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Editorial on the Research Topic

Emerging roles and mechanisms of stromal cells in carcinomas at the
molecular level
For an extended period, the tumor microenvironment (TME) has not been focused

on in the field of cancer biology before Stephen Paget’s “seed and soil” hypothesis (1). The

representative characters of cells involved in TME are high plasticity and continuous

phenotypic and functional change. For example, the desmoplastic reaction in pancreatic

cancer is a critical histological observation, tightly associated with significantly increasing

the interstitial fluid pressure within the tumor niche. Furthermore, the desmoplastic

stroma and compressed vessel delay or block the circulating therapeutic agents’ target

location. Inflammation is well-known as a critical factor in developing TME enhancing

tumorigenesis and cancer promotions in carcinomas.

Stromal and immune cells usually surround and harmonize with cancer cells or

mass, forming the inflammatory TME. Interactions between tumor cells and tumor-

associated stromal cells (TASCs) have critical roles in tumor growth and progression.

In this context, among stromal cells, fibroblast-like cells, mesenchymal stromal cells,
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and carcinoma-associated fibroblasts can be considered the

main players involved in either pro- or anti-tumorigenic

effects. The complexity of stroma-tumor interaction shows

remarkable heterogeneous tumor mass formation even

though this process has high similarity with normal wound

healing processes such as neoangiogenesis, fibroblast, and

immune cell infiltration.

Ten articles were contributed to this specific Research Topic

and classified into the following categories: three original

research (Gao et al., Joo et al., and Peng et al.) and six reviews

(Hwang et al., Tagirasa and Yoo, Kim et al., Shim et al., Mun

et al., Kim et al., and Koppensteiner et al.).

Gao et al. revealed the upregulation of PD-L1 expression in

colorectal cancer (CRC) by cancer-associated fibroblasts (CAFs)

is mediated by Akt phosphorylation. Since CAFs are one of the

major components of TME and exert as immune regulators to

generate immune suppression in TME. In this study, the

upregulation of PD-L1 expression in CRC by CAFs through

the activation of Akt was confirmed with colorectal cancer cell

lines and also with human CRC patients in correlation with the

disease-free survival. Koppensteiner et al. reviewed the immune

regulating effects of CAFs in anti-cancer T cell therapy. In this

review, the authors suggested the interplay of T cells and CAFs

by bidirectional crosstalk plays a significant role in TME. They

discussed various mechanisms by the interplay and crosstalk of

CAFs and T cells that leads to the negative anti-cancer

immune responses.

We have two review articles addressing specific molecular

families affecting TME originating from stromal environments.

First, Tagirasa and Yoo reviewed an exciting point of view on the

tumor-stroma interface. They focused on the enzymatic

activities of serine proteases, while most other contributors

focused more on cellular effects on TME. They dealt with

stromal serine proteases such as fibroblast-activation protein,

urokinase-type plasminogen activator, kallikrein-related

peptidases, and granzymes that led to the tumor progression

and discussed the therapeutic applications. Secondly, Shim et al.

discussed the IL-32 subfamily affecting TME. Each IL-32 subtype

has a different role on cancer cells, and the stromal IL-32 is still

unclear to the TME yet, but they discuss IL-32 as a possible

regulatory role in cancers.

Two original articles revealed the novel mechanisms of TME

affected by the stromal environments. Joo et al. told a new subset

of CAF using single-cell RNA sequencing from frozen skin tissue

with adult T-cell leukemia/lymphoma (ATLL) patients. Their

study identified a novel CAF subset with enhanced EGR1 and

EGR2 expression. These cells can highly proliferate CD4 T cells

via FGF7-FGF1 and PDGFA-PDGFRA/B signaling. They are

also associated with the CD8 and NKT subset expansions, which
Frontiers in Immunology
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can be a new therapeutic target in the future. Peng et al. state the

evasion of NK cell immune surveillance via cytoskeleton

remodeling. They discovered cancer cells resistant to the

immune responses through enhanced vimentin and actin

reorganization. This was also observed from human tumor

samples, which may have clinical value in terms of

cancer diagnostics.

Kim et al. discussed the role of stroma in specific cancer

subsets such as an endometrial tumor. They were focusing on

stromal tumors rather than carcinomas. Endometrial stromal

tumor is a rare subset of cancer, and they categorized the disease

categories according to the genetic alteration and suggested

possible therapeutic approaches. Indeed, the discovery of drugs

to treat stromal tumor may represent a powerful approach to

affect the pro-tumorigenic effect of stromal cells in carcinomas.

Mun et al. reviewed the interplay of immune cells and

stromal cells in the tumor microenvironment. They discussed

about the positive and negative relationships from the point of

view of tumor development for use in research applications and

therapeutic strategies. Kim et al. reviewed the solid tumor and

TME. They discuss the adaptation process of tumors to adverse

environments via communication with neighboring cells to

overcome unwanted growth conditions.

This Research Topic focuses on enlightening the current and

recent findings on the interplay between cancer inflammation

and TME to understand the obstacles of cancer therapy for

epithelial cancers. Cancer immunotherapy is one of the powerful

strategies to cure cancer since engineered cell therapy has been

popular recently, such as oncolytic viruses, antibody

therapies, and CAR-T therapy (2). However, most current

immunotherapies have limitations in targeting solid tumors

like carcinomas. Tumor microenvironment-targeting therapy

for carcinomas has the unmeasurable potential to synergize

the current immunotherapy if we overcome the current

hurdles (3). The etiologies of immunotherapy resistance are

multi-layered, not only the issue of tumor cells but also the

complexity of the interplay between carcinomas and the

microenvironment in their solid mass. One reason to

look at the stromal cells in carcinomas in the aspect of

inflammation is that TASCs secrete many inflammation-

related molecules, including IL-6, IL-8, stromal-derived factor-

1 alpha VEGF, besides TGFb. These molecules can trigger

carcinoma cell growth and subsequent metastasis through

epithelial-mesenchymal transition improving the pro-

tumorigenic properties of TME. Solving the puzzles of tumor

microenvironment and inflammation in carcinomas at the

molecular levels will enable us to address currently unsolved

problems in understanding malignant carcinomas’ mechanisms

and therapeutic directions.
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Phosphorylation in Colorectal Cancer
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Upregulation of immune checkpoint proteins is one of the main mechanisms for tumor
immune escape. The expression of programmed death ligand-1 (PD-L1) in colorectal
cancer (CRC) is higher than in normal colorectal epithelial tissue, and patients with higher
PD-L1 expression have a poorer prognosis. Additionally, PD-L1 expression in CRC is
affected by the tumor microenvironment (TME). As a major component of the TME,
cancer-associated fibroblasts (CAFs) can act as immune regulators and generate an
immunosuppressive tumor microenvironment. Therefore, we speculated that CAFs may
be related to the upregulation of PD-L1 in CRC, which leads to tumor immune escape. We
found that CAFs upregulate PD-L1 expression in CRC cells through AKT phosphorylation,
thereby reducing the killing of CRC cells by peripheral blood mononuclear cells. The ratio
of CAFs to CRC cells was positively correlated with AKT phosphorylation and the
expression of PD-L1 in CRC in vitro. Consistent with the in vitro results, high CAF
content and high expression of PD-L1 were negatively correlated with disease-free
survival (DFS) of CRC patients. These results indicate that the upregulation of PD-L1
expression in CRC by CAFs through the activation of Akt is one of the molecular
mechanisms of tumor immune escape. Thus, targeted anti-CAF therapy may help
improve the efficacy of immunotherapy.

Keywords: colorectal cancer, cancer-associated fibroblasts, PD-L1, Akt phosphorylation, immune escape
INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignancies around the world, ranking third
in overall incidence and fourth in terms of cancer-related mortality (1, 2). In spite of continuous
improvements in CRC therapy, the average 5-year survival of cancer patients at all stages is 45-60%
(2, 3). Recent studies have found that the tumor immune microenvironment, infiltration of immune
November 2021 | Volume 11 | Article 74846517
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cells, inflammatory cytokines, and expression of immune
checkpoint proteins greatly impact the survival of CRC
patients (4–9).

As one of the most important immune checkpoint proteins,
programmed death ligand-1 (PD-L1) is upregulated in CRC and
its high expression is corelated with a poor prognosis, suggesting
that PD-L1 may be involved in the progression of CRC (4, 8, 10).
The binding of PD-L1 to PD-1 inhibits T cell function and
promotes tumor evasion (11). The upregulation of PD-L1 is one
of the most important and most widely studied mechanisms of
immune escape (12). Blocking the PD-1/PD-L1 axis can improve
the efficacy of immunotherapy, and improve the survival of
patients (4, 13–15). Therefore, it is warranted to study the
mechanism of PD-L1 upregulation in CRC, which may provide
new therapeutic strategies.

Upregulation of PD-L1 expression in tumor cells may be
affected by the tumor microenvironment (TME) (16–18). As one
of its most abundant components, cancer-associated fibroblasts
(CAFs) can affect the TME by secreting a variety of chemokines,
cytokines, and growth factors, as well as regulating the
composition of the extracellular matrix, leading to
immunosuppression and tumor progression (19, 20). Previous
studies have shown that CAFs can promote the growth and
survival of tumor cells as well as tumor angiogenesis in CRC,
leading to a poor prognosis (21–23). CAFs are proven to
upregulate PD-L1 expression in tumor cells, but the underlying
mechanism remains insufficiently clear (16–18). In our previous
study, we also found that the expression of a-smooth muscle
actin [a-SMA, a marker gene of CAFs (24)] is positively
correlated with PD-L1 expression in clinical CRC samples.
Consequently, we further explored the mechanism by which
CAFs regulate the expression of PD -L1, thus elucidating a
possible mechanism through which CAFs promote the
immune escape of CRC.
MATERIALS AND METHODS

Isolation and Culture of Human Adipose
Tissue Derived Mesenchymal Stem Cells
(hAD-MSCs)
Human adipose tissue was collected from the plastic surgery
department of Peking Union Medical College Hospital
(PUMCH, Beijing, China) with the donors’ informed consent.
Then, hAD-MSCs were isolated and cultured according to the
method described in our previous study (25). The adipose tissue
was washed with D-Hanks’ buffer and centrifuged at 1,000 g for
3min. The adipose tissue below the liquid surface was transferred
to a fresh centrifugal tube, washed, digested with 0.2%
collagenase P (Life Technology Corporation, USA) and
incubated at 37°C for 30min. The undigested adipose tissue
was removed with a 100-mm cell strainer. Then, an appropriate
amount of D-Hanks’ buffer was added and centrifuged at 1500g
for 10min. The supernatant was discarded and the pellet was
washed twice with phosphate buffered saline (PBS). Then, the
cells were collected through centrifugation. Finally, 1 × 106 cells
were seeded into the culture medium and incubated at 37°C in a
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humidified atmosphere comprising 5% CO2. The culture
medium was changed every 2-3 days. The cells were passaged
or cryopreserved after reaching 80% confluence.

Flow Cytometry
Flow cytometry was used to identify the immunophenotypes
of hAD-MSCs according to a published method (25).
Approximately 2 × 105 hAD-MSCs were harvested, washed
with PBS, and incubated with primary antibodies (CD31,
CD34, CD106, CD29, CD44, CD73, CD90; BD Pharmingen,
USA) at 4°C for 1h. After washing off the primary antibodies, the
hAD-MSCs cells were incubated with a fluorescence-labeled
secondary antibody (BD Pharmingen, USA) at 4°C for 30min.
The immunopositive cells were quantified using an Accuri C6
Flow Cytometer (BD Biosciences, USA) and the data were
analyzed using Cflow Plus Software (BD Biosciences, USA).

Cultivation of CRC Cell Lines
Human CRC cell lines HCT116, HCT8 and LOVO were
obtained from the Cell Resource Center, IBMS, CAMS/PUMC
(Beijing, China). The cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with high glucose (Gibco,
USA) containing 10% fetal bovine serum (FBS) (Thermo Fisher
Scientific, USA) at 37°C in a humidified atmosphere comprising
5% CO2.

Extraction of Exosomes From CRC Cell
Lines (CRC-Exosomes)
The HCT116/HCT8/LOVO cells were cultured in FBS-free
DMEM/high glucose medium for 36-48 hours before exosome
extraction. Then, the culture supernatants were collected and
centrifuged at 3000g for 30min to remove cell debris and dead
cells. The residual cell debris and large vesicles were removed by
filtered through a 0.22-mm pore-size membrane. The filtered
supernatant was sequential centrifuged at 120,000g for 2 hours at
4°C in an ultracentrifuge (Optima XPN-100, Beckman Coulter,
USA). The sample was washed twice with moderate D-Hanks’
buffer. The remaining liquid was filtered through a 0.2-mm pore-
size membrane, aliquoted into 1.5-ml sterile EP tubes and stored
at -80°C (26).

Transmission Electron Microscopy
The ultrastructure of exosomes was analyzed by transmission
electron microscopy (TEM). The exosomes were collected and
suspended in PBS. Then, the CRC-exosomes were fixed,
dehydrated, embedded, sliced, stained with uranium acetate
and lead citrate, and observed under a TEM as described
previously (27).

CRC-Exosome-Induced Differentiation of
hAD-MSCs Into CAFs
When the hAD-MSCs adhered to the dish after cell passaging,
the medium was replaced with FBS-free DMEM/F-12 medium
(Gibco, USA) and changed every other day. CRC-exosomes were
added to the medium to a final concentration of 50 mg/L on d0,
d2, d4, d6 and d8, respectively. HAD-MSCs were confirmed to be
induced to differentiate into CAFs on the 9th day.
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Adipogenic and Osteogenic Differentiation
of hAD-MSCs and CAFs
When hAD-MSCs/CAFs grew to 90% confluence, the medium
was replaced with adipogenic differentiation medium. The new
culture medium was replaced at intervals of two days. Oil red O
staining was performed on the 11th day of induction to detect the
formation of lipid droplets in cells as described previously (25).

When hAD-MSCs/CAFs grew to 80% confluence, the spent
medium was discarded, after which osteogenic differentiation
medium was added and replaced at an interval of two days.
Alizarin red staining was carried out on the 14th day of induction
to detect extracellular mineralization. After incubating for 30
min at 37°C, the staining results were observed under a
conventional optical microscope (25).

Uptake of Exosomes by hAD-MSCs
CRC-exosomes were labeled with 1mM 1´-Dioctadecyl-3,3,3´,3-
tetramethylindocarbocyanine perchlorate (Dil) (ThermoFisher,
USA) and incubated for 10min. The labeled exosomes were
centrifuged at 700,000 × g at 4°C for 40min. After discarding the
supernatant, the exosomes were then added into hAD-MSCs and
co-incubated in dark. The cells were washed 3 times with PBS
after 4 hours, fixed in 4% paraformaldehyde for 10min, and
stained with Hoechst 33342 (ThermoFisher, USA). After
washing 3 times with PBS, the uptake of exosomes was
observed under fluorescence microscope.

Treatment of CRC Cells With CAF-CM
When the hAD-MSCs were induced to differentiate into CAFs
after CRC-exosomes treatment on day9, the culture medium of
CAFs was removed and the cells were rinsed with D-Hanks’
buffer. Then, the cells were cultured in DMEM/high glucose
medium containing 10% FBS for 24 hours, and the resulting
supernatant, also known as CAFs-conditioned medium (CAF-
CM), was removed and aliquoted into 1.5ml EP tubes for
cryopreservation at -80°C.

CRC cells (HCT116/HCT8/LOVO) were cultured in CAF-CM
for 1h, 3h, 6h, 24h and 48h, respectively. Another group of CRC cells
in high glucose medium was set as a control group. The cells were
suspended in neutral Radio Immunoprecipitation Assay (RIPA) lysis
buffer containing 1mM phenylmethanesulfonylfluoride with/without
AKT phosphorylase inhibitor (pAKTi, MK-2206 2HCI, Celleck,
USA) and collected into 1.5ml EP tubes. After centrifugation, the
supernatant was collected and cryopreserved.

In Vitro PBMCs Cytotoxicity Assay
Approximately 5×103 CRC cells (HCT8, HCT116, LOVO) were
seeded into 96-well plates and co-cultured with different
proportions of peripheral blood mononuclear cells (PBMCs)
from healthy donors for 3 days. Firstly, the target cells were
added to the wells with culture medium and incubated for 4
hours so that the cells became adherent. Then, the effector cells
were mixed in the wells according to the indicated effector: target
(E:T) ratios. Wells containing only target cells were used as the
positive control. The blank well was used as the background
control. The cells were washed with PBS for 3 times, then, 20ml of
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MTS [3- (4, 5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-
2- (4-sulfophenyl)-2H-tetrazolium] (Promega, USA) was added to
each plate and incubated at 37°C for 1h. The absorbance at 490nm
(A490) was measured for each plate using a microplate reader
(BioTek Epoch, USA). Each group was replicated in 6 wells. The
survival of CRC cells was calculated based on the A490 value of each
well. The cytotoxicity was calculated based on the survival of CRC
cells. To further investigate the effect of Akt and PD-L1, pAKTi and
PD-L1 blocker (aPD-L1) atezolizumab biosimilar (R&D System,
USA) were used to pre-block pAkt and PD-L1 respectively. The
cells were incubated with pAKTi/aPD-L1 for 72h and washed with
PBS for 3 times before the cytotoxicity assay.

%Cytotoxicicty = 1 −
A490Experimental  well − A490Background
A490Positive   control − A490Background

� �

� 100

Analysis of Tumor Cell Apoptosis
Tumor cell apoptosis rate was detected according to the protocol
of the Annexin V-FITC/PI Apoptosis Detection Kit (YEASEN,
CHN). HCT116 cells were cultured with CAF-CM or normal
medium for 48h. PBMCs were then added and co-cultured with
tumor cells for 2 days. After HCT116 cells were treated with
standard protocol, cell apoptosis rate was detected and analyzed
using flow cytometry.

Western Blot Analysis
Western blot analysis was done using the same protocol as in our
previous study (28). Protein concentrations of cell lysates were
determined using a BCA Protein Assay Kit (Beyotime, USA).
Protein samples were separated by 10% acrylamide sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidene difluoride (PVDF)
membranes (Millipore, USA). The membranes were blocked
with skim milk in Tris-buffered saline with Tween 20 (TBST)
for 1 hour and incubated overnight at 4°C with primary
antibodies against PD-L1 (Abcam, UK), p-Akt (Cell Signaling
Technology, USA), a-SMA (Cell Signaling Technology, USA),
PD-1(Cell Signaling Technology, USA), and GAPDH (Cell
Signaling Technology, USA). After washing with TBST, the
membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies for 1h at room temperature.
The results were recorded using an ImageQuant LAS 4000 mini
imaging system (GE Healthcare, USA).

Patients and Samples
Colorectal cancer samples were retrospectively collected with
informed consent from patients undergoing surgery at PUMCH
from November 2014 to December 2015. All the patients
underwent R0 resection and were histologically diagnosed as
having CRC. The last follow-up date for patients with no
progression was December 2020. The study was approved by
the Ethics Committee of the Chinese Academy of Medical
Sciences and Peking Union Medical College. All patients
signed written informed consent forms.
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Immunohistochemistry
Immunohistochemistry was performed using a standard protocol
(29). The specimens were fixed with 10% formaldehyde, embedded
in paraffin and sectioned into slides with 4mm thickness. The
expression of PD-L1 (Abcam, UK), p-Akt (Cell Signaling
Technology, USA), and a-SMA (Cell Signaling Technology,
USA) were detected by immunohistochemistry (IHC). The slides
were dewaxed and rehydrated, followed by antigen retrieval using
microwaving in 0.01 mol/L citric acid buffer (pH 6.0). The
endogenous peroxidase activity was blocked with 3% hydrogen
peroxide at room temperature for 10 minutes. Goat serum was
added as sealant and incubated for 20 minutes. The slides were
incubated with primary antibodies at 4°C overnight. On the next
day, the slides were incubated with the secondary antibody (Cell
Signaling Technology, USA) at room temperature for 2 hours.
Finally, the sections were observed under a microscope.

The results of IHC of all slides were reviewed independently by
two pathologists whowere blinded to the clinical data. If the results
were inconsistent, a third pathologist was called to make the final
decision. The percentage and intensity of PD-L1, p-AKT and a-
SMA expression in tumor cells was scored. Themembrane staining
of tumor cells ≥ 1% was defined as PD-L1 positive (30). The
expression of p-AKT and a-SMA were assessed using a
previously published semiquantitative method (31).

Statistical Analysis
The statistical analysis was conducted using SPSS 25.0 (IBM,
Armonk, NY, USA) and GraphPad Prism 8(California, USA).
The correlation between the expression of PD-L1, p-AKT, a-
SMA and clinicopathological features was tested using the c2

test. The relationship between the expression of PD-L1, p-AKT,
a-SMA and disease-free survival (DFS) time was tested using the
Kaplan-Meier method and the survival curve was plotted. DFS
refers to the time from the R0 resection to disease recurrence
demonstrated by imaging. Cytotoxicity to tumor cells was
analyzed by two-way ANOVA. The two-sided probability test
was adopted, with a significance level of P =0.05. Differences with
P < 0.05 were considered statistically significant.
RESULTS

CRC-Exosomes Induced the
Differentiation of hAD-MSCs Into CAFs
To investigate the effect of CAFs on immune escape of CRC cell
lines, we induced the differentiation of hAD-MSCs into CAFs in
vitro using exosomes from CRC cell lines. We isolated hAD-
MSCs from human adipose tissue according to our previous
protocol (25). The hAD-MSCs expressed CD29, CD44, CD73,
and CD90 (Supplementary Figure 1A), and had the ability of
adipogenic and osteogenic differentiation (Figure 1A).

CRC-exosomes were purified from HCT8, HCT116 and
LOVO cell lines, respectively. Western blot analysis showed
that CRC-exosomes expressed Hsp70, Hsp90, and CD63
(Figure 1B). Exosomes purified from HCT116 cells presented
as vesicles with a bilayer membrane structure with an average
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size of 40-100nm under TEM (Figure 1C). To examine whether
CRC-exosomes can be taken up by hAD-MSCs, exosomes
from HCT116 cells were stained with Dil and incubated with
the hAD-MSCs. The results offluorescence microscopy indicated
that the exosomes were taken up into the cytoplasm (Figure 1D).
After induction by CRC-exosomes, the expression of the marker
proteins a-SMA and FAPa in hAD-MSCs was upregulated in a
time-dependent manner (Figure 1E). The morphological
changes of MSCs induced by CRC-exosomes over time were
shown in Supplementary Figure 1B. As shown in Figure 1A,
the pluripotency of hAD-MSCs was significantly decreased after
they were induced to differentiate into CAFs. Therefore, it was
demonstrated that CRC-exosomes can induce the differentiation
of hAD-MSCs into CAFs.

CAFs Promote the Immune Escape of CRC
Cell Lines Through PD-L1 Upregulation
To verify that CAFs promote the immune escape of tumor cells,
we collected the conditioned medium of CAFs (CAF-CM) from
HCT116 cells. We cultured HCT116 cells using CAF-CM and
normal medium respectively, and then analyzed the killing rate
of PBMCs with CAF-CM-treated HCT116 cells and control
group after 3 days. Our data demonstrated that HCT116 cells
treated with CAF-CM were significantly more resistant to killing
by PBMCs compared with the control group (Figure 2A). We
conducted the same experiment using HCT8 and LOVO cells,
and the results were consistent (Figures 2B, C). To further
confirm the result, we performed flow cytometry to detected the
apoptosis ratio of CRC cells. We cultured HCT116 with CAF-
CM or normal medium respectively for 48h. PBMCs were then
added and co-cultured with tumor cells. The apoptosis kit was
used for detection after 2 days. The results indicated that the
apoptosis of tumor cells cultured using CAF-CM was less than
that of control group (Supplementary Figure 2) which was
consistent with the results of cytotoxicity assay. These results
indicated that CAFs promoted the immune escape of CRC
cell lines.

After finding that CAFs can promote the immune escape of
CRC cells, we inferred that this may be mediated by the
upregulation of the immune checkpoint protein PD-L1, similar
to previous studies (16–18). First, we detected the effect of CAF-
CM on the expression of PD-L1 in HCT8, HCT116 and LOVO
cells, and found that the expression of PD-L1 was significantly
upregulated 3 hours after CAF induction (Figures 2D–F and
Supplementary Figure 3). While the expression of PD-1 on
PBMCs did not change significantly after co-culture with CRC
cell for 2 days (Supplementary Figure 4).

CAFs Upregulated PD-L1 in CRC Cells
Through Akt Phosphorylation
Since the upregulation of PD-L1 in CRC cell lines was fast, we
inferred that the upregulation might be due to phosphorylation
of proteins in signaling pathways. Previous studies have shown
that CAFs promote the progression of various tumors by
activating the Akt signaling pathway, so we detected the
expression and phosphorylation of Akt in CRC cells treated
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with CAF-CM (32–35). We found that the phosphorylation of
Akt in HCT8, HCT116 and LOVO cells was significantly
increased at 1h, while the total Akt protein level was practically
unchanged (Figures 2D–F). To prove the relationship between
Akt phosphorylation and PD-L1 upregulation, we added the Akt
phosphorylation inhibitor (pAKTi) MK-2206 2HCl into the
medium. After inhibiting Akt phosphorylation, the
upregulation of PD-L1 expression by CAF-CM was markedly
weakened (Figures 3D–F). These results demonstrated that Akt
phosphorylation is necessary for the CAF-induced upregulation
of PD-L1 expression in CRC cell lines.

To further verify that CAFs promote the immune escape of
colorectal cancer cells by upregulating the expression of PD-L1
through Akt phosphorylation, we cultured CRC cells with CAF-
CM, CAF-CM + pAKTi, and normal medium, and the rate of
Frontiers in Oncology | www.frontiersin.org 511
killing by PBMCs was detected after 3 days. The results showed
that the killing rate of CRC cells by PBMCs was significantly
increased after inhibiting Akt phosphorylation in CRC cells
compared with the CAF-CM group, which was similar to the
CRC cells cultured in normal medium (Figures 3A–C). These
results indicated that CAFs may promote the immune escape of
CRC cells by upregulating Akt phosphorylation.

To investigate the exact contribution of PD-L1 to immune
escape, we performed PD-L1 pre-blockade on HCT116 before
cytotoxic assay using PD-L1 blocker(aPD-L1) atezolizumab
biosimilar with/without pAKTi. We detected the blocking
efficiency of aPD-L1 against PD-L1 by flow cytometry
according to a published method (36), and then selected the
concentration of aPD-L1 with the blocking efficiency of 90% for
the following experiment. When PD-L1 was blocked, the killing
A B

D

EC

FIGURE 1 | CRC-exosomes induced differentiation of hAD-MSCs into CAFs. (A) Comparison of adipogenic (Oil red O staining, day11) and osteogenic (Alizarin red
staining, day14) differentiation ability between hAD-MSCs and CAFs. (B) Detection of CRC-exosomes specific marker proteins by Western Blot. (C) Ultrastructure
of exosomes (black arrows) purified from HCT116 under TEM. (D) Exosomes from HCT116 (Dil-labeled) ingested by hAD-MSCs were verified with fluorescence
microscopy after incubating for 4 hours. Red: Exosomes (Dil). Blue: Nucleus (Hoechst 33342). (E) Western Blot analysis showed that the expression of CAFs-specific
proteins was upregulated after induction with CRC-exosomes.
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rate was significant higher in CAF-CM + aPD-L1 group
compared with CAF-CM + human IgG1 group (Figure 3G).
Consistent with above results, tumor cells in CAF-CM + pAKTi
group were significant more vulnerable to killing by PBMCs than
CAF-CM + DMSO group (Figure 3G). When both AKT and
PD-L1 were blocked, the killing rate was similar to the
CAF-CM + human IgG1 + DMSO group (Figure 3G). There
was no significant difference between the CAF-CM + aPD-L1
group with CAF-CM + pAKTi group, suggesting they could be in
the same signaling pathway. In the meanwhile, the results of
killing assay for CAF-CM + pAKTi + aPD-L1 group, CAF-CM +
pAKTi group and CAF-CM + aPD-L1 group were similar. The
results further manifested that the phosphorylation of AKT acted
upstream of PD-L1, mainly affecting PD-L1 expression. When
PD-L1 expression was neutralized, AKT phosphorylation
blocking would not work.

Clinical Characteristics of Patients
After in vitro experiments confirmed that CAFs can promote the
phosphorylation of Akt in CRC cell lines, thereby upregulating the
Frontiers in Oncology | www.frontiersin.org 612
expression of PD-L1 and leading to immune escape of CRC, we
investigated the correlations of PD-L1, CAFs, and p-Akt with the
prognosis of CRC patients. A total of 102 postoperative patients
with colorectal cancer were enrolled, including 49 males and 53
females. The clinical characteristics of the patients are summarized
inTable 1.We determined the expression of PD-L1, p-Akt, and the
commonly used marker protein a-SMA using IHC. Among 102
enrolled patients, 40 patients (39.2%) were positive for PD-L1
expression in the membrane of tumor cells, 20 (19.6%) were
positive for p-AKT in the cytoplasm of tumor cells, and 25
(24.5%) had high a-SMA expression in the stromal cytoplasm
(Figure 4A). Positive PD-L1 expression was associated with
inferior tumor stage (c2 = 7.808, P=0.005). There was no
significant correlation of PD-L1, p-AKT or a-SMA expression
with age, gender, tumor location and tumor differentiation
(P>0.05; Table 1). Correlation analysis suggested that the
expression of PD-L1 was positively correlated with the p-AKT
(Spearman R=0.213, P=0.031) and a-SMA levels (Spearman
R=0.246, P=0.012). These data demonstrated that the expression
of PD-L1 in CRC tissues was correlated with p-AKT and a-SMA.
A

B

D

E
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FIGURE 2 | CAFs promote the immune escape of CRC cell lines through PD-L1 upregulation. (A-C) The killing rate of HCT116, HCT8, and LOVO cultured with
CAF-CM for 72h was significantly lower than cells cultured with normal culture medium (Con). (A) HCT116; (B) HCT8; (C) LOVO. (D–F) The expression of PD-L1
and p-Akt on HCT116 (D), HCT8 (E) and LOVO (F) was upregulated after treatment with CAF-CM. Each group was replicated in 6 wells. *P < 0.05.
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Correlation of PD-L1, p-AKT, and a-SMA
Levels With Disease-Free Survival (DFS)
of CRC Patients
After our data showed a correlation between PD-L1, CAFs, and p-
Akt, we further explored their correlations with the DFS of CRC
patients using Kaplan-Meier curve analysis. As shown in
Frontiers in Oncology | www.frontiersin.org 713
Figures 4B–E, the DFS of patients with positive PD-L1
expression [27.8 months, 95% confidence interval (CI)=23.3-
32.4] was significantly shorter than that of patients with negative
expression (36.5 months, 95%CI=33.2-39.9, P=0.011) (Figure 4B).
Patients with high a-SMA expression (28.0months, 95%CI=21.7-
34.3) had shorter DFS than those with low expression (35.2
A

B
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E
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C

FIGURE 3 | CAFs upregulated PD-L1 in CRC cells through Akt phosphorylation and promoted immune escape. (A–C) The killing rate of HCT116, HCT8 and LOVO cells
cultured with CAF-CM was significant lower than these cells cultured with CAF-CM + pAKTi or normal medium after 72h. (A) HCT116; (B) HCT8; (C) LOVO. (D–F) The
upregulation of PD-L1 expression on HCT116 (D), HCT8 (E) and LOVO (F) was weakened compared with control groups after pAKTi (MK-2206 2HCI) was added. (G) After
blocking of PD-L1, the killing rate was significant higher in CAF-CM + aPD-L1 group compared with CAF-CM + human IgG1 group. When both AKT and PD-L1 were
blocked, the killing rate was similar to the CAF-CM + human IgG1 + DMSO group. There was no significant difference between the CAF-CM + pAKTi + aPD-L1 group with
CAF-CM + pAKTi group or CAF-CM + aPD-L1 group. Each group was replicated in 6 wells. *P < 0.05. Con means cells treated with normal medium.
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months, 95%CI=32.1-38.4, P=0.025) (Figure 4C). The DFS of p-
Akt positive patients tended to be worse than that of negative
patients, but the difference was not significant (27.8 vs. 34.6
months, P=0.132) (Figure 4D). The DFS of patients with
combined PD-L1+, p-AKT+ and a-SMAhigh status (15.8 months,
95%CI=11.5-20.1) was remarkably shorter than that of patients
with triple negative expression (36.7 months, 95%CI=32.8-40.6,
P<0.001) (Figure 4E). These results showed that high expression
of PD-L1 and a-SMA had a negative effect on the DFS of
CRC patients.
DISCUSSION

As a vital element of the TME, CAFs play an essential role in
cancer progression by releasing various immunosuppressors and
regulating the composition of the extracellular matrix (19, 20).
Notably, CAFs promote immune escape through various
mechanisms, including enhancing the activity of myeloid-
derived suppressor cells and regulatory T cells, upregulating
the expression of Fas ligand (FasL) and PD-L1, as well as
downregulating the expression of the major histocompatibility
complex (MHC) (18). In this study, we found that CAF-CM
could decrease the killing of cultured CRC cell lines by PBMCs,
which suggested that CAFs may promote the immune escape
of CRC.

CAFs were found to upregulate the expression of PD-L1 in
cancer cells and promote tumor development in previous studies
(17, 21, 23). The a-SMA protein is a commonly used marker of
CAFs (24). Li et al. confirmed that the expression of PD-L1 in
colorectal and melanoma tissues was positively correlated with
the expression of a-SMA (17). It has also been reported that a-
SMA+ CAFs from human colon cancer can express PD-L1 and
significantly inhibit T cell proliferation (16). To validate the
expression of PD-L1 and its role in CAFs, we detected the
expression of PD-L1 and a-SMA in CRC cell lines and CRC
samples. The IHC results showed that PD-L1 was expressed in
CRC tumor cells. Among the enrolled patients, 39.2% had
Frontiers in Oncology | www.frontiersin.org 814
tumors with positive PD-L1 expression and 24.5% exhibited
high a-SMA expression. The correlation analysis suggested that
the expression of PD-L1 was correlated with the high expression
of a-SMA. We confirmed that the expression of CAF and PD-L1
was positively correlated in CRC. Our cell culture experiments
showed that CAFs can continuously upregulate PD-L1
expression in CRC cell lines, indicating that CAFs may
promote the expression of PD-L1 in CRC.

In addition, many previous studies have shown that PD-L1
was upregulated and acted as an independent predictive factor of
worse prognosis in a variety of tumors, including non-small cell
lung cancer, breast cancer, melanoma and renal cancer (37–40).
Our results showed that the expression of PD-L1 (P = 0.011) and
high expression of a-SMA (P=0.025) were associated with a
significant reduction in the DFS of the patients with resectable
colorectal cancer, similar to the results reported previously
(41–45). We inferred that downregulating the expression of
PD-L1 may reduce immune escape and increase the killing of
tumor cells by PBMCs. These findings indicate new potential
targets for antitumor therapy related to the regulation of PD-L1
expression by the TME.

We further explored the mechanism by which CAFs
promoted the upregulation of PD-L1 expression in CRC.
According to the current literature, the expression of PD-L1 is
regulated by multiple mechanisms, including (1) transcriptional
regulation: MYC was reported to bind to the promoter region of
PD-L1, increasing the expression of PD-L1 mRNA and protein
(46, 47). It has been found that hypoxia−inducible factor−1
(HIF-1) could bind with hypoxic response element (HRE) and
upregulate the PD-L1 expression, simultaneously cause T-cell
apoptosis and function inhibition (48, 49). STAT3 and NF-kB
were also important transcription factors upregulating PD-L1
(4). (2) Phosphorylation regulation of signal pathway: The
hyperactive oncogenic pathways that regulate the expression of
PD-L1 mainly include the phosphoinositide 3-kinase (PI3K)/Akt
pathway, mitogen-activated protein kinase (MAPK)
pathway, Janus protein tyrosine kinase/signal transducer and
activator of transcription (JAK/STAT) pathway and NF-kB
TABLE 1 | Relationship between PD-L1, p-AKT and a-SMA expression and clinicopathological characteristics in 102 patients with CRC.

n PD-L1 expression c2 P p-AKT expression c2 P a-SMA expression c2 P

Positive (n) Negative (n) Positive (n) Negative (n) High (n) Low (n)

Gender 0.525 0.469 1.695 0.193 0.208 0.648
Male 49 21 28 7 42 13 36
Female 53 19 34 13 40 12 41

Age (years) 0.458 0.498 1.494 0.222 0.836 0.361
≤60 32 11 21 4 28 6 26
>60 70 29 41 16 54 19 51

Location 5.284 0.071 0.786 0.675 1.581 0.454
Right colonic carcinoma 77 26 51 14 63 17 60
Left colonic carcinoma 24 14 10 6 18 8 16
Right and left 1 0 1 0 1 0 1

Differentiation 1.975 0.578 7.657 0.054 2.371 0.499
Highly differentiated 22 11 11 0 22 3 19
Moderately differentiated 70 26 44 17 53 19 51
Poorly differentiated 5 2 3 2 3 2 3
Others 5 1 4 1 4 1 4
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FIGURE 4 | Immunohistochemical (×400) and Kaplan-Meier curves of CRC patients. (A) Immunohistochemical staining of PD-L1, p-AKT and a-SMA expression.
(B–D) Effect of PD-L1 expression (B), p-AKT expression (C), and a-SMA high expression (D) on DFS in CRC patients. (E) Effect of co-expression of PD-L1, p-AKT
and a-SMA high and triple-negative expression on DFS in CRC patients.
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pathway (4, 50–52). (3) Epigenetic regulation: MicroRNAs
(miRNAs), such as miR513 (53), miR570 (54), miR142 (55)
and miR200 (56), were also pivotal regulators of PD-L1 at
epigenetic level. As for CAFs, it has been shown to promote
the expression of PD-L1 by secreting CXCL5 in mice cancer cells
(57). Dou D. et al. found high level of miR92 in CAFs-derived
exosomes and the expression of PD-L1 was regulated after
treating with the exosomes (58). But the mechanisms were not
entirely clear due to the complex composition of CAF-CM.

