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Editorial on the Research Topic

Mechanisms of Epigenetics and Genetics in Leukemogenesis

According to the new cancer statistic report, the incidence and mortality of leukemia rank among
the top ten of all cancers (1). Understanding the mechanism of leukemia is vitally important which
might help us to identify novel markers and develop novel therapeutic strategies. With the
development of science and technology, especially the sequencing technique, a number of studies
have depicted the genetic and epigenetic landscape of leukemia (2–4). In the meanwhile, a large
scale of databases containing different sequencing data of leukemia have been established and
broadly open-accessed, for example, the TCGA database. It has been conclusively shown that
genetic and epigenetic abnormalities contribute greatly to the generation, progression, and drug
resistance of leukemia. However, the mechanism of leukemia is far from being fully elucidated. The
articles in the Research Topic on Mechanisms of Epigenetics and Genetics in Leukemogenesis
explored both genetic and epigenetic mechanisms in leukemia generation.

Genetic alterations to genes involved in hematopoiesis, tumor suppressor genes, and oncogenes
can result in dramatic gene expression changes leading to leukemia. Zhang et al. showed that
RUNX3 is highly expressed in acute myeloid leukemia (AML) cells. Further study revealed RUNX3
knockdown inhibits AML progression by altering the expression of genes involved in DNA damage
and apoptosis. Su et al. reviewed CEBPA mutation in leukemia including current progress and
future directions. Patients with different subtypes of CEBPA mutations showed different clinical
features and different sensitivity to chemotherapy, which can be useful for optimizing the clinical
management of AML patients with CEBPA mutations. Shi et al. showed that high CENPE
expression is correlated with chemoresistance, while knockdown of CENPE expression in vitro
suppresses the proliferation of myeloid leukemia cells and reverses the cytarabine
(Ara-C) chemoresistance.

Since the beginning of the 21st century, epigenetics has entered a period of rapid development,
especially in the field of biology and medicine. Examples of epigenetic modifications mainly include
DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. ASH1L is
a histone methyltransferase that is essential in the generation and maintenance of MLL-AF9
leukemia. Aljazi et al. reported that ASH1L binds to the promoters and modifies the local histone
H3K36me2 levels of MLL-AF9 target genes including Hoxa9 and Hoxa10. SET8 regulates the
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histone H4 monomethylation at Lys 20 (H4K20me1), which is
highly expressed in AML and associated with poor prognosis (Xu
et al.). Targeting SET8 by LukS-PV induces apoptosis in
leukemia. Besides methylation, histone acetylation plays a vital
role in leukemogenesis. Zhang et al. made an elaborate review on
the roles of histone deacetylases (HDAC) in AML with fusion
proteins. lncRNA PPM1A-AS is highly expressed in T-cell acute
lymphoblastic leukemia (T-ALL) and regulates genes in multiple
signaling pathways. Li et al. confirmed that PPM1A-AS acts as an
oncogene in T-ALL by promoting cell proliferation and
inhibiting cell apoptosis. Another type of epigenetically
regulated genes are those associated with immunity. According
to the study from Xiao et al., Intercellular Adhesion Molecule‐1
(ICAM-1), a crucial factor in tumor immunity, is epigenetically
silenced by DNA methylation. The use of decitabine restores
ICAM-1 expression and inhibits AML immune escape from NK
cells. This study suggests that combining hypomethylating agent
decitabine and NK cell infusion may be a potentially effective
strategy in AML treatment.

Accumulated study of genetics and epigenetics in
leukemogenesis facilitates the identification of possible novel
biomarkers and the study of new targeted drugs, including the
abovementioned CENPE (Shi et al.), ASH1L (Aljazi et al.), and
SET8 (Xu et al.). In addition, HDAC inhibitors and
hypomethylating agents (azacytidine, decitabine) have been
widely used in clinical practice and the effect has been widely
proved (5–7). In our Research Topic, Yin et al. reported a phase
II clinical trial using a regimen combining chemotherapy,
HDAC inhibitor, and hypomethylating agent in patients with
relapsed/refractory AML. The completed remission (CR) rate is
42.9%, which suggests the double epigenetic priming regimen
has good antileukemia activity. It indicates that a better
understanding of the genetic and epigenetic mechanism of
Frontiers in Oncology | www.frontiersin.org 25
leukemogenesis has recently begun to increasingly influence
the clinical decisions from diagnosis and risk stratification to
individual therapeutic intervention.

In summary, the original articles, reviews, and clinical trials
collected in this Research Topic represent an invaluable resource
of insights on mechanisms of genetics and epigenetics in
leukemogenesis. However, more studies, particularly on the
interaction between genetics and epigenetics are needed to
fully understand the mechanism of leukemogenesis, which will
guide future clinical trials and lead to the development of new
therapeutic strategies.
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PAX5 plays a critical role in B-cell precursor development and is involved in various
chromosomal translocations that involve the fusion of a portion of PAX5 to at least 49
different partners reported to date. Here, we identified a novel PAX5 fusion transcript in a
Ph-positive mixed phenotype acute leukemia case with dic(7;9)(q13;q13), in which a
translocation juxtaposes the 5’ region of PAX5 and the ubiquitin-conjugating enzyme
E2D4 (UBE2D4) to generate a PAX5-UBE2D4 fusion gene. To further explore the general
characteristics and function of PAX5-UBE2D4, we cloned the full-length cDNA, which was
amplified from the bone marrow of the patient. Interestingly, the fusion was located in the
nucleus and negatively affected PAX5 transcription activity. Importantly, the fusion
promoted tumor growth in nude mice and the proliferation of NIH3T3 cells in vitro. In
conclusion, the fusion resulted in partial oncogenic activity, in contrast to the tumor
suppressor activity of wild-type PAX5.

Keywords: Pax5, UBE2D4, MPAL, BCR/ABL, dic(7;9)
INTRODUCTION

The transcription factor PAX5 plays a critical role in B-cell development and differentiation and has
been considered to function as a tumor suppressor in B cell precursor acute lymphoblastic leukemia
(BCP-ALL). PAX5 alterations, including deletions, mutations, and rearrangements, occur in
approximately 30% of BCP-ALL cases. Chromosomal rearrangements account for 2–3% of cases
(1–3). It has been well reported that a number of PAX5 rearrangements give rise to in-frame fusion
transcripts that encode chimeric proteins that consistently retain the PAX5 DNA binding domain at
the N terminus, but the C-terminal regions are derived from various partners, including
transcription factors, kinases and structural proteins (4–8). To date, at least 58 fusions have been
identified, and most of them have been found in association with BCP-ALL (9). Only a limited
August 2021 | Volume 11 | Article 70361216
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number of the reported fusions were recurrent, such as PAX5-
ETV6, PAX5-ELN, and PAX5-PML, while most have been found
in single cases, such as PAX5/ASXL1 and PAX5/FOXP1 (9). In
addition, half of the rearrangements have resulted in PAX5
fusions to genes in the opposite orientation, out-of-frame
fusions or the expression of truncated isoforms (6). Here, we
first identified a novel chromosomal dic(7;9) (p13;p13)
translocation in a Ph-positive mixed phenotype acute leukemia
(MPAL) patient, resulting in a PAX5 out-of-frame fusion with
the ubiquitin-conjugating enzyme E2D4 (UBE2D4), which
functions as a truncated PAX5. In addition, the fusion showed
partial oncogenic activity, which was in contrast with the tumor
suppressor ability of wild-type (WT) PAX5.
CASE DESCRIPTION

A 16-year-old boy was referred to our hospital in January 2010
with recurrent fever and weakness for one month. Physical
examination indicated axillary lymphadenopathy and
hepatosplenomegaly without anemic conjunctiva. The
peripheral blood counts at diagnosis revealed multilineage
cytopenia: hemoglobin 12 g/dL, white blood cells (WBCs)
12.87 x 109/L, and platelets 31 x 109/L. Bone marrow (BM)
aspiration showed hypercellularity with 89.2% blasts and
lymphatic changes. Flow cytometric analysis revealed that
23.4% of the BM blast cells were positive for HLA-DR, CD10,
CD20, CD19, CD13, CD33, CD34, MPO and CD79a but
negative for CD117, CD14, CD15, CD2, CD3, and CD7
(Supplementary Figure 1). Then, the patient was diagnosed
with MPAL with co-expression of myeloid and B lymphoid
lineage antigen according to the 2016 WHO classification. The
karyotype of the bone marrow cells was 45, XY, dic(7;9)(p11-13;
p13), t(9;22)(q34;q11) (8) /46, XY (9). The BCR/ABL (p190)
fusion gene was detected by multiplex reverse transcription-
polymerase chain reaction (RT-PCR), thereby confirming the
diagnosis of Ph-positive mixed phenotype acute leukemia. The
patient accepted tyrosine kinase inhibitor therapy and achieved
remission, which was followed by 2 DVP chemotherapy sessions
(with 70 mg daunorubicin, 4 mg vincristine and 20 mg
dexamethasone). Unfortunately, the patient finally had a
cytological relapse in the bone marrow and died 5 months
after the initial diagnosis.
DISCUSSION AND CONCLUSION

Based on the karyotype of the patient, array comparative
genomic hybridization (array-CGH) analysis was performed,
and the results indicated that the breakpoints were located in
the PAX5 and UBE2D4 genes and revealed the deletion of large
parts of 9p and 7p (Figure 1A). When using the FISH
(fluorescent in situ hybridization) probes RP11-652D9 and
RP11-344B23 corresponding to the 5’ and 3’ sequences of the
PAX5 gene, respectively, we observed a red signal and a yellow
Frontiers in Oncology | www.frontiersin.org 27
signal, which was consistent with the results of the array-CGH
analysis (Figure 1B and Supplementary Figure 2). Then, RT-
PCR amplification revealed the presence of PAX5-UBE2D4
fusion transcripts (Supplementary Figure 3). Sanger
sequencing confirmed the out-of-frame fusion of PAX5 exon 7
(NM_016734) with UBE2D4 exon 2 (NM_015983.4), resulting
in the analogous truncated PAX5 protein with the DNA binding
(PBD) domain, OCT domain and homeodomain (HD) of PAX5
and an additional 19-amino acid tail, which does not correspond
to any predicted functional domain (Figure 1C).

To investigate the function of the fusion, we amplified the
full-length cDNA sequence of PAX5 and UBE2D4 that was
retained in the fusion found in the patient, cloned it into a
lentiviral vector (LV5, GenePharm Inc., Shanghai) and the
pcDNA3.1 vector, and fused it with a 3×FLAG-tag. As
Figure 1D shows, we observed nuclear localization of the
fusion, which was expected since the fusion retained the
nuclear localization signal of PAX5 (Figure 1D and
Supplementary Figure 4). Furthermore, we co-transfected
293T cells with the CD19 promotor-LUC construct (PGL3),
pcDNA-PAX5 and increasing amounts of the pcDNA-PAX5-
UBE2D4 (PU) construct. The transcription of the luciferase
reporter gene was significantly downregulated in the presence
of the expression of PU alone compared with that observed in the
presence of wt-PAX5 (Figure 1E). In addition, after concomitant
transfection of wt-PAX5 and PU, PAX5-driven reporter gene
transcription was downregulated (Figure 1E), indicating the
dominant-negative activity of PU. To investigate the function
of PU, HEL cells were transfected with PU (HEL-PU) and the
vector (HEL-LV5). Then, the cells were subcutaneously injected
into 6- to 8-week-old female nude mice (n=6-11). A total of
45.5% (5/11) of mice engrafted with HEL-PU cells developed
tumors, which was obviously greater than the number of mice
who developed tumors in the control (HEL-LV5, 33.3%, 2/6)
group (Figures 2A, B). The mean volume of the tumors in the
PU cohort was much larger than the control cohort (Figure 2C).
In addition, the mean weight of the tumors in the HEL-PU group
was the heaviest when compared with control group
(Figure 2D). In contrast, the PU fusion showed at least partial
oncogenic activity. Furthermore, NIH-3T3 cells expressing the
PU fusion grew significantly faster than the control cells over
72 h and showed an increase in the number of colony forming
units compared with the vector control-expressing cells
(Figures 2E, F).

Dicentric (7;9)(p11-p13;p11-p13) is a very rare but recurrent
abnormality in BCP-ALL patients as well as a limited number of
cases involving PAX5 rearrangement. Indeed, we identified only
7 cases of dic(7;9) from among approximately thousands of cases
with karyotypic data (Supplementary Table 1). Most cases with
the translocation, dicentric abnormality or derivatives of
chromosomes 7 and 9 involving PAX5 rearrangement mainly
presented PAX5-LOC392027, PAX5-POM121, PAX5-ELN, and
PAX5-AUTS2 (4, 8–14). Some aberrant PAX5 transcripts have
also been reported, such as a case of MPAL that harbored der(9)t
(7;9)(q11.2;p13) (10). To our knowledge, this is the first case of
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. PAX5 Rearrangement in Ph+ MPAL With dic(7;9)
PAX5 rearrangement in a Ph-positive MAPL patient with dic
(7;9). Previous studies showed that most malignant cells carrying
PAX5 fusions displayed a simple karyotype (6). Coexistence of
the t(9;22)(q34;q11) translocation, which resulted in the
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formation of the BCR-ABL1 p190 fusion in this study, might
contribute to the cytogenetic complexity and suggest a poor
prognosis. The partner genes involved in the PAX5 fusions were
heterogeneous, but a partner involving a ubiquitin-related gene
A

B

D E

C

FIGURE 1 | (A) Array comparative genomic hybridization showing the breakpoints of 9p13/PAX5 and 7p13/UBE2D4. (B) FISH assay showing the splitting of the N terminus
(green, RP11-344B23) and C-terminus (red, RP11-652D9) of WT PAX5. (C) Sanger sequencing confirmed that PAX5 exon 7 was fused out-of-frame with UBE2D4 exon 2,
and the schematics show the domains of the PAX5-UBE2D4 (PU) fusion protein, including PBD (DNA-binding domain), OP (octapeptide motif), NLS (nuclear localization
sequence) and HD (homeodomain), and an additional 19-amino acid tail encoded by the UBE2D4 gene. (D) Nuclear localization of the PU fusion protein as shown by a
nucleus and cytosol separation assay. (E) The transcription activity of the PU fusion and its dominant negative effect on PAX5 transcription activity based on the CD19
promoter luciferase reporter assay. P values are from Fisher’s exact test. *P ≤ 0.05, **P ≤ 0.01.
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was the first to be reported. Previous reports indicated that half
of the PAX5 fusion genes gave rise to truncated PAX5 proteins,
including those involving out-of-frame fusions (6). Consistently,
the PAX5-UBE2D4 fusion showed the competitive inhibition of
wt-PAX5 transactivating activity, similar to truncated PAX5.
Furthermore, the PAX5-UBE2D4 fusion presented oncogenic
activity in a nude mouse model. In contrast, WT PAX5 showed
tumor suppressive ability both in vivo and in vitro.
PATIENT PERSPECTIVE

Since the diagnosis, the patient received and understood the
cause of his illness, and the possible cause of premature death.
Ultimately, he hoped to get the right treatment.
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FIGURE 2 | The oncogenic activity of the PAX5-UBE2D4 (PU) fusion. (A) PAX5-UBE2D4 (PU) increases the number of tumors generated by subcutaneous injection
of HEL cells into nude mice. (B, C) The sizes of the tumor masses and tumor weights (D) after injection of HEL cells expressing the indicated genes. (E) PU fusion
promotes the proliferation and colony formation (F) of NIH-3T3 cells. P values are from Fisher’s exact test. *P < 0.05, **P < 0.01.
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Accurate orchestration of gene expression is critical for the process of normal
hematopoiesis, and dysregulation is closely associated with leukemogenesis.
Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia
(AML), where chromosomal rearrangements are frequently found. Increasing evidences
have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling,
which are involved in stemness maintenance, cell fate determination, proliferation and
differentiation, via mastering the transcriptional switch of key genes. In abnormal, these
functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are
appealing targets for drug exploration, many of which have been deployed to the AML
treatment. As the majority of AML events are associated with chromosomal translocation
resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the
mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the
process of leukemogenesis and roles of HDACmembers acting in this progress, providing
an insight for the target anchoring, investigation of hyperacetylated-agents, and how the
current knowledge could be applied in AML treatment.

Keywords: HDACs, AML, leukemogenesis, epigenetic modification, oncogenic fusion protein,
chromosomal translocation
INTRODUCTION

Acute myeloid leukemia (AML) is characterized by genetic mutations and epigenetic alterations,
marked by uncontrollable proliferation, blocked differentiation, and anti-apoptosis (1–3). And the
majority of AML events are correlative with abnormal chromosomal translocations, which
generates the oncogenic fusion genes. Mounting studies have demonstrated the central roles of
fusion genes in initiating the leukemogenesis (4–6). And the successful strategies are paralleled by
the decrease or degradation of chimeric proteins (7, 8). Commonly, the fusion partner in chimeric
protein acts as a transcriptional protein interacting with the recruited corepressor complexes, which
alters the expression of target genes that maintain the homeostasis of myeloid development,
conferring the foundation of leukemic transformation (9, 10). Thereby, master the potential
elements interacting with the fusion proteins is the prerequisite for targeting such
oncogenic chimera.
September 2021 | Volume 11 | Article 741746111

https://www.frontiersin.org/articles/10.3389/fonc.2021.741746/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.741746/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.741746/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yuli@szu.edu.cn
mailto:xfgao@szu.edu.cn
https://doi.org/10.3389/fonc.2021.741746
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.741746
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.741746&domain=pdf&date_stamp=2021-09-01


Zhang et al. HDACs & Fusion Proteins in Leukemogenesis
Epigenetic modification has been acknowledged to paly crucial
roles in the oncogenic transforming including AML (11, 12).
Generally, epigenetic modification is not dedicated to some specific
genes but serving for a vital regulator of transcriptional factors, which
hold the specific capacity of DNA binding, whereby determining the
potential transcriptional outcome (13–15). Thereby, the function of
epigenetic modification is closely related to the cell-specific situation
where the transcription factors are involved.

Accumulating evidences have been presented that epigenetic
aberration prominently contribute to the leukemogenesis (16–
18). As one of the major epigenetic regulators, histone
deacetylases (HDACs) are indispensable in gene transcription.
Dysregulation of HDACs has long been recognized as a crucial
driver to hematological malignancies from initiation to
metastasis, because they determine the fate of tumor cells,
directing the cell to proliferate, differentiate, or be quiescent
(13, 19). Therefore, the orchestration of HDACs is closely related
to the cell development of both normal cells and tumor cells.

As acetyl group removers, HDACs control the accessibility of
chromatin for transcription factors through switching the acetylated
status, which finely tunes the transcriptional level of transcription
factors and epigenetic modifiers, involving in development, cellular
homeostasis, and carcinogenesis (20–22). And deregulated HDACs
are associated with cell differentiation arrest, cell cycle disruption,
DNA damage, and cell death (13, 23). Targeting the dysfunctional
deacetylation in AML provides a promising strategy benefit for
Frontiers in Oncology | www.frontiersin.org 212
tumor treatment (24, 25). And experimental and clinical functions
of HDAC inhibitors have been described by a number of reports
(26–31), but the detailed mechanism acted by HDACs has not been
elaborated. Comprehensively harness the roles of HDAC family
members acting in leukemogenesis will provide us more precise
prevision against such malignancy.

AML is frequently associated with chromatin rearrangement,
including translocation and inversion, which generate oncogenic
fusion proteins, among of which four most common chimeric
proteins should be paid more attention, including AML1-ETO,
PML-RARa, CBFb-MYH11, and MLL-MLLT3 (4, 6, 32–34).
Here we attempt to summarize the mutual interactions between
HDACs and oncogenic fusion proteins involved in AML,
providing a reference for the precise application of HDAC
inhibitors and novel drug exploration against AML.
ACUTE MYELOID LEUKEMOGENESIS
AND CLASSIFICATION

Acute myeloid leukemogenesis is a complicated progress
involved in genetic and epigenetic alterations, leading to
uncontrolled proliferation, arrested differentiation, and myeloid
dysfunction (1, 2). And the altered genes can be subdivided into
five categories (Figure 1): Class I mutations, activators of
FIGURE 1 | Classification of mutagenic genes eliciting leukemogenesis. Class I mutation, provides tumor cells with survival/proliferation advantages; Class II
mutation, disturbs the cell differentiation; Class III mutation, epigenetically dysregulates the tumor suppressor/activator; Class IV mutation, alters cell adhesion and
cell-cell interaction, leading to the flexible motility and migration. Class V mutation, dysregulates DNA-repair and RNA-splicing.
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tyrosine kinase, such as c-Kit, Flt3, and BCR-ABL, provide the
hematopoietic progenitors with survival/proliferation advantage.
Class II mutations, transcriptional factors such as NPM1,
CEBPA, and TP53 as well as oncogenic fusion genes (e. g.
AML1-ETO, PML-RARa, and CBFb-MYH11), arrest the
differentiation of hematopoietic cells. Mutations emerging in
either class I or class II do not result in leukemogenesis until the
both happen to mutate. When differentiation of hematopoietic
cells is hindered by Class II mutations, Class I mutations would
autonomously proliferate, initiating the leukemogenesis. Class III
mutations, epigenetic regulatory molecules (e. g. TET2, IDH1
and IDH2, DNMT3A, and HDACs), silence/activate the tumor
suppressor genes/pro-tumor genes. And the class IV mutations
involve genes that alter cell adhesion and cell-cell interaction,
leading to the flexible motility and migration. Class V mutation
includes genes dysregulating DNA-repair (e.g.TP53 and NPM1)
and RNA-splicing (35–40). We focus on the epigenetic
abnormalities of histone modification in the progression
of leukemogenesis.
Frontiers in Oncology | www.frontiersin.org 313
The subtypes of AML are majorly classified by two systems:
French-American British (FAB) classification used earlier, and
World Health Organization (WHO) classification, which has
replaced the former (2). According to FAB classification
(Table 1), AML can be grouped into eight subtypes from M0
to M7 based on the leukemic cell development and maturity.
Among of them, M0 to M5 derived from the progenitors of white
blood cells; M6 start with early forms of red blood cells; and M7
originates in the early forms of platelets (41–44).

According to WHO classification (45–50), AML is subdivided
into 6 categories (Table 2): 1) AML with recurrent genetic
abnormalities, involving in translocation, inversion, deletion, and
mutation; 2) AML with myelodysplasia-related changes (MRC), a
kind of multilineage dysplasia; 3) therapy-related myeloid
neoplasms (t-MN), such as chemotherapy and radiation;
4) AML, not otherwise specified (NOS), including M0, 1, 2, 4, 5,
6, 7, acute basophilic leukemia, and acute panmyelosis with
fibrosis; 5) myeloid sarcoma; 6) myeloid proliferations related to
Down syndrome (DS). AML with recurrent genetic abnormalities
TABLE 1 | FAB subtype of AML.

FAB subtype Stage of cell development Percentage of adult AML patients Prognostic stratification

0 AML with undifferentiated myeloblasts 5% Worse
M1 AML with minimal maturation 15% Average
M2 AML with maturation 25% Better
M3 Acute promyelocytic leukemia (APL) 10% Best
M4 Acute myelomonocytic leukemia 20% Average
M4 eos Acute myelomonocytic leukemia with eosinophilia 5% Better
M5 Acute monocytic leukemia 10% Average
M6 Acute erythroid leukemia 5% Worse
M7 Acute megakaryoblastic leukemia 5% Worse
September 2021 | V
TABLE 2 | WHO classification of AML.

WHO classification of Acute myeloid leukemia (AML)

AML-associated oncofusion proteins

Chromosomal translocation Oncofusion protein Frequency of occurrence Prognosis FAB

t (8,21)(q22;q22) AML1-ETO 10-15% Favorable M2
t (15,17)(q22;q21) PML-RARab 6-15% Favorable M3
inv (16)(p13q22) CBFb-MYH11 3-10% Favorable M4
der(11q23) MLL-fusions 5-8% Variable M4/M5
t (9,22)(q34;q11) BCR-ABL1 1-2% Adverse M1/M2
t (6,9)(p22;q34) DEK-NUP214 <1 Adverse M2/M4
t (1,22)(p13;q13) RBM15-MKL1 <1 Intermediate M7
t (8,16)(p11;p13) MYST3-CREBBP <1 Adverse M4/M5
t (7,11)(p15;p15) NUP98 -HOXA9 <1 Intermediate M2/M4
t (12,22)(p12;q11) MN1-TEL <1 Variable M4/M7
inv (3)(q21;q26) RPN1-EVI1 <1 Adverse M1/M2/M4/M6/M7
t (16,21)(p11;q22) FUS -ERG <1 Adverse M1/M2/M4/M5/M7

AML with mutations
NPM1; CEBPA (biallelic mutation); RUNX1; myelodysplasia-related changes; Therapy-related myeloid neoplasms

AML, not otherwise specified (NOS)
Undifferentiation; Minimal maturation; Maturation; Acute myelomonocytic leukemia; Acute monoblastic and monocytic leukemia; Pure erythroid leukemia; Acute
megakaryoblastic leukemia; Acute basophilic leukemia; Acute panmyelosis with myelofibrosis; Myeloid sarcoma

Myeloid proliferations associated with Down syndrome
Transient abnormal myelopoiesis (TAM) associated with Down syndrome
Myeloid leukemia associated with Down syndrome
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contains balanced translocation/inversion, and mutation.
The balanced translocations include t (8,21) (q22;q22.1) (AML1-
ETO); inv (16) (p13.1q22)(CBFb-MYH11); t (9,11)(p21.3;q23.3)
(PML-RARa); t (6,9) (p23;q34.1) (KMT2A-MLLT3); inv (3)
(q21.3q26.2)(DEK-NUP214); t (1,22)(p13.3; q13.1) (Gata2,
Mecom); Rbm15-MKL1, and Bcr-Abl1. Here we will discuss the
four most common fusion proteins involved in AML, focusing on
the roles of HDACs functioning in the fusion proteins.
HDACs CLASSIFICATION AND
FUNCTIONS

Nucleosome, constituting the fundamental units of chromatin, is
an octamer polymerized by four types of histones (H2A, H2B, H3,
and H4), wrapped by 146 base-pair DNA. Each histone contains a
structural domain and an unstructured tail of 25-40 amino acid
residuals, which can be altered via post-translational modification,
including acetylation, methylation, phosphorylation, and
ubiquitination (51, 52). And the modification of histone
residuals will determine the chromatin accessibility to
transcription factors, keeping them activated or silent. Thereinto,
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the homeostasis of acetylation generally depends on the dynamic
regulation of histone deacetylases (HDAC) and histone
acetyltransferases (HAT) (53, 54).

HDAC and HAT play opposite roles in the epigenetic
modification of chromatin, especially the histone proteins, where
HATs allow the chromatin relaxed for gene transcription, and
HDACs condense the chromatin making it inaccessible for
transcriptional factors (Figure 2). HAT transfers the acetyl
group from acetyl coenzyme A to lysine residual of histone N-
terminal with positive charge, which binds to DNA strand with
negative charge and prevents the chromatin from being
condensed, thereby keeping the chromatin loosened available for
the binding of transcription factors with DNA. Oppositely,
HDACs favor to compact the chromatin, preventing the gene
transcription. They remove the acetyl group from histone tail, and
subsequently condense the chromatin, resulting in transcriptional
inhibition (55–57). Therefore, the dysregulation is inevitable when
the balance is disrupted between HDACs and HATs.

HDACs are universally spread in eukaryotes, which belong to
a superfamily composed of 18 proteins with conserved
deacetylase domain (21, 23). Based on the phylogenetic
analysis, sequence homology to yeast protein, and domain
organization, these proteins can be categorized into four
FIGURE 2 | Opposite function of HDACs and HATs. HDAC and HAT play opposite roles in the epigenetic modification of chromatin. HAT transfers the acetyl group
from acetyl coenzyme A to lysine residual of histone N-terminal with positive charge, which binds to DNA strand with negative charge and prevents the chromatin
from being condensed, allowing the chromatin relaxed for gene transcription. Oppositely, HDACs remove the acetyl group from histone tail, and subsequently
condenses the chromatin, resulting in transcriptional inhibition.
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families (class I, IIa, IIb, III and IV) (Figure 3). Three of them
contain the Zn2+ dependent catalytic domain, which are referred
to as classical HDACs, and class III members are NAD+-
dependent, called sirtuins, which possesses deacetylase activity
but is unrelated to HDACs, and will not be involved here.
Distinguished by structure, enzymatic function, and
localization, they display similar and specific functions during
the regulation of gene expression (13, 21, 58).

Class I HDAC family is consist of HDAC1, 2, 3, and 8, which
are homologous to yeast protein reduced potassium dependency-3
(Rpd3) (21, 59). They are chiefly expressed in nuclear, consisted by
classic deacetylase domain, nuclear localization signal, showing
high enzymatic activity to their substrates. Approximately 400
amino acids consist of eachmember, the catalytic domain contains
two histidine residues, two aspartic acid residues and one tyrosine
residue with Zn2+. And they generally function as gene
transcriptional repressors. For instance, HDAC1 and HDAC2
bear closely identical structure and similar function, and usually
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work together in the repressive complexes, such as corepressor for
element-1-silencing transcription factor (CoREST), nucleosome
remodeling and deacetylase (NuRD), and transcription regulator
family member switch-independent 3 (Sin3) complexes. HDAC3
generally emerges in another type of repressive complexes, such as
N-CoR–SMRT complex. HDAC8 has been described to cooperate
with SMAD3/4 complex, promoting the cell proliferation and
migration (60–65).

According to the number of catalytic domains, Class II HDAC
family can be subdivided into Class IIa (HDAC4, 5,7, 9) and Class
IIb (HDAC6, 10), which can shuttle between nucleus and
cytoplasm (66, 67). Class IIa HDAC members are grouped by a
functionally important N-terminal domain, which mediates DNA-
binding and nuclear-cytoplasmic shuttling. HDAC trafficking is
regulated by nuclear export signal (NES) and binding sites for14-3-
3 proteins. Upon 14-3-3 protein binding, cytoplasmatic retention
or nuclear export of class IIa HDACs will be stimulated depending
on the phosphorylation of 14-3-3 binding sites, which can be
FIGURE 3 | Classification of HDACs. Based on the phylogenetic analysis, sequence homology to yeast protein, and domain organization, HDAC enzymes are
categorized into four families (class I, IIa, IIb, III and IV). Three of them contain the Zn2+ dependent catalytic domain, which are referred to as classical HDACs, and
class III members are NAD+-dependent, which were not involved in this description. Class I HDACs contains HDAC1, 2, 3, and 8, which majorly localize in nuclear;
Class II HDACs include Class IIa (HDAC4, 5, 7, 9) and Class IIb (HDAC6, 10), which shuttle between nuclear and cytoplasm; and Class IV contains only HDAC11,
shuttling between nuclear and cytoplasm.
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regulated by protein kinase-D, Ca2+/calmodulin-dependent kinases
(CaMKs), and checkpoint kinase-1 (CHK1). And subsequently the
transcriptional repressors will be regulated via binding with
myocyte enhancer factor 2 (MEF2) binding domain, conferring
signal responsiveness to downstream genes. When bound with
Class IIa HDACs, MEF2 makes them a transcriptional repressor,
whereas bound with HATs p300,MEF2 then converted them into a
transcriptional activator. And the deregulated balance of HDAC
and HAT will subsequently lead to diseases (68–71). Class IIb
HDACs are atypical ones. HDAC6 contains two deacetylase
domains and a C-terminal zinc-finger, which functions as a
major cytoplasmic deacetylase targeting alpha-tubulin and
HSP90, regulating cell motility, adhesion, and chaperone
function (72, 73). Besides, binding with ubiquitin via zinc finger
domain HDAC6 can regulates the aggresome formation,
autophagy, heat shock factor-1 (HSF-1), and function of platelet
derived growth factor (PDGF) (74, 75). HDAC10 holds single
deacetylation domain and a leucine-rich domain. It possesses
properties of immunoregulator, against the tolerogenic molecule
PD-L1, implying an epigenetic target for immunotherapy.
Overexpression of HDAC10 has been demonstrated to accelerate
the progress of carcinogenesis. Deletion of HDAC10 in antigen-
presenting cells (APCs) can increase the expression ofMHC class II
molecules and repress the transcription of PD-L1, which is
associated with enhancement of immune system (76–79).

HDAC11, as the sole member of Class IV HDAC family,
structurally similar to class I and II, mainly distributes in nucleus
and acts as a repressor of IL-10 (80). It can regulate the dynamic
balance between immune activation and tolerance. Upregulation
of HDAC11 has been shown in various cancer cells (81, 82).

Besides, an increasing number of non-histone proteins have
been identified as substrates of HDACs, such as p53, Stat3,
Hsp90, GATA1, Tubulin, and b-catenin, which display vital
roles during the progress of carcinogenesis (83–85). Via
deacetylation, HDAC1 can affect the stability of tumor
suppressor gene p53, arresting the interaction with DNA,
inverting the function of p53. HDAC1 can also directly lead to
the deacetylation of GATA1, repressing the gene transcription.
HDAC6 is associated with the modulation of Akt and Stat3
signaling via regulation of Hsp90 acetylation in multiple
myeloma cells. Deletion of HDAC6 will result in reducing
phosphorylation of Stat3, which results in related genes
inactivation (22, 86, 87).

Taken together, HDACs participate in the regulation of key
transcriptional factors involving in the gene transcription, cell
apoptosis, cell cycles, and signal transduction, which depicts the
pivotal roles of HDACs functioning in epigenetic modification
and gene transcription. The histone modification determines the
accessibility of chromatin, which will make genes activated or
silent. Inevitably, dysregulated histone modification will lead to
dysfunctional cell development, which is strongly associated with
carcinogenesis. Disruption of specific HDACs usually associates
with dysregulation of differentiation, proliferation, migration,
chemotherapy resistance, and angiogenesis (Figure 4).
Overexpression of HDAC usually emerges accompanying with
leukemogenesis and the other tumor. They act to close the
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nucleosomes, inhibiting the expression of tumor suppressor
genes. HDAC inhibitor, as an agonist of HDAC, can alter the
abnormal hypoacetylation level of histone, and subsequently elicits
cell differentiation and apoptosis, demonstrating the indispensable
roles of HDACs in tumorigenesis (88–91). Harnessing the
function of HDACs is the premise indicating to precisely target
the master alterations.
HDACs IN LEUKEMOGENESIS

Although HDACmutations in AML are relatively rare compared
to solid tumors, HDAC proteins are abnormally recruited to
oncogenic fusion proteins, such as AML1-ETO, CBFB-
MYTH11, PML-RARa, and MLL-fusions, which function as
vital roles in onsetting and promoting the progress of
leukemogenesis (4, 13, 31). And HDAC inhibitors, as a series
of compounds that neutralize the activities of HDACs, have long
been utilized in treatment of AML for pre-clinical studies, which
have some extend shown beneficial outcomes (26, 27, 30, 31).
And the multiple functions of HDAC inhibitors have been
discussed in numerous research articles and reviews (which
will thereby not be included in this review). However, the
mutual interaction between HDACs and AML has not been
comprehensively described. And we choose the most frequent
events of chromosomal translocation emerging in AML to
elucidate the reciprocal functions of AML and HDACs.
HDACs IN AML WITH AML1-ETO

One of the well-studied AML subtypes is t (8, 21) AML, which
occurs in approximately 10-15% of total AML cases, and 18-40%
of M2 AML (92–95). The translocation is generated by the fusion
of AML1 gene (Runx1) on 21q22.1 and ETO gene (Runx1T1) on
8q22, leading to the forming of AML1-ETO fusion protein (5, 34,
96). It can invert the original function of AML1, performing
opposite function during the leukemogenesis. The fusion protein
AML1-ETO provides the DNA-binding domain via the
hematopoietic master regulator AML1 and transcriptional
domain via ETO, targeting the AML1 target genes. It
substitutes the original function of AML1 and disrupts cellular
processes involved in the myeloid proliferation, differentiation,
and genome stability (95, 97, 98).

To understand the mutual interactions between AML1-ETO
and HDACs in detail, we firstly figure down the functions of
AML1 and ETO in normal condition and AML1-ETO in
tumorigenic environment. AML1 functions as a master
organizer, which in charge of regulating the hematopoietic
specific promoters and enhancers. It widely spreads in
hematopoietic system, cooperating with multiple lineage-
specific transcriptional regulators, such as the driving of
endothelial hematopoietic transition (99, 100). AML1 gene on
21q22 is composed of nine exons, with three breakpoint cluster
regions (BCR) in intron5. The structure of AML1 is composed of
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conserved runt homology DNA binding domain (RHD),
activation domain (AD), nuclear matrix-targeting signal
(NMTS), proline-rich domain (PY), two inhibitory domains
(ID), and an additional C-terminal motif with five amino acid
(VWRPY), working as a recognition and recruitment signal for
Groucho/TLE family. Besides, it contains two promoters: distal
promoter P1 and proximal promoter P2. Both promoters include
the AML1-binding sties, which can be regulated by itself and
other AML1 transcriptional factors. RHD is in charge of
recognizing and binding to DNA sequences, and localizing the
AML1 transcriptional factors in nucleus. It also contributes to
the binding of core biding factor b (CBFb), which does not
interact with DNA, but increases the a subunit affinity to DNA
binding and stabilizes the complex (Figure 5A) (101–103).

AML1 functioning as an activator or repressor is determined
by its interaction with corresponding transcriptional factors and
co-factors, rather than itself features (95, 104, 105). It has been
shown to interact with various chromatin modifiers and
remodelers (Figure 5B). For instance, its activation can be
stimulated by binding with lysine acetyl transferase MOZ
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(MYST3), and the same to transcriptional co-activators P300
and CBP. They function as integrators, which bind with AML1
and other transcriptional activators driving the hematopoietic
promoters (106). ALY expressed in nucleus can bind to the
activation domain of AML1, forming multimers and bridging the
interaction of AML1 and other transcription factors. c-Yes
tyrosine kinase associated protein (YAP) binds to PPPY motif
in the AML1 C-terminal activation domain, enhancing the
activity of AML1 (105, 107, 108).

Furthermore, AML1 may function as a repressor of HDAC
complex (15). Researches have demonstrated that it can inhibit
the transcription of p21 via binding the promoter of p21 with
AML1 VWRPY Groucho/TLE interaction domain. Through
binding with co-repressors such as Sin3A and Groucho/TLE, it
recruits HDACs to repress the transcription (15). And the
HDAC inhibitor Trichostatin A can impair such suppression,
demonstrating that HDACs contribute to AML1-mediated
inhibition. It is also associated with HDAC1, 2, 3 and histone
H3 lysine 9 methyltransferase SUV39H1 (KMT1A), leading to
transcriptional suppression. In myeloid cells, AML1 binding
FIGURE 4 | Summary of HDACs functioning in cancer cell. HDAC family members determine biological effect of oncogenic hallmarks emerging in cancer cell,
disrupting the regular cell development in cancer cell, leading to dysregulated differentiation, proliferation, migration, chemotherapy resistance, and angiogenesis.
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FIGURE 5 | Generation and function of AML1-ETO fusion protein. (A) Generation of AML1-ETO. ETO gene on Chr.8q22 is consist of 13 exons, containing two
breakpoints, but one splicer acceptor in exon2. AML1 gene is made up of nine exons with one breakpoint and one splicer donor. Absence of splicer acceptor in
exon1b, the two genes generate the only fusion mRNA. (B) AML1 protein structures and partner proteins. AML1 is composed of DNA-binding domain (RHD) and
other domains related to signal transduction, transcriptional factors binding, epigenetic modifiers interaction, and TLE co-repression, which can interact with HATs
(MOZ, CBP, and p300) and HDACs (HDAC1, 2, and 3), resulting in gene activation or inhibition. HATs, histone acetyltransferases; HDACs, histone deaccetylases;
RHD, runt homology domain; NLS, nuclear localization signal; AD, activation domain; NMTS, nuclear matrix targeting signal; ID, inhibitory signal; VWRPY sequence.
(C) AML1-ETO fusion protein and the interacting partners. AML1 contributes the DNA-binding domain RHD, which binds with various transcription factors, but lacks
of domains to elicit regular functions. And nearly whole of ETO structure is involved in the fusion, including the four NHRs. They interat with corepressive complexes,
HDACs, and other molecules, initiating the oncogenesis.
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with CCAAT/enhancer binding protein alpha (C/EBPa) and
PU.1 can activated the macrophage colony-stimulating factor
receptor (M-CSFR) expression (104, 109).

Meanwhile, AML1 can also been inhibited by corresponding
transcription factors. For instance, bound with forkhead box P3
(FOXP3), it can suppress the expression of interleukin2 (IL2)
and interferon gamma (IFN-g) in T regulatory cells. It is
multifunctional in the regulation of hematopoiesis, including
cell differentiation, proliferation, and apoptosis. And the
aberration of AML1 will speculatively deregulate the normal
cellular development, which is involved in carcinogenesis
(15, 109).

Eight-twenty-one (ETO) gene on 8q22 is consist of 13 exons,
with one BCR in intron1a and three BCRs in intron1b, which
generate different variants but create the same fusion gene AML1-
ETO, because it supplies only one splice acceptor in exon2, as the
exon1b lacks of splice acceptor (104, 110). ETO protein possesses
three proline-serine-threonine (PST)-rich regions and four
conserved nervy homology regions (NHR), involved in neuronal
development of Drosophila embryos. The PST-rich domains
contain multiple potential kinase phosphorylation sites (SP and
TP). NHR1 is homologous to the Drosophila TATA-box-
associated factors, including TAF110. NHR2 domain, containing
a hydrophobic amino-acid (a.a.) heptad repeat, plays crucial role
in the oligomerization between ETO family members, forming
homo-/hetero-dimerization. NHR3 is with predicted coiled-coil
structure. NHR4 is homologous to myeloid-Nervy-DEAF1
(MYND) homology domain, with two predicted zinc-finger
motifs, which is required for the protein-protein interaction. For
instance, ETO is associated to the co-repressors mSin3 and nuclear
receptor corepressor (N-CoR), thyroid hormone receptor
(SMRT), as wells as HDAC1, 2, 3. Via binding with NHR4
DNA binding domain, it can interact with the co-repressors N-
Cor, SMRT, andmSin3A, which will then tether the DNA-binding
proteins to HDACs, resulting in repressive transcription (105,
111). Researches have shown that ETO and AML1-ETO can pull-
down by HDAC activity via Co-IP, bearing out the repressive role
of AML1-ETO through the recruitment of HDACs to AML1
target genes (112). Such function may instead of AML1 complex
which originally worked as an activator involving in the histone
acetyl transferases p300/CBP. It is similar to the leukemogenic
mechanism of APL. Fusion proteins PML/PLZF-RARa increase
the affinity of RARa to co-repressors and RARa target genes
(113). It also interacts with Atrophin-1, chaperon heat-shock
protein (HSP90), PLZF, Gfi-1, and Bcl-6, functioning as a
corepressor of transcriptional factors. Via NHR1 and NHR2,
ETO can binds to Gfi-1 and Gfi-1b, contributing to the
recruitment of HDACs, which subsequently repress the activity
of Gfi-1/Gfi-1b proteins (111, 112, 114). Depending on the DNA
binding site provided by RHD of AML1, AML1-ETO may
perform as a repressor or activator of the AML1 target genes (115).

In AML1-ETO fusion protein, the important features of
AML1 are lost: 1) the c-terminal activation domain interacting
with co-activators; 2) domains in charge of binding with co-
repressors such as Sin3 and TLE; NLS domain functioning as
nuclear matrix-targeting signal. And such lost will subsequently
Frontiers in Oncology | www.frontiersin.org 919
result in the dysregulation of hematopoiesis. The AML1-ETO
fusion protein can affect the expression of both AML1 target
genes and other related genes. As a part of AML1-ETO, AML1
recruits HDACs to the promoter, which suppress the expression
of relative target genes. In normal, these target genes are required
for regulating cell growth and preventing hemopoietic cells from
transformation. And abnormally, the target genes are suppressed
and lose their control, leading to cell overgrowth (107).

In t (8,21) AML, a number of genes critical to normal
hematopoiesis are up-regulated by AML1, while AML1-ETO
disrupts such trans-activation. AML1–ETO fusion protein
recruits various transcriptional factors, epigenetic modifiers such
as HDACs, PRMT1, and p300, forming the first aberration vital
for the t (8,21) AML onset (13). And then it can collaborate with
the secondary mutations including c-Kit, FLT3, and RAS. Via
recruiting the HDAC1, 2, 3, AML1-ETO can silence the target
genes and block the cell differentiation and transformation (95,
116). AML1 contributes the DNA binding domain RHD to a
number of transcriptional factors (such as Ets-1, LEF-1, C/EBPa,
PU.1, MEF, Pax5, and GATA1) and epigenetic modifiers, but
defaults the subsequential elements for activation, which are
replaced by nearly entire ETO. The well-known binding protein
of AML1 is CBFb, which efficiently binds to RHD of AML1 and is
required for the its full transcriptional activation (Figure 5B)
(117, 118).

HDAC1 is a binding partner of AML1 that takes part in the
forming of corepressor complex with nuclear receptor
corepressor (N-CoR) and mammalian Sin3 (mSin3A and B)
(119, 120). And ETO can bind to the central domain of N-CoR,
generating the AML1-ETO/N-CoR/mSin3/HDAC1 complex,
remodeling of chromatin structure and transcriptional
suppression, dysregulating the normal hematopoiesis (26, 121).
Additionally, the substrates of HDACs are not only histone but
also non-histone proteins, such as oncogenes, tumor-suppressor
genes, and chaperones. One of the presentative tumor
suppressors is TP53. Specifically interacting with TP53,
HDAC1 combined with the corepressor complex can mediated
its deacetylation, and subsequent degradation. As a classical
tumor suppressor, TP53 is crucial to the process of
hematopoiesis. The alteration of TP53 is associated with the
AML progress and therapy responsiveness, and generally
predicts poor prognosis (9). Although its mutation frequency is
relatively low in AML (less than 10% of de novo AML cases)
compared to solid tumors (more than50% of cases), the function
of TP53 in AML could not be ignored, as dysfunctional wild-type
(WT) TP53 appears in various AML entities, implying a more
attention to be paid (122).

HDAC2 are nearly identical to HDAC1, and usually work
together in repressive complexes, such as nucleosome
remodeling and deacetylase (NuRD), switch independent 3
(Sin3), and corepressor of RE1 silencing transcription factor
(CoREST) complexes. Inhibition of HDAC1 and HDAC2 leads
to down-regulation of RAD51, BRCA1, and CHK1, which are
crucial for the DNA damage response (DDR) and subsequent
DNA double-strand break and apoptosis in AML cell lines. And
AML-1-ETO can bind with HDAC1, 2, and 3 to repress the
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AML1 target genes in t (8,21) AML (123). And HDAC6
deacetylates the chaperone Hsp90, eliciting the interaction with
AML1-ETO protein, which can be dissociated by HDAC
inhibitors that mediates the degradation of AML1-ETO protein.

HDAC11 may display a role in the immune system by
regulating the immune cells. Antigen-presenting cells (APCs)
plays critical role in T cell activation and tolerance, which is
associated with HDAC11 (80). Up-regulation of HDAC11 can
repress the expression of IL-10, and subsequently induce the
APCs inflammation, which will prime naïve T cells and
reactivate the response of tolerant CD4+ T cells. Meanwhile,
down-regulation of HDAC11 in APCs promotes the expression
of IL-10 and impairs the T cell response. Therefore, HDAC11
may act as a decider in the immune activation and tolerance,
implying the substantial role of HDAC11 in the immunotherapy,
involving in AML (80).
HDACs IN AML WITH CBFb-MYH11

The inv (16) translocation emerges in 8-10% of AML patients,
which is associated with M4Eo AML. It is produced by the
chromosomal breakpoints within core binding factor beta
(CBFB) gene on 16q22 and smooth muscle myosin heavy
chain gene (MYH11) gene on 16p13, encoding corresponding
proteins: CBFb and smooth muscle myosin heavy chain
(SMMHC). And the oncogenic gene CBFB-MYH11 and fusion
protein CBFb-SMMHC will subsequently generated and arrest
the differentiation of hematopoietic cells. Similar to AML with
AML1-ETO, the original disorder of AML with CBFB-MYH11
derives from the disruption of hematopoietic function performed
by the core binding factor (CBF).

CBF, as a heterodimer, is composed of CBFa (DNA-binding
subunit) and CBFb (partner of CBFa) (124). CBFa subunit is
encoded by CBFA2 that is known as RUXN1 or AML1 gene.
CBFb does not directly bind with DNA, but enhances the affinity
of CBFa to DNA, stabilizing the CBFa-DNA complex. CBFb-
SMMHC fusion protein displays a higher affinity to AML1
binding than wild type CBFb. Additionally, it contains an
additional AML1-binding domain in SMMHC portion.
Therefore, AML1 is preferential to bind with CBFb-SMMHC,
which competes the RUNX1-binding site with CBFb, resulting in
the blocks of AML1 function and enhancement of the SMMHC
activity. The dysregulation of CBFb acts an indirect factor
disrupting the function of AML1, whose pivotal functions in
hematopoiesis has been described in t (8,21) AML. Both CBFA2
and CBFB genes are indispensable for the development of
normal hematopoiesis, deletion of either gene will disrupt the
definitive hematopoietic stem cells. CBFb-SMMHC protein
interacts with the pivotal transcription factor AML1,
sequestering the normal essential hematopoietic function of
AML1. It acts as a transcriptional repressor, interacting with
transcriptional inhibitors and HDACs, repressing the
transcription of corresponding genes.

