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RNAs regulate multiple biological processes including RNA transcription, splicing, stability, and translation. They play significant roles in cell biology (Connelly et al. (2016); Licatalosi and Darnell (2010); Mukherjee et al. (2022); Chen et al. (2018b)). The Encyclopedia of DNA elements project reported that only 1.5% of human genome is translated into proteins, while approximately 70%–90% is transcribed to RNAs (Falese et al. (2021)). RNAs greatly expand the range of targets from proteins to RNAs by re-targeting mutated targets (Yu et al. (2019); Chen et al. (2020); Li et al. (2022); Yang et al. (2022)). Particularly, noncoding RNAs have dense linkages with human diseases including cancers. Now, RNAs have been diagnostic or prognostic markers of complex diseases (Hui et al. (2011); Xu et al. (2022); Peng et al. (2022a); Shen et al. (2022); Zhang T. et al. (2022); Chai et al. (2022)). In this topic, we aim to analyze diverse RNA data to provide clues for the diagnosis and therapy of various diseases (Dal Molin et al. (2022); Wang S. et al. (2022); Li J. et al. (2019); Liu et al. (2020)). Long noncoding RNAs (lncRNAs) regulate many significant biological processes (such as immune response and embryonic stem cell pluripotency) by linking to RNA-binding proteins (Wapinski and Chang (2011); Chen and Huang (2017); Ping et al. (2018); Wang et al. (2020)), Wang et al. (2021 W.); Peng et al. (2020)). They have been important biomarkers for cancers (Wu et al. (2022a); Banerjee et al. (2020); Zhang S. et al. (2021); Zhou G. et al. (2021); Peng et al. (2022a); Liang et al. (2022b); Peng et al. (2021); Zhou L. et al. (2021)). For example, lncRNAs AFAP1-AS1, CCAT1, CYTOR, GAS5, HOTAIR, and PVT1 are molecular regulators of lung caner (Aftabi et al. (2021)). KCNQ1OT1 may be a prognostic biomarker in colorectal cancer (Lin et al. (2021)). lncRNAs are also oncogenes (such as MKLN1-AS, GHET1, LASP1-AS, MALAT1, HULC, HOTAIR, and PAPAS) and tumor suppressors (such as CASC2, DGCR5, MEG3, GAS5, and NRON) in hepatocellular carcinoma (Guo et al. (2021)). Many machine learning methods have been proposed to infer new LncRNA-Disease Associations (LDAs). For example, graph convolutional completion with conditional random (Fan et al. (2022)), heterogeneous graph attention network with meta-paths (Zhao et al. (2022)), graph convolutional auto-encoders (Silva and Spinosa (2021)), multi-view attention graph convolutional network and stacking ensemble (Liang et al. (2022b)), and learning to rank-based model (Wu et al. (2022a)) are widely used methods for LDA prediction.
In this research topic, Sun et al. developed a weighted graph-regularized matrix factorization approach (LPI-WGRMF) to identify possible lncRNA-protein interactions (LPIs) based on known biological information and LPI matrix. LPI-WGRMF obtained an AUC of 0.9012 and AUPR of 0.7324 on LPI dataset provided by Zhang et al. (Zhang et al. (2018)) based on 5-fold cross validation. They predicted that lncRNAs SNHG3, SFPQ, and PRPF31 may interact with proteins Q9NUL5, Q9NUL5, and Q9UKV8, respectively. Yao et al. designed a random walk with restart algorithm (MHRWRLDA) to infer LDAs on multiplex and heterogeneous networks. MHRWRLDA computed an AUC of 0.6874 under leave-one-out cross validation, and inferred that lncRNA BCYRN1 may associate with colon cancer and hepatocellular carcinoma. Cheng et al. considered that the recurrence rate of nonfunctioning pituitary adenoma is relatively high after surgical resection and built lncRNA signatures for its prognosis. They obtained microarray sequencing profiles of lncRNA expressions from 66 patients who suffered from nonfunctioning pituitary adenoma. Univariable Cox regression analysis and random survival forests-variable hunting were applied to filter lncRNAs. They found that three lncRNAs, LOC101927765, RP11-23N2.4, and RP4-533D7.4, have dense associations with tumor recurrence and inferred that the three lncRNAs may be potential therapeutic targets of nonfunctioning pituitary adenoma.
MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs with a length of approximately 22 nucleotides (Sun et al. (2022); Chen et al. (2019b, 2018b); Zhang L. et al. (2021)). MiRNAs regulate many biological activities and influence almost all genetic pathways (Chen et al. (2018c); Peng et al. (2017); Chen et al. (2018a)). Thus, miRNAs have been a class of tumor suppressor genes in clinical medicine (Chen et al. (2019a); Peng et al. (2018)). For example, miR-940 is a potential biomarker of prostate cancer (Rajendiran et al. (2021)). Urinary exosome microRNA signatures are noninvasive prognostic markers for prostate cancer (Shin et al. (2021)). Recently, machine learning methods have been widely used to identify possible MicroRNA-Disease Associations (MDAs). For example, tensor decomposition with relational constraints (Huang et al. (2021)), similarity constrained matrix factorization (Li L. et al. (2021)), tensor factorization and label propagation (Yu et al. (2022)), deep attributed network embedding model (Ji et al. (2021)), and multi-view multichannel attention graph convolutional network (Tang et al. (2021)) are popular methods in MDA prediction.
In this topic, Qu et al. explored a computational model (BRWRMHMDA) for MDA inference combining enforcing degree-based biased random walk with restart. BRWRMHMDA computed an AUC of 0.8310 under leave-one-out cross validation. They predicted that hsa-let-7f and hsa-mir-30e may associate with esophageal neoplasms and breast neoplasms, respectively. Zhou et al. proposed a pseudogene-miRNA association identification method (PMGAE) by integrating feature fusion, graph autoencoder, and eXtreme gradient boosting. First, they computed three types of similarities for pseudogenes and miRNAs, that is, Pearson similarity, cosine similarity, and Jaccard similarity. Second, the above similarities were fused to build a similarity profile for each node. Third, the similarity profiles and pseudogene-miRNA associations are further aggregated to depict each node as a low-dimensional vector through a graph autoencoder. Finally, the feature vector was fed into eXtreme gradient boosting for pseudogene-miRNA association prediction. PMGAE computed better AUC of 0.8634 and AUPR of 0.8966. The results from PMGAE showed that miRNAs hsa-miR-34c-5p, hsa-miR-199b-5p, and hsa-miR-103a-3p may associate with pseudogenes RPLP0P2, HLA-H, and HLA-J, respectively.
Circle RNAs (circRNAs) is a class of novel endogenous noncoding RNAs with a covalently closed loop structure (Wang C.-C. et al. (2021); Li G. et al. (2019); Wang et al. (2021b)). circRNAs have more stable expressions due to their resistances to RNA exonuclease degradation (Li et al. (2020); Wang et al. (2021c,b)). They can regulate protein binding, miRNA sponges, alternative splicing and transcription, and generate pseudogenes (Wang C.-C. et al. (2021); Chen (2020)). In addition, they demonstrate close associations with cancers, cardiovascular and nervous system diseases (Wang C.-C. et al. (2021); Li G. et al. (2019, 2020); Wang et al. (2021c,c,b)). Therefore, various computational models have been developed to detect possible CircRNA-Disease Associations (CDAs). For example, network embedding and subspace learning method (Xiao et al. (2021)), knowledge attention network (Lan et al. (2022)), multi-source feature fusion-based machine learning framework (Wang L. et al. (2022)), and robust nonnegative matrix factorization model (Peng et al. (2022c)) are widely used in CDA prediction.
Furthermore, Li et al. developed a computational CDA identification method (GATGCN) based on graph attention network and graph convolutional network. First, they fused several biomedical data from different sources through the centered kernel alignment model. Second, graph attention network was deployed to obtain latent representation of circRNAs and diseases. Finally, graph convolutional network was explored to infer CDAs. GATGCN computed better an AUC of 0.951 under leave-one-out cross validation and an AUC of 0.932 under 5-fold cross-validation. They found that circRNAs hsa_circRNA_404833, hsa_circ_0013509, hsa_circRNA_2149, circR_284, and circR_284 have the highest association scores with lung cancer, diabetes retinopathy, prostate cancer, cholangiocarcinoma, and clear cell renal cell carcinoma, respectively.
A large quantity of transcriptomic data enable us to investigate complex biological processes at single-cell resolution levels (Peng et al. (2022b); Liang et al. (2022a); Zhang et al. (2022b); Xu et al. (2020). Therefore, Miao et al. (2021) considered specific noises and computing efficiency, and then designed biologically interpretable integration strategies to integrate multi-omics single-cell data. Zhou P. et al. (2021) used multiscale stochastic dynamics to dissect transition cells from transcriptome data. Ye et al. (2022) used combinatorial hybrid sequencing to construct the axolotl cell landscape at single-cell resolution. McKellar et al. (2021) detected transitional progenitor states in mouse skeletal muscle regeneration based on single-cell transcriptomic data. Wu et al. (2022b) exploited a stacking ensemble learning-based model to implement single-cell Hi-C classification.
In particular, Panchy et al. analyzed large-scale transcriptome datasets using non-negative principal component analysis and non-negative matrix factorization. The results showed that the above two methods provided low-dimensional features for the progression of biological processes. They found that gene expression signatures from conserved epithelial-mesenchymal transition can be applied to depict the stages in multiple cell lines. Lang et al. evaluated the performance of two sequencing platforms (Nextseq500 and MGISEQ-2000) using the same capture DNA libraries built by the Illumina protocol. The results demonstrated that a significant loss of fragment occurred in the range of 101–133 bp sizes on MGISEQ-2000 for Illumina libraries while not for the capture DNA libraries. Bao et al. considered that it is crucial to differentiate the transcriptomic and proteomic profiles between unstable and stable atherosclerotic plaques. They obtained 5 unstable and 5 stable human carotid atherosclerotic plaques by carotid endarterectomy to identify lncRNA-targeted genes and circRNA-originated genes. The results indicated that 293 proteins, 488 lncRNAs, 91 circRNAs, and 202 mRNAs are differentially expressed between unstable and stable atherosclerotic plaques. Furthermore, CD5L, S100A12, CKB, CEMIP, and SH3GLB1 may be key genes in regulating the stability of atherosclerotic plaques. In addition, Zheng et al. used a series matrix file search method and obtained data related to breast cancer from the ArrayExpress and Gene Expression Omnibus databases. They found that RSK2 is a possible biomarker in breast cancer.
RNA sequencing data have been broadly applied to screen therapeutic strategies for various diseases (Przybyla and Gilbert (2022); Zhang Y. et al. (2021); Li C.-x. et al. (2021)). Chen et al. (2022) used RNA sequencing to explore the mechanism of oxygen-boosted sonodynamic therapy for the treatment of hepatocellular carcinoma. Zhang et al. (2022c) integrated single-cell and bulk RNA sequencing data to probe a pan-cancer stemness signature. Sammut et al. (2022) combined multi-omics data including DNA and RNA sequencing and machine learning technique to predict breast cancer therapy response. Based on RAN sequencing data, Ma et al. first downloaded RNA sequencing data related to gliomas from the TCGA database. Then they used DESeq2, key driver and weighted gene correlation network to identify differentially expressed genes. They observed that Paclitaxel, Cidofovir, 6-benzyladenine, Erlotinib, Bilirubin, Oxaliplatin, Nutlins, Valproic acid, and Fenofibrate may be potential drugs in inhibiting the recurrence of gliomas. Similarly, Xiang et al. detected gene expression and network differences between limited and advanced stages for the diffuse large B-cell lymphoma (DLBCL) patients to predict potential agents against DLBCL. First, they collected RNA sequencing data from the DLBCL patients at different clinical stages from the TCGA database. Second, they used DESeq2 to identify differentially expressed genes and weighted gene correlation network and differential modules to analyze variations between different stages. Finally, they extracted important genes using key drivers and identified potential agents for DLBCL patients using gene-expression perturbations and the CREEDS database. The results indicated that the thistle1 module had high association with the clinical stage of DLBCL. In addition, MOCOS, RAB6C, ACCSL, MMP1, and RGS21 were highly linked to the occurrence and development of DLBCL.
RNAs are a carrier of genetic information and have broad roles in regulating gene expression and other biological processes. Furthermore, the majority of noncoding RNAs are highly associated with diseases including cancers and nontumorigenic diseases. Thus, RNA data analysis contributes to prioritizing previously unrecognized therapeutic targets. We anticipate that this topic can provide clues for the diagnose and prognosis of complex diseases especially cancers.
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Long non-coding RNAs (lncRNAs) are widely concerned because of their close associations with many key biological activities. Though precise functions of most lncRNAs are unknown, research works show that lncRNAs usually exert biological function by interacting with the corresponding proteins. The experimental validation of interactions between lncRNAs and proteins is costly and time-consuming. In this study, we developed a weighted graph-regularized matrix factorization (LPI-WGRMF) method to find unobserved lncRNA–protein interactions (LPIs) based on lncRNA similarity matrix, protein similarity matrix, and known LPIs. We compared our proposed LPI-WGRMF method with five classical LPI prediction methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and collaborative filtering (CF). The results demonstrate that the LPI-WGRMF method can produce high-accuracy performance, obtaining an AUC score of 0.9012 and AUPR of 0.7324. The case study showed that SFPQ, SNHG3, and PRPF31 may associate with Q9NUL5, Q9NUL5, and Q9UKV8 with the highest linking probabilities and need to further experimental validation.

Keywords: lncRNA–protein interaction, weighted graph-regularized matrix factorization, lncRNA similarity, protein similarity, SFPQ, SNHG3, PRPF31


INTRODUCTION

Long non-coding RNAs (lncRNAs) are closely associated with many key biological processes, for example, immune response, embryonic stem cell pluripotency, and cell cycle regulation (Chen et al., 2016; Agirre et al., 2019; Gil and Ulitsky, 2020). lncRNAs regulate cellular activities to achieve their biological function through interactions with proteins (Chen and Yan, 2013; Zhang et al., 2018b). Therefore, finding potential lncRNA–protein interactions (LPIs) is important to uncover lncRNA-related biological activities. Wet experiments found a few LPIs; however, experimental methods are costly and time-consuming. Thus, computational methods are developed to identify possible associations between lncRNAs and proteins (Bester et al., 2018; Chen et al., 2018).

LPI prediction methods can be roughly classified into two groups: network-based methods and machine learning-based methods. Network-based LPI identification methods integrated various biological data and network propagation methods (Peng et al., 2019). Li et al. (2015) used random walk with restart on the constructed lncRNA–protein heterogeneous network to find LPI candidates. Zhang et al. (2018a) developed a linear neighborhood propagation method to score for lncRNA–protein pairs. Ge et al. (2016), Zhao et al. (2018a), and Xie et al. (2019) applied bipartite network projection recommended methods to compute the association probabilities between lncRNAs and proteins.

Machine learning-based methods mainly contain matrix factorization-based LPI prediction methods and ensemble learning-based LPI prediction methods. Matrix factorization methods have been widely applied to various association prediction areas (Peng et al., 2020). Liu et al. (2017), Zhang T. et al. (2018), Zhao et al. (2018a), and Shen et al. (2019) used matrix factorization methods to predict possible LPIs. Hu et al. (2018) and Zhang et al. (2018b) utilized ensemble techniques and generated ensemble learning frameworks to discover potential LPIs based on the constructed benchmark datasets. Computational methods effectively revealed the possible associations between lncRNAs and proteins. However, the performance obtained by the above methods is limited and can be further improved.

In this study, we first integrated lncRNA similarity, protein similarity, known LPIs. We then developed a novel LPI prediction method based on weighted graph-regularized matrix factorization (LPI-WGRMF). LPI-WGRMF was compared with five state-of-the-art LPI methods [LPBNI, LPI-IBNRA, LPIHN, RWR, and collaborative filtering (CF)] to measure the performance of the proposed LPI-WGRMF method. LPI-WGRMF obtained the AUC value of 0.9057 and the AUPR value of 0.7324. The results showed that LPI-WGRMF is a useful tool for identifying LPIs. Case study analysis suggests that there are possibly joint links between SFPQ and Q9NUL5, SNHG3 and Q9NUL5, and PRPF31 and Q9UKV8.



MATERIALS AND METHODS

In this manuscript, we developed an LPI prediction model, LPI-WGRMF. The method can be summarized to three steps. First, experimentally validated LPIs from the NPInter 2.0 database were collected. Second, lncRNA similarity matrix and protein similarity matrix are computed based on the assumption that lncRNAs tend to associate with similar proteins and vice versa. Finally, lncRNA similarity, protein similarity, and LPI matrix were integrated to the weight graph-regularized matrix factorization model for computing the association scores for each lncRNA–protein pair.


Materials


LPI Data

We obtained experimentally validated LPI dataset, which was provided by Zhang et al. (2018a). The dataset contains 4158 LPIs between 990 lncRNAs and 27 proteins after preprocessing. The LPI matrix between n lncRNAs and m proteins was denoted as Yn×m.



lncRNA Similarity Matrix

The sequence and expression information of lncRNAs can be downloaded from the NONCODE database. We computed lncRNA similarity matrix by integrating the sequence similarity, expression similarity, and interaction similarity to the similarity kernel fusion technique.


Sequence statistical similarity

Each lncRNA was described a 20-dimensional vector based on the methods provided by Zhang et al. (2018b). Based on the assumption that each vector can be denoted by their k-nearest neighbors, linear neighborhood similarity between two lncRNAs li and lj can be computed and denoted as sl,0(i, j).



Expression similarity

Suppose that the expression profile of the ith lncRNA can be represented as ei and thus the expression similarity between two lncRNAs li and lj can be defined as:

[image: image]

where ρi,j is the Pearson’s correlation coefficient between two expression profiles ei and ej and is defined as:

[image: image]

where cov() denotes the covariance and σ denotes the standard deviation.



Interaction profile similarity

Suppose that the interaction profile of the ith lncRNA can be represented as the ith row Yi. Of the LPI matrix Y, the interaction profile similarity between two lncRNAs li and lj can be defined as:

[image: image]

where

[image: image]

where ||⋅|| denotes the 2-norm of a matrix.



Protein Similarity Matrix


Sequence alignment similarity

The sequences of proteins were downloaded from the SUPERFAMILY database. The alignment score of the uth protein against the vth protein can be computed by Blast and be denoted as bu,v. The sequence similarity between two proteins pu and pv can be defined as:

[image: image]



Sequence statistical feature similarity

Each protein can be represented as a 504-dimensional vector based on the method provided by Zhou et al. (2020). Linear neighborhood similarity between two proteins pu and pv can be computed and denoted as sp,1.



Interaction profile similarity

Suppose that the interaction profile of the uth protein can be represented as the uth column Y.u of the LPI matrix Y, the interaction profile similarity between two proteins pu and pv can be defined as:

[image: image]

where

[image: image]



Similarity Kernel Fusion

In the above sections, three lncRNA similarity measurements and three protein similarity measurements were proposed. The similarity kernel fusion method provided by Zhou et al. (2020) was applied to integrate this similarity information to compute a more comprehensive similarity.

First, the three lncRNA similarities were normalized as follows:

[image: image]

The normalized similarity matrix was denoted as:

[image: image]

Second, for an lncRNA li and sl,q, the k most similar lncRNAs were collected as a set Nl, q(i,k) and sl,q can be normalized in constraint based on the neighborhood information:

[image: image]

where

[image: image]

The neighborhood constrained normalized matrix was denoted as:

[image: image]

The above three normalized matrices were integrated based on the following iterative process:

[image: image]

where α was a weight parameter with 0 α 1, T was the transpose of the matrix, λ represented the iterative parameter, and Θl,r (0) Θl,r.

We computed the integrated similarity matrix after z rounds of iteration:

[image: image]

By considering data noise, we defined the following indicator function based on the k most similar lncRNAs for each lncRNA:

[image: image]

The final lncRNA similarity matrix can be denoted as follows:

[image: image]

where ϑl(i, j) is the (i, j)th element in the matrix Θl.



Nearest Neighbor Information

Based on the graph regularization theory, similar lncRNAs should tend to interact with similar proteins and vice versa in an LPI network, and thus we first observe the nearest neighbor information for lncRNAs and proteins. Given the lncRNA similarity matrix Sl, we represented a p-nearest neighbor graph N as

[image: image]

where Np(i) denotes the set of p nearest neighbors of lncRNA li. N is applied to increase the sparsify of the lncRNA similarity matrix Sl as

[image: image]

Thus, the sparse similarity matrix of lncRNAs can be computed. Similarity, the sparse similarity matrix of protein can be done.



Low-Rank Approximation

Based on low-rank approximation idea, the LPI matrix Y ∈ ℝn = m can be decomposed into two low-rank latent feature matrices A ∈ ℝn = k (for lncRNAs) and B ∈ ℝm = k (for proteins) by minimizing the following low-rank approximation objective:

[image: image]

where ||⋅||F denotes the Fronbenius norm and k is the rank of matrices A and B, that is, the number of features in A and B.

We decomposed Y ∈ ℝn = m into U ∈ ℝn = k, Sk ∈ ℝk = k, and V ∈ ℝm = k so that USkVT is the closest k-rank approximation to Y where U and V are matrices with orthonormal columns, Sk is a diagonal matrix, and kmax = min(n, m). Thus, the feature matrices A and B can be represented as [image: image] and [image: image].



Graph-Regularized Matrix Factorization

To boost generalization ability and prevent overfitting, we minimize the following GRMF’s objective function by adding Tikhonov and graph regularization terms to the above low-rank approximation:

[image: image]

where λf, λl, and λp are positive parameters, ai and bj are the ith and jth rows of A and B, respectively, and n and m are the numbers of lncRNAs and proteins, respectively. The first term is used to make the model approximate the matrix Y. The second term (Tikhonov regularization) minimizes the norms of A and B. The third and final terms are lncRNA graph regularization and protein graph regularization, respectively. The two terms are applied to minimize the distance between feature vectors of two neighboring lncRNAs or proteins. Based on graph regularization, the above model can be redescribed as

[image: image]

where Tr(⋅) denotes the trace of matrix, [image: image] and [image: image] represent the graph Laplacian terms for [image: image] and [image: image], respectively, and Dl and Dp are diagonal matrices where [image: image] and [image: image].

To improve LPI prediction performance, we normalize graph Laplacians ℒl and ℒp by [image: image] and [image: image]. Equation (4) can be rewritten as

[image: image]



Weighted Graph-Regularized Matrix Factorization

To prevent unknown lncRNA–protein pairs from affecting the performance of singular value decomposition produced by Y, we add a weight matrix W into the objective function as follows:

[image: image]

Based on the alternating least square method provided by Ezzat et al. (2016), we can solve the model (6). Let [image: image] and [image: image], run alternatingly the following two update rules until convergence:

[image: image]
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where [image: image] and [image: image] are the ith and jth rows vectors of [image: image] and [image: image], respectively.

We can obtain A and B based on Eqs 7 and 8. Finally, the interaction probability between the ith lncRNA and the jth protein can be computed by

[image: image]



RESULTS


Experimental Settings

We conducted three different fivefold cross validation on the training dataset to set LPI-WGRMF’s parameters, that is, k (the rank of matrices A and B), p (the number of nearest neighbors), λl, λd, and λt. We set the parameters as k ∈ {50, 100}, p ∈ {1, 2, 3, 4, 5, 6, 7}, λf ∈ {2−2, 2−1, 20, 21}, λl ∈ {0, 10−4, 10−3, 10−2, 10−1}, and λp ∈ {0, 10−4, 10−3, 10−2, 10−1}. And we used grid search and found that the best parameter combination is [image: image].



Evaluation Metrics

Precision, recall, f1 score, accuracy, AUC, and AUPR are widely applied to measure the performance of machine learning methods on association prediction. In this study, we used the six measurements to evaluate the performance of our proposed LPI-WGRMF. AUC is the area under the receiver operating characteristics curve. AUPR is the area under precision–recall curve. The other four criteria are defined as follows:

[image: image]
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[image: image]
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where TP and FP denote the predicted true and false number of positive LPIs, respectively, and TN and FN denote the predicted true and false number of negative LPIs, respectively. The experiments were conducted 20 times. The average precision, recall, accuracy, AUC, and AUPR values for 20 times of experiments were computed as the final performance.



Performance Comparison of LPI-WGRMF and Other Methods

To measure the performance of our proposed LPI-WGRMF method, we compared LPI-WGRMF and five state-of-the-art methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and CF. LPBNI is a bipartite network inference method; LPIHN is a heterogeneous network inference method based on random walk with restart. The two models obtained better prediction performance in the area of LPI identification and are state-of-the-art LPI prediction methods. The experiments were conducted 20 times under fivefold cross validation. The results are shown in Table 1. The best performance in each column (measurement metric) is denoted in bold in Table 1.


TABLE 1. The performance of five LPI prediction methods.

[image: Table 1]Higher precision, recall, accuracy, and AUC denote better performance. From Table 1, we can find that LPI-WGRMF significantly outperformed other five methods in terms of precision, recall, and AUC. Precision computed by LPI-WGRMF was better 59.27, 45.32, 55.74, 61.17, and 67.44% than LPBNI, LPI-IBNRA, LPIHN, RWR, and CF, respectively. Recall computed by LPI-WGRMF was better 36.83, 34.83, 56.19, 44.91, and 53.86%, respectively. F1-score computed by LPI-WGRMF was better 36.83, 30.37, 56.19, 44.91, and 53.86%, respectively. AUC of LPI-WGRMF was higher 5.39, 3.74, 6.69, 10.19, and 15.14%, respectively. AUPR of LPI-WGRMF was higher 54.92, 40.59, 68.61, 61.40, and 67.82%, respectively.

Although accuracy computed by LPI-WGRMF was lower than LPBNI, LPI-WGRMF obtained better precision, recall, and AUC. More importantly, AUC and AUPR are more representative measurement metrics compared with other three evaluation metrics. Thus, AUC and AUPR can be more effectively applied to evaluate the performance of LPI prediction models. LPI-WGRMF is a powerful tool for LPI identification because of its better precision, recall, AUC, and AUPR. Figures 1, 2 demonstrate the AUC and AUPR values obtained by the six LPI prediction methods. The results show that LPI-WGRMF obtained the best AUC value, thereby demonstrating LPI-WGRMF’s powerful LPI prediction capability.


[image: image]

FIGURE 1. The AUC values of six LPI prediction methods.
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FIGURE 2. The AUPR values of six LPI prediction methods.




Case Study

We further conducted four case studies after confirming the performance of LPI-WGRMF. The lncRNAs in the four cases are Splicing Factor Proline and Glutamine Rich (SFPQ), FOrkhead boX protein D2-Adjacent Opposite Strand RNA 1 (FOXD2-AS1), Small Nucleolar RNA Host Gene 3 (SNHG3), and Pre-mRNA-Processing Factor 31 (PRPF31), respectively. We predicted possible LPIs based on lncRNA similarities, protein similarities, known LPIs, and LPI-WGRMF. Table 2 lists the predicted top five proteins associated with the above four lncRNAs.


TABLE 2. The top five proteins associated with the four lncRNAs.

[image: Table 2]SFPQ is a multifunctional nuclear protein participating in a few cellular activities including RNA transport, apoptosis, and DNA repair. SFPQ is densely associated with several diseases including renal cell carcinoma, Xp11-associated tumor, and dyslexia. More importantly, the expression levels of SFPQ impact on the sensitivity of ovarian cancer cells to PT-induced death (Gao et al., 2019; Pellarin et al., 2020). Table 2 shows that SFPQ has joint connection with Q9NUL5 (ranked as 2). More importantly, the association between SFPQ and Q9NUL5 is ranked as 1 in all other five LPI identification methods. The fact suggests that SFPQ is possibly to link with Q9NUL5.

FOXD2-AS1 is an RNA gene and is abnormally expressed in a variety of malignant tumors. FOXD2-AS1 has close associations with many diseases, for example, nasopharyngeal carcinoma, esophageal cancer, bladder cancer, multiple pterygium syndrome, escobar variant, and ulcerative colitis (Bao et al., 2018; Chen et al., 2018; Su et al., 2018; Huang et al., 2020; Liu et al., 2020). FOXD2-AS1 was predicted to be closely linking with O00425, Q9NZI8, Q9Y6M1, and Q9NUL5, which was ranked as 1, 2, 3, and 4. All these connections were ranked in the top five associations among other five LPI prediction models. Therefore, FOXD2-AS1 is associated with O00425, Q9NZI8, Q9Y6M1, and Q9NUL5.

SNHG3 is a newly found lncRNA and was discovered as a biomarker of malignant cancers, for example, ovarian cancer, hepatocellular carcinoma, colorectal cancer, lung cancer, and glioma (Zhang et al., 2016; Huang et al., 2017; Lu et al., 2019; Liu and Tao, 2020). The results from case study analyses showed that SNHG3 tends to link with Q9NUL5 (ranked as 1) and has highest association scores with the protein in LPNI, BPIHN, and CF. Thus, SNHG3 may be possibly linked with Q9NUL5.

PRPF31 is one retinitis pigmentosa-causing gene. Its genetic variants have joint connections with variation in response to metformin in patients with type 2 diabetes (Kiser et al., 2019). In our predicted results, PRPF31 was found to be densely associated with Q9UKV8 (ranked as 1). More importantly, the association between PRPF31 and Q9UKV8 was identified to be ranked as 1, 1, 2, and 1 in LPBNI, LPIHN, RWR, and CF, respectively. PRPF31 obtained the highest association score with Q9UKV8 in five models.



DISCUSSION AND CONCLUSION

In this manuscript, we developed a novel method LPI-WGRMF for identifying possible LPIs, based on lncRNA similarity, protein similarity, known LPIs, and weighted graph regularization-based matrix factorization. We first integrated the similarity information and known LPIs as the initial resource. We then proposed a weighted graph-regularized matrix factorization model to compute the association scores for lncRNA–protein pairs.

LPI-WGRMF was compared with five classical LPI methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and CF. Cross-validation experiments were conducted for 20 times. The results showed the powerful performance of LPI-WGRMF. We conducted four case study analyses after confirming the LPI-WGRMF’s accuracy. The results suggest that there are possibly close associations between SFPQ and Q9NUL5, SNHG3 and Q9NUL5, and PRPF31 and Q9UKV8 and need to further experimental validation.

In the future, other sources of LPI-related data may be used to improve the prediction performance, for example, using multiple kernels and designing a multiple kernel learning-based algorithm to effectively integrate the abundant lncRNA and protein information.
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Numerous experiments have proved that microRNAs (miRNAs) could be used as diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting the unobserved associations between miRNAs and diseases is extremely significant for the medical field. Here, based on heterogeneous networks built on the information of known miRNA–disease associations, miRNA function similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we developed a computing model of biased random walk with restart on multilayer heterogeneous networks for miRNA–disease association prediction (BRWRMHMDA) through enforcing degree-based biased random walk with restart (BRWR). Assessment results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-validation (LOOCV), which proved the calculation algorithm’s good performance. Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of the case study all showed that the proposed model has good and stable performance.

Keywords: microRNA, disease, association prediction, degree, biased random walk with restart


INTRODUCTION

MicroRNA (miRNA) is a noncoding single-stranded RNA with a length of about 22 nucleotides and pervasive in both animals and plants (Axtell et al., 2011). MiRNAs play their regulator role through binding to imperfect complementary sites within the 3′ untranslated regions (UTRs) of their messenger RNA (mRNA) targets (Reinhart et al., 2000; Ambros, 2004; Bartel, 2009). Nowadays, a large number of experimental studies have proved that miRNAs regulate multiple biological activities and per miRNA can regulate hundreds of gene targets (Lee et al., 1993; Pasquinelli and Ruvkun, 2002; Brennecke et al., 2003; Lin et al., 2003; Cheng et al., 2005; Karp and Ambros, 2005; Miska, 2005; Pillai et al., 2005; Cui et al., 2006; Lu et al., 2008; Bartel, 2009; Alshalalfa and Alhajj, 2013). Moreover, miRNAs have potential influences on almost all genetic pathways, and the upregulation and downregulation of miRNA expression in the human body are correlated to various complex diseases (Liu et al., 2008). It indicates that miRNAs have close associations with many complex diseases, and miRNAs may be used as a tumor suppressor gene to treat cancer in clinical medicine (Cheng et al., 2005). For example, the abnormal expression of miR-21 could be conducive to the growth and spread of human hepatocellular cancer (HCC) via the regulation of phosphatase and tensin homolog (PTEN) expression and PTEN-dependent pathways (Meng et al., 2007). MiR-10b is expressed in metastatic breast cancer cells highly and has a positive regulatory effect on cell migration and invasion (Ma et al., 2007). Research further suggested that the overexpression of miR-17-92 in lung cancer could enhance cell proliferation (Hayashita et al., 2005). Moreover, the miRNA family of let-7 was reported to downregulate in lung cancers and regulate an oncogene of RAS, so the inhibition of let-7 may help in the treatment of the cancer (Johnson et al., 2005). Also, through targeting an antiapoptotic factor of B-cell lymphoma-2 (BCL2), miR-15 and miRNA-16 were proved to downregulate in chronic lymphocytic leukemias and induce apoptosis (Cimmino et al., 2005). Certainly, identification of potential miRNA–disease associations has become a very significant research goal in the field of biomedical research. Predicting potential miRNAs related to diseases would promote people’s understanding of the pathogenesis of diseases at the molecular level and benefit for the diagnosis, treatment, and prevention of diseases. Recently, some reliable databases have been developed to store experimental verified miRNA–disease associations, such as HMDD v2.0 (Li et al., 2014), miR2Disease (Jiang et al., 2009), and dbDEMC (Yang et al., 2010). Using traditional experiment approach to identify potential miRNA-disease associations is usually complex, time consuming and expensive. It is an urgent need for scholars to develop calculation models to predict new miRNA–disease associations. We expect that miRNA–disease pairs with high scores could be selected for experimental verification, which would significantly reduce the time and cost of biological experiments.

Great progress has been made in developing calculation models for the potential miRNA–disease association prediction in recent years. These prediction models are usually proposed by the consideration of complex network-based or machine learning-based methods (Chen et al., 2019a). For the experimentally confirmed miRNA–disease associations that have been collected, a lot of calculation models were put forward for the identification of new miRNA–disease associations on the basis of the hypothesis that functionally similar miRNAs are often associated with phenotypically similar diseases (Perez-Iratxeta et al., 2002; Aerts et al., 2006). In 2013, human disease-related miRNA prediction (HDMP), an effective prediction algorithm based on weighted k most similar neighbors, was proposed by Xuan et al. (2015). In the model, functional similarity between each miRNA pair was calculated by combining the information of their related disease terms and disease phenotype similarity. Then the possibility of unobserved miRNA–disease pairs was predicted via the sum of subscores of miRNA’s k neighbor. The subscore for a neighbor of a miRNA can be calculated based on the weight of the neighbor and the functional similarity between the neighbor and the miRNA. In 2014, based on known miRNA–disease associations, disease similarity, and miRNA similarity, a global method of regularized least squares for miRNA–disease association (RLSMDA) was introduced by Chen and Yan (2014) to uncover novel associations between miRNAs and diseases under the framework of a semisupervised classifier. In 2015, based on the constructed miRNA functional network, another new model of miRNAs associated with diseases prediction (MIDP) was developed by Xuan et al. (2015) to prioritize candidate miRNAs for investigated diseases with known related miRNAs. In the model, for the marked nodes and unmarked nodes, transition matrices are different, and the transition weight of marked nodes was higher than that of unmarked nodes. Moreover, due to the fact that MIDP could not predict potential miRNAs (diseases) associated with new diseases (miRNAs) without any known related miRNAs (diseases), an extension approach of MIDPE was also proposed to predict potential miRNAs (diseases) associated with new diseases (miRNAs). Chen et al. (2017) published a model of ranking-based KNN for miRNA–disease association prediction (RKNNMDA), in which the KNN approach was employed to gain the k-nearest-neighbors of each miRNA and disease according to the collected data information. Then, based on the Hamming loss of per disease pair and miRNA pair, a support vector machine (SVM) ranking model was introduced to achieve scores of potential miRNA–disease associations. Furthermore, Chen and Huang (2017) presented a computational model named Laplacian regularized sparse subspace learning for miRNA–disease association prediction (LRSSLMDA), which projected miRNAs’ feature and diseases’ feature into a common subspace. Then, the local structures of the training data were obtained based on Laplacian regularization, and the final predicted scores would be obtained by carrying out the L1-norm constraint. Chen et al. (2018a) put forward a machine learning-based method of extreme gradient boosting machine for miRNA–disease association prediction (EGBMMDA), in which a feature vector for the miRNA–disease pair was established by merging three matrices of miRNA functional similarity, disease semantic similarity, and known miRNA–disease associations. Then, based on the characteristics and the gradient boosting framework, a regression tree was applied to obtained scores of potential miRNA–disease associations. In the same year, a computational model of ensemble learning and link prediction for miRNA–disease association prediction (ELLPMDA) was brought forward by Chen et al. (2018f); they inferred new miRNA–disease associations via the weight-based integration of three classified results gained from common neighbors, Jaccard index and Katz index. Also, from the angle of reducing the noise of the original collected known miRNA–disease association information, Chen et al. (2018e) further brought up a calculation method of matrix decomposition and heterogeneous graph inference for miRNA–disease association prediction (MDHGI). The sparse learning method was carried out firstly on the initial association information to reduce noise. Then, an iterative formula for propagating miRNA and disease information was established based on the built heterogeneous network to predict potential miRNA–disease associations. Besides, Chen et al. (2018c) presented a novel method of inductive matrix completion for miRNA–disease association prediction (IMCMDA) through enforcing a low-rank inductive matrix completion approach on the collected datasets. Chen et al. (2018d) also developed a prediction model of bipartite network projection for miRNA–disease association prediction (BNPMDA). In the model, the bias ratings for miRNAs and diseases were built based on agglomerative hierarchical clustering. Then, through assigning transfer weights to resource allocation links between miRNAs and diseases according to the bias ratings, the bipartite network recommendation algorithm was implemented to predict the potential miRNA–disease associations. Chen et al. (2019b) put forward a machine learning-based method named ensemble of decision tree-based miRNA–disease association prediction (EDTMDA), which identifies potential disease–miRNA association by implementing ensemble learning based on decision trees (DTs) and dimensionality reduction based on principal component analysis (PCA). In recent years, Chen et al. (2021) further proposed the neighborhood constraint matrix completion for miRNA–disease association prediction (NCMCMDA), which combined the neighborhood constraint with matrix completion. The prediction problem in NCMCMDA can be transformed into an optimization problem, and a fast iterative shrinkage–thresholding algorithm was implemented to solve it.

Some scholars have also introduced some calculation models on the basis of various types of association networks, rather than limited to the miRNA–disease network. In 2014, through the analysis of miRNA–protein associations and protein–disease associations, Mork et al. (2014) developed a scoring scheme for the potential miRNA–disease association prediction. In 2016, through taking advantage of miRNA–disease associations, miRNA–neighbor associations, miRNA–target associations, miRNA–word associations, and miRNA–family associations, Pasquier and Gardes (2016) expressed the distribution information of miRNAs and diseases in a high-dimensional vector space and then inferred association scores between miRNAs and diseases according to their vector similarity. In 2017, based on the phenome–miRNA network constructed by known miRNA–disease associations, miRNA functional similarity, disease semantic similarity, and phenotypic similarity, a combinatorial prioritization algorithm was proposed by Yu et al. (2017) to predict potential miRNA–disease associations. In 2018, through constructing a three-layer heterogeneous network based on the integration of known miRNA–lncRNA interactions, miRNA–disease associations, miRNA similarity, disease similarity, and lncRNA similarity, Chen et al. (2018b) designed a method of triple-layer heterogeneous network-based inference for miRNA–disease association prediction (TLHNMDA) by establishing two information spreading iterative formulas.

In this manuscript, based on a multilayer heterogeneous network established by known miRNA–disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity for diseases and miRNAs, we put forward a calculating model of biased random walk with restart on multilayer heterogeneous networks for miRNA–disease association prediction (BRWRMHMDA). In the model, degree-based biased random walk with restart (BRWR) was implemented to predict potential miRNA–disease associations on the basis of the constructed multilayer heterogeneous network. For evaluating the property of the introduced calculation model, local leave-one-out cross-validation (LOOCV) was presented and the outcome showed that BRWRMHMDA possesses an AUC of 0.8310 in local LOOCV. In the case study, we not only employed BRWRMHMDA to infer candidate miRNAs for esophageal neoplasms in the light of known miRNA–disease associations extracted from HMDD v2.0 (Li et al., 2014) but also implemented the model to predict breast neoplasms-associated miRNAs on the basis of known miRNA–disease associations collected from HMDAD v1.0. From the result of LOOCV and the case study, we can be sure that BRWRMHMDA has better prediction ability, and BRWRMHMDA can be used to predict potential miRNA–disease associations.



MATERIALS AND METHODS


Human miRNA–Disease Association

The dataset of 5,430 experimentally verified associations between 383 diseases and 495 miRNAs came from the HMDD v2.0 database (Li et al., 2014). We used the variables nm and nd to refer to the number of diseases and miRNAs in the dataset, respectively. Afterward, an adjacency matrix A was established to indicate known miRNA–disease associations. If miRNA m(i) is related to d(j), the value of entity A(i,j) would equal to 1, otherwise 0.

[image: image]



MiRNA Functional Similarity

Since functionally similar miRNAs are more likely to be associated with phenotypically similar diseases on the basis of the previous study (Wang et al., 2010), we got the information of miRNA functional similarity from http://www.cuilab.cn/files/images/cuilab/misim.zip. After that, we constructed a miRNA functional similarity matrix FS with the row and column of nm. It is remarkable that the value of entity FS(i,j) refers to the similarity score between miRNA m(i) and miRNA m(j).



Disease Semantic Similarity Model 1

Each disease can be described as a directed acyclic graph (DAG) according to previous literature (Wang et al., 2010). For example, disease D can be described as DAG = (D,T(D),E(D)), where T(D) refers to all disease nodes, and E(D) indicates all edges that connect disease nodes based on DAG(D). Inspired by previous work (Xuan et al., 2013), the contribution value of disease d in DAG(D) to the semantic value of disease D can be defined as follows:

[image: image]

where Δ is the semantic contribution decay factor, and the semantic value of disease D can be described as follows:

[image: image]

Considering that two diseases would have greater similarity if they share larger part of their DAGs, we defined the semantic similarity between disease d(i) and d(j) in disease semantic similarity model 1 as follows:
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Disease Semantic Similarity Model 2

Also inspired by previous work (Xuan et al., 2013), we also introduced disease semantic similarity model 2. For two diseases in the same layer of DAG(D), if the first disease occurs more frequently in DAG(D) than the second disease, the second disease would be regarded to be more specific to disease D. By the consideration of the idea that the contribution of different disease terms in the same layer of DAG(D) may be the difference, the contribution of disease d in DAG(D) to the semantic value of disease D could be described as follows:

[image: image]

The value of semantic similarity in disease semantic similarity model 2 between disease d(i) and d(j) could be calculated as follows:
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where
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Gaussian Interaction Profile Kernel Similarity

The calculation of Gaussian interaction profile kernel similarity for diseases and miRNAs depends on the topologic information of known miRNA–disease associations (van Laarhoven et al., 2011). For diseases, we used a binary vector IP(d(u)) (i.e., the uth row of the adjacency matrix A) to indicate the interaction profiles of disease d(u). Accordingly, the Gaussian interaction profile kernel similarity between diseases d(u) and d(v) can be described.
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The parameter γd was used to regulate the kernel bandwidth and could be acquired via the normalization of a new bandwidth [image: image] by the average number of associated miRNAs for each disease.
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For miRNAs, the binary vector IP(m(i)) (i.e., the ith column of the adjacency matrix A) was introduced to indicate the interaction profiles of miRNA m(i). At last, the Gaussian interaction profile kernel similarity between miRNA m(i) and m(j) can be constructed as follows:
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Integrated Similarity for miRNAs and Diseases

Based on past work (Chen et al., 2016), integrated similarity for a pair of diseases (d(u) and d(v)) can be defined via the combination of disease semantic similarity and Gaussian interaction profile kernel similarity for diseases. The formula of integrated similarity for diseases is displayed as follows:

[image: image]

Also, the integrated similarity for a pair of miRNAs (m(i) and m(j)) could be formed by taking miRNA functional similarity with Gaussian interaction profile kernel similarity for miRNA into account (Chen et al., 2016).

[image: image]



BRWRMHMDA

Via the integration of known miRNA–disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we put forward a calculating model of BRWRMHMDA based on the degree for the identification of potential miRNA–disease associations by enforcing BRWR on a constructed multilayer heterogeneous network according to previous work (Bonaventura et al., 2014) (see Figure 1).


[image: image]

FIGURE 1. Comparing to the other calculating algorithms (ELLPMDA, IMCMDA, EGBMMDA, MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA, MirAI, and MIDP) in terms of AUCs, BRWRMHMDA gained a better AUC value of 0.8310. It indicates that the proposed model is more suitable for the miRNA–disease association prediction.


In the model, based on the constructed multisource dataset, we used Wdd, Wmm,Wdm to represent the initial matrix of integrated disease similarity, integrated miRNA similarity, and known miRNA–disease associations, respectively. Then, the multilayer heterogeneous network was constructed and described as [image: image]. In BRWR, if we predicted potential miRNAs for disease d(i), the disease d(i) is the seed node in the disease network. If the miRNA m(j) is associated with disease d(i), miRNA m(j) is the seed node for disease d(i) in the miRNA network. If the miRNA m(j) has no known association with disease d(i), miRNA m(j) is the candidate node for disease d(i) in the miRNA network. For predicting potential miRNAs for disease d(i), the original probability vector v0 of the miRNA network is computed through assigning equal probability to the seed nodes in the miRNA network with a total equal to 1. In the disease network, the probability value of 1 was assigned to d(i), and the probability value of 0 was assigned to other diseases to form u0, where the initial seed node probability [image: image]; α and (1−α) refer to the weight of the disease network and the miRNA network, respectively.

Seed nodes at each step move to their immediate neighbors with a probability (1−δ) or return to the seed nodes with a restart probability δ (δ ∈ (0,1)). P0 was the initial probability vector, and Pt + 1 was a probability vector of node at time t + 1, which could be defined as follows:

[image: image]

where matrix [image: image] is the transition matrix of our established network. In random walk with restart (RWR), the transition probability M(i,j) of a walker from node i to node j can be described as follows:

[image: image]

where W(i,j) is the similarity between node i and node j. In this model, BRWR of degree biased random walk was proposed to identify potential miRNA–disease associations. Biases were usually considered to be related to graph topological properties. For example, a walk at node xi selects it neighbors of xj with a probability fj = f(xj) relying on the node property xj. Usually, the node property can be described as a function of the vertex properties (the network degree, closeness centrality, etc.) or the edge properties (multiplicity or shortest path), or the combination of them (Gomez-Gardenes and Latora, 2008). There are other related bias choice of maximal entropy (Burda et al., 2009). Thus, the transition probability of a walker from i to j in BRWR can be defined as

[image: image]

Therefore, in the disease similarity network, the transition probability from vertex di to dj can be defined as

[image: image]

In the miRNA similarity network, the transition probability from mi tomj can be defined as

[image: image]

In the miRNA–disease association network, the transition probability from vertex di to mj can be defined as

[image: image]

The transition probability from vertex mi to dj can be defined as

[image: image]

In this paper, we focus on the case of BRWR by considering the degree nodes. Therefore, fj = f(xj) in the model is the degree of node xj in the transition probability. The degree fi of a disease node i is defined by computing the number of edges involved in the disease node. Therefore, in the disease similarity network, the degree of disease node j can be defined as fj = ∑iWdd(i,j). In the miRNA similarity network, the degree of miRNA node j can be defined as fj = ∑iWmm(i,j). In the transition probability matrix of the miRNA–disease association network, the degree of miRNA mj can be described as fj = ∑iWdm(i,j). Also, in the transition probability matrix of the miRNA–disease association network, the degree of disease dj can be described as fj = ∑iWdm(j,i). Therefore, based on BRWR of degree nodes, the potential miRNA–disease associations would be obtained.



RESULTS


Performance Evaluation

Since BRWR is a local calculating method, it cannot infer candidate miRNAs for all diseases simultaneously. Therefore, in order to analyze the performance of BRWRMHMDA, the proposed method has been extensively compared with some classic algorithms (ELLPMDA, IMCMDA, EGBMMDA, MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA, MirAI, and MIDP) based on the 5,430 known miRNA–disease associations from the HMDD v2.0 database (Li et al., 2014) via local LOOCV. In local LOOCV, each known miRNA–disease association was considered as a test sample in turn, and the rest of 5,429 known associations were treated as training samples. After enforcing BRWRMHMDA, the score of the test sample would be sorted with the scores of all unobserved pairs between miRNAs and the investigated disease. The proposed approach would be regarded as reliable if the test sample’s ranking is higher than a set threshold. Then a receiver operating characteristics (ROC) curve with the true positive rate (TPR, sensitivity) versus the false positive rate (FPR, 1-specificity) at various thresholds would be drawn. Sensitivity refers to the percentage of test samples ranked higher than the given threshold, and specificity refers to the percentage of candidates ranked lower than the threshold. Finally, the area under the ROC curve (AUC) was calculated to accurately evaluate the prediction ability of BRWRMHMDA. The value of the AUC is between 0 and 1, and the higher the value of the AUC, the better the prediction performance of the algorithm. If the value of the AUC is 0.5, the prediction performance of BRWRMHMDA is random. The final assessment results showed that BRWRMHMDA has better prediction performance with an AUC of 0.8310 than those of the other server classical algorithms of ELLPMDA (0.8181), IMCMDA (0.8034), EGBMMDA (0.8221), MDHGI (0.8240), TLHNMDA (0.7756), MaxFlow (0.7774), RLSMDA (0.6953), HDMP (0.7702), WBSMDA (0.8031), MirAI (0.6299), and MIDP (0.8196) (see Figure 2). Here, the AUC value of MirAI is lower than that reported in its literature (Pasquier and Gardes, 2016) because MirAI was proposed on the basis of a collaborative filtering algorithm affected by the data sparsity problem. Compared with the training set in the original literature, our dataset is relatively scarce. The training set in the original literature contains 83 diseases and at least 20 known related miRNAs for each disease, while our training set contains 383 diseases and most diseases-related miRNAs are rare.


[image: image]

FIGURE 2. Flowchart of BRWRMHMDA to prioritize candidate miRNAs for diseases. Through employing BRWR on the established heterogeneous networks, final scores p∞ of candidate miRNAs predicted for each disease would be gotten after some steps.




