rather than phylogeny (Burke et  al., 2011).

CONCLUSION

Our study investigated for the first time the influence of biochar 
addition on the bacterial relative abundance, composition, 
assembly, and co-occurrence network of bacterial communities 
in the seagrass ecosystem. Rhizosphere sediment and sediment 
bacterial communities responded differently to the biochar 
addition. The significant bacterial community composition 
changes in rhizosphere sediment occurred after incubation for 
30 days with a delay effect than that of in sediment (14 days). 
Alteration of environmental factors and biotic interactions 
induced by biochar addition enhanced nitrification and 
denitrification, which may accelerate nitrogen cycling. More 
nitrogen absorption and photosynthetic performance of seagrass 
after biochar addition may lower the total nitrogen in sediment. 
Together, biochar addition could improve seagrass health, which 
has important implications for biochar application in the 
seagrass ecosystem.
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The bacterial communities of the root-zone soil are capable of regulating vital

biogeochemical cycles and the succession of plant growth. Stipa as grassland

constructive species is restricted by the difference features of east–west humidity and

north–south heat, which shows the population substituting distribution. The distribution,

turnover, and potential driving factors and ecological significance of the root-zone

bacterial community along broad spatial gradients of Stipa taxa transition remain unclear.

This paper investigated seven Stipa species root-zone soils based on high-throughput

sequencing combined with the measurements of multiple environmental parameters

in arid and semi-arid steppe. The communities of soil bacteria in root zone had

considerable turnover, and some regular variations in structure along the Stipa taxa

transition are largely determined by climatic factors, vegetation coverage, and pH at

a regional scale. Bacterial communities had a clear Stipa population specificity, but

they were more strongly affected by the main annual precipitation, which resulted

in a biogeographical distribution pattern along precipitation gradient, among which

Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi were the phyla that were

most abundant. During the transformation of Stipa taxa from east to west, the trend

of diversity shown by bacterial community in the root zone decreased first, and then

increased sharply at S. breviflora, which was followed by continuous decreasing toward

northwest afterwards. However, the richness and evenness showed an opposite trend,

and α diversity had close association with altitude and pH. There would be specific and

different bacterial taxa interactions in different Stipa species, in which S. krylovii had

the simplest and most stable interaction network with the strongest resistance to the

environment and S. breviflora had most complex and erratic. Moreover, the bacterial

community was mainly affected by dispersal limitation at a certain period. These results

are conducive to the prediction of sustainable ecosystem services and protection of

microbial resources in a semi-arid grassland ecosystem.

Keywords: Stipa taxa, root-zone, bacterial communities turnover, assembly processes, environmental factor
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INTRODUCTION

Soil microorganisms play an important role in regulating and

maintaining biogeochemical cycles in a terrestrial ecosystem,

and are sensitive to environmental changes (Chen et al.,

2020). Arid and semi-arid steppe ecosystem, as one of the

most important components of the terrestrial system (Kang
et al., 2007; Wang et al., 2021), is becoming fragmented and
degraded due to climate changes and anthropogenic activity
(Gao et al., 2018; Zhang Y. et al., 2018). Climates, vegetation,
and soil properties in such steppes vary greatly (Lv et al.,
2016), and these changes will strongly affect the structure and
function of the soil microbial community (Tu et al., 2017).
Numerous studies have focused on soil microbial diversity
and assembly processes in arid and semi-arid ecosystems, as
well as on the variations and distribution of microorganisms
along spatio-temporal, altitude, longitude, plant diversity, and
drought gradients (Tu et al., 2017; Yao et al., 2017; Richter-
Heitmann et al., 2020; Wang et al., 2021). However, plant root-
zone soils have been relatively neglected in complex natural
communities. To be specific, the rhizosphere acts as the region
of interactions between soil microorganisms and the plant
root system’s own biological activities (Verma et al., 2019).
Moreover, rhizosphere soil microbes are involved in the slow
ecological process of vegetation succession and evolution to
adapt to the regional environments (Song et al., 2019). This
study systematically investigates the turnover and distribution of
root-zone soil microbial communities and the correlation with
plants along broad spatial gradients of the plant community
succession distribution, which is critical to indicating and
predicting ecosystem functions.

Abundant rhizosphere microbial resources create a highly
evolved external functional environment for plants, thereby
allowing organic matters to degrade, nutrients to be released
from minerals, nitrogen to be fixed, and elemental forms
to be transformed (Lau and Lennon, 2011; Lakshmanan
et al., 2014; Na et al., 2018; Krishna et al., 2020). In turn,
plants affect microorganisms by the decomposition of litter,
turnover of roots, and the release of exudates (Philippot
et al., 2013). The interactions help maintain the stability of
ecosystem structures and functions, while positively affecting
plant fitness and resistance, especially in extreme environments
(Marasco et al., 2018). Bacteria comprise a large part of
rhizosphere soil biodiversity and participate in most of the
material transformation processes (Chu et al., 2020), hence
greatly affecting plant growth and establishment. Studies have
shown that the size, structure, and activity of the soil bacterial
communities could be greatly affected by individual plant species
(Liu et al., 2021). Thus, gaining insights into the variation
and interactions of plant root-zone soil bacterial communities
will enhance our understanding of the ecology and function of
soil bacteria. Over the past few decades, spatial and temporal
variation in bacterial communities and linkages with plant
communities have been extensively investigated in a wide variety
of habitats (Tian et al., 2017; Na et al., 2018; Zeng et al., 2019; Chu
et al., 2020), whereas such studies have been rare for the root zone
of natural forages.

As indicated from existing studies, the soil rhizosphere
bacterial composition and relative abundance are highly affected
by the biotic and abiotic environments (Fan et al., 2017;
Zhang B. et al., 2018). Edaphic factors, particularly soil pH
and nutrient availability, vegetation composition and species,
regional climate, and altitude, have been shown to shape soil
bacterial communities (Na et al., 2018; Zhalnina et al., 2018;
Clairmont et al., 2019; Mohanram and Kumar, 2019). Moreover,
bacterial evolutionary responses may be driven by edaphic and
non-edaphic variables that function as selective pressures; for
example, the relationship between the adaptive range of pH
and biogeographical patterns (Na et al., 2018), or the greater
sensitivity of bacteria in drier areas to environmental stimuli
(Maestre et al., 2015). Recently, chemical element indices in
soil (e.g., Fe, Cu, Ca, and Mg) have also been proposed to
directly impact or predict bacterial diversity and composition
(Corneo et al., 2013; Wang et al., 2020). Microbial community
assembly (both deterministic and stochastic processes) is critical
to maintaining the spatial distribution and composition of
microbial communities from a local to a global scale (Stegen
et al., 2013; Zhang et al., 2016). Microbial taxa interactions
also describe the underlying ecological processes, which can
affect the response of communities to environmental variations
and may be more important than environmental variables in
determining community structures (Zhang B. et al., 2018). For
example, it is predicted that ecological networks that consist
of weak interactions are more stable than those with strong
interactions (Coyte et al., 2015). Yet little is known about
how the mentioned ecological processes govern rhizosphere soil
bacterial community turnover during the obviously geographic
substitution of the plants.

The genus Stipa refers to a grazing tolerant, drought-resistant
perennial bunchgrass species (Gao et al., 2018; Chen et al.,
2020) that is an important ecological barrier and basically in the
highly specialized stage of the grassland community succession
and evolution (Lv et al., 2016; Liu et al., 2019). From eastern
to western Inner Mongolia, across various combinations of
hydro-thermal characteristic, different moisture ecotypes of Stipa
occupy zonal habitats and form meadow steppe, typical steppe,
and desert steppe. Accordingly, the S. grandis community is
generally replaced by the mesophytic S. baicalensis community
that connects the forest grassland subzone in the east under
the progressively humid habitat conditions. As opposed to the
mentioned, the S. grandis community is largely distributed in
the eastern part of the typical steppe, and is often replaced by
the S. krylovii community when the habitat conditions tend to
be dry or frequently grazed. Also, the S. krylovii community
in the western region of the typical steppe exhibits more
xerophytic characteristics and is replaced by the warm-loving S.
breviflora when the habitat is transmitted to the desert steppe
to the west and southwest. Furthermore, S. breviflora crosses
the southeastern edge of the desert steppe zone from east to
west, and then the drier communities of S. gobica, S. klemenzii,
and S. glareosa appear to the northwest. Moreover, S. gobica
extends westward to the desert, and redundantly is combined
with S. klemenzii and S. glareosa communities (Lv et al., 2016;
Li et al., 2018; Nan et al., 2020). Stipa taxa show divergences
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in morphological and physiological parameters (Han and Tian,
2016). The mentioned typical divergent evolution processes
provide a unique opportunity and ideal study area to investigate
the root-zone bacterial communities in natural ecosystems. The
following hypotheses were verified here: (1) There is considerable
turnover of root-zone soil bacterial communities along the
Stipa taxa transition and largely determined by climatic factors,
vegetation coverage, and pH at a regional scale. (2) Bacterial
communities in root zone have a clear Stipa population specificity
and the biogeographic distribution pattern would not be affected
solely by climatic factors. (3) There would be specific and
different bacterial taxa interactions and different resistance to
environment in different Stipa species, and that the bacterial
community assembly is dominated by dispersal limitation. This
paper aimed to investigate the geographic distribution, turnover,
and interaction of root-zone bacterial community across a
transect of zonal Stipa species across broad spatial gradients.
The identification of potential drivers is critical to elucidating
between soil bacterial and plant populations, which can more
effectively predict grassland ecosystem responses and functions
under a changing climate, and lay a theoretical basis for gaining
insights into the community structure and influencing factors of
rhizosphere soil bacteria.

MATERIALS AND METHODS

Site Description
This study was conducted along a 1,700-km east–west transect
across Inner Mongolia (41.52–50.12N, 108.46–120.21 E) in
northern China. A total of 32 sampling sites that had nearly
natural plant communities with only light animal grazing were
selected along the zonal distribution of Stipa spp.; six for S.
baicalensis (S1–S6), 11 for S. grandis (S7–S17), eight for S.
krylovii (S18–S25), three for S. breviflora (S28–S30), two for
S. gobica (S31–S32), and one each for S. glareosa (S26) and
S. klemenzii (S27). Samples were gradually collected from west
to east from early August 2019 through the entire transect, to
ensure that Stipa were in the same mature phenological stage
(Figure 1A). Identification of Stipa species was according to
FLORA INTRAMONGOLICA (EDITIOTERTIATomus 6: 205–
217). Spatial geographic coordinates, climatic information, and
the plant indexes (Plant coverage and Biomass of Stipa) for
each sampling site are listed in Supplementary Table S2. The
region has a temperate continental arid and semi-aridmonsoonal
climate with a mean annual average precipitation of 172.19–
472.06mm and a mean annual temperature of −0.12–6.56◦C
(https://disc.gsfc.nasa.gov/). The soil types in the study area
include forest grassland black soil and chernozem, chestnut soil
in the dry grassland, and brown calcareous soil and lime-calcium
soil in the desert steppe.

Sampling of Root-Zone Soil and Plant
Accessions
At the respective site (n = 32), three independent replicate
locations (50 × 50m, at least 5 km apart) were selected
(Figure 1). In accordance with the double diagonal principle, five
1 × 1m plots were evenly distributed on the center point of the

respective independent location and the two diagonals of the four
corners for a vegetation survey, which included plant diversity,
number, vegetation coverage, and a calculation of the Shannon–
Wiener index (H′ = −

∑r
i=1 [PiLnPi], where Pi denotes the

ratio of the number of each species to the overall number of all
species present). The Stipa species exhibits a caespitose growth
form, which contains numerous tillers and culms emerging from
a single rootstock. After establishment, soil, litter, roots, and
live shoots accumulate to form tussocks (Bai et al., 1999). The
active root system of Stipa has rhizosheath (a layer of adhering
soil particle to the root surface) that does not easily fall off,
creating sufficient water and inorganic salts for the plant and
protecting the fibrous roots from mechanical damage (Basirat
et al., 2019). The age of perennial bunch grasses is difficult to find
through field observation. In the sampling process, plants with
tussock fragmentation and self-thinning branches, or too small
or excessively large plants should not be selected, as an attempt
to collect representative root-zone soil samples and minimize
the plant species-age effects on bacterial community diversity
and composition (Bai et al., 1999; Na et al., 2018). Given the
mentioned information, 25 individual Stipa were collected at the
respective sampling site, and the excavation depth should exceed
30 cm (Chen, 1987) to ensure the root system to be as complete as
possible. To be specific, 15 individual Stipa were applied for soil
samples and 10 individual Stipa for vegetation samples. Several
root segments were randomly sampled from each individual Stipa
after shaking off the extremely loose root-attached soil. Next, the
root segments from 15 individual Stipa were integrated as one
site sample. Subsequently, root-zone soil (Edwards et al., 2015;
Shi et al., 2019) was collected from the respective site sample with
a disposable brush to brush out the soil around the rhizosheath
and then divided equally into three parts. On the whole, 32 ×

3 root-zone soil samples were collected, and immediately stored
in liquid nitrogen until 16S rRNA high-throughput sequencing
analysis could be performed. Brushes and gloves were sterile
and disposable to avoid contamination during sampling. The
mentioned 10 individual Stipa for vegetation samples fell into
two equal parts—one part was used for weighing the average
aboveground biomass of Stipa with the drying method at 80◦C,
and the other wasmixed, crushed, and sieved through a sieve with
0.154mm pore size into one sample to determine the nutritive
value of the forage. The longitude and latitude of each location
were recorded from a portable GPS. The collected soil samples
fell into two parts: (1) stored at 4◦C for soil physical and chemical
analysis, and (2) sieved through pore size of 0.074mm to analyze
of soil chemical elements.

Analysis of Environmental Predictors
A total of 25 environmental predictors were measured. The pH
was determined using an SKW 500 soil monitor (Palintest Co.,
Ltd, UK). Total nitrogen (TN), ammonium (NH+

4 -N), nitrate
nitrogen (NO−

3 -N), and plant crude protein (CP) were measured
with an automatic Kjeldahl apparatus (K1100 Hanon; Haineng
Future Technology Group Co., Ltd, China) after digestion in
H2SO4 (ρ = 1.8419 g/L). Soil organic matter (SOM) and soil
organic carbon (SOC) were determined by dichromate oxidation
(Chen et al., 2015). Alkaline and neutral Olsen-phosphorus (AP)
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FIGURE 1 | (A) Map of sample locations, landscape, and schematic diagram in arid and semi-arid Stipa steppe. Each circle represents one sampling site, and each

color represents a Stipa population; samples collected from different sites and species are referred to as Stipa baicalensis Roshev (Sba: S1–S6), Stipa grandis P.

Smirn (Sgr: S7–S17), Stipa krylovii Roshev (Skr: S18–S25), Stipa glareosa P. Smirn (Sgl: S26), Stipa klemenzii Roshev (Skl: S27), Stipa breviflora Griseb (Sbr:

S28–S30), and Stipa tianschanica var. gobica (Stg: S31–S32). (B) Schematic diagram of alternative distribution of Stipa population.

were determined based on the sodium bicarbonate extraction
(0.05mol·L−1) molybdenum antimony anti-colorimetricmethod
(Wang et al., 2020). Available potassium (AK) was determined
with a kit according to the instructions (Suzhou Keming
Biotechnology Co., Ltd., Suzhou, China). Root-zone soil
pretreatment was carried out by microwave digestion system
(MARS 6; CEM Co., Ltd, USA) according to a soil and

sediment digestion of total metal elements–microwave-assisted
acid digestionmethod (HJ 832−2017,Ministry of Environmental
Protection MEP, China), and then soil chemical elements (S,
Ca, Mg, Fe, Cu, Zn, and Mn) were determined by ICP-OES
(PlasmaQuant PQ9000; Jena Analytical Instrument Co., Ltd,
Germany). Plant crude fiber and crude fat were measured
by an acid–base heating digestion method (GB/T5009.10-2003;
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Ministry of Health, P. R. China) and a Soxhlet extraction method
(GB/T6433-2006; General Administration of Quality Supervision
GAQSIQ, China), respectively. Mean annual temperature and
mean annual precipitation was obtained from the GES DISC of
NASA (https://disc.gsfc.nasa.gov/).

DNA Extraction, PCR Amplification, and
Illumina Sequencing
Triplicate genomic DNA samples were extracted from 0.5 g
of the composite soil samples using an E.Z.N.A. soil DNA
kit (Omega Bio-tek, Norcross, GA, USA) according to the
manufacturer’s instructions. The DNA extract was run on a
1% agarose gel, and the DNA concentration and purity were
determined with a NanoDrop 2000 UV–vis spectrophotometer
(Thermo Scientific, Wilmington, USA). To generate bacterial
PCR amplicon libraries, universal 16S rRNA gene primers (338
forward: 5′-ACTCCTACGGGAGGCAGCAG-3′ and 806 reverse:
5′-GGACTACHVGGGTWTCTAAT-3′). The PCR amplification
of the 16S rRNA gene was performed according to details
in Supplementary Materials. Purified amplicons were pooled
in equimolar quantities and paired-end sequencing (2 × 300
bp) on an Illumina MiSeq platform (Illumina, San Diego,
USA) according to standard protocols by Majorbio Bio-Pharm
Technology Co. Ltd. (Shanghai, China). All of the sequence
data generated for this study have been deposited in the NCBI
Sequence Read Archive (SRR14415681–SRR14415776).

Bioinformatics Workflow
The raw 16S rRNA gene sequences obtained from the MiSeq
platform were quality filtered, trimmed, de-noised, and merged
using Mothur 1.32.2 (Schloss et al., 2009) where chimeric
sequences were identified and removed using the UCHIME de
novo algorithm (Perez-Jaramillo et al., 2019). Subsequently, the
remaining high-quality sequences were clustered into operational
taxonomic units (OTUs) using the UPARSE (version 7.0.1090,
http://www.drive5.com/uparse/) algorithm, setting a distance
limit of 0.03 using the open-reference OTU picking protocol.
A representative sequence was aligned using the RDP Classifier
(http://rdp.cme.msu.edu/) against the 16S rRNA database (Silva
132; https://www.arb-silva.de/) using a confidence threshold of
0.7. For downstream analysis, OTUs affiliated with chloroplasts
and mitochondria were subsequently removed from the bacterial
OTU table, and OTUs that were assigned to non-bacteria,
including plants and protozoans, were removed from the
bacterial OTU table (Perez-Jaramillo et al., 2019). The effects
of sampling on diversity were corrected by rarifying the
sequence numbers of each sample to that of the sample with
the lowest number of reads (17,865 reads). The number of
OTUs, community richness (Chao index), community diversity
(Simpson index), community evenness (Shannon index), and
a sequencing depth index (Good’s coverage) were subsequently
calculated using MOTHUR (v.1.30.1; www.mothur.org).

Statistical Analysis
All statistical analyses were conducted through a one-way
ANOVA with IBM SPSS Statistics 26.0 (p < 0.05 was considered
statistically significant). Non-metric multidimensional scaling

[NMDS, stress < 0.20 was considered acceptable (Kuczynski
et al., 2011)] and hierarchical clustering (unweighted pair
group method with arithmetic means, UPGMA) that all
used the Bray–Curtis distance to assess the Stipa population-
specificity distribution of bacteria, as well as the similarity of
bacterial community composition. To demonstrate the effect of
Stipa population on the bacterial composition, permutational
multivariate analysis of variance (PERMANOVA, p < 0.05) was
conducted with the adonis function of the vegan package (Glasl
et al., 2019) with 999 permutations. A linear discriminant analysis
(LDA score threshold of 4.0) coupled with effect size (LEfSe) was
adopted to search for statistically different biomarkers among
groups of Stipa taxa root zone. In addition, Circos-0.67-7 was
employed to determine the connection between the dominant
phylum or genus and the sample group of Stipa species. The
variance inflation factor (VIF) was exploited to remove the
redundant variables (VIF > 20) (Fan and Xing, 2016) from the
explanatory variables and avoid collinearity among a range of
factors. The Mantel test and the Pearson correlation analysis
were performed to examine the relationship between bacterial
communities and environmental factors using the “Vegan”
package (Oksanen et al., 2015) and the “ggcor” package (Wang
et al., 2021) version 0.9 implemented in R, respectively. A
redundancy analysis (RDA) was also performed to determine the
most significant environmental variables shaping the microbial
community composition.

Bacterial co-occurrence network analyses for Stipa species
were conducted based on the Molecular Ecological Network
Analyses Pipeline (MENAP, http://ieg4.rccc.ou.edu/MENA/
main.cgi) at the OTU level (Deng et al., 2012). To simplify the
networks for a more effective visualization and unified analysis
conditions, only the 300 most abundant OTUs were analyzed
and network topology parameters (i.e., network complexity and
modularity) were determined to indicate the stability of the
network and the resistance from environmental interference.
Abundances of OTUs were log transformed. To compare
networks under the identical conditions, a threshold of 0.82 (the
recommended similarity threshold) was adopted to build the
networks for the respective Stipa taxa in the study. Lastly, the
networks were visualized with the Gephi 0.9.2 (Zhou et al., 2020).
Furthermore, 100 random networks were generated and the
properties were compared with the experience network to verify
whether the constructed network is reasonable and effective.
The different assembly processes of community composition
were determined by phylogenetic null model analyses. All
OTUs were adopted to build a maximum-likelihood tree in
FastTree (Tang et al., 2021) to determine the weighted β-nearest
taxon index (βNTI) using the picante package (Dini-Andreote
et al., 2015). The βNTI values > +2 (variable selection) or
< −2 (homogeneous selection) implies significantly more
or less phylogenetic turnover than expected (Tripathi et al.,
2018), respectively, thereby demonstrating the predominance of
deterministic processes. If the |βNTI| ≤ 2, stochastic processes
are predominant. To more specifically differentiate between
stochastic scenarios of assemblages of Stipa species root-zone
soil bacteria, a Raup–Crick matrix (RCbray) based on the Bray–
Curtis matrix was computed with the vegan package (Cheng
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et al., 2021). |βNTI| < 2 and RCBray < −0.95, |βNTI| < 2 and
RCBray > 0.95, and |βNTI| < 2 and |RCBray| <0.95 denote
homogenizing dispersal, dispersal limitation, and undominated
processes, respectively (e.g., weak selection, weak dispersal,
diversification, and/or drift) (Stegen et al., 2013; Dini-Andreote
et al., 2015). Furthermore, unless otherwise indicated, all analyses
were conducted in R (version 3.5.1; R Development Core Team).

RESULTS

Vegetation and Soil Characteristics of the
Study Area
In accordance with Supplementary Tables S1, S2, the MAP
of the semi-arid grassland decreased gradually from east
(472.06mm) to west (152.08mm). SOM, SOC, TN, NH+

4 -N,
VC, and SB tended to increase with precipitation, while pH,
altitude, and temperature tended to decrease. The soils were
moderately alkaline and the average pH increased significantly
from 6.06 to 8.74. Other test indices displayed significant
differences among 32 sites, but no obvious rules to follow. There
were significant differences in vegetation indexes among seven
Stipa species, and the vegetation coverage (66.67 ± 14.38 to
27.50 ± 3.61) and Stipa biomass (3.00 ± 1.31 to 0.85 ± 0.32)
decreased significantly under the process of Sbr replacing Sba
distribution (Supplementary Table S3). Most soil parameters
differed significantly between the various root-zone soils of Stipa,
except for TK andNO−

3 -N, in whichmacronutrients (SOM, SOC,
TN, NH+

4 -N) in Sba were significantly higher than for other Stipa
taxa (Supplementary Table S3). A Pearson correlation analysis
(Figure 6) found that most variables (MAP, MAT, altitude, soil
pH, SOC, TN, S, VS, and SB) had strong positive or negative
correlations with each other. In addition, there was a significant
positive correlation between soil chemical elements.

Turnover of Root-Zone Bacterial
Community Composition of Stipa Taxa
We obtained a total of 4,665,705 raw reads by Illumina MiSeq
high-throughput sequencing. After quality filtering, trimming,
and assigning reads to the different samples, 3,150,865 high-
quality reads were recovered in the dataset, representing 17,865
bacterial operational taxonomic units (OTUs) based on 97%
sequence identity across all samples, with a median of 2,349
OTUs per sample (Supplementary Table S4). The observed
OTUs and rarefaction curves of Shannon index, Chao richness,
and Good’s coverage (values were over 0.94) in all soil samples
were plateaued (Supplementary Figure S1), suggesting that the
sequencing depth was sufficient.

Circular visualization diagrams were adopted to display the
overlapping and differentiating bacterial taxa among the seven
Stipa taxa at the phylum and genus levels (Figures 2A,B).
The bacterial community consisted of 37 different phyla, and
the main bacterial phyla (top 11) collectively accounted for
96.98–98.76% of all taxon sequences (Figure 2A). Moreover, the
five most abundant bacterial genera comprised 27.71% of the
bacterial communities on average (Figure 2B). Actinobacteria,
Acidobacteria, Proteobacteria, and Chloroflexi were the most

abundant phyla observed in all of the Stipa taxa analyzed
(Figure 2A). Except for Sgl, Actinobacteria (28.34–45.35%)
was the dominant phylum in other Stipa species groups,
especially in Sbr root zone (45.35%). Acidobacteria had
a most significant advantage as dominant phylum in Sgl
(32.81%) compared with other six Stipa taxa (10.73–24.10%).
When Sba was replaced by Sbr from east to west along
the transect, the relative abundance of Chloroflexi (phylum,
from 8.17 to 14.80%) and Rubrobacter (genus, from 1.89
to 10.20%) increased significantly, and Rubrobacter was the
most dominant genus in Sbr (10.20%); as opposed to the
mentioned, the relative abundances of Proteobacteria (from
24.06 to 15.70%) decreased significantly (Figures 2A,B and
Supplementary Table S6). Except Sbr, the relative abundances
of genus RB41 (7–15.27%) and Subgroup_6 (5.85–13.04%) in
the root zone of Stipa taxa were significantly higher than for
other genera, especially in Sgl (Figure 2B). Taken together, these
results revealed shifts in the bacterial community composition in
root-zone soils of different Stipa taxa.

The LEfSe with LDA scores of 4 (Figure 3) revealed that, when
compared with the Sba root-zone soil bacterial community (eight
biomarkers at finer taxonomic level, one phylum, one class, three
orders, two families, and one genera), the other Stipa species
root-zone soil communities had less biomarkers (Figure 3A).
However, Skr, as an intermediate transitional species, had no
biomarkers. Furthermore, Stg and Sgl were distributed over a
small area and had no biomarkers. To be specific, root-zone soil
of Skl showed two significantly different taxa, Bacteroidia (class)
and Bacteroidetes (phylum); Sgr were rich in Rhizobiales (order),
Xanthobacteraceae (family), and norank_f__Xanthobacteraceae
(genus); Sba were enriched with Sphingomonadales (order),
Chthoniobacterales (order), Betaproteobacteriales (order),
Sphingomonadaceae (family), Chthoniobacteraceae (family), and
Candidatus_Udaeobacter (genus), while the root-zone soil of Sbr
was enriched with Thermomicrobiales (order), JG30_KF_CM45
(family and genus) (Figure 3B).

Bacterial Community Diversity Varied and
Spatial Distribution of Stipa Taxa
Root-Zone Soils
The bacterial biodiversity (Simpson index, Figure 4A) of the
root-zone soil decreased when Sba was replaced by Skr from
southeast to northwest along the transect, increased for Sbr,
and then decreased sharply as Sbr transitioned to Stg. The
trends of indices richness (Chao index Figure 4C) and evenness
(Shannon index Figure 4B) of bacterial were opposite with
the variation patterns of the mentioned bacterial diversity. We
found that the α diversity of bacterial communities was different
across 32 sampling sites with respect to the bacterial richness,
diversity, and evenness for 96 soil samples, and a lower bacterial
diversity was observed in more arid areas, as indicated by
the changes in the Simpson index (Supplementary Table S2).
Furthermore, bacterial evenness (Shannon index) and diversity
(Simpson index) were more affected by altitude and pH, and
bacterial evenness also affected crude protein; bacterial richness,
as indicated by the Chao index, was affected mostly by the

Frontiers in Microbiology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 78262194

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ma et al. Root-Zone Bacterial Community of Stipa

FIGURE 2 | The distributions of root-zone soil bacterial dominant taxa at the different Stipa species. (A) Represents the phylum level; (B) represents the genus level,

and Spearman correlation analysis of relative abundance of bacterial keystone taxa with environmental factors: (C) phylum level, (D) genus level. Red represents

positive correlation and blue represents negative correlation (significance levels are as follows: *0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001). Arrows refer to

the geographic substitution order of Stipa species from east to west. SOC, soil organic carbon; TN, total nitrogen; TK, total kalium; NO−

3 -N, nitrate nitrogen; AP,

alkaline and neutral Olsen-phosphorus; AK, available potassium; Fe, iron element; Cu, copper element; Zn, zinc element; Mn, manganese element; Ca, calcium

element; S, sulfur element; VS, Shannon–Wiener index of plot; VC, plant coverage; SB, biomass of Stipa; CP, crude protein; EE, crude fat; CF, crude fiber; MAT, mean

annual temperature; MAP, mean annual precipitation. S. baicalensis (Sba), S. grandis (Sgr), S. krylovii (Skr), S. glareosa (Sgl), S. klemenzii (Skl), S. breviflora (Sbr), and

S. gobica (Stg).

altitude and was also principally connected with crude fat
(Figure 6).

NMDS analysis revealed a clear separation of the bacterial
communities from different Stipa taxa (Figure 5B), and
Stipa population specificity was further confirmed with a
PERMANOVA (p = 0.001, Supplementary Table S5). In
addition, the UPGMA clustering analysis also revealed similarity
distribution in the bacterial community composition based on
sample sites (Figure 5A). The samples formed two clear large

clusters; moreover, six clear small clusters (I–VI) were generated,
and two of these included only from Sba (VI) and Sgr (IV). The
bacterial community was roughly distributed from southeast
(VI) to northwest (I) along the reduced precipitation gradient
and increased temperature gradient (Figures 5C,D). MAP (R2

= 0.78, p < 0.01) was more dominant than the Stipa taxa (R2

= 0.71, p < 0.01) for the distribution of bacterial community,
which was indicated by the NMDS plot ordination analysis
(Supplementary Table S7). In addition, soil pH (R2 = 0.63, p <
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FIGURE 3 | LEfSe analysis of soil bacterial abundance in seven Stipa species root-zone soils. (A) Cladogram of microbial communities. Cladograms indicate the

phylogenetic distribution of microbial lineages associated with the study Stipa; circles represent phylogenetic levels from kingdom to genus. (B) Indicator microbial

groups with LDA scores > 4 and p-values < 0.05. S. baicalensis (Sba), S. grandis (Sgr), S. krylovii (Skr), S. glareosa (Sgl), S. klemenzii (Skl), S. breviflora (Sbr), and S.

gobica (Stg).

FIGURE 4 | Alpha-diversity indices of bacterial communities in root-zone soils of seven Stipa species along a transect from east to west. Different letters (a–g, p <

0.05/A–D, p < 0.01) above the bars show significant difference among groups based on one-way ANOVA. (A) Simpson index expresses microbial diversity. (B)

Shannon index expresses microbial evenness. (C) Chao index expresses microbial richness. S. baicalensis (Sba), S. grandis (Sgr), S. krylovii (Skr), S. glareosa (Sgl), S.

klemenzii (Skl), S. breviflora (Sbr), and S. gobica (Stg).

0.01), vegetation coverage (R2 = 0.64, p < 0.01), and MAT (R2

= 0.68, p < 0.01) also had a strong effect on the distribution of
the bacterial communities across the geographical replacement
gradient of the Stipa taxa (Supplementary Table S7). The
mentioned results indicate that the composition of root-
zone bacterial community not only had the Stipa population
specificity, but also was strongly regulated by climate, and had
a change pattern along the hydrothermal gradient. Especially

in the process of transition from Sba to Sgr and then to Skr,
root-zone bacteria distribution has a certain phenomenon of
cross overlap.