HDAC1 is a binding partner of AML1. And further research
showed that HDAC1 can bind to CBFb-SMMHC complex,
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which colocalizes with the promoters of AML1 and CBFb-
SMMHC. As a key cofactor, HDAC1 participates in the
forming of AML1: CBFb-SMMHC complex, which is essential
for the transcriptional activity of related genes, involving in
leukemic cell differentiation block and pro-proliferation (125).
Additionally, pharmacologic inhibition of HDAC1 contributes
to the suppression of leukemogenesis with CBFb-SMMHC (126,
127). And in vivo, it can decrease the mouse leukemic burden,
showing an effective role of HDAC1 targeting the CBFb-
SMMHC protein (30).

HDAC8, as another member of class I HDAC, has been
demonstrated to interact with CBFb-SMMHC protein. Besides, it
can also reduce the acetylation of P53, which is bound to CBFb-
SMMHC protein, and subsequently promote the transformation
of CBFb-SMMHC-related leukemic stem cells. And inhibition of
HDAC8 will induce the apoptosis in inv (16) AML (128, 129).
HDACs IN ACUTE PROMYELOCYTIC
LEUKEMIA WITH PML-RARA

The t (15,17) (q24;q21) translocation accounts for 10%-15% of
acute promyelocytic leukemia (APL) issues. It is derived from the
fusion of promyelocytic leukemia (PML) gene on 15q24 and
retinoic acid receptor alpha (RARA) gene on 17q21, which is
critical for the cellular transformation (130, 131).

PML gene is composed of nine exons that produces some
alternative spliced transcripts variants, which share the N-terminal
region, containing the RING-B-Box-Coiled-coil/tripartite motif
(RBCC/TRIM) domain (132). Due to the alternative splicing, the
isoforms of PML are different in central or C-terminal regions and
the longest one is PML1, which harbors a nuclear export signal
(NES) domain. In normal, PML mainly functions as a tumor
suppressor. It can interact with over 170 proteins, most of which
are mediated by the RBCC/TRIM domain leading to PML
multimerization and organization or by other isoform-specific
domains of PML. Conferred by these different binding
interactions, PML is involved in proliferation and self-renewal of
hematopoietic stem cells, epigenetic regulation in hematopoiesis,
and p53-dependent/independent apoptosis and senescence (122).
In addition, it is necessary for the formation of nuclear body (NB),
which is associated with the protein release and sequestration,
posttranscriptional modification, and promotion of nuclear
issues (133).

RARA gene is consist of 10 exons producing two isoforms
(RARA1 and RARA2) that are belonged to nuclear hormone
receptor superfamily, acting as a nuclear transcriptional factor
when retinoids are present, which is essential for the
promyelocyte differentiation (130, 134). The RARA protein can
interact with retinoid X receptor protein (RXRA), generating a
heterodimer that acts as a transcription activator to bind with
retinoic acid response elements (RARE). In the presence of
ligand (all-trans retinoic acid (ATRA) or 9-cis retinoic acid),
RARA binds to RXRA forming a heterodimer, which can interact
with retinoic acid responsive elements (RARE). In the absence of
ligand, RAR-RXR heterodimer recruits the transcriptional
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corepressors, such as HDACs, Sin3, SMRT, and N-CoR, keeping
transcriptional repression, which can be dissociated when ligand
emerges (135). In normal, RARA is ligand-dependent
determining the transcriptional switch, which is critical for the
differentiation of normal myeloid hematopoietic cells (134). In
APL, the fusion protein PML-RARA alters the function of PML
and RARA, disrupting the nuclear structure and blocking the cell
differentiation. Additionally, PML-RARA provide leukemic cells
with a survival and proliferative advantage, leading to the
superiority accumulation of tumor cells in APL (130). Besides,
through inducing the deacetylation of p53, PML-RARA fusion
protein can directly suppress the activity of p53, conferring
leukemic blasts to escape from p53-dependent cancer
surveillance. And such phenomenon is realized by the
recruitment of HDACs to PML-RARA complex, which can
result in the deacetylation of p53 (136, 137).

PML–RARA recruits HDACs leading to RARs suppress the
transcription of RA target genes, which displays a central role in
the oncogenic transformation of APL (132). The aberrant
recruitment of HDACs induced by PML–RARA contributes to
the differentiation blocks and accumulation of APL blasts,
because it inappropriately represses the RAR target genes. RA
functioning as a therapeutic agent is based on the mechanism
that RA can lead to the dissociation of PML–RAR/HDAC
complex and degradation of such fusion protein (138, 139).
Furthermore, ATRA resistance can be neutralized by HDAC
inhibitors (140), which should have been paid more attention.
Deregulated HDAC3 acts as a crucial role in the progress of acute
promyelocytic leukemia (APL) with PML-RARa fusion protein.
HDAC4 can interact with the PLZF-RARa fusion protein,
mediating the differentiation arrest (141, 142).
HDACs IN AML WITH MLL-MLLT3

The t (9,11) AML presents in 3-5% of AML events, generated by
the fusion of mixed lineage leukemia (MLL) gene on 11q23 and
mixed lineage leukemia translocated to chromosome 3 (MLLT3)
gene on 9p22, producing the fusion protein MLL-MLLT3
(143, 144).

MLL gene is made up of 14 exons, encoding the histone lysine
methyltransferase whereby it is also called KMT2A, which
harbors powerful transforming potential associated with
neoplastic diseases assisted by specific partners, such as AF9
(MLLT3), AF4, and ENL (MLLT1) (145). It orchestrates various
facets of cell development, including cell fate determine, stem cell
maintenance, and embryogenesis. MLL protein contains
multiple conserved domains with specific functions: 1) three
AT hooks domains in the N-terminal of MLL mediating itself to
bind with minor groove of DNA with AT-rich; 2) a
transcriptional repressive domain that is composed of cysteine-
rich CXXC DNMT (DNA methyltransferase1) homology region,
which can bind to unmethylated CpG islands; 3) four plant
homeodomain (PHD) fingers that mediate the protein-protein
interactions; 4) a transactivation domain that is employed to
interact with CBP/p300 complex; 5) SET [Su(var)3–9, enhancer
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of zeste, and trithorax] domain in C-terminal, serving as a
histone H3 methyltransferase. Carrying along with such
multiple domains, MLL can generate complexes with various
partners, such as tumor suppressor Menin (multiple endocrine
neoplasia), cell cycle regulator E2Fs, and HDACs (146, 147).

Overexpression of HDAC1, 2, and 3 is frequently found in
leukemia (13). They can interact with MLL fusion protein leading
to dysregulated chromatin remodeling, which could be neutralized
by chidamide (148). Targeting MLL dysfunction by HDAC
inhibitors such as vorinostat and panobinostat may counteract
the aggressive resistance in MLL-fusion leukemia (149). And
mocetinostat, a class I HDAC inhibitor, can inhibit the HOXA9
expression in AML with MLL-AF9 (147). Researchers have
purified the stable MLL complex, where HDAC1 and HDAC2
were found. Additionally, they have also demonstrated that the
repressive domain of MLL can specifically bind with HDAC1 and
HDAC2, which can be partially released by HDAC inhibitor TSA
but not RD1domain, which implies that additional cofactors are
involved in the complex to fully perform the repressive function.
And through binding to PHD fingers, Cyp33 can increase the
affinity of MLL to HDAC1. Hypoacetylated histone in chromatin
is frequently involved in transcriptionally repressive status (148,
150, 151).
CONCLUDING REMARKS

HDACs serving as the pivotal epigenetic modifier of chromatin
determine the chromatin accessibility to transcriptional factors,
which is essential for specific gene transcription and oncogenic
transformation. And the same to hematopoiesis, function of
HDACs is indispensable, which determines the fate of
hematopoietic cells, going through self-renewal, proliferation,
differentiation, or apoptosis, terminating in various cell lineages
(13, 14, 20). Thereby, dysregulation of HDACs inevitably leads to
disruption of hematopoiesis (25, 91). It is necessary to
concentrate on the investigation of HDACs functions.

The vital function of HDACs has long been acknowledged in
the process of normal hematopoietic cell development and
leukemogenesis, and numerous HDAC inhibitors have been
applied in the treatment of various tumors but the mechanism
of HDAC inhibitors serving in AML is elusive (20, 21). As the
studies of HDACs function in AML increasing, we summarized
the predominant importance in AML.

AML, with disrupted hematopoietic system, is usually
hallmarked by oncogenic fusion proteins, majorly centralizing
on AML1-ETO, CBFB-MYH11, PML-RARA, and MLL-AF9 (32,
33). HDAC inhibitors, the hyperacetylated agents, theoretically
gear toward the alteration of the aberrant hypoacetylated status,
providing a reasonable strategy against AML. They own the
theoretical feasibility but practical hinderance, which provoked
us to explore the precise function of HDAC, contributing to the
utilization of HDAC inhibitors (152, 153). And mounting
researches and reviews have demonstrated the roles of HDAC
inhibitors in the treatment of AML. However, the function of
HDACs in oncogenic molecules is rarely described (15, 26).
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Although the relative material is of shortage, it is meaningful to
elucidate the potential function of HDACs in AML, focusing on
the oncogenic fusion proteins that provides a directing target
against specific types of AML.

Besides, HDACs display immunoregulatory properties in
integral level, which overall regulates the progress of
leukemogenesis through modulating the master elements of
immune system such as PD-L1, CTLA-4, Treg, and cytotoxic T
lymphocyte (CTL), and antigen-presenting cell (APC) (154–
156). For instance, expression of HDAC10 is associated with
the presentation of MHC class II molecules in antigen
presentation cells (157, 158). Members of HDACs participate
in the different stages of T cell development, including CD4+ T
cell-mediated immunity (154, 159). That is to say, HDACs not
only function with specific fusion proteins but also do regulate
the entirety level of immune system which is involved in
tumor microenvironment.

Attentions paid on HDACs usually focus on the HDAC
inhibitors in the process of carcinogenesis, whereas the roles of
HDACs have not got enough attention. It is necessary to harness
the interaction between HDACs and leukemogenesis, which
would precisely direct the investigation of novel HDAC
inhibitors. Here, we summarized the current knowledge of
HDACs functioning in leukemogenesis with oncogenic fusion
proteins. They are closely associated with the suppression of
oncogenic fusion genes, and can be blocked by HDAC inhibitors.
However, pan-inhibitors presented various side effects and it can
be improved by the specific HDAC inhibitors. And the searching
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of special targets is based on harnessing the traits of each HDAC
member functioning in the epigenetic modification. The review
summarized the functional properties of HDACmembers, which
may be useful for the exploration of specific HDAC inhibitors.
Furthermore, HDACs is involved in the regulation of immune
system, which may benefit to the investigation of novel agents or
combinational drugs.
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A Phase II Trial of the Double
Epigenetic Priming Regimen
Including Chidamide and Decitabine
for Relapsed/Refractory Acute
Myeloid Leukemia
Jia Yin1,2†, Chao-Ling Wan1,2†, Ling Zhang1,2†, Hao Zhang3†, Lian Bai4, Hai-Xia Zhou1,2,
Ming-Zhu Xu1,2, Li-Yun Chen1,2, Chong-Sheng Qian1,2, Hui-Ying Qiu1,2, Su-Ning Chen1,2,
Xiao-Wen Tang1,2, De-Pei Wu1,2, Yan-Ming Zhang5*, Ai-Ning Sun1,2* and Sheng-Li Xue1,2*

1 National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of
Soochow University, Suzhou, China, 2 Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of
Hematology, Soochow University, Suzhou, China, 3 Department of Hematology, The Affiliated Hospital of Jining Medical
College, Jining, China, 4 Department of Hematology, Canglang Hospital of Suzhou, Suzhou, China, 5 Department of
Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an,
Huai’an, China

Objective: To explore the role of chidamide, decitabine plus priming regimen in the
salvage treatment of relapsed/refractory acute myeloid leukemia.

Methods: A clinical trial was conducted in relapsed/refractory acute myeloid leukemia
patients using chidamide, decitabine, cytarabine, idarubicin, and granulocyte-colony
stimulating factor, termed CDIAG, a double epigenetic priming regimen.

Results: Thirty-five patients were recruited. Three patients received 2 treatment cycles. In
32 evaluable patients and 35 treatment courses, the completed remission rate (CRR) was
42.9%. The median OS time was 11.7 months. The median OS times of responders were
18.4 months, while those of nonresponders were 7.4 months (P = 0.015). The presence of
RUNX1 mutations was associated with a high CRR but a short 2-year OS (P = 0.023) and
PFS (P = 0.018) due to relapse after treatment. The presence of IDH mutations had no
effect on the remission rate (80.0% vs. 73.3%), but showed a better OS (2-year OS rate:
100.0% vs. 28.9%). Grade 3/4 nonhematological adverse events included pneumonia,
hematosepsis, febrile neutropenia, skin and soft tissue infection and others.

Conclusion: The double epigenetic priming regimen (CDIAG regimen) showed
considerably good antileukemia activity in these patients. Adverse events were
acceptable according to previous experience. The study was registered as a clinical trial.

Clinical Trial Registration: https://clinicaltrials.gov/, identifier:NCT03985007

Keywords: epigenomics, histone deacetylase inhibitor (HDACi), CDIAG regimen, relapsed/refractory acute myeloid
leukemia, salvage therapy
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INTRODUCTION

Although treatment of Acute myeloid leukemia (AML) is rapidly
progressing, approximately 10% to 40% of newly diagnosed
AML patients cannot achieve complete remission (CR)
through induction chemotherapy, and more than 50% of AML
patients will ultimately relapse (1). For patients with relapsed/
refractory (R/R) AML, the goal of chemotherapy varies from
achieving long-term remission to providing a “bridge” to stem
cell transplantation (SCT). Most conventional chemotherapeutic
drugs have a low reinduction remission rate of nearly 1/3, poor
tolerability and a prolonged bone marrow (BM) suppression
stage, often leading to serious infection, high mortality, and a
short survival (2). Therefore, it is crucial to explore and
formulate reasonable and effective combined therapeutic
strategies to undergo curative treatment with allogeneic stem
cell transplantation (allo-SCT) in CR status (3).

Although several new small-molecule inhibitors have been
developed (e.g., ABT-199, midostaurin, and IDH1/2 inhibitor)
and have shown promising results in R/R AML treatment, they
are not currently commercially available in mainland China. In
recent decades, epigenetic treatment for hypermethylation or
histone deacetylation has been a major breakthrough in AML
treatment (4). The application of DNA demethylation drugs
involved in epigenetic regulation to elderly (age ≥ 60 years) AML
and R/R AML patients was the IA category recommendation for
first-line induction therapy in the NCCN guidelines (5).
Chidamide is the first subtype-selective oral histone
deacetylation inhibitor (HDACi) commercially available in
mainland China and has been certified internationally by the
FDA because it is effective in treating R/R peripheral T-cell
lymphoma (PTCL) (6). Chidamide possesses potent HDAC
inhibitory properties by terminating the deacetylation of
histones H3 and H4 via inhibiting HDAC types 1, 2, 3, and 10.
Selective targeting of individual HDACs causes differentiation,
apoptosis, cell cycle inhibition, migration inhibition,
susceptibility to chemotherapy and anti-angiogenesis (7, 8).

In the treatment of R/R AML with low-dose cytarabine and
anthracycline combined with granulocyte-colony stimulating
factor (G-CSF) (priming regimen) (9), the sensitizing effect of
hematopoietic growth factors on leukemic cells enhances the
cytotoxicity of chemotherapy in AML. Previous studies have
suggested that the combination of decitabine with G-CSF, low-
dose cytarabine and aclarubicin (DCAG) improved the CR rate
and was well-tolerated in newly diagnosed elderly AML patients
(10). Moreover, patients with R/R or high-risk AML were treated
with the DCAG regimen, which was proven to overcome drug
resistance and improve therapeutic efficacy (11). HDACis in
monotherapy are modestly active in high-risk myelodysplastic
syndrome (MDS) and AML, and in vitro evidence supports the
synergy between hypomethylating agents (HMAs) and HDACis
(12). Decitabine used concurrently or sequentially with
vorinostat (an HDACi) was safe and well tolerated in patients
with R/R AML (n=29), with responses observed in 15% of
patients (13). Several of the above rationales led us to design a
regimen that included chidamide, decitabine, idarubicin,
Frontiers in Oncology | www.frontiersin.org 228
cytarabine, and G-CSF (the CDIAG double epigenetic priming
regimen) to treat patients with R/R AML.
MATERIALS AND METHODS

Patients
The trial was conducted at four medical centers (the First
Affiliated Hospitals of Soochow University, Affiliated Hospital
of Jining Medical University, Second People’s Hospital of
Huai’an, and Canglang Hospital of Suzhou), and the
investigational agent chidamide was provided by Shenzhen
Chipscreen Biosciences Ltd. (Shenzhen, China) under an
agreement. All study subjects provided their voluntary, written
informed consent. The current study was conducted in
accordance with the Declaration of Helsinki. The protocol and
all its amendments were approved by the Ethics Committee of
the First Affi l iated Hospital of Soochow University
(ClinicalTrials.gov identifier NCT03985007).

Eligible patients met the R/R AML [non-acute promyelocytic
leukemia (non-APL)] criteria (Figure 1 and Supplemental
Table 1). At enrollment, the patients were required to be 18 to
70 years of age and have an Eastern Cooperative Oncology
Group (ECOG) performance status score less than 3, adequate
organic function, and no severe complications, such as active
infections and bleeding. Women of childbearing potential were
required to practice adequate birth control while participating in
the protocol. The exclusion criteria were as follows: unable to
tolerate induction chemotherapy and a life expectancy of less
than 1 month. The principal investigators performed BM
morphology, immunophenotyping, cytogenetics, and molecular
genetic analyses by reviewing central laboratory reports.

Study Design and Objectives
The therapeutic regimen comprised chidamide (30 mg orally
twice every week for 2 weeks on days 1, 4, 8, and 11), decitabine
[20 mg/m2 intravenously daily for 5 days (d1-d5)], and the IAG
regimen [cytarabine (10 mg/m2 subcutaneously every 12 hrs. on
days 4-17), idarubicin (5 mg intravenously every other day on
days 4, 6, 8, 10, 12, and 14), and concurrent G-CSF (200 mg/m2/
day subcutaneously daily on days 3-17)] (Supplemental
Table 2). The patients were removed from the study therapy
for disease progression, symptomatic deterioration, or per
patient request. Subsequent therapy after CDIAG for patients
who did not receive SCT is described in detail in Supplemental
Table 3. Supportive treatments, including G-CSF, the
transfusion of RBCs or PLTs, and antibiotics, could be
routinely administered during CDIAG treatment.

The primary objective of this phase II trial was to evaluate the
ORR (confirmed CR, CRi, MLFS and PR) and CR (confirmed CR
and CRi) rate by a BM examination based on central site review
(Supplemental Table 4). The secondary objectives were to
estimate the OS, PFS, and RFS and to assess toxicity. The OS
duration was measured from the onset of CDIAG treatment until
death due to any cause or censored for patients who remained
alive at the time of assessment. PFS was defined as the time from
September 2021 | Volume 11 | Article 726926
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the date of entry into the trial until the date of disease
progression at any site, including distant metastasis or second
primary tumors, or death. RFS was defined only for patients who
achieved CR or CRi and was measured from the date of achieving
remission until the date of relapse or death from any cause.
Patients not known to have relapsed or died at the last follow-up
were censored on the date they were last examined.

Assessments
Clinical data, biologic data (BM smears and MRD with 10-color
MFC afforded 1:10-4 to 1:10-5 level sensitivity]), and response
assessment were centrally reviewed. Twenty-four days after the
start of treatment (7 days after the end of therapy), the efficacy was
evaluated in the BM. Patients who did not achieve CR/CRi received
a BM examination again 31 days after the commencement of
treatment (14 days after the end of therapy), and the best
BM response was documented. Patients who did not achieve CR/
CRi after both assessments using our salvage chemotherapy
regimen were allowed to receive a second course, but the
Frontiers in Oncology | www.frontiersin.org 329
evaluation was conducted for each course. Routine blood counts
were monitored every day, and electrolyte levels, liver function, and
creatinine levels were monitored twice weekly following
CDIAG chemotherapy.

The response conditions were defined according to the 2017
ELN recommendations (3). Investigator-assessed AEs were
graded according to the National Cancer Institute’s Common
Terminology Criteria for Adverse Events (NCI CTCAE version
5.0). Treatment-related mortality (TRM), adverse reactions in
hematology (agranulocytosis days, PLT/RBC transfusion units)
and nonhematological adverse reactions (Supplemental
Table 5) (infection and organ injury) were recorded to
evaluate toxicities. TRM was defined as death within 28 days
after the initiation of IT.

Statistical Analysis
Thirty-five eligible patients were enrolled in this study. Standard
statistical methods were used for all analyses in the trial: T-test
for means between two groups, single-factor and multi-level
FIGURE 1 | Flow diagram for patient categorization and treatment. AML, acute myeloid leukemia; ER, early relapse; LR, late relapse; IT, induction therapy; IF,
induction failure; CR, complete remission; Cri, CR with incomplete hematologic recovery; MLFS, morphologic leukemia-free state; PR, partial response; SD, stable
disease, PD, progressive disease; Allo-HSCT, allogeneic hematopoietic stem cell transplantation.
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variance analyses for multiple groups, Fisher’s exact test for
categorical endpoints, Kaplan-Meier curves and the log-rank test
for the time-to-event endpoints. Descriptive statistics (counts
and percentages for categorical variables; mean and standard
deviation, and medians and range for continuous variables) were
used throughout the study. P values of 0.05 were considered
significant for analysis. All statistical analyses were performed
with Graphpad Prism (version 8.0.2). Patient age, sex, WHO
classification, WBC count, BM blasts, SCT, previous HMA
exposure (before CDIAG regimen), prognosis risk, response
and R/R status, as well as treatments before CDIAG, were
examined to assess their impact on the survival and remission
rates. The follow-up cutoff date was defined as the end of
June 2020.
RESULTS

Patient Characteristics
Thirty-five patients from four institutions who met the eligibility
criteria were registered between 12/15/2016 and 03/29/2020
(Table 1). There were 19 male and 16 female patients, with a
median age of 39.5 years (range, 18 to 68 years). The 35 patients
included 28 (28/35, 80.0%) patients with AML, not otherwise
specified (AML, NOS), 5 (5/35, 14.3%) patients with AML with
myelodysplasia-related changes (AML-MRC), 1 (1/35, 2.9%)
patient with AML with t(8;21)(q22;q22.1)/RUNX1-RUNX1T1
and 1 (1/35, 2.9%) patient with AML with inv (16)(p13.1q22)/
CBFb-MYH11(concurrent with a KIT mutation). The most
frequently mutated genes were FLT3-ITD (25.7%), DNMT3A
(25.7%), NPM1 (20.0%), CEBPa (20.0%), WT1 (20.0%), TET2
(17.1%), IDH1/2 (14.3%), NRAS (11.4%) and RUNX1 (11.4%).

Among the 35 patients, three were not evaluable for response
and were refractory. Three of the remaining 32 eligible patients
had completed 2 cycles; therefore, 32 patients and 35 courses
were examined to assess efficacy (Supplemental Table 6).
Regarding the disease status before CDIAG, 23 patients (25
courses) were refractory, and 9 patients (10 courses) relapsed.
Four patients relapsed within 6 months (early relapse), 5 relapsed
beyond 6 months (late relapse), 8 experienced induction failure
(IF) after 1 course of IT (induction therapy), 10 had IF after 2
consecutive courses of IT, 3 had IF after ≥ 3 consecutive courses
of IT, and 2 relapsed more than twice. On registering for this
study, 2 patients were categorized as favorable risk, 4 as
intermediate risk, and 26 as adverse risk with a poor prognosis
according to the prognostic scoring system of R/R AML
(Supplemental Table 7) (14). Nineteen of 32 (59.4%) eligible
patients received allo-SCT after undergoing the prior CDIAG
regimen (3 sibling donor type, 1 unrelated donor type, and 15
haploidentical donor type). Seven of 32 (21.9%) evaluable
patients had received more than one cycle of HMA therapy
before CDIAG.

Outcomes
Among the 35 patients, three withdrew before the evaluation.
The overall response rate (ORR) for 35 assessable courses in 32
Frontiers in Oncology | www.frontiersin.org 430
patients was 74.3% (95% confidence interval (CI): 59%-86%), the
CR/CR with incomplete hematologic recovery (CRi) rate was
42.9% (95% CI: 25.6%-60.1%), the morphologic leukemia-free
state (MLFS) rate was 14.3% (n=5), and the partial remission
(PR) rate was 17.1% (n= 6). The stable disease (SD) rate was
22.9% (n= 8), and the progressive disease (PD) rate was 2.9% (n=
1). The median follow-up time was 22.1 months (range, 8.2-48.6
months) for this patient cohort. The median overall survival
(OS) time was 11.7 months, and the median progression-free
survival (PFS) time was 11.7 months. The survival outcomes of
the entire cohort of 32 patients are shown in Figure 2. The 2-year
TABLE 1 | Characteristics of the 35 enrolled patients.

Characteristic Value

Relapsed/refractory 9/26
Male/female, No. 19/16
Age, median (range), y 39.5 (18-68)
WBC count, median (range), ×10exp9/L 26.0 (1.0-299.0)
Hemoglobin level, median (range), g/L 76 (48-127)
Platelet count, median (range), ×10exp9/L 54 (10-376)
BM blasts, median (range), % 63.0 (10-97.5)
WHO classification, No. (%)
AML, NOS 28 (80.0)
AML with MRC 5 (14.3)
AML with t(8; 21) 1 (2.9)
AML with inv(16) 1 (2.9)

Prognosis risk for R/R AML, No. (%)
Favorable 2 (5.7)
Intermediate 4 (11.4)
Poor 29 (82.9)

Prior HMA exposure (before the CDIAG regimen), No. (%)
0 27 (77.1)
≥ 1 8 (22.9)

Subgroup classification of R/R AML, No. (%)
Early relapse 4 (11.4)
Late relapse 5 (14.3)
IF after 1 course of IT 9 (25.7)
IF after 2 consecutive courses of IT 12 (34.3)
IF after ≥ 3 consecutive courses of IT 3 (8.6)
Relapse ≥ twice 2 (5.7)

Therapy after regimen, No. (%)
SCT 19 (54.3)
Others 16 (45.7)

Genes Mutated, No. (%)
FLT3-ITD mutated 9 (25.7)
DNMT3A mutated 9 (25.7)
NPM1 type A mutated 7 (20.0)
CEBPa biallelic mutated 7 (20.0)
WT1 mutated 7 (20.0)
TET2 mutated 6 (17.1)
IDH1/IDH2 mutated 5 (14.3)
RUNX1 mutated 4 (11.4)
NRAS mutated 4 (11.4)
FLT3-TKD mutated 3 (8.6)
U2AF1 mutated 2 (5.7)
TP53 mutated 2 (5.7)
September 2021 | Volume 11
R/R AML, relapsed/refractory AML; AML, NOS, AML, not otherwise specified; AML with
MRC, AML with myelodysplasia-related changes; HMA, hypomethylating agent; SCT,
stem cell transplantation; WBC, white blood cell; FLT3, FMS-like tyrosine kinase 3, FLT3-
ITD, FLT3-internal tandem duplication; DNMT3A, DNA-methyltransferase 3A; NPM1,
nucleophosmin 1; CEBPa, CCAAT/enhancer binding protein alpha; WT1, Wilms’ tumor
1; IDH1, isocitrate dehydrogenase 1; IDH2, isocitrate dehydrogenase 2; TET2, Tet
methylcytosine dioxygenase 2; RUNX1, runt-related transcription factor 1; NRAS,
neuroblastoma RAS viral oncogene homolog; TP53, tumor protein 53; FLT3-TKD,
FLT3-tyrosine kinase domain; U2AF1, U2 small nuclear RNA auxiliary factor 1.
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OS, PFS and relapse-free survival (RFS) rates were 38.2%
(Figure 2A), 37.8% (Figure 2B), and 65.5% (Figure 2C),
respectively (RFS was evaluated in 15 patients who achieved
CR/CRi). The primary and secondary endpoints are summarized
in Table 2.

The ORR for the 10 CDIAG induction courses in 9 relapsed
patients was 70.0% (7/10) (3 of 4 courses in 4 patients who had
an early relapse and 4 of 6 courses in 5 patients who had a late
relapse before CDIAG). The CR/CRi rate for the 10 courses in 9
relapsed patients was 30.0% (3/10) (only 1 of 4 courses in 4
patients who had an early relapse and 2 of 6 courses in 5 patients
who had a late relapse). No difference was found in the ORR/
CRR or survival rates between patients who had early and late
relapses (Table 3).

The ORR for the 25 CDIAG induction courses in 23
refractory patients was 76.0% (19/25) (7 of 8 courses in 8
patients who had IF after 1 course of IT, 9 of 12 courses in 10
patients who had IF after 2 consecutive courses of IT, and only
Frontiers in Oncology | www.frontiersin.org 531
3 of 5 courses in 5 patients who had IF after ≥ 3 consecutive
courses of IT or relapsed ≥ twice). The CR/CRi rate for the
25 courses in 23 refractory patients was 48.0% (12/25) (4 of 8
courses in 8 patients who had IF after 1 course of IT, 7 of
12 courses in 10 patients who had IF after 2 consecutive
courses of IT, and only 1 of 5 patients who had IF after ≥ 3
consecutive courses of IT or relapsed ≥ twice achieved CR/CRi
by CDIAG reinduction). Among all the refractory subgroups,
the best CRR of 58.3% was achieved in 12 courses of 10
patients who had IF after 2 consecutive courses of IT
(Table 3). The 2-year OS and PFS rates for the three
refractory groups were 28.6%, 60.0%, 0% and 28.6%, 54.0%,
0.0%, respectively (Table 4).

Five subgroups among the entire cohort of R/R AML patients
had different OS and PFS rates (P = 0.011 and 0.044,
respectively), in which patients who had IF after ≥ 3
consecutive courses of IT or relapsed ≥ twice had the worst
survival rate, and patients who had late relapse achieved the best
survival rate (Table 4, Figure 3A, and Supplemental Figure 1A).
The 2-year OS and PFS rates of relapsed and refractory patients
were 51.4% vs. 32.7% and 51.4% vs. 31.5% (P = 0.422 and
0.250), respectively.

The median OS and PFS times for patients who achieved a
response were 18.4 and 17.4 months, respectively, while those for
nonresponders were 7.4 and 7.4 months, respectively.
Additionally, OS and PFS were significantly longer in
responders than in nonresponders (P = 0.015 and 0.041,
respectively) (Table 4, Figure 3B, and Supplemental
Figure 1B). The 2-year OS and PFS rates for the 25 patients
who achieved a response were 46.8% and 46.0%, respectively,
while those for nonresponders (7 patients without a response after
CDIAG) were 0.0% and 0.0%, respectively. The median OS and
PFS rates for 15 patients who achieved CR were not available,
while those for patients who did not were 10.1 and 10.1 months,
respectively. The 2-year OS and PFS rates for patients who
achieved CR were 58.7% and 57.3%, respectively, while those for
17 patients who could not achieve CR after CDIAG were 18.6%
A B C

FIGURE 2 | Main study results. Kaplan–Meier graphs illustrating the overall survival (A) and progression-free survival (B) of all 32 refractory/relapsed (R/R) acute
myeloid leukemia (AML) patients after the CDIAG regimen and the distinction of overall survival between patients with or without transplantation. The 2-year relapse-
free survival (RFS) rate was 40.7% in 15 patients who achieved CR/CRi (C).
TABLE 2 | Primary and secondary patient endpoints.

Endpoint (evaluable patients=32, courses= 35) Value

Overall response, No. (%) 26 (74.3%)
Complete remission, No. (%) 15 (42.9%)

CR, No. (%) 9 (25.7%)
CRi, No. (%) 6 (17.1%)

Morphologic leukemia-free state, No. (%) 5 (14.3%)
Partial remission, No. (%) 6 (17.1%)

Stable disease, No. (%) 8 (22.9%)
Progressive disease, No. (%) 1 (2.9%)
Median OS time 11.7 months
Median PFS time 11.7 months
2-year OS rate 38.2%
2-year PFS rate 37.8%
2-year RFS rate 65.5%
OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival.
The ORR and CRR were evaluated for 35 courses in 32 patients. OS and PFS were
evaluated in 32 patients. RFS was evaluated in 15 patients who achieved CR.
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and 18.7%, respectively (P = 0.067 and 0.179, respectively)
(Table 4, Figure 3C, and Supplemental Figure 1C).

The minimal residual disease (MRD) of flow cytometry
(FCM) was analyzed in 29 patients and divided into the
following three groups: 6 patients had MRD ≥ 10-1, 15
Frontiers in Oncology | www.frontiersin.org 632
patients had MRD <10-1 and >10-3, 8 patients had MRD ≤10-
3. The OS of the three groups were consistent with the clinical
estimate. The lowest MRD group achieved the best survival (2-
year OS rate: 75.0%), the MRD ≥ 10-1 group showed the worst
OS and PFS (2-year OS rate: 0.0%), and the survival of the
TABLE 3 | Clinical responses of R/R AML patients with subgroup univariate analysis.

Variable Response P-Value OR* (95% CI) CR/CRi P-Value OR* (95% CI)

Overall 26/35 (74.3%) 15/35 (42.9%)
Age
<51 years 22/28 (75.6%) 0.340 0.364 (0.063-2.089) 13/28 (46.4%) 0.669 0.462 (0.076-2.793)
≥51 years 4/7 (57.1%) 2/7 (28.6%)

Sex
Male 16/21 (76.2%) 1.000 1.280 (0.276-5.934) 11/21 (52.4%) 0.163 2.750 (0.651-11.624)
Female 10/14 (71.4%) 4/14 (28.6%)

Blast
<0.3 3/8 (37.5%) 0.015 9.583 (1.613-56.952) 2/8 (25.0%) 0.450 2.786 (0.475-16.345)
≥0.3 23/27 (85.2%) 13/27 (48.1%)

WBC
<14 × 10E9/L 7/12 (58.3%) 0.220 3.393 (0.703-16.385) 3/12 (25.0%) 0.123 3.273 (0.700-15.291)
≥14 × 10E9/L 19/23 (82.6%) 12/23 (52.2%)

HB
<65 g/L 7/11 (63.6%) 0.416 2.171 (0.450-10.486) 2/11 (18.2%) 0.069 5.318 (0.943-29.993)
≥65 g/L 19/24 (79.2%) 13/24 (54.2%)

PLT
<40 × 10E9/L 12/14 (85.7%) 0.262 0.333 (0.058-1.919) 7/14 (50.0%) 0.486 0.615 (0.157-2.419)
≥40 × 10E9/L 14/21 (66.7%) 8/21 (38.1%)

Previous HMA or not
Yes 5/7 (71.4%) 0.632 0.625 (0.093-4.222) 3/7 (42.9%) 0.576 0.813 (0.150-0.404)
No 20/25 (80.0%) 12/25 (48.0%)

Prognostic score of R/R AML*
Favorable/intermediate risk 5/7 (71.4%) 1.000 1.200 (0.189-7.628) 2/7 (28.6%) 0.672 2.167 (0.358-13.110)
Adverse risk 21/28 (75.0%) 13/28 (46.4%)

Relapsed/Refractory
Relapsed 7/10 (70.0%) 0.694 1.357 (0.265-6.958) 3/10 (30.0%) 0.458 2.154 (0.451-10.287)
Refractory 19/25 (76.0%) 12/25 (48.0%)

Relapsed/Refractory subgroup
Early relapse 3/4 (75.0%) 0.765 0.909 (0.484-1.705) 1/4 (25.0%) 0.661 1.132 (0.651-1.969)
Late relapse 4/6 (66.7%) 2/6 (30.0%)
IF after 1 course of IT 7/8 (87.5%) 4/8 (50.0%)
IF after 2 consecutive courses of IT 9/12 (75.0%) 7/12 (58.3%)
IF after ≥ 3 consecutive courses of IT or relapse ≥ twice 3/5 (60.0%) 1/5 (20.0%)

Genes Mutated
FLT3-ITDmut 7/10 (70.0%) 0.694 0.737 (0.144-3.778) 3/10 (30.0%) 0.458 0.464 (0.097-2.217)
FLT3-ITDwt 19/25 (76.0%) 12/25 (48.0%)
DNMT3Amut 6/9 (66.7%) 0.665 0.600 (0.114-3.153) 3/9 (33.3%) 0.700 0.583 (0.119-2.849)
DNMT3Awt 20/26 (76.9%) 12/26 (46.2%)
NPM1 type Amut 3/7 (42.9%) 0.055 0.163 (0.027-0.969) 2/7 (28.6%) 0.669 0.462 (0.076-2.793)
NPM1 type Awt 23/28 (82.1%) 13/28 (46.4%)
CEBPa biallelicmut 5/7 (71.4%) 1.000 0.833 (0.131-5.297) 4/7 (57.1%) 0.669 2.061 (0.385-11.035)
CEBPa biallelicwt 21/28 (75.0%) 11/28 (39.3%)
WT1mut 6/7 (85.7%) 0.648 2.400 (0.248-23.236) 4/7 (57.1%) 0.669 2.061 (0.385-11.035)
WT1wt 20/28 (71.4%) 11/28 (39.3%)
TET2mut 3/6 (50.0%) 0.156 0.261 (0.042-1.635) 3/6 (50.0%) 1.000 1.417 (0.243-8.256)
TET2wt 23/29 (79.3%) 12/29 (41.4%)
IDH1/IDH2mut 4/5 (80.0%) 0.747 1.455 (0.141-15.039) 2/5 (40.0%) 1.000 0.872 (0.127-6.003)
IDH1/IDH2wt 22/30 (73.3%) 13/30 (43.3%)
RUNX1mut 4/4 (100.0%) 0.303 Not reached 4/4 (100.0%) 0.026 Not reached
RUNX1wt 21/31 (67.7%) 11/31 (35.9%)
NRASmut 2/3 (66.7%) 0.758 0.667 (0.053-8.372) 2/3 (66.7%) 0.794 2.923 (0.239-35.681)
NRASwt 24/32 (75.0%) 13/32 (40.6%)
FLT3-TKDmut 2/3 (66.7%) 0.758 0.667 (0.053-8.372) 2/3 (66.7%) 0.794 2.923 (0.239-35.681)
FLT3-TKDwt 24/32 (75.0%) 13/32 (40.6%)
September 20
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TABLE 4 | Overall survival and progress-free survival univariate analysis.

) Median PFS
(months)

2-year PFS
(%)

P-
Value

11.7 37.8 -

96) 10.8 31.3 0.462
06) Not reached 53.3

73) 11.7 41.5 0.501
04) 10.8 31.1

70) 7.4 Not reached 0.549
57) 13.8 38.9

58) 10.8 30.9 0.925
65) 13.8 40.1

84) 7.4 15.2 0.147
64) 13.8 47.7

87) 11.7 31.1 0.944
76) 10.1 40.9

10) 5.4 Not reached 0.285
23) 11.7 37.9

71) 7.9 20.0 0.484
90) 13.8 42.4

97) Not reached 51.4 0.250
44) 11.7 31.5

10.1 33.3 0.044
Not reached 66.7

13.8 28.6
Not reached 54.0

5.4 0.0

50) 13.8 48.6 0.908
53) 10.8 34.4
99) Not reached 53.3 0.531
71) 10.1 29.8
86) 13.8 26.8 0.549
69) 11.7 40.0
99) 7.4 35.7 0.531
44) 13.8 37.4
85) 11.7 26.7 0.981
77) 13.8 39.1
45) 7.4 22.2 0.218
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Variable Alive (%) HR (95%CI) Median OS
(months)

2-year OS
(%)

P-
Value

HR (95%C

Overall 17/35(48.6) - 11.7 38.2 - -
Age
< 51 years 13/25(52.0) 1.470(0.470-4.605) 10.1 32.1 0.545 1.586(0.525-4.
≥ 51 years 4/7(57.1) 0.680(0.217-2.130) Not reached 53.6 0.630(0.209-1.

Sex
Male 10/19(52.6) 0.642(0.213-1.98) 18.4 43.5 0.391 0.711(0.244-2.
Female 7/13(53.8) 1.558(0.516-4.701) 10.1 29.0 1.407(0.483-4.

BM-Blast
< 0.3 3/6(42.9) 1.550(0.359-6.698) 8.9 Not reached 0.487 1.458(0.350-6.
≥ 0.3 14/26(53.8) 0.645(0.149-2.787) 13.8 39.5 0.686(0.165-2.

WBC
< 14 × 10E9/L 5/10(50.0) 1.151(0.383-3.464) 10.1 30.9 0.795 1.052(0.362-3.
≥ 14 × 10E9/L 12/22(54.5) 0.869(0.289-2.613) 13.8 40.5 0.951(0.327-2.

HB
< 65 g/L 3/9(33.3) 2.240(0.672-7.463) 7.9 15.2 0.112 2.067(0.639-6.
≥ 65 g/L 14/23(60.9) 0.447(0.134-1.488) 13.8 49.2 0.484(0.150-1.

PLT
< 40 × 10E9/L 7/13(53.8) 0.790(0.286-2.183) 18.4 34.0 0.652 0.966(0.360-2.
≥ 40 × 10E9/L 10/19(52.6) 1.265(0.458-3.494) 10.1 39.0 1.036(0.387-2.

Previous HMA or not
Yes 3/7(42.6) 1.885(0.477-7.449) 8.9 Not reached 0.267 1.830(0.471-7.
No 14/25(51.9) 0.531(0.134-2.097) 13.8 38.9 0.546(0.141-2.

Prognostic score of R/R AML†

Favorable/intermediate risk 2/6(33.3) 1.750(0.458-6.687) 8.9 20.0 0.324 1.485(0.419-5.
Adverse risk 15/26(57.7) 0.572(0.150-2.185) 18.4 43.4 0.673(0.190-2.

Relapsed/Refractory
Relapsed 6/9(66.7) 0.601(0.198-1.825) Not reached 51.4 0.422 0.489(0.171-1.
Refractory 12/23(52.2) 1.664(0.548-5.055) 11.7 32.7 2.045(0.716-5.

Relapsed/Refractory subgroup
Early relapse 2/4(50.0) - 10.1 33.3 0.011 -
Late relapse 4/5(80.0) Not reached 66.7
IF after 1 course of IT 3/8(37.5) 13.8 28.6
IF after 2 consecutive courses of IT 7/10(70.0) Not reached 60.0
IF after ≥ 3 consecutive courses of IT or relapse ≥

twice
1/5(20.0) 7.4 0.0

Genes Mutated
FLT3-ITDmut 5/9(55.6) 1.014(0.322-3.195) 13.8 45.7 0.981 0.936(0.307-2.
FLT3-ITDwt 12/23(52.2) 0.987(0.313-3.110) 10.8 35.6 1.068(0.351-3.
DNMT3Amut 6/9(66.7) 0.516(0.175-1.519) Not reached 62.2 0.292 0.701(0.246-1.
DNMT3Awt 11/23(47.8) 1.937(0.658-5.701) 10.1 28.7 1.427(0.500-4.
NPM1 type Amut 3/7(42.9) 1.765(0.460-6.773) 13.8 26.8 0.320 1.407(0.405-4.
NPM1 type Awt 14/25(56.0) 0.567(0.148-2.174) 11.7 41.4 0.711(0.205-2.
CEBPa biallelicmut 4/7(57.1) 1.081(0.296-3.948) 8.9 42.9 0.904 1.430(0.409-4.
CEBPa biallelicwt 13/25(52.0) 0.925(0.253-3.380) 11.7 36.5 0.699(0.200-2.
WT1mut 4/7(57.1) 1.160(0.308-4.365) 10.8 25.0 0.816 1.015(0.288-3.
WT1wt 13/25(52.0) 0.862(0.229-3.243) 13.8 40.6 0.985(0.279-3.
TET2mut 3/6(50.0) 1.866(0.389-8.947) 7.4 27.8 0.319 1.989(0.492-8.
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TABLE 4 | Continued

ear OS
(%)

P-
Value

HR (95%CI) Median PFS
(months)

2-year PFS
(%)

P-
Value

39.8 0.503(0.124-2.034) 13.8 40.7
00.0 0.050 0.278(0.082-0.939) Not reached 100.0 0.039
28.8 3.595(1.065-12.140) 10.1 28.2
0.0 0.023 0.283(0.495-1.622) 4.5 0.0 0.018
46.1 3.531(0.616-20.220) 17.4 44.6
0.0 0.642 1.485(0.263-8.394) 11.7 0.0 0.593
41.4 0.673(0.119-3.805) 13.8 40.5
33.3 0.915 1.022(0.230-4.555) 13.8 33.3 0.976
38.7 0.978(0.220-4.357) 11.7 38.1

46.8 0.015 0.358(0.087-1.469) 17.4 46.0 0.041
0.0 2.797(0.681-11.490) 7.4 0.0

58.7 0.067 0.511(0.191-1.365) Not reached 57.3 0.179
18.6 1.959(0.733-5.236) 10.1 18.7

0.0 <
0.0001

- 7.4 0.0 0.005
43.1 17.4 40.2
75.0 Not reached 75.0

45.6 0.150 0.639(0.226-1.810) 17.4 44.3 0.366
24.2 1.564(0.553-4.427) 10.8 25.4

51.3 0.017 0.387(0.044-3.430) 17.4 48.9 0.204
0.0 2.584(0.292-22.910) 7.4 0.0

60.0 0.227 0.605(0.150-2.440) Not reached 57.1 0.447
22.9 1.651(0.410-6.650) 10.1 22.9

51.3 0.260 0.710(0.193-2.617) 17.4 48.9 0.579
36.0 1.408(0.382-5.186) 10.8 39.4

60.0 0.558 0.956(0.108-8.450) Not reached 57.1 0.965
reached 1.049(0.118-9.294) Not reached 66.7
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Variable Alive (%) HR (95%CI) Median OS
(months)

2-y

TET2wt 14/26(53.8) 0.536(0.112-2.571) 13.77
IDH1/IDH2mut 5/5(100.00) 0.280(0.079-0.997) Not reached
IDH1/IDH2wt 12/27(44.4) 3.566(1.003-12.680) 10.1
RUNX1mut 0/4(0.00) 0.294(0.053-1.630) 7.8
RUNX1wt 18/31(58.1) 3.405(0.613-18.900) 18.4
NRASmut 1/3(33.3) 1.413(0.258-7.736) 10.8
NRASwt 16/29(55.2) 0.708(0.129-3.877) 13.8
FLT3-TKDmut 1/3(33.3) 1.084(0.234-5.027) 13.8
FLT3-TKDwt 16/29(55.2) 0.922(0.199-4.277) 11.7

Response
Yes 15/25(60.0) 0.296(0.066-1.341) 18.4
No 2/7(28.6) 3.374(0.746-15.260) 7.4

CR/CRi
Yes 10/15(66.7) 0.384(0.1384-1.067) Not reached
No 7/17(41.2) 2.603(0.938-7.224) 10.1

MRD
≥ 10-1 2/6(33.3) - 7.40
<10-1 and ≥10-3 8/15(53.3) 18.4
<10-3 7/8(87.5) Not reached

SCT or not
Yes 11/19(57.9) 0.485(0.160-1.467) 18.4
No 6/13(46.2) 2.062(0.682-6.235) 7.9

SCT with a response or not
Yes 9/15(60.0) 0.194(0.011-3.528) Not reached
No 2/4(50.0) 5.146(0.283-93.420) 7.4

SCT with CR/CRi or not
Yes 8/12(66.7) 0.438(0.097-1.975) Not reached
No 3/7(42.9) 2.282(0.506-10.290) 10.1

Responders underwent SCT or not
Yes 9/15(60.0) 0.493(0.117-2.075) Not reached
No 6/10(60.0) 2.027(0.482-8.521) 10.8

CR/CRi underwent SCT or not
Yes 8/12(66.7) 0.523(0.341-8.106) Not reached
No 2/3(66.7) 1.902(0.123-29.320) 13.2 Not

†Prognostic score was graded by the European Prognostic Index score in ELN. HR, hazards ratio.
The bolded text means that there are significant differences between groups.
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MRD <10-1 and >10-3 group was intermediate (2-year OS rate,
43.1 months). The survival difference among the three groups
was statistically significant (OS: P < 0.0001; PFS: P = 0.005)
(Table 4, Figure 3D, and Supplemental Figure 1D).

Among the 32 evaluable patients, all 4 with a RUNX1 gene
mutation achieved CR after one course of the CDIAG regimen.
However, in 28 patients with wild-type RUNX1, the response
rate for 31 CDIAG induction courses was 67.7% (21/31), and the
CR rate was 35.9% (11/31). The CRR in the RUNX1mut group
was significantly higher than that in the RUNX1wt group (P =
0.026) (Table 3). The presence of the RUNX1 mutations was
associated with a short median OS (7.8 vs. 18.4 months; P =
0.023) and PFS (4.5 vs. 17.4 months; P = 0.018) times, with a 2-
year OS rate of 0.0% vs. 46.1% and a 2-year PFS rate of 0.0% vs.
44.6% (Table 4, Figure 3E, and Supplemental Figure 1E).

No significant difference was found in the response rate
between five IDHmut (including IDH1 and IDH2) patients
and 22 IDHwt patients (80.0% vs. 73.3%; P = 0.747). All five
IDHmut patients were still alive. The survivals of these two
groups were obviously different (2-year OS rate: 100.0% vs.
28.9%, P = 0.050; 2-year PFS rate, 100.0% vs. 28.2%, P = 0.039)
(Table 4, Figure 3F, and Supplemental Figure 1F).

The ORR for 10 courses in 9 FLT3-ITDmut patients after the
CDIAG regimen reached 70.0% (7/10) and that for 25 courses in
23 FLT3-ITDwt patients reached 76.0% (19/25). The CRR for 10
courses in 9 FLT3-ITDmut patients reached 30.0% (3/10) and
that for 25 courses in 23 FLT3-ITDwt patients reached 48.0%
(12/25). No difference was found in the ORR or CRR between
FLT3-ITDmut and FLT3-ITDwt patients (P = 0.694 and 0.458,
respectively), but FLT3-ITDwt patients showed a shorter median
OS time (10.8 vs. 13.8 months, P = 0.981) and PFS time (10.77 vs.
13.77 months, P = 0.908) (Table 4). Additionally, no significant
correlation was found between mutations in other genes
(CEBPa, DNMT3A, NPM1, TET2, WT1, NRAS, FLT3-TKD)
and the remission or survival rate.