Previous studies have demonstrated that CAFs activate the
Akt signaling pathway in tumor cells to promote the progression
of various cancers, including CRC, gastric cancer and lung cancer
(32–35). Moreover, the expression of PD-L1 was significantly
upregulated in CRC cell lines within a short period of time under
the action of CAFs in our study. Consequently, we analyzed the
phosphorylation status of the Akt signaling pathway and found
that the levels of Akt and p-Akt were increased after treatment of
CRC cell lines with CAFs. Conversely, blocking Akt
phosphorylation with the specific inhibitor MK-2206 2HCI
markedly reduced PD-L1 expression and significantly
improved the killing rate of CRC cells by PBMCs. These
results indicated that, in addition to the reported mechanisms,
CAFs may induce immune escape of CRC by upregulating PD-
L1 expression through Akt phosphorylation.

Although this study confirmed the correlation of PD-L1 and
p-AKT expression with clinical characteristics and patient
prognosis, it still has limitations due to a lack of enrolled
patients in stage I and stage IV. The conclusions of this study
should be confirmed by enrolling more patients in the future.
CONCLUSIONS

In conclusion, we found that CAFs may promote the expression
of PD-L1 in tumor cells via the Akt signaling pathway, leading to
immune escape in CRC. Furthermore, the expression of PD-L1
was correlated with higher TNM stage and shorter DFS in CRC
patients. PD-L1 and p-AKT may be potential targets for
combined therapy in CRC.
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Cancer tissues are not just simple masses of malignant cells, but rather complex and
heterogeneous collections of cellular and even non-cellular components, such as
endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor
microenvironment (TME). These multiple players in the TME develop dynamic
interactions with each other, which determines the characteristics of the tumor.
Platelets are the smallest cells in the bloodstream and primarily regulate blood
coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a
status of an increased platelet number in the bloodstream, as well as the platelet infiltration
into the tumor stroma, which contributes to cancer promotion and progression. Thus,
platelets function as one of the important stromal components in the TME, emerging as a
promising chemotherapeutic target. However, the use of traditional antiplatelet agents,
such as aspirin, has limitations mainly due to increased bleeding complications. This
requires to implement new strategies to target platelets for anti-cancer effects. In oral
squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-
stromal ratio (high stroma) are strongly correlated with increased metastasis and poor
prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph
nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of
relatively easy access for visual examination of precancerous lesions in the oral cavity.
Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar
to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a
predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative
evidence supports that platelets can directly interact with PDPN-expressing cancer cells
via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and
metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit
interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will
org December 2021 | Volume 12 | Article 807600119
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review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction,
and will assess their potentials as therapeutic targets for OSCC treatment.
Keywords: platelets, tumor cell-induced platelet aggregation (TCIPA), CLEC2, PDPN, ezrin/radixin/moesin (ERM),
oral cancer
INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most prevalent type
of head and neck malignancies that occur in oral cavity, salivary
gland, pharynx, larynx, nasal cavity, thyroid, and bone (1).
Unlike the other types of cancers, OSCC usually arises from
the body part that is easily accessible for visual examinations.
Despite this advantage in detection of precancerous lesions, most
of the OSCC patients are not diagnosed until the advanced stages
with metastasis, which is attributed to low overall survival rates
(2). Oral mucosa contains a connective tissue enriched with type
I collagen that is synthesized by stromal cells (3). Desmoplasia, a
status of the excessive growth of the stromal tissue, is closely
associated with OSCC (4, 5). In OSCC patients, stroma-rich
tumors are more aggressive and metastatic than stroma-poor
tumors, finally contributing to the poor survival rates (6, 7). The
activated tumor stroma can supply a variety of growth factors
and cytokines that induces cancer cell proliferation as well as
extracellular matrix (ECM) remodeling (5, 8). In support of the
tumor stroma, OSCC cells tend to invade adjacent tissues, such
as bones, and spread to the lymph nodes (9). This locoregional
characteristic of OSCC is the primary cause of treatment failure
(10). Thus, how to control the local and distal metastasis is
crucial for successful treatment and better prognosis in
OSCC patients.

Platelets, the smallest cells in blood circulation, play a major
role in blood coagulation and hemostasis (11–13). In addition to
their primary physiological functions, platelets are profoundly
involved in cancer promotion and progression (14, 15). Recently,
it has been reported that platelets can infiltrate into the tumor
stroma in colorectal and pancreatic cancer patients (16–18). As a
part of the tumor stromal components, platelets crosstalk with
cancer cells either directly or indirectly, promoting invasion and
metastasis (19–21). For the physical interaction, C-type lectin-
like receptor 2 (CLEC2) and podoplanin (PDPN) are suggested
as the key molecular links expressed in platelets and tumors,
respectively (22). Moreover, cancer cells activate and educate
platelets, thus the bilateral interaction between platelets and
cancer can further promote tumorigenesis, creating a positive
feedback loop (23). Notably, OSCC patients often show
increased platelet counts, which is strongly associated with
poor prognosis (24, 25). Thus, platelets are emerging as an
important target for chemotherapy in OSCC patients.

Aspirin, a representative antiplatelet agent, is well known to
protect against carcinogenesis (26–28). Aspirin irreversibly
inhibits both cyclooxygenase-1 (COX-1) and COX-2, reducing
synthesis of prostaglandins and thromboxanes responsible for
inflammation and platelet aggregation (27). Despite its
chemopreventive effect, a daily use of low-dose aspirin
frequently causes adverse complications, primarily increased
org 220
bleeding risk (29, 30). Thus, instead of using traditional
antiplatelet agents, the pinpoint targeting of the platelet-tumor
cell interaction would be a more precise and effective strategy for
OSCC treatment, avoiding undesirable harmful effects. In this
regards, we will highlight the role of platelets in carcinogenesis
and OSCC, particularly focusing on the physical interaction
between platelets and tumors via the CLEC2-PDPN axis.
ROLES OF PLATELETS IN CANCER

Thrombocytosis in Cancer Patients
Platelets are anucleated cells originated from megakaryocytes in
the bone marrow and abundant in healthy individual
150,000~400,000 per microliter of blood (11–13). In spite of
lack of genomic DNA, platelets release plenty of granular
ingredients, such as platelet-derived growth factor (PDGF),
transforming growth factor b (TGFb), stromal cell-derived
factor-1 (SDF-1), and serotonin, which contributes to signal
transduction in nearby cells (31). Cancer is often associated
with thrombocytosis, a status of an abnormal elevation of platelet
counts, which shows a positive correlation with worse outcomes
in many types of cancers (24, 32–34). High platelet counts are
involved with development of venous thromboembolism (VTE)
in cancer patients, the second leading cause of cancer death (35–
38). Besides an increased risk of VTE, thrombocytosis is
associated with cancer mortality by accelerating tumor
promotion and progression as well (39–41). In mice bearing
tumors, platelet transfusion induced the blood platelet counts as
well as tumor growth, while reducing the survival rates (37, 42).
Thus, the platelet counts have long been considered as a valuable
prognostic marker in cancer patients.

It has been reported that inflammatory cytokines, such as
interleukin-6 (IL-6), are highly associated with thrombocytosis in
cancer patients (33, 43). IL-6 can stimulate platelet production
through inducing thrombopoietin (33, 44). Inmurine colitismodel,
colitis-induced wild type (WT) mice showed thrombocytosis and
platelet aggregation, which were absent in IL-6-deficient mice (45).
Moreover, neutralization of IL-6 led to reduction of platelet counts
and tumor growth in the mouse ovarian cancer model (33). Thus,
IL-6 inhibitors might be utilized to mitigate cancer-associated
thrombocytosis (46). However, anti-IL-6 treatments need
meticulous assessment, regarding that IL-6 pleiotropically
functions in immune system (47, 48).

Platelets as a Part of Stromal Components
in Tumor Microenvironment
Tumor tissues are not just simple masses of malignant cells, but
rather complex and heterogeneous collections of cellular and
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even non-cellular components, referred to as tumor
microenvironment (TME) (49). The multiple players in the
TME develop dynamic interactions with each other, which
determines the characteristics of the tumor (50). The non-
cellular parts of the TME comprise primarily the ECM, a
three-dimensional scaffold that contains col lagens,
proteoglycans, and fibronectins (51). The acellular ECM is
crucial for providing mechanical (structural) and biochemical
(nutritional) supports to cellular components in the TME (52).
The cellular players in the TME can be largely divided into
stromal cells and tumor-infiltrating immune cells. The tumor
stroma is a heterogeneous population of distinct types of cells,
including fibroblasts and endothelial cells (53). Among them,
cancer-associated fibroblasts (CAFs) are the most abundant type
of the stromal cells in TME that display enhanced expression of
the signature proteins, including a-smooth muscle actin and
PDGF receptors (54). Moreover, the TME contains a broad
spectrum of immune cells, such as tumor-associated
macrophages, tumor-associated neutrophils, and regulatory T
cells. Notably, the infiltration of platelets into the tumor stroma
has been observed in cancer patients (18, 55, 56), along with
increased blood platelet counts (24, 32–34). Tumor-infiltrating
platelets can interact with other stromal players of TME,
contributing to tumor promotion and progression (57).
Miyashita et al. have found that CAFs were surrounded by
platelets in almost half of the pancreatic cancer patients (58).
Platelet-derived factors, like TGFb, PDGF, and SDF-1, can
stimulate recruitment and activation of CAFs in the TME (59–
62). Platelets also accommodate various angiogenesis regulators,
which can turn on local angiogenesis in the TME (63). Depletion
of tumor-infiltrating platelets showed impaired tumor blood
vessel structures in mice (64). Moreover, it has been reported
that fusion between platelets and endothelial cells promotes
cancer metastasis by facilitating adhesion of tumor and
endothelial cells (65). In consistent, the intratumoral
accumulation of platelets are related to tumor progression (18,
55, 56). These investigations support that platelets function as a
crucial stromal component in the TME through vigorous
interplay with other members.

Platelets in Cancer Invasion and
Metastasis
Metastasis is a multi-step process, including local invasion,
intravasation, and colonization at the distal sites (66). Invading
cancer cells undergo dramatic alterations in their morphology
and phenotypes, such as epithelial-to-mesenchymal transition
(EMT), which is accompanied by remodeling of the ECM (66).
As a poor prognostic indicator, thrombocytosis is associated with
lymph node metastasis and invasion in cancer patients (24, 67).
In consistent, platelet transfusion significantly enhanced
metastasis of cancer cells in the murine experimental models
(15, 68). However, platelet decoys bound to tumor cells as
effectively as normal intact platelets and inhibited thrombosis
and metastatic tumor formation, further supporting the role of
platelets in metastasis (69). Of note, platelets are frequently
detected at the invasive front where both EMT and ECM
remodeling occur actively (70). Platelets contain about 40% of
Frontiers in Immunology | www.frontiersin.org 321
TGFb found in the peripheral blood plasma, which plays a
crucial role in cancer cell invasion (71). Co-culture with
platelets remarkably enhanced invasiveness and EMT process
of cancer cells in a TGFb-dependent manner (72, 73). Platelet-
specific Tgfb1-deficient mice showed reduction in tumor growth
and platelet extravasation, compared to WT mice (74).
Moreover, various types of matrix metalloproteinases (MMPs)
responsible for ECM degradation are stored in the resting
platelets and released upon stimulation, such as cancer cell-
induced aggregation (35, 75, 76). Platelets upregulate production
of MMPs in cancer cells as well as fibroblasts, accelerating
invasion of cancer cells (77–79). These data suggest that
platelets can change TME through their releasates, such as
TGFb and MMPs, conferring cancer cells invasive capability
and metastatic potential. In addition, direct contact with platelets
can promote invasion and metastasis of cancer cells in vitro and
in vivo (19, 80).

Platelets can promote metastasis through interaction with
other cells in the bloodstream as well, like in the TME. Platelets
rapidly adhere to circulating cancer cells in the blood, protecting
tumors from immune surveillance (41, 81). Natural killer (NK)
and CD8 T cells are cytotoxic lymphocytes that play a central
role in cancer immunosurveillance (82). Once tumors are coated
by platelets, platelets inhibit NK cell-mediated antitumor activity
through downregulating tumor cell NK2D expression by TGFb
and inducing pseudoexpression of immunomodulating
molecules, such as MHC I and GITR (83–85). Moreover,
platelet-derived factors, such as TGFb and programmed death-
ligand 1 (PD-L1), suppressed the cytotoxic antitumor T cell
immunity in the mouse cancer models (86–88). Taken together,
these data suggest that platelets facilitate tumor immune escape
by surrounding cancer cells in the bloodstream, thus, the
platelet-camouflaged cancer cells safely migrate to the
metastatic sites. Of note, co-incubation with platelets protected
cancer cells against anoikis, implying that platelets enhance
anchorage-independent survival of circulating tumor cells in
the bloodstream (15).

Platelets as a Potential Target for OSCC
Treatment
Similar to other types of cancer patients, increased platelet
counts are significantly correlated with poor prognosis in
OSCC patients (25, 89). Based on the analysis of relationship
between platelet counts and disease progression in a total of 253
OSCC patients, thrombocytosis was associated with lymph node
metastasis as well as distant metastasis (90). Along with
metastasis, advanced OSCC often shows invasion into the
facial bones, due to close anatomical relationship (91, 92). The
bone invasion causes severe pains, greatly lowering the quality of
life and the survival rates in OSCC patients (91, 93). Notably,
platelet aggregation plays a critical role in tumor-associated bone
destruction (94). In line with that, the pharmacological
inhibition of platelet aggregation reduced bone metastasis in
the murine cancer model (95). Platelet-secreted lysophosphatidic
acid is thought to be one of the primary mediators in platelet-
promoted bone invasion and metastasis (96, 97). Taken together,
platelets can facilitate bone invasion through direct contact with
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tumor as well as their releasates. In OSCC, bone destruction and
invasion are closely related to TGFb signaling pathway (98, 99).
Considering that platelets store most of the plasma TGFb, it is
plausible that platelets aggravate invasion of OSCC, and thus
further pre-clinical and clinical investigations will shed light on a
noble would be novel strategies for OSCC treatment.
INTERACTION BETWEEN PLATELETS
AND CANCER: CLEC2-PDPN-ERM AXIS

PDPN in Cancer and Platelet Aggregation
PDPN is a type I transmembrane glycoprotein expressed in kidney
podocytes, skeletal muscles, lungs, hearts, myofibroblasts,
osteoblasts, mesothelial cells, and lymphatic endothelial cells
(100). PDPN knockout mice die shortly after birth due to an
impaired respiratory system (101). These mice also show defects
in the lymphatic vasculature, disorganization of spleen, and lack of
lymphnodes (102, 103). PDPN is thus an important regulator in the
normal organogenesis and development processes.

Upregulation of PDPN has been observed in a variety of
human cancers, including brain cancer, breast cancer, lung
cancer, and mesothelioma, which is associated with poor
prognosis (104–107). In athymic nude mice, injection of
PDPN-overexpressing cancer cells generated bigger tumors,
while silencing of PDPN suppressed tumor growth (108).
Moreover, PDPN-high tumors exhibited increased peritumoral
lymphangiogenesis, invasiveness, migratory ability, and
metastasis, implying a pro-tumorigenic role of PDPN (109–
112). Notably, it has been reported that PDPN expression is
elevated at the leading edge of tumor tissues, which promotes cell
surface extension and cell motility in keratinocytes (111, 113). In
the two-stage skin carcinogenesis model, epidermal ablation of
PDPN reduced tumor growth and invasion (109). Overall, these
data suggest that PDPN confers cancer cells survival benefits,
promoting tumor growth, invasion, and metastasis.

Interestingly, PDPN-overexpressing cancer cells evoke
platelet aggregation, also known as tumor cell-induced platelet
aggregation (TCIPA) (108, 114). PDPN-positive human
glioblastoma Gli16 cells were able to markedly induce platelet
aggregation, whereas not detected by PDPN-negative cells (115).
In tumor-bearing mouse models, either ablating PDPN gene or
blocking PDPN by monoclonal antibody (mAb) injection
effectively suppressed platelet aggregation, supporting that
PDPN is crucial for TCIPA formation (116, 117). The PDPN-
mediated TCIPA was strongly associated with an increased
incidence of VTE in cancer patients (115, 118). Moreover,
PDPN overexpression is also involved in TCIPA-induced
tumor promotion and progression. The platelet-tumor
aggregates are readily arrested in the microvasculature,
facilitating tumor metastasis (20). PDPN neutralization
significantly inhibited TCIPA occurrence, tumor growth, and
metastasis in nude mice injected with human melanoma or lung
cancer cell lines (108, 116, 119). Moreover, platelet-derived
TGFb upregulated PDPN expression in human bladder cancer
cells, which induced EMT process and cancer cell invasion (120).
Frontiers in Immunology | www.frontiersin.org 422
Taken together, PDPN is considered as a ‘pinpoint’ that
interconnects between tumor and platelets, regulating VTE as
well as tumor progression.

Platelet CLEC2-PDPN Axis: A Pinpoint of
Platelet-Tumor Cell Interaction
PDPN consists of an extracellular domain, a transmembrane
domain, and a cytoplasmic domain (121). The extracellular
domain of PDPN carries four platelet aggregation-stimulating
(PLAG) domains with a plenty of potential O-glycosylation sites,
crucial for interaction with platelets (121). The PLAG domain of
PDPN has been reported to bind to CLEC2 that is abundantly
expressed on the surface of platelets (122). Interestingly, CLEC2-
deficient mice phenocopy PDPN-knockout mice, like prenatal
lethality and impaired lymphatic vasculature (123). Either
platelet-specific deletion of CLEC2 or inhibition of PDPN was
associated with reduced thrombosis in a murine deep vein
thrombosis model of inferior vena cava stenosis (124).
Similarly, cancer cell lines with high endogenous PDPN
expression levels, such as LN319 and Colon-26, showed
induced platelet aggregation, which was attenuated by pre-
incubation with an anti-CLEC2 antibody (125). Tsukiji et al.
have found that cobalt hematoporphyrin (Co-HP) directly binds
to PDPN-binding sites of CLEC2, functioning as an inhibitor of
the CLEC2-PDPN axis (126). Both Co-HP administration and
CLEC2 neutralization significantly inhibited CLEC2-dependent
platelet aggregation in tumor-bearing mice (126, 127). Taken
together, these data support that PDPN is interdependent with
CLEC2, thus, the platelet CLEC2-PDPN axis is crucial for
platelet-tumor cell interaction (Figure 1).

In conjunction with TCIPA formation, the platelet CLEC2-
PDPN axis mediates cancer promotion and progression. In mice
inoculated with PDPN-expressing B16F10melanoma cells, CLEC2
depletion by anti-CLEC2 mAb 2A2B10 injection reduced plasma
levels of inflammatory cytokines and lung metastasis, resulting in
prolongedsurvival compared tocontrolmice (127). Treatmentwith
a CLEC2 inhibitor Co-HP suppressed lung metastasis of PDPN-
expressing melanoma cells, but not that of PDPN-negative lung
cancer cells (126). In platelet-depleted mice, platelet transfusion
inducedmuchmore lung colonization as well as bonemetastasis of
PDPN-expressing osteosarcoma cells, while CLEC2mAb injection
reduced lung colonization (68). Likewise, injection of PDPN mAb
(MS-1) remarkably suppressed platelet aggregation as well as lung
metastasis in the murine cancermetastasis model (128). Therefore,
the platelet CLEC2-PDPN axis is considered as a pinpoint for
platelet-tumor interaction that promotes tumor progression
(Figure 1). It has been demonstrated that CLEC2 deficiency is
not significantly related to bleeding tendency (123, 129). In this
regard, the platelet CLEC2-PDPN axis could be a promising target
to inhibitTCIPA-induced tumorprogressionwithout bleeding risk,
a major complication of the traditional antiplatelet agents.

PDPN-ERM Axis: An Executor in Cancer
Progression
PDPN has a short cytoplasmic tail associated with ezrin/radixin/
moesin (ERM) proteins that primarily bridge between plasma
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membrane proteins and F-actin filaments of the cytoskeleton
(100, 130). It is well documented that cells and tissues utilize this
ERM crosslink system to maintain the architectures necessary for
their own biological functions (131). In particular, ERM proteins
are crucial regulators for epithelial morphogenesis and integrity,
mitosis, cell polarity, and cell adhesion (132, 133). Among the
ERM protein members, ezrin-null mice displayed much more
severe phenotypes compared to moesin- or radixin-deficient
mice (134). Ezrin-deficient mice showed defects in intestinal
villus morphogenesis and epithelial cell organization (135). In
addition, ERM proteins regulate the cell-cell and cell-matrix
interactions, particularly in cancer cells (136). Thus, PDPN is
engaged in cell adhesion, migration, and invasion through
association with the ERM proteins, as illustrated in Figure 1
(113, 133).
Frontiers in Immunology | www.frontiersin.org 523
PDPN expression is upregulated peculiarly in the growing
edge of tumors and commonly co-localized with ERM proteins
(100, 106). Similar to PDPN, overexpression of ERM proteins
has been detected in various types of cancers: ezrin
overexpression in breast, hepatocellular, colon, ovarian, and
pancreatic cancers (137–141); radixin overexpression in
pancreatic cancer with lymph node metastasis (142); moesin
overexpression in skin cancer, colorectal carcinoma, endometrial
adenocarcinoma, and glioma (143–146). Moreover, upregulation
of ERM proteins is associated with poor prognosis in cancer
patients (140, 147–150). In athymic nude mice, intracranial
injection of moesin-overexpressing glioblastoma cells
significantly reduced the survival rates compared to the control
group (146). Moreover, ERM proteins were frequently
mislocalized during tumor progression, from plasma
FIGURE 1 | Interaction between platelet and tumor cell. Platelets can physically interact with tumor cells via the CLEC2-PDPN axis. PDPN is associated with ERM
proteins that promote cancer cell migration and invasion through modulating actin cytoskeleton, RhoA, and EMT process. Thus, the CLEC2-PDPN-ERM axis is a
crucial target for chemotherapy.
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membrane to cytoplasm (136). Thus, dysregulation of ERM
proteins takes part in cancer promotion and progression,
possibly in an interdependent manner with PDPN.

It has been reported that PDPN mediated TCIPA-induced
EMT process in human cancer cell lines (120). In non-cancerous
experimental settings, PDPN can bind to ERM proteins through
its cytoplasmic domain, promoting the EMT process as well as
cell migration (130, 151). Silencing of radixin, one of the ERM
protein members, suppressed the EMT process as well as
migration and invasion in human gastric carcinoma SGC-7901
cells (152). Moreover, PDPN can induce migration ability in
cancer cells that bypass the EMT process via filopodia formation
(106). Instead of the EMT process, PDPN recruits ERM proteins
to modulate the actin cytoskeleton in a RhoA-dependent
manner, consequently promoting cancer cell migration and
invasion. Taken together, the PDPN-ERM axis can promote
migratory capability and invasiveness of tumor cells, through
either EMT process or cytoskeletal rearrangement.

It has been reported that the CLEC2-PDPN axis can regulate
cell contractility and migration through activation of ERM
proteins in non-cancerous settings (153–155). In this regard, it
is plausible that the PDPN-ERM axis could be recruited by
tumors bound to platelets via CLEC2-PDPN interaction,
conferring cancer cells metastatic potentials (Figure 1). Further
investigation is necessary to clarify the role of the platelet
CLEC2-PDPN-ERM axis in cancer progression.

Platelet CLEC2-PDPN and PDPN-ERM
Axes in OSCC
According to the Cancer Genome Atlas analysis, head and neck
cancer patients present much higher PDPN expression levels
compared to other types of cancer patients. While PDPN
expression is rarely detected in normal oral epithelial cells,
OSCC patients show upregulation of PDPN in tumors, which
contributed to poor prognosis (156–159). In the xenograft mouse
model, PDPN-overexpressing OSCC cells promoted tumor
growth and intratumoral platelet accumulation, implying that
PDPN mediates TCIPA formation in OSCC (160). Similar to
high platelet counts (90), elevated PDPN expression was often
found at the invasive front and correlated with lymph node
metastasis in OSCC patients (156, 161). In line with that,
silencing of PDPN gene expression attenuated migration and
invasion in human OSCC cell lines (160, 162–164). Considering
that platelet CLEC2 is crucial for PDPN-dependent TCIPA
formation, the platelet CLEC2-PDPN axis would be a feasible
target for successful local control in OSCC patients.

In OSCC patients, overexpression of ezrin and moesin has
been detected in advanced staged tumors and significantly
associated with worse overall survival rates (149, 164, 165).
Kobayashi et al. have reported that cytoplasmic expression of
moesin shows a strong correlation with lymph node metastasis in
OSCC patients (166). Of note, PDPN expression was positively
related to ezrin expression, particularly in the cytoplasm of the
odontogenic tumors (167). Moreover, this co-expression
between PDPN and ezrin was frequently detected in the
invasive front and possibly involved with lymph node
Frontiers in Immunology | www.frontiersin.org 624
metastasis in the lip cancer (168). These data suggest that the
PDPN-ERM axis may contribute to increased metastatic
potential in OSCC. In consistent, PDPN has been reported to
enhance cell motility and invasiveness through interaction with
ERM binding partners, such as membrane type 1 MMP, Cdc42,
and CD44, in humans OSCC cell lines (162, 164). These data
suggest that ERM proteins function as an intracellular executor
of the CLEC2-PDPN axis in invasion and metastasis of OSCC.
TARGETING PLATELET-TUMOR
INTERACTION FOR CHEMOTHERAPY

Aspirin
Considering pro-tumorigenic activities of platelets, antiplatelet
agents could be promising chemotherapeutics, as shown in
Table 1. A classical antithrombotic drug aspirin has been used
for chemoprevention. The meta-analysis and retrospective
cohort study showed that a regular use of aspirin is associated
with reduced risk of cancers in liver, stomach, colorectum, lung,
pancreas, and oesophagus (26, 169). In head and neck cancer
patients, evaluation of aspirin as a chemopreventive agent is still
controversial. A hospital-based case control study revealed that
aspirin use can reduce head and neck cancer risk (170), whereas
the other investigations demonstrated that there was no
significant correlation between aspirin intake and head and
neck cancer (171, 172). Moreover, the risk of gastrointestinal
bleeding could limit the use of aspirin for cancer prevention and/
or treatment (29, 30).

Platelet P2Y12 Receptor Antagonists
Platelet P2Y12 receptor is involved in ADP-stimulated activation
of glycoprotein IIb/IIIa (GPIIb/IIIa) responsible for platelet
aggregation (197). It has been reported that GPIIb/IIIa
mediates platelet-tumor interaction and cancer metastasis
(198–200). In conjunction with GPIIb/IIIa, stimulation of
P2Y12 receptor can promote platelet-tumor crosstalk and
cancer metastasis (Figure 2), suggesting P2Y12 receptor
antagonists as anticancer drugs (73, 201). Clopidogrel, the
most widely used P2Y12 receptor antagonist, markedly
inhibited tumor growth in mouse ovarian and liver cancer
models (176, 177). Another P2Y12 inhibitor ticagrelor
suppressed proliferation of ovarian cancer cells in vivo and in
vitro, which was not detected in absence of platelets (176).
Moreover, treatment with ticagrelor attenuated TCIPA
formation and cancer metastasis in the murine experimental
models (178–180). These pre-clinical data suggest platelet P2Y12
receptor as a target for cancer treatment by controlling platelet-
tumor aggregation. However, a population-based cohort study
showed that the use of clopidogrel has no huge impact on cancer
mortality in colorectal, breast, and prostate cancer patients (181).
Even worse, the clinical trial-based analyses revealed that
ticagrelor increased cancer risks (183, 184). In another patient-
level meta-analysis of randomized clinical trials, a long-term intake
of clopidogrel was associated with bleeding risk and hemorrhage
(182). Overall, the use of P2Y12 receptor antagonists for
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chemotherapy is controversial, in spite of the compelling pre-
clinical evidence.

Platelet GPVI Antagonism
GPVI is the major platelet-activating receptor exclusively
expressed on platelets and megakaryocytes (202). GPVI-null
mice showed lack of thrombus formation and defective platelet
activation without severe bleeding tendency (203, 204).
Moreover, these GPVI-deficient mice developed less metastatic
tumors by injection of lung cancer or melanoma cells than WT
mice (205). Notably, platelet GPVI can bind to galectin-3 on
tumor cells, provoking platelet-tumor cell interaction and
metastasis (Figure 2) (186, 189). These pre-clinical data
suggest that GPVI antagonism is a conceivable strategy to
block TCIPA-mediated tumor progression without adverse
effects. In line with this notion, platelets preincubated with an
anti-GPVI antibody (JAQ1) were less able to form aggregates
with human breast cancer cells and eventually reduced cancer
cell extravasation in the transendothelial migration assay (187).
Moreover, treatment with JAQ1 reduced tumor metastasis in the
murine lung metastasis models, further supporting antitumor
effects of GPVI antagonism via blocking TCIPA formation (186).
Interestingly, JAQ1 Fab2 fragment induced intratumoral
hemorrhage that led to accumulation of co-administrated
chemotherapeutics without systemic bleeding complications,
Frontiers in Immunology | www.frontiersin.org 725
thus allowing to maximize anticancer effects (188). Revacept, a
competitive GPVI inhibitor comprising a soluble Fc fusion
protein, decreased platelet-tumor interaction and metastatic
potential in vitro (189). In atherosclerotic mice and healthy
human subjects, Revacept reduced platelet aggregation with no
impact on bleeding times (190, 191). Based on this drug safety
assurance, the antitumor efficacy of GPVI antagonists must be
further evaluated in human cancer patients.

Targeting Platelet CLEC2-PDPN Axis
As described in Figure 1, the platelet CLEC2-PDPN axis is
emerging as a pinpoint to control the platelet-tumor interaction
and subsequent tumor progression. In order to disconnect the
platelet CLEC2-PDPN axis, diverse approaches have been made,
including mAbs against CLEC2 or PDPN and pharmacological
inhibitors. PDPNmAbs, such as NZ-1 and MS-1, can bind to the
PLAG domain of PDPN and neutralize interaction with platelet
CLEC2 (Figure 2) (192, 193). These PDPN mAbs specifically
inhibited PDPN-mediated platelet aggregation and cancer
metastasis in the murine experimental models (128, 192, 193).
Moreover, anti-PDPN antibody SZ-168 reduced the incidence
of VTE in mice (194). Similar to PDPN mAbs, anti-
CLEC2 antibody 2A2B10 suppressed intratumoral thrombus
formation as well as metastasis in mice (68, 127). These
investigations suggest that mAbs neutralizing either CLEC2 or
TABLE 1 | Strategies to target platelet-tumor interaction for chemotherapy.

Agent TCIPA Cancer risk/metastasis Bleeding References

Classical antiplatelet drug
Aspirin Inhibit TCIPA in vitro and in

vivo
Inhibit metastasis in vivo Increased gastrointestinal bleeding (26, 29, 30,

169–175)Cancer preventive effect in human subjects
(controversial in head and neck cancer)
Reduce metastasis in cancer patients

P2Y12 receptor antagonism
Clopidogrel Inhibit TCIPA in mice Inhibit tumor metastasis in mice A long-term use can increase

bleeding risk
(176–182)

No impact on cancer motility in human
colorectal, breast, and prostate cancer
patients

Ticagrelor Inhibit TCIPA Increase cancer risks in human More major bleeding compared to
clopidogrel in patients with acute
coronary syndrome

(180, 183–185)

GPVI antagonism
Anti-GPVI mAb (JAQ1) Inhibit TCIPA Inhibit cancer cell extravasation in vitro No impact on bleeding time (129, 186–188)

Inhibit metastasis in mice
Induce intratumoral hemorrhage and
accumulation of co-administrated
anticancer drugs in mice

Revacept Inhibit TCIPA in mice and
human

Inhibit EMT marker expression in vitro No impact on bleeding time in mice
and human

(189–191)

Targeting CLEC2-PDPN axis
Anti-CLEC2 mAb (2A2B10 and
INU1)

Inhibit intratumoral thrombus
formation in mice

Inhibit metastasis in mice No impact on bleeding time (68, 127, 129)

Anti-PDPN mAb (NZ-1, MS-1,
and SZ-168)

Inhibit platelet aggregation in
mice

Inhibit metastasis in mice (119, 128, 192–
194)Inhibit VET in mice

2CP Inhibit TCIPA in mice Inhibit metastasis in mice No impact on bleeding time (195)
Co-HP Inhibit platelet aggregation Inhibit metastasis in mice No impact on bleeding time (126)

Inhibit VET in mice
Polysaccharide extracted from
Artemisia argyi leaves

Inhibit TCIPA (196)
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PDPN specifically inhibit platelet-tumor interaction and tumor
metastasis. Although the influence of CLEC2 deficiency on
bleeding is conflicting in CLEC2-null mice, CLEC2 mAb-
treated mice had no sign of prolonged bleeding compared to
control mice (123, 129, 206, 207). Overall, CLEC2 neutralization
seems not to affect bleeding time profoundly.

In addition to neutralizing antibodies, pharmacological
inhibitors display potent inhibitory effects on the CLEC2-
PDPN axis. Chang et al. have newly synthesized a non-
cytotoxic 5-nitrobenzoate compound 2CP that specifically
inhibits the CLEC2-PDPN interaction (195). 2CP selectively
blocked PDPN-induced TCIPA formation and lung metastasis
in the xenograft model, whereas bleeding time was not affected
by 2CP (195). Co-HP can directly bind to CLEC2 at PDPN-
binding sites and potently block CLEC2-PDPN interaction (126).
Co-HP injection significantly reduced tumor metastasis and the
incidence of VTE in mice, but not affecting the bleeding time
(126). Moreover, a bioactive polysaccharide extracted from
Artemisia argyi leaves inhibited CLEC2-PDPN interaction and
PDPN-dependent TCIPA formation (196).

Taken together, inhibition of the platelet CLEC2-PDPN axis
is a promising chemotherapeutic strategy by suppressing TCIPA
formation and metastasis (Table 1). In particular, targeting the
CLEC2-PDPN axis seems to be a relatively safer approach to
block platelet-tumor interaction without severe adverse effects,
Frontiers in Immunology | www.frontiersin.org 826
such as increased bleeding risk. Further clinical studies are
needed to validate their anti-thrombotic and anti-metastatic
effects in human subjects. Although targeting the CLEC2-
PDPN axis is relatively harmless, it still requires caution to be
clinically applied, since CLEC2- or PDPN-deficient mice showed
abnormal lymphatic vessel formation (123).
CONCLUSION

Despite advances in surgical techniques and therapeutic strategies
including radiotherapy and immunotherapy, the survival rate of
OSCC has not been improved for the past decade due to failure of
local control of primary tumor (2, 208). Currently, platelets are well
recognized as a stromal member of the TME and an important
prognostic index in OSCC patients (25, 57, 89). In particular,
platelets directly interact with cancer cells via CLEC2-PDPN
binding, fortifying metastatic potentials of cancer cells. Regarding
that PDPN is the only known endogenous ligand for CLEC2, the
platelet CLEC2-PDPN axis is a pinpoint target to control TCIPA
formation-mediatedmetastasis without undesirable complications.
Thus, blockade of the CLEC2-PDPN axis could be a prospective
strategy for successful local control and improvement of survival in
OSCC patients, which merits further pre-clinical and
clinical investigations.
FIGURE 2 | Platelet receptors involved in platelet-tumor interaction. Platelets contain various types of receptors on the cell surface for diverse physiological
functions, including cell adhesion and aggregation. Some of the surface molecules, such as CLEC2, P2Y12, and GPVI, can promote the interaction between
platelets and cancer cells, which could be plausible targets for blocking TCIPA formation.
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During tumor development, invasion and metastasis, the intimate interaction between
tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor
cells. Stromal cells can also influence anti-tumor immunity and response to
immunotherapy. Understanding the molecular mechanisms that govern this complex
and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic
enzymes that are expressed and secreted by both cancer and stromal cells play important
roles in modulating tumor-stromal interaction. Among, several serine proteases such as
fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related
peptidases, and granzymes have attracted great attention owing to their elevated
expression and dysregulated activity in the tumor microenvironment. This review
highlights the role of serine proteases that are mainly derived from stromal cells in
tumor progression and associated theranostic applications.