Ecological Factors Effecting Root-Zone
Bacterial Community Spatial Turnover
Three redundant variables (NH+

4 -N, SOM, and Mg) were
eliminated based on VIF analysis to reveal the major
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FIGURE 5 | Bacterial community differentiation in the root-zone soils from seven Stipa species sampled from different sites of arid and semi-arid steppe. (A) Similarity

analysis of bacterial community in Stipa taxa root zone based on UPGMA clustering using Bray–Curtis distances, clustered into six clusters (I–VI), roman numeral color

corresponds to (C). (B) Population specificity of Stipa root-zone soil bacterial communities. (C) Columnar trend graphs of relative mean annual precipitation (MAP) and

temperature (MAT) in different clusters; roman numerals correspond to (A,D). (D) Biogeographical patterns of bacterial communities, with same color clustering. S.

baicalensis (Sba), S. grandis (Sgr), S. krylovii (Skr), S. glareosa (Sgl), S. klemenzii (Skl), S. breviflora (Sbr), and S. gobica (Stg).

environmental variables shaping bacterial community
composition and turnover. RDA and Mantel test were
conducted to distinguish the impact of soil properties,
climate, and vegetation factors on bacterial communities.
RDA1 and RDA2 axis, respectively, explained 22.54 and
9.97% of the variance in soil bacterial community structures
(Supplementary Figure S2A). The Mantel tests (Figure 6)
denoted that the compositions of soil bacterial communities were
significantly constructed by MAP (r= 0.58), MAT (r= 0.65), pH
(r = 0.50), and VC (r = 0.53). These results were also supported
by the RDA (Supplementary Figure S2A). The soil chemical
elements (i.e., S, Fe, and Cu) also had an effect on the bacterial
community structure, but not on the bacterial community
distribution (Figure 6, Supplementary Figure S2A, and
Supplementary Table S7). SOC, TN, and SB were significantly
related to the spatial turnover and distribution of the root-zone
soil bacterial community (Figure 6, Supplementary Figure S2A,
and Supplementary Table S7). In accordance with the RDA

examined, the bacteria phyla at seven Stipa root zones were
mainly effected by VC (conditional effect = R2 = 0.26, p =

0.001), SB (R2 = 0.22, p = 0.001), and MAT (R2 = 0.19, p
= 0.001; Supplementary Figure S2B). At genus level, MAP
(conditional effect= R2 = 0.60, p=0.001), MAT (R2 = 0.52, p=
0.001), MAT (R2 = 0.51, p = 0.001), pH (R2 = 0.41, p = 0.001),
SB (R2 = 0.39, p = 0.001), SOC (R2 = 0.38, p = 0.001), and TN
(R2 = 0.38, p = 0.001) affected bacteria, and all bacteria with
relative abundance >1% could be explained by one soil property
at least (Supplementary Figure S2C). The correlation heatmap
denoted the relationship between relative abundance of bacterial
keystone taxa with environmental factor (Figures 2C,D). It
was found that the relative abundances of most dominant
bacterial phyla and genus were significantly related to most
soil physicochemical properties (i.e., soil pH, TN, AP, AK, S,
Zn, Mn, Fe, Cu, and SOC), plant factors (i.e., SB and VC), and
other indicators (i.e., MAT, MAP, and altitude). Furthermore,
Firmicutes was significantly positively correlated with soil
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FIGURE 6 | Mantel correlations among bacterial community composition (OTU level), bacterial richness (Chao index), bacterial diversity (Simpson index), bacterial

evenness (Shannon index), and environmental factors (climate, plant, and soil variables); Pearson correlation analysis was used among environmental factors. The

width of edges represents the size of the correlation coefficient (Mantel’s r), while edge color represents the statistical significance based on Mantel’s p. Abbreviations

are consistent with Figure 2.

FIGURE 7 | Co-occurrence networks of the high-abundant bacteria from four Stipa species root-zone soil; in turn is S. baicalensis (Sba: A), S. grandis (Sgr: B), S.

krylovii (Skr: C), and S. breviflora (Sbr: D). A connection stands for a robust (Spearman’s r > |0.82|) and significant (p < 0.05) correlation. Green and red lines represent

positive and negative associations between two nodes, respectively. Nodes are colored according to microbial phylum and the size of each node is proportional to the

degree.

chemical elements (except S); on the contrary, Planctomycetes
was significantly negatively correlated.

Bacterial Taxa Interactions and Community
Assembly Processes in the Root Zone of
Stipa
To explore the complex bacterial taxa interactions in different
Stipa taxa root-zone soils and to identify the response to
environmental change, a co-occurrence network analysis for
abundant OTUs (top 300 OTUs) was performed. The Sgl, Stg,
and Skl root-zone soils were excluded from the analyses because
of limited samples. Based on the number of links (Sba = 648,

Sgr = 527), avgK (Sba = 7.16, Sgr = 6.47), and the avgCC (Sba
= 0.38, Sgr = 0.33), the network complexity was comparable
between the Sba and Sgr root-zone soils, with nodes in the
control network, respectively, grouped into 21 and 25 modules
with respective quality values of 0.59 and 0.38 (Figures 7A,B
and Supplementary Table S8). Moreover, the complexity (links
= 226, avgK = 2.83, avgCC = 0.32) was less in Skr root-zone
soils (Figure 7C), and the network grouped into 22 (quality value
of 0.81) modules. However, the complexity (links = 2593, avgK
= 18.13, avgCC = 0.49) greatly increased in Sbr root-zone soils
(Figure 7D), which contained six modules, with a quality value
of 0.49. There were absolutely more positive correlations in each
network than negative correlations. R square of power-law values
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of Sba, Sgr, and Skr networks were obtained for 0.87, 0.78, and
0.76, respectively, indicating the occurrence of scale-free network
characteristics (Supplementary Table S8).

The βNTI values were determined, to report that the stochastic
process was dominant in the bacterial communities of seven Stipa
species root-zone soils (Supplementary Figure S3A; values >-2
and <2). We calculated the taxonomic-diversity metric RCBray
to further quantify the relative effects of various ecological
processes, including homogenizing dispersal, dispersal limitation
and undominated processes, on the stochastic community
assembly of every group (Supplementary Figure S3B).
Consequently, the relative effects of dispersal limitation
(24–49%) and undominated processes (27–41%) increased
significantly across the transition from Sba to Skr, while
the relative role of homogenizing dispersal (10–48%) was
significantly reduced. In arid areas, the relative role of
homogenizing dispersal (33–100%) was dominant in the
bacterial community assembly in the root zone of Stipa species,
except for Stg. Overall, the relative effects of dispersal limitation
(73%) of Stipa genus root-zone soil bacteria were the most
important in the grassland system.

DISCUSSION

Turnover of the Root-Zone Bacterial
Communities Along the Stipa Taxa
Transition
Diverse bacterial composition and structure were detected in
root-zone soils when the Stipa taxa replace each other in
space. According to the dominant bacteria taxon, Actinobacteria
achieved the maximal relative abundance in most Stipa species
root-zone soils (except for Sgl), which might be attributed
to the climate and the soil characteristics of the research
area. The members of the bacterial phylum Actinobacteria
have been proven as an indicator of drought sensitivity and
drought tolerance, and exhibit a strong metabolic capacity at low
temperatures (Cheng et al., 2021). Given the Circos analysis, the
top two Stipa taxa inAcidobacteria group were Sgl and Skl, which
were located in the desert steppe that was characterized by low
soil nutrition; in addition, Acidobacteria was the most dominant
phylum in the Sgl root-zone soil; Acidobacteria was composed
of various oligotrophs (Zeng et al., 2019), capable of tolerating
harsh conditions (Yao et al., 2017). The phylum Proteobacteria
comprises diverse groups of copiotrophic organisms in soil
normally identified under nutrient-rich conditions (Janssen,
2006). The nutrient richness of root-zone soil of Sba is much
higher than for other Stipa taxa (Supplementary Table S3), and
the relative abundance of the phylum Proteobacteria decreased
significantly in the process of Sbr replacing Sba. Moreover, the
phylum Proteobacteria was negatively correlated with MAT, pH,
and AP. The relative abundance of Proteobacteria in Sbr root
zone was lower than that of several Stipa taxa (Sgl, Skl, and
Stg) with higher content of AP. Root-zone bacterial phyla and
genera of the Stipa varied significantly following the vegetation
replacement distribution gradient (Supplementary Table S6).
For instance, when Sba was replaced by Sbr from east to

west following the transect, the relative abundance of the
phylum Chloroflexi and the genus Rubrobacter was improved
significantly, andRubrobacterwas reported as themost dominant
genus in Sbr root-zone soil (Supplementary Table S6 and
Figure 2). The phylum Chloroflexi pertains to the group of
heterotrophic oligotrophs in soil (Hug et al., 2013), and the genus
Rubrobacter is significantly radiation resistant, halotolerant,
thermotolerant, or even thermophilic (Kourilova et al., 2021).
Most bacteria exhibited a relatively narrow growth tolerance,
thereby causing individual taxa to be unable to adapt to soil
pH variations (Fierer and Jackson, 2006), and then probably
inducing variations of soil bacterial communities (Shen et al.,
2013). pH (near neutral range) is suggested to exert a mediating
effect in grassland system (Tripathi et al., 2018). This may explain
why the relative abundance of Actinobacteria and Acidobacteria
in this paper was considerable, whereas this has no significant
correlation with neutral soil pH, while the areas exhibiting an
acidic soil pH showed a significant correlation [e.g., the bacterial
community in Changbai Mountain (Han et al., 2018)]. Together
with the significant correlations between soil pH and SOC, TN
and NH+

4 -N of root-zone process of grassland might explain why
soil pH affected the root-zone bacterial community by affecting
the availability of soil carbon and nitrogen or the number of
biogeochemical processes involving carbon and nitrogen cycles
(Jiao and Lu, 2020), thereby complying consistent with the
research on Caragana spp. rhizosphere soil (Na et al., 2018). All
the mentioned results collectively suggested that the variations
of whole bacterial communities are strongly ecological-variable
dependent and various phyla and genus may show different
variation patterns.

Biomarkers of Soil Bacteria in the Root
Zone of Stipa Taxa
Besides the differences in the relative abundance of the identical
bacterial taxa, soils in different Stipa root zones also harbor
different potential biomarkers (Figure 3), which have been
characteristically isolated from soil samples or plant root
systems. The Skl only had two significant taxa, Bacteroidia
(class) and Bacteroidetes (phylum), that were involved in C
and N metabolism and occurring extensively across various
ecological niches (Wang et al., 2020). Several species of the
family Sphingomonadaceae (Sphingomonadales) utilize a wide
range of organic compounds for growth and survival under low-
nutrient conditions (Glaeser and Kämpfer, 2014). The family
Chthoniobacteraceae (Chthoniobacterales), represented by the
genera Chthoniobacter and Candidatus Xiphinematobacter, can
metabolize organic carbon (Victoria et al., 2012) and prevent
nutrient leaching and erosion (Kant et al., 2011). The order
Betaproteobacteriales exhibited a large relative abundance in
these bacterial community studies. However, it is significantly
enriched in the Sba than other Stipa taxa. Given the vulnerability
of several species pertaining to Betaproteobacteriales to salinity,
acidity, and grazing pressure, Sba achieves a better growth and
living environment than other Stipa taxa. Moreover, Sba itself
is easily replaced in heavily grazing and salinized areas. Several
species of the order Thermomicrobiales (the family and genus
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of JG30_KF_CM45) are characterized as thermophilic, neutral,
and basophilic (Bergey’s Manual of Systematics of Archaea and
Bacteria). Norank_f__JG30_KF_CM45 acts as a potential genus
biomarker for the Sbr, with a significant positive correlation
with MAT, pH, and AP, but a negative correlation with MAP,
SOC, TN, and S (Figure 2B), while Candidatus_Udaeobacter
(Sba) and norank_f__Xanthobacteraceae (Sgr) exhibit opposite
behaviors (Figure 2B). The mentioned explains why the warm-
loving, drought-resistant, alkali-resistant, and barren-resistant
norank_f__JG30_KF_CM45 is enriched, which may indicate
available phosphorus transformation and utilization. The critical
thing is that Sbr also likes warmth (Chen et al., 2020).
Candidatus_Udaeobacter and norank_f__Xanthobacteraceae act
as potential biomarkers for the Sba and Sgr, respectively,
which might indicate vital ecosystemmultifunctionality involved
in SOC accumulation, S cycle, and N stock across the
chronosequence (Li et al., 2021). The family Xanthobacteraceae
(Rhizobiales and norank_f__Xanthobacteraceae) in the Sgr grows
with aerobic chemoheterotrophs and fix nitrogen (Oren, 2014;
Yu et al., 2019). The mentioned functional bacteria in root zone
can directly indicate the soil nutrient transformation and the
response of bacterial to environmental variations.

Climate Is the Main Driving Factor for the
Turnover and Distribution of Bacterial
Community in the Root Zone
Climate has been recognized as a vital driver of soil bacterial
community structure in regional and large-scale studies (Zeng
et al., 2019). Yao proved climate drives the differentiation of
bulk soil bacterial communities in the eastern Inner Mongolia
steppe (Yao et al., 2017). Likewise, temperature and precipitation
are two major climatic factors affecting the Stipa species root-
zone soil bacterial community structure and distribution in
this paper. This is related to the influence of precipitation
on plant community composition and soil nutrient availability.
For instance, higher precipitation may upregulate soil organic
matter decomposition rate, thereby reducing soil organic
matter availability (Tian et al., 2017; Na et al., 2019), and
increasing microbial metabolic rates and biochemical processes
due to temperature (Zhou et al., 2016), which subsequently
affects the soil bacterial community structure. Furthermore,
the spatial pattern of root-zone soil bacterial communities was
distributed along the hydrothermal combination gradient. The
mentioned result was attributed to the long-term influence of
the southeast ocean monsoon and the northeast–southwest arc
mountain barriers (Greater Khingan Mountains and the Yin
Mountains), thereby causing the climatic factors to form an
arc belt distribution. Such a peculiar water–heat combination
causes the zonation of soil and vegetation, which makes the
differentiation of vegetation zones in this area roughly coincide
with the distribution of the climatic zones (Han and Tian,
2016).

Plant and soil parameters were other crucial factors of the
bacterial community structure and distribution. As indicated
from existing studies, soil pH exerts a dominant effect on

various ecosystems in shaping bacterial structures and large-
scale spatial distributions (Fierer and Jackson, 2006; Fan et al.,
2017), mainly in acidic and neutral soil environments (Yang
et al., 2018). Different soil properties play a leading role in
an alkaline environment (Wang et al., 2017); for example,
the soil carbon content was the dominant factor of bacteria
distribution in the Ali area (Chu et al., 2016). The result
of this paper partially complies with the existing studies
indicating that soil pH was the most crucial soil parameter,
whereas SOC, SOM, TN, and NH+

4 -N significantly affected the
structure and distribution of Stipa taxa root-zone soil bacterial
communities. In this paper, chemical element (S, Fe, and Cu)
also impacted the bacterial community structure, whereas it
did not impact the bacterial community distribution except
for S (Figure 6 and Supplementary Table S7). Thus, the soil
sulfur cycle plays a partial role in the ecological distribution of
bacteria, whereas microbes in rhizosphere are critical to allowing
plants to access soil organosulfur (Kertesz et al., 2007). This
paper also reported that the plant coverage and biomass of
Stipa had a significant impact on the distribution and structure
of the bacterial community at the phylum and genus levels
were particularly prominent (Supplementary Figures S2, S6);
complying with Han’s view (Han et al., 2018), while the species
of Stipa significantly impacted the distribution of bacteria. This is
because a higher plant biomass and differences in the plant cover
are generally directly affecting the quality and quantity of organic
matter input, with subsequent effects on bacterial communities
(Fierer and Jackson, 2006). In arid systems, the changes
in plant coverage are also especially important for nutrient
and moisture maintenance (Yao et al., 2017). Furthermore,
different vegetation types can determine litter composition, soil
conditions, and resource acquisition strategies, thereby indirectly
regulating the structure of the bacterial community through
a superposition effect with soil factors (Yao et al., 2018). In
contrast, the soil microbial community structure will also affect
the natural selection pattern of plant traits, while regulating the
response of plants to abiotic environmental pressure, thereby
affecting the evolutionary process of the whole ecosystem (Berg
and Smalla, 2009). Besides, high interspecific clustering of
the bacterial root-zone communities was identified. Such an
interspecific difference could be partially determined by the
genetic diversity among host species (Yu and Hochholdinger,
2018).

On the whole, the effect of precipitation and Stipa species
on the structure and distribution of the root-zone soil bacterial
community exceeded that of soil pH on a large scale. It is
noteworthy that the bacterial community composition in the
root zone of Stipa taxa complied with the previous reports of
bulk or rhizosphere soil in a semi-arid system (Wang et al.,
2015; Nan et al., 2020), while the bacteria community structure
was different. Many studies have confirmed that the rhizosphere
microbiome consists of a subset of the bulk soil microbiome;
besides, microbial community diversity decreased rapidly from
bulk soil to rhizosphere (Reinhold-Hurek et al., 2015; Trivedi
et al., 2020). During the assembly of microbial communities
from bulk soil to rhizosphere, the bulk soil provides a microbial
seed bank, the physical–chemical properties, the biogeography,
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and climate conditions (Zhang et al., 2017). Based on reasons
discussed previously, the differences observed in the root zone of
Stipa also might be mediated by the bulk soil microbiota in their
respective regions.

Soil pH and Altitude Have Strong
Correlation With α Bacterial Community
Diversity
The diversity, evenness, and richness of rhizosphere bacteria
were inconsistent in the seven plant species. There was a sudden
change in the root-zone soil bacterial diversity at Sbr in desert
steppe. According to Dijkstra et al. (2012), bacterial diversity
changed suddenly in arid areas, and soil microbes living in
zones with scarce water availability might be easily activated
by even small rainfall events, which did not reach a level that
would satisfy the plants’ needs. As reported from numerous
studies, soil pH acts as a vital factor driving the diversity of
rhizosphere soil bacterial community (Na et al., 2018; Wang
et al., 2020). This paper further examined the previously found
strong correlation between soil pH and bacterial root-zone
community diversity (Figure 6), as the pH conditions affect the
adaptation and selection of particular phylogenic groups (Wang
et al., 2020). In turn, bacterial α diversity, as indicated by the
Shannon and Chao indexes, significantly affects the nutrient
composition of forage grasses, especially the accumulation of
crude fat and crude protein, whereas the correlation coefficient
is relatively small. In addition, the elevation is correlated with
the variables (SOC, TN, TK, and pH) affecting the ecosystem
and plays a key role in influencing root-zone bacterial diversity,
evenness, and richness. Wang reported that microbial richness
in the Qinghai–Tibet Plateau showed a significant negative
correlation with altitude. The pattern of microbial diversity and
altitude was inconsistent due to the differences in the primary
factors regulating the bacterial diversity in soils from different
regions (Wang et al., 2020). Furthermore, this paper reported
that root-zone soil bacterial α diversity was positively correlated
with altitude.

Bacterial Taxa Interaction and Community
Assembly in Stipa Root-Zone Soil
Both deterministic and stochastic processes were governing
the spatial distribution of microbial communities concurrently,
and different processes were found to be dominant in various
cases (Zhang et al., 2016). The root-zone bacterial community
assembly was dominated by stochastic processes at Stipa taxa,
which also complied with the results of several studies, i.e.,
the effects of stochastic processes were commonly dominant at
larger geographic scales (Li et al., 2021). Previous research has
shown that the spatio-temporal distribution of soil bacteria in
a temperate grassland was dominated by stochastic dispersal
(Richter-Heitmann et al., 2020). According to other studies, the
variation of microbial community structure will be dominated by
different assembly factors in different periods (Zhou et al., 2014;
Liu et al., 2020). The results of this paper may only represent
the assembly of Stipa rhizosphere microorganisms in such a
period, which can be exploited to determine the stability of

different Stipa rhizosphere bacterial communities of the period
(Zhou and Ning, 2017). The significant variations of drought
span and soil structure in the study area may impose the natural
limitation on the undirected dispersal of microbes like others
have reported (Li and Hu, 2021), which also explains why the
relative effects of dispersal limitation of Stipa genus root-zone soil
bacteria showed the absolute advantage in the study. As expected,
the relative effects of dispersal limitation and undominated
processes increased significantly across the transition from
Sba to Skr, while the relative role of homogenizing dispersal
decreased significantly (Supplementary Figure S3B), thereby
demonstrating that the bacterial community structure tended
to be increasingly stable, and environmental variations exerted
fewer effects (Zhou and Ning, 2017). Homogeneous selection
was the main process driving the assembly of Sbr, Sgl, and Skl
bacterial communities, showing that community structure would
change largely with environmental conditions (Cheng et al.,
2021).

This paper reported that the potential correlation patterns
of different Stipa taxa root-zone bacterial groups varied
substantially for network complexity and modularity. Moreover,
the M, GD, and avgCC of the empirical networks were
clearly higher than those of the respective random networks
(Supplementary Table S8), suggesting that empirical networks
had a noticeable hierarchy and modularity in their topological
properties. Some studies have reported that the interactions
of root-associated microbes are more complex than those of
microbes in bulk soil, which may be related to rhizosphere
microbial diversity, and the main interactions are positive
(>80%), which also indicates that rhizosphere may have greater
potential for cooperative or mutualistic associations (Coyte et al.,
2015; Fan et al., 2018), and so are the root zones of Stipa,
because four networks had a large proportion of members that
are connected through positive links (Supplementary Table S8).
However, such bacterial community is considered unstable
since bacterial taxa may make a coincident response to
environmental fluctuations, thereby inducing positive feedback
and co-oscillation (Coyte et al., 2015). According to the bacterial
co-occurrence pattern characterized by a high average degree, an
average clustering coefficient, and fewer modules and modularity
at extremely arid areas indicated that the networks of Sbr
root-zone soil exhibit a more complex bacterial community
structure with closer and better-connected nodes, whereas such
topological features are of low stability (De Vries et al., 2018).
Nevertheless, the Skr network was simplest but most stable
based on topological characteristics. This network exhibited
stronger resistance to environmental variations. Skr is easy
to replace other Stipa taxa when the growth environment
is stressed, thereby also indicating that the population can
strongly adapt to the environment. This also reveals that there
may be potential co-evolution relationship between vegetation
and their root-zone bacteria. In summary, network analysis
and RCbray results exert a good indication and prediction
effect on environmental interference. More network complexity
and fewer modules were reported in the severe environment
than in the mild environment, thereby demonstrating that
network complexity of bacteria was facilitated by various
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environmental factors, whereas the clustering of modules
was not.
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Studies of methane-oxidizing bacteria are updating our views of their composition and 
function in paddy and natural wetlands. However, few studies have characterized 
differences in the methane-oxidizing bacterial communities between paddy and natural 
wetlands. Here, we conducted a 13C stable isotope-probing experiment and high-
throughput sequencing to determine the structure profiling, co-occurrence relationships, 
and assembly processes of methanotrophic communities in four wetlands of Northeast 
China. There was a clear difference in community structure between paddy and natural 
wetlands. LEfSe analyses revealed that Methylobacter, FWs, and Methylosinus were 
enriched in natural wetlands, while Methylosarcina were prevailing in paddy, all identified 
as indicative methanotrophs. We observed distinct co-occurrence relationships between 
paddy and natural wetlands: more robust and complex connections in natural wetlands 
than paddy wetlands. Furthermore, the relative importance of stochastic processes was 
greater than that of deterministic processes, as stochastic processes explained >50% of 
the variation in communities. These results demonstrated that the co-occurrence 
relationships and assembly processes of active methanotrophic communities in paddy 
and natural wetlands were distinct. Overall, the results of this study enhance our 
understanding of the communities of methane-oxidizing bacteria in paddy and natural 
wetlands of Northeast China.

Keywords: CH4 oxidation, DNA-SIP, methane-oxidizing bacterial communities, co-occurrence relationships, 
assembly processes
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INTRODUCTION

Wetland ecosystem is one of the largest terrestrial sources of 
methane (CH4) emissions. Paddy wetlands account for 
approximately 24 to 40 Tg CH4 yr−1 and natural wetlands 
account for 100 to 183 Tg CH4 yr−1 (Saunois et  al., 2020), 
totally contributing about one-third of global CH4 emissions 
(Bousquet et  al., 2006). More than 80% of CH4 produced is 
oxidized by methane-oxidizing bacteria (MOB or methanotrophs) 
before being released into the atmosphere (Mer and Roger, 
2001). Wetlands soils are dynamic systems characterized by 
high methanotrophic activity at the aerobic–anaerobic interface; 
microbial guilds involved in CH4 consumption in such soils 
in paddy and natural wetlands have received increased interest 
from researchers (Chowdhury and Dick, 2013; Kirschke et  al., 
2013). For example, Shiau et  al. (2018) found that the 
Methylocystis-affiliated type II genotype is the predominant 
methanotroph in paddy fields at the regional scale of ~400 km. 
Yun et  al. (2012) suggested that CH4 consumption in Zoige 
natural wetland was driven by both type I  and type II 
methanotrophs. Although several community studies of 
methanotrophs have been conducted, comparative studies of 
the structure of methanotrophic communities in paddy and 
natural wetlands are lacking.

Biotic interactions play a critical role in shaping the 
co-occurrence patterns of microbial guilds, and different 
co-occurrence patterns of methanotrophic communities are 
supposed to be  correlated with essential ecological processes, 
such as polymer breakdown, syntrophy, and fermentation (Peng 
et  al., 2018; Zhang et  al., 2020). Microbial guilds compete 
with syntrophic partners to obtain carbon and ATP (Conrad, 
2009). These partnerships are shaped by metabolic interactions 
as well as the degree of habitat niche overlap (Faust and Raes, 
2012). However, detailed information on interspecific and 
intraspecific associations in this field based on empirical 
laboratory studies is difficult to obtain, especially for complex 
and diverse microbial communities. Inferring co-occurrence 
networks based on ecological data can provide key insights 
into co-occurrence relationships, the links among communities, 
and the functional potential of communities (Nemergut et  al., 
2013; Röttjers and Faust, 2018; Yang, 2021). For example, Li 
et al. (2021) explored the coexistence patterns of soil methanogens 
and revealed that the complex interactions are closely tied to 
CH4 generation. Co-occurrence relationships are distinct from 
ecological interactions, and exploration of the former could 
provide new insights into the structure and functional potential 
of methanotrophic communities in paddy and natural wetlands.

The role of assembly mechanisms in determining the structure 
and function of methanotrophic communities has been a major 
focus of previous studies (McCalley et  al., 2014; Hines, 2019). 
Comparison of intra- and inter-group phylogenetic distances 
with null models has provided new insights into assembly 
mechanisms, and this work has emphasized the importance 
of obtaining phylogenetic information for describing and 
predicting the structure and function of microbial communities 
(Stegen et  al., 2013; Ning et  al., 2020). Phylogenetic clustering 
and overdispersion compared with null models indicate the 

emphatic importance of deterministic processes in shaping 
community structure, representing variable and homogeneous 
selection, respectively (Emerson and Gillespie, 2008; Vellend, 
2010; Weiher et  al., 2011). Phylogenetic clustering could lead 
to the analogy of functional genotypes, whereas phylogenetic 
overdispersion indicates that diverse functional guilds are 
phylogenetically more distantly related to each other (Wang 
et  al., 2012; Mittelbach and Schemske, 2015). For example, 
Fan et al. (2019) found that long-term fertilization shifts nitrogen 
fixers from being phylogenetically clustered to being 
phylogenetically overdispersed, which leads to the emergence 
of more phylogenetically diverse diazotrophic communities. In 
addition to deterministic processes, community assembly is 
mediated by stochastic processes, such as ecological drift and 
dispersal (Stegen et  al., 2015). Stochastic processes play an 
important role in driving microbial community patterns in 
multiple ecosystems (Jiao et  al., 2019). Generally, study of the 
assembly processes of methanotrophs can enhance our 
understanding of MOB communities and their functional 
potentials in paddy and natural wetlands.

Stable isotope probing (SIP) has been used in many ecological 
studies and is effective for studying the metabolic activities of 
methanotrophs (Dumont et al., 2011; Ho et al., 2013). A direct 
link between CH4-uptake activity and methanotrophic taxa has 
been established using SIP and analysis of DNA markers specific 
to methanotrophs by feeding them with 13C-labeled CH4 (He 
et  al., 2019, 2021; Sultana et  al., 2019; Zhang et  al., 2020). 
Here, we  conducted a DNA-SIP experiment combined with 
high-throughput sequencing and multiple bioinformatics methods 
in four typical wetlands of Northeast China to study differences 
in methanotrophic communities between paddy and natural 
wetlands. Specifically, the aims of this study were to (i) identify 
differentially abundant and indicative methanotrophs in paddy 
and natural wetlands; (ii) characterize differences in the 
co-occurrence relationships and assembly processes of 
methanotrophic communities in paddy and natural wetlands; 
and (iii) explore the links between methanotrophic communities 
and functional potentials. We hypothesized that not only would 
the community compositions of active methanotrophs be distinct 
between paddy and natural wetlands, the co-occurrence 
relationships and assembly processes would be  also different 
between paddy and natural wetlands. Overall, the results of 
our study provide new insights that could be  used to aid the 
management of wetland ecosystems and enhance 
CH4 consumption.

MATERIALS AND METHODS

Study Site and Sampling
Northeast China has a low mean annual temperature and is 
rich in soil carbon stocks; thus, the potential of carbon turnover 
is enormous (Tang et  al., 2018). Paddy and natural wetlands 
are widespread in this region, accounting for ~16% of the total 
wetland area in China (Ding and Cai, 2007). Natural wetland 
soils were collected from two Chinese national wetland parks 
in Northeast China: Zhalong (ZL) and Xianghai (XH). Paddy 
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wetland soils were collected after the rice harvest in Changchun 
(CC) and Minzhu (MZ) in Northeast China. In each wetland, 
at least five soil cores were collected from depths of 0 to 
20 cm. The cores were taken approximately 100 m apart and 
mixed to form one soil sample for each wetland. Visible roots 
and residues were eliminated from the soil samples. Samples 
were sieved through 2-mm mesh after natural withering and 
stored at 4°C before microcosm experiments. Detailed information 
on the study sites and sampling is provided in Figure 1 (wetland 
locations and sample collection) and Supplementary Table S1.

DNA-SIP Microcosms
The four soil samples were treated with 12C-labeled and 13C-labeled 
CH4 in triplicate in microcosms (4 sites × 2 treatments × 3 

replicates = 24 total experimental units; Figure  1). For each 
microcosm, 5.0 g of soil (dry weight) was incubated at 
approximately 60% of the maximum water-holding capacity 
and 28°C in the dark in a 120-ml serum bottle sealed with 
a butyl stopper to determine the depletion of CH4 in soils 
(Jia et  al., 2019). For all incubations, 5.0 ml of the headspace 
air in the bottles was replaced with the same amount of 12CH4 
and 13CH4 gas, which resulted in an initial CH4 mixing ratio 
of approximately 40,000 ppmv in the headspace (Sultana et  al., 
2019). The CH4 gas was >99% 13C-atom pure. Gas chromatography 
was used to quantify the headspace CH4 concentrations at 
two-day regular intervals (Shimadzu GC12-A, Japan). When 
more than 90% of CH4 in the soil was consumed, soil samples 
were collected and separated into two subsamples for DNA 

FIGURE 1 | A pipeline of the study on the differences in active methanotrophic communities between paddy and natural wetlands. CC on behalf of Changchun 
paddy wetland, MZ on behalf of Minzhu paddy wetland, XH on behalf of Xianghai natural wetland, and ZL on behalf of Zhalong natural wetland.
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extraction and long-term preservation. Methane oxidation 
potential (MOP) was calculated using the formula 

MOPs
C C

T
=

−( )∗ ∗ ∗ ∗
∗ ∗

1 2 120 0 001 16 301

22 4 273

.

.
, where C1 and C2 

represent the CH4 concentration at the finishing time and 
starting time, respectively, and T stands for the temperature 
of the experiment.

DNA Extraction and SIP Gradient 
Fractionation
For the molecular survey of methanotrophic communities, 0.5 g 
of incubated soil of each microcosm was used for total DNA 
extraction with a FastDNA® Spin Kit (MP Biomedicals, Santa 
Ana, CA) per the manufacturer’s instructions. The extracted 
DNA was dissolved in 70 μl of TE buffer. The quality and 
concentration of extracted DNA were quantified by 
NanoDrop1000 spectrophotometer (Thermo Fisher). When 
A260/A280 > 1.8 and A260/A230 > 2, the extracted DNA was 
considered of high quality and free from protein or RNA 
contamination. Besides, the samples were filtered with too low 
DNA concentration (<20 μg/ml). DNA samples that did not 
meet the above criteria were re-extracted. The qualified DNA 
was separated into two subsamples for high-speed buoyancy 
density centrifugation and long-term preservation.