Among the entire cohort, nineteen of the 32 eligible patients
(59.4%) successfully bridged to SCT after CDIAG treatment. The
2-year OS and PFS rates of the 19 patients who had undergone
SCT were 45.6% and 44.3%, respectively, and the rates of the 13
patients who did not undergo SCT were 24.2% and 25.4%,
respectively. No significant difference was found in the OS or
PFS between these groups (P = 0.150 and 0.366, respectively)
(Table 4, Figure 3G, and Supplemental Figure 1G).

Among the 19 patients who had undergone SCT, the 2-year
OS rate of 15 responders was significantly higher than that of 4
nonresponders (51.3% vs. 0.0%; P = 0.017), but no difference
was found in the 2-year PFS rate (48.9% vs. 0.0%; P = 0.204)
(Table 4, Figure 3H, and Supplemental Figure 1H). For the
25 responders, the 2-year OS and PFS rates of the 15
responders who had undergone SCT were not significantly
different from those of the 10 responders who had not
undergo SCT (51.3% vs. 36.0%, P = 0.260; 48.9% vs. 39.4%,
P = 0.579).

Of the 10 patients who achieved a response after CDIAG
but did not receive SCT, four (including one who achieved
CR) died from PD, two were lost to follow-up with a PD
Frontiers in Oncology | www.frontiersin.org 1036
status, two (including one who achieved CR) were alive with a
PD status, and only two (including one who achieved CR)
were alive with a remission status under chemotherapy at the
time of analysis.

At the time of analysis, five of 10 patients who received
SCT from haploidentical donors survived and achieved CR; 1
died because of TRM, 3 died from relapse, and one was alive
after relapse. One patient who received SCT from a sibling
donor was lost to follow-up, and 1 patient who received a
transplant from an unrelated donor remained alive and
achieved CR. No early TRM (within 60 days of SCT)
occurred in the 19 patients who had undergone SCT after
the CDIAG regimen.

No difference was found in the ORR (71.4%, 5/7 vs. 80.0%, 20/
25; P = 0.632), CRR (42.9%, 3/7 vs. 48.0%, 12/25; P = 0.576),
median OS time (8.9 vs. 13.8 months, P = 0.267) or median PFS
time (5.4 vs. 11.7 months, P = 0.285) between patients who had
been treated with or without HMA (primary decitabine).
Additionally, the 2-year OS and PFS rates were not
significantly different between the groups (not reached vs.
38.9% and not reached vs. 37.9% (Table 4).

No significant difference was found in the ORR and CRR
between groups with different prognosis risks: the ORR and CRR
for 7 courses in 6 patients with a favorable or intermediate risk
were 71.4% (5/7) and 28.6% (2/7), respectively, while those for 28
courses in 26 patients with an adverse risk were 75.0% (21/28)
and 46.4% (13/28), respectively (P = 1.000 and 0.672,
respectively); the 2-year OS rates were 20.0% vs. 43.4%, and
the 2-year PFS rates were 20.0% vs. 42.4%, respectively,
comparing the two groups (P = 0.324 and 0.484, respectively)
(Table 4 and Supplemental Table 2).

Age, sex, BM blasts, the white blood cell (WBC) count, the
hemoglobin count and the platelet (PLT) count did not affect the
response rates.

Safety
Thirty-five patients received 38 courses of IT. Thus, all the
toxicological evaluations were performed during these
38 courses.

For hematological adverse events (AEs), the median time for
neutropenia was 18.4 (0-77) days, and G-CSF injections were
administered in 34 of 38 courses because the neutrophil count
was less than 1.0×10exp9/L. All the patients received red blood
cell (RBC) transfusions at an average of 6 Units (1200 mL)
because the hemoglobin levels were below 60 g/L. Additionally,
all the patients required platelet transfusions at an average of 7.3
units per course because the platelet counts were below
10×10exp9/L.

The nonhematological AEs are summarized in Supplemental
Table 3. Two (5.3%) patients died of AEs that were deemed
treatment-related (both because of severe deterioration of liver
and kidney function after the infective shock). Overall, the
treatment was well tolerated, although most side effects were
grade 3. The reason for this high rate of grade 3 AEs was that, in
most cases, inflammation required intravenous treatment and
blood transfusion in the hypoimmune state.
September 2021 | Volume 11 | Article 726926
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DISCUSSION

The outcome of R/R AML remains poor, and treatment options
are very limited. Exploring an effective and well-tolerated
combination therapy is urgent. In the preclinical studies,
chidamide and decitabine, two epigenetic modifiers, revealed a
significant synergistic effect in both AML cell lines and primary
R/R AML cells. In this phase II prospective multicenter trial, of
the 32 evaluable patients treated with the CDIAG regimen, the
ORR was 74.3% and CR/CRi rate was 42.9%, with a median OS
of 11.7 months and a 2-year OS rate of 38.2%. Patients who
achieved a response or MRD levels below 10-3 have a
significantly better OS and PFS than those without. The
clinical results were encouraging because many poor-risk
individuals were enrolled and 81% of the patients had
adverse cytogenetics.

SCT was plausibly the best salvage treatment option for R/R
AML until the development of effective and available novel drugs
(15). SCT for AML yields good results when administered to
patients in a CR status (16). In a previously published
prospective study, sixty-seven percent of remitters received
allo-transplantation in CR2, providing a superior survival rate
than no stem cell transplantation (5-year OS rate: 42% vs. 16%)
(17). In our study, 19 patients bridged to SCT after the
CDIAG regimen. Their 2-year overall survival rate was higher
than that of the non-SCT group (45.6% vs. 24.2%; P=0.150). The
results were consistent with our expectations, suggesting that
the CDIAG protocol could reduce the leukemia burden
before transplantation and provide a bridge for subsequent
transplantation. Responders after CDIAG should receive
transplantation as soon as possible.

Among our entire cohort of refractory and relapsed patients,
those with PIF after ≥ 3 consecutive courses of IT or who
relapsed ≥ twice had the worst OS and PFS. The 2-year
survival rate of these patients was 0.0%. The patients with a
late relapse had the best survival rate of 66.7%. Importantly, the
survival rate of the refractory patients receiving one course of IT
was worse than that of patients who received two consecutive
courses of IT because of the high proportion (4/8) of FLT3-ITD
mutations in the former group. Most studies thus far have
suggested no difference in the response rate with or without
previous HMA exposure (18). Although no significantly
difference, patients who had received HMA therapy had a
shorter OS time than those who had not. The median OS time
was 8.90 months for previous HMA exposure vs. 13.8 months for
no previous HMA exposure (P = 0.267). (Table 4). The possible
mechanism underlying the shorter tendency in the survival times
of such patients could be due to the drug resistance property after
screening by HMA drugs.

Importantly, the response rate was improved in patients
with RUNX1 mutations (100%; 4 of 4 patients), but the
increased sensitivity could not compensate for the poor
prognosis associated with RUNX1 mutation (19). The 2-year
OS and PFS rates for 28 RUNX1wt patients (courses=31) and 4
RUNX1mut patients were 46.1% vs. 0% and 44.6% vs. 0.0%,
respectively (P = 0.023 and 0.018, respectively). RUNX1 is an
Frontiers in Oncology | www.frontiersin.org 1137
important regulator of myeloid differentiation and effective
hematopoiesis (20). HDAC1 and 3 bind to RUNX1 and
regulate the transcription activity of RUNX1 (21). Whether
chidamide binds competitively to HDAC1 and 3 against
RUNX1 and plays a role in CDIAG IT deserves further
exploration. Interestingly, even the presence of IDH mutation
did not affect the CR rate but achieved better OS and PFS.
Although several studies have investigated the incidence and
prognosis of IDH mutations in patients with AML, the
significance of IDH mutations on AML outcome has been
unclear (22). Better survival might benefit from the impact of
IDH on histone modifications and DNA methylation (23, 24).
As mentioned above, no difference was found in the response or
survival rate between FLT3-ITDmut and FLT3-ITDwt patients,
but FLT3-ITDmut patients had worse outcomes. Recently, Hu
et al. revealed a novel resistance pathway involving FLT3-
ITDmut: in AML cells, FLT3-ITDmut upregulates HDAC8,
thereby promoting the persistence of FLT3-ITDmut AML cells
even in the presence of an FLT3 inhibitor (25). This view
confirms our findings. FLT3-ITDmut patients achieved a poor
response, and 4 of 7 responders with FLT3-ITDmut ultimately
achieved PD with poor outcomes, likely because of the
ineffectiveness of chidamide for selectively inhibiting HDAC1,
2, 3 and 10 instead of HDAC8.

Despite the clinical activity of chidamide combination
therapy in R/R AML patients, toxicity is still commonly
observed in this cohort. The degree of cytopenia and
resulting complications reported in our study are not higher
than those reported in treatment-naïve patients or other R/R
populations, although the rates and degrees of baseline
cytopenia were higher (26). We found that infections of grade
3 or higher were observed in nearly half of the cohort (18
courses), and 2 of the 18 courses developed infectious shock.
Three patients died within 4 weeks after treatment, 2 of the 3
patients developed severe infection and shock, and one patient
persistently maintained no response and died after receiving
chemotherapy. Even with these toxicities, in our study, the
median OS and PFS times were 11.7 and 11.7 months,
respectively, and the 2-year OS and PFS rates were 38.2% and
37.8%, respectively, which are equivalent or superior to those of
conventional salvage therapy (27).
CONCLUSION

The CDIAG regimen was well tolerated and associated with a
higher clinical response rate than expected in the context of
salvage therapy for R/R AML. The regimen delays disease
progression and reduces the leukemia burden before
transplantation, providing eligible patients with the chance of
proceeding to allo-SCT. Our results show that epigenetic agents
combining cytotoxic agents may represent a promising direction
for patients with R/R AML. Further evaluations in larger
population are needed to seek biological indicators benefiting
from this regimen.
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ASH1L and MLL1 are two histone methyltransferases that facilitate transcriptional
activation during normal development. However, the roles of ASH1L and its enzymatic
activity in the development of MLL-rearranged leukemias are not fully elucidated in Ash1L
gene knockout animal models. In this study, we used an Ash1L conditional knockout
mouse model to show that loss of ASH1L in hematopoietic progenitor cells impaired the
initiation of MLL-AF9-induced leukemic transformation in vitro. Furthermore, genetic
deletion of ASH1L in the MLL-AF9-transformed cells impaired the maintenance of
leukemic cells in vitro and largely blocked the leukemia progression in vivo. Importantly,
the loss of ASH1L function in the Ash1L-deleted cells could be rescued by wild-type but
not the catalytic-dead mutant ASH1L, suggesting the enzymatic activity of ASH1L was
required for its function in promoting MLL-AF9-induced leukemic transformation. At the
molecular level, ASH1L enhanced the MLL-AF9 target gene expression by directly binding
to the gene promoters and modifying the local histone H3K36me2 levels. Thus, our study
revealed the critical functions of ASH1L in promoting the MLL-AF9-induced
leukemogenesis, which provides a molecular basis for targeting ASH1L and its
enzymatic activity to treat MLL-AF9-induced leukemias.

Keywords: MLL1, ASH1L, histone modification, H3K36me2, leukemogenesis, MLL-AF9 fusion
INTRODUCTION

The MLL rearrangement (MLLr) caused by 11q23 chromosomal translocations creates a variety
MLL fusion proteins that drive the acute lymphoblastic and myeloid leukemia development, which
accounts for approximate 5-10% acute leukemias in human patients (1–5). Despite recent
progression in the development of chemotherapies against leukemias, the overall prognosis for
the MLLr leukemias remains poor (6, 7).

MLL1 protein is a histone lysine methyltransferase (KMTase) that contains a SET (Su(var)3-9,
Enhancer-of-zeste and Trithorax) domain to catalyze trimethylation of histone H3 lysine 4
(H3K4me3) (8). Functionally, MLL1 belongs to the Trithorax-group (TrxG) proteins that
antagonize the Polycomb-group (PcG)-mediated gene silencing and facilitate transcriptional
activation (9). In 11q23 chromosomal translocations, the N-terminal portion of MLL1 is fused
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with a variety of fusion partners to generate different oncogenic
MLL fusion proteins that function as disease drivers leading to
leukemia development (10–12). Previous studies have revealed
that the N-terminal portion of MLL fusion proteins interacts
with MENIN and LEDGF (Lens Epithelium-Derived Growth
Factor), which is critical for the recruitment of MLL fusion
proteins to chromatin, whereas the C-terminal fusion partners
interact with various trans-activators to induce transcriptional
activation (13–17). However, since the MLL fusion proteins lack
the intrinsic histone H3K4 methyltransferase activity due to loss
of the SET domain located in the C-terminal portion of MLL1
(10), it is unclear whether other histone modifications are
required for the MLL fusion proteins-induced gene expression
and leukemogenesis.

Recently, another member of TrxG proteins, ASH1L (Absent,
Small, or Homeotic-Like 1), was found to play important roles in
normal hematopoiesis and leukemogenesis (8, 18, 19).
Biochemically, ASH1L is a histone KMTase that mediates
dimethylation of histone H3 lysine 36 (H3K36me2) (20).
Similar to MLL1, ASH1L facilitates gene expression through
antagonizing PcG-mediated gene silencing (8). Previous studies
have shown that ASH1L and MLL1 co-occupies the same
transcriptional regulatory regions, and loss of either ASH1L or
MLL1 reduces the expression of common genes (21–23),
suggesting ASH1L and MLL1 function synergistically to
activate gene expression during normal development. However,
the significance of ASH1L and its-mediated histone H3K36me2
in the MLLr-associated leukemogenesis has not been addressed
in the Ash1L gene knockout animal models.

In this study, we used an Ash1L conditional knockout mouse
model to show that loss of ASH1L in hematopoietic progenitor
cells (HPCs) impaired the initiation of MLL-AF9-induced
leukemic transformation in vitro. Furthermore, genetic deletion
of ASH1L in the MLL-AF9-transformed cells impaired the
maintenance of leukemic cells in vitro and largely blocked the
leukemia progression in vivo. Importantly, the loss of ASH1L
function in the Ash1L-deleted cells could be rescued by ectopic
expression of wild-type but not the catalytic-dead mutant
ASH1L, suggesting the enzymatic activity of ASH1L was
required for its function in promoting MLL-AF9-induced
leukemic transformation. At the molecular level, ASH1L
activated the MLL-AF9 target gene expression by directly
binding to the gene promoters and modifying the local histone
H3K36me2 levels. Thus, our study revealed the critical functions
of ASH1L in MLL-AF9-induced leukemogenesis and raised the
possibility that ASH1L might serve as a potential therapeutic
target for the treatment of MLL-AF9-induced leukemias.
MATERIALS AND METHODS

Mice
The Ash1L conditional knockout mice were generated as
previously reported (24). To generate inducible Ash1L deletion,
mice were crossed with Rosa26-CreERT2 mice that were obtained
from The Jackson Laboratory. All mice for this study were
Frontiers in Oncology | www.frontiersin.org 241
backcrossed to C57BL/6 mice for at least five generations to
reach pure genetic background prior to conducting experiments.
All mouse experiments were performed with the approval of the
Michigan State University Institutional Animal Care &
Use Committee.

Hematopoietic Progenitor Isolation
and Culture
Hematopoietic progenitor cells were isolated from femurs of 4-
to 6-week C57BL/6 mice. The red blood cells in the bone
marrows were lysed by ammonium chloride solution (Stem
Cell Technologies 07800) and filtered with a 70-mm nylon
filter. The c-KIT+ HPCs were isolated using c-KIT antibody-
conjugated IMag (BD Biosciences) beads. HPCs cells were
maintained in RMPI1640 medium supplemented with 10%
FBS, 1% MEM non-essential amino acids, 1% Glutamax, 10
ng/mL, 2-mercaptoethanol, and 50 ng/mL mSCF (PeproTech),
10 ng/mL mIL-6 (PeproTech), and 10 ng/mL mIL-3
(PeproTech). To induce CRE-mediated recombination in vitro,
4-hydroxy-tamoxifen (Sigma-Aldrich) was resuspended in
DMSO and supplemented into the culture medium with
concentration of 250 nM.

Retroviral and Lentiviral Vector Production
and Transduction
The pMIG-FLAG-MLL-AF9 retroviral vectors as obtained from
Addgene (Plasmid #71443). Retroviral vectors were generated by
co-transfection of retroviral vectors with pGag-pol, pVSVG 293T
cells using CalPhos mammalian transfection kit (TaKaRa). After
48hrs post transfection, viral supernatant was harvested, filtered
through a 0.45 mm membrane, and concentrated by
ultracentrifugation. The lentiviral system was obtained from
the National Institutes of Health AIDS Research and Reference
Reagent Program. To generate GFP expression vectors, the GFP
cDNA was PCR amplified, fused with P2A and puromycin
resistant cassette and cloned into the SpeI/EcoRI sites under
the EF1a promoter. To generate lentiviral viruses, the
transducing vectors pTY, pHP and pHEF1a–VSVG were co-
transfected into HEK293T cells. The supernatant was collected at
24, 36 and 48 hours after transfection, filtered through a 0.45 mm
membrane and concentrated by ultracentrifugation. Retroviral
and lentiviral transduction of HPCs was performed by spin
inoculation for 1 hour at 800g, in RMPI1640 medium
supplemented with 10% FBS, 1x MEM non-essential amino
acids (Life Technologies), 1x Glutamax (Life Technologies), 1x
sodium pyruvate (Life Technologies), and 10 ng/mL mIL-
3 (PeproTech).

Serial Methylcellulose Replating Assay
and Leukemia Transplantation
The colony formation assays were conducted by plating 500 cells
into methylcellulose media consisting of Iscove MDM (Life
Technologies) supplemented with FBS, BSA, insulin-transferrin
(Life Technologies), 2-mercaptoethanol, 50 ng/mL mSCF
(PeproTech), 10 ng/mL mIL-6 (PeproTech), 10 ng/mL mIL-3
(PeproTech), and 10 ng/mL GM-CSF (PeproTech). After 7-10
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days, the colony numbers were counted under a microscope. The
colonies were picked up, and cells were pooled and replated onto
secondary methylcellulose plates. Three rounds of replating were
performed for each experiment. For leukemia transplantation,
recipient C57BL/6 mice were subjected to total body irradiation
at a dose of 11 Gy with the use of a X-RAD 320 biological
irradiator. Donor cells (5 × 105) and radiation protector cells (5 ×
105) isolated from BM were mixed in 1× PBS and transplanted
into the recipient mice through retro-orbital injection. The mice
were fed with water supplemented with trimethoprim/
sulfamethoxazole for 4 weeks after transplantation.

FACS Analysis
For FACS analysis, cells were stained with antibodies in staining
buffer (1× PBS, 2% FBS) and incubated at 4°C for 30 minutes.
The samples were washed once with staining buffer before
subjected to FACS analysis with the use of a BD LSRII. The
antibodies used in this study include anti–Mac-1(eBioscience),
anti–Gr-1(eBioscience), anti–c-KIT (eBioscience).

Western Blot Analysis
Total proteins were extracted by RIPA buffer and separated by
electrophoresis by 8-10% PAGE gel. The protein was transferred
to the nitrocellulose membrane and blotted with primary
antibodies. The antibodies used for Western Blot and IP-
Western Blot analyses included: rabbit anti-ASH1L (1:1000, in
house) (24) and IRDye 680 donkey anti-rabbit second antibody
(1: 10000, Li-Cor). The images were developed by Odyssey Li-
Cor Imager (Li-Cor).

Quantitative RT-PCR and
ChIP-qPCR Assays
RNA was extracted and purified from cells with the use of
Qiashredder (QIAGEN) and RNeasy (QIAGEN) spin columns.
Total RNA (1 µg) was subjected to reverse transcription using
Iscript reverse transcription supermix (Bio-Rad). cDNA levels
were assayed by real-time PCR using iTaq universal SYBR green
supermix (Bio-Rad) and detected by CFX386 Touch Real-Time
PCR detection system (Bio-Rad). Primer sequences for qPCR are
listed in Supplementary Table 3. The expression of individual
genes is normalized to expression level of Gapdh. ChIP assays
that used rabbit anti-ASH1L antibody (in house), rabbit anti-
H3K36me2 antibody (Abcam), rabbit anti-Flag antibody (Cell
Signaling) were carried out according to the previously reported
protocol with the following modifications (25): ~2 ug antibodies
were used in the immunoprecipitation, and chromatin-bound
beads were washed 3 times each with TSEI, TSEII, and TESIII
followed by 2 washes in 10mM Tris, pH 7.5, 1mM EDTA.
Histone modification ChIPs were carried out as previously
reported (26). DNA that underwent ChIP was analyzed by
quantitative PCR (qPCR), and data are presented as the
percentage of input as determined with CFX manager 3.1
software. The amplicons were designed to locate at 1.0-kb
upstream of transcriptional starting sites (TSS) and
transcription ending sties (TES) of Hoxa9/Hoxa10 genes.
The mouse intracisternal A-particle LTR repeat elements were
included as a negative control for the ASH1L binding. The ChIP
Frontiers in Oncology | www.frontiersin.org 342
primers for the mouse IAP LTR were purchased from Cell
Signaling (85916, Cell Signaling). Other qPCR and ChIP
primers are listed in Supplementary Table 3, respectively.

RNA-Seq Sample Preparation for
HiSeq4000 Sequencing
RNA was extracted and purified from cells using QI shredder
(Qiagen) and RNeasy (Qiagen) spin columns. Total RNA (1 µg)
was used to generate RNA-seq library using NEBNext Ultra
Directional RNA library Prep Kit for Illumina (New England
BioLabs, Inc) according to the manufacturer’s instructions.
Adapter-ligated cDNA was amplified by PCR and followed by
size selection using agarose gel electrophoresis. The DNA was
purified using Qiaquick gel extraction kit (Qiagen) and
quantified both with an Agilent Bioanalyzer and Invitrogen
Qubit. The libraries were diluted to a working concentration of
10nM prior to sequencing. Sequencing on an Illumina
HiSeq4000 instrument was carried out by the Genomics Core
Facility at Michigan State University.

RNA-Seq Data Analysis
RNA-Seq data analysis was performed essentially as described
previously. All sequencing reads were mapped mm9 of the
mouse genome using Tophat2 (27). The mapped reads were
normalized to reads as Reads Per Kilobase of transcript per
Million mapped reads (RPKM). The differential gene expression
was calculated by Cuffdiff program and the statistic cutoff for
identification of differential gene expression is p < 0.01 and 1.5-
fold RPKM change between samples (28). The heatmap and plot
of gene expression were generated using plotHeatmap and
plotProfile in the deepTools program (29). The differential
expressed gene lists were input into the David Functional
Annotation Bioinformatics Microarray Analysis for the GO
enrichment analyses (https://david.ncifcrf.gov/).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism 9
(GraphPad Software). Parametric data were analyzed by a two-
tailed t test or two-way ANOVA test for comparisons of multiple
samples. The post-transplantation survivals were analyzed by the
Gehan-Breslow-Wilcoxon test. P values < 0.05 were considered
statistically significant. Data are presented as mean ± SEM.
RESULTS

ASH1L Promotes the Initiation of MLL-
AF9-Induced Leukemic Transformation
In Vitro
To examine the function of ASH1L in MLL-AF9-induced
leukemogenesis, we generated an Ash1L conditional knockout
(Ash1L-cKO) mouse line in which two LoxP elements inserted
into the exon 4 flanking regions (24). A CRE recombinase-
mediated deletion of exon 4 resulted in altered splicing of mRNA
that created a premature stop codon before the sequences
encoding the first functional AWS (associated with SET)
October 2021 | Volume 11 | Article 754093
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domain (Figures 1A, B). The Ash1L-cKO mice were further
crossed with the Rosa26-CreERT2 mice to generate a tamoxifen-
inducible Ash1L knockout line (Ash1L2f/2f;Rosa26-CreERT2),
which allowed us to study the function of ASH1L in
leukemogenesis in vitro and in vivo.
Frontiers in Oncology | www.frontiersin.org 443
Using this Ash1L-cKO mouse model, we investigate the role of
ASH1L in the initiation of MLL-AF9-induced leukemic
transformation. To this end, we isolated the bone marrow cells
from wild-type (Ash1L+/+;Cre-ERT2) and Ash1L-cKO (Ash1L2f/2f;
Cre-ERT2) mice, respectively. The c-KIT+ HPCs were further
A B

D E

F G

C

FIGURE 1 | ASH1L is required for the initiation of MLL-AF9-induced leukemic transformation. (A) Diagram showing the strategy for the generation of Ash1L
conditional knockout mice. CRE-mediated deletion of exon 4 results in an altered spliced mRNA with a premature stop codon, which generates a truncated protein
without all functional AWS, SET, Bromo, BAH and PHD domains. The arrows labeled as F and R represent the genotyping primers. (B) Genotyping results showing
the PCR results of wild-type, 2 floxP, and 1 floxP alleles. (C) FACS analysis showing the c-KIT+ HPC populations before and after enrichment with c-KIT antibody-
conjugated beads. (D) Schematic experimental procedure. (E) qRT-PCR analysis showing the Ash1L expression levels in wild-type and Ash1L-cKO cells after
treated with 4-OHT or DMSO. The results were normalized against levels of Gapdh and the expression level in DMSO-treated cells was arbitrarily set to 1. The error
bars represent mean ± SEM, n = 3 per group. ****P < 0.0001, ns, not significant. (F) Methylcellulose replating assays showing the colony numbers for each round of
plating. The error bars represent mean ± SEM, n = 3 per group. **P < 0.01; ****P < 0.0001, ns, not significant. (G) Photos showing the representative colony
formation on methylcellulose plates for each group. Bar = 0.5 mm.
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enriched by the c-KIT antibody-conjugated magnetic beads
(Figure 1C). The HPCs were cultured in the HPC medium
supplemented with murine IL-3, IL-6, and SCF for three days,
and followed by transduction of retroviral vectors expressing a
MLL1-AF9 fusion gene or control empty viruses (EV). After
transduction, the cells were cultured in the suspension medium
with 4-hydroxytamoxifen (4-OHT) for five days to induce Ash1L
gene deletion in the Ash1L-cKO HPCs (Figure 1D). The
quantitative RT-PCR (qRT-PCR) analysis showed that the Ash1L
expression reduced to less than 5% at the mRNA level in theAsh1L-
deleted cells (Figure 1E). To investigate the effect of Ash1L loss on
the initiation of MLL-AF9-induced leukemic transformation in
vitro, we performed serial colony replating assays by plating the
cells on the semi-solid methylcellulose medium to examine the
leukemic transformation. The results showed that although the cells
transduced withMLL-AF9 or empty vectors had comparable colony
numbers in the first round of plating, the cells transduced with
control empty vectors did not form colonies in the following rounds
of replating. In contrast, both wild-type and Ash1L-cKO HPCs
transduced with MLL-AF9 retroviruses formed colonies in all three
rounds of plating, indicating successful leukemic transformation by
the MLL-AF9 transgene in vitro. Notably, compared to the MLL-
AF9-transduced wild-type cells, the Ash1L-deleted cells had reduced
colony numbers in the second and third rounds of plating,
Frontiers in Oncology | www.frontiersin.org 544
suggesting that loss of Ash1L in HPCs compromised the MLL-
AF9-induced leukemic transformation (Figures 1F, G), suggesting
ASH1L promotes the MLL-AF9-induced leukemic transformation
in vitro.

ASH1L Facilitates the Maintenance of
MLL-AF9-Induced Leukemic Cells In Vitro
Next, we examined the functional role of Ash1L in maintaining
the MLL-AF9-transformed cells. To this end, we transduced both
wild-type and Ash1L-cKO HPCs withMLL-AF9 retroviruses and
plated the transduced cells onto the methylcellulose medium.
After three rounds of replating, the transformed colonies were
manually picked and cultured in the suspension medium
supplemented with 4-OHT for 5 days to induce deletion of
Ash1L in the Ash1L-cKO cells. The cells were further maintained
in suspension culture without 4-OHT for 5 days before plated
onto the methylcellulose to examine the colony formation
(Figure 2A). The results showed that compared to the wild-
type MLL-AF9-transformed cells, the Ash1L-deleted cells had
marked reduced colony formation (Figures 2B, C), suggesting
that ASH1L facilitated the maintenance of MLL-AF9
transformed cells in vitro.

To examine cellular responses to the Ash1L depletion, we
performed the FACS analysis to examine cell death in response
A

B

D E F

C

FIGURE 2 | ASH1L is required for the maintenance of MLL-AF9-induced leukemic cells in vitro. (A) Schematic experimental procedure. (B) Methylcellulose colony
formation assays showing the colony numbers. The error bars represent mean ± SEM, n = 3 per group. ***P < 0.001; ns, not significant. (C) Photos showing the
representative colony formation on methylcellulose plates for each group. Bar = 0.5 mm. (D) Representative FACS results showing the Annexin V+ and DAPI+
populations of wild-type and Ash1L-KO MLL-AF9-transformed cells. (E) Representative FACS results showing the GR-1 and CD11b expression of wild-type and
Ash1L-KO MLL-AF9-transformed cells. (F) Photos showing the Wright-Giemsa staining of wild-type and Ash1L-KO MLL-AF9-transformed cells. Bar = 10 µm.
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to the loss ofAsh1L in the MLL-AF9-transformed cells. The results
showed that compared to the wild-type cells, the Ash1L-deleted
cells had increased populations of both early apoptotic cells
(Annexin V+/DAPI-) and late dead cells (Annexin V+/DAPI+)
(Figure 2D), suggesting that the loss of Ash1L induced cell death
of MLL-AF9-transformed cells. Moreover, FACS analyses showed
that compared to the wild-type transformed cells, the Ash1L-
deleted cells had increased expression of myeloid differentiation
surface markers CD11b and GR-1 (Figure 2E). Morphologically,
the wild-type transformed cells displayed leukoblast-like
morphology with enlarged dark stained nuclei, while the Ash1L-
deleted cells had light-stained and segmented nuclei, a feature
indicating the differentiation towards matured myeloid cells
(Figure 2F). Taken together, these results suggested that ASH1L
facilitated the maintenance of MLL-AF9-transformed cells
through suppressing cell death and differentiation.

ASH1L Promotes the MLL-AF9-Induced
Leukemia Development In Vivo
To determine the role of ASH1L in the MLL-AF9-induced
leukemogenesis in vivo, we performed leukemia transplantation
assays and monitor the leukemia development in recipient mice.
To this end, the wild-type and Ash1L-deleted MLL-AF9-
transformed cells were labeled with GFP by transduction with
lentiviral-GFP vectors, mixed with normal protective bone
marrow cells, and transplanted into the total-body-irradiated
(TBI) syngeneic recipient mice (Figure 3A). Four weeks after
transplantation, FACS analysis showed that the mice transplanted
with wild-type leukemic cells had higher GFP+ leukemic cell
populations in the peripheral blood compared to the mice
Frontiers in Oncology | www.frontiersin.org 645
received with Ash1L-KO leukemic cells (Figure 3B), which was
consistent with the higher leukemic cell numbers in the peripheral
blood smears and splenomegaly found in the mice transplanted
with wild-type leukemic cells (Figures 3C, D). All mice
transplanted with wild-type leukemic cells died within 3 months
after transplantation, and the median survival time was around 8.5
weeks. In contrast, the mice transplanted with Ash1L-deleted cells
had significant longer survival time (Chi square = 10.73, df = 1, p =
0.0011) compared to the mice transplanted with wild-type
leukemic cells (Figure 3E). These results suggested that ASH1L
in the MLL-AF9-transformed leukemic cells promoted the
development and progression of leukemia in vivo.

The Enzymatic Activity of ASH1L Is
Required for Its Function in Promoting
MLL-AF9-Induced Leukemic
Transformation
Next, we set out to determine whether the histonemethyltransferase
activity of ASH1L was required for its function in promoting MLL-
AF9-induced leukemic transformation. To this end, the Ash1L-cKO
HPCs were infected with retroviruses expressing MLL-AF9
transgene, followed by transduced with lentiviral vectors
expressing either wild-type ASH1L or catalytic-dead mutant
ASH1L(H2214A) (21). The transformed cells were treated with 4-
OHT to induce deletion of endogenous Ash1L gene (Figure 4A).
Western blot analysis showed that both wild-type and mutant
exogenous ASH1L had a similar expression level (Figure 4B).
The cells were further plated onto the methylcellulose medium to
examine the colony formation (Figure 4A). The results showed that
compared to the wild-type ASH1L-expressed cells, the cells with
A B

D E FC

FIGURE 3 | ASH1L promotes the MLL-AF9-induced leukemia development in vivo. (A) Schematic experimental procedure. (B) Representative FACS analysis
showing the GFP+ leukemic cell populations in the peripheral blood of mice transplanted with wild-type or Ash1L-KO MLL-AF9-transformed cells. (C) Quantitative
results showing the percentage of GFP+ leukemic cell populations in the peripheral blood of mice transplanted with wild-type or Ash1L-KO MLL-AF9-transformed
cells. The error bars represent mean ± SEM, n = 3 per group. **P < 0.01. (D) Photos showing the leukemic cells in the peripheral blood smear of mice transplanted
with wild-type or Ash1L-KO MLL-AF9-transformed cells. Bar = 10 µm. (E) Photos showing the representative spleen size from the normal control mice (Normal ctrl.),
mice transplanted with wild-type (WT) or Ash1L-KO (KO) MLL-AF9-transformed cells. The samples were collected at post-transplantation 4 weeks. Bar = 5 mm.
(F) Kaplan-Meier survival curve of mice transplanted with wild-type or Ash1L-KO MLL-AF9-transformed cells. P value calculated using a Gehan-Breslow-Wilcoxon
test. n = 10 mice per group.
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ectopic expression of catalytic-dead mutant ASH1L had reduced
colony formation (Figures 4C, D). Similar to the Ash1L-deleted
cells, the Ash1L-deleted cells rescued with mutant ASH1L had
increased cell death and upregulated expression of myeloid
differentiation markers of CD11b and GR-1 (Figures 4E, F).
These results suggested that ASH1L histone methyltransferase
activity was required for its function in promoting MLL-AF9-
induced leukemogenesis by inhibiting cell death and blocking
myeloid differentiation.

ASH1L Facilitates the MLL-AF9-Induced
Leukemogenic Gene Expression
To examine the molecular mechanisms underlying the function
of ASH1L in promoting MLL-AF9-induced leukemogenesis, we
performed RNA-seq analyses to examine the transcriptome
changes in normal HPCs, wild-type and Ash1L-deleted MLL-
AF9-tranformed cells. The results showed that compared to
normal HPCs, the MLL-AF9-transformed cells had 1,021
upregulated and 1,228 downregulated genes (cutoff: fold
Frontiers in Oncology | www.frontiersin.org 746
changes > 1.5, FDR < 0.05), respectively (Figure 5A). The gene
ontology (GO) enrichment analysis showed that both
upregulated and downregulated genes were involved in
immune processes and inflammatory responses (cutoff: FDR <
0.05) (Supplementary Tables 1 and 2), suggesting that MLL-
AF9 fusion proteins disrupted the normal differentiation and
mis-regulated the normal function of myeloid cells. Notably,
multiple genes, such asHoxa5,Hoxa7,Hoxa9,Hoxa10 andMeisI
that were known to mediate the MLL-AF9-induced
leukemogenesis, were highly expressed in the MLL-AF9-
transformed cells (Figure 5B). Further RNA-seq analysis
showed that compared to MLL-AF9-transformed wild-type
cells, the Ash1L-deleted cells had 372 upregulated gene and
472 downregulated genes (cutoff: fold changes > 1.5, FDR <
0.05), respectively (Figure 5C). Cross-examining these two data
sets revealed that 105 genes, including Hoxa5, Hoxa7, Hoxa9,
Hoxa10, and MeisI that were highly expressed in the wild-type
MLL-AF9-transformed cells, were downregulated in the Ash1L-
deleted cells (Figures 5D, E). Altogether, these results suggested
A B

D

E F

C

FIGURE 4 | The enzymatic activity of ASH1L is required for its function in promoting MLL-AF9-induced leukemic transformation. (A) Schematic experimental
procedure. (B) WB analysis showing the ectopic expression of wild-type and mutant ASH1L. (C) Methylcellulose colony formation assays showing the colony
numbers. The error bars represent mean ± SEM, n = 3 per group. **P < 0.01; ns, not significant. (D) Photos showing the representative colony formation on
methylcellulose plates for each group. Bar = 0.5 mm. (E) Representative FACS results showing the Annexin V+ and DAPI+ populations of Ash1L-KO cells
rescued with wild-type and mutant ASH1L. (F) Representative FACS results showing the GR1 and CD11b expression of Ash1L-KO cells rescued with wild-type
and mutant ASH1L.
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that ASH1L promoted the MLL-AF9-induced leukemogenesis by
facilitating the MLL-AF9-induced leukemic gene expression.

ASH1L Binds and Mediates the Histone
H3K36me2 Modification at Hoxa9 and
Hoxa10 Gene Promoters
To determine whether ASH1L directly regulated the expression of
MLL-AF9 targe t genes , we per formed chromat in
immunoprecipitation (ChIP) coupled with quantitative PCR
(ChIP-qPCR) assays to examine the ASH1L occupancy, MLL-
AF9 occupancy, and histone H3K36me2 modification at the gene
promoters, transcriptional starting sites (TSS), transcriptional
ending sites (TES) of Hoxa9 and Hoxa10, two MLL-AF9 target
genes that were shown to be activated in the wild-type transformed
cells and have reduced expression in the Ash1L-deleted cells
(Figures 5B, E). The results showed that both ASH1L occupancy
and histone H3K36me2 were enriched at the Hoxa9 and Hoxa10
promoters compared to that on the TES and the long terminal
repeat (LTR) of intracisternal A-particle (IAP) (Figures 6A–E).
Furthermore, compared to wild-type MLL-AF9-transformed cells,
both ASH1L occupancy and histone H3K36me2 modification were
Frontiers in Oncology | www.frontiersin.org 847
reduced at the gene promoters in the Ash1L-deleted cells
(Figures 6A–E), suggesting that ASH1L bound to the Hoxa9 and
Hoxa10 gene promoters directly and mediated local histone
H3K36me2 modification. However, the MLL-AF9 occupancy at
both gene promoters did not show significant difference between
wild-type and Ash1L-deleted MLL-AF9-transformed cells
(Figures 6F, G), suggesting the ASH1L-mediated histone
H3K36me2 did not affect the binding of MLL-AF9 fusion protein
to the gene promoters.
DISCUSSION

Chromosomal 11q23 translocations generate various MLL fusion
proteins that contain the N-terminal portion of MLL1 and
different fusion partners including AF9 (30, 31). Previous
studies have demonstrated that the N-terminal MLL1 is critical
for the recruitment of MLL fusion proteins to chromatin through
its CxxC-zinc finger (CxxC-zf) domain and its interacting
proteins MENIN and LEDGF, while the C-terminal fusion
partners interact with multiple trans-activators to induce
A B

D EC

FIGURE 5 | ASH1L facilitates the MLL-AF9-induced leukemogenic gene expression. (A) Plot showing 1021 up- and 1228 down-regulated genes in the MLL-AF9-
transformed cells compared to the normal HPCs. (B) Heatmap showing the upregulation of Hoxa gene cluster and MeisI in the MLL-AF9-transformed cells
compared to normal HPCs. (C) Plot showing 372 up- and 472 down-regulated genes in the Ash1L-KO MLL-AF9-transformed cells compared to the wild-type MLL-
AF9-transformed cells. (D) Venn diagram showing the 105 genes upregulated in the MLL-AF9-transformed cells and downregulated in the Ash1L-KO cells.
(E) Heatmap showing the Hoxa gene cluster and MeisI downregulated in the Ash1L-KO cells compared to the wild-type MLL-AF9-transformed cells.
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transcriptional activation (16). Since the MLL fusion proteins
lose the MLL1 C-terminal SET domain and its-associated histone
H3K4 methyltransferase activity, it is unclear whether other
histone KMTase-mediated histone modifications are required
for the MLL fusion proteins to activate leukemogenic gene
expression and induce leukemia development.

ASH1L is another member of TrxG proteins that facilitate
transcriptional activation (8). Biochemically, ASH1L is a histone
KMTase mediating histone H3K36me2 modification (20). Recent
studies reported that ASH1L and MLL1 co-occupied the same gene
promoters to activate gene expression, suggesting ASH1L and MLL
function synergistically in activating gene expression in normal
development and leukemogenesis (19, 21–23). However, the
functional roles of ASH1L and its-mediated histone H3K36me2
Frontiers in Oncology | www.frontiersin.org 948
in the MLLr-associated leukemogenesis have not been addressed
using Ash1L gene knockout animal models.

In this study, we used an Ash1L conditional knockout mouse
model to show that ASH1L and its histone methyltransferase
activity are required for promoting the MLL-AF9-induced
leukemogenesis. First, genetic deletion of ASH1L in normal HPCs
largely impairs the MLL-AF9-induced colony formation in serial
methylcellulose replating assays (Figure 1), suggesting ASH1L
promotes the initiation of MLL-AF9-induced leukemic
transformation. Second, loss of ASH1L in the MLL-AF9-
transformed cells largely impaired the colony formation in vitro
and delayed the leukemia development in the recipient mice
transplanted with leukemic cells (Figures 2 and 3), suggesting
ASH1L facilitates the maintenance of MLL-AF9-transformed cells
A

B

D E

F G

C

FIGURE 6 | ASH1L binds and mediates histone H3K36me2 modification at Hoxa9 and Hoxa10 gene promoters. (A) Plot showing the locations of ChIP-qPCR
amplicons at the Hoxa9 and Hoxa10 gene loci and LTR of intracisternal A-particle (IAP). (B, C) ChIP-qPCR analysis showing the ASH1L occupancy at Hoxa9 and
Hoxa10 gene loci in the wild-type and Ash1L-KO MLL-AF9-transformed cells. (D, E) ChIP-qPCR analysis showing the histone H3K36me2 at Hoxa9 and Hoxa10
gene loci in the wild-type and Ash1L-KO MLL-AF9-transformed cells. (F, G) ChIP-qPCR analysis showing the MLL-AF9 occupancy at Hoxa9 and Hoxa10 gene loci
in the wild-type and Ash1L-KO MLL-AF9-transformed cells. Note: for panels (B–E), the error bars represent mean ± SEM, n = 3 biological replicates. *P < 0.05,
**P < 0.01, ***P < 0.001; ****P < 0.0001; ns, not significant.
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in vitro and leukemia progression in vivo. Importantly, the impaired
ASH1L’s function in the Ash1L-KO cells could be rescued by the
wild-type but not the catalytic-dead mutant ASH1L (Figure 4),
suggesting that the histone methyltransferase activity is required for
its function in promoting MLL-AF9-induced leukemogenic
transformation, which is consistent with a recent study showing
that the SET domain is required for the MLL-AF9-induced
leukemic transformation (32).

At the cellular level, we observed that the loss of ASH1L inMLL-
AF9-transformed cells induced cell death and myeloid
differentiation, which could be rescued by the wild-type but not
the catalytic-dead mutant ASH1L (Figures 2, 4), suggesting that
ASH1L promotes MLL-AF9-induced leukemic transformation
though inhibiting cell apoptosis and blocking cell differentiation.
The results are consistent with the molecular findings that ASH1L is
required for the full activation of MLL-AF9 target genes including
Hoxa gene cluster and MeisI (Figure 5), which are known to play
important roles in leukemogenesis through inhibiting cell death and
blocking normal cell differentiation (33–35). Finally, the ChIP assays
showed that both ASH1L occupancy and histone H3K36me2
modification were enriched at the promoters of MLL-AF9 target
genes Hoxa9 and Hoxa10 in the wild-type transformed cells
(Figure 6), indicating the ASH1L regulates the MLL-AF9 target
genes through directly chromatin binding and its-mediated histone
H3K36me2 modification.

Previous studies have shown that the PWWP domain of
LEDGF is required for the recruitment of MLL fusion proteins
through its binding to histone H3K36me2 (13, 15, 16). However,
our ChIP analysis did not reveal reduction of MLL-AF9
occupancy at the Hoxa9 and Hoxa10 promoters in the Ash1L-
KO cells (Figures 6F, G), suggesting the MLL-AF9 fusion
protein could bind to its target regions though other recruiting
mechanisms, such as the CxxC-zf domain-mediated binding to
unmethylated CpG-rich promoters (36), and the reduced
H3K36me2 at gene promoters in the Ash1L-KO cells impaired
the Hoxa gene expression through mechanisms other than the
recruitment of MLL-AF9 fusion protein.

Our current study has some limitations: (i) since this study
includes a single type of MLLr, MLL-AF9 fusion protein, to induce
leukemia development in mice, it is unclear whether ASH1L has the
similar function in promoting otherMLLr-induced leukemogenesis;
(ii) although Ash1L deletion induces cell death, some MLL-AF9-
transformed cells survive in vitro and in vivo, suggesting the MLL-
AF9-transformed cells have heterogenous responses to the Ash1L
depletion. However, the underlying mechanisms are not addressed
by our current study. These fundamental questions merit further
investigation for a better understating of the function of ASH1L in
broad MLLr-associated leukemogenesis.
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In summary, our study reveals that the histone H3K36me2-
specific methyltransferase ASH1L and its enzymatic activity play
an important role in promoting the MLL-AF9-induced
leukemogenesis, which provides an important molecular basis
for targeting ASH1L and its enzymatic activity to treat MLL-
AF9-induced leukemias.
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Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high
relapse/refractory rate. Genetic and epigenetic abnormalities are driving factors for
leukemogenesis. RUNX1 and RUNX2 from the Runt-related transcription factor (RUNX)
family played important roles in AML pathogenesis. However, the relationship between
RUNX3 and AML remains unclear. Here, we found that RUNX3 was a super-enhancer-
associated gene and highly expressed in AML cells. The Cancer Genome Atlas (TCGA)
database showed high expression of RUNX3 correlated with poor prognosis of AML
patients. We observed that Runx3 knockdown significantly inhibited leukemia progression
by inducing DNA damage to enhance apoptosis in murine AML cells. By chromatin
immunoprecipitation sequencing (ChIP-seq) analysis, we discovered that RUNX3 in AML
cells mainly bound more genes involved in DNA-damage repair and antiapoptosis
pathways compared to that in normal bone marrow cells. Runx3 knockdown obviously
inhibited the expression of these genes in AML cells. Overall, we identified RUNX3 as an
oncogene overexpressed in AML cells, and Runx3 knockdown suppressed AML
progression by inducing DNA damage and apoptosis.

Keywords: RUNX3, super-enhancer, acute myeloid leukemia, cell cycle, apoptosis, DNA repair
INTRODUCTION

Acute myeloid leukemia (AML) is one of the most common hematologic malignancies that is
characterized by clonal expansion of abnormally differentiated myeloid blasts (1, 2). High treatment
failure rate of AML that is caused by frequent relapses and limited treatments challenges the clinical
management of AML (3). Genetic and epigenetic abnormalities, such as NPM1 mutation, DNMT3a
mutation, and MLL rearrangement, are determinants of AML pathogenesis and always relate to
AML prognosis (4). Consequently, it is imperative to further decipher the genetic and epigenetic
characteristics of AML to identify more new molecular targets for AML treatment improvement.

Super-enhancer is a special enhancer identified to enhance the transcription of key oncogenes in
various cancer cells, such as prostate cancer cells, T cell acute lymphocytic leukemia cells, and
multiple myeloma cells (5–7). In mouse AML cells, some genes critical in leukemogenesis, including
October 2021 | Volume 11 | Article 725336151
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Myc, Meis1, and Runx2, are also super-enhancer-associated
genes (8), which indicates that super-enhancers may dedicate
to AML pathogenesis.

The Runt-related transcription factor (RUNX) family consists
of three members, RUNX1, RUNX2, and RUNX3. The tumor-
related functions of RUNX1 and RUNX2 were well studied.
Especially, RUNX1 plays a critical role in AML pathogenesis (9).
Meanwhile, RUNX3 was the least investigated (10). As a
transcription factor, the heterodimer of RUNX3 and a beta
subunit form a complex that binds to the core DNA sequence
found in a number of enhancers and promoters and further
activate or suppress transcription (11). RUNX3 was previously
regarded as a tumor-suppressor gene for its inactivation
promotes the progression of gastric cancer, lung cancer,
colorectal cancer, and bladder cancer by upregulating
oncogenes, such as YBX1 and GLI1, or abrogating ARF–P53
pathway (12–16). Conversely, RUNX3 is overexpressed and
exhibits oncogenic activities in ovarian cancers, basal cell
carcinomas, and head and neck cancers (17–19). As well,
RUNX3 overexpression drives the transformation of
myelodysplastic syndrome, another myeloid malignancy, by
repressing RUNX1 (20) and predicts poor prognosis in
childhood AML (21). However, the relationship between
RUNX3 and AML pathogenesis remains mysterious.