Case Studies

In order to further analyze the performance of the algorithm effectively, we carried out two types of case studies. The first type of case studies is the prediction of potential miRNAs associated with esophageal neoplasms based on the known miRNA–disease association collect from HMDD v2.0. The second type of case studies is the prediction of potential miRNAs associated with breast neoplasms based on the known miRNA–disease association collect from HMDD v1.0.

Esophageal neoplasm is one of the most lethal cancers in the world; its main nature is highly invasive and of low survival rate (Domper Arnal et al., 2015). The disease contains two main histological types of squamous cell cancer and adenocarcinoma (Zhang et al., 2016). Malnutrition is a main risk factor for esophageal squamous cell carcinoma (ESCC), and obesity is the main risk factor for esophageal adenocarcinoma (Domper Arnal et al., 2015). Accordingly, looking for sensitive molecular biomarkers and individual treatment approach for early diagnosis of esophageal cancer has become the main clinical and basic research direction. Numerous studies suggested that miRNAs play an important role in diseases and can be a biomarker for esophageal neoplasms’ treatment. For example, miR-506 was abnormally expressed in a variety of tumors and could be used as a prognostic biomarker for ESCC (Li et al., 2016). Besides, plasma miR-718 was reported to downregulate in ESCC patients and might be treated as a potential diagnostic marker for the disease (Sun et al., 2016). Here, we employed BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms according to the dataset of 5,430 known miRNA–disease associations between 383 diseases and 495 miRNAs. As a result, of the first 50 miRNAs predicted for esophageal neoplasms in the ranking, 49 miRNAs have been confirmed by the database of dbDEMC and miR2Disease (see Table 1). For example, the predicted association score between hsa-mir-125b and esophageal neoplasms is ranked first. Yu et al. (2020) have found that hsa-mir-125b suppresses cell proliferation and metastasis by targeting HAX-1 in ESCC, which proves that hsa-mir-125b is related to esophageal neoplasms. Moreover, the predicted association score between hsa-mir-200b and esophageal neoplasms is ranked second. Researchers have confirmed that hsa-mir-200b is downregulated in ESCC in the comparison of the respective adjacent benign tissues (Zhang et al., 2014). Therefore, hsa-mir-200b is associated with esophageal neoplasms.


TABLE 1. The implementation of BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on experimentally confined miRNA–disease associations collected from HMDD v2.0 and 47 of the first 50 predicted miRNAs were confirmed.

[image: Table 1]Breast neoplasm is one of the three most common cancers for women (Siegel et al., 2018). In particular, metastatic breast cancer (MBC) is usually incurable, and about 5% of patients have metastases at diagnosis (Torre et al., 2015). With recent research, miR-10b sponge has been shown to effectively inhibit the growth of MDA-MB-231 and MCF-7 cells in breast cancer (Liang et al., 2016). In addition, miR-223 was demonstrated to function as a potential tumor marker for breast neoplasm through suppressing its protein expression of FOXO1 (Wei et al., 2017). Accordingly, identifying breast neoplasm-related miRNAs is meaningful, which could help the medical diagnosis and treatment for MBC (McGuire et al., 2015). Here, we enforced BRWRMHMDA to infer potential miRNAs related to breast neoplasms on the basis of 1,395 known miRNA–disease associations between 137 diseases and 271 miRNAs collected from HMDD v1.0. The results showed that 48 of the first 50 miRNAs predicted for breast neoplasms have been confirmed by the databases of dbDEMC, miR2Disease, and HMDD v2.0 (see Table 2). For example, hsa-let-7b was predicted to associate with breast neoplasms, and the predicted score is ranked second. It is worth noting that hsa-let-7b can significantly change oncogenic signaling in breast cancer cells. Consequently, hsa-let-7b may have important roles in breast neoplasm progression and can be considered as potential targets for breast neoplasm therapy and diagnosis (Bozgeyik, 2020). Besides, hsa-mir-16 was predicted to be related to breast neoplasms, and the predicted score is ranked third. Haghi et al. indicated that has-mir-16 and has-mir-34a can collaborate in breast tumor suppression, which proved that hsa-mir-16 has association with breast neoplasms.


TABLE 2. The implementation of BRWRMHMDA to prioritize candidate miRNAs for breast neoplasms based on experimentally confined miRNA–disease associations collected from HMDD v1.0 and 48 of the first 50 predicted miRNAs were confirmed.

[image: Table 2]At last, we have released the whole prediction results via the implementation of BRWRMHMDA for all miRNA–disease pairs between 383 diseases and 495 miRNAs from HMDD v2.0 (see Supplementary Table 1).



DISCUSSION

Through integrating known miRNA–disease associations, disease semantic similarity, miRNA function similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, BRWRMHMDA was employed in this manuscript to prioritize candidate miRNAs for diseases via the implementation of degree-based BRWR on the established networks. The assessment results of LOOCV showed that the developed algorithm outperforms the other 11 classic prediction algorithms in accuracy. We further enforced the proposed algorithm to infer candidate miRNAs for esophageal neoplasms in the light of known miRNA–disease associations extracted from HMDD v2.0 and infer candidate miRNAs for breast neoplasms in the light of known miRNA–disease associations extracted from HMDD v1.0. The results of the case study fully demonstrated the stability of this introduced algorithm. It is worth mentioning that our research group will keep on studying this issue in depth. Furthermore, we hope more external research groups would select potential associations with high prediction scores and verify them based on biological experiment in the future.

Actually, the method’s high accuracy in the miRNA–disease association predictions mainly rely on the following attractive properties. First, the training set of known miRNA–disease associations used in this manuscript was collected from a very reliable database of HMDD v2.0, and the several bioinformatics data (disease semantic similarity, miRNA function similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases) mentioned in the paper were accurately calculated and integrated. All the reliable biological information mentioned above would attribute to the accuracy of BRWRMHMDA. Second, compared with the machine learning-based methods that randomly select negative samples as the training set, the proposed algorithm only uses positive samples as the training set that would provide higher prediction value. At last, BRWRMHMDA, a degree-biased random walk, could fully take advantage of the information about node degree and improve the prediction accuracy. From the preceding discussion, it is no surprise that this algorithm is superior to other comparison algorithms and has good performance.

However, the proposed model still has some weaknesses and shortcomings. For example, despite the biological information collected here being reliable, the number of 5,430 experimentally verified miRNA–disease associations extracted from HMDD v2.0 is still far from enough. If more associations between miRNAs and diseases are validated, the prediction accuracy of the model would be higher. Moreover, except for the fact that miRNA similarity could be calculated via the consideration of miRNA functional similarity and Gaussian interaction profile kernel for miRNAs, it could also be calculated based on other miRNA features. At the same time, disease similarity could also be calculated based on other disease features. Also, the model could not predict candidate miRNAs for new diseases that have no known related miRNAs. In addition, due to the fact that the proposed algorithm is a local ranking model, it could not infer candidate miRNAs for all diseases simultaneously.

Nowadays, more and more researchers are studying the regulatory interactions between ncRNA classes, as well as the associations between ncRNA and other biological entities including diseases, small molecules, etc. Prediction of ncRNA-related networks will greatly expand our understanding of ncRNA function and its regulatory network. Simultaneously, predictions including miRNA–lncRNA interactions, miRNA–circRNA interactions, drug–target interactions, small molecule–miRNA associations, and disease–lncRNA associations have made great progress. In the field of miRNA–disease association prediction, the number of known miRNA–disease associations is limited, which will affect the prediction performance of the model. In the future, integrating multisource biological data that was mentioned above to build a multilayer heterogeneous network based on machine learning-based method can effectively improve the prediction performance of the model.
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Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA–disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA–disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA–disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA–disease associations.

Keywords: lncRNA, disease, association, networks, random walk, predict


INTRODUCTION

Numerous studies have indicated that protein-coding genes accounted for less than 2% of the human genome (Crick et al., 1961; Yanofsky, 2007). There are many non-translatable RNAs called non-coding RNAs (ncRNAs), which have been considered as transcriptional noise for a long time (Zhang et al., 2017; Xu et al., 2020). Long non-coding RNAs (lncRNAs) whose length are greater than 200 nucleotides are a class of important ncRNAs (Mercer et al., 2009). There are increasing evidence that lncRNAs play key roles in many important biological processes and diseases (Akerman et al., 2017; Wang et al., 2019; Peng et al., 2020). For example, HOTAIR was considered as a potential biomarker for liver cancer (Yang et al., 2011; Li et al., 2019), lung cancer (Li G. et al., 2014a), and colorectal cancer (Kogo et al., 2011; Maass et al., 2014), and UCA1 was a potential biomarker for bladder cancer diagnosis (Zhang et al., 2012). Li J. et al. (2014b) summarized the important role of lncRNA such as MALAT1, HOTAIR, and other specific lncRNAs for hepatocellular carcinoma. LncRNAs associated with tumor immune invasion in non-small cell lung cancer (NSCLC) have important value in improving clinical efficacy and immunotherapy, compared with normal controls, and the expression of gabpb1-it1 was significantly downregulated in NSCLC. In addition, overexpression of gabpb1-it1 in cancer samples is associated with increased survival in NSCLC patients (Sun et al., 2020). Inferring the association between lncRNA and diseases can better study human diseases and help the diagnosis and treatment of diseases, and accelerate the identification of potential drug response predictors (Liu et al., 2016, 2020). Therefore, the exploration of lncRNA–disease association has attracted more and more attention from biologists. The establishment of an effective computational model to predict the association between lncRNAs and diseases can save time and money spent in biological experiments (Yao et al., 2019; Yan et al., 2020).

At present, many machine learning methods have been proposed to predict the lncRNA–disease association, for example, Laplacian regulated least square method (LRLSLDA; Chen and Yan, 2013), propagation algorithm (Yang et al., 2014), a method based on Bayesian classifier (Zhao et al., 2015), and a method based on induction matrix (Lu C. et al., 2018a). However, these machine learning methods need negative samples, which are difficult to obtain. In order to solve this problem, network-based methods emerge as the times require. With the increasing importance of revealing the molecular basis of human diseases, network-based methods have been widely used in exploring disease-related genes (Yan et al., 2015; Hu et al., 2018; Lu M. et al., 2018b; Yang et al., 2020). For example, Xiang et al. (2021) proposed a multibiological network (NIDM) network pulse dynamics framework and a fast network embedding (Xiang et al., 2020) to predict disease-related genes. Network-based algorithms have also been widely studied in predicting lncRNA–disease association. Bellucci et al. (2011) combined the expression similarity of lncRNA with the Gaussian nuclear interaction spectrum similarity of lncRNA, and proposed a potential protein determination method based on sequence information to predict the function of lncRNA. In the study of Xiao et al. (2015), the function of lncRNA was predicted by constructing the regulatory network between lncRNA and protein coding genes. In the BPLLDA study, the authors estimated the potential relationship between disease and lncRNAs by connecting the length of the disease and lncRNA pathway (Xiao et al., 2018). KATZLDA was a computing method to predict lncRNA–disease association based on the similarity between heterogeneous network nodes (Chen, 2015a). The random walk model is also widely used in the field of data mining and Internet, and many researches use this method to predict potential association (Xing et al., 2012; Yang et al., 2016, 2017; Gu et al., 2017). Zhou et al. (2015) proposed a new method by integrating the related lncRNA–lncRNA network, disease–disease similarity network, and the heterogeneous lncRNA–disease association network, and then realized random walk on the heterogeneous network. Sun et al. (2014) proposed a method for constructing lncRNA–lncRNA functional similarity network and then developed a calculation method based on global network (RWRlncD). Recently, Lei and Bian (2020) used random walk to weight the structural features of circRNA–disease pairs and combined it with k-nearest neighbor algorithm to get the prediction score of each circRNA–disease pair. Although these methods have been proposed to predict lncRNA–disease association successfully, it is still a challenge to make full use of multi-source biological data.

In this study, a random walk algorithm with restart on multiplex and heterogeneous networks was developed. The downloaded known lncRNA–disease association data were used to calculate lncRNA functional similarity, lncRNA Gaussian interaction kernel similarity, disease semantic similarity, and disease Gaussian interaction kernel similarity, respectively. Then, these similarity networks and lncRNA–disease association network were constructed into multiplex and heterogeneous networks. A random walk with restart was carried out on the multiplex and heterogeneous networks, and the potential lncRNA–disease association was predicted using the final stable probability.



MATERIALS AND METHODS


LncRNA–Disease Association

LncRNADisease (Chen, 2015b), Lnc2Cancer (Ning et al., 2016), MNDR (Wang et al., 2013), and other databases stored the known lncRNA–disease association data, which have been of great help in predicting novel association. In this study, 285 lncRNA–disease association was downloaded from lncRNADisease database, including 117 lncRNAs and 159 diseases. We used LD to represent the lncRNA–disease association adjacency matrix. If lncRNA(i) is related to disease(j), then LD(i, j) = 1; otherwise, LD(i, j) = 0, that is:

[image: image]



Disease Similarity


Disease Semantic Similarity

Directed acyclic graphs (DAGs) were used to calculate disease–disease similarity, for disease dk, let DAG(dk, T(dk), E(dk)) be its directed acyclic graph, where T(dk) are ancestor nodes of dk, and E(dk) represents the corresponding set of edges from parent node to child nodes. Semantic similarity of diseases was calculated by R package called DOSim (Li et al., 2011); for any disease k in DAG(dk, T(dk), E(dk)), the semantic contribution of kto dk was defined as:

[image: image]

The above formula indicates that the contribution of the disease to its semantic value is 1. Semantic contribution decreased with the increase of the distance between disease k and other diseases. Then, the semantic similarity between di and dj was defined as:

[image: image]



Gaussian Interaction Profile Kernel Similarity for Diseases

In order to obtain the similarity information between diseases, the Gaussian Interaction Profile kernel similarity between disease was constructed based on the lncRNA–disease association network. First, the Interaction Profile (IP) of each disease represents a binary code in the known lncRNA–disease association network. For example, for given disease di, its IP(di) represents the ith column of LD. Next, the Gaussian Interaction Profile kernel similarity between di and dj was calculated as:

[image: image]

Where γd represents the bandwidth that controls the Gaussian Interaction Profile kernel similarity, [image: image]; in this study, according to van Laarhoven et al. (2011), we set [image: image], and nd represents the number of diseases.




LncRNA Similarity


LncRNA Functional Similarity

Studies have shown that similar lncRNAs are usually associated with similar diseases. Therefore, lncRNA functional similarity can be roughly estimated by their similarity in related diseases (Sun et al., 2014). For any two lncRNAs li and lj, Di = {dik|1 ≤ k ≤ m} and Dj = {djl|1 ≤ l ≤ n} were disease sets associated with li and lj, respectively. The semantic similarity between disease d and disease set D was firstly defined as:

[image: image]

Then, the functional similarity between li and lj was defined as:

[image: image]



Gaussian Interaction Profile Kernel Similarity for LncRNAs

Similar to the disease Gaussian interaction profile kernel similarity. The formula for calculating the Gaussian interaction profile kernel similarity between li and lj was:

[image: image]

Where γl represents the bandwidth that controls the property similarity of Gaussian interaction kernel, [image: image]; in this study, [image: image], nl represents the number of lncRNAs, IP(li) and IP(lj) represent the ith and jth row of the LD, respectively.




A Random Walk With Restart on Multiplex and Heterogeneous Networks

An overview of MHRWRLDA is shown in Figure 1. Specifically, we first downloaded the data of known lncRNA–disease association from the LncRNADisease database and got diseased’ DO ID from the DO database to calculate disease similarity. After compute disease similarity and lncRNA similarity, a multiplex and heterogeneous network was set up based on these similarity networks and known lncRNA–disease association network. Finally, a random walk algorithm with restart was implemented on networks, and the final stability probability was used to conduct the predictions.


[image: image]

FIGURE 1. The framework of MHRWRLDA.



Multiplex and Heterogeneous Network

Based on disease semantic similarity network, disease Gaussian similarity network, lncRNA similarity network, and lncRNA Gaussian similarity network, we constructed a multiplex and heterogeneous network by using lncRNA–disease association. In these networks, the set of lncRNA nodes was defined as: [image: image], where [image: image] represents the ith node on the α layer. The set of disease nodes was defined as: [image: image], where [image: image] represents the jth node on the β layer. The adjacency matrix on each layer is:

[image: image]

A particle can either travel from the previous node [image: image] term to any neighbor node on the same layer, or it can also jump to the same node on a different layer. The matrix A contains different types of jumps that the particle can follow at each step:

[image: image]

Where I is the n × n identity matrix, the diagonal element of A represents the particle walking on same layer, the off-diagonal element represents the particle jumping between different layers, and the parameter δ ∈ (0, 1) represents the probability of the particle walking on the same layer or jumping between different layers. If δ = 0, the particles will always walk on the same layer.

ARM(nL × nL), ADM(mK × mK) is the matrix of lncRNA similarity and disease similarity on multiplex and heterogeneous networks, respectively. n, L, m, and K are the number of lncRNAs, lncRNA similarity networks, diseases, and disease similarity networks, respectively, the adjacency matrix is: BMH = (Bn × m, Bn × m, ⋯, Bn × m)T.

The dimension of BMH is nL × mK, which is equivalent to replicating the adjacency matrix Bn × m L∗K times, where B = LD. Then, the adjacency matrix of the whole multiplex and heterogeneous networks is: [image: image].



Random Walk With Restart on Multiplex and Heterogeneous Networks

A random walk with a restart means that a particle starts at a node and it is faced with two choices at each walk: move to a randomly selected neighbor node, or jump back to the start node. Considering the time is discrete, t ∈ ℕ, the particle is at node vt at the tth step. Then, it walks from vt to vt1. We defined a restart probability γ ∈ (0, 1), and the random walk with restart can be defined as:

[image: image]

Where the vectors Pt1 and Pt represent the probability distribution of vt and vt1, respectively. PRS is the initial probability distribution and [image: image]; the importance of each network is adjusted by adjusting PRS, where R0 and D0 represent the initial probability distribution of lncRNA similarity network and disease similarity network, respectively, and the dimensions of the vectors Pt+1, Pt, and PRS are nL × mK. The parameter η ∈ (0, 1) controls the probability of each network restarting; if η < 0.5, the particle is more likely to be restarted in lncRNA similarity networks. H = [image: image] represents the transition probability matrix of multiplex and heterogeneous networks, where HRR and HDD represent the transition probability of nodes upstream in the same layer, HRD and HDR represent the transition probability of node jump between different layers. For a given node, if dichotomous correlation exists, the particle can jump between layers or stay in the current layer with probability λ ∈ (0, 1), and the closer it is to 1, the higher the probability of jumping between different networks.

We suppose a particle was located at the node ri ∈ R. In the next step, the particle can walk to the node rj ∈ R. The transfer probability is:

[image: image]

It can also jump to the node db ∈ D through binary correlation, and the transfer probability is:

[image: image]

Similarly, if the particle was located at the node da ∈ D, then the transfer probability of the particle walking to the node db ∈ D is:

[image: image]

If the particle jumps to the node rj ∈ R through binary correlation, then the transfer probability is:

[image: image]

When predicting lncRNAs that are potentially associated with the given disease di, the node di will be used as the seed node in disease similarity networks. The initial probability D0 is 1 for the given node di and 0 for the remaining nodes. If there are known associations among lncRNAs r1, r2 ⋯ and disease di, then the nodes r1, r2 ⋯ are the seed nodes in lncRNA similarity networks. The initial probability R0 was assigned to seed node r1, r2⋯, with a probability of 1, and the remaining nodes were 0. Pt converges after some iteration, that is, Pt − Pt + 1 < 10−10, and we denoted the stable probability as: P∞ = [image: image].

Based on the stabilized R∞, those seed nodes r1, r2 ⋯ were removed, and the remaining lncRNAs were ranked. The higher the ranked lncRNA, the more likely it was to be associated with the given disease di. Similarly, a lncRNA can also be designated to predict diseases related to it.





RESULTS


Indicators of Performance Evaluation

For a binary classification problem, the confusion matrix is shown in Table 1. Precision, specificity, and sensitivity are evaluation indicators of classification models. They are calculated as:

[image: image]

[image: image]


TABLE 1. Confusion matrix definitions.

[image: Table 1]
To evaluate the performance of MHRWRLDA, the receiver operating characteristic (ROC) curve was drawn by calculating TPR and FPR according to different thresholds. Area under the curve (AUC) is the area under the ROC curve, and this area is less than 1. Since the ROC curve cannot directly indicate which classifier has better effect in many cases, as a value, the larger the AUC is, the better the classifier has an effect.



Performance of MHRWRLDA

In order to evaluate the performance of MHRWRLDA for predicting lncRNA–disease association, we applied the known lncRNA–disease association data to MHRWRLDA, and used Leave-One-Out cross-validation (LOOCV) to verify. For global LOOCV, the scores of all test samples are compared with those of all candidate samples. For local LOOCV, each known lncRNA related to a particular disease is selected as the test sample, and other related lncRNAs are selected as the training samples; the scores of test samples are only compared with those of candidate samples. In this study, there are a total of three parameters, namely, γ, λ, and η, and their range is (0, 1), where γ is the restart probability; λ is the jump probability, reflecting the probability of particles jumping between different networks; and η regulated the probability of each network restarting, When η = γ = 0.9 and λ = 0.9, the prediction effect is the best; at this point, AUC = 0.68736.

The AUC based on global LOOCV of the KATZLDA (Chen, 2015a), BPLLDA (Xiao et al., 2018), and LRLSLDA (Chen and Yan, 2013) were 0.63768, 0.5845, and 0.6219, respectively. The ROC curves of MHRWRLDA, KATZLDA, BPLLDA, and LRLSLDA based on global LOOCV are shown in Figure 2, the PR curves based on global LOOCV are shown in Figure 3, and the AUPR values are shown in their legends. Their ROC curves and PR curves based on local LOOCV are shown in Supplementary Figures 1, 2. The results showed that MHRWRLDA performed better than other classical algorithms in predicting lncRNA–disease association.


[image: image]

FIGURE 2. The ROC curves of MHRWRLDA, KATZLDA, BPLLDA, and LRLSLDA based on global LOOCV.



[image: image]

FIGURE 3. The PR curves of MHRWRLDA, KATZLDA, BPLLDA, and LRLSLDA based on global LOOCV.




Case Study

To further explore the performance of MHRWRLDA in predicting lncRNA–disease association, we selected colon cancer, hepatocellular carcinoma, and breast cancer for the case study. During the experiment, all known associations were considered as the train set, and unknown associations were regarded as the test set. According to LOOCV results, we sorted lncRNAs and selected the top 10 lncRNAs for further verification based on the LncRNADisease database and several recently published studies.

Colon cancer is a malignant tumor, causing nearly 700,000 deaths each year, and has a high incidence rate record in developed countries. We applied MHRWRLDA to colon cancer experiments to predict the top 10 lncRNAs related to colon cancer (Table 2). Seven of the top 10 lncRNAs have been confirmed in databases or other literature. Previous studies have found that the third ranked CDKN2B-AS1 up-regulates HCT116, thereby causing cell proliferation (Chiyomaru et al., 2013). In addition, studies have shown that removal of PVT1 (ranked 5) from MCY-driven colon cancer strain HCT116 can reduce carcinogenicity (Tseng et al., 2014).


TABLE 2. The predicted top 10 lncRNAs for colon cancer.

[image: Table 2]
Hepatocellular carcinoma is one of the most common cancers in the world. Studies have shown that hepatocellular carcinoma is the main component of primary liver cancer. We listed the top 10 lncRNAs related to hepatocellular carcinoma predicted by experiments in Table 3. Of the top 10, 9 were all verified in known databases. The overexpression of CDKN2B-AS1, which ranked 8, can inhibit the proliferation and invasion of liver cancer cells (Hua et al., 2015), thereby promoting the apoptosis of liver cancer cells and preventing the occurrence of hepatocellular carcinoma. Ding et al. identified PVT1 (ranked 9) as a novel biomarker for predicting tumor recurrence in patients with hepatocellular carcinoma (Ding et al., 2015).


TABLE 3. The predicted top 10 lncRNAs for hepatocellular carcinoma.

[image: Table 3]
Breast cancer accounts for 22% of all cancers in women and is the second leading cause of cancer death in women (Donahue and Genetos, 2013; Karagoz et al., 2015). Traditionally, breast cancer has been diagnosed on the basis of histopathological features such as tumor size, grade, and lymph node status. The prediction of breast cancer-related lncRNAs may help diagnose and treat breast cancer (Meng et al., 2014). In order to diagnose and treat breast cancer better, it is necessary to predict lncRNAs associated with breast cancer and identify lncRNA biomarkers (Xu et al., 2015). We implemented MHRWRLDA on breast cancer to predict potentially relevant lncRNAs, and listed the top 10 lncRNAs related to breast cancer in Table 4. The downregulation of the top ranked first H19 significantly reduced breast cancer clonal formation and anchored independent growth (Barsytelovejoy et al., 2006). In addition, the incidence of breast cancer is also affected by PVT1 overexpression due to genomic abnormalities (Guan et al., 2007).


TABLE 4. The predicted top 10 lncRNAs for breast cancer.

[image: Table 4]
Finally, the network of three cases and lncRNAs predicted by MHRWRLDA is shown in Figure 4A; it revealed that MEG3, CDKN2B-AS1, H19, PVT1, BCYRN1, HOTAIR, and all three diseases are related. In addition to exploring lncRNAs related to novel diseases, it is also extremely important to predict diseases related to novel lncRNAs. Therefore, taking lncRNA MALAT1, PVT1, and MEG3 as examples, the predicted top five diseases related to them are listed in Table 5, and their network is shown in Figure 4B. The experimental results proved that MHRWRLDA was useful for predicting the potential lncRNA–disease association.


[image: image]

FIGURE 4. The network of diseases and lncRNAs were made by Cytoscape. (A) The network of novel lncRNAs related to colon cancer, hepatocellular carcinoma, and breast cancer. (B) The network of novel diseases related to lncRNA MALAT1, PVT1, and MEG3.



TABLE 5. The predicted top five novel disease correlated with MALAT1, PVT1, and MEG3.

[image: Table 5]



DISCUSSION

In recent years, the research on the interaction between biomolecules has been growing. Due to the importance of lncRNA, the research on the associations between lncRNAs and diseases has been paid more and more attention. These associations can be characterized by complex networks, so it is urgent to develop network-based computational algorithms to explore functional associations between lncRNAs and diseases. The algorithm of constructing heterogeneous network and implementing random walk on heterogeneous network is widely used in the field of bioinformatics. However, in previous studies, most of them are single heterogeneous networks with a single information source. Therefore, we consider multiple network embedding by integrating different types of edges. Multiplex and heterogeneous networks are the combination of heterogeneous networks connected by multiple interactions; they integrate the framework of multiple information sources, and each layer is a simplex network with specific types of nodes and edges; when the data set is large, they can produce better results. Multiple heterostructures may provide a richer perspective for the study of the complex relationship between different biological components.

In this study, we extend it to multi-layer heterogeneous networks so as to more effectively predict lncRNA–disease associations. We constitute a multiplex and heterogeneous network by integrating known lncRNA–disease association, lncRNA function similarity, lncRNA Gaussian similarity network, disease semantic similarity network, and disease Gaussian similarity network, and then we generate the final comprehensive predictive scores by the random walk with restart on the multiplex and heterogeneous network, so as to forecast potential lncRNA–disease associations. LOOCV experimental verification results showed that the AUC was 0.68736, which exceeded other algorithms to predict lncRNA–disease association. In novel diseases, the top 10 lncRNAs were verified and predicted by database or literature. In addition, the model can also predict diseases associated with particular lncRNAs.

The network-based approach overcomes the disadvantage of machine learning methods that need to construct negative samples and not only is suitable for predicting lncRNA–disease associations, but also proved to be widely used in exploring disease-related miRNAs, drug repositioning, and prediction of disease–gene associations. Therefore, if the known lncRNA–disease association data are replaced with miRNA-disease association data, MHRWRLDA can be used to predict the potential miRNAs associated with disease; similarly, if it is replaced by drug–disease association data or gene–disease association data, it is possible to make contributions to drug repositioning and the exploration of disease-related genes, respectively. In the future, we will try to apply MHRWRLDA to the above aspects for research.

However, there are some limitations. First, there are only two methods for constructing the similarity network; if the calculation method of the similarity network can be increased, the number of layers in the multi-layer heterogeneous graph can be increased to provide more possibilities for particle migration. Second, the lncRNA–disease association data contain only 117 lncRNAs and 159 diseases, of which there are only 285 pairs of correlations; a small data set may also affect the prediction results. In the future, more association data will be discovered and used to overcome the difficulties caused by the complexity and inconsistency of biological data. In addition, efforts will be made to combine multiple prediction models to achieve more accurate predictions.
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Large-scale transcriptome data, such as single-cell RNA-sequencing data, have provided unprecedented resources for studying biological processes at the systems level. Numerous dimensionality reduction methods have been developed to visualize and analyze these transcriptome data. In addition, several existing methods allow inference of functional variations among samples using gene sets with known biological functions. However, it remains challenging to analyze transcriptomes with reduced dimensions that are interpretable in terms of dimensions’ directionalities, transferrable to new data, and directly expose the contribution or association of individual genes. In this study, we used gene set non-negative principal component analysis (gsPCA) and non-negative matrix factorization (gsNMF) to analyze large-scale transcriptome datasets. We found that these methods provide low-dimensional information about the progression of biological processes in a quantitative manner, and their performances are comparable to existing functional variation analysis methods in terms of distinguishing multiple cell states and samples from multiple conditions. Remarkably, upon training with a subset of data, these methods allow predictions of locations in the functional space using data from experimental conditions that are not exposed to the models. Specifically, our models predicted the extent of progression and reversion for cells in the epithelial-mesenchymal transition (EMT) continuum. These methods revealed conserved EMT program among multiple types of single cells and tumor samples. Finally, we demonstrate this approach is broadly applicable to data and gene sets beyond EMT and provide several recommendations on the choice between the two linear methods and the optimal algorithmic parameters. Our methods show that simple constrained matrix decomposition can produce to low-dimensional information in functionally interpretable and transferrable space, and can be widely useful for analyzing large-scale transcriptome data.
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INTRODUCTION

Recent developments in RNA-sequencing technology have enabled the collection of large-scale transcriptome data at high speed. For example, single-cell RNA-sequencing (scRNA-seq) data of many biological systems have been accumulating rapidly and provide opportunities to gain insights into complex biological processes at both the systems level and the single-cell resolution. Together with the advances in experimental techniques, the recent development of computational methods, including those for dimensionality reduction, allow the visualization and analyses of high-dimensional transcriptome data in low-dimensional space. For example, t-distributed stochastic neighbor embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP) have been instrumental to tackling challenges in transcriptome data visualization and are widely used in biomedical research (Van der Maaten and Hinton, 2008; Stein-O’Brien et al., 2018; Becht et al., 2019; Luecken and Theis, 2019). However, dimensionality reduction methods usually do not provide low-dimensional space that is directly interpretable in terms of biological functions: while these approaches cluster related samples, the positioning of samples along the derived dimension may not correspond to the degree of any biological process even if a predefined gene set with similar functions is chosen before the reduction. In addition, the contribution or significance of individual genes related to the derived dimension cannot be accessed directly with these methods. The lack of interpretability of the dimensions makes it challenging to visualize and analyze the progression of the samples (cells) in known biologically functional space.

Existing methods for functional quantification, such as Z-score and Gene Set Variation Analysis (GSVA; Hänzelmann et al., 2013), are useful for obtaining “functional scores” with the expression levels of multiple genes involved in the same biological process. However, these methods do not have transferability in that the scoring systems obtained with one dataset cannot be used to analyze other datasets directly. This limits the utility of these methods in predicting the progress of new data points, and in studying the relationships between functional spaces in different experimental settings.

One example of cellular processes that contains crucial quantitative information is epithelial-mesenchymal transition (EMT). While extreme changes of cell fate and morphology occur in the classical form of EMT, recent studies with cancer and fibrosis showed that partial EMT involving intermediate states are prevalent, and it may be responsible for pathogenesis (Pastushenko et al., 2018). To quantify the degree of EMT in EMT-induced cell lines and tumor samples, several previous studies analyzed transcriptomic data and their projections onto epithelial (E) and mesenchymal (M) dimensions (Tan et al., 2014; George et al., 2017; Cursons et al., 2018; Chakraborty et al., 2020; Panchy et al., 2020; Hirway et al., 2021). Recently, scRNA-seq analysis has shown that the progression of EMT is highly dependent on inducing signals and cell types (Cook and Vanderhyden, 2020). However, it remains challenging to analyze rapidly accumulating transcriptome information on EMT for obtaining biological insights across multiple conditions. Improvement of methods for reducing dimensions of expression data in a functionally meaningful manner is necessary.

In this study, we used gene set filtered variants of both non-negative principal component analysis (gsPCA) and non-negative matrix factorization (gsNMF) to analyze progression of EMT in single cells at multiple timepoints. We show that these methods describe large-scale transcriptome data of multiple EMT stages in low-dimensional and functionally interpretable space. Taking advantage of the methods’ transferability, we constructed dimensionality reduction models that can predict the stages of EMT with data from timepoints that were not used for model construction. We show that these linear methods can be used to compare functional spaces across multiple experimental conditions. Furthermore, we demonstrate the utility of our approach in visualizing drug responses in heterogeneous single cell data. With a validation scheme for rigorous testing, we provide recommendations for the choice of the methods and the parametric settings. Overall, our work provides a new toolbox for analyzing large-scale transcriptome data with efficient visualization and functional quantification.



RESULTS


Overview of Method and Performance Evaluation

The overall goal of our method is to find low-dimensional space of transcriptome data that has both biologically meaningful directionality and the ability to represent data points not used in the procedure to derive the space. This requires one or more preselected functional gene sets, which are readily available in publicly available databases such as Molecular Signature Database (Liberzon et al., 2011), and can be defined manually (Figure 1). We propose two linear approaches of matrix decomposition: gsPCA and gsNMF (see “Materials and Methods” section for details). Briefly, gsPCA finds the optimal component (projection) by maximizing the variance of the projected data points under the constraint that each functional gene has a non-negative loading value. For gsNMF, the gene-set-filtered transcriptome matrix is approximated by the product of two non-negative matrices, one of which represents a “meta” expression profile across samples, while the other represents the non-negative coefficients of the functional genes (the procedure for obtaining the number of components is described in Supplemental Methods). Following gsNMF, the leading component is selected for subsequent analyses (see “Materials and Methods” section). With either gsPCA or gsNMF, transcriptome data can be projected onto an axis whose direction unambiguously represents expression of the gene set and can be interrogated to reveal the contribution or association of individual genes in the set to scores along the axis.


[image: image]

FIGURE 1. Schematic of the gene set non-negative matrix factorization (gsNMF)/gene set non-negative principal component analysis (gsPCA) analysis process. A diagram of the analysis process used in this study beginning with input data in the form of sequencing data and gene sets. gsNMF/gsPCA is applied to this data to generate a functional scoring or space in the form of component scores (see “Materials and Methods” section for details). These scores can be used in two ways. First, without further data labels, scores can be used to look at relationships between or across biological processes beginning with low-dimensional visualization to identify trends and putative groups. Quantities such as the correlation between different functional scores can be computed for analysis. In addition, the transferable nature of these models means that they can be used to infer the position of new data points and contributions of individual genes, which allows assessment of their importance. Screening can be done both between gene sets and within gene sets. Secondly, when data labels are present, different metrics can be used to assess the performance of a functional score in terms of capturing variance: the common language effect size or f-probability can be used to evaluate how well the functional score separates two distinct populations while the variance explained or R2 can evaluate how much of the variation of a numeric variable representing biological progression, such as time, that the functional score can explain across the data.


To test the performance of gsPCA and gsNMF in capturing biological progression through functional space, we first used time-course datasets containing single cells treated with EMT-inducing signals for various periods of time (Cook and Vanderhyden, 2020). In addition to the biological importance of the stepwise progression in EMT (Pastushenko et al., 2018; Kröger et al., 2019), the time labels in the datasets allow us to evaluate the performance of the functional projection. Specifically, we used two metrics for the evaluation: the coefficient of determination (R2) for quantifying how well the projected values explain the time labels, and the common language effect size (f) for measuring the separation between two neighboring subsets of data with two labels (McGraw and Wong, 1992; See “Materials and Methods” section). The usage of R2 is only possible when the labels are numerical, while f can be used with any type of label (Figure 1). Note that our overall goal is not clustering the data points. Instead, we aim to represent the progression along biologically meaningful axes. In addition, neither gsPCA nor gsNMF requires data labels for analysis. The two metrics are only used for evaluation. In later sections, we will show analyses with additional data sets in which labels are categorical and the biological processes are non-EMT.



gsPCA and gsNMF Capture Cell State Progression in Low Dimensional Functional Space

To show the performance of the proposed methods, we first used two signature gene sets whose high expressions represent the epithelial (E) and mesenchymal (M) states, respectively (Tan et al., 2014; Watanabe et al., 2019; Panchy et al., 2020). With the E and M gene sets, we first performed gsPCA and gsNMF on time-course single-cell transcriptomes of TGF-β-treated A549 cells using two components per model for each gene set (Cook and Vanderhyden, 2020). The two gene sets contain 179 and 114 genes, respectively, in the A549 data set. We then projected the single-cell data from the first five time points, which represent continuous EMT progression, onto the leading dimension for each gene set. This produced two-dimensional plots with dimensions that can be viewed as the progression of cell states in the epithelial and the mesenchymal spectrums (Figures 2A,B). We then compared the performance to two widely used approaches: Z-score and GSVA (Figures 2C,D). We found that gsPCA and gsNMF both better explained the overall variance of time across the first five time points of EMT progression (Adjusted R2 = 0.46 and 0.48, respectively) than Z-score (Adjusted R2 = 0.31) and GSVA (Adjusted R2 = 0.08). Likewise, when considering neighboring time points, we found that E-scores tended to decrease and M-scores tended to increase with time of TGF-β treatment (Figure 2E), with both scores significantly separating all neighboring time points for gsPCA and gsNMF and yielding higher f probabilities than other methods in all but one case (E-scores at 3 vs. 7 days, Figure 2F). This suggests that gsPCA and gsNMF not only serve as visualization methods of functional space with defined gene sets, but also describe heterogeneous cell populations containing transitional information in a rigorous fashion. Between the two methods, we found the gsNMF performed better with regard to both overall variance (Adjusted R2 0.48 vs. 0.46) and separating time points (Figure 2F) than gsPCA. However, gsNMF requires selecting the leading dimension based directly on correlation with time of EMT progression, suggesting that gsPCA may be more reliable in a purely unsupervised setting (see “Materials and Methods” section).
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FIGURE 2. Visualization of epithelial-mesenchymal transition (EMT) progression in TGF-β induced A549 cells by multiple scoring methods. (A–D) Contour plots of gene set scores of E (X-axis) and M (Y-axis) genes from four different scoring methods, gsPCA (A), gsNMF (B), z-score (C), and GSVA (D). Color indicates the time of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean E- and M-score of samples from each time point and the associated error bars show the standard deviation. (E) A box-plot showing the distribution of E (red) and M (blue) scores across all five time points of TGF-β induction from the gsNMF model. Whiskers indicate the 1.5 inter-quartile range of each distribution while the red points indicate outliers beyond this range. (F) Bar chart of the f probability values for E (top) and M (bottom) scores between all consecutive pairs of time points. Color indicates the method used to produce the score: red is z-score, orange is GSVA, blue is gsPCA, and purple is gsNMF. Bars marked by an “x” indicates that the score did not significantly separate the samples from those time points (Mann–Whitney U-test, p < 0.05).


In the next few sections, we show various utilities of these linear methods based on their transferability and high-performance features. Because gsNMF gives the best performance with the A549 EMT data set, our discussion will focus on results obtained with gsNMF. The results using gsPCA, which had similar performance in all cases, are included in Supplementary Materials.



Prediction of Cell States With Data From New Conditions

The transferability of gsPCA and gsNMF methods allows the projection of new high-dimensional data points onto previously derived functional dimensions. Similarly, these methods can be used to derive functional dimensions with partial information of the biological process in terms of its stages. To show the predictive power of gsNMF, we removed samples from the 0-, 1-, and 7-day (including revertant) time points in the A549 EMT data (i.e., the start, middle, and the end of the continuous portion of TGF-β induction) and then performed the dimensionality reduction. We found that the low-dimensional functional space was robust with respect to the removal, regardless of whether the missing time point is in the middle of the progress or at the extremes (Figures 3A–D), such that when we projected the removed data points onto the space derived from a partial dataset, their positions were highly correlated with their positions when they were included in the data set [Pearson correlation coefficient (PCC > 0.95)]. However, while the inferred 1-day samples were similarly separable from samples in 8-h (f = 0.81 for E, 0.84 for M) and 3-day (f = 0.75 for E, 0.79 for M) time points, we observed reduced separability between the both inferred 0-day vs. 8-h (f = 0.52 for E, 0.63 for M) and 3-day vs. inferred 7-day (f = 0.53 for E, 0.55 for M) time points, with E-scores not significantly separating the first and the last time points (Mann–Whitney U-test, p = 0.13 and 0.16, respectively). We also applied the same inference procedure to samples which were exposed to a transient EMT-inducing signal and allowed to revert. However, because the 8- and 24-h reversion samples largely overlap with 7-day (hence their removal for 7-day inference, Figure 3E), we focused on inferring 3-day reversion samples after performing dimensionality reduction on the data set without any reversion samples. We found that 3-day reversion samples were positioned in the middle of the EMT spectrum, consistent with when they were included in functional space construction (PCC = 0.99 for E and 0.98 for M, Figure 3F). Additionally, the inferred 3-day reversion samples were similarly separable from the 7-day samples (f = 0.91 for E, 0.91 for M) as when they were when included in functional space construction (f = 0.90 for M, 0.91 for M). We obtained similar results using gsPCA when inferring the position of samples from missing time points (Supplementary Figure 1), but neither E- nor M-scores significantly separated the end points (0-day vs. 8-h and 3- vs. 7 day). These results suggest that gsPCA and gsNMF can predict cell states of new data without retraining the model, and that these methods can be used to predict new cell states that have not been observed directly, though it may be difficult to separate these samples when they are positioned the edge of the spectrum and/or when the new samples are closely related to existing samples.
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FIGURE 3. Predicting A549 samples from specific time points using gsNMF. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β induction samples using gsNMF. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot of 0-day (green, B), 1-day (yellow, C), and 7-day samples (purple, D) inferred using a gsNMF model built with all other time points (gray). (E) A scatter plot of TGF-β induction samples with TGF-β reversion samples (i.e., 7 days induction followed by removal from TGF-β). Induction samples are labeled as in panel (A), while reversion samples are colored blue, with darker shade indicating longer time since removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a gsNMF model built with all non-reversion time points (gray).




Using Functional Space Across Cell Lines

The transferability of gsNMF can be extended to data from different cell lines. We performed gsNMF on single-cell transcriptomes of TGF-β-treated DU145 from Cook and Vanderhyden (2020) using the same procedure as A549 and obtained a moderate explanation of variance in time of EMT progression using the E and M dimensions (Adjusted R2 = 0.31). We then inferred the position of the five continuous time points in the A549 data set using the DU145 model and vice versa (Figures 4A–D). Transferred models (DU145 on A549 and A549 on DU145) were able to separate the individual time points, but overall performance decreased as they can explain only part of the variance seen in the original models (Adjusted R2 = 0.30 for DU145 on A549 and 0.25 for A549 on DU145). Therefore, it was expected that the individual sample scores would be positively correlated between models along both the E (Figures 4E,F) and M dimensions (Figures 4G,H). However, while the correlations between all pairs of scores were significant (minimum p = 2.7e−73), the correlation between E-scores was weaker overall and worse for models of DU145 (PCC = 0.31) than models of A549 (PCC = 0.46). Comparably, the M-scores for both models of A549 (PCC = 0.84) and models of DU145 (PCC = 0.84) were more highly correlated and consistent between models. However, none of the sample scores between A549 and DU145 models were as correlated as inferred sample scores from missing point and the complete A549 model (PCC > 0.95). This suggests a reduced transferability across cells lines compared to within cells lines. In addition, across the data sets we used, changes along the M dimension were more consistent than the E dimension. We observed similar results using gsPCA, including M-scores being more correlated (PCC, A549 = 0.92, DU145 = 0.94) than E-scores (PCC, A549 = 0.76, DU145 = 0.72; Supplementary Figure 2). This is consistent with the fact that the same inducing agent was used across all cell lines, and also implies that inducing EMT in different cell types may yield more consistent changes in M genes compared to E genes.
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FIGURE 4. Transferring gsNMF models between A549 and DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis) scores for different combinations of data and gsNMF model: (A) A549 model on A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and (D) DU145 model on DU145 data. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F) Comparison of E-scores of samples from A549 (E) and DU145 (F) data. The X-axis is the E-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the E-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (G,H) Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The X-axis is the M-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the M-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple).




Using Functional Space Across Experimental Conditions

In addition to predicting the locations in the functional space across cell lines, gsPCA and gsNMF can be used across both experimental conditions and cell types. To test the cross-condition transferability, we first used our low-dimensional functional EMT space for A549 and DU145 cells to analyze tumor transcriptomes measured with bulk RNA-seq (The Cancer Genome Atlas, TCGA). To perform the most comparable transfer, we used lung adenocarcinoma (LUAD) and prostate adenocarcinoma (PRAD) data, which correspond to A549 and DU145 in terms of tissue type. We considered transfers between both similar (projecting LUAD data by a A549-trained model, and PRAD by a DU145-trained model) and dissimilar (LUAD by DU145 and PRAD by A549) cell types. We found that the low-dimensional functional space obtained with in-vitro data captured tumor sample heterogeneity in the EMT spectrum when compared to our previous GSVA analysis of the same data (Figure 5). Overall, the original E- and M-scores were significantly correlated with the A549 models in all cases (smallest p = 2.8e−34). Models from both cell lines showed similar correlation with the original GSVA scores, except in the case of PRAD scores, where the DU145 model was better correlated than the one built on A549 data (Table 1). We also observed that M-models built on A549 and DU145 data were more similar to each other than E-models, and we obtained similar results with gsPCA (Supplementary Figure 3), which showed greater overall correlation with GSVA scores, but the same pattern of reduced correlation for the A549 model of PRAD E-scores (Supplementary Table 1).
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FIGURE 5. Transferring gsNMF models to TCGA data. (A,B) Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsNMF models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based E-score of the TCGA data set. (C,D) Scatter plots of M-scores for PRAD (C) and LUAD (D) from transferring gsNMF models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based M-score of the TCGA data set.



TABLE 1. Pearson correlation coefficients of E and M scores between GSVA, A549, and DU145 models of TCGA data.
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It should be noted that these results are partly due to higher average correlation of expression of EMT genes in bulk RNA-seq data (average PCC = 0.28 LUAD, 0.38 PRAD for all pairs of M-genes, average PCC = 0.18 LUAD, 0.10 PRAD for E-genes), compared to the scRNA-seq data (average PCC = 0.01 in all cases). This is expected given that bulk RNA-seq is derived from populations rather than individual cells, but as a result, the effect of differentially weighing individual genes across models and components within models is reduced. This would explain the stronger correlation of M-scores between A549 and DU145 derived models, as well as the reduced performance of A549 on PRAD E-gene data, which is the most variable bulk RNA-seq data set. Yet, as the same time, this would suggest the variance present in PRAD bulk RNA-seq data is more similar to the model built on DU145 scRNA-seq data, than scRNA-seq data from a more dissimilar background. This also has implication for comparing multiple model components as they tend to be more similar in the bulk RNA-seq model despite if they were anti-correlated (gsNMF) or relatively uncorrelated (gsPCA) in the original scRNA-seq model or other scRNA-seq data (see Supplementary Table 2). Nonetheless, we have shown that the transferred models are, overall, consistent with the prior analysis of TCGA data and detected the expected variance in bulk RNA-seq data when it is present.



Using Functional Space Across Spatial and Temporal Progression

We next examined if gsNMF can produce transferrable models that reveal both spatial and temporal progression of EMT. Using single-cell RNA-seq, McFaline-Figueroa et al. (2019) previously found that epithelial cells exhibit an E to M spectrum from the inner position of a colony to the outer position. This dataset that contains binarized identities (inner and outer) obtained with macro-dissection (defined as spatial EMT data) from two experiments, one in which cells were allowed to migrate without external induction of EMT (Mock), and one in which EMT was induced with TGF-β (TGF-β). Since there are only two populations in this data set, the leading dimension for E- and M-scores was chosen to maximize the separation based on the f probability. Overall, three analyses were performed for each data set: spatial data with its own gsNMF model, spatial data with the model from the other spatial data set (TGF-β on Mock and Mock on TGF-β), and spatial data with A549 time series model (Figure 6). As with our previous results, the best separation of inner and outer data points was observed when Mock (f = 0.61 for E, 0.73 for M) and TGF-β (f = 0.77 for E, 0.82 for M) data sets had their own model applied to them. However, for Mock data, the TGF-β model (f = 0.64 for E, 0.69 for M) outperformed the A549 model (f = 0.45 for E, 0.60 for M) on both dimensions and, in fact, the E dimension of the A549 model did not effectively separate inner and outer points in the Mock data (p = 0.99). In comparison, the Mock model better separated TGF-β inner and out points in the E direction (f = 0.68 for E, 0.63 for M), while the A549 model better separated them in the M direction (f = 0.59 for E, 0.76 for M). gsPCA models gave similar results, including the A549 model yielding better performance along the M-dimension (f = 0.76) for TGF-β data than Mock data (f = 0.68; Supplementary Figure 4).
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FIGURE 6. Transferring gsNMF models between temporal and spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock spatial data from gsNMF models built on different data sets: Mock spatial data (A), TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis) and M (Y-axis) scores for TGF-β spatial data from gsNMF models built on different data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β induced A549 temporal data (F). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue).