Keywords: tumor-stromal interaction, serine protease, fibroblast activation protein, urokinase plasminogen
activator, kallikrein, granzyme, extracellular matrix remodeling, signaling pathways
INTRODUCTION

The tumor microenvironment (TME) is a highly complex system that is comprised of a
heterogenous population of cancer cells and associated stromal cells, and the extracellular matrix
(ECM). The ECM not only provides structural support in the extracellular space but also regulates
multiple cellular signaling in tumor tissues (1, 2). The tumor stroma, as a critical component of the
TME, actively contributes to cancer proliferation, angiogenesis, invasion and metastasis, immune
evasion, and resistance to cancer therapy (3, 4). The function of stromal cells and their interaction
with cancer cells within the TME are modulated by expression and secretion of various signaling
molecules such as growth factors (5–7), chemokines (8–10), cytokines (11–14), and proteolytic
enzymes (15–17). Although once thought to be limited to the degradation of ECM, the role of
proteases in tumors is now better understood to be significantly more complicated and critical. In
addition to cancer cells, stromal cells including fibroblasts, endothelial cells and infiltrating immune
cells all contribute proteases in developing tumors such as matrix metalloproteinases (MMPs),
cysteine cathepsins, and serine proteases. Proteases are involved in proteolytic networks,
remodeling of ECM, regulation of growth factor and cytokine signaling, and modulation of
inflammatory responses and immunosuppressive effects (Figure 1). Depending on the cellular
context, activity and interaction of these proteases can have either tumor-promoting or -suppressing
effects. Among, serine proteases, which make up approximately one-third of human proteases, are
important class of proteases in carcinomas. Dysregulated expression and activity of several serine
proteases that are derived from stromal cells have been associated with tumor development
org February 2022 | Volume 13 | Article 832418133
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and metastasis. In this review, we aim to summarize our current
understanding of functional roles that key serine proteases play in
the transformed stroma and discuss their theranostic potential.
FIBROBLAST ACTIVATION PROTEIN a
(FAPa, FAP OR SEPRASE)

Cancer-associated fibroblasts (CAFs), which are perpetually
activated and distinct from normal fibroblasts in their
morphological and functional features, are extremely abundant
in the tumor microenvironment including breast, prostate, and
pancreatic carcinomas with potent tumorigenic effects (18).
CAFs are highly heterogeneous, proliferative, and are resistant
to apoptotic cell death. Among several surface bound markers
identified in CAFs, fibroblast activation protein a (FAP) is
shown to be selectively upregulated on reactive stromal
fibroblasts of more than 90% of human epithelial carcinomas
(19). It has been demonstrated that altered tumor
microenvironment or inflammation induces FAP expression
through stimulation of cytokines such as TGF-b1 and TNF-a
(20, 21), chemical substances (22), or physical stimulants (23).
Frontiers in Immunology | www.frontiersin.org 234
FAP is a type II transmembrane glycoprotein that displays both
dipeptidyl peptidase and endopeptidase activities, removing two
amino acids from the N-terminus of the substrate as well as
hydrolyzing peptide bonds of nonterminal amino acids after a
proline residue. The postprolyl peptidase activity of FAP requires
homodimerization of the protein and is carried out by the
catalytic triad consisting of Ser, Asp, and His residues (24).
Physiological substrates of FAP include gelatin, denatured type I
collagen, a-antitrypsin, a2-antiplasmin, fibroblast growth factor
21, fibrillin-2, extracellular matrix protein 1, C-X-C motif
chemokine 5, tumor necrosis factor related protein 6, lysyl
oxidase homolog 1, and several neuropeptides (25–27).
Protease-independent activity of FAP has been associated with
activation of MMP2/9, phosphoinositide 3-kinases (PI3Ks), and
STAT signaling pathways (28, 29).

Given its high expression on CAFs and ability to degrade
major ECM proteins, the role of FAP in remodeling and
patterning of ECM, which in turn affects cellular response and
tumorigenesis, has been investigated. In both syngeneic
transplant and endogenous mouse tumor models, genetic
deletion of FAP or pharmacologic inhibition of its enzymatic
activity led to excessive accumulation and disorganization of
collagen and decrease in myofibroblast content and blood vessel
FIGURE 1 | Serine proteases found in the tumor microenvironment modulate tumor-stromal interplay by interacting with other proteases, extracellular matrix
proteins, and important signaling pathways that involve growth factors, cell surface receptors, cytokines and chemokines.
February 2022 | Volume 13 | Article 832418
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density in tumors, thus inhibiting tumor growth (30). Utilizing
an in vivo-like 3-dimensional matrix system, Lee et al.
demonstrated that FAP overexpression on fibroblasts modifies
architecture and composition of ECM through inducing tumor
stromal-like parallel organization of fibronectin and collagen I
fibers and modulating protein levels of tenascin C, collagen I,
fibronectin and a-smooth muscle actin (31). Enhanced velocity
and directionality of pancreatic cancer cells invading through
FAP+ matrices were observed, which was effectively reversed by
inhibition of FAP enzymatic activity. In vitro, a study showed
that compared to control transfectants that do not express FAP
and form slow growing tumors, cells expressing not only wild
type FAP but also catalytic mutant of FAP degrade fibronectin
matrices more extensively, accumulate higher levels of MMP-9,
invade type I collagen gels to a significantly higher degree, and
have altered pattern of tyrosine phosphorylated proteins,
suggesting the functions of FAP independent of its enzymatic
activity (32). FAP is found to form a protease complex with
dipeptidyl peptidase IV (DPP4), which is another type II
transmembrane protein with serine protease activity, at the
endothelial cells of capillary-like micro-vessels within invasive
breast ductal carcinoma. In vitro experiments showed that
gelatin-binding domain of DPP4 brings this DPP4-FAP
complex together with gelatin substrates at the migratory
endothelial cells facilitating the local degradation of the
extracellular matrix and subsequent cell migration and
invasion (33). Analysis of gastric cancer (GC) patient tissue
samples showed that FAP expression is positively correlated
with micro-vessel density indicating the role of FAP expression
in angiogenesis and metastasis (34). Many studies have
demonstrated that FAP expression regulates signaling
pathways that control cell cycle, proliferation, migration, and
invasion (29, 35–37).

Growing evidence has also suggested that FAP+CAFs can
promote the immunosuppressive tumor microenvironment.
When FAP+ cells were depleted in lung or pancreatic cancers,
it caused immediate growth arrest of immunogenic tumor
through TNF-a- and IFN-g-mediated mechanism (38). The
study by Feig et al. showed that production of chemokine (C-
X-C motif) ligand 12 (CXCL12) by FAP+CAFs mediates the
immune suppressive activity and accounts for the failure of T cell
checkpoint inhibitors in pancreatic ductal adenocarcinoma
(PDA) (39). Combining with administration of a-CTLA-4 or
a-PD-L1, depletion of FAP+ cells or inhibiting CXCR4 (CXCL12
receptor) diminished PDA growth. FAP also induces
inflammatory CAFs by STAT3 activation leading to increased
expression of CCL2, which promotes the tumor recruitment of
mye l o i d -d e r i v ed supp r e s s o r c e l l s (MDSCs ) and
immunosuppression (40, 41). In murine models of pancreatic
adenocarcinoma, inhibition of FAP proteolytic activity resulted
in decreased macrophage recruitment, and genetic knockout of
FAP enhanced T cell infiltration and cytotoxicity (42). However,
in another study in non-small cell lung cancer (NSCLC), high
density of FAP+CAFs was found to be associated with improved
prognosis in patients with high expression of CD8 and CD3 T
lymphocytes (43, 44). This result is contrary to previous finding
Frontiers in Immunology | www.frontiersin.org 335
in a small study (n= 59) that higher levels of FAP expressing
stromal cells are associated with worse overall survival and
increased peripheral neutrophil and lymphocyte count ratio
(NLR) in NSCLC patients (45). In invasive ductal carcinoma of
the breast, FAP+CAFs have been associated with longer survival
(46), while in pancreatic adenocarcinoma and rectum they are
found to be associated with worse clinical outcome (47–49).
Thus, the cellular context and mechanism of FAP on the
antitumor immune responses in the TME would require
further investigation.
UROKINASE PLASMINOGEN ACTIVATOR
(UROKINASE-TYPE PLASMINOGEN
ACTIVATOR, UROKINASE, UPA)

Urokinase plasminogen activator (uPA) is a serine protease that
is extracellularly localized and involved in the plasminogen
activator system. It was first found in the urine (50), but later
identified also in plasma, seminal fluid, and the extracellular
matrix (51). It is synthesized and secreted as an inactive zymogen
known as pro-uPA and different proteases such as cathepsin B
and L, trypsin, kallikrein, and mast cell tryptase convert pro-uPA
into an active uPA (52, 53). Binding of uPA to uPA receptor
(uPAR), which is a glycosyl-phosphatidylinositol (GPI)-
anchored cell membrane receptor highly expressed in most
types of solid tumors such as breast, prostate, brain, and head
and neck cancers, localizes the active uPA to the cell surface and
converts its major substrate plasminogen into plasmin. Once
activated, non-specific protease plasmin is involved in
degradation of collagen IV, laminin, fibronectin, vitronectin,
fibrin, and several blood clotting factors either directly or
through activation of other proteases such as MMPs (54). The
inhibitory proteins, plasminogen activator inhibitor-1 (PAI-1)
and PAI-2, regulate the activity of uPA (55).

The role of uPA in tumor invasion and metastasis has been
widely investigated. Depending on cancer type, uPA and uPAR
are expressed both by cancer and stromal cells. uPA is mainly
expressed by tumor-associated macrophages (TAMs) and CAFs,
and on tumor endothelial cells (TECs) to lesser extent. Through
interaction between uPAR and integrins as well as ECM
components such as vitronectin, uPA system regulates cell
adhesion and migration. uPA supports tumor cell proliferation
by proteolytically activating various growth factors that include
epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-
2) and hepatocyte growth factor/scatter factor (HGF-SF) (56).
TGF-b, which is a predominant and multifunctional cytokine
found in the TME, regulates the expression of uPA in several
types of transformed cells (57–59). uPA-activated plasmin, in
turn, activates the secreted TGF-b precursor by a proteolytic
cleavage within the N-terminal region of latency-associated
peptide (60–62). This loop contributes to tumor growth,
cancer cell migration, epithelial to mesenchymal transition
(EMT), and metastasis. uPA also mediates the effects of
vascular endothelial growth factor (VEGF), a key factor in
February 2022 | Volume 13 | Article 832418
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angiogenesis (63). A study showed that downregulation of uPA/
uPAR inhibits angiogenesis in glioblastoma and endothelial cells
by regulating tissue inhibitors of metalloproteinase-1 (TIMP-1)
secretion, subsequently enhancing secretion of sVEGFR1, a
known scavenger of VEGF (64). In vitro, uPA derived from
CAFs was found to promote esophageal squamous cell
carcinoma (ESCC) cell proliferation, migration, and invasion
by activating PI3K/AKT and ERK signaling pathways (65).
In multiple myeloma, increased expression and activity of both
uPA and uPAR on CAF cells with higher proliferative rate and
invasion potential were observed, suggesting the potential role of
uPA/uPAR system in promoting metastasis of malignant plasma
cells (66). uPA/uPAR system has been implicated in suppression
of apoptotic cell death. RNAi-mediated downregulation of uPA
and uPAR led to dephosphorylation of focal adhesion kinase
(FAK), p38 MAPK, janus kinase (JNK) and ERK1/2 which in
turn activates caspase-8, cytochrome c release, PARP cleavage,
and subsequent apoptosis of human glioma cells (67). The uPA/
uPAR system also plays a critical role in macrophage infiltration
(68). TAMs, one of most abundant types of tumor-infiltrating
immune cells found in the TME, exhibit important functions in
tumor growth, metastasis, angiogenesis, and immune regulation.
For example, by producing cytokines, chemokines, growth
factors, and triggering the inhibitory immune checkpoint
proteins release in T cells, TAMs promote immunosuppression
(69). In addition, expression of uPAR and PAI-1 in TAMs has
been correlated with vessel remodeling and node status and
tumor grade, indicating that TAMs have an important role in the
expression and regulation of uPA system for establishing the
vascular network in tumors (70).
KALLIKREIN RELATED PEPTIDASES
(KLKS)

Kallikrein or kallikrein related peptidases are a family of secreted
serine proteases that play important roles in ECM remodeling,
angiogenesis, skin homeostasis, innate immunity, male
reproduction, tooth enamel formation, and neural development.
In humans, there are 15 secreted KLKs (KLK1-15). KLK1-2,
KLK4-6, KLK8, and KLK10-15 have trypsin-like and KLK3,
KLK7, and KLK9 have chymotrypsin-like activities. Aberrant
expression of KLKs has been associated with a variety of
malignancies, thus the potential of KLKs as cancer markers has
been suggested for several members of this protease family. In
particular, because of the restricted expression in prostate, KLK3,
also known as a prostate-specific antigen (PSA), has been widely
employed as a clinical biomarker for prostate cancer. Laser cell
microdissection analysis and immunochemistry in human
breast cancer surrounding stromal cells showed significant
upregulation of KLK4 but downregulation of all other KLKs
(71). Immunohistochemistry analysis of tissue sections of
ovarian and melanoma patients found the overexpression of
KLK6 in tumor associated stromal cells and keratinocytes (72,
73). In pancreatic ductal adenocarcinoma, immunostaining
analysis of epithelial tumor cells and the surrounding stroma
Frontiers in Immunology | www.frontiersin.org 436
and immune cells showed that high KLK6 protein levels in the
tumor and immune cells are significantly associated with shorter
survival compared to low protein levels (74). mRNA analysis of
colorectal cancer (CRC) tissue samples from 136 patients showed
upregulated KLK10 expression (75). Significantly increased
expression of KLK10 has been also found in ovarian cancer
tissues (76).

During the tumor progression, KLKs from cancer and
stromal cells are released into the TME, where they can exert
their proteolytic activity, mainly activating signaling networks
and modulating the expression of genes and proteins important
to tumor growth and invasion. For example, KLKs activate EGFR
and protease-activated receptor (PAR), resulting in the
stimulation of ERK1/2 signaling and enhanced subsequent cell
proliferation (77–79). Analyzing the secretome of endothelial
cells, a study showed that KLK12 can catalyze the release of
PDGF-b from ECM components and cell surface. The released
PDGF-b then mediates secretion of VEGF and angiogenesis. In
addition, KLK12 has been shown to cleave the ECM proteins
fibronectin and tenascin (80). KLK12-mediated remodeling of
fibronectin matrix led to an increase in endothelial cell migration
which was inhibited by a polyclonal antibody directed against the
KLK12 cleavage site (81). An in vitro study showed that KLK14
recognizes and hydrolyzes pro-MMPs to active MMPs, especially
the membrane-type MMPs (82). Combined expression of
KLK4-7 in ovarian cancer has been associated with increased
level of TGF-b1, neural cell adhesion molecule L1 (L1CAM),
and other tumor-associated factors such as keratin 19 and
moesin, indicating the impact of KLK proteases on the
secreted proteomes shaping tumor microenvironment (83, 84).
KLK4, highly expressed in prostate cancer, promotes CAF
differentiation. Through PAR1 activation, KLK4 regulates
FGF-1, tasgelin, and lysyl oxidase, and several soluble factors
in the prostate stromal cell secretome (85). KLK4 can also
stimulate uPA/uPAR system and activate MMPs, leading to the
ECM degradation. Overexpression of KLK7 in melanoma cells
was shown to induce a decrease in cell proliferation and colony
formation but an increase in cell motility and invasion possibly
through modulating cell adhesion molecules such as E-cadherin
and MCAM/CD146 (86). Kallikreins have been also associated
with infiltration of immune cells (87). Although many more
studies are needed to better define the pathophysiological
functions of each KLK in cancer, emerging evidence
suggest that KLKs have significant effect on the tumor-
microenvironment interaction and targeting specific KLK may
provide therapeutic benefits in cancer therapy.
GRANZYMES (GZMS)

Granzymes are cell death-inducing serine proteases primarily
known for their role in eliminating infected and transformed
cells through cytotoxic T cells and natural killer cells. Among five
granzymes identified in humans (A, B, H, K, and M), GzmA and
GzmB have been most widely studied. The expression of
granzymes is regulated by many factors including receptor
February 2022 | Volume 13 | Article 832418
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engagement and stimulation with cytokines. Granzymes are
expressed as an inactive pro-enzyme that requires cleavage of
N-terminal dipeptide inside secretory granules by cathepsin C
(88). As granzyme is optimally active at neutral pH, granzymes
stored in acidic granules are quiescent and become enzymatically
active following release from the granules into the cytoplasm. In
addition, the presence of protein inhibitors such as serpins
regulates the proteolytic activity of granzymes (89).

Infiltrating immune cells within the TME significantly
contribute to tumor suppression (immune surveillance) or
tumor promotion (inflammation and angiogenesis) either
directly or through the interplay with other stromal
components. In regard to anti-tumor immunity, the intracellular
role of granzymes is well characterized and appreciated. Upon
activation, the pore-forming protein perforin helps deliver GzmB
into the cytosol of target cells, where it induces apoptosis by
caspase-dependent and -independent mechanisms. Activation of
gasdermin B (GSDMB) by GzmA (90) or GSDME by GzmB (and
indirectly by caspase-3) initiates pyroptotic cell death in tumors
(91). Mounting evidence suggests that granzymes are also active
players in immune regulatory cells and tumor cells. Regulatory T
cells (Tregs), MDSCs, dendritic cells (DCs), mast cells, and Bregs
are found to express granzymes. If not controlled, granzymes can
cause self-inflicted damage of expressing cells. It has been
suggested that GzmB is involved in Treg-mediated suppression
and elimination of activated CTL/NK cells and antigen-presenting
cells, indicating Treg cells utilize GzmB to suppress immune
responses and tumor clearance, thus depending on the relative
abundance of these cells in the tumor, GzmB can have either
detrimental or protective function in antitumor immunity
(92, 93).

In addition, extracellular (perforin-independent) functions of
granzymes are emerging. Although it remains unclear what
stimuli and signaling pathways regulate granzyme release,
studies have long shown that patients with infectious diseases
and certain proinflammatory conditions have elevated levels of
extracellular GzmA/B. GzmB is also found to be constitutively
released from CTL/NK cells in vivo (94). Once released, they can
mediate the cleavage of extracellular matrix, cell surface
receptors, cytokines, and act as proinflammatory proteases.
The ECM substrates of GzmB include fibronectin, vitronectin,
aggrecan, laminin, and decorin. D’Eliseo et al. showed that GzmB
expressed in bladder cancer cell lines and urothelial carcinoma
tissues is active in catalyzing vitronectin cleavage, and inhibition
of GzmB activity suppresses bladder cancer cell invasion (95). A
recent study also demonstrated that active GzmB released from
migrating CTLs contribute to extravasation and homing of CTLs
via basement membrane cleavage and remodeling. GzmB-null
CTLs exhibited impaired homing and decreased transmigration
through the vessel wall in mouse models of viral infection and
inflammation. In vitro migration assays using Matrigel or
Madin-Darby canine kidney (MDCK) cell basement membrane
showed that active GzmB released from migrating CTLs enabled
chemokine-driven movement and cleavage of basement
membrane components (96). GzmM expressed in carcinomas
has been implicated in promoting tumor growth, metastasis, and
Frontiers in Immunology | www.frontiersin.org 537
EMT dependent on STAT3 signaling (97). GzmM expression is
positively related to IL-6 and VEGF release from cancer cells.
Recently, extracellular GzmA was found to be engaged in gut
inflammation in colorectal cancer by inducing NF-kB-dependent
IL-6 production in macrophages leading to STAT3 activation
(98). In mouse models, GzmA knockout or inhibition reduced
inflammation and CRC development, suggesting that
development of effective GzmA inhibitors could offer
therapeutic benefits treating gut inflammation and CRC.
TARGETING SERINE PROTEASES IN
TUMOR STROMA

With respect to the clinical applications in cancer diagnosis and
therapy, a number of tools that either detect the protein
expression or harness and leverage the specific protease activity
have been developed (Table 1).

Given their high and selective expression on tumor-associated
stromal cells, inhibition of serine proteases by active-site
targeting small molecules has been extensively investigated in
cancer treatment (30, 42, 102, 103, 115–121, 126–130).
Antibody-based approaches that can inhibit the activity of
serine proteases aim to achieve better selectivity. For example,
a humanized version of monoclonal antibody F19, sibrotuzumab
has been developed to target the cell surface bound FAP on
tumor stromal fibroblasts and explored for its anti-tumor
response (99). Protease biology in cancer offers opportunities
for diagnostic profiling as well. Radiolabeled antibodies targeting
FAP (106), uPA (122, 123), and KLK3 (135, 136) have been
evaluated in single photon emission computed tomography
(SPECT) and positron emission tomography (PET) imaging of
primary and metastatic tumors. In vivo imaging tools exploit the
cleavage activity of serine proteases. Incorporating the optimal
peptidic sequence, substrate-based, activatable probes are
designed either as quenched probes or as FRET probes that
produce a fluorescent signal only after cleavage as a measure for
protease activity (112, 113, 124, 142, 144–148). On the other
hand, activity-based probes contain an electrophilic warhead that
reacts with catalytic serine of the protease and a reporter group
that generates a signal upon covalent interaction with the
protease (137, 141, 149–152). In that case not only peptides
but also non-peptidic small molecules can serve as a recognition
motif targeting the protease active site (153–156).

Taking advantage of upregulation of specific serine protease
activity in tumors, protease-activatable prodrug approach has
been widely used in cancer therapy for selective delivery of drugs
while minimizing toxicity to normal tissues. Chemotherapeutic
compounds such as doxorubicin are conjugated to cleavable
linkers sensitive to active serine proteases (104, 105, 131–134).
For example, the FAP-cleavable GP linker and KLK3-cleavable
SSKYQSL linker have been successfully used in prodrug
approach. Antibody-drug conjugates that incorporate tumor-
targeting antibodies into protease-activatable prodrug format
further enhance tumor-specific activation. A new technology
termed as Probody masks antibody binding using linkers cleaved
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by extracellular proteases. EGFR Probody PB1 only binds EGFR
following cleavage by matriptase, uPA, or legumain (125).

While cancer immunotherapies have shown significant
clinical outcomes, only a small subset of patients respond to
the treatment, calling for reliable biomarkers and therapeutic
strategies to maximize the benefits of the immunotherapy.
Targeting the immunomodulatory, tumor stroma-associated
serine proteases may provide a potential therapeutic option
that complements and/or synergizes with the currently
Frontiers in Immunology | www.frontiersin.org 638
available immuno-oncology therapeutics. In cancer patients
that high FAP expression in CAFs restricts T cell distribution
and promotes immune checkpoint blockades (ICBs) resistance
(41, 157, 158), treatment with FAP inhibitor could neutralize the
immunosuppressive function of CAFs and reverse anti-PD1 drug
resistance. Conditional depletion of FAP+CAFs could result in
enhanced T cell infiltration and better response to anti-CTLA4
and anti-PD-L1 treatment. Injection of chimeric antigen receptor
(CAR) T-cells constructed with anti-FAP mAb effectively
TABLE 1 | Theranostic targeting of serine proteases.

Target Agent Function Cancer model tested Ref.

FAP Sibrotuzumab humanized monoclonal antibody (mAbF19) metastatic colorectal cancer (99)
FAP5-DM1 monoclonal antibody epithelial cancer xenograft model (100)
OS4 TTS bispecific antibody fibrosarcoma cell line (101)
PT-100 (Val-BoroPro) FAP and DPP inhibition metastatic colon cancer (102)
PT-630 (Glu-BoroPro) FAP and DPP4 inhibition metastatic colorectal cancer (30)
M83 FAP and PREP inhibition lung and colon cancer xenograft (103)
UAMC-1110 (SP-
13786)

FAP and PREP inhibition pancreatic adenocarcinoma mouse model (42)

FTPD FAP-targeting prodrug of doxorubicin breast cancer mouse model (104)
ASGPAGP-A12ADT FAP-targeting prodrug of thapsigargin breast cancer xenograft (105)
131I-mAbF19 SPECT imaging breast adenocarcinoma and prostate cancer xenograft (106)
99mTc-FAPI-34 SPECT imaging metastasized ovarian and pancreatic cancer (107)
68Ga-FAPI-04, FAPI-74 PET/CT imaging 28 different cancers, gastric and lung cancer (108–

110)
177Lu-FAP-2286 peptide-targeted radionuclide therapy pancreatic, breast, rectal and ovarian cancer (111)
ANPFAP NIR fluorescent imaging glioblastoma xenograft (112)
HCFP NIR fluorescent imaging breast cancer mouse model (113)

uPA ATN-291 monoclonal antibody prostate cancer (114)
Amiloride, HMA uPA inhibition metastatic lung and pancreatic cancer xenograft, cervical cancer (115,

116)
B-428, B-623 uPA inhibition fibrosarcoma, prostate and breast cancer mouse models (117,

118)
WX-671, WX-UK1 uPA inhibition breast and cervical cancer, head and neck squamous cell

carcinoma
(119,
120)

UK122 uPA inhibition pancreatic cancer (121)
AF680-U33 IgG NIR fluorescent imaging prostate cancer xenograft (122)
111In-U33 IgG SPECT/CT imaging prostate cancer xenograft (122)
89Zr-Df-ATN-291 PET imaging glioblastoma xenograft (123)
P-Dex NIR fluorescent and photoacoustic imaging breast cancer xenograft (124)
PB1 Antibody prodrugs lung cancer xenograft (125)

KLKs FE999024 KLK1 inhibition breast cancer cell line (126)
MDPK67b KLK2 inhibition prostate cancer xenograft (127)
SFTI-FCQR (SFTI) KLK4 inhibition ovarian cancer cell line (128)
APPI-4M KLK6 inhibition breast cancer cell line (129)
DKFZ-251 KLK6 inhibition pharynx carcinoma cell line (130)
Ac-GKAFRRL-12ADT KLK2-targeting prodrug of thapsigargin prostate cancer cell line (131)
L-377,202 KLK3-targeting prodrug of doxorubicin prostate cancer (132,

133)
KCC-TGX KLK3-targeting prodrug of TGX-221 (PI3Kb)

inhibitor
prostate cancer cell line (134)

89Zr-labeled 5A10 mAb PET imaging prostate cancer xenograft (135)
111In-DTPA-11B6 mAb SPECT/CT imaging prostate cancer xenograft (136)
KLK2/3/14_fABP fluorescent imaging prostate cancer cell line (137)

Gzms NOTA-GZP PET imaging colon cancer mouse model (138,
139)

64Cu-GRIP B PET/CT imaging colorectal cancer mouse model (140)
SK15.5 fluorescent imaging breast cancer cell line (141)
qTJ71 fluorescent imaging breast cancer cell line (142)
GzmB probe 1 chemiluminescent imaging breast cancer mouse model (143)
GNR (nanoreporter) NIR fluorescent imaging colon carcinoma mouse model (144)
CyGbPF NIR fluorescent imaging breast cancer mouse model (145)
SPNP NIR fluorescent and photoacoustic imaging breast cancer mouse model (146)
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depleted FAPhi stromal cells and inhibited tumor growth. More
importantly, FAP-specific CAR T cells augmented the antitumor
responses of endogenous CD8+ T cells (159). The FAP-specific
CAR T cell therapy lately advanced into a phase I clinical trial for
t r e a tm e n t o f p a t i e n t s w i t h m a l i g n a n t p l e u r a l
mesothelioma (NCT01722149).

Tumor-specific protease-activation can also be exploited to limit
systemic exposure of immunotherapeutic agents and minimize
unwanted immune toxicity and side effects. Recently, a dual
variable domain (DVD) immunoglobulin of anti-CTLA4
antibody, that an outer domain (tumor targeting) is connected by
serine protease cleavable linkers to an inner domain (CTLA4
targeting), has been developed (160). During systemic circulation,
the CTLA4-binding site is shielded by the outer domain. Upon
reaching the tumor, the outer domain is cleaved bymembrane type-
serine protease 1 (MT-SP1) present in the tumor
microenvironment, leading to enhanced localization of anti-
CTLA4 without causing significant treatment-associated toxicity.
To deliver functionally active cytokines, that are found to be critical
for establishing and maintaining the immune response to tumors,
preferentially at the tumor site, the Frelinger group developed an
activatable IL-2 fusion protein consisting of IL-2 joined to a specific
IL-2 binder that blocks its function connected by a KLK3 cleavage
sequence (161). This PACman (for protease activated cytokine)
approach has been also applied to the generation of IL-12 fusion
protein (162). Tumor-specific protease-activation strategy should be
applicable to other TME proteases and immunomodulators
allowing site-specific activation in immunotherapy.

A granule-associated serine protease GzmB has attracted
significant attention as an early predictive biomarker for
monitoring of immunotherapy responses. In particular, in vivo
imaging approaches with activatable probes utilizing GzmB-
cleavable IEPD or IEFD linker allow to directly report functional
readouts of immune cell (e.g. CTLs and NK cells) infiltration,
activation, and cytotoxicity in tumors after immunotherapy
treatments (138–140, 143–146). Advanced protease-responsive
technologies would enable more comprehensive exploration of
proteolytic networks in cancer and provide the next generation of
clinical modalities for cancer chemotherapy and immunotherapy.
Frontiers in Immunology | www.frontiersin.org 739
CONCLUSION

Understanding molecular mechanisms that orchestrate the
complex and dynamic interplay between tumor cells and
stromal microenvironment is important to provide insight into
cancer biology. During malignant progression, several serine
proteases appear to be key players at the tumor-stroma
interface. These serine proteases function in multidirectional
way by interacting not only with other proteases but also with
important signaling pathways that involve activation or
inactivation of cytokines, chemokines, growth factors, and
kinases. The functions of serine proteases described in this
review are not intended to be exhaustive but rather
representative examples of recent discoveries. It is necessary to
continue investigating the multifaceted roles proteases play
within the tumor microenvironment in addition to their effects
on the degradation of extracellular matrix to find more relevant
diagnostic markers and therapeutic targets. Especially, in the
context of anti-tumor immunity either naturally occurring or
induced by immunotherapy, elucidating how these serine
proteases on stromal cells are involved in modulating immune
responses will help advance pharmaceutical strategies. Given the
functional redundancy of proteases and cellular heterogeneity
within the TME, advanced technologies that allow to dissect and
manipulate specific serine protease with a spatiotemporal control
will be highly required.
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Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the
uterus characterized by multicolored histopathological, immunohistochemical, and
molecular features. The morphology of ESTs is similar to normal endometrial stromal
cells during the proliferative phase of the menstrual cycle. ESTs were first classified into
benign and malignant based on the number of mitotic cells. However, recently WHO has
divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated
uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade
endometrial stromal sarcoma (HG-ESS). HG-ESS is themost malignant of these categories,
with poor clinical outcomes compared to other types. With advances in molecular biology,
ESTs have been further classified with morphological identification. ESTs, including HG-
ESS, is a relatively rare type of cancer, and the therapeutics are not being developed
compared to other cancers. However, considering the tumor microenvironment of usual
stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in
many different stromal tumors and non-identified uterine cancers. These studies show the
high possibility of successful immunotherapy in HG-ESS patients in the future. In this review,
we are discussing the background of ESTs and the BCOR and the development of HG-ESS
by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs,
BCOR shows the most common mutations in different ways. In current tumor therapies,
immunotherapy is one of the most effective therapeutic approaches. In order to connect
immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is
required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and
non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells
lose their expected functions, but rather show pro-tumoral functions by the matricellular
proteins, extracellular matrix and other complicated environment in TME. In order to
overcome the current therapeutic limitations of HG-ESS, immunotherapies should be
considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-
based immunotherapies, immune cell therapies are good candidates to be considered as
they show promising results in other stromal cancers and uterine cancers, while less studied
because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in
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HG-ESS, the new strategies can also be applied to the current therapies and also in
other ESTs.
Keywords: BCOR sarcoma, rare cancer, stromal sarcoma, tumor microenvironment, inflammation
INTRODUCTION

Endometrial stromal tumors (ESTs) are an uncommon, unique,
and complicated subset of uterine mesenchymal cancers. ESTs
show heterogeneous microscopic and genetic characters (1). The
morphology of ESTs resembles normal proliferative endometrial
stromal cells, so in most cases, an EST has to be identified by the
genetic analysis and lesions (2).

ESTs can be classified into four groups along the criteria
announced by the World Health Organization (WHO), i.e.,
endometrial stromal nodule (ESN), low-grade endometrial
stromal sarcoma (LG-ESS), high-grade endometrial stromal
sarcoma (HG-ESS), and undifferentiated uterine sarcoma
(UUS). Molecular analysis of the tumor tissue is a promising
method to classify ESTs. The number of members of UUS has
been decreased as the technology of genetic analysis has been
advanced. For example, NTRK-sarcomas were classified as a
UUS, but this has been re-categorized as HG-ESS as the
molecular mechanism has revealed (3).

The current therapeutic strategy of ESTs is surgical removal.
For lesions limited in the uterus, en bloc removal of the affected
and intact area is suggested. For HG-ESS patients with advanced-
stage, adequate cytoreduction by metastasectomy is standard
therapeutic protocol, while it is unclear that the cytoreduction
improves the patient survival. Additionally, aggressive
cytoreduction such as pelvic and para-aortic lymphadenectomy
is not suggested with LG-ESS patients (4). Because the efficiency
of adjuvant radiotherapy or chemotherapy is controversial, new
medical strategies such as immunotherapy may have to be
considered (5).

BCOR (BCL6 corepressor) gene resides on chromosome X, in
the Xp11.4, and it has 16 alternative exons coding several
proteins, with principal isoform encoded by 14 exons, giving
rise to 1775 amino acids (6, 7). The nuclear protein of molecular
mass ~190Kda is ubiquitously expressed in various tissues.
However, the BCOR protein expression in adult human tissue
is unknown (8). BCOR includes BCL-6-and MLLT3-binding
domains, ANK repeats, and PUFD domain. The function of
BCOR is mainly mediated by the BCL-6 binding domain, which
interacts with the transcriptional repressor BCL-6, and the
RAWUL domain, to which PCGF binds (7). BCOR genetic
variation causes several carcinomas, and Gene fusions relating
to it are associated with a diverse range of human neoplasms.
BCOR mutation is directly related to cancer development by
changing the protein’s usual RNA recognition preference by
various alternation splicing at the pre-mRNA level (9, 10).

In recent findings, BCOR mutation induces HG-ESS in
several clinical cases. BCOR ESS shows a broad range of
clinical cases complicating the diagnosis and therapeutic
strategies. We aim to enlighten the complicity of BCOR-ESS
org 246
via the viewpoint of genetic alterations and the tumor
microenvironment (TME) formations.
HG-ESS

HG-ESS is a rare tumor officially recognized as a malignant
tumor of the endometrial stroma in the 2014 WHO
classification. HG-ESS is a stromal neoplasm displaying
unclear uniform features intermediate between classic LG-ESS
and UUS. They have characteristic genetic abnormalities t(10;17)
(q22;P13), chiefly associated with the YWHAE-NUTM2 A/B
fusion and often associated with a morphologically low-grade
component. Morphological spectra vary according to genetic
abnormalities. Recently, another subtype of a ZC3H7B-BCOR
gene fusion-induced HG-ESS was discovered in new studies
(11–14). Significant genetic alterations of HG-ESS show
dist inct characters and patterns histological ly and
mechanistically. The direct mechanistic evidence is not
sufficient yet, but many of HG-ESS cases show the mutation of
BCOR or other genes as the molecular analysis techniques
advances (Table 1). YWHAE, NUTM2, EPC1, SUZ12, BCOR,
BRD8, PHF1, ZC3H7B, TPR, NTRK1, LMNA, TPM3, RBPMS,
NTRK3, EML4, COL1A1, PDGFB, STRN mutations are already
reported mutations and other mutations may be revealed as the
Next-generation Sequencing technique is being advanced.

YWHAE-NUTM2 Fusion
The YWHAE gene belongs to a broad family of proteins that
mediate signaling by binding to phosphoserine-containing proteins
(22). FAM22A/B was renamed NUTM2A/B due to sequence
homology with NUT (NUTM1), famous for its role in nut
midline carcinoma (22, 23). YWHAE-NUTM2 fusion tumors
consisted of high-grade round and low-grade spindle cell
components. The morphology is consisted of round cell sheets
with intermediate size ovoid to round nuclei. Chromatin is open,
and the staining pattern is scant to moderate eosinophilic
cytoplasm. These sheets are adjacent to the fascicles of spindle
cells resembling fibroblastic LG-ESS (16). Immunohistochemically,
YWHAE-NUTM2 HG-ESS cells were perhaps immunoreactive to
Cyclin D1 and BCOR.