In this study, we discovered that RUNX3 is a super-enhancer-
associated gene and highly expressed in AML cells. Runx3
knockdown in murine AML cells efficiently impeded AML
progress. Furthermore, we proved that RUNX3 bound and
upregulated the expression of genes involved in DNA repair
and antiapoptosis pathways to promote AML progression.
RESULTS

RUNX3 Is a Super-Enhancer-Associated
Gene Only Highly Expressed in Acute
Myeloid Leukemia Cells Instead of in
Normal Blood Cells
To identify super-enhancer-associated genes that are unique in
AML cells, we analyzed H3K27ac chromatin immunoprecipitation
sequencing (ChIP-Seq) data of three types of normal blood cells,
including neutrophils (NEs), monocytes (MOs), and
hematopoietic stem cell progenitor cells (HSPCs), and AML cells
(AML1#–3#). We found 3,436 super-enhancer-associated genes in
normal blood cells. Meanwhile, 528 super-enhancer-associated
genes were consistently identified in AML cells (Figure 1A).
Furthermore, two independent RNA sequencing (RNA-seq)
datasets (GSE128910 and GSE138702) were analyzed and
revealed that 485 genes were identified as being differentially
expressed (adjusted p < 0.05) with ≥1.5-fold differential
expression between the groups were consistently overexpression.
Accordingly, we found three abnormally highly expressed
genes (RUNX3, TMEM50B, and TGOLN2) those were super-
enhancer-associated genes only in AML cells (Figure 1A and
Supplementary Figure S1). Furthermore, we analyzed The Cancer
Genome Atlas (TCGA) database and found that only RUNX3
Frontiers in Oncology | www.frontiersin.org 252
expression was positively associated with poor prognosis in AML
(RUNX3, p = 0.02; TMEM50B, p = 0.14; TGOLN2, p = 0.81;
Figure 1B). Moreover, we observed that the expression level of
RUNX3 was remarkably higher in bone marrow cells from AML
patients than that from healthy volunteers (15.39-fold increase;
Figure 1C and Table 1). Consistently, both mRNA and protein
levels of RUNX3 in MLL-AF9-induced murine AML cells were
significantly elevated compared to those in normal murine bone
marrow cells (7.72-fold increase of Runx3 mRNA expression;
Figures 1D–F).

Taken together, we demonstrate that RUNX3 is a super-
enhancer-associated gene only highly expressed in AML cells
instead of in normal blood cells and probably exerts pro-tumor
function on AML cells.
Runx3 Knockdown Inhibits Acute Myeloid
Leukemia Progression In Vivo
To further explore the potential pro-tumor role of Runx3 in
AML, equal numbers of control (Vector) or Runx3 knockdown
(Runx3 KD) murine AML cells were transplanted into syngeneic
wild-type (WT) recipients (Figure 2A). To evaluate the effects of
Runx3 reduction, we first sorted green fluorescent protein
(GFP)+ leukemia cells from Vector and Runx3 KD AML mice
and confirmed that shRNA specific for Runx3 led to decreased
RUNX3 expression by qRT-PCR and Western blot analysis
(80.3% reduction of Runx3 mRNA expression; Figures 2B, C
and Supplementary Figure S2). We found that Runx3 KD
significantly ablated AML cells in the peripheral blood (PB)
[79.5% reduction on day 28 (d28), 46.9% reduction on d45;
Figures 2D, E] and reduced disease burden in the bone marrow
(37.4% reduction on leukemic cell frequency, 47.2% reduction on
leukemic cell number; Figure 2F). Furthermore, the spleen and
liver of AML mice were significantly enlarged, and Runx3
knockdown significantly alleviated these symptoms (44.9% and
35.7% reduction of spleen weight and liver weight, respectively;
Figure 2G). Consistently, histological analysis showed that AML
mice in Runx3 KD group had fewer leukemia cell infiltration in
the peripheral blood, spleen, and liver (Figure 2H). Importantly,
Runx3 knockdown significantly prolonged the survival of AML
mice [Median overall survival (MOS) 81 days in Runx3 knockdown
group compared to 56 days in vector control group; Figure 2I].

These results demonstrate that Runx3 knockdown suppresses
the progression of MLL-AF9-induced AML in mice, which
supports our hypothesis that Runx3 is oncogenic in AML.
Runx3 Knockdown Induces DNA Damage
and Apoptosis in Acute Myeloid Leukemia
Cells In Vivo
We next investigated how Runx3 knockdown suppressed the
development of AML. Through flow cytometric analysis of
control (Vector) or Runx3 KD AML cells, we found a slight
increase in the percentage of G2/S/M-phase cells and G0-phase
cells, accompanied by a minor decrease in the percentage of G1-
phase cells after Runx3 knockdown (1.14-fold and 1.34-fold
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increase in G2/S/M-phase cells and G0-phase cells, 12.8%
reduction in G1-phase cells, respectively; Figure 3A and
Supplementary Figure S3). Reduction of Runx3 in leukemic
cells therefore appeared to induce G0/G1 arrest, which was
consistent with a reduction of leukemia burden. Furthermore,
Runx3 knockdown obviously increased DNA damage in AML
cells (1.81-fold increase in g-H2AX+ cells, 3.93-fold increase in g-
Frontiers in Oncology | www.frontiersin.org 353
H2AX foci per cell; Figures 3B, C). Annexin V and 7-AAD
double staining showed that upon Runx3 knockdown, the
percentage of total apoptotic cells in AML cells was remarkably
increased to 13.4% compared with 8.6% in control group (1.56-
fold increase) (Figure 3D).

Altogether, these results illustrate that Runx3 knockdown
induces DNA damage and apoptosis in leukemia cells in vivo.
A

B

C D E F

FIGURE 1 | RUNX3 is a super-enhancer-associated gene only highly expressed in acute myeloid leukemia (AML) cells instead of in normal blood cells.
(A) Experimental scheme to search for specific and highly expressed super-enhancer-associated genes in AML cells. (B) The Kaplan–Meier survival curves of
RUNX3, TMEM50B, and TGOLN2 in The Cancer Genome Atlas (TCGA)-LAML database. (C) The RUNX3 mRNA expression of bone marrow cells from healthy
volunteers (n = 5) or AML patients (n = 10). (D) Experimental scheme for panels (E, F). (E) qRT-PCR and (F) Western blot showing that RUNX3 expression was
increased in murine leukemic cells from primary transplant mice compared with normal mouse bone marrow cells. ACTIN was used to show equal loading. Symbols
represent an individual mouse.
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RUNX3 Binds to Cell Cycle-Related Genes
in Both Normal Bone Marrow Cells and
Acute Myeloid Leukemia Cells but
Specifically to DNA Repair and
Antiapoptosis-Related Genes Only in
Acute Myeloid Leukemia Cells
To determine the molecular mechanism of the oncogenic activity
of RUNX3 in AML cells, we analyzed the genomic distribution of
RUNX3 in bone marrow cells from normal mice and AML mice
by RUNX3 chromatin immunoprecipitation followed by next-
generation sequencing (ChIP-seq). The bone marrow cells from
primary AML mice were collected 35 days after transplantation
at which point the percentage of AML cells (GFP+ cells) was
97.5% (Figure 4A and Supplementary Figures S4A, B). The
number of RUNX3 peaks and corresponding genes in
the leukemia group was significantly higher than those in
the normal cells (Figure 4B). RUNX3 peaks were enriched at
introns, promoters, intergenic sites, and exons of genes in normal
cells and leukemia cells (Figure 4C). By analyzing RUNX3-
bound genes in normal bone marrow cells and AML cells, we
found that 4,667 genes were able to be bound by RUNX3 in both
normal bone marrow cells and AML cells. There were 5,845
RUNX3-bound genes that could be found in AML cells but not
in normal bone marrow cells (Figure 4D).

To further explore the difference between RUNX3-bound
genes in normal bone marrow cells and AML cells, Gene
Ontology (GO) enrichment analysis was performed. We found
that most of the 4,667 RUNX3-bound genes in both types of cells
were cell cycle-related genes, but the RUNX3 peak values were
higher in AML cells (Supplementary Figures S4C, D). More
importantly, most of the 5,845 genes specifically bound by
RUNX3 in AML cells were related to DNA repair and the
negative regulation of apoptosis, such as Chek1, Ddb1, Rad51c,
Rpa2, Bcl-2, and Mcl-1 (Figures 4E, F). Surprisingly, many
classical AML-related oncogenes that have been reported were
found to be bound by RUNX3 in AML cells, such as Myc, Cd93
Frontiers in Oncology | www.frontiersin.org 454
(22), Kit, Ikzf2 (23), Fto (24), and Sox4 (25) (Supplementary
Figure S4E). Furthermore, we discovered that RUNX3 tended to
bind with these classical genes related to DNA repair,
antiapoptosis, and leukemogenesis around their promoter areas
(Figure 4F and Supplementary Figure S4E). Interestingly,
RUNX3 bound some classical DNA-repair genes at their
enhancer areas, while it bound no antiapoptotic genes at their
enhancer areas (Supplementary Figure S4F).

These results indicate that RUNX3 probably directly regulates
genes related to cell cycle, DNA repair, and apoptosis in
AML cells.

Runx3 Knockdown Inhibits the Expression
Levels of Genes Involved in DNA Repair,
Antiapoptosis, and Cell Cycle Pathways in
Acute Myeloid Leukemia Cells
To prove the regulatory role of RUNX3 in the expression of DNA
repair, antiapoptosis, and cell cycle-related genes that it binds to,
we detected the expression of the above genes in murine AML cells
under Runx3 knockdown by qRT-PCR. Transcriptional analysis
showed that Runx3 knockdown decreased the expression level of
cell cycle-related genes that RUNX3 binds to, such as Cdk4, Ccnd1,
Ccnd2, Cdk2, Ccna1, and Ccnb1 (36.4%, 21.1%, 52.3%, 52.0%,
29.9%, and 45.4% reduction, respectively) in murine AML cells
(Supplementary Figure S5). More importantly, in murine AML
cells, Runx3 knockdown also significantly reduced the expression
of DNA-repair (Chek1, Ddb1, Rad51c, Rpa2, Rpa3, Xrcc1, and
Xrcc4) (36.4%, 48.7%, 46.4%, 56.8%, 62.1%, 56.3%, and 28.6%
reduction, respectively)- and antiapoptosis (Bcl2, Bcl2l10, Bcl2l12,
and Mcl1) (43.3%, 48.5%, 63.3%, and 43.4% reduction,
respectively)-related genes that RUNX3 binds to only in AML
cells (Figures 5A, B). Consistently, the expression of several genes
associated with leukemogenesis that has been reported was
obviously reduced after RUNX3 knockdown in murine AML
cells (Myc, Kit, and Ikzf2) (63.8%, 62.6%, and 47.1% reduction,
respectively) (Figure 5C).
TABLE 1 | Clinical sample information.

Sample
number

Patient's identifi-
cation number

Age Subtype Tumor burden (%) in BM Red blood cell
(RBC,10^12/L)

White blood cell
(WBC,10^9/L)

Platelet
(10^9/L)

AML
Patients

1 # 695438 29 M5 29.8 66 25.9 55
2# 665972 19 M2 36.3 63 49.9 23
3# 687524 34 M1 75.7 39 36.6 75
4# 742586 49 M5 54.6 38 46.4 45
5# 675823 58 M5 79.2 48 62.1 46
6# 668545 44 M1 68.2 56 66.6 45
7# 698657 35 M1 58.3 44 35.5 68
8# 699982 61 M5 59.1 55 73.2 38
9# 659325 52 M4 27.5 67 21.1 48
10# 695837 61 M4 52.8 50 45.5 61

Sample
Number

Gender Age

Healthy
Volunteers

1# Male 36
2# Female 42
3# Female 21
4# Male 28
5# Male 31
Oc
tober 2021 | Volume 11 | Arti
Clinical sample information of 10 acute myeloid leukemia (AML) patients and five healthy volunteers for Figure 1C.
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A

C D
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FIGURE 2 | Runx3 knockdown inhibits acute myeloid leukemia (AML) progression in vivo. (A) Experimental scheme for investigating RUNX3 role in AML progression
in vivo. (B) qRT-PCR analysis showing Runx3 knockdown in sorted AML cells from bone marrow of scramble control (Vector) and Runx3 knockdown (Runx3 KD)
AML mice at day 45 posttransplantation. Each dot represents a mouse. (C) Western blot analysis showing RUNX3 knockdown. (D) Representative cytometric flow
plots (left) and statistic results (right) show that Runx3 knockdown decreases leukemia burden in peripheral blood (PB) at day 28 posttransplantation (n = 5 mice).
(E) The percentage of green fluorescent protein (GFP)+ AML cells in the PB at day 45 posttransplantation (n = 5 mice). (F) Representative cytometric flow plots (left),
the percentage of GFP+ AML cells (middle), and the number of GFP+ leukemic cells (right) in bone marrow (BM) at day 45 posttransplantation (n = 5 mice).
(G) Representative image of spleen (upper left), liver (bottom left), and quantitative analysis of spleen weight (middle) and liver weight (right) from scramble control and
Runx3 knockdown AML mice (n = 5 mice). (H) Wright–Giemsa staining of blood smear and H&E staining of spleen and liver from scramble control and Runx3
knockdown AML mice. Scale bar: blood smear 20 µm, spleen 300 µm, liver 100 µm. (I) Survival analysis of mice transplanted with scramble control or Runx3
knockdown AML cells. Data shown are combined from two independent transplants. (n = 5 mice). p = 0.0374, log-rank test.
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Taken together, these results illustrate that Runx3 knockdown
inhibits the expression levels of cell cycle-, DNA repair-,
antiapoptosis-, and leukemogenesis-related genes in AML cells.
DISCUSSION

Genetic and epigenetic abnormalities drive leukemogenesis and
determine the prognosis of AML (4). They are complex and
dynamically evolving (26). There is still much work to do to
uncover the full genetic and epigenetic landscape of AML. In our
study, we found that RUNX3 was an obvious highly expressed
gene in AML cells. According to TCGA-LAML database, the
high expression of RUNX3 was positively related to poor
prognosis of AML patients. These discoveries suggest a
potential role of RUNX3 in AML progression.

As reported, diverse solid tumors, including gastric, colorectal,
lung, and bladder cancers, exhibit low expression of RUNX3 (27).
LowexpressionofRUNX3 is causedbygenedeletionandepigenetic
alteration. Epigenetic alteration is the most common one (28). The
RUNX3 gene is regulated by two promoters, P1 and P2. At the P2
promoter, there is a large CpG island that is often hypermethylated
in tumor cells to silence RUNX3 (29). However, the P2 promoter in
AML cells is unmethylated, and demethylating agents fail to
increase RUNX3 expression level in AML cells (21). Moreover,
Frontiers in Oncology | www.frontiersin.org 656
we discovered that RUNX3 in AML cells was regulated by a super-
enhancer that had strengthened transcriptional regulating ability.
These evidences explain why differs from that in other solid tumor
cells, RUNX3 expression in AML cells is elevated.

The function of RUNX3 in cancers is controversial. Primarily,
RUNX3 was reported as a tumor-suppressor gene in multiple
cancers (12–14). Then, in ovarian cancers and head and neck
cancers, RUNX3 showed oncogenic activity (17, 19). Consistent
with the human information from TCGA database, our results
showed that Runx3 knockdown in MLL-AF9-induced AML cells
retarded AML progression. This indicates that RUNX3 probably
plays a pro-tumor role in AML. RUNX3 regulates transcription by
binding enhancers and promoters (11). So, we performedChIP-seq
in both murine normal bone marrow cells and AML cells to
investigate the mechanism of the oncogenic activity of RUNX3 in
AML.We further discovered that compared to that in normal bone
marrow cells, RUNX3 in AML cells tended to bind genes enriched
in DNA repair (Chek1, Ddb1, Rad51c, and Rpa2), antiapoptosis
(Bcl2, Bcl2l10, Bcl2l12, andMcl1), and leukemogenesis (Myc, Cd93,
Kit, Ikzf2, Fto, and Sox4) pathways. Myc is a classical oncogene in
various cancers. The activation ofMyc byRUNX3had already been
demonstrated to be the main cause of the oncogenic function of
RUNX3 (30, 31). Also,Ddb1,Chek1, andRad51c are essential genes
involved in DNA-damage repair of AML cells (32, 33). Bcl2 and
Mcl1 are critical antiapoptosis genes and successfully used as
A B

C D

FIGURE 3 | Runx3 knockdown induces DNA damage and apoptosis in AML cells in vivo. (A) Experimental scheme for getting Runx3 knockdown AML cells induced
by MLL-AF9. (B) Representative flow cytometry (FCM) plots and quantitative analysis show the percentage of g-H2AX+ cells in scramble control and Runx3 knockdown
AML cells (n = 5 mice). (C) CLSM images of g-H2AX expression and quantification of g-H2AX foci per cell (30 cells in each group) in scramble control and Runx3
knockdown AML cells. Nuclear DNA was counterstained with DAPI. Scale bar = 50 mm. (D) Runx3 knockdown increases apoptosis. Representative FCM plots (left)
and statistical results (right) show the percentage of apoptotic cells in scramble control and Runx3 knockdown AML cells. Bone marrow cells were stained for Annexin
V and 7-AAD (n = 5 mice).
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treatment targets for AML (34). We demonstrated that in murine
AML cells, RUNX3 mainly bound these classical genes at their
promoter sites. With combined analysis of public datasets of
H3K27ac ChIP-seq, we discovered that RUNX3 bound some key
DNA-repair factors at their enhancer areas. However, we failed to
findRUNX3 that bound any antiapoptotic factors at their enhancer
areas. Our results further proved that Runx3 knockdown
significantly downregulated the expression of these DNA-repair
and antiapoptotic genes in murine AML cells. This suggests that
RUNX3directly upregulates the expressionofDNA-repair genes by
controlling both their promoters and enhancers while upregulating
the expression of antiapoptotic genes only by controlling their
promoters. Decreased expression of DNA-repair genes resulted in
increased DNA damage, which ultimately collaborated with the
influence of reduced antiapoptotic factors to inducemore apoptosis
of AML cells in vivo. Also, our results showed that RUNX3
Frontiers in Oncology | www.frontiersin.org 757
knockdown slightly disturbed the normal cell cycle of AML cells
in vivo. Altogether, we elucidate that RUNX3 promotes AML
progression not only by activating Myc transcription but also by
directly regulating oncogene network covering DNA repair and
apoptosis. Further studies are warranted to determine the detailed
mechanism of how RUNX3 regulates the oncogene network.

Collectively, our study identified RUNX3 as an oncogene in
AML, which conferred a new treatment target for AML therapy.
MATERIALS AND METHODS

Animals
The C57BL/6 mice and CD45.1 mice (6–8 weeks old, weighing
18–22 g) were all raised in the specific pathogen-free (SPF)-level
animal breeding facility of the Experimental Animal Center of
A B

C

E F

D

FIGURE 4 | RUNX3 specifically to DNA repair and anti-apoptosis related genes only in AML cells. Chromatin immunoprecipitation sequencing (ChIP-seq) results for
RUNX3 in whole bone marrow cells from normal mice or MLL-AF9 AML mice. (A) Experimental scheme. (B) Number of RUNX3 ChIP-seq peaks and genes identified
by HOMER. (C) Pie charts show the genomic distribution of ChIP-seq peaks for RUNX3 in whole bone marrow cells from normal mice (left) or MLL-AF9 AML mice
(right). Representation of the annotated regions is shown for comparison. (D) Venn diagram of the RUNX3-bound 5,348 genes in normal bone marrow cells and the
RUNX3-bound 10,512 genes in AML bone marrow cells. (E) Gene Ontology (GO) term enrichment analysis of 5,845 genes that can be bound by RUNX3 in leukemia
cells but not be bound in normal bone marrow cells. (F) Genome browser views of the distribution of RUNX3 ChIP-seq peaks in DNA repair (Chek1, Ddb1, Rad51c,
and Rpa2)- and antiapoptosis (Bcl-2 and Mcl-1)-related gene loci.
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Zhongshan Medical College, Sun Yat-sen University. All
experimental procedures followed the experimental guidelines
outlined in the Animal Care Principles and were approved by the
Animal Care and Use Committee of Sun Yat-sen University.

Definition of Enhancers and
Super-Enhancers
We downloaded H3K27ac ChIP-seq data from a public database
(NE SRR1915572, MO SRR787551, HSPC SRR2094192, AML1#
SRR3503794, AML2# SRR3503797, AML2# SRR3503801, mouse
GSE117443). Enhancers were stitched, and super-enhancers
were identified using ROSE (https://bitbucket.org/young_
computation/rose). Briefly, constituent enhancers were stitched
together if they are within a certain distance and ranked by their
input-subtracted signal of H3K27ac. And then, we separated
super-enhancers from typical enhancers by identifying an
inflection point of H3K27ac signal; the slope here was 1. We
run ROSE with a stitching distance of 12,500 bp and allowed
enhancers within 12,500 bp to be stitched together. In addition,
we used a transcription start site (TSS) exclusion zone of 5,000
bp. Finally, Rose GeneMapper tool was used to annotate the
genes within the 50-kb range of the super-enhancers.

Survival Analysis of the Genes in The
Cancer Genome Atlas Dataset
LAML data from TCGA were used to perform validation with the
Gene Expression Profiling Interactive Analysis (GEPIA) database
(http://gepia.cancer-pku.cn) (35). Furthermore, Kaplan–Meier
curves were generated from the GEPIA database. The overall
Frontiers in Oncology | www.frontiersin.org 858
survival (OS) was estimated using the log-rank test, and p-value
<0.05 was considered to denote statistically significant data.

Patient Specimens
The AML patients’ specimens used in this study were derived
from the routine clinical management in the Third Affiliated
Hospital, Sun Yat-sen University. The procedure was approved
by the ethics committee of the Third Affiliated Hospital, Sun Yat-
sen University in accordance with the international guidelines
and the ethical standards outlined in the Declaration of Helsinki.
Mononuclear cells were isolated from the patient bone marrow
with Ficoll-Hypaque and then processed to extract mRNA.

Quantitative RT-PCR
Total mRNA was extracted from sorted GFP+ cells using
MagZol™ Reagent (R4801-03, Magen) according to the
manufacturer’s instructions. mRNA purity and quantity were
determined with NanoDrop (Thermo Scientific) before qPCR
analysis. For qRT-PCR, equal amounts of mRNA samples were
reverse transcribed into cDNA using the TransScript All-in-One
First-Strand cDNA Synthesis SuperMix for qPCR (One-Step
gDNA Removal) Kit (AT341, Transgen). Quantitative real-
time PCR was performed on Bio-Rad CFX96 Touch™ Real-
Time PCR Detection system using SYBR Green I Master Mix
reagent (11203ES03, YEASEN).

Western Blotting
The same number of GFP+ bone marrow cells from control or
Runx3 knockdown AML mice was sorted into phosphate buffered
A

B C

FIGURE 5 | Runx3 knockdown inhibits the expression levels of genes involved in DNA repair and anti-apoptosis pathways in AML cells. (A–C) The relative mRNA
expression level of DNA repair (A), antiapoptosis (B), and leukemogenesis (C) related genes that RUNX3 binds to only in AML cells. Data represent mean ± SEM of
six mice. **p < 0.01, ***p < 0.001. ns, not significant.
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saline (PBS) with 2% fetal bovine serum (FBS). The cells then were
washed with PBS and lysed by radio immunoprecipitation assay
(RIPA). Equal amounts of protein extracts were fractionated by
10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to a polyvinylidene fluoride (PVDF)
membrane (IPVH00010, Merck Millipore). After being blocked
with 5% non-fat milk in Tris-buffered saline with Tween-20
(TBST, pH 7.6) for 1 h at room temperature, the membranes
were incubated with primary antibodies: anti-RUNX3/AML2
(D6E2) (mouse, 1:1,000, 9647, Cell Signaling Technology) and
anti-b-actin (rabbit, 1:1,000, 4970, Cell Signaling Technology)
overnight at 4°C and then incubated with secondary antibodies
(rabbit, 1:10,000, W401B, Promega; mouse, 1:10,000, W402B,
Promega) for 1 h at room temperature. The blots were detected
by X-ray film or digital imaging system (Odyssey Fc).

Acute Myeloid Leukemia Mouse Model
The 293T cells were transfected with retroviral plasmids MSCV-
MLL-AF9-IRES-GFP containing MLL-AF9 and GFP cDNA
sequences. Bone marrow cells from C57 mice treated with 5-
fluorouracil (5-FU) for 5 days were infected with retrovirus twice
with 24-h interval. The 400K infected cells were mixed with 100K
protective cells to intravenously inject into WT recipient mice
irradiated with a 9-Gy lethal dose. The number of animals used
per experiment is shown in the figure legends.

Constructs
Runx3 knockdown shRNA (GAAGAGTTTCACGCTCACAAT)
was cloned into pLKO.1-puro (8453, Addgene). Runx3
knockdown and control lentivirus were prepared by HEK293T
transfected by pLKO.1-puro together with psPAX2, pMD2G
packaging vectors. MLL-AF9-GFP+ bone marrow cells were
harvested from AML mice at 35 days after transplantation.
These cells were infected with Runx3 knockdown or control
lentivirus and further selected by 1 mg ml-1 puromycin for 72 h.
The 200K GFP+ cells screened by puromycin were mixed with
100K protective cells to intravenously inject into CD45.2+

recipient mice irradiated with a 4.5-Gy sublethal dose.

g-H2AX Immunofluorescence Staining
The cells were transferred to a glass slide and allowed to stand for
1 h to make the cells adhere to the glass slide. After fixation with
4% paraformaldehyde (PFA) for 15 min, cells were
permeabilized with 0.5% Triton X-100 at room temperature for
30 min, blocked with 10% goat serum solution at room
temperature for 1 h, washed, and incubated with g-H2AX
primary antibody (Biolegend, Cat 613404) overnight. After
that, the secondary antibody was added dropwise and
incubated at room temperature for 1 h, and the high-speed
confocal imaging system (Dragonfly CR-DFLY-202 2540) was
used for imaging. The g-H2AX foci in 30 cells were counted in
each group.

Flow Cytometry
Take 20–30 ml of peripheral blood through the tail vein of the
mouse and add to the anticoagulation tube. Take the bone
marrow cells from the femur and tibia of the sacrificed mice.
Frontiers in Oncology | www.frontiersin.org 959
The red blood cells were lysed, and the bone marrow cells were
filtered using a 100-mm cell strainer. Monoclonal antibodies to
Mac-1 (M1/70, Biolegend), Gr-1 (RB6-8C5, Biolegend), c-Kit
(2B8, Biolegend), Lin mix (Gr1, CD4, CD3, CD8a, Ter119, B220,
IgM) (Biolegend), CD34 (MEC14.7, Biolegend), Sca1 (D7,
Biolegend), FcgRII/III (93, Biolegend), IL-7Ra (A7R34,
Biolegend) (all used as 50 ng per million cells) were used
where indicated. After incubation with antibodies, the samples
were analyzed using the Attune NxT flow cytometer (Thermo),
and the results were analyzed using FlowJo software. Here, 7-
aminoactinomycin D (7-AAD) (A1310, Life Technologies) was
used to exclude dead cells.

Chromatin Immunoprecipitation
Bone marrow cells were harvested fromMLL-AF9-induced AML
mice 35 days after transplantation, and bone marrow cells from
normal syngeneic mice with the same age served as controls, five
mice for each group. Here, 1% formaldehyde in PBS was used to
crosslink the cells for 10 min, followed by quenching with 125
mM glycine on ice. Cells were collected and flash frozen in liquid
nitrogen, then stored at -80°C for use. Frozen crosslinked cells
were thawed on ice and then resuspended in lysis buffer I (50
mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10%
glycerol, 0.5% NP-40, 0.25% Triton X-100, protease inhibitors).
After rotating for 10 min at 4°C, the cells were collected and
resuspended in lysis buffer II (10 mM Tris-HCl pH 8.0, 200 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, protease inhibitors). After
rotating for 10 min at 4°C, the cells were collected and
resuspended in sonication buffer (20 mM Tris-HCl pH 8.0, 150
mM NaCl, 2 mM EDTA pH 8.0, 0.1% SDS, 1% Triton X-100,
protease inhibitors) for sonication. Sonicated lysates were cleared
once by centrifugation at 16,000 g for 10 min at 4°C. Input
material was reserved as control. The remainder was incubated
with magnetic beads bound with anti-RUNX3/AML2 (D6E2)
antibody (mouse, 1:1,000, 9647, Cell Signaling Technology) to
enrich for DNA fragments overnight at 4°C. Beads were washed
with wash buffer (50 mM HEPES-KOH pH 7.5, 500 mM LiCl, 1
mM EDTA pH 8.0, 0.7% Na-deoxycholate, 1% NP-40) and TE
buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 50 mM NaCl) in
order. Beads were removed by incubation at 65°C for 30 min in
elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS).
Crosslinks were reversed overnight at 65°C. To purify eluted
DNA, 200 ml TE was added, and then RNA was degraded by
incubation in 8 ml 10 mg/ml RNase A at 37°C for 2 h. Protein was
degraded by addition of 4 ml 20 mg/ml-1 proteinase K and
incubation at 55°C for 2 h. Phenol:chloroform:isoamyl alcohol
extraction was performed followed by an ethanol precipitation.
The DNA was then resuspended in 5 0ml TE. Library
preparation was performed with a DNA Library Prep Kit
(Vazyme, #TD501); libraries were amplified for seven cycles
and were size-selected with Beckman AMPure XP beads. Two
biological replicates were performed for each group.

ChIP-Seq Data Analysis
We aligned the ChIP-Seq data to the mm9 reference genome by
bowtie2 with default parameter, followed by removing the
multiple aligned reads, PCR duplications with samtools. To
October 2021 | Volume 11 | Article 725336

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. RUNX3 Promotes AML
eliminate the impact of “Problematic genomic regions”, we
downloaded the ENCODE blacklist (Consortium, 2012) and
discarded the reads aligning this region through bedtools.
Finally, we used macs2 to calling peaks with control, setting a
q value cutoff of 0.05.

Gene Ontology Analysis
To find the GO terms enriched in RUNX3-bound genes, The
clusterProfiler (36) package in R was utilized for the
identification and visualization of enriched pathways among
differentially expressed genes identified as described above. The
functions “enrichGO” were used to identify overrepresented
pathways based on the GO databases. Significance in the
enrichment analysis was based on p.adjust <0.05. For
Figures 4E, G, we reported 10 significant GO Biological
Process terms and their associated q values.

Statistics
Data are expressed as means ± SEM. For all experiments, except
the determination of survival, data were analyzed by Student’s t-
tests, and differences were considered statistically significant if
p < 0.05. The survival of the two groups was analyzed using a log-
rank test, and differences were considered statistically significant
if p < 0.05. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplementary Figure 1 | RUNX3 is super-enhancer-associated gene in AML
cells. Enhancers in three normal blood cells and three AML cells ranked based on
H3K27ac signal intensity.

Supplementary Figure 2 | Runx3 knock-down is on the target. The relative
mRNA expression level of Runx1 and Runx2 in sorted scramble control (Vector) and
Runx3 knock-down (Runx3 KD) AML cells. Data represent mean ± s.e.m of 6 mice.
ns, not significant.

Supplementary Figure 3 | Runx3 knock-down impedes cell cycle progression in
AML cells. Representative FACS plots (left) and quantitative analysis (right) of cell
cycle in scramble control (Vector) and Runx3 knock-down (Runx3 KD) AML cells at
day 45 post-transplantation (n=5 mice).

Supplementary Figure 4 | RUNX3 binds to cell cycle related genes and AML-
related oncogenes both in normal bone marrow cells and AML cells. (A, B) Cell
surface marker analysis of primary AML cells for ChIP-seq. Flow analysis of the bone
marrow cells from AML mice 35 days after primary transplantation. The most
commonly markers were used, such as GFP+CD11b+Gr-1+, GFP+c-Kit+, Gr-1-c-
Kit+ (A), and GFP+Lin-Sca-1-IL-7R-c-Kit+CD34+FcgRII/IIIhigh (B) leukemia stem
cells. (C)GO term enrichment analysis of 4667 genes that can be bound by RUNX3
in both normal bone marrow cells and AML cells. (D) Genome browser views of cell
cycle related genes (Mki67, Cdkn1b, Cdk4, and Ccnd1) loci showing the
distribution of RUNX3 ChIP-seq peaks. (E) RUNX3 directly binds to AML-related
oncogenes. Genome browser views of AML-related oncogenes (Myc, Cd93, Kit,
Ikzf2, Fto and Sox4) loci showing the distribution of RUNX3 ChIP-seq peaks.
(F) Genome browser views of the distribution of RUNX3 and H3K27ac ChIP-seq
peaks in DNA repair (Rad54b, Rad51c, Chek1 and Ddb2) and anti-apoptosis (Bcl-2
and Mcl-1) related gene loci.

Supplementary Figure 5 | Runx3 knock-down inhibits the expression levels of
cell cycle-related genes in AML cells. The relative mRNA expression level of cell
cycle related genes which RUNX3 binds to in sorted scramble control (Vector) and
Runx3 knock-down (Runx3 KD) AML cells. Data represent mean ± s.e.m of 6 mice.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Acute Myeloid Leukemia Epigenetic
Immune Escape From Nature Killer
Cells by ICAM-1
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Zhiding Wang3*, Lixin Wang2* and Li Yu1,2*
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University Health Science Center, Shenzhen University, Shenzhen, China, 3 Beijing Institute of Basic Medical Sciences,
Beijing, China

Acute myeloid leukemia (AML), a malignant disorder of hemopoietic stem cells. AML can
escape immunosurveillance of natural killer (NK) by gene mutation, fusions, and epigenetic
modification, while the mechanism is not clearly understood. Here we show that the
expression of Intercellular adhesion molecule‐1 (ICAM‐1, CD54) is silenced in AML cells.
Decitabine could upregulate ICAM-1 expression, which contributes to the NK-AML cell
conjugates and helps NK cells kill AML cells. We also show that ICAM-1 high expression
can reverse the AML immune evasion and activate NK cells function in vivo. This study
suggests that a combination of the hypomethylating agent and NK cell infusion could be a
new strategy to cure AML.

Keywords: AML, ICAM-1, NK, methylation, immune escape
HIGHLIGHTS

• AML can escape immunosurveillance. The mechanism of AML immune evasion is not clearly
understood.

• The expression of ICAM-1 is silenced, which could be reversed by decitabine. Thus, decitabine
can help NK cells recognize and kill AML cells, which reverses AML immune evasion.

• This study suggests that the hypomethylating agent decitabine in combination with NK cell
infusion may be a working strategy to cure AML.
BACKGROUND

AML is a heterogeneous disease from the biological and clinical standpoint with increasing
incidence, high mortality, and a very poor prognosis (1, 2). Current therapies show also a high
rate of relapse (3). AML has neoplastic changes and clonal proliferation due to gene mutation,
fusions, and epigenetic modification, ultimately resulting in the inhibition of normal hematopoiesis
and escape from immunosurveillance (4).
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Immunotherapy based on mechanisms of immune
surveillance has been recognized as a potential therapeutic
strategy for numerous cancer elimination (5). Immunotherapy
with strategies aimed at boosting the immune response has
pushed NKs into the spotlight (2). Intercellular adhesion
molecule‐1 is a membrane glycoprotein of the Ig superfamily
and plays an important role in inflammatory processes and
immune responses (6). Studies showed that promoting the
NK-AML cell conjugate formation by upregulating
lymphocyte-function associated (LFA) antigen expression on
NK cells and by inducing ICAM-1 expression on AML cells
could increase their cytotoxic activities (7). Thus, restoring
ICAM-1 expression in AML may combine the benefit of
targeting AML cells and NK-mediated killing. However,
limited studies are relating to how to increase the ICAM-1
expression on the surface of AML cells.

Decitabine is a valuable treatment option in AML patients (8).
An important mechanism of tumor immune response evasion by
cancer cells lies in their ability to display the loss of antigenicity,
resulting in less potent for immune cells and substances in cancer
elimination (5). A hypomethylating agent has favorable effects
on anti-tumor immune response by reactivating the tumor
suppressor genes (9). Hypomethylating agents such as
decitabine have favorable effects on anti-tumor immune
evasion response and limit the ability of cancer cells to alter
the expression of tumor-associated antigens by regulating a
range of immunomodulatory pathway-related genes (10).

In our previous studies, we found AML was epigenetic
silenced (11–13) and could escape immunosurveillance by
CD80 (14) and CD48 (15, 16). In this study, we found ICAM-I
was also epigenetic silenced in AML and escaped the NK cell
killing function. Decitabine is implicated in the regulation of
ICAM-1 expression and reverses the AML-NK dysfunction.
MATERIALS AND METHODS

Mice
Male BALB/c mice (6- to 8-weeks-old) were obtained from SPF
(Beijing) Biotechnology. All the mice were bred and maintained
in the Laboratory Animal Center of Chinese PLA General
Hospital, under specific pathogen-free conditions and were
treated in strict compliance with the guidelines for the care
and use of laboratory animals set out by the Laboratory Animal
Center of Chinese PLA General Hospital, the protocol was
approved by the Committee on the Ethics of Animal
Experiments of Chinese PLA General Hospital (16). All the
efforts were made to minimize suffering.

For the in vivo study, mice were separated into three groups
(five each), and each mouse was injected intravenously (i.v.) with
WEHI-3 (2.5×105) on Day 1. For decitabine treatment, each
mouse was injected intraperitoneally (i.p.) 0.5 mg/kg/day from
Day 1 to Day 3. For NK cell infusion, NK cells were separated
from the spleen by the NK Cell Isolation Kit (Miltenyi), and each
mouse was injected intravenously (i.v.) with 1×106 NK cells on
Day 3. For the observation of the tumor burden in the mouse
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spleen and liver, the mice were sacrificed by CO2 inhalation on
Day 17 after WEHI-3 injection, when the mice of the control
group started to paralyze and be dying. Isoflurane inhalation was
used for any anaesthetization. Spleen and liver were stained with
H&E for histological analysis.

Database Analysis
173 AML patients’ and 70 healthy donors’ samples were analyzed
the ICAM-1 RNA sequencing expression data of The Cancer
Genome Atlas (TCGA) database by GEPIA (17).

Cell Culture
Human cell lines NK92, HL60, and NB4 cells were maintained in
RPMI 1640 medium and mouse cell line WEHI-3 cells were
maintained in DMEM medium, supplemented with 50 mg/mL
streptomycin, 50 IU penicillin, and 10% fetal bovine serum. All
the cell lines are obtained from ATCC and culture at 37°C in 5%
CO2. For decitabine stimulation, the cell lines were cultured with
decitabine for 72 h and decitabine was re-supplement every 24 h.
Human cell lines (HL60 and NB4) were cultured with 1 mmol/
mL decitabine. The mouse cell line WEHI-3 was cultured with
0.25 mmol/mL decitabine.

RNA Extraction and Analysis
Total RNA was extracted from cells using the TRIzol RNA
Isolation Reagents (Thermo Fisher Scientific). RNA was
reverse-transcribed in a 25 mL reaction volume using AMV
Reverse Transcriptase (Promega), and then cDNA was
amplified using KAPA SYBR FAST qPCR Kits (Kapa
Biosystems). The relative expression of the gene of interest was
determined using the 2–DDCt method, with GAPDH as the
internal control (18). The primers used were: Human ICAM-1:
Forward: GGCATTGTTCTCTAATGTCTCCG, Reverse:
GTCGAGCTTTGGGATGGTAG; Mouse ICAM-1: Forward:
TTGGGCATAGAGACCCCGTT, Reverse: GCACATTGCT
CAGTTCATACACC; 18S: Forward: TTGACGGAAGGGC
ACCACCAG, Reverse: CATACCAGGAAATGAGCTTGA.

Cytometric Analysis
All the cell experiments were prepared on ice and cells were
washed with FACS buffer. All the samples were incubated with
2.4G2 anti-Fc receptors (BD Pharmingen) before incubation
with other antibodies. Fluorescence conjugated anti-mouse
CD54 (Biolegend, YN1.7.4) and Pacific Blue anti-human
ICAM-1 (Biolegend, HA58) antibodies were used. All the flow
cytometry data were acquired with NAVIOS (BECKMAN) and
analyzed by FlowJo software (Tree Star).

NK Cells Isolation
The NK Cell Isolation Kit (Miltenyi) was used for the untouched
isolation mouse NK cells from spleen cells, which were activated
by IL-2 and incubated in 5% CO2 for 24 hours.

The Adhesion Between NK Cells and
WEHI-3 Cells
NK cells were divided into PBS and Decitabine (DAC) groups.
The WEHI-3 cells that were treated or untreated with decitabine
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from Day 1 to Day 3 were collected on Day 4. The PBS and DAC
groups of WEHI-3 were added into each well of NK cells. WEHI-
3 untreated with decitabine and without NK cells was considered
as a blank group for cytometric analysis.

NK Killing Assay
NK killing assay was described previously (16). In brief, the
control cells were stained with CellTrace CFSE Cell Proliferation
Kit (ThermoFisher Scientific), and the Decitabine treated cells
were stained with CellTrace Far-red (ThermoFisher Scientific).
Then the control cells and the Decitabine treated cells were
plated on a 96-well plate. For ICAM-1 blocking, 20 mg/mL of
anti-mouse ICAM-1 antibody (Biolegend, YN1/1.7.4) were
added to each well. Then NK cells were added to each well and
20-24 h later the samples were analyzed by Flow Cytometer.
Human cell lines (HL60 and NB4) were co-cultured with NK92
cells. The mouse cell line WEHI-3 was cultured with NK cells
separated from mouse. The No NK group as control, the ratio of
NK group was decitabine treated and untreated cell co-culture
with NK cells. The CON and anti-ICAM-1 groups were
percentages (1- normalized Treated/Untreated). The CON
means the specific killing of decitabine treated and untreated
cell co-culture with NK cells. The anti-ICAM-1 group means the
specific killing of decitabine treated and untreated cell co-culture
with NK cells and ICAM-1 antibody blocking.

Statistical Analysis
Data were expressed as the mean ± standard deviation.
Differences between groups were analyzed using the t-test. The
mouse model survival analysis was showed as Kaplan-Meier. A
P-value less than 0.05 was considered to be significant. GraphPad
Prism software (version 7.00) was used for All the statistical
procedures. All the flow cytometry data were analyzed by
FlowJo-V10 software.
RESULTS

ICAM-1 Silenced in AML Patients and
Reversed by Hypomethylating
To determine the role of ICAM-1 in the AML patients, ICAM-1
mRNA expression was analyzed in the bone marrow or
peripheral blood of 70 healthy controls and 173 AML patients
from The Cancer Genome Atlas (TCGA) by GEPIA (16, 17).
ICAM-1 mRNA expression was significantly lower in patients
than in normal healthy individuals (Figure 1A). ICAM-1
expression on AML cells could increase NK cells cytotoxic
activities. reversed the ICAM-1 expression could inhibit the
AML immune escape. Q-PCR analysis showed that the
hypomethylating agent decitabine can increase ICAM-1
mRNA expression on AML cell lines HL60 (p < 0.0001), NB4
(p < 0.0001), and WEHI-3 (p = 0.0006). The Q-PCR results
(Figures 1B–D) showed that decitabine increased ICAM-1
mRNA expression, which was confirmed by FACS analysis for
protein expression on the surface of HL60, NB4, and WEHI-3
cells (Figures 1E–G). These findings indicate that decitabine
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increases ICAM-1 expression and reveals a novel mechanism of a
therapeutic hypomethylating agent for AML. By the Bisulfite
Sequencing PCR analysis, WEHI-3 gene promoter methylation
was decreased by decitabine treatment (Figures 1H, I). Thus,
this hypomethylating agent could increase the ICAM-1
expression by decrease promoter methylation. Thus, decitabine
may restore ICAM-1 expression and inhibit AML immune
evasion from NK cells.

Decitabine Inhibits AML Immune Escape
From NK Cells by ICAM-1
To determine if decitabine influence the NK cell to find AML,
WEHI-3 cells were treated or untreated with decitabine and co-
cultured with sorted NK cells (Figure 2A). FACS analysis
showed that the adhesion ratio between NK cells and WEHI-3
treated with DAC was enhanced (p = 0.0009), with the PBS as the
control group (Figure 2B). The cells that adhere to NK cells
account for 9.29% among the WEHI-3 cells treated with DAC,
while 1.26% among the WEHl-3 cells treated with PBS. And the
data showed that the NK cell killing rate increased significantly.
NK cells can kill more HL60 (Figure 2C), NB4 (Figure 2D) and
WEHI-3 (Figure 2E) cells treated with decitabine than cells
treated with PBS. To determine whether decitabine inhibits AML
immune escape through ICAM-1 in vitro, WEHI-3 cells were
treated with or without decitabine, then co-cultured with mouse
NK cells with or without the ICAM-1 antibody to block ICAM-1.
The NK cell killing function was inhibited by ICAM-1 antibody
blockage (Figure 2F). Thus, decitabine could increase NK cell
killing via ICAM-1 in vitro.

AML Immune Evasion Was Decreased by
ICAM-1 In Vivo
To determine whether decitabine could inhibit AML immune
escape in vivo, BALB/c mice were injected with WEHI-3 and
mouse NK cells, and their survival and tumor burden was
monitored. The mice were randomly divided into control,
DAC, and DAC + ICAM-1 antibody groups (n = 5). Firstly, to
assessing survival, the mice were bred until the first signs of
paralysis determined the end of observation for each mouse. The
survival of the DAC group was significantly longer compared to
the control (Figure 3A, Kaplan-Meier, p = 0.0019). When
injected with the ICAM-1 antibody, the survival time of the
DAC + ICAM-1 antibody group decreased compared to the
DAC group (p = 0.0278). These findings indicate that decitabine
could increase mouse survival time via ICAM-1 in vivo. To assess
tumor burden and invasion in the spleen, the mice were
sacrificed on the 17th day after the WEHI-3 injection. After
WEHI-3 inoculation, the AML cells invaded the spleen and liver,
formed extramedullary masses. The number of tumor masses in
the DAC group decreased compared to the control group
(p = 0.0003) (Figures 3B, C). When injected with the ICAM-1
antibody, the number of tumor masses of the DAC group was
less than the DAC + ICAM-1 antibody group (p = 0.0023)
(Figures 3B, C). H&E staining of livers (Figure 3D) and spleens
(Figure 3E) showed more tumor masses and invasion than the
DAC group. Thus, decitabine could inhibit AML immune
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evasion in the spleen in vivo and improve mouse survival by
increasing ICAM-1 expression on the AML cell surface and
enhancing NK cell killing function.
DISCUSSION

This is the first study that implicates methylation in the
regulation of AML ICAM-1 expression, and we show that the
Frontiers in Oncology | www.frontiersin.org 465
hypomethylating agent decitabine could increase ICAM-1
expression, which in turn reverses AML immune evasion from
NK cells.

Epigenetic modification in cancers is critical for the immune
cell interactions, which including DNA, histone, and chromatin
structure modifications (19). Emerging evidence and our works
(15, 16) show that tumors could use various epigenetic
mechanisms to immune escape. Epigenetic targeting agents are
becoming attractive immunomodulatory drugs and will have
major impacts on immunotherapy. Tumor epigenetics down-
A B
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F

G

I

H

C

FIGURE 1 | ICAM-1 silenced in AML patients and reversed by hypomethylating. (A) The ICAM-1 mRNA Chip analysis of 70 healthy controls (N) and 173 AML
patients (T) (TCGA). Q-PCR anlysis of ICAM-1 mRNA expression in (B) HL-6, (C) NB4, and (D) WEHI-3 cells treated with or without decitabine (mean ± SD, n=4).
FACS analysis of ICAM-1 expression in (E) HL60, (F) NB4, and (G) WEHI-3 (n=3, typical data). (H) Bisulfite sequencing PCR of mouse ICAM-1 methylation
sequencing fragment. (I) Methylation rate of WEHI-3 treated and untreated with DAC reached 20% [left] and 6.92% [right], respectively.
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regulation antigen-presenting (20) and other immune molecular,
which become invisible to T cell and other immune cells.
Hypermethylation can reverse the MHC-I antigen presentation
(21). In our previous studies, AML cells can escape
immunosurveil lance of NK cells by downregulating
CD48 expression on AML cell surface (16). AML cells with
downregulated CD48 through epigenetic modification increase
DNA methylation and decrease histone acetylation (15).

NK cells play a vital role in AML eradication. Increased
ICAM-1 expression contributes to the NK-AML cell conjugates
Frontiers in Oncology | www.frontiersin.org 566
and helps NK cells kill AML cells. Other mechanistic studies
also reveal that the increased cytotoxic activity correlates with
an increased conjugate formation by upregulating LFA
expression on NK cells and by inducing ICAM-1 expression
on AML cells (7).

The expression of ICAM-1 on AML cells is silenced, while
our findings showed that decitabine could upregulate ICAM-1
expression on AML cells and inhibit AML immune evasion.
The mechanism of hypomethylating agent decitabine on
ICAM-1 expression is still unclear and required to be
A

B
D

E

F

C

FIGURE 2 | ICAM-1 expression and NK killing rate increased by hypomethylating in vitro. (A) Purity of NK cells before and after magnetic bead sorting. (B) The
adhesion between NK cells and DAC WEHI-3 cells was significantly enhanced (mean ± SD, n=3, repeat three times). DAC enhanced NK cells’ sensitivity to (C) NB4,
(D) HL60, and (E) WEHI-3, cells (mean ± SD, n=4). (F) The NK cell killing rate of decitabine treated or untreated with WEHI-3 cells, and then co-cultured with NK
cells with or without the ICAM-1 antibody to block ICAM-1 for 24h (mean ± SD, n=4). *p < 0.05, **p < 0.01, ****p < 0.0001.
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explored. Our findings indicated that decitabine may be
potentially utilized to modulates the immune system and help
to cure AML with other drugs.
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FIGURE 3 | ICAM-1 inhibits AML immune escape in vivo. (A) Survival of BALB/c mice injected with WEHI-3 cells supplemented or not supplemented with ICAM-1
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LukS-PV Induces Apoptosis via
the SET8-H4K20me1-PIK3CB
Axis in Human Acute Myeloid
Leukemia Cells
Liang Fei Xu1†, Lan Shi1†, Shan Shan Zhang1, Peng Sheng Ding1, Fan Ma1, Kai Di Song1,
Ping Qiang1, Wen Jiao Chang1, Yuan Yuan Dai1, Yi De Mei2 and Xiao Ling Ma1,2*

1 The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of
China, Hefei, China, 2 University of Science and Technology of China, School of Life Sciences and Medicine, USTC Life
Sciences, Hefei, China

Evidence suggests that histone modification disorders are involved in leukemia
pathogenesis. We previously reported that LukS-PV, a component of Panton–Valentine
leukocidin (PVL), has antileukemia activities that can induce differentiation, increase
apoptosis, and inhibit proliferation of acute myeloid leukemia (AML) cells. Furthermore,
LukS-PV inhibited hepatoma progression by regulating histone deacetylation, speculating
that LukS-PV may exert antileukemia activity by targeting histone modification regulators.
In this study, the results showed that LukS-PV induced apoptosis by downregulating the
methyltransferase SET8 and its target histone H4 monomethylated at Lys 20
(H4K20me1). Furthermore, chromatin immunoprecipitation sequencing and polymerase
chain reaction identified the kinase PIK3CB as a downstream target gene for apoptosis
mediated by SET8/H4K20me1. Finally, our results indicated that LukS-PV induced
apoptosis via the PIK3CB-AKT-FOXO1 signaling pathway by targeting SET8. This
study indicates that SET8 downregulation is one of the mechanisms by which LukS-PV
induces apoptosis in AML cells, suggesting that SET8 may be a potential therapeutic
target for AML. Furthermore, LukS-PV may be a drug candidate for the treatment of AML
that targets epigenetic modifications.