The fact the A549 model better separated TGF-β spatial points along the M dimension than the Mock model, but did not outperform TGF-β on the Mock model suggests that there is conserved TGF-β induced M-gene expression regardless of context. To explore the basis of this similarity in M-scores, we compared the coefficient matrices (H, see “Materials and Methods” section) between Mock, TGF-β, and A549 gsNMF models, which represent the weights of individual genes along the components. We found little correlation between A549 and spatial E-gene coefficient values for the lead dimension (PCC = −0.02. p = 0.82 for Mock; PCC = 0.06, p = 0.57 for TGF-β), however, while there was also little correlation between A549 and spatial M-gene coefficient values for the Mock model (PCC = 0.02, p = 0.83) there was significantly positive correlation for the TGF-β model (PCC = 0.48, p = 8.8e–7). Additionally, we examined which genes were in the top 10th percentile of coefficient values across models and found that the A549 and TGF-β models share six M-genes (FN1, LGALS1, SERPINE1, TAGLN, TPM2, and VIM), compared to three E-genes (ELF3, PERP, and SLPI). Furthermore, another four E-genes (AREG, KRT18, KRT8, and NQO1) were in the top 10th percentile of A549 E-gene coefficient values, but the bottom 10th percentile of TGF-β E-gene coefficient values. We observed similar results from gsPCA, finding significant correlation of loading values only between A549 and TGF-β M-models (PCC = 0.61, p = 5.8e–11) with many of the same genes in the top 10th percentiles of both models (FN1, TPM2, VIM, TAGLN, GLIPR1, and LGALS1). Notably, the M-genes with high coefficient values in both A549 and TGF-β models across both A549 and TGF-β models are key regulators/inducers of EMT (FN1, LGALS1, and VIM; Mendez et al., 2010; Griggs et al., 2017; Zhu et al., 2019) or specific activators of migratory behavior in epithelial/cancer cells (TAGLN, TPM2; Lee et al., 2010; Shin et al., 2017). Conversely, while KRT8 and KRT18 are considered epithelial cytokeratins (Tomaskovic-Crook et al., 2009), both of these genes undergo an initial increase in expression in the A549 time-course (Supplementary Figure 5), compared to largely unaltered distributions across the inner and outer samples of migration data. This is consistent with previous observations that, both KRT8 (Wang et al., 2020) and KRT18 (Zhang et al., 2019) are over-expressed/aberrantly expressed in certain human cancers and such expression is associated with cancer progression/poor-prognosis. This potentially reflects intermediate EMT states caused by full or partial arrest of the process at an early timepoint, independent of the resulting migratory potential of the cells. Coefficient values for all genes in each model can be found in Supplementary Table 3.

Together, these results suggest a coherence of the progression of the EMT program in both the spatial and temporal context with regard to M-genes, while E-gene progression appears to be more sensitive to context, being only transferable between the two spatial data sets. The coefficient values of genes across both contexts offers insight into the difference in transferability between E and M models: high scoring M-genes across both contexts constitute important drivers of EMT/migration, suggesting common regulatory mechanisms, while the differential expression of KRT8 and KRT18 across time, but not space, suggests E-gene expression can be sensitive to biological context. Finally, these results highlight the usefulness of the transferability of gsPCA and gsNMF outside of a time series context, where performance may need to be evaluated on discrete groups.



Characterizing Relationships Among Multiple Functional Spectrums

To test the capacity of gsNMF to infer functional spaces across a broader range of gene sets and data, we first returned to the A549 data set and examined the expression changes of multiple gene sets across EMT progression. Taking advantage of the high-efficiency of this method, we began with 5455 C2 curated gene sets from the Molecular Signature Database (see “Materials and Methods” section) and applied a gsNMF model to A549 data for each. For simplicity, we used a two-component model, but we applied stricter convergence and selection criteria because of the diversity of gene set size and coverage by the data set (see “Materials and Methods” section). Overall, 867 gene sets (15.9%) had a leading dimension whose magnitude of correlation (PCC) was > 0.5 (Supplementary Table 4). As such, we expected that functional spaces constructed from highly correlated gene sets should show similar results to our original E vs. M functional space.

To construct unambiguous functional spaces, we initially focused on pairs of up/down regulated gene sets where the leading dimensions had a high magnitude of correlation (PCC), but opposite sign, in order to emulate our original E/M model of EMT progression for A549 (Figure 7A). For example, two pairs of gene sets, up regulation or down regulation in response to KRAS knockdown (SWEET_KRAS_TARGETS, Figure 7B) and up regulation or down regulation in low-malignancy ovarian cancer relative to control (WAMUNYOKOLI_OVARIAN_CANCER_LMP, Figure 7C), yielded functional spaces similar to E and M genes (Figure 7A) and captured a similar amount of variance explained among non-revertant cells (R2 = 0.48 and 0.49, respectively). Furthermore, the results suggest that EMT progression is correlated with expression of genes normally repressed by KRAS, a pro-proliferation signal, and anti-correlated with the expression of genes associated with tumorigenic, but non-metastatic ovarian cancer, consistent with the idea of the E state of EMT being pro-proliferative and the M state being pro-migratory. However, not all pairs of gene sets provide well defined functional spaces: for example, the gene set down-regulated in metastatic vs. non-metastatic head and neck tumors (RICKMAN_METASTASIS_DN) produced a strong anti-correlated leading dimension (PCC = −0.63), but the leading dimension of the up-regulated variant has a far smaller magnitude of correlation (PCC = 0.34). However, combining the metastatic down-regulated gene set with another correlated gene set, genes silenced during angiogenesis (HELLEBREKERS_SILENCED_DURING_TUMOR_ANGIOGE NESIS, PCC = 0.66), generated a functional space of EMT progression competitive with E and M genes (Figure 7D, R2 = 0.48). As such, functional space constructs need not be confined to reciprocal or connected gene sets, though this does not excluded the possibility of an underlying, common genetic basis between these functional spaces. Nevertheless, the divergent origins of the gene sets in terms of the biological processes they represent demonstrates the breadth over which the functional significance of variation can be explored using this methodology.
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FIGURE 7. Visualization of EMT progression in TGF-β induced A549 cells by multiple gene sets. (A–D) Contour plots of A549 functional space generated using gsNMF with different gene sets: E vs. M (A), KRAS knockdown up and down (B), non-malignant ovarian cancer up and down (C), and metastasis downregulation vs. angiogenesis downregulation (D). Color indicates the time of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean gene set score of samples from each time point and the associated error bars show the standard deviation.


To move beyond EMT associated data and gene sets, we next used gsNMF to analyze data from McFarland et al. (2020) which is composed of 7,245 cells with heterogeneous origins treated with trametinib for 3, 6, 12, 24, or 48 h as well as an untreated control (0 h). Because this data set mixes 24 cell lines from several different origin tissues and focuses specifically on the response to a cancer drug, we focused our exploration of functional spaces on 1,022 gene sets derived from the C6 database from Molecular Signature Database as well as the drug resistant genes identified by Wang et al. (2017) and their overlapping KEGG pathways and GO terms (see “Materials and Methods” section). Overall, 57 gene sets (5.6%) had a leading dimension whose magnitude of correlation (PCC) was >0.5 and relaxing this threshold to >0.4 yielded only 200 (19.6%) gene sets, suggesting that the explained temporal variance in this data set is lower than that obtained with A549 (Supplementary Table 5). Nevertheless, using positive regulation of gene expression (GO:0010628) and negative regulation of gene expression (GO:0010629), we were able to a functional space of trametinib response with similar performance (R2 = 0.30, Figure 8A) to our model of EMT progression in DU145 data (R2 = 0.31). Additionally, a number of oncogenic signatures which were positively correlated with trametinib response, though there were no up/down regulated pairs that with leading dimensions in opposed directions. Instead, we selected two oncogenic signatures, down regulation in response to KRAS over-expression (KRAS.600_UP.V1_DN) and down regulation in response to LEF over-expression (LEF1_UP.V1), whose leading dimension were strongly correlated with trametinib response (PCC = 0.54). We then took the negatively correlated component of the corresponding up regulation gene sets models (KRAS.600_UP.V1_UP and LEF_UP.V1_UP), even though the magnitude of the positively and negatively correlated components was similar (difference the absolute value of PCC ≤ 0.005). This process gave functional spaces which improved variance explained over the previous gene regulation model (R2 = 0.35 and 0.36, respectively, Figures 8B,C). Together, these results suggest suppression of gene expression in general and of oncogenes specifically in response to trametinib treatment, consistent with the results in McFarland et al. which observed greater enrichment of KRAS responsive genes among down-regulated genes in later time points relative to earlier ones. As with A549 data, we were also able to combine distinct functional sets, response to drug (GO:0042493, PCC = 0.58) and positive regulation of cell cycle (GO:0045787, PCC = −0.49) to explain an comparable amount of variance in expression as the reciprocal onco-gene sets (R2 = 0.36, Figure 8D). As such, while the amount of variance we can capture with our models is dependent on the data set, our approach overall is capable of producing functional spaces that broadly characterize variance in expression across diverse data and gene sets.
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FIGURE 8. Visualization of trametinib treatment data by multiple gene sets. (A–D) Contour plots of trametinib treatment functional space generated using gsNMF with different gene sets: positive vs. negative gene regulation (A), KRAS overexpression up and down regulation (B), LEF overexpression up and down regulation (C), and positive cell-cycle regulation vs. drug response (D). Color indicates the time of trametinib treatment from 0 h (dark green) to 48 h (dark purple). Circles indicate the mean gene set score of samples from each time point and the associated error bars show the standard deviation.




DISCUSSION

Previous methods that aimed to address the challenges of visualizing single-cell data in functional space were primarily based on weighted sum of expression values or Kolmogorov–Smirnov test with full datasets (Hänzelmann et al., 2013; DeTomaso and Yosef, 2016). These methods are useful to analyzing samples with functional gene sets, they do not provide transferability which is essential for predicting cell states with existing models and new data. We showed that constrained linear transformation enables good performance in depicting cell states with straightforward interpretation in functional space and satisfactory efficiency. While more sophisticated methods such as deep generative models have potentials to address similar problems, current methods primarily focus on the interpretability in terms of inter-sample distances in low dimensions rather than the dimensions themselves (Ding et al., 2018; Lopez et al., 2018), and we expect that the gsPCA and gsNMF methods are more efficient than models based on non-linear connectivity.

Factorization approaches like PCA and NMF have previously been applied to the problem of gene expression, with NMF in particular having been used to deconvolute expression patterns scRNA-seq data sets (Chen and Zhang, 2018; Fujita et al., 2018; Min et al., 2018; Kotliar et al., 2019; Zhang and Zhang, 2019), but these approaches have primarily focused on the unsupervised clustering of samples and/or for de-novo module discoveries at relatively high dimensionality (n > 10). In contrast, our approach suggests there is a utility in applying these factorization approaches to interrogating the relationship between known gene modules and data with implicit structure and/or separable populations of samples, particularly when assessing a single biological process (EMT) across multiple contexts (e.g., cell line, time and space), such that the simplicity of low-dimension space (n = 2) can be leveraged for visualization and analysis.

In this work we have found that conserved EMT gene expression signatures can be used to describe stages of EMT in multiple cell lines (e.g., A549 and DU145), and these signatures not only capture the subpopulation heterogeneity resulting from differential times of treatment with EMT-inducing signals such as TGF-β, but also reflect the EMT program driven by spatial heterogeneity with cell populations (McFaline-Figueroa et al., 2019). These results are consistent with the existence of conversed EMT program across cell lines (Cook and Vanderhyden, 2020), but do not contradict the idea of context specific expression as models trained and applied to the same data set always explained more variance in EMT progression. The coexistence of a common EMT signature and context specific expression is further supported by the observation that M-scores were more consistent and better separate data across different contexts of EMT than E-scores, and the related observation that M-gene component values were correlated across spatial and temporal models, while E-genes were not. This suggests that M-gene induction by TGF-β is consistent across cellular contexts, while changes in E-gene expression are more variable, possibly due to greater sensitivity to cell line, environmental context, or other initial conditions effecting the cell prior to induction.

The transferability of models across EMT context indicates the synergy between spatial arrangement of cells and external signals (e.g., TGF-β) in determining the stages of EMT. In addition, we found that the functional dimensions obtained with TGF-β can serve as reasonable approximations for the positioning of tumor transcriptomes in the EMT spectrum. Similar to the EMT spectrum, many biological processes involve stepwise changes of gene expression programs. A possible mechanism underlying these non-binary programs is the feedback-driven formation of stable intermediate cell states (Yui and Rothenberg, 2014; Ye et al., 2019). With the rapid advances of the single-cell technology, transcriptome-wide gene expression data will become available for more biological systems. We expect that our functional projection methods can be widely useful for visualizing and analyzing these data. In particular, the transferability of the models can be a powerful feature for interrogating the relationships among different experimental conditions and cell types.



MATERIALS AND METHODS


Gene Expression Data Sources

Single-cell RNA-sequencing data and meta data for A549 and DU145 cell lines were obtained from Cook and Vanderhyden (2020). In brief, we obtained pre-processed SeuratObjects for A549 and DU145 TGF-β as .rds data files and extracted expression data for E, M, all genes using the ScaleData function from Seurat to regress out mitochondrial gene expression, total unique reads in a sample, cell cycle gene expression, and batch effects as well as center and scale each data set across genes (Stuart et al., 2019). For McFaline-Figueroa et al. (2019) spatial data we obtained aggregated count data from GEO in the form of a pre-processed .cds file (GSE114687). We then dropped genes expressed in less than 50 cells (∼1% of each data set) from Mock and TGFB1 and split samples into Mock and TGFB1 subset for subsequent steps. Because we planned to compare models from these data to those from A549 and DU145, we followed the preprocessing procedure from Cook and Vanderhyden: we normalized the Mock and TGFB1 data sets independently in Seurat using the NormalizeData function and then used ScaleData to regress out mitochondrial gene expression, total unique reads in a sample, and cell cycle gene expression as well as scale each data set across genes. Finally, we obtained Cell Ranger output for trametinib time-course data from McFarland et al. (2020) and processed it in R using the Read10X function. We dropped the DMSO time course, and used the Untreated samples as time 0 as well as annotations from the original manuscript to eliminate low quality cells and then filtered genes expressed in less than 73 cells (∼1% of the data set). Pre-processing was done in Seurat as with using NormalizeData and ScaleData as previously described, except that we additionally regressed out the effect of each different cell line used in the experiment, but did not regress out cell-cycle gene expression as the original manuscript suggested that cell cycle disruption may be induced by trametinib treatment.

TCGA bulk RNA-seq data was obtained from TCGAbiolinks (Colaprico et al., 2016; McFaline-Figueroa et al., 2019). Raw counts were transformed to log2TPM with a pseudo-count of 1 using gene models for the hg38 annotation of the human genome obtained from RefSeq (O’Leary et al., 2016).



Non-negative PCA and NMF

Gene set non-negative principal component analysis uses the non-negative approach to PCA pioneered by Sigg and Buhmann (2008). In brief, the vector of weights, w, used to define the first principal component of PCA is defined such that it maximizes the variance of the first component, i.e.:
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Where C is the covariance matrix of the original data set X and w is unit vector (||w||2 =  1). In our case, X is an m by n matrix of expression values where m is the number of samples and nis the number of genes in the selected gene set. This method for determining w can be treated as an expectation maximization problem where the original data is projected using the current estimate of w (y = Xwt) and this projection is used to re-estimate w using the following minimization step:
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Where xn are the rows of the original data and yn are the rows of the projected data (Sigg and Buhmann, 2008). This expectation-maximization formulation allows additional constraints on w, including forcing the component values to be non-negative. Note that the non-negativity constraint applies only to the weight components such that negative scores can still exist if there are negative values in underlying data, such as those produced by centering expression data to zero which we did for all gsPCA inputs. Subsequent components are calculated in the same way, under the constraint that they are orthogonal to the preceding ones.

NMF involves factorizing the original data matrix of non-negative values into two matrices whose product estimates the original data, i.e.:
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Where X is the original matrix (m by n), W is the basis or features matrix (m by p), and H is the coefficient matrix (p by n), such that m is the number of rows in the original matrix (samples in our case), n is the columns (genes in our case), and p is the number of components used in the factorization. In addition to factorizing X, NMF naturally clusters the elements of the original data: W represents the “centers” of column clusters whose memberships is determined by the relative coefficient values in H, and vice versa with H representing the centers of row clusters determined by W (Brunet et al., 2004). Because the original matrix is constrained to being non-negative, we subtracted the minimum of value of the scaled expression matrix from all values to create a non-negative input matrix. As a consequence, the values of the W and H matrices must likewise be non-negative such that product is non-negative.



Implementation of Dimension Reduction Approaches

We implemented non-negative PCA in R using the nsprcomp function (with the option nneg = TRUE) from the package of the same name (Sigg and Buhmann, 2008). We used the standard convergence parameters for the algorithm as these produced consistent principal components across multiple runs and different number of components. This is to be expected as nsprcomp greedily maximizes the variation explained by each component in order. For gsNMF, we used the Scikit-learn implementation of NMF (Pedregosa et al., 2011). To optimize convergence criteria, we performed a cross-validation analysis of A549 data and found that a two-component model fit with a tolerance of 1e–6 and a max of 500 iterations gave the best results (see Supplemental Methods and Supplementary Figure 6). We also tested ten random seeds of the two component A549 model on the full data to confirm that consistent results were given (average PCC of dimensions > 0.99). We tested ten random seeds against the other data sets to tune the convergence parameters, raising maximum iterations to 2,500 and tolerance to 1e–9 if the initial parameters did not yield consistent results (i.e., average PCC of dimensions > 0.99). GSVA and Z-score methods were implemented using the GSVA package in R (Hänzelmann et al., 2013).

Unlike GSVA and Z-scores methods, which produce a single score per gene set, gsPCA and gsNMF both produce multiple sample level scores in the form of principal component scores (wX, gsPCA) or the columns of the features matrix (W, gsNMF), while the corresponding loading values/weights (w, gsPCA) or coefficient matrix (H, gsNMF) represent gene level scores (i.e., gene importance). Therefore, we need to choose one of these sample level scores as a “leading dimension” to represent each gene set in functional space. For gsPCA, we used the first principal component as this represents the direction of greatest variance for gene expression in that gene set. For gsNMF, we used the magnitude of correlation between the columns of the transform matrix and the sample metric that best represented progression in EMT (i.e., time for A549 and DU145 data). For E and M genes, we also required the sign of correlation to match the expected change in E and M genes during EMT (i.e., picking the greatest negative PCC for E and the greatest positive PCC for M). For our spatial EMT data, where there were only two populations, f probability was used instead (see below), but with the same constraint on the direction of E and M dimensions (i.e., higher M scores for outer samples and higher E scores for inner samples).



Evaluating Functional Spaces

To evaluate a functional space, we used two metrics. First, if the sample data had an associated time variable, we created a model of time as a linear function of the two axes of the functional space (time ∼X + Y) and calculated the coefficient of determination, which is the percent of overall variance in the dependent variable explained by the independent variables (Adjusted R2). Second, to evaluate the ability of functional space to separate distinct populations, such as neighboring time points or spatial locations, we used the common language effect size (f), which is the probability that a value or score randomly sampled from one population will be larger than a random score from the other. This metric is advantageous because we can calculate it from the test statistic of Mann–Whitney U-test, which also provide a measure of significance, and is related to the area under of the receiver operating curve (AUC-ROC), which is commonly used to asses classification algorithms. Additionally, since the f probability is reciprocal, the choice which population we want to be larger is arbitrary, so for EMT we can chose to calculate the f probability such that the larger population is the more progressed for M and less progressed for E. Therefore, a higher probability of f always indicates better correspondence with EMT progression in our results.



Inference and Model Transfer

To infer the position of new data in functional space for gsPCA, we multiplied the new data directly by loading vectors (also known as weights, w) of the E- and M-scores. For gsNMF, we used the Scikit-learn “transform” method which transforms the input data according to the fitted model (i.e., it fixes the coefficient matrix, H, and generates a new feature matrix, W). In both cases, we used the same leading dimension for inference as in the original model. For inferring missing data points, no further steps were required as the new data always had the same coverage of the E and M gene sets as the original. However, for transferring models across cell-line, TCGA, and spatial data, we first had to determine the common set of genes between the two data sets. Common genes were then used to filter the weight vectors for gsPCA and to refit the model on the original data using the common subset of genes for gsNMF. The data set that was the target of the transferred model was then subset by the same common set of genes and inference was done as described previously. Transferred models were assessed against the new data set using the same approaches as the original models, but relationship between E/M-scores and gene loading/coefficient values between models were assessed by PCC.



Multi-Gene Set Evaluation

C2 gene sets were obtained from the Molecular Signature Database (version 7.1)1 (Subramanian et al., 2005; Liberzon et al., 2011, 2015). gsNMF was performed as described for EMT gene sets expect that we increased the iteration (2,500) and convergence threshold (1e–9) of the NMF algorithm to ensure consistent results across the gene sets which varied widely in size (2–1,581 genes present in the data set) and coverage by the A549 data set due to the sparsity of scRNA-seq data. To test the robustness of this approach, we looked at the correlation of PCC scores along the leading axis for each gene set across 10 random seeds and found they were highly similar (average PCC between seeds = 0.998).

We used the same iteration and convergence threshold for analysis of the C6 (Molecular Signature Database) and the GEAR drug resistance gene sets (Wang et al., 2017) which were used to project the trametinib data. Gene sets, KEGG pathways and GO terms associated with the GEAR drug genes were obtained using KEGGREST package in R for KEGG pathways and http://geneontology.org/ for GO terms (Ashburner et al., 2000; The Gene Ontology Consortium, 2017).
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Supplementary Figure 1 | Predicting A549 samples from specific time points using gsPCA. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β induction samples using gsPCA. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot of 0-day (green, B), 1-day (yellow, C), and 7-day samples (purple, D) inferred using a gsPCA model built using all other time points (gray). (E) A scatter plot of TGF-β induction samples with TGF-β reversion samples (i.e., 7 days induction followed by removal from TGF-β). Induction samples are labeled as in panel (A), while reversion samples are colored blue, with darker shade indicating longer time since removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a gsPCA model built using all non-reversion time points (gray).

Supplementary Figure 2 | Transferring gsPCA models between A549 and DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis) scores for different combinations of data and gsPCA model: (A) A549 model on A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and (D) DU145 model on DU145 data. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F) Comparison of E-scores of samples from A549 (E) and DU145 (F) data. The X-axis is the E-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the E-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (G,H) Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The X-axis is the M-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the M-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple).

Supplementary Figure 3 | Transferring gsPCA models to TCGA data. (A,B) Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsPCA models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based E-score of the TCGA data set. (C,D) Scatter plots of M-scores for PRAD (C) and LUAD (D) from transferring gsPCA models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based M-score of the TCGA data set.

Supplementary Figure 4 | Transferring gsPCA models between temporal and spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock spatial data from gsPCA models built on different data sets: Mock spatial data (A), TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis) and M (Y-axis) scores for TGF-β spatial data from gsPCA models built on different data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β induced A549 temporal data (F). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue).

Supplementary Figure 5 | Normalized expression of KRT8 and KRT18 across A549 and migration data sets. Boxplots showing the normalized expression of KRT8 (top) and KRT18 (bottom) across A549 data (left) and migration data (right). The central black line indicates the average of each distribution while the whiskers show 1.5 times the interquartile range. For A549 data, color of the boxplot indicates the time from 0 day (dark green) to 7 days (dark purple) for TGF-β treatment, followed by removal of TGF-β for 8 h, 1 days, and 3 days (darkening shades of blue). For migration data, color differentiates samples in the inner (red) vs. outer (blue) rings of the assay.

Supplementary Figure 6 | Performance of gsPCA models across cross-validation data sets. Boxplots showing Adjusted R2 of the linear model of gsNMF leading E and M dimensions across different number of model components (X-axis) and different convergence criteria: basic (algorithm standard, A), strong (1e–6 tolerance, 500 iterations, B), very strong (1e–9 tolerance, 2,500 iterations, C), and nndsvd (initialization with non-negative singular value decomposition, 1e–6 tolerance, 500 iterations, D). Left and right panels separate the result for all validation folds and the mean performance of independent folds within each training data set (see Supplemental Methods). The yellow line indicates the average of each distribution while the whiskers show 1.5 times the interquartile range. Red dots show the individual Adjusted R2 values in each distribution.
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Over 50% of diffuse large B-cell lymphoma (DLBCL) patients are diagnosed at an advanced stage. Although there are a few therapeutic strategies for DLBCL, most of them are more effective in limited-stage cancer patients. The prognosis of patients with advanced-stage DLBCL is usually poor with frequent recurrence and metastasis. In this study, we aimed to identify gene expression and network differences between limited- and advanced-stage DLBCL patients, with the goal of identifying potential agents that could be used to relieve the severity of DLBCL. Specifically, RNA sequencing data of DLBCL patients at different clinical stages were collected from the cancer genome atlas (TCGA). Differentially expressed genes were identified using DESeq2, and then, weighted gene correlation network analysis (WGCNA) and differential module analysis were performed to find variations between different stages. In addition, important genes were extracted by key driver analysis, and potential agents for DLBCL were identified according to gene-expression perturbations and the Crowd Extracted Expression of Differential Signatures (CREEDS) drug signature database. As a result, 20 up-regulated and 73 down-regulated genes were identified and 79 gene co-expression modules were found using WGCNA, among which, the thistle1 module was highly related to the clinical stage of DLBCL. KEGG pathway and GO enrichment analyses of genes in the thistle1 module indicated that DLBCL progression was mainly related to the NOD-like receptor signaling pathway, neutrophil activation, secretory granule membrane, and carboxylic acid binding. A total of 47 key drivers were identified through key driver analysis with 11 up-regulated key driver genes and 36 down-regulated key diver genes in advanced-stage DLBCL patients. Five genes (MMP1, RAB6C, ACCSL, RGS21 and MOCOS) appeared as hub genes, being closely related to the occurrence and development of DLBCL. Finally, both differentially expressed genes and key driver genes were subjected to CREEDS analysis, and 10 potential agents were predicted to have the potential for application in advanced-stage DLBCL patients. In conclusion, we propose a novel pipeline to utilize perturbed gene-expression signatures during DLBCL progression for identifying agents, and we successfully utilized this approach to generate a list of promising compounds.
Keywords: diffuse large B-cell lymphoma, drug repurposing, differentially expressed genes, differential module analysis, key driver analysis
INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is the most commonly diagnosed non-Hodgkin lymphoma (NHL), representing approximately 25% of new NHL cases each year in the United States (Liu and Barta, 2019). In practice, about one half of DLBCL patients presented with advanced-stage disease (Prakash et al., 2012), featuring bulky tumor burden and poor patient response to treatment. According to published data, advanced-stage DLBCL (stage I/II and stage III/IV) may be both biologically and clinically different from limited-stage DLBCL cases (stage I and II). For example, advanced-stage DLBCL patients were more likely to express higher levels of CD30 (Rodrigues-Fernandes et al., 2021) and CD25 (Oka et al., 2020), both of which are biomarkers of B-cell activation. In addition, advanced-stage DLBCL was also shown to be associated with a higher immune-inflammation index (Wang et al., 2021) and an increased level of lymphopenia at diagnosis (Shin et al., 2020), highlighting its deteriorating immune regulation. Green and Johnson et al. reported there were a few biological factors known to adversely impact the prognosis of DLBCL patients, including the cell-of-origin, co-expression of MYC/BCL2 and co-occurrence of MYC and BCL2/BCL6 rearrangements failed to predict poorer prognosis in limited stage DLBCL(Green et al., 2012; Johnson et al., 2012). Ajay, Major et al reported that stage I and II DLBCL cases had a slightly increased risk of secondary primary malignancies after DLBCL treatment in long-term follow-up (>20 years) (Major et al., 2020). Comparing with limited stage DLBCL, advanced-stage DLBCL patients were more likely to benefit from intensified radiotherapy (Hoiland et al., 2020; Freeman et al., 2021). Also, the pattern of late disease relapses observed in advanced stage DLBCL cases was different from that of limited-stage cases, further corroborating that limited and advanced stage DLBCL were biologically heterogeneous (Hoiland et al., 2020). All of these observations prompted us to treat advanced- and limited-stage DLBCL with different strategies, better tailoring for their specific biological and clinical characteristics.
However, there is limited knowledge regarding the genomic and transcriptomic differences between limited- and advanced-stage DLBCL. Two previous large analyses exploring the genetic landscape of DLBCL were not intended to compare the limited and advanced stages of the disease (Reddy et al., 2017; Schmitz et al., 2018). Moreover, at the single gene or single locus level, advanced- and limited-stage DLBCL may also be different in terms of their altered gene regulation and regulatory/co-expression networks, which was confirmed in other clinical comparisons such as cancer vs normal tissue (Zhang et al., 2018; Xu et al., 2019) and young vs old (Yang et al., 2015; Yang et al., 2016b).
Although frontline chemoimmunotherapies have been shown to cure up to 60% of patients with advanced-stage disease, with a clear plateau in progression-free survival (PFS) and rare relapses beyond 5 years (Coiffier et al., 2010), there still is a fraction of patients who are subject to relapse and have tumors that are refractory to treatment (Coiffier et al., 2010), highlighting the heterogeneity of advanced DLBCL. Thus, it is critical to develop new drugs for improving the treatment of advanced-stage DLBCL, so that it might be effectively treated by using existing treatment strategies as limited-stage DLBCL patients are. However, the development of a novel drug is usually costly and time-consuming (Liu et al., 2020; Yang et al., 2020) and highlights the need for effective drug repositioning strategies. There are many computer-based drug repositioning methods that have been used for cancers (Xu et al., 2019; Liu et al., 2020) and other diseases, such as Coronavirus disease 2019 (COVID-19) (Tang et al., 2020; Li et al., 2021).
In this study, we propose a new strategy for identifying new agents that have the potential to specifically target advanced-stage DLBCL. In general, we retrieved advanced-stage DLBCL-specific expressed genes by comparing the transcriptome of advanced-stage disease with that of limited-stage DLBCL. These differentially expressed genes (DEGs) were then subjected to weighted gene correlation network analysis (WGCNA) to discover the co-expression modules that may contribute to the progression of this disease. Finally, potential personal agents were obtained from the Crowd Extracted Expression of Differential Signatures (CREEDS) based on the down-regulation and up-regulation of genes (see Materials and methods for details). We aimed to specifically reveal the transcriptomic scenario occurring in advanced-stage DLBCL and to elucidate the genes that were most likely contributing to disease progression. Based on this knowledge, we then identified some potential agents for the treatment of advanced-stage DLBCL in future clinical practice.
MATERIALS AND METHODS
Data Collection
RNA sequencing data from patients with DLBCL cancer were collected from the cancer genome atlas (TCGA). Based on the imaging results, including computed tomography (CT) scans, magnetic resonance imaging (MRI) or positron emission tomography (PET) scanning, patients were divided into four stages (I–IV) according to the Ann Arbor system (Heidelberg, 2020).
Differential Gene Expression Analysis Between Samples at Different Stages
An expression matrix of 42 patients and their group information (stage I/II or III/IV) were used as the input for DEG discovery. DEGs between samples at stage I/II and stage III/IV were obtained using DESeq2 (Love et al., 2014) using log2 |fold change| ≧ 1 and a p value ≦ 0.05.
Survival Analysis
After identifying DEGs, we performed survival analysis on these genes for all of the patients. Next, Kaplan-Meier (Bland and Altman, 1998) survival estimation was used for all differentially expressed genes to identify genes correlated with overall survival. Kaplan- Meier arranged the survival time in descending order, at each death node, it estimated the proportion of the observed values that survived for a certain period of time under the same circumstances, which could intuitively show the survival and mortality rates of two or more groups. The R packages survival and survminer were used for survival analysis and curve plotting, respectively.
Weighted Gene Correlation Network Analysis
The WGCNA package in R (Peter and Horvath, 2008) was used to construct a co-expression network. For this step, we randomly picked 400 genes from the stage III/IV patients to generate a topological overlap matrix since the gene number was too large to perform this analysis using all of the genes. For the constructed gene network to conform to a scale-free distribution, a soft threshold was used to select the appropriate [image: image] after removing outliers. Finally, the soft threshold was set to 10. Then, genes were clustered by hierarchical clustering, and the tree was cut into different modules using a dynamic cutting algorithm, in which genes were highly correlated. Furthermore, we calculated the Pearson correlation coefficient between different modules and clinical stage and used this Pearson correlation coefficient to judge the relationship between the module and clinical stage. Finally, significant modules closely related to the occurrence and development of DLBCL were identified for follow-up analysis.
Functional and Pathway Enrichment Analyses
KEGG pathway (Ogata et al., 1999) analysis and Gene Ontology (GO) analysis (Botstein et al., 2000), including biological process (BP), cellular composition (CC) and molecular function (MF), were performed on the genes in the module identified by WGCNA to understand the biological significance of the progression of DLBCL. The R package clusterProfiler (Yu et al., 2012) was used in the process of enrichment analysis to analyze the functions of the genes from these modules.
Key Driver Analysis
For key driver analysis, we used up- or down-regulated genes separately as inputs to identify key drivers. Key driver analysis (Yang et al., 2016a) (KDA) was used to identify hub genes, and protein actions v11.0 was used as a reference protein–protein interaction network (Szklarczyk et al., 2021). Parameters were set as follows: nlayerExpansion was set to 1, nlayerSearch was set to 6 and enrichedNodesPercentCut was set to −1. A p value_whole ≦ 0.05 was used to filter out key drivers. The hub genes were of great significance in terms of the occurrence and development of DLBCL.
Drug Discovery
CREEDS includes single gene perturbation signatures, as well as disease and drug perturbation signatures, and it can be used to identify the relationship between gene, disease and drug (Gillies et al., 2016). CREEDS is composed of single-drug perturbation-induced gene expression signatures. Utilizing this database, agents that can reverse the behavior of up/down-regulated genes can be discovered, and the best matched agents are reported. We used this tool for drug discovery for advanced-stage DLBCL. In this work, we combined differentially expressed genes and key driver genes as a new gene set to discover new agents related to advanced-stage DLBCL.
RESULTS
A Brief Study Design of Drug Repurposing
For the purpose of specifically developing new agents that could be utilized in combination with R- CHOP backbones to treat advanced stage DLBCL patients, we proposed a new method of drug repurposing based on gene expression and network perturbation (Figure 1). In order to identify key factors for DLBCL progression, WGCNA and DEG, differential module (DM) and key driver (KD) analyses were performed. Then, the key factors of DLBCL progression and drug perturbation signature were used to predict potential agents for the treatment of advanced stage DLBCL. Finally, some previous studies were reviewed to demonstrate the effectiveness of the newly identified agents.
[image: Figure 1]FIGURE 1 | A brief study design for drug repurposing, including these major steps: 1) Download and organize the RNA-seq data and clinical information of DLBCL from TCGA; 2) Got key factors of DLBCL progression through DEG analysis, key driver analysis and WGCNA analysis; 3) Potential drug prediction through CREEDs; 4) Literature confirmation.
Patient Characteristics
The clinical characteristics of DLBCL cancer patients collected from TCGA are presented in Table 1, including 25 patients at clinical stage I/II and 17 patients at clinical stage III/IV. It was more likely to occur in elder patients and involve extranodal sites or organs. Patients of advanced stage disease also tended to have B symptoms. No gender preference was observed in this group of patients and all patients received no treatment before resection of tumors.
TABLE 1 | Summary of general clinical information of DLBCL cases in TCGA.
[image: Table 1]Identification of DEGs and Survival Analysis
After collecting data from TCGA, DEGs were obtained using DESeq2, by comparing the transcriptome of advanced stage DLBCL with limited stage DLBCL. Of the 93 DEGs that were identified with a log2 |fold change| ≧ 1 and a p value ≦ 0.05, 20 genes were up-regulated and 73 genes were down-regulated in advanced DLBCL. The top 10 genes that were differently expressed between advanced and limited stage DLBCL are shown in Figure 2A.
[image: Figure 2]FIGURE 2 | Analysis of differentially expressed genes. (A) Heat map of the top 10 differentially expressed genes. The x-axis represents different samples from TCGA, blue indicates samples at limited stage (stage I/II) and red indicates samples at advanced stage (stage III/IV). The y-axis represents differentially expressed genes. (B) Survival curve of the association between the expression levels of DAB1 and survival time after diagnosis with DLBCL.
We aimed to evaluate whether this set of differentially expressed genes could define a group of patients with poorer prognosis. We dichotomized 42 DLBCL cases into either the high expression group or the low expression group as per the mean expression level of each DEG. In addition, the Kaplan-Meier survival estimation method was used to evaluate all DEGs to study the relationship between gene expression and overall survival. Through this Kaplan-Meier survival estimation analysis, we found that DAB1 was negatively correlated with overall survival, while other DEGs were not correlated with overall survival.
Weighted Gene Correlation Network Analysis and Differential Model Analysis
WGCNA, based on a scale-free network to analyze genes according to their expression patterns, was used to cluster highly related genes into one module. As can be seen from Figure 3A, the soft threshold value was set at 10 to build this scale-free network. Next, 79 gene modules were identified by hierarchical clustering and dynamic branch cutting, and each module was assigned a unique color identifier (Supplementary Figure S4). We then selected a portion of these genes to construct a topological overlapping heat map, shown in Figure 3B. Through differential module analysis, we found that the thistle1 module was most relevant to advance stage of DLBCL in this dataset (Figure 3C).
[image: Figure 3]FIGURE 3 | Weighted co-expression and key module identification associated with clinical DLBCL stage. (A) Determination of soft threshold in WGCNA. (B) Topological overlapping WGCNA heat map. (C) The relationship between modules and clinical traits. Pearson correlation coefficient was used to calculate the correlation degree between each module and trait.
Functional and Pathway Enrichment Analysis of the thistle1 Module
In order to understand the causes of DLBCL deterioration from the biological level, we analysed the genes in the thistle1 module using KEGG pathway and GO enrichment analysis. KEGG pathway analysis results indicated that the development of DLBCL was very strongly correlated to the NOD-like receptor signalling pathway, osteoclast differentiation, leishmaniasis, Staphylococcus aureus infection and viral protein interaction with cytokine and cytokine receptor (Figure 4A). Furthermore, GO enrichment was performed based on three aspects: BP, CC and MF. In the BP analysis, we found that the genes in the thistle1 module were mainly related to neutrophil activation, positive regulation of response to external stimulus and response to interferon−gamma (Figure 4B). In addition, in the CC analysis, the genes in the thistle1 module were related to secretory granule membrane, endocytic vesicle and apical part of cell (Figure 4C). Moreover, the genes in the thistle1 module were mainly enriched in 7 MFs, including carboxylic acid binding, organic acid binding, cysteine−type endopeptidase activity, manganese ion binding, ligand−gated cation channel activity, immunoglobulin G (IgG) binding and immunoglobulin binding (Figure 4D).
[image: Figure 4]FIGURE 4 | Pathway and functional enrichment analysis of genes in the thistle1 module. (A) KEGG pathway analysis. (B) GO enrichment for biological process. (C) GO enrichment for cellular composition. (D) GO enrichment for molecular function. The x-axes are the ratio of genes, and the y-axes are the GO terms.
Hub Genes Identified Through Key Driver Analysis
A total of 47 key drivers were identified through key driver analysis, with 11 up-regulated key driver genes and 36 down-regulated key diver genes being diagnostic of advanced-stage DLBCL relative to limited-stage DLBCL. Then, five hub genes were identified from key drivers as shown in Figure 5, which were most related to the occurrence and development of DLBCL. MMP1 (Rosas et al., 2008), also known as matrix metalloproteinase-1, encodes a protein of 469 amino acid residues and is a kind of photolytic enzyme closely related to tumor genesis, invasion and metastasis. Rab6c (Young et al., 2010) is a member of the RAS family. Its mutation can affect the balance of Ras-GTP and cause malignant transformation of cells. Gene ontology annotations for 1-Aminocyclopropane-1-Carboxylate Synthase Homolog (Inactive) Like (ACCSL) (Chen and Karampinos, 2020) include pyridoxal phosphate binding. Dysregulation of gene levels of molybdenum cofactor sulfurase (MOCOS) (Kurzawski et al., 2012) can lead to cell disorders. Studies have demonstrated that this gene can be used as a key detection gene for kidney genetic diseases. RGS21 (Von Buchholtz et al., 2004), a new member of the regulator of G protein signaling (RGS) protein family. It can inhibit signal transduction by increasing GTPase activity.
[image: Figure 5]FIGURE 5 | Network of key DLBCL drivers and hub genes. Red, key drivers from up-regulated gene set in advanced-stage samples. Blue, key drivers from down-regulated gene set in advanced-stage samples. Yellow, hub genes.
Agent Screening
Potential personal agents associated with DLBCL were identified according to the differences between differential genes and drug signaling. Approximately 10 potential agents were selected according to their drug perturbation-induced gene expression signatures, and detailed information on these agents is presented in Table 2, including the type, drug/small molecule, possible effect and evidence for activity. The top five agents could reverse the expression of down-regulated genes, and the remaining agents could reverse the expression of up-regulated genes. In other words, after treatment with these drugs, gene expression levels may return to normal. The top five agents that may reverse down-regulated gene expression are formaldehyde, ethanol, dibutyl phthalate, paclitaxel, and prednisolone. Ethanol (EtOH) is similar to pharmacological mTOR inhibitors and has been shown to inhibit the mTOR signaling pathway. Mazan et al. studied the influence of EtOH on the mTOR signaling pathway and explored the translational group analysis of downstream effects of EtOH in DLBCL, and the results showed that EtOH partially inhibited mTOR signaling and protein translation (Mazan-Mamczarz et al., 2015). In a previous study, newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) were evaluated for their clinical characteristics, therapeutic efficacy and patient survival, and DLBCL patients treated with R-CHOP had better survival than other patients (Hong et al., 2011). Ohe et al. also reported a case of DLBCL successfully treated with prednisolone (Ohe et al., 2012). The top five agents that may reverse up-regulated gene expression are oxaliplatin, eribulin, NC1153, EPZ-6438 and R547. Oxaliplatin selectively inhibits the synthesis of deoxyribonucleic acid (DNA). Shen et al. studied the efficacy, safety and feasibility of the combination of rituximab, gemcitabine, and oxaliplatin (R-GemOx) as a first-line treatment in elderly patients with DLBCL. They found that R-GemOx might be a therapeutic option for the management of DLBCL (Shen et al., 2018).
TABLE 2 | Potential DLBCL treatment agents.
[image: Table 2]DISCUSSION
DLBCL remains a highly heterogenous disease, with the frontline R-CHOP modality achieving only a 40–60% complete response (CR) rate in unselected patients. The prognosis of patients with DLBCL with refractory tumors or relapse remains dismal. As a result, designing more sophisticated personal treatment modalities has the potential to improve the outcomes in high-risk DLBCL patients. Although a wealth of studies has focused on targeted therapies based on the molecular classification of DLBCL, the clinical stage of DLBCL remains an important factor for choosing an appropriate treatment regime. DLBCL patients with advanced- and limited-stage disease have different responses to standard chemoimmunotherapies, due to the different genomic profiles of advanced-stage disease relative to limited-stage disease (Miao et al., 2019). In this study, we propose a new approach to gain insights into the intrinsic heterogeneity of DLBCL, which focused on comparing the transcriptomic profile of advanced- and limited-stage DLBCL and distilling the disease to a few distinctly expressed genes and hub genes that might contribute to disease progression. In general, 20 genes were up-regulated and 73 genes were down-regulated in advanced-stage samples compared to limited-stage samples. We also found that DAB1 was negatively correlated with overall survival through survival analysis of all identified DEGs (Figure 2B, p = 0.045). Due to the limitations of differential expression analysis, it is impossible to group genes with the same function together. Therefore, we carried out weighted gene co-expression network analysis and analysis on different modules. During these analyses, 79 similar gene expression modules were found using WGCNA, among which, the thistle1 module was highly related to disease stage. KEGG pathway and GO enrichment analyses of the genes in the thistle1 module indicated that DLBCL progression was mainly related to the NOD-like receptor signaling pathway, neutrophil activation, secretory granule membrane and carboxylic acid binding. There is evidence that tumors and their mesenchymal cells produce many cytokines and chemokines to stimulate the differentiation of N2 neutrophils (Valerius et al., 1993; Souto et al., 2014). However, neutrophils can cause DNA damage through reactive oxygen species and related products of myeloperoxidase (MPO), and N2 cells secrete VEGF, TNF and other cytokines to promote tumor angiogenesis and, at the same time, synthesize and secrete MMP and NE to the tumor stroma to participate in the tumor reconstruction of the extracellular matrix to promote tumor growth and metastasis (Zvi et al., 2009; Mishalian et al., 2013; Zhou et al., 2016). During key driver analysis, 47 key drivers were identified and five hub genes were extracted from these key drivers, including MMP1. MMP1 (Rosas et al., 2008) can alter the microenvironment of cells. When MMP1 is out of balance, it accelerates the degradation of the matrix barrier and promotes the formation and growth of tumors by releasing matrix-related growth factors. Studies have shown that MMP1 is associated with lung squamous cell carcinoma, colon cancer and adenocarcinoma.
Based on gene expression and network perturbations, 10 potential agents for the treatment of DLBCL were obtained. For instance, NC1153 can inhibit JAK3 specifically and induce the apoptosis of certain leukemia/lymphoma cell lines. Using Affymetrix microarray profiling following NC1153 treatment, Nagy et al. reported that JAK3-dependent survival modulating pathways (p53, TGF-beta, TNFR and ER stress) were altered in Kit225 cells (Nagy et al., 2010). EPZ-6438 selectively inhibited intracellular H3K27 methylation in a concentration- and time-dependent manner in both EZH2 wild-type and mutant lymphoma cells. Inhibition of H3K27 trimethylation (H3K27Me3) leads to selective cell killing of human lymphoma cell lines bearing EZH2 catalytic domain point mutations (Knutson et al., 2014).
In summary, we proposed a novel pipeline to utilize perturbed gene-expression signatures during DLBCL progression for identifying agents, and we successfully utilized this approach to generate a list of promising compounds. Whether this can be used clinically needs further research. We will continue to follow the latest developments of these agents in the treatment of DLBCL and explore its pharmaco-mechanisms under the aid of stage-of-art technologies in the future.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS
HL and CX designed the project, CX, HN, and ZW wrote the manuscript, BJ and XS collected data, BW carried out data analysis, NL and WW analyzed experimental results. YG and DM researched literatures. All authors read and gave their approval for the final version of the manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.756784/full#supplementary-material
REFERENCES
 Bland, J. M., and Altman, D. G. (1998). Statistics Notes: Survival Probabilities (The Kaplan-Meier Method). Bmj 317, 1572–1580. doi:10.1136/bmj.317.7172.1572
 Botstein, D., Cherry, J. M., Ashburner, M., Ball, C., Blake, J., Butler, H., et al. (2000). Gene Ontology: tool unification Biol.25, 25–29. doi:10.1038/75556
 Chen, W., and Karampinos, D. C. (2020). Chemical‐Shift Encoding-Based Water-Fat Separation With Multifrequency Fat Spectrum Modeling in Spin‐Lock MRI. Magn. Reson. Med. 83, 1608–1624. doi:10.1002/mrm.28026
 Coiffier, B., Thieblemont, C., Van Den Neste, E., Lepeu, G., Plantier, I., Castaigne, S., et al. (2010). Long-Term Outcome of Patients in the LNH-98.5 Trial, the First Randomized Study Comparing Rituximab-CHOP to Standard CHOP Chemotherapy in DLBCL Patients: a Study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood. 116, 2040–2045. doi:10.1182/blood-2010-03-276246
 Freeman, C. L., Savage, K. J., Villa, D. R., Scott, D. W., Srour, L., Gerrie, A. S., et al. (2021). Long-Term Results of PET-Guided Radiation in Patients With Advanced-Stage Diffuse Large B-Cell Lymphoma Treated With R-CHOP. Blood. 137, 929–938. doi:10.1182/blood.2020005846
 Gillies, R. J., Kinahan, P. E., and Hricak, H. (2016). Radiomics: Images Are More Than Pictures, They Are Data. Radiology. 278, 563–577. doi:10.1148/radiol.2015151169
 Green, T. M., Young, K. H., Visco, C., Xu-Monette, Z. Y., Orazi, A., Go, R. S., et al. (2012). Immunohistochemical Double-Hit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 30, 3460–3467. doi:10.1200/jco.2011.41.4342
 Heidelberg, S. B. (2020). Ann Arbor Staging System. Springer Berlin Heidelberg. doi:10.1007/978-3-540-47648-1_287
 Hoiland, R. L., Fergusson, N. A., Mitra, A. R., Griesdale, D. E. G., Devine, D. V., Stukas, S., et al. (2020). The Association of ABO Blood Group With Indices of Disease Severity and Multiorgan Dysfunction in COVID-19. Blood Adv. 4, 4981–4989. doi:10.1182/bloodadvances.2020002623
 Hong, J., Park, S., Park, J., Kim, H. S., Kim, K.-H., Ahn, J. Y., et al. (2011). Evaluation of Prognostic Values of Clinical and Histopathologic Characteristics in Diffuse Large B-Cell Lymphoma Treated with Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone Therapy. Leuk. Lymphoma. 52, 1904–1912. doi:10.3109/10428194.2011.588761
 Johnson, N. A., Slack, G. W., Savage, K. J., Connors, J. M., Ben-Neriah, S., Rogic, S., et al. (2012). Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 30, 3452–3459. doi:10.1200/jco.2011.41.0985
 Knutson, S. K., Kawano, S., Minoshima, Y., Warholic, N. M., Huang, K.-C., Xiao, Y., et al. (2014). Selective Inhibition of EZH2 by EPZ-6438 Leads to Potent Antitumor Activity in EZH2-Mutant Non-Hodgkin Lymphoma. Mol. Cancer Ther. 13, 842–854. doi:10.1158/1535-7163.mct-13-0773
 Kurzawski, M., Dziewanowski, K., Safranow, K., and Drozdzik, M. (2012). Polymorphism of Genes Involved in Purine Metabolism (XDH, AOX1, MOCOS) in Kidney Transplant Recipients Receiving Azathioprine. Ther. Drug Monit. 34, 266–274. doi:10.1097/ftd.0b013e31824aa681
 Li, T., Huang, T., Guo, C., Wang, A., Shi, X., Mo, X., et al. (2021). Genomic Variation, Origin Tracing, and Vaccine Development of SARS-CoV-2: A Systematic Review. The Innovation. 2, 100116. doi:10.1016/j.xinn.2021.100116
 Liu, C., Wei, D., Xiang, J., Ren, F., Huang, L., Lang, J., et al. (2020). An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression. Mol. Ther. - Nucleic Acids. 21, 676–686. doi:10.1016/j.omtn.2020.07.003
 Liu, Y., and Barta, S. K. (2019). Diffuse Large B‐cell Lymphoma: 2019 Update on Diagnosis, Risk Stratification, and Treatment. Am. J. Hematol. 94, 604–616. doi:10.1002/ajh.25460
 Love, M. I., Huber, W., and Anders, S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With DESeq2. Genome Biol. 15, 550. doi:10.1186/s13059-014-0550-8
 Major, A., Smith, D. E., Ghosh, D., Rabinovitch, R., and Kamdar, M. (2020). Risk and Subtypes of Secondary Primary Malignancies in Diffuse Large B‐cell Lymphoma Survivors Change Over Time Based on Stage at Diagnosis. Cancer. 126, 189–201. doi:10.1002/cncr.32513
 Mazan-Mamczarz, K., Peroutka, R. J., Steinhardt, J. J., Gidoni, M., Zhang, Y., Lehrmann, E., et al. (2015). Distinct Inhibitory Effects on mTOR Signaling by Ethanol and INK128 in Diffuse Large B-Cell Lymphoma. Cell Commun Signal. 13, 15. doi:10.1186/s12964-015-0091-0
 Miao, Y., Medeiros, L. J., Li, Y., Li, J., and Young, K. H. (2019). Genetic Alterations and Their Clinical Implications in DLBCL. Nat. Rev. Clin. Oncol. 16, 634–652. doi:10.1038/s41571-019-0225-1
 Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., and Fridlender, Z. G. (2013). Tumor-Associated Neutrophils (TAN) Develop Pro-Tumorigenic Properties During Tumor Progression. Cancer Immunol. Immunother. 62, 1745–1756. doi:10.1007/s00262-013-1476-9
 Nagy, Z. S., Ross, J. A., Rodriguez, G., Bader, J., Dimmock, J., and Kirken, R. A. (2010). Uncoupling JAK3 Activation Induces Apoptosis in Human Lymphoid Cancer Cells via Regulating Critical Survival Pathways. FEBS Lett. 584, 1515–1520. doi:10.1016/j.febslet.2010.02.071
 Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34. doi:10.1093/nar/27.1.29
 Ohe, M., Hashino, S., and Hattori, A. (2012). Successful Treatment of Diffuse Large B-Cell Lymphoma With Clarithromycin and Prednisolone. Korean J. Hematol. 47, 293–297. doi:10.5045/kjh.2012.47.4.293
 Oka, S., Ono, K., and Nohgawa, M. (2020). Clinical Effect of CD25 on the Prognosis of Diffuse Large B Cell Lymphoma With Secondary Central Nervous System Relapse. Pathol. Oncol. Res. 26, 1843–1850. doi:10.1007/s12253-019-00778-y
 Peter, L., and Horvath, S. (2008). WGCNA: an R Package for Weighted Correlation Network Analysis. Bmc Bioinformatics. 9, 559. doi:10.1186/1471-2105-9-559
 Prakash, G., Sharma, A., Raina, V., Kumar, L., Sharma, M. C., and Mohanti, B. K. (2012). B Cell Non-Hodgkin's Lymphoma: Experience From a Tertiary Care Cancer center. Ann. Hematol. 91, 1603–1611. doi:10.1007/s00277-012-1491-5
 Reddy, A., Zhang, J., Davis, N. S., Moffitt, A. B., Love, C. L., Waldrop, A., et al. (2017). Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 171, 481–494. doi:10.1016/j.cell.2017.09.027
 Rodrigues-Fernandes, C. I., Abreu, L. G., Radhakrishnan, R., Perez, D. E. D. C., Amaral-Silva, G. K., Gondak, R. D. O., et al. (2021). Prognostic Significance of CD30 Expression in Diffuse Large B-Cell Lymphoma: A Systematic Review with Meta-Analysis. J. Oral Pathol. Med. 50, 587. doi:10.1111/jop.13208
 Rosas, I. O., Richards, T. J., Konishi, K., Zhang, Y., Gibson, K., Lokshin, A. E., et al. (2008). MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. Plos Med. 5, e93. doi:10.1371/journal.pmed.0050093
 Schmitz, R., Wright, G. W., Huang, D. W., Johnson, C. A., Phelan, J. D., Wang, J. Q., et al. (2018). Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 378, 1396–1407. doi:10.1056/nejmoa1801445
 Shen, Q.-D., Zhu, H.-Y., Wang, L., Fan, L., Liang, J.-H., Cao, L., et al. (2018). Gemcitabine-Oxaliplatin Plus Rituximab (R-GemOx) as First-Line Treatment in Elderly Patients With Diffuse Large B-Cell Lymphoma: a Single-Arm, Open-Label, Phase 2 Trial. Lancet Haematol. 5, e261–e269. doi:10.1016/s2352-3026(18)30054-1
 Shin, H. J., Kim, D. Y., Chung, J., Shin, K. H., and Lee, H. (2020). Prognostic Impact of Peripheral Blood T-Cell Subsets at the Time of Diagnosis on Survival in Patients With Diffuse Large B-Cell Lymphoma. Acta Haematol. 144 (4), 427–437. doi:10.1159/000510912
 Souto, J. C., Alcolea, S., R, A., Remacha, A., Camacho, M., Soler, M., et al. (2014). Tumour Cell Lines HT-29 and FaDu Produce Proinflammatory Cytokines and Activate Neutrophils In Vitro: Possible Applications for Neutrophil-Based Antitumour Treatment. Mediators Inflamm. 2009, 817498. doi:10.1007/978-3-540-47648-1_287
 Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., et al. (2021). The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 49, D605–D612. doi:10.1093/nar/gkaa1074
 Tang, X., Cai, L., Meng, Y., Xu, J., Lu, C., and Yang, J. (2020). Indicator Regularized Non-Negative Matrix Factorization Method-Based Drug Repurposing for COVID-19. Front. Immunol. 11, 603615. doi:10.3389/fimmu.2020.603615
 Valerius, T., Repp, R., de Wit, T., Berthold, S., Platzer, E., Kalden, J., et al. (1993). Involvement of the High-Affinity Receptor for IgG (Fc Gamma RI; CD64) in Enhanced Tumor Cell Cytotoxicity of Neutrophils during Granulocyte Colony-Stimulating Factor Therapy. Blood. 82, 931–939. doi:10.1182/blood.v82.3.931.931
 Von Buchholtz, L., Elischer, A., Tareilus, E., Gouka, R., Kaiser, C., Breer, H., et al. (2004). RGS21 Is a Novel Regulator of G Protein Signalling Selectively Expressed in Subpopulations of Taste Bud Cells. Eur. J. Neurosci. 19, 1535–1544. doi:10.1111/j.1460-9568.2004.03257.x
 Wang, Z., Zhang, J., Luo, S., and Zhao, X. (2021). Prognostic Significance of Systemic Immune-Inflammation Index in Patients With Diffuse Large B-Cell Lymphoma. Front. Oncol. 11, 655259. doi:10.3389/fonc.2021.655259
 Xu, X., Long, H., Xi, B., Ji, B., Li, Z., Dang, Y., et al. (2019). Molecular Network-Based Drug Prediction in Thyroid Cancer. Int. J. Mol. Sci. 20, 263. doi:10.3390/ijms20020263
 Yang, J., Huang, T., Song, W. M., Petralia, F., Mobbs, C. V., Zhang, B., et al. (2016a). Discover the Network Underlying the Connections Between Aging and Age-Related Diseases. Sci. Rep. 6, 32566–32612. doi:10.1038/srep32566
 Yang, J., Huang, T., Song, W.-m., Petralia, F., Mobbs, C. V., Zhang, B., et al. (2016b). Discover the Network Mechanisms Underlying the Connections between Aging and Age-Related Diseases. Sci. Rep. 6, 32566. doi:10.1038/srep32566
 Yang, J., Huang, T., Huang, T., Petralia, F., Long, Q., Zhang, B., et al. (2015). Synchronized Age-Related Gene Expression Changes Across Multiple Tissues in Human and the Link to Complex Diseases. Sci. Rep. 5, 15145. doi:10.1038/srep15145
 Yang, J., Peng, S., Zhang, B., Houten, S., Schadt, E., Zhu, J., et al. (2020). Human Geroprotector Discovery by Targeting the Converging Subnetworks of Aging and Age-Related Diseases. Geroscience. 42, 353–372. doi:10.1007/s11357-019-00106-x
 Young, J., Ménétrey, J., and Goud, B. (2010). RAB6C Is a Retrogene that Encodes a Centrosomal Protein Involved in Cell Cycle Progression. J. Mol. Biol. 397, 69–88. doi:10.1016/j.jmb.2010.01.009
 Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr. Biol. 16, 284–287. doi:10.1089/omi.2011.0118
 Zhang, W., Long, H., He, B., and Yang, J. (2018). DECtp: Calling Differential Gene Expression Between Cancer and Normal Samples by Integrating Tumor Purity Information. Front. Genet. 9, 321. doi:10.3389/fgene.2018.00321
 Zhou, S.-L., Zhou, Z.-J., Hu, Z.-Q., Huang, X.-W., Wang, Z., Chen, E.-B., et al. (2016). Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology 150, 1646–1658. e1617. doi:10.1053/j.gastro.2016.02.040
 Zvi, G., Jing, S., and Samuel, K. (2009). Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: "N1" versus "N2" TAN. Cancer Cell. 16, 183–194. doi:10.1016/j.ccr.2009.06.017
Conflict of Interest: Authors BJ, BW and XS were employed by Geneis Beijing Co. Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.
The handling Editor declared a past co-authorship/collaboration with one of the authors BW.
Copyright © 2021 Xiang, Ni, Wang, Ji, Wang, Shi, Wu, Liu, Gu, Ma and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 20 October 2021
doi: 10.3389/fgene.2021.754503