To separate the different weights of labeled (13CH4) and 
unlabeled (12CH4) DNA, density gradient centrifugation of all 
extracted DNA was conducted. Soil DNA samples were collected 
from all CH4-incubated microcosms (Lu and Jia, 2013). After 
adding CsCl solution into 5-ml sterile tubes with 2.0 μg of DNA, 
the mixed solution was adjusted with gradient buffer to a final 
density of 1.725 g/ml. The adjusted solution was then centrifuged 
in an ultracentrifuge (Beckman Coulter, Palo Alto, CA) at 
177,000 g for 44 h at 20°C. DNA fractionations were carried out 
by the substitute method, wherein the gradient medium was 
displaced with sterile water from the top of the centrifuge tubes 
at a precisely controlled flow rate of 0.38 ml/min. Fifteen fractions 
per tube were collected and weighed on a 10,000 ppm balance. 
Polyethylene glycol 6000 (PEG6000) was used to precipitate the 
fractionated DNA from the calcium chloride medium, which 
was subsequently purified with 70% ethanol and dissolved in 
30 μl of TE buffer for further amplification and sequencing.

Real-Time Quantitative PCR of pmoA 
Genes
Real-time quantitative PCR (qPCR) analysis was conducted using 
the CFX96 optical real-time detection system to determine the 
efficiency at which 13C was incorporated into genomic DNA 
from methanotrophic communities (Bio-Rad, United States). The 
primers A189F (5′-GGNGACTGGGACTTCTGG-3′) and mb661r 
(5′-CCGGMGCAACGTCYTTACC-3′) were used to quantify the 
number of pmoA gene copies (Costello and Lidstrom, 1999). 
Reactions were performed in triplicate for each fractionated 
DNA sample. Reaction conditions were as follows: 95°C for 
60 s, followed by 39 cycles at 95°C for 30 s, 55°C for 30 s, and 
72°C for 30 s. Melting curve analysis was conducted by increasing 
the temperature from 65°C to 95°C in 0.1°C per second increments 

with continuous fluorescence acquisition. Individual standards 
were obtained from a 10-fold dilution series of plasmids containing 
a single pmoA gene fragment. Amplification efficiencies ranged 
from 91.6 to 96.7%, with R2 values of 0.995–1.

Amplification and Sequencing of pmoA 
Gene Sequences
Three representative fractionations with a high copy number 
of the pmoA gene of each 13C-labeled microcosm (heavy density 
of 1.7227–1.7422 g/ml) were selected according to the qPCR 
results. The A189F/mb661r primer set was used to amplify 
the pmoA genes, as it could retrieve the highest diversity of 
soil methanotrophs (Costello and Lidstrom, 1999). PCR 
conditions and procedures are commonly used to sequence 
pmoA functional genes (Zhang et al., 2020). Before sequencing, 
all PCR products were standardized to equimolar levels, and 
high-throughput sequencing was carried out using an Illumina 
MiSeq PE300 platform (Illumina, Inc., San Diego, CA, 
United States). All sequencing data in this study were deposited 
in the NCBI Sequence Read Archive (SRA) under the BioProject 
accession number PRJNA662020.

The raw data were analyzed using the QIIME pipeline 
(version 1.9.1; Caporaso et  al., 2010). The raw reads were 
denoised to eliminate low-quality reads (length less than 200 bp 
or average quality score less than 29) to obtain high-quality 
sequences. The uchime3-denovo method in VSEARCH was 
used to detect chimeras (Rognes et  al., 2016). Insertions and 
deletions causing the frameshifts in pmoA gene sequences were 
corrected using FrameBot1 (Cole et al., 2014). The high-quality 
sequences were clustered into different operational taxonomic 
units (OTUs) by UCLUST (Edgar, 2010) based on a 93% 
similarity threshold of pmoA gene sequences (Degelmann et al., 
2010). The PyNAST method was used to align representative 
sequences (DeSantis et  al., 2006). The RDP-classifier (Cole 
et  al., 2014) was used to determine the taxonomic identity of 
the OTUs, which was based on a database including 6,628 
pmoA and pmoA-related sequences from pure culture 
methanotrophs and uncultured methanotrophic ecotypes 
(Dumont et  al., 2014). After filtering low-quality reads and 
rarefying samples to equal sequencing depth, we  obtained a 
total of approximately 115,754 quality-filtered, chimera-free, 
and frameshift-free sequences with an average of 1,172 
methanotroph pmoA gene reads (the minimum number of 
sequences of all samples) for downstream analysis.

Co-occurrence Relationship Inference
Co-occurrence relationship inference was conducted at the 
OTU level via the SPIEC-EASI network method with the 
function spiec.easi in the spieceasi package (Kurtz et  al., 2015). 
We  focused on the dominant methanotrophs with filtered 
frequency (top  10% of relative abundance of active 
methanotrophs) and occurrence (>25% of all samples) across 
all wetland soils. Based on the filtered conditions, we constructed 
the total co-occurrence network involving 36 samples and then 

1 https://github.com/rdpstaff/fungene_pipeline
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extracted the sub-network according to two types of wetlands. 
The generated network results were imported into Gephi software 
to determine the topological properties. Furthermore, we  used 
within-module (z-score) and among-module (c-score) 
connectivity as a topological indicator to classify nodes as 
network hubs (z-score > 2.5; c-score > 0.6), module hubs 
(z-score > 2.5; c-score < 0.6), connectors (z-score < 2.5; 
c-score > 0.6), and peripherals (z-score < 2.5; c-score < 0.6; Shi 
et al., 2020). Module abundance in each network was calculated 
by averaging the standardized relative abundances (z-score) of 
the nodes that belonged to the specific modules. We  used 
ForceAtlas 2 algorithms to display the visualization plot of 
the co-occurrence network in the Gephi platform.2

Quantification of Assembly Processes
Standardized mean pairwise distance (MPD) was calculated 
to determine the phylogenetic distance among methanotrophic 
communities using the picante package. This reveals the degree 
of dispersion of lineages within a community (Kembel et  al., 
2010). MPD values < −2 indicate phylogenetic clustering; MPD 
values > 2 indicate phylogenetic overdispersion; and MPD values 
between −2 and 2 indicate phylogenetic stochasticity.

The β-nearest taxon index (βNTI) and Bray–Curtis-based 
Raup–Crick metrics (RCbray) were used to indicate the relative 
contributions of assembly processes, including deterministic 
processes (homogeneous selection and variable selection) and 
stochastic processes (homogenizing dispersal and dispersal 
limitation coupled with undominated processes). βNTI measures 
the deviation of observed β-mean nearest taxon distance 
(βMNTD) from the expected βMNTD in the null model. 
βNTI < −2 indicates homogeneous selection (HS), whereas 
βNTI > 2 indicates variable selection (VS). When |βNTI| < 2 and 
RCbray > 0.95, dispersion limitation (DL) plays a dominant role. 
When |βNTI| < 2 and RCbray < −0.95, homogenizing dispersal 
(HD) plays a dominant role. When |βNTI| < 2 and |RCbray| < 0.95, 
no single process plays a dominant role (UD), and this is 
also known as drift (Stegen et  al., 2013).

Statistical Analysis and Visualization
IBM SPSS Statistics 23.0 was used to perform analysis of 
variance, correlation analysis, and non-parametric difference 
tests (SPSS Inc., Cary, NC, United  States). Post hoc Turkey’s 
tests were conducted for multiple comparisons using the EasyStats 
package in R (version 3.6.1).3 Differential abundance was 
determined using the DESeq2 package (Love et  al., 2014). 
Principal coordinate analysis (PCoA) was conducted using the 
vegan package. Analysis of similarity (ANOSIM) in the vegan 
package was used to determine differences in community 
composition. Linear discriminant analysis effect size (LEfSe) 
analysis was used to identify the taxa that were differentially 
abundant and indicative in paddy and natural wetlands and 
was performed using the lefse package (Segata et  al., 2011). 

2 https://gephi.org/
3 https://www.r-project.org

Representative OTUs of methanotrophs were visualized using 
the iTOL website (Letunic and Bork, 2016).

Threshold indicator taxa analysis was conducted to identify 
indicator taxa using the TITAN2 package (Baker and King, 
2010). This analysis uses standardized scores (Z-scores) to 
detect the MOPs exceeding thresholds based on their frequency 
and occurrence patterns. The z-scores were derived from 
normalizing indicator value scores (IndVals) with random 
permutations to determine the potential change. Responses of 
methanotrophs were standardized to the mean and standard 
deviation of permuted samples. Thus, the sum of the z-scores 
reflects the magnitude of potential change. TITAN differentiates 
taxa with positive (Z+) and negative (Z−) values; Z+ taxa increase 
in frequency and abundance after the change point, and Z− 
taxa show the opposite pattern.

RESULTS

Methane Oxidation Potential
DNA-SIP microcosm experiments revealed that all soil samples 
from paddy and natural wetlands displayed intense CH4 
consumption (Figure 2A). Assuming linear kinetics, MOP was 
highest in Changchun, followed by Xianghai, Minzhu, and 
Zhalong. No significant differences were observed in the MOP 
of all incubations between paddy and natural wetlands 
[H(K) = 3.103, p = 0.078], but significant differences in MOP 
were observed among the four wetland sites [H(K) = 8.897, 
p = 0.031].

Community Profiling of MOB Communities
Quantitative results of pmoA gene copy numbers across the 
entire buoyant density gradient of the fractionated DNA samples 
showed that the relative abundances of pmoA gene 13C-labeled 
in heavy DNA fractions were significantly increased, compared 
to the background values from the same DNA fractions in 
the 12C-labeled control treatment (Supplementary Figure S1). 
High-throughput sequencing of the pmoA genes was performed 
on C-labeled samples from SIP microcosms. The community 
structure of 12C-labeled MOB is shown in 
Supplementary Figure S2 as background data. The subsequent 
analysis focused on the 13C-labeled MOB, which were considered 
active MOB communities.

Species richness and Faith’s phylogenetic diversity did not 
significantly differ among wetland sites (Supplementary Figure S3). 
No correlations were observed between MOPs and alpha diversity 
(Supplementary Table S2). The only correlation detected was a 
significant relationship between the relative abundance of 
Methylosarcina and MOP at the genus level (r = 0.734, p = 0.007; 
Supplementary Table S3). The PCoA plot revealed large differences 
in the community composition of the four wetland sites (ANOSIM 
r = 0.896, p = 0.001) and two wetland types (ANOSIM r = 0.842, 
p = 0.001), and these findings were consistent with the other 
dissimilarity distances (Figure  2B; Supplementary Table S4). 
The type Ia methanotroph Methylosarcina was the most common 
taxon in each incubation (Figures 2C,D); it was the most common 
in the CC incubations, accounting for ~57.4% of total sequences 
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(~25.9% in ZL; ~43.2% in XH; and ~52.4% in MZ). Methylobacter-
affiliated pmoA genotypes were also common in all the incubations 
(~39.0% in ZL; ~40.1% in XH; ~27.0% in MZ; and ~17.8% in 
CC). Type Ib methanotroph RPCs were only common in ZL 
(~22.7% in ZL; ~4.2% in XH; ~0.5% in MZ; and ~1.6% in CC), 
and the type II methanotroph Methylocystis was only common 
in CC (~11.4% in ZL; ~9.7% in XH; ~9.1% in MZ; and ~22.7% 
in CC). The type II methanotroph Methylomonas was common 
in MZ (~8.5%). These methanotrophs accounted for more than 
90% of the total microbes. LEfSe analysis revealed that 
Methylobacter, Methylosinus, and FWs-affiliated clusters were 
enriched in natural wetlands, and Methylosarcina was more 
prevalent in paddy than in natural wetlands, these methanotrophs 
used to distinguish the MOB communities between paddy and 
natural wetlands as indicators (Figure  3).

In the TITAN2 analysis, the peaks Z− and Z+ with the 
gradient of MOPs appeared around 13 and 30 μg g−1  h−1, 
respectively. In paddy wetlands, type I  Methylosarcina and 
type II Methylocystis were Z+ taxa, which increased in frequency 

and occurrence as MOPs changed, whereas only type  I 
genotypes (e.g., Methylomonas, RPC_2, Methylosarcina, and 
Methylobacter) were Z− taxa (Supplementary Figure S4). Z− 
and Z+ taxa showed opposite patterns in natural wetlands: 
Type I  and type II genotypes were generally Z− taxa, and 
type I  genotypes were generally Z+ taxa (with the exception 
of 2 OTUs).

Co-occurrence Relationships of MOB 
Communities
Distinct patterns of co-occurrence relationships were observed 
between paddy and natural wetlands, which were determined 
based on the methanotrophic networks (Figure  4). A total 
of 1,416 positive and 124 negative links were observed in 
the network of paddy wetlands, whereas 3,127 positive and 
366 negative links were detected in the network of natural 
wetlands, which involved a total of 464 and 576 OTUs, 
respectively (Supplementary Table S5). Degree scores defined 

A B

C D

FIGURE 2 | (A) Methane oxidation potentials at the CH4 incubations of four wetland soils. Boxes with different lowercase letters represent significant differences 
(p < 0.05). (B) Principal coordinates analysis (PCoA) biplots of Bray–Curtis distances for the active methanotrophic communities of four wetland soils. (C,D) Relative 
abundance of active methanotrophs on the genus levels and methanotrophic category levels identified with pmoA gene sequencing in four wetland soils.
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as the number of direct associations of the involved node 
and betweenness centralities indicating the degree of the 
involved node passed by network paths significantly differed 
between paddy and natural wetlands (Degree scores: F = 26.68, 
p < 0.001; Betweenness centralities: F = 173.38, p < 0.001; 
Figure  4B). The network analysis suggested that network 
stability was higher for the natural wetland network than 
the paddy wetland network, as the former had a greater 
proportion of removed nodes (Figure 4C). We also compared 
the abundance of methanotrophs in the networks and found 
that type I  methanotrophs were mainly composed of 
differentially abundant taxa (Figure 5A). Furthermore, network 

module analysis divided the paddy wetland network into 
10 modules and the natural wetland network into 5 modules. 
The community composition of each module is shown in 
Figures  5B,C. Linear regression showed that modules 1, 3, 
4, 5, and 7 in the network for paddy wetlands were significantly 
related to MOPs; modules 1, 2, and 5  in the network for 
natural wetlands were significantly related to MOPs 
(Supplementary Figure S5). Other topological properties, 
such as the clustering coefficient, average neighbors, and 
centralization, are shown in Supplementary Table S5.

The nodes in the networks were divided into network hubs, 
module hubs, connectors, and peripherals by calculating Zi 

A

B

FIGURE 3 | The upper barplot showed LDA score of the active methanotrophic communities between paddy and natural wetlands identified by Lefse analysis (A). 
The following four histograms showed the relative abundance of indicative methanotrophs that make differences (B).
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and Pi values. A less hub-based and more connected network 
structure in both paddy and natural wetlands was observed 
(Supplementary Figure S6). There were 5 OTUs that were 
regarded as module hubs in paddy wetlands, which were most 
closely affiliated to RPC_2 (1 OTU), Methylosarcina (1 OTU), 
Methylobacter (1 OTU), and Methylocystis (2 OTU). Seven 
module hubs belonged to Methylosarcina (2 OTUs), Methylobacter 
(3 OTUs), RPCs (1 OTU), and Methylocystis (1 OTU), all of 
which were type I with the exception of Methylocystis in natural 
wetlands (Supplementary Table S6).

Assembly Processes of MOB Communities
A phylogenetic tree was constructed to characterize the taxonomic 
distribution and relative abundance of methanotrophs (Figure 6A); 
the tree revealed that type I  methanotrophs were the most 
common. Standardized MPD was calculated to characterize 
patterns of phylogenetic distance among methanotrophic 
communities (Figure  6B; Supplementary Table S7), and these 
calculations revealed clear variation in phylogenetic distance 
(among sites: F = 5.088, p = 0.005; among types: F = 5.458, p = 0.026). 
Analysis of community assembly processes (Figure  6C; 

A

B C

FIGURE 4 | (A) Networks visualizing co-occurring phylotypes of active methanotrophs in paddy and natural wetlands. All co-occurrence networks were analyzed 
by Spiec-Easi method. Colorful nodes represented different ecological module affiliations of active methanotrophs and edges on behalf of potential ecological co-
occurring relationships. (B) Relationships between degree scores and betweenness centralities in active methanotrophic co-occurrence networks of four wetland 
soils. The difference test was adopted by Mann–Whitney U test. (C) Network robustness analysis of active methanotrophic co-occurrence networks in four wetland 
soils, measured as natural connectivities with remained proportion of nodes.
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Supplementary Table S8) revealed that the community turnover 
in CC was dominated by HD (~58.2%), followed by HS, UD, 
and VS. In MZ paddy wetlands, VS played an important role 
in community assembly (~31.6%), and UD, HD, and HS played 
equally important but secondary roles. The importance of stochastic 
processes in natural wetlands was highly variable compared with 
deterministic processes. Regression was used to evaluate the 
relationship between differences in MOPs and βNTI/RCbray 
(Supplementary Figure S7). Differences in βNTI among paired 
sites were largely affected by VS (~28.2%) and negatively correlated 

with differences in MOPs. RCbray was largely affected by DL 
(~3.37%) and UD (~26.3%) and positively correlated with 
differences in MOPs.

DISCUSSION

DNA-SIP experiments were conducted to study the structure 
profiling, co-occurrence relationships, and assembly processes 
of methanotrophic communities in paddy and natural wetlands. 

A

B C

FIGURE 5 | (A) Manhattan plots showing differential operational taxonomic units (OTUs) in networks of paddy and natural wetlands. OTUs that belonged to Type 
I were depicted as circles shape where Type II OTUs as triangle shape. The dashed line corresponded to the adjusted value of p threshold of significance 
(α = 0.01/0.001). The color of each dot represented the different taxonomic affiliation of the OTUs, and the size corresponded to their abundance in the respective 
samples. Gray backgrounds were used to denote the different taxonomic groups. (B,C) Relative abundance of the dominant genus in the respective main ecological 
modules of natural and paddy wetland networks, respectively.
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Paddy and natural wetlands are two important types of wetlands 
that play an important role in CH4 consumption driven by 
soil microorganisms. In our experiment, CH4 oxidation activity 
was high in all incubations from the two types of wetlands, 
and methanotrophic communities were successfully labeled by 
13C; this permitted us to compare the structure and function 
of the active methanotroph community in both types of wetlands.

Community Compositions
Methanotrophic communities were highly diverse, and the 
composition of these communities in paddy and natural 

wetlands was distinct. Four differentially abundant and 
indicative methanotrophs were detected through LEfSe analysis. 
Methylobacter was enriched in natural wetlands, known to 
consist of psychrophilic methanotrophs with cold-adapted 
properties (Wartiainen et  al., 2006; Dieser et  al., 2014). 
Methylosarcina, which was prevailing in paddy wetlands, 
widely occurs in human-made ecosystems (McDonald et  al., 
2008; Martineau et  al., 2010). FWs, an uncultured 
phylogenetical cluster, are usually present in natural plant-
rich wetlands (Zhu et  al., 2007). Methylosinus consists of 
acidophilic bacteria and MOB (Zhang et  al., 2020). These 

A

B C

FIGURE 6 | (A) Phylogenetic tree displaying the taxonomic information, phylogenetic clusters, and OTU average abundance from inside layer to the outside layer of 
active methanotrophic phylotypes in four wetland soils. (B) The standardized difference of mean pairwise distance for active methanotrophic communities in four 
wetland soils using standard deviation (Z-score). Boxes with different lowercase letters represent significant differences (p < 0.05). (C) The contributions of different 
assembly processes of active methanotrophic communities in four wetland soils. The five processes indicated the relative importance in dominating the community 
dissimilarity between two samples. VS, variable selection; HS, homogeneous selection; DL, dispersal limitation; HD, homogenizing dispersal; UD, undominated.
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differentially abundant and indicative taxa explained a large 
amount of variation in community composition between 
paddy and natural wetlands.

Co-occurrence Relationships
One major finding of our study was that the co-occurrence 
relationships of methanotrophic communities in paddy and 
natural wetlands were distinct (Figure  4). One explanation 
for this pattern might be attributed to the more phylogenetically 
diverse phenotypes in natural wetlands compared with paddy 
wetlands, given that the survival of microbes critically depends 
on biotic interactions (Faust and Raes, 2012; Segar et  al., 
2020). Previous studies have explored the relationships between 
network interactions and phylogenetic distance (Goberna 
et  al., 2019). Positive interactions (aggregative links) tend 
to occur between phylogenetically different species, whereas 
negative interactions (segregative links) either occur because 
of niche similarities or fitness differences. Our findings were 
consistent with this hypothesis: average positive links (positive 
links per node) were higher in natural wetlands than in 
paddy wetlands. This suggests that communities with larger 
phylogenetic distances may be characterized by robust network 
relationships through cooperation and facilitation interactions. 
Alternatively, this pattern might be  explained by the fact 
that natural wetlands are more oligotrophic than paddy 
wetlands; the soil organic matter and total nitrogen content 
were markedly lower in XH and ZL (Supplementary Table S1). 
Thus, the links between methanotrophic taxa were strong, 
which enhanced the resistance of the natural wetland 
communities to disturbance.

The microbial composition of network modules was complex, 
and the structure of the network modules in paddy and 
natural wetlands differed. Various functions in different 
modules of entire biomes have been reported in previous 
studies (Fan et  al., 2018; Shi et  al., 2019; Ma et  al., 2020). 
Presumably, this finding can be  explained by differences in 
the efficiency of CH4 consumption of methanotrophic guilds 
in different modules. Fan et  al. (2019) showed that nitrogen 
fixation rates are significantly related to key modules of 
diazotrophic networks. The relative abundance of 
methanotrophs within different modules was correlated 
considerably with MOPs in this study (Supplementary  
Figure S5), indicating that module abundance and composition 
may modulate functional potentials (Bodelier et  al., 2013). 
The niche partitioning of methanotrophs within a community 
can lead to the appearance of keystone species that dominate 
in a core function (e.g., module hubs) of CH4 consumption 
(Toju et  al., 2018; Ma et  al., 2020). Both rare and highly 
abundant methanotrophs occupied critical positions in the 
networks (Supplementary Figure S6). For example, the module 
hub RPC_2 was rare in paddy wetlands. However, 
methanotrophs were only identified to the genus level, and 
most of their ecological and metabolic functions remain 
poorly known. Future work focusing on uncultured 
methanotrophs, such as the provisional genus RPC_2, is 
important for identifying the roles of these keystone guilds 
in wetland ecosystems.

Assembly Processes
Community assembly processes that help us enhance the 
understanding of how communities were structured, also varied 
among different wetlands. Phylogenetic stochasticity was observed 
in ZL, and phylogenetic clustering was observed in XH, MZ, 
and CC (Figure 6B). Differences in functional potentials might 
be  driven by phylogenetic stochasticity, but the efficiency of 
MOPs was limited in ZL. Saturated or flooding conditions 
(e.g., in paddy wetlands) were promoted by hydrologic mixing, 
and these conditions presumably enhanced the capacity of 
microorganisms to migrate across geographical regions (Liu 
et  al., 2020), which might explain why the relative importance 
of HD and ecological drift was higher in paddy wetlands 
compared with other processes. Our findings were consistent 
with the results of Liu et  al. (2020): UD contributed the most 
to shaping the communities in ZL natural wetlands, which 
enhanced the degree of phylogenetic stochasticity. By contrast, 
phylogenetic clustering can promote convergence in functional 
potentials and enhance the efficiency of MOPs depending on 
the methanotrophic guild. These results provide new insights 
into the CH4 consumption potentials of methanotrophs, especially 
for the large quantity of unculturable or unknown 
methanotrophic taxa.

The dominant process shifted from HD at high MOPs to 
VS at low MOPs (Figure  6C; Supplementary Table S8). This 
result indicates that the observed processes can drive patterns 
consistent with the findings of previous studies (Zhang et  al., 
2019; Liu et  al., 2020). HD resulted in greater community 
similarity under intensive farm management in paddy wetlands 
than in natural wetlands. These findings validated the assembly 
theory of Stegen et  al. (2015), in which HD is dominant in 
wetland ecosystems with weak environmental selection, possibly 
because of fertilization (e.g., Changchun paddy wetland). In 
contrast, wetlands in which environmental selection is stronger 
were dominated by VS (e.g., Zhalong natural wetland). Consistent 
with the results of Feng et  al. (2018), fertilization induced a 
shift in the dominant process affecting the diazotrophic 
community from deterministic processes to stochastic processes, 
suggesting that DL and drift became increasingly important 
factors shaping communities compared with selection. Based 
on the correlation between the assembly processes of 
methanotrophs and differences in the CH4 oxidation potential, 
dispersal limitation and ecological drift were strongly associated 
with the potentials, explaining 9.0 and 13.7% of variations, 
respectively. These results indicated that the functional potential 
might be  closely related to stochastic processes. Exploration 
of the associations between processes and functions is novel 
and adventurous, and this involves how to define and determine 
phylogenetic distance/community dissimilarity and the relative 
magnitude of different functional parameters in the future.

CONCLUSION

In sum, the co-occurrence relationships and assembly processes 
of methanotrophic communities in paddy and natural wetlands 
in Northeast China were distinct. DNA-SIP experiment and 
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high-throughput sequencing were used to compare the active 
methanotrophic communities between paddy and natural wetlands; 
network and phylogenetic analysis were applied to reveal 
co-occurrence relationships and assembly processes. Analysis of 
differences in the community composition revealed that 
Methylosarcina, Methylobacter, Methylosinus, and FWs were the 
most differentially indicative taxa between paddy and natural 
wetlands, and these taxa potentially contribute to differences in 
CH4 consumption. The network structure of methanotrophic 
communities might be  more stable in natural wetlands than in 
paddy wetlands. Degree scores and betweenness centralities 
differed between paddy and natural wetlands. Exploration of 
the relationships between module abundance and MOP revealed 
that the relative abundance of key sub-communities within 
modules accounted for the observed variation in functional 
potentials. Although stochastic processes contributed the most 
to community turnover, additional work is needed to credibly 
explore the potential links between community turnover and 
functional differences. The results of this study enhance our 
understanding of differences in community profiling, the 
co-occurrence relationships, and assembly processes of active 
methanotrophic communities between paddy and natural wetlands.
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Inferring the Contribution of 
Microbial Taxa and Organic Matter 
Molecular Formulas to Ecological 
Assembly
Robert E. Danczak 1*, Aditi Sengupta 2, Sarah J. Fansler 1, Rosalie K. Chu 3, 
Vanessa A. Garayburu-Caruso 1, Lupita Renteria 1, Jason Toyoda 3, Jacqueline Wells 1 and 
James C. Stegen 1

1 Ecosystem Sciences, Pacific Northwest National Laboratory, Richland, WA, United States, 2 Department of Biology, 
California Lutheran University, Thousand Oaks, CA, United States, 3 Environmental Molecular Sciences Laboratory, 
Pacific Northwest National Laboratory, Richland, WA, United States

Understanding the mechanisms underlying the assembly of communities has long 
been the goal of many ecological studies. While several studies have evaluated 
community wide ecological assembly, fewer have focused on investigating the impacts 
of individual members within a community or assemblage on ecological assembly. 
Here, we adapted a previous null model β-nearest taxon index (βNTI) to measure the 
contribution of individual features within an ecological community to overall assembly. 
This new metric, called feature-level βNTI (βNTIfeat), enables researchers to determine 
whether ecological features (e.g., individual microbial taxa) contribute to divergence, 
convergence, or have insignificant impacts across spatiotemporally resolved 
metacommunities or meta-assemblages. Using βNTIfeat, we revealed that unclassified 
microbial lineages often contributed to community divergence while diverse groups 
(e.g., Crenarchaeota, Alphaproteobacteria, and Gammaproteobacteria) contributed 
to convergence. We also demonstrate that βNTIfeat can be extended to other ecological 
assemblages such as organic molecules comprising organic matter (OM) pools. OM 
had more inconsistent trends compared to the microbial community though 
CHO-containing molecular formulas often contributed to convergence, while nitrogen 
and phosphorus-containing formulas contributed to both convergence and divergence. 
A network analysis was used to relate βNTIfeat values from the putatively active 
microbial community and the OM assemblage and examine potentially common 
contributions to ecological assembly across different communities/assemblages. 
This analysis revealed that P-containing formulas often contributed to convergence/
divergence separately from other ecological features and N-containing formulas often 
contributed to assembly in coordination with microorganisms. Additionally, members 
of Family Geobacteraceae were often observed to contribute to convergence/
divergence in conjunction with both N- and P-containing formulas, suggesting a 
coordinated ecological role for family members and the nitrogen/phosphorus cycle. 
Overall, we show that βNTIfeat offers opportunities to investigate the community or 
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assemblage members, which shape the phylogenetic or functional landscape, and 
demonstrate the potential to evaluate potential points of coordination across various 
community types.

Keywords: community assembly, β-nearest taxon index, null modeling, FTICR-MS, metacommunity ecology, 
meta-metabolome ecology

INTRODUCTION

Evaluating the processes which govern community diversity is 
often the goal of ecological studies across all ecosystems (Swenson 
et  al., 2006; Kraft et  al., 2007; Gilbert and Bennett, 2010; Smith 
and Lundholm, 2010; Chase and Myers, 2011; George et  al., 
2011; Stegen et  al., 2013; Herren and McMahon, 2017; Zhou 
and Ning, 2017; Danczak et al., 2020b). Analogously, researchers 
have also focused on understanding the processes governing the 
composition of organic molecules or metabolites within organic 
matter (OM) assemblages (Danczak et  al., 2020a, 2021). While 
methods might vary in how researchers investigate these processes 
(e.g., variation partitioning, trait-based analyses, and null modeling), 
each study attempts to determine when, where, and how various 
ecological assembly processes give rise to specific community/
assemblage configurations. By better understanding the distribution 
of these processes and the circumstances under which they 
dominate, we  will be  able to better understand the fundamental 
principles governing community/assemblage structure. However, 
less attention has been paid to the impact of ecological processes 
on individual community/assemblage members or to the impact 
of individual members on ecological assembly. Hereafter, in order 
to limit confusion, both biological and chemical members are 
referred to as “features,” while biological communities and OM 
assemblages are referred to as “communities” (Table  1).

Evaluating the impacts of individual features provides several 
benefits to ecological researchers. Firstly, feature-level metrics 
provide researchers the opportunity to investigate how specific 

features (e.g., a microbial taxon or metabolite) contribute to 
assembly under varied environmental regimes or across different 
spatiotemporal scales. As detailed by Ning et al. (2020), members 
of a given taxonomic level can respond differently to 
environmental stresses, with some experiencing variable selection 
and others being limited by dispersal. Feature-level metrics 
will allow researchers to disentangle the contributions (or lack 
thereof) of individual members and identify groups putatively 
most relevant to community assembly. The ability to observe 
individual contributions would allow researchers to evaluate 
the ecological roles of specific organisms and/or organic molecules 
in the absence of explicit physiological or biochemical information 
based on traits inferred from phylogeny/taxonomy. For example, 
Ning et al. (2020) observed that a group of Bacillales significantly 
experienced homogeneous selection in hot/dry environments 
potentially due to their enhanced survivability.

Secondly, feature-level metrics will allow ecologists to 
compare and relate the contributions to assembly dynamics 
across community types in order to observe potential ecological 
coordination. For example, these metrics can be  directly 
compared across different community types to find groups 
of cross-community features, which exert coordinated control 
on the larger metacommunity/meta-assemblage, potentially 
highlighting a common ecological pressure or ecological 
interaction (e.g., a specific environmental condition driving 
the selection of features across community boundaries). 
Investigating how assembly compares across disparate groups 
has enabled a deeper understanding of the fundamental factors 
structuring ecological communities. Danczak et  al. (2020b) 
revealed that viral and microbial communities experienced 
coordinated assembly processes despite facing separate 
environmental pressures in a fractured shale ecosystem. Jiao 
et  al. (2020) demonstrated that the balance of cross-kingdom 
species interactions across Archaea-Bacteria-Fungi mediated 
community assembly in an agricultural soil ecosystem. These 
examples indicate that the ability to measure and relate feature-
level contributions to ecological assembly will help identify 
components disproportionally impacting phylogenetic or 
functional community structure.

We propose that a new metric called feature-level β-nearest 
taxon index (βNTIfeat) based upon an existing null modeling 
framework (βNTI) will provide these benefits. βNTI is particularly 
capable in assessing the assembly dynamics associated with 
ecological metacommunities and OM meta-metabolomes/
assemblages and we  show that it can be  adapted to feature-
level analyses. βNTI has been used extensively to study assembly 
processes. For example, researchers have revealed relationships 
between microbial community development and organic matter 
degradation (Stegen et al., 2016, 2018), coordination of assembly 

TABLE 1 | Table of terms used throughout the manuscript and their definitions.

Terms Definitions

Feature Feature is used liberally in this manuscript. This 
term is meant to describe anything that can 
be described in a relational dendrogram (e.g., 
microbial community members and FTICR-MS 
molecular formula).

Community Community refers to a collection of ecological 
features. Here, that describes both microbial 
communities and organic matter assemblages.