ZC3H7-BCOR Fusion
A retrospective molecular reanalysis of uterine sarcoma patients
with BCOR gene rearrangements confirmed that ZC3H7B was
the most common partner of gene rearrangement by fusion at
either front or back of BCOR. In addition to ZC3H7B, ten other
BCOR gene rearrangement partners have been identified, which
are EP300-BCOR, BCOR-L3MBTL2, BCOR-RALGPS1, BCOR-
NUTM2G, BCOR-MAP7D2, ING3-BCOR, RGAG1-BCOR,
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KMT2D-BCOR, BCOR-NUGGC, and CREBBP-BCOR (24).
Molecular biologically, endometrial stromal sarcomas with
BCOR rearrangement bear common MDM2 amplification and
activation of the cyclin D1-CDK4 pathway by CDK4
amplification by cyclin D1 protein overexpression or CDKN2A
deletion (25).

In tumors with BCOR gene rearrangements demonstrated
sarcomas. Most cases were portrayed by spindle cells and various
amounts of small round cell or epithelioid cell morphology.
These cells usually have uniform nuclei, clear cytoplasm, and
mild to moderate atypia. However, more minor cases exhibited
moderate to severe atypia, illustrated by condensed chromatin,
prominent nucleoli, and nuclear enlargement, often with an
associated epithelioid or small round cell component.
Additionally, some cases with BCOR rearrangements newly
discovered sarcomas with epithelioid, spindle, or small round
cell components and variable degrees of fascicular growth with
collagenous or myxoid stromal change (24).

BCOR Internal Tandem Duplication
HG-ESS often contains an oncogenic fusion, and however, some
tumors have morphological overlap with HG-ESS even without
gene fusion. This kind of genetic alteration is also found in some
pediatric primitive sarcomas, including undifferentiated circular
cell sarcoma and clear cell sarcoma of the kidney in infancy. This
same subset of pediatric sarcomas lacks the oncogenic fusion but
instead has an internal tandem duplication (ITD) associated with
exon 15 of BCOR, the so-called BCOR ITD. According to
previous studies, BCOR ITD was confirmed in 3 cases out of
26 HG-ESS, 2 cases were undifferentiated uterine sarcoma with
uniform nuclear characteristics, and 1 case was diagnosed as
YWHAE-NUTM2-negative HG-ESS. All three mutations have
resulted in tandem replication of varying sizes of exon 15, which
is the 3’ end of BCOR encoding the C-terminal end of BCOR
protein (26).
Frontiers in Immunology | www.frontiersin.org 347
Other Alterations
EPC1-BCOR, EPC1-SUZ12, BRD8-PHF1, BCOR-ZC3H7 also
show HG-ESS progression in the uterus (2, 15, 16). As a newer
type of HG-ESS is being discovered, histopathological
observation is not enough to identify a specific type of genetic
alteration. This is why genetic analysis of ESS samples is required
to distinguish the kind of ESS, including HG-ESS, such as the
next-generation sequencing or even Sanger sequencing of the
RT-PCR product (Table 1).
TUMOR MICROENVIRONMENT OF
SARCOMAS

The tumor microenvironment (TME) of stromal sarcomas
comprises non-malignant stromal cells, blood vessels, immune
cells, and tumor cells. Matricellular proteins and extracellular
matrix (ECM) proteins arising from stromal cells are crucial for
cellular movement via structural support and signal
transduction. Immune cells in TME of sarcomas are composed
of innate immune cells such as neutrophils, tumor-associated
macrophages (TAM), tumor-associated dendritic cells (TADCs),
and natural killer (NK) cells, and adaptive immune cells like B-
cells and T-cells. TAMs, TANs and TADCs show protumoral
functions leading to metastasis and cell invasion, ECM
remodeling and angiogenesis by suppressing immune
surveillance for antitumoral effect (27). TAMs share much of
the characters of M2 macrophages, which is protumoral. As EST
turns malignant, M2 is being dominant over M1 TAMs.
Dominant M2 portion in malignancy is because angiogenic
environment such as VEGF, hypoxia and epigenetic
derangements (28). TANs are mostly consisted with
protumoral N2 cells rather than antitumoral N1 cells like the
case of TAMs. TADCs lose the antigen-presenting cell (APC)
function and obtain protumoral effect (29). The composition of
TABLE 1 | HG-ESSs with molecular alterations frequently reported.

Genes involved Reported fusions/gene rearrangements/alterations Translocations References

YWHAE YWHAE/NUTM2 t(10;17)(q22;p13) (12)
NUTM2A/B/E EPC1-BCOR t(10;X)(p11;p11) (15, 16)
EPC1 EPC1-SUZ12 t(10;17)(p11;q11) (15, 16)
SUZ12 BRD8-PHF1 t(5;6)(q31;p21 (15, 16)
BCOR BCOR alteration none (3)
BRD8
PHF1
ZC3H7B ZC3H7B-BCOR t(22;X)(q13;p11) (14, 17)
BCOR BCOR-ZC3H7B t(X;22)(p11;q13)
BCOR BCOR ITD none (14)
TPR TPR-NTRK1 1q31.1-1q23.1 (18)
NTRK1 LMNA-NTRK1 1q22-1q23.1 (18)
LMNA TPM3-NTRK1 1q21.3-1q23.1 (18, 19)
TPM3 RBPMS-NTRK3 t(8;15)(p12;q25.3) (18)
RBPMS EML4-NTRK3 t(2;15)(p21;q25.3) (19)
NTRK3 COL1A1-PDGFB t(17;22)(q21.33;q13.1) (18, 20)
EML4 STRN-NTRK3 t(2;15)(p22.2;q25.3) (21)
COL1A1 TPR-NTRK1 1q31.1-1q23.1 (18)
PDGFB LMNA-NTRK1 1q22-1q23.1 (18)
STRN TPM3-NTRK1 1q21.3-1q23.1 (18, 19)
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individual subsets of these immune cells differs significantly
depending on the prior treatment, primary tumor location,
sarcoma subtype, and genetic background. TAM is one of the
four major subgroups of tumor-associated myeloid cells
(TAMCs), which also include tumor-associated neutrophils
(TANs), myeloid-derived suppressor cells (MDSCs), and Tie2-
expressing monocytes (TEMs) (Figure 1A) (30–32). Several
activated and antigen-specific T-cell therapies have been tested
for sarcomas, which showed exhaustion of T-cells by immune
regulation by TME such as mesenchymal stem cells (MSCs),
regulatory T cells (Tregs), and TAMs.

The strong correlation of macrophages and sarcomas shows
TAMs may have to be therapeutically targeted to overcome tumor
progression and patient survival in sarcoma patients (33–36). Even
though TAMs phagocytose necrotic tumor cells, TAMs show
tumor-promoting functions and immunosuppression in
sarcomas. For example, TAMs increased number of TAMs in
TME induced the decrease of the effect of chimeric antigen
Frontiers in Immunology | www.frontiersin.org 448
receptor (CAR) T-cell immunotherapy (37). Meanwhile, the
entire mechanism of the number and density of TAMs in
sarcomas should still be investigated to promote tumor
progression and immune cell profiles.
IMMUNE SUPPRESSION IN
ENDOMETRIAL CANCERS

CIBERSORT is a retrospective in silico analysis. CIBERSORT
enables profiling immune cells through the deconvolution of
gene microarray data sets (35, 38). The deconvolution
reconstructed relative quantity, and the immune cell subsets
residing in tumor tissue. The cell-type determination is made
from the gene expression dataset by matching the information of
547 markers of 22 known peripheral immune cells (38). This
method has the advantage of enabling detecting functionally
B

A

FIGURE 1 | Tumor microenvironment and ESTs. (A) The functions of tumor-associated macrophages (TAMs) in tumor microenvironment formation. TAMs affect
tumor cell metastasis including invasion, vascularization, intravasation, formation of pre-metastatic niches and protection of circulating tumor cells. EMT, epithelial-
mesenchymal transition; VEGF, vascular endothelial growth factor; MMP9, matrix metallopeptidase-9; ECM, extracellular matrix; CSF-1, colony-stimulating factor-1;
EGF, epithelial growth factor. Created with Biorender.com. (B) The graphical abstract of ESTs and therapeutic strategies. Immune therapies can be an additive
strategy to cure malignant ESTs targeting TME. Created with Biorender.com.
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distinct and rare immune cell types such as Tregs, gd T cells, mast
cells, and memory B cells (35). Flow cytometry has effectively
confirmed this advanced technology and is used to decide the
composition of infiltrated immune cells in many different
malignant tumors like colon cancer and breast cancer (39, 40).

The immunological aspect of the endometrial TME has been less
studied, unlike ovarian and other solid tumors. Furthermore, ESS
has been even less studied than endometrial adenocarcinomas. In
this aspect, it is worthwhile to learn the TME of adenocarcinomas to
apply to ESSs. Especially TAMs and antitumor adaptive immune
responses, FoxP3+ Tregs in endometrial cancers is not the only issue
of adenocarcinomas as they are the most abundant immune cells in
stroma (41).
POSSIBLE IMMUNOTHERAPEUTIC
STRATEGIES

The possible involvement of the immune system in regulating
cancer was first observed in patients with sarcoma when
Wilhelm Busch of Germany reported tumor regression in 1866
of a sarcoma patient who developed an erysipelas infection (42).
Immunotherapy to treat sarcoma can be traced back to at least
1891. At the time, William Coley, a noticeable orthopedic
surgeon at New York Memorial Hospital, currently Memorial
Sloan Kettering Cancer Center, developed what was known as
“Coley’s Toxin” to treat a series of osteosarcomas (43, 44). He
found that injection of a streptococcal organism (originally a live
bacterium, a mixture that was later killed by heat containing
Serratia marcescens) could induce remission in some patients
with inoperable sarcoma. His use of the toxin was controversial
and eventually lost popularity, but many consider it today as a
forerunner of modern anticancer immunotherapy (45).

Maybe the best definition of modern immunotherapy is from
Paul Ehrlich’s early 1900’s description of “Magic bullet” - a
specific drug that only attacks and kills diseased cells, leaving no
surrounding normal cells (46). The increased frequency of
lymphoid malignancies in immunocompromised patients
suggests that the immune system plays an essential role in
carcinogenesis (47). In addition, the development of sarcoma is
well known in allograft recipients, and the risk of developing it in
non-immunocompromised patients more than doubles (48). As
the cancer treatment adapts personalized and tailored medicine,
personally tailored immunotherapies may be an additional plus
to the traditional immunotherapeutic strategies. In this section,
we want to mention currently available immunotherapies that
may treat HG-ESS.

Targets of immune checkpoint inhibitors include programmed
cell death protein-1 (PD1), and its ligands, PDL1/PDL2, mucin
protein 3 (Tim3), and its ligand galectin-9, T cell immunoglobulin,
and CTL-associated antigen 4 (CTLA-4). Blocking CTLA-4 while
priming has been reported to the CD8+T cell accumulation leading
to the production of effector cytokines like INF-g. For example,
CTLA-4 blockade successfully showed decreased tumor size in the
mouse stromal cancer model (49). Numbers of tumoral CD4+ and
CD8+ T-cells or CD8/Treg ratio in tumors are not affected by
Frontiers in Immunology | www.frontiersin.org 549
CTLA-4 blockade. Still, the increased production of IFN-g from
tumoral CD8+ T-cells shows the benefit of CTLA-4 inhibition (50).

PD1 is exclusively expressed in immune cells such as T-cells.
Meanwhile, PD-L1 is widely expressed by different cells,
especially tumor cells. The interaction of PD1 and PD-L1 is
one of the significant immune escape mechanisms of tumor cells.
PD-L1 mRNA expression is highly upregulated in stromal cancer
cells as well as heterogeneously expressed across tumor tissue
(51). One confusing point of PD-L1 is that patients with low PD-
L1 expression may have higher metastatic risk than patients with
high PD-L1 expression. The analysis of immune checkpoint
molecules from stromal cancers found PD1, lymphocyte
activation gene 3 (LAG3), and T-cell immunoglobulin mucin 3
(TIM3) upregulation on tumor-infiltrating T-cells compared
matched control blood cells (52). Although PD-L1 expression
in ESTs has not been studied systemically, PD-L1 has been
positively expressed in primary tumors of 77% patients and
30-40% in metastatic lesions from 88 cases of uterine cancer (53).
Although this report revealed PD-L1 or PD-1 expression is not
directly associated with the prognosis, the origin of cells was not
categorized, so further detail study from EST patients is required.
Considering the prognostic value of PD-L1 in other stromal
cancers, the importance of analyses in ESTs seems to be required.

The next considered immune checkpoint in stromal cancers
are TIM3 and its binding partner, galectin-9. TIM3 is expressed
on immune cells, while galectin-9 is expressed on cancer cells.
The pathway of TIM3 and galectin-9 has been known for their
role in cancer malignancies. Blocking this pathway is being
actively investigated in the meaning of immune checkpoint
inhibition (54, 55). Studies on TIM3 revealed NK cells and
tumor tissues show the expression of TIM3 and galectin-9,
respectively (55, 56). This shows TIM3/galectin-9 may also
have an essential role in HG-ESS, even though the direct
evidence is low. Currently, Nivolumab which inhibits PD-1 is
under clinical trials with or without the combination of
Ipilimumab, which inhibits CTLA-4 (57). It is not easy to
expect how the outcome of the trials will be, but immune
checkpoint inhibitors can be an excellent candidate in HG-ESS
therapy in the future.

Cytokine-based immunotherapy can be the following strategy
for HG-ESS. Type I interferons such as IFNa are a physiological
danger signal that promotes Th1 responses and memory T-cell
differentiation. IFNa treatment combined with imatinib
remarkably achieved complete responses in stromal cancer
patients (58). IFNg is well-known for its innate and adaptive
immunity role and is produced by activated NK cells, NKT cells,
CD4+ T-cells, and CD8+ T-cells. IFNg was decreased in stromal
cancer cell patients, but IFNg producing cell subsets increased
significantly after IFNa treatment. Furthermore, tumor-
infiltrating leukocytes (TILs) of the patients actively expressed
IFNg after IFNa treatment (58).

Immune cell therapy is a highly focused area in cancer therapy.
For example, the chimeric antigen receptor (CAR) T-cells are
genetically modified specific cancer-specific T lymphocytes
produced against a particular tumor antigen of a specific cancer
cell. T-cells are isolated from a patient’s peripheral blood and then
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activated. Retroviral or lentiviral transduction with a CAR lets the
T-cell express the surface receptor, explicitly recognizing the tumor
cells with the cognate antigen. Several studies observed CAR-T-cells
are effective in stromal cancers and uterine cancers, which is also a
promising therapeutic future of HG-ESS (59, 60). These results
show that CAR T-cells have a substantial role in the
immunotherapy against stromal cancers, including ESS.
Additionally, a recent finding shows active neutrophils drive
unconventional T cells to mediate resistance to sarcomas in
mouse and some human cancer (61). With the help of
neutrophils, T cells are polarized to UTCab and type 1 immunity
is strongly activated, which may lead to the resistance to the stromal
tumors including HG-ESS and other ESTs.

The strategies stated in this section, such as checkpoint
inhibitors, cytokine therapy, and immune cell therapy, are not
being vigorously studied for the treatment of HG-ESS currently.
However, the potential of immunotherapy is highly promising
considering the successful results from the other stromal cell
tumors and uterine cancers. The need of promising survival of
patients still exists with advanced HG-ESS patients with
cytoreduction surgery. Because the complete removal of the
tumor is not available in patients with advanced cancer, uncertain
radiotherapy and chemotherapy have been the only options for
those patients. So, the development of immune therapy will be the
next therapeutic option for patients with advanced HG-ESS.
CONCLUSIONS

Recent advances in Next Generation Sequencing (NGS) have made
tremendous efforts to incorporate the immunohistochemical and
morphological EST classifications. This new change enabled
molecular subclassifications, making HG-ESS identification clearer
than before. The purpose of the molecular classification of ESTs is to
understand the molecular biology to the development of specific-
targeted therapies for each subcategory. This is very important for
planning treatment strategies for metastatic disease. Therefore, we
will observe the discovery of new individuals and gradually replace
histopathological classification with molecular classification based
on genetic analysis.

Scientific and medical evidence highly supports the
perception that host immunity can be suppressed in many
different mechanisms to eradicate and control stromal cancers.
It is always complicated to fight rare cancers with various genetic
Frontiers in Immunology | www.frontiersin.org 650
mutations. However, new results configure the actions, types,
and prognostic significance of TILs and clarify the mechanisms.
TILs can be handled directly or in combination with other
molecular therapeutic strategies to optimize tumor cell death.
However, limiting the toxicity of this strategy should be
considered. Immunotherapies are still in very early steps in
experiments and development, but their potential in cancer
therapy is tremendous and must be explored robustly to cure
patients with ESS.

HG-ESS patients with advanced-stage have few therapeutic
options when the tumor cannot be surgically removed ideally.
However, adjuvant radiotherapy and chemotherapy have a
prominent disadvantage, which shows inconsistent and
controversial therapeutic efficiency. Personalized and tailored
immunotherapy such as cytokine therapies, immune checkpoint
inhibitors, and immune cell therapies remarkably succeeded in
several advanced cancers, including stromal cancers and uterine
cancers. This is why immune therapy should be considered in
HG-ESS patients. Furthermore, based on the advance of
knowledge of immune therapies in HG-ESS, the new strategies
can also be applied to en bloc resection-available HG-ESS, LG-
ESS, and UUS in the future (Figure 1B).
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IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer
development depending on the cancer type. In most cancers, it was found that the high
expression of IL-32 was associated with more proliferative and progression of cancer.
However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a
wide range of functions based on its dominant isoform and surrounding environment.
IL-32b, for example, was found mostly in different types of cancer and associated with
cancer expansion. This observation is legitimate since cancer exhibits some hypoxic
environment and IL-32b was known to be induced under hypoxic conditions. However,
IL-32q interacts directly with protein kinase C-d reducing NF-kB and STAT3 levels to
inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different
functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is
dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied.
Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and
inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this
review, we address that the paradoxical effect of IL-32 on cancer is attributed to the
dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32
seems to have a contradictory role in cancer. However, investigating multiple IL-32
isoforms could explain this doubt and bring us closer to using them in therapy.

Keywords: interleukin-32, tumor microenvironment, stromal tumor, hypoxia, metastasis
INTRODUCTION

The human interleukin-32 (IL-32) is a novel cytokine that exerts both pro and anti-inflammatory
roles. IL-32 gene is found in higher primates, and it is located in chromosome 16 at p13.3 encoding
for various isoforms. IL-32 plays an essential role in innate and adaptive immune responses, and it
induces various cytokines such as tumor necrosis factor (TNF)-a, IL-1b, IL-6, and IL-8 (1). After its
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identification, it has been studied in inflammatory disorders
including autoimmune diseases and cancers (2, 3).

In cancer, inflammatory tumor microenvironment such as
cytokines, IL-32 plays a crucial role in its progression (4).
Therefore, IL-32 has been studied for its tumor control
direction in several cancer types. However, paradoxical effects
have been reported regarding IL-32 on cancers, which may be
attributed to the dominant isoform, cancer type, and genetic
background. On the one hand, IL-32 was reported to augment
cancer progression, proliferation, invasion, and metastasis in
many tumors including acute myeloid leukemia (AML),
hepatocellular carcinoma (HCC), and breast, lung, colon,
pancreatic, and gastric cancers (5–12). On the other hand, it
was also reported to have anticancer activity in different cancers
including acute and chronic myeloid leukemia (AML and CML)
and breast, lung, and colon cancers (13–19).

IL-32 gene was found to have several isoforms based on different
alternative splicing sites. It has eight exons inwhich thefirst exondoes
not translate into amino acids.Mainly, seven isoforms were depicted
and were identified separately which are IL-32a, IL-32b, IL-32g, IL-
32d, IL-32e, IL-32z, and IL-32q (3). IL-32a, IL-32b, IL-32g, and IL-
32d were primarily detected in IL-2-stimulated human NK cells.
While IL-32e and IL-32z were observed to be expressed in the
activated T cells (20), and IL-32q was found within dendritic,
Jurkat, human leukemia T cells (21). Structural characteristics of
the seven IL-32 isoforms were reviewed based on the IL-32 eleven
protein domains (3). However, a lot of knowledge is waiting to be
revealed regarding IL-32 isoforms, such as their specific receptors.
These isoforms displayed distinctive roles and consequences in
different conditions although they are deficient in signal peptides.
Therefore, a functional comparison between these isoforms aswell as
specific antibodies to detect IL-32 isoforms is considered necessary.

Nevertheless, what has been discovered so far still lacks
explicit knowledge about IL-32 function in cancers. It is
known that many factors can affect the disease outcome,
especially in cancer, yet this much contradiction was not
reported to any cytokine other than IL-32. This contradiction
is mainly due to not considering IL-32 isoforms in most of the
studies. In this review, we aim to analyze previous reports to
address the most probable functions of IL-32 on different cancers
to provide recommendations for further studies and unravel
possible therapeutic options.
IL-32 IN CANCER PROLIFERATION
AND APOPTOSIS

IL-32 was found to play two contradictory roles in cancer
development among various cancer types, one role as a critical
proliferation and growth factor and the other as a tumor
suppressor. Higher expression of IL-32 was found to be
associated with more proliferative and progression in the
following cancers, AML, cutaneous T-cell lymphoma (CTCL),
gastric B-cell lymphoma (GBCL), multiple myeloma (MM),
HCC, and breast, lung, colon, pancreatic, gastric, and
esophageal cancers (5–12, 22–25).
Frontiers in Immunology | www.frontiersin.org 254
In acute leukemia peripheral blood of patients, IL-32 was
closely related to the disease development (5). Recently, AML-
derived mesenchymal stem cells (AML-MSCs) when cocultured
with K562/K562 ADM cells, showed changes in the expression
of IL-6 and IL-32 cytokines. These data suggested its effect on
proliferation, invasion, metastatic, and drug resistance through
dysregulation of bone morphogenetic protein-4 (BMP4)
pathway as well as increased the connective tissue growth
factor (cTGF) in K562 ADM cells (Figure 1A) (6). BMP
pathways modulate the expression of target genes, and it was
found to inhibit the expression of IL-6, suggesting a similar
effect on IL-32 (26, 27). Therefore, dysregulation of BMP4
seems to have the opposite effect and thus increase the
expression of cytokines. Moreover, a recent study has
revealed a cancer suppressor effect when the BMP4 signaling
pathway is activated (28). On the other hand, cTGF promotes
the spindle shape transformation that is responsible for the
invas ion and metasta t ic thus , contr ibut ing to the
disease progress.

Although studies mentioned above indicated the
enhancement role of IL-32 in AML survival, an inhibitory
effect of this cytokine was also reported, specifically IL-32q
isoform, by regulating TNF-a production in AML (13). In this
study, they divided AML patients into two groups based on the
presence of IL-32q and found that IL-32q inhibits the increment
of TNF-a . They then confirm that IL-32q inhibited
phosphorylation of p38 mitogen-activated protein kinase
(MAPK) and nuclear factor-kB (NF-kB) in vivo. In addition,
IL-32q attenuated TNF-a promoter activity and the binding of
NF-kB with the TNF-a promoter (Figure 1B). Moreover,
another inhibitory effect of IL-32 was reported in CML cells
through enhancing natural killer (NK) cell-mediated killing (14).
Here, the NK killing activity is achieved through stimulation of
both the Fas receptor and UL16-binding protein (ULBP), ligands
of NKG2D in NK. The performance of more IL-32 experiments
in the absence of specific IL-32 isoform characterization may
show vast contradictions. The wide range of activities can be
confusing at this moment, but studying its isoforms in depth may
shed light on this seemingly paradoxical function.

IL-32a induces this stimulation through activation of p38
MAPK. IL-32a also inhibits B-cell CLL lymphoma through
regulation on epigenetic posttranslational modifications. B-cell
lymphoma-6 (Bcl-6) has been associated with progression of
lymphomas and is considered a master regulator of cellular
processes (29). Bcl-6 was found to be inhibited by IL-32a via
the production of IL-6 and PKCϵ-mediated cell adhesion (30).
PKCϵ is known to have two major roles that are inhibition of
apoptosis and promotion of cell survival as one of its regulated
pathways in the activation of STAT3 (31, 32). IL-32 regulates this
activation and induces apoptosis (Figure 2).

Active PKCϵ crosstalks to multiple signal transduction
pathways result in the following two major cellular effects: (1)
inhibition of apoptosis and (2) promotion of cell survival. PKCϵ-
regulated cell survival pathways include Stat3 activation,
expression of growth-stimulating cytokines (TNF-a, GM-CSF,
and G-CSF), and growth factors (e.g., EGFR). PKCϵ mediates
February 2022 | Volume 13 | Article 837590
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inhibition of apoptosis via inhibition of FADD expression. All
these pathways in fact constitute a network.
THE EFFECT OF CYTOKINE SIGNAL
PATHWAYS IN THE ROLE OF
IL-32 IN CANCER

The influence of IL-32 in tumor growth through the inactivation
of NF-kB and signal transducer and activator of transcription 3
(STAT3) pathways have been mentioned earlier (33). Moreover,
IL-32g downregulates vital cancer progression proteins including
antiapoptotic, cell proliferation, and tumor-promoting genes,
while upregulating the apoptotic genes. On the contrary, IL-32g
isoform is shown to diminish the levels of cytokines that promote
tumor growth such as TNF-a, IL-1b, and IL-6, whereas the levels
of IL-10 cytokine, a tumor growth-inhibiting cytokine, were
elevated. The anticancer activity of IL-32g was found in several
cancer cells but not in melanomas like colon, prostate, liver, and
lung. It also induces the activation of cytotoxic T cells and NK cells
to the tumor site to expand the cancer eradication effect (33, 34) as
well as recently, it showed better immunotherapy response (35).

Later, IL-32b has been found to play an antitumor activity
role as it downregulates vital cancer progression proteins
including antiapoptotic proteins, proliferation, and cell growth
regulatory proteins through the same pathways, NF-kB and
STAT3. In addition, IL-32b was found to induce the
expressions of proapoptotic proteins and regulate the release of
cytokines in colon and prostate cancer cells (15). Nevertheless,
higher expression of IL-32a has been found to activate NF-kB
and STAT3 pathways and induce the production of IL-6, thus
Frontiers in Immunology | www.frontiersin.org 355
supporting the cancer proliferation and progression in MM
patients (25). Therefore, finding the exact function of the IL-32
isoform is still a sensitive consideration and may be influenced
not only by its isoform but also with cancer type as well as the
whole tumor microenvironment.

We have mentioned the anticancer activity of IL-32g in colon
cancers, which is considered through activation of p38 MAPK
pathways (16). Moreover, IL-32a and IL-32q have been found to
suppress the effect on colon cancer, as well (17, 18, 36). In the case of
the expression IL-32a, the expression of TNF receptor 1 and the
production of reactive oxygen species was increased, thus facilitating
apoptosis and prolonged JNK activation. At the same time, several
studies have mentioned the contradictory role of IL-32 in colon
cancer (7, 37, 38) whereas IL-32 was found to be upregulated and
associated with poor survival. In this regard, it is worth mentioning
a finding that provides evidence on the contribution of IL-32a in
the development of obesity-associated colon cancer by favorably
remodeling cytokine for tumor growth (39). According to the
currently available data, we can suppose that in colon cancer, IL-
32a has both pro- and antitumor activity depending on other
factors such as obesity, gender, and/or age-related factors which
have not been studied yet. However, obesity-related IL-32
manipulation indicates that IL-32 could play a role in cancer
metabolism as well as inflammation.
IL-32 IN BREAST CANCER

In breast cancer, its metabolism regulation was found to be
influenced by IL-32b expression. IL-32b was stimulated due to
hypoxia and found to increase glycolysis and Src (proto-oncogene
A B

FIGURE 1 | Schematic illustration showing the effect of IL-32. (A) Schematic illustration showing the effect of IL-32 on the BMP pathway and IL-6 induction. In the
presence of BMP4, it feeds the loop and binds to the BMP receptor, activating SMAD and thus regulating gene expression. IL-6 is inhibited by this regulation. On the
other hand, in the presence of IL-32, IL-6 is induced and activates several pathways. One of these pathways is ERK, which in turn inhibits SMAD. Therefore, IL-6
induced by IL-32 acts as negative feedback for the BMP pathway, as results of cell proliferation increased. IL-32 was found to increase the expression (either directly
or indirectly) of the connective tissue growth factor (cTGF), as results of spindle-shape transformation increased, and thus invasion and metastasis occurred.
(B) Schematic illustration showing the different effects of IL-32 isoform in AML. IL-32g was shown to induce TNF-a production and activate NF-kB and MAPK
signaling pathways and therefore, increased proliferation and survival. Whereas, IL-32q was shown to inhibit TNF-a and phosphorylated p38 MAPK and NF-kB,
thus, reducing cancer progression. This makes IL-32q to be considered a potent inhibitor of TNF-a in patients with AML. Figure created by BioRender App.
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tyrosine-protein kinase) activation by activating lactate
dehydrogenase and inhibiting Src dephosphorylation, respectively
(40). This metabolic change is achieved through lactate
dehydrogenase activation when IL-32b translocated into
mitochondria due to its accumulation. Moreover, the inhibition of
hypoxia-induced IL-32b impairs tumor cell growth, making it a
potential drug target (8, 40). Interestingly, when both mRNA and
protein levels were evaluated, IL-32 demonstrated isoform switching
and self-regulation, as at mRNA levels IL-32b and IL-32g were
detected. However, at the protein level, through Western blot, only
IL-32b was detected (41). Another study has also reported that
elevated IL-32 promoted growth, stemness, and progression in
breast cancer (42). In addition, because IL-32 was found to be
highly expressed in cancer tissue of triple-negative breast cancer
patients, it was suggested as a probable therapeutic target (9).

Moreover, the elevation of IL-32b expression under hypoxic
conditions was also found in ovarian cancer cells by reducing its
degradation. They found that IL-32b interacts with protein kinase
Cd (PKCd) thus promoting antiapoptotic function under
oxidative stress, which is almost the case in breast cancer.
However, more recently, IL-32q isoform was found to utilize
antiproliferative effects in breast cancer cells and initiate
senescence (43, 44). Intriguingly, it was revealed that IL-32q
interacts directly with PKCd and subsequently reduces NF-kB
and STAT3 levels and thus inhibits epithelial-mesenchymal
transition (EMT). This effect could provide a clue regarding the
different functions of IL-32 reported in cancer. Although PKCd is
known for its proapoptotic function in cancer cells (45), it seems
that PKCd when interacting with a different isoform of IL-32
exhibits different signal therefore different effect (Figure 3).
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Also, when IL-32 has been reviewed, the difference between
these two isoforms (IL-32b and IL-32q) was revealed to be only
one motif consisting of 20 amino acids (DDFKEGH
LETVAAYYEEQHP) (3). In another word, both isoforms
shared the binding site for PKC, but this motif is mainly
responsible for its furthered role. Therefore, it can be suggested
that this motif found within isoform b but not q
(DDFKEGHLETVAAYYEEQHP) can activate PKC function
and therefore enhance cancer progression. Extended physical
interaction and functional studies are required to prove this
conclusion. IL-32 altered the same pathway among several types
of cancer; when the isoform is changed, the final effect is also
changed. Therefore, it is very crucial to introduce some
regulations when studying this IL-32 cytokine. It is necessary
to detect the isoforms and their levels in the same study case.
Isoforms should be determined in both mRNA and protein levels
and recognize their specific cellular localization such as
cytoplasm, extracellular, or nucleus.
IL-32 IN GI, ESOPHAGEAL, GASTRIC,
LIVER, AND PANCREATIC CANCERS

Most GI cancers include esophageal, gastric, liver (e.g., HCC), and
pancreatic cancers, were found to express higher levels of IL-32, and
mostly exhibit a facilitating cancer progression role. IL-32 was
highly expressed in tissue and serum of patients with HCC and
was associated with disease progression (46–48). The only isoform
studied in this cancer type was IL-32a, and its expression was
correlated with antiapoptotic signals, mainly Bcl-2 regulator protein,
FIGURE 2 | Schematic illustration showing cancer cell death by IL-32a in CML and lymphoma. Cancer cell death was reported when the IL-32a isoform is expressed
in CML or lymphoma. This cancer inhibitory effect occurs through enhancing natural killer (NK) cell-mediated killing. PKCℇ inhibits apoptosis and the promotion of cell
survival, by regulating several pathways, one of PKCℇ regulations is the activation of STAT3. IL-32a binds to PKCℇ and inhibits its functions and regulations. As a
result, transcriptional modifications occurred including the downregulation of Bcl-6 and the upregulation of death receptors (ULBP2 and Fas receptor) resulting in NK
cell-mediated killing by the stimulation of both Fas receptor and ULBP. ULBP is a ligand of NKG2D in NK. Figure created by BioRender App.
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p38-MAPK, andNF-kB pathways. Moreover, similar activity for IL-
32 in promoting cancer growth and survival was reported in
pancreatic cancer (11, 49). Furthermore, its induction was
facilitated through phosphatidylinositol 3−kinase/protein kinase B
(PI3K/Akt) pathway-dependent NF-kB/AP-1 activation.

As IL-32 is highly expressed in serum and tissues of GI cancers,
it was found with 99.5% accuracy in detected gastroesophageal
cancers as a biomarker (12, 22, 37, 50–57). In both cancers, gastric
and esophagus, IL-32 upregulation was coupregulated with
proinflammatory cytokines such as TNF-a, IL-1b, and IL-6,
suggesting its induction via NF-kB and STAT3 signaling
pathways was linked to poor-prognosis cases. It was found that
IL-32b was the dominant isoform expressed in gastric tissues with
90%, and the remaining 10% was IL-32ϵ with no detection for any
other isoforms. However, their total sample was only 20, which
signifies the need for further investigation into a wider cohort. The
recent publication evaluated the expression of IL-32 in different
immune cells from esophageal squamous cell carcinoma (ESCC) by
single-cell RNA sequencing found that IL-32 may have a
paradoxical effect (22). They found that IL-32 stimulates the
expression of IFN-g in CD8+ T cells which is responsible for the
antitumor role, while in CD4+ T cells it induces Foxp3 expression,
which accounts for the suppressor role.
IL-32 IN CANCER ANGIOGENESIS,
INVASION, AND METASTASIS

IL-32 numerous roles in angiogenesis, EMT, and metastasis are
summarized in Figure 4. Angiogenesis invasion and metastatic
both are features established in more aggressive tumors.
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Therefore, IL-32 involvement in these two processes was
evaluated in several studies. Angiogenesis occurs as a response
due to diminishing oxygen and nutrients, the new vessels formed
provide a crucial pathway for metastasis. IL-32 was found to
influence angiogenesis in glioblastoma, yet the underlying
mechanism remains to be defined (58). In this study, it was
found that IL-32 controls angiogenesis through integrin aVb3,
that usually expressed in new vessels and is considered the most
important integrin for angiogenesis (59, 60). The expression of
IL-32 was significantly increased and colocalized with integrin
aVb3. Vascular endothelial growth factor (VEGF) is a well-
known critical factor for metastatic and angiogenesis and is the
most expressed in advanced cancers (61). The tube formation
was found to be increased in a dose-dependent manner as well.
Besides, aVb3 inhibitor reduced IL-32, and induced IL-8 (one of
the advocates of angiogenesis), therefore blocking the
angiogenetic effect.

Interestingly, they found that the reduction of IL-32 affects
IL-8, nitric oxide, and matrix metalloproteinases 9 (MMP9),
whereas levels of VEGF and TGFb were not affected. Thus, it was
concluded that the angiogenetic activity conducted by IL-32,
specifically IL-32g, was not mediated by VEGF. Since IL-32
induced IL-8, which could be the indirect way of promoting
angiogenesis. IL-8 plays a role in invasion, metastasis, and
angiogenesis (62). VEGF expression was found to be correlated
with the expression of IL-32 in cancers with invasion and
migration ability such as lung, breast, and gastric cancers
although it was indicated that IL-32g pro angiogenetic activity
was not mediated by VEGF (8, 10, 50).

Matrix metalloproteinases family (MMPs) of endopeptidases
having proteolytic activity play a critical role in the invasion and
FIGURE 3 | Schematic illustration showing the different effects of IL-32 isoform in cancer cells under hypoxic conditions. The elevated IL-32b interacts with PKCd in
tumor-promoting antiapoptotic signaling that increased cancer progression. On the contrary, IL-32q interacts with PKCd inhibiting its antiapoptotic effect and reduces
NF-kB and STAT3, thus inhibiting epithelial-mesenchymal transition (EMT). Figure created by BioRender App.
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metastasis of tumors through their function of extracellular
matrix degradation (63–65). In gastric and lung cancer, not
only VEGF and IL-8 were found to be coexpressed with IL-32
but also MMP2 andMMP9 (10, 50). IL-32 significantly increased
in metastatic patients of both cancer types (10, 51, 66). As
mentioned above, IL-32 was highly associated with gastric
cancer progression mainly due to its stimulation of cell
elongation and in turn enhanced invasion and migration. This
effect occurs through activation of AKT, b-catenin, and hypoxia-
inducible factor 1a (HIF1- a) signaling pathways.