[image: image2]
A Novel Three-LncRNA Signature Predicting Tumor Recurrence in Nonfunctioning Pituitary Adenomas
Sen Cheng1†, Jing Guo2†, Dawei Wang2, Qiuyue Fang2, Yulou Liu2, Weiyan Xie2, Yazhuo Zhang1,2,3,4 and Chuzhong Li1,2,3,4*
1Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
2Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
3Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
4China National Clinical Research Center for Neurological Diseases, Beijing, China
Edited by:
Lihong Peng, Hunan University of Technology, China
Reviewed by:
Zhitao Jing, The First Affiliated Hospital of China Medical University, China
Jian Zhang, Harbin Medical University, China
* Correspondence: Chuzhong Li, lichuzhong@163.com
†These authors have contributed equally to this work
Specialty section: This article was submitted to RNA, a section of the journal Frontiers in Genetics
Received: 06 August 2021
Accepted: 04 October 2021
Published: 20 October 2021
Citation: Cheng S, Guo J, Wang D, Fang Q, Liu Y, Xie W, Zhang Y and Li C (2021) A Novel Three-LncRNA Signature Predicting Tumor Recurrence in Nonfunctioning Pituitary Adenomas. Front. Genet. 12:754503. doi: 10.3389/fgene.2021.754503

The nonfunctioning pituitary adenoma (NFPA) recurrence rate is relatively high after surgical resection. Here, we constructed effective long noncoding RNA (lncRNA) signatures to predict NFPA prognosis. LncRNAs expression microarray sequencing profiles were obtained from 66 NFPAs. Sixty-six patients were randomly separated into a training (n = 33) and test group (n = 33). Univariable Cox regression and a machine learning algorithm was used to filter lncRNAs. Time-dependent receiver operating characteristic (ROC) analysis was performed to improve the prediction signature. Three lncRNAs (LOC101927765, RP11-23N2.4 and RP4-533D7.4) were included in a prognostic signature with high prediction accuracy for tumor recurrence, which had the largest area under ROC curve (AUC) value in the training/test group (AUC = 0.87/0.73). The predictive ability of the signature was validated by Kaplan-Meier survival analysis. A signature-based risk score model divied patients into two risk group, and the recurrence-free survival rates of the groups were significantly different (log-rank p < 0.001). In addition, the ROC analysis showed that the lncRNA signature predictive ability was significantly better than that of age in the training/testing/entire group (AUC = 0.87/0.726/0.798 vs. AUC = 0.683/0.676/0.679). We constructed and verified a three-lncRNA signature predictive of recurrence, suggesting potential therapeutic targets for NFPA.
Keywords: non-functioning pituitary adenoma (NFPA), recurrence, long noncoding RNAs, signature, machine learning
INTRODUCTION
Pituitary adenoma (PA) is a common and benign intracranial tumor that occurs in the pituitary gland (Fernandez et al., 2010; Ostrom et al., 2015). It can be divided into functioning and nonfunctioning pituitary adenoma (FPA and NFPA, respectively) according to the presence or absence of hormone oversecretion and/or related clinical symptoms, like hyperthyroidism, acromegalic features, and hyperprolactinemia (Moreno et al., 2005). NFPAs account for 14–54% of PAs, and the annual incidence is 0.65–2.34 cases/100,000 (Raappana et al., 2010; Tjörnstrand et al., 2014; Al-Dahmani et al., 2016; Day et al., 2016). Due to the lack of typical symptoms related to hormone hypersecretion, NFPA is usually detected based on symptoms caused by tumor pressure on surrounding structures, such as headaches or visual impairment, or found incidentally on imaging tests (Chen et al., 2011; Ntali and Wass, 2018). Surgical treatment is effective for NFPAs; however, total resection is not achievable for some tumors because they can invade the cavernous sinus or the area around the internal carotid artery (Meij et al., 2002; Shomali and Katznelson, 2002). Moreover, the recurrence rate of residual tumors reches 40 and 50% at 5 and 10 years, respectively, and even tumors that are completely resected have a recurrence rate of 10–20% after 5–10 years (Brochier et al., 2010; Chen et al., 2012; Sadik et al., 2017). Therefore, addressing the recurrence of NFPA is warranted. Currently, radiotherapy is considered to be effective in treating patients with residual or recurrent NFPA, although it may lead to progressive hypopituitarism and other long-term complications (Brada and Jankowska, 2008; Pollock et al., 2008). However, many questions remain about which subsets of NFPA patients are more likely to have recurrence and which subsets of residual tumors need to be further treated to prevent regrowth. Therefore, a method for predicting tumor recurrence after initial surgery is needed for early intervention.
Long noncoding RNAs (lncRNAs) are greater than 200 nt in length and have limited protein-coding ability (Moran et al., 2012). Emerging evidence suggests that lncRNAs regulate gene expression at the transcriptional and posttransciptional levels and that the dysfunction of lncRNAs contributes to the progression of many cancers, including PA (Poliseno et al., 2010; Wang and Chang, 2011; Huarte, 2015; Beylerli et al., 2020). Zhao et al. (2021) showed that downregulation of lncRNA PCAT6 could inhibit the proliferation, migration, viability, and invasion of PA cells by modulating the miR-139-3p/BRD4 axis . A study by D'Angelo et al. (2019) found that the lncRNA RPSAP52 promotes PA cell growth by acting as a microRNA (miRNA) sponge for HMGA proteins. The above studies verify that lncRNAs play a critical role in PA progression. Moreover, recent studies suggest that lncRNAs can be used to predict cancer prognosis and can as a signature in several cancers, such as oesophageal squamous cell carcinoma, gastric cancer, and hepatocellular carcinoma (Li et al., 2014; Zhu et al., 2016; Hong et al., 2020). However, the mechanism and prognostic value of lncRNAs in NFPA are still unclear. Therefore, it is necessary to find an appropriate lncRNA signature to accurately predict the recurrence of NFPA patients after surgery to provide early intervention.
In this study, tumor recurrence refers to regrowth of residual tumor cells and tumor relapse after total resection. We analyzed the expression of lncRNAs in 66 NFPA patients through microarray sequencing and identified genes associated with tumor recurrence. We aimed to develop and validate a useful multi-lncRNA prediction model that may be used to evaluate recurrence and guide treatment after surgical resection in patients with NFPA.
METHODS
Patients and Samples
From October 2007 to July 2014, patients who were diagnosed with NFPA and underwent surgical resection at Beijing Tiantan Hospital were included in this study (n = 66). The mean age of these 66 patients was 51.5 years (range, 25–73), there were 34 males and 32 females, and the median follow-up was 76.5 months (range, 5–122). The clinical and pathological characteristics of all the patients are shown in Supplementary Table S1. Cavernous sinus (CS) invasion was defined by the Knosp grading scale (grade 3 or 4) on preoperative enhanced magnetic resonance imaging (MRI) (Knosp et al., 1993). Postoperative tumor recurrence was defined as recurrence identified from any direction on enhanced MRI from the day of surgery to the end of the follow up; the maximum tumor diameter needed to increase by > 2 mm. According to tumor size, NFPA were divided into microadenoma (<10 mm in diameter), macroadenoma (≥10 mm) and giant adenoma (≥40 mm). The local Ethics Committee approved this study, and informed consent was obtained from each subject.
Total RNA Extraction
According to the instructions provided, total RNA was extracted and purified from collected samples using the phenol-free mirVana™ miRNA Isolation Kit (Cat # AM1561; Ambion; Thermo Fisher Scientific, Inc.). A Thermo ScientificTM NanoDrop 2000 was used to quantify and assess purity of the extracted RNA.
RNA Microarray Analysis
RNA samples were used to generate fluorescence-labeled cRNA targets for the SBC human ceRNA array V1.0 (4 × 180 K) and were subsequently hybridized with slides and scanned in an Agilent Microarray Scanner (Agilent Technologies, Santa Clara, CA, United States) to obtain the data. The raw data was extracted using feature extraction software 10.7 (Agilent Technologies, Inc.). Then, the quantile algorithm provided by the “limma” package (http://bioconductor.org/packages/limma/) of the R program was used to normalize the data.
Identification of Prognostic LncRNAs
The “sample” function of R progrom (www.r-project.org/) was used to randomly divided 66 NPFA patients into a training set (n = 33) and a testing set (n = 33). In the training group, univariable Cox proportional hazards regression analysis was performed to determine the association between recurrence-free survival (RFS) and lncRNA expression in each patient. We used a machine learning approach, random survival forests-variable hunting (RSFVH) algorithm, to narrow the scope of the gene set through an iteration procedure, discarding the bottom quarter of lncRNAs (the least important lncRNAs) at each step. In total, nine lncRNAs were selected (Mogensen et al., 2012; Li et al., 2014; Ishwaran and Lu, 2019).
Construction of Prognostic LncRNA Signature
The selected lncRNAs was used to construct a risk prediction score model as follows (Ritchie et al., 2015; Guo et al., 2016).
Risk Score (RS) = ∑ Ni = 1 (Explg *Coef)
In this formula, N represent the number of prognostic lncRNA, Explg represents the expression value of lncRNA, and Coef represents the estimated regression coefficient of the lncRNA in the univariable Cox regression analysis.
Since the nine selected lncRNAs could form 29–1 = 511 combinations or signature, each patient received 511 risk scores. Then, in the training dataset, the sensitivity and specificity of the 511 signatures were analyzed by the time-dependent receiver operating characteristic (ROC) curves. The prognostic signature was obtained by comparing the area under the ROC curve (AUC) values.
Validation the Reliability of Microarray Data by RT-PCR
To verify the existence of the lncRNA signature, twelve samples were randomly selected from the entire group for RT-PCR and agarose gel electrophoresis. LncRNA reverse transcription was performed using a High Capacity cDNA Reverse Transcription Kit (0049472, Thermo Fisher). Next, PCR was performed using I-5TM High-Fidelity Master Mix (I5HM, 200MCLAB). PCR was conducted as follows: 2 min of initial denaturation at 98°C, 32 cycles of 10 s at 98°C, 58°C for 10 s and 72˚C for 10s, and final extension step for 5 min at 72˚C. GAPDH was used as an internal control gene. The PCR products were run on 2% agarose gel and visualized using a UV transilluminator. The primer sequences are presented in Supplementary Table S2.
Statistical Analysis
The survival distribution of different groups was evaluated and compared using Kaplan-Meier survival analyses and two-sided log-rank tests. The chi-square test was used to analyzed the associations with clinical signatures. p < 0.05 was considered to indicate statistical significance. All analyses were performed using R program 3.6.1. The packages were downloaded from Bioconductor, including the survival, ROC, and randomForestSRC packages.
Functional Enrichment Analysis of LncRNAs With Prognostic Value
To investigate the potential function of the lncRNAs in the signature, Pearson correlation tests were used to identified protein-coding genes (PCGs) coexpressed with the prognostic lncRNAs. The genes with a p < 0.05 and an absolute value of the Pearson coefficient > 0.6 were selected for Gene Ontology (GO) (Ashburner et al., 2000; The Gene Ontology, 2017) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000; Kanehisa et al., 2016; Kanehisa et al., 2017) enrichment analyses. The GO and KEGG analyses were performed with the clusterProfiler package (Yu et al., 2012) of the R program.
RESULTS
Identification of LncRNA Signatures for the Prediction of NFPA Recurrence
A total of 19,741 lncRNAs were extracted from the 66 NFPA expression profiles. The flow chart of this study is shown in Figure 1. The patient information of all patients is summarized in Table 1.
[image: Figure 1]FIGURE 1 | Flowchart of the study.
TABLE 1 | Clinical Data of the included tumors.
[image: Table 1]Initially, in the training set, univariate Cox proportional hazards regression analysis was used to obtain RFS-related lncRNAs. The 1,214-lncRNA set was identified using recurrence as the dependent variable, and the signature was significantly associated with patient recurrence (Supplementary Table S3, p value < 0.05, Figure 2A).
[image: Figure 2]FIGURE 2 | Identifying the LncRNA signature in the training dataset. (A), Univariate Cox proportional hazards regression analysis of the lncRNA expression profiling data in the training dataset. (B), Identifying the lncRNAs by RFSC algorithm. (C). The AUC of all 511 signatures were calculated and the nine highest AUC for k = 1, 2…9 is shown in the plot by ROC analysis for the lncRNA signatures predicting model in the training dataset. (D), Agarose electrophoresis of selected lncRNAs PCR products.
Secondly, to further reduce the number of prognostic lncRNAs, the random forest supervised cassification (RFSC) algorithm was employed to analyze the 1,214-lncRNA set, and the nine lncRNAs most related to recurrence were obtained according to the permutation important score calculated with the RFSC algorithm (Figure 2B; Supplementary Figure S1).
Thirdly, based on the nine types of lncRNA, we constructed a risk-score model of 29–1 (511) types of lncRNA set combinations, which contained different lncRNA numbers from 1 to 9. To screen for a better prediction signature, we conducted a time-dependent ROC analysis that used recurrence status as a lable and signature risk scores as a variable in the training group and compared the sensitivities and specificities (Supplementary Table S4).
According to the AUC values of all 511 signatures (Supplementary Table S4), we identified the lncRNA combination composed of LOC101927765, RP11-23N2.4, and RP4-533D7.4 as the most promising, as it had strong ability to predict recurrence and the smallest node and the largest AUC value of 0.87 (Figure 2C; Table 2). RT-PCR was used to confirm the reliability of microarray sequencing. Consisting with the microarray data, the three lncRNAs were detected in 12 tumor tissues (Figure 2D), which revealed that the lncRNA are stable and can be used as prognostic maker.
TABLE 2 | Identities of PCG and lncRNAs in the prognostic expression signature and their univariable cox association with prognosis.
[image: Table 2]The risk score of the signature was calculated as follows: risk score = (3.41 × expression value of LOC101927765) + (1.90 ×  expression value of RP11-23N2.4) + (−3.43 ×  expression value of RP4-533D7.4).
Validation the Prediction Ability of the Three LncRNA Signature
Each patient obtains a risk score according to the risk score model. Then, the patients from the training group were divided into a high-risk group (n = 16) and a low-risk group (n = 17) based on the cutoff point, which was the median risk score. Kaplan-Meier survival analysis was performed to determined the difference in RFS between the two risk groups. The median RFS time was significantly shorter in the high-risk group (4.44 years) than in the low-risk group (6.74 years) (p < 0.001; log-rank test, Figure 3A). Moreover, the recurrence rate of the high-risk group was higher than that of the low-risk group (>60% vs. < 1%). In a similar manner, patients from the test group were also divided into two risk groups. The results of Kaplan-Meier analyses for the high-risk (n = 16) and low-risk (n = 17) groups in the test dataset were plotted and are shown in Figure 3B (median RFS time: 5.51 vs. 6.82 years; log-rank test, p = 0.016), and the RFS rates were approximately 52.25 and 87.40%, respectively. In addition, patients in the entire group were similary divided into high-risk (n = 32) and low-risk (n = 34) groups, and Kaplan-Meier analysis further confirmed the ability of the lncRNA signature to predict recurrence (median PFS time: 4.97 vs. 6.79 years; log-rank test, p < 0.001, Figure 3C).
[image: Figure 3]FIGURE 3 | The lncRNA signature for predicting recurrence PFS of patients with NFPA. Kaplan–Meier survival curves of patients classified into high- and low-risk groups using the lncRNA signature in the training (A), test (B) and entire dataset (C).
Figures 4A–C intuitively shows the risk score, survival status and expression pattern of lncRNAs in the training, testing, and independent datasets. For patients with low risk scores in the three datasets, RP4−533D7.4 was highly expressed, while LOC101927765 and RP11-23N2.4 was expressed at low levels; the opposite patterns for each lncRNA were seen in patients with high risk scores.
[image: Figure 4]FIGURE 4 | Risk score distribution, survival status and gene expression patterns for patients in high- and low-risk cluster grouped by the three-lncRNA signature in the training (A), testing (B), and independent datasets (C).
The Value of the LncRNA Signature is Independent of Traditional Clinical Features
After proving the recurrence prediction ability of the lncRNA signature, we explored the correlation between the signature and clinical characteristics in the entire dataset (n = 66) to understand the clinical significance of the lncRNA signature.
Table 3 shows that there was an association between the lncRNA signature and age in the entire group (chi-suqre test, p = 0.03, Table 3). In addition, we further assessed whether the prognostic value of the three-lncRNA signature was independent of other clinical factors. Univariate and multivariate Cox regression analyses of factors including age, sex, tumor size classification, CS invasion, and the signature were performed. In the entire dataset, age (HR = 0.33, 95% CI = 0.12–0.93, p = 0.04) and the signature risk score (HR = 1.50, 95% CI = 1.24–1.82, p < 0.001) were significantly associated with the RFS of patients (Table 4). Moreover, the three-signature score was also an indenpent prognostic factor associated with RFS in the training (HR = 2.06, 95% CI = 1.36–3.12, p < 0.001) and test set (HR = 6.96, 95% CI = 1.21–40.16, p = 0.03). Hence, the results indicate that the three-lncRNA signature is an independent prognostic factor for NFPA RFS.
TABLE 3 | Association of the signature with clinicopathological characteristics in Pituitary adenoma patients.
[image: Table 3]TABLE 4 | Univariable and multivariable Cox regression analysis of the signature and survival of NFPA patients in the training, test group and entire group.
[image: Table 4]Comparison of the Predictive Power of the LncRNA Signature and Age
It has been reported that age is associated with a risk of tumor recurrence (Losa et al., 2008). ROC analysis was performed to determine the predictive power of the lncRNA signature and age. The results showed that in the training/testing/entire group, the AUC values of the lncRNA signature were lager those of age (AUC = 0.87/0.726/0.798 vs. AUC = 0.683/0.676/0.679, Figures 5A–B), indicating that the signature had high accuracy and important clinical significance. In addition, time-dependent ROC analysis was performed on the three datasets to further understand the signature prediction capabilities for 3-, 4- and 5 year RFS. The signature AUC values in the training/test/entire group at 3, 4, and 5 years, as shown in Figures 5D–F, indicated a strong predictive power of the signature for RFS (AUC = 0.767/0.818/0.833, 0.651/0.723/0.713, and 0.688/0.774/0.769, respectively).
[image: Figure 5]FIGURE 5 | Compare prediction power of the lncRNA signature to that of Age by ROC in the training, test, and entire dataset (A, B, C) and TimeROC analysis for the signature at 3,4, and 5 years in the three sets (D, E, F).
Functional Enrichment Analysis of Genes Associated with the Prognostic LncRNAs in the Signature
The PCGs correlated with the lncRNAs in our prognostic signature were obtained by Pearson correlation analysis in all 66 patients, and their potential biological function were explored. The expression of 1,056 PCGs was highly correlated with that of at least one of the LncRNAs (Pearson correlation coefficient > 0.60, p < 0.05, Supplementary Table S5). Next, we performed GO and KEGG analyses and found these the genes were enriched in 99 different terms (Supplementary Table S6), such as mRNA processing, RNA splicing and oxidative phosphorylation (Figure 6).
[image: Figure 6]FIGURE 6 | Function of the three lncRNA for GO (A) and KEGG (B) analysis by clusterProfiler.
DISCUSSION
The prevalence of NFPA ranges from 7 to 41.3 cases per 100,000 population, and it is the second most common type of adenomas after prolactinomas (Ntali and Wass, 2018). Despite NFPA being a histologically benign tumor and advances in endosopic techniques, the recueence rate of NFPA is relatively high (Batista et al., 2018). Therefore, it is necessary to accurately predict tumor recurrence after NFPA surgery to obtain the most effective and accurate treatment plan. Herein, we constructed a three-lncRNA signature to predict the prognostic of NFPAs and verifies its predictive power.
First, we obtained 19,741 lncRNA expression profiles by sequencing 66 NFPAs and identified 1,214 lncRNAs that were significantly related to RFS in NFPA in the training set. RSFVH algorithm, a machine learning method, was used to narrow down the number of RFS-related lncRNAs to 9. A three-lncRNAs (LOC101927765, RP11-23N2.4, and RP4-533D7.4) signature with the highest AUC value of 511signatures, which contained combinations of 1–9 different lncRNAs, was identified. The risk model of the signature was constructed basde on the three lncRNAs. Second, patients were divided into two risk group in the training and testing sets, and the recurrence prediction power was validated by Kaplan-Meier analysis. Third, the three-lncRNA signature-based risk score was identified as a prognostic factor independent of clinical features like sex, tumor size classification, CS invasion. Age is a controversial factor related to recurrence in NFPA. Batista et al. (2018) showed that recurrence of NFPA was not associated with age while Subramanian and indicated that older age at surgery was related to a lower risk of recurrence (Lyu et al., 2021; Subramanian et al., 2021). Even so, the ROC analysis showed that the predictive ability of the three-lncRNA signature was better than that of age. Finally, we explore the potential biological function of the three lncRNAs through functional enrichment analysis of coexpressed PCGs, which were identified as related to the three lncRNAs by Perason correlation analysis.
In recent years, lncRNAs has been considered potential prognostic markers and therapectic targets for cancers (Sanchez Calle et al., 2018; Zhang et al., 2021). Liu et al. (2020) found that lncCSMD1-1 is overexpressed in hepatocellular carcinoma (HCC) and interacts with the MYC protein to promote tumor progression, suggesting that it may serve as a prognostic marker for HCC. The lncRNA PiHL (RP11-382A18.2) is upregulated in colorectal cancer (CRC), and its upregulation is an independent predictor of poor CRC prognosis (Deng et al., 2020). In addition, lncRNA also play a crucial role in PA progression. Wang et al. (2019) demonstrated that the lncRNA clarin 1 antisense RNA 1 (CLRNA-AS1) was expressed at low levels in prolactinoma and inhibited cell proliferation and autophagy Moreover, lncRNA-H19 is downregulated in PA and negatively correlated with tumor progression (Wu et al., 2018). Therefore, lncRNAs may be developed into a prognostic makers of PA. Recently, an increasing number of studies have identified several lncRNAs that can be studied to predict cancer prognostic. Meng et al. (2014) identified four lncRNA genes (U79277, AK024118, BC040204, AK000974) that can be used to predict breast cancer survival. Jiang et al. (2020) found that three-lncRNA (LINC02434, AL139327.2, and AC126175.1) could be used to predict prognosis in head and neck squamous cell cancer However, these studies did not confirm the reliability of the lncRNAs in tumor samples. In the present study, to avoid false positives in sequencing data, RT-PCR was performed to verify the reliability of the three lncRNA.
There are some limitations in this study that need to be acknowledged. First, potential lncRNAs may have been overlooked because the study only included 19,741 lncRNAs, which is only a small fraction of human lncRNAs. Second, the construction and evaluation of the model were based on the limited NFPAs samples, and more external samples are needed to verify the prediction power. Third, further in vivo and in vitro experiment need to be performed to elucidate the mechanisms and potential functions of the three lncRNAs.
In summary, we constructed a three-lncRNAs signature that could serve as a precise predictive biomarker for NFPAs. In addition, patients identified by the 3-lncRNA signature to be at high risk of NFPA after surgery could benefit from early and accurate intervention.
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Illumina is the leading sequencing platform in the next-generation sequencing (NGS) market globally. In recent years, MGI Tech has presented a series of new sequencers, including DNBSEQ-T7, MGISEQ-2000 and MGISEQ-200. As a complex application of NGS, cancer-detecting panels pose increasing demands for the high accuracy and sensitivity of sequencing and data analysis. In this study, we used the same capture DNA libraries constructed based on the Illumina protocol to evaluate the performance of the Illumina Nextseq500 and MGISEQ-2000 sequencing platforms. We found that the two platforms had high consistency in the results of hotspot mutation analysis; more importantly, we found that there was a significant loss of fragments in the 101–133 bp size range on the MGISEQ-2000 sequencing platform for Illumina libraries, but not for the capture DNA libraries prepared based on the MGISEQ protocol. This phenomenon may indicate fragment selection or low fragment ligation efficiency during the DNA circularization step, which is a unique step of the MGISEQ-2000 sequence platform. In conclusion, these different sequencing libraries and corresponding sequencing platforms are compatible with each other, but protocol and platform selection need to be carefully evaluated in combination with research purpose.
Keywords: illumina sequencing platform, MGISEQ-2000 sequencing platform, next generation sequencing, DNA nanoball, target capture library
INTRODUCTION
With the launch of the Human Genome Project, next-generation sequencing (NGS) technology has had a huge impact on the biological field in the past 20 years (Consortium, 2015; Yang et al., 2015; Goodwin et al., 2016). Different companies and research institutions have developed various sequencing approaches and platforms, such as Roche’s 454 sequencing platform, Illumina’s sequencing by synthesis (SBS) technology, and PacBio’s single-molecule nanopore sequencing technology (Rivas et al., 2015; Goodwin et al., 2016). Among them, the sequencers or sequencing platforms developed by the Illumina Company have a dominant position in the sequencing market due to their high throughput and high sequencing accuracy. Over time, the development of machine hardware and the diversification of bioinformatics analysis software tools have led to drastic reductions in sequencing costs and increases in convenience and usability, even for new developed techniques like single cell sequencing (Yang et al., 2020a; Xu et al., 2020). For example, NGS technology plays a vital role in analyzing somatic mutations that occur in multiple tumor types. The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) and International Cancer Genome Consortium (ICGC) (Hudson et al., 2010) have sequenced thousands of tumors from more than 50 cancer types and summarized the significant genetic somatic mutations that occur during the process of tumorigenesis (Alexandrov et al., 2013). These data have played an extremely important role in promoting cancer genome research and development (He et al., 2020a; He et al., 2020b; Liu et al., 2021).
Recently, MGI Tech Co., Ltd (referred to MGI) launched a series of NGS sequencers and platforms based on DNA nanoball (DNB) and probe-anchor synthesis (cPAS) technology, such as MGISEQ-200, MGISEQ-2000, and DNBSEQ-T7 (Fehlmann et al., 2016). They have gradually achieved a certain sales volume and have become another option for high-throughput sequencing. For example, MGISEQ-2000 can generate approximately 1.44 TB sequencing data per run with a running cost of only 10 USD/GB. Several studies have compared the performance between MGI and the Illumina sequencing platform, and the results showed that they were highly consistent for different types of sequencing libraries, including whole-exome sequencing (WES) (Xu et al., 2019), whole-genome sequencing (WGS) (Patch et al., 2018), transcriptome sequencing (Zhu et al., 2018; Jeon et al., 2019; Patterson et al., 2019; Zeng et al., 2020), single-cell transcriptome sequencing (Natarajan et al., 2019; Peng et al., 2020a; Senabouth et al., 2020; Zhuang et al., 2021), metagenome sequencing (Fang et al., 2018) and small RNA sequencing (Huang et al., 2017) libraries.
When MGI launched their sequencers, they indicated that they were compatible with the sequencing libraries constructed based on Illumina protocols, that is, that the MGISEQ platform could sequence the Illumina libraries. In our study, we used the same capture DNA libraries constructed based on the Illumina protocol for sequencing with the Illumina NextSeq 500 and MGISEQ-2000 sequencing platforms. We found that the two platforms had high consistency in the hotspot mutation analysis and that there was a significant loss of the 101–133 bp fragments on the MGISEQ-2000 sequencing platform but not in the capture DNA libraries based on the MGISEQ protocol. We hypothesized that this might be related to fragment selection or low ligation efficiency during the DNA circularization step, a step that is unique to the MGISEQ-2000 sequence platform. Hence, although the selection of sequencers and platforms is becoming increasingly diversified and all theoretically compatible and applicable to each other, the choice of platform for practical applications may need to be further evaluated according to the research purpose and library characteristics.
MATERIALS AND METHODS
Sample Collection and Experimental Groups
Our research was approved by the Qingdao Geneis Institute of Big Data Mining and Precision Medicine in November 2019, and the research ID was Ethics-QD-[2020] No. 001. A total of 272 samples (patient age: 29–91 years old) were collected at Qingdao Geneis Institute of Big Data Mining and Precision Medicine from December 2019 to March 2020, including 79 plasma samples, 21 white blood cell samples and 172 formalin-fixed and paraffin-embedded (FFPE) samples. Informed written consent forms were obtained from patients, and identifying information was removed. The clinical information of the samples is shown in Table 1.
TABLE 1 | Clinical information for collected samples.
[image: Table 1]We randomly selected 204 (75%: 204/272) samples to construct capture libraries based on the Illumina protocol and performed data analysis. The remaining samples were divided into two groups of 34 samples (12.5%: 34/272) using different capture panels and constructing capture libraries based on the MGISEQ protocol for sequencing and data analysis, respectively.
Library Preparation Based on Illumina Platform and Sequencing
DNA for NGS-based analysis was extracted using the GeneRead Kit (Qiagen, Hilden, Germany) for FFPE tissue and the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) for white blood cell samples. DNA (200 ng) was used to build the library by using the NEBNext Ultra II DNA library Prep Kit for Illumina (96 reactions) (NEB, Ipswich, MA, United States). Cell-free DNA was extracted using a QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The extracted DNA (20 ng/sample) was then used to build libraries using Accel-NGS® 2S Plus DNA Library Kits (96 reactions; Swift BioSciences, Ann Arbor, MI, United States). Integrated DNA Technologies (IDT, Skokie, IL, United States) or Agilent Technologies (Santa Clara, CA, United States) custom probes were used for hybridization capture. We used the IDT 38-hotspot gene panel or Agilent 519 gene panel (Supplementary Table S5) for all 272 libraries. Quantification was performed with an Illumina/Universal Library Quantification Kit (Kapa Biosystems, Wilmington, MA, United States) on an ABI 7500 Real Time Polymerase Chain Reaction (PCR) System (Applied Biosystems, Waltham, MA, United States). The quality control for Agilent 2,100 Bioanalyzer used a High-Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA, United States). Next-generation sequencing-based analysis was performed on a NextSeq500 or MiSeqDX instrument according to the manufacturer’s instructions (Illumina, San Diego, CA, United States). With the NextSeq500/550 High Output V2 Kit or MiSeqTMDX Reagent V3 Kit, Illumina NextSeq500 or MiSeqDX (Illumina, San Diego, CA, United States) was used for DNA sequencing in 302 cycles for 151 bp paired-end sequencing. All 272 libraries were also analyzed on a MGISEQ2000 instrument according to the manufacturer’s instructions (BGI, Shenzhen, Guangdong, China). With the MGISEQ-2000RS High Output kit (BGI, Shenzhen, Guangdong, China), MGISEQ-2000 (BGI, Shenzhen, Guangdong, China) was used for DNA sequencing in 200 cycles and 300 cycles for 100 bp and 150 bp paired-end sequencing, respectively.
Library Preparation Based on the MGISEQ Platform and Sequencing
DNA libraries were prepared with the MGIEasy FS DNA Library Prep Set (BGI, Shenzhen, Guangdong, China). DNA (50–200 ng) was fragmented physically with a Covaris S220 instrument (Covaris, Woburn, MA, United States), followed by A-tailing, adapter ligation and PCR amplification. DNA library quality was assessed using a Qubit and Agilent 2,100 Bioanalyzer with a High Sensitivity DNA Kit. Cot-1 DNA blocking reagent (Thermo Fisher Scientific, Waltham, MA, United States), IDT universal blocking oligonucleotides and IDT adapter-specific blocking oligonucleotides were added to the pooled libraries and dried in a SpeedVac. The dried mixture was redissolved in mixed liquids of IDT hybridization buffer, IDT hybridization enhancer and BOKE capture probes (BOKE bioscience, Bejing, China). After hybridization at 65°C for 4 h, the target regions were captured with M270 streptavidin beads by incubation at 65°C for 45 min and then washed 3 times at 65°C and another 3 times at room temperature with IDT xGen lockdown reagents. Then, 15 postcapture amplification cycles were performed to obtain the captured libraries. Final libraries were pooled and sequenced using the MGISEQ-2000 sequencing platform with a 150 bp paired-end cycle kit.
Data Normalization and Statistics
As the volume of sequencing data and read length of the Illumina and MGISEQ-2000 platforms were different (Supplementary Table S1), we “normalized” all 272 sample sequencing datasets, that is, each sample had the same read length and read number. We used seqtk (version: 1.0-r73-dirty) (https://github.com/lh3/seqtk) to “normalize” the raw sequencing data. We used a in-house perl program to caculate the number of reads, Q20 ratio and GC content (Supplementary Table S2).
Data Preprocessing and Analysis
The normalized data were cleaned by Trimmomatic (version: 0.39) (Bolger et al., 2014), which filtered out the adapter contamination reads and low-quality reads and the parameter’s setting was ILLUMINACLIP:adapter sequence:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 (adapter sequences for Illumina Nextseq 500 and MGISEQ-2000 were AGA​TCG​GAA​GAG​CAC​ACG​TCT​GAA​CTC​CAG​TCA​C/AGA​TCG​GAA​GAG​CGT​CGT​GTA​GGG​AAA​GAG​TGT​A and AAG​TCG​GAG​GCC​AAG​CGG​TCT​TAG​GAA​GAC​AA/AAG​TCG​GAT​CGT​AGC​CAT​GTC​GTT​CTG​TGA​GCC​AAG​GAG​TTG, respectively). BWA-ALN algorithm (version: 0.7.12) (Li and Durbin, 2009) was applied for alignment with the reference genome hg19 (parameters: -o 1 -e 50 -t 4 -i 15 -q 10). The output SAM file was sorted and deduplicated with Samtools (version: 0.1.19) (Li et al., 2009), and the BAM format file was obtained. We used FreeBayes (version: 1.0.2) (Garrison and Marth, 2012) to detect SNP/InDel mutations (parameters: -j -m 10 -q 20 -F 0.001 -C 1). The mutations were annotated from the ANNOVAR database (Wang et al., 2010). Fragment size distribution was summarized from the paired-end alignment information (column ninth) in the BAM format file. Statistical analysis used the statistical functions in Microsoft Excel 2019 and R software (version 3.2.5).
RESULTS
Data Quality Control Parameters Were Significantly Different Between the Illumina and MGISEQ-2000 Sequencing Platforms
We compared the Q20 rate, GC content, mean depth and capture efficiency of 204 samples generated based on the Illumina library protocol, which were captured by the IDT 38-hotspot gene panel and sequenced on the Illumina and MGISEQ-2000 sequencing platforms (Figure 1, details in Supplementary Table S3), respectively. We found that all of the quality control parameters had significant differences, with p-values of 4.87e-85, 1.15e-4, 0.0326 and 0.0035, respectively, in the two-tailed heteroscedasticity t-test analysis. We thought that these differences could be due to the sequencing principles, the algorithm used for base recognition or the sequencing platform characteristics. For example, the Nextseq500 platform treated all unrecognized bases as G, while HiSeq-2000, MGISEQ-2000 and other previous four-color imaging sequencers treated these bases as N. Therefore, the GC content tended to be higher in the Illumina NextSeq500 results than in the others.
[image: Figure 1]FIGURE 1 | Comparison of Sequencing Data Quality Control Parameters between Illumina and MGISEQ-2000 Platforms. (A) Distribution of Q20 ratio by each sample. (B) Distribution of GC content by each sample. (C) Distribution of average depth by each sample. (D) Distribution of probe capture efficiency by each sample.
Hotspot Mutations Showed High Consistency Between the Illumina and MGISEQ-2000 Sequencing Platforms.
The hotspot mutations (SNPs and InDels) detected in 204 sample datasets were compared between the Illumina and MGISEQ-2000 platforms (Supplementary Table S4). We defined a positive detection filter condition as mutation frequency ≥ 0.4% for plasma samples and mutation frequency ≥ 1% for FFPE samples. We found that the hotspot mutation detection results had high consistency rates of 82.30% (Illumina: 200/243) and 82.99% (MGISEQ-2000: 200/241) (Figure 2A). Furthermore, no significant difference (R2 = 0.8422, p-value = 0.9652) in mutation frequency was observed between the Illumina and MGISEQ-2000 platform data. (Figure 2B).
[image: Figure 2]FIGURE 2 | Hotspot Mutation Results Comparison between the Illumina and MGISEQ-2000 Platforms. (A) The Venn digram of the detected hotspot mutations comparision. (B) The correlation comparison of the detected hotspot mutation frequency values.
MGISEQ-2000 sequencing platform data based on Illumina libraries showed a significant loss of the 101–133 bp fragment.
Insert fragment size and distribution were evaluated and analyzed for all 204 samples. As we used the same sample library for sequencing, the theoretical difference only existed in Illumina’s bridge PCR amplification and MGISEQ-2000s DNB circularization. (Figure 3A) (Goodwin et al., 2016; Chen et al., 2019; Korostin et al., 2020). Combining all 204 sample data for fragment size analysis, our results revealed a significant loss of 101–133 bp fragments in the MGISEQ-2000 platform data, with a t-test p-value of 3.3072e-17 (Figure 3B), while other fragment sizes, such as 134–500 bp (t-test p-value = 0.7264), did not show a difference. Although significant differences were found in the Q20 rate, GC content and other quality control statistics, these should be attributable to the sequencer system characteristics and should not have a great impact on the fragment size distribution. Therefore, the loss of the 101–133 bp fragment size may be related to the DNA cyclization step, that is, there may be fragment size selection in the circularization step or enrichment bias for longer DNA molecules and low ligation efficiency for shorter DNA molecules.
[image: Figure 3]FIGURE 3 | The Insert Fragment Size Analysis of Illumina-based Capture Library On the Illumina and MGISEQ-2000 Platforms. (A) The principles of Illumina and MGISEQ sequencers. Track A represents the Illumina library combined with bridge PCR amplification of the Illumina platform. Track B represents the Illumina library combined with DNA circularization for DNB of the MGISEQ-2000 platform. Track C represents the MGISEQ library combined with DNA circularization for DNB of the MGISEQ-2000 platform. (B) Compared with the Illumina platform data, the MGISEQ-2000 platform data had a significant loss of 101–133 bp fragments. (C) Statistical analysis of sequencing depth distribution in ALK, EGFR and ERBB2 with one sample. Sequencing depth distribution of 101–133 bp (left panel) and 134–500 bp (right panel) in ALK (top), EGFR (middle), and ERRBB2 (bottom). In each figure panel, the top panel shows the sample total sequencing depth distribution, the middle panel shows the sequencing depth of 101–133 bp fragment size, and the bottom panel shows the 134–500 bp fragment size sequencing depth distribution.
Then, we extracted 101–133 bp and 134–500 bp fragment size information from BAM files for each sample and analyzed the sequencing depth distribution of three common cancer genes, ALK receptor tyrosine kinase (ALK), epidermal growth factor receptor (EGFR) and erb-b2 receptor tyrosine kinase 2 (ERBB2). The results showed that 69.12% (141/204) of samples had 101–133 bp fragment size loss, while the sequencing depth distribution of 134–500 bp fragments was consistent with the overall total sequencing depth, indicating that the phenomenon was not due to stochasticity in specific genes (Figure 3C). The sequencing depth distribution of all samples was in the Supplementary Figures by each sample.
As we know, the use of FFPE or hemolyzed samples may have a great influence on the distribution of DNA fragment size. Therefore, we performed statistical analysis on the quality of 204 samples with and without 101–133 bp loss. First, we defined the sample quality levels with DNA agarose gel electrophoresis as A, B, C, D or E (Figure 4A). Then, all samples in each grade were subgrouped according to whether the 101–133 bp fragment size was lost. We found that the sample proportions of A, D and E levels were consistent in the two groups, while B and C levels were quite different. The proportions of B [C] level samples in the 101–133 bp loss group and 101–133 bp nonloss group were 25.53% (36/141) [26.24% (37/141)] and 41.27% (26/63: 6) [9.52% (6/63)], respectively (Figure 4B). Therefore, our results showed that the circularization step of MGISEQ-2000 not only biased the selection of DNA fragment size but also may have a greater impact on samples with quality grade B or C.
[image: Figure 4]FIGURE 4 | Statistical Analysis On The Quality of 204 Samples. (A) Sample quality grading table of gDNA agarose gel electrophoresis. (B) The distribution of different sample quality levels in samples with and without loss of 101–133 bp fragment size. The top figure represented sample quality grade distribution of samples without 101–133 bp fragment size loss. The bottom figure represented sample quality grade distribution of samples with 101–133 bp fragment size loss.
Fragment Size Loss had no Probe Preference and was not Obvious in the Database of MGISEQ-2000 Libraries.
To verify whether the phenomenon was related to capture-probe preference, we analyzed the fragment size distribution of the sequencing data from 34 samples that were captured with an Agilent 519 gene panel and sequenced separately by Illumina Nextseq500 and MGISEQ-2000. As shown in Figure 5A, the same 101–133 bp fragment size loss was found. In addition, we constructed 34 other libraries according to the experimental protocols of MGISEQ and Illumina and generated data on their sequencing platforms. We also analyzed the fragment size distribution and found that the fragment size (peak 183 bp) distribution on the Illumina platform had a “left offset” compared to that (peak 214 bp) on the MGISEQ-2000 platform. The fragment size distribution curve of the MGISEQ data was smooth, and there was no obvious 101–133 bp fragment size loss (Figure 5B).
[image: Figure 5]FIGURE 5 | Fragment Distribution in Illumina Nextseq500 and MGISEQ-2000. (A) The libraries were constructed following the instructions of Illumina and captured with an Agilent 519 gene panel. (B) Fragment distribution when experiments were performed according to the experimental systems and kits recommended by Illumina and MGISEQ, respectively.
DISCUSSION
In recent decades, next-generation sequencing technology has undergone rapid development. With the greatly reduced sequencing cost, increasing scientific research and technical product development are being applied to NGS. In particular, to meet the needs of precision medicine and big data mining, the number and scale of cancer omics research and clinical projects are constantly increasing (Yang et al., 2020b; Zeng et al., 2020). For a large number of samples, the expenses and costs borne are unaffordable; thus, sequencing costs are still the bottleneck for large-scale NGS applications. At present, Illumina sequencers dominate the high-throughput sequencing market, but MGI sequencers based on DNB technology have gradually become more popular worldwide. Recently, several studies have compared the performance of BGI-500 and the Illumina HiSeq machine and showed that both of them could produce high-quality data in various applications. However, a comparison of their quality for capture panel sequencing (except WES), which is widely used in tumor research, has not been published.
In this study, we compared the data produced from the same library by different sequencing platforms. For the library preparation step, Illumina used bridge PCR technology, while MGI achieved single-molecule template amplification by DNB circularization amplification. We applied both the Illumina (Nextseq500 and MiSeqDx) platform and MGISEQ (MGISEQ-2000) platform to the same library constructed by the Illumina protocol. Theoretically, any difference in sequencing data should have been caused by the differences between bridge PCR and circularization amplification or the consequent sequencing system differences. Comparison of the data analysis results revealed the disadvantage of fragment size selection and short fragment size ligation efficiency in the circularization step. These results suggest that the sequencing data based on Illumina library preparations and in which sample types with shorter fragment sizes (such as hemolyzed plasma samples) or a more complex distribution of DNA fragment sizes (such as FFPE samples with longer storage times) are used may encounter short DNA fragment size loss on the MGISEQ sequencing platform. Therefore, we should evaluate the compatibility of sequencing libraries and sequencing platforms for scientific research that focuses on the distribution of fragment size, especially for small RNA (Fehlmann et al., 2016), cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) research (Underhill et al., 2016; Liu et al., 2020). Although the sequencing library is basically compatible with different sequencing platforms, appropriate experimental systems and sequencing platforms should be selected based on the research purpose and sample type. Otherwise, there may be an unexpected impact on the sequencing results. Our data showed the results of only target capture panel sequencing; the assessment of other sequencing applications requires further investigation.
Considering that the alignment algorithm may also have an impact on the fragment size distribution analysis, we replaced the BWA “aln” algorithm mentioned in the article with the BWA “mem” algorithm. The “mem” algorithm is much looser than the “aln” algorithm, and it can perform local alignment and splicing. The “mem” algorithm allows multiple different parts of the sequencing reads to have their own optimal matches, resulting in multiple optimal alignment positions for the reads and greatly improving the alignment rate. After comparing and analyzing the combined data with 204 samples of the IDT 38-hotspot gene panel and 34 samples of the Agilent 519 gene panel by using the “mem” algorithm, we found that the number of reads in the 101–133 bp fragment size from the MGISEQ-2000 platform data was significantly improved (Supplementary Figure S1), but there were still significant differences, with t-test p-values of 0.0277 and 0.0252, respectively. The conclusion was consistent with that based on the “aln” algorithm.
We also found that the data without the 101–133 bp fragment size loss were derived from different sequencing read lengths of the Illumina Nextseq500 and MGISEQ-2000 platforms, while the data with the same sequencing read length showed the 101–133 bp fragment size loss. To investigate whether the data with or without the phenomenon were related to the sequencing read length, we reanalyzed and compared data with the same number of sequencing reads but not read length, and found that the results were consistent with the previous conclusion. Since the 101–133 bp fragment size loss was concentrated in the data with long read length (150 bp) but not in the data with short read length (100 bp), we hypothesized that the phenomenon may also be related to the sequencing read length. We will conduct more in-depth research on this point in our future work.
In summary, the MGISEQ-2000 platform has good compatibility with Illumina sequencing libraries, but the DNB circularization step may cause fragment size selection or have low ligation efficiency for short DNA fragment sizes. For the accuracy of downstream data analysis, we recommend that different sequencing platforms should be used with their official experimental systems and kits. If the experiment needs to change between different platforms, for cost considerations or other reasons, the selected platform should be evaluated carefully with respect to the purpose of the research or actual needs, as it may have a significant impact on outcomes. In the future, it would be interesting to compare the performances of two platforms in specific applications like cancer diagnosis (He et al., 2020b; Peng L.-H. et al., 2020), prognosis (Peng et al., 2020c; Song et al., 2020; Zhou et al., 2020), evolution inference (Yang et al., 2013; Yang et al., 2014), drug repositioning (Peng et al., 2015; Zhou et al., 2019; Liu et al., 2020), and so on. However, it is out of the scope of this study.
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Background: Although ribosomal protein S6 kinases, 90 kDa, polypeptide 3 (RSK2, RPS6KA3) has been reported to play an important role in cancer cell proliferation, invasion, and migration, including breast cancer, its clinical implication in primary breast cancer patients is not well understood, and there were not many studies to explore the relationship between RSK2 and breast cancer on a clinical level.
Methods: A systematic series matrix file search uploaded from January 1, 2008 to November 31, 2017 was undertaken using ArrayExpress and Gene Expression Omnibus (GEO) databases. Search filters were breast cancer, RNA assay, and array assay. Files eligible for inclusion met the following criteria: a) sample capacity is over 100, b) tumor sample comes from unselected patient’s primary breast tumor tissue, and c) expression of RSK2 and any clinical parameters of patients were available from the files. We use median as the cutoff value to assess the association between the expression of RSK2 and the clinical indexes of breast cancer patients.
Finding: The meta-analysis identified 13 series matrix files from GEO database involving 3,122 samples that come from patients’ primary breast cancer tissue or normal tissue. The expression of RSK2 in tumor tissues is lower than that in normal tissues [odds ratio (OR), 0.54; 95% credible interval (CI), 0.44–0.67; Cochran’s Q test p = 0.14; I2 = 41.7%]. Patients with a high expression of RSK2 showed more favorable overall survival [hazard ratio (HR), 0.71; 95% CI, 0.49–0.94; Cochran’s Q test p = 0.95; I2 = 0.0%] and less potential of distant metastasis (OR, 0.59; 95% CI, 0.41–0.87; Cochran’s Q test p = 0.88; I2 = 0.0%) and lymph node infiltration (OR, 0.81; 95% CI, 0.65–0.998; Cochran’s Q test p = 0.09; I2 = 42.8%). Besides, the expression of RSK2 in luminal breast cancer is lower than Cochran’s Q test p = 0.06; I2 = 63.5%). RSK2 overexpression corresponded with higher histological grade (OR, 1.329; 95% CI, 1.03–1.721; Cochran’s Q test p = 0.69; I2 = 0.0%). RSK2 expression is also associated with estrogen receptor (ER) and age.
Conclusion: The meta-analysis provides evidence that RSK2 is a potential biomarker in breast cancer patients. The expression of RSK2 is distinctive in different intrinsic subtypes of breast cancer, indicating that it may play an important role in specific breast cancer. Further study is needed to uncover the mechanism of RSK2 in breast cancer.
Systematic Review Registration: (website), identifier (registration number).
Keywords: ribosomal protein S6 kinase, 90kDa, polypeptide 3 (RSK2), breast cancer, molecular subtype, microarray, prognostic value, biomarkers
INTRODUCTION
Breast cancer is the most frequent cancer among women. Data from the World Health Organization shows that breast cancer impacts over 1.5 million women each year and also causes the greatest number of cancer-related deaths among women. In 2015, 570,000 women died from breast cancer—that is, approximately 15% of all cancer deaths among women. Although there has been a breakthrough in the treatment and prevention of breast cancer in the past few years, leading to the 5-years relative survival rate rising to 90%, the majority of breast cancer patients with distant metastasis succumb to cancer progression within 5 years (Siegel et al., 2018). Also, breast cancer is more than one single disease. Several molecular subtypes of breast cancer have been classified depending on their molecular characteristics (Perou et al., 2000), and each individual subtype corresponds to a different underlying biology, survival rate, and response to therapy (Prat et al., 2015; Nielsen et al., 2017). Therefore, the identification of biomarkers to screen high-risk patients, predict breast prognostic outcomes, and provide new therapeutic targets for specific breast cancer is urgently needed.
RSK2, ribosomal protein S6 kinase, 90 kDa, polypeptide 3, belongs to RSK serine/threonine kinase family and is a downstream of the mitogen-activated protein kinase (MAPK) pathway (Zhao et al., 2016). RSK is unique among serine–threonine kinases in that it contains two functional kinase domains: an N-terminal kinase that phosphorylates the substrates of RSK and a C-terminal kinase involved in the activation mechanism of RSK (Frödin and Gammeltoft, 1999). RSK isoforms are activated by virtually all extracellular signaling molecules including growth factors, peptide hormones, neurotransmitters, and environmental stresses (Arul and Cho, 2013). It has been demonstrated that RSK2 plays an important role in cancer cell proliferation, invasion, and migration, including breast cancer (Yoo et al., 2019; Guo and Kong, 2021).
In previous studies, it has been reported that RSK2 expression is different between breast cancer tissue and normal breast tissue and varies among different subtypes or histological grades of breast cancer. Some studies suggested that RSK2 overexpression is correlated with basal-like breast cancer and higher histological grade, and RSK2 mRNA is associated with poor survival in breast cancer patients who had not received chemotherapy (Stratford et al., 2012; Zhao et al., 2016). A protein downstream of RSK2 named Y-box binding protein-1(YB-1) was reported to transform human mammary epithelial cells in the development of basal-like breast cancer (Davies et al., 2014). Another study indicated that RSK2 activation status positively correlates with patient response to anti-estrogen hormonal therapies and is required for estrogen receptor+ (ER+) breast cancer tumorigenesis (Clark et al., 2001). Several drug trials illustrated that by suppressing RSK2 expression, the metastasis of human epidermal growth factor receptor 2+ (HER2+) breast cancer was repressed (Mao et al., 2016), the ability of migration and invasion of lung cancer cell was inhibited (Lee et al., 2015), and the carcinogenesis of ultraviolet radiation-induced skin cancer was prevented (Yao et al., 2014). These prompt us to investigate whether RSK2 might be a potential biomarker that can act as a promising biomarker of breast cancer or a novel therapy target for a specific subtype of breast cancer. However, RSK2 expression is rarely associated with clinical practice, which drives us to investigate the association between RSK2 expression and clinical parameters and prognosis of breast cancer patients.
In the case of very limited clinical studies of RSK2, we performed a meta-analysis using public electronic databases ArrayExpress (Parkinson et al., 2007) and Gene Expression Omnibus (GEO) (Clough and Barrett, 2016) to summarize and evaluate the clinical significance of RSK2 in breast cancer patients and in order to explore the possibility of RSK2 expression as a predictive marker of clinicopathological parameters and prognosis in primary breast cancer, so as to screen high-risk patients or to provide new targets and directions for the treatment of breast cancer patients with specific molecular subtypes.
METHODS
Literature Search
We conducted a search of a series matrix files in the electronic database ArrayExpress (ArrayExpress, 2017) uploaded from January 1, 2008 to November 1, 2017 using the search filter “breast cancer,” “Homo sapiens,” “RNA assay,” “array assay,” and “all assay.” We also conducted a search of a series matrix files in the GEO database (NCBI, 2017) uploaded from January 1, 2008 to November 1, 2017 using the search filter “breast cancer,” “Homo sapiens,” “series,” and “expression profiling by array.” A total of 207 and 227 expressions by array dataset were listed in the ArrayExpress and GEO databases, respectively. Relevant literatures were found in GEO database using the GSE ID.
Inclusion and Exclusion Criteria
This meta-analysis collects data from primary breast cancer patient’s tumor tissue to assess the relationship of RSK2 expression and the clinical parameters of breast cancer patients, such as clinicopathological features and prognostic factors. Inclusion criteria are as follows: a) patients in the study have not been selected, or the selection had no effect on clinical indicators given the RSK2 expression might be different among different subtypes of breast cancer and different clinical status of patients; b) the sample size in each file is greater than 100 and comes from the same study; c) sample comes from breast cancer patients’ primary tumor tissue or normal tissue; d) the expression of RSK2 was efficient and available from the series matrix file; and e) any of a patient’s clinicopathological features and prognostic factors can be extracted from the file. When samples in a file are duplicated with samples in another file, we selected the larger or qualified one. The exclusion criteria are as follows: a) samples were gathered from different studies; b) the original study could not be found; c) the sample size in the document is inconsistent with the number of patients in the study, and the replicated samples could not be found in the file; and d) the file was ineligible after invalid samples were removed. Files were filtered by two researchers separately; the disagreement was resolved through discussion. The eligible files are listed on Table 1.
TABLE 1 | Studies included in the meta-analysis.
[image: Table 1]Data Extraction
For observational studies, the Newcastle-Ottawa Quality Assessment Scale (NOS) was employed for assessing the quality of these studies. All data was abstracted by using a standardized data collection form, with information recorded as follows: first author’s name, publication year, country of origin, number of cases and controls, detection method, GSE ID, and platform of detection. Each sample’s RSK2 expression and corresponding clinicopathological features and prognostic factors were extracted from the series matrix file, including age, tissue, ER status, progesterone receptor (PR) status, HER2 status, lymph node infiltration, histological grade, TNM stage, tumor size, tumor type, metastasis, intrinsic subtype (by PAM50), overall survival time (OS), disease-free survival time (DFS), relapse-free survival time (RFS), and relevant status of the patient. Samples with incomplete information or data described above were removed.
Data extraction is conducted by two researchers, respectively, and disagreements were resolved by discussion.
Statistical Analysis
Statistical analysis was conducted by the guidelines proposed by the Meta-Analysis of Observational Studies group (Stroup et al., 2000). Median was used as the cutoff value to determine the level of RSK2 expression because there was no suitable cutoff value to help us distinguish the expression status of RSK2. Odds ratio (OR) was employed for evaluating the association between RSK2 expression and clinicopathological features. Hazard ratio (HR) and 95% credible interval (CI) were appraised to assess the association between RSK2 expression and prognostic indicators, including OS, DFS, and RFS by using IBM SPSS Statistics 24. Heterogeneity of the OR and HR was calculated by using the Cochran’s Q and I2 test. A random-effect model was applied when p < 0.1 or I2 > 50%. When heterogeneity was absent, a fixed-effect model was employed. Begg’s rank correlation method and Egger’s weighted regression methods were employed to assess publication bias. STATA software package (version 12.0) was used to calculate pooled ORs, HRs, and corresponding 95% CI; all p values were two tailed.
Given the limited prognostic information of specific breast cancer patients in those GSE files, we used the Kaplan–Meier Plotter (Hou et al., 2017; Kaplan-Meier plotter), an online database including gene expression data and clinical data, to assess the prognostic value of RSK2 in breast cancer. The patient samples were divided into two cohorts according to the median expression of the gene (high vs. low expression).
RESULTS
Search Results
The flow diagram for the recognition of eligible studies is presented in Figure 1. There were 207 and 227 GSE files identified from the ArrayExpress database and GEO database, respectively. After duplicates were removed, RSK2 expression, abstract, and full text were checked, and 13 GSE files from 13 independent studies involving 3,122 patients were identified by our search strategy. The features of the 13 studies are listed in Table 1. Ineligible samples and data were removed, such as samples from cell, blood, or distant metastasis. When sample was detected multiple times, the one with the highest RSK2 expression was selected. Histological grades Ⅰ and Ⅱ were grouped as low-grade disease, and Ⅲ was grouped as high-grade disease. Clinical stages Ⅰ and Ⅱ were grouped as early-stage disease, and III and IV were grouped as late-stage disease. Tumors larger than 2 cm were grouped as large tumors, and the rest were grouped as small tumors. Patients were divided into high-age group and low-age group, with 55 years old as the cutoff value. Clinical stage of GSE20685 was not available, which we estimated depending on the T, N, and M stage shown in the GSE file using the NCCN guidelines of breast cancer (version 2. 2011). Data in GSE39004 were only used for comparing RSK2 expression between normal tissues and tumor tissues, because its tumor sample size is not large enough.
[image: Figure 1]FIGURE 1 |  Flow diagram of literature selection. The search and selection process for the expression of RSK2 of breast cancer patients and the number of eligible studies.
RSK2 Expression in Breast Tumor Tissues was Lower Than That in Normal Breast Tissue and Enriched in Basal-Like Breast Cancer
Our meta-analysis demonstrated that RSK2 expression in breast cancer tissue was lower than that in normal tissue (pooled OR = 0.54, 95% CI: 0.44–0.67, Cochran’s Q test p = 0.14, I2 = 41.7%) (Figure 2A). There was no statistically significant difference between ductal carcinoma and lobular carcinoma (pooled OR = 0.75, 95% CI: 0.35–1.60, Cochran’s Q test p = 0.104, I2 = 51.3%) (Figure 2B). The relationship of RSK2 expression and molecular subtype was analyzed in our meta-analysis. The expression of RSK2 was obviously different between the luminal subtype and basal subtype of breast cancer (pooled OR = 0.25, 95% CI: 0.08–0.80, Cochran’s Q test p = 0.06, I2 = 63.5%) (Figure 2C), and no distinctive RSK2 expression was found between luminal A and luminal B subtypes of breast cancer (pooled OR = 0.73, 95% CI: 0.26–2.01, Cochran’s Q test p = 0.05, I2 = 66.5%) (Figure 2D).
[image: Figure 2]FIGURE 2 |  RSK2 expression among different types of breast tumor tissues as well as normal breast tissues. (A) RSK2 expression in breast cancer tissue compared with normal tissue. (B) The association between RSK2 expression and the ductal breast cancer relative to the lobular breast cancer. (C) RSK2 expression in luminal breast cancer compared with basal-like breast cancer. (D) RSK2 expression in luminal A breast cancer compared with luminal B breast cancer.
RSK2 Expression is Negatively Correlated With ER Status
On the basic data obtained, we analyzed the relationship between RSK2 expression and the three main breast cancer biomarkers. RSK2 expression was inversely correlated with ER expression (pooled OR = 0.38, 95% CI: 0.25–0.58, Cochran’s Q test p = 0.009, I2 = 67.7%) (Figure 3A). There was no statistically significant relationship between PR expression (pooled OR = 0.83, 95% CI: 0.57–1.22, Cochran’s Q test p = 0.36, I2 = 1.3%) (Figure 3B) and HER2 expression (pooled OR = 0.91, 95% CI: 0.66–1.25, Cochran’s Q test p = 0.14, I2 = 39.2%) (Figure 3C).
[image: Figure 3]FIGURE 3 |  The association between RSK2 expression and the three main breast cancer biomarkers. (A) The association between RSK2 expression and estrogen receptor (ER) status. (B) The association between RSK2 expression and progesterone receptor (PR) status. (C) The association between RSK2 expression and HER2 status.