Contribution |βNTIfeat| > 1, with significant contributions inferred 
when |βNTIfeat| > 2; When a feature “contributes” to 
ecological assembly, it exerts some deterministic 
impact on the community.

Contribution to convergence βNTIfeat < −2; Features that “contribute to 
convergence” are those which drive ecological/
functional similarities across communities.

Contribution to divergence βNTIfeat > 2; Features that “contribute to 
divergence” are those which drive ecological/
functional differences across communities.
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between viral and microbial communities (Danczak et  al., 
2020b), the balance of niche- and dispersal-based processes 
the soybean microbiome (Moroenyane et  al., 2021), and 
emphasized the importance of salinity in the assembly of desert 
microbial communities (Zhang et  al., 2019).

Recently, Ning et al. (2020) developed an iterative null model 
based on β-net relatedness index (βNRI) called iCAMP, which 
represents a potential route to identify these feature-level 
dynamics. By first identifying the minimum phylogenetic level 
at which a phylogenetic signal exists (e.g., a relationship between 
evolutionary history and niche occupancy; Blomberg et  al., 
2003; Stegen et al., 2012), iCAMP groups community members 
and measures the ecological pressures acting upon that level. 
Using these metrics calculated across the phylogenetic tree, 
iCAMP can then estimate the balance of assembly processes 
acting on the community. This method is an excellent way to 
account for phylogenetic groups experiencing varied assembly 
processes in whole community analyses and represents a novel 
way to follow sub-community assembly through time or space. 
However, while capable of identifying assembly processes at 
levels below the entire community, this approach still investigates 
processes impacting assembly at the subcommunity level rather 
than measuring the degree which an individual feature impacts 
or is impacted by assembly. Fodelianakis et  al. (2021) instead 
took an approach, called “phyloscore analysis” that focuses 
instead on the ecological contributions of specific taxa within 
a microbial community. Likewise, βNTIfeat focuses on individual 
features to measure their ecological contribution to community 
dynamics and highlights a point of complementarity across 
community, subcommunity, and feature-level foci (Table  1).

Feature-level β-nearest taxon index provides insight into 
the degree to which each observed feature contributes to either 
ecological convergence or divergence (Table  1). Ecological 
convergence occurs when some feature drives similarities in 
the phylogenetic or functional landscape across samples or 
within a dataset. Such a feature would be more phylogenetically 
or functionally conserved than expected by random chance. 
In contrast, ecological divergence occurs when a feature drives 
phylogenetic or functional differences across samples or a 
dataset; these features are more divergent than expected by 
random chance. Based on these interpretations, βNTIfeat stands 
as the phylogenetic or dendrogram-based complement to 
taxonomic metrics like SIMPER (Clarke, 1993). Importantly, 
given that βNTIfeat does not rely on abundance or taxonomic-
based distance metrics, it is able to overcome many of the 
limitations associated with SIMPER (Warton et al., 2012). When 
compared to the phyloscore metric described by Fodelianakis 
et  al. (2021), it is much more similar though differs in some 
mathematical specifics (namely the null implementation) and 
in its application across different scales.

Here, we describe the theory behind the βNTIfeat calculations, 
apply it to microbial and environmental metabolomic data, 
and discuss how interpretations vary with scale and dataset. 
First, we  reveal that βNTIfeat can identify microbial taxa (down 
to the amplicon sequence variant, or ASV, level) and 
environmental metabolites (down to the specific molecular 
formulas), which disproportionally contribute to the ecological 

structure of the respective community. Second, we demonstrate 
that we  can track features with disproportionate contributions 
through time and relate them to each other to uncover ASVs 
and molecular formulas that have coordinated contributions 
to the biological and chemical composition of the study system.

MATERIALS AND METHODS

Sample Collection
Detailed sample collection is outlined in Sengupta et al. (2021a) 
but will be  described briefly here. Sediments were collected 
from the hyporheic zone of the Columbia River shoreline in 
eastern Washington state on 14 January 2019 at 9 a.m. Pacific 
Standard Time. Five samples were collected from within a 
meter range, combined to make a composite sediment sample, 
and then sieved on site through a 2 mm sieve into a glass 
beaker. Sieved sediment was kept on blue ice for 30 min until 
transported back to the lab, where it was stored at 4°C 
until experimentation.

Experimental Design
A detailed experimental design is outlined in Sengupta et  al. 
(2021a) but will be  described briefly here. Sieved sediment 
was partitioned into two sets of vials, each vial containing 
10 g of sediment: one set of vials were under inundated conditions 
for 23 days, and the other set were allowed to dry for 23 days. 
Once the vials were permitted to acclimate, they were subject 
treatment regimes designed around a series of wet/dry transition 
periods. While the details are important, these regimes  
largely translate to two bulk treatments based upon the number 
of days left dry: cumulatively dry (34, 31, and 27 days) and 
cumulatively inundated (0, 4, and 8 days). This resulted in a 
total of 20 vials per cumulative treatment.

16S rRNA Gene Sequencing and 
Processing
Detailed DNA and cDNA extraction methods can be  found 
in Sengupta et  al. (2021a). Briefly, incubated sediments were 
centrifuged and flash-frozen. gDNA was extracted following 
the protocol established by Bottos et  al. (2018) RNA was 
extracted using the Qiagen PowerSoil RNA extraction kit 
(Qiagen, Germantown, MD), treated for contaminate DNA 
using DNase, quantified using a Qubit RNA kit (Thermo Fisher, 
Waltham, MA), and reverse transcribed into cDNA using the 
SuperScript™ IV First-Strand Synthesis System (Thermo Fisher 
Scientific, Waltham, MA). Amplicon sequencing for both gDNA 
and cDNA was performed following The Earth Microbiome 
Project. Sequences are accessible at NCBI’s Sequence Read 
Archive using the accession number # PRJNA641165.

Sequence processing was performed using QIIME2 (Bolyen 
et  al., 2019). Raw amplicon sequences were imported into the 
QIIME2 environment, denoised using DADA2 (q2-dada2), and 
assigned taxonomy using the SILVA v138 database (q2-feature-
classifier; Quast et  al., 2013; Callahan et  al., 2016; Bokulich 
et al., 2018). A phylogenetic tree was generated by first aligning 
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amplicons using the MAFFT aligner (Katoh, 2002) and then 
generating a maximum-likelihood tree (q2-phylogeny). The 16S 
rRNA gene amplicon maximum-likelihood tree is stored as 
Supplementary File 1.

FTICR-MS Analysis
Detailed Fourier transform ion cyclotron resonance mass 
spectrometer (FTICR-MS) data acquisition is outlined in Danczak 
et al. (2020a) and Sengupta et al. (2021a) but will be described 
briefly here. In brief, a solid-phase extraction on a PPL cartridge 
(Bond Elut) was used to concentrate carbon and remove salt 
(Dittmar et  al., 2008). Extracted samples were injected into a 
12 Tesla (12T) Bruker SolariX FTICR-MS outfitted with a 
standard electrospray ionization source (ESI) configured to 
negative mode. Resulting spectra were processed using the 
BrukerDaltonik Data Analysis software (v4.2) to obtain a peak 
list; Formularity was then used to assign molecular formulas 
to detected peaks following the Compound Identification 
Algorithm (Kujawinski and Behn, 2006; Tolić et  al., 2017). 
The report generated in Formularity was then processed using 
the ftmsRanalysis R package to calculate various molecular 
properties (e.g., double-bond equivalents, modified aromaticity 
index, nominal oxidation state of carbon, Kendrick’s defect, 
etc.) and assign compound classes (Hughey et  al., 2001; Kim 
et al., 2003; Koch and Dittmar, 2006; LaRowe and Van Cappellen, 
2011; Bailey et  al., 2017; Rivas-Ubach et  al., 2018; Bramer 
et  al., 2020). Using the methods outlined in Danczak et  al. 
(2020a), we  generated a molecular characteristics dendrogram 
(MCD) for use in dendrogram-informed analyses; the MCD 
is stored as Supplementary File 2.

Ecological Analyses
Multivariate differences across the microbial community and OM 
assemblage were detected using ordinations in combination with 
PERMANOVA statistics (adonis; vegan package v2.5-7; Oksanen 
et  al., 2019). A principal coordinate analysis (PCoA; pcoa; ape 
package v5.5) was generated using both Bray–Curtis dissimilarity 
(vegdist; vegan package v2.5-7) and β-mean nearest taxon distance 
(βMNTD; comdistnt; picante package v1.8.2) were calculated for 
both the microbial community and OM assemblage (Kembel 
et  al., 2010; Oksanen et  al., 2019; Paradis and Schliep, 2019).

The βNTIfeat Calculation
The βNTIfeat is intrinsically linked to the βNTI calculation and 
helps us understand the relationship between observed 
dendrogram-based relationships of individual features and some 
null expectation (Figure  1). First, βMNTDfeat, the minimum 
relational distance of a feature in one community to the nearest 
feature in another, needs to be  calculated for the observed 
community across the entire dataset:
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f d
n
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where fai  is the relative abundance of feature a in community 
i, n is the number of communities/samples in the dataset, 
and min da bi j( ) is the average minimum relational distance 

(e.g., the distance between tips on a dendrogram—equivalent 
to phylogenetic distance) of the fixed feature a in the fixed 
community i to any feature b in all communities j. In these 
current analyses, we  are allowing conspecifics in our 
calculations, but they can be  excluded pending experimental 
design. In this case, a conspecific feature is one which is 
present across both halves of a pairwise comparison and 
the inclusion/exclusion implementation matches that of the 
comdistnt in the picante R package (Kembel et  al., 2010). 
In practice, this metric measures the average minimum 
distance between a given feature in one community and all 
other features in other communities. The key departure from 
the standard βMNTD calculation is that this calculation 
occurs from a fixed perspective; only one community is 
compared to all other communities at a single time. As with 
the traditional βNTI calculation, βMNTDfeat was also calculated 
for 999 randomized communities, which were generated by 
shuffling the tips of the provided dendrogram/phylogenetic 
tree using the function taxaShuffle from the picante R package 
(Kembel et  al., 2010). Additionally, the null βMNTDfeat 
calculation has small amounts of phylogenetic noise (e.g., 
1 × 10−20–5 × 10−20) injected into them to allow for features 
present across both halves of the pairwise comparison to 
be included. By combining the null results with our observed 
results, we  can calculate βNTIfeat:
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where MNTDβ obs
feat  is the observed βMNTDfeat measurement, 

MNTDβ null
feat  is the average βMNTDfeat for the null results, 

and MNTDβ sd
feat  is the SD of MNTDβ null

feat  values.

Estimating Feature-Level Ecological 
Dynamics
Following the same philosophy underlining the typical βNTI 
interpretations, βNTIfeat seeks to quantify the ecological 
processes occurring within and across communities. When 
describing the underlying theory of βNTIfeat, we use the term 
“community” as the general term to describe any assemblage 
of ecological data (Table  1). However, we  want to stress 
that this method can be  used on any relational set of data 
(e.g., microbial communities and DOM assemblages). Unlike 
βNTI, which evaluates whole communities through space or 
time, βNTIfeat is focused on identifying the contributions to 
community assembly by individual community members 
(Figure 1). For example, while βNTI is well-suited to identify 
variable selection as a process driving differences between 
two communities, it cannot measure which community 
members may be  driving that variable selection. In contrast, 
βNTIfeat has been adapted from βNTI to track the influence 
of individual features, which significantly contribute either 
to convergence or divergence.
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Feature-level β-nearest taxon index can be  calculated in 
three separate ways in order to account for variations in scale 
(e.g., a complete experiment vs. sub-groupings within the 
experiment). First, it can be  calculated for an entire dataset 
yielding a single βNTIfeat value for each feature within a dataset. 
This approach is particularly useful in identifying which features 
in the whole dataset contribute to convergence or divergence. 
Second, it can be  calculated within groups, for example, if 
you  have a factor with two levels, you  can calculate βNTIfeat 
for each of those levels. Results from this type of analysis 
will generate a βNTIfeat value for each feature within each 
level of the factor (i.e., if there are two factors and 100 features, 
200 βNTIfeat values will be  created) and is well-suited to 
compare differential feature contribution. Finally, βNTIfeat can 
be  calculated truly pairwise (akin to the standard βNTI 
calculation) in order to provide complete spatial or temporal 
resolution at the feature level. By performing the βNTIfeat 
analysis on a fixed focal sample (a 0 day dry sample here), 

you can get a true temporal perspective. Importantly, all these 
calculations can be  done with absolute abundance, relative 
abundance, or presence/absence data.

The interpretation of the βNTIfeat is directly analogous to 
the interpretation of βNTI but focuses on individual “features” 
instead. Here, a “feature” is any member of a community or 
assemblage that is subject to ecological pressures (a microorganism 
or environmental metabolite, for example; Table 1). |βNTIfeat| < 1 
means that a feature has an insignificant contribution to ecological 
variation across the metacommunity or meta-assemblage, 
1 < |βNTIfeat| < 2 indicates that a feature somewhat contributes 
ecological variation, and |βNTIfeat| > 2 suggests that a given feature 
significantly contributes to ecological variation. These patterns 
can be  further resolved based upon the sign of βNTIfeat. When 
βNTIfeat trends negative (e.g., <−1), we  suggest that the feature 
contributes to convergence within the scale of analysis. Under 
this definition, these are features (or groups of related features) 
that significantly drive relational commonalities across a given 

A

B

FIGURE 1 | Conceptual depiction of feature-level β-nearest taxon index (βNTIfeat) calculation as it compares to the common β-nearest taxon index (βNTI) calculation 
(A) and the subsequent interpretation (B). Essentially, the βNTIfeat calculation mirrors βNTI though instead measures the distance between a given focal feature in one 
community/assemblage (closed circles) and the nearest member in another community/assemblage (open circles and squares).
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analytical scale. For example, these features could represent a 
phylogenetically conserved niche of microorganisms or consistent 
group of molecular formula that are disproportionally impacted 
by selective processes. When βNTIfeat instead trends positive 
(e.g., >1), we  suggest that the feature contributes to divergence. 
Under this definition, these are features (or groups of related 
features) that drive relational differences across an analytical 
scale. These could be  those microorganisms which arose to 
prominence under varied environmental conditions (e.g., they 
were selected for/against) or those organic matter constituents 
that were produced/consumed under specific conditions.

Network Analysis
Weighted gene co-expression network analysis (WGCNA) was 
used to relate βNTIfeat results and identify modules of related 
contributions to ecological assembly within community types 
(e.g., within the putative active community or molecular formula 
assemblage) or across community types (e.g., the putatively 
active community compared to the molecular formula assemblage; 
WGCNA package v1.70-3; Langfelder and Horvath, 2008). 
Networks were first generated in R and then visualized/analyzed 
using Cytoscape v3.8.2 (Shannon et  al., 2003). Specifically, 
βNTIfeat values for the putatively active ASVs (as identified 
via cDNA amplicon data) were related to the βNTIfeat values 
for the molecular formulas. As part of this analysis, we identify 
modules of interconnected features (either ASVs or formula). 
These modules represent those features which have either 
positive or negative relationships in their contributions to 
ecological or functional convergence/divergence. Additional 
ecological metrics were calculated for modules containing both 
ASVs and molecular formulas including Shannon’s diversity 
(H; diversity, vegan package v2.5-7), exp(H) per recommendation 
from Jost (2006), Pielou’s evenness (J), number of taxonomic 
Orders within a module, and the number of ASVs in a module 
(e.g., richness) The relative abundance of elemental composition 
groups was also calculated for these modules. The Cytoscape 
network file is stored as Supplementary File 3.

Data and Code Availability
Fourier transform ion cyclotron resonance mass spectrometer 
data are available on the ESS-DIVE archive at https://data.ess-dive.
lbl.gov/view/doi:10.15485/1807580, sequence data are available 
on the NCBI Sequence Read Archive PRJNA641165, and scripts 
used throughout this manuscript (including various versions of 
the βNTIfeat calculation) can be  found on GitHub at https://
github.com/danczakre/betaNTI-feature (Sengupta et  al., 2021b).

RESULTS AND DISCUSSION

βNTIfeat Revealed That Uncultured 
Microbial Lineages Differentially 
Contribute to Ecological Processes Across 
Total and Putatively Active Communities
We first analyzed the overall microbial dynamics and observed 
that the total community (using 16S rRNA gene sequencing) 

and putatively active community (via transcribed 16S rRNA 
sequencing) were significantly divergent from each other 
(Figures 2A,B). A Jaccard-based PCoA of Family-level taxonomic 
assignments revealed that not only were the two community 
types divergent, but also the communities under cumulatively 
dry treatments were divergent from those under inundated 
treatments (DNA – PERMANOVA Pseudo-F: 1.4826, value of 
p < .05; RNA – Pseudo-F: 3.4025, value of p < .001; and Type 
– PERMANOVA Pseudo-F: 38.653, value of p < .001; Figure 2A). 
Similar cross treatment dynamics were also apparent once 
sample similarity was analyzed using phylogenetic relatedness 
(e.g., βMNTD; DNA – PERMANOVA Pseudo-F: 1.8191, value 
of p < .05; RNA – Pseudo-F: 3.7559, value of p < .01; and Type 
– PERMANOVA Pseudo-F: 69.54, value of p < .001; Figure 2B). 
Given that the largest differences existed between the total 
microbial community and the putatively active component 
(based upon Pseudo-F statistic for the Type comparison), this 
information was used as a baseline of differences to interpret 
downstream analyses.

When compared to existing taxonomic metrics (e.g., 
SIMPER), βNTIfeat allows researchers to identity microbial 
groups impacting ecological structure rather than composition 
providing insight into community development (Clarke, 1993). 
In turn, we can evaluate the degree to which specific microbes 
contribute to the breadth of ecological strategies contained 
within metacommunities. This goes far beyond information 
on variation in taxonomic composition or standard diversity 
metrics. Existing approaches can identity cross-community 
differences in the abundance of a given taxon, but cannot 
identify the assembly processes leading to those differences 
in abundance. For each taxon (or molecule), βNTIfeat quantifies 
the assembly processes it experiences, the degree to which it 
influences ecological structure, and elucidates the environmental 
conditions that lead to variation in these influences 
and contributions.

Feature-level β-nearest taxon index revealed that varied 
microbial lineages differentially impacted assembly of the total 
microbial community and the putatively active microbial 
community (Figure  2C). Looking at the βNTIfeat dynamics 
across both the total and putative active communities, we  see 
that members of an unclassified/uncultured group of Bacteria, 
members of the Patescibacteria (intermingled with some Class 
Bacilli), and members of the Nanoarchaeota consistently 
contribute to ecological divergence (Figure  2C). Those taxa 
which contribute to ecological convergence; however, are less 
conserved and more widespread across the phylogenetic tree 
with ASVs appearing within the Crenarchaeota, 
Alphaproteobacteria, and Gammaproteobacteria (Figure  2C).

Given that the largest community differences existed 
between the total and putatively active communities 
(Figures  2A,B), we  focused on evaluating which microbial 
groups differentially contributed across these groups. We  see 
that those members of the uncultured bacterial group and 
the Patescibacteria are among the most notably differential. 
Specifically, while many members appear to contribute to 
either convergence or divergence across both communities, 
we  see that fewer members of these lineages contribute to 
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assembly within the putatively active community. Out of 
364 detected Patescibacteria across all microbial data, 305 
contributed to assembly (|βNTIfeat| > 1) in the total community, 
while only 34 impacted the putatively active community 
(Figure  2C). This pattern demonstrates that the uncultured 
microbial lineages contribute more to the phylogenetic structure 
of the total community than the active community. The 
stronger role played by uncultured lineages in the total 

community may indicate that these taxa have a background 
role and are not as relevant to the ecology of the 
active community.

Breaking the data down based upon Family-level taxonomic 
groups that, on average, contributed to either convergence or 
divergence supported these broad phylogenetic patterns and 
we  observed that contributions could be  related to inferred 
functional potentials and spanned a range of relative abundances 

A

B

C

FIGURE 2 | Microbial ordinations and overview of microbial feature-level β-nearest taxon index (βNTIfeat) results. (A) Bray–Curtis dissimilarity-based principal 
coordinate analysis (PCoA) with colors representing community type, the total community defined by 16S rRNA gene amplicon results (DNA) and transcribed 16S 
rRNA gene amplicon results (RNA), and shapes distinguishing treatment type. (B) β-mean nearest taxon distance (βMNTD)-based PCoA with a legend matching 
panel (B). (C) βNTIfeat results consisting of three panels: the 16S rRNA gene amplicon tree, βNTIfeat values for the whole dataset with colors indicating contribution to 
ecological assembly (Direction), and the difference in βNTIfeat values across the total microbial community and putatively active community (Community Pref.). Under 
the Direction legend, “Insignificant” represent |βNTIfeat| < 1, “Convergence” or “Divergence” indicate 1 < | βNTIfeat| < 2, and “Sig. Conver.” or “Sig. Diver.” represent 
|βNTIfeat| > 2. Under the Community Pref. legend, “DNA favored” indicates that the given microbial group had a higher absolute βNTIfeat value in the total community, 
“RNA favored” indicates that the given microbial group had a higher absolute βNTIfeat value in the putative active community, and “Neither” indicates no difference 
between communities. Microbial groups discussed throughout the manuscript are called out where applicable.
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(Figure 3; Supplementary Figure 1). For example, an unknown 
family from Class Desulfuromonadia significantly drives 
convergence (βNTIfeat < −2) in the total community (DNA) but 
not in either the overall dataset (All) or putatively active (RNA) 
communities (Figure 3). Conversely, the Family Woesearchaeales 
significantly drives ecological divergence (βNTIfeat > 2) within the 
putatively active community as compared to the total community 
or overall dataset. In the case of these example taxonomic 
groups, we hypothesize that this is likely tied to their respective 
inferred functional potentials. Class Desulfuromonadia tend to 
feature sulfate reducing bacteria, while described members of 
Family Woesearchaeles are fermentative (Castelle et  al., 2015; 
Waite et  al., 2020). Given that the experimental design allowed 
these sediments to maintain oxic conditions, this would act as 
a selective force against sulfate reducers due to thermodynamic 

constraints but not necessarily fermentative organisms (i.e., 
members could still form syntrophic relationships). This would 
translate to a diminished presence within the putative active 
community and thereby prevent them from significantly 
contributing to either convergence or divergence and suggests 
that these organisms might be  detected in the DNA dataset 
as either dormant cells or relic DNA (Lennon et  al., 2018).

Homologous Series Disproportionately 
Contribute to Convergence Regardless of 
Environment Type
The overall DOM patterns largely mirror those of the putatively 
active microbial community. Namely, both Jaccard- and βMNTD-
based analyses revealed that significant differences existed 

FIGURE 3 | Distribution of feature-level β-nearest taxon index (βNTIfeat) values for ASVs belonging to the Family-level taxonomic groups which contribute to either 
convergence or divergence on average. Some of these taxonomic groups only have a single ASV (e.g., Family MA-28-I98C), whereas other groups have many more 
(the top two were the unclassified Bacteria with 454 ASVs and the Nitrosomonadaceae with 147 ASVs). “DNA” represents the βNTIfeat values for the total community 
(defined by the 16S rRNA gene amplicon results), “RNA” represents the βNTIfeat values for the putatively active community (defined by the transcribed 16S rRNA 
gene amplicon results), and “All” represents βNTIfeat values calculated from the complete community (both DNA and RNA combined). The blue dashed line at +1 and 
−1 represents the “Contributes” threshold outlined in Figure 1, while the red dashed line at +2 and −2 represents the “Significantly Contributes” threshold.
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between the organic matter from dry and inundated samples 
(PERMANOVA Pseudo-F: 1.5085, value of p < .05; Figures 4A,B). 
Using this information, we calculated βNTIfeat for the combined 
dataset, the dry-only dataset, and the inundated dataset.

Looking first at the complete dataset, we  see a higher 
proportion of features significantly contributing to functional 
divergence or convergence within the organic matter dataset 
(45.08%) than in the ASV dataset (20.99%). This potentially 
points simultaneously to the more transitive nature of many 

environmental metabolites as compared to microbial community 
members (Schmidt et  al., 2011; Graham et  al., 2018; Coward 
et  al., 2019), while also highlighting the consistent role that 
some conserved organic matter constituents play. Specifically, 
we  see many larger molecular formula (e.g., C47H68O10, 
C34H63O4P, etc.) and some molecular formula with more 
complex compositions (e.g., C46H68NO4S2P, C42H52NO9S2P, 
etc.) significantly contribute to divergence across the entire 
dataset (Figure 4C). This might suggest that these more complex 

A C

B

FIGURE 4 | Organic matter (OM) ordinations and overview of OM feature-level β-nearest taxon index (βNTIfeat) results. (A) Jaccard dissimilarity-based principal 
coordinate analysis (PCoA) with colors representing treatment type. (B) β-mean nearest taxon distance (βMNTD)-based PCoA with a legend matching panel (B). 
(C) βNTIfeat results consisting of three panels: the molecular characteristics dendrogram (MCD), βNTIfeat values for the whole dataset with colors indicating 
contribution to ecological assembly (Direction), and the difference in βNTIfeat values across the dry-treatment OM assemblage and inundated-treatment OM 
assemblage (Assemblage Pref.). Under the Direction legend, “Insignificant” represent |βNTIfeat| < 1, “Convergence” or “Divergence” indicate 1 < |βNTIfeat| < 2, and “Sig. 
Conver.” or “Sig. Diver.” represent |βNTIfeat| > 2. Under the Assemblage Pref. legend, “Dry favored” indicates that aa given molecular formula had a higher absolute 
βNTIfeat value within dry assemblages, “Inundated favored” indicates that a given molecular formula had a higher absolute βNTIfeat value in inundated assemblages, 
and “Neither” indicates no difference between assemblages. Organic matter groups discussed throughout the manuscript are called out where applicable.
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compounds may play variable roles depending on the situation; 
they could be  a hallmark of differential nutrient limitation 
(i.e., the functional needs of the meta-assemblage are highly 
variable; Graham et  al., 2018; Garayburu-Caruso et  al., 2020; 
Danczak et al., 2021) or highlight divergent degradation potential 
(e.g., common metabolites might be  processed through 
different pathways).

Whereas divergence was driven by larger or more complex 
molecular formula compositions, we  see that CHO-based 
homologous series (e.g., C23H30O14, C24H30O14, etc.), 
N-containing homologous series (e.g., C18H15NO10, 
C19H17NO10), and some P-containing homologous series (e.g., 
C17H25O9P, C18H27O9P) often contribute to convergence 
across the entire dataset. CHO-only molecular formulas are 
the most frequently observed types of organic matter from 
sedimentary and aquatic sources (Garayburu-Caruso et  al., 
2020) suggesting that these types of compounds could drive 
functional similarities across organic matter assemblages. As 
with those compounds which contribute to divergence, the 
contribution to convergence by the N-containing and 
P-containing formulas may also point to conserved functional 
needs or pathways (i.e., N/P-limitation drives selection for 
N/P-containing formulas, or ongoing metabolisms continually 
cycling these formulas).

Following the patterns established via the Jaccard- and 
βMNTD-based PCoAs, we  evaluated the differences in 
environmental metabolites which contribute to convergence 
and divergence across the dry and inundated samples 
(Figure  4C). Unlike the ASV data, where groups contributed 
differently across the total and putatively active communities, 
we  see a balanced set of contributions from formulas derived 
from dry and inundated organic matter with no clear 
discernable patterns.

Grouping molecular formula by either elemental composition 
categories or compound classes further revealed little consistent 
variation across wet-dry conditions suggesting that the OM 
meta-assemblage might be  more impacted by ecosystem than 
treatment condition in this case (Figure  5). Similar patterns 
were observed in a headwater stream, where bulk environmental 
properties were conserved across ecosystem types despite 
divergent OM assemblages undergoing variable selection as a 
result of hypothesized thermodynamic redundancy (Danczak 
et  al., 2021). Briefly, thermodynamic redundancy is like 
functional redundancy, where compositionally divergent OM 
assemblages have similar thermodynamic properties. Here, 
βNTIfeat helps us examine whether this hypothesized redundancy 
exists across groups contributing to community structure. For 
example, in contrast to the thermodynamic behavior observed 
in Danczak et  al. (2021), we  see that the nominal oxidation 
state of carbon (NOSC) significantly varies across those CHON 
and CHOP containing molecular formula which contribute 
to convergence/divergence (Mann–Whitney U test value of 
p < .05; Supplementary Figure 2). Specifically, we observe that 
CHOP formulas with less inferred structural complexity (e.g., 
lower aromaticity index and double-bond equivalents) and 
more inferred lability (e.g., lower NOSC) drove significant 
convergence; differences in the properties of CHON formulas 

appear to manifest more as variation in distributions (e.g., 
those formulas which contribute to convergence are more 
constrained). Formulas featuring other elemental compositions 
exhibit less consistent behavior. This pattern suggests that 
thermodynamic restrictions potentially help dictate the 
contributions of the N/P-containing homologous series to the 
overall OM assemblage and may indicate that thermodynamic 
redundancy is not at play in this particular system. In other 
words, the preference for certain N/P-containing formulas 
might be dictated by organisms targeting the most preferential 
carbon source rather than some other limitation.

These results also demonstrate the capability for βNTIfeat to 
uncover functional dynamics within OM assemblages and assign 
ecological importance in the absence of abundance information.

Network Analyses Reveal Groups of 
Molecular Formula and Microbes Which 
Contribute to Ecosystem Dynamics in a 
Coordinated Manner
While the previous sections focused on either analyzing 
complete datasets or subgroups within the overall dataset, 
βNTIfeat also provides sample-level information for each 
feature within a given dataset (Supplementary Figure  3). 
Using this approach, we  can evaluate how the contribution 
of each feature to community assembly changes through 
either time or space by utilizing a single focal sample (here 
ECA_0Cyc_R2). Looking at the five most variable taxonomic 
groups from the putatively active community, we  can see 
that different groups respond differently through treatment 
regimes (Supplementary Figure  3). For example, families 
DTB120, MVP-15, and order Myxococcocales rarely if ever 
cross the +2 βNTIfeat threshold for contributing to divergence. 
In contrast, the families Williamwhitmaniaceae and 
Woesearchaeales consistently cross that threshold. In contrast 
to these highly dynamic ASV taxa, the groups defined by 
a molecular formula’s elemental composition are less variable 
across samples (Supplementary Figure  3).

Having established that βNTIfeat can track dynamics through 
time, we  believe that this metric is well-suited in network 
analyses. By performing a WGCNA using βNTIfeat values 
for each feature—as opposed to abundances—we can obtain 
modules of putatively active ASVs and OM formulas. These 
modules should reflect features which have either positive 
or negative relationships among their contributions to 
ecological/functional convergence and divergence. Within-
cluster relationships between ASVs and organic molecules 
do not indicate co-variance in abundances (as in a traditional 
network analysis). Instead, these relationships indicate linkages 
between the ecology of microbes and the functional properties 
of organic molecules. We propose that these putative ecology-
function linkages are more likely to indicate causal connections 
between microbes and molecules than networks built on 
relative abundances. There are nonetheless multiple potential 
interpretations of within-cluster relationships, leading 
to  additional questions. For example, could the ASVs 
be  responsible for degrading the linked molecular formulas? 
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If a module contains exclusively molecular formulas, does 
this point a single pathway or do they represent an ecological 
interaction among pathways? By revealing features that have 
coordinated impacts on the ecological or functional structure 
of their respective community, network analyses can highlight 
important organisms or molecules. A better understanding 
of the relationships among ecological pressures impacting 
members across communities within a metacommunity will 
enable researchers to develop transitive principles regarding 
the coordination of ecological assembly (e.g., the mechanisms 
impacting cross trophic level assembly, etc.).

The network analysis resulted in the creation of 54 modules, 
with 28 modules having some mixture of ASVs and organic 
matter, two featuring exclusively ASVs, and 24 containing 
only molecular formulas (Figure 6; Supplementary Figure 4). 
Of these 54 modules, two modules were removed because 
the consisted only of doublets (e.g., modules where one 
feature related to only one other single feature). Focusing 
on the 27 modules which have a mixture of ASVs and 
molecular formulas, we observe a range of microbial diversity: 
for example, we  observe that the gray and tan modules have 
the greatest number of different taxonomic groups 
(Supplementary Figure  4A). These modules also exhibit a 
range of characteristics across their molecular formulas: we see 
that the gray module predominantly contains CHO-only 
formulas, while the tan module primarily contains CHON 
formulas (Supplementary Figure  4B). This approach now 
allows us to evaluate which factors and taxonomic groups 
are coordinated in driving ecological dynamics.