It was noted that the expressed IL-32 isoforms were a, b, and
g in gastric cancer samples, while the dominant isoform was IL-
32b. Since IL-32g was found to be spliced into IL-32 a and b,
they evaluate the effect of IL-32g on the gastric carcinoma cell
line (TSGH9201). As a result, they found that cells
overexpressing IL-32 show elongated spindle-like morphology
compared to the control cells (50). Invasion stimulation in
cancer cells via the Akt pathway was also reported within
osteosarcoma cells mediated by the expression and secretion of
MMP13 (67). On the other hand, in lung cancer cells MMP 2 and
9 were also found to be induced by IL-32 but via NF-kB (10).

The overexpression of IL-32 was found to be correlated with
metastasis in ESCC and colorectal cancer (37, 38). However, one
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study revealed that IL-32 isoform could play an opposite
migratory role in colon cancer cells (18). It was found that
isoform IL-32q represses the invasion and migration of colon
cancer cells by preventing EMT. This was achieved by the
interaction of IL-32q with STAT3 to suppress ZEB1 and Bmi1
transcription which in turn avoids stemness and EMT.

Moreover, this inhibitory effect of IL-32q was addressed in
breast cancer as well, as it suppresses the binding of CCL18, a
chemotactic cytokine involved in the several cancer pathogenesis
and progression and associated with poor prognosis (68–70), to
its receptor and therefore inhibited the further cascade of
activation/phosphorylation of STAT3 (44). Phosphorylation of
STAT3, regardless of its upstream activation, leads to
dimerization and translocation into the nucleus. Following
that, STAT3 binds to its target gene promoters and regulates
their expression (71–73). MMPs are among its target genes,
which in this way STAT3 is involved in regulating cancer cell
migration (74, 75). In addition, STAT3 regulates VEGF and
HIF1-a that are well known for their role in angiogenesis
(76–78).

Taken together, STAT3 signaling pathways play a key role in
cancer metastasis (73) and are found to be regulated by IL-32. The
upregulation of MMPs (MMP2, MMP9, and MMP13) was also
FIGURE 4 | Schematic illustration showing the range of signaling pathways that are activated by IL-32 and promoting cancer progression. In terms of angiogenesis,
EMT, and metastasis. In brief, IL-32 promotes the Akt, NF-kB, STAT3 (which can be activated by PKC/CCL8), and integrin aVb3 signaling cascades, each having
different transcription modifications. Therefore, regulating the activity of several transcription factors play a role in cancer such as angiogenesis, EMT, and metastasis
as well as aVb3, VEGF, and HIF-a enhance angiogenesis. The ZEB1 or B-catenin enhances EMT. VEGF is also associated with EMT and metastasis. Additionally,
the transcription of MMPs (like MMP2 and MMP9), Vimentin, Slug, and Snail promotes metastasis. Figure created by BioRender App.
February 2022 | Volume 13 | Article 837590

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shim et al. Ambiguity of IL-32 Isoforms in Cancer
reported in cancers overexpressing IL-32 along with other EMT
markers including vimentin, Slug, Snail, and ZEB1, as well as they
are well known for their contribution to cancer metastatic.
IL-32 IN THE TUMOR
MICROENVIRONMENT AND
STROMAL TUMOR

The tumor microenvironment refers to the surrounding ecosystem
that includes extracellular matrix, blood vessels, and an array of cells
such as fibroblasts, immune cells, and heterogeneous tumor cells.
These components influence one another and thus, contribute to
tumor progression and metastasis in either a positive or negative
way. Therefore, a better understanding of the tumor
microenvironment offers new insights for improving cancer
therapies (79, 80). Cytokines are one of the key mediators for
interactions between immune and nonimmune cells in the tumor
microenvironment (TME) (81). It has been shown to have a
different role that is isoform dependent since many cells express
IL-32. However, it is not clear yet how IL-32 contributes to the
different tumor types including stromal tumor microenvironment.

In a study investigating the IL-32 effect in the pathogenesis of
endometriosis as an example of stromal cancer, IL-32 showed a
correlation in cancer progression. This study revealed that the
IL-32 concentration in the peritoneal fluid was drastically greater
in patients of advanced-stage endometriosis as compared with
the controls. Moreover, they showed that IL-32a and IL-32g
significantly increased cellular viability, proliferating cell nuclear
antigen expression, and invasive ability (82).

Several studies showed that the overexpression of IL-32,
specifically a, b, and g were able to reduce tumor growth
through inducing apoptosis in tumor cells, which led to CD8+

T-cell responses (15, 17, 33). Nevertheless, other than the
antitumor effect, IL-32 demonstrates a monocyte differentiation
stimulator as well as cytokine production. Moreover, it has been
reported for its ability to activate T cells and therefore stimulate
antigen presentation utilizing dendritic cells (DCs). On the
contrary, functional studies demonstrated that IL-32g induced
PD-L1 expression on monocytes but not tumor cells, which
may contribute to local immunosuppression and therefore
are candidates for cotargeting in combination treatment
regimens. IL-32g expression correlates with a treatment-resistant
dedifferentiated genetic signature and genes related to
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T-cell infiltration. This was reported in melanoma cells,
suggesting it influences nonmelanoma cells in the tumor
microenvironment, such as myeloid cells (83).

More recently, IL-32g potentiates antitumor immunity in
melanoma as the antitumor microenvironment. This result is
shown to be enriched in mature DC and M1 macrophages
resulting in enhancing the recurrence of activated tumor-
specific CD8+ T cells to generate antitumor immunity.
Therefore, IL-32 resulted in reducing tumor growth and
rendering immune checkpoint blockade resistance (35). On the
other hand, IL-32b stimulates the activation-induced apoptosis
of T cells, NK cell cytotoxicity toward tumor cells like IL-32g in
the activation of monocyte differentiation. In addition, IL-32a is
shown to be a stimulator of NK cell cytotoxicity, whereas IL-32q
has been shown as an inhibitory effect on monocyte
differentiation and cytokine production (36, 84–88). However,
better characterization of the tumor microenvironment is needed
to understand how different cell types in the tumor
microenvironment are influenced by IL-32.

Moreover, how IL-32 isoforms implicated each other is
another key factor in overall response to cancer. As we
mentioned above, the possibility of IL-32 in exhibiting an
isoform switching and self-regulation between IL-32b and IL-
32g was reported (41). Likewise, isoform d of IL-32 was found to
modulate another isoform, IL-32b, by interacting with it and
thus inhibiting its production of IL-10 (89). Both observations
suggest that IL-32 performs its feedback regulation through
its isoforms.
IMPLICATIONS OF IL-32
POLYMORPHISMS IN CANCER

Changes in the genetic material provide different effects within
individuals and populations. Recently, several studies have
demonstrated the impact of IL-32 polymorphisms on cancer
progression. Moreover, IL-32 SNPs were studied and reviewed
with their association to disease outcome (90–95), and by 2021,
one review performed a meta-analysis to evaluate the SNPs in
malignancy (96). Up to now, three polymorphisms of IL-32 were
found to be associated with the progression of several cancers
that are rs28372698, rs12934561, and rs2015620 (Table 1).

SNP rs28372698 was found in many cancers including thyroid
carcinoma and lung, endometrial, ovarian, gastric, bladder, and
TABLE 1 | IL-32 polymorphisms and their associated cancers.

IL-32 SNP Chromosome
locationa

Type Associated cancer/s SNP interaction Ref

Rs28372698 3,065,110 Noncoding/
upstream variant

Thyroid carcinoma, lung, endometrial, ovarian, gastric cancer,
bladder cancer, and colorectal cancer

rs4073 (IL-8)–gastric
cancer

(97–103)

Rs12934561 3,068,864 Noncoding/lntron
variant

Squamous carcinoma, and bladder cancer (98, 102)

Rs2015620 3,063,897 Noncoding Gastric cancer rs917997 (IL-18RAP),
rs1179251 (IL-22)

(103)
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colorectal cancers that are related to the higher expression of IL-32
resulting in cancer progression (96–104). In thyroid carcinoma,
this polymorphism revealed higher expression of isoform IL−32g
that increased the risk of tumor development (104). In a study to
evaluate cytokine polymorphisms and their association with
gastric cancer, this SNP (rs28372698) of IL-32 has shown no
association. However, when the patient has another SNP, IL-8
rs4073, there was an interaction between both SNPs and thus
suggested increased gastric cancer risk (103).

Interestingly, another study on the Chinese population
revealed that IL-32 SNP rs2015620 is highly associated with
the risk of gastric cancer by interacting with two more SNPs, IL-
18RAP rs917997 and IL-22 rs1179251 (101). However, these
studies were subjected to two different populations, Chinese and
Chilean; the reason why IL-32 SNP has a different effect.
Although studies on IL-32 SNPs are not dispersed in the
world, yet according to the published data, SNP rs28372698
showed high cancer influence on the Chinese population.

Moreover, this SNP was linked to colorectal cancer in the
Swedish cohort but not reported in the Chinese colorectal cancer
patients (99). Both IL-32 SNPs of rs28372698 and rs12934561
have been correlated with bladder cancer processes (102).
However, only rs12934561 was related to poor survival status
in squamous carcinoma (98). Overall, these association studies
were subjected to some limitations due to the limited population
and selected population. A large-scale study must include more
than one kind of population and ethnicity to discover the role of
IL-32 SNPs in cancers.
CONCLUSION

It conflicts in targeting therapy for IL-32 in cancer because IL-32
roles remain unclear, thus there is no specific direction for IL-32
in cancer therapy. However, some isoforms showed an inhibitory
Frontiers in Immunology | www.frontiersin.org 860
effect that can be administered exogenously to stop or reverse
cancer progression such as IL-32q for cytokine-based
immunotherapy. Moreover, it was found that patients with
higher expression of IL-32 demonstrated more aggressive
cancers. In these cases, IL-32 can be targeted precisely to stop
its progression role. There is a great gap in this matter even after
selecting the IL-32 isoform for cancer therapy. A lot more studies
are needed before this knowledge can be used clinically. This
difficulty regarding IL-32 was addressed in a recent review
considering interleukins in improving cancer therapies (4).
Again, this is due to IL-32 showing no clear effect on cancer
which differs based on IL-32 isoforms, cancer type, and
genetic background.
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The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised
of different components, including tumor cells, stromal cells, and immune cells. Among
them, the relationship between each mediator involved in the construction of the TME can
be understood by focusing on the secreting or expressing factors from each cells.
Therefore, understanding the various interactions between each cellular component of
the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are
well known to influence extracellular matrix (ECM) formation and tumor progression
through multiple mediators. Immune cells respond to tumor cells by causing
cytotoxicity or inflammatory responses. However, they are involved in tumor escape
through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been
focused on cancer cells themselves or the interactions between cancer cells and specific
cell components. However, cancer cells directly or indirectly influence other TME partners,
and members such as stromal cells and immune cells also participate in TME organization
through their mutual communication. In this review, we summarized the relationship
between stromal cells and immune cells in the TME and discussed the positive and
negative relationships from the point of view of tumor development for use in research
applications and therapeutic strategies.

Keywords: tumor microenvironment, immune cells, stromal cells, cancer-associated fibroblast (CAF), tumor
endothelial cell, cancer-associated adipocyte, T cell, NK cell
INTRODUCTION

The tumor microenvironment (TME), a highly heterogeneous environment composed of many
different types of cells and many molecules produced or released by tumor cells, stromal cells, and
immune cells, is now widely recognized (1). The TME is composed of cellular components such as
cancer-associated fibroblasts (CAFs), tumor-endothelial cells (TECs), cancer-associated adipocytes
(CAAs), mesenchymal stem cells (MSCs), T cells, B cells, natural killer (NK) cells, and tumor-
associated macrophages (TAMs) (2). In addition, the TME is rich in hypoxic, acidic, and immune/
inflammatory cells known to play important roles in tumor development, growth, progression, and
resistance to treatment (3–6). In the past, cancer therapies were designed to target cancer cells
directly. Recently, they are designed to destroy networks formed by tumors. Immunotherapy, in
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addition to surgery, chemotherapy, and radiation therapy, has
emerged as a breakthrough treatment modality for cancer
patients (7). Besides therapies that directly target tumor cells,
promising therapies targeting stromal cells present in the TME
are also attracting attention. Targeting immunomodulatory
pathways in the TME is considered a central step in cancer
treatment (8–10). Indeed, the TME is currently in the spotlight as
a new target for cancer therapeutics with many ongoing studies.

Treatments for cancer patients include surgical resection and
chemotherapy or radiation therapy (11). With recent advances in
onco-immunological studies, the use of immune checkpoint
inhibitors (ICIs) taking advantage of the antitumor activity
within the TME is considered as an effective therapeutic
modality for cancer patients. Among them, inhibitors of the
cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade have
shown remarkable efficacy in clinical trials. Both ipilimumab
and tremelimumab are human antibodies to CTLA-4 (12, 13). In
recent studies, both drugs have achieved considerable clinical
success for patients with advanced malignant melanoma. A
phase 3 study has shown that ipilimumab, a CTLA-4 blockade,
can significantly improve the overall survival of melanoma
patients. Based on results of these studies, ipilimumab, a T-cell
potentiator, is considered useful as a treatment for advanced
melanoma patients (14, 15). In addition, it has been suggested
that PD-1/PD-L1 expression plays an important role in immune
evasion by cells other than tumor cells present in the TME.
Nivolumab is an ICI targeting PD-1/PD-L1. It is being used to
treat melanoma, non-small cell lung cancer, kidney cancer,
hepatocellular carcinoma, urinary tract cancer, gastric cancer,
and triple-negative breast cancer (TNBC) (16–18). In addition to
immunotherapy-based ipilimumab and nivolumab, a variety of
FDA-approved ICI treatments such as cemiplimab and
pembrolizumab are also being actively implemented for cancer
treatment (19).

The expression of a modified T-cell receptor or chimeric
antigen receptor (CAR) to enhance antigen specificity can be
engineered using a patient’s own T cells. Thus, it is possible to
efficiently generate tumor-targeting T cells by solving the
fundamental problem without requiring the patient to activate
de novo T cells (20, 21). Clinical trials conducted on patients with
acute lymphocytic leukemia have shown a complete recovery in
up to 92% of patients with very meaningful results (20). CAR-T
cell therapy is being actively implemented for treating large B-
cell lymphoma and B-cell precursor acute lymphoblastic
leukemia (22, 23). Although this CAR-T cell therapy has
achieved clinical success in some hematologic cancer patients
(24), it has two main problems that need improvement. First, it is
very difficult to obtain enough T cells from cancer patients to
isolate CAR-T cells because of lymphocytopenia due to prior
treatments. Second, there is not enough time to implement CAR-
T cell therapy for rapidly advancing cancers (25). Tumor-
infiltrating lymphocyte (TIL) therapy can be proposed as a
form of therapy to solve these problems. TIL therapy is a
treatment involves removing T cells infiltrating a patient’s
tumor, proliferating them to a large amount in the laboratory,
and injecting them back into the patient to help the patient’s
Frontiers in Immunology | www.frontiersin.org 265
immune system kill cancer cells (26). It has the advantage of
being able to locate and destroy the patient’s tumor directly
because it secures T cells that have already penetrated the
patient’s tumor and reinjects them into the patient. Activated
NK cells can also directly lyse tumor cells by releasing cytotoxic
granules (including perforin and granzymes) in a manner similar
to that of activated cytotoxic T cells. Since NK cells can eliminate
tumors, immunotherapy based on NK cells has been developed.
It is currently being used strategically. In addition, CAR-NK
cells, like CAR-T cells, are genetically modified to express CARs
that can recognize specific antigens that are characteristically
overexpressed by target cells. Preclinical studies of CAR-NK cells
have been performed on hematologic cancers and some solid
cancers (27). These CAR-NK cells, along with T cell-based
therapies, could be proposed as an improved therapy for
solid tumors.

Strategies using drugs that can specifically target stromal cells
within the TME have been proposed to further enhance patient
survival and therapeutic effects. Therapeutic drugs that target
stromal cells within the TME are under investigation (28). These
stromal cells are important components of the TME as they
express specific markers that can be targeted for tumor treatment
(29). Of note, treatment with microsomal prostaglandin E
synthase-1 inhibitor compound III targeting CAF-derived
prostaglandin E2 (PGE2) can reduce tumor growth, suppress
CAF migration/infiltration, and increase M1 macrophage ratio
in neuroblastoma tumor studies (30). Furthermore, studies using
a mouse model of cholangiocarcinoma induction have confirmed
that navitoclax (BCl-2 inhibitor) treatment can induce CAF
apoptosis, reduce the expression of tenascin C, and suppress
tumor growth. This suggests that navitoclax may strategically
target and destroy CAFs within TMEs to attack tumors (31). As
an inhibitor of fibroblast growth factor receptors (FGFR),
PD173704 can reduce the growth of both CAFs and
endothelial cells (ECs), thereby inhibiting stromal cell-
mediated FGFR pathway in a co-cultured environment of head
and neck squamous cell carcinoma (HNSCC) cells. These
inhibitor molecules can inhibit tumor cell growth, thus playing
a crucial role in tumor-matrix interaction. They have been
proposed as potential therapeutic agents for HNSCC (32).
Phosphodiesterase (PDE), a class of enzymes that can
hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic
guanosine monophosphate (cGMP), are composed of 11
different subtypes. A lung cancer study has shown that
phosphodiesterase-4 (PDE4) as a type of PDE can promote
lung cancer proliferation and angiogenesis by having a
crosstalk with hypoxia-inducible transcription factors (HIFs)
factor (33). CC-5079 is an analog of these PDE4 inhibitors. It
can inhibit the proliferation and migration of fibroblasts, bladder
cells, and EC cells, stimulate mitogen-activated protein kinase
phosphatase 1 (MKP1) expression, and inhibit micro-
angiogenesis through its upregulation. It has been
demonstrated that CC-5079 is a candidate for treating colon
cancer by targeting ECs within the TME (34). However, further
studies on the detailed mechanism of action of CC-5079 are
needed. Although the TME component targeting therapy such as
April 2022 | Volume 13 | Article 864739

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mun et al. Intercellular Interactions in Tumor Microenvironment
immune cell targeting therapy and stromal targeting therapy has
been applied to treat cancer patients in various studies
mentioned above, it has some limitations because the TME is
heterogeneous, showing different characteristics in each
patient (29).

Although the role of the TME in cancer processes has been
extensively investigated, its contribution to the crosstalk between
stromal cells and immune cells, which are components of the
TME based on the tumor, is only partially known. Previous
therapeutic approaches have focused on cancer cells and
established relationships between cancer cells and immune
cells or stromal cells. Based on an understanding of the
relationship, it is more effective to consider treatment methods
in a direction that can restore the relationship between stromal
cells and cancer cells and the self-dependent role in the TME by
understanding the relationship between cells in the TME.
Communication between TME constituent cells should be
understood and therapeutically targeted. Characteristic parts of
cells must be considered. In this respect, unlike cancer cells, the
somatic cells that make up our body are controllable. The need to
find ways to overcome cancer treatment by properly regulating
the communication between immune cells has emerged. In
particular, exploring interactions and intercellular relationships
in the TME will improve our understanding of cancer treatment
(35, 36). Therefore, in this review, we described and summarized
interactions, roles, and importance of the relationship between
stromal cells and immune cells within the TME.
THE PRO-TUMORIGENIC EFFECT OF THE
RELATIONSHIP BETWEEN STROMAL
CELLS AND IMMUNE CELLS IN THE TME

CAFs Interact With Myeloid Cell-Derived
Immune Cells in the TME to Enhance
Tumorigenesis and Immune Evasion
CAFs are the most dominant cell type in the TME. They are
known to crosstalk with immune cells (37). CAFs may play a
pivotal role in tumor development and survival as they are
involved in TME composition and participate in mechanisms
that promote tumor growth and invasion and subvert defense
system (38–40). Recently, studies have attempted to clarify this
point. CAFs can secrete components such as cytokines and
chemokines known to be continuously activated in the TME
through various signaling mechanisms and function as primary
immunosuppressive mediators (41, 42). CAF-derived cytokines
and chemokines are attracting attention not only for their roles
in tumor progression, but also for their ability to regulate the
recruitment and function of immune cells.

TAMs are macrophages that participate in the formation of
the TME by producing cytokines, chemokines, and growth
factors. TAMs are divided into two types, M1 and M2
macrophages (43, 44). Characteristically, M1 macrophages
produce large amounts of pro-inflammatory cytokines and
regulate the Th1 antitumor immune response, whereas M2
Frontiers in Immunology | www.frontiersin.org 366
macrophages play an important role in tumor progression.
Gokyavuz et al. have shown that CAFs can secrete monocyte
chemotactic protein-1 (MCP-1) and stromal cell-derived factor-
1 (SDF-1) and effectively recruit monocytes (45). MCP-1 is a
chemokine that contributes to the recruitment of monocytes to
the site of an inflammatory response. It is expressed in a variety
of cancer types such as prostate and ovarian cancers (46, 47).
SDF-1 is expressed in stromal fibroblasts in organs including the
brain, breast, and lung. It is involved in cancer survival,
proliferation, and metastasis (48, 49). Specifically, monocytes
recruited by CAFs via MCP-1 and SDF-1 can reduce the
secretion of pro-inflammatory cytokine interleukin (IL)-12 and
increase the production of anti-inflammatory cytokine IL-10.
CAF-educated monocytes can increase the motility and
invasiveness of breast cancer cells and the expression of
epithelial-mesenchymal transition (EMT)-related genes and
vimentin proteins, eventually exerting their immuno
suppressive role in breast cancer (45). In prostate cancer, CAFs
can also promote the differentiation to the M2 macrophage
phenotype via SDF-1. Analysis of patients with prostate cancer
has confirmed a clear increase in the M2/M1 macrophage ratio,
which is correlated with clinical prognosis. Thus, CAFs and M2-
polarized macrophages actively contribute to the promotion of
the invasive ability of prostate cancer cells. They are correlated
with the aggressiveness of cancer via the infiltration of M2
macrophage (50). Chemokine (C-C motif) ligand 2 (CCL2;
MCP-1) secreted by CAF can induce blood monocyte
recruitment and differentiate into TAMs in breast cancer (51).
Additional research has confirmed that the increase in monocyte
migration to breast tumor spheroids is associated with CAF-
derived CCL2 and that the CCR2A/2B pathway and the CCL2
receptor play important roles in monocyte recruitment (52).
These findings suggest that CAF-derived factors can affect a wide
range of processes, leading to monocyte recruitment and M2
macrophage differentiation.

Among various cancer types, pancreatic cancer has a low
response to immunotherapy. Thus, it is necessary to understand
the antitumor immune response in pancreatic stromal cells.
Stromal cells in the pancreatic cancer microenvironment can
generate numerous factors that support the growth and survival
of tumor cells. They are being studied to increase the
understanding and relevance of immune cells (53). Pancreatic
stellate cells (PSCs) are resident cells in the pancreas under
quiescent conditions. They are isolated from the human pancreas
as fibroblast-like cells (54). These cells display some
characteristics of activated myofibroblasts such as a-smooth
muscle actin (a-SMA) expression and ECM proteins synthesis
(55). Much evidence has confirmed the importance of PSCs in
pancreatic ductal adenocarcinoma (PDAC) development.
Importantly, myeloid-derived suppressor cells (MDSCs) are
identified as immature myeloid cells that can induce
immunosuppression, mediate multiple signaling pathways, and
interact with immune cells and mediators (56, 57). It has been
shown that MDSCs can promote cancer progression,
angiogenesis, and metastasis and disrupt the efficacy of
therapeutic agents (58, 59). In particular, the number of
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mun et al. Intercellular Interactions in Tumor Microenvironment
MDSCs is highly correlated with the staging of pancreatic cancer
patients, indicating that an increase in MDSC levels could be an
indicator of disease progression (60). Thus, MDSCs could be
targeted in the treatment of PDAC patients. Mace et al. have
reported that soluble factor IL-6 generated from patient PSCs
with confirmed phenotypic a-smooth muscle actin and glial
fibrillary acidic protein expression can promote the
differentiation of MDSCs (61). PSCs in PDAC can modulate
MDSC differentiation via IL-6 and STAT3 signal transduction
pathways (61). Targeting PSCs in the TME by promoting the
generation of immunosuppressive cells that suppress the innate
or acquired immune response against pancreatic cancer may
reduce MDSC levels, thereby enhancing the effectiveness of
immunotherapy. Dendritic cells (DCs) represent immune cells
that link innate and adaptive immunity. They are derived from
hematopoietic bone marrow precursor cells (62). DCs are
essential antigen-presenting cells (APCs) that can induce the
activation of naïve T cells. Levels of peripheral blood DCs are
decreased in cancer patients than in normal controls (63–65). By
expressing high levels of immunoregulatory cytokines, they can
induce the differentiation of regulatory T cells (Tregs) and help
tumor cells evade the immune response. Cheng et al. have shown
that CAF-derived IL-6 can induce the activation of the STAT3
pathway, leading to immunosuppressive cell types (66).
Especially, STAT3 activation by CAF-derived IL-6 plays a
pivotal role in indoleamine-2,3-dioxygenase (IDO) production
and induced regulatory DC recruitment (66). Cheng et al. have
evaluated CAF-regulated neutrophil function and the activation
of hepatocellular carcinoma (HCC) via the IL-6/STAT3/PD-L1
signaling cascade (67). They found that IL-6 derived from CAFs
could recruit PD-L1+ neutrophils and impair T-cell function via
PD1/PD-L1 signaling (67). Cho et al. have reported that IL-6 and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
released from cancer cell-activated CAFs through co-culture of
monocytes and CAFs can increase TAM infiltration and
metastasis and direct monocytes to differentiate into M2 TAMs
(68). Thus, the development of inhibitors or neutralizing
antibodies targeting IL-6, IDO, GM-CSF, and STAT3 may lead
to a new cancer immunotherapeutic approach that can induce
tumor immune evasion of CAFs via the cell network in the TME.
In the TME, secreted chemokines including IL-8 play important
roles in tumorigenesis. These chemokines could be secreted by
CAF (69). According to a study on colorectal cancer-derived
CAFs isolated from human colorectal cancer tissue, the CAF-
derived IL-8 can be secreted to attract monocytes and promote
polarization from anti-tumorigenic/pro-inflammatory M1
macrophages to pro-tumorigenic/anti-inflammatory M2 (70).
These findings indicate that CAFs can also inhibit NK cell
function and promote CRC cell progression by increasing
TAM infiltration.

CAFs Interact With Lymphocytes
in the TME to Enhance Tumorigenesis
and Progression
Transforming growth factor-b (TGF-b) is a representative cytokine
secreted from CAF with a strong immunomodulatory function.
Frontiers in Immunology | www.frontiersin.org 467
It is involved in the suppression of immune responses. It also plays
an important role in tumor initiation, invasion, andmetastasis (71–
73). CAFs-derived TGF-b can regulate various types of immune
cells through the paracrine signaling pathway with growth factors
and cytokines. TGF-b can suppress IL-2 production and T cell
proliferation. It plays an important role in CD4+CD25+ Treg
production and function (74). Furthermore, it has been proposed
that transcriptional inactivation of TGF-b by suppressing T-box
expressed in T cells (T-bet) and GATA-binding protein 3 (GATA-
3) expression can control the differentiation of murine CD4+ T
cells (75, 76). According to immunological studies conducted in
HCC cells, IL-10, TGF-b, and IL-4 secreted by stromal cells in the
TME can increase polarization to M2 macrophages. It is known
that M2 macrophages can enhance tissue remodeling,
angiogenesis, tumor progression, and ultimately IL-10, increasing
PD-L1 and human leukocyte antigen (HLA)-DR expression to
induce immunosuppression (77–79).

Since stromal cells in the TME express cytokines and
immunological factors, it is critical to consider stromal cells to
rescue tumor-reactive CD8+ T cells from immune evasion
mechanisms (80). According to a study by Lakins et al., CAF-
educated T cells can induce death of T cells by PD-L2 and Fas ligand
(FasL) engagement in the lung tumor stroma (81). These results
indicate that CAFs can enhance tumor viability by inducing the
dysfunction of encountered CD8+ T cells, suggesting that CAFs can
directly contribute to the pro-tumor T cell immune response.

Wu et al. have investigated the heterogeneity of stromal cell
population of TNBC patients using single-cell RNA sequencing
technology and confirmed the existence of an inflammatory CAF
(iCAF) subpopulation (82). These iCAFs showed upregulation of
CXCL12 (SDF-1)-CXCR4 chemoattractant pathway genes and
suggested a strong association of CD8+ T cell dysfunction with
iCAF presence and exclusion (82). In breast cancer studies, four
different CAF subsets of human breast cancer have been identified,
among which the CAF subset 1 is characterized as immuno
suppressive cells. CAF subset 1 can secrete CXCL12 to attract T
cells, increase the survival of CD4+CD25+ T cells, and promote
differentiation into CD25highFOXP3high Treg cells via B7H3, CD73,
and DPP4 (83, 84). These studies indicate that the CAF-S1
fibroblast subset contributes to immunosuppression in breast
cancer. Takahashi et al. have shown that IL-6, CXCL8, tumor
necrosis factor (TNF), and vascular endothelial growth factor
(VEGF)-a are detected more in CAFs than in normal fibroblasts
in the TME of HNSCC. These CAFs can modulate effector T cell
function by expressing co-regulatory molecules B7H1 and B7DC
and enhance T cell apoptosis and the induction of Treg cells (85).
Thus, CAFs have been implicated in the proliferation of
CD4+FOXP3+ Treg cells, tumor progression, angiogenesis, and
metastasis (86, 87). These cells play an important role in
angiogenesis, invasion, and metastasis. They contribute to the
immunosuppressive process that promotes tumor evasion by the
T cell network within the TME of HNSCC. Moreover, CAFs can
release different factors including chemokines, cytokines, and
growth factors that can promote immunosuppression through
recruitment of immunosuppressive cells such as Tregs and
myeloid cells, upregulation of immune checkpoint molecules on T
April 2022 | Volume 13 | Article 864739
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cells, and regulation of T cell migration (88). Notably, in PDACs, T
cells can be inhibited by tumor stroma, suggesting that CAF-derived
factors may regulate T cell function and phenotype (89–91). Most T
cells in the TME are exhausted, leading to cancer immune evasion.
Restoring exhausted T cells appears to be an excellent strategy in
cancer immunotherapeutic therapy (92). PD-1, a critical inhibitory
receptor regulating T cell exhaustion, can attenuate its ability to
clear cancer via high expression in T cells (91). Reversing this T cell
exhaustion represents a major strategy for cancer treatment (93).

Candidate factors that can interfere with signal transduction
between CAF and NK cells have been suggested as potential
strategies for cancer treatments (94). NK cells are cells that can
produce cytokines to communicate with other cells. They have the
ability to kill tumor cells (95, 96). NK cell activation releases
perforin, granzymes, inflammatory cytokines, and chemokines
toward target cells (97). PGE2 is a major product of arachidonic
metabolism. It is synthesized via cyclooxygenase-2 (COX2) and
prostaglandin synthase pathways (98). According to Balsamo et al.,
PGE2 released by melanoma-derived fibroblasts can suppress the
expression of NK receptors, perforins, and granzymes, meaning that
they can interfere with the phenotype and function of NK cells (99,
100). PGE2 secreted from HCC-associated fibroblasts can inhibit
the expression of NK receptors exhibiting immune function,
including NKp30, NKp44, and NKG2D, thus impairing NK cell-
mediated cytolytic activity (101). In addition, it has been confirmed
that blocking the activity of PGE2 and IDO in activated HCC-
related fibroblasts can restore the function of NK cells and promote
the progression of HCC (102). Thus, metastatic melanoma-derived
fibroblasts and HCC-associated fibroblasts can release PGE2 and
IDO to affect NK cell function and exert strong immunosuppressive
activity (99–101).

TECs, CAAs, and MSCs Interact
With Immune Cells in the TME to
Induce Immune Evasion and
Reduce Anti-Tumor Functions
Endothelial cells (ECs) are a major type of cells found inside the
lining of blood vessels, lymph vessels, and heart. They fulfill
many physiological processes in the body (103). ECs are included
in stromal cells. They represent an important interface between
tissue and blood (104). TECs found in most tumors can also
form an essential vascular inner layer in tumors (105). TECs play
an important role in orchestrating the TME. TECs are known to
be particularly important for T cell recruitment and activation.
Previous studies have shown that the interaction between T cells
and ECs plays an important role in the regulation of the immune
system during chronic inflammation (106). TECs in the tumor
microenvironment are particularly relevant to circulating
immune cells. They may influence anti-tumor cell immune
responses. TECs are APCs with an inhibitory activity. They
express MHC class II and PD-L1. They can impair the
production of pro-inflammatory cytokines including IL-2,
TNF-a, and IFN-g in CD8+ T cells (107, 108). TECs are also
known to play a critical role in tumor cell growth and invasion
(109). Vascular cell adhesion molecule 1 (VCAM1) induction in
endothelial cells can regulate tumor progression, provide
Frontiers in Immunology | www.frontiersin.org 568
angiogenic factors, promote neutrophil infiltration and tumor
cell adhesion to the endothelium, and promote metastasis by
sustaining vascular Notch1 signaling (110).

In gliomas, penetration of T cells into tumor tissue as TILs is
extremely low. Although this feature is controversial for the
correlation with TIL-induced tumor prognosis in glioma, it has a
useful aspect in the evaluation of factors that reduce the presence of
T cells in tumor tissues. Moreover, FasL is well-known as a pro-
apoptotic cell surface protein that plays an important role in
confirming T cell depletion in tumor tissues. This has been
demonstrated by flow cytometric analysis, showing that FasL
levels expressed in the endothelium of brain tumors are inversely
correlated with the CD8+/CD4+ TIL ratio (111). That is, FasL
expression indicates not only the CD8+/CD4+ TIL ratio, but also
the tumor contribution by immune avoidance in brain tumors due
to decreased T cell presence. In melanoma, it has been confirmed
that TECs are APCs that express MHC class II and PD-L1 with an
inhibitory activity. These TECs can inhibit the proliferation of CD8+

T cells via inhibitory cytokines including IL-10 and TGF-b. They
can also attenuate the antitumor effect of antigen-specific CD8+ T
cells. Experimental results have shown that TECs can induce
immune responses of tumor antigen-specific CD8+ T cells
through the PD-1/PD-L1 pathway and evade tumor immunity by
regulating immunosuppressive CD4+ T cells in an antigen-specific
manner (112). Common lymphatic endothelial and vascular
endothelial receptor (CLEVER-1/stabilin-1) are also expressed on
lymphatic vessels, high endothelial venules, and non-continuous
endothelium (113). CLEVER-1/stabilin-1 identified in HCC
endothelium can recruit FOXP3+ Treg cells (114). These findings
make it possible to confirm the tumorigenic effect of TECs under
the influence of various mechanisms and factors.

CAAs play a central role in tumorigenesis, tumor growth, and
metastasis (115). CAAs can help cancer cells by storing energy as
triacylglycerol and directly providing lipids. They can release
pro-inflammatory cytokines such as IL-8, CCL2, VEGF, TGF-b,
and cathepsin S that can recruit bone marrow cells to the TME,
thus regulating the differentiation of M2/MDSC and promoting
the angiogenesis process (116–119). A breast cancer study by
Arendt et al. has shown that adipocytes in human and mouse
breast tissues can activate and recruit macrophages via the CCL-
2/IL-1b/CXCL12 signaling pathway (117). These activated
macrophages are sufficient to promote angiogenesis and
accelerate stromal vascularization and breast cancer formation.
Understanding major interactions between immune cells and
CAAs in the TME can be an effective way to improve the
effectiveness of existing therapies. PD-L1 can regulate anti-
tumor immunity as described above. It is the main target of
checkpoint-blocking immunotherapy. Previous studies on breast
cancer have shown that the contribution of PD-L1 expression to
adipogenesis remains an issue that merits further investigation.
During the adipogenesis process, the expression of PD-L1 in
primary human adipose stromal cells and adipocytes is highly
induced. It is known that PD-L1 expression in breast cancer
adipocytes is significantly elevated and that adipocyte-derived
PD-L1 can inhibit the activity of important antitumor functions
of CD8+ T cells (120). Fatty acids (FAs) as CAA-derived
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metabolites can influence immune cell homeostasis and
differentiation (121), leading to immune evasion and tumor
progression. Based on this, FAs are necessary for promoting
proper differentiation of neutrophils. They can potentially
promote the function of tumor-associated neutrophils (TANs).
Besides FAs, CAA-derived IL-8 can recruit neutrophils to the
TME. In PDAC, neutrophils are recruited by CAA-derived IL-1b
to promote tumor progression and further activate PSCs (122).