Keywords: epigenetics, AML, LukS-PV, apoptosis, SET8
INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of hematopoietic progenitor
cells, which is characterized by immature myeloid cell proliferation and bone marrow failure with a
short course (1). AML occurs predominantly in older adults who are more than 60 years of age (2).
Although hematopoietic stem cell transplantation combined with chemotherapy has substantially
Abbreviations: AML, acute myeloid leukemia; FCM, flow cytometry; ChIP, chromatin immunoprecipitation; SET-NC, SET8
negative control; SET8-OE, SET8 overexpression; SET8-SiRNA, SET8 small interfering RNA.
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improved therapy for young adults, approximately 80% of older
adults still succumb to the disease or related therapeutic toxicity.
Thus, it is important to identify more targeted therapies
for AML.

In recent years, bacterial toxins have received increasing
attention as potential anticancer drugs because of their
specificity and cytotoxicity, and bacterial toxin-containing
anticancer drugs have entered clinical trials (3, 4). Panton–
Valentine leukocidin (PVL) is a two-component pore-forming
cytosolic toxin secreted by Staphylococcus aureus. It was first
discovered by Van de Velde and isolated from hemolysin by
Panton and Valentine in 1932 (5, 6). PVL is composed of LukF-
PV and LukS-PV protein subunits encoded by lukF-PV and lukS-
PV genes, respectively (7). PVL belongs to the pore-forming
toxin family and has been reported to induce lysis of human
polymorphonuclear neutrophils (8, 9). LukS-PV first binds to a
specific receptor on the membrane of neutrophils, and LukF-PV
binds to LukS-PV to form a dimer. The LukS-PV–LukF-PV
dimers combine to form a ring structure, which is inserted into
the cellular membrane and forms a planar vertical
transmembrane pore that induces necrosis and apoptosis (10,
11). Our previous study demonstrated that the LukS-PV subunit
alone did not cause perforation cytotoxicity; however, this
subunit displayed antileukemia activity in vitro and in vivo
without noticeable side effects in mice (12). Sun et al. reported
that LukS-PV regulated microRNA-125a-3p-induced THP-1 cell
differentiation and apoptosis by downregulating NF1 and BCL2
(13). Zhang et al. found that LukS-PV induced AML apoptosis by
targeting the C5a receptor (14). Additionally, LukS-PV induced
differentiation by activating the ERK signaling pathway and c-
JUN/c-FOS in AML cells (15). The above investigations indicate
that LukS-PV exerts antileukemia activity through several
mechanisms and targets, and whether it has other mechanisms
of action deserves further study.

Comprehensive genomic profiling of AML has shown that
dysregulation of histone modifications plays an essential role in
leukemia pathogenesis, and emerging evidence suggests that
histone modification is a major epigenetic determinant for
gene expression and is frequently dysregulated in AML (16).
Moreover, histone modifications are potentially reversible, which
provides opportunities for targeted therapy for AML. DOT1L
methyltransferase inhibitors have been used extensively to
reduce the leukemia burden in a variety of AML models with
mixed lineage leukemia rearrangements (17). Tranylcypromine,
an LSD1 inhibitor, either alone or in combination with all-trans
retinoic acid, disrupted the oncogenic program of mixed lineage
leukemia and induced expression of myeloid differentiation
genes in AML cells with rearrangements (18). These studies
suggest that histone modifications are potentially promising
targets for leukemia therapy. Furthermore, in another study,
we demonstrated that LukS-PV inhibited the proliferation and
induced apoptosis in hepatocellular carcinoma (HCC) cells by
downregulating histone acetylation (19), suggesting that LukS-
PV may regulate histone epigenetic modifiers. However, whether
LukS-PV exerts antileukemia activity by targeting regulators of
histone modification remains unclear. Therefore, in this study,
Frontiers in Oncology | www.frontiersin.org 270
we investigated the underlying molecular mechanisms by which
LukS-PV exerts antileukemia activities to determine whether this
protein regulated histone modifications in AML cells.
MATERIALS AND METHODS

Cell Culture and Reagents
Human acute leukemia cell lines HL-60 and NB4 were obtained
from the Shanghai Institute for Biological Sciences (Shanghai,
China). Cells were cultured in RPMI-1640 medium (Gibco,
Grand Island, NY, USA) supplemented with 10% fetal bovine
serum (HyClone, Logan, UT, USA) and 1% penicillin/
streptomycin in an incubator at 37°C with 5% CO2. The
medium was changed every 2–3 days. The PIK3CB inhibitor
GSK2636771 and SET8 inhibitor UNC0379 were purchased
from MedChemExpress (Shanghai, China).

Total RNA Extraction of Peripheral Blood
From Acute Myeloid Leukemia Patients
and Healthy Individuals
AML patients were diagnosed in accordance with clinical and
laboratory criteria, and healthy individuals with normal physical
examination indices were used as controls. To extract total RNA,
a fivefold volume of erythrocyte lysis buffer was added to fresh
whole blood samples, which were placed on a shaker for 15–20
min. The cells were centrifuged for 5 min at 1,000 rpm, and the
supernatant was discarded. The cell pellet was washed twice with
phosphate-buffered saline (PBS), and the remaining erythrocytes
were re-lysed. Total RNA was extracted using TRIzol
(Invitrogen, Carlsbad, CA, USA) in accordance with the
manufacturer’s instructions. Experiments using samples
derived from AML patients were approved by the Ethics
Committee and Institutional Review Board of University of
Science and Technology of China, Anhui, China (approval
number: 2019-N(H)-101).

RNA Sequencing
Total RNA was isolated from HL-60 cells treated with LukS-PV
or PBS. Paired-end libraries were synthesized using the TruSeq
RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) in
accordance with the manufacturer’s instructions. Briefly, the
mRNA molecules were purified using poly-T oligomers attached
to magnetic beads. Library construction and sequencing were
performed at Shanghai Sinomics Corporation of China.

Separation and Culturing of Primary Bone
Marrow Cells
AML patients were diagnosed in accordance with clinical and
laboratory criteria. Primary AML cells were harvested from the
bone marrow of AML patients immediately after lumbar
puncture. Fresh bone marrow mononuclear cells were isolated
by Ficoll density-gradient centrifugation, resuspended in RPMI-
1640 medium supplemented with 10% FBS, and placed in an
incubator. The primary AML cells were then incubated with
LukS-PV for 24 h.
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Recombinant LukS-PV Production
and Purification
The pET28a vector (Roche Diagnostics Corp., Basel, Switzerland)
wasused togenerate six recombinantHis-taggedLukS-PVproteins.
The LukS-PV sequence was amplified from PVL-positive S. aureus
isolates. PCR products were digested with XhoI and BamHI
(Promega Corp., Madison, WI, USA) and ligated into the pET28a
vector. Recombinant LukS-PV was purified as previously
described (20).

RNA Isolation and Quantitative Real-Time
RT-PCR
Total RNA was extracted using TRIzol (Invitrogen, Carlsbad,
USA) as described above. Reverse transcription was performed
using the RevertAid First Strand cDNA Synthesis Kit
(Fermentas, Vilnius, Lithuania). All quantitative real-time PCR
(qRT-pCR) assays were carried out using a StepOnePlus RT-
PCR system (Applied Biosystems, Carlsbad, CA, USA). Relative
expression levels were quantified using the comparative Ct
method. Gene-specific primer sequences were as follows: SET8:
5′-ACTTACGGATTTCTACCCTGTC-3′ and 5′-CGATGAGG
TCAATCTTCATTCC-3 ′ ; PIK3CB : 5 ′-ATCGCTCTG
GCCTCATTGAAGTTG-3 ′ and 5 ′ -ATGGCTCGGT
CCAGGTCATCC-3′.

Lentiviral Transduction
The lentiviral vectors used for SET8 silencing and overexpression
and PIK3CB overexpression (HanBio, Shanghai, China) were
transduced into HL-60 and NB4 cells. As controls, lentiviral
vectors containing short hairpin RNA sequences targeting a non-
mammalian gene were used. After 48 h of transduction, the cells
were selected using puromycin and cultured.

Flow Cytometric Analysis
To assess apoptosis, cells were harvested by centrifugation at
1,000 rpm for 5 min, washed twice with cold PBS, resuspended in
500 µl of staining buffer, and co-stained with Annexin V-PE and
7-AAD (eBioscience, San Diego, CA, USA) at room temperature
for 15 min in the dark. The cells were analyzed using a
FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes,
NJ, USA). The data were analyzed using FCS Express software
(De Novo Software, Pasadena, CA, USA).

Western Blotting
Cells were lysed in radioimmunoprecipitation assay (RIPA) lysis
buffer containing 1% phenylmethylsulfonyl fluoride (Beyotime,
Shanghai, China) on ice for 30–60 min and centrifuged at 12,000
rpm for 5 min, and the pellet was discarded. The protein samples
were boiled in sodium dodecyl sulfate (SDS)-loading dye for 15
min. The proteins were separated by SDS–polyacrylamide gel
electrophoresis (SDS-PAGE) and electro-transferred onto a 0.45-
µm nitrocellulose membrane (Millipore, Bedford, MA, USA).
The membranes were blocked with Protein Free Rapid Blocking
Buffer (EpiZyme, Jiangsu, China) and subsequently probed with
primary antibodies. The primary antibodies used were as follows:
rabbit anti-human SET8 (#2996), anti-PIK3CB (#3011), anti-
Frontiers in Oncology | www.frontiersin.org 371
FOXO1 (#2880), anti-AKT (#4685), anti-p-AKT (#4060), and
anti-BAK (#12105), anti-histone H4 (#13919), anti-BCL2
(#15071), and anti-GAPDH (#51332) purchased from Cell
Signaling Technology (Beverly, MA, USA) and anti-
H4K20me1 (Abcam; #ab177188; Cambridge, UK). Thereafter,
the membranes were washed and incubated with the appropriate
horseradish peroxidase-conjugated secondary antibody for 1.5 h
at room temperature. Immunoreactive bands were visualized
using an enhanced chemiluminescence detection system.

Chromatin Immunoprecipitation
Sequencing Assay and Chromatin
Immunoprecipitation–PCR
Approximately 4 × 106 HL-60 cells were fixed with 1%
formaldehyde and subjected to chromatin immunoprecipitation
(ChIP) with a ChIP grade anti-H4K20me1 antibody (Abcam;
#ab177188) using the SimpleChIP enzymatic ChIP kit (Cell
Signaling Technology, #9003) in accordance with the
manufacturer ’s instructions. Input and H4K20me1-
immunoprecipitated chromatin samples were sequenced at
GeneSky Biotechnologies, Inc. (Suzhou, China). The gene-specific
primer sequences used for ChIP-PCR were as follows: PIK3CB:
5 ′ - G GAAGAGCGGAATC TC TCGG - 3 ′ a n d 5 ′ -
GCACGGCCTTTCCTAACTCT-3′. The PCR reaction program
was as follows: initial denaturation at 95°C for 3 min followed by
40 cycles of denaturing at 95°C for 15 s and annealing/extension at
60°C for 60 s per cycle. The %Input = 2% * 2^(CTInput sample −
CTIP sample).

Xenograft Mouse Assay
Male BALB/c nude mice (4 weeks old) were obtained from
GemPharmatech, Ltd. (Nanjing, Jiangsu, China) and
maintained in a specific pathogen-free facility at the
Laboratory Animal Center of Anhui Medical University, and
care was in accordance with institution guidelines. Mice were
injected intraperitoneally (i.p.) with cyclophosphamide (100 mg/
kg body weight) on each of three successive days to suppress
immunity and then randomized into three groups: normal
control (five mice), HL-60 group (10 mice), and NB4 group
(10 mice). Mice in the normal control group received only PBS.
Each mouse in the HL-60 and NB4 groups was injected with 5 ×
106 HL-60 and NB4 cells, respectively, via the tail vein and then
randomized into PBS (five mice) and LukS-PV (five mice)
groups. The LukS-PV mice were injected with LukS-PV (300
mg/kg body weight per mouse) via the tail vein for three
successive days. After 30 days, mice were sacrificed, and their
spleens and peripheral blood samples were collected for the next
experiments. CD33, a myeloid lineage-specific antigen, is a
sialoadhesin family member that is normally expressed on
precursor myeloid cells and can be used as a specific marker to
observe leukemic cell proliferation and infiltration in a mouse
leukemia model (21). Hence, we used anti-CD33-PE (BD
Biosciences, cat #555450) to assess invasion of AML cells in
vivo via flow cytometry. This study was approved by the Ethics
Committee and Institutional Review Board of University of
Science and Technology of China, Anhui, China (approval
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number: 2019-N(H)-101), and all experiments conformed to the
relevant regulatory standards.

Statistical Analysis
All data are expressed as means ± standard deviations (SDs), and
all experiments were performed in triplicate. All data met a
normal distribution. Statistical analyses were performed using
independent-sample t-tests for comparisons between two
groups or ANOVA for multiple comparisons followed by
Bonferroni’s or Dunn’s post-test to compare differences
between the groups. The log-rank test was used for survival
analysis. Sample sizes for all experiments were predetermined
from our experience. Animals were randomly assigned, and no
samples were excluded from the analyses. The investigators were
not blinded to the team allocation at some stages in the draw
materials and effect assessments. All statistical analyses were
conducted using GraphPad Prism software (Version 5.0;
GraphPad Software, Inc., San Diego, CA, USA). A p-value of
p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***) was considered
statistically significant.
RESULTS

LukS-PV Induced Cell Apoptosis In Vitro
and Inhibited Cell Invasion In Vivo
We randomly isolated bone marrow samples from four AML
patients for in vitro culture and treated them with different
concentrations of LukS-PV to detect apoptosis by flow
cytometry. The demographics and clinical features of the four
AML patients are described in Table 1. The results showed that
LukS-PV induced apoptosis in a dose-dependent manner in
primary AML blasts (Figure 1A). To further study the
antileukemia activity of LukS-PV in vivo, we injected AML cell
lines (HL-60 and NB4) into the tail vein of nude mice and treated
the mice with LukS-PV. The results demonstrated that the spleen
index for the LukS-PV treatment group was lower than that for
the PBS control group (Figure 1B). Furthermore, flow
cytometric analysis showed that the percentage of AML cells
(CD33+ cells) in the peripheral blood and spleens was lower in
the LukS-PV treatment group than in the control group
Frontiers in Oncology | www.frontiersin.org 472
(Figures 1C, D). These results indicated that Luks-PV induced
AML apoptosis in vitro and inhibited tumor cell invasion in vivo.

SET8 Is Downregulated in Acute Myeloid
Leukemia Cells After LukS-PV Treatment
Recent studies have revealed that dysregulation of histone
modification plays an important role in leukemia pathogenesis.
Several histone-modifying enzymes have been investigated as
potential therapeutic targets for leukemia. We demonstrated that
LukS-PV could inhibit the proliferation and induce apoptosis by
downregulating histone acetylation in HCC cells. These studies
suggested that LukS-PV may also exert antileukemia activity by
targeting histone modification regulators. To determine whether
LukS-PV induced apoptosis by regulating histone modification,
we identified 31 highly expressed histone epigenetic modifiers in
AML patients using The Cancer Genome Atlas (TCGA) database
and Genotype-Tissue Expression (GTEx) datasets (22, 23). By
RNA sequencing, we determined that LukS-PV downregulated
14 histone epigenetic regulating genes in AML cells. After
overlap analysis, we identified a total of eight different histone
modification regulators that were potential targets for LukS-PV.
Because SET8 was decreased to the greatest extent among these
potential targets, we chose SET8 for further evaluation
(Figure 2A). We verified that both mRNA and protein levels
of SET8 were downregulated by LukS-PV in AML cells in a dose-
and time-dependent manner (Figures 2B–E). Collectively, these
data demonstrated that LukS-PV decreased SET8 expression in
AML cells.

SET8 Is Highly Expressed in Acute
Myeloid Leukemia and Is Associated
With Poor Prognosis
To understand the role of SET8 in AML pathogenesis, we evaluated
SET8 expression in AML patients and healthy individuals. We
sampled peripheral blood from 20 AML patients and 20 healthy
control participants and quantified SET8 expression in isolated
peripheral blood leukocytes. RT-PCR and Western blotting
revealed that SET8 was significantly upregulated in AML
patients compared with the healthy controls (Figures 3A, B).
Then, we analyzed RNA-seq data from the peripheral blood of
AML patients using TCGA database and the RNA-seq data from
peripheral blood of healthy people using the GTEx database (20) to
verify our results. The analysis showed that the expression of SET8
mRNA in AML patients was significantly higher in AML patients
than in healthy people and was associated with a poor prognosis
(Figures 3C, D).

HL-60 and NB4 cells were transfected with siRNAs or
overexpression vectors to silence or overexpress SET8, and
SET8 expression was quantified by RT-PCR and Western
blotting (Figures 3E, F). Furthermore, apoptosis was assessed
by flow cytometry after the transfections. The results showed that
early apoptosis and late apoptosis were significantly increased
after knockdown of SET8 in the AML cell lines. However, SET8
overexpression did not affect apoptosis, which may be
explained by the low level of apoptosis in SET8-NC cells
(Figures 3G, H). These results suggest that SET8 is involved in
TABLE 1 | Clinical features of four AML patients.

AML 1 AML 2 AML 3 AML 4

Age (years) 47 66 55 47
Gender Female Male Female Female
FAB M2 M3 M4 M3
Mutation AML1/ETO PML/

RARA
MLL/AF9 PML/RARA

Cytogenetic 46, XX, der(7)t(7;8)
(p22;q22),

t(8;21)(p22;q22)

46, XY, t
(15;17)

46, XX, t(9;11)
(p21;q23)

46,XX, del(13)t
(15;17)

Treatment IA+ARA-C IA+ATRA IA ATRA+ATO
AML, acute myeloid leukemia.
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leukemia pathogenesis and may be a potential therapeutic target
in AML.

LukS-PV Induced Apoptosis in Acute
Myeloid Leukemia Cells by
Downregulating SET8 and H4K20me1
SET8 is a member of the SET domain-containing
methyltransferase family and the only modifying enzyme
known to catalyze the monomethylation of histone H4 Lys-20
(H4K20me1). We used Western blotting to detect H4K20me1
levels in SET8-siRNA and SET8-overexpressing cells. The results
demonstrated that the level of H4K20me1 was increased
significantly in SET8-overexpressing cells and decreased in
Frontiers in Oncology | www.frontiersin.org 573
SET8-siRNA cells (Figures 3E, F). Furthermore, we treated
HL-60 and NB4 cells with different concentrations of LukS-PV
for different time periods and quantified H4K20me1 expression.
The results showed that LukS-PV reduced H4K20me1 levels in a
dose- and time-dependent manner, which was consistent with
the results from the SET8 expression experiments (Figures 4A,
B). These results collectively indicated that LukS-PV
downregulated H4K20me1 by regulating SET8 in a dose- and
time-dependent manner.

To further determine whether LukS-PV exerted antileukemia
effects by downregulating SET8 and H4K20me1, we
overexpressed or knocked down SET8 in AML cell lines treated
in the cells with 3.0 mM of LukS-PV, and apoptosis was assessed
C

D

A

B

FIGURE 1 | LukS-PV induces apoptosis in vitro and inhibits cell invasion in vivo. (A) Flow cytometric analysis shows that treatment of primary acute myeloid
leukemia (AML) blasts with LukS-PV induces apoptosis in a dose-dependent manner. (B) The spleen volume (left) and spleen index [(spleen weight/body weight) ×
100, right] of mice. (C) The percentage of CD33+ cells in PB (peripheral blood). (D) The percentage of CD33+ cells in the spleen. Data are expressed as mean ± SD
(n = 3). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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by flow cytometry. The LukS-PV-treated cells displayed
significantly greater apoptosis than the PBS-treated cells.
Apoptosis was further enhanced in SET8-knockdown cells but
markedly alleviated in SET8-overexpressing cells, indicating that
the effect of LukS-PV on apoptosis was inhibited by SET8
expression (Figures 4C, D). Interestingly, we found that the
level of apoptosis was the highest in the SET8-siRNA + LukS-
PV group, likely because Luks-PV also induced apoptosis through
other pathways, and there was an added apoptotic effect after
knocking down SET8. These results indicated that SET8
downregulation is one of the mechanisms by which LukS-PV
induced apoptosis in AML cells. Additionally, LukS-PV treatment
decreased the protein levels of SET8, H4K20me1, and the anti-
apoptotic protein BCL2 and increased the pro-apoptotic protein
BAK, and this effect was further enhanced by SET8 knockdown
and alleviated by SET8 overexpression (Figure 4E).
Frontiers in Oncology | www.frontiersin.org 674
PIK3CB Is a Downstream Target Gene of
SET8-H4K20me1
Studies have shown that SET8 is involved in tumor pathogenesis
by catalyzing the monomethylation of H4K20 in target gene
promoter regions and promoting gene transcription. To further
explore the molecular mechanism of LukS-PV-induced
apoptosis and downregulation of SET8 in AML cells, we
hypothesized that SET8 regulated downstream target genes
through H4K20me1. To verify this hypothesis, target genes
regulated by SET8/H4K20me1 were determined by ChIP
sequencing. ChIP experiments were first performed with HL-
60 cells using antibodies against H4K20me1 after LukS-PV
treatment. H4K20me1-associated DNA sequences in LukS-PV-
treated cells were then amplified under non-biased conditions,
labeled, and sequenced. Through HiSeq2000 with a p-value
cutoff of 10−5, we identified 2,450 H4K20me1-specific binding
C

A B

D E

FIGURE 2 | SET8 is downregulated in acute myeloid leukemia (AML) cells after LukS-PV treatment. (A) Downregulated histone epigenetic regulators after LukS-PV
treatment. (B) HL-60 and (C) NB4 cells were treated with LukS-PV at different concentrations, and SET8 mRNA and protein expression levels were determined by
quantitative real-time PCR and Western blotting. (D) HL-60 and (E) NB4 cells were treated with 3.0 mM of LukS-PV at different timepoints, and SET8 mRNA and
protein expression levels were determined by quantitative real-time PCR and Western blotting. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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peaks of which 731 were upregulated and 1,719 were
downregulated (Supplementary Table S1).

Because LukS-PV inhibits downstream gene transcription via
downregulation of SET8/H4K20me1, we focused on the genes
with reduced H4K20 monomethylation enrichment in the
promoter region after LukS-PV treatment. Gene Ontology-
based analysis showed that these reduced genes were
Frontiers in Oncology | www.frontiersin.org 775
significantly enriched for transcription coactivator activity and
magnesium ion binding, were mainly located in dendrites and
cytoplasmic regions, and participated in potassium ion transport
and viral defense responses (Figure 5A). Kyoto Encyclopedia of
Genes and Genomes-based functional enrichment analysis
demonstrated that the reduced genes were enriched in cAMP
signaling, Wnt signaling, and tumor-related pathways
C

A B

D

G

H

E F

FIGURE 3 | SET8 is highly expressed in acute myeloid leukemia (AML) and is associated with poor prognosis. (A) SET8 mRNA expression in AML patients and
healthy control subjects. (B) SET8 protein expression in AML patients. (C, D) The Cancer Genome Atlas and Genotype-Tissue Expression database analyses of
SET8 expression between AML patients and healthy individuals. (E, F) Relative expression of SET8 and H4K20me1 in cells (HL-60 and NB4) transduced with a
lentiviral vector determined through quantitative real-time PCR and Western blotting. (G, H) Flow cytometric analysis of Annexin V-PE/7-AAD staining shows that the
knockdown of SET8 expression with siRNA induced apoptosis in HL-60 and NB4 cells. ns, not significant; *p < 0.05; ***p < 0.001.
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C

A

B

D

E

FIGURE 4 | LukS-PV induces apoptosis in acute myeloid leukemia (AML) cells by downregulating SET8/H4K20me1. (A) HL-60 and NB4 cells were treated with LukS-PV
at different concentrations for 24 h, and H4K20me1 expression was assessed by Western blotting. (B) HL-60 and NB4 cells were treated with 3.0 mM of LukS-PV at
different timepoints, and H4K20me1 expression was assessed by Western blotting. (C, D) SET8 knockdown induced apoptosis and SET8 overexpression inhibited
apoptosis in HL-60 (C) and NB4 (D) cells treated with LukS-PV. (E) Expression of SET8 and apoptosis‐associated proteins in HL-60 and NB4 cells was assessed by
Western blotting. SET8-OE, SET8 overexpression; SET8-NC, SET8 negative control; SET8-siRNA, SET8 small interfering RNA; ns, not significant; *p < 0.05; ***p < 0.001.
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FIGURE 5 | PIK3CB is the target gene for LukS-PV-SET8/H4K20me1. (A) Gene Ontology (GO) analysis of downregulated peak related gene binding by LukS-PV-
mediated H4K20me1 through ChIP-seq. (B) Functional groups in downregulated peak-related genes binding by LukS-PV-mediated H4K20me1. (C) Heatmap of
different expression genes upon LukS-PV or phosphate-buffered saline (PBS) treatment. (D) The binding of LukS-PV and PBS on target gene PIK3CB. (E) The
binding of H4K20me1 at the PIK3CB promoter was significantly reduced upon LukS-PV treatment via quantitative chromatin immunoprecipitation (ChIP)–PCR
analysis. Data are presented as fold-change relative to the control with PBS as a negative control. (F, G) HL-60 and NB4 cells were treated with LukS-PV at different
concentrations for 24 h, and PIK3CB gene and protein expression levels were assessed via quantitative real-time PCR and Western blotting. (H, I) Western blotting
showed that LukS-PV downregulated PIK3CB via SET8/H4K20me1 in HL-60 (H) and NB4 (I) cells. **p < 0.01; ***p < 0.001.
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(Figure 5B). Data analysis showed that H4K20me1 enrichment
in the PIK3CB, ROCK2, and GNAI1 promoter regions decreased
significantly. Furthermore, PIK3CB is involved in tumor-related
signaling pathways, and the decrease in H4K20 methylation in
the PIK3CB promoter region was the most obvious (Figure 5D).
Similarly, RNA-seq results showed that PIK3CB mRNA was
downregulated after LukS-PV treatment (Figure 5C). Moreover,
Maeda et al. reported that PIK3CB plays a crucial role in
apoptosis in renal cell carcinoma (24). Collectively, our data
showed that PIK3CB was a potential downstream target gene of
LukS-PV, and regulation of PIK3CB was mediated by SET8/
H4K20me1. We verified this finding through ChIP-PCR in HL-
60 and NB4 cells. Accordingly, upon LukS-PV treatment, the
binding of H4K20me1 to the PIK3CB promoter was significantly
reduced (Figure 5E). We treated HL-60 and NB4 with different
concentrations of LukS-PV, and PIK3CB mRNA and protein
expression levels were reduced in a dose-dependent manner
(Figures 5F, G). Additionally, knockdown of SET8 reduced the
expression of PIK3CB, while overexpression of SET8 promoted
the expression of PIK3CB (Figures 5H, I). Collectively, LukS-PV
inhibited the expression of PIK3CB via downregulation of
SET8/H4K20me1.

LukS-PV Induced Apoptosis in Acute
Myeloid Leukemia Cells by
Downregulating PIK3CB via
SET8/H4K20me1
Because PIK3CB was the downstream target gene of LukS-PV, we
investigated whether PIK3CB played a role in apoptosis induced
by LukS-PV. PIK3CB was overexpressed in AML cell lines
(Figure 6A), which were then exposed to 3.0 mM of LukS-PV
for 24 h. The flow cytometry results showed that overexpression
of PIK3CB inhibited apoptosis induced by LukS-PV (Figures 6B,
D). Furthermore, we examined the effect of GSK2636771 (a
PIK3CB inhibitor) on apoptosis in SET8-overexpressing cells
and UNC0379 (a SET8 inhibitor) on apoptosis in PIK3CB-
overexpressing cells. The flow cytometry results demonstrated
that inhibition of PIK3CB induced apoptosis in SET8-
overexpressing cells; however, overexpression of PIK3CB
prevented apoptosis induced by SET8 inhibition (Figures 6B,
D). Finally, the levels of apoptosis-associated proteins were in
accordance with the degree of apoptosis (Figures 6C, E).
Together, our results indicated that LukS-PV induced apoptosis
by downregulating the expression of target gene PIK3CB, and this
downregulation was mediated by SET8/H4K20me1 in AML cells.

LukS-PV Induced Apoptosis via the
PIK3CB/AKT/FOXO1 Signaling Pathway by
Targeting SET8
It was reported that PIK3CB inhibits transcription factor FOXO1
by regulating AKT phosphorylation and inhibits apoptosis by
regulating the expression of BAK and BCL2. Furthermore, our
RNA sequencing results showed that FOXO1 mRNA was
upregulated after LukS-PV treatment (Figure 5C). Therefore,
we hypothesized that LukS-PV may induce apoptosis via the
PIK3CB/AKT/FOXO1 signaling pathway by targeting SET8. We
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verified this molecular mechanism by Western blotting, and the
results were in line with our expectations. We found that LukS-
PV-treated HL-60 and NB4 cells had lower levels of PIK3CB,
pAKT (Ser 473), and anti-apoptotic BCL2 but higher levels of
FOXO1 and pro-apoptotic BAK than PBS-treated control cells.
These effects were further enhanced after SET8 knockdown with
siRNA and markedly alleviated in SET8-overexpressing
cells (Figure 7A).

Similarly, we determined the levels of associated proteins in
primary AML blasts via Western blotting. In accordance, the
results showed that treatment with 3.0 mM of LukS-PV
significantly decreased the levels of SET8, H4K20me1, PIK3CB,
pAKT (Ser 473), and anti-apoptotic BCL2 but increased the
levels of FOXO1 and pro-apoptotic BAK as compared with the
PBS-treated control group (Figure 7B). Together, our results
indicated that LukS-PV induced apoptosis via the PIK3CB/AKT/
FOXO1 signaling pathway by targeting SET8 in primary AML
blasts (Figure 7C).
DISCUSSION

AML is a complex disease with a diverse genetic landscape, and
the current approaches for AML treatment are still far from
satisfactory. Target cell specificity and cytotoxicity of bacterial
toxins have gained importance in the development of new
antitumor drugs (3, 4). In this study with AML cells, we
demonstrated that LukS-PV induced apoptosis in vitro and
inhibited cell invasion in vivo. Moreover, we found that SET8
expression was decreased significantly after LukS-PV treatment,
and SET8 is highly expressed in AML and is associated with poor
prognosis. Furthermore, we confirmed that LukS-PV induced
AML apoptosis via SET8 and identified PIK3CB as a downstream
target gene for apoptosis mediated by SET8/H4K20me1. Finally,
our results indicated that LukS-PV induced apoptosis via the
PIK3CB-AKT-FOXO1 signaling pathway by targeting SET8.

Recent studies have revealed that changes in histone
modification play an important role in leukemia pathogenesis
(25, 26). For example, histone methylation has been reported to
regulate stem cell differentiation and leukemia pathogenesis (27).
This phenomenon is precisely based on the reversibility of
epigenetic modifications that may facilitate targeted leukemia
therapy (28). For instance, azacitidine and decitabine are DNA
methyltransferase inhibitors approved for clinical treatment of
AML (29, 30). Histone methyltransferase (EZH2) and
demethylase (LSD1) targeting drugs have entered clinical trials
(31, 32). In summary, histone modifications are potentially
promising for targeted therapy for leukemia. SET8 is a
member of the SET domain-containing methyltransferase
family and specifically targets H4K20me1 (33). SET8 is
involved in vital cellular processes, including transcriptional
regulation (34), S-phase cell cycle progression (35), genomic
replication and stability (36), and DNA repair (37). Aberrant
SET8 expression has been linked to numerous solid tumors.
High SET8 levels are also associated with poor survival in cancer
patients (38–40). However, SET8 has so far been poorly studied
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in leukemia. In this study, we found that SET8 was overexpressed in
AML patients and associated with a poor prognosis, and knockdown
of SET8 expression induced apoptosis in AML cells. These results
suggest that SET8 may be a potential therapeutic target for AML.

Bacterial toxins reportedly have specific cytotoxic effects on
target cells, including tumor cells, and they have received
increasing attention in the development of antitumor drugs. As a
Frontiers in Oncology | www.frontiersin.org 1179
new anti-AML drug, diphtheria toxin has entered the stage of
clinical experimentation (41, 42). LukS-PV is the S component of
PVL secreted by S. aureus. Our previous research has shown that
LukS-PV has antileukemia activity in vivo and in vitro by inhibiting
proliferation and inducing apoptosis and differentiation (12–15).
Furthermore, we previously demonstrated that LukS-PV inhibited
proliferation and induced apoptosis by downregulating histone
C

A
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D

E

FIGURE 6 | LukS-PV induces apoptosis in acute myeloid leukemia (AML) cells by downregulating PIK3CB via SET8/H4K20me1. (A) PIK3CB overexpression in HL-
60 (left) and NB4 (right) cells. (B) Apoptosis was determined in HL-60 cells via flow cytometry. (C) Apoptosis-related proteins were determined by Western blotting in
HL-60 cells. (D) Apoptosis was determined in NB4 cells via flow cytometry. (E) Apoptosis-related proteins were determined by Western blotting in NB4 cells. ns, not
significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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acetylation in HCC cells (19), suggesting that LukS-PV maybe
exert antileukemia activity by targeting histone epigenetic
modifiers. In the current study, we found that LukS-PV induced
apoptosis by downregulating SET8 and H4K20me1 and identified
PIK3CB as a potential target gene. Our study indicates that SET8-
PIK3CB signaling is one of the mechanisms by which LukS-PV
induced apoptosis in AML cells.
Frontiers in Oncology | www.frontiersin.org 1280
The phosphatidylinositol 3-kinase (PI3K) pathway plays a
pivotal role in cell growth, proliferation, and survival by
integrating extracellular growth signals (43). PIK3CB is a
member of the PI3K family, and hyperactivation of the PI3K
pathway contributes to cancer progression in humans (44). AKT,
a serine/threonine-protein kinase, is one of the most well-
characterized targets of the PI3K pathway. Yutaka et al.
C

A

B

FIGURE 7 | LukS-PV induces apoptosis via the PIK3CB signal pathway by targeting SET8. (A) Levels of PIK3CB, FOXO1, AKT, apoptosis‐associated (BAK/BCL2)
proteins, and AKT phosphorylation in HL-60 and NB4 cells were assessed through Western blotting. (B) Expression levels of SET8, H4K20me1, PIK3CB, FOXO1,
AKT, apoptosis‐associated (BAK/BCL2), proteins, and AKT phosphorylation in primary acute myeloid leukemia (AML) blasts were assessed through Western
blotting. (C) Proposed mechanism of action of LukS-PV in acute myeloid leukemia cells. SET8-OE, SET8 overexpression; SET8-NC, SET8 negative control; SET8-
SiRNA, SET8 small interfering RNA.
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reported that TGF-b selectively induces AKT phosphorylation at
Ser 473 in a PIK3CB-dependent manner in CD4+ T cells, resulting
in the inhibition of FOXO transcription factors (45). Furthermore,
studies have shown that FOXO factors promote apoptosis by
inducing the expression of multiple pro-apoptotic members of the
BCL2 family of mitochondria-targeting proteins (46). The present
research revealed that PIK3CB is a downstream target gene of LukS-
PV signaling. LukS-PV decreased AKT Ser 473 phosphorylation
and increased FOXO1 levels, thus inducing apoptosis by decreasing
BCL2 and increasing BAK in HL-60 and NB4 cells.

Several limitations to this study need to be acknowledged. First,
thenumberofAMLpatient sampleswas small, and further in-depth
research will be required using a larger number of clinical samples.
Second, we used a xenograft tumor model, and few leukemia cells
were present in mouse peripheral blood, which made it difficult to
isolate enough leukemia cells for apoptosis experiments. Third, we
found that the levels of SET8 and H4K20me1 reduced by LukS-PV
were maximally downregulated at the 24 h timepoint and then
increased at the 36 h timepoint. Indeed, in previous research, we
found that the effects of LukS-PV were time-dependent; apoptosis
was induced at an early stage (<24 h), and cell differentiation was
induced at a later stage (36–48 h) (15).Whether regulation of SET8
expression by LukS-PV is also time-dependent remains to be
further studied.

In conclusion, these results demonstrate that LukS-PV induced
apoptosis in AML cells via the PIK3CB/AKT/FOXO1 signal
transduction pathway by targeting the methyltransferase SET8.
Our data suggest that SET8 may be a potential therapeutic target
for AML. Furthermore, LukS-PVmay be a valuable drug candidate
for treatment of AML that targets epigenetic modifications.
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E, et al. The Structure of a Staphylococcus Aureus Leucocidin Component
(LukF-PV) Reveals the Fold of the Water-Soluble Species of a Family of
Transmembrane Pore-Forming Toxins. Structure (1999) 7:277–87. doi:
10.1016/S0969-2126(99)80038-0

9. Rogolsky M. Nonenteric Toxins of Staphylococcus Aureus. Microbiological
Rev (1979) 43:320–60. doi: 10.1128/mr.43.3.320-360.1979

10. Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Vavra S,
et al. Novel Type of Staphylococcal Cassette Chromosome Mec Identified in
Community-Acquired Methicillin-Resistant Staphylococcus Aureus Strains.
Antimicrob Agents Chemother (2002) 46:1147. doi: 10.1128/AAC.46.4.1147-
1152.2002

11. Genestier AL. Staphylococcus Aureus Panton-Valentine Leukocidin Directly
Targets Mitochondria and Induces Bax-Independent Apoptosis of Human
Neutrophils. J Clin Invest (2005) 115:3117–7. doi: 10.1172/JCI22684

12. Shan W, Bu S, Zhang C, Zhang S, Ding B, Chang W, et al. LukS-PV, a
Component of Panton-Valentine Leukocidin, Exerts Potent Activity Against
Acute Myeloid Leukemia In Vitro and In Vivo. Int J Biochem Cell Biol (2015)
61:20–8. doi: 10.1016/j.biocel.2015.01.007

13. Sun XX, Zhang SS, Dai CY, Peng J, Pan Q, Xu LF, et al. LukS-PV-Regulated
MicroRNA-125a-3p Promotes THP-1 Macrophages Differentiation and
Apoptosis by Down-Regulating NF1 and Bcl-2. Cell Physiol Biochem (2017)
44:1093–105. doi: 10.1159/000485415

14. Zhang P, YuWW, Peng J, Xu LF, Zhao CC, ChangWJ, et al. LukS-PV Induces
Apoptosis in Acute Myeloid Leukemia Cells Mediated by C5a Receptor.
Cancer Med (2019) 8:2474–83. doi: 10.1002/cam4.2137

15. Dai C, Zhang C, Sun X, Pan Q, Peng J, Shen J, et al. LukS-PV Induces
Differentiation by Activating the ERK Signaling Pathway and C-JUN/c-FOS
in Human Acute Myeloid Leukemia Cells. Int J Biochem Cell Biol (2016)
76:107–14. doi: 10.1016/j.biocel.2016.04.005

16. Boila L, Sengupta A. Evolving Insights on Histone Methylome
Regulation in Human Acute Myeloid Leukemia Pathogenesis and
Targeted Therapy. Exp Hematol (2020) 92:19–31. doi: 10.1016/
j.exphem.2020.09.189

17. Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, et al. The Histone
Methyltransferase Inhibitor, DZNep, Up-Regulates TXNIP, Increases ROS
Production, and Targets Leukemia Cells in AML. Blood (2011) 118:2830–9.
doi: 10.1182/blood-2010-07-294827

18. Cusan M, Cai SF, Mohammad HP, Krivtsov A, Chramiec A, Loizou E, et al.
LSD1 Inhibition Exerts its Anti-Leukemic Effect by Recommissioning PU.1-
and C/Ebpa-Dependent Enhancers in AML. Blood (2018) 131(15):1730–42.
doi: 10.1182/blood-2017-09-807024

19. Wang Z, Yu W, Qiang Y, Xu L, Ma F, Ding P, et al. LukS-PV Inhibits
Hepatocellular Carcinoma Progression by Downregulating HDAC2
Expression. Mol Ther Oncol (2020) 17:547–61. doi: 10.1016/j.omto.
2020.05.006

20. Ma X, Chang W, Zhang C, Zhou X, Yu F. Staphylococcal Panton-Valentine
Leukocidin Induces Pro-Inflammatory Cytokine Production and Nuclear
Factor-Kappa B Activation in Neutrophils. PLoS One (2012) 7(4):e34970.
doi: 10.1371/journal.pone.0034970

21. Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein ID.
Expression of Normal Myeloid-Associated Antigens by Acute Leukemia Cells.
Blood (1986) 67:1048–53. doi: 10.1182/blood.V67.4.1048.1048

22. Carithers LJ, Moore HM. The Genotype-Tissue Expression (GTEx) Project.
Biopreservation Biobanking (2015) 13:307–8. doi: 10.1089/bio.2015.29031.hmm

23. Wu M, Shang X, Sun Y, Wu J, Liu G. Integrated Analysis of Lymphocyte
Infiltration-Associated lncRNA for Ovarian Cancer via TCGA, GTEx and
GEO Datasets. PeerJ (2020) 8:e8961. doi: 10.7717/peerj.8961

24. Maeda Y, Kawano Y, Wada Y, Yatsuda J, Motoshima T, Murakami Y, et al.
C5aR Is Frequently Expressed in Metastatic Renal Cell Carcinoma and Plays a
Crucial Role in Cell Invasion via the ERK and PI3 Kinase Pathways. Oncol Rep
(2015) 33:1844–50. doi: 10.3892/or.2015.3800

25. Dhall A, Zee BM, Yan F, Blanco MA. Intersection of Epigenetic and Metabolic
Regulation of Histone Modifications in Acute Myeloid Leukemia. Front Oncol
(2019) 9:432. doi: 10.3389/fonc.2019.00432
Frontiers in Oncology | www.frontiersin.org 1482
26. Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, et al.
Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment,
and Heterogeneity. Front Genet (2019) 10:133. doi: 10.3389/fgene.2019.00133

27. Ernst P, Wang J, Korsmeyer SJ. The Role of MLL in Hematopoiesis and
Leukemia. Curr Opin Hematol (2002) 9:282–7. doi: 10.1097/00062752-
200207000-00004

28. Greenblatt SM, Nimer SD. Chromatin Modifiers and the Promise of
Epigenetic Therapy in Acute Leukemia. Leukemia (2014) 28:1396–406. doi:
10.1038/leu.2014.94

29. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH,
et al. International Phase 3 Study of Azacitidine vs Conventional Care
Regimens in Older Patients With Newly Diagnosed AML With >30%
Blasts. Blood (2015) 126:291–9. doi: 10.1182/blood-2015-01-621664

30. He J, Xiu L, De Porre P, Dass R, Thomas X. Decitabine Reduces Transfusion
Dependence in Older Patients With Acute Myeloid Leukemia: Results From a
Post Hoc Analysis of a Randomized Phase III Study. Leuk Lymphoma (2015)
56:1033–42. doi: 10.3109/10428194.2014.951845

31. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, et al. The
Histone Demethylase KDM1A Sustains the Oncogenic Potential of MLL-AF9
Leukemia Stem Cells. Cancer Cell (2012) 21:473–87. doi: 10.1016/
j.ccr.2012.03.014

32. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller SG,
et al. EZH2 Inhibition as a Therapeutic Strategy for Lymphoma With EZH2-
Activating Mutations. Nature (2012) 492:108–12. doi: 10.1038/nature11606

33. Nishioka K, Rice JC, Sarma K. PR-Set7 Is a Nucleosome-Specific
Methyltransferase That Modifies Lysine 20 of Histone H4 and Is Associated
With Silent Chromatin. Mol Cell (2002) 9:1201–13. doi: 10.1016/S1097-2765
(02)00548-8

34. Li Z, Nie F, Wang S, Li L. Histone H4 Lys 20 Monomethylation by Histone
Methylase SET8 Mediates Wnt Target Gene Activation. Proc Natl Acad Sci
USA (2011) 108:3116–23. doi: 10.1073/pnas.1009353108

35. Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, et al. The
Histone H4 Lys 20 Methyltransferase PR-Set7 Regulates Replication Origins
in Mammalian Cells. Nat Cell Biol (2010) 12:1086–93. doi: 10.1038/ncb2113

36. Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, et al. CRL4
(Cdt2)-Mediated Destruction of the Histone Methyltransferase Set8 Prevents
Premature Chromatin Compaction in S Phase.Mol Cell (2010) 40:22–33. doi:
10.1016/j.molcel.2010.09.015

37. Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, et al. microRNA-7
Suppresses the Invasive Potential of Breast Cancer Cells and Sensitizes Cells to
DNA Damages by Targeting Histone Methyltransferase SET8. J Biol Chem
(2013) 288:19633–42. doi: 10.1074/jbc.M113.475657

38. Zhou HR, Fu H-Y, Wu D-S, Zhang Y-Y, Huang S-H, Chen C-J, et al.
Relationship Between Epigenetic Changes in Wnt Antagonists and Acute
Leukemia. Oncol Rep (2017) 37:2663–71. doi: 10.3892/or.2017.5509

39. Hou L, Li Q, Yu Y, Li M, Zhang D. SET8 Induces Epithelial−Mesenchymal
Transition and Enhances Prostate Cancer Cell Metastasis by Cooperating
With ZEB1. Mol Med Rep (2016) 13:1681–8. doi: 10.3892/mmr.2015.4733

40. Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, et al. Histone
Methyltransferase SET8 Is Regulated by miR-192/215 and Induces
Oncogene-Induced Senescence via P53-Dependent DNA Damage in
Human Gastric Carcinoma Cells. Cell Death Dis (2020) 11:937. doi:
10.1038/s41419-020-03130-4

41. Bachanova V, Cooley S, Defor TE, et al. Clearance of Acute Myeloid Leukemia
by Haploidentical Natural Killer Cells Is Improved Using IL-2 Diphtheria
Toxin Fusion Protein. Blood (2014) 123(25):3855–63. doi: 10.1182/blood-
2013-10-532531

42. Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I Clinical Study of Diphtheria
Toxin-Interleukin 3 Fusion Protein in Patients With Acute Myeloid Leukemia
and Myelodysplasia. Leuk Lymphoma (2008) 49:543–53. doi: 10.1080/
10428190701799035

43. Cantley LC. The Phosphoinositide 3-Kinase Pathway. Science (2002)
296:1655–7. doi: 10.1126/science.296.5573.1655

44. Engelman JA, Luo J, Cantley LC. The Evolution of Phosphatidylinositol 3-
Kinases as Regulators of Growth and Metabolism. Nat Rev Genet (2006)
7:606–19. doi: 10.1038/nrg1879

45. Kurebayashi Y, Baba Y, Minowa A, Nadya NA, Azuma M, Yoshimura A, et al.
TGF-Beta-Induced Phosphorylation of Akt and Foxo Transcription Factors
October 2021 | Volume 11 | Article 718791

https://doi.org/10.1038/labinvest.3700501
https://doi.org/10.1016/S0969-2126(99)80038-0
https://doi.org/10.1128/mr.43.3.320-360.1979
https://doi.org/10.1128/AAC.46.4.1147-1152.2002
https://doi.org/10.1128/AAC.46.4.1147-1152.2002
https://doi.org/10.1172/JCI22684
https://doi.org/10.1016/j.biocel.2015.01.007
https://doi.org/10.1159/000485415
https://doi.org/10.1002/cam4.2137
https://doi.org/10.1016/j.biocel.2016.04.005
https://doi.org/10.1016/j.exphem.2020.09.189
https://doi.org/10.1016/j.exphem.2020.09.189
https://doi.org/10.1182/blood-2010-07-294827
https://doi.org/10.1182/blood-2017-09-807024
https://doi.org/10.1016/j.omto.2020.05.006
https://doi.org/10.1016/j.omto.2020.05.006
https://doi.org/10.1371/journal.pone.0034970
https://doi.org/10.1182/blood.V67.4.1048.1048
https://doi.org/10.1089/bio.2015.29031.hmm
https://doi.org/10.7717/peerj.8961
https://doi.org/10.3892/or.2015.3800
https://doi.org/10.3389/fonc.2019.00432
https://doi.org/10.3389/fgene.2019.00133
https://doi.org/10.1097/00062752-200207000-00004
https://doi.org/10.1097/00062752-200207000-00004
https://doi.org/10.1038/leu.2014.94
https://doi.org/10.1182/blood-2015-01-621664
https://doi.org/10.3109/10428194.2014.951845
https://doi.org/10.1016/j.ccr.2012.03.014
https://doi.org/10.1016/j.ccr.2012.03.014
https://doi.org/10.1038/nature11606
https://doi.org/10.1016/S1097-2765(02)00548-8
https://doi.org/10.1016/S1097-2765(02)00548-8
https://doi.org/10.1073/pnas.1009353108
https://doi.org/10.1038/ncb2113
https://doi.org/10.1016/j.molcel.2010.09.015
https://doi.org/10.1074/jbc.M113.475657
https://doi.org/10.3892/or.2017.5509
https://doi.org/10.3892/mmr.2015.4733
https://doi.org/10.1038/s41419-020-03130-4
https://doi.org/10.1182/blood-2013-10-532531
https://doi.org/10.1182/blood-2013-10-532531
https://doi.org/10.1080/10428190701799035
https://doi.org/10.1080/10428190701799035
https://doi.org/10.1126/science.296.5573.1655
https://doi.org/10.1038/nrg1879
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. LukS-PV Induces Apoptosis via SET8-H4K20me1-PIK3CB
Negatively Regulates Induced Regulatory T Cell Differentiation. Biochem
Biophys Res Commun (2016) 480:114–9. doi: 10.1016/j.bbrc.2016.09.153

46. Zhang X, Tang N, Hadden T, Rishi A. Akt, FoxO and Regulation of Apoptosis.
Biochim Biophys Acta (2011) 1813:1978–86. doi: 10.1016/j.bbamcr.2011.03.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
Frontiers in Oncology | www.frontiersin.org 1583
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xu, Shi, Zhang, Ding, Ma, Song, Qiang, Chang, Dai, Mei and Ma.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
October 2021 | Volume 11 | Article 718791

https://doi.org/10.1016/j.bbrc.2016.09.153
https://doi.org/10.1016/j.bbamcr.2011.03.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Yonghui Li,

Shenzhen University General
Hospital, China

Reviewed by:
Chandraditya Chakraborty,

Dana-Farber Cancer Institute and
Harvard Medical School,

United States
Albrecht Reichle,

University Medical Center
Regensburg, Germany

*Correspondence:
Kegan Zhu

zhukegan@tmu.edu.cn
Zhe Liu

zheliu@tmu.edu.cn

Specialty section:
This article was submitted to
Hematologic Malignancies,

a section of the journal
Frontiers in Oncology

Received: 19 August 2021
Accepted: 29 September 2021

Published: 21 October 2021

Citation:
Li G, Lei X, Zhang Y, Liu Z and Zhu K
(2021) LncRNA PPM1A-AS Regulate
Tumor Development Through Multiple

Signal Pathways in T-Cell Acute
Lymphoblastic Leukemia.
Front. Oncol. 11:761205.

doi: 10.3389/fonc.2021.761205

ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fonc.2021.761205
LncRNA PPM1A-AS Regulate Tumor
Development Through Multiple Signal
Pathways in T-Cell Acute
Lymphoblastic Leukemia
Guoli Li 1, Xinyue Lei1, Yingchi Zhang2, Zhe Liu1,3,4* and Kegan Zhu1,3*

1 Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for
Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China, 2 State Key
Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology &
Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 3 Key
Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China,
4 Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Tianjin, China

ALL (Acute lymphoblastic leukemia) is the most common pediatric malignancy and T-ALL
(T-cell acute lymphoblastic leukemia) comprises about 15% cases. Compared with B-ALL
(B-cell acute lymphoblastic leukemia), the prognosis of T-ALL is poorer, the
chemotherapy is easier to fail and the relapse rate is higher. Previous studies mainly
focused in Notch1-related long non-coding RNAs (lncRNAs) in T-ALL. Here, we intend to
investigate lncRNAs involved in T-ALL covering different subtypes. The lncRNA PPM1A-
AS was screened out for its significant up-regulation in 10 T-ALL samples of different
subtypes than healthy human thymus extracts. Besides, the PPM1A-AS expression levels
in 3 T-ALL cell lines are markedly higher than that in CD45+ T cells of healthy human. We
further demonstrate that PPM1A-AS can promote cell proliferation and inhibit cell
apoptosis in vitro and can influence T-ALL growth in vivo. Finally, we verified that
PPM1A-AS can regulate core proteins, Notch4, STAT3 and Akt, of 3 important
signaling pathways related to T-ALL. These results confirm that lncRNA PPM1A-AS
can act as an oncogene in T-ALL and maybe a potential clinical target of patients resistant
to current chemotherapy or relapsed cases.