Given the importance of nitrogen and phosphorus homologous 
uncovered in the metabolite βNTIfeat analyses, we  examined 
modules containing at least two N- or P-containing formulas 
and contained more than two nodes. There were 16 modules 
with two or more N-containing molecular formulas, 10  
modules with two or more P-containing formulas, and  
nine modules with both two or more N- and P-containing 
formulas (Figure 6). Analyzing the membership of these modules 
first revealed that the P-containing modules only featured four 
ASVs across all 10 modules, with three modules comprised 
exclusively of P-containing modules. This pattern suggests that 
these P-containing molecular formulas potentially experience 
a set of selective pressures distinct from other metabolites and 
ASVs. This characteristic could explain the disproportionate 
effect that phosphorus homologous series had on the functional 
structure of the OM meta-assemblage. In contrast, N-containing 
modules featured broader microbial and molecular diversity 
indicating that N-containing molecular formulas experience a 
more common set of pressures than P-containing formulas. 
As hypothesized above, this might be  driven by nutritional 
requirements or some sort of pathway regulation. Finally, five 
different ASVs from Family Geobacteraceae were detected in 
three out of the nine modules featuring both N- and P-containing 
molecular formulas. While we  do not have direct functional 
information due to the limits of amplicon sequencing, members 
of this family have reported roles in both the nitrogen cycle 
(via nitrate reduction, nitrification, and nitrogen fixation) and 
the phosphorus cycle (via aggressive phosphate acquisition; 
Naik et al., 1993; N’Guessan et al., 2010; Ueki and Lovley, 2010;  

A B

FIGURE 5 | Proportion of contributions across different elemental composition groups (A) and compound classes (B). These graphs outline the frequency that 
we observe a given contribution type within a given grouping. For example, out of all CHO molecular formulas within dry assemblages, we see that they contribute 
to convergence more frequently than CHONSP molecular formulas.
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Wang et  al., 2018; Samaddar et  al., 2019; Campeciño et  al., 
2020). Taken together, this potentially points to a combinatorial 
effect, whereby the functional development driven by 
N/P-containing formulas is tied to organismal selectivity (i.e., 
roles of Geobacteraceae in the N/P cycles).

CONCLUSION

Feature-level β-nearest taxon index is a novel metric that enables 
researchers to investigate the contributions to ecological 
convergence and divergence with a given metacommunity or 
meta-assemblage. Using βNTIfeat, we  revealed that uncultured 
lineages contribute significantly to the ecological structure of 
microbial communities when assayed using 16S rDNA, but 
contributed little to the ecology of putatively actives communities 
assayed with 16S rRNA. These differences suggest that while 
these uncultured lineages represent a significant proportion of 
the microorganisms in some ecosystems (Brown et  al., 2015; 
Anantharaman et  al., 2016; Danczak et  al., 2017; León-Zayas 
et  al., 2017), they may be  relatively minor contributors to the 
ecological composition of active microbes in the study system. 
This inference is complementary to traditional inferences based 

on relative abundances or taxonomic richness. That is, βNTIfeat 
quantifies the contribution of individual ASVs to the assembly 
of multi-dimensional ecological niche space occupied by 
communities, and how those contributions vary through space, 
time, and environmental conditions.

Applying βNTIfeat to OM provides analogous inferences, but 
instead quantifies the contribution of individual molecules to 
the assembly of the multi-dimensional functional space occupied 
by assemblages of organic molecules. In our study, we observed 
that OM homologous series primarily containing nitrogen or 
phosphorus differentially contributed to OM functional 
composition across the whole dataset. However, we  do not see 
any noteworthy differences across wet-dry treatments indicating 
a stronger ecosystem-level control. Network analyses relating 
putatively active ASV βNTIfeat values to metabolite βNTIfeat values 
revealed formation of 54 distinct modules exhibiting coordinated 
contributions to their respective communities. Looking specifically 
at modules featuring N/P-containing molecular formulas, 
we  observed that P-containing formulas appear to be  largely 
disconnected from other metabolites and microorganisms, 
N-containing formulas are more integrated across feature types, 
and modules with both formula types exhibit a high incidence 
of Geobacteraceae members.

FIGURE 6 | Feature-level β-nearest taxon index (βNTIfeat)-based weighted gene co-expression network analysis (WGCNA). Modules with labels represent those 
modules which contain N- and/or P-containing molecular formulas. Node colors indicate the different modules identified as part of the WGCNA pipeline, node 
shapes represent different feature types, and label colors indicate whether the modules contain either N- and/or P-containing molecular formulas.
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These dynamics potentially point to two larger scale 
hypotheses. First, the ecological contributions of P-containing 
formulas are often distinct from other metabolites indicating 
that they might occupy a unique functional space (at least 
compared to N-containing formulas). Second, certain microbial 
groups may offer contributions to convergence or divergence 
in concert with specific metabolite dynamics (here Geobacteraceae 
related to N/P-containing formulas). While these hypotheses 
still need to be  independently verified, they point to specific 
conclusions that can be  drawn from the use of βNTIfeat. As 
further research uses this metric, more broad scale, transferrable 
hypotheses can be  generated and help us better understand 
community assembly.
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Microbes inhabit virtually everywhere on and/or in our bodies, including the seminal and
vaginal fluids. They have significant importance in maintaining reproductive health and
protecting hosts from diseases. The exchange of microbes during sexual intercourse is
one of the most direct and significant microbial transmissions between men and women.
Nevertheless, the mechanism of this microbial transmission was little known. Is the
transmission mode stochastic, passive diffusion similar to the random walk of particles,
or driven by some deterministic forces? What is the microbial transmission probability?
What are the possible evolutionary implications, particularly from the perspective of
sexual reproduction (selection)? We tackle these intriguing questions by leveraging the
power of Hubbell’s unified neutral theory of biodiversity, specifically implemented as the
HDP-MSN (hierarchical Dirichlet process approximated multi-site neutral model), which
allows for constructing truly multi-site metacommunity models, simultaneously including
vaginal and semen microbiomes. By reanalyzing the microbiome datasets of seminal
and vaginal fluids from 23 couples both before and after sexual intercourses originally
reported by Mändar and colleagues, we found that the microbial transmission between
seminal and vaginal fluids is a stochastic, passive diffusion similar to the random walk
of particles in physics, rather than driven by deterministic forces. The transmission
probability through sexual intercourse seems to be approximately 0.05. Inspired by
the results from the HDP-MSN model, we further conjecture that the stochastic
drifts of microbiome transmissions during sexual intercourses can be responsible
for the homogeneity between semen and vaginal microbiomes first identified in a
previous study, which should be helpful for sexual reproduction by facilitating the
sperm movement/survival and/or egg fertilization. This inference seems to be consistent
with the classic Red Queen hypothesis, which, when extended to the co-evolutionary
interactions between humans and their symbiotic microbiomes, would predict that the
reproductive system microbiomes should support sexual reproduction.

Keywords: microbiome transmission, semen microbiome, vaginal microbiome, neutral theory, multi-site neutral
model (MSN), red queen hypothesis, coevolution

Abbreviations: BV, bacterial vaginosis; BVAB, BV associated anaerobic bacteria; CM, semen sample; CNA, vaginal sample
before intercourse; CNB, vaginal sample after intercourse; HDP, hierarchical Dirichlet process; MSN, multi-site neutral
model; HDP-MSN, hierarchical Dirichlet process approximation to multisite neutral model; SAD, species abundance
distribution; UNTB, unified neutral theory of biodiversity.
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INTRODUCTION

Microbes inhabit virtually every corner of our body, including
semen, male and female genital tracts. The genital microbiome
have great importance in maintaining reproductive health and
protecting hosts from disease (Ravel et al., 2011; Gajer et al.,
2012; Macklaim et al., 2013). Studies show that the dysbiosis of
vaginal microbiota is closely linked to an increased risk of certain
diseases, such as bacterial vaginosis (BV) and sexually transmitted
infections (e.g., Ma et al., 2012; Lewis et al., 2017; Smith and Ravel,
2017; van de Wijgert, 2017). Although the microbiome in the
male genital tract exists primarily in the urethra and coronary
sulcus, researchers typically use semen to study the microbiome
of the male genital tract. Semen microbiome has been found to
play a critical role in semen quality that is associated with male
fecundity (Hou et al., 2013; Weng et al., 2014). In addition, semen
can be a major vector for the sexual transmission of pathogens
including HIV (Liu et al., 2015).

Multiple factors may influence the composition of genital-
associated microbiota, including race, age, lifestyle, and sexual
activity (Lewis et al., 2017; Noyes et al., 2018). During
sexual intercourse, the genital microbiome can be exchanged
between sexual partners, and the exchange may have significant
influences on the vaginal microbiome, and to a less extent
on the semen microbiome (Starnbach and Roan, 2008; Nelson
et al., 2012; Liu et al., 2015; Zozaya et al., 2016; Plummer
et al., 2018). Mändar et al. (2015) investigated the genital
tract microbiota of 23 couples before and after intercourse,
and postulated that there was association between semen and
vaginal microbiomes. Their study revealed that the seminal
microbiome caused the significant decrease in the relative
abundance of Lactobacillus crispatus after intercourse, and
Gardnerella vaginalis tend to dominate the vaginal communities
of the women whose partners had leukocytospermia (Mändar
et al., 2015). Vodstrcil et al.’s (2017) longitudinal sampling of the
vaginal microbiome of 52 young women also revealed that penile-
vaginal sex changed the vaginal communities into the Gardnerella
vaginalis dominated microbiome. In spite of these apparently
dramatic changes that occurred in vaginal microbiome after
sexual intercourse, the relatively long term effects of the
intercourse may be limited because of the resilience of normal
vaginal microbiota (Borovkova et al., 2011). In addition, the
evolutionary implications of the microbiome transmission via
sexual intercourse are still little known (Ma and Taylor, 2020).

Existing literature on the influence of sexual intercourse on
vaginal microbiome clearly highlights its healthy implications for
woman (Starnbach and Roan, 2008; Ma et al., 2012; Nelson et al.,
2012; Liu et al., 2015; Zozaya et al., 2016; Plummer et al., 2018).
Nevertheless, existing studies ignored one important aspect, i.e.,
what is the microbial transmission (transfer) mechanism during
the sexual intercourse? Is it stochastic, passive diffusion similar
to the random walk of particles in physics, or driven by some
deterministic forces? Is it possible to get rational estimation of
the transmission probability and/or the portion of transmitted
microbes? Indeed, it may not be practical to obtain such
quantifications through experimental or observational studies.
Fortunately, it is possible to get rational estimation for such

important parameters through mathematical analysis based on
the neutral theory of biodiversity (Hubbell, 2001; Li and Ma,
2016; Harris et al., 2017; Ma and Li, 2019; Ma, 2020, 2021a,b).
In the present study, we apply Hubbell’s (2001) unified neutral
theory of biodiversity (UNTB), specifically the multi-site neutral
model (MSN) implemented by Harris et al. (2017) to address
the previously identified questions. The neutral theory enables
us to determine whether or not the transmission of bacteria
during the intercourse is a stochastic event similar to random
walk of particles in physics or it is simply deterministic. It also
allows for us to get rational estimation for the transmission
probability and transmission level. We applied the neutral theory
modeling by reanalyzing the microbiome (16s-rRNA) datasets
of 23 couples originally reported by Mändar et al. (2015),
which constitutes the first objective of the present study—
investigating the mechanism of microbiome transmission during
the sexual intercourse.

A secondary objective of the present study is to explore
the evolutionary implications of the microbiome transmission
during the sexual intercourse, which has been rarely addressed in
existing literature. For example, one may wonder what are their
potential evolutionary implications to the sexual reproduction?
Specifically, would the microbiome exchange raise or lower the
fitness of sexual reproduction? Indeed, one of the major mysteries
of evolutionary biology is why costly sexual reproduction is
evolved and maintained, whereas the apparently high efficiency
of asexual reproduction is also compelling. That is, why and how
would sexual reproduction still be evolved in organisms given
the apparently compelling advantage of asexual reproduction,
and the mystery has been known as sexual selection problem in
literature. The Red Queen hypothesis (Van Valen, 1973; Žliobaitė
et al., 2017; Scoville, 2019) has been one of the most favored
theories to explain the evolution of sexual reproduction, i.e., a
theory for the sexual selection problem. Multiple versions of Red
Queen hypothesis have been developed in evolutionary biology.
Arguably the most well-known version is the co-evolutionary
or arms-race interactions between species (particularly the
predator-prey system), in which both the predator and prey must
continuously adapt to each other’s innovative, and advantageous
mutations to “out-compete” each other, such that neither go
extinct and both survive and prosper. According to the Red
Queen hypothesis, this arms race or back-and-forth co-evolution
of the species is a continuous co-adaptation process over
long evolutionary timelines. In the domain of sexual selection,
according to the Red Queen theory, sexual reproduction, in
which mate can be selected rather than undergoing “closed” and
non-selective asexual reproduction, allows for selecting a partner
with advantageous characteristics and is therefore more likely to
produce offspring better fit for the environment (Scoville, 2019).

In the second mechanism described above for sexual selection
(which is followed in this study), it was argued that the
evolutionary advantages are particularly strong for one species in
a symbiotic relationship if the other species can only undergoes
asexual reproduction. For example, since most parasites are
asexual, in a host-parasite interaction, if the host can freely
select mates that seem immune to the parasite, then the host
species would have an evolutionary advantage since its offspring
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would be more resistant or immune to the parasite. Of course,
this does not imply that the parasite could not co-evolve with
hosts because it may still accumulate advantageous genes through
other means such as simple DNA mutations (Scoville, 2019).
We humans are typical sexual reproduction animals, although
modern marriage systems may have exerted social limits to
the degree of sexual selection. The Red Queen hypothesis
has postulated that sexual selection in humans has played a
critical role in shaking off some potentially dangerous microbial
pathogens, although one may counter-argue that sexual activities
per se provides venues for sexually transmitted pathogens. While
threats of sexually transmitted pathogens are real, a consensus has
been that the reproductive system microbiomes (mostly vaginal
and semen microbiomes) are generally predominantly beneficial
to human hosts such as suppressing/preventing invasions of
opportunistic pathogens and maintaining healthy reproductive
tract environment (e.g., right acidity in the human vaginal) (e.g.,
Ma et al., 2012). Nevertheless, comprehensive examinations of
the roles of reproductive system microbiomes in human sexual
reproduction from an evolutionary perspective are still missing
to the best of knowledge.

In a recent study, Ma and Taylor (2020) suggested that
co-evolutionary theories such as the Red Queen hypothesis
(Van Valen, 1973; Žliobaitė et al., 2017) should be applicable
for the co-evolution between human reproductive systems
and their symbiotic microbiomes (mainly semen and vaginal
microbiomes) due to the microbiome exchanges between
both sexes. They argued that the long-term co-evolution
should promote the dynamic homogeneity or stability of the
microbiomes, possibly being beneficial for sexual reproduction
(sexual selection) such as sperm movement and survival as well as
egg fertilization. They further tested the hypothesis by analyzing
the heterogeneity of the reproductive system (semen and vaginal
microbiomes) based on Taylor’s power law (TPL) (Taylor, 1961,
2019) and found no statistically significant differences between
the semen and vaginal microbiomes, while both exhibiting
significant differences with human gut microbiomes. That is,
they demonstrated homogeneity between semen and vaginal
microbiomes and therefore indirectly supported the extension
of the Red Queen hypothesis to the human reproductive system
microbiomes. Nevertheless, the microbiome datasets they used
were from independent cohorts, which means that no apparent
microbiome exchanges between the men and women in the
cohorts actually occurred on ecological time scale. In other
words, their results and inferences were on the evolutionary
time scale, rather than on the ecological time scale (daily basis).
Furthermore, their study only verified the homogeneity but
without offering a mechanistic interpretation for the process
maintaining the homogeneity at ecological time scale. In the
present study, we aim to provide additional evidence to
support the Red Queen hypothesis extension to the field of
reproductive system microbiomes (Ma and Taylor, 2020) by
leveraging the findings from pursuing the previously stated
first objective. Specifically, we explore how the mechanism
of microbiome transmission during the sexual intercourse
influences the heterogeneity (the other side of homogeneity
“coin”) of the reproductive system microbiomes on ecological

time scale. We conjecture that microbiome transmission during
sexual intercourse should promote the homogeneity between
semen and vaginal microbiomes on the ecological time scale,
similar to what occurs on the evolutionary time scale as suggested
by Ma and Taylor (2020). If the conjecture is confirmed, then one
may infer that the microbiome transmissions between men and
women either through sexual intercourse on ecological time scale
or through other means on evolutionary time scale all support
the Red Queen hypothesis, namely, that the co-evolution between
reproductive system microbiomes and hosts facilitates the sexual
reproduction (sexual selection). Figure 1 below diagrammed the
hypotheses (objectives) and supporting approaches of the present
study. It should be noted that the secondary objective we pursue
regarding the Red Queen hypothesis is of conjectural nature since
our evidence is indirect and non-experimental. Future studies are
required to cross-verify our conjecture.

MATERIALS AND METHODS

Datasets of Microbiome Transmission
via Sexual Intercourse
Mändar et al. (2015)’s datasets in the form of OTU (operational
taxonomic unit) tables, which are reanalyzed in this study,
include 23 couples who sought consultation from a physician
due to infertility of diverse etiologies. Semen samples were
collected by masturbation, and each male was sampled only
once. Each female participant was sampled twice, and the vaginal
samples were collected in the evening before intercourse and
next morning after intercourse. Seminal and vaginal samples
were sequenced with Illumina HiSeq2000, and the obtained
reads were processed with Mothur software pipeline. A total of
176,358 sequences were obtained, with an average 2,854 reads
for each of the 46 vaginal fluid samples, and an average of
1,712 reads for each of the 23 semen samples. Those samples
(3 samples per couple, and a total of 69 samples) were ideal
materials for investigating microbiome transmission via sex,
and we take advantage of the neutral theory of biodiversity for
determining and estimating the transmission mode and level of
the transmission during intercourse. For further information on
the cohort information, readers are referred to Mändar et al.
(2015). In this study, we used the OTU tables generously supplied
to us by the original authors of Mändar et al. (2015).

As a side note, since no second semen samples were
taken from the cohort, any discussion on microbiome
transmission is primarily one way, from male to female, in
this study. Nevertheless, for stable partners, the one-time
semen samples cannot exclude the effect of female-to-male
transmission obviously.

Multi-Site Neutral Model Approximated
by Hierarchical Dirichlet Process
Hubbell’s (2001) UNTB (unified neutral theory of biodiversity
and biogeography) assumes that all individuals from different
species are “neutral” in the sense that their differences,
even if exist, would not translate into differences in their
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FIGURE 1 | A diagram showing the hypothesis and objectives of this study, including the comparative analysis with previous study (the left side) (Ma and Taylor,
2020).

probabilities of being, and persisting, in the present and future
community (Alonso et al., 2006). The neutral theory diametrically
contradicts the assumption of classic niche theory, which
assumes that different species occupying different niches in their
habitats are selected by natural selection to possess different
characteristics.

Hubbell’s (2001) UNTB conceptually distinguishes the local
community dynamics from meta-community dynamics, but
both are driven by similar neutral processes. Meta-community
dynamics is controlled by two quantities: speciation probability
and reproduction rate of an individual. The diversity of the
local community is then maintained by immigration from
the meta-community, but no speciation is assumed to occur
unlike in the meta-community. With all these assumptions,
Hubbell’s neutral theory was formulated as a master equation
(a stochastic differential equation), the solution of which is
a probability distribution (sampling formula), which can be
compared against the species abundance distribution obtained by
sampling ecological communities, via rigorous statistical testing
such as goodness-of-fitting test with χ2 statistic.

A fully generalized case of fitting multiple sites UNTB
with variable immigration rates among sites is computationally
extremely challenging (actually intractable) even for small
number of sites, and approximate algorithms must be utilized
(Harris et al., 2017). Harris et al. (2017) developed an efficient
Bayesian fitting framework by approximating the neutral models
with the hierarchical Dirichlet process (HDP). Harris et al.
(2017) approximation captures the essential elements of the

UNTB, i.e., neutrality, finite populations, and multiple panmictic
geographically isolated populations linked by relatively rare
migration. With Harris et al.’s (2017) HDP-MSN model,
i.e., multi-site neutral (MSN) model approximated by the
HDP process, it is possible to simultaneously estimate the
variable immigrations rates among a large number of sites
within feasible computation timeframe, and therefore makes
the UNTB truly multi-site. For this reason, we term Harris
et al. (2017) implementation of Hubbell’s UNTB as HDP-
MSN model (hierarchical Dirichlet process approximation of
multisite neutral model). Furthermore, the HDP-MSN model
distinguishes between neutral local community (given a non-
neutral meta-community) and the full UNTB (where the meta-
community also assembles neutrally), and the neutrality tests
can be performed at both meta-community level and local
community level.

The Unified Neutral Theory of Biodiversity Model
As stated previously, a primary assumption in Hubbell’s
UNTB is that both local community dynamics and regional
metacommunity dynamics are driven by similar neutral
processes, although they are separated conceptually (Hubbell,
2001, 2006). Regarding the local community dynamics, assume
there are M local communities indexed as i = 1, 2... M, each with
Ni individuals and Ni is constant for each local community. At
each time step, the local community dynamics for site i is driven
by a random process—selecting an individual randomly and
either replacing it by a randomly chosen individual immigrated
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from the metacommunity with migration probability (mi) or
replacing it by an indigenous member randomly chosen from the
local community (i) with probability (1-mi). The UNTB further
assumes that the local communities are at stationary state, and
each site is assigned a vector π̄i = (πi,1, ...,πi,S), denoting the
probability for observing a particular species at site i, which is
simply the species abundance distribution (SAD) of site or local
community i.

One parameter, immigration rate (Ii), controls the coupling of
a local community to the meta-community by replacing the two
parameters (mi and Ni), i.e.,

Ii = (Ni − 1)[mi
/
(1−mi)]. (1)

Regarding the equivalent neutral dynamics of
metacommunity, new species are generated through speciation
with a probability ν. Similar to local community neutral
dynamics, the speciation rate, also known as fundamental
biodiversity number (θ), can be defined as:

θ = (ν
/
(1− ν))(N − 1), (2)

where N is the fixed (total) number of individuals in the
metacommunity. The parameter θ can be considered as the rate
at which new individuals are added to the metacommunity as a
result of speciation.

The third aspect of the UNTB is to treat the observed samples,
i.e., the rows in the data matrix XMxS with elements xij giving the
abundance of species j is observed at site i, as a sample from the
local community. As a side note, the matrix X is actually the OTU
table of 16s-rRNA gene abundances in the case of test datasets
we used in this study. Assume that the sample is taken with
replacement, let Ji =

∑S
j=1 xij, and then the multinomial (MN)

distribution describes the vector of observations at a given site i,
i.e.,

X̄i ∼ MN(Ji, π̄i). (3)

In summary, the above three elements (the immigration rate,
speciation rate, and multinomial distribution) constitute the
building blocks of the neutral theory. These building blocks,
together with the neutrality assumption—that all individuals
from different species are “neutral” in the sense that their
differences, even if exist, would not translate into differences in
their probabilities of being, and persisting, in the present and
future community (Alonso et al., 2006), may be implemented
slightly differently in the following multi-site neutral (MSN)
model by Harris et al. (2017). However, the fundamental
ideas and elements of neutral theory are the same with
classic neutral theory.

Hierarchical Dirichlet Process-Multi-Site Neutral
Model
Neutral theory is one of the four paradigms of metacommunity
theory. Since metacommunity consists of multiple local
communities, it is essentially a multi-site model. It turned
out that a fully general case of fitting multiple sites UNTB
with different immigration rates is computationally extremely
challenging (actually intractable) even for small number of

sites, and approximate algorithms must be utilized (Harris
et al., 2017). Harris et al. (2017) developed an efficient Bayesian
fitting framework by approximating the neutral models with
the hierarchical Dirichlet process (HDP). Harris et al. (2017)
approximation captures the essential elements of the UNTB,
i.e., neutrality, finite populations, and multiple panmictic
geographically isolated populations linked by relatively rare
migration—while little influenced by the specific details of the
local community dynamics.

Sloan et al. (2006, 2007) showed that for large local population
sizes, and assuming a fixed finite-dimensional metacommunity
distribution with S species present, then the local community
distribution, π̄i, can be approximated by a Dirichlet distribution
(Sloan et al., 2006, 2007). But it was Harris et al. (2017)
developed the general framework for approximating the UNTB
computationally efficiently. Assuming there is a potentially
infinite number of species that can be observed in the local
community, then the stationary distribution of observing local
population i is a Dirichlet process (DP), i.e.,

π̄i|Ii, β̄ ∼ DP(Ii, β̄) (4)

where β̄ = (β1, ..., βS) is the relative frequency of each species in
the metacommunity.

At the metacommunity level, a Dirichlet process is still
applicable, but then the base distribution is simply a uniform
distribution over arbitrary species labels, and the concentration
parameter is the biodiversity parameter (θ) (Harris et al., 2017).
The metacommunity distribution follows the stick breaking
process, i.e.,

β̄ ∼ Stick(θ). (5)

Given that both local community and metacommunity are
Dirichlet processes, it becomes a hierarchical Dirichlet process
(HDP) in terms of the machine learning (Teh et al., 2006;
Harris et al., 2017).

Alternatively, Dirichlet process can also be viewed as the so-
termed Chinese restaurant process, from which the Antoniak
equation can be derived. Antoniak equation represents the
number of types (or species) (S) observed following N draws from
a DP with concentration parameter θ and is in the following form:

P(S|θ, N) = s(N, S)θS 0(θ)

0(θ+ N)
(6)

where s(N, S) is the unsigned Stirling number of the first kind and
0(.) denotes the gamma function (Antoniak, 1974).

Gibbs Sampler (MCMC Algorithm) for the Hierarchical
Dirichlet Process-Multi-Site Neutral Model
The full HDP approximated neutral model (HDP-neutral) is
formed by combining previous equations (4–6). Harris et al.
(2017) devised an efficient Gibbs sampler for the HDP neutral
approximation, which is a type of Bayesian Markov Chain
Monte Carlo (MCMC) algorithm and can be summarized as the
following four sampling steps:
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(a) Sample the biodiversity parameter (θ) from the conditional
probability:

P(θ|S, T) ∝ s(T, S)θS 0(θ)

0(θ+ T)
Gamma(θ|α, ζ) (7)

where θ is the biodiversity parameter. T =
∑M

i=1
∑S

j=1 Tij is
the number of ancestors, S is the number of species in
metacommunity, s(T, S) is the unsigned Stirling number of the
first kind (Antoniak, 1974), and α and ζ are constants.

(b) Sample the metacommunity distribution:

β̄ = (β1, β2..., βS, βu) ∼ DP(T·1, T·2, ..., T·S, θ) (8)

whereT·j =
∑M

i=1 Tijis the number of ancestors of species j
in metacommunity.

(c) Sample the immigration rates:

P(Ii|Tij) ∝
0(Ii)

0(Ji + Ii)
ITi
i Gamma(Ii|η, ν) (9)

where both η and ν are constants.

TABLE 1 | Test results of fitting the HDP-MSN (hierarchical Dirichlet process, multi-site neutral) model of Harris et al. (2017) to the meta-communities consisting of 3-site
semen-vaginal samples (CM = Semen Sample, CNA = vaginal sample before intercourse, and CNB = vaginal sample after intercourse) (P-value > 0.05 indicating
significant or satisfactory fitting to the MSN)*,**.

ID LO θ m M-value Meta-community Local Community

LM NM N PM LL NL N PL

1 −382.709 40.978 0.151 73.153 −396.822 1,566 2,500 0.626 −389.420 1,417 2,500 0.567

2*** −1, 385.486 141.111 0.015 37.188 −1, 370.380 1,073 2,500 0.429 −1, 415.622 1,632 2,500 0.653

3 −708.010 91.888 0.013 35.028 −727.026 1,551 2,500 0.620 −744.482 1,775 2,500 0.710

6 −1, 032.545 100.840 0.020 39.051 −1, 051.866 1,499 2,500 0.600 −1, 070.271 1,803 2,500 0.721

7 −1, 040.569 97.987 0.010 32.693 −1, 069.604 1,594 2,500 0.638 −1, 091.907 1,930 2,500 0.772

8 −753.034 73.124 0.029 59.935 −837.017 2,162 2,500 0.865 −804.300 1,990 2,500 0.796

9 −820.546 106.933 0.012 24.899 −835.507 1,468 2,500 0.587 −855.005 1,776 2,500 0.710

12 −425.321 47.271 0.022 43.152 −460.434 1,819 2,500 0.728 −464.377 1,971 2,500 0.788

14 −717.459 93.516 0.011 33.766 −725.231 1,374 2,500 0.550 −742.193 1,638 2,500 0.655

15 −425.352 40.732 0.040 104.209 −476.039 2,024 2,500 0.810 −448.788 1,722 2,500 0.689

16 −692.768 95.069 0.010 27.169 −730.169 1,788 2,500 0.715 −732.498 1,800 2,500 0.720

17 −874.131 102.123 0.007 18.343 −917.696 1,813 2,500 0.725 −949.243 2,146 2,500 0.858

18 −768.402 97.810 0.011 26.005 −808.089 1,771 2,500 0.708 −819.856 1,986 2,500 0.794

21 −1, 381.209 129.878 0.021 40.338 −1, 392.766 1,381 2,500 0.552 −1, 431.878 1,936 2,500 0.774

22 −690.534 70.839 0.015 40.315 −739.996 1,910 2,500 0.764 −741.027 2,012 2,500 0.805

23 −1, 044.392 49.574 0.041 105.839 −1, 277.726 2,478 2,500 0.991 −1, 099.484 2,078 2,500 0.831

24 −740.746 47.534 0.072 151.599 −880.842 2,428 2,500 0.971 −762.288 1,649 2,500 0.660

25 −1, 262.028 79.649 0.024 76.674 −1, 386.549 2,225 2,500 0.890 −1, 301.471 1,725 2,500 0.690

26 −1, 178.871 96.351 0.016 38.733 −1, 290.164 2,253 2,500 0.901 −1, 256.236 2,161 2,500 0.864

27 −998.888 55.951 0.056 160.489 −1, 127.655 2,303 2,500 0.921 −1, 000.514 1,277 2,500 0.511

28 −1, 059.024 62.918 0.076 207.492 −1, 185.529 2,296 2„500 0.918 −1, 035.615 820 2,500 0.328

29 −1, 086.036 60.456 0.040 126.032 −1, 339.392 2,490 2,500 0.996 −1, 118.532 1,749 2,500 0.700

30 −981.639 66.499 0.013 35.685 −1, 081.354 2,207 2,500 0.883 −1, 055.134 2,176 2,500 0.870

Mean −889.117 80.393 0.032 66.860 −961.211 1,890 2,500 0.756 −927.397 1,790 2,500 0.716

Passing rate (%) 100% 100%

*N = 2,500 is the number of Gibb samples selected from 25,000 simulated communities (i.e., every tenth iteration of the last 25,000 Gibbs samples), it is chosen to
compute the pseudo P-value below for conducting the neutrality test.
L0 is the actual (observed) log-likelihood.
θ is the median of biodiversity numbers computed from 25,000 times of simulations.
m is the migration probability.
M-value is the average medians of the migration rates of local communities in each meta-community (i.e., the average median of the individuals migrated per generation),
also computed from 25,000 times of simulations.
LM is the median of the log-likelihoods of the simulated neutral meta-community samples; and NM is the number of simulated neutral meta-community samples with their
likelihoods satisfying LM ≤ L0 (where LM and L0 are the simulated and actual likelihood respectively).
PM = NM /N is the pseudo p-value for testing the neutrality at meta-community level; if PM > 0.05, the meta-community is indistinguishable from the prediction
of neutral model.
LL is the median of the log-likelihoods of the simulated local community samples, and NL is the number of simulated local community samples with their likelihoods
satisfying LL ≤ L0 (where LL and L0 are the simulated and actual likelihood respectively).
PL = NL /N, is the pseudo p-value for testing the neutrality at the local community level; if PL > 0.05, the local community satisfies the neutral model.
**Due to the typo/error in Harris et al. (2017), the PM-values exhibited here are adjusted as (PM = 1−PMS), where PMS is output from their computational program.
Similarly, the PL-values are adjusted as (PL = 1−PLS), where PLS is output from their computational program.***Figure 2 displayed the fitting of the MSN to #2 sample by
plotting the predicted and observed species abundance rank distribution.
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FIGURE 2 | Fitting Harris et al. (2017) MSN (multi-site neutral) model with the meta-community of (CM+CNA+CNB) samples from a randomly selected sample group
(Couple#2).