In the TME, MSCs are multipotent stromal stem cells found in
most cancers that play a central role in cancer cell growth, invasion,
and metastasis by interacting with the tumor and immune cells in
the TME (123, 124). MSC-derived TGF-b can increase the
frequency of Treg cells, protect breast cancer cells, and support
the growth of breast cancer (125). These MSCs can induce IL-10+

regulatory B (Breg) cells involved in the production of
immunosuppressive environments through SDF-1a and CXCR7
(126). IL-10+ Breg cells are a subset of immunosuppressive cells.
The frequency or the function of Breg cells is involved in the
tumorigenesis of some cancers (127–130). It has been shown that
PD-L1 in stromal cells in the TME can be induced by TNF-a signals
to promote the progression of colorectal cancer by suppressing the
antitumor immune response of CD8+ T cells (131). Recently,
research and development for antitumor treatments targeting
CAAs has progressed rapidly. Because CAAs can interact with
TME component cells in a complex cell network, they can be
combined with a variety of therapies, including targeted or
immunotherapies, which can selectively eliminate tumor-
promoting CAAs.

Immune Cells Contribute to Immune
Suppression With Stromal Cells
in the TME
In the TME formed by tumor cells, the interaction between immune
cells and stromal cells plays an important role in both cancer
progression and anticancer activity. Among various types of
immune cells in the TME, neutrophils have received less attention
than other immune cell types. IL-1b is a cytokine secreted by
neutrophils that can activate ECs. Treatment with IL-1 receptor
antagonists can reduce in vitro endothelial cell migration, where IL-
1b secreted by Ly6G+ neutrophils can directly activate endothelial
cells and MMP-9, thus effectively increasing metastasis capability
(132, 133). This demonstrates the distinct metastatic role of Ly6G+

neutrophils and confirms that they are beneficial for promoting
tumors (132, 134). These increases of MMPs not only contribute to
local invasion andmetastasis-related cascades, but also contribute to
the intravascular invasion process (135–137). Further research is
needed to determine the role of neutrophils in the TME of various
cancer types.

Among various immune cells, TAMs exist in the vicinity of
CAFs and constitute the most abundant innate immune cell type
(138). TAMs are classified as pro-tumorigenic macrophages that
can promote the development of malignant tumors and activate
CAFs to aid in tumor progression (139, 140). Tokuda et al. have
shown that osteopontin is a key molecule involved in cancer-CAF-
TAM interactions and that increased osteopontin can promote
malignant tumors (141). This characterizes the importance of
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cancer cell-TAM-CAF interactions in HCC. Lung cancer is
developed in the region of major fibrosis. Particularly, idiopathic
pulmonary fibrosis case has been reported to be associated with
increased risk of lung cancer (142, 143). Wnt7a secreted by M2
macrophages in pulmonary fibrosis can interact with Frizzled-1 to
activate Wnt/b-catenin signaling and promote differentiation of
MSCs into myofibroblasts. In this way, myofibroblasts activated in
idiopathic pulmonary fibrosis can lead to accumulation of ECM,
resulting in an acute exacerbation of lung disease such as lung
cancer (144, 145). In addition, TAMs can regulate communication
with cancer cells and other stromal cells in the TME through
nanovesicle secretion, which carries various molecules, including
microRNAs (146). Exosomes containing microRNAs can affect
cellular processes and promote tumor progression and
angiogenesis. Macrophage-derived exosomes containing miR-155-
5p and miR-221-5p can be transmitted to ECs via an E2F
Transcription Factor 1 (E2F1)-dependent manner, thus
promoting EC proliferation and PDAC growth (147, 148).

Human decidual NK cells are CD56superbrightCD16- that can
increase tumor growth by angiogenic activity via the production of
VEGF, placental growth factor, and IL-8 (149). In non-small cell
lung cancer patients, pro-angiogenic factors such as VEGF and
placental growth factor are released from NK cells and defined NK
cell subsets to promote human umbilical vein endothelial cell
migration and capillary-like structure formation (150, 151). Mast
cells in the TME can regulate adaptive immunity to tumors. Recent
studies have shown that the infiltration of mast cells into tumors can
indicate a poor patient prognosis (152, 153). A study of
neurofibromas by Yang et al. has shown that Nf1+/- mast cells
can secrete TGF-b, thus promoting fibroblast proliferation via TGF-
b (154). In a human prostate cancer microtissue model, mast cells
can release tryptase to enhance CAF-induced transformation of
epithelial cell morphology, thus playing an important role in
prostate cancer progression (155). In the TME of PDAC, mast
cells are essential for tumorigenesis. Mast cells can secrete cytokines
IL-13 and tryptase and promote the proliferation of PSCs (156).
This suggests that mast cell infiltration and activation can contribute
to the formation of dense fibrotic stromal formation characteristics
of PDACs and that mast cells can promote PSC proliferation in the
TME. Thus, targeting mast cells could be a way to improve PDAC
therapy. Table 1 describes tumorigenic effects of various mediators
in TME on the relationship between stromal cells and immune cells.
ANTI-TUMORIGENIC ASSOCIATION
BETWEEN STROMAL CELLS AND
IMMUNE CELLS IN THE TME

Crosstalk Between Stromal Cells and
Immune Cells in the TME Induces
Anti-Tumor Immunity
Although numerous studies have suggested that CAFs can exert a
tumorigenic effect, other studies have suggested that they are also
involved in tumor suppression. According to Ozdemir’s study,
CAF-depleted tumors are associated with increased CTLA-4
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expression with a reduced Teff/Treg cell ratio in the PDAC model.
In this study, the cytotoxic Teff/Treg ratio was decreased in the
myofibroblast-depleted tumor and associated with a significant
elevation in CTLA-4. Thus, CAF depletion can induce
immunosuppression, reduce survival, and further accelerate
Frontiers in Immunology | www.frontiersin.org 770
PDAC (157). Suppression of the checkpoint blockade using CAF
depletion and anti-CTLA-4 antibody can improve mouse PDAC
tumors and increase overall survival (157). CAF depletion has
breakthrough efficacy with significant changes in major
contributors to cancer development within the TME.
TABLE 1 | Tumorigenic effect of the relationship between stromal cells and immune cells in TME.

Cell type Mediator Effect function Type of Tumor Ref.

CAFs
TEC
CAA

MCP-1, SDF-1 production ! IL-10↑, IL-12↓ Monocyte recruitment
M2-like macrophage differentiation

Breast cancer (45)

IL-6, SDF-1 production M2 macrophage differentiation Prostate cancer (50)
CCL-2 (MCP-1) production
! CCR2A/2B pathway activation

Monocyte recruitment for TAM
differentiation

Breast cancer (51, 52)

IL-6/STAT3 pathway activation Promotion of MDSC differentiation Pancreatic cancer (61)
IL-6/STAT3 activation ! IDO production↑ Induction of DC cell Hepatocellular carcinoma (66)
IL-6, STAT3, PD-L1 signaling pathway Activation of neutrophil

Impairment of T cell function
Hepatocellular carcinoma (67)

IL-6, GM-CSF production Induction of TAM infiltration Colon cancer (68)
IL-6, IL-8 production Attraction of monocyte recruitment for TAM

differentiation,
NK cell function inhibition

Colorectal cancer (70)

TGF-b production ! IL-4↑, IL-10↑, IL-12↓ ! PD-L1, HLA-
DR↑

M2 macrophage polarization Hepatocellular carcinoma (78, 79)

PD-L2, FASL engagement↑ Induction of CD8+ T cell death Lung cancer (81)
CXCL12 (SDF-1)-CXCR4 expression CD4+CD25+ T cell proliferation Breast cancer (82–84)
CXCL12 ! via B7H3, CD73, DPP4↑ Attraction of CD4+CD25+ T cell,

Increase T cell survival, differentiation
PD-L1(B7H1), B7DC expression
IL-6, CXCL8, TNF, TGFB1, VEGFA↑

Induction of T cell apoptosis and FOXP3+

Treg proliferation
Head and neck squamous
cancer

(85)

PGE2 production ! inhibition of NK receptor (NKp44,
NKp30), perforins, granzymes

Inhibition of NK cell function Melanoma (99, 100)

PGE2 expression, IDO production Suppression of NK cell activation Hepatocellular carcinoma (101, 102)
Notch1-induced VCAM1 expression Promotion of Neutrophil infiltration Ovarian, Lung carcinoma,

melanoma
(110)

FasL production ! Fas/FasL death signaling activation Suppression of CD8+ T cell Glioma (111)
TGF-b, IL-10 production,
via PD1/PD-L1 pathway

Attenuation of CD8+ T cell function Melanoma (112)

CLEVER-1/stabilin-1 production FOXP3+ Treg recruitment Hepatocellular carcinoma (114)
CCL-2 production ! IL-1b/CXCL12 activation Induction of macrophage recruitment Breast cancer (117)
PD-L1 expression Inhibition of CD8+ T cells Breast cancer (120)
IL-8 production Induction of Neutrophil recruitment Pancreatic ductal

adenocarcinoma
(122)

MSC TGF-b production Induction of Treg cell Breast cancer (125)
SDF-1/CXCR7 axis Induction of Breg cell Non-cancerous (126)
TNF-a production ! induction PD-L1↑ Suppression of CD8+ T cell Colon cancer (131)

Neutrophil IL-1b production ! MMP-9 activation EC activation ! metastasis ability↑ Pancreatic ductal
adenocarcinoma

(132–134)

Monocyte/
Macrophage

OPN production CAF proliferation
! promoting malignancy↑

Hepatocellular carcinoma (141)

Wnt7a expression ! Wnt/b-catenin signaling Myofibroblasts differentiation of MSC !
fibrosis↑

Non-cancer
(Pulmonary fibrosis)

(144)

miR-155-5p, 221-5p in MDE TEC proliferation
! promoting growth↑

Pancreatic ductal
adenocarcinoma

(147, 148)

NK cell VEGF, PIGF production HUVECs migration, formation↑
! tumor growth↑, angiogenesis↑

Non-small cell lung cancer (150)

Mast cell TGF-b production Myofibroblasts differentiation induction,
proliferation↑

Neurofibromas (154)

Tryptase production Promoting the transformation of prostate
ECs morphology

Prostate cancer (155)

IL-13, Tryptase production Stimulation of PSC proliferation Pancreatic ductal
adenocarcinoma

(156)
April 2022 | Volume 13 | A
CAFs, Cancer-associated fibroblasts; TECs, Tumor-endothelial cells; CAAs, Cancer-associated adipocytes; PSC, Pancreatic stellate cell; TAN, Tumor-associated neutrophil; CM,
Conditioned medium; EC, Endothelial cells; FasL, Fibroblast associated ligand; OPN, Osteopontin; MDE, Macrophage-derived exosomes; VEGF, Vascular endothelial growth factor; PIGF,
Placental growth factor; HUVEC, Human umbilical vein endothelial cells.
↑, increase; ↓, decrease.
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McAndrews et al. have demonstrated that depletion of aSMA+

CAFs is associated with increased Lgr5+ cancer stem cells and the
generation of an immunosuppressive TME with increased
frequency of Foxp3+ Treg cells and suppression of CD8+ T cells.
Thus, aSMA+ CAFs in CRC can promote an anti-tumor effect via
BMP4/TGF-b signaling (158). Interestingly, infiltrated CD8+ T cell
accumulation in non-small cell lung cancer with a high proportion
of fibroblasts is associated with the expression of CCL19 identified
in the lungs and tumors of patients (159). Fibroblasts expressing
CCL19 can form perivascular niches and promote the
accumulation of CD8+ T cells. These results can be proposed as
a new marker for immune tumor treatment by targeting CAFs that
produce CCL19 (159). A study by Kamata et al. using G12DKRAS
and V600EBRAF-driven mouse models that develop lung
adenocarcinoma and adenoma has confirmed that stanniocalcin1
secreted by tumor-associated fibroblasts can inhibit TAM
differentiation. The secreted stanniocalcin1 can inhibit TAM
differentiation by sequestering the binding of glucose regulatory
protein 94 (GRP94), an autocrine macrophage differentiation-
inducing factor, to the scavenger receptor (160).

A variety of cytokines have been shown to be either pro- or anti-
inflammatory depending on the cell type and disease model. IL-33
is an inflammatory cytokine released during necrotic cell death
(161). CAFs can release IL-33, induce metastasis via EMT, and
promote cell migration and invasion. In cancer immune response,
IL-33 exhibits both pro-tumoral functions and antitumor functions
(162). IL-33 can also induce IL-33 gene expression in HNSCC cells
through a positive feedback process (163). The production of IL-33
is responsible for the antitumor response as CD8+ T cell
infiltration. In a colon cancer model, IL-33 can increase
interferon (IFN)-g production by tumor-invasive CD4+ and
CD8+ T cells. This has been confirmed by the accumulation of
Frontiers in Immunology | www.frontiersin.org 871
infiltrated CD8+ T cells, which exerts an antitumor effect (164).
These results demonstrate the synergistic increase in IFN-g, and IL-
12 release, along with increases in proliferation, infiltration, and the
number of cytotoxic NK cells activated by IL-33 (165). IL-33
administered to a mouse breast cancer model can potently
suppress lung metastasis and increase the number of NK cells
recruited within the TME (166). Furthermore, it has been shown
that NK cell depletion in IL-33/ST2-deficient mice is associated
with tumor growth promotion (167).

Interestingly, inhibitor of kB kinase beta (IKKb)-depletion in
intestinal mesenchymal cells (IMCs) can decrease immune cells
infiltration and the expression of several pro-inflammatory
mediators. Supernatant of IKKb-depleted IMCs mouse model
also shows decreased secretion of chemokine MIP2, cytokines
IL-6, TNF, FOX2, and MMP9 in organ culture. Therefore, IKKb
in IMCs of inflammation-associated colorectal cancer might
have a tumor-suppressive effect (168).

Several studies have reported that the sirtuin 1 (SIRT1)
signaling pathway can regulate vascular inflammation. The role
and molecular interaction of SIRT1 and Toll-like receptor 2
(TLR2) in monocyte adhesion to the vascular endothelium have
been found to be important. These results suggest potential
therapeutic targets for a variety of vascular inflammation,
including atherosclerosis (169–171), although these results are
not about cancer. Recent studies have shown that extracellular
vesicles (EVs) derived from immune cells can perform various
roles in immune responses (172). EVs can deliver not only
proteins, but also biomolecules such as nucleic acids and lipids.
They play a very essential role in the cell-to-cell communication
process. Activated CD8+ T cells in a mouse model can temporarily
release cytotoxic EVs and prevent the progression, invasion, and
metastasis of fibroblast stroma-mediated tumors (173).
TABLE 2 | Anti-tumorigenic effect of the relationship between stromal cells and immune cells in TME.

Cell type Mediator Effect function Type of Tumor Ref.

CAF
TEC

Regulation of CTLA4 expression Balance of Teff/Treg ratio Pancreatic adenocarcinoma (157)
BMP/TGF-b signaling ! Lgr5+ CSCs↓ Suppression of FOXP3+ Treg

Induction of CD8+ T cell
Colorectal cancer (158)

CCL19 production Intratumoral accumulation of CD8+T cell
infiltration↑

Lung carcinoma (159)

STC1 production !
Inhibition of GRP94 binding on TAM

Inhibition of TAM differentiation Lung adenocarcinoma
Lung adenoma

(160)

IL-33 production ! IL-12↑, IFN-g↑ Promotion of CD8+ T cell infiltration Colon cancer (163, 164)
Induction of cytotoxic NK cell proliferation Breast cancer (165–167)

NF-kb-IKKb signaling in intestinal mesenchymal
cells (IMCs)

Induction of T cell infiltration Inflammation-associated colorectal
cancer

(168)

SIRT1/TLR2 interaction↑ ECs-monocyte adhesion
Inflammation↑

Non-cancer
(Vascular inflammation)

(170)

T cell Activated CD8+ T cell derived EVs CAF progression, invasion, and metastasis
inhibition

Pancreatic cancer (173)

Regulation of GSH/Cystine Metabolism in CAF Diminished fibroblast mediated platinum
resistance

Ovarian cancer (174)

DC Induction of TNF-a, IL-1b, IL-6, and IL-12p70 Fusion with CAF and induction of T cell
stimulation

Hepatoma (175)

NK cell DNAM-1 activation Suppression of EC and induction of NK cell
cytotoxicity

Multiple myeloma (176)
April 2022 | Volume 13 | A
CSCs, Cancer stem cells; CCL19, Chemokine (C-C motif) ligand 19; STC1, Stanniocalcin-1, GRP94, Glucose-regulated protein 94; IKK, Inhibitor of nuclear factor-kB kinase; SIRT1,
Sirtulin1; TLR2, Toll like receptor 2; EV, Extracellular vesicles; GSH, Glutathione.; DNAM1, DNAX accessory molecule (CD226).
↑, increase; ↓, decrease.
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In platinum-based chemotherapy for ovarian cancer cells,
IFN-g-producing CD8+ T cells show altered glutathione (GSH)/
cystine metabolism of fibroblasts and reduced fibroblast-
mediated platinum resistance (174). Thus, IFN-g-producing
CD8+ T cells can eliminate chemoresistance of ovarian tumors
and offer a combined treatment method that utilizes immune
and stromal cell relationships in cancer treatment. In addition to
effector T cells, other immune cells can also influence tumors by
controlling fibroblast function. Interestingly, when DCs as potent
FIGURE 1 | Dual role of stromal cells in the tumor microenvironment. Each stromal c
anti-tumorigenic role depending on the interaction with immune cells.
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APCs are fused with CAFs, they can stimulate T cells to attack
cancer cells. These DC/CAF fusion cells can produce TNF-a, IL-
1b, IL-6, and IL-12p70 and stimulate T cells to produce IFN-a
and IFN-g. T cells activated by the fusion of DCs and CAFs can
induce a strong cytotoxic T cell response that has emerged as a
new antitumor response through tumor growth inhibition (175).
A multiple myeloma study has analyzed the activity of cytokine-
stimulated NK cells on tumor-associated endothelial cells. IL15-
activated-NK cells can enhance the killing of multiple myeloma
ell developed in the tumor-specific microenvironment has a pro-tumorigenic or
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patient’s endothelial cells via DNAX accessory molecule 1
(DNAM-1) (176). Table 2 describes anti-tumorigenic effects of
various mediators in TME on the relationship between stromal
cells and immune cells. It is necessary to understand the
complexity between stromal cells and immune cells and
carefully consider their targeting and use in drug development
to overcome cancer treatment resistance.
CONCLUSIONS AND PROSPECTION

Early studies have focused on “tumor cells” to explain anticancer
drug resistance and progression of tumors by specific signaling
mechanisms, rather than heterogenic TME characteristics.
Successful cancer treatment strategies need to be developed
based on understanding the relationship between stromal cells
and immune cells in the TME. Recently, research on cancer cells
has continued to transition toward studying the network of
stromal cells and inflammatory immune cells in the TME.
Ultimately, the organic relationship between stromal cells and
immune cells present in the TME not only involves pro-
tumorigenic and anti-tumorigenic cells, but also shows a mixed
environment of these aspects in the TME (Figure 1).

Since the TME is heterogeneous, the relationship between
stromal cells and immune cells, which are components of the
TME, is complex. However, additional mechanisms that control
the interactions between immune cells and stromal cells in the
TME remain unknown. Therefore, rather than interpreting
a one-way relationship between two cells, it is necessary
Frontiers in Immunology | www.frontiersin.org 1073
to understand and approach two-way relationships. The
relationship between immune cells and stromal cells in the
TME merits further investigation.

In particular, the most interesting aspect of the two orientations
proposed in this review is the association of stromal cells with
immune cells in controlling tumor formation and development. The
network requires more attention when developing drugs that target
their relationships. Increasing the understanding of the network
between stromal cells and immune cells within the TME will
ultimately improve the development and efficacy of cancer
therapies. Finally, understanding the complex interactions
between stromal cells and immune cells within the TME is
necessary to identify potential strategies for cancer treatment.
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Recherche Médicale (INSERM),

France

*Correspondence:
Hyun Je Kim

hjkim0518@gmail.com
Woong-Yang Park

woongyang.park@samsung.com

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 17 January 2022
Accepted: 08 March 2022
Published: 07 April 2022

Citation:
Joo EH, Bae JH, Park J, Bang YJ,
Han J, Gulati N, Kim JI, Park CG,

Park WY and Kim HJ (2022)
Deconvolution of Adult T-Cell

Leukemia/Lymphoma With Single-Cell
RNA-Seq Using Frozen Archived Skin

Tissue Reveals New Subset of
Cancer-Associated Fibroblast.
Front. Immunol. 13:856363.

doi: 10.3389/fimmu.2022.856363

ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fimmu.2022.856363
Deconvolution of Adult T-Cell
Leukemia/Lymphoma With Single-
Cell RNA-Seq Using Frozen Archived
Skin Tissue Reveals New Subset of
Cancer-Associated Fibroblast
Eun-Hye Joo1,2†, Jai Hee Bae3†, Jihye Park3, Yoon Ji Bang4, Joseph Han5,
Nicholas Gulati 5, Jong-Il Kim6, Chung-Gyu Park4,7, Woong-Yang Park1,2*
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Adult T-cell Leukemia/Lymphoma (ATLL) is a rare aggressive T-cell malignancy caused by
human T-cell leukemia virus type 1 (HTLV-1) infection. However, little is known about the
underlying activated molecular pathways at the single cell level. Moreover, the intercellular
communications between the tumor microenvironment (TME) and tumor cells in this
malignancy are currently unknown. Difficulties in harvesting fresh tissue in a clinical setting
have hampered our deeper understanding of this malignancy. Herein, we examined ATLL
using archived fresh frozen tissue after biopsy using single-cell RNA sequencing (scRNA-
seq) with T-cell receptor (TCR) clonal analysis. Highly clonal tumor cells showed multiple
activating pathways, suggesting dynamic evolution of the malignancy. By dissecting
diverse cell types comprising the TME, we identified a novel subset of cancer-associated
fibroblast, which showed enriched epidermal growth factor receptor (EGFR)-related
transcripts including early growth response 1 and 2 (EGR1 and EGR2). Cancer
associated fibroblasts (CAFs) of ATLL play an important role for CD4 T-cell proliferation
via FGF7-FGF1 and PDGFA-PDGFRA/B signaling, and CAFs, particularly EGR-enriched,
are also associated with CD8 and NKT expansion by EGFR. These findings suggest a
potential targeted therapeutic pathway to better treat this neoplasm.

Keywords: adult T-cell leukemia/lymphoma, single-cell RNA-seq, cancer-associated fibroblast, frozen tissue,
epidermal growth factor receptor pathway
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INTRODUCTION

Adult T-cell Leukemia/Lymphoma (ATLL) is an aggressive
mature T-cell neoplasm caused by human T-cell leukemia virus
type 1 (HTLV-1) infection (1, 2). Since HTLV-1 infection is
endemic in southwestern Japan, ATLL has been mainly reported
in the same region (3, 4). Recent advances in next-generation
sequencing (NGS) technology have provided more detailed
information on the unique pathogenesis of ATLL compared to
other subtypes of peripheral T-cell lymphoma (PTCL) (5–7). Copy
number abnormalities (CNAs) of ATLL are comparable to the
PTCL-GATA3 subgroup (5), and gene expression profiling has
been used to define distinct diagnostic and prognostic subtypes of
PTCL (8). However, investigations using single-cell RNA
sequencing (scRNA-seq) technology with T-cell receptor (TCR)
clonal analysis have been lacking, making it difficult to understand
the dynamics of the immune response during ATLL progression.
HTLV-1 not only infects T-cells, but also various cell types
including B-cells, myeloid cells, and fibroblasts (9, 10).
Accordingly, the interaction with the tumor microenvironment
(TME) surrounding the neoplasm is important for its regulation
and growth. ScRNA-seq has provided a useful cell atlas to better
understand the intra-tumoral diversity of the TME and disease-
specific cellular crosstalk with malignant cells (11). In this study,
we used scRNA-seq and TCR clonal analysis to dissect the
malignant tumor cells and TME of ATLL. With this approach,
we were able to identify distinct T-cell subpopulations that likely
represent the malignant clones in ATLL via an integrated analysis
of the transcriptome and T-cell clonal repertoire. We also
examined non T-cell components of the ATLL TME including
myeloid cells and stromal cells, especially cancer associated
fibroblast (CAF) subtypes and their potential communications
with T-cells. In this study, we sought to identify a new possible
target for ATLL treatment, while also considering clonal
malignancy and their TME interactions.
2 METHODS

Patient Information
Human skin samples were obtained using remnants of biopsy
tissue taken for diagnostic purposes under an Institutional
Review Board (IRB)-approved protocol (IRB# 2020-03-060).
For this study, we used a fresh frozen tissue sample from a 69-
year-old man who presented to our clinic with newly developed
erythematous nodules of his bilateral axillae, inguinal areas, and
flexural surfaces of the arms. At the time of tissue profiling, he
had not been diagnosed nor underwent any treatment. The
samples were obtained by 4 mm skin punch biopsies of the
right axilla. In laboratory investigations, lactate dehydrogenase
(LDH) was elevated to 392 U/L (normal range <225 U/L) and
B2-microglobulin was elevated to 3.47 mg/mL (normal range <
2.4 mg/mL).

Tissue Collection and Dissociation
Specimens were placed in phosphate-buffered saline (PBS) on
ice. Biopsy samples were cryopreserved in optimal cutting
Frontiers in Immunology | www.frontiersin.org 280
temperature (OCT) compound and stored at -80°C. For cell
dissociation, cryopreserved tissue was thawed in a 37°C water
bath and transferred to freshly prepared dissociation solution
composed of 200 mL of Liberase TL (2 mg/mL; Sigma Aldrich)
and 1800 mL PBS, and incubated at 37°C for 15 min. The tissue
was manually disaggregated, using a 1 mL pipette with a wide
bore and gently pulling the solution up and down 10 times. The
cells were collected through a 70-mm cell strainer (#352340,
Corning) and stored on ice. The tissue was transferred to a
dissociation solution for a second round of dissociation as
noted above, followed by dissociation in Trypsin solution
(350 mL PBS, 50 mL 0.25% Trypsin). Cells were washed once
and re-suspended in 100 mL of freshly prepared PBS-bovine
serum albumin (BSA; 1 x PBS and 0.04% BSA) and processed on
the 10x Genomics platform.

Library Construction for Single
Cell Gene Expression and TCR
Profiling and NGS Sequencing
Single cell dissociates were loaded into the Chromium system
(10x Genomics, USA) to encapsulate into a single droplet
targeting approximately 25,000 cells. The Chromium Single
Cell 5’ Kit (10x Genomics, USA) was used to generate scRNA-
seq and TCR libraries, according to the manufacturer’s
instructions. Briefly, single Cell 5’ Kit enables the measurement
of gene expression and the immune repertoire from the same
cells, profiling the full-length of 5’ UTR and paired TCR
transcripts from individual cells. Chromium Controller™ splits
the cells into nano-scale Gel Beads-in-emulsion (GEM), where
barcoded cDNA was generated. The TCR library was constructed
by PCR amplification of GEM with TCR region specific primers,
whereas the gene expression library was made without V(D)J
segment amplification. Each library was loaded on a NovaSeq
6000 platform (Illumina, USA) with pair-end reads of 150 bp to
generate the sequencing data.

Data Processing
ScRNA-seq and TCR-seq data were pre-processed and aligned to
the human reference genome (GRCh38) using the CellRanger 4.0.0
pipeline (https://support.10xgenomics.com/single-cell-vdj/
software/pipelines/latest/what-is-cell-ranger). Raw sequence base
call (BCL) files were converted into FASTQ files using the
“mkfastq” command. For scRNA-seq, the “count” command was
used to align the reads to the genome, annotate with transcripts,
and count UMI with correction steps. For TCR-seq, the “vdj”
command was used to assemble the reads into contigs and
annotated with V, D and J segments and CDR3 regions. Gene
expression matrix from the CellRanger count was filtered,
normalized using the Seurat 3.1.4 in R 4.0.5 software (R
Foundation for Statistical Computing, Vienna, Austria) and
selected according to the following criteria: cells with >200 genes;
and <20% of mitochondrial gene expression in unique molecular
identifier (UMI) counts. We used “filtered_contig_annotations”
determined by Cell Ranger vdj, which contained the alpha chain,
beta chain and CDR3 nucleotide sequences by each barcode.
Following QC, scRNA-seq and TCR-seq data were merged on
the Seurat objects.
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Dimensionality Reduction, Clustering, and
Differential Expression Analysis
Dimensionality reduction and clustering were done as
recommended by the Seurat developers (12). Briefly, gene
expression counts were LogNormalized, 2,000 variable features
were selected and scaled to the expression level for Principal
Components Analysis (PCA). PCA allowed reduction of the high
variable gene expression data set into a low-dimensional space
for characterizing transcriptional profiles (13). Clustering was
performed using louvain algorithm based on PCs, and Uniform
Manifold Approximation and Projection (UMAP) was used to
visualize clustering results into two dimensions (14). Each cluster
was manually annotated with canonical cell type features.
Differentially expressed genes across the clusters were
performed using Model-based Analysis of Single-cell
Transcriptomics (MAST) test (15).

Copy Number Variation Analysis
To identify malignant tumor cells with chromosomal copy
number changes, we used inferCNV 1.6.0 (https://github.com/
broadinstitute/inferCNV). The raw gene expression data were
extracted from the Seurat object and public single-cell data
derived from a healthy donor (16) were included as a normal
control reference.

TCR Repertoire Analysis
We analyzed outputs of CellRanger vdj (10x Genomics) that
included the CDR3 sequences and clonotype of assembled alpha
and beta chains of TCR. We also analyzed the V-gene usage and
the frequency of both alpha and beta chains to investigate the
variation across the clonotype. Weblogo plots were generated
using WebLogo 3.7.4 (https://weblogo.berkeley.edu). Sequence
logos are a graphical representation for conservation of amino
acid sequence alignment and height of the symbol indicates the
relative frequency of each amino at that position.

Cell-Cell Interaction Analysis
To investigate the potential cell-cell communication between
ATLL T-cells and other cell types including stromal cells, we
applied CellChat 1.1.2 (https://github.com/sqjin/CellChat) (17)
with scRNA-seq data. CellChat inferred the potential cell-cell
ligand-receptor interaction between assigned cell types and
visualized into a diagram.

Resource Availability - Data and
Code Availability
10x Genomics peripheral blood mononuclear cells (PBMCs)
datasets from a healthy donor are available at the 10x
Genomics website (16).
RESULTS

Patient Characteristics
A 69-year-old man with a history of hypertension presented with
multiple erythematous papules and nodules of the bilateral axillae,
Frontiers in Immunology | www.frontiersin.org 381
inguinal areas, and flexural surfaces of the arms. At the 2-week
follow-up visit, the skin lesions had increased both in number and
size (Figure 1A). A biopsy of a palpable mass of the neck favored
T-cell lymphoma. Chest and abdominal computed tomography
showed bilateral neck as well as abdominal and pelvic lymph node
enlargement, suspicious for lymphoma involvement (Figure 1D).
Diagnostic bilateral bonemarrow biopsies were performed, and no
lymphoma was found. Positron emission tomography/computed
tomography done for staging was consistent with stage III
lymphoma. Skin biopsy showed dense infiltration of atypical
lymphocytes. Immunohistochemical studies demonstrated
predominance of CD4+ over CD8+ T cells, and CD30, CD20,
CD56, CD123 were all negative in the lymphocytic infiltrate
(Figure 1B). Lymphocytic component stained positive for Ki-67
in 95% of tumor cells. The patient was initially diagnosed with
peripheral T-cell lymphoma, not otherwise specified. After
discussion with the hematology/oncology team, the patient was
started on combination chemotherapy consisting of
cyclophosphamide, doxorubicin, vincristine, and prednisone.
After six courses of chemotherapy, the patient was free of new
skin lesion. The patient’s biopsy specimen of a neck lymph node
showed CD4+ and CD25+ non-cytotoxic mature T-cell
lymphoma (Figure 1C). Due to suspicion for ATLL, HTLV-1
polymerase chain reaction (PCR) was done, and the result was
positive. Thus, the patient ultimately received a diagnosis of ATLL.

Annotation of the Multiple Cell Types
Comprising ATLL Skin by scRNA-Seq
We performed scRNA-seq analysis to better investigate the
cellular composition of ATLL (Figure 2A). After filtering-out
for quality assessment, a total of 15,550 cells were obtained.
Unbiased clustering followed by UMAP dimension reduction
revealed 10 distinct cell clusters according to gene expression
pattern (Figure 2D). Each cluster was well characterized by the
transcriptional profile representing specific cell types. We
annotated cell type identity in each cluster with highly
expressed canonical markers (Figure 2B): CD3D for T-cells,
ALF1 and CD1C for macrophages and dendritic cells (DCs),
COL1A1 for fibroblasts, RGS5 for pericytes, VWF for endothelial
cells, SCGB1B2P for eccrine gland/duct cells, and DEFB1 and
KRT1 for keratinocytes. Among CD3D+ T-cells, we found the
following subtypes according to surface markers: CD4-/CD8- T-
cells (double negative, dnT), CD4+ T-cells, proliferating CD4+ T-
cells with TOP2A, and CD8+ T-cells. We found that 62% of
ATLL cells were T-cells (Figure 2C), suggesting significant
expansion of malignant T-cells as a characteristic of ATLL.
Other cell type proportions were as follows: 9% for
macrophages/DCs, 7% for fibroblasts, 14% for endothelial cells,
5% for pericytes, 2% for keratinocytes, and 1% for gland cells.

Heterogeneity of T-Cells and Tumor
Identification Within ATLL
To investigate the heterogeneity within T-cells, we sub-analyzed
9,625 T-cells and revealed 9 sub-clusters (Figure 3A). Each sub-
cluster was annotated based on relative expression of functional genes
related to immune status (Figure 3B). CD4+ T-cells were separated
into 3 sub-populations: CD4 effector memory T-cells (Tem)
April 2022 | Volume 13 | Article 856363
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expressing MAL and RORA (18) (Supplementary Figure S1), CD4
regulatory T-cells (Treg) expressing IL2RA, CCR4 and GATA3, and
proliferating T-cells expressing MKI67 and TOP2A (Supplementary
Figure S1). CD8 T-cells were separated into 3 sub-populations: CD8
naive T-cells expressing CCR7 and NOSIP with less expression of
effector genes compared to other CD8 T-cells, CD8 Tem expressing
cytotoxic effectors such as NKG7, GZMA, and GZMK, and CD8
exhausted T-cells expressing immune checkpoint genes such as
LAG3, CTLA4, TIGIT, and HAVCR2. NKT was identified by
CD3D, NKG7, GNLY, and KLRB1 expression. dnT-cells rarely
Frontiers in Immunology | www.frontiersin.org 482
expressed functional genes, whereas dnT proliferating cells mainly
expressed cell-cycle related genes such as STMN1, TOP2A, UBE2C,
and MKI67 (Supplementary Figure S1).

To differentiate the tumor and non-tumor immune cells, we
utilized the ESTIMATE (19) algorithm to compare predicted
immune proportion and tumor purity across T-cell subtypes
(Figure 3C, upper). CD4+ cells (CD4 Tem, CD4 Treg, and CD4
proliferating) and dnT-cells (dnT and dnT proliferating) showed
lower immune score but higher tumor purity compared to CD8
T-cells and NKT. Further, we computed module scores using
A B

C D

FIGURE 1 | Overview of a patient with adult T-cell leukemia/lymphoma involving skin and lymph node. (A) The patient’s skin lesions at first visit and 2 weeks after
the first visit, showing rapidly progressing erythematous papules and nodules of the left axilla. (B) Biopsy specimen of skin showing dense infiltration of atypical
lymphocytes with predominance of CD4+ over CD8+ T cells, and negative expression of CD30, CD20, CD56, and CD123. In situ hybridization of EBV was negative.
(C) Excisional biopsy specimen of neck lymph node demonstrating CD4+ and CD25+ non-cytotoxic mature T-cell lymphoma involvement. (D) Computed
tomography of chest, abdomen and pelvis showing abnormal lymph node enlargement (arrows) in the abdomen, pelvis, and bilateral neck, highly suspicious of
lymphoma involvement.
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previously suggested ATLL signatures by Sasaki (20) and Iqbal
(8) (Figure 3C, bottom). All three types of CD4+ T-cells and all
dnT-cell types exhibited marked scores for ATLL signatures, but
CD8+ T-cell types and NKT scored low, suggesting tumor
malignancy of ATLL is more associated with CD4+ and dnT-
cells than CD8+ and NKT cells.

Next, to evaluate the genomic variation within T-cells, we
used inferCNV to identify the copy number variation (CNV)
between each cell subtype with T-cells from a healthy donor as a
normal control (Figure 3D). CD4+ T-cells and dnT-cells were
found to have multiple chromosomal changes (gain of 1q, 2p, 7p,
17q, 18p and 18q, and loss of 6p, 7q, 13q, and 14q) compared to
Frontiers in Immunology | www.frontiersin.org 583
CD8+ T-cells, which suggests that CD4+ T-cells accumulated
more CNV abnormalities compared to normal T-cells. In a
previous genomic study, Heavican observed the same pattern
of CNV aberration mainly in GATA3 T-cell lymphoma (5).
Consequently, CD4+ T-cells and dnT-cells can be defined as a
malignant tumor within ATLL, based on transcriptomic
characteristics and either type of CNV abnormalities.