Keywords: PPM1A-AS, T-ALL, Notch4, STAT3, Akt
INTRODUCTION

T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic malignancy induced by the
transformation of T-cell progenitors (1). The prominent feature of T-ALL is the uncontrolled
proliferation of immature T lymphocyte, frequent large thymic masses, enlarged spleen and pleural
effusions (1, 2). T-ALL accounts for 15% of childhood and 25% of adult ALL cases and childhood
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acute lymphoblastic leukemia (cALL) causes the most frequent
death from cancer in pediatrics (3). So far, genetic alterations,
including point mutations, chromosomal rearrangements and
the loss or gain of chromosome, have been well studied due to the
development of genome-wide sequencing. Dozens of oncogenes
or tumor suppressors are found to be dys-regulated in T-ALL. As
a result, modern combined chemotherapy remarkably raised the
overall survive rate in patients especially pediatric patients with
T-ALL. Although T-ALL cases are divided into different
subgroups characterized by one particular transcription factor
which is ectopic expressed, for example TLX1、TLX3、LMO、
HOXA and so on, but almost T-ALL cases owe not only one
biologically relevant genomic lesion (4). In some cases, more
than 10 mutated genes work together and thus lead to the
transformation of T cells into aggressive leukemia cells with
enhanced proliferation and survival characteristics, impaired
differentiation, altered cell cycle and metabolism properties (5).
In fact, there are more than 100 genes were found abnormal in T-
ALL (5). The screening out of novel molecules that participate in
several regulating pathways may contribute to the clinical
treatment of complex T-ALL cases which are resistant to given
drugs or relapsed cases.

LncRNAs are a new class of RNAs which is more than 200
nucleotides in size with no defined open reading frames.
LncRNAs are usually much lower expressed than mRNAs but
can be specially expressed in particular tissue. LncRNAs are
found to play roles in many normal life processes, such as
neuroregulation, spermatogenesis, muscle regeneration and
erythropoiesis (6). Besides, ectopic expression of lncRNA is
closely related to different diseases including cancers (6). The
latest researches show that lncRNAs participate in
tumorigenesis, tumor proliferation, migration, invasion and
metabolism (7). Thus, lncRNAs may be used as diagnostic
markers, novel therapeutic targets and potential prognostic
markers in cancers. In leukemia, lncRNAs also have important
functions (7). For example, in BLL (B-cell lymphoblastic
leukemia), lncRNA GAS5 was proved to regulate metastasis by
repressing miR-222 (8) and lncRNA ZEB-AS1 could influence
tumor development by targeting IL11/STAT3 signal pathway (9).
Besides, Trimarchi et al. focused in Notch-regulated lncRNAs
while Takaomi Sanda et al. focused in TAL1 complex-regulated
lncRNAs in T-ALL (10, 11). Furthermore, another lncRNA,
NALT, was also involved in T-ALL development by inducing
Notch1 activation (12). Despite of these findings, more efforts
are needed to make the lncRNA regulatory network in
leukemia clearer.

In the current study, we found a new lncRNA, which we
named as PPM1A-AS, was overexpressed in patients with T-ALL
at the first time. Then, we demonstrated that T-ALL tumor cell
proliferation ability was closely connected to the PPM1A-AS
expression level. Moreover, PPM1A-AS could influence the
tumor cell apoptosis in vitro. Next, we established tumor
model in NOD-SCID mice and demonstrated that PPM1A-AS
could also promote T-ALL development in vivo. Finally, we
performed whole-transcriptome deep sequencing in wild- or
PPM1A-AS-knockdown-Jurkat cells. Compared to the wild
Frontiers in Oncology | www.frontiersin.org 285
group, we detected 288 up expressed genes and 313 down
expressed genes in PPM1A-AS-knockdown group. By KEGG
pathway analysis, the differentially expressed genes are enriched
in Notch signal pathway and PI3K-Akt signaling pathway, which
take important roles in T-ALL tumor development. We then
verified that phosphorylated Akt, phosphorylated STAT3 and
Notch4 protein levels are positive related with PPM1A-AS. To
conclude, we find that PPM1A-AS can work as an oncogene and
can regulate several pathways in T-ALL, and thus may be
provided as a potential clinic target for T-ALL patients with
multiple gene mutations.
MATERIALS AND METHODS

Cell Culture
The T-ALL cell lines Jurkat, CEM and MOLT4 were cultured in
RPMI1640 (Gibco, NY, USA) with 10% fetal bovine serum
(FBS). They were maintained at 37°C in a humidified
incubator with 5% CO2.

Human CD45+ T Cell Isolation
The peripheral blood were collected from healthy human and
red blood cell lysis was conducted with lysis buffer (Solarbio,
Beijing, China). The CD45+ T cells were isolated with magnetic
beads (Stemcell, Vancouver, Canada) according to the
manufacturer’s instructions.

Quantitative Real Time PCR
Total RNA of T-ALL cells was extracted with TRIzol Reagent
(Thermo Fisher Scientific, MA, USA) and 1ug total RNA was
reverse-transcribed into complementary DNA(cDNA) using the
RevertAid First Strand cDNA Synthesis Kit (Thermo).
Quantitative real-time PCR was performed to determine
the RNA expression using SYBR Green master mix
(DBI®Bioscience, Ludwigshafen, German) with specific
primers listed below. All of the reactions were run in triplicate
and the relative levels of lncRNA were normalized to 18S rRNA.
The sequences of the primers were as follows: hGAPDH
Forward: 5’- CTTTTGCGTCGCCAGCCGAG -3’; hGAPDH
Reverse: 5’- CCAGGCGCCCAATACGACCA -3’; PPM1A-AS
Forward: 5’- AGTCCTGGACAGTCTTTAGGC -3’; PPM1A-AS
Reverse: 5’- AGGTGTGTGCTGGGAAATGT -3’.

Cell Nucleus/Cytoplasm Fraction Isolation
Cytoplasmic and nuclear RNA were isolated and purified using
the PARIS™ Kit (ThermoFisher, #AM1921) according to the
manufacturer’s instructions.

Knockdown and Overexpression
For knockdown assay, oligos encoding shRNA specific for
PPM1A-AS were ligated into pSUPER.retro.puro, and the
fragment containing the H1 promoter and hairpin sequences was
subcloned into the lentiviral shuttle pCCL.PPT.hPGK.GFP.Wpre.
The shRNA target sequences were as follows: shPPM1A-AS-1,
GCATCAAGAAGAACAGCTA; shPPM1A-AS-2, GGTTGA
October 2021 | Volume 11 | Article 761205

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. LncRNA PPM1A-AS Regulate T-ALL Development
TCTGTGCGGCAAA. For overexpression assay, lncRNA PPM1A-
AS sequence was ligated into the lentiviral shuttle
pCCL.PPT.hPGK.IRES.GFP/pre. These plasmids were used to
produce lentivirus in HEK293T cells with the packaging
plasmids pMD2.BSBG, pMDLg/pRRE and pRSV-REV. Cells
were infected with lentivirus and sorted by GFP signal to
generate a stable cell line.

Cell Counting Kit-8 Assay
To assess cell proliferation ability, Jurkat, CEM and MOTL4 cells
infected with control lentivirus, lncRNA PPM1A-AS-
knockdown lentivirus or lncRNA PPM1A-AS-overexprssion
lentivirus were seeded into 96-well plates at a density of 2000
cells per well. At 0, 24, 48, 72, 96, 120 hours after the cells were
seeded, CCK-8 reagent (Dojingdo, Japan) was mixed with the
cells for 1h incubation at 37°C. The absorbance value was
measured at 450nm with Microplate reader.

EdU Assay
The EdU assay was conducted with Cell-Light EdU Apollo567 In
Vitro Kit (RiboBio Co., Guangzhou, China) according to the
manufacturer’s instructions of suspension cell. Briefly, Jurkat,
CEM and MOTL4 cells were infected with control, lncRNA
PPM1A-AS-knockdown or lncRNA PPM1A-AS-overexprssion
lentivirus and then 5000 cells of each group were planted in 24-
well plates. 24 hours later, the cells were remarked with EdU and
made smears. After cell fixation and Apollo staining, the slides
were observed and took photos under a microscope
at 100×magnification.

Cell Apoptosis Assay
Jurkat and CEM cells infected with control lentivirus, lncRNA
PPM1A-AS-knockdown lentivirus or lncRNA PPM1A-AS-
overexprssion lentivirus were collected and incubated with
annexin V and PIfor 15min. The apoptotic cells were detected
by BD flow cytometer. The annexin positive but PI negative
staining indicated the early apoptotic cells. The annexin V and PI
both positive staining indicated cells in necrosis (post-apoptotic
necrosis or late apoptosis). The proportion of total apoptotic cells
are the sum of these two parts of cells.

Western Blotting
The control or infected cells were rinsed with PBS and lysed in RIPA
Lysisbuffer (Beyotime, China) supplemented with Protease and
Phosphatase Inhibitor (Cell Signaling Technology Inc., USA) on ice
for 30min. The cell lysates were centrifuged for 10min (12000 g, 4°C)
and the supernatant was collected. The protein concentration was
calculated with Pierce BCA protein assay kit (Thermo) and
equivalent quantities of protein were separated on 10% SDS-PAGE
gels. Then the proteins were transferred onto a nitrocellulose
membrane (Bio-Rad, CA, USA). After blocking with 5% non-fat
milk at room temperature for 1h, the membranes were
immunostained with primary antibodies at 4°C overnight, washed
three times in TBST, and then incubated with secondary antibody at
room temperature for 1h. Finally, the protein bands on membranes
were detected with an enhanced chemiluminescence reagent
(Millipore) and captured using a luminescence instrument (Tanon,
Frontiers in Oncology | www.frontiersin.org 386
Shanghai, China). The gray density of protein bands was determined
by Image J software. The primary antibodies were listed below: Akt
(#9272, Cell Signaling Technology); T308-pAkt (#13038, Cell
Signaling Technology), S473-pAkt (#4060, Cell Signaling
Technology); STAT-3(#9132, Cell Signaling Technology), T705-
pSTAT3 (#9131, Cell Signaling Technology), S727-pSTAT3 (#9134,
Cell Signaling Technology); Notch4 (ab184742, Abcam).

T-ALL Xenograft Model
Female NOD-SCID mice (4-6 weeks old) were purchased from
the Model Animal Research Center of Nanjing University
(Nanjing, China) and housed under pathogen-free conditions
in Tianjin Medical University. Jurkat cells were infected with
control lentivirus or lncRNA PPM1A-AS-knockdown lentivirus
(2×106), suspended in 200ul PBS and then injected into the mice
by tail intravenous injection. After 45 days later, the peripheral
blood was taken from mice, the mice were sacrificed, the spleens
were photographed and weighed and the bone marrow were
dissected. The animal study was reviewed and approved by
Tianjin Medical University Animal Care and Use Committee.

RNA Sequencing
RNA was isolated from Jurkat cells injected with control
lentivirus or lncRNAPPM1A-AS-knockdownlentivirus using
Trizol (Invitrogen) following manufacture instructions.
Biological samples in duplicate were submitted to Novogene
Co., Ltd for RNA sequencing. Barcoded sequence libraries were
constructed using TruSeq RNA Sample Prep kit (Illumina), and
sequenced on a HiSeq 2000 instrument.

Statistical Analysis
Data analyses were undertaken with GraphPad PRISM 8.0. The
results were shown as mean ± standard deviation (SD), from
three independent experiments and analyzed via the Student’s
t-test. The value p <0.05 was considered statistically significant.
RESULTS

LncRNA PPM1A-AS Is Up-Regulated
in T-ALL
To identify lncRNAs differentially expressed in T-ALL, we
collected and analyzed RNA sequencing (RNA-seq) data of 10
T-ALL patients and 2 human whole thymus extracts from public
database (GSE110636 (13), GSE57982 (10), the sample numbers
were listed in Supplementary Table 1). The 10 T-ALL patients
were belonging to different genetic subgroups. The heatmap was
showed in Figure 1A. Among these lncRNAs, we found that
CTD-2184C24.2 (ENST00000553775) was obviously increased
in T-ALL patients (Figure 1B). CTD-2184C24.2 is a transcript
antisense to PPM1A. So, we named this lncRNA as PPM1A-AS
after this gene. Moreover, we tested the expression level of
PPM1A-AS in T-ALL cell lines Jurkat, CCRF-CEM and
MOLT4. The T cells extracted from healthy human blood with
CD45+ magnetic beads were used as control. As a result,
PPM1A-AS was significantly overexpressed in all three T-ALL
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cell lines than T cells extracted from healthy persons
(Figure 1C). Finally, we verified the distribution of PPM1A-AS
in T cells. No matter in normal or cancerous T cells, PPM1A-AS
was existing in both nucleus and cytoplasm, mainly in nucleus
(Figure 1D). These results also indicated that the PPM1A-AS
had no shuttle between nucleus and cytoplasm during T-
ALL formation.

LncRNA PPM1A-AS Promotes Cell
Proliferation and Inhibits Cell Apoptosis
in T-ALL Cell Lines
In order to explore the function of PPM1A-AS, stable clones with
knockdown and overexpression of PPM1A-AS were generated
with shRNA and plasmid via lentivirus technology in T-ALL cell
lines, Jurkat, CEM andMOTL4. Firstly, we evaluated the efficiency
of PPM1A-AS knockdown (Figure 2A and Supplementary
Figure 1A) and overexpression by RT-qPCR (Figure 3A and
Supplementary Figure 1D). The PPM1A-AS RNA level was
about 25% lower by two different shRNAs and hundreds higher
by overexpression vector. Then we performed CCK-8 and EdU
assays to test the cell proliferation ability. Compared to the control
group, cells infected with PPM1A-AS shRNA lentivirus showed
significantly slower proliferation rates (Figures 2B, C and
Supplementary Figures 1B, C) while overexpression of
PPM1A-AS enhanced cell proliferation (Figures 3B, C and
Supplementary Figures 1E, F). Besides, we examined cell
apoptosis by flow cytometry. We found that knockdown of
Frontiers in Oncology | www.frontiersin.org 487
PPM1A-AS could induce T-ALL cell death (Figure 2D). Taken
together, we conclude that lncRNA PPM1A-AS may have the
potential to serve as an oncogene in T-ALL.

LncRNA PPM1A-AS Regulates T-ALL
Development In Vivo
To further determine the role of lncRNA PPM1A-AS in T-ALL,
we established tumor xenograft model in NOD-SCID mice. We
cultured Jurkat cells infected with blank lentivirus or lncRNA
PPM1A-AS-konckdown lentivirus and transplanted mice by tail
intravenous injection. About 45 days later, we sacrificed the mice,
photographed and measured the spleens, detected the proportion
of tumor cells in peripheral blood and bone marrow. As the
pictures showed in Figure 4A, the spleens from mice of the
control group were much enlarged than the PPM1A-AS
knockdown group. The statistical data were in Figure 4B and
the spleens’ average weight of control mice was obviously larger.
Moreover, the proportion of tumor cells in peripheral blood
(Figure 4C) or bone marrow (Figure 4D) from control mice
were much more than the mice of PPM1A-AS knockdown
group, which means PPM1A-AS knockdown can repress T-
ALL tumor development in vivo.

LncRNA PPM1A-AS Target Genes in
Multiple Signal Pathways
To further investigate the mechanism by which PPM1A-AS
promotes T-ALL progression, we performed RNA-seq in
A

B

D

C

FIGURE 1 | LncRNA PPM1A-AS is up expressed in T-ALL. (A) The heatmap of lncRNA expression in 10 T-ALL samples and 2 healthy human whole thymus
extracts. (B) The relative expression level of lncRNA PPM1A-AS in 10 T-ALL samples and 2 healthy human thymus extracts. (C) RT-qPCR analysis of lncRNA
PPM1A-AS in T-ALL cell lines and healthy human CD45+ T cells. (D) The nuclear and cytoplasmic distribution of lncRNA PPM1A-AS in Jurkat, CEM and T cells
extracted from healthy human. Mean ± SD. *P < 0.05. ***P < 0.001.
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Jurkat cells stably transduced with shRNAs targeting PPM1A-AS
or a non-targeting control. Two biological replicates were
included in each group and high correlations were observed
between the replicates (Figure 5A). We then performed
differential gene expression analysis, and identified 288 and
313 genes significantly upregulated and downregulated after
knockdown of PPM1A-AS (Figure 5B and Supplementary
Table 2). The major signal pathways that the differently
expressed genes involved in were analyzed by KEGG database
(Figure 5C). Among these pathways, Notch signaling pathway
Frontiers in Oncology | www.frontiersin.org 588
and PI3K-Akt signaling pathway are the major pathways
participated in T-ALL tumorigenesis and development (14).
We then tested if PPM1A-AS has any role in the well-known
oncogenic pathways involved in T-ALL. AKT, NOTCH and
STAT are core genes of PI3K-Akt signaling pathway, Notch
signaling pathway and JAK-STAT3 signaling pathway
respectively (15). We chose proteins of these genes and
examined their expression after PPM1A-AS knockdown. The
whole protein levels of STAT3 and Akt were not changed but the
phosphorylated protein (T308, S473 of Akt and T705, S727 of
A B

D

C

FIGURE 2 | Knockdown of lncRNA PPM1A-AS can inhibit cell proliferation and promote cell apoptosis. (A) The efficiency of PPM1A-AS shRNAs in Jurkat and CEM
cell lines. (B) CCK-8 analyses of the proliferation rates of Jurkat and CEM cells infected with control or PPM1A-AS-knockdown lentivirus. (C) EdU analyses of the
proliferative ability of Jurkat and CEM cells infected with control or PPM1A-AS-knockdown lentivirus. Left panel: representative images; right panel: average
percentage of EdU+ cells counted in each field. Scale bar, 100mm. (D) Flow cytometry analyses of T-ALL cell apoptosis after infected with control or PPM1A-AS-
knockdown lentivirus. Left panel: representative images; right panel: percentage of apoptotic cells. Mean ± SD. *P < 0.05. **P < 0.01. ***P < 0.001.
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STAT3) were significantly downregulated by PPM1A-AS
knockdown (Figure 5D). Besides, the Notch4 (Figure 5D) but
not Notch1 (data were not showed) protein level was also
consistent with PPM1A-AS RNA level. Therefore, these data
showed that PPM1A-AS could regulate multiple proteins and
thus have roles in several T-ALL related pathways.
DISCUSSION

ALL is the most common pediatric malignancy and T-ALL
comprises about 15% cases (16). Till now, scientists have
discovered many oncogenic and tumor suppressor pathways
that participate in T-ALL transformation and development.
Notch signaling is an oncogenic pathway which is activated in
more than 65% of T-ALL patients by activating Notch1 gene
mutations (14, 17). Notch4 is also a member of NOTCH family
of receptors but its role in T-ALL is not as clear as Notch1 (18).
James et al. (2014) discovered that Notch4 did not signal in
response to ligand but it could repress the signaling from Notch1
Frontiers in Oncology | www.frontiersin.org 689
receptor. Notch4 could bind unprocessed, full-length Notch1
and altered the subcellular localization of Notch1 (19). Costa
et al. found that genetic deletion of Notch4 did not result in an
overt phenotype in mice as well as other publications. But the
expression of Notch4 was required for tumor onset and early
tumor perfusion in a mouse model of breast cancer, despite the
phenomenon that the final tumor size was similar between
tumors grown in wild type and Notch4-null hosts (20).
Besides, PI3K-AKT signaling is also an important oncogenic
signaling pathway in T-ALL (17). Transgenic overexpression of
an active form of AKT in T cell progenitors results in increased
PI3K signaling and induces T-ALL in mice (21). Moreover, there
is another oncogenic signaling pathway, JAK-STAT signaling,
playing roles in T-ALL (17). Approximately 10% of T-ALLs
show gain-of-function mutations in IL7R and result in
constitutive JAK-STAT signaling (22). In the research of 116
clinical cases, authors found that phosphorylated STAT3, but not
pSTAT5 or pSTAT6, predicts better prognosis in the smoldering
type of T-ALL (23). Due to these findings of oncogenic or tumor
suppressed mechanism contributing to T-ALL, abundant
A

B

C

FIGURE 3 | Overexpression of lncRNA PPM1A-AS can promote cell proliferation. (A) The efficiency of PPM1A-AS overexpression in Jurkat and CEM cell lines.
(B) CCK-8 analyses of the proliferation rates of Jurkat and CEM cells infected with control or PPM1A-AS-overexpression lentivirus. (C) EdU analyses of the
proliferative ability of Jurkat and CEM cells infected with control or PPM1A-overexpression lentivirus. Upper panel: representative images; bottom panel: average
percentage of EdU+ cells counted in each field. Scale bar, 100mm. Mean ± SD. *P < 0.05. ***P < 0.001.
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chemotherapy protocols are drawn into clinical treatment and
lead to a consequent gradual progress in cure rate. Despite this
improvement, patients with primary resistant T-ALL or those
with relapsed disease still faced terrible prognosis. So, we need
more efforts to reveal other specific therapeutic targets
underlying T-ALL development. In fact, many clinical T-ALL
cases contain more than one gene mutation and may involve
several signaling pathways which function in cancer
transformation and grown (24). Combined application of
chemotherapy drugs may be benefit to these complicated cases.
Here, we discover that lncRNA PPM1A-AS can regulate Notch4,
phosphorylated AKT, phosphorylated STAT3 expression in the
same time and thus affect Notch signaling, PI3K-AKT signaling
as well as JAK-STAT signaling pathways. This finding indicates
the existence of lncRNA regulating different oncogenic or tumor
suppressor pathways in T-ALL and may provide a new thought
to solve complex clinical cases.
Frontiers in Oncology | www.frontiersin.org 790
Due to the establishment of Sanger sequencing, the Human
Genome Project was conducted in the worldwide which
discovered that only 1.2% of the human genome represents
protein coding exons and most genomic DNA is non-coding
(25). The same phenomena were also verified in other eukaryotes
and gave rise to heated debates in the scientific community about
if they are transcriptional noises. The first long non-coding RNA
H19 was found in the late 1980s, even though it was classified as
an mRNA at that time (25). The function of lncRNA remained a
mystery through a century until another lncRNA, Xist, was
characterized to function in X-chromosome inactivation in
mammals in the early 1990s (25). The rapid development of
high-throughput sequencing technologies led to an explosion in
the number of newly identified and uncharacterized lncRNAs.
But many challenges in lncRNA biology remain, including
accurate annotation, functional characterization and clinical
relevance. Here, we focus on lncRNAs in T-ALL and tried to
A B

D

C

FIGURE 4 | LncRNA PPM1A-AS can enhance tumor development in NOD-SCID mice. Jurkat cells were infected with control or PPM1A-AS-overexpression
lentivirus and transplanted mice by tail intravenous injection. About 45 days later, the mice were sacrificed, the photos were taken and relative data were detected.
(A) Representative images of spleens from mice. (B) Quantitative analyses of the weights of the spleens. (C) Flow cytometry analyses of human CD45+ T cells in
peripheral blood of mice. Left panel: representative images; right panel: average percentage of CD45+ T cells in peripheral blood from each mouse. (D) Flow
cytometry analyses of human CD45+ T cells in bone marrow of mice. Left panel: representative images; right panel: average percentage of CD45+ T cells in bone
marrow from each mouse. Mean ± SD. *P < 0.05.
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do our bit for the improvement of lncRNA regulatory network.
We researched a new lncRNA, which we named as PPM1A-AS
because it’s an antisense lncRNA of gene PPM1A, at the first time.
We found PPM1A-AS was up-expressed in T-ALL patients and
cell lines. By in vitro and in vivo assays, PPM1A-AS was proved to
be benefit for T-ALL development through regulating cell
proliferation and apoptosis. Next, we performed transcriptome
sequencing using RNAs extracted from Jurkat cells which were
infected with control or PPM1A-AS-knockdown lentivirus.
KEGG pathway analysis revealed that PPM1A-AS was probably
involved in Notch signaling and PI3K-Akt signaling pathways.
We then tested if PPM1A-AS could influence expression of core
proteins in these pathways by western blotting. The results
showed that knockdown of PPM1A-AS didn’t affect the level of
Notch1 and total protein of Akt but could decrease the
phosphorylated Akt and Notch4 expression. Furthermore, we
also detected lncRNA PPM1A-AS’s role in another oncogenic
pathway, JAK-STAT signaling pathway. PPM1A-AS can impact
phosphorylated STAT3 but not total STAT3 protein level. In
Frontiers in Oncology | www.frontiersin.org 891
conclusion, we not only make a break of functions of a new
lncRNA but also make a contribution to the new roles of lncRNA
in T-ALL. Finally, the particular mechanism which lncRNA
PPM1A-AS took to affect Noth4, p-Akt and p-STAT3 is not
clear and needs more efforts in the future.
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The prognosis of chemoresistant acute myeloid leukemia (AML) is still poor, mainly owing
to the sustained proliferation ability of leukemic cells, while the microtubules have a major
role in sustaining the continuity of cell cycle. In the present study, we have identified
CENPE, a microtubular kinesin-like motor protein that is highly expressed in the peripheral
blood of patients with chemoresistant AML. In our in vitro studies, knockdown of CENPE
expression resulted in the suppression of proliferation of myeloid leukemia cells and
reversal of cytarabine (Ara-C) chemoresistance. Furthermore, Lin28A, one of the RNA-
binding oncogene proteins that increase cell proliferation and invasion and contribute to
unfavorable treatment responses in certain malignancies, was found to be remarkably
correlated with CENPE expression in chemoresistance AML. Overexpression of LIN28A
promoted the proliferation and Ara-C chemoresistance of leukemic cells. RIP assay, RNA
pull-down, and dual luciferase reporter analyses indicated that LIN28A bound specifically
to the promoter region GGAGA of CENPE. In addition, the impacts of LIN28A on cell
growth, apoptosis, cell cycle progression, and Ara-C chemoresistance were reverted by
the knockdown of CENPE. Hence, Lin28A/CENPE has enhanced the proliferation and
chemoresistance of AML, and therefore, it could be a prospective candidate for
AML treatment.

Keywords: CENPE, LIN28A, AML, chemoresistance, cell cycle
INTRODUCTION

The prognosis of chemoresistant acute myeloid leukemia (AML) remains poor due to the sustained
proliferative capacity of leukemic cells (1–3). The dysregulated cell cycle could induce raised
proliferation, which predisposes leukemic cells to gain mutations and may privilege chemoresistant
leukemic transformation (4–6). Cell cycle-specific agent cytarabine (Ara-C) and cell cycle-nonspecific
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agents anthracycline chemotherapeutics are the standard
treatment of AML in both induction and consolidation
therapies, but still a proportion of patients present intrinsic or
acquired chemotherapy resistance (7, 8). Thus, there is an urgent
need for new targets and therapeutic approaches to treat
chemoresistant AML. Cell cycle checkpoint, including
microtubules, is critical in the maintenance of a continuous cell
cycle. Targeting cell cycle checkpoints has showed promising
results in preclinical models and provides a potential
combination therapy for AML patients (3, 5, 9).

Centromere protein E (CENPE), a microtubule kinesin,
localizes to unlinked kinesins during mitosis and slides
monomeric chromosomes toward the spindle equator using
end-directed microtubule movement (10). The upregulated
CENPE has been found to be involved in the tumorigenesis of
breast cancer, prostate cancer, neuroblastoma, etc., and CENPE
deletion could lead to the apoptosis of tumor cells (11–14). A
most recent study demonstrated that in medulloblastoma cells,
CENPE depletion triggered the endogenous DNA damaging,
which activated TP53 or TP73 and cell death signaling pathways
(15). In a research of 1,195 non-small cell lung cancer (NSCLC)
patients’ samples, CENPE was revealed to be highly expressed
and patients with strong CENPE expression had a relatively low
overall survival rate (16). In prostate cancer, CENPE expression
could be activated by LSD through binding to the promoter
region (13). To understand the mechanism of CENPE depletion
in tumor cell growth, an in vitro study has further identified that
the overexpressed FOXM1 could facilitate CENPE expression
and lung cancer cell proliferation by specifically binding to the
CENPE promoter region (17).

In leukemia, attention has already been devoted to antimitotic
agents. For example, in HL-60 cells, the antimitotic agent HKL-1
was found to evoke mitotic catastrophes by downregulating the
mitotic stage-specific kinase CENPE and downregulating Bcl-2
(18). Moreover, an anti-mitogenic agent GSK923295A, capable
of inhibiting CENPE motility activity, exhibited substantial
remission-inducing antileukemia activities towards acute
lymphoblastic leukemia (ALL) xenografts (19). In 38,410 cells
from aspirates of AML patients and healthy volunteers, single-
cell RNA-seq and genotyping were performed and CENPE was
found to be related to minimal residual diseases (MRD) >2-fold
standard deviation of all residuals (20). However, the mechanism
of CENPE in AML progression and chemoresistance is
rarely studied.

RNA binding proteins (RBPs) are key modulators of cancers
and mRNAs (21, 22). Previous studies have explored the effect
and molecular mechanisms of the RBPs LIN28A in the
development of various tumors and revealed the underlying
role of LIN28A on cell cycle-related mRNAs (23–26). Lin28
has been found to enhance the growth of dental pulp cells by
upregulating the cyclin-dependent proteins and by interacting
with the let-7a/IGF2BP2 pathway (23). In epithelial tumors,
LIN28A promoted cell cycle procession by moderating the
expression of CDK2, Cyclin D1, and CDC25A (26). Highly
expressed LIN28A can serve as a potential oncogenic factor
that contributes to the tumorigenesis, development, and
Frontiers in Oncology | www.frontiersin.org 294
migration of ovarian, breast, liver, and colon cancers (27–33).
Mechanism-wise, LIN28A can modulate the translation of its
targeted mRNA and restrain let-7 expression in the
posttranscriptional level, which both depend on the LIN28A
protein’s RNA-binding motif (34–42). For example, in a study
on colorectal cancer, LIN28A was found to promote the
development and progression of disease by regulating the
expression of the mRNA GEFT (38). Moreover, LIN28A has
been confirmed to have the capacity to stabilize and modulate the
expression of various mRNAs, including YB-packaged mRNA,
RAN, and HSBP1 mRNA in tumors (40–42). More interestingly,
it has been shown that LIN28A participated in regulating the
differentiation and cell cycle progression of AML cells (43).
However, the mechanism of LIN28A in AML progression and
chemoresistance is not definitively understood.

In our study, we found that CENPE was overexpressed in
patients with chemoresistant AML. Furthermore, Lin28A was
found to be remarkably correlated with CENPE expression in
chemoresistance AML. Knockdown of CENPE expression led to
the suppression of growth of myeloid leukemia cells and reversal
of Ara-C chemoresistance. Overexpression of LIN28A promoted
the growth and Ara-C of leukemic cells by specifically binding to
the promoter region GGAGA of CENPE, while knockdown of
CENPE reverted this influence. Our findings indicated that
Lin28A may have a pivotal role in AML tumorigenesis and
chemoresistance by modulating CENPE, and that targeting
Lin28A/CENPE could be a potential effective treatment or
combined chemotherapy regimen for chemoresistant
AML patients.
MATERIALS AND METHODS

Clinical Samples
Peripheral blood samples of three refractory/relapsed AML
patients (R/R-AML, relapsed/refractory AML patients who
failed to achieve complete remission/CR after two courses of
induction chemotherapy), three refractory secondary AML
patients (S-AML-, MDS-, or MPN-derived AML patients did
not reach CR after two rounds of induction chemotherapy), four
de novo AML patients (AML, CR after standard “3+7” induction
chemotherapy), and three healthy controls (HC) were collected
in Henan Provincial People’s Hospital. Permission of this study
was obtained from the Ethics Committee of Henan Provincial
People’s Hospital, and written informative consent was granted
to all subjects.

Cell Separation and RNA Extraction
Peripheral blood mononuclear cells (PBMCs) from all
individuals were collected and separated by density
centrifugation (Ficoll-Hypaque). All specimens were obtained
from EDTA peripheral blood in 4 h and then preserved at
−80°C. Total PBMC RNA was obtained by TRIzol reagent
(ThermoFisher Scientific) following directions of the
manufacturer. Add 0.5 ml of Trizol, RT 2–3 min. Add 0.25 ml
of chloroform and shake vigorously for 20–30 s, RT 2–3 min.
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Then, centrifuge for 10 min at 12,000 rpm at 4°C. Carefully
transfer the supernatant to another tube, add 0.5 ml of
isopropanol, mix, and put in RT 10 min. Then, centrifuge for
10 min at 4°C at 12,000 rpm. Wash with 70% EtOH and air-dry
the pellet. Using 50 ml of DEPC-H2O, dissolve the pellet.
Measure OD260. Store at −80°C.

RNA-seq and Bioinformatic Analysis
Nanodrop was applied to quantify the total RNA samples.
Illumina kits were used to prepare the RNA-seq library.
Ultimately, after quantifying and qualifying the RNA-seq
libraries, the sequencing is detected by Illumina Hiseq 4000.
Differentially expressed genes (DEGs) were screened for adjusted
p < 0.05 and fold change ≥2. DEGs between each of the two
groups were presented by scatter plot, volcano plot, and
hierarchical clustering. To discover the potential underlying
biological procedures and pathways in R/R-AML, S-AML, and
de novo AML, we conducted GO and KEGG pathway analysis.

Downloaded TCGA and GEO RNA-seq
Data
Whole blood RNA-seq dataset of Recurrence-AML (R-AML)
was downloaded from TCGA (151 cases) and primary AML
dataset was downloaded from GEO (7 cases). The DEGs between
R-AML and primary AML samples were identified based on
screening criteria: |log2FC| ≥ 1 and p ≤ 0.05. The clinical data of
R-AML patients from TCGA were extracted. The expression
profiles of CENPE were extracted and compared in R-AML and
primary AML groups. X-tile software was used to calculate the
cutoff values of CENPE in R-AML patients, and survival analysis
was conducted in R-AML patients with CENPE high expression
and R-AML patients with CENPE low expression.

Cell Culture and Transfection
K562 and THP-1 cell lines were obtained from the American
Type Culture Collection (ATCC). Cells were incubated in RPMI
1640 media (Sigma Aldrich, USA) with 1% penicillin/
streptomycin (37°C, 5% CO2) and 10% fetal bovine serum
(Gibco, USA). 293T cells were cultivated in DMEM media
(Sigma Aldrich, USA). Search the gene sequences of CENPE
on the NCBI GENE bank database, and design RNA interference
sequences according to the design principles. Small interference
RNA (siRNA)-directed CENPE and the negative control (NC)
were made by Wuzhou Kangjian Biological Technology Co., Ltd.
(Tianjin, China). The LIN28A expression plasmid and NC
plasmid were purchased from Wuhan GeneCreate Biological
Engineering Co., Ltd. (Wuhan, China) and transfected into K562
and THP-1 cells. Transfections were carried out in six-well plates
applying Lipofectamine 3000 (Thermo Fisher Scientific, Inc.).
The sequences of the siRNAs are as follows: CENPE#1: AGG
CTACAATGGTACTATATT, CENPE#2: CCAAAGATTCA
GCACTACTAA, Lin28A#1: CTTTCGAGAGGAAGAAGA
AGA, Lin28A#2: GAGTAAGCTGCACATGGAAGG.

Cell Proliferative Ability Analysis
Use Cell Counting Kit-8 (CCK-8, Solarbio) to observe the in vitro
cell proliferation after transfection. In the CCK8 assay, 12 h post-
Frontiers in Oncology | www.frontiersin.org 395
transfection, 100 ml of cell suspension (about 5,000 cells/well)
was transferred into a 96-well plate and then cultured at 37°C, in
5% CO2. Add to each well of the plate 10 ml of CCK-8 solution.
Incubate the plate for 1–4 h. Thereafter, the absorbance was
evaluated at 450 nm (OD450) using an automatic microplate
reader. The experiment was performed at 12 h, 24 h, 48 h, and 72
h to create a cell growth curve.

Actinomycin D Assay to Analyze mRNA
Stability
Actinomycin D (ActD) was added to si-NC or si-LIN28A
transfected K562 and THP-1 cells 48 h after transfection.
CENPE mRNA expression was measured by RT-qPCR after 0,
2, 4, and 6 h of ActD treatment.

Drug Treatment and IC50 Calculation
IC50 value is the drug concentration value corresponding to the
cell survival rate of 50%. IC50 values were examined by the CCK-
8 assay (Solarbio). To calculate K562 and THP-1 IC50 values,
cells were treated with Ara-C at concentrations of 0.125 µM, 0.25
µM, 0.5 µM, 1 µM, 2 µM, 4 µM, and 8 µM at 37°C with 5% CO2.
After 48 h, under light-proof conditions, 10 ml of CCK-8 solvent
was pipetted to every well and placed at 37°C for 2 h. The
absorbance was evaluated at OD450. Calculate the cell
survival rates.

Cell Apoptosis Analysis
Cells were treated either with or not with Ara-C for 48 h before
collection, the cell culture supernatant was discarded, and then
the cells were collected. The cells were washed twice with the
phosphate buffered saline (PBS, Servicebio) and 500 µl of 1×
binding buffer was added. Continue to add 5 ml each of Annexin
V-FITC and PI staining solution (Solarbio) to the tube, incubate
for 15 min in the dark (room temperature), and detect apoptosis
by flow cytometry within 1 h.

Cell Cycle Analysis
Cells were starved before transfection for 24 h and confirmed
that most of the cells were in G0/G1 phase. Afterwards, cells were
transfected with si-NC or si-CENPE, and the effect of CENPE
interference on cell cycle was examined 48 h later. Wash the cells
twice with PBS solution, centrifuge them, and discard the
supernatant. Add 70% alcohol (pre-cooled) to 2 ml of the EP
tube and centrifuge at 4°C for 30 min. The cells were collected,
washed once with PBS, and centrifuged; RNase A was added; and
the mixture was incubated 30 min at 37°C and then centrifuged.
Continue to add 5 mg/ml of PI staining solution (Solarbio,
China), place at room temperature in the dark for 15 min, and
detect the cell cycle using flow cytometry.

RT-PCR Measurement
K562 and THP-1 cell lines with or without targeted genes knocked
down were collected to extracted total RNA. cDNA was
synthesized applying a Bio-Rad iScript cDNA Synthesis Kit. RT-
PCR was conducted with SYBR Green reaction system (12 ml).
PCR primers were synthesized by Wuhan GeneCreate
Biological Engineering Co., Ltd. Transfer the diluted (20 ml
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cDNA + 280 ml ddH2O) cDNA to an 8-strip PCR tube. Use an
electric multi-channel pipette to transfer to a 384-well plate (three
replicates for each test sample). Mix 2×SYBR Green Mix
(ThermoFisher Scientific, USA) with primers. Centrifuge the
sealing plate and test on the machine. The qPCR process is
done on a CFX96 real-time system. The relative levels of
mRNAs were measured using the 2−DDCq method. The
sequences were as follows: CENPE: Forward GATGACC
T A G C A A C T A C A C A G T C , R e v e r s e A A A G
CACCCAAACTCGAATCA; LIN28A: Forward GGT
GGACGTCTTTGTGCACCAGAG, Reverse CGCTCACT
CCCAATACAGAACACAC; b-actin: Forward ACCAAC
TGGGACGACATGGAG, Reverse GTGAGGATCTTC
ATGAGGTAGTC.

Western Blot Analysis
Collect 1 × 106 each of K562 and THP-1 cells, wash the cells
three times, then add RIPA protein lysis solution, and place on
ice to lyse for 10 min. Take a small amount of protein solution for
BCA protein concentration assay (Sangon Biotech, Shanghai,
China). Subsequently, 50 mg of protein samples was added to
the loading wells of each lane in an SDS-PAGE gel; after
electrophoresis at 70 V for 25 min, switch to 120 V and
continue electrophoresis for 1 h. The proteins were then
moved to PVDF membranes. Block the membranes with 5%
BSA (Solarbio) at room temperature for 2 h. Wash with TBST
solution and add primary antibodies (anti-CENPE, anti-LIN28A,
and anti-b-actin), and then incubate at 4°C overnight. Wash the
PVDF membranes and then place in HRP-labeled secondary
antibodies for 1.5 h, at 37°C. After sufficient washing with TBST
solution, ECL chemiluminescence was performed and protein
levels were analyzed.

RIP-qPCR to Identify the Targeting
Relationship Between LIN28A and CENPE
After 48 h transfection of LIN28A and si-CENPE, the K562 cells
were collected, lysed, and stored at −80°C. In transfected (after 48
h) or un-transfected K562 cells, RIP Kit (Millipore) with IgG
(Abcam, Cambridge, MA, USA) or LIN28A antibody (Abcam)
was used to assess the binding potential of LIN28A to CENPE. The
level of CENPE mRNA that was enriched by IgG or LIN28A
antibodies was measured by RT-qPCR.

RNA Pull-Down
The interaction between CENPE mRNA 3’UTR and LIN28A
protein was analyzed using the RNA Pull-Down kit (Thermo
Scientific). Lyse the cells with IP Lysis Buffer. Biotin-labeled
CENPE mRNA 3’UTR probes for the sense or antisense strands
of LIN28A were prepared. RNA pull-down experiments were
performed in the whole cell lysates of K562 cells with a magnetic
RNA pull-down kit. LIN28A protein levels that were
pulled down by biotin-labeled transcripts were detected by
Western blot.

Dual Luciferase Report Analysis
The wild-type CENPE (CENPE Wt) 3’UTR sequence containing
a LIN28A binding site was constructed onto the pGL3-Basic
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vector to build the CENPE Wt reporter vector. The CENPE
3’UTR and LIN28A binding site in CENPE Wt was mutated to
construct the CENPE mutation (CENPE Mut) reporter vector.
The LIN28A overexpression plasmid (LIN28A) and empty
plasmid (Vector) were provided by Wuhan GeneCreate
Biological Engineering Co., Ltd. In K562 cells, CENPE Wt and
CENPE Mut were transfected with the groups of CENPE Wt+
Vector, CENPE Wt+LIN28A, CENPE Mut+Vector, and CENPE
Mut+LIN28A, respectively. After 48 h of cell transfection, the
change of luciferase activity was detected by luciferase activity
assay kit (Promega).

Statistical Analysis
All experiments were independently repeated three times.
Differences between two groups were analyzed by t-test, and
one-way ANOVA was applied to analyze differences between
multiple groups. Experimental data were analyzed using
GraphPad prism 7.0 software and shown in Mean ± SEM.
Pearson correlation analysis was performed to analyze
correlations, and p < 0.05 was thought as a significant
difference (SPSS22.0).
RESULTS

Mitosis Cell Cycle-Related Gene CENPE
Was Upregulated in Chemoresistance
AML Patients
In the present study, RNA-seq results indicated that 1,017 genes
(303 upregulated and 714 downregulated) were observed in
patients with de novo AML in comparison to HC (Figure 1A).
A total of 329 DEGs were acquired (202 upregulated and 127
downregulated) in chemoresistance S-AML patients compared
with de novo AML patients (Figure 1D). Among S-AML samples
and de novo AML samples, Gene Set Enrichment Analysis
(GSEA) enrichment plots of DEGs of GO biological processes
were predominantly engaged in mitotic spindle organization
(GO:0007052) and regulation of mitotic metaphase/anaphase
transition (GO:0030071) (Figures 1B, E). CENPE gene was in
the top five upregulated DEGs (Figures 1B, E). In the KEGG
Pathway profiling, the majority of the upregulated DEGs were
as well enriched in the cell cycle pathway (hsa04110)
(Figures 1C, F). Moreover, as to identify our hypothesis, the
DEGs between R-AML from TCGA and primary AML from
GEO were analyzed. When |log2FC| ≥ 1 and p ≤ 0.05, a total of
7,957 DEGs were identified (5,964 upregulated and 1,993
downregulated) (Figure 1G). In order to identify the key
upregulated genes in chemoresistance AML, we performed a
Venn diagram analysis of the upregulated DEGs among R/R-
AML, S-AML, R-AML, and primary/de novo AML patients, and
the result revealed a total of 12 overlapping genes: CENPE,
ASPM, CENPF, DLGAP5, KIF15, HMMR, BUB1B, KIF11,
CEP55, NCAPG2, CCNB2, and CDCA8 (Figure 1H). The 12
upregulated genes were all upregulated in AML patients with
relapsed and chemoresistance disease. Among the 12
overlapping genes, the p-value and log2 fold change of CENPE
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were the most significant (Table 1). Combined with the GSEA
analysis results of DEGs in AML patients, we selected CENPE,
which was enriched in the mitotic spindle organization
(GO:0007052) and regulation of mitotic metaphase/anaphase
transition (GO:0030071) (Figures 1B, E) for further study
Frontiers in Oncology | www.frontiersin.org 597
(Figure 1E). Moreover, we found that CENPE expression was
considerably increased in R-AML compared to primary AML
(Figure 1I). It is worth noting that the expression of CENPE in
the R-AML patients ended with dead was slightly higher than
that in the alive patients (Figure 1I). We applied X-tile software
A B

D E F

G IH

C

FIGURE 1 | Mitosis-related gene CENPE was highly expressed in chemoresistance AML patients. (A) DEGs in de novo AML patients compared with HC. (B) GSEA
enrichment plots of DEGs of GO biological processes were predominantly engaged in mitotic spindle organization (GO:0007052) in de novo AML patients compared
with HC. (C) Upregulated DEGs enriched KEGG pathways in de novo AML patients compared with HC. (D) DEGs in S-AML versus de novo AML patients. (E) GSEA
enrichment plots of DEGs of GO biological processes were predominantly engaged in regulation of mitotic metaphase/anaphase transition (GO:0030071) in S-AML
versus de novo AML patients. (F) Upregulated DEGs enriched KEGG pathways in S-AML versus de novo AML patients. (G) The DEGs in R-AML from TCGA versus
primary AML from GEO. (H) Twelve targeted upregulated DEGs among R/R-AML, S-AML, R-AML, and primary/de novo AML patients. (I) CENPE in R-AML was
significantly higher than that of primary AML patients. X-tile software calculated the cutoff values of CENPE in R-AML patients, and survival analysis was conducted in
R-AML patients with CENPE high expression and R-AML patients with CENPE low expression.
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to calculate the cutoff values of CENPE in R-AML patients and
divided R-AML patients into a CENPE high-expression group
and a CENPE low-expression group according to the cutoff
values. Although a relatively shorter survival time could be
seen in the CENPE high-expression group, however,
the difference between the two groups was not statistically
significant (Figure 1I).