(d) Sample the ancestral states:

P(Tij|xij, Ii, βi) =
0(Iiβj)

0(xij + Iiβj)
s(xij, Tij)(Iiβj)

Tij (10)

where the various symbols have the same representations as
previously defined.

Harris et al. (2017) discovered through experiments that to
ensure sampling was from the stationary distribution, 50,000
Gibb samples for each fitted dataset were required with the first
25,000 iterations removed as burn-in. The results are reported as
the median values over the last 25,000 samples with upper and
lower credible limits (Bayesian confidence) given by 2.5% and
97.5% quantiles of those samples.

Goodness-of-Fitting Test for the Hierarchical Dirichlet
Process-Multi-Site Neutral Model
To determine whether an observed dataset fits to the HDP-
neutral model, Harris et al. (2017) proposed a similar Monte
Carlo significance test to that used by Etienne (2007). For both
the local and metacommunity level tests, samples were generated
from 2,500 sets of fitted parameters, which were in turn sampled
from every tenth iteration of the last 25,000 Gibbs samples (the
first 25,000 were removed as burn-in as mentioned previously).
The calculation and usage of the pseudo-P values for testing the
goodness-of-fitting of the HDP-neutral model are explained in
the footage for Table 1 in the section of results, where actual
model fittings to the datasets of seminovaginal microbiomes
are presented. For the detailed computational procedures and
computational program, readers are referred to Harris et al.
(2017), which we used to perform the microbiome data analysis
in this study. In addition, demonstration on the application of
HDP-MSN model to the human microbiomes can be found in
Ma (2020, 2021a,b).

RESULTS AND CONCLUSION

Table 1 listed the test results of fitting the MSN (multi-site
neutral) model of Harris et al. (2017) to the semen-vaginal
meta-community, which consists of the three samples from
each couple (i.e., CM = semen sample, CNA = vaginal sample
before intercourse, and CNB = vaginal sample after intercourse).
A total of 23 meta-communities, one for each couple, were
tested for their fitness to the MSN model, respectively. The
neutrality-passing rate in the 23 couples is 100% (all 23) both
at the local community and metacommunity level (Figure 2).
Table 2 listed the test results of fitting the MSN model,
with pair of samples from a couple grouped as a meta-
community. There are three possible pair-wise combinations,
CM and CNA, CM and CNB, and CNA and CNB. The meta-
communities from all pairs passed the neutrality test at both
local and meta-community level (100% passing rates). These
findings suggest that the transmission of microbes during sexual
intercourse seems to be similar to a random “walk” (or random
dispersal) and is driven by stochastic drifts. The 100% passing
rate indicates that deterministic selection (forces) seems to
play little role. Table 2 also suggested that the transmission
probability of microbiomes through sexual intercourse appears
to be 0.05 approximately.

Hence, our analysis revealed that the microbiome
transmission during the intercourse is primarily driven by
stochastic neutral drift alone and should just be a random walk.
The virtually universal neutrality among all the samples suggest
that the neutrality is maintained within couples on daily basis,
rather than only during the sexual intercourse. It should also
be plausible to conjecture that the neutrality may possess both
ecological and evolutionary implications, which we further
elaborate in the discussion section.
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TABLE 2 | Test results of fitting the HDP-MSN (hierarchical Dirichlet process, multi-site neutral) model of Harris et al. (2017) to the 2-sites meta-community (pair-wise
combination of CM, CNA, CNB) (p > 0.05 indicating significant or satisfactory fitting to the MSN)*.

ID LO θ m M-value Meta-community Local Community

LM NM N PM LL NL N PL

Meta-community = CM (semen) and CNA (vaginal before): i.e., Semen-Vaginal before Sex

1 −294.942 38.974 0.269 127.603 −281.606 891 2,500 0.356 −281.056 827 2,500 0.331

2 −1, 249.588 167.832 0.019 48.708 −1, 178.198 477 2,500 0.191 −1, 234.428 1,016 2,500 0.406

3 −606.843 104.394 0.018 46.314 −586.250 930 2,500 0.372 −607.972 1,267 2,500 0.507

6 −941.873 117.855 0.025 48.872 −912.698 859 2,500 0.344 −950.423 1,395 2,500 0.558

7 −641.123 113.683 0.013 34.910 −613.257 792 2,500 0.317 −636.724 1,162 2,500 0.465

8 −519.786 56.211 0.145 185.879 −545.308 1,648 2,500 0.659 −521.949 1,292 2,500 0.517

9 −557.682 126.973 0.030 29.291 −523.500 701 2,500 0.280 −545.089 1,039 2,500 0.416

12 −318.186 47.318 0.242 67.048 −316.137 1,196 2,500 0.478 −323.589 1,367 2,500 0.547

14 −637.346 139.845 0.009 33.859 −591.837 599 2,500 0.240 −619.023 975 2,500 0.390

15 −445.940 80.545 0.044 35.486 −426.659 926 2,500 0.370 −432.225 1,072 2,500 0.429

16 −602.985 151.693 0.011 26.547 −564.504 752 2,500 0.301 −590.195 1,061 2,500 0.424

17 −722.901 154.230 0.007 20.553 −716.408 1,150 2,500 0.460 −750.418 1,676 2,500 0.670

18 −649.086 103.733 0.015 35.366 −639.784 1,090 2,500 0.436 −658.020 1,420 2,500 0.568

21 −1, 041.511 162.229 0.019 41.977 −1, 007.968 791 2,500 0.316 −1, 050.771 1,406 2,500 0.562

22 −565.380 85.202 0.016 46.302 −571.889 1,353 2,500 0.541 −584.253 1,574 2,500 0.630

23 −687.356 49.269 0.066 139.642 −778.801 2,240 2,500 0.896 −682.369 1,149 2,500 0.460

24 −463.632 39.916 0.229 384.019 −514.220 2,094 2,500 0.838 −455.452 998 2,500 0.399

25 −1, 050.043 89.466 0.023 92.515 −1, 095.046 1,699 2,500 0.680 −1, 053.375 1,268 2,500 0.507

26 −977.067 152.656 0.011 31.491 −973.298 1,189 2,500 0.476 −1, 002.310 1,629 2,500 0.652

27 −886.104 75.389 0.029 99.172 −932.443 1,647 2,500 0.659 −886.128 1,251 2,500 0.500

28 −838.843 60.589 0.103 335.688 −875.010 1,775 2,500 0.710 −790.556 342 2,500 0.137

29 −1, 029.231 114.178 0.014 51.628 −1, 097.116 1,962 2,500 0.785 −1, 068.638 1,509 2,500 0.604

30 −837.386 105.981 0.009 28.098 −857.412 1,513 2,500 0.605 −878.143 1,861 2,500 0.744

Mean −720.210 101.659 0.059 86.564 −721.711 1,229 2,500 0.492 −721.874 1,242 2,500 0.497

Passing rate (%) 100% 100%

Meta-community = CM (semen) and CNB (vaginal after): i.e., Semen-Vaginal after Sex

1 −289.030 43.371 0.204 105.245 −280.867 1,056 2,500 0.422 −282.879 1,056 2,500 0.426

2 −727.836 129.926 0.024 39.766 −688.822 677 2,500 0.271 −718.518 677 2,500 0.442

3 −511.738 66.266 0.054 99.539 −493.772 958 2,500 0.383 −498.098 958 2,500 0.418

6 −524.047 62.040 0.104 109.920 −516.595 1,127 2,500 0.451 −513.470 1,127 2,500 0.437

7 −922.580 120.417 0.016 41.932 −900.271 950 2,500 0.380 −936.888 950 2,500 0.585

8 −664.375 80.807 0.036 74.639 −683.925 1,547 2,500 0.619 −680.023 1,547 2,500 0.586

9 −734.546 127.632 0.013 31.013 −707.562 874 2,500 0.350 −740.545 874 2,500 0.537

12 −327.890 66.144 0.022 42.932 −314.591 994 2,500 0.398 −327.296 994 2,500 0.494

14 −619.570 92.639 0.036 51.576 −591.182 810 2,500 0.324 −610.084 810 2,500 0.445

15 −347.050 36.931 0.073 194.679 −366.486 1,617 2,500 0.647 −350.091 1,617 2,500 0.533

16 −657.279 148.840 0.012 26.854 −629.818 838 2,500 0.335 −658.247 838 2,500 0.506

17 −668.278 122.494 0.013 23.030 −666.608 1,219 2,500 0.488 −696.241 1,219 2,500 0.694

18 −660.140 139.453 0.015 27.505 −626.643 757 2,500 0.303 −659.396 757 2,500 0.495

21 −845.976 140.958 0.041 41.885 −799.162 567 2,500 0.227 −836.271 567 2,500 0.428

22 −600.325 102.615 0.022 37.687 −575.632 844 2,500 0.338 −595.463 844 2,500 0.465

23 −739.692 52.565 0.051 126.679 −836.581 2,237 2,500 0.895 −753.233 2,237 2,500 0.594

24 −673.891 54.907 0.055 140.013 −756.745 2,174 2,500 0.870 −684.364 2,174 2,500 0.554

25 −1, 040.640 75.592 0.037 141.517 −1, 102.943 1,898 2,500 0.759 −1, 028.525 1,898 2,500 0.442

26 −1, 041.126 127.860 0.013 41.347 −1, 077.386 1,715 2,500 0.686 −1, 091.201 1,715 2,500 0.759

27 −794.096 49.538 0.115 397.648 −863.984 2,040 2,500 0.816 −767.550 2,040 2,500 0.293

28 −957.051 62.429 0.084 326.120 −1, 042.312 2,170 2,500 0.868 −920.118 2,170 2,500 0.235

29 −860.525 55.146 0.059 231.842 −986.236 2,364 2,500 0.946 −843.578 2,364 2,500 0.364

30 −768.696 64.007 0.020 54.922 −811.856 1,772 2,500 0.709 −791.770 1,772 2,500 0.611

Mean −694.625 87.938 0.049 104.708 −709.564 1,357 2,500 0.543 −694.950 1,357 2,500 0.493

Passing rate (%) 100% 100%

(Continued)
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TABLE 2 | (Continued)

ID LO θ m M-value Meta-community Local Community

LM NM N PM LL NL N PL

Meta-community = CNA + CNB: i.e., two vaginal samples

1 −117.932 6.528 0.151 85.064 −146.579 2,029 2,500 0.812 −115.060 1,077 2,500 0.431

2 −687.812 52.987 0.026 80.201 −806.923 2,385 2,500 0.954 −704.006 1,556 2,500 0.622

3 −237.691 36.215 0.001 4.373 −285.973 2,096 2,500 0.838 −288.602 2,197 2,500 0.879

6 −558.172 98.290 0.006 15.714 −571.206 1,444 2,500 0.578 −591.573 1,820 2,500 0.728

7 −495.413 39.212 0.009 38.126 −615.493 2,410 2,500 0.964 −543.052 1,871 2,500 0.748

8 −274.276 51.506 0.002 4.737 −320.860 2,072 2,500 0.829 −327.750 2,184 2,500 0.874

9 −375.537 72.550 0.003 6.641 −388.970 1,514 2,500 0.606 −402.978 1,779 2,500 0.712

12 −211.853 24.140 0.001 3.883 −255.803 2,085 2,500 0.834 −253.221 2,145 2,500 0.858

14 −211.848 46.287 0.001 3.275 −243.275 1,846 2,500 0.738 −247.457 2,038 2,500 0.815

15 −120.950 23.085 0.000 1.592 −144.765 1,868 2,500 0.747 −145.086 1,899 2,500 0.760

16 −221.478 49.669 0.001 3.189 −253.301 1,905 2,500 0.762 −260.003 2,068 2,500 0.827

17 −377.262 34.993 0.003 11.786 −443.105 2,172 2,500 0.869 −418.600 1,968 2,500 0.787

18 −255.349 42.477 0.002 4.744 −300.117 2,090 2,500 0.836 −306.651 2,219 2,500 0.888

21 −940.462 130.900 0.012 29.270 −947.139 1,351 2,500 0.540 −978.608 1,844 2,500 0.738

22 −267.858 38.835 0.001 4.851 −306.574 1,996 2,500 0.798 −316.669 2,160 2,500 0.864

23 −612.796 32.891 0.041 133.344 −782.288 2,465 2,500 0.986 −636.483 1,830 2,500 0.732

24 −352.422 58.629 0.004 8.755 −405.049 2,085 2,500 0.834 −380.030 1,539 2,500 0.616

25 −342.730 19.430 0.049 100.793 −477.573 2,462 2,500 0.985 −356.722 1,688 2,500 0.675

26 −363.988 22.576 0.073 118.692 −488.442 2,457 2,500 0.983 −365.290 1,295 2,500 0.518

27 −270.576 14.159 0.050 94.893 −377.782 2,429 2,500 0.972 −274.642 1,391 2,500 0.556

28 −205.859 12.578 0.126 152.710 −290.304 2,433 2,500 0.973 −202.680 1,105 2,500 0.442

29 −298.507 15.997 0.071 137.058 −420.280 2,451 2,500 0.980 −306.712 1,524 2,500 0.610

30 −322.943 16.873 0.059 123.100 −434.570 2,425 2,500 0.970 −329.146 1,443 2,500 0.577

Mean −353.205 40.905 0.030 50.730 −422.016 2,107 2,500 0.843 −380.479 1,767 2,500 0.707

Passing rate (%) 100% 100%

*The interpretations of the symbols are the exactly the same as in Table 1.

Figure 3 shows the box chart for the fundamental biodiversity
(θ) numbers estimated with the MSN models for the four
different meta-community settings, as listed in Tables 1, 2. It
confirms the previous conclusions we draw from the neutrality
tests with the MSN modeling reported in Tables 1, 2. Specifically,
θ is the lowest in the meta-community of the two vaginal samples
setting (CNA and CNB), which simply indicates that the number
of “novel” species (regional diversity) in the meta-community
of two-sample vaginal microbiome is the lowest, compared with
the other three meta-community settings, in which both semen
and vaginal communities are included. This should be expected
since the “range” of CNA and CNB metacommunity should
be smaller than that of the others, and therefore hosts smaller
microbiome diversity.

Figure 4 shows the box chart for the immigration probability
(m) estimated with the MSN models for the four different meta-
community settings, as listed in Tables 1, 2. It confirms the
previous conclusion we draw from the MSN neutrality tests
reported in Tables 1, 2. Specifically, m is the lowest in the
meta-community of the two vaginal samples, which simply says
that the dispersal (transmission) is the lowest between the two
vaginal samples of a woman, compared with the other three
meta-communities in which semen microbiome is included. This
should be true obviously for the same reason as in the case of
previously explained results of θ.

Table 3 listed the p-value from the Wilcoxon non-parametric
test for the immigration probability (m) and the fundamental
biodiversity number (θ). Figure 5 further illustrated the same
information as displayed in Table 3. In terms of the immigration
probability (m), the meta-community of two vaginal samples
(CNA and CNB) has significant differences (red links) with the
meta-communities of CM and CNA or CM and CNB, and has
no significant differences with all other meta-communities (green
links). This should be expected, and it simply indicates that the
transmission (dispersal) probability between man and woman
after intercourse is significantly higher than the immigration
probability naturally occurring within the vaginal microbiome.

In summary, previous results have shown that the microbiome
transmission during the sexual intercourse appears to be
driven by stochastic drifts of microbiome demography and
dispersal, rather than by certain deterministic processes such
as niche selections (e.g., the preferences of microbes to
particular habitats). Further comparisons of the complementary
seminovaginal microbiome samples before and after intercourse
suggest that the level of stochastic drifts in the semen-vaginal
metacommunity should be beyond the duration of sexual
intercourse and be predominant on daily basis given that the
neutrality passing rates were 100% in both before and after sexual
intercourse. In other words, the microbiome exchanges between
male and female, at least within couples, on ecological time scale
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FIGURE 3 | The box chart for the fundamental biodiversity (θ) numbers estimated with the MSN models for the four different meta-community settings (also see
Table 3 for the p-values of the significance test for their differences in θ). Box red lines, blue lines, edges, whiskers, and bigger red points signify the median, mean,
inter-quartile range (IQR), 1.5 × IQR, and > 1.5 × IQR, respectively. The smaller points in each box are the real values of θ of each sample.

are most likely driven by stochastic drifts and dispersal, rather
than by certain deterministic forces.

The previous interpretations of the results are focused on
the first or primary objective of this study, i.e., the underlying
mechanisms of the microbial community/metacommunity
assembly and diversity maintenance, including the possible
transmission of microbes during sexual intercourse. As to the
secondary objective of this study—the evolutionary implications
of the findings of this study—is further discussed in the
following section.

DISCUSSION

There are currently two major categories of hypotheses on
the relationship between the evolutions of humans and their
symbiotic microbiomes. The emerging theory of evolution
considers the individual animal or plant as a community (or
a holobiont) consisting of the host plus all of its symbiotic
microbes. The collective genome of the holobiont is defined as
the hologenome. The holobiont/hologenome theory maintains
that the variations in the hologenome can be transmitted
from generation to generation with reasonable fidelity, and
are subject to evolutionary changes resulting from selection

and drift (Rosenberg et al., 2009; Rosenberg and Zilber-
Rosenberg, 2018). The theory further maintains that many
factors including new acquisitions of microbes, horizontal gene
transfers, and changes in microbial species abundance within
hosts may cause genetic variation in the hologenome. Due
to its mixture flavor of both Lamarckian and Darwinian, the
theory stresses both cooperation and competition within and
between holobionts (Rosenberg et al., 2009; Rosenberg and
Zilber-Rosenberg, 2018), but the overall framework is still
Darwinian evolution. The second category emphasizes the co-
evolution between the hosts and microbiomes. For example,
the classic Red Queen hypotheses (Van Valen, 1973; Žliobaitė
et al., 2017) for explaining sexual selection and host/parasite co-
evolutions have been applied to interpret the host/microbiome
co-evolution (e.g., Papkou et al., 2018; Ma and Taylor, 2020).
In reproductive biology, microbial symbionts were found to
mediate reproductive isolation in Drosophila, but debates also
exist (Leftwich et al., 2017; Shapiro, 2017; Schneider et al., 2019).
Although, to the best of our knowledge, no experimental studies
have been conducted with the human microbiomes, their roles in
human reproductive biology cannot be excluded. Theoretically,
Ma and Taylor (2020) postulated that the human semen and
vaginal microbiomes, collectively termed human reproductive
system microbiomes, may have coevolved with hosts to facilitate
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FIGURE 4 | The box chart for the immigration probability (m) estimated with the MSN models for the four different meta-community settings (also see Table 3 for the
p-values of the significance test for their differences in m). Box red lines, blue lines, edges, whiskers, and bigger red points signify the median, mean, inter-quartile
range (IQR), 1.5 × IQR, and > 1.5 × IQR, respectively. The smaller points in each box are the real values of m of each sample.

the sexual reproduction such as offering beneficial environmental
for the sperm movement/survival and/or egg fertilization.

While a hallmark of the Red Queen hypothesis is the
antagonism or evolutionary conflicts, in which both species are
locked in an “arms race” to maximize their relative fitness (Aleru
and Barber, 2020), how would the mutualism or evolutionary
cooperation between humans and their microbiomes fits
to the picture of Red Queen dynamics? In the case of
human gut microbiome, it has been found that our immune
system is trained to discriminately treat pathogenic bacteria
vs. beneficial ones that constitutes majority of the human
gut microbiome. Positive selection—the rapid spread of new
beneficial gene mutations in populations over time—has been
observed in immune system related genes. Indeed, immune
system components are among the most rapidly evolving
genes in animal genomes. Commensal microbes are believed
to be able to shift the balance of host-pathogen conflicts as
described by the Red Queen dynamics (Aleru and Barber,
2020). In reproductive biology, microbial symbionts were found
to mediate reproductive isolation in Drosophila, but debates
also exist (Leftwich et al., 2017; Shapiro, 2017; Schneider
et al., 2019). It should also be possible that the human and
their microbiota have been coevolving with hosts through

cooperation, competition (antagonism), and communication
(signaling); consequently, the Red Queen type evolutionary
dynamics should exist within and between holobiont(s), which
are host plus all of its symbiotic microbes (Rosenberg et al., 2009;
Rosenberg and Zilber-Rosenberg, 2018).

Ma and Taylor (2020) proposed that the co-evolution between
human reproductive system and their symbiotic microbiomes
(mainly the semen and vaginal microbiomes) should facilitate
the sexual reproduction, as predicted by the classic Red Queen
hypothesis. They further provided a piece of evidence to
support this microbiome extension to the Red Queen theory
by demonstrating that the heterogeneities of semen and vaginal
microbiomes exhibited no significant differences, whereas both
exhibiting significant differences with human gut microbiomes.
Their logic was that the homogeneity or stability should
be helpful for the success of sexual reproduction such as
being beneficial for the sperm movement/survival and/or egg
fertilization. However, Ma and Taylor (2020) study possessed
two limitations, as mentioned in previous introduction section,
one is the lack of a mechanistic interpretation for why the
homogeneity between semen and vaginal microbiomes was the
case, and the second is that the microbiome datasets they used
were from independent cohorts of men and women (no apparent
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TABLE 3 | The p-value from the Wilcoxon non-parametric test for the immigration
probability (m) and the fundamental biodiversity number (θ) in Tables 1, 2.

Meta-community I Meta-community II M θ

CM and CNA and CNB CM and CNA 0.575 0.068

CM and CNA and CNB CM and CNB 0.054 0.617

CM and CNA and CNB CNA and CNB 0.076 <0.001*

CM and CNA CM and CNB 0.296 0.326

CM and CNA CNA and CNB 0.026* <0.001*

CM and CNB CNA and CNB 0.012* <0.001*

*Indicating the treatments with significant difference in the immigration probability
at the significance level of P-value = 0.05.

microbiome exchanges on ecological time-scale such as daily
basis), rather than from intimately connected couples as the
datasets (Mändar et al., 2015) reanalyzed in this study.

The results from the present study actually fill the two
gaps left by Ma and Taylor (2020) study. First, the stochastic
drifts or random nature of microbiome exchanges explains
the microbiome homogeneity within the reproductive system
(i.e., semen and vaginal microbiomes). This is because random
migration (mixture) is arguably the most effective mechanism
(process) to achieve homogeneity in a fluid environment. Second,
the time scale of the reproductive system microbiomes we used
in this study is on ecological time scale (daily basis) given that
the complementary seminovaginal microbiome samples were
obtained both before and after sexual intercourses. Therefore, this
study not only offers another piece of evidence to support the
prediction of the Red Queen hypothesis on ecological time scale,
but also presents a mechanistic interpretation for the process
generating the microbiome homogeneity within the reproductive
system as revealed by Ma and Taylor’s (2020) previous study,
which was postulated on the evolutionary time scale as explained
previously. Combined together, both previous study by Ma
and Taylor (2020) and the present one seem to confirm that
the microbiome transmissions between men and women either
through sexual intercourse on ecological time scale or through
other means on evolutionary time scale all support the Red Queen
hypothesis, namely, that the co-evolution between reproductive
system microbiomes and hosts facilitates the sexual reproduction
(sexual selection). However, we must reiterate the hypothetic
nature of our discussion, that is, all assumptions are subject to
further experimental and/or theoretical analyses (verifications).

In summary, this study, integrated with Ma and Taylor
(2020), appears to cast relatively complete and reasonably strong
evidence to support the extension of the classic Red Queen theory
to the field of human reproductive system microbiome. That is,
the co-evolution between human reproductive systems and their
symbiotic microbiomes should facilitate the sexual reproduction.
As the title of the classic monograph “The Ecological Theater and
the Evolutionary Play” by G. E. Hutchinson (1965), implied, it
is the ecology that sets theater (environment background) for
evolution (adaptation) to act. We believe that the extension of the
classic Red Queen hypothesis to the field of reproductive system
microbiomes highlights the critical importance of symbiotic
microbes to the success of sexual reproduction, on which our

FIGURE 5 | The significance test for the immigration probability (m) between
different meta-communities: In terms of the immigration probability (m), the
meta-community of two vaginal samples (“CNA and CNB”) has significant
differences (red links) with the meta-communities of “CM and CNA” or “CM
and CNB,” and has no significant differences with all other meta-communities
(green links).

current understanding is still rather limited. Therefore, future
theoretic and experimental studies from both ecological and
evolutionary perspectives are dearly needed.

Finally, this study possesses several limitations that should
be mentioned here. First, the discussion of microbiome
transmission is primarily one way from male to female given
that only one-time semen sample was taken from each couple
in the reanalyzed datasets of Mändar et al. (2015). Second,
Mändar et al. (2015) study was originally designed to investigate
the relationships between infertility and microbiomes, but the
implications of the infertility to the results presented in this
reanalysis of their data are unknown due to lack of controls.
Third, other factors such as multiple sexual partners, occurrences
of diseases such as BV or HIV, are not considered in this
study, and their implications are unknown. Fourth, no Type-
II error analysis is performed in this study, which could
detect false negatives in the neutrality tests or the potential
non-neutral processes in those cases that have passed the
neutrality test (Ma, 2021a,b). Fifth, as correctly pointed out
by an anonymous expert reviewer, Mändar et al. (2015) study
used the V6 region, which is not commonly used in vaginal or
seminal microbiome studies given its limited ability to resolve
gynecological taxa. Furthermore, the database used by Mändar
et al. (2015) bioinformatics analysis, i.e., the Greengenes, is
somewhat outdated and lacks representatives of understudied
niches. Despite these unknown implications, we feel that the
findings of this study are very likely robust against most of
the additional factors. Part of the somewhat circular arguments
comes from the prediction (expectation) of the Red Queen
hypothesis. Given these limitations, it should be reiterated that
findings in this study should be treated as postulations or
evidence to support existing hypotheses (particularly the Red
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Queen hypothesis). Sometimes, the evidence is indirect or even
conjectural, and further experimental and/or theoretical studies
are necessary to cross-verify our findings.
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Revealing community assembly and their impacts on ecosystem service is a core
issue in microbial ecology. However, what ecological factors play dominant roles in
phyllosphere fungal community assembly and how they link to crop quality are largely
unknown. Here, we applied internal transcriptional spacer high-throughput sequencing
to investigate foliar fungal community assembly across three cultivars of a Solanaceae
crop (tobacco) and two planting regions with different climatic conditions. Network
analyses were used to reveal the pattern in foliar fungal co-occurrence, and phylogenetic
null model analysis was used to elucidate the ecological assembly of foliar fungal
communities. We found that the sensory quality of crop leaves and the composition
of foliar fungal community varied significantly across planting regions and cultivars. In
Guangcun (GC), a region with relatively high humidity and low precipitation, there was
a higher diversity and more unique fungal species than the region of Wuzhishan (WZS).
Further, we found that the association network of foliar fungal communities in GC was
more complex than that in WZS, and the network properties were closely related to the
sensory quality of crop. Finally, the results of the phylogenetic analyses show that the
stochastic processes played important roles in the foliar fungal community assembly,
and their relative importance was significantly correlated with the sensory quality of
crop leaves, which implies that ecological assembly processes could affect crop quality.
Taken together, our results highlight that climatic conditions, and plant cultivars play key
roles in the assembly of foliar fungal communities and crop quality, which enhances
our understanding of the connections between the phyllosphere microbiome and
ecosystem services, especially in agricultural production.

Keywords: microbial community, phyllosphere, fungi, network, phylogenetic structure, null model, crop quality

INTRODUCTION

Assembly patterns within microbial communities are an important topic in microbial ecology
and are closely related to the functioning of plant-associated ecosystems (Konopka, 2009).
There are many different factors that could affect the structure of the plant-associated microbial
community. For example, soil microbial communities were different across various plant species
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(Ma et al., 2019), because of the range of nutrient content
available in the leaf and root litter that alters decomposer
abundance (Otsing et al., 2018). The foliar endophytic fungal
community in Cirsium arvense could be associated with the soil
nutrients and arbuscular mycorrhizal (AM) colonization (Eschen
et al., 2010), and the latter would be further affected by root
exudates, such as methyl salicylic acid and acibenzolar-S-methyl
(Mannaa et al., 2020). Furthermore, climate change, such as
warming, would decrease fungal species richness and change
foliar fungal community composition, especially at the end of
the growing season (Faticov et al., 2021). In the case of elevated
atmospheric carbon dioxide, the growth of trees would also lead
to the changes in the composition of microbial communities
that colonize the fallen leaves (Kelly et al., 2010). Crop cultivar,
tissue type, and climatic factors can all significantly influence
phyllosphere fungal community structure; moreover, location-
dependent climate conditions could contribute to the differences
in abundance, diversity, and presence of genera containing
pathogens, whereas the root communities were less affected by
climatic factors (Latz et al., 2021). In addition, drought changes
the composition of the root microbiome, where changes in the
relative abundance of specific bacterial groups were associated
with increased drought tolerance in plants (Fitzpatrick et al.,
2018). Although bacterial abundance was negatively affected
by O3 stress, it was found that the fungal abundance was
substantially stimulated (up to 12-fold compared with non-
fumigated plants at 20◦C). These changes were accompanied by
modifications of the genetic structures and a relative increase in
amino acids catabolism (Changey et al., 2018). The above findings
advanced our understanding of the drivers in shaping plant-
associated communities, but the mechanisms of assembly in the
foliar fungal community remain largely unknown.

Exploring network assembly in microbial communities and
their responses to environmental changes is fundamentally vital
for the understanding of community organization (Zhou et al.,
2010). Microbial community networks can provide a mechanistic
association between species in a specific environment and
information on the dynamics of community structure as a
function of time or other external variables (Cardona et al.,
2016). For example, climate change, such as warming, can
significantly increase network complexity, including network
size, connectivity, and number of keystone species (Faticov
et al., 2021), whereas elevated CO2 can increase modularity
and hierarchy (Zhou et al., 2010). The community assembly
of plant-associated microbes may have some differences, such
as the rhizosphere microbial networks. In the rhizosphere,
complexity of microbial ecological network increases with the
growth of wild oat plants (Shi et al., 2016). Artemisia annua
(sweet wormwood) promoted a specific root-associated microbial
community assembly process, with increased abundance of
plant growth–promoting microorganisms and building of
interkingdom association networks, which may be beneficial
for the fitness of plants in the natural environment (Shi et al.,
2021). Together, these results revealed that network assembly
of plant-associated microbial communities could be closely
related to plant growth. However, how network assembly of
the phyllosphere microbial community is affected by climatic
conditions and crop cultivars have been less well studied.

Phylogenetic analyses based on null model provide a
conceptual background for understanding the ecological
processes of community assembly that determine which, and
how many, species live in a particular environment (Campbell
et al., 2011). Foliar fungi are of great importance to host plant
growth and health and can also affect ecosystem functions.
Most importantly, host environmental filtering caused by fungal
infections outweighs competitive exclusion in driving foliar
fungal community assembly in symptomatic leaves (Liu X. et al.,
2021). Community co-occurrence theories can be explained
mainly by niche-based theory and the null model (Gravel et al.,
2006; Jiao et al., 2020). On the one hand, niche-based theory
(Zhou and Ning, 2017) posits that deterministic processes play
a key role in the community assembly process. Different species
occupy different niches, and ecological selection can affect the
community co-occurrence. On the other hand, the neutral
model demonstrates that all species are equivalent on ecological
function, and the community assembly is affected by stochastic
processes but not their ecological abilities. The environment
can play a vital role in stochastic processes that correlate with
community assembly. However, the deterministic and stochastic
processes that shape phyllosphere fungal community assembly
have not been extensively explored.

The present study aims to reveal the assembly of phyllosphere
fungal communities inhabiting a Solanaceae (tobacco) crop
across climatic conditions and cultivars. We set up a large-scale
field experiment with three crop cultivars and in areas with
different climatic conditions in Hainan, China. We assessed the
sensory quality of crop leaves and explored the phyllosphere
fungal communities using internal transcriptional spacer (ITS)
high-throughput sequencing technology. We hypothesized that
(i) the sensory quality of crop leaves and the composition of the
foliar fungal community are significantly affected by both the
planting region and cultivar; (ii) the association network of foliar
fungal communities and its characteristics are closely related to
the sensory quality of the crop; (iii) the community assembly of
all samples would be dominated by the ecological drift, which is
community phylogeny structure with little effect on the sensory
quality of the crop.