Single-Cell V(D)J Recombination
Repertoire Analysis of T-Cell Receptors
V(D)J recombination sequencing revealed clonally expanded T-
cell subtypes with scRNA-seq. We identified 3 largely expanded
A

C

D

B

FIGURE 2 | Single-cell transcriptomic analysis of ATLL. (A) UMAP plot for 15,550 skin cells clustered by unsupervised Seurat clustering and annotated with 10 cell
types. (B) Each cluster is identified by canonical cell type marker expression. (C) Proportion of each cell type in ATLL skin sample. (D) Dot-plot showing scaled
average gene expression of the top 5 differentially expressed genes in each cluster of (B).
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FIGURE 3 | Tumor identification within T-cell subpopulation. (A) UMAP of the 9,625 cell T-cell population reveals 9 distinct clusters. (B) Functional gene expression
of T-cell subtypes. (C) Estimated Immune Score and Tumor Purity of T-cell subtypes. (D) Heatmap of inferred copy number changes (infercnv) compared to T-cells
from healthy donors.
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clones (clonotypes 1, 2, and 3), which accounted for 53% of TCR-
expanded cells, and other polyclonal clones (clonotypes 4~1686)
by overlapping each clonotype onto UMAP plot of T-cells
(Figure 4A). Largely expanded clones were mainly detected in
CD4 Treg and proliferating T-cell populations, while polyclonal T-
cells were observed in CD8 naive, CD8 Tem, and CD8 Tex
populations (Figure 4B), suggesting that malignancy is
originating in the CD4 T-cell compartment. Further, variable
gene (V gene) usage in T-cell receptor alpha and beta (TRA and
TRB) showed that largely expanded clones had uniform
repertoires using the same V gene, TRAV9-2 for TRA of
clonotypes 1 and 3, and TRBV19 for TRB of clonotypes 1 and 2
(Figure 4C). We also analyzed the CDR3 amino acid sequence
conservation of TRA and TRB according to TCR clonality
(Figure 4D). In the case of TCRs in CD4 T-cells and dnT-cells,
sequence prevalence was strongly conserved to CALTGTASKLTF
Frontiers in Immunology | www.frontiersin.org 785
for TRA and CASSIGGLCGNTIYF for TRB. In the case of TCRs
in CD8 T-cells and NKT, there was no representative sequences
due to the variation in the middle of the sequence (5 to 10).
Gene Expression Profiles of
Clonally Expanded T-Cells and
Polyclonal T-Cells in ATLL
To investigate the transcriptomic differences between clonally
expanded T-cells and polyclonal T-cells, we analyzed
differentially expressed genes (DEGs) in ATLL T-cells compared
to healthy T-cells (Supplementary Figure S2). We discovered 117
genes up-regulated in T-cells from ATLL compared to T-cells
from a healthy donor (Supplementary Figure S2A). Up-regulated
genes in ATLL were related to metabolic pathways,
phosphorylation, cytokine production, cell differentiation, and
A

C D

B

FIGURE 4 | TCR analysis of T-cells of ATLL (A) TCR clonotype expansion within T-cells (B) Proportional expansion of each TCR clonotype within the different T-cell
subtypes (C) Composition of variable gene of TRA and TRB (D) Weblogo plot showing conserved amino acid sequence of TRA and TRB according to T-cell subtypes.
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growth factor stimuli, suggesting that ATLL is a metabolically
active cancer type. Down-regulated genes in ATLL were mainly
related to lymphocyte activation, immune system development,
and hematopoiesis, suggesting the loss of normal lymphocytic
differentiation (Supplementary Figure S2B). Among 117 ATLL-
specific DEGs, we identified 61 genes that were up-regulated in the
clonally expanded T-cell group, and 26 in the polyclonal T-cell
group (Table 1 and Supplementary Figure S2C). Clonally
expanded T-cells had up-regulation of genes related to
metabolism (ENO1 and PKM), immunity (CADM1),
differentiation (CITED1 and TCF4), oxidoreductase (PRDX1
and TECR) and ATLL pathways (CAV1, CD99 and PTHLH).
In contrast, polyclonal T-cells had up-regulation of genes related
to HTLV-1 infection (NFKBIA and EGR1), cytokine interaction
(CCL4 and IL2RG), apoptosis, and inflammatory response, as well
as genes down-regulated in angioimmunoblastic T-cell lymphoma
(AILT). Our finding of polyclonal T cells, and not clonal T cells,
showing a HTLV-1 infection signature suggests the role of HTLV-
1 infection in mediating the initial process of malignancy rather
than clonal expansion.

Heterogeneity of Myeloid Cells in ATLL
and Characterization of Tumor-Associated
Macrophages (TAMs)
Myeloid cells, including macrophages and DCs, are closely
associated with survival in T-cell lymphoma patients, and the
presence of TAMs has been used as a predictive biomarker (21).
We found a large proportion of myeloid cells in our ATLL
sample (1,181 of 15,550 total cells) and identified 4 subtypes
(Figure 5A, C): macrophages with FTL, proliferating
macrophages with STMN1, TAMs with MRC1 and MSR1, and
DCs with CD1C. Further, the computed TAM signature
suggested by Bagaev (22) was dominant in the TAM cluster of
ATLL (Figure 5B). TAMs of ATLL showed a distinct tumor-
associated gene expression signature, sharing innate immunity-
associated genes (C1QA, C1QB, and C1QC) with the
macrophage cluster (Figure 5D). Proliferating macrophages
exhibited depleted innate immunity gene expression. Instead,
NPM1, which is involved in non-Hodgkin lymphoma and acute
Frontiers in Immunology | www.frontiersin.org 886
myelogenous leukemia (23), and CCTs (CCT4, CCT5, and
CCT7) were up-regulated. DCs of ATLL showed a similar
transcriptional pattern to that of TAMs, and their correlation
was relatively high (Figure 5D and Supplementary Figure S3A).
The high expression of CD1C, CD14 and FCER1 suggests that
they are closely related to monocyte-derived DCs (moDCs) (24).
The expression of several cytokine genes (CD40, CXCR4 and
IL1RN) in DCs characterizes inflammatory DCs (iDCs) as well
(Supplementary Figure S3B). We observed that some of the
TAMs and DCs of ATLL exhibited inflammatory properties,
with moDCs sharing similar characteristics to TAMs.

Heterogeneity of Stromal Cells in ATLL
and Characterization of CAFs
Stromal cells, including fibroblasts and pericytes, play an
important role in cancer initiation and progression. Pericyte-
fibroblast transition has often been associated with tumor
invasion and metastasis (12). We analyzed 1,212 stromal cells
and identified two vascular cell subtypes, pericytes and vascular
smoothmuscle cells (vSMC) and two CAF subgroups (Figure 6A).
While all stromal cell types expressed COL1A1, only fibroblast cell
types expressed DCN, and only vascular cell types expressed RGS5
(Figure 6C). Both fibroblast cell types exhibited a CAF signature
(22) as seen in the UMAP of stromal cells (Figure 6B). Within the
CAF-related gene set, ACTA2, PDGFRB, and FN1 were not
associated with CAFs of ATLL (Figure 6D). Rather, LUM,
FBLN1, LRP1, COL5A1, MMP2, FAP, and PDGFRA were
strongly expressed only in CAFs of ATLL. Since MMP2 is
important for extracellular matrix digestion, we speculate that
tumor cells promote fibroblast to secret matrix digestion products
to facilitate metastasis. However, the cellular mechanism for how
the cancer cells regulate the gene expression pattern of other cell
types merits further investigation.

CAFs of ATLL were separated into two subgroups: CAF/
EGRhigh exhibited relatively higher expression of epidermal
growth response (EGR) genes such as EGR1, EGR2, EGR3, and
ICAM1, while CAF/EGRlow showed relatively lower expression of
these genes (Figure 6C). The CAF/EGRlow subgroup had relatively
increased expression of CAF-related genes compared to the CAF/
TABLE 1 | Differentially expressed genes in T-cells of ATLL compared to healthy donor.

Clonality Number of
unique genes

Functional category Gene symbols

CD4 and dn T-cell
(clonally expanded)

61 Metabolic NDUFV2, NME1, NME2, ADA, COX5A, ENO1, GAPDH, HPGDS, PKM,
RRM2, TYMS, TPI1

HTLV-1 infection RAN, SLC25A5
Immunity CADM1, HMGB1, HMGB2, ISG20, MIF, PTMS
Differentiation CITED1, NME1, CADM1, GTSF1, STMN1, TCF4
Oxido reductase NDUFV2, COX5A, GAPDH, PRDX1, PRDX3, RRM2, TECR
ATLL-related TYMS, TUBB, UBE2C, NME1, PRDX1, CD99, HMGB2, SLC25A46,

ISG20, HPGDS, CAV1, CADM1, PTHLH
CD8 and NKT
(polyclonal)

26 HTLV-1 infection FOS, NFKBIA, ZFP36, CREM, EGR1, IL2RG
Cytokine-cytokine receptor interaction CCL4, CXCR4, IL2RG
Apoptosis ARL6IP1, TNFAIP3, PPP1R15A, SRGN
Inflammatory response CCL4, TNFAIP3, ANXA1
Down-regulated genes in angioimmunoblastic
T-cell lymphoma (AILT)

PPP1R15A, TNFAIP3, ZFP36, FOSB, NR4A2, TSC22D3, RGCC,
CREM, YPEL5
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EGRhigh subgroup (Figures 6B, D), suggesting that the CAF/
EGRlow subgroup is the primary contributor to tumorigenesis
among the two CAF subgroups. Next, we analyzed DEGs between
the two CAF subgroups to characterize their functional
differences. Forty-two genes were up-regulated in the CAF/
EGRhigh subgroup, but none exceeded the cut-off in the CAF/
EGRlow subgroup (Figure 6E). We performed an enriched
signaling pathways analysis using the clusterProfiler package
(V3.18.1) (25) using up-regulated genes in CAF/EGRhigh. CAF/
EGRhigh was considered highly related to interleukin signaling
such as IL18, IL4, IL13, and IL6 (Figure 6F), suggesting that the
CAF/EGRhigh subgroup plays a key role in inflammatory
responses, cytokine induction, and proliferation of fibroblasts.

Cell-Cell Interactions Between T-Cells and
CAFs in ATLL Mediated by Growth Factors
To gain further insight into the potential interaction between T-
cells and CAFs of ATLL, we analyzed cell-cell interaction acting
through ligands and their suggested receptors. By analyzing the
types and expression level of known membrane-bound factors in
Frontiers in Immunology | www.frontiersin.org 987
each cell type, we can infer signaling crosstalk between the cell
types (17). We found that proliferating CD4 T-cell and CD4
Tregs abundantly expressed FGFR1 as a receptor for FGF7 from
stromal cells (Figure 7A, left). Additionally, proliferating CD4 T-
cells strongly expressed PDGFA as a cognate ligand of PDGFRA
and PDGFRB, which were abundantly expressed on CAFs and
pericytes (Figure 7A, right). For NKT and CD8 naive T-cells,
there was abundant expression of AREG (amphiregulin), and
CAF/EGRhigh exclusively expressed EGFR as a cognate receptor
of AREG (Figure 7B). Potential communications between T-
cells and CAFs suggest that CD4 T-cell expansion is closely
affected by CAF activity mediated by FGFR1. Moreover, both
CD4 T-cells and CD8 T-cells contribute to CAF development
through distinct signaling pathways.

Further, we focused on the canonical genes involved in FGFR
signaling and its downstream pathways such as PI3K-AKT-
mTOR, IKK, PDK1-PKN, NFkB and JAK-STAT signaling in
different T-cell subtypes (Figure 7C). ATLL-related genes were
up-regulated in both CD4 T-cells dnT-cells, but receptor tyrosine
kinases (RTKs) such as IGF1R, KDR (VEGFR), and FGFR1 were
A

C D

B

FIGURE 5 | Identification of tumor-associated macrophages (TAMs) in ATLL (A) Subtypes of myeloid cells (B) TAM score calculated with the gene set suggested by
Bagaev (17) within myeloid cells (C) Cell-type markers of myeloid cells (D) Top DEGs of myeloid cell subtypes.
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mainly expressed in CD4 T-cells. Also, RTKs demonstrated a
potential network with up-regulated genes of clonally expanded
T-cells in Table 1 (Supplementary Figure S4). PI3K-AKT-
mTOR signaling genes, which are frequently up-regulated in
lymphomas including ATLL, were primarily up-regulated in
CD4 Tem and CD4 proliferating T-cells. However, NFkB and
JAK-STAT signaling genes were up-regulated in CD8 T-cells and
NKT. Since ATLL is thought to originate primarily from CD4 T
Frontiers in Immunology | www.frontiersin.org 1088
cells, we posit that IGF1R, KDR (VEGFR), and FGFR1 may serve
as potential therapeutic targets for future treatments of ATLL.
DISCUSSION

In this study, we propose new therapeutic targets for this rare,
aggressive malignancy using clinically feasible sample archiving,
A
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B

FIGURE 6 | Identification of CAFs in ATLL (A) Subtypes of stromal cells (B) CAF score calculated with the gene set suggested by Bagaev (17) within stromal cells
(C) Cell-type markers of stromal cells (D) Scaled gene expression related to CAFs (E) Volcano plot showing DEGs of CAF subgroups (F) Enriched pathway of CAF/
EGRhigh subtype.
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processing, profiling, and analysis pipelines. Indeed, majority of
investigators using RNAseq consider fresh frozen tissue to not be
suitable for single ‘cell’ gene expression profiling with TCR
analysis given the technical difficulty of the experiments.
However, we successfully profiled more than 10,000 cells from
metabolically active skin tumors that were vulnerable to tissue
processing with the 10X Genomics platform.
Frontiers in Immunology | www.frontiersin.org 1189
ATLL is typically characterized by proliferation of CD4+
and CD25+ T-cells since HTLV-1 mainly infects CD4+ T cells
and induces proliferation of this cell subset (1). Clonal
proliferation contributes to increasing the number of HTLV-
1-infected cells and thus development of ATLL (26), and a
recent study demonstrated a strong correlation between the
clonality pattern and tumor progression (27). In the patient
A

C

B

FIGURE 7 | Cell-cell interactions within ATLL (A) FGF and PDGF signaling between CD4 T-cells and CAFs (B) EGF and AREG signaling between CD8 T-cells and
CAF/EGRhigh (C) Signaling pathways in T-cell subpopulations.
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studied herein, we observed the malignant clonal expansion of
CD4+ cells.

Themolecular features ofATLL aremostly induced byHTLV-1
infection (28). HTLV-1 induced Th2/Treg-related chemokine
receptor CCR4 is frequently expressed in ATLL (2, 29).
Moreover, CCR4 is known as a GATA3 target gene that is
responsible for FOXP3 expression and controlling Treg function
(30). In malignancy, CCR4-expressing Treg interacts with CCL17
andCCL22-secreting tumorcells,with resultant impairmentofhost
antitumor immunity (31). Increase of CCR4 on the cell surface
activates the PI3K/AKT signaling pathway to promote cell survival
(26, 32). In this context, the anti-CCR4 monoclonal antibody
mogamulizumab is already approved in Japan for ATLL
treatment. However, there are concerns that mogamulizumab
could induce adverse events, and that immunological statuses of
patients may also affect treatment outcome (33). Therefore,
alternative drug targets for ATLL are needed and are undergoing
active investigation (Supplementary Table 1).

HTLV-1 Tax protein can infect and transform not only T-cells,
but also various cell types including epithelial cells and fibroblasts
(28, 34). In this regard, the microenvironment may contribute to
survival and drug response of ATLL. Little is known about the role
of stromal cells in ATLL, whereas in Hodgkin lymphoma (HL), it
is suggested that the secretion of extracellular vesicles from HL
changes the phenotype of fibroblasts to support tumor growth
(35). In the case of T-cell lymphoma and leukemia, FGFR fusion
genes are frequently found (36). During cancer progression, FGFR
mediates crosstalk of CAFs with cancer cells and related target
signaling pathways (37). Moreover, as a transmembrane growth
factor, FGFR can activate the PI3K/AKT pathway that is closely
related to ATLL (38).

In this study, we observed that the clonally expandedmalignant
tumor cells inATLL areCD4T-cells through scRNA-seq combined
with TCR clonal analysis. We also identified the characteristics of
CAFs within ATLL, including minimal expression of ACTA2 and
PDGFRB, but high expression of FAP and PDGFRA. In particular,
we identified a novel subgroup of CAFs characterized by high
expression of EGR genes that may play an important role in the
conditioning of the TME. We found that malignant T-cells and
CAFs contribute to each other bidirectionally in ATLL, with CAFs
promoting the clonal expansion of CD4 T-cells mediated by FGF7-
FGFR1 signaling, and proliferating CD4 T-cells contributing to the
growth of CAFs via PDGFA-PDGFRA/PDGFRB signaling.
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Supplementary Figure 1 | Functional gene expression of T-cell subtypes.

Supplementary Figure 2 | Differentially expressed gene (DEG) analysis of T-cells
of ATLL compared to healthy donors (A) Volcano plot represents ATLL-specific
DEGs. Cut-off of p-value < 0.05 and Log2 fold-change value > 1. (B)Gene ontology
terms enriched in ATLL are highly related to tumor metabolic process. (C) Diagram
of DEG analysis steps for clonal-specific gene expression within T-cells of ATLL.

Supplementary Figure 3 | Characteristics of DC in ATLL (A) Correlation plot
showing correlation coefficient between each myeloid cell type using variable
feature genes (Spearman's rank correlation coefficient of TAM between DC = 0.51).
(B) Expression level of inflammatory genes in DC.

Supplementary Figure 4 | Network of FGFR-related tyrosine kinase inhibitor
(TKI) target genes between ATLL marker genes.

Supplementary Table 1 | Candidates of precision medicine.
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The presence of functionally efficient cytotoxic T lymphocytes (CTL) in the Tumour nest is
crucial in mediating a successful immune response to cancer. The detection and
elimination of cancer cells by CTL can be impaired by cancer-mediated immune
evasion. In recent years, it has become increasingly clear that not only neoplastic cells
themselves, but also cel ls of the tumour microenvironment (TME) exert
immunosuppressive functions and thereby play an integral part in the immune escape
of cancer. The most abundant stromal cells of the TME, cancer associated fibroblasts
(CAFs), promote tumour progression via multiple pathways and play a role in dampening
the immune response to cancer. Recent research indicates that T cells react to CAF
signalling and establish bidirectional crosstalk that plays a significant role in the tumour
immune response. This review discusses the various mechanisms by which the CAF/T cell
crosstalk may impede anti-cancer immunity.

Keywords: cancer-associated fibroblast (CAF), T cell exhaustion, targeting CAFs, mechanisms of immune evasion,
tumour microenvironment
INTRODUCTION

The tumour stroma plays a critical role in shaping the immune landscape in cancer. The most
abundant stromal cells of the TME are cancer- associated fibroblasts (CAFs). Fibroblasts are
typically activated during wound healing and revert to their quiescent state after exerting their
function. However, in cancer, they remain perpetually activated by a number of factors including the
presence of cancer cells, as indicated by their expression of activation markers [e.g., a smooth
muscle actin (aSMA), fibroblast activation protein (FAP)] and promote tumour progression via
multiple pathways. CAFs secrete angiogenic factors [e.g. vascular endothelial growth factor
(VEGF)], factors degrading the basal membrane [matrix metallopeptidases (MMPs)], which
promotes metastasis, and even alter their metabolic profile to produce energy metabolites
(lactate, pyruvate) useful for cancer cells (“reverse Warburg effect”) (1). Furthermore, a growing
body of research shows that CAFs are implicated in cancer immunotherapy failure across cancer
types, and inhibiting CAFs revives the antitumour immune response in preclinical studies (2, 3).

CAFs employ immunosuppressive functions that involve various immune cells and stages of
antitumoral immunity. In this review, we aim to establish a framework to understand the part CAFs
play in inhibiting an efficient T cell response. An efficient T cell response relies on a number of
org April 2022 | Volume 13 | Article 887380192
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orchestrated steps involving many cell types in the TME and results
in cancer cell killing by cytotoxic T cells. In an ideal scenario,
antigen presenting cells (APCs) present tumour antigen to naive T
cells within tumour draining lymph nodes, inciting their activation,
differentiation into cytotoxic T cells and travel to the tumour site.
Here supported by a Th-1 mediated response of CD4+ T helper
cells, primed activated cytotoxic T cells recognize their cognate
antigen on the surface of cancer cells leading to clonal expansion of
tumour specific effector T cells. This is followed by secretion of
cytotoxic granules containing perforin and granzymes and killing of
target cells in an antigen directed manner (4, 5). Successful T cell
infiltration and the immune landscape of the TME are determining
factors in the failure or success of the anti-cancer response.
HOW CAN CAFs BE CLASSIFIED?

Various cell types can give rise to CAFs if exposed to environmental
triggers such as TGF-b, platelet derived growth factor (PDGF) and
fibroblast growth factor (FGF) (6). The absence of lineage markers
such as cytokeratin and CD31 helps identify fibroblasts and while
there is no specific marker to stringently differentiate CAFs from
fibroblasts in adjacent non-cancerous tissue, CAFs typically show
enhanced expression of surface markers aSMA, fibroblast specific
protein (FSP), PDGF and FAP (6).

It is now widely recognised that CAFs display high
heterogeneity (7, 8). Known activation markers of CAFs have
been investigated by multiple groups and found to display
difference expression levels within different CAFs, which have
been characterised as subtypes (9–11). Common markers used to
distinguish these subtypes include FAP, CD29, aSMA, podoplanin
(PDPN) and platelet-derived growth factor receptor beta
(PDGFRb). The subtypes are defined by the expression levels of
these markers, as no single specific marker for CAFs exists (12).
Studies have defined subtypes of CAFs present in cancers such as
breast cancer, ovarian cancer and pancreatic cancer. The markers
used to define these CAF subsets are shown in Table 1.

The most notable subsets investigated are the CAF-S1 and
CAF-S4 as they have been found to be associated with cancer cell
invasion and poor prognosis in breast cancer (10, 13). CAF-S1
were found to promote cancer cell migration and epithelial-
mesenchymal transition (EMT) by the CXCL12 and TGFb
pathways whereas CAF-S4 were found to promote cancer cell
Frontiers in Immunology | www.frontiersin.org 293
invasion, particularly in three-dimensional models through
NOTCH signalling. These more aggressive subsets of CAFs
show the utility of being able to identify the level of
heterogeneity within patient CAFs to determine which
treatment mechanisms will be effective and to predict prognosis.

Studies have shown that these different CAF subtypes also play
different roles in immunosuppression, and these roles would be a
consideration when designing new therapies (7, 14). Illustrating
the magnitude of differences between CAF subtypes, Costa et al.
showCAF S1 (CD29Med FAPHi FSP1Low-HiaSMAHi PDGFRbMed-Hi

CAV1Low) promotes the activation and differentiation of CD25+ T
cells to FoxP3+ Treg, whereas CAF S4 (CD29Hi FAPNeg FSP1Low-Med

aSMAHi PDGFRbLow-Med CAV1Neg-Low) does not, even though both
are aSMAhigh and could therefore be classified as CAFs.
Significant differences in their inhibitory capacity were also
seen regarding cytokine production and migration of T cells
(10). Therefore, merely identifying CAFs by their expression of
e.g., aSMA, might include CAF subtypes with very different
functions in the TME. In fact, amore recent study further divided
Costa et al.’s CAF S1 subtype into 8 clusters based on single cell
RNA sequencing of 19000 CAF S1 breast cancer fibroblasts. Two
of those clusters were associated with immunomodulation, one
of which also promoted FoxP3+ T cell frequency within
CD4+CD25+ T cells whereas others did not, further highlighting
the heterogeneity of the population (15).

In some tumours, such as neuroblastoma, certain
mesenchymal stromal cells also harbour immunomodulatory
properties, and while these also express the potential fibroblast
marker CD90 it is not known whether they align with a specific
CAF subtype found in other types of cancer (16).

CAF heterogeneity poses a challenge in CAF research, as
separate studies use different classifications for CAF subsets
illustrating the need for a unified approach. Considering
different CAF classifications in the current literature, we do not
restrict this review to a specific subcategory of CAF.
HOW DO CAFs RESTRICT T
CELL MIGRATION?

ECM and Stromal Density
The immune landscape of cancer is classified in three distinct
immunophenotypes. Inflamed, “hot” (1), tumours are
TABLE 1 | Definitions of CAF subsets identified in breast, ovarian and pancreatic cancer showing the differences in classifications.

CAF Subset Origin Markers Reference

CAF-S1 Breast cancer FAPHigh, CD29Med-High, aSMAHigh, PDPNHigh, PDGFRbHigh Costa et al. (10)
CAF-S2 FAPNeg, CD29Low, aSMANeg-Low, PDPNLow, PDGFRbLow

CAF-S3 FAPNeg-Low, CD29Med, aSMANeg-Low, PDPNLow, PDGFRbLow-Med

CAF-S4 FAPLow-Med, CD29High, aSMAHigh, PDPNLow, PDGFRbMed

CAF-S1 Ovarian Cancer CD29Med-High, FAPHigh, aSMAMed-High, FSP1Med-High, PDGFRbMed-High, CAV1Low Kanzaki and Pietras (8)
CAF-S2 CD29Low, FAPNeg, aSMANeg-Low, FSP-1Neg-Low, PDGFRbNeg-Low, CAV1Neg

CAF-S3 CD29Med, FAPLow, aSMALow, FSP1Med-High, PDGFRbMed, CAV1Neg-Low

CAF-S4 CD29High, FAPLow, aSMAHigh, FSP1High, PDGFRbMed-High, CAV1Neg-Low

myCAF Pancreatic Cancer aSMAHigh, IL-6Low Öhlund et al. (11)
iCAF aSMALow, IL-6High
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characterised by T cell infiltration and associated with enhanced
response to checkpoint inhibition (17). It is well understood that
the infiltration of cytotoxic T cells into the tumour nest is a
prerequisite for T cell mediated killing of cancer cells (18). As a
result, “cold” tumours are associated with poor response to
checkpoint inhibition and a failed immune response. Here,
CD8+ T cells are either absent [“deserted” (2)] or do not
effectively infiltrate the tumour islands, as they are either
restricted to the invasive margins or the stromal regions of the
tumour, unable to be in physical contact with cancer cells
[“excluded” (3)]. Factors determining the immunophenotype
of a tumour include tumour mutational burden (TMB) and
MHCI expression and recent research indicates a crucial role of
CAFs (19).

Main mechanisms of CAF mediated effects on T cells are
depicted in Figure 1. One mechanism of CAF mediated
Frontiers in Immunology | www.frontiersin.org 394
immunotherapy failure is the CAF-induced increase in ECM
density. Firstly, this results in reduced drug penetration of the
tumour tissue (1). Secondly, the tight matrix and increased
interstitial fluid pressure in CAF rich stroma can also promote
T cell exclusion from the tumour nest. Salmon et al. used live cell
imaging to investigate the localisation and migration of T cells in
tumours. Fluorescently dyed freshly isolated TILs were added on
top of human lung tumour slices in vitro. Added TILs
accumulated at 5x higher numbers in the tumour stroma
compared to tumour islets and travelled along linear tracks
parallel to stromal fibres. They further showed that T cell
counts were negatively correlated with ECM density and that
fibronectin rich regions, such as areas immediately surrounding
tumour islets, inhibited T cell motility (38). Interestingly, Blair
et al. report that pharmacologically degrading stromal
hyaluronan resulted in an increase in effector memory CD8+
A
B

C

D

E

F

G

H

FIGURE 1 | Mechanisms of CAF mediated T cell inhibition. (A) Factors including TGF-b and ECM promote the development of CAFs in the TME of solid tumours. A
dense network of CAF secreted ECM restricts T cell mobility and entry of CD8+ T cells to the tumour nest (1). (B) CXCL12 secreted by CAFs binds to CXCR4 on T
cells and likely contributes to T cell restriction to the tumour stroma (20–22). (C) CAFs limit T cell proliferation by factors including PGE2, TGF-b, VEGF and NO (23–27).
(D) One study suggests CAF secreted TGF-b promotes differentiation of naive CD4+ T cells into FOXP3+Tregs (28). (E) CAFs inhibit dendritic cell (DC) differentiation
and maturation and thereby limit T cell priming (7, 29). Additionally CAFs upregulate SPRY1 in T cells associated with reduced activation and downregulate CD107,
and cause a reduction in secretion of Granzyme B and TNF-a. Opposing studies report an increase or decrease of IFN-g secretion by T cells (7, 30–32). (F) CAFs
upregulate exhaustion markers PD1, Lag3, TIGIT, Tim3and CD39 on T cells (via e.g. PGE2 and TGF-b) and T cells upregulate PD-L1 and PD-L2 expression on CAFs
via IFN-g and TNF-a (15, 22, 23, 33–36). (G) CAFs promote apoptosis of T cells via high levels of FASL and PDL2 expression and upregulation of FAS and PD1 on
T cells (35). (H) CAFs upregulate CD39 on T cells and T cell secreted IFN-g and TNF-a upregulate CD73 expression on CAFs, which could potentially increase the
production of immunosuppressive Adenosine (37). Created with BioRender.com.
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TIL and improved antitumour immunity in a murine model of
pancreatic ductal adenocarcinoma (39).

Multiple studies have reported reduced CTL infiltration in
CAF rich tumours compared to their CAF low counterparts (33,
40). For example, Kato et al. report CD8+ T cells to be located in
peritumoral rather than intratumoral tissue in CAF-rich
oesophageal cancer, while in CAF-low tumours, CD8+ T cells
were found to be distributed across both sites (40).

CAFs expressing high levels of FAP and aSMA are
prominently implicated in CD8+ T cell exclusion. In line with
Salmons study, Gorchs et al. describe dense stroma surrounding
tumour nests in pancreatic cancer and report that these areas
express aSMA (23). Gene analysis of CAFs and normal
fibroblasts (NF) in ovarian cancer showed nine differentially
expressed genes linked to CD8+ T cell infiltration. The upstream
regulator of three of the genes, preselin1 (PS1), co-localises with
CAF activation markers FAP and aSMA and was associated with
low TIL counts. PS1 silencing reduced the expression of FAP and
aSMA on CAFs and reduced tumour burden in an ovarian
tumour mouse model via increased CTL infiltration, indicating
that PS1 has a significant role in CAF mediated T cell exclusion
from the tumour nest, likely upstream via promoting CAF
activation (41). Using a whole tumour cell vaccine genetically
modified to express FAP in a murine model of melanoma and
lung cancer, resulted in reduced tumour growth and prolonged
survival that was dependent on enhanced CD8+ TIL infiltration.
This effect was significantly higher than that of unmodified
whole tumour cell vaccine and was attributed to directly
inhibiting CAFs, as it resulted in reduced FAP – and collagen
type I expression in these tumours (2).

Ford et al. investigated how CAFs confer immune checkpoint
inhibition (ICI) resistance using CAF rich murine tumour
models. They previously reported that the downstream target
of TGF-b1, NADPH oxidase 4 (NOX4), which generates reactive
oxygen species (ROS), can regulate fibroblast differentiation
into myofibroblasts (42). Using single cell RNA sequencing,
NOX4 expression was correlated to CAF markers including
FAP, Thy1, decorin, and collagen type I and VI (43). Targeting
NOX4 in murine models of CAF rich tumours (either by
silencing or pharmacologically inhibition) suppressed the TGF-b
mediated differentiation into myofibroblasts and additionally
downregulated functional markers including aSMA and
collagen 1 of fully differentiated CAFs resulting in a more
“quiescent” state and a rescued CD8+ TIL response by
redistribution of CD8+ T cells into the tumour (33). These
studies suggest that the activation of CAFs and the resulting
increased synthesis of matrix components such as hyaluronan
are implicated in CTL exclusion. Pharmacologically targeting
CAFs to reduce ECM density could improve T cell trafficking to
the tumour nest which could increase efficacy of checkpoint
inhibition therapy as well as improving drug penetration of
agents that directly target cancer cells.

Fibroblastic reticular cells (FRCs) employ chemotactic
strategies to modulate T cell trafficking in the healthy lymph
node by expression of lymphocyte attractants CCL19 and CCL21
which bind to CCR7 on naïve T cells (34). Similarly, in cancer,
Frontiers in Immunology | www.frontiersin.org 495
aside from the physical restrictions of dense ECM, it has come to
light that CAFs secrete factors which directly influence T cell
migration and function in the TME. The best characterised of
these mechanisms is the CXCL12-CXCR4 chemokine axis which
contributes to CTL exclusion. CXCL12, produced by FAP+CAFs
in the TME binds to its receptor CXCR4, expressed by T cells,
thereby trapping TIL in the tumour stroma and restricting their
access to tumour areas containing cancer cells (20). Feig et al.
demonstrated the significance of this pathway in a pancreatic
ductal adenocarcinoma mouse model by showing that inhibition
of CXCR4 caused a redistribution of T cells within the tumour
tissue, improved CTL activity and decelerated tumour growth
(21). Notably first clinical data shows CXCR4 inhibition in
human pancreatic ductal adenocarcinoma also increased CD8+

T cell infiltration into the tumour (44).
Another factor attenuating CD8 T cell infiltration is

Fibroblast growth factor-b (FGF2) a cytokine released by
cancer cells that activates quiescent fibroblasts and upregulates
CAF marker expression like aSMA and FAP (45). In a mouse
model of pulmonary metastasis inhibition of FGF Receptor
signalling resulted in a dose dependent increase in CD8 T cell
infiltration and significantly delayed tumour growth.
Mechanistically, gene expression data of urothelial carcinoma
cells treated with a different FGFR inhibitor revealed FGFR
inhibited T cell chemoattractant CXCL16 and CD8 T cell
infiltration and effects were attributed to inhibiting FGFR on
cancer cells. CAFs were not investigated in this study but it could
be hypothesised that the delay in tumour growth and increase in
CD8+ T cell infiltration could be partly mediated by a negative
regulation of CAFs via FGFR inhibition (46).

Production of TGF-b by CAFs also suppresses anti-tumour
immunity. CAFs produce significantly more TGF-b than normal
fibroblasts from non-cancerous tissue and TGF-b is particularly
high in immunosuppressive PDPNhigh CAFs (47, 48). Similarly,
single cell sequencing of breast cancer fibroblasts, identified a
subtype of CAFs expressing high levels of TGF-b which
correlates with resistance to immunotherapy (15).

Recently, Desbois et al. demonstrated, using a combined
IHC and transcriptome analysis approach of a large ovarian
cancer cohort, that a key hallmark defining T cell excluding
tumours is the upregulation of TGF-b and activated stroma.
Mechanistically, the majority of TGF-b elicited changes in the
transcriptional programme consists of ECM related genes,
glycoproteins, and reactive stroma markers, reinforcing the
idea that the main mechanism of T cell exclusion is ultimately
the establishment of a physical barrier by activated stroma (49).
Similarly, TGF-b plays a significant role in urothelial cancer,
where blocking TGF-b allowed T cell entry to the centre of the
tumour, followed by tumour regression (50). Furthermore,
Desbois et al. described that while immune deserted tumours
had a slightly lower neoantigen load, they did not differ from
infiltrated tumours in neoantigen load or TMB. Rather the main
difference, was a downregulation of antigen presenting genes and
low MHC-I expression mainly in the tumour compartment.
While deserted tumours had overall low MHC-I and infiltrated
tumours showed strong homogenous MHC-I on tumour cells, it
April 2022 | Volume 13 | Article 887380
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seems T cells were trapped in the MHC-I expressing stroma (49).
While cancer cells downregulate MHC-I to avoid CTL killing,
Phipps et al. have seen an upregulation of MHC-I on CAFs in
response to IFN-g and in line with this we have seen the same
effect induced by activated T cells (37, 51). It could be postulated
that this is an additional mechanism of retaining passing T
cells in FAP+ CAF rich stroma on their way to the tumour
nest. Furthermore, gene expression analysis of TGF-b
activated fibroblasts shows upregulation of genes encoding
immunomodulatory cytokines IL11, TNF-AIP6 and IL-6 (49).
CAFs produce significantly more IL-6 than normal fibroblasts
and thereby promote epithelial to mesenchymal transition in
NSCLC (52). Interactions of CAFs with cancer cells additionally
results in a dramatic increase in IL-6 production in vitro (53).
Notably, FRC derived IL-6 is known to be able to affect the fate of
T cells during T cell priming in the lymph node suggesting this as
a possible mode of T cell modulation by CAFs in cancer (34).
Interestingly, high IL-6 secretion is significantly associated with a
particularly immunosuppressive FAP+ CAF phenotype (CAF S1)
in breast cancer and a dominant feature of an inflammatory CAF
phenotype in pancreatic ductal adenocarcinoma (10, 11). Single
cell RNA sequencing of this inflammatory CAF subtype showed
upregulation of other inflammatory pathways including IFN-g,
TNF and NFKb. Notably hyaluronan synthases as well as matrix
proteins were specific to this subset, suggesting this subset is
active in producing dense extracellular matrix (54). Ohno et al.
report that IL-6 deficient mice showed significantly decreased
tumour growth of colon cancer compared to wildtype mice. This
observation co-occurred with increased numbers of IFN-g
producing T cells, increased PDL1 and MHC1 expression on
cancer cells and was dependent on CD8+ T cells (55). Using a
colon cancer mouse model, Kato et al. showed that co-
transferring fibroblasts together with cancer cells resulted in
slightly increased tumour growth in immunodeficient nude
mice, and that this effect was more pronounced in
immunocompetent mice, suggesting CAFs support tumour
growth via modulating the immune response. Notably, they
established that CD8+T cell exclusion caused by CAFs was
dependent on IL-6, as tumours regularly injected with IL-6
mirrored the effects of CAFs and IL-6 blockade caused a
significant shift in the TIL population from FoxP3+ to CD8+ T
cells (40). Additionally, blocking IL-6 together with PD1-PDL1
blockade caused a significantly improved T cell response (56).
Similarly, co-administering TGF-b antibody and anti-PDL1 in a
mouse model of urothelial cancer caused a reduction in TGF-b
signalling in stroma and allowed T cell infiltration into the
tumour centre, suggesting that these two cytokines secreted by
CAFs might offer targets to relieve the immunosuppressive
effects of CAFs on immune cells and promote efficacy of ICI (50).