RSK2 Expression Effects on Breast Cancer Progression
The association of RSK2 expression with breast cancer clinicopathological features was also analyzed. High RSK2 expression reduced the possibility of distant metastasis (pooled OR = 0.59, 95% CI: 0.41–0.87, Cochran’s Q test p = 0.88, I2 = 0.0%) (Figure 4A) and lymph node metastasis (pooled OR = 0.81, 95% CI: 0.65–0.998, Cochran’s Q test p = 0.09, I2 = 42.8%) (Figure 4B). The overexpression of RSK2 positively correlated with histological grade (pooled OR = 1.33, 95% CI: 1.03–1.72, Cochran’s Q test p = 0.69, I2 = 0.0%) (Figure 4C). However, RSK2 expression has no statistically significant relationship with other biological characters of breast cancer, including tumor size (pooled OR = 0.995, 95% CI: 0.77–1.28, Cochran’s Q test p = 0.43, I2 = 0.0%) (Figure 4D) and clinical stage (pooled OR = 1.09, 95% CI: 0.71–1.67, Cochran’s Q test p = 0.87, I2 = 0.0%) (Figure 4E).
[image: Figure 4]FIGURE 4 |  The association between RSK2 expression and other clinicopathological characters. (A) The association between RSK2 expression and distant metastasis. (B) The association between RSK2 expression and lymph node infiltration. (C) The association between RSK2 expression and histological grade. (D) The association between RSK2 expression and tumor size. (E) The association between RSK2 expression and clinical stage of breast cancer.
High RSK2 Expression is Indicative of Longer OS in Breast Cancer Patients
We evaluated the association between RSK2 expression level and survival outcome of breast cancer patients. The results indicate that RSK2 overexpression was statistically associated with the OS rate of breast cancer patients (pooled HR = 0.71, 95% CI: 0.48–0.94, Cochran’s Q test p = 0.95, I2 = 0.0%) (Figure 5A), while there was no significant relationship between RSK2 expression and DFS (pooled HR = 0.96, 95% CI: 0.63–1.29, Cochran’s Q test p = 0.94, I2 = 0.0%) (Figure 5B). Only one GSE file (GSE42568) involving 104 patients has the data of RFS, and there was no statistical significance between them (HR = 0.62, 95% CI: 0.32–1.22, log rank test p = 0.21) (Figure 5C). We did not find a significant difference in survival outcome between basal-like breast cancer and luminal breast cancer for the limited sample capacity and accessible data.
[image: Figure 5]FIGURE 5 | The association between RSK2 expression and survival outcome of breast cancer patients. (A) The association between RSK2 expression and breast cancer overall survival (OS). (B) The association between RSK2 expression and breast cancer disease-free survival (DFS). (C) The association between RSK2 expression and age of breast cancer patients.
RSK2 Expression is Negatively Correlated With the Age of Breast Cancer Patients
We also recorded the corresponding age of every sample and grouped them into low-age group and high-age group with 55 years old as the cutoff value, which was randomly selected. Interestingly, we found that RSK2 expression is lower in the high-age group (pooled OR = 0.73, 95% CI: 0.60–0.89, Cochran’s Q test p = 0.45, I2 = 0.0%) (Figure 5D). In order to investigate whether RSK2 expression decreased with age, we calculated the relationship between RSK2 expression and age involving 508 normal tissue samples in GSE93601, and no statistically significant correlation was found (OR = 0.95, 95% CI: 0.66–1.36). The status of p53 was available in GSE19783, which involves 110 patients, indicating there was a positive relationship between RSK2 and P53 mutation (OR = 4.09, 95% CI: 1.74–9.22, Cochran’s Q test p = 0.0007).
Prognostic Value of Various RSK2 Among Different Molecular Subtypes of Breast Cancer
The online database Kaplan–Meier was employed to evaluate the impact of RSK2 expression on the prognostic outcome in different molecular subtypes of breast cancer, indicating that elevated RSK2 expression predicts a favorable OS (luminal A breast cancer: HR = 1.04, 95% CI: 0.74–1.48, log rank p = 0.81; luminal B breast cancer: HR = 0.67, 95% CI: 0.46–0.97, log rank p = 0.034; basal-like breast cancer: HR = 0.48, 95% CI: 0.28–0.82, log rank p = 0.006; HER2+ breast cancer: HR = 0.7, 95% CI: 0.37–1.35, log rank p = 0.29) (Figure 6) and distant metastasis-free survival (DMFS) (luminal A breast cancer: HR = 0.96, 95% CI: 0.72–1.28, log rank p = 0.78; luminal B breast cancer: HR = 0.63, 95% CI: 0.44–0.9, log rank p = 0.009; basal-like breast cancer: HR = 0.54, 95% CI: 0.32–0.92, log rank p = 0.021; HER2+ breast cancer: HR = 1, 95% CI: 0.54–1.87, log rank p = 0.99) (Figure 7) in basal-like and luminal B breast cancer, but not in luminal A and HER2+ breast cancer. The overexpression of RSK2 predicts a favorable prognostic value of RFS (Figure 8) in all those subtypes of breast cancer (luminal A breast cancer: HR = 0.78, 95% CI: 0.65–0.92, log rank p = 0.004; luminal B breast cancer: HR = 0.68, 95% CI: 0.56–0.82, log rank p < 0.001; basal-like breast cancer: HR = 0.67, 95% CI: 0.52–0.87, log rank p = 0.002; HER2+ breast cancer: HR = 0.51, 95% CI: 0.35–0.76, log rank p < 0.001).
[image: Figure 6]FIGURE 6 |  The association between RSK2 expression and OS in different molecular subtypes of breast cancer. (A) The association between RSK2 expression and OS in luminal A breast cancer. (B) The association between RSK2 expression and OS in luminal B breast cancer. (C) The association between RSK2 expression and OS in basal-like breast cancer. (D) The association between RSK2 expression and OS in HER2+ breast cancer.
[image: Figure 7]FIGURE 7 |  The association between RSK2 expression and distant metastasis-free survival (DMFS) in different molecular subtypes of breast cancer. (A) The association between RSK2 expression and DMFS in luminal A breast cancer. (B) The association between RSK2 expression and DMFS in luminal B breast cancer. (C) The association between RSK2 expression and DMFS in basal-like breast cancer. (D) The association between RSK2 expression and DMFS in HER2+ breast cancer.
[image: Figure 8]FIGURE 8 |  The association between RSK2 expression and relapse-free survival (RFS) in different molecular subtypes of breast cancer. (A) The association between RSK2 expression and RFS in luminal A breast cancer. (B) The association between RSK2 expression and RFS in luminal B breast cancer. (C) The association between RSK2 expression and RFS in basal-like breast cancer. (D) The association between RSK2 expression and RFS in HER2+ breast cancer.
The sample capacity is very large in GSE93601, which may have a great impact on the statistical results. We reanalyzed the data after removing the data from GSE93061 and got the same result as the previous one.
Publication Bias
Publication bias statistics were obtained using the Begg’s test and Egger’s test, which did not indicate any significant publication bias (Table 2).
TABLE 2 |  Publication bias tested by Egger’s test and Begg’s test.
[image: Table 2]DISCUSSION
RSK2 is an X-linked dominant gene and acts as a modulator of craniofacial development, and the mutation of RSK2 was responsible for Coffin–Lowry syndrome (Laugel-Haushalter et al., 2014). It is generally believed that RSK2 plays an important role in the tumorigenesis, migration, invasion, cell proliferation, and response to stress (Sulzmaier and Ramos, 2013; Laugel-Haushalter et al., 2014; Alesi et al., 2016). Precisely measuring the prognostic value of RSK2 may help to guide individual therapies for breast cancer patients. Our meta-analysis takes advantage of a public electronic database to evaluate the association between the abundance of RSK2 mRNA and the clinical parameters of breast cancer patients for the first time. Although it is not possible to draw conclusions about causality, these findings suggest that RSK2 is a potential biomarker in breast cancer, especially in a specific subtype of breast cancer, and might provide new perspective of the interaction between RSK2 and breast cancer.
From our research, RSK2 expression was overexpressed in basal-like breast cancer and higher histological grade breast cancer and negatively correlated with estrogen receptor. These results corresponded with previous studies that suggest that RSK2 expression is highest in basal-like breast cancer and those with the highest histological grade (Stratford et al., 2012; Zhao et al., 2016). A protein downstream of RSK2, namely YB-1, transforms human mammary epithelial cells through chromatin remodeling leading to the development of basal-like breast cancer (Davies et al., 2014). Inactivating YB-1 can depress tumor-initiating cells of basal-like breast cancer. A study suggested that ER-α physically interacts with RKS2, resulting in the accumulation of RSK2 in nuclear sequestration, and RSK2 can promote neoplastic transformation and facilitate metastatic tumor growth of ER+ breast cancer (Ludwik et al., 2018), but there was no explanation for RSK2 expression negatively correlating with ER status. However, there is no obvious statistical significance between RSK2 expression and progesterone receptor on the basic data. Luminal A breast cancer is an ER-positive breast cancer with a lower histological grade, while luminal B breast cancer is an ER-positive breast cancer with a higher histological grade. Although RSK2 is overexpressed in higher histological grade breast tumor, there is no obvious distinction between luminal A and luminal B breast cancer from our data. It may be partly due to the limited sample size of luminal A and luminal B breast cancer, and the distinction of RSK2 expression was not large enough between them.
There were some unexpected results based on our data. It is generally believed that the expression of RSK2 in cancer tissue is higher than that in normal tissue, and reducing the expression of RSK2 can prevent tumorigenesis, tumor cell growth, and ability of migration and invasion (Lee et al., 2013; Yao et al., 2014; Mao et al., 2016; Zhao et al., 2016). However, based on our data, the contrary result was obtained. Furthermore, no evidence indicates that the immunohistochemistry outcome of RSK2 was different from that of mRNA microarray assay. The overexpression of RSK2 alone or RSK2 combined with other biomarkers indicates a poor prognostic outcome was reported. For example, it has been shown that targeting RSK2 with specific inhibitors or small interfering RNAs remarkably inhibits the growth and renewal of tumor-initiating cells in triple-negative breast cancer (TNBC) and that RSK2 promotes migration through the ERK/MEK pathway (Stratford et al., 2012). In addition, Czaplinska et al. found that fibroblast growth factor receptor 2 (FGFR2) can form an indirect complex with RSK2, which may be involved in the progression of breast cancer and lead to poor prognosis in breast cancer patients (Czaplinska et al., 2016).
Based on the data collected from microarray, the OS of breast cancer patients is higher in RSK2 high-expression patients than that in RSK2 low-expression patients, and with the increase of RSK2 expression, the potential of distant metastasis and lymph node infiltration decreased. Moreover, it is strange that the expression of RSK2 is highest in basal-like breast cancer (TNBC), which is defined by the absence of the three main breast cancer biomarkers—i.e., a lack of expression of ER and PR and a lack of amplification or overexpression of HER2—and cooperates with poor prognosis and high risk of distant metastasis (Carey et al., 2010), but the OS, the potential of distant metastasis, and the lymph node metastases were more favorable in the RSK2 high-expression group in the basic data from microarray. No relevant study was available to help us understand the mechanism under the paradoxical phenomenon. We hypothesize that RSK2 plays a different role in different subtypes of breast cancer. We did not find a significant difference in survival outcomes between basal-like breast cancer and luminal breast cancer for the limited sample capacity and accessible data. In reference to the result from the online Kaplan–Meier Plotter, the overexpression of RSK2 predicts more favorable prognostic value of RFS in all subtypes of breast cancer. As for the OS and DMFS, only basal-like and luminal B breast cancer patients were able to benefit from RSK2 overexpression.
We found that RSK2 expression is negatively correlated with the age of breast cancer patients for the first time, but there is no such relationship in normal tissue. There is also no statistically significant difference in RSK2 expression between the early-stage group and late-stage group of breast cancer patients. It was reported that RSK2 is sequestered in stress granules, which can aid cell survival in response to environmental stress by acting as sites of translational repression, and facilitates stress granule assembly to repress translation and to enhance cell survival (Eisinger-Mathason et al., 2008). The body’s response to stress decreases with age and may provide a possible explanation for the phenomenon.
Heterogeneity tests are an essential part of a meta-analysis. In this study, minor heterogeneities were observed with respect to OS, DFS, tumor size, clinical stage, and histological grade; however, there were substantial heterogeneities with respect to ER status, HER2 status, lymph node infiltration, and different subtypes of breast cancer. This unbalanced phenomenon could partly result from the detection method and accuracy of ER status, PR status, and HER2 status being different from each other, and the data completeness obtained from GSE files was not identical. Three GSE files have efficient PR status, and the heterogeneity was not obvious among them, while the other three GSE files have identified the molecular subtype of breast cancer, which shows a significant heterogeneity. Patients from different areas may respond to the heterogeneities. There were no heterogeneities in United States patients, while the main heterogeneity of ER status and HER2 status originates from different European countries when we conducted a subgroup analysis. Another significant heterogeneity was likely due to the detection platform. Publication bias is worth considering in a meta-analysis. In this study, there was no significant publication bias based on the Egger’s and Begg’s test.
There are still some limitations in this meta-analysis. First of all, the relevant studies and complete available data were limited, and the available clinical parameter is not homogenous among those matrix files. Secondly, the detection platform, method, and accuracy of hormone receptors are different among these studies. Thirdly, the therapy level and method are distinctive, and we cannot eliminate their effect. Lastly, we cannot ignore the publication bias. Some data are still unavailable.
For further verification, we could download the mRNA expression data and corresponding clinical information of breast cancer patients from other databases as a validation cohort to verify the relationship between the RSK2 expression level and the clinicopathological features as well as the prognosis of patients. In terms of experimental validation, future researchers could modify the expression of RSK2 in different breast cancer cell lines and then perform various in vitro and mice xenografts in vivo trials to observe the effects of altering RSK2 expression on the proliferation, apoptosis, cell cycle, metastasis, and invasion capabilities of breast cancer cells. Furthermore, the prognostic significance of RSK2 could also be verified by measuring the protein expression level of RSK2 by flow cytometry, western blotting, and immunohistochemistry staining on tumor and paracancerous normal tissues of breast cancer patients in conjunction with clinical information analysis. The strategies above could help to confirm the reliability of our meta-analysis findings based on RSK2 mRNA expression and prognosis.
In conclusion, our meta-analysis was the first study that used microarray assay to research the association between RSK2 expression and clinicopathological features and prognostic factors of primary breast cancer patients. Although some results corresponded with previous studies and some results were opposite to previous studies, both of them indicated RSK2 is a promising biomarker of breast cancer. This study provides a new research direction and area of RSK2, while more experimental studies and elaborate research are needed to uncover the sealed mechanism of RSK2 in breast cancer.
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Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The rupture of atherosclerotic plaque is the main reason for the clinical events caused by atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were obtained by carotid endarterectomy. The samples were used for the whole transcriptome sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-originated genes were identified by analyzing their location and sequence. Gene Ontology and KEGG enrichment was carried out to analyze the functions of differentially expressed RNAs and proteins. The protein-protein interactions (PPI) network was constructed by the online tool STRING. The consistency of transcriptome and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs were originated from 97 protein-coding genes. These differentially expressed RNAs and proteins were mainly enriched in the terms of the cellular response to stress or stimulus, the regulation of gene transcription, the immune response, the nervous system functions, the hematologic activities, and the endocrine system. These results were consistent with the previous reported data in the dataset GSE41571. Further analysis identified CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be critical genes in regulating the stability of atherosclerotic plaques. Our results provided a comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic plaques.
Keywords: atherosclerosis, unstable plaques, RNA-seq, proteome, transcriptome
INTRODUCTION
Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The stability of atherosclerotic plaques is the main reason for its clinical manifestations. Unstable plaques, also known as vulnerable plaques, are characterized by a large lipid core, a thin fibrotic cap, less smooth muscle cells, less collagen, and elevated inflammation. The broken of unstable plaques blocks capillaries, forms thrombosis, and eventually triggers clinical manifestations, such as ischemic stroke and myocardial infarction. Figuring out the genes and proteins which play critical roles in the stability of atherosclerotic plaques is important.
Recent researches have demonstrated the functions of lncRNAs and circRNAs in atherosclerosis (Xiao et al., 2018; Fasolo et al., 2019; L.; Wang et al., 2019; Cao et al., 2020). For example, lncRNA FENDRR, LincRNA-p21, ANRIL, MIAT, CDK2B-AS1, PELATON participated in the formation and stability of atherosclerotic plaques. They interfered with the phagocytosis, lipid uptake, and reactive oxygen species formation during atherogenesis (Çekin et al., 2018; Hung et al., 2020; Ou et al., 2020). CircRNA is a plentiful, stable, diversified, and conserved class of non-coding RNA molecules that circularized from head to tail with a covalent bond of 5–3 (Jeck et al., 2013). It is involved in a wide range of biological and pathological processes, such as carcinogenesis and cardiovascular diseases. CircRNAs act as miRNA sponges, decoys, or scaffolds of gene expression (Poller et al., 2018). Studies reported the participation of cirRNA00044073, circRNA-PTPRA, circRNA_0003204, and circHIPK3 in atherosclerosis through affecting the autophagy, proliferation and invasion, and tube formation (Shen et al., 2019; Wei et al., 2020; Zhang, 2020; Zhang et al., 2020).
Recently, some studies have investigated the transcriptome profiles in atherosclerosis. In a microarray analysis, 236 lncRNAs and 488 mRNAs were identified to be differentially expressed in human advanced atherosclerotic plaques compared to the normal arterial intimae (Bai et al., 2019). An RNA-Seq identified 1,259 annotated and 381 new RNAs in coronary artery disease (Pan et al., 2019). A weighted gene correlation network analysis identified several key genes in ruptured atherosclerotic plaques and other aging diseases (Yang et al., 2016; Xu et al., 2020; Yang et al., 2020). However, no comprehensive study and analysis was performed on the whole transcriptome and proteome in stable and unstable plaques.
In our present study, we obtained the stable and unstable plaques from patients conducting carotid endarterectomy (CEA), measured the transcription profiles and protein profiles by RNA-Seq and HPLC-MS/MS, identified the differentially expressed (DE) mRNAs, lncRNAs, circRNAs, and proteins, analyzed the functions of these differentially expressed genes. The present study provided a comprehensive knowledge of the gene and protein expression profiles responsible for the stability of atherosclerotic plaques, and identified several essential RNAs and proteins.
METHODS AND MATERIALS
Patients and Samples
The atherosclerotic plaques were obtained from 10 patients undergoing CEA operation in the First Hospital of Jilin University (Changchun, Jilin, China) from July 2019 to November 2019. The plaques were fast-frozen in liquid nitrogen and stored at −80°C. The classification of unstable or stable plaques was carried out according to the criteria of the American Heart Association (AHA) (Hetterich H et al., 2016). Briefly, type I/II: near-normal wall thickness, no calcification; Type III: diffuse intimal thickening or small eccentric plaque, no calcification; Type IV/V: plaque with lipid or necrotic core surrounded by fibrous tissue with possible calcification; Type VI: complex plaque with possible surface defect, hemorrhage, or thrombus; Type VII: calcified plaque; Type VIII: fibrotic plaque without lipid core and with possible small calcification. Type I-II, III, VII, VIII were considered stable, while type IV-V, VI to be unstable plaques. Two independent investigators conducted the plaque classification.
The procedures were approved by the Ethics Committee of the First Hospital of Jilin University (No. 2019-272, Changchun, Jilin). Written informed consent was obtained from every participant. Eventually, 5 stable plaques and 5 unstable plaques were obtained for further analysis. The stable or unstable plaque from each patient was divided into two parts evenly. One part was used for whole transcriptome sequencing (RNA-Seq), while the other part was for LC-MS/MS detection.
RNA Extraction, Library Preparation, and RNA-Sequencing
The Next-Generation Sequencing (NGS) analysis was performed in the Shanghai Personalbio Technology Co., Ltd. (Shanghai, China). Total RNA was isolated using the Trizol reagent (Invitrogen, Carlsbad, CA, United States). The qualities and quantities of the RNA were measured using NanoDrop spectrophotometer (Thermo Scientific, Waltham, Massachusetts, United States). The integrity of the total RNA was determined by Bioanalyzer 2,100 (Agilent Technologies, Santa Clare, CA, United States) and 1% agarose gel electrophoresis.
Sequencing libraries were generated according to the following steps: poly-T oligo-attached magnetic beads were used to purify mRNA from total RNA. The mRNA was fragmented by divalent cations under elevated temperature in an Illumina proprietary fragmentation buffer. Then, the first strand cDNA was synthesized using random oligonucleotides and SuperScript II, followed by the second strand cDNA synthesis using DNA Polymerase I and RNase H. After adenylation of the 3’ ends of the DNA fragments, Illumina PE adapter oligonucleotides were ligated to prepare for hybridization. The cDNA fragments with a length of 400–500 bp were selected. Then the library fragments were purified using the AMPure XP system (Beckman Coulter, Beverly, CA, United States). DNA fragments with ligated adaptor molecules on both ends were amplified using Illumina PCR Primer Cocktail in a 15 cycle PCR reaction. The products were purified (AMPure XP system) and quantified using the Agilent high sensitivity DNA assay on a Bioanalyzer 2,100 system (Agilent). The sequencing library was then sequenced on NovaSeq 6,000 platform (Illumina) by Shanghai Personal Biotechnology Co. Ltd.
Samples are sequenced on the NovaSeq 6,000 platform to get image files, which were then transformed to the original data in FASTQ format (Raw Data). These Raw Data were filtered to get high-quality sequence (Clean Data) by Cutadapt (v1.15) software, which removed low-quality Reads and connectors. The reference genome and gene annotation files were downloaded from the genome website. The filtered reads were mapped to the reference genome (Homo-sapiens.GRCh38. dna.primary_ assembly. fa) using HISAT2 v2.0.5.
Identification of Differentially Expressed mRNA, lncRNA, and circRNA
The expression of mRNAs was identified by the HTSeq (0.9.1) statistics. The Read Count values on each gene were considered to be the original expression level, and then the FPKM method was used to standardize them. The expression difference of mRNA between stable and unstable plaque groups was analyzed by DESeq (1.30.0).
The lncRNAs were identified by the Stringtie software. Briefly, the transcripts with length >200 bp and exon number≥2 were identified first. Transcriptions with the class code of x/u/i (x stand for antisense lncRNA, u stand for intergenic lncRNA, i stand for intronic lncRNA) were identified secondly. LncRNAs with coverage >3 were identified as expressed lncRNAs. The newly identified lncRNA was nominated by the Stringtie automatically with a title of “MSTRG”.
The remaining unmapped reads were considered to be candidates of circRNAs. On the candidate transcripts, 20 bp at each end was used as 5′ Anchor or 3’ Anchor. The Anchors were then mapped to the reference sequence. If the sequences of the Anchors were reverse to the mapped sequence and the junction was consistent with the splicing pattern of AG-GT, it was determined to be a circRNA. The expression level of circRNAs was calculated by the method of Transcripts Per kilobase of exon model per Million mapped reads (TPM).
The DESeq was used to analyze the DE mRNAs, lncRNAs, circRNAs. RNAs with |log2FoldChange| > 1.0 and p-value < 0.05 were identified as differentially expressed.
The MeV 4.9.0 software was used to perform clustering and visualizing the expression pattern of 20 DE mRNAs, lncRNAs, and circRNAs.
Verification of Differentially Expressed mRNA, lncRNA, and circRNA
The expression level of 4 DE mRNA, 4 DE lncRNA, 4 DE circRNA were verified by qPCR. The total RNAs from 5 stable and 5 unstable plaques were extracted by Trizol (Takara, Dalian, China). After concentration and quality evaluation, the total RNAs were reverse transcripted to cDNA by the PrimeScript RT reagent Kit with gDNA Eraser (perfect real time) kits (Takara, Dalian, China). The PCR reactions were conducted by Applied Biosystems Quantstudio 5 system with the following program: 95 °C 30 s, followed by 40 cycles of 95°C 5 s, 60°C 30 s. The primers were provided by Shanghai Sangon Biological Engineering Co. Ltd. (Shanghai, China). The primers used in the present study were as following: CD163: forward 5′-GGA TCT GCT GAC TTC AGA AG -3′, reverse 5′-CTC CTT GTC TGT TCC TCC AA-3’; (antisense); S100A8: Forward 5′-ATG CCG TCT ACA GGG ATG ACC T-3′, reverse 5′- AGA ATG AGG AAC TCC TGG AAG TTA-3’; FGF14: forward 5′-TAT TGC AGG CAA GGC TAC TAC TTG-3′, reverse 5′-GTT TTC ACT CCC TGG ATG GCA AC-3’; CDH19: forward 5′-ATT GGT CAG CCA GGA GCG TTG T-3′, reverse 5′- GCA GAT TCA GAG ACA GTC AAG CG-3’. lncRNA ENST00000430222 forward 5′- TCT CAA GTC GCT GAC ACC TCC TC-3′, reverse 5′- GGG TTG CCG AGT GAA GCT AAG AC-3'; lncRNA ENST0000062895 forward 5′-GCA AGG CGT CCG AAG TAT GAG TC-3′, reverse 5′-CGT CAG TAG AAG TTA GGC GAT CAG C -3'; lncRNA ENST00000631338 forward 5′-AGT TCA TCA CGG CTG CTG CTA AC-3′, reverse 5′- CTT GGC TTG GAG GGA GAA GAA TCA C-3'; lncRNA MSTRG18183 forward 5′-CCA GAG AGG AGG AAG AGG GGA ATC-3′, reverse 5′-TTA GGT GGG TGG AAG GCA GAG ATC-3'; hsacirc_013041 forward 5′-TGG TGT ATG CAA GTG GCC-3′, reverse 5′-TGC TGA AAA GCC AAC TGC TGG GTA G-3'; hsacirc_025902 forward 5′-AGA CCG TGG TGG TCA TCC-3′, reverse 5′-CCT GAG CCT TGA GAT AGT T-3'; hsacirc_054182 forward 5′-CAG AGC CAG CAT TCT TTC C-3′, reverse 5′-GAG CCT GTG GAT GAA GTG AG-3'; hsacirc_037511 forward 5′- CCC TAA AGA AAA TTG CTA-3′, reverse 5′- TTA TCA CAA ATC TCA GCC -3'. GAPDH forward: 5′-CTC TGC TCC TCC TGT TCG AC-3′, reverse: 5′-GCG CCC AAT ACG ACC AAA TC-3'. All samples were run in triplicate, and the results were analyzed using the 2(−ΔΔCt) Method.
The lncRNA-Targeted Genes and circRNA-Originated Genes Identification
As reported previously, the cis-acting regulation is an important mechanism of lncRNA. Through this, the lncRNAs activate, repress, or modulate the expression of neighboring target genes (Lam et al., 2014). These lncRNAs are treated as cis-acting lncRNAs. Usually, the cis-acting lncRNAs regulate the expression of their neighboring genes in a manner dependent on the location of their own sites of transcription. Therefore, the protein-coding genes neighboring the cis-acting lncRNAs might be their targets. Here, we searched the protein-coding genes within a distance of 1 kb ∼ −1 kb to the potential cis-acting lncRNAs. These protein-coding genes were considered to be the lncRNA-target genes of the corresponding lncRNA.
To predict the functions or mechanisms of circRNAs, we identified the circRNA-originated genes based on the theory that many circRNAs are originated from protein-coding genes and contain exonic sequences (Guo et al., 2014; You et al., 2015). Therefore, we analyzed the sequence of the differentially expressed circRNAs, identified the circRNAs with exons of protein-coding genes. These protein-coding genes were considered to be the originate genes of the corresponding circRNAs.
Proteomic Analysis of Differentially Expressed Proteins in Stable and Unstable Plaques
Extraction and digestion of proteins: The samples were lysed by SDT solution (4% SDS, 100 mM Tris/HCl pH 7.6, 0.1 M DTT). The protein concentration was determined by BCA method. The extracted total proteins were hydrolyzed by trypsin using filter aided proteome preparation (FASP). The desalination was conducted on the C18 cartridge. After freeze-drying, the peptide was dissolved in 40 μl Dissolution buffer and quantified by OD280.
LC-MS/MS detection: Trypsin-digested peptides were separated using the Easy nLC nanoHPLC system. 2 μg of the sample were loaded with a constant flow of 4 μl/min on a Thermo Scientific EASY column C18 column. After trap enrichment, the peptides were eluted in the Easy C18 nanocolumn (75 μm*10 cm) by a linear gradient of solvent A (0.1% formic acid solution) and solvent B [0.1% formic acid in acetonitrile (84%)] with a constant flow of 250 nL/min. The solvent B changed from 0 to 35% in 0–50 min, from 35 to 100% in 50–58 min, and 100% in 58–60 min.
The HPLC system was coupled to an OrbiTrap QExactive mass spectrometer (Thermo Fisher Scientific Inc.) via an EasySpray source. The full scan MS survey spectra was m/z 300 to 1800 in positive mode. The first-grade mass spectrometry resolution was 70,000 at m/z 200. The automatic gain control (AGC) target was 3e6. The maximum IT was 10 ms. The dynamic exclusion was 40.0 s. The charge to mass ratio of peptides was collected under the following conditions: after a full scan, 10 MS2 scan was obtained; The MS2 activation type was HCD, with an isolation window of 2 m/z; The resolution of MS2 was 17,500 at 200 m/z; The normalized collision energy was 30 eV, and the underfill ratio was 0.1%.
Annotation and quantification of proteins: The raw file was annotated by Maxquant software (version 1.5.5.1). The parameters used for the analysis was as following: main search ppm was 6; max missed cleavages was 2; De-isotopic was True; enzyme was trypsin; fixed modifications was carbamidomethyl; variable modifications were oxidation, and the database was uniport_Homo_sapiens_186616_20191202; the decoy database pattern was Reverse; the label-free quantification (LFQ) was True; the peptide mass tolerance was ±20 ppm; the peptide FDR was≤0.01, and the protein FDR was≤0.01.
The differentially expressed proteins (DEPs) between stable and unstable plaques were identified by the criteria of |log2FoldChange| > 1.0 and p-value < 0.05.
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of Differentially Expressed mRNAs, lncRNA-targeted genes, circRNA-originated genes, and Differentially Expressed Proteins.
GO enrichment analysis and KEGG pathway analysis were used to analyze the functions of DE mRNAs, lncRNA-targeted genes, circRNAs-originated genes, and DEPs. The DAVID online tool (https://david.ncifcrf.gov/) was used for GO and KEGG enrichment. The GO enriched genes into three annotations: biological process (BP), cell components (CC), and molecular function (MF). A p-value < 0.05 was considered to be significantly related GO terms or KEGG pathways.
Protein-Protein Interaction Analysis of the Differentially Expressed Proteins
To identified the interactions between DEPs, the STRING online tool (website: https://string-db.org/) was used. The STRING database covers 9′643′763 proteins from 2′031 organisms. It provides direct (physical) interactions and indirect (functional) associations between proteins based on the computational prediction, knowledge transfer between organisms, and interactions aggregated from other (primary) databases. After the PPI analysis by STRING, the key clusters in the PPI network were analyzed by the tool of MCODE in Cytoscape software 3.8.3.
Comparison Analysis of Transcriptome and Proteome, and Previously Reported Data Profile GSE41571.
A previous study reported a low correlation between transcripts and proteins (Ghazalpour et al., 2011). To analyze the consistency of expression pattern between transcriptome and proteome in the present study, and to identify the key genes which may play critical roles in the stability of atherosclerotic plaques, we analyzed the overlapped genes between DE mRNAs and DEPs. We also analyzed the relationship between lncRNA-targeted genes (identified in The lncRNA-Targeted Genes and circRNA-Originated Genes Identification) and the DEPs, the circRNA-originated genes (identified in The lncRNA-Targeted Genes and circRNA-Originated Genes Identification) and DEPs. The overlapped genes and the expression levels were summarized.
To verify our transcriptomic and proteomic results, we also downloaded the gene expression profile GSE41571 from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The dataset GSE41571 contains 5 unstable and 6 stable atherosclerotic plaques obtained from CEA. These plaques were carried out genome-wide gene expression profiling using microarrays. The GEO2R tool on the GEO website was used to screen out the differentially expressed genes in GSE41571. Then we analyzed the overlapped genes between DE mRNAs from GSE41571 and our transcriptomic and proteomic profiles.
LncRNA/circRNA-miRNA-mRNA Network Analysis
The lncRNAs and cirRNAs are involved in the gene regulation by many methods, such as binding to target genes, affecting the histone modification, activating transcriptional factors, and binding to miRNA as competitive endogenous RNA (ceRNA). To further analyze the functions of specific lncRNAs or circRNA, the miRNAs which interacted with the lncRNA/circRNA were analyzed by miRDB (http://mirdb.org/). Then the miRNA targeted mRNA was analyzed by miRDB. Cytoscape software 3.8.3 was used to visualize the lncRNA/circRNA-miRNA-mRNA network.
Statistical Analysis
The data were presented in the form of mean ± S.D. p-value < 0.05 is considered statistically significant.
RESULTS
Patients and Samples Information
A total of 5 patients with stable plaques and 5 patients with unstable plaques were involved in the present study. The characteristic information of these patients were shown in Supplementary Table S1. There was no significant difference between the two groups on age, sex, body weight index, smoke, alcohol, and lipid profiles. In the unstable plaque group, 40% of the patients are taking antihypertensives, antihyperlipidemic drugs, or antiplatelet drugs. In the stable plaque group, 40% of the patients are taking antihypertensives.
The DE mRNAs, lncRNAs, circRNAs, and Proteins in Stable and Unstable Plaques.
In the RNA-Seq analysis, more than 168 466 008 clean reads were identified with more than 96.57% been mapped to the reference genome. Totally, 20025 mRNAs, 31751 lncRNAs, and 12131 circRNAs were identified. Among these genes, 202 mRNAs, 488 lncRNAs, and 91 circRNAs were differentially expressed. In the 202 DE mRNAs, 125 were upregulated and 77 were downregulated in unstable plaques. The heatmap of 20 DE mRNAs were shown in Figure 1A. In unstable atherosclerotic plaques, 207 upregulated and 281 downregulated lncRNAs, 61 upregulated and 30 downregulated circRNAs were also been identified. The heatmaps of part of these differentially expressed lncRNAs and circRNAs were shown in Figures 1B,C. To verify the RNA-Seq results, the qPCR analysis was conducted for several DE mRNAs, lncRNAs, and circRNAs. The qPCR results were consistent with that of the RNA-Seq results (Figures 1F,G).
[image: Figure 1]FIGURE 1 | The hierarchical clustering heatmap of 20 DE mRNAs, lncRNAs, circRNAs, and proteins. A–D: The hierarchical clustering heatmap of mRNAs (A), lncRNAs (B), circRNA (C), proteins (D). (E): The heatmap of overlapping genes between current study and GSE41571; (F): the qPCR verification of 6 randomly selected upregulated mRNAs, lncRNAs, and circRNAs. (G): the qPCR verification of 6 randomly selected downregulated mRNAs, lncRNAs, and circRNAs. The values (mean ± S.D. from 5 independent experiments) are relative to Stable group, which was set as 1. *p < 0.05, **p < 0.01. Red box: the overlapping genes between current study (A) and GSE41571 (E).
In the HPLC-MS/MS analysis, a total of 3,082 proteins in 23494 peptides were identified. Among these proteins, 148 were upregulated and 145 were downregulated in unstable plaques. The hierarchical clustering heatmap of 20 differentially expressed proteins were shown in Figure 1D.
Comparison Analysis of the Present Transcriptome and Previously Reported Data from GSE41571.
To further verify our results and to figure out the key genes in the stability of atherosclerotic plaques, we analyzed the dataset GSE41571 downloaded from the GEO database. 1,595 downregulated and 750 upregulated genes were found in GSE41571. Among them, 30 genes were differentially expressed in both dataset GSE41571 and our RNA-Seq data, 42 genes were overlapped with our DEPs (Supplementary Table S2, Figure 1E). These overlapped genes were mainly related to cell adhesion, immune response, and inflammatory responses.
The lncRNA-Targeted mRNA and circRNA-Originated Genes Identification
We screened the neighboring protein-coding genes of the 488 differentially expressed lncRNAs. 381 protein-coding genes were at the distance of 1 kb ∼ −1 kb to the corresponding 488 lncRNAs (Supplementary Table S3). These protein-coding genes were treated as the potential lncRNA-targeted genes. The corresponding lncRNAs were treated as cis-acting lncRNAs. The expression of these targeted genes might be regulated by the cis-acting lncRNAs.
We also analyzed the sequence of 91 differentially expressed circRNAs. All of these 91 circRNAs contained exonic sequences. These exonic sequences belong to 97 protein-coding genes. These 97 genes were considered to be the circRNA-originated genes (Supplementary Table S4).
The GO enrichment and KEGG pathway analysis of the DE mRNAs, lncRNA-targeted genes, circRNA-originated genes, and DEPs.
The GO and KEGG analysis was conducted to predict the functions of differentially expressed mRNA, the lncRNA-targeted genes, circRNA-originated genes, and the DEPs. The results were shown in Supplementary Table S5. The DE mRNAs were mainly enriched in the GO terms of extracellular region, RAGE receptor binding, defense response, and KEGG terms of neuron ligand-receptor interaction, and cytokine-receptor interaction. The lncRNA-targeted genes were enriched in the GO terms of intracellular membrane-bounded organelle, transcription regulator activity, transcription from RNA polymerase II promoter, and KEGG terms of the TNF signaling pathway. The circRNA-originated genes were enriched in the GO terms of basal cortex, malonyl-CoA decarboxylase activity, negative regulation of stress fiber assembly, and KEGG terms of cellular senescence and focal adhesion. The proteins were mainly related to ECM-receptor interaction, hematopoietic cell lineage, and phagosome.
Protein-Protein Interaction Network and Clusters Analysis of Differentially Expressed Proteins
The protein-protein interaction network between the DEPs was analyzed by the online tool STRING and shown in Figure 2. In total, 195 nodes and 532 edges were identified. Four clusters with 24 genes were identified by the MCODE tool in the Cytoscape software (Figure 2 and Supplementary Table S6). The DEPs were clustered into 4 clusters which may be involved in the functions of smooth muscle contraction, metabolism and transportation of lipoproteins, immune system function, and mRNA splicing.
[image: Figure 2]FIGURE 2 | The protein-protein interactions of DEPs and the clusters identified by MCODE. Red box: cluster1; Green box: cluster 2; Yellow box: cluster 3; Pink box: cluster 4.
Comparison Analysis of Transcriptome and Proteome
To analyze the consistency of transcripts and proteins, and to identify the key genes playing critical roles in the stability of atherosclerotic plaques, we compared the expression of differentially expressed mRNA and DEPs, the lncRNA-target genes and DEPs, as well as the circRNA-originated genes and DEPs. Surprisingly, only two DEPs (CD5L, S100A12) were overlapped with mRNA. Two proteins (CKB, CEMIP) were overlapped with the lncRNA-targeted genes, one protein (SH3GLB1) was overlapped with the cirRNA-originated gene. The expression levels of these mRNAs, related lncRNAs, related circRNA, and DEPs were shown in Supplementary Table S7. Both CD5L and S100A12 mRNAs and proteins were upregulated in the unstable plaques. The CKB and CEMIP proteins, as well as their related lncRNA, MSTRG.11455.17 and MSTRG.12845 were upregulated in unstable plaques. While the SH3GLB1 protein was upregulated, but its related circRNA, hsacirc_ooo411 was downregulated. These genes may play critical roles in the stability of atherosclerotic plaques.
LncRNA (circRNA)-miRNA-mRNA Network Analysis
In LncRNA (circRNA)-miRNA-mRNA Network Analysis, two lncRNAs (MSTRG.11455.17, MSTRG.12845) and one circRNA (hsacirc_000411) were identified to interact with DEPs. To further explore the functions of MSTRG.11455.17, MSTRG.12845, and hascirc_000411, we analyzed the related miRNA, and the subsequent miRNA targeted mRNAs. The lncRNA (circRNA)-miRNA-mRNA network was shown in Figure 3. The lncRNA MSTRG.11455.17 was predicted to bind miR-7849, miR-7856, and miR-4760, which may affect the functions of subsequent 33 genes. LncRNA MSTRG.12845 was predicted to bind miR-4797, miR-3915, miR-5009, miR-6873, and miR-6817, which may affect subsequent 26 genes. Hsacirc-000411 was predicted to bind miR-647 and miR-4433b, which may affect subsequent 7 genes (Figure 3).
[image: Figure 3]FIGURE 3 | The lncRNA (or circRNA)-miRNA-mRNA interactions network. Yellow diamond: lncRNA or circRNA; green circle: miRNA; blue square: mRNA.
DISCUSSION
The present study screened the transcripts and proteins in human stable and unstable atherosclerotic plaques. A total of 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 DEPs were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might affect the production of 381 protein-coding genes by cis-acting regulations. Sequence analysis indicated the 91 circRNAs were originated from 97 protein-coding genes.
To figure out the functions of these DE mRNAs, lncRNAs, circRNAs, and proteins, we conducted the GO enrichment and KEGG pathway analysis, as well as the PPI network. The enrichment and pathway analysis indicated these differentially expressed RNAs and proteins were involved in the cellular response to stress or stimulus, regulated the gene transcription through ways such as histone acetyltransferase binding, spliceosome, and dihydropteridine reductase activity. In the atherosclerotic plaque stability, the following functions may play critical roles: the immune response (RAGE receptor binding, cytokine-cytokine receptor interactions, ECM-receptor interaction, phagosome, B cell receptor signaling pathway, cGMP-PKG signaling pathway, antigen processing and presentation), nervous system functions (neuroactive ligand-receptor interactions, cholinergic synapse, neurotrophin signaling pathway), hematologic activities (hematopoietic cell lineage, coagulation cascades), and endocrine system (cortisol synthesis and secretion, insulin secretion). The PPI and MCODE analysis of DEPs discovered 4 clusters relating to the function of smooth muscle contraction, insulin function, lipid metabolism, immune system, and gene expression (Supplementary Table S6). These results indicated that the immune response, endocrine system, metabolisms are major functional alterations between stable and unstable atherosclerotic plaques.
Since the previous microarray dataset GSE41571 analyzed the gene expression profiles in the macrophage-rich regions of stable and unstable atherosclerotic plaques, we compared our data with the GSE41571 data. 30 genes and 42 proteins were found to be differentially expressed in both our data and GSE41571. These 72 genes and proteins are mainly related to cell adhesion, immune response, and inflammatory responses, which were consistent with our GO and KEGG analysis.
To further screen out the key genes which may play critical roles in the stability of atherosclerosis, we analyzed the consistency of transcriptome and proteome in the present study. Surprisingly, only a few genes were screened out. They are CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411). CD5L and S100A12 were upregulated in unstable plaques at both mRNA and protein levels. CD5L encodes the secreted glycoprotein antigen protein CD5, which is involved in the inflammatory response. It is primarily expressed in macrophages and promotes M2 macrophage polarization, promotes anti-inflammation in response to TLR activation (Sanjurjo et al., 2015, 2018). S100A12 is a member of the S100 protein family. It binds to RAGE and activates the downstream pro-inflammatory signals, such as NF-kB and ROS (Xiao et al., 2020). S100A12 is involved in the pathogenesis of atherosclerosis through the S100A12-CD36 axis (Farokhzadian et al., 2019). CKB and CEMIP are the targets of two novel lncRNAs MSTRG.11455.17 and MSTRG.12845, respectively. CKB encodes protein creatine kinase B, which plays a role in energetic hemostasis in ischemic and inflammatory disorders (Kitzenberg et al., 2016). CEMIP encodes the cell migration-inducing and hyaluronan-binding protein, which regulates epithelial-mesenchymal transition (EMT), tumor cell growth and migration (Li et al., 2017). In atherosclerosis, CEMIP was reported to regulate the proliferation and migration of vascular smooth muscle cells (Xue et al., 2020). SH3GLB1 gene encodes the endophilin-B1 or Bif-1 protein, which is implicated in the apoptotic and autophagic pathways (Takahashi et al., 2013). However, its effects on atherosclerosis are still unknown. Therefore, the above five genes, and their correlated lncRNAs (MSTRG.11455.17, MSTRG.12845) and circRNA (circ_000411) may play critical roles in the stability of atherosclerotic plaques through inflammation, cell growth or migration.
Competitively endogenous RNA (ceRNA) is another important mechanism of the functions of non-coding RNAs. ceRNAs regulate other RNA transcripts by competing for shared microRNAs (miRNAs) (Salmena et al., 2011). Based on the sequence of MSTRG.11455.17, MSTRG.12845, and circ_000411, we found 10 miRNAs that may bind to them, indicating their ceRNA potential.
In our present study, a whole atherosclerotic plaque was collected through method of CEA, and was used for detection. Atherosclerotic plaques are comprised of many different kinds of cells, such as foam cells, macrophages, smooth muscle cells. Different cell types are with different gene expression patterns. This is a major limitation in our present analysis, which might decrease the efficacy of screening out more differentially expressed genes. Single-cell RNA-Seq is needed in future studies to distinguish the gene expression pattern in different cells types between stable and unstable plaques.
In summary, our study screened the transcription and protein profiles in human stable and unstable atherosclerotic plaques by RNA-Seq and LC-MS/MS, analyzed the functions and pathways of differentially expressed RNAs and proteins, identified a few key genes and noncoding RNAs. The results may provide new knowledge on understanding the stability of atherosclerotic plaques.
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Background: Pseudouridine (Ψ) is a common ribonucleotide modification that plays a significant role in many biological processes. The identification of Ψ modification sites is of great significance for disease mechanism and biological processes research in which machine learning algorithms are desirable as the lab exploratory techniques are expensive and time-consuming.
Results: In this work, we propose a deep learning framework, called PseUdeep, to identify Ψ sites of three species: H. sapiens, S. cerevisiae, and M. musculus. In this method, three encoding methods are used to extract the features of RNA sequences, that is, one-hot encoding, K-tuple nucleotide frequency pattern, and position-specific nucleotide composition. The three feature matrices are convoluted twice and fed into the capsule neural network and bidirectional gated recurrent unit network with a self-attention mechanism for classification.
Conclusion: Compared with other state-of-the-art methods, our model gets the highest accuracy of the prediction on the independent testing data set S-200; the accuracy improves 12.38%, and on the independent testing data set H-200, the accuracy improves 0.68%. Moreover, the dimensions of the features we derive from the RNA sequences are only 109,109, and 119 in H. sapiens, M. musculus, and S. cerevisiae, which is much smaller than those used in the traditional algorithms. On evaluation via tenfold cross-validation and two independent testing data sets, PseUdeep outperforms the best traditional machine learning model available. PseUdeep source code and data sets are available at https://github.com/dan111262/PseUdeep.
Keywords: RNA modification, pseudouridine site prediction, feature extraction, deep learning, capsule network
INTRODUCTION
Pseudouridine (Ψ) is one of the most prevalent RNA modifications that occurs at the uridinebase through an isomerization reaction catalyzed by pseudouridine synthases (see Figure 1) (Bousquet-Antonelli et al., 1997; Chan and Huang, 2009; Ge and Yu, 2013; Kiss et al., 2010; Wolin, 2016; Yu and Meier, 2014). It is confirmed that Ψ modification occurs in several kinds of RNAs, such as small nuclear RNA, rRNA, tRNA, mRNA, and small nucleolar RNA (Ge and Yu, 2013). Ψ plays a significant role in many biological processes, including regulating the stability of RNA structure in tRNA and rRNA (Kierzek et al., 2014). Deficiency of Ψ might cause various diseases; the dysregulation of Ψ in mitochondrial tRNA is one of the etiologies of erythrocytic anemia and mitochondrial myopathy (Bykhovskaya et al., 2004). Moreover, the mutations of Ψ are also associated with several types of cancers, such as gastric and lung cancer (Mei et al., 2012; Carlile et al., 2014; Carlile et al., 2015; Shaheen et al., 2016; Penzo et al., 2017; Zhang et al., 2021), and Ψ is also applied in biochemical research and pharmaceuticals (C. Liu et al., 2020; Penzo et al., 2017; J. Yang et al., 2020). Undoubtedly, the identification of Ψ modification sites would be of great benefit for disease mechanism and biological processes research.
[image: Figure 1]FIGURE 1 | Illustration of Ψ modification. The Ψ synthase catalyzes the uridine isomer Ψ by removing the uridine residue base from its sugar and then removing the uridine isomer, rotating it 180° along the N3–C6 axis, and finally turning the base the 5-carbon and 1′-carbons of the sugar.
Although accurate Ψ sites can be identified by some lab exploratory techniques, they are expensive and time-consuming (Carlile et al., 2014). As an increasing number of genomic and proteomic samples are produced (J. Yang et al., 2020), it is necessary to develop some effective and robust computational models to detect Ψ sites in RNA sequences.
Many machine learning algorithms have been introduced as fast, low-cost, and efficient alternative methods to identify Ψ sites. In 2015, Li et al. established the first computational model named PPUS to identify PUS-specific Ψ sites in Saccharomyces cerevisiae and Homo sapiens. The method used the nucleotides around Ψ as features for training a support vector machine (SVM) (Y. H. Li et al., 2015). Similarly, in 2016, Chen et al. developed an SVM classifier named iRNA-PseU using the occurrence frequencies and the chemical properties of the nucleotides as well as pseudo k-tuple nucleotide composition (PseKNC) as features in Mus musculus, S. cerevisiae, and H. sapiens (Chen et al., 2016). He et al., in 2018, proposed PseUI, in which five types of features, nucleotide composition (NC), dinucleotide composition (DC), pseudo dinucleotide composition (PseDNC), position-specific nucleotide composition (PSNP), and position-specific dinucleotide propensity (PSDP), were combined and a sequential forward selection method was applied to select the optimal feature subset for training SVM to predict Ψ sites in M. musculus, S. cerevisiae, and H. sapiens (J. He et al., 2018). In 2019, Liu et al. proposed an ensemble model, XG-PseU, based on eXtreme gradient boosting (XGBoost) using six types of features, including NC, dinucleotide composition (DNC), trinucleotide composition (TNC), nucleotide chemical property (NCP), nucleotide density (ND), and one-hot encoding (Liu et al., 2020). In 2020, Bi et al. proposed an integrated model based on a majority voting strategy, called EnsemPseU, which contained five machine learning methods SVM, XGBoost, Naive Bays (NB), k-nearest neighbor (KNN), and random forest (RF) (Bi et al., 2020). In short, the above machine learning methods in H. sapiens, S. cerevisiae, and M. musculus have the highest accuracy rates of 65.44%, 68.15%, and 72.03%, respectively. Although the performance of the above machine learning methods is reasonable, there is still a lot of room for improvement. With the emergence of deep learning methods, many prediction methods based on deep learning have been applied to the field of RNA and protein modification predictions (Huang et al., 2018; Long et al., 2018; Mostavi et al., 2018; Zhang and Hamada, 2018). The above predictors do not consider deep learning methods, which can extract deeper features to improve prediction performance (B. He et al., 2020; Liang et al., 2020).
In this work, we propose a deep learning framework, PseUdeep, to identify Ψ sites of the three species H. sapiens, S. cerevisiae, and M. musculus. Compared with previous machine learning methods, our model applies three encoding methods, one-hot encoding, K-tuple nucleotide frequency pattern (KNFP) (Y. Yang et al., 2021), and PSNP (Dou et al., 2020) to extract RNA sequence features. Our model consists of a convolutional neural network (CNN), a capsule neural network, and a bidirectional gated recurrent unit (BiGRU) network with a self-attention mechanism (see Figure 2). Finally, we conduct a tenfold cross-validation test on the benchmark data set and an independent verification test on two independent data sets and compare the prediction results of our model with the results of the previous machine learning model; the accuracy of our model for H. sapiens increased by 1.55%, for S. cerevisiae by 4.58%, and for M. musculus by 0.42%.
[image: Figure 2]FIGURE 2 | The flowchart of PseUdeep: We use the collected RNA sequences as the input of the model and the first use three encoding methods, one-hot encoding, KNFP, and PSNP, to extract RNA sequence features. Then, the three feature matrices are convoluted twice, and the results are stitched together. Finally, it is input into the capsule neural network and the BiGRU network with a self-attention mechanism and two fully connected layers for classification.
METHODS
Benchmark Data Sets
Chen et al. (2016) established data sets for computationally identifying Ψ sites in H. sapiens, M. musculus, and S. cerevisiae based on RMBase (Sun et al., 2016). With the update of RMBase, we use three training new data sets base on RMBase2.0 (Chen et al., 2015), which include NH_990 (H. sapiens), NM_944 (M. musculus), and NS_627 (S. cerevisiae), and the data sets built by Liu K. et al. (2020). In H. sapiens and S. cerevisiae, we also use the independent data sets H_200 and S_200, which are built by Chen et al. (2016) to evaluate the performance of the method.
In the NH_990 and NM_944 data sets, the length of the sequence is 21 nt. However, in the NS_627 data set, the length is31 nt. In the H_200 and S_200 data sets, the RNA sequence length is 21 and 31 nt, respectively. Table 1 shows the details of all data sets.
TABLE 1 | The information on training data sets and independent testing data sets.
[image: Table 1]Feature Extraction
Feature extraction is the basis of the algorithm. In our work, we consider three kinds of features: one-hot encoding, KNFP (Y. Yang et al., 2021), and PSNP (Dou et al., 2020).
One-Hot Encoding
Given an RNA sequence R,
[image: image]
where [image: image] represents the nucleotide at the [image: image] position of the RNA segment[image: image]. We represent each nucleotide with a four-dimensional vector, that is, nucleotide [image: image] is represented as (1, 0, 0, 0),[image: image] is (0, 1, 0, 0), [image: image]is (0, 0, 1, 0), and [image: image]is (0, 0, 0, 1).
KNFP
The KNFP (Y. Yang et al., 2021) pattern represents the local contextual features at different levels. KNFP integrates various short-distance sequence order information and retains a large number of original sequence modes (Chen et al., 2015). We apply KNFP to extract local context features from RNA sequences. KNFP includes mononucleotide, dinucleotide, and trinucleotide composition. For an RNA sequence [image: image], the K-tuple nt composition can represent any RNA sequence as a [image: image] dimensional vector:
[image: image]
where [image: image] is the frequency of the [image: image]-tuple pattern in the RNA sequence, namely, the substring of the sequence contains K neighboring nt, and the symbol T represents the transpose operator, so it has [image: image] overlapping segments for every RNA sequence [image: image] with length [image: image], and each segment is encoded as a one-hot vector with dimension [image: image]. The frequency pattern matrix [image: image] is generated for each type of K-tuple nt composition. To facilitate subsequent processing, we fill the shorter part with zeros. By combining different K-tuples[image: image] with [image: image], the feature of each position in the sequence is connected in one dimension of size [image: image].Compared with the traditional one-hot encoding, KNFP effectively compensates for the shortcomings of information insufficiency.
PSNP
PSNP (Dou et al., 2020) is an effective nucleotide encoding method, which has been successfully applied to the identification of many functional sites in biological sequences (W. He et al., 2018; W. He et al., 2018; G. Q. Li et al., 2016; Zhu et al., 2019). In this method, location-specific information can be represented by calculating the differences in nucleotide frequency at a specific location between positive and negative RNA samples. Considering an RNA sequence [image: image], the PSNP matrix can be written as a [image: image]-dimensional vector.
First, we calculate the frequency of occurrence for four nucleotides, respectively, from bath positive and negative samples at the jth position. In this way, we obtain two [image: image] position-specific occurrence frequency matrixes, namely, [image: image]and[image: image], of which [image: image]is obtained from all positive samples and [image: image]from all negative samples. We define the location-specific nucleotide propensity matrix, represented by[image: image], as shown below:
[image: image]
where [image: image] gives the difference of frequencies of the [image: image] nucleotide at the [image: image] position between positive and negative samples.
Deep Learning Architecture of PseUdeep
For each input sequence, we use three feature extraction (one-hot encoding, KNFP, and PSNP) methods to form three feature matrices. For each feature matrix, a pair of 1-D CNNs are used. The first layer of each feature matrix has a filter size of 11 and a kernel size of 7. Similarly, the second 1[D CNN layer for each feature matrix has a filter size of 11 and a kernel size of 3. Two convolution layers are used to capture features from three feature matrices; all layers had a “Relu” activation function. The three convolution results are spliced together and fed into the capsule network with 14 capsules for vector convolution, and the output of the capsule network is put into the BiGRU neural network with an attention mechanism; the final feature is concatenated and fed into two dense layers to obtain the prediction results. Bayesian optimization is used to select the best performance of the hyperparameters. The adjusted parameters are the number of filters, the filter size, and epoch. To prevent the model from overfitting, the dropout algorithm with a probability of 0.5 is also used. A binary cross-entropy is used as a loss function with an early stop patience of 20. The batch size is 32, and the number of epochs is set to 200. For the stochastic gradient descent method, the Adam optimization algorithm is selected here. The total number of trainable parameters in the network is 165,365. The entire program is done in Python 3.6.
CNNs
CNNs are widely used in the fields of artificial intelligence, such as machine learning, speech recognition, document analysis, language detection, and image recognition.
Capsule Neural Networks
Capsule neural networks, first proposed by Hinton et al., provide a unique and powerful deep learning component to better simulate the various relationships represented inside the neural network. Because capsule neural networks can collect location information, they can learn a small amount of data to get good predicted results. In the data sets we collected, the amount of RNA data is small, and the length of RNA sequences is small, so to study the hierarchical relationship of local features, capsule neural networks are used in this paper.
BiGRU Networks and Attention Mechanism
BiGRU networks are used to extract the deep features of the sequences because BiGRU networks can be regarded as two unidirectional GRUs. An attention mechanism in a deep neural network is also an important part. The attention mechanism is remarkable in serialized data, such as speech recognition, machine translation, and part of speech taming, which has also been widely used in much bioinformatics research and achieved excellent performance.
Cross-Validation and Independent Testing
Because the [image: image]-fold ([image: image] = 5 or 10) cross-validation (Dezman et al., 2017; G. Q.; Li et al., 2016; Vučković et al., 2016) is widely used to evaluate models, we apply a tenfold cross-validation test to measure model performance in NH_990, NM_944, and NS_627, in which a data set can be divided into 10 mutually exclusive folds, one fold is reserved for testing, whereas the remaining nine folds are used for training purposes. To verify the stability of the models more objectively, the proposed models are tested on two independent data sets H_200 and S_200.
Performance Evaluations
To measure the performance of our model, we use four statistical parameters, sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthew’s correlation coefficient (MCC), which are used in a series of studies to evaluate the effectiveness of predictors. These parameters are defined as follows:
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where [image: image] indicate the number of positive and negative sequences, respectively; [image: image]represents the number of positive RNA samples that are incorrectly predicted as negative RNA samples; and [image: image] represents the number of negative RNA samples that are incorrectly predicted as positive RNA samples. In addition, the graph of the ROC (Fawcett, 2006) is also widely used to intuitively display the performance. Then, the AUC can be obtained to objectively evaluate performances of the proposed model.
RESULTS
Model Selection
To select a more effective model, in each data set, we first compare four models’ performances based on two feature extraction methods, one-hot encoding and KNFP (results are shown in Supplementary Tables S1, S2). These models are constructed by gradually adding different types of layers based on two 1-D convolution layers, a BIGRU network, and a two fully connected layers network. The four models are shown below:
1) CNN: The network consists of two layers of 1-D convolution, a BIGRU network, and a two fully connected layers network as described above. The input matrices are the one-hot encoding and KNFP features extracted from the RNA sequences.
2) CNN + Capsule: The model adds a capsule layer after the BiGRU layer on the basis of the CNN model.
3) CNN + Attention: The model adds a self-attention mechanism layer before the BiGRU layer based on the CNN model.
4) CNN + Capsule + Attention: The model adds a capsule layer based on the CNN + Attention model; on the basis of the above four models, we add PSNP features and compare the performance of the four new models (see Tables 2, 3). In summary, our PseUdeep model (CNN + Capsule + Attention model on three feature extraction methods) is superior to the others.
TABLE 2 | Tenfold cross-validation performance comparison of four models based on three feature extraction methods on three benchmark data sets.
[image: Table 2]TABLE 3 | Performance comparison of four models based on three feature extraction methods on independent testing data sets.
[image: Table 3]Performance of a Single Type of Feature