MATERIALS AND METHODS

Experimental Description
Three cultivars of the Solanaceae crop tobacco, including Haiyan
101 (HY101), Haiyan 201 (HY201), and Haiyan 109 (HY109),
were used to conduct a field experiment in two regions of
Hainan, China, at Guangcun (GC) town, Danzhou (19◦49′ N,
109◦28′ E) and Panyang town, Wuzhishan (WZS) City (18◦87′
N, 109◦40′ E). The three selected cultivars are core cultivars
with consistent disease resistance and agronomic characteristics;
moreover, each cultivar has different sensory quality traits. GC
town is located in the northwest of Hainan, at an elevation of
51.6 m; it is a semihumid region. Mountain of five fingers (WZS),
with an elevation of 154 m, is located on the central line of
Hainan, which is the highest point in Hainan Province and is
a humid mountain region. During the crop growth period in
GC town, the average temperature was 23◦C, average humidity
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was 84%, total precipitation was 89 mm, and the average
photosynthetically effective radiation was 306 µmol m−2 s−1.
In WZS, the average temperature was 23◦C, average humidity
was 78%, total precipitation was 132 mm, and the average
photosynthetic effective radiation was 338 µmol m−2 s−1.

The experiment was conducted from November 2018 to
December 2019. The plants were transplanted in GC town on
January 20 and in Panyang town on January 13. The experiment
adopted a random block design with three replicates, the plot area
was 90 m2, and the row spacing was 40 × 100 cm. Other field
management measures were carried out in accordance with local
planting practices (Lei et al., 2021).

On April 17, 2019, the middle part of the fresh blade was
collected at the maturity stage of the crop. A total of 18 plants
were randomly selected from each plot, and the middle leaves of
every sixth plant were taken as a sample, and each sample was
divided into two parts. One part was kept at 4◦C and brought
back to the laboratory for subsequent indoor foliar microbial
DNA extraction experiments. The other part was used to evaluate
the sensory quality of the leaves.

Sensory Qualities of Crop Leaves
The evaluation in sensory quality of leaf aroma substances
was based on the Sichuan China Tobacco “mellow and sweet”
category to construct a leaf raw material evaluation table (9-
point system), from which the average level was taken. The
main evaluation contents were as follows: (i) coordination of
flammability indicators: a sense of balance; (ii) combustion
characteristics: gray, condensed gray, and combustibility; (iii) the
mellowness of smoke: lingering, fullness, and smoothness; (iv) the
mellowness of aroma: maturity, richness, and mellowness; (v) the
mellow aftertaste: irritation, aftertaste, sweetness, and cleanliness;
(vi) miscellaneous gas: woody gas, soil fishy gas, green mixed gas,
burnt gas, and protein smell; (vii) fragrance: hay, floral, cellar,
milk, woody, bean, sweet, honey, leather, baking, normal, resin,
powder, and burnt sweet.

DNA Extraction and High-Throughput
Sequencing
Fifteen grams of leaf samples obtained from various parts of
the leaf surface (avoiding the main and branch veins) using a
sterile puncher was added to 50 mL of 0.1% Tween-80 bacterial
phosphate buffer (pH 7.0). The samples were then shaken for
30 min at 170 revolutions/min (rpm) and 28◦C, the bacterial
suspension was collected, and the leaf samples were washed
twice more. The collected suspensions were centrifuged for
15 min (4◦C, 10,000 rpm) to pellet the microorganisms. The
pellet was suspended in sterile water and washed three times.
Finally, the microorganisms were resuspended with 1 mL of
sterile water for subsequent DNA extraction. After the above
treatments, the leaves were rinsed three times with sterile water,
with the last rinsing solution (1 mL) spread on LB plate medium
and cultured in an incubator at 30◦C for 2 days to determine
whether the microorganisms on the surface of the leaves were
completely eluted.

Genomic DNA extraction of foliar microorganisms was
performed using the Plant Genomic DNA Kit (Plant Genomic
DNA Kit) following the manufacturer’s protocol. We used the
primer pair ITS1-1F-F/ITS1-1F-R with barcodes to amplify the
ITS. Amplicons were sequenced by Illumina NovaSeq platform
with a Plant Genomic DNA Kit (2 × 250–base-pairs [bp]
paired ends). The raw sequencing data were deposited in the
NCBI Sequence Read Archive database according to accession
number PRJNA778452.

Sequencing Processing and Statistical
Analyses
Raw sequences were split into sample libraries with perfect
matches to barcodes. Low-quality sequences with QC < 20 over
a 5-bp window size were trimmed using Btrim, and sequences
with a length of < 100 bp were removed (Kong, 2011). Then,
the forward and reverse sequences were spliced together. Any
sequences containing ambiguous bases or the incorrect length
were removed, and remaining sequences were compared against
the UNITE v8.2 database (Kõljalg et al., 2005) to remove possible
chimeras. The length of the sequencing fragment was 200–400 bp.
Then, UPARSE (Edgar, 2013) was used to cluster and produce
operational taxonomic units (OTUs) at 97% similarity level. In
order to ensure the authenticity of the data, we removed OTUs
that were represented by only one sequence in overall data
(global singletons). For comparability between different samples
in subsequent data analysis, the ITS sequences were resampled to
10,000 per sample. Finally, RDP Classifier (Wang et al., 2007) was
used to perform online comparison and systematic taxonomic
annotation of the ITS sequences. The above analyses were
conducted on a Galaxy Illumina sequencing analysis platform
(Zhou et al., 2016) publicly available at http://zhoulab5.rccc.ou.
edu:8080/.

Network Construction
To construct a microbial association network, correlations
between pairwise OTUs that were present in more than a half of
the samples were calculated using the SparCC method (Friedman
and Alm, 2012; Preheim et al., 2013; Ju and Zhang, 2015; Watts
et al., 2019) using the “microeco” v0.3.1 package (Liu C. et al.,
2021) in R. Only significant correlations (p < 0.01) larger than 0.3
were retained for network construction. Network analyses were
conducted in “igraph” v1.2.6 package (Ju et al., 2016). Some traits
of association networks such as nodes, links, density, transitivity,
modularity, centralization of degree, the average path distances,
and diameter based on these methods were analyzed. The impact
of ecological environment factors and crop cultivar on the
structure of the foliar fungal community using permutational
multivariate analysis of variance (PERMANOVA) using distance
matrices (Alekseyenko, 2016).

Phylogenetic Analyses Based on Null
Model
The fungal phylogenetic tree was constructed by FastTree v2.1.11
(Price et al., 2010). Considering the high degree of variation of
ITS sequences, we performed constrained topology search based
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on a guide tree, as reported previously (Nuccio et al., 2016). The
guide tree was built from the full-length SSU sequences of 386
representative species with one representative for each fungal
family. The SSU sequences were from Silva 138.1 Ref NR database
(Quast et al., 2013). The nearest taxon index (NTI, i.e., negative of
the standardized effect sizes of mean nearest taxon distance) and
net relatedness index (NRI, i.e., negative of the standardized effect
sizes of mean pairwise phylogenetic distance) of foliar fungal
communities were calculated using “picante” v1.8.2 package in R
(Kembel et al., 2010). The phylogenetic signals between closely
species were estimated by Mantel correlogram (Borcard and
Legendre, 2012). The ecological assembly process of the microbial
community was assessed by using “microeco” v0.3.1 package
(Stegen et al., 2013, 2015; Liu C. et al., 2021). The visualization
of molecular ecological network was realized by Gephi 0.9.1
(Hernandez-Garcia et al., 2016).

Statistical Analysis
All packages discussed here for analyses were run in R v3.6
environment (Ihaka and Gentleman, 1996; R CoreTeam, 2013).
The α diversity indices, including Shannon, Simpson, inverse
Simpson, and Chao1, were calculated by using “diversity”
function in the “vegan” v2.5-6 package (Dixon, 2003). The effects
of crop cultivars and planting regions on microbial community
structure were analyzed by principal components analysis (PCA)
based on weighted UniFrac distance using the “rda” function.
Samples were clustered based on sensory quality by using the
“heatmap” function in R (Zhao et al., 2014). Venn plot analyses
were conducted by using “VennDiagram” v1.6.20 (Chen and
Boutros, 2011). For the correlations between sensory quality
and diversity, phylogenetic indices were calculated by Pearson
correlation. The differences in diversity and network properties
were tested by least significant difference test.

RESULTS

Sensory Quality of Crop Leaves
The sensory quality of crop leaves was significantly affected
by cultivar and ecological region. We estimated sensory
quality indices using seven aspects, including coordination of
flammability indicators, combustion characteristics, mellowness
of smoke, mellowness of aroma, mellow aftertaste, miscellaneous
gas, and fragrance. Our results showed that the combustibility of
HY201 and HY109 displayed good performance in both planting
regions, whereas HY101 had the lowest scores. Fragrance was
a key indicator that determined the style and characteristics of
crop leaves. On the whole, the samples from GC mainly displayed
a sweet fragrance, whereas hay fragrance was more prominent
in the samples from WZS. GC-HY201 had the highest scores
in the mellowness of aroma, the mellowness, and the purity of
aftertaste, and its corresponding sense of balance was also the
highest, which showed obvious differences with WZS-HY201 and
indicated that ecological environment had a great influence on
the aroma of HY201.

The multiplicity in sensory quality across planting regions was
differed with cultivar. The results of clustering analysis based

on euclidean distance showed that the quality of WZS-HY201
was close to that of WZS-HY109, whereas GC-HY101 was close
to that of WZS-HY101, which indicated that these two pairs of
samples had, respectively, similar sensory quality (Figure 1A).
The PCA results of sensory quality scores suggested that the
sensory quality varied significantly across planting regions and
cultivars, and the impact of planting regions was greater than that
of cultivars (Figure 1B).

Associations Between Fungal Diversity
and the Sensory Quality on Crop Leaf
Surface
The results of non-metric multidimensional scaling of foliar
fungal community showed that the composition of foliar fungal
community varied significantly across planting regions and
cultivars (Figure 2A). GC, with relative high humidity and
low precipitation, had higher diversity, but more unique fungal
species, than the region of WZS. The boxplots with stars showed
the correlation between the phylogenetic diversity (PD) and the
two regions (Figure 2B). As for the association between fungal
diversity and sensory quality, the heatmap results indicated
that the observed species number and Chao1 were significantly
correlated (p < 0.01) with the mellowness of aftertaste, fragrance,
and smoke, such as the cleanliness, sweetness, and mellowness
(Supplementary Figure 1). Simpson diversity was significantly
correlated (p < 0.01) with the hay fragrance, and inverse Simpson
diversity was significantly correlated (p < 0.01) with maturity,
aftertaste, and mellowness (Supplementary Figure 1). Linear
regression analyzed the relationships between PD and differences
in sensory quality of crop leaves (Supplementary Figure 2; the
solid lines represent p < 0.05). In terms of the overall fragrance
certain honey aroma, floral, cellar, and leather fragrances were
observed in GC HY201, whereas hay and woody fragrances
were more prominent among the samples of WZS HY201. In
summary, the diversity of leaf fungi had a close relationship to
its sensory quality.

Microbial Co-occurrence of Fungi on
Leaf Surface
In order to explore the leaf fungal association networks, we
applied the SparCC method (Watts et al., 2019) to construct
molecular ecology networks of foliar fungi across all samples
(Figure 3). Further the trendline with scatter plots suggested
the correlation between the network properties and the sensory
quality of crop (Figure 4). The mellowness of aroma: mellowness,
richness and maturity, and the mellowness of smoke: fullness and
lingering were significantly related with the nodes (p < 0.01).
The miscellaneous gas: protein smell was significantly related
with the transitivity (p < 0.01). The fragrance: honey and the
mellowness of aroma: mellowness and maturity were significantly
related with diameter (p < 0.01). A subnetwork for each
sample was extracted based on the presence of nodes, and the
associations between their properties and sensory quality were
accessed by a linear model (Table 1). Our results showed that
the number of nodes and connections of ecological networks
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FIGURE 1 | (A) Heatmap for sensory quality of crop leaves. Color represents the scores of sensory qualities. Clustering analysis was based on Euclidean distance.
(B) Principal components analysis for sensory quality of crop leaves across three crop cultivars and two planting regions. Color denotes different crop cultivars.
Shape denotes different regions.

FIGURE 2 | (A) Non-metric multidimensional scaling (NMDS) based on Bray–Curtis similarity index of foliar fungal community. The composition of foliar fungal
community varied significantly across planting regions and cultivars. (B) Difference of fungal phylogenetic diversity based on Kruskal–Wallis test between the two
regions (GC and WZS, *p < 0.05).

in GC was higher than those in WZS. The subnetwork of GC-
HY109 had the greatest number of nodes (450), followed by
GC-HY201 (233), WZS-HY109 (191), GC-HY101 (186), WZS-
HY201 (173), and WZS-HY101 (148). In GC, the number
of connections for HY101, HY109, and HY201 were 2,705,
90,087, and 3,076, respectively. While for WZS, the numbers of
connections for HY101, HY109, and HY201 were 1,272, 3,517,
and 2,739, respectively. The percentage of positive associations
among treatments had no significant differences, whereas the
modularity values of WZS-HY101 and GC-HY201 were 0.312
and 0.359, respectively, which were larger than those of GC-
HY101 (0.124), GC-HY109 (0.17), WZS-HY109 (0.257), and

WZS-HY201 (0.151). These results indicated that the size of
subnetworks in GC was larger and more complex than those
in WZS and that climatic conditions could affect the network
characteristics. The average path length of HY201 was 3.518,
followed by HY101 (2.948), and HY109 (2.591) in the GC
planting region, which showed that the response speed of GC-
HY201 leaf fungi to the external environment was lower than GC-
HY101 and GC-HY109 and that the plant cultivar can affect the
foliar fungal subnetwork structure of crop leaves. Furthermore,
we found that 99.67% of the network nodes (2,093) were
peripheral nodes, with only 0.33% of nodes (7) being module
hubs, and no network hubs and connectors were detected.
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FIGURE 3 | The association network of foliar fungal community. Node color represents different modules. The network pattern was visualized by Gephi software.
(A) The network of all samples in two regions. (B) The subnetwork of the samples in GC. (C) The subnetwork of the samples in WZS.

FIGURE 4 | Pearson correlations between the network properties and the sensory quality of crop leaves. The shadow indicates the 95% confidence interval. The
miscellaneous gas: protein smell was significantly related with the transitivity (p < 0.01). The fragrance: honey, the mellowness of aroma: mellowness, and maturity
were significantly related with diameter (p < 0.01).

Module hubs in the fungal networks included Ilyonectria
destructans (OTU 298), Penicillium brunneoconidiatum (OTU
566), Kodamaea ohmeri (OTU 1026), Solicoccozyma terricola
(OTU 1898), and Penicillium maclennaniae (OTU 1989).

Further, the network properties were significantly related to
the sensory quality of the leaves. For example, we found that
the number of nodes was significantly (p < 0.05) positively
correlated with balance, mellowness of smoke, mellowness of
aroma, and leather. The link number had a significantly positive
correlation (p < 0.05) with fluency, richness, leather, and cellar.
Density was positively correlated only with the leather (p < 0.05;
Supplementary Figure 3). Furthermore, network transitivity had

a significantly negative correlation with protein smell, whereas
network diameter had a significantly positive correlation with
maturity, alcohol, and sweetness (p < 0.05; Supplementary
Figure 3). Overall, these results indicated that the properties of
the leaf fungal microbial ecology networks can affect the leaf
sensory quality to some extent.

Ecological Assembly Processes of the
Fungal Community on Leaf Surfaces
In order to explore community assembly of the foliar fungal
community, we calculated a set of indices based on null

Frontiers in Microbiology | www.frontiersin.org 6 April 2022 | Volume 13 | Article 783923153

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-783923 March 30, 2022 Time: 14:35 # 7

Xing et al. Assemblages of Phyllosphere Fungi Community

TABLE 1 | Topological properties of molecular ecological subnetworks in foliar fungal communities on crop leaves across crop cultivars and plating regions.

Group Nodes Links Density Transitivity Modularity Centralization of degree Average path
distances

Diameter

GC-HY101 186 (18)a 2,705 (585)a 0.156 (0.015)a 0.919 (0.024)a 0.124 (0.02)a 0.242 (0.004)a 2.948 (0.248)a 7.911 (0.937)a

GC-HY109 450 (317)a 90,087 (145,523)a 0.367 (0.366)a 0.937 (0.057)a 0.17 (0.215)a 0.208 (0.092)a 2.591 (1.2)a 8.561 (2.976)a

GC-HY201 233 (24)a 3,076 (1,294)a 0.113 (0.046)a 0.923 (0.047)a 0.359 (0.191)a 0.179 (0.047)a 3.518 (0.64)a 7.96 (1.251)a

WZS-HY101 148 (22)a 1,272 (509)a 0.125 (0.075)a 0.901 (0.021)a 0.312 (0.199)a 0.195 (0.05)a 2.71 (0.569)a 7.226 (1.793)a

WZS-HY109 191 (99)a 3,517 (4,727)a 0.123 (0.062)a 0.922 (0.064)a 0.257 (0.038)a 0.215 (0.049)a 2.92 (0.517)a 7.73 (1.821)a

WZS-HY201 173 (14)a 2,739 (1,155)a 0.178 (0.055)a 0.927 (0.026)a 0.151 (0.016)a 0.246 (0.022)a 2.745 (0.337)a 7.206 (1.586)a

Values in parentheses are standard deviation (n = 3). The letter label means there are no statistical significances (p < 0.05) of network properties among groups, which is
tested by multiple comparisons by means of least significant difference, and p-value is adjusted by the Bonferroni method.

FIGURE 5 | (A) Boxplots for net relatedness index (NRI) for foliar fungal communities. (B) Boxplots for nearest taxon index (NTI) for foliar fungal communities.
Different small letters indicate significant differences (p < 0.05).

model, including NRI, NTI, βNTI, and βNRI (Figure 5
and Supplementary Figure 5; Stegen et al., 2012). We first
detected the significant correlations between environmental
distance and phylogenetic distances between phylogenetically
close species, indicating phylogenetic signal in environment
conditions (Supplementary Figure 4). Our results showed that
NTI and NRI significantly varied among cultivars and planting
regions (Figure 5). For example, the community NRI of fungi on
leaf surfaces in GC region was between 0.74 and 1.01, whereas
in WZS, it was between 0.78 and 1.26. The NRI values of the
WZS fungal communities were larger than those of GC. The
community NTI of fungi on leaf surfaces in GC was between
2.58 and 7.13, whereas in WZS, it was between 3.23 and 6.12.
This meant that the community assembly of the foliar fungal
community was affected by local α diversity. Pearson correlation
analysis showed that there were significant relationships between
NRI, NTI, PD, and sensory quality (Supplementary Table 1).
The results showed that NRI was significantly related to the
burnt sweet (r = 0.525, p < 0.05), the fragrance of milk
(r = –0.541, p < 0.05), and the soil fishy gas (r = 0.597,
p < 0.05); NTI was significantly correlated with the cellar
fragrance (r = 0.508, p < 0.05), whereas the PD was significantly
correlated with resin fragrance (r = 0.663, p < 0.05), rouge
fragrance (r = 0.907, p < 0.05), burnt gas (r = –0.500, p < 0.05),
and combustibility (r = 0.514, p < 0.05). This result showed

that among the sensory quality of the crop, only the fragrance
of milk and the soil fishy gas were greatly affected by NRI of
the fungus on the leaf surface, and only the cellar fragrance
was greatly affected by NTI of the fungus on the leaf surface,
whereas the resin fragrance, rouge fragrance, burnt gas, and
combustibility were greatly affected by PD of the fungus on
the leaf surface. Furthermore, we found that the βNTIs of all
foliar fungal communities were larger than 1 and less than
2, whereas the βNRIs of all foliar fungal communities were
larger than 0.9 and less than 1.4, and the βNRIs of HY101 and
HY109 were significantly different (p < 0.05), which indicated
that spatial turnover was affected by the stochastic process of
foliar fungal community assembly (Supplementary Figure 5;
Stegen et al., 2012).

The assembly process of the foliar fungal community in GC-
HY201 included drift (67%) and dispersal limitation (33%);
moreover, in WZS-HY101 and WZS-HY109, it included drift
(67%), limiting dispersal (33%, Table 2). This implied that
stochastic processes could markedly influence crop fungal
community assembly. The linear regression analysis showed that
βNTI was linearly related to the sensory quality of crop leaves,
indicating that the foliar fungal community βNTI had correlation
with the differences in foliar sensory quality between pairwise
samples (Supplementary Figure 5, the solid line represents
p < 0.05).
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DISCUSSION

In our study, we studied various plant cultivars and ecological
regions with different climatic conditions in Hainan, China.
Our results showed that the sensory quality and foliar fungal
community structure showed significant differences across
different planting regions and crop cultivars. There were
significant associations between the sensory quality of crop
leaves and foliar fungal diversity. Furthermore, ecological
association networks of crop foliar fungi in GC were more
complex than those in WZS, and the community assembly
was dominated by ecological drift. Network assembly had
significant correlations with sensory qualities, whereas ecological
processes of community assembly had little effect on sensory
qualities. These results highlighted how the phyllosphere fungal
community is closely associated with crop quality.

Effects of Foliar Fungal Community on
Crop Quality
Our results demonstrated that planting regions with different
climate conditions and cultivars had significant effects on the
sensory quality of a Solanaceae crop, which is likely to be
led by the changes in foliar fungal community composition.
Climate may affect the soil conditions and further alter the fungal
community. Moreover, cultivation methods also will change the
soil nutrients composition and the microbial network structure in
the rhizosphere or foliar fungal communities. This is supported
by previous studies of the cucumber rhizosphere, where AM
fungi (AMF) significantly altered the nutrient composition of
the branches of the host plant, with the strongest contrast
observed between cucumber-irregular symbiotic plants and non-
mycorrhizal cucumber plants (Ravnskov and Larsen, 2016).
The composition of soil fungal communities changed with
continuous cucumber cultivation, which may have been caused
by the combined cultivation period of cucumber and excessive
application of chemical fertilizers (Sun et al., 2021), such as
nitrogen fertilizer and phosphate fertilizer.

Fungal community diversity and microbial interaction play
key roles in plant growth and metabolism. Proteobacteria can
directly inhibit Firmicutes from entering into the endophytic
community and consequently modify the microbial community
(Chen et al., 2020). Endophytes have been isolated from Coffea
canephora, and the high biodiversity of fungal endophytes

TABLE 2 | Ecological processes of community assembly for foliar
fungi of crop leaves.

Sample Dispersal
limitation

%

Even
dispersal

%

Drift
%

GC-HY101 0 0 100

GC-HY201 33 0 67

GC-HY109 33 67 0

WZS-HY101 33 0 67

WZS-HY201 67 0 33

WZS-HY109 33 0 67

in coffee plants may help us understand the plant growth
process (Vega et al., 2010). Soybean rhizosphere may act
as allelochemicals in the interactions between root and soil
microbial community in a long-term monocropped soybean
field (Guo et al., 2011). AMF and plant growth–promoting
bacteria are beneficial to horticultural crops, which could increase
yield and enhance crop quality (Emmanuel and Babalola, 2020).
Terpenoids are a group of structurally diverse natural products
that are widely used in the flavor and fragrance industry.
Furthermore, it was clarified that the fungal sesquiterpene
synthase’s function differs between the phyla Ascomycota and
Basidiomycota (Zhang et al., 2020).

It was evident that there is interaction between the indigenous
microbial community and grain metabolism even with good-
quality, mature malting barley. In the malting ecosystem, the
fungal community markedly contributed to the production of
microbial β-glucanases and xylanases and was also involved
in proteolysis (Laitila et al., 2007). Elevated temperature also
increases aphid abundance but decreases AMF colonization
rates of the wheat grain, which implies that climate may affect
crop quality by altering plant-associated fungal communities
(Tian et al., 2019).

Drivers in Shaping the Structure of Foliar
Fungal Community
Many factors could affect the foliar fungal community structure,
including plant cultivar (Martins et al., 2011), soil physical
and chemical characteristics, and climate (Kauserud et al.,
2013). Our results showed that planting regions with different
climates and plant cultivars are key factors. The PCA results
indicated that both cultivar and planting region climate could
affect the community structure of foliar fungi, whereas through
PERMANOVA using distance matrices (Alekseyenko, 2016),
we found that the impact of ecological environment factors
(R2 = 0.32, p < 0.05) was more significant than crop cultivar
(R2 = 0.42, p < 0.05; Table 3).

The phyllosphere represents one of the most abundant
habitats for microbiota colonization (Chen et al., 2020),
and the role played by interactions between phyllosphere
microorganisms in modifying the fungal community
composition cannot be neglected. Related metastudies have
identified climate as an important driving factor in different
aspects of fungal biogeography, including the global distribution
of common fungi and the composition and diversity of fungal
communities (Vetrovsky et al., 2019). Climatic variability might
modify trait selection in fungi, including spore size and dispersal
characteristics. Changes in the composition and characteristics
of fungal communities will have an important impact on

TABLE 3 | The impact of ecological environment factors and crop cultivar on the
structure of the foliar fungal community using permutational multivariate analysis of
variance using distance matrices based on Bray–Curtis similarity index.

df Sum of sequence R2 F p

Planting region 1 72.83 0.32 2.61 0.0166

Cultivar 2 93.00 0.42 1.67 0.2333

Frontiers in Microbiology | www.frontiersin.org 8 April 2022 | Volume 13 | Article 783923155

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-783923 March 30, 2022 Time: 14:35 # 9

Xing et al. Assemblages of Phyllosphere Fungi Community

interaction with plant communities and ecosystem functions
(Andrew et al., 2016). Climate change may affect ecosystem
functioning due to the narrow climatic tolerances of key
fungal taxa. Mycorrhizal fungi appear to have narrower climatic
tolerances than pathogenic fungi (Vetrovsky et al., 2019). Our
results showed that the differences between tobacco cultivars play
an important role in phyllosphere fungal community structure
and affect the microbial co-occurrence pattern in phyllosphere
fungal communities. Similarly, cucumber cultivars inoculated
with different AMF had differential responses in terms of
growth and branch nutrient composition, which revealed that
plant cultivar could affect the microbial community functional
diversity (Ravnskov and Larsen, 2016). Moreover, AMF also can
enhance ecosystem resilience and reduce the negative impact
of increased precipitation on nutrient losses (Martinez-Garcia
et al., 2017). Also, mycorrhizal fungi can promote or hinder
the successful spread of plants away from harsh environments
(Bennett and Classen, 2020).

Community Assembly of Foliar Fungal
Community on Leave Surface
The ecological assembly process is vital for the construction of
microbial communities (Sloan et al., 2006). Spatial turnover in
the composition of biological communities includes (ecological)
drift, selection, and dispersal. Quantitatively estimating the
influences of selection, dispersal, and drift is fundamental to
our understanding of ecological systems (Stegen et al., 2013).
In our study, the community NRI of fungi on leaf surfaces
in GC region was between 0.74 and 1.01, whereas in WZS,
it was between 0.78 and 1.26; furthermore, the NTI and
NRI significantly varied among cultivars and planting regions
(Figure 5), which implicates that the stochastic process plays
a key role in the local species diversity and spatial turnover.
Other studies have previously elucidated the importance of drift
in community assembly process of the legume root nodules,
including the core rhizobial communities (genus Mesorhizobium)
that were driven by dispersal limitation in concert with drift
(81.1% of nodA communities, Ramoneda et al., 2020). During
the degradation of straw, ecological drift was important across all
stages of decomposition (Bao et al., 2020). The βNTI was linearly
related to the sensory quality of crop leaves, indicating that the
ecosystem services may depend, to some extent, on the assembly
process of microbial communities. This may have resulted from
stochastic processes in the assembly of foliar fungal communities.
Although these results have advanced our understanding of

the relationships between microbial community assembly and
crop quality, future work is still required to further reveal
the connections between foliar fungal community and plant
molecular metabolic mechanism.
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The rhizosphere soil microbial community under ice exhibits higher diversity and

community turnover in the ice-covered stage. The mechanisms by which community

assembly processes shape those patterns are poorly understood in high-latitude

wetlands. Based on the 16S rRNA gene and ITS sequencing data, we determined

the diversity patterns for the rhizosphere microbial community of two plant species

in a seasonally ice-covered wetland, during the ice-covered and ice-free stages.

The ecological processes of the community assembly were inferred using the null

model at the phylogenetic bins (taxonomic groups divided according to phylogenetic

relationships) level. Different effects of ecological processes on rare and abundant

microbial sub-communities (defined by the relative abundance of bins) and bins were

further analyzed. We found that bacterial and fungal communities had higher alpha

and gamma diversity under the ice. During the ice-free stage, the dissimilarity of fungal

communities decreased sharply, and the spatial variation disappeared. For the bacterial

community, homogeneous selection, dispersal limitation, and ecological processes

(undominated processes) were the main processes, and they remained relatively stable

across all stages. For the fungal community, during the ice-covered stage, dispersal

limitation was the dominant process. In contrast, during the ice-free stage, ecological

drift processes were more important in the Scirpus rhizosphere, and ecological drift and

homogeneous selection processes were more important in the Phragmites rhizosphere.

Regarding the different effects of community assembly processes on abundant and

rare microbes, abundant microbes were controlled more by homogeneous selection. In

contrast, rare microbes were controlled more by ecological drift, dispersal limitation, and

heterogeneous selection, especially bacteria. This is potentially caused by the low growth

rates or the intermediate niche breadths of rare microbes under the ice. Our findings

suggest the high diversity of microbial communities under the ice, which deepens our

understanding of various ecological processes of community assembly across stages

and reveals the distinct effects of community assembly processes on abundant and rare

microbes at the bin level.

Keywords: bacterial and fungal communities, seasonally ice-covered, community assembly, temporal dynamic,

rare taxa, iCAMP package
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INTRODUCTION

It is increasingly recognized that microorganisms can exist and
grow under the ice (Tran et al., 2018). For microbial communities
in seasonally ice-covered habitats, the ice-covered stage is still
a poorly studied period compared to the ice-free stage (Jansen
et al., 2021). Some studies have found that bacterial diversity

increases at sub-zero temperatures in controlled experiments
(Juan et al., 2018), while other studies found that soil bacterial
diversity decreased (Zhang et al., 2017) or increased at first and
then decreased during freeze-thaw in the forest (Sang et al.,
2021). In wetlands located in high-latitude regions where the
soil is seasonally covered by ice or water rather than snow
or air, the plant inputs can change dramatically, potentially

differentiating wetland bacterial diversity from other habitats.
The environment under the ice may have two opposing effects
on the alpha diversity of bacteria. Although the more selective
environment under the ice (low temperature, low light) may
decrease the alpha diversity (Butler et al., 2019), the bacteria are
believed to be mainly dormant under the ice, and dormancy
could increase alpha diversity, thereby preventing bacterial
species from going extinct (Butler et al., 2019). Thus, it remains
uncertain whether bacterial communities have higher alpha
diversity under the ice in wetlands. Fungi are another important
component of the microbial community. Though some studies
have shown that the fungal: bacterial biomass ratios may
increase in the low-temperature environment (Robroek et al.,
2013), studies on fungal diversity under the ice are even more
sparse. Therefore, more evidence on the diversity patterns of
microbial communities, especially the fungal community, across
ice-covered seasons in wetlands needs to be investigated.

The diversity and biogeography patterns of microbial
communities are shaped by many processes. Niche-based theory
suggests that non-random and niche-based ecological processes
govern diversity patterns, and these are known as deterministic
processes (Chesson, 2000). On the other hand, neutral theory
suggests that ecological processes, where all species have
equivalent fitness, govern the diversity, and these processes are
termed stochastic processes (Chave, 2004). It was gradually
recognized that the deterministic and stochastic processes jointly
govern the diversity patterns (Chase and Myers, 2011). To
integrate these two processes that are based on different theories
into a coherent framework, the community assembly processes
can be divided into four fundamental ecological processes:
selection (including environmental filtering, biotic interactions,
and host filtering), dispersal, ecological drift (random birth and
death), and diversification (speciation and extinction) (Vellend,
2016; Zhou and Ning, 2017; Ning et al., 2020).

The influence of environmental filtering (one of the selection
factors) on bacterial communities under the ice has been studied,
specifically relating to dissolved oxygen (Bertilsson et al., 2013),
low light, and temperature (Cruaud et al., 2020). Host filtering of
plants is also an important factor in selection.Microbiomes in the
rhizosphere are considered highly affected by rhizo-deposits and
are in higher abundance and activity than in bulk soil (Prashar
et al., 2014). The species of plants play an important role in
affecting rhizosphere microbial community assembly processes

(Philippot et al., 2013; Fitzpatrick et al., 2018; Zhalnina et al.,
2018; Matthews et al., 2019). The different development stages of
plants could also influence the composition and the community
assembly processes of the rhizosphere microbial community
(Chaparro et al., 2014; Bell et al., 2015).