Effect of CENPE Interference on Cell
Cycle, Cell Apoptosis, and Ara-C
Drug Sensitivity
To further explore the functional role of CENPE in AML
progression and chemoresistance, we have designed and
synthesized siRNAs against CENPE (si-CENPE) and NC
siRNAs (si-NC). The knockdown efficiency was analyzed and
showed that si-CENPE transfection resulted in markedly reduced
CENPE expression in K562 and THP-1 cells when compared with
the si-NC (Figures 2A, B). Cell proliferation activities of K562 and
THP-1 cells were analyzed by CCK-8 assay. The results showed
that transfection with si-CENPE significantly inhibited K562 and
THP-1 cell activities (p < 0.05, Figures 2C, D). The apoptosis of
K562 and THP-1 cells after CENPE interference was analyzed by
flow cytometry. The results demonstrated that CENPE
interference increased the incidence of apoptosis in K562 and
THP-1 cells (Figures 3A, B). Also, cell cycles were analyzed by PI
single-staining method. The results revealed that si-CENPE
transfection induced G1 phase block and reduced the number of
cells of G2/M phase in K562 and THP-1 cells compared to the si-
NC group (Figures 3C, D). Western blot was used to analyze the
expression of cycle-associated proteins Cyclin B1 and p21.
Compared with the si-NC group, CENPE knockdown
suppressed Cyclin B1 expression and promoted p21 expression
in K562 and THP-1 cells (Figures 3E, F), indicating that CENPE
interference caused arrest and hindered the progression of the cell
cycle. Moreover, Ara-C drug sensitivity after CENPE interference
was detected. Following the treatment of Ara-C with different
concentrations, the IC50 values were measured and analyzed by
the CCK-8 method. The results showed that si-CENPE
transfection reduced the IC50 values of K562 and THP-1 cells
and led to enhanced sensitivity of Ara-C compared to the si-NC
group (Figures 4A, B). In conclusion, the proliferation of myeloid
Frontiers in Oncology | www.frontiersin.org 698
leukemia cells was inhibited and chemoresistance was reversed
after knocking down the expression of CENPE.

CENPE Expression Was Highly Correlated
With RBP LIN28A
Starbase database was used to predict the RBPs, which might
bind to CENPE. Combined with the DEGs screened by TCGA
R-AML patients, 25 RBPs that were differentially expressed in
R-AML and might interact with CENPE were screened
(Figure 5A and Table 2). The correlation between the
expression of each of the above RBPs in AML and CENPE
expression was analyzed using the GEPIA database (Table 2).
LIN28A was among the top five RBPs that most correlated
with CENPE in AML. CENPE expression was shown to be
highly correlated with RBP LIN28A (r = 0.24; p < 0.05)
(Figure 5B). Taking into consideration the crucial modulatory
effects of LIN28A in oncogenes and mRNAs and the potential
roles of LIN28A on cell cycle-related genes. LIN28A was selected
for further study. LIN28A gene expression levels were analyzed
in the 151 R-AML whole blood samples from the TCGA
database and 7 primary AML samples from the GEO database.
Our preliminary analysis revealed that the expression of
LIN28A was dramatically increased in R-AML patients when
compared with primary AML patients (p < 0.05, Figure 5C),
which means patients with high expression of LIN28A are
more likely to relapse. Therefore, we further explored the
modulatory role of LIN28A on CENPE.

LIN28A Effected CENPE Expression and
mRNA Stability
Analysis of transfection efficiency revealed that the si-LIN28A
group led to a significant downregulation of LIN28A levels
in K562 and THP-1 cells compared to the si-NC group
(Figures 6A, B). RT-qPCR and Western blot assays further
showed that knockdown of LIN28A suppressed the CENPE
mRNA and protein production in K562 and THP-1 cells
(Figures 6C, D). The influence of the LIN28A deletion on the
stability of CENPE mRNA was investigated by ActD assays.
At the same time after ActD treatment, the half-lives of
CENPE mRNA were dramatically shortened in K562 and
THP-1 cells that were transfected with si-LIN28A in
TABLE 1 | The expression profiles of 12 upregulated overlapping genes in AML samples.

baseMean log2FoldChange lfcSE stat pvalue padj

CENPE 1049.802 5.191935 0.425723 12.19556 3.28E-34 1.88E-32
ASPM 1919.416 4.978494 0.427757 11.6386 2.62E-31 1.26E-29
CENPF 3083.29 4.450087 0.375638 11.84674 2.24E-32 1.16E-30
DLGAP5 570.4089 2.538413 0.434018 5.848632 4.96E-09 2.46E-08
KIF15 746.446 2.504048 0.361179 6.932982 4.12E-12 3.11E-11
HMMR 660.9024 2.39525 0.401993 5.958438 2.55E-09 1.32E-08
BUB1B 1155.31 2.240073 0.306405 7.310828 2.66E-13 2.33E-12
KIF11 1913.824 1.412275 0.27741 5.090932 3.56E-07 1.35E-06
CEP55 482.5731 1.334555 0.403412 3.308172 0.000939 0.001988
NCAPG2 1700.24 1.326956 0.272845 4.863398 1.15E-06 4.02E-06
CCNB2 795.6173 1.318156 0.33368 3.950366 7.80E-05 0.0002
CDCA8 692.7212 1.238473 0.308255 4.017694 5.88E-05 0.000154
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comparison with the si-NC group (Figures 6E, F). It indicated
that LIN28A interference reduced CENPE mRNA stability. In
conclusion, LIN28A inhibited the CENPE mRNA and protein
production, and reduced CENPE mRNA stability in myeloid
leukemia cells.

LIN28A Interacted With CENPE by Binding
to the 3’UTR Region
The binding capacity was investigated between LIN28A and
CENPE mRNA by RIP assay. The results indicated that
LIN28A antibody was able to enrich a significant amount of
CENPE in K562 cells compared to the IgG group (p < 0.05,
Figure 7A). Predictive analysis showed the existence of a GGAGA
motif that bound to LIN28A in the CENPE 3’UTR; therefore, we
hypothesized that LIN28A might impact the stability of CENPE
by interacting with the CENPE 3’UTR GGAGA motif. The
CENPE 3’UTR was obtained by in vitro transcription and
labeled with a biotin synthetic probe, and we also analyzed the
interaction of LIN28A with the CENPE 3’UTR by RNA pull-
Frontiers in Oncology | www.frontiersin.org 799
down assay and luciferase assay. RNA pull-down and Western
blot analyses indicated that in K562 cells, LIN28A could be
markedly enriched with biotinylated sense CENPE 3’UTR,
whereas it could not be enriched with biotinylated antisense
CENPE 3’UTR (Figure 7B). The LIN28A mRNA and protein
levels were obviously increased in LIN28A-transfected K562 cells
when compared to the Vector group (p < 0.05, Figure 7C). It
indicated that the overexpression plasmid of LIN28A had a good
overexpression efficiency. Wild-type (Wt) and mutant (Mut)
luciferase plasmids of 100 bp upstream and downstream of the
CENPE 3’UTR binding site were constructed, and CENPE Wt
and CENPE Mut were transfected into K562 cells, including
CENPE Wt+Vector, CENPE Wt+LIN28A, CENPE Mut
+Vector, and CENPE Mut+LIN28A. Forty-eight hours after
transfection, the change of luciferase activity was measured by
the luciferase activity assay kit. The results revealed that the
luciferase activity was remarkably stronger in the Wt group
after LIN28A overexpression when compared to the Wt+Vector
group (p < 0.05, Figure 7C). However, the promotion effect of
A B

DC

FIGURE 2 | CENPE interference inhibited K562 and THP-1 cell proliferation. (A, B) K562 and THP-1 cells were transfected with si-NC, si-CENPE#1, or si-
CENPE#2. Knockdown efficiency of CENPE in K562 and THP-1 cells was measured by RT-qPCR. (C, D) Cell proliferation was evaluated by CCK-8 assay, and si-
CENPE significantly inhibited K562 and THP-1 cell activities compared with the si-NC group. **p < 0.01. ***p < 0.001.
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LIN28A on luciferase activity in the Wt group disappeared after
CENPE 3’UTR mutation (Figure 7D). This suggested that
LIN28A can target binding to the GGAGA site of the
CENPE 3’UTR.

Interaction of LIN28A and CENPE Effected
AML Cell Proliferation, Apoptosis, Cell
Cycle, and Ara-C Resistance
After LIN28A was overexpressed, the CCK-8 results revealed
a significantly increased proliferation rate in K562 and THP-1
cells (p < 0.05, Figures 8A, C). The effect of CENPE interference
on cell proliferation regulated by LIN28A overexpression
was further analyzed. The results showed that compared
with LIN28A overexpression plus si-NC group (LIN28A+si-
NC), CENPE interference reversed the proliferation of K562
and THP-1 cells promoted by LIN28A overexpression (p < 0.05,
Figures 8A, C). This indicated that LIN28A promoted AML cell
proliferation, and CENPE interference diminished the pro-
proliferative effect of LIN28A. LIN28A overexpression reduced
the apoptosis rate of K562 and THP-1 cells compared with Vector
(Figures 8B, D). Furthermore, LIN28A overexpression inhibited
Frontiers in Oncology | www.frontiersin.org 8100
AML cell apoptosis, and compared with the LIN28A
overexpression plus si-NC group, CENPE interference reversed
the apoptosis-inhibiting ability of LIN28A overexpression
(Figures 8B, D). In K562 and THP-1, LIN28A overexpression
triggered cell cycle progression to the G2/M phase compared
to the Vector group (Figures 9A, B). Compared with the LIN28A
overexpression plus si-NC group, CENPE interference reversed
the promotive effect of LIN28A overexpression on K562 and THP-
1 cell cycles (Figures 9A, B). LIN28A overexpression induced
Cyclin B1 expression and inhibited p21 expression in K562
and THP-1 cells in comparison with the Vector group
(Figures 9C, D). Compared with the LIN28A overexpression
plus si-NC group, CENPE interference reversed the regulation
of Cyclin B1 and p21 expression by LIN28A overexpression
(Figures 9C, D). Moreover, Ara-C drug sensitivity after LIN28A
overexpression and CENPE interference was detected. Following
the treatment of Ara-C with concentrations of 0.125 µM, 0.25 µM,
0.5 µM, 1 µM, 2 µM, 4 µM, and 8 µM in K562 and THP-1 cells,
the IC50 values were measured and analyzed by the CCK-8
method. The results showed that LIN28A overexpression
increased IC50 values compared to the Vector group in K562
A B

D
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C

FIGURE 3 | CENPE interference effected K562 and THP-1 cell apoptosis and cell cycle and drug resistance. (A, B) After 48 h of transfection, cell apoptosis was
measured by flow cytometry. The cell apoptotic rates between si-NC and si-CENPE groups were analyzed in K562 and THP-1 cells. (C, D) After 48 h of transfection,
cell cycle was measured by PI single-staining method. (E, F) After 48 h, Western blot analyzed the expression of cycle-related proteins Cyclin B1 and p21 in K562 and
THP-1 cells. *p < 0.05. **p < 0.01. ***p < 0.001.
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A

B

FIGURE 4 | CENPE interference effected Ara-C resistance in K562 and THP-1 cells. (A, B) K562 and THP-1 cells were treated with ascending concentrations of
Ara-C (0.125 µM, 0.25 µM, 0.5 µM, 1 µM, 2 µM, 4 µM, and 8 µM). After 48 h, IC50 values were measured and analyzed by the CCK-8 method. The experiment was
independently repeated three times and statistical differences between the si-NC and si-CENPE groups were analyzed. **p < 0.01.
A B C

FIGURE 5 | CENPE expression was highly correlated with RBP LIN28A. (A) Starbase database was used to screen out 25 RBPs, which might bind to CENPE and
were differentially expressed in R-AML. (B) CENPE expression was strongly related to RBP LIN28A (r = 0.24; p < 0.05). (C) LIN28A gene expression were higher in
the 151 R-AML whole blood samples from the TCGA database versus 7 primary AML samples from the GEO database. ****p < 0.0001.
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and THP-1 cells (Figures 10A, B). Compared with the LIN28A
overexpression plus si-NC group, CENPE interference attenuated
the IC50 values of cells increased by LIN28A overexpression
(Figures 10A, B). In conclusion, LIN28A promoted AML cell
cycle progression and inhibited AML cell apoptosis, and CENPE
interference repressed the cell cycle progression-promoting effect
of LIN28A and facilitated apoptosis in leukemic cells. Moreover, it
indicated that LIN28A enhanced drug resistance of AML cells to
Ara-C, but CENPE interference reversed LIN28A-regulated Ara-C
resistance in leukemic cells.
DISCUSSION

The prognosis for AML patients remains poor, with a 5-year
survival rate of <30%, even with novel therapeutic agents (8).
AML is partially triggered by dysregulated cell proliferation,
which involves cell cycle modulation and DNA reparation.
One mechanism of chemoresistance is related to the
recognition of DNA damage by cell cycle regulators (39).
Hence, inhibition of cell cycle pathways can have a synergistic
impact on chemotherapy (9, 44). Previous studies have shown
that mitotic regulator inhibitors, such as balaceltib and polo-like
kinase-1 (PLK1), are found to be effective in combination with
TABLE 2 | The correlation between CENPE and RBPs.

Gene Correlation coefficient p-value

VIM −0.24 0.0016
LIN28A 0.24 0.0018
MSI1 0.22 0.0041
SLTM 0.17 0.026
FMR1 0.17 0.029
FBL −0.16 0.038
ACIN1 −0.16 0.04
TARDBP 0.15 0.047
SRSF3 0.15 0.05
HNRNPK 0.15 0.054
HNRNPC 0.15 0.056
U2AF1 0.14 0.063
TNRC6A 0.12 0.11
NPM1 0.12 0.12
RBM5 −0.098 0.2
SRSF9 −0.098 0.2
HNRNPA1 0.091 0.23
CNBP −0.065 0.4
LARP4B 0.065 0.4
EIF4A3 0.056 0.46
YWHAG 0.042 0.58
IGF2BP3 −0.019 0.8
SBDS −0.0096 0.9
KHDRBS2 0.0032 0.97
KHDRBS3 −0.023 0.77
A B

D

E F

C

FIGURE 6 | LIN28A effected CENPE expression and mRNA stability. (A, B) Transfected K562 and THP-1 cells with si-NC or si-LIN28A, and LIN28A mRNA and
protein were detected by RT-qPCR and Western blot 48 h after transfection. (C, D) Forty-eight hours after transfection of LIN28A in K562 and THP-1 cells, CENPE
mRNA and protein were examined by RT-qPCR and Western blot. (E, F) The impact of the knockdown of LIN28A on the stability of CENPE mRNA was evaluated
by the actinomycin D assay. *p < 0.05. **p < 0.01. ***p < 0.001.
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A B

DC

FIGURE 7 | LIN28A interacted with CENPE by binding to the 3’UTR region. (A) CENPE mRNA enriched by IgG or LIN28A antibodies in K562 cells were detected
by RIP-conjugated RT-qPCR. (B) RNA pull-down and Western blot assays were conducted to detect the LIN28A protein levels being pulled down by biotin sense or
antisense CENPE 3’UTR. (C) K562 cells were transfected with empty vector or LIN28A overexpression plasmid, and LIN28 expression was detected by RT-qPCR
and Western blot. (D) The CENPE Wt and CENPE Mut were transfected in K562 cells, including CENPE Wt+Vector, CENPE Wt+LIN28A, CENPE Mut+Vector, and
CENPE Mut+LIN28A, and 48 h after cell transfection, changes in luciferase activity were measured with a luciferase activity assay kit. **p < 0.01. ***p < 0.001.
A B

DC

FIGURE 8 | Interaction of LIN28A and CENPE effected cell proliferation and apoptosis in K562 and THP-1 cells. (A) CCK8 assay was used to explore the effect of LIN28A
overexpression and CENPE interference on cell proliferation regulated by LIN28A overexpression of K562 cells. (B) After 48 h of transfection, cell apoptosis was measured
by Annexin V-FITC/PI double-staining method flow cytometry in LIN28A overexpressed and CENPE interfered LIN28A overexpressed K562 cells. The cell apoptotic rates
were analyzed in K562 cells. (C) CCK8 assay was used to explore the effect of LIN28A overexpression and CENPE interference on cell proliferation regulated by LIN28A
overexpression of THP-1 cells. (D) After 48 h of transfection, cell apoptosis was detected by Annexin V-FITC/PI double-staining method flow cytometry in LIN28A
overexpressed and CENPE interfered LIN28A overexpressed THP-1 cells. The cell apoptotic rates were analyzed in THP-1 cells. **p < 0.01. ***p < 0.001.
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other chemotherapeutic agents, such as low-dose Ara-C, for the
treatment of patients with leukemia, AML, myelodysplastic
syndrome (MDS), and MDS-progressive AML (45–48).
Therefore, targeting cell cycle regulators could be a potential
therapeutic target for chemoresistant AML.

In this study, we have shown that the expression of mitosis
cell cycle-related gene CENPE was notably elevated in
chemoresistant AML patients compared to chemosensitive
AML patients, which was in line with public data of R-AML
versus primary AML. CENPE is a microtubule motility protein
that is implicated in oncogenesis of various kinds of cancer (10,
11, 15). Knockdown of CENPE in breast cancer, prostate cancer,
and neuroblastoma leads to repression of the tumor proliferation
(12–14). In a study of NSCLC, CENPE was found to be highly
expressed and predicted poor prognosis (16). In vitro studies
further determined that the pro-proliferative effect of CENPE
expression on lung cancer cells is modulated directly by FOXM1
via binding to the promoter region of CENPE (17). In leukemia,
GSK923295A, which inhibited CENPE motility activity,
Frontiers in Oncology | www.frontiersin.org 12104
exhibited significant remission induced anti-leukemia effect in
the ALL xenografts (19). In AML, single-cell RNA-seq result
showed that CENPE was correlated with higher residuals (20). In
the present study, we demonstrated that CENPE was increased in
chemoresistance AML patients and R-AML patients from the
TCGA database. Moreover, CENPE interference significantly
inhibited AML cell activity and promoted cell cycle arrest and
apoptosis, which is consistent with previous findings, but
whether CENPE can be involved in regulating the drug
sensitivity of AML to Ara-C has not been reported. In our
study, our functional analysis confirmed that CENPE
interference enhanced the drug sensitivity of AML cells to Ara-C.

Given the important role of CENPE in AML progression and
chemoresistance, we further explored the mechanisms of
upstream regulation of CENPE. It was revealed that LIN28A
was significantly correlated with CENPE expression. Highly
expressed RBPs LIN28A can act as a potential oncogenic factor
to promote tumorigenesis, progression, and metastasis in various
human cancers (27). As in previous studies, by analyzing publicly
A

B

DC

FIGURE 9 | LIN28A/CENPE inhibited the cell cycle progression in K562 and THP-1 cells. (A, B) After 48 h of transfection, cell cycle was measured by PI single-
staining method in LIN28A overexpressed and CENPE interfered LIN28A overexpressed K562 and THP-1 cells. (C, D) After 48 h, Western blot analyzed the
expression of cycle-related proteins Cyclin B1 and p21 in LIN28A overexpressed and CENPE interfered LIN28A overexpressed K562 and THP-1 cells. ***p < 0.001.
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available data, our preliminary results show that LIN28A
expression is substantially increased in R-AML patients
compared to primary AML patients, which indicated poor
prognosis in AML. Mechanistically, LIN28A can regulate its
target mRNA translation (24, 28). In papillary thyroid carcinoma
cells, LIN28A interference inhibited c-myc expression, which in
turn reduced cell proliferation, migration, and invasion (49).
Additionally, by binding to LINC00355 or GEFT 3’UTR,
LIN28A moderated LINC00355-mediated GEFT expression,
increased GEFT mRNA stability, and facilitated colorectal
cancer formation, development, and aggression (38). In
ovarian cancer, Lin28A enriched the mRNA of RAN and
HSBP1, which was negatively correlated with survival and
prognosis (41). In glioma cells, the Lin28A/SNHG14/IRF6 axis
is pivotal for the reprogramming of glucose metabolism and the
spurring of oncogenesis, and depletion of Lin28A reduced in vivo
xenograft tumor outgrowth and prolonged nude mice survival
(42). Several studies (23–26) have also revealed the underlying
role of LIN28A on cell cycle-related mRNAs. For instance, tissue
microarrays identified that LIN28A expression was increased in
epithelial tumors and promoted cell cycle progression by
Frontiers in Oncology | www.frontiersin.org 13105
regulating CDK2, CCND1, and CDC25A in cancer cells.
Moreover, it has been shown that LIN28A is involved in
regulating AML cell differentiation and cycle progression (43).
However, the mechanism of LIN28A in regulating cell cycle
progression in chemoresistance AML is rarely studied.

In our study, LIN28A highly correlated with CENPE in R-
AML. We also confirmed that LIN28A, which is upregulated in R-
AML, has a predicted binding site to CENPE. RIP experiments
showed that LIN28A antibody significantly enriched CENPE in
K562 cells. Sequence analysis revealed that the CENPE mRNA
3’UTR contains the GGAGA motif. RNA pull-down experiments
confirmed that the biotin-labeled CENPE 3’UTR positive strand
could enrich a large quantity of LIN28A protein, indicating that
LIN28A directly interacted with CENPE mRNA 3’UTR.
Subsequently, dual luciferase reporter assay showed that the
binding activity of LIN28A and CENPE mRNA 3’UTR was
mediated by the GGAGA motif. In summary, LIN28A promoted
CENPE mRNA expression and stability through direct binding to
the GGAGA motif in the CENPE 3’UTR. More importantly, by
performing functional remediation studies, we further investigated
the role of LIN28A in AML development and drug resistance by
A

B

FIGURE 10 | LIN28A/CENPE interaction effected Ara-C resistance in K562 and THP-1 cells. (A, B) LIN28A overexpressed and CENPE interfered LIN28A
overexpressed K562 and THP-1 cells were treated with ascending concentrations of Ara-C (0.125 µM, 0.25 µM, 0.5 µM, 1 µM, 2 µM, 4 µM, and 8 µM). After 48 h,
IC50 values were measured and analyzed by the CCK-8 method. The experiment was independently repeated three times and statistical differences were analyzed.
*p < 0.05. **p < 0.01.
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affecting the stability of CENPE mRNA. The results showed that
CENPE interference reduced the proliferation and cycle-
promoting effects of LIN28A overexpression. In drug sensitivity
assays, CENPE interference reversed the promoting effect of
LIN28A on Ara-C resistance in leukemic cells.

Our findings demonstrated the underlying value of CENPE
and LIN28A for the early detection of chemoresistant AML. In
addition, a better understanding of the functional and molecular
modulation mechanisms of LIN28A/CENPE may help provide
potential therapeutic targets and synergistic agents for
chemotherapy-resistant AML.
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Mutations in CCAAT enhancer binding protein A gene (CEBPA) are one of the common
genetic alterations in acute myeloid leukemia (AML). Recently, the emergence of new
evidence makes it necessary to reconsider the subsets and treatment of AML patients
with CEBPA mutations. This review will summarize the history of research progress of
CEBPA mutations in AML, the heterogeneities of AML with CEBPA double mutations
(CEBPAdm), and two special subtypes of CEBPA mutated AML. We will discuss the
treatment of AML with CEBPA mutations as well, and finally propose a new algorithm for
the treatment of these patients, including both familial and sporadic CEBPAmutated AML
patients. This review may be beneficial for further investigation and optimizing clinical
management of AML patients with CEBPA mutations.

Keywords: acute myeloid leukemia, CEBPA mutations, subsets, prognosis, treatment
INTRODUCTION

CCAAT enhancer binding protein alpha (CEBPa) is a crucial transcription factor for the
differentiation of granulocytes, which also plays a critical role in regulating glucose metabolism
(1). CEBPa is encoded by the CEBPA gene located in chromosome 19 of human, which contains
two transactivation domains (TAD) in the N-terminal and one basic leucine zipper region (bZIP) in
the C-terminal. CEBPAmutations are one of the most frequent genetic lesions in patients with acute
myeloid leukemia (AML). Although mutations of CEBPA gene can occur across the whole gene,
they cluster in two main hotspots: N-terminal frame-shift insertions/deletions and/or C-terminal
in-frame insertions/deletions. Mutations in the N-terminal result in the production of a truncated
protein p30, which has a dominant negative effect over the full-length p42 protein, while mutations
in the C-terminal will disrupt the binding of CEBPa to DNA or dimerization (2). CEBPAmutations
include those locate in one terminal (CEBPA single mutation; CEBPAsm) and those that occur in
both N- and C-terminals (CEBPA double mutations; CEBPAdm). Although CEBPA mutations are
widely investigated in numerous studies and several reviews have already been published to discuss
their molecular mechanisms and clinical relevance (3–7), newly emerging evidence makes it
necessary to reconsider the pathogenesis, subsets, and treatment choice of AML with CEBPA
mutations. The aim of this perspective review is to summarize the latest findings in this field and
propose a new treatment algorithm based on the available evidence.
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KEY RESEARCH PROGRESS OF CEBPA
MUTATIONS IN AML

The frequency ofCEBPAmutations in AML is 6.86%–20.33%, and
a higher incidence rate is observed in AML patients from Asia
compared to that in Western countries. Moreover, the frequencies
of CEBPAsm and CEBPAdm are similar in AML patients from
Caucasian populations, but more patients present with CEBPAdm

in Asian populations (2, 6, 8–13) (Figure 1).
The first study was published in 2001, reporting that CEBPA

mutations were identified in 10 of 137 patients with AML, which
was also the first report showing CEBPA mutations in human
neoplasia (14). In the following year, the prognostic significance
of CEBPA mutations was retrospectively analyzed in 135 AML
(non-M3) patients. Fifteen patients were found harboring
CEBPA mutations, which was demonstrated to be an
independent favorable prognostic factor for long-term
outcomes (15). In 2009, the prognostic significance of
CEBPAsm and CEBPAdm was put forward by investigators from
the Netherlands (13). Only patients with CEBPAdm show a
unique gene expression profile and favorable event-free
survival (EFS) and overall survival (OS). However, both gene
expression signature and outcomes were similar between patients
with CEBPAsm and wild-type CEBPA (13). Subsequently, a series
of studies confirmed the favorable prognosis of AML with
CEBPAdm, both in the whole patient cohort and those with
normal karyotype (9, 10, 16, 17). Thus, AML with CEBPAdm is
recognized as a definite entity in “The 2016 revision to the World
Health Organization classification of myeloid neoplasm and
acute leukemia”, given its distinct biological and clinical
characteristics (18). However, recent studies suggest that the
classification of single and double mutations may not be
sufficient to reflect the biological essence and clinic significance
of such kind of AML. Recently, in a retrospective study including
4,708 adult patients with AML, the results showed that patients
with CEBPAdm and CEBPAsm affecting bZIP (CEBPAsmbZIP)
shared similar gene expression profiles and clinical features,
including younger age, higher leukocytes at diagnosis, and
improved survival compared to those with CEBPAsm affecting
TAD (CEBPAsmTAD). Further analysis revealed that the clinical
and molecular characteristics and favorable outcomes were
Frontiers in Oncology | www.frontiersin.org 2109
confined to patients carrying in-frame mutations in bZIP,
regardless of single or double mutations, in terms of superior
complete remission (CR) rates and long-term survival (19). The
favorable prognosis of CEBPAsmbZIP was also observed in
another independent patient cohort of 1,028 AML patients,
and presence of CEBPAsmbZIP was a strong indicator of a higher
chance to achieve CR, better survival, and lower risk of relapse
(20). These studies may challenge the current concept of CEBPA
mutations in diagnosis and treatment of patients with AML. New
subsets of AML with bZIP or non-bZIP mutations of CEBPAmay
be recognized rather than single and double mutations. Moreover,
the prognostic and therapeutic implications of AML with
CEBPAsmbZIP may be similar to those with CEBPAdm. The
major research progress of CEBPA mutated AML in the last two
decades was summarized in Figure 2.
HETEROGENEITIES OF AML
WITH CEBPADM

Although AML patients with CEBPAdm show favorable
outcomes, relapse after treatment is inevitable in many
patients. Therefore, the heterogeneities of AML with CEBPAdm

have been noticed and discussed by our team and other
investigators (2–6). Here, we divide these heterogeneities
into two major categories, namely, genetic and treatment
response heterogeneities.
Genetic Heterogeneity
Mutations in transcription factor GATA2 were one of the most
common molecular alterations in AML patients with CEBPAdm.
In the preliminary study, whole exome sequencing was
performed with five patients with CEBPAdm and GATA2 zinc
finger 1 (ZF1) mutations were identified in two patients (21). The
authors also found that the frequency of GATA2 ZF1 mutations
was 39.4% in AML patients with CEBPAdm, which tended to be a
favorable indicator (21). Thereafter, several studies evaluated the
prognostic significance of GATA2 mutations in patients with
CEBPAdm (22–26) (summarized in Table 1). However,
controversial results were found in those reports. Notably, high
FIGURE 1 | Frequencies of CEBPA mutations in AML patients from different countries or different regions of China.
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co-occurrence of other genetic mutations, such as FLT3-ITD in
patients with wide-type GATA2, may produce unfavorable
impact on the survival compared to those with mutated GATA2.

CSF3R is the receptor of granulocyte-colony stimulating
factor (G-CSF), which functions through activation of the JAK/
STAT signaling pathway. High occurrence of CSF3R mutations
in AML patients with CEBPAdm was first identified by RNA-
sequencing in four of 14 patients, and all were T681I mutations
(27). Meanwhile, high-frequency recurrent mutations in CSF3R
were found with TARGET dataset of pediatric AML patients
with CEBPA mutations (28). For the first time, we demonstrated
that CSF3R mutations were associated with inferior survival in
patients with AML with CEBPAdm (5). Interestingly, CSF3R
mutations were included in two recent studies as a parameter
for prognostic nomograph models (29, 30). Thus, a high degree
of overlap between CSF3R and CEBPA mutations may facilitate
an in-depth understanding of the role of CSF3R in the
pathogenesis and prognosis of AML patients with CEBPAdm,
and development of new targeted therapy, which will be
discussed in a subsequent section.

Other mutated genes, such as TET2 andWT1, were reported to
be negative indicators for the prognoses of AML patients with
CEBPAdm (2, 3, 6, 24). Further studies are still needed to confirm
these conclusions due to limited studies and relatively small
numbers of patients with mutations. One effective way to solve
the issue of small patient size is to combine patients with
Frontiers in Oncology | www.frontiersin.org 3110
mutations according to gene family or pathways. Mutations of
tyrosine kinase genes, including FLT3, CSF3R, KIT, and JAK3,
confer adverse prognosis (31). Two genetic subgroups were
defined by the presence (positive; pos) or absence (negative;
neg) of mutations in chromatin/DNA modifiers (C), cohesin
complex (C), and splicing (S) genes: CCSpos and CCSneg,
respectively. Only patients with CEBPAdm with CCSneg had
distinct genetic and clinical features and favorable outcomes
compared to those with CEBPAsm (3). Interestingly, most
patients (20/25, 80%) in the CCSpos group were defined by
TET2 mutations in this study, which may reflect the unfavorable
impact of TET2mutations on the survival of AML with CEBPAdm.

Treatment Response Heterogeneity
Although CR rate after induction chemotherapy is very high in
patients with CEBPAdm, a substantial proportion of the patients
(30%–50%) will relapse consolidated with chemotherapeutic
agents only (2, 32, 33), which suggests the heterogeneity of
treatment responses of these patients. Measurable residual
disease (MRD) status is a very important indicator for treatment
responses and prognosis in patients with AML, which is also a
potential biomarker for prognostic restratification of AML with
CEBPAdm. In the preliminary single-center study, patients with
CEBPAdm were divided into MRD high-risk (positive after two
consolidation cycles and/or negative status loss at any time) and
low-risk (persistent negative) groups based on MRD status during
TABLE 1 | Frequencies and clinical significance of GATA2 mutations in AML with CEBPAdm.

Studies Frequencies ED CR EFS OS

Fasan et al. (22) 18.3% (9/98) NA NA Fav tendency Fav
Grossmann et al. (24) 21.0% (20/95) NA NA Fav tendency Fav
Green et al. (23) 27.3% (15/55) NS NS NA NS
Marceau-Renaut et al. (25) 28.7% (25/87) NA NA NA NS
Theis et al. (26) 31.9% (36/113) NS NS NS NS
Februar
y 2022 | Volume 12 | Article 806
ED, early death; CR, complete remission; EFS, event-free survival; OS, overall survival; Fav, favorable; NA, not available; NS, not significant.
FIGURE 2 | Major research progress of AML patients with CEBPA mutations.
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consolidation therapy (33). As expected, MRD risk groups were
the only independent risk factor for relapse and long-term survival
in multivariate analysis (33). Subsequently, we conducted a
multicenter retrospective study that also confirmed the previous
findings that only MRD low risk associated with low recurrence
rate and superior outcomes in multivariate analysis (unpublished).
Therefore, MDR status may be a potential indicator to be
considered for treatment choice in patients with CEBPAdm.
However, it should be noted that these two categories of
heterogeneities may not be separated absolutely, because we
notice that patients with high-risk genetic mutations, such as
mutated CSF3R, had a significantly higher rate of positive MRD
than those with wide-type CSF3R after consolidation therapy
(82.0% vs. 56.25%, respectively).
SPECIFIC SUBTYPES OF AML WITH
CEBPA MUTATIONS

Pediatric Patients With CEBPA Mutations
AML in adults and children may show different biological
behaviors, treatment responses, or prognoses. In 2005, the first
study reported that the frequency of CEBPAmutations was 6.19%
(7/113) in pediatric patients with AML, including two with single
and five with double mutations. Four of the seven patients had
cooperating mutations with FLT3-ITD or NRAS mutations (34).
The prevalence and prognostic significance of CEBPA mutations
were evaluated in 847 children with AML from 3 consecutive
clinical trials. CEBPA mutations were detected in 38 patients
(4.49%), with 31 cases harboring double mutations. Patients
with CEBPA mutations had significantly improved EFS and OS,
and lower cumulative incidence rate of relapse compared to those
with wide-type CEBPA (35). Single (n = 7) or double (n = 31)
mutations had no significant impact on the prognosis of these
patients (35), which may be due to the small size of patients in
each arm. In another study from Japan, a high frequency of
CEBPA mutations (14.92%, 47/315) was observed, and CEBPAdm

is an independent favorable prognostic risk factor in pediatric
AML patients in multivariate analysis in the total patient cohort
(36). Hence, the favorable prognostic significance of CEBPA
mutations could also be confirmed in pediatric patients with AML.

Familial AML With CEBPA Mutations
As early as 1978, a large familial aggregation leukemia was
reported, and 13 individuals over four generations of a family
comprising 293 members were diagnosed (37). After screening of
genetic markers, karyotypes, and virus infections, the authors
postulated that such aggregation of leukemia cases likely resulted
from undefined genetic, probably polygenic, predisposition, in
association with the activity of leukemogenic factors (37).
However, the riddle was solved 30 years later. In 2010, a report
based on one member of this family (III-45) was diagnosed as
AML carrying a single heterozygous base pair deletion of the
N-terminal (c.68delC) in somatic sample and a probable
acquired three-base pair duplication (c.937_939dupAAG) in
Frontiers in Oncology | www.frontiersin.org 4111
the C-terminal of CEBPA in a proportion of peripheral blood
cells, indicating familial AML with CEBPAmutations (38). Small
cases of familial AML with CEBPA mutations were also reported
by other studies (23, 39). In 2015, the first study exploring the
disease evolution and outcomes of familial AML with germline
CEBPA mutations was reported, and 24 members from 10
CEBPA-mutated families were enrolled (40). Germline CEBPA
mutations clustered within the N-terminal and acquired
mutations preferentially targeting the C-terminal in diagnostic
leukemia samples. AML patients with germline CEBPA
mutations showed absence of diagnostic CEBPA mutations in
relapse (40) and younger age than those with sporadic CEBPA
mutations (41). Furthermore, patients with familial CEBPA
mutations showed a favorable long-term outcome with 10-year
OS of 67% (40). Although familial AML with CEBPA mutations
is a rare disease, these studies discovered the unique biological
behaviors and favorable prognosis of these patients.
TREATMENT STRATEGIES FOR PATIENTS
WITH CEBPA MUTATIONS

High CR rates of de novo (~90%) and relapsed (~80%) AML
patients with CEBPAdm induced by chemotherapy indicate that this
subtype of AML is highly sensitive to chemotherapeutic agents (42).
Furthermore, with the insight into the pathogenesis and clinical
features of CEBPA mutated AML in recent years, therefore, it is
necessary to reconsider the treatment choice for these patients. A
comparison between hematopoietic stem cell transplantation
(HSCT) and chemotherapy was performed with 124 patients with
CEBPAdm in CR1. Thirty-two patients were treated with allogeneic
HSCT (allo-HSCT), 20 with autologous HSCT (auto-HSCT), and
the remaining 72 received chemotherapy. Although patients
consolidated with chemotherapy showed significantly higher
relapse rates compared to those in both auto-HSCT and allo-
HSCT groups, such advantage did not translate into survival
benefit for HSCT. Furthermore, there is no significant difference
between patients in auto-HSCT and allo-HSCT groups in terms of
relapse-free survival and OS (32). Relapsed patients still have a
favorable outcome after reinduction followed by allo-HSCT with a
3-year OS of 46% (32). Allo-HSCT and chemotherapy were also
compared in AML patients with CEBPAdm in other studies. Allo-
HSCT (n = 25) resulted in significantly lower incidence rate of
relapse than chemotherapy (n = 24), but OS was similar between
those two groups (43). Another study favored chemotherapy, not
allo-HSCT, for patients with CEBPAdm (44). In a recent study,
CEBPAdm AML patients were divided into low- and high-risk
groups according to a nomograph model that was constructed
with high white blood cell counts, DNA methylation related gene,
CSF3R, and KMT2A mutations. Allo-HSCT was superior to
chemotherapy and was only observed in high-risk, but not low-
risk subgroups (29). Collectively, these results suggest that the
majority of studies showed that allo-HSCT was not superior to
chemotherapy or auto-HSCT in AMLwithCEBPAdm. Nevertheless,
certain AML patients with CEBPAdm may benefit from allo-HSCT,
but further study is needed to explore and validate.
February 2022 | Volume 12 | Article 806137
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With the emerging research advances, other potential targets
that are reported in AML with CEBPAdm may be used for
treatment. AML with CEBPAdm showed a low genetic
expression signature, and reactivation of these low expressed
genes promoted granulocytic differentiation of primary
samples by histone deacetylase inhibitors that may be a
candidate for treatment (45). High frequency of CSF3R
mutations was discovered in AML with CEBPAdm, which was
sensitive to JAK inhibition; furthermore, AML patients with
CEBPAdm with special gene expression prolife without CSF3R
mutations were uniformly sensitive to JAK inhibitors as well,
which suggests the possibility of using JAK inhibitors in those
patients (27). In addition, a combination of inhibitors of JAK
signaling pathway and lysine-specific demethylase 1 is
effectively capable of controlling the growth of CSF3R/CEBPA
mutant leukemia in vivo (46). The interaction between MLL
histone-methyltransferase complex with CEBPa p30 plays a
critical role in leukemogenesis of CEBPA mutated AML, while
MLL inhibition impairs proliferation and restores myeloid
differentiation in AML cells with CEBPA mutations (47). As
both histone deacetylase inhibitor Chidamide and JAK
inhibitor Ruxolitinib have been used in clinic, integration of
these inhibitors with chemotherapy or HSCT may possibly
improve the prognosis of AML with CEBPA mutations.
Frontiers in Oncology | www.frontiersin.org 5112
CONCLUSION AND FUTURE DIRECTIONS

From what was discussed above, we could see that AML patients
with CEBPAdm are sensitive to chemotherapy, which suggests a
critical role of chemotherapy and auto-HSCT in the treatment of
those patients. Although some genetic mutations are associated
with high risk of relapse (CSF3R, WT1, and TET2; high-risk
factors) in AML with CEBPAdm, the total frequency of those
mutations is higher than the recurrence rate of CEBPAdm

patients consolidated with auto-HSCT, which indicates that
patients with those high-risk factors may also benefit from
auto-HSCT. Furthermore, as the majority of patients with
CEBPAdm carry mutations in bZIP, it will result in limited
significance to divide CEBPAdm into those with or without
bZIP mutations. However, recent research indicates that
CEBPAsm located in bZIP showed similar clinical features and
prognosis to those with CEBPAdm. Therefore, we propose that
AML patients with sporadic CEBPAmutations should be divided
into CEBPAsmnon-bZIP, CEBPAsmbZIP, and CEBPAdm for further
treatment. For those with CEBPAsmbZIP and CEBPAdm, they
should be treated according to MRD status and genetic high-
risk factors for choosing chemotherapy, auto-HSCT, or allo-
HSCT as we presented in Figure 3. Optimization of prognostic
evaluation and treatment choice for AML patients with CEBPA
FIGURE 3 | Treatment flowchart of AML patients with CEBPA mutations.
February 2022 | Volume 12 | Article 806137

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Su et al. CEBPA Mutated Acute Myeloid Leukemia
mutations by MRD status during treatment here may suggest
that an integrated prognostic system should be established with
both pre-treatment (cytogenetic and genetic alterations) and
post-treatment (MRD status) parameters, in order to direct
choosing treatment strategies post remission. As to those with
familial AML with CEBPA mutations, favorable outcomes could
be achieved by chemotherapy, and those with refractory or
relapse disease should receive allo-HSCT to eliminate the
germline mutations with related donors without mutations or
unrelated donors (Figure 3).

More beneficial evidence that CEBPA bZIP mutations may
define a subset of AML is still anticipated, especially in the
settings of different populations or treatment plans. Some
investigators suggested the classification of CEBPA mutated
AML as CEBPA with in-frame bZIP mutations and those
without. However, two points must be mentioned. First, the
frequency of frame-shift bZIP mutations in CEBPAdm is very low
in AML in some patient cohorts; it is only 4.38% (6/137) in
patients from our center. Second, a comparison between in-
frame and frame-shift bZIP mutations of CEBPA is still needed.
Furthermore, whether such phenomenon could be observed in
pediatric AML patients needs further exploration. Although
AML with CEBPAdm is sensitive to chemotherapy, evidence of
Frontiers in Oncology | www.frontiersin.org 6113
auto-HSCT is limited, which may be helpful to prevent disease
relapse in some patients because auto-HSCT is more intensive
than chemotherapy alone. Finally, with the discovery of new
potential targets or development and application of new drugs in
the treatment of those patients, the prognoses of CEBPAmutated
AML may be further improved, which may challenge the
diagnosis and treatment dogma of the current concept.
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The cytogenetic abnormalities and molecular mutations involved in acute myeloid
leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies
(ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising
results in the treatment of leukemias, especially B-cell malignancies, the optimal target
surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-
redirected T cells can target intracellular antigens presented by HLA molecules, allowing
the exploration of a broader territory of new therapeutic targets. Immunotherapy using
adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive
clinical successes in patients with AML. Nevertheless, AML can escape from immune
system elimination by producing immunosuppressive factors or releasing several
cytokines. This review presents recent advances of antigen-specific TCR-T cells in
treating AML and discusses their challenges and future directions in clinical applications.

Keywords: acute myeloid leukemia, TCR-T cells, immunotherapy, allo-HSCT, immune escape
INTRODUCTION

Acute myeloid leukemia (AML), which is a relatively common leukemia in adult patients, results
from aberrant growth in the hematopoietic system, and it has multiple clinical appearances (1, 2).
Complete remission for AML remains difficult to achieve despite recent advances in chemotherapy
and molecularly targeted therapies (3), and chemotherapy is the first-line treatment option for AML
Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplant; ATL, adult T-cell leukemia/lymphoma; CAR-T,
chimeric antigen receptor modified-T cells; CLL, acute lymphoid leukemia; CR, complete response; CTA, cancer-testis antigen;
GM-SCF, granulocyte-macrophage colony-stimulating factor; HA-1, minor histocompatibility antigen; IDO, indoleamine 2,3-
dioxygenase; IFN-g, interferon gamma; IL-10, interleukin-10; IL-15, interleukin-15; IL-1, interleukin-1; LCLs, lymphoblastoid
cell lines cells; MDS, myelodysplastic syndrome; MDSC, myeloid-derived suppressor cells; mHag, minor histocompatibility
antigen; RFS, relapse-free survival; PBLs, peripheral blood lymphocytes; PD-L1, programmed cell death-ligand 1; ROS, reactive
oxygen species; TCB, TCR-like T-cell bispecific antibody; TCR-T, T-cell receptor modified-T cells; TERT, telomerase reverse
transcriptase; TKI, tyrosine kinase inhibitor; Treg, regulatory T cells.
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patients. The 5-year survival rates of patients below the age of 60
years are 30% to 35% and less than 15% for those aged 60 years
and above (4, 5).

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) remains the only established curative strategy for some
types of relapsed or refractory AML (6–8). Analyses of adult
AML patients have revealed that allo-HSCT treatment prior to
the first complete remission resulted in a reduction of the risk of
disease relapse by more than 60% compared with chemotherapy
alone (9). Similarly, several studies using haploidentical donors
have shown therapeutic effects on the first complete remission of
34% to 47% (10, 11). Moreover, patients receiving allo-HSCT
demonstrated significantly higher OS than patients receiving
chemotherapeutic postremission therapy (12). However, the
results from these modest adoptive cell therapy (ACT)
strategies for AML remain unsatisfactory due to high rates of
graft-vs.-host disease (GVHD) and relapse (6), which could be
explained by immune escape reasons (13–16).

ACT with antigen-specific T cells, including chimeric antigen
receptor T cells (CAR-T cells) and T-cell receptor-engineered T
cells (TCR-T cells), involves the generation and modification of
targeted T cells. These therapies have shown high potency
against diverse tumors, including AML (Figure 1) (14, 17–30).
The FDA approved the first CD19 CAR-T-cell product,
KYMRIAH (tisagenlecleucel), to treat acute lymphoblastic
leukemia in children and adults (19). CD19 CAR-T cells are
widely used for treating hematological cancers, especially
leukemia (20–22). Two clinical trials exploring the use of
CD19 CAR-T in the treatment of AML are currently recruiting
(NCT04257175, NCT03896854). Clinical trial NCT04257175 is a
phase II/III, while clinical trial NCT03896854 is a phase I/II trial
Frontiers in Oncology | www.frontiersin.org 2116
in which the primary goal is to measure adverse events.
Importantly, the use of second-generation autologous CD123
CAR-T cells has demonstrated a potent efficacy (NCT02159495).
Here, six patients were enrolled in the study and were
administered various doses of CD123 CAR-T cells: two
patients received 5.0 × 107 CD123 CAR-T and four patients
received 2.0 × 108 CD123 CAR-T cells. One of the patients who
was treated with the lower dose of cells experienced a reduction
of leukemia blast counts (from 77.9% to 0.9%), while one of the
patients who was treated the higher dose achieved complete
remission. The other three patients experienced reductions of
blast counts but not complete remission (23).

In addition to the use of CAR-T cells, the success of adoptive
transfer of antigen-specific TCR-T cells in murine studies was
originally reported by Dembic et al. in the late 1986. Here, a and
b TCR genes were transduced into T cells in order to enhance
recognition of antigen-specific peptides presented by major
histocompatibility complex (MHC) I (31). Subsequently, ab-
TCR-T cell specific for melanoma antigen recognized by T cell
(MART)-1 were generated by Clay et al., who found that the
redirecting of human peripheral blood lymphocytes (PBL) with
ab TCR efficiently allowed for recognition of a peptide antigen
specific to melanoma cells (32). In addition, adoptive transfer of
autologous TCR-T cells specific for New York esophageal
squamous cell carcinoma (NY-ESO)-1 has resulted in
remarkable clinical responses and a safe profile in the
treatment of several cancers, including melanoma, synovial cell
sarcoma, and nonsmall cell lung cancer (24–27). Treatment with
autologous T cells transduced with NY-ESO-1 TCR with an
increased affinity has achieved clinical responses in 80% of
patients with myeloma (33).
FIGURE 1 | Schematic diagram of the adoptive transfer of antigen-specific T-cell receptor redirecting T cells (TCR-T) and chimeric-antigen receptor redirecting T
cells (CAR-T) for AML immunotherapy. Antigen-specific T-cell clones are generated from antigen-reactive T cells of healthy donors or patients and are inserted into a
lentivirus vector. The lentivirus vector is transfected into the packing cells for the production of lentiviral particles. The lentiviral particle products containing desired
ab-TCR or CAR genes are then used to infect T cells (TCR-T, CAR-T). These genetically modified TCR-T or CAR-T cells are tested for effectiveness against cancers.
TCR-T or CAR-T products are then expanded in vitro and infused into patients.
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Several relevant breakthroughs in leukemia immunotherapy
have been reported over the past few years (28–30). Treatment of
high-risk AML patients with adoptive transfer of Wilms’
tumor antigen 1 (WT1)-specific allogeneic TCR-T cells has
shown promising results and helped prevent relapse (28).
Another clinical trial (NCT02550535) of autologous WT1-
specific TCR-T cells was performed to assess treatment of
high-risk myeloid malignancies, and it demonstrated
strong efficacy with a good safety profile (30). These
findings highlight the potential for TCR-T cell therapies to
improve outcomes in AML. Unfortunately, cancer cells
produce several immunosuppressive factors that facilitate
escape from detection by the immune system.