We also evaluate our model (CNN + Capsule + Attention) with only one kind of feature. Table 4 shows the comparison of performance in the tenfold cross-validation on benchmark data sets. It follows that the ACC values and AUC values of PSNP in three species, H. sapiens, M. muscles, and S. cerevisiae, are much higher than those of the other two characteristics. The ACC value of PSNP is increased by 11.11%, 15.6%, and 16.68%, respectively, compared with other characteristics, the AUC value increased by 0.074, 0.199, and 0.115, respectively. PSNP provides a great possibility to improve the model performance in identifying Ψ sites.
TABLE 4 | The model performance with a single type of feature.
[image: Table 4]Comparison with State-of-the-Art Methods
We compare our model PseUdeep with other state-of-the-art machine learning predictors published recently to evaluate the identification ability of Ψ sites. In benchmark data sets with tenfold cross-validation and independent testing, the results obtained by PseUdeep and other predictors are listed in Tables 5, 6 and Figures 3, 4; the ROC curves of PseUdeep are shown in Figure 5. The accuracy of the PseUdeep model in NH_990, NS_627, and NM_944 is increased by 1.55%, 4.58%, and 0.32%. In addition, the performance of PseUdeep on independent data sets compared with iRNA-Pse and PseUI is shown in Table 6 and Figure 4. It can be observed that the accuracy of the PseUdeep model in H_200 and S_200 is increased by 0.68% and 12.38%, respectively.
TABLE 5 | A comparison of PseUdeep with other models on three benchmark data sets.
[image: Table 5]TABLE 6 | A comparison of PseUdeep with other models on independent data sets.
[image: Table 6][image: Figure 3]FIGURE 3 | The success rates of the PseUdeep and baseline methods on three training data sets.
[image: Figure 4]FIGURE 4 | The success rates of the PseUdeep and baseline methods on independent data sets.
[image: Figure 5]FIGURE 5 | The ROC curves of PseUdeep for H. sapiens, S. cerevisiae, and M. musculus, respectively.
We summarize and compare our model with other state-of-the-art models in terms of feature extraction, number of features, and classifiers as shown in Table 7. Among them, our model PseUdeep does not further feature selection, and the feature dimension is only 109, 109, and 119 in H. sapiens, M. musculus, and S. cerevisiae, respectively, and our model gets the highest accuracy of the prediction.
TABLE 7 | Five methods to identify Ψ sites are summarized in all aspects.
[image: Table 7]CONCLUSION
In this study, we propose a model, PseUdeep, which can effectively identify Ψ sites in RNA sequences. To get better prediction performance, we also train a combination of three features in a simple model and then gradually add different types of layers to obtain better performance. In addition, we compare our model with other models through tenfold cross-validation and independent testing, and the results show that PseUdeep is more accurate and stable. Finally, we evaluate and compare the performance of the three features used in this study and find that PSNP shows the best effect.
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Pseudogenes were originally regarded as non-functional components scattered in the genome during evolution. Recent studies have shown that pseudogenes can be transcribed into long non-coding RNA and play a key role at multiple functional levels in different physiological and pathological processes. microRNAs (miRNAs) are a type of non-coding RNA, which plays important regulatory roles in cells. Numerous studies have shown that pseudogenes and miRNAs have interactions and form a ceRNA network with mRNA to regulate biological processes and involve diseases. Exploring the associations of pseudogenes and miRNAs will facilitate the clinical diagnosis of some diseases. Here, we propose a prediction model PMGAE (Pseudogene–MiRNA association prediction based on the Graph Auto-Encoder), which incorporates feature fusion, graph auto-encoder (GAE), and eXtreme Gradient Boosting (XGBoost). First, we calculated three types of similarities including Jaccard similarity, cosine similarity, and Pearson similarity between nodes based on the biological characteristics of pseudogenes and miRNAs. Subsequently, we fused the above similarities to construct a similarity profile as the initial representation features for nodes. Then, we aggregated the similarity profiles and associations of nodes to obtain the low-dimensional representation vector of nodes through a GAE. In the last step, we fed these representation vectors into an XGBoost classifier to predict new pseudogene–miRNA associations (PMAs). The results of five-fold cross validation show that PMGAE achieves a mean AUC of 0.8634 and mean AUPR of 0.8966. Case studies further substantiated the reliability of PMGAE for mining PMAs and the study of endogenous RNA networks in relation to diseases.
Keywords: pseudogene, microRNA, ceRNA network, feature fusion, graph auto-encoder, extreme gradient boosting
INTRODUCTION
In mammalian genomes, only about 1–2% of genes encode proteins (Carninci et al., 2005). The remaining parts involve non-coding RNAs, including pseudogenes, long non-coding RNAs (lncRNAs), and miRNAs. Pseudogenes usually refer to DNA sequences similar to genes but lack coding function in the genome. However, there is increasing evidence showing that pseudogenes can be transcribed into non-coding RNAs and become important regulators in organisms, especially in human cancer (Ma et al., 2021). Some of them may be potential therapeutic targets (Shi et al., 2015). The study of pseudogenes may help the diagnosis or clinical treatment of cancer. miRNAs are short non-coding RNAs between 19 and 25 nucleotides in length, accounting for about 3% of the genome (Setoyama et al., 2011). miRNAs regulate gene expression by acting on mRNAs to affect many developmental processes and the occurrence of diseases (Plank, 2014; Santulli, 2015; Liu Z. et al., 2016). On the other hand, miRNAs can be used as biomarkers for the objective evaluation and diagnosis of tumors (Ruan et al., 2009; Zhang et al., 2012; Stiegelbauer et al., 2014).
Pseudogenes and miRNAs are important components of the competing endogenous RNA (ceRNA) network (Karreth et al., 2015). ceRNAs can regulate gene expression by competing with miRNAs to construct a ceRNA network (Salmena et al., 2011; Rutnam et al., 2014). The ceRNA network can be understood as a balancing mechanism regulating cell activities at the RNA level. Exploring molecular associations in the ceRNA network helps in finding more biological mechanisms at the RNA level. It is important to study various associations in the ceRNA network but this process is often time-consuming and it can be laborious to study the associations by wet experiments. Various computational methods have been developed accordingly.
Currently, non-coding RNA associations in the ceRNA network have been predicted by diverse machine learning methods, which mainly fall into three categories. The first category is based on matrix factorization (MF). MF extracts features by decomposing the input matrix into the product of two or more low-rank matrices. For instance, Zhang et al. proposed a graph-regularized generalized matrix factorization model for predicting a variety of biomolecular interactions (Zhang et al., 2020). Chen et al. and Xu et al. predicted the miRNA–disease associations based on the probability matrix decomposition and inductive matrix completion, respectively (Chen et al., 2018; Xu et al., 2019). Zheng et al. and Liu et al. respectively introduced methods based on collaborative matrix factorization and neighborhood-regularized logistic matrix factorization to predict drug–target interactions (Zheng et al., 2013; Liu Y. et al., 2016). The second category is based on graph embedding. The known associations are learned by the graph embedding method to obtain the behavior information of nodes, and then the characteristics are fused with the characteristic information of nodes, and then the classifiers use node features to predict results. Ji et al. predicted miRNA–disease associations based on the GraRep embedding model (Ji et al., 2020). Song et al. predicted lncRNA–disease associations based on the DeepWalk embedding model (Song et al., 2020). The third category is based on deep learning, among which the most representative method is the graph convolution network (GCN). The GCN is an end-to-end learning model that can deeply integrate the feature information and topological relationship of nodes in the network. Fu et al. proposed a deep learning model based on the multi-view GCN to predict multiple molecular associations (Fu et al., 2021). Xuan et al. and Long et al. proposed GCNLDA and GCNMDA based on the GCN to predict lncRNA–disease associations and microbe-drug associations, respectively (Xuan et al., 2019; Long et al., 2020).
Although pseudogenes play an important role in the ceRNA network, the computational study of associations between pseudogenes and miRNAs is under-developed. Here, we presented a method predicting pseudogene–miRNA associations (PMAs) based on feature fusion and GAE. Given there are many prediction models that can accurately predict lncRNA–miRNA associations, we proposed that the role of pseudogenes is comparable to that of lncRNAs in the ceRNA network. Thus, the expression level can be used as the node feature for pseudogenes as the methods focus on lncRNAs. We fused the node features into the pseudogene–miRNA network and predicted PMAs by a computational method. To the best of our knowledge, this is the first attempt at PMA prediction. The model achieves the mean area under the ROC curve (AUC) and mean area under the precision–recall curve (AUPR) of 0.8634 and 0.8966, respectively. The experimental results confirmed PMGAE-predicted potential PMAs. We also demonstrated the performance of PMGAE through a series of comparative experiments. Together, PMGAE is a powerful and reliable method for the prediction of PMAs as an important component of the ceRNA network.
MATERIALS AND EQUIPMENT
Datasets
We downloaded known PMAs from starBase v2.0 (Li et al., 2014), a large miRNA database that includes the association between miRNAs and lncRNAs and their associations with mRNAs, pseudogenes, and proteins. dreamBase (Zheng et al., 2018) is a database containing massive pseudogene information, including the associations between pseudogenes and the transcription factor (TF), the connection with RNA-binding protein (RBP), and the expression level of pseudogenes in various normal tissues or cancer tissues. We obtained the expression level of pseudogenes in various tissues as the characteristic information of pseudogenes. miRBase (Kozomara et al., 2019) is a comprehensive miRNA sequence database, which contains miRNA sequence information. We obtained the miRNA sequence as the characteristic information of miRNAs from it.
Data Preprocessing
After quality checking and filtering the obtained data, the dataset comprises the expression information of 444 pseudogenes, the sequence information of 173 miRNAs, and 1,884 pairs of pseudogene–miRNA associations. In addition, considering the independence of the testing set used in the case study, we firstly divided all association pairs into two parts. One is used for model training, and the other is used for the case study.
miRNA sequences are composed of four types of nucleotides: A, adenine; G, guanine; C, cytosine; U, uracil. We set k in k-mer to 3, and each miRNA sequence can be represented as a 64 (4 × 4 × 4)-dimensional vector, where each dimension can represent the frequency of each 3-mer sequence in the sequence. For example, in the miRNA sequence “AGGUUCCAGG,” p (“AGG”) = 2/(10−3+1). For the pseudogenes, we normalized the expression level of pseudogenes as their characteristics.
For the PMAs, we construct a 444 × 173 PMA matrix and put the known PMAs into the PMA matrix. If the [image: image] pseudogene is associated with the [image: image] miRNA, then let [image: image] = 1; otherwise, let [image: image] = 0.
METHODS
PMGAE Overview
PMGAE is composed of three steps, as shown in Figure 1. In step Ⅰ, we calculated and fused the biological characteristics of pseudogenes and miRNAs to obtain the similarity profiles as their features. In step Ⅱ, we obtained the low-dimensional representation vector of nodes by a GAE based on the feature information and association information of existing nodes. In step Ⅲ, we fed the low-dimensional vector into XGBoost to predict the PMAs.
[image: Figure 1]FIGURE 1 | Flowchart of PMGAE.
Feature Fusion
We computed the Jaccard similarity coefficient, cosine similarity coefficient, and Pearson similarity coefficient based on the respective characteristics of pseudogenes and miRNAs. We calculated Gaussian kernel similarity based on PMAs to replace the zeros in the matrix (Chen, 2015). Eventually, we generated the pseudogene similarity (PS) profile of 444 × 444 in dimension and the miRNA similarity (MS) profile of 173 × 173 in dimension. Jaccard similarity, cosine similarity, and Pearson similarity can be calculated as follows:
[image: image]
Individual similarity measures between pseudogenes and between miRNAs may contain noise in the data. In order to reduce the noise, we fused several similarity profiles by feature fusion. Feature fusion obtains a single output matrix by fusing all similarity profiles with non-linear methods (Wang et al., 2014). Firstly, we construct the weight matrix as
[image: image]
The local affinity matrix is defined as
[image: image]
where [image: image] represents the similarity matrix and [image: image] represents neighbors of the [image: image] node. Then, we iteratively update the matrix as
[image: image]
The final feature matrix (here, we set n to 3 in our model) is represented as
[image: image]
For the fusion similarity profiles [image: image] and [image: image], we removed the noise by a stacked auto-encoder (SAE) and obtained the low-dimensional vector representation of pseudogenes and miRNAs. By an SAE, we obtained 128-dimensional matrix representations of [image: image] and [image: image] for pseudogenes and miRNAs, respectively. Finally, in order to improve the training speed and prediction effect of the model, we tried to standardize the obtained 128-dimensional vectors. Specifically, we carried it out using StandardScaler and RobustScaler individually. StandardScaler and RobustScaler can be expressed as
[image: image]
where [image: image] represents the interquartile range of the sample.
StandardScaler improves the rate of learning and prediction accuracy of the model. RobustScaler reduces the effect of outliers on results. Both of them are important, so we took the mean values of the matrix that are treated by each of them separately and obtained the final feature matrices [image: image] and [image: image]. Finally, the node feature matrix [image: image] is constructed as
[image: image]
Graph Auto-Encoder
Auto-encoder is a kind of neural network, which can restore the input using output through certain training. It includes an encoder and a decoder. The encoder obtains the low-dimensional representation of the input vector (Baldi, 2012). The GAE migrates the auto-encoder to a graph (Kipf and Welling, 2016). We constructed the adjacency matrix and the feature matrix of the nodes. The goal is to obtain the low-dimensional representation of the nodes by deeply integrating the association information between nodes and the feature information of nodes themselves through the GAE. The GAE uses a two-layer graph convolution network as an encoder, which can be described as follows:
[image: image]
where [image: image], [image: image] represents the activation function, and [image: image] and [image: image] are parameters to be learned.
We built the adjacency matrix based on the PMA network as follows:
[image: image]
where [image: image] represents the transpose of the matrix [image: image].
We used the adjacency matrix [image: image] and feature matrix [image: image] to obtain the low-dimensional representation vector of nodes by an encoder, which can be defined as
[image: image]
The decoder also obtains the low-dimensional vector recomposition map based on the neural network. The decoder generates a graph according to the probability of edges between nodes. It can be defined as
[image: image]
where [image: image] represents the activation function. [image: image] is the reconstructed network matrix. In this study, in order to make the model more explanatory, we do not use the decoder layer but put the low-dimensional representation vector of nodes into the best classifier we trained to predict the PMAs.
To measure the error between the predicted and the real association, the loss function is defined as
[image: image]
where [image: image] represents the value of an element in the adjacency matrix [image: image] (0 or 1) and [image: image] represents the value of the same element in the reconstructed adjacency matrix [image: image] (0–1). We took multiple epochs to minimize the loss function to make the reconstituted data as similar to the original data as possible.
Subsequently, we predicted potential PMAs by XGBoost. XGBoost is a machine learning algorithm whose core idea is to integrate multiple decision trees and continuously add trees to them. Each addition of trees is a process of iteratively adding new functions. Its purpose is to make the final predicted value as close as possible to the real value. Its implementation process can be expressed as
[image: image]
The objective function of XGBoost is defined as follows:
[image: image]
where [image: image] is the training error and [image: image] is the regularization term to suppress over-fitting.
Graph Embedding
In contrast to the traditional machine learning algorithm which may only consider the mapping from input to output without considering the associations in the network, the graph-based algorithm can obtain the associations between nodes together with their own characteristics to improve the accuracy of prediction. The graph data we obtain from real life are often high-dimensional and sparse. Graph embedding is the process of mapping the input graph data to low-dimensional dense vectors, which can reinforce the efficiency of machine learning and improve the accuracy of prediction.
We selected several representative graph embedding methods including Line (Tang et al., 2015), GraRep (Cao et al., 2015), Node2vec (Grover and Leskovec, 2016), and DeepWalk (Perozzi et al., 2014) to predict the PMAs and compared the results of PMGAE in Results.
RESULTS
Experimental Setup and Performance Evaluation
For the experiment parameters in the GAE, we set a learning rate of 0.001 and trained the model for 8,000 epochs. We obtained a 32-dimensional representation for each node. Then, they were put into XGBoost for prediction. In addition, we used five-fold cross validation to evaluate the performance of the model. We take the known PMAs as a positive sample. The remaining unknown PMAs can be considered potential negatives from which we randomly selected PMAs with equal size to the positive samples as negative samples. Subsequently, we randomly divided the positive and negative samples into five parts. One in the five parts was taken out in turn as a test set, and the remaining were used as the training sets.
We used several evaluation metrics including accuracy, sensitivity, specificity, and precision. In addition, we also adopted the AUC and AUPR to evaluate the prediction performance. We took multiple independent experiments of five-fold cross validation to reduce the error. The mean AUC and AUPR were shown under the corresponding curve (Figure 2). The AUC and AUPR of our prediction model reached 0.8634 and 0.8966, respectively, which showed that PMGAE has satisfactory performance in PMA prediction.
[image: Figure 2]FIGURE 2 | AUC (A) and AUPR (B) of PMGAE using five-fold cross validation. Insets represent the zoom-in view of local regions.
Comparison of the Performance of PMGAE and MF-Based Methods
MF-based methods have shown excellent performance in predicting the correlation of various biomolecules. To evaluate the performance of PMGAE, we compared it with MF-based methods including multiple similarities collaborative matrix factorization (MSCMF), inductive matrix completion for miRNA–disease association (IMCMDA), and neighborhood-regularized logistic matrix factorization (NRLMF). MSCMF is a collaborative filtering model integrating multiple similarities for predicting drug–target interactions (Zheng et al., 2013). IMCMDA is a matrix completion–based model, integrating miRNA–disease associations, individual miRNA and disease characteristics, and Gaussian interaction profile kernel similarity between them to predict miRNA–disease associations (Chen et al., 2018). NRLMF combined logical matrix factorization and neighborhood regularization to predict drug–target interactions (Liu Y. et al., 2016).
As shown in Figure 3, PMGAE showed the best performance in terms of AUC and AUPR. Relative to the MF-based methods, the GAE can effectively extract node features, with the best prediction achieved through XGBoost.
[image: Figure 3]FIGURE 3 | Comparison of AUC (A) and AUPR (B) of PMGAE and MF-based models.
Visualization of Embedding Effect
Because the features are high-dimensional, it is difficult to visualize the clustering results directly. In order to make the model more interpretable and validate the embedded effects, we mapped the features of the nodes before and after embedding them into the three-dimensional space through t-SNE (Maaten and Hinton, 2008). t-SNE can reduce the high-dimensional data to two or three dimensions. Through t-SNE, we can do an intuitive observation on the embedding method for the node clustering effect.
As shown in Figure 4, nodes are randomly distributed before embedding, and our embedding method leads to clustering of the nodes based on their characteristics. Since similar molecules may have similar or related biological functions, effective clustering can facilitate potential association prediction and improve the performance of the model. The effective clustering through embedding validates it as an important component of PMGAE.
[image: Figure 4]FIGURE 4 | Clustering results of nodes before (A) and after (B) embedding.
Feature Fusion With Various Similarity Measures
Using the expression information of pseudogenes and the k-mer sequence information of miRNAs, we calculated the Jaccard similarity coefficient, cosine similarity coefficient, and Pearson similarity coefficient of pseudogenes and miRNAs, respectively. Then, pairwise fusion and full fusion were performed and compared. Table 1 shows the performance of specific fusions and no fusion.
TABLE 1 | Model performance comparison using similarity profile fusions and using individual similarity profiles.
[image: Table 1]Individual similarity has its own limitations. For example, the cosine similarity coefficient tends to distinguish differences from directions; thus, it has a good effect on the calculation of different directions but is not sensitive to the change of values. The Jaccard similarity coefficient has a good effect on the binary data, but it cannot measure the specific value of the difference. The Pearson similarity coefficient tends to give better results when the data do not conform to a certain rule, but the effect on overlapping data is compromised. Considering these shortcomings, we tried to fuse these similarity measures in a non-linear way for a better similarity representation by integrating the advantages. The experimental results in Table 1 show that our full similarity fusion method can effectively improve the performance of the model.
Comparison of the Performance of Various Embedding Methods
For each method, the mean of individual runs is used to measure its performance. As shown in Figure 5, the PMGAE model shows the best prediction. The performance of GAE is superior to that of other graph embedding methods. The GAE more effectively mines the topology structure in the scenario of node information in the network than other embeddings.
[image: Figure 5]FIGURE 5 | Model performance using various embedding methods.
Although the graph embedding models mentioned above have many advantages, according to our experimental study, we found that these models still have some drawbacks. Specifically, the Line model only considers the first-order relationship and second-order relationship of nodes. It cannot construct the global structure of the network well, and the embedding of Line for low-level nodes is not accurate enough. Thus, the prediction outcome of Line is the least accurate in our data. DeepWalk takes into account each first-order relationship of the node with all relationships stored in a subspace. But it cannot distinguish the order of the node’s neighbors during training. At the same time, DeepWalk is only applicable to unweighted graphs and has obvious limitations. The Node2vec model combines some advantages of Line and DeepWalk and also can control the preference of random walk by adjusting the hyperparameters. However, when the number of samples is limited as in the case of PMGAE, the length of random walk is also limited. So, the learning effect for remote neighbors in the network is far from optimum. The GraRep model can put each first-order relationship between nodes in different subspaces, which well constructs the global structure of the network. However, the calculation of each first-order relationship [image: image] and the optimization loss function is large, so it cannot be used for large-scale graph data. Besides, the above-mentioned graph embedding models often only take into account the topological information of nodes but do not well incorporate the characteristic information of nodes themselves. The GAE can achieve the best predictions, mainly because it uses the graph convolution neural network to learn the characteristics of nodes in an end-to-end way. At the same time, the GAE has better robustness and stability, together with good learning effect for poor datasets.
Comparison of the Performance of Various Classifiers
Classifiers play a key role in the model. To compare the prediction performance of our model under different classifiers and select the best classifier, we seek to check its predictive performances with five representative classifiers: eXtreme Gradient Boosting (XGBoost), random forest (RF), K-nearest neighbor (KNN), bagging, and gradient boosting decision tree (GBDT). The AUC and AUPR were used to evaluate their performance. As shown in Figure 6, while all the classifiers have an AUC and AUPR above 0.8, XGBoost yields the best performance. Thus, XGBoost is most suitable for our model.
[image: Figure 6]FIGURE 6 | AUC (A) and AUPR (B) using various classifiers.
Comparison of GAE With Various Setups of Hidden Units
The GAE contains two layers of hidden units in the neural network. We evaluated the impact of different dimensions of each layer on the performance of the model. We fixed the second hidden layer with 32 units and then set the first hidden layer with units of 32, 64, 128, 256, and 512, respectively. Figure 7 shows that when the first hidden unit is 64, the GAE has the best performance. Then, we set the first hidden layer with units of 64 and set the second hidden layer with units of 16, 32, 64, 128, and 256, respectively. We found that model performance was slightly improved with the decrease of the unit number. The AUPR is highest when the unit number is reduced to 32, and the AUC is highest when the unit number is reduced to 16. High-dimensional representation may lead to data sparsity, which is not conducive to classification. While reducing dimension can improve the training speed of the model, dimensions too low may cause loss of key information. For the task of PMA prediction, we chose the first hidden unit to be 64 and the second hidden unit to be 32.
[image: Figure 7]FIGURE 7 | AUC and AUPR of various hidden unit setups in the first (A) and second (B) layers of GAE.
Effect of Ratio of Positive to Negative Samples
Unbalanced test sets containing too many negative samples may affect the performance of the model. To explore the impact of this data imbalance on PMGAE, we used various setups of positive: negative sample ratios. In the five-fold cross validation, we constructed 1:1, 1:2, 1:5, 1:10, and 1:20 test sets by changing sizes of potentially negative samples. Table 2 shows the experimental results. The test set with different proportions has a moderate effect on the results. It suggests that, for the evaluation of model performance in predicting PMAs, the influence of different positive: negative sample ratios cannot be omitted.
TABLE 2 | Model performance under various setups of positive: negative sample ratios.
[image: Table 2]Case Studies
Exploring cases of PMAs is of great significance to provide insights for research of diseases. Seeking support of our predictions from independent sources can evaluate the effectivity and robustness of PMGAE. For the case study, we used all other associations that did not contain three pseudogenes RPLP0P2, HLA-H, and HLA-J to train the model and then predicted the probability of all miRNAs associated with each of these three pseudogenes. The top 15 predicted associations were used to verify the predictions through starBase.
Three pseudogenes, RPLP0P2, HLA-H, and HLA-J, were used for case studies. RPLP0P2 is a pseudogene associated with a variety of cancers including lung adenocarcinoma and colorectal cancer. Several studies have shown that low expression of RPLP0P2 can lead to decreased proliferation and adhesion of tumor cells (Chen et al., 2016; Yuan et al., 2021). Table 3 shows the top 15 candidate miRNAs associated with RPLP0P2, 11 of which are supported by starBase.
TABLE 3 | The top 15 candidate miRNAs associated with pseudogenes RPLP0P2, HLA-H, and HLA-J and the evidence from starBase.
[image: Table 3]HLA-H is a kind of transmembrane molecule, and it can mobilize HLA-E at the cell surface of multiple immune cells (Jordier et al., 2019). At the same time, HLA-H gene mutations cause many cases of hereditary hemochromatosis. Table 3 shows the top 15 candidate miRNAs associated with HLA-H, 12 of which are proved by starBase.
HLA-J is also a class of HLA gene. HLA-J has an immunosuppressive effect and is potentially a predictor of breast cancer (Würfel et al., 2020). Besides, HLA-A has been shown to be associated with schizophrenia. The presence of HLA-AM80468 significantly reduces the incidence of schizophrenia, whereas the presence of HLA-JM80469 increases the incidence of schizophrenia (Gu et al., 2013). As shown in Table 3, 11 of the top 15 candidate miRNAs associated with HLA-J are proved by starBase.
DISCUSSION
Genome-wide prediction of PMAs has great significance in both biology and medicine. It can not only help us understand the cellular role of pseudogenes but also provide clues and directions for the clinical treatment of various diseases. In this work, full potential PMAs are predicted for the first time. Feature fusion and GAE were used to construct the model, PMGAE. The performance of PMGAE was evaluated by five-fold cross validation, with an AUC of 0.8634 and AUPR of 0.8966 obtained. Extensive experiments on feature fusion, model framework, and setup were conducted.
The good performance of PMGAE may be attributed to the optimization of each step and flexibility together with the good interpretability of the model. First, we integrated the attribute information from different perspectives of nodes by feature fusion. Subsequently, the GAE was used to integrate the correlation information and attribute information to obtain the low-dimensional representation of nodes. Finally, we selected the most suitable classifier for the model as an association prediction task. By comparative experiments on the feature construction, embedding method, and classifiers, the best integrated model can be selected. The resultant PMGAE model has the optimal effect in predicting the PMAs.
In the ceRNA network, pseudogene–miRNA is the only pair of relationships that have not been studied computationally. By predicting PMAs for the first time, using PMGAE, our work fills the gap in the ceRNA network, so that all known relational pairs in the ceRNA network can be predicted by computational methods. The completed map will facilitate the studies of ceRNA network architecture and its biological implications.
Based on the successful application of PMGAE, there is space for further improvement. First, only one type of feature for each node was used when constructing a similarity feature profile. Fusing more types of node features may provide more information for model training. Second, one can also introduce intermediate layers to incorporate pseudogene–lncRNA associations and lncRNA–miRNA associations. Whether adding intermediate layers will improve the prediction effect of the model is a problem worth further exploration. Third, when constructing negative samples, we simply used non-positive samples as potential negative samples and then randomly extracted them. How to build negative samples more accurately is also a question worth exploring. Fourth and more importantly, in PMGAE, embedding and classifier are sequentially, also separately trained. For the task of PMA prediction, end-to-end modeling seeking a global optimal solution is worth further exploration. Toward a full description and understanding, we will incorporate all relation pairs to build a complete graph of the ceRNA network, together with diverse information of all types of nodes.
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Background: Recurrence is still a major obstacle to the successful treatment of gliomas. Understanding the underlying mechanisms of recurrence may help for developing new drugs to combat gliomas recurrence. This study provides a strategy to discover new drugs for recurrent gliomas based on drug perturbation induced gene expression changes.
Methods: The RNA-seq data of 511 low grade gliomas primary tumor samples (LGG-P), 18 low grade gliomas recurrent tumor samples (LGG-R), 155 glioblastoma multiforme primary tumor samples (GBM-P), and 13 glioblastoma multiforme recurrent tumor samples (GBM-R) were downloaded from TCGA database. DESeq2, key driver analysis and weighted gene correlation network analysis (WGCNA) were conducted to identify differentially expressed genes (DEGs), key driver genes and coexpression networks between LGG-P vs LGG-R, GBM-P vs GBM-R pairs. Then, the CREEDS database was used to find potential drugs that could reverse the DEGs and key drivers.
Results: We identified 75 upregulated and 130 downregulated genes between LGG-P and LGG-R samples, which were mainly enriched in human papillomavirus (HPV) infection, PI3K-Akt signaling pathway, Wnt signaling pathway, and ECM-receptor interaction. A total of 262 key driver genes were obtained with frizzled class receptor 8 (FZD8), guanine nucleotide-binding protein subunit gamma-12 (GNG12), and G protein subunit β2 (GNB2) as the top hub genes. By screening the CREEDS database, we got 4 drugs (Paclitaxel, 6-benzyladenine, Erlotinib, Cidofovir) that could downregulate the expression of up-regulated genes and 5 drugs (Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid) that could upregulate the expression of down-regulated genes. These drugs may have a potential in combating recurrence of gliomas.
Conclusion: We proposed a time-saving strategy based on drug perturbation induced gene expression changes to find new drugs that may have a potential to treat recurrent gliomas.
Keywords: low grade gliomas, RNA-seq, differentially expressed genes, WGCNA, key driver genes, drug discovery
INTRODUCTION
Gliomas are the most common type of central nervous system (CNS) tumors, which are composed of various distinct subtype tumors (Galbraith and Snuderl, 2021). Differed from non-CNS neoplasms, the gliomas’ grading system is quite complicate. The latest 2021 WHO Classification of Tumors of the Central Nervous System (WHO CNS5) has integrated certain molecular markers and histological features for more accurate staging of gliomas (Louis et al., 2021). Briefly, the gliomas can be classified as two categories, low-grade gliomas (grade 1–2) with a relatively benign slow-growing feature and favorable prognosis, and high-grade gliomas (grade 3–4) with highly infiltrative ability and malignant form. Glioblastoma multiforme (GBM) accounts for approximately 55% of gliomas and is considered as the most aggressive type of gliomas with a 5-years survival rate less than 5% and a median survival time of 12–15 months (Ostrom et al., 2015a; Ostrom et al., 2015b). Currently, the conventional therapeutic regimen for gliomas is surgical resection followed by radiotherapy and chemotherapy. However, the curative effect is far from satisfaction and recurrence is still the major obstacle to the success of chemoradiotherapy since the majority of GBM would experience recurrence within 6.2 months after diagnosis (Bähr et al., 2009; King and Benhabbour, 2021). Therefore, it is imperative to find new therapeutic target and novel therapeutic strategies for patient with gliomas.
Over the past decades, molecular biomarkers have gained important value in providing diagnostic information and therapeutic target for gliomas. Bevacizumab, an inhibitor of vascular endothelial growth factor (VEGF), was approved to treat recurrent GBM by the Food and Drug Administration (FDA) in March 2009 (Friedman et al., 2009; Kreisl et al., 2009). By targeting VEGF, Bevacizumab inhibits angiogenesis and blocks the nutrient supply, which ultimately impedes the growth and metastasis of GBM. In addition, methylation of the O6 -methylguanine-DNA methyltransferase (MGMT) promoter might serve as a predictive marker for temozolomide (TMZ) treatment response of GBM (Hegi et al., 2008). Poly (ADP ribose) polymerase (PARP) inhibitors can increase tumor sensitivity to TMZ chemotherapy and synergize with radiation therapy (Lesueur et al., 2018). A novel nano-compounds encapsulating wild-type p53 (SGT-53) could enhance the inhibitory effects of TMZ on TMZ-resistant GBM cells (Kim et al., 2015). Moreover, mutations/deregulation in the platelet-derived growth factor receptor alpha (PDGFRα), telomerase reverse transcriptase (TERT), epidermal growth factor receptor (EGFR), c-Myc, phosphatase and tensin homolog (PTEN), serine/threonine-protein kinase (BRAF) are frequently observed in glioma, which have become attractive markers for targeted therapy [Mukasa et al., 2010; Sampson et al., 2010; Killela et al., 2013; Johnson et al., 2014; Liu et al., 2020a; Liu et al., 2020b)].
Though a handful of molecular biomarkers have been discovered, the targeted therapies in clinical trials displayed limited curative effect for gliomas (Wu et al., 2021). This may be attributed to the inter- and intra-heterogeneity in driver mutations and plasticity of gliomas. The recurrent tumor might have a totally distinct gene expression signature in comparison with the primary tumor. Notably, 90% of druggable targets identified at initial diagnosis of gilomas are differentially expressed in a recurrent tumor (Schäfer et al., 2019). Ideally, a patient would select the specific drug according to his/her own molecular genetic feature and change the drugs over the course as the tumor evolves. With the advent of multiomics era, it is becoming possible.
In the era of big data, genome-wide molecular profiling at genome, transcriptome, proteome, and metabolome level have revealed comprehensive landscapes for all major types of gliomas. This has not only enriched our understanding of the molecular mechanism of gliomas pathogenesis and progression, but also broadened our ideas in discovering new therapeutic drugs. As we all know, new drug developing is a time-consuming course with high capital input and low yield, and drug repositioning based on computational tools could largely shorten the process (Liu et al., 2016; Xu et al., 2019; Zhou et al., 2019; Yang et al., 2020a; Liu et al., 2020; Tang et al., 2020; Zhou et al., 2020; Peng et al., 2021). In the present study, we proposed a fast, economical, and comprehensive strategy to find old drugs with new function for combating recurrence of gliomas. Our results on TCGA data suggested that this strategy provides a new direction in discovering drugs and brings hope for people in treating gliomas.
MATERIALS AND METHODS
Data Collecting and Grouping
The RNA sequencing data of gliomas samples were downloaded from TCGA database. The samples were divided into 4 groups: low grade gliomas primary tumor samples (LGG-P, n = 511), low grade gliomas recurrent tumor samples (LGG-R, n = 18), GBM primary tumor samples (GBM-P, n = 155), and GBM recurrent tumor samples (GBM-R, n = 13).
Screening of DEGs in Gliomas
The R package DESeq2 was applied to identify DEGs in the following data pairs: LGG-P vs LGG-R, GBM-P vs GBM-R. |log2fold change (FC)| ≥ 2, false discovery rate (FDR) < 0.5 and adjusted p value < 0.001 were set as threshold. R package clusterProfiler was used for Gene Ontology (GO) enrichment analysis and calculations. The enriched pathways in the up- or down-regulated gene set were generated using R package ggplot2.
Weighted Gene Correlation Network Analysis and Key Driver Analysis
Network-based methods have been widely used to analyze the associations between various biological entities (Chen et al., 2018; Peng et al., 2018; Peng et al., 2020; Zhang et al., 2021). The R package WGCNA was used to construct a weighted gene co-expression network. The key driver analysis was performed using a software package described by Yang et al.(Yang et al., 2016). The first step was to generate a subnetwork NG, which is located within 2 steps of nodes in a given gene set. Next, the dynamic neighborhood search (DNS) was used to find the gene within 2 steps of each gene in NG. Lastly, by taking the gene set in the first step as the background, the hypergeometric test is carried out to calculate the enrichment value between the gene set in the second step and the input gene set. p value < 0.05 for DEG and p value < 0.01 for subnet were set as threshold in the key driver analysis.
Drug Discovery
Based on the DEGs and key drivers, the CREEDS database was used to find potential drugs. The CREEDS database contains 906 drug perturbation gene expression signatures collected from GEO database (Wang et al., 2016). We screened the drug-gene pairs to identify potential drugs that could reverse the expression of DEGs and key drivers in gliomas. p value < 10–10 was set as the threshold.
RESULTS
A Computational Framework to Identify Biomarkers for Glioma Recurrence and Potential Drugs Targeting Them
We proposed a computational framework biomarker identification and drug discovering for glioma recurrence (Figure 1). Firstly, the differentially expressed genes (DEGs) of primary gliomas samples and recurrent gliomas samples were identified from RNA sequencing data downloaded from The Cancer Genome Atlas (TCGA) database. Secondly, weighted gene correlation network (WGCNA) analysis and key driver analysis were conducted to find co-expression modules and key driver genes. Thirdly, the CREEDS database was applied to find potential drugs that could reverse the DEGs and key drivers. We then applied this framework to the downloaded TCGA data and identified important genes involving in glioma recurrence and potential drugs targeting them.
[image: Figure 1]FIGURE 1 | The framework of this study. The RNA-seq data was used to find DEGs, which was followed by GO enrichment, WGCNA, and key driver analysis. Potential drugs that could reverse the DEGs and key drivers were screened through the CREEDS database.
Many DEGs Were Identified Between LGG-P and LGG-R, and Between GBM-P and GBM-R
We conducted a comprehensive analysis of the DEGs between LGG-P and LGG-R, and between GBM-P and GBM-R. The difference between GBM-P and GBM-R samples was not significant as we only obtained 2 upregulated and 29 downregulated genes. A total of 205 DEGs with 75 upregulated and 130 downregulated genes were identified between LGG-P and LGG-R samples. The specific details of each DEGs were shown in Supplementary Table S1. Since the number of DEGs between GBM-P and GBM-R was not large enough, we chose LGG-P and LGG-R pairs for further study. We randomly selected 25 samples to draw the heat map and the top 10 differentially expressed genes were shown in Figure 2.
[image: Figure 2]FIGURE 2 | The heat map of the DEGs between LGG-P and LGG-R samples. Dao, mdh1, slc1a3, CNOT4, meox2, pik3c2g, LGR6, ahcyl2, SPARC and LTF were the top 10 differentially upregulated genes; LMNTD2-AS1, MAFA, COL2A1, ONECUT3, MEOX1, BNC1, LMNTD2, GEN1, Wnt11 and trim7 were the top 10 differentially down regulated genes.
GO analysis was utilized to annotate the function of DEGs between LGG-P and LGG-R. The upregulated genes could not be enriched owing to the relatively large p value. The downregulated genes were predominantly enriched in DNA-binding transcription activator activity, extracellular matrix structural constituent, growth factor binding, and platelet-derived growth factor binding for the molecular function (MF) category (Figure 3A). For the cellular component (CC) category, the downregulated genes were correlated with extracellular matrix, collagen-containing extracellular matrix, endoplasmic reticulum lumen, and collagen trimer (Figure 3B). For the biological process (BP) category, the downregulated genes were mainly involved in skeletal system development, extracellular matrix organization, extracellular structure organization, and connective tissue development (Figure 3C). KEGG enrichment analysis was further performed to explore the underling pathological pathways for LGG. As shown in Figure 4, the enrichment pathways include human papillomavirus infection, PI3K-Akt signaling pathway, Wnt signaling pathway, ECM-receptor interaction, and proteoglycans in cancer.
[image: Figure 3]FIGURE 3 | GO analysis of the downregulated genes between LGG-P and LGG-R. (A) molecular function category; (B) cellular component category; (C) biological process category. The X-axis is the ratio of differentially expressed genes enriched in the corresponding pathway, and the Y-axis is the name of the pathway.
[image: Figure 4]FIGURE 4 | KEGG analysis of the downregulated genes between LGG-P and LGG-R. The DEGs were mainly enriched in protein digestion and absorption, human papillomavirus infection, ECM-receptor interaction, PI3K-Akt signaling pathway, and proteoglycans in cancer pathways.
Coexpression Analysis Revealed Chemical Synaptic Transmission Pathway and T Cell Activation Pathway as Key Modules for Glioma Recurrence
To better understand the function of differentially expressed genes, WGCNA was carried out to identify highly correlated gene clusters. Genes with zero expression were deleted from all samples, and the samples of some separated groups were removed from the hierarchical clustering results. WGCNA finally yielded 150 significant gene modules in LGG-P group and 65 gene modules in LGG-R group. Since there are too many genes to visualize, we randomly selected 400 genes to construct a topological overlapping heat map (Figure 5A) and performed functional enrichment analysis. As shown in Figure 5B and Figure 5C, the highly coexpression genes were mainly enriched in chemical synaptic transmission pathway and T cell activation pathway.
[image: Figure 5]FIGURE 5 | Highly correlated gene clusters were identified by WGCNA. (A) Topological overlapping heat map of 400 genes. (B) GO enrichment analysis of module 5. (C) GO enrichment analysis of module 8.
Many Genes Including FZD8 and GNG12 Were Identified as Key Driver Genes for Glioma Recurrence
Key driver gene was considered as the hub gene that connected the up- or downregulated genes. For LGG-P vs LGG-R pair, we obtained 2 key drivers in the upregulated gene set and 260 key drivers in the downregulated gene set. The detailed information of the key drivers can be found in Supplementary Table S2. The most siginificant key drivers and their corresponding subnetwork were shown in Figure 6. We demonstrated that frizzled class receptor 8 (FZD8) and guanine nucleotide-binding protein subunit gamma-12 (GNG12) were two of the hub gene of the downregulated genes. FZD8 is a G protein-coupled receptor protein that plays an important role in β-catenin signaling pathway and regulates cancer invasion and metastasis (Li et al., 2017). GNG12 is a member of the G protein family and participate in a handful of trans-membrane signal transducer pathways (Yuan et al., 2021). G protein subunit β2 (GNB2) is a hub gene of up regulated genes and belongs to the guanine nucleotide-binding proteins family. GNB2 may activate the canonical G protein signaling and involved in cancer initiation and progression (O’hayre et al., 2014). The functions and implications of these hub genes in cancers will be discussed further.
[image: Figure 6]FIGURE 6 | A subnetwork of the key drivers that connected the up and down regulated genes. Purple indicates upregulated genes, red indicates key drivers of upregulated genes, green indicates downregulated genes, and blue indicates key drivers of downregulated genes.
A Few Drugs Including Paclitaxel and Fenofibrate Were Identified as Potential Drugs for Preventing Glioma Recurrence
Drugs that have a potential to reverse the expression of DEGs may be valuable for further treatment of gliomas. We obtained 26 drugs that could perturb the expression of up regulated gene sets and 50 drugs that could perturb the expression of down regulated gene sets by CREEDS database. In consideration of drug profile and previous studies, we focused on 4 perturbation drugs of up regulated genes (Paclitaxel, 6-benzyladenine, Erlotinib, Cidofovir) and 5 perturbation drugs of down regulated genes (Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid) (Table 1). These drugs may provide new insight into preventing recurrence of LGG.
TABLE 1 | Potential drugs for the treatment of LGG recurrence.
[image: Table 1]DISCUSSION
Gliomas are highly malignant tumors and recurrence is still the main obstacle to treatment. Though researchers have identified a handful of biomarkers for glioma, the therapeutic effect of targeted drugs is far from satisfaction. Currently, our study provides a fast, economical, and comprehensive method for finding potential drugs to treat gliomas.
Based on RNA sequencing data of LGG-P and LGG-R samples from TCGA, we yielded 75 upregulated and 130 downregulated genes, which were predominantly correlated with human papillomavirus (HPV) infection, PI3K-Akt signaling pathway, Wnt signaling pathway, ECM-receptor interaction. HPV infection is a major cause of cervical cancer, and associated with several epithelial malignancies, including oral cavity, anal, oropharyngeal, penile, vulvar, vaginal, and laryngeal cancers (Lu et al., 2020). Until now, there is no direct evidence indicates that HPV infection is involved in gliomas. We speculate HPV infection may interfere host immune system and participate in LGG recurrence. PI3K-Akt signaling pathway and Wnt signaling pathway are two of the canonical signaling transduction pathways in various cancers. PI3K/Akt pathway controls cell fate by regulating cell growth, apoptosis, angiogenesis, metabolism, autophagy, and chemotherapy resistance of gliomas (Shahcheraghi et al., 2020). Activation of PI3K-Akt pathway is associated with migration and invasion of glioblastoma cells (Huang et al., 2018). Wnt/beta-catenin signaling pathway plays a vital role in ionizing radiation-induced invasion of glioblastoma cells (Dong et al., 2015). It has been reported that high level of beta-catenin was associated with a poor prognosis in glioblastoma patients (Gao et al., 2017). Currently, a number of PI3K inhibitors and wnt inhibitors have entered clinical trials for gliomas treatment, such as BKM120, XL147 and XL765 (Lee et al., 2016; Zhao et al., 2017). ECM-receptor interaction pathway mediates cell migration by regulating neovascularization and diffuse infiltration of tumor cells (Cui et al., 2018). Previous study also indicated ECM-receptor interaction pathway was abnormal in development and survival of glioblastoma (Bo et al., 2015; Yang et al., 2020b).
We also identified several key driver genes that contributed to LGG recurrence, including FZD8, GNG12, GNB2. FZD8 could activate the β-catenin pathway and play a vital role in cancer invasion and metastasis (Chen et al., 2020). Aberrant expression of FZD8 has been reported in gastric cancer, prostate cancer, renal cell carcinoma, lung cancer, pancreatic adenocarcinoma, and overexpression of FZD8 was considered to promote tumor metastasis (Li et al., 2017; Yang et al., 2017; Liu et al., 2019; Chen et al., 2020; Li et al., 2021). In addition, overexpression of FZD8 leaded to chemotherapy resistance in breast cancer patients (Yin et al., 2013). GNG12 acted as an important modulator or transducer in various transmembrane signaling systems. Researchers have demonstrated that GNG12 could regulate cancer cell proliferation, inflammatory response, and immune response via activating the mTORC1 pathway and NF-κB signaling pathway (Larson et al., 2010; Luo et al., 2018; Li et al., 2020). GNB2 was involved in cancer initiation and progression by activating AKT/mTOR pathway, MAPK pathway, and Hippo signaling pathway. Mutations of GNB2 may result in targeted kinase inhibitors resistance to numerous types of cancer (Yoda et al., 2015). The roles of FZD8, GNG12, GNB2 have not been fully illustrated in gliomas and needs further investigation. These key driver genes may help for understanding the pathogenesis of for LGG recurrence and shed new insight for developing new drugs.
However, developing new drugs from a molecular biomarker is a great project and still has a long way to go. In the present study, a total of 9 drugs with potential therapeutic effect against LGG recurrence were selected through a drug-gene perturbation method. Paclitaxel is a natural anticancer drug that has been widely used in the therapy of breast cancer, ovarian cancer, lung cancer, and several head and neck cancers. Paclitaxel binds to tubulin, promotes its assembly with microtubules and inhibits dissociation, which finally prevents mitosis and hinders cell cycle progression (Zhu and Chen, 2019). Erlotinib is used to treat some types of lung cancer and advanced or metastatic pancreatic cancer in clinical. Erlotinib blocks EGFR pathway by inhibiting tyrosine kinase activity and impeding cell proliferation, apoptosis, angiogenesis, invasions, and metastasis. Benzylaminopurine is a first generation cytokinin that stimulates cell division and inhibits respiratory kinase, leading to plant growth and development. Cidofovir is used to treat cytomegalovirus (CMV) infection through inhibiting viral DNA polymerase (Alcamo et al., 2020). Cidofovir also has a strong activity against herpes simplex virus (HSV), varicella zoster virus (VZV), adenovirus (AV), and human papillomavirus (HPV). Fenofibrate is widely used as a lipid-lowering drug through activating PPARα-RXR signal and transcription of lipid metabolism related genes. Numerous evidence has indicated that fenofibrate might exert anticancer effects through regulating cell apoptosis, cell-cycle arrest, invasion, and migration (Lian et al., 2018). Oxaliplatin is a third-generation platinum analog that has been widely used as the first-line drugs for metastatic colorectal cancer. It blocks DNA replication by binding to DNA and forming cross-linked DNA adducts, which consequently leading to cancer cell death (Mauri et al., 2020). Bilirubin is an endogenous metabolite from haem. Recent studies have indicated bilirubin levels may serve as biomarker for several cancers and vascular disease (Horsfall et al., 2020; Seyed Khoei et al., 2020). Nutlins is a small molecule that could displace p53 protein from p53/MDM2 complex, thereby preventing the degradation of p53. It has been revealed that Nutlins could induce p53 dependent cell cycle arrest and apoptosis in a number of tumors (Impicciatore et al., 2010). Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is widely used to treat epilepsia, bipolar disorders, migraine, and schizophrenia. In addition, VPA may exert anti-tumor activity by regulating cell proliferation, apoptosis, differentiation, adhesion, invasion, migration, angiogenesis, and inflammation (Michaelis et al., 2007). As shown above, some candidate drugs were already commonly used in clinical, some candidates only showed preclinical antitumor activity. Weather these drugs/agents could prevent LGG recurrence still needs further preclinical and clinical trial validation.
In conclusion, we conducted a comprehensive analysis of LGG-P and LGG-R samples to find DEGs and key driver genes. By using a drug-gene perturbation method, a serious potential drugs/agents were screened to treat LGG recurrence. However, the exact effect of these drugs on glioma recurrence needs further experimental data for verification. Besides, independent dataset with paired primary tumor and recurrent tumor samples is needed to validate the findings in the future. This study may broaden our understanding of the molecular mechanism of LGG recurrence and provide new sights for drug discovery.
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Cumulative research studies have verified that multiple circRNAs are closely associated with the pathogenic mechanism and cellular level. Exploring human circRNA–disease relationships is significant to decipher pathogenic mechanisms and provide treatment plans. At present, several computational models are designed to infer potential relationships between diseases and circRNAs. However, the majority of existing approaches could not effectively utilize the multisource data and achieve poor performance in sparse networks. In this study, we develop an advanced method, GATGCN, using graph attention network (GAT) and graph convolutional network (GCN) to detect potential circRNA–disease relationships. First, several sources of biomedical information are fused via the centered kernel alignment model (CKA), which calculates the corresponding weight of different kernels. Second, we adopt the graph attention network to learn latent representation of diseases and circRNAs. Third, the graph convolutional network is deployed to effectively extract features of associations by aggregating feature vectors of neighbors. Meanwhile, GATGCN achieves the prominent AUC of 0.951 under leave-one-out cross-validation and AUC of 0.932 under 5-fold cross-validation. Furthermore, case studies on lung cancer, diabetes retinopathy, and prostate cancer verify the reliability of GATGCN for detecting latent circRNA–disease pairs.
Keywords: circRNA-disease associations, deep learning, graph attention network, graph convolutional network, centered kernel alignment
INTRODUCTION
Circular RNA (circRNA) is a novel endogenous non-coding RNA forming a covalently closed loop structure, which lacks a 50-end cap and a 30-end ployA tail (Memczak et al., 2013; Meng et al., 2017). This structure is beneficial for circRNA to develop resistance to RNA exonuclease degradation and provides a more stable biological expression (Li et al., 2015). As a result, in most species, the average half-life of circRNAs is substantially increased than their linear equivalent. When circRNAs were first found as early as 1970s, they had been regarded as the abnormal shear or product of “shear noise,” limited to the level of technology and knowledge at that time. In previous studies, multiple circRNAs were verified to be widespread in eukaryotes and play an essential role in biological functions with the advancement of biology and sequencing technologies. Currently, the biological functions of circRNA are reflected as follows (Rong et al., 2017): regulation of alternative splicing or transcription, miRNA sponges, regulation of protein binding, and generation of pseudogenes.
CircRNA has become a new biomarker due to its abundance, structural stability, developmental stage specificity, and tissue specificity (Zhang Z. et al., 2018), which can be discovered in saliva, blood, and exosomes. Cumulative research studies have confirmed that multiple circRNAs are significant to the expression of various pathological conditions (Han et al., 2018; Zhu et al., 2017; Zhang S. et al., 2018), especially cancer (Vo et al., 2019), cardiovascular, cerebrovascular, and nervous system diseases. For instance, circRNA hsa_circ_0027599 is overexpressed in gastric cancer (Wang L. et al., 2018), thereby regulating the expression of the gene PHLDA1 and promoting tumorigenesis. In cardiovascular and cerebrovascular diseases, circRNA circWDR77Z targets and regulates miRNA miR-124/FGF-2 through the “sponge” function (Chen et al., 2017), which affects the migration and proliferation for vascular smooth muscle cells, thereby promoting atherosclerosis development. For myocardial infarction, overexpression of circRNA CDR1 leads to the upregulation of downstream corresponding enzymes and proteins (Zhang et al., 2016), thereby aggravating myocardial infarction. In neurological diseases, the expression of circRNA in brain tissue is different, and its distribution in the brain is uneven (Zhang et al., 2021b).
Although circRNA is commonly expressed in various cell lines and tissues with strong tissue specificity and development stage specificity, the pathogenic mechanism of circular RNA and how it interacts with other biological molecules remain unknown. In recent years, researchers have established many experimentally verified or reported databases on relationships between circRNAs and diseases, such as circBase (Glažar et al., 2014), circRNADb (Chen et al., 2016), circR2Disease (Fan et al., 2018b), circRNADisease (Zhao et al., 2018), circ2Disease (Yao et al., 2018) and circ2Traits databases (Ghosal et al., 2013). Considering that conventional biological studies are cost-ineffective and time-consuming, several computational approaches have been designed to detect relationships between diseases and circRNAs efficiently (Xiao et al., 2022; Lei et al., 2021). At present, the proposed computational models for discovering relationships between diseases and circRNAs are mainly classified into the following groups:
Network propagating methods have been widely applied to detect correlations between diseases and various biological entities, including circRNAs, due to the efficient use of network structure information (Peng et al., 2018). Zhang et al. designed a linear neighbor marker propagation approach named CD-LNLP via neighbor similarity to reveal relationships between diseases and circRNAs (Zhang et al., 2019). Li et al. presented the DWNCPCDA using DeepWalk and network consistency projection (Chen et al., 2018) to detect unobserved associations between diseases and circRNAs (Li G. et al., 2020). Lei et al. constructed a prediction model named RWRKNN, which combined the k-nearest neighbor and RWR to calculate weighted features for diseases and circRNAs (Lei and Bian, 2020).
Path-based methods are widely adopted to calculate potential interactions between diseases and circRNAs by measuring the weight of paths in different networks. Lei et al. presented a path-weighted method named PWCDA, which predicted the circRNA–disease relationships by calculating the probability value for each circRNA–disease pair via path information (Lei et al., 2018). Fan et al. presented the model named KATZHCDA via the circRNA expression profile, the similarity of the disease phenotype, and the nuclear similarity of the Gaussian interaction profile using the KATZ method to detect potential interactions between diseases and circRNAs through the heterogenous network (Fan et al., 2018a). Zhao et al. revealed a computed method named IBNPKATZ using the bipartite network projection model and the KATZ (Zhang et al., 2021a) model to discover circRNA–disease interactions (Zhao et al., 2019).
Matrix factorization–based methods have been carried out for detecting circRNA–disease relationships by constructing a low-dimensional matrix to represent the initial input features (Wang P. et al., 2018; Peng et al., 2020a). Wei et al. used weight-based nearest neighbor nodes to reconstruct the association matrix and designed a graph regularized non-negative matrix factorization algorithm iCircDA-MF to detect relationships between diseases and circRNAs (Wei and Liu, 2020). Lu et al. constructed a model named DMFCDA with deep matrix factorization, which infers potential circRNA–disease interactions by mapping features of diseases and circRNAs into low-dimensional spaces (Lu et al., 2021). Yan et al. used the Kronecker product kernel to design a regularized least squares algorithm called DWNN-RLS to detect relationships (Yan et al., 2018). Li et al. presented an advanced approach named SIMCCDA by regarding predicting associations as a recommendation system task, which achieves outstanding performance for discovering circRNA–disease associations (Li M. et al., 2020).
Deep learning integrates low-level features to construct high-level representations of features or attribute categories through the deep non-linear network structure (Peng et al., 2021; Zhou et al., 2021). Wang et al. designed a model to reveal interactions between diseases and circRNAs using deep convolutional neural networks and deep generative adversarial networks (Wang et al., 2020a). Wang et al. designed an approach named GCNCDA to identify disease-related circRNAs, which extracts high-level features contained in the circRNA–disease heterogenous network through graph convolutional networks to calculate association scores (Wang et al., 2020b). GATCDA is a novel model for discovering the correlation between diseases and circRNAs, which learns the latent representation of nodes by assigning corresponding weights to each neighbor node (Bian et al., 2021). Xiao et al. designed a computational model named NSL2CD that adopts network embedding by adaptive subspace learning (Xiao et al., 2021).
Although the abovementioned approaches have achieved excellent predictive performance, there are still several limitations given as follows: First, network-based methods achieve poor performance in sparse networks due to a small amount of network structure information. Second, path-based methods fail to dynamically calculate weights based on known associations, which makes it unable to efficiently detect relationships between diseases and circRNAs with new diseases or circRNAs. Third, matrix factorization–based methods could not discover a non-linear interaction between diseases and circRNAs. Last, current deep learning–based methods could not effectively utilize the multisource data and only pay more attention to features of the neighbor nodes or the node itself, respectively.