Most studies related to the rhizosphere microbial community
have concentrated on the various stages of plant growth (Bell
et al., 2015), including seedling, growth, and flowering (Chaparro
et al., 2014), but similar studies during the non-growing season
(e.g., the ice-covered stage) are limited. Some species of plants
will stop growing and partially or entirely wither during the ice-
covered season. A decrease in photosynthesis may dampen the
secretory activity of the roots, thereby affecting the community
assembly processes of the rhizosphere microbial community (He
et al., 2020). Additionally, other ecological processes, such as
dispersal and ecological drift of microbial communities, under
the ice have also been less well-studied. To further understand
how different ecological processes work together, it is necessary
to quantify their relative importance. The null model analysis
is a useful tool that uses randomization procedures to quantify
these ecological processes and may provide an understanding of
the relationship between changes in the environment and the
microbial community (Hanson et al., 2012; Stegen et al., 2012,
2013; Zhou and Ning, 2017). This approach can be used to
study and quantify the community assembly processes of the soil
microbial communities that live in different plant rhizospheres
under the ice.

The relative abundance of microbial taxa may play an
important role in regulating different community assembly
processes, for example, low abundance may enhance the relative
importance of ecological drift (Nemergut et al., 2013). In
natural ecosystems, the vast majority of microbial taxa have
a low relative abundance of rare microbial taxa, which are
driven by different processes than the abundant microbial taxa
(Magurran and Henderson, 2003; Martinez et al., 2015; Jousset
et al., 2017). The drivers of microbial community rarity include
dispersal (Lee et al., 2021), narrow niche breadths (Jiao and
Lu, 2020), low growth rates (Liao et al., 2017; Lee et al., 2021),
and biotic interactions (Jousset et al., 2017). During the ice-
covered season, those drivers change significantly, including the
dispersal medium, growth ratio, and nutrient inputs, leading
to changes in species rarity. Recent studies researched the
relationship between community assembly processes and the
relative abundance of microbial taxa by dividing the microbial
community into abundant, intermediate, and rare microbial sub-
communities according to an artificially selected threshold of
relative abundance (Liao et al., 2017; Jiao and Lu, 2020; Lee
et al., 2021; Wan et al., 2021; Zheng et al., 2021). However, it is
important to note that the levels of division (sub-community)
and the threshold of division (artificially selected) may influence
the study results. A newly published phylogenetic bin-based null
model (the “Icamp” model) provides an approach to solve this
issue (Ning et al., 2020). It calculates ecological processes of
community assembly at the taxonomic group level (hereafter, the
term “bins” is used to represent these taxa groups) (Ning et al.,
2020). Many recent studies use this framework (Ceja-Navarro
et al., 2021; Dong et al., 2021; Le Roux et al., 2021; Sun C. et al.,
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2021; Sun Y. et al., 2021). The influence of ecological processes
on microbes with different levels of abundance (abundant,
intermediate, and rare) could be further analyzed at the level of
bins using this framework to explore the underlyingmechanisms.

This research aimed to determine (1) the diversity patterns
of microbial communities across ice-covered and ice-free stages;
(2) the relative importance and the potential drivers of different
community assembly processes across ice-covered and ice-free
stages; (3) the effects of community assembly processes on
different relative abundance microbes (abundant, intermediate,
and rare microbes). The research was carried out in Momoge
wetland, a seasonal ice-covered wetland located in Northeast
China. Rhizosphere soil samples were collected throughout
the ice-covered and ice-free stages. Microbial communities
were characterized using the amplicon sequencing of the
16S rRNA gene (indicating bacterial communities) and ITS
(indicating fungal communities). Diversity was calculated across
different ice-covered stages, and the relative importance of
different ecological processes was calculated using the “iCAMP”
framework. The relationship between relative abundance and
different ecological processes was also analyzed.We hypothesized
that (1) the diversity of bacterial and fungal communities would
be higher under the ice, (2) the selection processes would be
influenced by the species of plants, and the dispersal limitation
processes would dominate microbial communities during ice-
covered stages, and (3) the rare microbial taxa would be more
controlled by ecological drift than selection.

MATERIALS AND METHODS

Study Sites and Sampling
Our study was conducted at the Momoge National Nature

Reserve (45◦42
′

25
′′

to 46◦18
′

0
′′

N, 123◦27
′

0
′′

to 124◦4
′

33.7
′′

E), located in northeastern China. As an important hydrology
node in the Nenjiang River basin (Meng, 2020), the local average
annual temperature is 4.4◦C, and in January, it goes down to
−17.4◦C. For almost half of the year, water and soil in the
Momoge wetlands are entirely frozen (mid-November to mid-
March) or partially frozen (late October to mid-November and
mid-March to early April) (Zheng et al., 2019). However, in
recent years, the Momoge wetlands were disturbed by recession
flows from farmlands (Meng et al., 2019) and exhibited an
abnormally high water surface during autumn and winter. This
may influence the microbial diversity pattern and the community
assembly processes related to the rhizosphere soil microbial
community, thus obstructing bio-geographical cycling processes
and plant activities during the ice-cover period (Sun et al., 2020).

We chose three sites connected by surface water
but over three kilometers apart as our sample sites
(30 × 30m) (Supplementary Figure 1, see details in
Supplementary Table 1). Within those three sample sites,
we designed sample transects at three water depths (0, 15,
and 25 cm). Along these three sample transects, we chose two
emergent aquatic plant species (Phragmites australis (Cav.) Trin.
ex Steud. and Scirpus mucronatus Linn.) as sample plots (0.5 ×

0.5m). In each sample plot, we sampled plant rhizosphere soil
(root around 1 cm); three similar cores of rhizosphere soils were

collected and mixed as one sample. Each soil sample was divided
into four parts: one was used for DNA extraction and sequencing
(∼5 g), one for soil moisture measurements, one was freeze-dried
for subsequent soil chemistry analysis, and one was stored at
4◦C as a standby soil. Rhizosphere soil for DNA extraction and
sequencing was saved at−20◦C during transportation and stored
at−80◦C.

To reflect the dynamic change of the microbial communities,
we set up three sample stages in the Momoge wetlands during
the winter (See details in Supplementary Table 2). According to
the duration of the freeze, we divided sample stages into the
entirely ice-covered stage (December 2020), partially ice-covered
stage (October 2020 andMarch 2021), and the ice-free stage (May
2021). Each stage was defined as follows: during the entirely ice-
covered stage, the highest local air temperature is lower than 0◦C,
and water and soil are frozen throughout the whole day; during
the partially ice-covered stage, the highest local air temperature
is higher than 0◦C while the lowest local air temperature is
lower than 0◦C, and the water and soil are frozen during the
day; during the ice-free stage, the lowest local air temperature is
higher than 0◦C, and the water and soil are not frozen at any
time (Supplementary Figure 2). During each sampling period,
we collected 17 mixed rhizosphere soil samples, as described
above (one mixed rhizosphere soil sample is missing from the
expected 18, as we did not find any Scirpus mucronatus Linn. in
Site 2 at 25 cm water depth), amounting to 68 mixed rhizosphere
soil samples for all four stages.

DNA Extraction, Sequencing, and OTU
Clustering
Total genome DNA from samples was extracted using the
CTAB/SDS method. The V4 region of 16S rRNA genes was
amplified using a specific primer (515F and 806R) for bacteria,
and the ITS2 region was amplified using a specific primer (ITS3-
2024F and ITS4-2409R) for fungi. All polymerase chain reactions
(PCR) contained 15 µL of Phusion R© High-Fidelity PCR Master
Mix (New England Biolabs), 0.2µM of forward and reverse
primers, and ∼10 ng of template DNA. PCR conditions were
98◦C for 1min, followed by 30 cycles of denaturation at 98◦C
for 10 s, 50◦C for 30 s, and 72◦C for 30 s, and a final extension
at 72◦C for 5min. The PCR products were mixed with the same
volume of IX loading buffer (contained SYB green). The mixed
PCR products underwent gel electrophoresis on 2% agarose gel
for detection and were purified with a Qiagen Gel Extraction
Kit (Qiagen, Germany). The library quality was assessed on
the Qubit@2.0 Fluorometer (Thermo Scientific) and Agilent
Bioanalyzer 2100 system. Finally, the library was sequenced on an
Illumina NovaSeq PE250 platform, and 250 bp paired-end reads
were generated. Paired-end reads were assigned to samples based
on their unique barcode and truncated by cutting off the barcode
and primer sequence. DNA extraction and sequencing were then
performed at the Tianjin Sequencing Center and Clinical Lab
(Beijing Novogene Technology Co., Ltd, Tianjin).

Paired-end reads were merged using FLASH (Magoč and
Salzberg, 2011) to generate raw tags. Quality filtering of raw
tags was performed according to Bokulich (Bokulich et al., 2013)
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using the QIIME (V1.9.1) (Caporaso et al., 2010). To detect
chimera sequences, the 16S RNA gene tags were compared
with the Silva database (version 138.1) (Quast et al., 2013;
Yilmaz et al., 2014) using the UCHIME algorithm (Edgar et al.,
2011); the ITS tags were compared with the UNITE database
(version 8.2) (Nilsson et al., 2019) using VSEARCH (version
1.3.0) (Rognes et al., 2016). The effective tags were obtained after
removing the chimera sequences detected above (Haas et al.,
2011). Based on these tags, operational taxonomic units (OTUs)
were clustered using the Uparse algorithm (Edgar, 2013) (Uparse
version 7.0.1001) at a 97% identity threshold. Each bacterial OTU
was classified against the Silva database (version 138.1) using
the Mothur algorithm (Schloss, 2009). Each fungal OTU was
classified against the UNITE database (version 8.2) (Abarenkov
et al., 2010) using the Blast algorithm (Altschul et al., 1990). To
ensure comparability, each sample was homogenized to equal
sequencing depth (see details in Supplementary Table 3).

Construction of Phylogenetic Trees
For the bacterial communities, the phylogenetic trees based on
the 16S rRNA gene sequences were constructed in the FastTree
software (Version 2.1.11) (Price et al., 2009) using the “maximum
likelihood” method and in the Figtree software (Version 1.4.4)
by setting the root using the “midpoint” method. For the fungal
communities, the phylogenetic trees based on ITS sequences
were constructed in the Ghost-tree software (Version 0.0.1 dev.)
(Fouquier et al., 2016). This is because the ITS marker region has
higher sequence variability, which not only makes ITS markers
suitable for a more accurate taxonomic identification at the
genus or species level but also makes the multiple sequence
alignment in a long phylogenetic distance of ITS sequences
highly unreliable (Fouquier et al., 2016; Tedersoo et al., 2018;
Ning et al., 2020). To ensure the phylogenetic trees are robust
enough for analysis based on phylogenetic distance, we applied
the Ghost-tree method rather than other methods to construct
the phylogenetic trees for fungi. As a construction method
for hybrid-gene phylogenetic trees, the Ghost-tree constructed
foundation trees according to aligned databases of the fungal
18S sequence and then grafted extension trees according to the
aligned databases of the fungal ITS sequences (which have a
more accurate taxonomic identification at the genus and species
levels) (Fouquier et al., 2016) (Supplementary Figure 3). We
chose the order level of foundation trees (equivalent to the
family level of extension trees) to graft the extension trees
because ITS markers are usually applied at the family or genus
levels (Tedersoo et al., 2018). The extension trees at the family
level contain more OTUs than the extension trees at the genus
level in our Ghost-trees (Supplementary Figure 4, see details in
Supplementary Table 4).

Statistical Analysis
The alpha diversity of each sample was indicated by the observed
OTUs, and the gamma diversity of a region was estimated by the
Chao algorithm (Chao, 1987) using the “adiv” package (version
2.0.1) (Pavoine, 2020). Wilcoxon signed-rank tests were used to
assess whether alpha diversity was significantly different between
different stages and plant rhizospheres.

The community dissimilarity was calculated using the Bray-
Curtis distance in the “vegan” package (version 2.5-7) (Oksanen
et al., 2019). To assess the influence of distance, samples
were divided into two groups: the community dissimilarity of
samples within the sites and the community dissimilarity of
samples among the sites. The community dissimilarity of samples
within the site indicated dissimilarity over short distances
(<30m) and was referred to as “intra-site”; the community
dissimilarity of samples among sites indicated dissimilarity over
long distances (>3,000m) and was referred to as “inter-sites.”
The principal coordinates analysis (PCoA) based on Bray-Curtis
distances was also performed on samples between two plant
species. Adonis tests were undertaken to assess the difference
in community dissimilarity between these two groups and plant
rhizospheres. All statistical tests described were performed in the
R environment (Version 4.1.1) (R Core Team, 2017).

Analysis of Community Assembly
Processes by Null Model
To determine the relative importance of different ecological
processes to community assembly, we employed the “iCAMP”
package. In contrast to other frameworks based on the null
model, the “iCAMP” package can calculate ecological processes
based on individual taxonomic groups (“bins”) rather than the
entire community (Ning et al., 2020). The taxonomic groups
were divided based on phylogenetic relationships between OTUs,
usually containing 12∼48 OTUs, which could improve the
accuracy of the results of community assembly processes that are
necessary for subsequent analysis at the bin level (Ning et al.,
2020). This framework uses the absolute abundance OTU table
and rooted phylogenetic tree to calculate the relative importance
of five community assembly processes: homogeneous selection,
homogeneous dispersal, dispersal limitation, heterogeneous
selection (variable selection), and undominated (including
ecological drift, diversification, weak selection, and/or weak
dispersal; hereafter, the term ecological drift is used to represent
these processes) processes. The phylogenetic signal was based
on pH to determine the parameters of the phylogenetic
bins: bin size (24 for bacteria; 18 for fungi) and threshold
of phylogenetic distance (0.05 for bacteria; 0.025 for fungi)
(Supplementary Figure 5). Then, the beta net relatedness index
(βNRI) was calculated based on 1,000-times randomization of
the taxa across the tips of the phylogenetic tree. The Raup–Crick
metric (RC) was similarly calculated, and both used the described
threshold to divide community assembly processes (Ning et al.,
2020). Finally, the relative importance of ecological processes
to community assembly at the subcommunity and bin levels
was ascertained.

Relationship Analysis of Microbial Rarity
and Community Assembly Processes
To explore the relationship between microbial rarity
and community assembly processes, bacterial and fungal
communities were divided into rare, intermediate, and abundant
sub-communities according to the relative abundance of
phylogenetic bins. In previous studies, the sub-communities
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were divided according to the relative of OTUs (Wan et al.,
2021). Given that there was a lower number of bins compared
to OTUs (bacteria: each bin contained 24 OTUs; fungi: each bin
contained 18 OTUs) and lower numbers of fungal phylogenetic
bins (from 24 to 66) compared to bacterial phylogenetic bins
(from 142 to 194), the sub-communities were divided based on
their abundance. The bacterial communities were categorized
as “rare bacterial sub-communities” when including bins with
relative abundances <0.5% of the total bins; as “abundant
bacterial sub-communities” when including bins with relative
abundances >1% of the total bins; and as “intermediate bacterial
sub-communities” for the remaining bins. To ensure that the
number of bins in each sub-community was >3, the fungal
communities were categorized as “rare fungal sub-communities”
when including bins with relative abundances <1% of the total
bins; as “abundant fungal sub-communities” when including
bins with relative abundances >5% of the total bins; and as
“intermediate fungal sub-communities” for the remaining
bins. We calculated the ratio of the ecological processes
of the three microbial sub-communities to total ecological
processes. The relative importance of each of the five ecological
processes in these sub-communities, i.e., homogeneous selection,
homogeneous dispersal, ecological drift, dispersal limitation,
and heterogeneous selection (variable selection) processes, was
determined using ‘bin_contribution_to_each_process’ (BP

τk)
data. To calculate community assembly processes at the bin level,

the relationship between the relative importance of different
ecological processes in governing each bin (P

τk) and the relative
abundance of each bin were analyzed by Spearman’s rank
correlation. The relative abundance of all bins (explanatory
variables), the value of which was equal to zero, was deleted.

RESULTS

Alpha, Gamma, and Beta Diversity Analysis
of Microbial Community
The alpha diversity of the bacterial communities during the ice-
covered stage was greater than that during the ice-free stage
(22.4–36.7%, p < 0.05) (Figure 1). Similarly, the alpha diversity
of the fungal communities during the ice-covered stage was
higher than that during the ice-free stage (45.9–341.5%, p< 0.05),
and was more significant than the diversity pattern of the bacteria
communities. The gamma diversity of the bacterial community
during the ice-covered stage was also greater than that during the
ice-free stage (31.1–35.9%). Similarly, the gamma diversity of the
fungal community during the ice-covered stage was more than
that during the ice-free stage (82.4–100.4%). In the other plant
rhizosphere habitats, most of the alpha and gamma diversity
of microbial communities did not show a significant difference
during the same stage and showed a similar change between
different stages. Only in the first partially ice-covered stage

FIGURE 1 | Alpha and gamma diversities of bacterial and fungal communities during different ice-covered stages. Significance of the Wilcoxon signed-rank test: NS.,

not-significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2 | Dissimilarity of bacterial and fungal communities during different ice-covered stages. Community dissimilarity was calculated using the Bray-Curtis

distance. To assess the influence of geographical distances, the samples were divided into “inter sites” and “intra site” groups. The “inter site” group includes samples

among different sites (>3,000m); the “intra site” group includes samples within the same site (range of 30 × 30m). Significance of the Adonis tests: NS.,

not-significant; *p < 0.05; **p < 0.01; ***p < 0.001.

(October 2020) did the alpha diversity of bacterial communities
differ significantly between the two rhizosphere habitats.

To assess the influence of geographical distance on the
microbial communities, the community dissimilarity (calculated
by Bray-Curtis distance) between intra-sites and inter-sites
was calculated and tested using the Wilcoxon signed-rank
test (Figure 2). The dissimilarity of bacterial communities was
significantly lower in intra-sites compared to inter-sites (p
< 0.05) during all stages, with no exceptions. However, the
dissimilarity of the fungal communities showed different patterns
during the ice-free stage and other stages. During entirely
and partially ice-covered stages, the dissimilarity of the fungal
communities was significantly lower in intra-sites than in inter-
sites (p < 0.05). During the ice-free stage, the dissimilarity of
the fungal communities showed no significant difference either
in intra-sites or in inter-sites. The dissimilarity of the fungal
communities during the ice-free stage was significantly lower
than at any other stage (p < 0.05).

Microbial Community Assembly Processes
During Different Ice-Covered Stages
To reveal the community assembly mechanism during different
ice-covered stages, ecological processes and their relative
importance in the microbial communities were calculated
(Figure 3). The results calculated by the “iCAMP” package

showed that the main ecological processes of bacterial
community assembly were homogeneous selection, dispersal
limitation, and ecological drift. The main ecological processes of
fungal community assembly were dispersal limitation, ecological
drift, and homogeneous selection.

The turnover of different ecological processes during various
ice-covered stages for the bacterial communities was minor. In
contrast, for the fungal communities, there was a distinct shift
between different stages. From entirely and partially ice-covered
stages to the ice-free stage, the main ecological processes of the
fungal community assembly changed from dispersal limitation
(from 62.5–68.3 to 12.1 %) to homogeneous selection (from 10.8–
18.6 to 28.5%) and ecological drift (from 14.0–20.5 to 58.3%).
This means that during entirely and partially ice-covered stages,
the fungal communities tended to be heterogeneous between
different samples (dispersal limitation) and that during the
ice-free stage, they tended to be homogeneous (homogeneous
selection). Therefore, the community assembly processes of fungi
were more influenced by the ice-covered environment or seasons
than the community assembly processes of bacteria.

The turnover of different ecological processes was also
different in the different plant rhizospheres. In the rhizosphere
habitat of Phragmites (Phragmites australis (Cav.) Trin. ex
Steud.), the proportion of homogeneous selection processes
increased in both bacterial and fungal communities during the
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FIGURE 3 | Relative importance of different ecological processes to bacterial and fungal communities across different ice-covered stages and plant species. Different

fill colors indicate different community assembly processes: HoS, homogeneous selection; HD, homogeneous dispersal; DR, ecological drift (i.e., undominated

processes, including drift, diversification, weak selection, and/or weak dispersal); DL, dispersal limitation; HeS, heterogeneous selection. In the two left sub-figures,

points depict the midpoint of the ecological drift process and reflect the deviation compared to the null model. In the two sub-figures on the right, processes were

ranked according to the relative importance (proportion) from top to bottom to reflect the turnover of dominant processes across different ice-covered stages.

ice-free stage. In contrast, in the rhizosphere habitat of Scirpus
(Scirpus mucronatus Linn.), the proportion of different ecological
processes in the bacterial communities during various ice-
covered stages was stable. However, the ecological drift process
increased to the highest magnitude in the fungal communities
during the ice-free stage.

Relationship Between Ecological
Processes and Abundance of Microbial
Subcommunities (Rare, Intermediate or
Abundant) in Various Ice-Covered Stages
To explore the relationship between microbe rarity and the
ecological processes of community assembly, the impact of the
ecological processes on different microbial subcommunities
(including rare, intermediate, and abundant microbial
subcommunities) was calculated (Figure 4). During all stages in
the bacterial communities, rare microbial subcommunities were
more controlled by dispersal limitation than homogenous
selection; however, the opposite was true for abundant
subcommunities. In contrast, no such pattern was apparent for
the fungal communities between rarity and ecological processes.
During entirely and partially ice-covered stages, dispersal
limitation was the dominant process for rare, intermediate, and

abundant fungal microbial subcommunities. On the other hand,
during the ice-free stage, abundant fungal subcommunities
tended to be influenced by homogenous selection and ecological
drift, while fungal intermediate and rare subcommunities tended
to be influenced by dispersal limitation and ecological drift.

Relationship Between Ecological
Processes and Abundance of Microbial
Bins in Various Ice-Covered Stages
To verify the pattern of relative abundance and the ecological
processes of microbial bins, Spearman’s rank correlation was
employed to test the relationship between the relative abundance
of microbial bins and the relative importance of different
ecological processes in governing each bin (Figure 5).

Interestingly, this result shows that ecological processes affect
microbial bins of varying relative abundance in a different way for
both bacterial and fungal communities. The relative importance
of most processes for each bin was significantly correlated (p
< 0.05) to the abundance of each bin. This means that if a
microorganism belongs to an abundantmicrobial subcommunity
(or a rare microbial subcommunity), it tends to be influenced
by certain community assembly processes rather than others.
For bacterial communities, the homogeneous selection tended to
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FIGURE 4 | Relative importance of different ecological processes to abundant, intermediate, and rare bacterial and fungal subcommunity assemblies during different

ice-covered stages. Different fill colors indicate different community assembly processes: HoS, Homogeneous Selection; HD, Homogeneous Dispersal; DR, ecological

drift (i.e., undominated processes, including drift, diversification, weak selection, and/or weak dispersal); DL, Dispersal Limitation; HeS, Heterogeneous Selection.

exert control more on a relatively high abundance microbe rather
than on a low abundance microbe (i.e., rare microbe). Moreover,
the homogeneous selection, ecological drift, dispersal limitation,
and heterogeneous selection processes tended to have more of an
influence on low abundance than on high abundance bacteria.
Compared to bacteria, the relationship between the fungal
community assembly processes and the relative abundance
had a similar direction but lower strength. Moreover, there
was a significant correlation between the relative importance
of ecological drift and heterogeneous selection processes for
each OTU.

DISCUSSION

Higher Microbial Community Diversity
Under the Ice
The diversity pattern of microbial communities under the ice,
especially in fungal communities, is still unclear. In this study,
the bacterial communities under the ice were characterized
by a slightly higher alpha and gamma diversity (Figure 1).
Furthermore, the alpha and gamma diversity for fungal
communities under the ice exhibited patterns similar to the
bacterial communities, and the pattern was even more significant
than the bacterial diversity pattern (Figure 1). Previous studies
in north wetlands suggested that soil contains more nitrogen
and phosphorus during the ice-covered stage, which may be

caused by the lower nutrient requirements and higher litter
inputs of plants during the non-growth season (Gao, 2021).
This could provide numerous niches and increase the diversity
of microorganisms. Moreover, compared to bacteria, fungi are
considered to have a higher resistance to low temperatures. A
controlled experiment using the phospholipid fatty acid analysis
reveals that fungi grow faster at sub-zero temperatures just as
bacteria grow faster at above-zero temperatures (Haei et al.,
2011). Other studies also support that fungi have higher diversity
in frozen soil without any cover (Chen et al., 2021; Sang
et al., 2021). Therefore, the higher resistance of fungi to low-
temperature environments could improve the diversity of fungi
under the ice in this study.

Different Temporal Dynamics of Bacterial
and Fungal Community Assembly
Processes
Community assembly processes shape the diversity and
biogeography of microorganisms. Quantifying the relative
importance of different processes could help us identify the
main drivers of microbial communities across ice-covered and
ice-free wetlands.

In this study, we used the “iCAMP” model to infer the relative
importance of bacterial and fungal communities across ice-
covered and ice-free stages. In this study, bacterial communities
were mainly influenced by homogeneous selection during both
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FIGURE 5 | Relationship of relative abundance of bacterial and fungal community taxa bins and their ecological processes of assembly at the bin level. Different

sub-captions indicate different community assembly processes: HoS, homogeneous selection; HD, homogeneous dispersal; DR, ecological drift (i.e., undominated

processes, including drift, diversification, weak selection, and/or weak dispersal); DL, dispersal limitation; HeS, heterogeneous selection. The horizontal axis depicts

assembly processes’ relative importance per bins’ relative abundance; and the vertical axis is the bins’ relative abundance, which has been transformed by logarithmic

conversion. For each sub-figure, we add a tendency line (ggplot2 package, “lm” method); 95% confidence interval of the tendency line is depicted by shading.

Significance of Spearman’s rank correlation: p, coefficient of Spearman’s rank correlation: ρ.

ice-covered and ice-free stages, while fungal communities were
mainly influenced only during the ice-free stage rather than
during the ice-covered stage (Figure 3). Homogeneous selection
includes host filtering. Host filtering of plants in the rhizosphere
habitat may be one driver for the turnover of fungal communities
between stages. May is the growing season of Phragmites and
Scirpus when the photosynthesis of these two plants is at its peak.
This may lead to a stronger filter of roots on fungi than would
be possible during the non-growing season (He et al., 2020).
Therefore, homogeneous selection controlled more fungi in the
ice-free stage compared to the ice-covered stage. Previous studies
suggest that plant roots could filter the microbes in specific taxa
and decrease the community dissimilarity (Edwards et al., 2015;
Trivedi et al., 2020). The dissimilarity of the fungal communities
sharply decreased from the ice-covered stage to the ice-free stage,
which also provides indirect evidence that the increase in plant
host filtering shapes the fungal communities in the ice-free stage
(Figure 2; Supplementary Figure 8). Previous studies showed
that Phragmites have stronger host activities in the ice-free stage
(Fang et al., 2021) and milder host effects in the ice-covered stage
(Gao, 2021) compared to other general wetland plants. These are
consistent with our result that fungal and bacterial communities
in Phragmiteswere more controlled by homogeneous selection in

ice-free stages (Figure 3). Our study also showed that compared
to Phragmites, Scirpus had a similar host effect during the
ice-covered stage (Supplementary Figure 7) but milder host
effects on fungi and bacteria in the growth stage (Figure 3;
Supplementary Figure 7).

Our “iCAMP” result also showed that the dispersal limitation
process of the fungal communities, but not of the bacterial
communities, had a sharp decrease from the ice-covered to the
ice-free stage (Figure 3). Water, in liquid form, is considered
to be an ideal medium for the dispersal of microorganisms
(Lindström and Langenheder, 2012). The main propagules of
fungi are spores or sporocarps, which could disperse in water for
a long distance because water, in its liquid form, could prevent
them from spore desiccation and ultraviolet light damage (Golan
and Pringle, 2017). In this study, the dispersal medium across
ice-covered and ice-free stages changed from ice to water, and
this may have facilitated the dispersal of fungi via spores and
therefore decreased the dispersal limitation. The disappeared
difference between intra-site and inter-site dissimilarity of fungal
communities in the ice-free stage also implies that water, in
its liquid form, may have facilitated the dispersal of fungi
(Figure 2). Since the propagules of most bacteria are themselves,
compared to other microorganisms dispersal through spores,
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these bacteria are more easily limited by harsh abiotic conditions
in long-distance dispersal (Yang and van Elsas, 2018). Moreover,
bacteria could also disperse via fungal hyphae (Yang and van
Elsas, 2018), which could have kept the dispersal of bacteria
immune to the change of the abiotic medium in our research
(Figure 3). This study provides indirect evidence that the change
of the dispersal medium drives the spatial variation pattern
of the fungal communities between ice-covered (water in solid
form) and ice-free (water in liquid form) stages. In future, the
underlying mechanisms need to be further verified by more
direct evidence, including observations in natural ecosystems and
controlled experiments.

Different Effects of Community Assembly
Processes on Various Abundance Levels of
Microorganisms (Both at the
Subcommunity Level and Bin Level)
Previous research has generally studied the relationship between
microbial abundance and community assembly processes at
the subcommunity level, which could only provide qualitative
information. Moreover, this relationship has not been researched
in ice-covered wetlands. In this study, we used the “iCAMP”
model to investigate this relationship in ice-covered wetlands,
both at subcommunity and bin levels.

Our result at subcommunities levels suggested that, during
the ice-free stage, abundant fungal subcommunities were more
controlled by homogenous selection and the ecological drift
process, while intermediate and rare fungal subcommunities
were more controlled by dispersal limitation and the ecological
drift process (Figure 4). Homogeneous ecological processes
(including homogeneous dispersal and homogeneous selection)
tended to dampen the community dissimilarity (Jia et al.,
2018). The sharp decrease in the relative importance of
dispersal limitation to abundant fungal subcommunities may
have caused the dampened dissimilarity such that the intra-
site and inter-site fungal communities were more similar.
This result implies that the abundant fungal subcommunities,
rather than the rare fungal subcommunities, dampened the
dissimilarity of fungal communities during the ice-free stage in
this study.

Our result at bin levels demonstrates that the dispersal
limitation process showed a slightly higher tendency to control
rare microbes, while homogeneous selection highly influenced
abundant microbes. Compared to research in other ecological
zones, research in bays (Mo et al., 2018) and wastewater (Lee
et al., 2021) found similar patterns. Research in terrestrial
ecosystems found that homogeneous selection greatly influenced
rare microbes (Jiao and Lu, 2020; Zheng et al., 2021). The
different niche breadths of rare microbes may be the reason
for the different conclusions in different studies. Arguably, the
narrow niche breadths of microbial taxa allow those taxa to be
influenced by homogeneous selection (Jiao and Lu, 2020). In our
study, rare microbes tended to have intermediate niche breadths
rather than narrow ones, and abundant microbes tended to have
both narrow andwide niche breadths (Supplementary Figure 6).
Consequently, abundant microbes, rather than rare microbes,

tended to be greatly influenced by homogeneous selection. In
some studies where rare microbes had narrow niches, they
were greatly controlled by homogeneous selection. Another
explanation is the dormancy of rare microbes. Under the
ice-covered surface, the environmental temperature was low
such that some of the microorganisms were in dormancy or
exhibiting low growth rates. Dormancy dampens the strength of
homogeneous selection and leads to rare microbial taxa but will
not cause extinction. It will also cause the homogeneous selection
to influence abundant microbes rather than rare microbes.
Those tendencies exist in bacterial and fungal communities
equally, albeit they are stronger in bacterial communities. The
possible explanation is that, during the ice-covered stage, the
growth rate of abundant and rare microbes differed to a larger
extent. That is, some microbes were active, had faster growth
rates, and were more likely to be abundant, but were also
more likely to be influenced by homogeneous environmental
selection. However, some microbes exhibited very low activity
(e.g., microorganisms in a dormant state), had lower growth
rates, and were more likely to be rare but less influenced by
homogeneous environmental selection. In our study, community
assembly processes such as homogeneous selection, ecological
drift, or dispersal limitation had a specific relationship with the
relative abundance of microbial OTUs. Although diversity and
assembly processes of the microbial community were influenced
by external environmental factors, such as periods of ice-
coverage, the presence of plants, and the dispersal medium,
the pattern seemed to be steady and not influenced by these
factors (Supplementary Figure 9). It might be valuable to verify
whether this pattern is widespread in microbial communities
and to further investigate the underlying mechanisms of
this pattern.

CONCLUSION

Our study suggests that fungal communities have higher
alpha diversity under the ice. Homogeneous selection, dispersal
limitation, and ecological drift dominated the assembly of
bacterial communities during the ice-covered stages and ice-
free stages. Dispersal limitation dominated the assembly of
fungal communities during the ice-covered stages. Host filtering
mainly affected the assembly of fungal communities during
the ice-free stage in the Phragmites rhizosphere. In our
research, we found that abundant microbes were controlled
more by homogeneous selection, while rare microbes were
controlled more by ecological drift, dispersal limitation, and
heterogeneous selection, especially for bacteria. In future, more
directed observation and controlled experiments are required to
comprehensively assess these conclusions.
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