In this review, we present the state of the art and challenges of
antigen-specific TCR-T cell immunotherapy for managing
myeloid malignancies and discuss future directions of TCR-T
for treating AML.
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THE CURRENT STATE OF TCR-T CELL
IMMUNOTHERAPY FOR AML

TCR-T Cell Immunotherapy for AML in
Preclinical Studies
Selecting the appropriate target is crucial for the success of TCR-T
therapy. Optimally, the antigen target must be highly
overexpressed in cancerous cells but have limited expression in
the healthy hematopoietic system. However, if the target antigen is
expressed in normal blood cells, it must be at a low level, it must be
dispensable in normal cells, and it must not be displayed as a
human leukocyte antigen (HLA). If the target antigen is expressed
in normal blood cells, short-lived TCR-Tmust be used for targeting
(34). Thus far, several types of tumor-associated antigens (TAAs)
and other potential targets have been reported in preclinical studies
of TCR-T therapy in AML (Table 1) . WT1, minor
histocompatibility A (HA)-1, telomerase (TERT), and survivin,
TABLE 1 | Adoptive transfer of antigen-specific TCR-T cells against AML in the preclinical study.

Tumor-associated
antigens

Antigen-specific
TCRs

Types of
T cells

Manipulation HLA
restriction

Effect of TCR-T against AML References

Overexpressed
antigens

TERT TCR-T T cells High-affinity
TCR

HLA-A*0201 Efficiently lysed primary and AML cell lines in vitro
and inhibited tumor growth prolong survival rate
of AML xenograft model.

(35)

Survivin-TCR-T CD8+ T
cells

Codon
optimization of
TCRs

HLA-A*0201 Specifically lysed AML in vitro. (36)

Lineage-restricted
antigens

WT1 TCR-T
(NTLA5001)

CD4+ T
cells,
CD8+ T
cells

CRISPR/Cas9
genome editing

HLA-A*02:01 High effectiveness in controlling tumor growth
and increased survival in the animal model. No
GVHD was observed.

(37)

WT1 TCR-T T cells High-affinity
TCRs

HLA-A*02:01 Highly lysed fresh BM or PBL of AML blasts and
eliminated AML in xenograft

(38)

WT1 TCB-T T cells TCR-like TCBs
combining with
lenalidomide

HLA-A*02:01 Mediated killing primary AML in vitro and animal
model.

(39)

Minor histocompatibility
antigens

HA1 TCR-T CD4+ T
cells,
CD8+ T
cells

iCasp9 genome
editing

HLA-A*02:01 Potential killing cell lines and primary relapsed/
refractory AML or LCL.

(40)

HA1 TCR-T T cells Codon
optimization of
TCRs

HLA-A*02:01 Increased cytolytic function against AML/LCL. (41)

mHagHA-2-TCR,
TCR-mHag DBY,
CMV pp65-TCR

gð T cells ab TCR
transduced gð T
cells

HLA-A*0201 Highly lysed primary AML blasts. (42)
HLA-B*07:02
HLA-DQ5

Cancer-testis antigen PRAME TCR-T T cells High-avidity
TCRs

HLA-A*02:01 High efficacy lysis several tumor cells, including
primary AML blasts.

(43)

Neoantigens NPM1 TCR-T CD4+ T
cells,
CD8+ T
cells

Codon
optimization of
TCRs

HLA A*02:01 Specifically killed AML cell lines and primary AML
blasts and controlled tumor outgrowth and
prolonged survival in a xenograft model.

(44)

CBFB-MYH11
TCR-T

CD8+ T
cells

High-avidity
TCR

HLA-B*40:01 Potent antileukemic activity against primary AML
cells and in xenograft model.

(45)

HMMR-TCR T cells High-affinity
TCR

HLA-A*0201 High-effective controlling solid tumor growth and
hematopoietic malignant such as AML.

(46)

MDM2-TCR CD8+ T
cells

High-affinity
TCR

HLA-A*0201 Highly lysed the specific target cells. (47)

FMNL-TCR CD4+ T
cells

DC-pulsed
FMNL1

HLA-DRB1*0101,
HLADRB1*1101

Increased several cytokines release again AML in
vitro.

(48)

HLA-DPB1 TCR CD4+ T
cells

Codon
optimization of
TCR

HLA-DPA1*01:03, HLA-
DPB1*04:01

Highly lysed AML in vitro and xenograft model. (49)
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neoantigens, and cancer-testis antigens (CTAs) have been reported
as TAAs and have been explored in preclinical trials (34, 50). TAAs
have been classified into several categories: overexpressed antigens
(e.g. survivin and TERT), lineage-restricted antigens (e.g., WT1),
cancer-testis antigens (e.g., NY-ESO-1, MAGE, and PRAME),
neoantigens (e.g., NPM1 and CBFB-MYH11), and HA-1 (34,
50, 51).

Overexpressed Antigens
Telomerase TCR-T
Telomerase (TERT) is a ribonucleoprotein enzyme that acts as an
organizer at the ends of eukaryotic chromosomes. It is expressed
and activated under the control of multiple regulatory
mechanisms, which include trafficking and posttranscriptional
and posttranslational modifications, to maintain homeostasis of
telomere lengths. Alterations to these regulatory mechanisms
result in the dysfunction of telomeres and the development of
multiple human diseases (52).

TERT is absent in most human somatic tissues but is
expressed highly in most AML patients (~85%) and is most
highly expressed in patients with relapsed AML (35). An earlier
study demonstrated cytolytic activity of TERT-specific
cytotoxic T lymphocytes (CTLs) against several cancers,
including leukemia (53–55). TERT-specific CTLs, which were
generated by stimulating CTLs with artificial antigen-
presenting cells (APCs), have also been demonstrated to have
cytotoxic activities against solid tumors and hematopoietic
malignancies (55). Increasing antitumor activities were
associated with expression of TERT and HLA serotype
A*02:01 by the target cells (55). Moreover, adoptive transfers
of high-avidity TERT-specific TCR-T cells in the context of
HLA-A*02:01-restricted targets have been shown potential for
controlling tumor growth and prolonging the survival of
tumor-bearing mice in AML (35). However, the targeting of
AML by TERT-specific TCR-T cells has not yet been evaluated
clinically. Intriguingly, several clinical trials of a TERT-peptide
vaccine have been shown to have activity against several
cancers, including nonsmall cell lung cancer, prostate cancer,
and multiple myeloma (56–59).

Survivin TCR-T
Survivin, which is encoded by the BIRC5 gene, plays an essential
role in inhibiting apoptosis, regulating the cell cycle, and
regulating the anti-tumor activities of T cells (60). Survivin is
not expressed, or is expressed at very low levels, in normally
differentiated cells (60), but it has been found to be highly
expressed in various cancers, including AML (61–65).
Survivin-specific CTLs in the context of HLA-A2 restriction
have been demonstrated to efficiently lyse diverse types of tumor
cell lines and primary leukemia cells, including those from AML,
acute lymphoblastic leukemia (ALL), and chronic lymphocytic
leukemia (CLL) (66). Stimulating T cells with dendritic cells
expressing survivin-specific mRNA have been shown to be
effective against an AML patient-derived blast and xenograft
model (67). Moreover, survivin-specific CTLs have been
demonstrated to sufficiently recognize and kill survivin- and
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HLA-A2-positive leukemia cells in patients with AML, without
cross-reactivity against healthy progenitor cells (68).
Subsequently, Arbor et al. (36) generated survivin-specific
TCR-T cells in the context of HLA-A*02:01. These cells were
shown to avoid fratricidal effects or toxicity during normal
hematopoietic stem-cell transplantation (HSCT). Survivin-
specific TCR-T cells also have been shown to have high
specificity and efficacy against AML targets without on-target,
off-tumor toxicity. Notably, in in vivo studies, survivin-specific
TCR-T showed potent antitumor activity and prolonged survival
in a xenograft mouse model (36).

Lineage-Restricted Antigens
WT1 TCR-T
The gene encoding WT1 is located on chromosome 11p13. The
protein includes an N-terminal domain and a C-terminus
containing four zinc-fingers that are organized as multiple
isoforms (69, 70). Different isoforms tend to be differentially
expressed in patients with relapsed AML (69). WT1 is an
intracellular antigen highly expressed in the bone marrow of
patients with leukemia, particularly those with AML,
myelodysplasia (MDS), and CLL (39, 69, 71). WT1 is an ideal
target for cancer immunotherapy due to its limited expression on
healthy tissues. The success of WT1-specific CTLs and WT1-
specific TCR-T cells for eliminating leukemia cells was
demonstrated in vitro and in xenograft models several years
ago (38, 72). WT1-specific CTLs showed specific cytotoxicity
against leukemia cells and achieved sustained remission in
patients with refractory AML (73). Moreover, studies of high-
avidity WT1-specific TCR-transduced CTLs in the context of
HLA-A*02:01 were conducted, and they demonstrated a high
degree of lysis of CD34+ cells in fresh bone marrow or blood
samples from AML patients and the potential elimination of
leukemia blast cells in xenograft models (38). In addition, a
WT1-specific TCR-like T-cell bispecific antibody (TCB)
redirecting T cells showed enhanced efficiency in killing AML
cell lines and primary AML cells (39).

A concern regarding therapies that involve the adoptive
transfer of TCR-T cells is that mispairing of introduced and
endogenous TCR chains may decrease the avidity of T cells
against primary cancers and subsequently lead to the
presentation of low levels of relevant peptides on cell surfaces
(74, 75). Therapeutic strategies must, then, avoid such
mispairings and competition with endogenous TCR a and
TCR b chains, which could result in off-tumor toxicity and
GVHD or negatively impact T-cell specificity and TCR
expression levels. To that end, Ruggiero et al. (37) created high
avidity of WT1 TCR-T cells modified through a strategy
involving CRISPR/Cas9 to eliminate the endogenous TCR a
and TCR b chains. Resulting WT1-specific TCR-T cells exhibited
high efficacy in killing primary AML from bone marrow and ALL
tumor-bearing NOD SCID gamma mice (37). The treatment of
these mice with genetically modified WT1-specific TCR-T cells
significantly reduced tumor growth and enhanced survival
without inducing GVHD (37). Rather than using CRISPR/
Cas9, Fujiwara et al. (76) alternatively generated appropriately
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modified T cells with both WT1-specific TCRs and siRNAs
(siTCRs) to avoid the primary concern of autoimmune
reactivity caused by mispairing between introduced and
endogenous TCR chains with unknown specificity (76).
WT1235-243-specific siTCR-T cells in the context of restricted
HLA-A*24:02 were shown to have significantly enhanced
antileukemia efficacies, and they extended animal survival.
These positive results were associated with the presence of
memory T cells in the mice modified with WT1-siTCR/CD8+

T cells (76). Thus, preclinical studies of WT1-specific TCR-T
cells demonstrated advanced benefits; clinical studies of WT1-
specific TCR-T cells will be discussed further, below.
Minor Histocompatibility Antigens
HA-1 TCR-T
HA-1 is a peptide of nine amino acids encoded by a diallelic gene
on human chromosome 19 (77). Significant differences in the
immunogenicity of the HA-1 T-cell epitope can be traced to the
identity of the amino acid at position 3 (i.e., VLHDDLLEA
genotype RS_1801284 A/G or A/A vs. VLRDDLLEA, genotype
RS_1801284 G/G) (77). Between these two peptides, the HA-1H

(VLHDDLLEA) peptide can only be presented on the cell surface
with highly HLA-A*0201-restricted CTLs (78), while the HA-1R

(VLRDDLLEA) peptide cannot be delivered to the cell surface,
even though both nanopeptides can bind to HLA-A*0201.

The HA-1H (hereafter referred to as HA-1) antigen is
abundantly expressed in leukemia and normal hematopoietic
cells, but its expression is restricted in nonhematopoietic cells
(34). In HA-1-mismatched HCT, the HA-1− donor immune
system is not tolerant to HA-1 because it is considered self-
antigens (40). A study of HA-1-specific CD8+ CTL showed that
APCs coated with HLA-A*02:01/HA-1 stimulated CD8+ CTL
(donor-derived HLA-A*02:01/HA-1−) to kill HA-1-positive cells
in primary leukemia blasts (79).

Based on this success, additional approaches to generate HA-
1-specific TCR redirecting T cells have been developed (41, 80).
The transduction of PBL or cord blood (CB) with HA-1-specific
ab TCR demonstrated cytolytic activity against HLA-A2+/HA-
1+ of AML and lymphoblastoid cell lines (LCLs). However, the
detection of HA-1 TCR-positive cells showed a low level of HA-
1-specific tetramer affinity due to the mismatched TCR structure
between exogenous TCR and endogenous TCR (80). The affinity
of HA-1-specific TCR has been improved by TCR codon
optimization to increase TCR expression on the cell surface
(41). HA-1-specific TCR-T showed efficient expression in
transduced TCR and enhanced HA-1-specific functional
activity against primary AML cells and LCL lines (41).
Moreover, high-affinity HA-1-specific TCR-T cells containing
an inducible caspase 9 safety switch, generated from the
repertoire of a healthy HLA-A*02:01-positive HA-1-negative
cell, have demonstrated high efficiency in killing HA-1+

primary AML and LCL (40). Notably, the coexpression of CD8
receptor and high-affinity HA-1-TCR by CD4+ cells led to
specific killing of HA-1-containing target cells without cross-
reactivity (40).
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Cancer-Testis Antigens
CTA-Specific TCR-T
CTAs are a group of TAAs that exhibit normal expression in the
adult testis but aberrant expression in several types of cancers
(51). So far, more than 200 CTA genes from 44 gene families
have been found to be encoded in the human genome via
analysis of the CTdatabase (51). These CTAs can be classified
into two groups depending on whether they are localized to the
X-chromosome (Xq21-q28) or to non-X-chromosomes (51).
Chromosome X-encoded CTAs include melanoma antigen
(MAGE), NY-ESO-1, G antigen (GAGE), CT45, and synovial
sarcoma, X chromosome (SSX), whereas non-X CTAs, located
on autosomes, include B melanoma antigen (BAGE), helicase
antigen (HAGE), and sperm protein 17 (SP17) (81, 82).

The CTA expression level mainly depends on the tumor type,
the degree of differentiation, and the stage of progression. CTAs
are potential targets for adoptive T-cell therapy because they are
not expressed in normal somatic tissues accompanied by their
relatively high expression in malignant cancers and their re-
expression in several tumors (83). Immunotherapies targeting
CTAs, including NY-ESO-1, MAGE-A3, and preferentially
expressed antigen in melanoma (PRAME), have demonstrated
high antitumor efficacies (84, 85). PRAME-specific CTLs in the
context of HLA-A*02:01-restricted epitope have been generated
from AML patients after allo-HSCT (86). Moreover, high-avidity
PRAME-specific TCR-T cells generated from severe GVHD after
HLA-mismatched HSCT have demonstrated high efficacy
against a wide variety of tumor cell lines and AML primary
cells (43). Multileukemia antigen-specific T cells, which included
TCRs against PRAME and MAGE-A3, have shown antitumor
reactivity against AML blasts (87). Accordingly, clinical testing of
the utilization of ex vivo-stimulated HSCT donors against
PRAME, MAGE-A3, and other tumor-associated antigens
(WT1, NY-ESO-1, and survivin) is ongoing (NCT02494167
and NCT02203903).

Neoantigens
Neoantigen TCR-T
Neoantigens, which are highly immunogenic, are found in several
solid tumors and hematopoietic malignancies, including AML (88,
89). Neoantigens can be divided into shared neoantigens and
personalized (uniquely mutated) neoantigens (90). Shared
neoantigens are mutated antigens that are common across
different cancer patients but are not expressed in the normal
genome (90). Personalized neoantigens have unique mutations
and are significantly different from patient to patient (91).
Nucleophosmin1 (NPM1) mutations are present in
approximately 30% to 35% of AML cases and regarded as an
optimal immunotherapy target (89). NPM1-specific CD8+ T cells
in the context of the HLA-A*02:01-restricted NPM1 epitope
CLAVEEVSL were generated from healthy donors by Van der
Lee et al. (44). This clone effectively lysed the primary AML blasts.
Subsequently, a codon-optimized TCR was generated from these
clones, and adoptive transfer of NPM1/HLA-A*02:01-specific
TCR-transduced T cells specifically killed both AML cell lines
and primary AML blasts and controlled tumor outgrowth and
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prolonged survival in a xenograft model (44). These studies may
suggest a role for shared neoantigens in TCR-based
immunotherapy of AML and other hematologic malignancies.

Another neoantigen that is critical in leukemogenesis is a
type-A variant of the fusion of core-binding factor b and myosin
heavy chain 11 (CBFB-MYH11). The gene fusion event that leads
to the formation of CBFB-MYH11 involves the inv(16) or t
(16;16) cytogenetic abnormalities, and fusion occurs in
approximately 90% of AML patients and 10% of individuals
(92). Biernacki et al. generated CBFB-MYH11-specific CD8+ T
cells in the context of CBFB-MYH11 and HLA-B*40:01-
restricted T cells from healthy donors (45). A high-avidity
CD8+ T cell clone showed the potential to kill relevant AML
cell lines and primary human AML cells in vitro and in vivo. The
construction of high-avidity TCR-specific CBFB-MYH11/HLA-
B*40:01 T cells from this clone also demonstrated highly effective
antileukemia activities in vitro and in vivo. The study concluded
that the CBFB-MYH11 fusion neoantigen is immunologically
targeting AML-initiating fusions. This study may represent the
first critical step toward developing TCR-T cell immunotherapy
targeting fusion gene-driven AML.

Other Antigen-Specific TCR-T Cells
Murine double minute 2 (MDM2) is an oncoprotein that is a
potential inhibitor of wild-type p53 (wtp53) and can induce cell
proliferation and promote cell survival (93). The MDM2
oncoprotein is overexpressed in several tumors, including
hematopoietic malignancies (47, 94), and it has found to be an
ideal target for AML immunotherapy. Thomas et al. generated
MDM2-specific high-affinity TCR redirecting CTL in the context
of HLA-A*02:01 for targeting leukemia. MDM2-specific TCR-
CTL efficiently killed several human tumor and leukemia targets
(47). Hyaluronan-mediated motility receptor (HMMR/Rhamm),
a novel hyaluronan receptor complex component, was first
purified from the supernatants of murine cells in 1992 (95).
HMMR is broadly expressed in the neural crest and during
embryogenesis, but its expression is limited to adult bone
marrow (BM), thymus, and tonsils and in the placenta (46). It
became an attractive target for cancer immunotherapy due to its
overexpression in several tumors, including AML (46, 96).
HMMR-specific TCR-T cells demonstrated high efficacy in
killing AML in vitro and in vivo, and treating mice with
HMMR-specific TCR-T combined with interleukin (IL)-15
exhibited potent efficiency in eliminating tumors and prolonged
survival of AML-bearing mice (46). Human leukocyte antigen-DP
b1 (HLA-DPB1) is a class of major histocompatibility complex
(MHC)-II. The use of HLA-DPB1 in unrelated donor
hematopoietic stem cell transplantation has been shown to
improve outcomes in patients with leukemia relapse (97). Due
to a common linkage imbalance between HLA-DR, HLA-DQ, and
HLA-DP, approximately 80% of 10/10 matched unrelated donor-
patient pairs are mismatched for one or both HLA-DPB1 alleles.
Therefore, HLA-DPB1 mismatches predict a significantly lower
risk of leukemia relapse (98). Herr et al. (98) generated AML-
reactive CD4 CTL by stimulation of CD45RA-selected naive-
enriched CD4 T cells of unrelated stem-cell donors with AML
blasts of 10/10 HLA-matched patients. HLA-DPB1-mismatch-
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specific CD4 CTL effectively lysed HLA-DPB1 mismatch-
expressing AML blasts and effectively eliminated human AML
blasts in a xenograft model (98). Consistent with this study,
Klobuch et al. have generated the HLA-DPB1-specific T-cell
receptors from HLA-DPB1 mismatch-reactive allogeneic donor
CD4 T-cell clones. They subsequently genetically optimized the
receptor to enhance TCR expression and increase its activity
against AML (49). HLA-DPB1-specific TCR-transduced CD4+ T
and CD8+ T cells were strongly effective against primary AML
blasts in vitro; however, in vivo, only DPB1 TCR-CD4+ T cells
showed high-efficacy in the eradication of AML blasts in xenograft
NOD SCID gamma mice (49).
TCR-T Cell-Based Immunotherapy for
AML in Clinical Studies
Adoptive transfer of antigen-specific TCR-T cells has
demonstrated remarkable clinical outcomes in treating patients
with relapsed or refractory AML; particular success has been seen
with WT1-specific TCR-T cells (28, 29). The first human
confirmation of the utility of WT1-specific TCR-transduced
autologous T cells in the context of HLA-A*24:02 for
treatment of refractory AML or high-risk MDS came in
clinical trial UMIN000011519 (29). Among the eight patients
enrolled in this study, two showed decreased blast counts in bone
marrow, which predicted a regression from leukemia. Moreover,
the WT1-specific TCR-T cells showed persistence in five
patients, and four out of these five patients survived for more
than 12 months. None of the patients experienced the adverse
events related to toxicity in normal tissues (29).

HLA-A*0201-restricted WT1-specific donor-derived CD8+

cytotoxic T-cells (CTLs) for treating high-risk or relapses of 11
patients with leukemia, including those with AML, was reported
early by Chapuis et al. in clinical trial NCT00052520 (99).
Transduction of the cells led to demonstrated clinical
responses in two patients: one patient experienced reduction of
advanced progressive disease and another experienced prolonged
remission. In addition, three patients at high risk for relapse
post-HSCT survived without leukemia relapse or GVHD (99).
Subsequently, Chapuis et al. continued to generate high-affinity
WT1-specific TCR from HLA-A*02:01 healthy donor repertoires
and cloned the TCR into Epstein–Barr virus (EBV)-specific
donor CD8+ T cells to reduce GVHD and to enhance the
transferring of T-cell survival (28). In clinical trial NCT01640301,
12 patients with relapsed or high-risk AML received allogeneic high-
avidity WT1-specific TCR-T cells prophylactically. Interestingly, no
toxicity was observed after the patients received adoptive transfer of
WT1-specific TCR cells. The adoptive transfer ofWT1-specific TCR-
T cells led to 100% relapse-free survival at a median of 44 months, as
compared with the control group with similar risk AML, which
experienced approximately 54% RFS (28).

Moreover, a second study of WT1-specific TCR-transduced
autologous T cells in the treatment of patients with high-risk AML
and other myeloid malignancies has been reported by Morris et al.
(30). In clinical trial NCT02550535, a total of 10 patients,
including 6 AML, 3 MDS, and 1 tyrosine kinase inhibitor
(TKI)-resistant CML, received the gene-modified T cells.
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No severe adverse events were associated with on-target, off-tumor
toxicity in the ten patients treated with autologous WT1-specific
TCR-T cells. Notably, seven out of ten patients who received the
autologous WT1-specific TCR-T cells proliferated in vivo and
persisted through the 12 month study period (30). Currently, a
phase I/II clinical trial (NCT04284228), studying WT1, PRAME,
and cyclin A1-specific stem cell donor CD8+ T cells in the context
of HLA-A*02:01 (NEXI-001 T-cell product), is still enrolling. In
addition, several studies of the WT1 antigen target and other
antigen-specific autologous/allogeneic TCR-T cells also have been
registered on ClinicalTrials.gov, including HA-1 (allogeneic,
NCT03326921; autologous, NCT04464889) and PRAME
(autologous, NCT03503968) (Table 2).
THE CHALLENGES OF ADOPTIVE TCR-T
CELL IMMUNOTHERAPY FOR AML

Several TCR-T cell immunotherapies for AML are in use in the
clinic, but some obstacles relevant to this approach need to be
overcome to enhance the clinical benefits. The benefits of
TCR-T cell therapy for AML may remain limited unless a
thorough evaluation is made of its on-target/off-tumor
toxicity, its dose-related toxicity, the persistence of TCR-T
cells in vivo, and the chance of immune escape by AML after
TCR-T administration.

On-Target, Off-Tumor Toxicity
One concern of therapies involving the adoptive transfer of
antigen-specific TCR-T cells is on-target/off-tumor toxicity that
may occur if nontarget tissues, such as those of the hematopoietic
system, are recognized as targets. This possibility is exacerbated
when antigen targets are expressed in normal tissues. Two
clinical trials have reported the occurrence of off-target
toxicity-related adverse effects upon adoptive transfer of
autologous TCR-T cells, including neurotoxicity and cardiac
toxicity (100, 101). Two patients treated with high-affinity
TCR-T cells, for example, showed symptoms of cardiogenic
shock and died within a few days of T-cell infusion. Here, the
TCR-T cells recognized a similar peptide epitope derived from
the entirely unrelated protein titin expressed in cardiac tissue
(100). Similarly, two out of nine melanoma patients treated with
TCR-T cells that recognized epitope MAGE-A3/9/12 lapsed into
comas. They died after T-cell infusion due to the expression of
MAGE-A12 in the human brain, which may have been attacked
by the MAGE-specific TCR-T cells (101).

Adverse events of on-target toxicity have also been reported
in metastatic melanoma treated with high-avidity TCR-
transduced autologous T cells specific for MART-1 and gp100
in the context of HLA-A*0201. After infusion, these patients
showed a therapeutic response but experienced adverse events,
including skin rash, hearing loss, and uveitis (102). Severe
inflammatory colitis has been demonstrated in colon cancer
patients who received adoptive transfer of carcinoembryonic
antigen-specific autologous TCR-T cells in the context of
HLA-A*0201 (103).
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Several clinical trials reported high efficacy and safe use of
NY-ESO-1 antigen-specific TCR-T in clinics (25–27, 104). AML
blasts have a low level of NY-ESO-1 expression due to the
silencing of CTA expression via promoter methylation (105,
106). Several groups have reported that treatment of AML with
the hypomethylating agent decitabine in vitro and in vivo
resulted in upregulation of the expression of CTAs such as
NY-ESO-1 (104, 106, 107). NY-ESO-1 vaccination combined
with decitabine in the targeting of AML has shown impressive
results in clinical studies (104). These clinical results evoked the
idea that demethylating agents could promote NY-ESO-1-
specific TCR-T cells to target and kill AML. Accordingly, our
group recently demonstrated that the use of NY-ESO-1157–165
HLA-A*02:01-specific TCR-T cells against decitabine-induced
AML efficiently lysed AML cell lines and primary AML blasts
and targeted AML in a xenograft model (data not shown).
Therefore, NY-ESO-1-specific TCR-T combined with
decitabine could be a potent approach for future clinical
investigations in patients with relapsed or high-risk AML.

T cells referred to as gd T cells, which represent from 1% to
10% of peripheral blood T cells, express a gdTCR that is not able
to form a complex with ab TCRs (108). Therefore, strategies
designed to redirect gd T cells with ab TCR or to redirect ab T
cells with gdTCR may overcome the limitation of TCR
mispairing, which can risk mediating self-reactivity (42, 109).
Accordingly, ab TCR-specific mHag HA-2-transduced gd T cells
have shown high-potency and antigen-specific killing or primary
leukemia blasts with a good safety profile (42). The gd T cells
transduced with ab TCR and CD8 receptor in the context of
HLA-A*02:01-restricted HA-2 showed high levels of antigen-
specific cytolytic activity against HA-2-expressing AML and
CML blasts (42). In addition, transduction of gd T cells with
ab TCR and CD4 receptor in the context of HLA class II-
restricted human Y chromosome antigen DBY-TCR also showed
high cytotoxicity against target cells (42). Some clinical trials of
ab TCR-modified allogeneic gd T cells have been described in a
literature review (110).

Alternatively, it is possible to redirect the ab T cells (T cells)
with gd TCR cells (109). Redirecting CD4+ and CD8+ ab T cells
with g9d2TCR also has been shown to lead to efficient killing of
primary AML in vitro and in a xenograft model (109). Vyborova
et al. have successfully generated g9d2TCR clones from healthy
donors, and the clones mediated antitumor responses against
malignant cancers. In addition, the g9d2TCR-transduced ab T
cells, a product known as TEG001, were shown to recognize the
butyrophilin subfamily 2 member A1 peptide antigen, and
demonstrated functional enhancement activity against
leukemia in vitro and in vivo (111, 112). Analysis of TEG001 is
underway in a first-in-human clinical trial (NTR6541).

Dose-Related Toxicity
Dose-related toxicity has been reported in some patients receiving
a high concentration of MAGE-A3-specific TCR-transduced
autologous T cells (101). Patients developed neurologic toxicity
after receiving a total dose higher than 6.73 × 1010 cells (101). In a
phase I clinical trial (NCT02858310), one patient with metastatic
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Identifier TCR-T therapy Leukemia Phase Outcome measures

NCT02550535 Autologous WT1 TCR-T cells ■ Myelodysplastic syndromes;

■ Acute myeloid leukaemia

Phase 1 ■ Safety following gene-modified WT1 TCR T-cell the
as measured by suspected unexpected serious adver
reactions (SUSARS);

■ Proportion of subjects achieving 1 or more
response criteria following gene-modified WT1 TCR T
therapy;

■ Safety and tolerability of gene-modified WT1
therapy as measured by clinical laboratory parameters
and adverse events.

■ Among 10 patients (6 AML, 3 MDS, and 1 TKI-resis
CML) enrolled in the study, All 6 AML patients survive
at last, follow-up (median 12 months) and median 3
months in the 3 patients with MDS. 3 deaths: 2 from
disease progression and 1 from other causes.

Phase 2

UMIN00001159 Autologous WT1 siTCR-T cells ■ Acute myeloid leukemia;

■ Myelodysplastic syndromes

Unknown ■ No adverse events of normal tissue were seen.

■ 2 patients showed transient decreases in blast coun
bone marrow, which was associated with recovery of
hematopoiesis.

NCT01621724 Autologous WT1 TCR-T cells ■ Acute myeloid leukemia;

■ Chronic myeloid leukemia

Phase 1 ■ Identify organ toxicities and other side effects

■ Transduction efficiency and TCR expression on T
transduced cells

■ WT1-specific immune responses of TCR-transduce
cells

Phase 2

NCT01640301 Allogeneic WT1 TCR-T cells ■ Recurrent adult acute
myeloid leukemia;

■ Recurrent childhood acute
myeloid leukemia;

■ Secondary acute myeloid
leukemia

Phase 1 ■ Antileukemic potential efficacy, in terms of duratio
response (Arm II).

■ Efficacy, in terms of relapse rate (Arm I).

■ Incidence of chronic graft versus host disease (GV
(Arm I).

Phase 2

NCT04284228 Allogeneic WT1/PRAME/Cyclin
A1-antigen-specific CD8+ T cells
(NEXI-001 T-cell product)

■ Acute myeloid leukemia;

■ Myelodysplastic syndrome

Phase 1 ■ Adverse events of special interest (AESIs) events
dose-limiting toxicities (DLTs)

■ AESI events of infusion-related reactions and cyto
release syndrome (CRS)

■ Survival, including median progressive-free survival (P
overall response rate (ORR), overall survival (OS).

Phase 2

NCT03503968 Autologous PRAME TCR-T cells
(MDG1011 cell product)

■ High-risk myeloid;

■ Lymphoid neoplasms
(including relapse AML after
allo-HSCT)

Phase 1 ■ Adverse events and dose limiting toxicities (safety
tolerability).

■ Maximum tolerated dose (MTD) and/or recommen
phase II dose (RP2D) of MDG101.

Phase 2
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human papillomavirus (HPV)-associated epithelial cancer
experienced dose-limiting toxicities (DLTs) at dose level 3 after
receiving 1 × 1011 HPV E7-specific autologous TCR-T cells (E7
TCR-T) (113). Adverse events and DLTs were also identified in
patients treated with a higher dose of autologous genetically
modified MAGE-A10c796TCR-T cells (114).

Several clinical studies have also revealed issues with dose-
related toxicity of CD19 CAR-T cells (115–117). The dose-
related toxicity may be associated with cytokine release
syndrome triggered by the administration of higher doses of
CAR-T cells or the achieving of higher cell numbers due to in
vivo proliferation of CAR-T cells (118). Toxicity induced by the
administration a large number of cells may occur immediately
after transfusion and may be caused by the triggering of cytokine
release by the recognition of low levels of antigen on the surfaces
of cells. In one related report, toxicity manifest as severe
encephalopathy of was observed in 3 out of 28 patients who
received doses between 1.0 and 5.0 × 108 cells in an anti-CD19
CAR-transduced autologous T-cell (CTL019) treatment. One out
of the three patients who experienced this encephalopathy died
due to follicular lymphoma progressive neurologic deterioration
(119). In a phase I clinical trial (NCT01593696), a dose-
escalation experiment was conducted to study treatment of
children and young adult patients with ALL and non-
Hodgkin’s lymphoma (NHL) with autologous transfusion of
doses of 1.0 × 106/kg (dose 1) or 3.0 × 106/kg (dose 2) CD19
CAR-T cells (117). Two of twenty-one patients who received
dose 2 demonstrated dose-limiting toxicity, specifically
manifested as grade 3 and grade 4 cytokine release syndrome.
Other high-grade toxicities resulting from various doses of CD19
CAR-T cells have been summarized elsewhere (116).

Therefore, dose optimization of TCR-T cells is necessary to
overcome the limitation of adverse events related to dose toxicity
in clinical applications. Accordingly, in clinical trial
NCT02858310, Nagarsheth et al. (113) have demonstrated dose
optimization of E7 TCR-transduced autologous T cells to treat
HPV-related cancers. The patients were treated with various
doses (1 × 109, 1 × 1010, and 1 × 1011) of TCR-T cells. This study
suggested that administering the maximum amount of 1 × 1011

TCR-T cells was not limited by toxicity in most patients. Other
clinical studies, including NCT03503968 and NCT04464889, are
ongoing to evaluate the dose titration of autologous TCR-T cells
to target myeloid leukemia and other hematopoietic
malignancies for avoiding adverse events or dose-related toxicity.

Persistence of TCR-T Cells In Vivo
The localization and persistence of adoptively transferred
therapeutic T cells are critical factors in cancer elimination and
relapse prevention (29, 120). However, a challenge associated
with ACT is the short lifespan of T cells, which limits the long-
term persistence and expansion of these cells in vivo, therefore
reducing the therapeutic efficacy. The enhanced persistence of T
cells in vivo can be achieved through several strategies, including
genetic modification of T-cell signaling and stimulation of T cells
with cytokines or drugs. For example, the proliferation and
persistence of TCR-T cells can be boosted by inserting the
intracellular domain (ICD) of moieties that activate T-cell
T
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signaling (CD28 or 4-1BB) into CD3z instead of modifying TCR
affinity. These modified TCR-T cells have been demonstrated to
have increased efficacy with enhanced proliferation and long-
term lifespans in vivo (121, 122).

Administration of cytokines together with antigen-specific T
cells has been shown to enhance T-cell persistence and to lead to
the production of T memory stem (TSCM) cells (99, 123–126).
Exposure of WT1 antigen-specific donor-derived CD8+ T cells to
IL-21 resulted in prolonged remission of patients with leukemia.
In all these patients with leukemia, the T cells remained present
and were maintained, and their long-term in vivo phenotypic
and functional characteristics evolved with long-lived memory T
cells (99). Recently, an animal model has been used to show that
treatment of CAR-T cells with low-dose decitabine led to high
efficacy and persistent antitumor activity (127). Thus, TCR-T
cells treated with low-dose decitabine may also increase
phenotypic markers of T memory stem cells.

Mechanisms of Immune Evasion in AML
Several mechanisms are involved in immune evasion in AML,
including (1) alteration of antigen expression by downregulation
or loss of MHC molecules, (2) overexpression of immune
checkpoint inhibitors, (3) production of immunosuppressive
factors, (4) excessive secretion of anti-inflammatory cytokines,
and (5) and reducing proinflammatory cytokines (Figure 2).

Alteration of Antigen Expression
The elimination of AML blasts by allo-HSCT depends on the
recognition of peptides presented by MHC molecules on the cell
surface. AML relapse due to the loss of the mismatched HLA
Frontiers in Oncology | www.frontiersin.org 10124
haplotype has been observed in the HSCT of donor T cells or
bone marrow transplantation (128, 129). A case study reported a
patient with leukemia who had two occurrences of leukemia
relapse due to loss of mismatched HLA after receiving allo-HSCT
(130). In the context of TCR-T therapy, adoptive transfer of NY-
ESO-1 antigen-specific TCR restricted to HLA-A*02:01 against
multiple myeloma has shown recurrence after the treatment. In
this case, the analysis of myeloma cells demonstrated that tumor
relapse was associated with definite loss of HLA-A*02:01
expression from the cell surface (131). Moreover, several
studies have shown that AML relapse was associated with
downregulation of MHC class II after allo-HSCT or
posttransplantation (132–134). Because members of the
interferon family (IFN), such as IFN-a, IFN-b, and IFN-g, play
an important role in the promotion of MHC-I expression (135),
a strategy based on insertion of IFN-g into the C-domain of a
TCR may overcome the limitation of MHC molecule down-
regulation. Tumor targeting of antibody-IFN-g fusion proteins
has shown highly potent anticancer activities associated with a
receptor-trapping mechanism (136).

Overexpression of Immune
Checkpoint-Related Proteins
By upregulating ligands that activate immune checkpoints, AML
cells can induce exhaustion in T cells and can thus escape from
immune surveillance mechanisms (137). It has been shown that
an increased level of expression of programmed cell death protein
1 (PD-1) in CD8+ and CD4+ T cells after allo-HSCT results in T-
cell exhaustion, leading to AML relapse (138, 139). In the setting
of relapse post-allo-HSCT setting, a study of patient samples
showed the upregulation of several ligands on AML blasts,
including PD-1 ligand (PD-L1), B7-H3, and poliovirus receptor-
related 2 (PVRL2) (133, 140). Overexpression of PD-1 has been
reported in patients with metastatic melanoma who received
adoptive transfer of MART-1 antigen-specific T cells (141).
Exhaustion of tumor-specific CD8+ T cells has been investigated
in metastases with melanoma patients caused by upregulation of
several inhibitory receptors, including PD-1, CTLA-4, and Tim-3
(142). Therefore, strategies based on blocking inhibitory receptors
could represent practical therapeutic approaches by stimulating
the synergy of the antileukemia immune response. Treatment of
AML relapse with antibodies blocking inhibitory receptors has
exhibited remarkable results with high effectiveness in the clinic, as
described and reviewed elsewhere (137, 143).

Immunosuppressive Factors
Multiple immunosuppressive factors, such as reactive oxygen
species (ROS), indoleamine 2,3-dioxygenase (IDO), regulatory T
cells (Treg), and myeloid-derived suppressor cells (MDSC), have
been found to be involved in immune escape in AML. It has been
found that immature myeloid cells derived from tumor-bearing
mice increased ROS levels, inhibiting the cytotoxicity activity of
CD8+ T cells as compared with tumor-free animals (144).
Moreover, a study of human peripheral blood and bone marrow
from AML patients demonstrated that monocytic AML cells
secreted ROS to kill T cells and natural killer cells by activating
poly-[ADP-ribose] polymerase-1-dependent apoptosis (145).
FIGURE 2 | Diverse immune escape mechanisms of AML from immune
effector cells. AML cells use several mechanisms to prevent immune effector
cell patrolling, including downregulation or loss of MHC molecules (MHC-I/
MHC-II), increased inflammatory cytokines (e.g., IL-10, IL-1, and GM-SCF),
overexpression of checkpoint inhibitor ligand (e.g., PD-L1 and B7-H3), release
of immune-suppressive factors (e.g., IDO, Treg, and MDSC), and reduction of
proinflammatory cytokines (e.g., IL-15 and IFN-g).
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In addition, the expression of enzymes involved in the production
of immunosuppressive products such as IDO is increased in AML
patients and can hamper T-cell responses through the induction of
high expression of Treg (146).

Low-risk MDS is related to the proliferation of autoimmunity-
associated T helper 17 (Th17) cells, whereas a decreased number
of Th17 cells and the expansion of Treg are regarded as indicators
of high-risk MDS (147). In one study, a positive correlation of the
number of Tregs and MDSCs was observed in patients with high-
risk MDS but not in those with low-risk MDS, suggesting a role of
MDSCs in the in vivo expansion of Tregs in MDS and subsequent
disease progress (148). The development of the disease can be
explained by increased levels of intracellular cytokines IL-10 and
TGF-b inMDSCs (148). A higher level of MDSCs in bonemarrow
may be regarded as a prognostic factor for AML (149, 150).
Alternatively, recent studies indicated that MDSC-like blasts from
bone marrow mononuclear cells of AML patients could increase
the levels of arginase-1 (ARG1) and inducible nitric oxide synthase
(iNOS) that restrain CD8+ T-cell proliferation and induce T-cell
apoptosis (151). Decreased MDSCs have enormously enhanced
the TK/Flt3L gene-induced tumor-specific CD8 T-cell response to
patients with gliomas (152). Nagaraj et al. have demonstrated that
coculture of antigen-specific CD8+ T cells with peptide-loaded
MDSCs disrupted signaling downstream of TCR (153).

Excessive Secretion of Anti-Inflammatory Cytokines
Increased levels of anti-inflammatory cytokines have been
identified in the plasma of AML patients (154–156). It is
acknowledged that leukemic cells can freely escape from
immune surveillance by producing anti-inflammatory
cytokines such as TGF-b (157, 158). These studies have
reported a dual biological effect of IL-10, including tumor-
promoting and antitumor functions, with respect to cancer
(159, 160). As a tumor progresses, high levels of IL-10 exhibit
powerful immunosuppressive effects through inhibiting the
proliferation of T cells and the production of cytokines such as
IFN-g and IL-2 (159). IL-10 suppression was found to enhance
the antitumor activity against CLL (161). In addition, combining
T-cell therapy with treatments targeting immune cell PD-1
showed high efficacy against leukemia via the production of
more IFN-g, the increasing of cytolytic functions, and the
increasing of memory CD8+ T cells (161).

Reducing Proinflammatory Cytokines
Proinflammatory cytokines, such as IL-15 and IFN-g, that are
produced by myeloid or lymphoid progenitor cells play an
essential role in eliminating leukemia cells (13, 162). Low
serum levels of IL-15 in patients with leukemia early post-allo-
HSCT were associated with relapse of the disease (163).
Moreover, combining NK cells and exogenous IL-15 was
demonstrated to enhance the immune effector cells to eradicate
leukemia in post-allo-HSCT in a mouse model (164). In a phase I
clinical trial (NCT01885897), administration of an IL-15
superagonist complex (ALT-803) significantly improved CD8+

T cell and NK cell functions in relapsed patients with leukemia
post-allo-HSCT (165). Thus, high levels of IL-15 in the
microenvironment may contribute to suppressing leukemia,
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since it can boost the effector cells. The strategy to modify
TCR-T cells with proinflammatory cytokines such as IL-18 or
IL-12 has been found to increase persistence and high antitumor
efficacy with a good safety profile in animal models (166, 167).

Low levels of IFN-g cytokine secretion also have been
observed in patients with leukemia. Analyses of clinical
samples from B-lineage ALL patients showed that high-risk
groups were associated with low IFN-g expression, which
causes leukemia to evade immune cells (168). In addition,
leukemia cells may bypass the immune system by suppressing
inflammatory growth factors, including IL-1b and G-CSF (13).
COMPARISON BETWEEN TCR-T AND
CAR-T CELL THERAPIES FOR AML

Although CAR-T and TCR-T cells have been successfully used as a
paradigm-shifting in cancer immunotherapy for treating several
cancers, each approach has advantages and disadvantages
(Table 3). The significant benefit for TCR-T over CAR-T is the
ability to target peptide proteins intracellularly or cell surface
proteins (169). CAR-T can only recognize target peptides on the
cell surface antigens. Most proteins have been reported to express
intracellular cells instead of the small number of proteins (~28%)
expressed on the cell surface, making them unable to be selected as
antigen for CARs (170). TCRs also have structural advantages
than CARs, including more subunit receptors (ten subunits vs. one
subunit), more costimulate receptors, and less dependent on
antigen requirement for T-cell activation (one vs. 100) (171).

AML has been reported to have lower mutational burden
compared with solid cancers. Therefore, AML seems to possess
relatively fewer neoantigens that can be targeted by CAR-T
therapy compared with other malignancies (172). Unlike CAR-
T, TCR-T has been shown expressing several mutational
neoantigens in AML, as described in the following section.
CARs have a higher affinity than TCRs but have less sensitivity
than TCR in comparing the affinity of a single-chain TCR (Vb-
linker-Va) with scFv that serves as a CAR-like receptor (use the
same recognition domain) (173). Thus, TCRs offer an expanded
capacity to address a larger variety of carcinomas.

One major obstacle is that TCR-T cell therapy is restricted to
MHC proteins of certain HLA alleles. Thereby, each TCR-T cell
treatment is only suitable to patients who have a matched HLA
genotype. This characteristic decreased the number of eligible
patients enrolled in the TCR-T clinical trials. In contrast, CAR-T
cells are MHC independent and can be applied in patients of all
HLA types (169).

Both CAR-T cells and TCR-T cells have on-target, off-
tumor (i.e., antigen on normal tissue) toxicities resulting from
the target antigens expressed on nonmalignant cells. B-cell
aplasia (43), cytokine release syndrome (87, 88), and central
nervous system toxicity (88, 89) have been observed in patients
receiving CAR-T cells. Although TCR-T cells are designed to
redirect antigen reactivity and maintain specificity, preclinical
and clinical data have demonstrated the potential for TCR-T
cells to exhibit on-target, off-tumor recognition or off-target
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cross-reactivity (i.e., related or unrelated antigen on target or
nontarget tissue). In an early clinical trial, two treated patients
developed cardiogenic shock and died within a few days of
anti-MAGE-A3 affinity-enhanced TCR-T cells, due to off-
target reaction directed against an unrelated protein (titin) in
striated muscles (100). Thus, more advanced methods to
predict or experimentally probe the risk of off-target
toxicities are needed for ACT therapies prior to clinical trial.
CONCLUSIONS AND FUTURE
PROSPECTS

Adoptive transfer of antigen-specific TCR-T cells is a promising
tool for AML immunotherapy due to the ability of these cells to
distinguish between normal and malignant tissues. Several
clinical studies have demonstrated significant clinical responses
with safe profiles and have improved survival, particularly WT1-
specific TCR-T cell therapy. Moreover, the analyses of multiple
antigen-specific TCR-T cells also are underway in a clinical trial
for AML immunotherapy (Table 2). However, there are several
limitations to the adoptive transfer of antigen-specific TCR-T
cells in AML therapy. Although clinical trials of TCR-engineered
T cells demonstrated impressive results and efficacy, this
treatment strategy is disrupted by treatment-related on-target/
off-tumor toxicity or dose-related toxicity. Many potential
antigen targets of CTAs, including NY-ESO-1, PRAME, and
MAGE, are rarely expressed in AML. Moreover, the persistence
of in vivo TCR-T cells remains a hurdle in AML immunotherapy
due to inhibition of T-cell expansion by AML blasts. As a
heterogeneous and complex disease, AML evaded the immune
cells by several immunosuppressive mechanisms.

Some challenges need to be overcome to ensure the safe and
effective use of TCR-T cells in AML therapy. To overcome the
limitations of on-target/off-tumor toxicity, choosing an
appropriate antigen target is an effective strategy for eliminating
malignant cancers. In this respect, tumor-restricted CTAs may be
considered potentially safe target antigens. As mentioned above,
combining treatment with DNA hypomethylation agents also can
induce the expression of several tumor antigens to engage cognate
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TCRs, thereby potentially activating the adoptively transferred T
cells. Dose optimization of TCR-T cells also can prevent patients
from experiencing dose-related toxicities. In addition, other
improvements have also expanded the persistence of TCR-T
cells in vivo, including combining the treatment with exogenous
cytokines (e.g., IL-21, IL-7, and IL-15) during cell expansion and
with demethylating agents such as decitabine. Alternatively, the
addition of genetically engineered constitutively signaling cytokine
receptors in TCR-T cells also can lead to secretion of
immunostimulatory cytokines such as IL-15 and IL-12. The use
of adoptive transfer of TCR-T cells in combination with immune
checkpoint blockade also can provide a novel strategy to improve
immunotherapies. Thus, adoptive transfer of TCR-T therapy is a
promising treatment technique for AML immunotherapy, but
further investigations are warranted.
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TABLE 3 | Comparison between CAR-T and TCR-T cell therapies.

Advantages Disadvantages

TCR-
T

■ Recognizing antigens expressed on the cell surface or intracellular
antigens

■ Recognizing antigen targets in MHC-restricted manner

■ High sensitivity and more specificity ■ TCR-T is still underway the phase of clinical trials
■ Structural advantages: more subunit receptor, more costimulate

receptor, and less dependence on antigens
■ Possible toxicity due to misparing between exogenous with endogenous TCR or

on-target/off-tumor toxicity dose-related toxicity
■ Several AML specific antigens have been reported (e.g., WT1 and

neoantigens)
CAR-
T

■ Enables antigen targets without MHC restriction. ■ Targeting antigens expressed on the cell surface
■ FDA have been approved CAR-T therapy for several forms of

cancers
■ Toxicity due to cytokine release syndrome

■ Lack of AML-specific antigens. Common specific antigen found (e.g., CD19,
CD33, and CD34)

■ Less sensitivity and low specificity
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