To solve the abovementioned challenges, we develop an advanced method GATGCN via graph attention network (GAT) and graph convolutional network (GCN) to detect potential circRNA–disease relationships. The complete process could be summarized as four steps: First, multisource similarity data for circRNAs and diseases are fused by the centered kernel alignment model (CKA) (Cristianini et al., 2006). Second, we adopt the graph attention network to learn the dense representation of nodes on fused disease similarity network and fused circRNA similarity network. Third, we construct the heterogenous network by connecting circRNA–disease interaction network, feature matrix of diseases, and feature matrix of circRNAs. Finally, the graph convolutional network is adopted to get prediction scores based on the heterogenous network. According to reliable computer experiments, GATGCN outperforms several state-of-the-art methods with a prominent AUC of 0.932.
MATERIALS
Human CircRNA–Disease Associations
The circR2Disease provides verified relationships between diseases and circRNAs, which is a manually curated database including 739 known relationships between 100 diseases and 676 circRNAs. We eventually extract 661 associations between 88 diseases and 585 circRNAs for humans after removing the associations unrelated to human species and duplicate associations.
Human Disease–MiRNA Associations
MiRNAs are significant to pathogenesis and treatment of diseases as the important regulatory molecule for genes. On dataset, we collect 1,883 experimentally verified disease–miRNA relationships between 462 miRNAs and 88 diseases from the HMDD (Li et al., 2014), which provides disease-associated miRNAs and their target genes, including 8,802 known relationships between 350 diseases and 32281 miRNAs.
Human Disease–Gene Associations
Due to gene mutation and expression affecting diseases, diseases are closely related to genes. On the dataset, 74 experimentally verified disease–gene associations between 61 genes and 88 diseases are filtered out, downloaded from http://cssb2.biology.gatech.edu/knowgene/.
Human CircRNA–MiRNA Associations
With plenty miRNA binding sites (Hansen et al., 2013; Peng et al., 2020b), circRNAs actively affect the expression of miRNA’s downstream genes as miRNA sponges (Peng et al., 2017; Zeng et al., 2020). We obtain 17844 known circRNA–miRNA associations between 640 miRNAs and 585 circRNAs from ENCORI (available at http://starbase.sysu.edu.cn/agoClipRNA.php? source=circRNA).
Human CircRNA–Gene Associations
According to the previous research, circRNAs are verified to be significant in regulating the expression of genes. On the dataset, 487 known circRNA–gene associations between 418 genes and 585 circRNAs are extracted from http://cssb2.biology.gatech.edu/knowgene/search.html.
Disease Semantic Similarity
The semantic information of the diseases has been wildly adopted to measure the similarity of diseases because of its effectiveness and stability. In this study, we obtain the related annotation terms for each disease from MeSH.
In MeSH, the directed acyclic graph (DAG) is applied to represent the semantic relationship among diseases, in which nodes denote corresponding disease information and directed edges denote the relationship among diseases. Specifically, disease di can be described as three items DAGi = [di, T (di, E(di))], where T(di) represents di itself and its ancestor nodes and E(di) is relationships between di and all diseases. The contribution of disease di in DAGi is formulated as follows:
[image: image]
where σ denotes the attenuation factor for semantic contribution, which is defined as the optimal value of 0.5 according to Wang’s experience Wang et al. (2010); n' represents the child node of the node n. Therefore, the overall semantic score of the disease di is measured by accumulating the contribution scores from its ancestor diseases and itself as follows:
[image: image]
In general, diseases with more common parts shared in the DAG achieve higher semantic similarities. Based on this hypothesis, the value of disease semantic similarity between disease di and disease dj is formulated via Eq.3:
[image: image]
CircRNA Functional Similarity
According to previous studies, circRNAs that are relevant to more similar diseases are prone to be more similar in functions (Li et al., 2019). Then, the BMA method is deployed to measure the functional similarity score among different circRNAs according to relevant disease sets. Given a specific disease di and D = (d1, d2, … , dt), the score of functional similarity between circRNA ci and circRNA cj is measured via Eqs 4, 5:
[image: image]
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where Dj represents the collection of diseases associated with circRNA cj. S(dm, Dj) represents the similarity between disease dm associated with circRNA ci and disease collection Dj associated with circRNA cj.
Pearson’s Correlation Coefficient Similarity
Since the circRNA functional similarity network and the disease semantic similarity network are prone to be sparse, we adopt Pearson’s correlation coefficient approach to enrich multisource similarity data by calculating the linear correlation among different variables. To be specific, the value of Pearson’s correlation between variable M and variable N is measured as follows:
[image: image]
where var(M) measures the variance of M; cov(M, N) calculates the covariance between M and N; the value of Cor(M, N) ranges from −1 to 1, which reflects the strength of the linear correlation between M and N.
Four binary networks have been built including the disease–gene network, circRNA–miRNA network, circRNA–gene network, and disease–miRNA network. Then, Pearson’s correlation coefficient approach is adopted to compute disease similarity and circRNA similarity via corresponding bipartite networks. The equation is computed as follows:
[image: image]
where IP(ni) denotes the ith row of the corresponding association network. Cor(ni, nj) denotes the value of Pearson’s correlation similarity between node ni and node nj based on the corresponding association network.
METHODS
In this work, we develop an advanced method GATGCN via the graph attention network and graph convolutional network to detect potential circRNA–disease relationships. As shown in Figure 1, the complete process could be summarized in four steps: First, the CKA-based model is adopted to fuse multisource similarity data for circRNAs and diseases. Second, we adopt the graph attention network to calculate the dense representation of nodes on the fused disease similarity network and fused circRNA similarity network. Third, we construct the heterogenous network, including circRNA–disease interactions network, feature matrix of diseases, and feature matrix of circRNAs. Eventually, the graph convolutional network is adopted to get prediction scores based on the constructed heterogenous network.
[image: Figure 1]FIGURE 1 | Overall workflow of the GATGCN.
Centered Kernel Alignment
In previous studies, multisource data are usually fused by calculating the average value, which ignores the importance among different kernels. Thus, the centered kernel alignment (CKA) model (Wang et al., 2021) is adopted to fuse several kinds of similarities for diseases and circRNAs based on different weights. We consider Kd = {K1d, …, Kvd} and Kc = {K1c, …, Kuc} as different kernels for disease space and circRNA space. The v and u denote the number of kernels from disease space and circRNA space, respectively. Meanwhile, the basic CKA model (Cristianini et al., 2006) is used as the objective of MKL (Ding et al., 2019) to measure the corresponding weight of each kernel.
To be specific, the kernels K∗c and K*d based on optimal weight are calculated as follows:
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where ɑc = {ɑ1c, …, ɑuc}and ɑd = {ɑ1d, …, ɑvd}.
Basic CKA (Cristianini et al., 2006) is adopted to calculate the weights of each kernel on the training set. The kernel alignment score between the two kernels is formulated as follows:
[image: image]
where E, I denotes the corresponding similarity matrix, ||E||F denotes the Frobenius norm, and <E, I> = Trace(ETI) denotes the Frobenius inner product. The kernel alignment score represents the similarity among different kernels. Specifically, the kernel alignment score between the similarity kernel (disease kernel or circRNA kernel) and the ideal kernel matrix is measured as follows:
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where Kideal denotes a label kernel constructed by known associations; Kideal, d = YTtrainYtrain ∈ Rn×n and Kideal, c = YtrainYTtrain ∈ Rm×m denote the ideal kernel of diseases and circRNAs, respectively.
Attention Mechanism on Similarity
Considering that current methods did not capture potential features on the similarity network, we adopt the graph attention method to learn latent representation of diseases and circRNAs, which assigns corresponding weights to different node features based on the local graph structure to ignore noise and redundancy. The advantage of the attention mechanism is to directly evaluate which features are preferred embedding for specific downstream tasks by calculating the weights. First, we obtain the corresponding association matrix by setting a threshold on the similarity network for diseases and circRNAs. Then, the GAT (Veličković et al., 2017) is applied to learn dense representation for diseases and circRNAs as follows:
The input layer of the graph attention network is formulated as follows:
[image: image]
where F denotes the dimension of features, and N represents the number of nodes in the corresponding similarity network. f ∈ RN×F is constructed by the features of nodes in the corresponding similarity network. The output layer of the graph attention network is defined as follows:
[image: image]
where F′ denotes the length of learned features, and f' ∈ RN×F' represents the learned latent representations of nodes in the network. The first step is to calculate the weight of the corresponding neighbor node. The importance of the given nodes is computed by the self-attention mechanism. For each association pair between node ni and node nj, the attention coefficient eij is calculated as follows:
[image: image]
where att represents a mapping function transforming high-level features to a real number for association pair between node ni and node nj based on input features, and W ∈ RF'×F denotes a trainable weight matrix. To avoid the influence of dimension between different attention coefficients, eij is further normalized as follows:
[image: image]
where Ni represents the collection of neighbor nodes of node ni. θij denotes the normalized weight representing the importance between node ni and node nj in the network.
From the abovementioned formula, we obtain the combined attention mechanism as follows:
[image: image]
where leakyRelu denotes a non-saturated activation function, which can solve the vanishing gradients and accelerate convergence. a ∈ R2F' denotes the weight matrix, which maps features to a real number. The second step is to aggregate the features of all neighbors for a given node by integrating the corresponding weight. The aggregation between the given node and neighbors is formulated as follows:
[image: image]
where σ denotes a non-saturated activation function. Multi-head attention mechanism is applied in GAT to integrate features and prevent overfitting. The output with the multi-head attention mechanism contains the features in different representation subspaces, which enhances the expressive capacity of the model. To be specific, the multi-head attention model based on the combination of K-independent attention mechanisms learns latent features as follows:
[image: image]
where K represents the number of self-attention models. Wk denotes the trained weight matrix of the kth attention model.
Heterogenous Network
The heterogenous network is constructed as initial features of GCN, including circRNA–disease associations, learned feature matrix of circRNAs, and learned feature matrix of diseases. The binary matrix A is constructed, and Aij = 1 if the interaction between circRNA ci and disease dj has been verified; otherwise Aij = 0. The learned feature matrix of circRNAs and learned feature matrix of diseases based on GAT are denoted as matrix Sc and matrix Sd, respectively. The heterogenous network AH is defined as follows:
[image: image]
Graph Convolutional Network on Heterogenous Network
In recent years, GCN has achieved superior performance in node prediction, node classification, and edge prediction tasks (Kipf and Welling, 2016). In order to discover potential relationships between diseases and circRNAs, GCN models (Wang et al., 2020b) are designed to effectively extract features of circRNA–disease relationships based on the global graph structure by aggregating feature vectors of neighbors. To be specific, given a network G, each layer of the GCN model embedding is formulated as follows:
[image: image]
where H(l) denotes the propagation of features at the lth layer, σ(·) represents a nonlinear activation function, D = diag([image: image]) denotes the degree matrix of G, and W(l) is the trained weight matrix at the lth layer. GCN integrates low-level features to construct high-level representations of nodes on the constructed heterogenous network AH. In addition, we adjust the number of graph convolutional network layers and set node dropout to avoid overfitting, which can reduce excessive parameters and improve the generalization ability of the GATGCN. The penalty factor µ is set to regulate the contribution of learned similarity features in the embedding of graph convolutional layers. Specifically, the input heterogenous network G is defined as follows:
[image: image]
Then, the initial embedding is defined as follows:
[image: image]
The first layer of the GCN model embedding is calculated as follows:
[image: image]
where W(0) ∈ R(M+N)×k represents an input-to-hidden trained weight matrix, H(1) ∈ R(M+N)×k represents the first-layer propagation of features, including circRNAs and diseases. K denotes the embedding dimension in graph conventional layers. We adopt the exponential linear unit (Clevert et al., 2016) as the nonlinear activation function to enhance noise robustness and expressive capacity of the model in all graph convolutional layers. Eventually, the bilinear decoder A′ proposed by Huang et al., (2020) is deployed to reconstruct the circRNA–disease association matrix as follows:
[image: image]
where W′ ∈ Rk×k denotes a trained weight matrix. HD ∈ RN×k and HC ∈ RM×k represent the last embedding for diseases and circRNAs, respectively. The final predicted relationship score a′ij between circRNA ci and disease dj is obtained according to the corresponding (i, j)th entry of A′.
RESULTS
In this section, several verification experiments are deployed to assess the predictive capacity of GATGCN. First, we assess the influence of different parameters setting on GATGCN. Second, we introduce the evaluation metrics under leave-one-out cross-validation and 5-fold cross-validation to analyze the predictive capacity of GATGCN. Third, we design the ablation study to assess the impact of each part on GATGCN. Fourth, we discuss and compare GATGCN with state-of-the-art models on the same dataset. Last, case studies are deployed to further assess the performance in detecting potential relationships on GATGCN.
Parameter Setting
The performance of the model is frequently impacted by hyperparameter settings. Analysis of the parameters can quantitatively evaluate the stability of the model and provide a reference for parameter selection. The learning rate is significant to the convergence of the gradient descent algorithm in the model. Figure 2 indicates that the model will converge slowly with too small a learning rate, while too large a learning rate makes it hard to converge. According to the results in Figure 3, the embedding dimension within a certain size range has less impact on the convergence of our model. However, when the embedding dimension is too large, the model is prone to overfitting due to plenty of parameters. As shown in Figure 4, the model performs better with small layers of the graph convolutional network, and the performance drops significantly when the number of layers of GCN is l > 4. The reason is that the GCN with more layers not only captures more global prior information but also captures a lot of noise at the same time. Meanwhile, the penalty factor µ is set to regulate the contribution of learned similarity features in the propagation of convolutional layers, and the dropout rate a is adopted to avoid overfitting. As shown in Figure 5, the model achieves best performance at µ = 6 and a = 0.6.
[image: Figure 2]FIGURE 2 | Outcome of comparing various learning rates.
[image: Figure 3]FIGURE 3 | Outcome of comparing various embedding dimensions.
[image: Figure 4]FIGURE 4 | Outcome of comparing various GCN layers.
[image: Figure 5]FIGURE 5 | Outcome of comparing various dropout rates and penalty factors.
Evaluation Metrics
Cross-validation is a self-consistent testing approach widely adopted to demonstrate the predictive capacity of a method. The basic idea is to carry out the resampling method to select a portion of the benchmark data set as the training set to train the model, and the remaining samples to verify the model. Five-fold cross-validation and leave-one-out cross-validation are deployed to assess the predictive capacity of GATGCN. For five-fold cross-validation, the whole samples in the dataset are randomly separated into five roughly identical sections, four of which are adopted to train the GATGCN and the other is used to test the GATGCN. In order to decrease the bias produced by sample segmentation, the five-fold cross-validation is repeated 30 times to calculate the average result as the ultimate output. For leave-one-out cross-validation, each time only one sample in the dataset is selected among all recorded circRNA–disease relationships to test the model, and the remaining known relationships are utilized as training samples. In this study, since circRNA functional similarity relies on known associations; we recalculate the circRNA functional similarity in each repetition of the experiment.
In this study, the area under the curve (AUC) is applied as the primary metric to assess our model, which can visually show the predictive ability of GATGCN under each decision threshold. The basic principle is to treat the false-positive rate (FPR) and the true rate (TPR) as a two-dimensional coordinate point in a Cartesian coordinate system with FPR as the abscissa and TPR as the ordinate under different discrimination thresholds. Besides, several threshold-based metrics are adopted to further evaluate the predictive performance of the GATGCN including recall, specificity, accuracy, and F1. The detailed results of five-fold cross-validation and leave-one-out cross-validation are summarized in Table 1.
TABLE 1 | Results generated by the GATGCN under five-fold CV and LOOCV.
[image: Table 1]Ablation Study
The model GATGCN is used to detect potential relationships between diseases and circRNAs based on the centered kernel alignment model (CKA), graph attention network (GAT), and graph convolutional network (GCN). In order to verify the importance of CKA, GAT, and GCN in our model, we apply the ablation study to our model. In this part, we replace the CKA model with calculated average to fuse multisource similarity as NOCKA. Meanwhile, we only combine the CKA model and GCN model as NOGAT to calculate association scores. In addition, we only adopt the GCN to predict associations between diseases and circRNAs as NOCKAGAT. According to the results in Figure 6, the complete model GATGCN is compared with NOCKA, NOGAT, and NOCKAGAT with five-fold cross-validation, which achieves the best AUC of 0.932. In general, using the the graph attention network on the similarity network is beneficial to learn the latent representation of nodes. The AUC of GATGCN and NOCKA is significantly higher than that of the other two models, which indicates that GAT is significant to detect relationships between diseases and circRNAs. Moreover, the comparison between GATGCN and NOCKA suggests that the fusion of multisource similarity based on weights can improve performance in circRNA–disease relationship prediction.
[image: Figure 6]FIGURE 6 | Performance of the GATGCN based on various model combinations.
Comparison With Other Methods
To confirm the advantage of GATGCN, we compare it with several classic prediction methods with five-fold cross-validation. Since these methods adopt various datasets and evaluation metrics, we apply the same dataset and AUC as the metrics to compare the predictive capacity of models fairly and reasonably. In this part, the GATGCN is compared with several state-of-the-art methods, including KATZHCDA (Fan et al., 2018a), DWNN-RLS (Yan et al., 2018), PWCDA (Lei et al., 2018), GCNCDA (Wang et al., 2020b), and GATCDA (Bian et al., 2021). KATZHCDA is a graph-based method that uses the walking lengths and number of walks among nodes to measure the similarity among nodes in the heterogenous network. The DWNN-RLS measures initial relational values of new diseases and circRNAs via the decreasing weight k-nearest neighbor model and adopts the Kronecker product kernel to predict associations between diseases and circRNAs. The PWCDA predicts the circRNA–disease relationships by searching the paths without repeating for all circRNA–disease pairs based on the constructed heterogenous network. The GCNCDA extracts high-level features in the heterogenous network through graph convolutional neural networks and predicts the correlation between circRNAs and diseases via Forest by Penalizing Attributes. GATCDA learns the latent representation of nodes by assigning corresponding weights to each neighbor node, which efficiently aggregates the information of neighbor nodes and utilizes the local features of the graph. The results in Figure 7 indicate that GATGCN achieves the best AUC of 0.932, which is substantially greater than that of other models, and produces 7.9%, 43.3%, 4.5%, 3.2%, and 3.4% improvement in the AUC compared with KATZHCDA, DWNN-RLS, PWCDA, GCNCDA, and GATCDA respectively.
[image: Figure 7]FIGURE 7 | Comparison results of various prediction models under five-fold cross-validation.
Furthermore, the number of known interactions between diseases and circRNAs in the dataset can greatly affect the performance of the method, which also indicates the robustness of the method. Thus, we randomly remove a part of known associations between diseases and circRNAs at a ratio r∈{80%, 85%, 90%, 95%, and 100%} with five-fold cross-validation. As shown in Figure 8, the performance of GATGCN improves with increasingly known associations. Meanwhile, the GATGCN achieves the best result across different data richness among KATZ, DWNN-RLS, PWCDA, GCNCDA, and GATCDA.
[image: Figure 8]FIGURE 8 | Performance of methods based on various percentages of known relationships.
Case Studies
In this part, two kinds of case studies are utilized to further assess the reliability of the GATGCN for detecting potential circRNA–disease associations, which calculated the predicted probability matrix via a candidate set comprising unproven circRNAs. For the first kind of case study, all known circRNA–disease relationships are selected as training samples, and all unknown circRNA–disease relationships are prioritized according to the corresponding prediction scores. We select the top 10 scores by sorting the scores of the probability matrix in descending order and verified those predicted candidates through validated databases and literature, such as CircR2Disease, CircBase, and PubMed. Eventually, we adopt case studies on lung cancer, diabetes retinopathy, and prostate cancer.
Lung cancer occurs in the bronchial mucosa or glands with the highest incidence and the highest number of deaths in the world. The results in Table 2 show that six associations are verified by experiments among top 10 predicted candidate circRNAs for lung cancer. For example, the hsa_circ_0007385 (top 1) knockdown resulted in considerable inhibition of the proliferation, invasion, and migration of lung cancer cells (Jiang et al., 2018). Zhang et al. discovered that hsa_circ_0014130 (top 2) exhibited substantially overexpression in NSCLC tissues (Zhang S. et al., 2018). Zhu et al. indicated that hsa_circ_0016760 (top 3) accelerated the malignant growth of NSCLC by sponging miR-145-5p/FGF5 (Zhu et al., 2021).
TABLE 2 | Top 10 candidate circRNAs related to lung cancer.
[image: Table 2]Diabetes retinopathy is a microvascular complication caused by diabetes, which can be divided into proliferative diabetic retinopathy and non-proliferative diabetic retinopathy. As shown in Table 3, the predictive results contain seven experimentally verified associations among the top 10 ranked candidate circRNAs. For instance, hsa_circRNA_063981 (top 1), hsa_circRNA_404457 (top 2), and hsa_circRNA_100750 (top 3) are considerably elevated in the serum of T2DR patients compared to T2DM and control patients (Gu et al., 2017).
TABLE 3 | Top 10 candidate circRNAs related to diabetes retinopathy.
[image: Table 3]Prostate cancer refers to malignant tumors produced by the epithelial cells of the prostate under the action of a variety of carcinogenic factors, which causes bone pain, pathological fractures, and paraplegia. Using the GATGCN, we successfully predict five of 10 top candidate circRNAs for prostate cancer (Table 4). The results in the literature indicate that circHIPK3 (top 1) expression is upregulated in prostate cancer cells and prostate cancer tissues (Liu et al., 2020). Kong et al. found that circFOXO3 (top 3) acted as a sponge for miR-29a-3p, exhibiting oncogenic activity in prostate cancer (Kong et al., 2020). Li et al. revealed that hsa_circ_0044516 (top 8) downregulation suppressed prostate cancer cell metastasis and growth (Li T. et al., 2020).
TABLE 4 | Top 10 candidate circRNAs related to prostate cancer.
[image: Table 4]In order to further assess the capacity of GATGCN for detecting new diseases, two common diseases, that is, clear cell renal cell carcinoma and cholangiocarcinoma are chosen for case studies. Specifically, all known associations about clear cell renal cell carcinoma and cholangiocarcinoma are reset to unknown and all candidate circRNAs are prioritized according to corresponding prediction scores. Eventually, we select the top 10 scores to assess the performance of GATGCN for detecting new circRNAs and diseases.
Cholangiocarcinoma is a malignant tumor that originates from the extrahepatic bile duct. The result in Table 5 shows that five associations are verified among the top 10 ranked candidate circRNAs. For example, Louis et al. demonstrated that the expression of circHIPK3 (top 2) was specifically elevated in cholangiocarcinoma cell lines (Louis et al., 2019). Chen et al. discovered that in cholangiocarcinoma, ciRS-7 (top 3) acts as an oncogene and promotes tumor development by competitively inhibiting miR-7. (Chen et al., 2021). Lu et al. indicated that circSMARCA5 (top 6) expression was lower in ICC tumor tissues than surrounding tissues (Lu and Fang, 2020).
TABLE 5 | Top 10 candidate circRNAs related to cholangiocarcinoma.
[image: Table 5]Clear cell renal cell carcinoma is derived from adenocarcinoma of renal tubular epithelial cells, which forms hemangioma thrombus or metastasizes to lymph nodes and other organs. As shown in Table 6, the predicted results contain five experimental verified associations among the top 10 ranked candidate circRNAs. For example, Li et al. discovered that overexpression of circHIPK3 (top 1) substantially reduced CCRCC cell invasion and migration in vitro (Li H. et al., 2020). Zheng et al. discovered that circPVT1 (top 7) promotes progression in CCRCC cells by regulating TBX15 expression and sponging miR-145-5p (Zheng et al., 2021). Wang et al. indicated that hsa_circ_0001451 (top 8) upregulation could promote CCRCC cell invasion and proliferation (Wang G. et al., 2018).
TABLE 6 | Top 10 candidate circRNAs related to clear cell renal cell carcinoma.
[image: Table 6]The results of the case studies show that GATGCN can efficiently detect the potential circRNA–disease relationships and provide clues for exploring the mechanism between human complex diseases and circRNAs.
CONCLUSION
Cumulative evidence has proved that the development of powerful calculation methods is significant to infer the interactions between diseases and circRNAs. These calculation models address challenges of high cost and high time consumption in conventional biological experiments. In this study, an advanced calculation method called GATGCN is designed to discover potential circRNA–disease relationships via graph attention mechanism and graph convolutional network. First, multisource similarity data for circRNAs and diseases are fused by the centered kernel alignment model. Second, the graph attention network is deployed to learn the dense representation of nodes on the disease–disease similarity network and circRNA–circRNA similarity network. Third, the heterogenous network is constructed by connecting known circRNA–disease associations, feature matrix of diseases, and feature matrix of circRNAs. Finally, the graph convolutional network is applied to get prediction scores based on the constructed heterogenous network. To further confirm the advantage of GATGCN for detecting circRNA–disease interactions, we compare it with several state-of-the-art prediction models under five-fold cross-validation. The results indicate that GATGCN achieves significant performance among compared methods. Meanwhile, the case study substantiates the excellent capability of the GATGCN for detecting potential circRNA–disease relationships. In conclusion, GATGCN is a powerful and promising approach for detecting circRNA–disease relationships.
Although we have integrated multisource biological information and utilized graph attention network and graph convolutional network to learn latent representation for diseases and circRNAs, there is still room to strengthen the predictive capability of the model. On the one hand, a large number of nonlinear features are extracted to detect circRNA–disease associations, which ignore the importance of linear features. We could further solve this problem by fusing nonlinear features and linear features to enhance the stability of our model. On the other hand, feature aggregation in excessive network layers could affect the expression of initial feature information. In the future, we can splice the representations of nodes in different layers as node features.
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The molecular mechanism of AAA formation is still poorly understood and has not been fully elucidated. The study was designed to identify the immune-related genes, immune-RAS in AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the GEO database. The DEseq2 software was used to identify differentially expressed genes (DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server was used to identify GO terms and KEGG pathways to sort out functional categories of DEGs. The CIBERSORT algorithm was used with the default parameter for estimating immune cell fractions. Nine samples from GSE175683 were used to construct the co-disturbed network between expression of SFs and splicing ratio of RAS events. PCA analysis was performed by R package factoextra to show the clustering of samples, and the pheatmap package in R was used to perform the clustering based on Euclidean distance. The results showed that there were 3,541 genes significantly differentially expressed, of which 177 immune-related genes were upregulated and 48 immune-related genes were downregulated between the WT and WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was complex splicing events in AAA. The WT group and the WTA group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2, Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related genes with RAS and DEGs. Eighteen differentially expressed SFs were identified and displayed by heatmap. The proportion of different types of cells and ratio of the average ratio of different cells were quite different. Both M1 and M2 types of macrophages and plasma cells were upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the WTA group had sharply increased. There is a correlation between SF expression and immune cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected to bind on a mass of immune-related genes. In conclusion, our results showed that immune-related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.
Keywords: abdominal aortic aneurysm, alternative splicing, RNA-Seq, immune-related genes, splicing factor, genome-wide identification
INTRODUCTION
Abdominal aortic aneurysm (AAA) refers to the permanent and localized expansion of the abdominal aortic wall exceeding 50% of the normal vascular diameter, and is usually diagnosed when the abdominal aorta is more than 3 cm in diameter (Chaikof et al., 2018; Cai et al., 2021). AAA is a disease of the cardiovascular system with severe complications, mainly manifested in the lower renal aorta. With the progression of the disease and the increase in the inner diameter of the aorta, the risk of AAA rupture increases. AAA rupture represents a life-threatening complication of aneurysms with an overall mortality rate of up to 90% in western countries. AAA accounted for 1.3% of deaths among men aged 65 to 85 in developed countries (Sakalihasan et al., 2005). The incidence of AAA has steadily increased in most developed countries, rising from 1.6% to 7.2% of the general population 60–65 years or older (Guirguis-Blake et al., 2019). AAA is now the 10th leading cause of death in western countries, and its incidence is rising (Brangsch et al., 2017). AAA is related to advanced age, men, smoking, atherosclerosis, high blood pressure, and genetic predisposition (Annambhotla et al., 2008). Although important evidence has emerged in the past decade, the molecular mechanism of AAA formation is still poorly understood, and the exact reasons for the occurrence and its development have not been fully elucidated (Brangsch et al., 2017; Li H. et al., 2021). At present, the treatment of AAA is still mainly surgery, only the innovation of endovascular treatment (Wanhainen et al., 2019). With the advancement of the human genome, understanding exactly which molecules and genes mediate the development of AAA and blocking their activity at the molecular level may lead to important new discoveries and treatments.
AAA is a fatal vascular disease in human, which is a chronic degenerative disease of abdominal aorta. In this process, the inflammatory responses and immune system work effectively through the attraction of inflammatory cells, the secretion of proinflammatory factors, and the subsequent upregulation of MMP (Li et al., 2018). Inflammation is an important part of the immune system. A large number of exogenous immune cells, including macrophages, lymphocytes, neutrophils, mast cells, and natural killer cells, gradually infiltrate into the tissue from adventitia to intima, triggering a series of inflammatory reactions (Rateri et al., 2011; Wang et al., 2014; Yan et al., 2016). The adaptive and innate immune system plays an important role in the initiation and propagation of the inflammatory response in aortic tissue. Recently increased knowledge indicates that the immune process is involved in the pathogenesis of AAA (Jagadesham et al., 2008; Liu et al., 2015). Some immune cells such as macrophages, CD4+ T cells, and B cells play an important role in the diseased aortic wall through phenotypic regulation (Maiellaro and Taylor, 2007; Schaheen et al., 2016). Additionally, immunoglobulin also has a great influence on the function and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAA (Li et al., 2018). The current understanding may provide new insights into the role of inflammation and immune response in AAA. Based on tissue gene expression profiles and specific gene expression profiles of various immune cells, some methods have been developed to allow the quantification of immune cell composition through traditional gene profiling methods, including a large number of RNA-seq, such as EPIC, TIMER. and CIBERSORT (Finotello and Trajanoski, 2018). However, the composition of immune cells in the process of AAA is dynamic, and the factors affecting immune infiltration are not fully understood. Therefore, regulation of immune inflammatory response is an emerging molecular target for AAA (Li et al., 2018).
Alternative splicing (AS) plays an immunomodulatory role in many diseases. The regulated alternative splicing events located in immune-related genes (immune-RAS) is a new kind of drug target and an important biomarker in clinical diagnosis. Abnormal immune-RAS is an important factor in the occurrence and development of many diseases including tumors (Li et al., 2019; Bonnal et al., 2020). The research of Sanela et al. showed that AS was a common feature of thoracic aortic aneurysm (TAA) formation, and AS in the TGF-β pathway could be used to characterize patients with bicuspid aortic valve and tricuspid aortic valve TAA (Kurtovic et al., 2011). The study of Zhao et al. revealed the pivotal role of the AS change of XBP1 in maintaining the VSMC contractile phenotype and providing protection from aortic aneurysm formation (Zhao et al., 2017). At present, there are a small number of reports on the role of AS in the development of AAA, but there is a rare report on the role of AS in the immune regulation of AAA. In this view, we will discuss immune-related genes and its regulation of AS, and provide new mechanism insights for the development of immune-targeted therapy in AAA.
MATERIALS AND METHODS
Retrieval and Process of Public Data
Public sequence data files GSE175683 (Li H. et al., 2021) were downloaded from the Sequence Read Archive (SRA). SRA run files were converted to fastq format with NCBI SRA Tool fastq-dump. The raw reads were trimmed of low-quality bases by using a FASTX-Toolkit (v.0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/). Then the clean reads were evaluated using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). SF3B1-bound peaks were downloaded from Encodeproject (https://www.encodeproject.org/) (ENCSR133QEA).
Read Alignment and Differentially Expressed Gene Analysis
Clean reads were aligned to the mouse GRCm39 genome by HISAT2 (Kim et al., 2019). Uniquely mapped reads were ultimately used to calculate read number and reads per kilobase of exon per million fragments mapped (FPKM) for each gene. The expression levels of genes were evaluated using FPKM. When we do gene differential expression analysis, we choose the software DEseq2 (Love et al., 2014). DEseq2 will model the original reads and use the scale factor to explain the difference of Library depth. Then DEseq2 estimates the gene dispersion, and reduces these estimates to produce more accurate dispersion estimates, so as to model the reads count. Finally, the model of negative binomial distribution is fitted by DEseq2, and the hypothesis is tested by Wald test or likelihood ratio test. DEseq2 can be used to analyze the differential expression between two or more samples, and the analysis results can be used to determine whether a gene is differentially expressed by fold change (FC) and false discovery rate (FDR).
**There are two important parameters**
1) FC: fold change, the absolute ratio of expression change.
2) FDR: false discovery rate.
**The criteria of significant difference expression were as follows**
FC ≥ 2(up) or ≤0.5(down), FDR ≤ 0.05.
Alternative Splicing Analysis
The AS events and regulated alternative splicing events (RAS) among different groups were defined and quantified by using the SUVA pipeline as described previously (Cheng et al., 2021). Reads proportion of SUVA AS event (pSAR) of each AS events were calculated. Immune-related genes (1,793) (https://www.immport.org/shared/genelists/) were regained from the ImmPort database. The regulated alternative splicing events located in immune-related genes (immune-RAS) were screened and analyzed.
Co-Expression Analysis
The co-disturbed network between expression of splicing factors and splicing ratio of RAS events (pSAR ≥90%) was constructed using nine samples from GSE175683. We calculated the Pearson’s correlation coefficients (PCCs) between them and classified their relation into three classes: positive correlated, negative correlated, and non-correlated based on the PCCs value. |Pearson’s correlation| ≥0.8 and p-value ≤0.01 were retained.
Functional Enrichment Analysis
To sort out functional categories of DEGs, Gene Ontology (GO) terms and KEGG pathways were identified using the KOBAS 2.0 server (Xie et al., 2011). Hypergeometric test and Benjamini–Hochberg FDR controlling procedure were used to define the enrichment of each term.
Cell-type Quantification
The CIBERSORT algorithm (Newman et al., 2015) (v1.03) was used with the default parameter for estimating immune cell fractions using FPKM values of each expressed gene. A total of 22 immune cell phenotypes were analyzed in the study, including seven T-cell types [CD8 T cells, naive CD4 T cells, memory CD4 resting T cells, memory CD4 activated T cells, T follicular helper cells, and regulatory T cells (Tregs)]; naive and memory B cells; plasma cells; resting and activated NK cells; monocytes; macrophages M0, M1, and M2; resting and activated dendritic cells; resting and activated mast cells; eosinophils; and neutrophils.
Other Statistical Analysis
Principal component analysis (PCA) was performed by R package factoextra (https://cloud.r-project.org/package=factoextra/) to show the clustering of samples with the first two components. After normalizing the reads by TPM (tags per million) of each gene in samples, in house-script (Sogen) was used for visualization of next-generation sequence data and genomic annotations. The pheatmap package (https://cran.r-project.org/web/packages/pheatmap/index.html/) in R was used to perform the clustering based on Euclidean distance. Student’s t-test was used for comparisons between two groups.
RESULT
Transcriptome Analysis of DEGs in WT-AngII Group and WT-Saline Group Samples
In the study, the RNA-seq data of 10 mice AAA model samples of GSE175683 were downloaded from GEO database. Five mice were the control group (WT) perfused with saline and five mice were the experimental group (WTA) perfused with angiotensin II. In our basic analysis, it was found that the sample WTA4 was seriously outlier, which may affect the subsequent analysis results, so this sample was eliminated. Compared with the WT group, a large number of gene transcription levels have changed in the WTA group. There were 3,541 genes significantly differentially expressed, of which 2,627 genes were upregulated and 914 genes were downregulated (Figure 1A; Supplementary Figure S1). Compared with the WT group, functional enrichment analysis of DEGs was conducted in the WTA group, and it was found that the upregulated genes were mainly enriched in the signaling pathways of mitochondrial respiratory chain complex I assembly, fatty acid metabolism process, oxidation–reduction process, fatty acid beta-oxidation, mitochondrial electron transport, NADH to ubiquitin, electron transport chain, lipid metabolism process, brown fat cell differentiation, respiratory electron transport chain, and fatty acid biosynthetic process (Figure 1B). Compared with the WT group, the WTA group has downregulated genes mainly enriched in signaling pathways in cell adhesion, extracellular matrix organization, positive regulation of pri-miRNA transcription by RNA polymerase II, axon guidance, response to mechanical stimulus, transforming growth factor beta receptor signaling pathway, positive regulation of apoptotic process, nervous system development, angiogenesis, and cell-substrate adhesion (Figure 1C). As shown in Figure 1D, 1793 immune-related genes were downloaded from the ImmunePort database, and Venn diagram was used to show the number of immune genes with significantly different expression levels in the WTA group compared with the WT group. Among them, 177 genes were upregulated, and 48 genes were downregulated, indicating that the expression levels of a large number of immune-related genes were also regulated. In this study, we focused on the AS of immune genes, but it also shows that the regulation of immune genes of the body is multilayered.
[image: Figure 1]FIGURE 1 | Transcriptome analysis of DEGs in WT-AngII group (WTA) and WT-Saline group (WT) samples. (A) Volcano plot shows all DEGs between WTA and WT groups. False discovery rate (FDR) ≤0.05 and FC (fold change) ≥2 (up) or ≤0.5 (down). (B) Bar plot exhibited the most enriched Gene Ontology (GO) biological process results of the upregulated genes between the WTA and WT groups. (C) Bar plot exhibits the most enriched GO biological process results of the downregulated genes between the WTA and WT groups. (D) Venn diagram shows the immune-related genes involved in DEGs between WTA and WT groups.
Identification of WTA-Associated Alternative Splicing vents Located in Immune-Related Genes
We used the recently published AS analysis software SUVA to analyze and identify AS events that are significantly different between the WT and WTA group. Immune-RAS events were specifically showed, and the main splicing events in the transcript (pSAR ≥90%) were displayed. As shown in Figure 2A and Supplementary Figure S2A, immune-RAS events identified by SUVA were mainly alt5P, alt3p and IR. The splicing events were corresponding to classical splicing events, in which A5SS events accounted for a large proportion, which may be one of the characteristics of immune-RAS and RAS (Figure 2B and Supplementary Figure S2B). As shown in Figure 2C, about 60% of immune-RAS events were complex splicing events, indicating the complexity of immune-RAS regulation of AAA. As shown in Figure 2D, the WTA group and the WT group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events for PCA analysis. A splicing event involves two transcripts, and these two transcripts may only account for a very small part of the expression of the whole gene. We hope to find a more dominant transcript undergo AS which was quantified as “pSAR” value by SUVA. The number of splicing events accounting for different proportions of all reads in the region is shown in Figure 2E; Supplementary Figure S2C. Some splicing events accounted for only a small proportion, so the immune-RAS events with pSAR ≥90% were selected for follow-up analysis. As shown in Figure 2F the heatmap was used to show the splicing events of the dominant transcripts in immune-RAS events. As shown in Figure 2G, the Venn diagram showed the common and unique genes among the immune-related genes with RAS (RASGs) and DEGs. These splicing events were significantly regulated in AAA, and the transcripts produced by its splicing were the main transcription products of genes, which were worthy of in-depth study and also potential therapeutic targets. A splicing event on Vegfa gene is demonstrated in Figures 2H, I, which is an exon skipping event. The intermediate exon reservation transcripts are mainly selected in WTA samples, while exon jump transcripts are more selected in WT samples. A splicing event on another immune gene Pparg is shown in Figures 2J, K, which was a altered first exon event. The shorter transcripts were mainly selected in the WTA group, and longer transcripts were more selected in the WT group.
[image: Figure 2]FIGURE 2 | Identification of WTA-associated alternative splicing (AS) events located in immune-related genes (immune-RAS). (A) Boxplot showing the number of immune-RAS detected by SUVA, which were altered spliced between the WTA and WT groups. (B) Splice junction constituting immune-RAS events detected by SUVA was annotated to classical AS event types, and the number of each classical AS event types is shown with boxplot. (C) Boxplot showing number of SUVA immune-RAS events, which contains SJs involved in two or more different classical splicing events (complex) or in the same classical splicing event (simple). (D) PCA of splicing ratio of immune-RAS in which frequency ≥40% and pSAR (read proportion of SUVA AS event) ≥50%. The samples were grouped by tumor or normal, and the ellipse for each group is the confidence ellipse. (E) Bar plot showing immune-RAS number with different abundance (pSAR) of all detected regulated alternative splicing events (RAS). (F) Heatmap of splicing ratio across all samples for immune-RAS which pSASR ≥90% and corresponding genes. (G) Venn diagram showing the common and unique genes among the immune-related RASGs and DEGs. (H) Visualization of junction reads distribution of vascular endothelial growth factor A (Vegfa) in AS events clualt5p28432 from different groups. Splice junctions were labeled with SJ reads number, and altered exon was marked out with a red box. (I) Splicing events model is shown in the top panel. Boxplot in the bottom panel showing splicing ratio profile of the splicing event from Vegfa shown in (H). (J) Visualization of junction read distribution of Pparg in AS events clualt5p51327 from different groups. Splice junctions were labeled with SJ reads number, and altered exon was marked out with red box. (K) Splicing events model is shown in the top panel. Boxplot in the bottom panel showing splicing ratio profile of the splicing event from Pparg shown in (J).
Construction of Co-disturbed Network Between SFs and immune-Regulated Alternative Splicing
This part mainly displayed the differentially expressed SFs in WTA and WT samples, as well as immune-RAS that may be regulated by SFs, and constructed a SF-RAS interaction network structure diagram. As shown in Figure 3A; Supplementary Figure S3A, the expression levels of all these different SFs were displayed by heatmap, and a total of 18 differentially expressed SFs were identified. In subsequent verification and experiments, SFs with higher expression levels and significant differences, such as Sf3b1, Nol3, Fastk, Scaf1, etc., should be selected and based on existing literature reports. As shown in Figure 3B, the expression of differentially expressed SFs and the splicing ratio of immune-RAS events (pSAR ≥90%) were used for Pearson’s correlation analysis (correlation coefficient ≥0.8, p-value ≤0.01). It mainly showed the co-variation relationship between differentially expressed SFs and immune-RAS, which meant that these SFs might potentially regulate immune-RAS. The size of nodes in the figure represents the number of gene/splicing events associated with them. We can focus on the larger SFs and splicing events.
[image: Figure 3]FIGURE 3 | Construction of co-disturbed network between SFs and immune-RAS. (A) Expression heatmap of all 18 significant differentially expressed SFs between WTA and WT sample. (B) The co-disturbed network between expression of WTA-associated SFs and splicing ratio of immune-RAS events (pSAR ≥90%) was constructed. |Pearson’s correlation| ≥0.8 and p-value ≤0.01 were retained. Triangle represents SF genes. Circles indicate immune-RAS.
Immune Infiltration Altered and is Associated With Candidate splicing factors
As shown in Figure 4A,B and Supplementary Figure S4, the proportion of different types of cells and the ratio of the average ratio of different cells were quite different between the WTA and WT group. In particular, both M1 and M2 types of macrophages were upregulated, while M0 type was downregulated in the WTA group. It implied that the polarization of macrophages in AAA had changed. It was also worth noting that the proportion of plasma cells had sharply increased in the WTA group. As shown in Figure 4C, correlation analysis between SF expression and the proportion of different cell types indicated that SF and its regulated immune genes played an important role in immune infiltration.
[image: Figure 4]FIGURE 4 | Immune infiltration altered, and is associated with, candidate SFs. (A) Boxplot showing the fraction of each immune cell type in WTA or WT samples; the significant difference in the immune cell fractions between WTA and WT samples was calculated using the Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (B) The WTA group relative to the WT group rank ordered based on decreasing values of the relative frequency ratio of cell populations. (C). The dot-plot demonstrated the correlations between each immune microenvironment infiltration cell type and each dysregulated SF regulator. Different colors indicate correlation of immunocyte-RBP regulator, and significant ones were labeled with a star. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
SF3B1 Bound on a Mass of Immune-Related Genes
We selected a splicing factor Sf3b1 with significantly different expression and studied the binding characteristics of Sf3b1 homologous gene in human K562 cells using ECLIP data, and speculated its regulation effect on immune-related genes. As shown Figure 5A and Supplementary Figure S5A, Sf3b1 interacts with AS of many immune genes and is associated with many processes. Then we used the ECLIP data of human K562 cells to analyze the distribution of the homologous gene Sf3b1 binding peak in different regions of the genome, mainly the intron region, followed by the CDS region in Figure 5B. As shown in Figure 5C, 142 peak genes (common to IP1 and IP2) bound to Sf3b1 were immune-related genes, including AKT2, MAVS, and VEGFA, which are shown in Figure 5A. As shown in Figure 5D; Supplementary Figure S5B, the motif enrichment analysis of peak on Sf3b1-bound immune genes showed the top five genetic sequence.
[image: Figure 5]FIGURE 5 | SF3B1 bound on a mass of immune-related genes. (A) The co-disturbed network between expression of Sf3b1 and splicing ratio of immune-RAS events (pSAR ≥90%). (B) Bar plot showing the distribution of Sf3b1-bound peaks across different genomic regions. (C) Venn diagram of Sf3b1-bound peak genes and immune-related genes. (D) Motif analysis showing the top five peaks preferred bound motifs of Sf3b1 on immune-related genes by the HOMER software.
DISCUSSION
AAA has always been the research focus of vascular surgery. With the development of second-generation sequencing technology, more and more researchers have begun to use bioinformatics technology to study AAA. Based on the RNA-seq data of GSE175683, we explored the genome-wide identification of immune-RAS and splicing regulators involved in AAA. We discovered that there were 3,541 genes significantly differentially expressed, of which 2,627 genes were upregulated and 914 genes were downregulated, and 177 upregulated genes and 48 downregulated genes were immune-related regulatory genes (Figure 1; Supplementary Figure S1). We further focused on the AS of immune genes and used software SUVA to analyze and identify immune-RAS events. We found that immune-RAS events were mainly alt5p and IR events, about 60% of it was complex splicing events, and some immune-related genes could regulate AS events in AAA (Figure 2; Supplementary Figure S2). Next, we explored the differentially expressed SFs in WTA and WT samples and constructed an interaction network structure diagram between SFs and immune-RAS. We found that a total of 18 differentially expressed SFs were identified and constructed a co-variation relationship between differentially expressed SFs and immune-RAS (Figure 3; Supplementary Figure S3). Interestingly, we found that the proportion of different types of immune cells in WTA and WT group changed, individual cell types also changed significantly, and the expression levels of SFs were correlated with the ratio of different cell types (Figure 4; Supplementary Figure S4). Finally, we selected Sf3b1, an SF with a significant difference in expression, and found that many of the genes of the distribution of Sf3b1-bound peaks were related to the immune-RAS (Figure 5; Supplementary Figure S5). In summary, we found that immune-related genes and its regulation of AS events played an important role in AAA, and immune-RAS events were regulated by SFs.
With the change in lifestyle, the incidence of cardiovascular disease is increasing year by year, and it has become a serious public health problem. AAA is a serious aortic disease that has become an important cause of death in elderly people over 65. According to reports, about 13,000 people die from AAA every year (Nie et al., 2020). Most AAA patients are asymptomatic and cannot be treated before aneurysm ruptures, or the patient dies (Summers et al., 2021). No drugs can slow the development of AAA. The occurrence and development of AAA is a complicated process involving many factors. It is usually believed that AAA is directly associated with atherosclerosis, hypertension, chronic obstructive pulmonary disease, and a variety of proteases, but there is no clear evidence that these factors play a role in the pathogenesis of AAA (Nie et al., 2020). The pathophysiological progresses of AAA include infiltration of inflammatory cells, degradation of collagen and elastic fibers, death of smooth muscle cells, increase of oxidative stress and defects of the arterial wall (Li H. et al., 2021; Thanigaimani et al., 2021). Although AAA has several established biological characteristics, convincing evidence shows that immune-mediated processes play a clear and prominent role in the pathogenesis of AAA (Li et al., 2018). The immune-inflammatory response is mediated by some special immune cell types, which interact in a highly coordinated manner and are functionally vital to the initiation and progression of AAA (Dale et al., 2015; Liu et al., 2015). In our study, compared with the WT group, a large number of gene transcription levels have changed, functional enrichment analysis of DEGs was conducted, and expression levels of immune genes changed in the WTA group. These suggested that there was regulation of immune-related genes in AAA, which was consistent with some previous reports (Nie et al., 2020; Li T. et al., 2021).
According to previous human and AAA experimental studies, several exogenous immune cells, including lymphocytes, macrophages, natural killer cells (NK), neutrophils, and dendritic cells, have been found to penetrate into aneurysm tissue and release extensively proinflammatory cytokines to trigger a series of inflammatory responses that lead to the direct structural protein degradation of the abdominal aorta (Hendel et al., 2015; Li et al., 2018; Blassova et al., 2019). Lei et al. found that several kinds of immune cells including naive B cells, resting and activated CD4+ T cells were identified to be pointedly higher in ruptured AAA, while regulatory T cells, together with activated mast cells, were more in stable AAA conversely (Lei et al., 2020). Research showed that there was a significant difference in immune cell infiltration between normal vascular and AAA specimens, and high proportions of CD4+ T cells, resting natural killer cells, activated mast cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, resting mast cells, CD8+ T cells, and six other types of immune cells were found in AAA tissues (Nie et al., 2020). In the same situation, our research also found that both M1 and M2 types of macrophages and plasma cells were upregulated in the WTA group, while M0 type of macrophages, NK cells, CD4+ T cells, and eosinophils were upregulated in the WT group. However, most reports only focus on a perspective of the immune response, and generally only discuss the types of immune cells and their roles. We know little about the AS events of immune-related genes and the regulation of SFs in AAA.
In order to better understand the immune-RAS events and SFs that play a role in AAA, further research is necessary to determine their special role in the pathophysiology of AAA. In our study, we used the software SUVA to analyze and identify immune-RAS events. The results showed that immune-RAS events were mainly alt5p and IR events, and about 60% of it was complex in AAA. In order to find a more dominant transcript for splicing, the events with pSAR ≥90% were selected for follow-up analysis. We newly discovered the AS of immune-related genes, such as Vegfa, Pparg, Adipor2, Ltbp2, Nr4a1, etc., by using heatmap and Venn diagram analysis. We choose Vegfa gene as a representative to discuss its effect of AS. Vegfa (vascular endothelial growth factor A) gene expresses multiple protein isoforms due to its AS exons. Dou et al. found that AS of Vegfa may regulate the development of colorectal cancer and represent new targets for its diagnosis, prognosis, and treatment (Zhao et al., 2015). Dou et al. found that Vegfa gene had AS in endometrial cancer, which may also provide new biomarkers for the diagnosis of endometrial cancer (Dou et al., 2020). The use of AS to produce VEGFA protein isoforms with different bioavailabilities is a key mechanism to control the development and function of blood vessel (Bridgett et al., 2017). Chesnokov et al. discovered that Vegfa isoform ratio produced by AS may be a promising factor for prediction of anti-angiogenic therapy efficiency in human hepatocellular carcinoma (Chesnokov et al., 2018). These fully indicate that the AS of genes has important effects, and it is necessary to further explore the role of these immune-RAS in AAA.
SFs are involved in removing introns from mRNA so that exons can be joined together. AS of precursor mRNA is an important mechanism to increase the complexity of gene expression and plays an important role in cell differentiation and organism development (Bonnal et al., 2020; Zhang et al., 2021). The regulation of AS is a complex process in which many interacting components are at work. Any error in this process may lead to the destruction of normal cell functions and the occurrence of diseases. In particular, immune-related genes are also regulated by SFs, which can cause changes in immune response or immune cell composition (Blake and Lynch, 2021). SFs may be the basis for identifying new diagnostic and prognostic biomarkers and new treatment strategies. In our study, a total of 18 differentially expressed SFs, such as Sf3b1, Nol3, Fastk, Scaf1, etc., were identified between the WTA and WT group, and SFs show interaction with immune-RAS, which meant that these SFs might potentially regulate immune-RAS. Recently, with the development of second-generation sequencing technology, many mutations related to RNA splicing have been gradually identified and reported one after another. Among these different SFs, human Sf3b1 (splicing factor 3b subunit 1) is the gene with the higher mutation frequency. So, we selected Sf3b1 for analysis based on higher expression levels and significant differences, and combined it with existing literature reports. Furney et al. found that Sf3b1 was repeatedly mutated in uveal melanoma, and the mutation was associated with abnormal AS (Furney et al., 2013). Maguire et al. discovered that Sf3b1 mutations resulted in AS events, and might constitute drivers and a novel therapeutic target in a subset of breast cancers (Maguire et al., 2015). Chang et al. found that Sf3b1 may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways (Chang et al., 2021). All these suggest that Sf3b1 can regulate AS events, which is consistent with our research.
In conclusion, our research discovered that immune-related genes and immune cells played an important role in the occurrence and development of AAA, and the immune-RAS events affected the formation of AAA. The regulation of SFs on AS events may be a new target for diagnostic and therapeutic intervention. However, there are several limitations to the study. First, because of the secondary analysis of the original data, it is difficult to evaluate the reliability of the original samples. Second, a small sample size may cause certain deviations in the comparison results, including DEGs, immune-RAS, and SFs. Since the samples we analyzed are from mouse AAA models and are relatively consistent, the pathophysiological process of patients may be different in clinical practice. Although we have removed outliers and used powerful tools, such as the latest algorithms for evaluation, it may still cause a certain error in the clinically actual situation. Therefore, further research is needed to provide more direct evidence for the immune-RAS and SF regulation of AAA. Altogether, we take the lead in discussing the vital role of immune-RAS and SFs, and provide new mechanism insights for the development of immune-targeted therapy in AAA.
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Supplementary Figure S1 | Transcriptome analysis of DEGs in WTA and WT. (A). The sample correlation heatmap exhibited the clustering of samples from the WT and WTA groups. (B). Expression heatmap of all significant DEGs between WTA and WT samples.
Supplementary Figure S2 | Identification of WTA-associated AS events located in immune-related genes (immune-RAS). (A). Boxplot showing all regulated AS events (RAS) by SUVA between WTA and WT. (B). Splice junction constituting RAS detected by SUVA was annotated to classical AS event types. And the number of each classical AS event types were showed with boxplot. (C). Bar plot showing number with different abundance (pSAR) of all detected RAS. (D). Bar plot exhibited the most enriched GO biological process results of the RASG between WTA and WT groups. (E). Bar plot exhibited the most enriched KEGG pathways results of RASG between WTA and WT groups. (F). Boxplot showing splicing ratio profile across 5 WT tumor and 4 WTA samples of 3 immune-related splicing events (pSASR ≥ 90%).
Supplementary Figure S3 | Construction of co-disturbed network between SFs and immune-RAS. A. Boxplot showing expression profile of co-disturbed SFs in WTA and WT samples.
Supplementary Figure S4 | Immune infiltration altered and is associated with candidate SFs. (A). Box plots showing proportion of 7 significantly altered cell type (P ≤ 0.05) in WTA or WT samples. (B). Scatter plot comparing the mean proportions of cell populations of each cell type in two groups.
Supplementary Figure S5 | SF3B1 bound on a mass of immune-related genes. (A). Bar plot exhibited the most enriched GO biological process results of the genes bound by Sf3b1 in both replicates. (B). Motif analysis showing the top 5 peaks preferred bound motifs of Sf3b1 on immune-related genes by HOMER software.
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Gene

Up

Up

Up

Up

Up

Drug/Small
molecule

Formaldehyde

Ethanol
Dibutyl phthalate

Paclitaxel

Prednisolone
Oxalplatin

Eribulin

NC1153

EPZ-6438

R547

Possible effect

A metabolite of vitamin A that plays important roles in cell growth, differentiation and
organogenesis acts as an inhibitor of the transcription factor Nif2 through the activation
of retinoic acid receptor alpha

Similar to pharmacological mMTOR inibitors, which can inhibit the mTOR signaling
pathway

Is expected to cause severe side effects to the central nervous system of animals and
humans

A synthetic macrocyclic ketone analog of the marine sponge natural product
halichondrin B, which leads to the inhibition of microtubule growth in the absence of
effects on microtubule shortening at microtubule plus ends

Belongs to the adrenal corticotropic hormone and adrenal corticotropic hormone class
and has strong anti-inflammatory effects

It selectively inhibits the synthesis of deoxyribonucleic acid (DNA). The guanine and
cytosine contents correlate with the degree of oxaliplatin-induced cross-linking

Is a microtubule inhibitor indicated for the treatment of patients with metastatic breast
cancer who have previously received at least two chemotherapeutic regimens for the
treatment of metastatic disease. Also being investigated for use in the treatment of
advanced solid tumors.

Specifically inhibits JAK3 via NC1153-induced apoptosis of certain leukemia/lymphoma
cell lines

Selectively inhibits intracellular histone H3 lysine 27 (H3K27) methylation in a
concentration- and time-dependent manner in both EZH2 wild-type and mutant
lymphoma cells

A potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically
relevant doses

Evidence

DOI:10.14423/SMJ.0000000000000545

DOI: 10.1186/512964-015-0091-0
DOI:10.1016/50145-2126 (96)00033-1
Unknown
DOL:10.3109/10428194.2011.688761
DOI:10.5045/kjh. 2012.47.4.293

DOI: 10.1016/52352-3026 (18)30054-1

DO: 10.1007/500280-012-1976-x. Epub
2012 Sep 26

DOI: 10.1016/.febslet. 2010.02.071

DOI: 10.1158/1535-7163.MCT-13-0773

DOI: 10.1158/1535-7163.MCT-09-0083
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Gender
Age
Extranodal disease

B symptoms

Male
Female
260
<60
Yes
No
Yes
No

Limited stage

9
16
6
19
8
17
1
24

Advanced stage

10
7
10
7
1
6
9
8

0.006

5.203

4.369

13.36

0.938

0.023

0.037

0.000
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GSVA vs. A549

0.49
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0.85
0.62

GSVA vs. DU145

0.72
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0.84
0.65

A549 vs. DU145

0.43
0.52
0.90
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Clinical characteristics

Unknown

Age, Median (Range)-yrs

Age groups-No.%

Sex-No.%

Disease-No.%

15-49 years
50-64 years

265 years

Female

Male

Lung cancer
Golon cancer
Rectal cancer
Gastric cancer
Breast cancer
Esophageal cancer
Colorectal cancer
Nasopharyngeal carcinoma
Liver cancer
Ovarian cancer
Tongue cancer
Unknown

All samples (n = 272)

46
625 (29.0-91.0)
24/226 (10.62)
97/226 (42.92)
105/226 (46.46)
108/226 (45.58)
123/226 (54.42)
166/226 (73.46)
13/226 (5.75)
11/226 (4.87)
6/226 (2.65)
5/226 (2.21)
5/226 (2.21)
4/226 (1.77)
2/226 (0.88)
1/226 (0.44)
1/226 (0.44)
1/226 (0.44)
11/226 (4.87)





OPS/images/fgene-12-781277/math_3.gif
SGj)
jeN,
L)) = Y Stk X o

0, otherwise





OPS/images/fgene-12-730519/fgene-12-730519-g005.gif
e B e W A B e with ook 0 e
Gane Panet e it Socuencing
5 e g""
§ 5_
AREARBARE! il ’ IEURRERRARARHEITESE

pouiriibming o tia





OPS/images/fgene-12-781277/math_2.gif
P(i.j)=

DS

=]

@





OPS/images/fgene-12-730519/fgene-12-730519-g004.gif





OPS/images/fgene-12-781277/math_14.gif
10w )+ 2, Q(fe) (14)






OPS/images/fgene-12-730519/fgene-12-730519-g003.gif





OPS/images/fgene-12-781277/math_13.gif
+ fulx). 13)





OPS/images/fgene-12-781277/math_12.gif
< Y ylogi+t (1-plog(1-5), (12





OPS/images/fgene-12-781277/math_9.gif
0
PMAT

PMA
0

)

©





OPS/images/fgene-12-730519/fgene-12-730519-g002.gif
-






OPS/images/fgene-12-730519/fgene-12-730519-g001.gif





OPS/images/fgene-12-781277/math_11.gif
(11)





OPS/images/fgene-12-730519/crossmark.jpg
©

|





OPS/images/fgene-12-781277/math_10.gif





OPS/images/fgene-12-754503/fgene-12-754503-t004.jpg
Variables

Training set (1 = 33)
Age
Sex
Tumor size classification
CS invasion
Signature
Test set (1 = 33)
Age
Sex
Tumor size classiication
CS invasion
Signature
Entire set (1 = 66)
Age
Sex
Tumor size classiication
CS invasion
Signature

62 v5.52

Male vs. Female
Macro vs. Giant

Yes vs. No

High risk vs. low risk

>52 vs5.<52

Male vs. Female
Macro vs. Giant

Yes vs. No

High risk vs. low risk

62 v5.<52

Male vs. Female
Macro vs. Giant
Yes vs. No

High risk vs. low risk

Univariable analysis

Multivariable analysis

HR

0.23
1.05
1.10
1.40
2.03

0.35
0.53
0.31
205
5.49

0.29
0.756
1.21
172
1.49

CS, cavernous sinus: Giant, giant adenoma: Macro, macroadenoma.

95% Cl of HR
Lower Upper
0.06 1.09
0.29 3.74
0.23 5.18
0.36 5.40
1.40 294
0.09 1.36
0.14 2.03
0.09 1.08
0.53 7.92
1.16 14.92
0.10 079
0.31 1.81
0.82 178
0.66 4.48
1.24 1.80

0.06
0.94
0.91
0.63
<0.001

0.13
0.35
0.07
0.30
0.08

0.02
0.52
0.33
0.26
<0.001

HR

0.18
073
1.19
1.37
2.06

062
0.78
0.15
0.43
6.96

0.33
0.89
0.59
1.23
1.50

95% Cl of HR
Lower Upper
0.03 1.08
017 311
0.18 7.72
0.28 6.59
1.36 3.12
015 267
017 3.72
0.02 0.88
0.06 3.29
1.21 40.16
0.12 0.93
0.36 218
0.21 1.67
0.42 3.54
1.24 1.82

0.06
0.68
0.85
0.70
<0.001

0.52
0.76
0.04
0.42
0.03

0.04
0.80
0.32
0.7
<0.001
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Variables Training Test Entire
Low High P Low High 3 Low High P
risk risk risk risk risk risk
Sex 1.00 036 062
Female 8 7 8 11 16 18
Male 9 9 9 5 18 14

Age 021 0.12 003
<52 7 11 5 10 12 21
>52 10 5 12 6 22 11

Tumor size classification 050 040 070
Giant 6 3 5 5 1 8
Macro 11 13 12 11 23 24

invasion 1.00 021 043
No 6 6 10 5 16 1
Yes 11 10 b 1" 18 21

Data were snakzed using the Chi-squansd lest p-vakie < 0.05 was considarsd to indicate & statisticall significant diference.





OPS/images/fgene-12-781277/inline_9.gif





OPS/images/fgene-12-754503/fgene-12-754503-t002.jpg
Gene symbol Coefficient”  pValue®  Gene expression level
association with poor

prognosis
LOC101927765 3.406 0.001 high
RP11-23N2.4 1.895 0.007 high
RP4-533D7.4 -3.440 0.002 low

erived from the univariabie Cox regression analysis i the training set
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Entire set (n) Training set (n) Test set (n)

Gender
Male 32 18 14
Female 34 15 19

Age (years)
<52 38 19 19
>52 28 14 14

Tumor size classification
Macro a7 2 2
Giant 19 9 10

CS Invasion
Yes 38 20 18
No 28 13 15

Headache
Yes 31 14 17
No 35 19 16

Vision and visual field disorders
Yes 50 26 24
No 16 7 9

Recurrence
Yes 20 10 10
No 46 23 23

CS, cavernous sinus; Giant, giant adenoma; Macro, macroadenoma.
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Training data
set

NH_990

NS-627

NM-944

The bold value is the value with the best effect in the corresponding evaluation index.

Models

iRNA-PseU
re-ima-Psel
PseUl
XG-PseU
Pseldeep

iRNA-PselU
re-Ima-PseU
PseUl
XG-PseU
PseUdeep

IRNA-PseU
re-Ima-PseU
PseUl
XG-PseU
Pseldeep

Accuracy (%)

59.80
61.92
64.24
65.44
66.99

64.49
6561
65.13
68.15
7273

69.07
7034
7044
7208
7245

Sensitivity (%)

61.01
65.05
64.85
63.64
74.47

64.65
66.88
62.72
66.84
61.75

73.31
79.87
74.58
76.48
66.7

Speci

59.80
58.79
63.64
67.24
60.71

64.33
64.33
67.52
69.45
7813

64.83
60.81
66.31
67.57
77.36

Mmcc

021
024
0.28
031
035

029
031
0.30
037
045

0.38
041
041
0.45
0.44

AUC

0.61
0.65
0.68
0.70
0.74

0.81
0.69
0.69
0.74
0.74

0.75
0.76
0.77
0.77
0.77
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Benchmark data Models Accuracy (%) Sensitivity (%) Specificity (%) mcc Auc
sets

NH_990 one-hot 56.56 40 68.51 0.08 0.592
PSNP 66.67 62.22 7037 0.32 0.666
KNFP 63.63 80 50 0.31 0.658
NS-627 one-hot 53.03 26.47 81.25 0.09 0.634
PSNP 69.71 61.75 78.13 0.40 0.734
KNFP 66.67 64.71 68.75 033 0.619
NM-944 one-hot 58.16 35.55 77.35 0.14 0.547
PSNP 71.42 57.77 8301 0.42 0.746
KNFP 56.12 62.22 50.94 0.13 0.580

The bold value is the value with the best effect in the corresponding evaluation index.
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Testing data Models
sets

H_200 CNN
CNN + Capsule
CNN + Attention
PseUdeep (CNN
+Capsule + Attention)

S_200 ONN
CNN + Capsule
CNN + Attention
PseUdeep (CNN
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.

Accuracy (%)

66.69
62.25
66.19
66.18

82.35
80.88
79.91
80.88

Sensitivity (%)

68.63
63.73
52.94
7353

86.27
77.45
83.34
77.45

Specificity (%)

62.75
60.78
77.45
58.82

78.43
84.31
76.47
84.31

mcc

0.31
0.25
0.31
033

0.65
0.62
0.59
0.65

AuC

0.691
0.696
0.692
0.720

0.899
0.908
0.899
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Data sets Models

NH_990 ONN
CNN + Capsule
NN + Attention
PseUdeep (CNN+
+Capsle + Aftention)

NS_627 ONN
ONN + Capsule
CNN + Attention
Pseldeep (CNN
+Capsule + Attention)

NM_944 CNN
CNN + Capsule
CNN + Attention
PseUdeep (CNN
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.
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Number of features
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H_200 IRNA-PseU
PseUl
PseUdeep

S_200 IRNA-PseU
PseUl
PseUdeep

The bold value is the value with the best effect in the corresponding evaluation index.
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Drug

Pacitaxel
6
benzyladenine
Erlotinib
Cidofovir
Fenofibrate
Oxaliplatin
Bilirubin
Nutlins
Valproic acid

Antitumor mechanism

prevents mitosis, blocks cell cycle progression, and inhibits cell growth.
stimulates cell division, and inhibits respiratory kinase, leading to plant growth and development.

inhibits tyrosine kinase activity, blocks EGFR signaling pathway
inhibits viral DNA polymerase

activates PPARa-RXR signaling

blocks DNA replication

an endogenous metaboite from haem

binds to pS3/MDM2 complex and displace ps3 protein
inhibits histone deacetylase (HDAC)

Evidence (DIO)

10.1186/511668-019-0164-y

10.1111/plb. 13154

10.1542/peds.2019-1632
10.7150/ca.24488
10.1016/.ctrv.2020.102112
10.1021/np4005807
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