Multiple studies have shown that CAF high tumours have low
CD8 T cell infiltration, while Treg infiltration is actually
increased in these tumours indicating that active stroma may
affect cytotoxic T cells and Treg differently. A recent in vitro
study modelling matrix stiffness in a 3D culture system, offers
some insight into possible underlying mechanisms, and reports
that the viability of CD4+ T cells exceeded that of CD8+ T cells in
ECM with high rigidity, which could indicate that CD8+ T cells
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are more sensitive to mechanical pressure (57). Further studies
are needed to understand the specific mechanisms by which
CAFs selectively exclude CTL and promote Treg.
WHAT HAPPENS TO T CELLS IN
THE STROMA?

CAFs Inhibit T Cell Proliferation
As T cells are sequestered in the tumour stroma, their phenotype
and function are directly affected by the influence of surrounding
CAFs. Multiple in vitro studies show that the presence of CAFs
significantly reduces the proliferation of both CD4+ and CD8+ T
cells in a contact-independent manner, suggesting this as a possible
explanation for reduced TIL frequencies in CAF high tumours (23–
27). In fact, using a pancreatic cancer cell line, Gorchs et al.
demonstrate that CAFs have higher inhibitory potential on T cell
proliferation than cancer cells do (23). In terms of the underlying
mechanisms, multiple factors have been reported to mediate this
inhibition, such as CAF-derived prostaglandin E2 (23). and AKT3,
a protein kinase with a role in immunosuppressive activity of CAFs
(58). Having established that PS1 is an upstream regulator of genes
differentially expressed in CAFs compared to normal fibroblasts
and a factor promoting CAF expression of the activation markers
FAP and aSMA, Zhang et al. report that silencing PS1 reversed the
anti-proliferative effects of CAFs on T cells (41). Takahashi et al.
investigated PD-L1 and PD-L2, co-inhibitory ligands expressed by
a subset of CAFs which inhibit T cell activation and - function via
PD-1 binding. The authors report that blocking PD-L1 and PD-L2
normalised T cell proliferation and additionally, a similar effect was
shown by neutralising CAF-secreted VEGF and TGF-b, possibly
due to a loss of the CAF stimulating effect of these signals (24).
Conversely, Gorchs et al. see no significant changes in proliferation
following TGF-b blocking (23). It is important to consider that
study designs varied in terms of cancer type and model and that
CAFs comprise a particularly heterogenous population of cells and
without further discrimination of their specific phenotype, results
are likely to vary. Cremasco et al. looked into nitric oxide (NO)
production by CAFs as a mechanism of inhibiting T cell
proliferation in cancer, as this has been found to be a mechanism
employed by FRCs after sensing T cell secreted IFN-g and TNF-a
to limit their proliferation in the healthy lymph node. Underlining
the functional heterogeneity of CAFs, they report a similar
mechanism in breast cancer where PDPN+ CAFs significantly
inhibited the proliferation of CD4+ and CD8+ T cells in co-
culture via production of NO while PDPN- CAFs do not (34,
59). More drastically, CAFs can limit the cytotoxic T cell pool by
inducing apoptosis in CD8 T cells via FAS ligand and PD-L2
engagement (35).
DO CAFs TRULY DRIVE REGULATORY T
CELL DIFFERENTIATION?

While restricting CD8+ T cell infiltration, recent research
indicates that specific CAF subtypes can selectively attract and
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retain CD4+ CD25+ T cells (15). Tumours high in FAP+CAFs are
positively associated with an increase in FoxP3+ Treg infiltration
(40, 60–62). Notably, Givel et al. report that mesenchymal high-
grade serous ovarian cancer which is associated with poor survival
showed high stromal density of fibroblasts and an enrichment for
the CAF-S1 subtype, which was associated with a significant
increase in FOXP3+ cells compared to tumours enriched with
CAF-S4 fibroblasts. This was attributed to high expression of the
CXCL12b isoform of this subtype, as in vitro functional
experiments showed an increased migration of CD4+CD25+ T
cells, but not CD4+CD25- T cells in the presence of CAF-S1 that
was dependent on CXCL12b. In addition to the enhanced
attraction of CD4+CD25+ T cells, co-culture of CAF-S1
fibroblasts and CD4+CD25+ T cells demonstrated an increase in
CD25+FOXP3+ T cells and enhanced their survival in a contact
dependent manner (9) Similarly, in breast cancer, the above
mentioned immunosuppressive CAF S1 subtype correlates with
an increase in FOXP3+ regulatory T cells. In vitro co-culture of
CAF S1 and T cells revealed a shift towards FOXP3+ Tregs that
was dependent on immune checkpoint molecules B7H3, CD73 as
well as DPP4, a membrane bound enzyme closely related to FAP
that is known to cleave the effector T cell chemoattractant
CXCL10 (10). Furthermore, multiple studies report an
increased frequency of FOXP3+ cells after co-culture of PBMCs
from healthy donors with CAFs compared to normal fibroblasts.
This shift has previously been attributed to CAFs driving Treg
differentiation, could however also result from differences in
proliferation amongst FOXP3+ cells and other T cells or
increased survival of existent Tregs rather than an induction of
FOXP3 amongst naïve T cells (23, 24). Notably however,
Kinoshita et al. exposed purified naïve conventional CD4+ T
cells (CD4+25-CD45RA+) from healthy donor PBMCs to
supernatant from CAFs from Treg-high lung tumours and did
see a significant increase in FOXP3+ cells compared to
supernatant from CAFs from Treg-low tumours that was
mirrored by treatment with TGF-b suggesting true induction of
Tregs via CAF secreted TGF-b (28). Furthermore, a
murine fibroblast cell line transfected with FAP induced the
differentiation of primary cultured murine splenocytes to
CD4+CD25+T cells, however the frequency of FOXP3+ amongst
this pool is not reported and mediating factors are unknown (63).

Notably, when exposing stimulated T cells to CAFs,
differentiation into effector- (CD45RA-CCR7-) and central
(CD45RA-CCR7+) – memory T cells amongst proliferating T
cells is significantly reduced. Instead a larger pool of T cells
remains in their naïve state (CD45RA+CCR7+) (23). In addition
to possibly promoting regulatory T cells, TGF-b could also
negatively affect cytotoxic T cell differentiation, as a recent
study on oral squamous cell carcinoma illustrates the
significance of TGF-b in attenuating the cell cycle of CTL,
inhibiting their proliferation during effector phase as well as
their differentiation into TEM, promoting apoptosis induction,
and ultimately causing a decrease in the CD8+ T cell/Treg ratio
(64). In line with this, inhibiting TGF-b in a mouse model of
pancreatic cancer in combination with gemcitabine caused an
increase in naïve Treg markers (CD62L, CCR7) and
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downregulation of markers associated with an effector/memory
Treg phenotype. Additionally, inhibiting TGF-b caused a
reduction of Treg-mediated suppression of CD8+ T cells. This
suggests that TGF-b could promote the development of effector
memory Tregs with suppressive activity against CTL, further
highlighting the role of TGF-b in indirectly impairing CTL
function in cancer (30). To conclude, CAFs could potentially
mediate induction of Tregs and suppress memory T cells,
however, current evidence is not conclusive.

CAFs Attenuate T Cell Activation and
Prevent Effective T Cell Priming
In the lymph node, FRCs upregulate immunostimulatory factors
(ICOS ligand, CD40 and IL-6) in response to signals from
activated T cells which enhances IL-2 and TNF-a production
by activated CD8 T cells. Conversely, in cancer, some studies
indicate that CAFs reduce CTL activation. The presence of
melanoma CAFs during CD8+T cell activation reduces the
percentage of cells exhibiting the early T cell activation marker
CD69. Additionally, in PBMCs co-culture, CAFs promote an
increase in cytokines typical for Tregs, such as IL-10 and TGF-b
in line with their positive influence on Treg differentiation, and
thereby add to the consequent anti-inflammatory environment.
In fact, when pre-exposed to the CAF subtype CAF-S1,
CD25HighCD127lowCD45RAlow T cells increased the ability to
inhibit the proliferation of effector T cells. CAFs thereby equip
Tregs with increased suppressive activity against effector T
cells (10).

It has been shown that CAFs also affect other immune cells in
the TME and mediate T cell suppression indirectly [reviewed (7)].
For example, DCs conditioned with supernatant of CAFs, induce
a TH2 cytokine response from CD4+ T cells during co-culture
(29). Additionally, CAFs have recently been shown to suppress
DC differentiation, maturation and enhance CD11c+ inhibitory
phenotypes ultimately inhibiting CD8+ T cell priming, likely via
the WNT catenin signalling pathway (31) Furthermore, CAFs
interact with tumour-associated macrophages (TAMs) in a
reciprocal fashion, promoting the development of an M2 TAM
phenotype with pro-tumour functions such as expression of PD1-
ligands which ultimately impairs cytotoxic T cell function
[reviewed (65, 66)]. Consequently, CAFs might reduce CTL
activation directly as well as indirectly, either via modulation of
the environment or through the modulation of their interaction
with other immune cells.

A recent study in oesophageal cancer shines some light on
how CAFs facilitate inhibition of T cell activation. In response to
FGFR signalling by aSMA+

fibroblasts, T cells upregulate the
FGF2 antagonist SPRY1. SPRY1 reduces NfKB, NFAT, Ras
MAPK signalling and limits T cell activation. FGF2 causes a
significant reduction of IFN-g, TNF-a and granzyme B
production by in vitro stimulated CD8 T cells and decreased
their efficiency in killing target cancer cells (67). Similarly, a
subset of FGF2+ CAFs that secrete WNT2 are correlated with a
high ratio of Foxp3+CD4+ T cells/CD4+ T cells and show reduced
ratio of IFN-g producing CD8+ T cells (31). Additionally, using a
mouse model of systemic infection, Shehata et al. have shown
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that T cells negative for SPRY1 have enhanced survival (32).
Furthermore, compared to NF, CAFs express higher levels of
FASL, and additionally upregulate FAS expression on TIL,
leading to the suppression of CTL activity (35). Notably,
research suggests that CAFs also mediate suppression of CTL
cytotoxicity via decreasing the expression of CD107a as well as
granzyme B in T cells (22, 23, 68). Similarly, low expression of
overall CXCR4 in tissue slides of pancreatic cancer was
significantly associated with increased granzyme A and
perforin, marking cytotoxic capacity of CTL. This highlights
potentially increased T cell cytotoxicity when they are not
attracted and retained to the stroma via the CXCR4-CXCL12
axis (39). In line with this, Zhang et al. report that silencing PS1,
which as indicated above reduces FAP and aSMA expression on
CAFs, causes an increase in the activity of CTL, here shown in an
increased IFN-g release (41). Other studies also report reduced
levels of TH1 cytokines in the presence of CAFs (60). Using a 3D
scaffold in vitro model of breast cancer, Phan-Lai et al. observed
CAF-mediated suppression of TNF-a release by tumour reactive
T cells (69). Again, reduced CXCR4 gene expression was also
correlated with improved IL-17a cytokine production by
CD8+TIL, likely due to increased CTL infiltration, and increase
IFN-g levels amongst isolated CD8+TIL (39). A recent study by
Li et al. showed TGF-b inhibition caused a temporary shift from
myCAF, which were located tightly around the tumour islands to
iCAF which were loosely connected interspersed. Inhibiting
TGF-b in combination with gemcitabine, caused an increase in
IFN-g production by CD8+ T cells as well as increased T cell
activation markers 4-1BB (CD137) and OX40 and markers of
cytotoxicity (granzyme and perforin) (30).

However, while Nazareth et al. report a suppressive effect of
CAFs on T cell activation in 3/8 NSCLC tumours, in the other
five tumours, CAFs surprisingly produced IFN-g, and induced
the activation of T cells, which increased their response to TCR
stimulation, a phenomenon that could be partially reversed by
TGF-b (47). Interestingly, a study by Barnas et al. revealed that
fibroblasts from lung tumours, non-cancerous lung tissue or
even skin fibroblasts increased the secretion of IFN-g and IL-17
by lung cancer TILs (70). This effect was only observed in the
presence of activation stimuli and was in part mediated by a
common CAF cytokine, IL-6, which was in turn increased by T
cell conditioned media (70). The authors therefore attribute
CAFs an immunostimulatory role in the TME. Similarly, we
saw increased T cell production of IFN-g in co-culture with
CAFs. IFN-g from T cells in turn, together with TNF-a,
upregulates MHC I and - II on CAFs and in line with Barnas
et al., increased CAF-production of IL-6 (37). While IFN-g does
activate cytotoxic T cells, it also negatively regulates TILs by
upregulating PD1 ligand expression on CAFs and promoting
production of IDO, (71). and therefore might not be purely
immunostimulatory in this context. Additionally, T cells induce
IL-27 secretion by CAFs, which again promotes PD1 ligand
expression as well as inducing Tim3 expression and IL10
production by T cells (72). At the same time, IL-27 signalling
supports granzyme B expression and proliferation of cytotoxic T
cells, illustrating that CAFs may not rigidly act as either
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immunosuppressive- or stimulatory, but rather adjust their
immunomodulatory activity depending on the extent of the T
cell response (73).

T Cells Find CAFs Tiring
As a final barrier to T cells that have overcome these hurdles,
CAFs dampen the remaining CTL response to cancer cells by
promoting the development of functionally exhausted CTL
through the upregulation of co-IR expression. As a
physiological regulatory mechanism to limit T cell cytotoxicity,
T cell exhaustion is characterised by a progressive loss of effector
function, expression of multiple co-IR and a common
transcriptional and epigenetic program (36). Given that CAFs
co-localise with PD-1+TIL in pancreatic cancer (23), researchers
have investigated the effect of CAFs on the expression of other
co-IR on TIL. Indeed, CAFs upregulate expression of Tim3,
CTLA4, Lag-3 on both CD4+ and CD8+ TIL (23, 33, 35).
Moreover, melanoma derived CAFs elicit TIGIT and BTLA
expression in CD8+T lymphocytes, mediated via l-arginase
(22). Deletion of stromal cells via targeting FAP using a
vaccine significantly lowered PD-1 levels in preclinical models
of melanoma (74). The underlying mechanisms are not fully
understood; however, first reports show that Tim-3 and PD-1
upregulation was enabled by CAF derived PGE2 (23).
Remarkably, in response to the T cell cytokine IFN-g, CAFs
react with an upregulation of PD-L1 and -2 expression (37, 47).

In a recent study investigating the modulation of phenotype and
function of TIL by CAFs in NSCLC, in addition to upregulated PD-
1 and TIM3, our group also observed an upregulated expression of
CD39 on T cells when co-cultured with CAFs, that was mediated
via TGFb (37). Another co-IR, CTLA-4, is involved in adhesion and
migration of T cells. In their murine models, Ford et al. saw an
increase in CTLA-4 expression amongst CD8+TIL in CAF rich
tumours using RNA sequencing and flow cytometry.
Immunohistochemistry of human HNSCC tumours confirmed
CTLA4 expression of on average 15.3% of excluded CD8+T cells.
Blocking CTLA-4 in their murine lung tumour model increased
CD8+T cell infiltration and reduced tumour growth (33). Taken
together, these studies demonstrate that CAFs promote the
progression of an exhausted phenotype of cytotoxic T cells.
DO CAF- T CELL INTERACTIONS AFFECT
ADENOSINE LEVELS?

An area of interest in CAF mediated immunosuppression, with a
promising therapeutic target, is their role in the production of
adenosine. Adenosine signals via P1 receptors on immune cells
and exerts immunosuppressive functions. It is produced by
hydrolysis of pro-inflammatory extracellular ATP (eATP), via
the cell-surface enzyme CD39, into adenosine monophosphate
(AMP), which is further converted into adenosine by CD73 (75).
Expression of CD39 and P1 receptors is typically upregulated in
response to tissue damage, tissue remodelling, hypoxia/oxidative
stress and chronic inflammation as a means to protect the
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surrounding tissue from immune-mediated tissue damage. In
recent years, it has become evident that CD39 is also expressed in
the often chronic inflammatory, hypoxic environment of
tumours. In cancer, adenosine has detrimental effects, as it
promotes tumour growth and progression via suppressing the
immune response. It enhances the immunosuppressive effects of
tumour associated macrophages (TAM), myeloid derived
suppressor cells (MDSC) and regulatory T cells while
dampening immunostimulatory effects of neutrophils, NK cells
and inhibits T cell priming by inhibiting the activation of
dendritic cells (DCs) (75). Furthermore, reduction of available
eATP and intracellular accumulation of cAMP in CTL
significantly impairs their effector function.

We have recently shown that CAFs upregulate expression of
CD39 on T cells and in turn, T cells upregulate CD73 expression
on CAFs (37). They could thereby establish a feedforward loop to
sustain adenosine in the TME, that is sensitive to the extent of T
cell infiltration sustaining a local immunosuppressive
environment. CD39 can also be expressed by CAFs, and
upregulated, much like other CAF immunosuppressive factors
(TGF-b, ARG, IDO, CXCL12, PGE2, PD-L1), during hypoxic
stress (76). CAFs could therefore theoretically produce adenosine
from ATP on their own, however, it has previously been shown
that mesenchymal stromal cells are able to produce significantly
more adenosine in the presence of activated CD39+ T cells than
each cell type alone and additionally upregulate CD73 expression
on CD4+ T cells (77). A recent study reported CD73 expression
in the TME is mainly attributed to CAFs, as 75-90% of CD73
immunofluorescence staining of human colorectal cancer tissues
was found on aSMA+cells (78). Interestingly, in the previously
mentioned study by Costa et al., CD73 expression was
particularly high in the highly immunosuppressive CAF S1
subset (10), which further implies that CD73 activity
contributes to CAF mediated immunosuppression in the TME.
Notably, Yu et al. demonstrate that the levels of adenosine in the
TME regulates CD73 expression on CAFs via A2B receptors on
CAFs in a feedforward loop amplifying immunosuppression in
the presence of adenosine (78). CD73 expression levels are also
affected by the cytokine milieu of the TME. A previous study has
shown that IL-6 can upregulate CD73 on nasopharyngeal cancer
cells (79), and Hu et al. reported similar observations for the
effect of IL-6 on CD73 expression on gd T cells (80). Importantly,
they report that CD73+gd T cells can in turn promote IL-6
production by CAFS. In line with this observation, Barnas et al.
saw a synergistic increase in IL-6 production when activated T
cells were co-cultured with CAFs derived from human NSCLC
tumours (70). Furthermore, TGF-b, which is expressed more in
CAFs compared to NF (24). has been shown to sustain CD73
expression on T cells (81). and promote IL-6 production by
pericytes in NSCLC (82). IL-6 and IL27 are key factors in
upregulating CD39 expression on TILs (83–85). IL-27 is
prevalent in the TME and notably, our group has shown that
the presence of TIL elicit IL-27 secretion by CAFs (37). And
while we saw an upregulation of CD39 on T cells in the presence
of CAFs, we found this was dependent on TGF-b. These studies
suggest that in response to tumour infiltrating T cells, CAFs
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might promote the upregulation of factors needed for adenosine
production in a complex interplay of IL-6, IL27, TGF-b and
CD39 and CD73.
DO CAFs DIRECTLY INTERACT WITH TIL?

As discussed above, CAF inhibitory effects can be mediated via
soluble factors (23, 24, 26, 70). However, since TIL and CAFs
colocalize in the tumour stroma, researchers have been curious
as to whether they engage in direct cell-cell interactions. Indeed,
CAFs have been shown to have the ability to uptake, process and
present antigen via MHCII, thereby further increasing their
potential to interact with TIL (54). Furthermore, using the
antigen ovalbumin, Lakins et al. show CAFs were similarly
efficient in processing antigen as FRCs, however unlike FRCs
and normal fibroblasts, CAFs displayed delayed endosome
mediated processing, like APCs, resulting in enhanced cross-
presentation to T cells (35). Notably, CD74, involved in the
formation of MHC II, is highly expressed on iCAF, a subcluster
of CAF-S1, which is unlike the other subclusters ecm-myCAF
and TGF-b-myCAF not associated with immune modulation
(15). It remains to be seen whether the ability to present antigen
via MHCII is a general CAF trait or if it is reserved for
immunosuppressive CAFs. CAF-S1 additionally increase their
contact with TIL by expressing the PD-1 co-IR ligands PD-L1
(47). and PD-L2 (10, 35, 47), the adhesion molecule JAM2, and
OX40L (10), which have been confirmed to co-localise with
CD4+CD25+ TIL in breast cancer (10). In fact, the presence of
TIL increases the expression of MHC I and MHC II on CAFs, as
well as their expression of PDL1 and PDL2, possibly in an effort
to increase their interaction with TIL (37). Additionally, CAFs
interact with other immune cell types which ultimately also
affects TILs. Rodriguez recently uncovered a role of CAFs in the
establishment of tertiary lymphoid structures (TLS), lymphoid
formations in the tumour microenvironment that share
similarities with secondary lymphoid organs and are correlated
to enhanced survival and response to immunotherapies. Via
secretion of CXCL13, CAFs drive expansion of tumour
associated TLS by attracting B cells with the cognate receptor
CXCR5. It is furthermore important to consider the stage of
tumour progression as the immune landscape is highly dynamic
and recent research shows three distinct functionally diverse
stromal populations at different timepoints over the course of
tumour progression. These three clusters, identified by single cell
sequencing of CD31- stromal cells of murine melanoma tumours
sampled at different time points, differed in combined expression
of mesenchymal markers and pathways indicating their function
including cytokine, chemokines, complement and genes
regulating ECM. All three populations were present in all
timepoints, however dynamic differences were observed
regarding the dominant stromal cluster. Cluster S1, described
as “immune” stromal cells, were found early in tumour
progression and showed high CXCL12 levels suggesting this
might be a driver of early CAF T cell interaction during
tumour progression. Similarly, S1 had high CD34 expression
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with recruitment of macrophages via direct crosstalk of C3 and
C3aR and low expression of aSMA, whereas the aSMAhigh

Cluster S3 dominated later stage tumours and consisted of
“contractile” stromal cells with high expression of genes
regulating actin (86).

Targeting CAFs
Various strategies have been employed to target characteristics of
immunosuppressive CAFs such as high FAP expression.
(Figure 2). CAFs offer a good CAR T cell target as they have
powerful multifaceted protumour effects and are more
genetically stable than cancer cells. Multiple studies report FAP
specific CAR-T cells cause an inhibition of tumour growth in
multiple mouse models that was dependent on the immune
Frontiers in Immunology | www.frontiersin.org 9100
response (87). and mediated mainly via the CD8+ T cell response
(88) (Figure 2A). However, an earlier study by Roberts et al
demonstrated that systemic FAP ablation in mice can also have
severe adverse effects as it is not only expressed in tumour
environments but rather in most tissues of the mouse
including skeletal muscle and adipose tissue. Ablation of FAP
expressing cells resulted in cachexia and a reduction of
erythropoiesis, suggesting that FAP+ cells in healthy tissues
contribute to essential physiological functions (89). Using a
nanoparticle-based photoimmunotherapy method, Zhen et al.
conjugated a FAP specific antibody to the nanoparticle ferritin
that using photoirradiation allowed local, direct and selective
elimination of FAP+ CAFs leading to tumour suppression in
mice. While this treatment had minimal direct effect on cancer
FIGURE 2 | Exploiting CAF markers to selectively target CAFs and the TME. (A) Directly targeting CAFs using FAP specific CAR T cells results in reduced tumour
growth depending on increased CD8 T cell responses (81, 82). (B) A FAP specific single chain variable fragment conjugated to ferritin (Z@FRT-scFv) allows nanoparticle
based photoimmunotherapy of CAFs resulting in tumour suppression via ECM, CXCL12 reduction and CD8 T cell infiltration (84). (C, D) Expression of FAP can be
exploited to selectively deliver co-stimulatory agents [CD40 (87), 4-1BBL (88)] to the TME thereby avoiding systemic toxicity. Created with BioRender.com.
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cells, it led to a reduction of serum levels of IL-6 and EGF, known
CAF secreted factors and reduced tumour growth was
mediated by a reduction of CXCL12 and destruction of ECM
(90) (Figure 2B).

It is unknown whether targeting CAFs affects their beneficial
functions such as TLS formation. Again, CAF heterogeneity
must be considered, as TLS formation is driven by FAP- CAFs
suggesting that targeting FAP may not interfere with this
beneficial function of CAFs (91). It is currently unknown
whether depleting FAP affects TLS formation in tumours but a
murine model of autoimmune disease demonstrated that genetic
depletion of FAP abolishes TLS formation (92).

In addition to inhibiting FAP, the fact that FAP is restricted to
the tumour tissue has been exploited to specifically deliver
therapies to the TME. As such, FAP has been used as a co-
target to deliver the T cell co-stimulatory 4-1BB ligand selectively
to the tumour thereby circumventing systemic side effects of 4-
1BB ligand such as cytokine release syndrome (93) (Figure 2D).
Similarly a ligand for a different co-stimulatory receptor CD40
was linked to a bispecific FAP antibody to ensure activation of
CD40 was only induced around FAP-expressing cells in an
experimental model of murine head and neck cancer that
synergised with radiotherapy causing tumour regression and
long term survival (94) (Figure 2C).

The above evidence suggests that while targeting FAP
systemically in mice can have severe adverse effects preclinical
studies show that local inhibition of FAP in the TME of tumour
bearing mice can be a potent therapeutic tool to allow
redistribution of CD8 T cells into the tumour. This illustrates
the need for further investigation into underlying mechanisms
and suggests that FAP might offer an attractive target to locally
modulate immune responses in cancer.
CONCLUSION

In conclusion, it has become evident that CAFs significantly
impede effective cytotoxic T cell immunity across cancer types.
Current knowledge paints the picture that the TME establishes
an environment, that promotes the development of hyperactive
fibroblasts, CAFs, that perpetually secrete ECM thereby
producing a dense web of collagen with high interstitial
pressure to protect cancer cells from infiltrating T cells. T cells
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are trapped in the stroma, physically and via chemokines (e.g.
CXCL12), CTLA4 and MHC expression, where they are in
bidirectional crosstalk with CAFs. This results in reduced
proliferation, activation, and differentiation of cytotoxic T cells
in an environment that instead nurtures immunosuppressive
cells. The reduced number of cytotoxic T cells that do remain are
incapacitated by upregulation of co-IR, while their presence
causes CAFs to upregulate the corresponding ligands, likely to
limit their residual function further.

CAFs affect a multitude of changes in T cell biology, and it
seems T cells in turn elicit changes in CAF secretome and surface
marker expression. These feedback mechanisms highlight the
complex bidirectional crosstalk between CAFs and TILs,
illustrating the need for further investigation. However,
variable definitions of CAFs and their subtypes remain a
challenge in the field as they cause a lack of comparability
between studies. Increased understanding of CAF subtypes and
whether they are found across cancer types is key to disentangle
CAF – TIL interactions. The significant role of CAFs in all steps
of the tumour immunity cycle as well as the fact that CAF
inhibition resulting in delayed tumour growth was entirely
dependent on CTL, underscore that CAFs might present a
target to relieve environmental pressures on cytotoxic T cells
to increase the efficacy of therapies aimed to revive the cytotoxic
T cell response.
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Over the past few decades, basic studies aimed at curing patients with cancer have been
constantly evolving. A myriad of mechanistic studies on physiological changes and related
factors in tumor growth and metastasis have been reported. Recently, several studies
have been considerate to how tumors adapt to unfavorable environments, such as
glucose deprivation, oxidative stress, hypoxic conditions, and immune responses.
Tumors attempt to adapt to unfavorable environments with genetic or non-genetic
changes, the alteration of metabolic signals, or the reconfiguration of their environment
through migration to other organs. One of the distinct features in solid tumors is
heterogeneity because their environments vary due to the characteristics of colony
growth. For this reason, researchers are paying attention to the communication
between growing tumors and neighboring environments, including stromal cells,
immune cells, fibroblasts, and secreted molecules, such as proteins and RNAs. During
cancer survival and progression, tumor cells undergo phenotype and molecular changes
collectively referred to as cellular plasticity, which result from microenvironment signals,
genetics and epigenetic alterations thereby contributing to tumor heterogeneity and
therapy response. In this review, we herein discuss the adaptation process of tumors
to adverse environments via communication with neighboring cells for overcoming
unfavorable growth conditions. Understanding the physiology of these tumors and their
communication with the tumor environment can help to develop promising tumor
treatment strategies.

Keywords: tumor microenvironment, stromal cell, metastasis, tumor heterogeneity, extracellular matrix
INTRODUCTION

Understanding of the physiology of solid tumors has changed significantly over the past 30 years.
Cancer research has typically focused on the growth and inhibition of primary tumors, but recently
more research has focused on the growth and malignancy of tumors through their genetic and non-
genetic modification (1, 2). Primary tumors are exposed to various stressful environments, such as
oxidative stress, hypoxia, and acidosis, with rapid growth, thereby accelerating their heterogeneity
(3, 4). This not only changes the metabolism or genetic modification of the tumor, but also changes
org May 2022 | Volume 13 | Article 8827181105
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the neighboring tumor microenvironment (TME). Conversely,
stimulation of the TME promotes changes in tumor
development and aggressiveness (Figure 1). For this reason, it
is necessary to understand communication between tumors and
the TME, which includes blood vessels, immune cells, fibroblasts,
stromal cells, the extracellular matrix (ECM), and secreted
molecules that exist around primary tumors. In this mini-
review, we briefly summarize how the interplay between
tumors and the TME impacts tumor cell physiology and
adaptation for overcoming unfavorable environments.
EXTRACELLULAR MATRIX

The ECM is a complex ecosystem of various components, such as
fibrous proteins (collagen and elastin) or glycoproteins
(fibronectin 1, laminins, and tenascin), proteoglycans
(chondroitin sulfate and heparan sulfate), and polysaccharides,
Frontiers in Immunology | www.frontiersin.org 2106
which includes several growth factors and creates rigid
interactions with cancer cells in the TME (5). In the TME, the
ECM functions as a framework for the tumor cells and plays an
active role in tumor progression, particularly as a vital mediator
of invasive processes (6). The ECM performs a tumor-
suppressing role in healthy tissues, but it performs a tumor-
promoting role in solid tumors. However, numerous effective
components in tumor-stimulating roles in the ECM are
produced in the TME (7, 8), and they affect cancer cells during
interconnection with integrins (9). According to Glasner et al.
(10), INF-g released from intratumoral natural killer (NK) cells
alter primary tumor structure by induction offibronectin 1 in the
tumors resulting in restriction of metastases formation. Regulate
cancer metastasis formation through stimulating the tumor
structure by regulating fibronectin 1 secretion, which is a key
component of the ECM. ECM proteins can be formed by
numerous stromal cell types and tumor cells, while cancer-
associated fibroblasts (CAFs) are a major source for synthesis,
FIGURE 1 | Intra-tumor heterogeneity by extrinsic or intrinsic factors. The modifications of cancer cells such as genetic, epigenetic alterations, and microenvironment
perturbations. CSCs show an induced EMT system, which mostly exhibit an intermediate condition. This activity depends on both genetic mutations, epigenetic
alterations, and transcriptional modification of cancer cells and signals provided by TME (CAFs or TAMs, immune cells, ECM, cytokines, secreted or growth
factors). Thus, the intra-tumor heterogeneity might be play a potential role in the development of effective therapeutic approaches as drug resistance, tumor
relapse and metastasis. CSCs, cancer stem-like cells; EMT, epithelial-to-mesenchymal transition; MET, mesenchymal-to-epithelial transition; ECs, endothelial-like
cells, CAFs, cancer-associated fibroblasts; TAMs, tumor-associated macrophages; ECM, extracellular matrix.
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assembly, secretion, and alteration of ECM development (11, 12).
Besides the intermolecular covalent cross-linkages of ECM, the
biophysical characteristics include its rigidity, topography,
molecular density, and tension. Thus, the ECM is extremely
versatile causing it to experience cellular remodeling under the
effect of tumors or tumor stromal cells (13, 14). As the dynamic
crosstalk is facilitated by chemokines and growth factors,
metastatic circulating tumor cells are secured to and released
from the ECM in addition to metabolic changes of the tumor
cells. During enlarged tissue rigidity and desmoplasia, the ECM
might act as a barrier for drug delivery or gate for opening the
basement membrane to promote metastasis (15, 16). Moreover,
the ECM of remote tissues or organs could be somewhat formed
into permissive soils by circulating tumor cells, soluble factors, or
exosomes from primary tumors to mediate the sowing of
metastasizing tumor cells (17).
STROMAL CELLS

Stromal cells are connective tissue cells, which are one of the key
components of cancer progression and regression involved in the
TME. They are engaged by tumor cells, and then involve
metastasis initiation through the regulation of tumor cells and
themselves (18). Glucose deprivation, reactive oxygen species
(ROS), hypoxia, and inflammatory signals create unfavorable
environments, leading to epithelial-mesenchymal transition
(EMT), tumorigenesis, and tumor metastasis (19, 20). These
signals are generally accepted that tumor cells alter their
microenvironments through the regulation of stromal cells
(18). Stromal cells include mesenchymal stem cells (MSCs),
fibroblasts, macrophages, endothelial cells (ECs), lymphocytes,
and pericytes in tumors, which contribute toward tumor
progression and regression (6). The characteristics of cancer
are replicative ability, continued angiogenesis, invasion, and
metastasis, which are regulated by the interactions within
genetically altered cancer and stromal cells. A previous study
showed that stromal cells also undergo metabolic changes in the
TME, reforming TMEmetabolism, and translating nutrients into
forms that can be absorbed by tumor cells (21).

In the stromal environment, CAFs are the foremost stromal
factor of various solid tumors and are also the best-known
phenotypic transformers (22). CAFs are a vastly heterogeneous
stromal cell population that participates in drug resistance,
proliferation, and metastasis in tumor cells via the secretion of
cytokines and matrix metalloproteinases (MMPs) (18, 22, 23).
They promote angiogenesis, ECM remodeling, wound healing,
and cancer progression through the regulation of immune systems
in immune cells (24). Several key markers are used to identify
CAFs, such as fibroblast-specific protein 1, a-smooth muscle actin
(a-SMA), platelet-derived growth factor (PDGF) receptor a, and
fibroblast activation protein a (FAP-a). Although they include a
heterogeneous cell population, the degree of diversity has hardly
been studied (25). Therefore, fibroblasts are separated into
quiescent fibroblasts and myofibroblasts/CAFs on the basis of
distinct expression. In particular, quiescent fibroblasts are less
Frontiers in Immunology | www.frontiersin.org 3107
carcinogenic and mostly found in non-malignant tissues, and
myofibroblasts or CAFs encourage tumors and trigger tumor
relapse along with tumor resistance and are intensely enhanced
in metastatic or malignant tumors. Both fibroblast types secrete an
exceptional range of elastins and collagens that maintain the ECM,
resulting in desmoplasia (26, 27). However, quiescent fibroblasts
secrete low levels of collagens (particularly Col13a1 and Col14a1)
and high levels of elastins. In addition, myofibroblasts/CAFs are
completely derived from tumor tissues and primarily enhanced in
collagens and low levels of elastins. CAFs promote angiogenesis,
tumorigenesis, and metastasis by secreting pro-inflammatory
cytokines and growth factors and enhancing TME remodeling
via the secretion of ECM components, MMPs, and other
molecules (22, 25).

For immune action, CAFs inhibit the activity of recruited
lymphocytes and cytotoxic T lymphocytes that form the
inflammatory signals to advance tumor progression, and CAFs
can rebuild into a pro-metastatic TME from the post-metastatic
TME (27). In the context of the TME, the subtypes of CAFs have
shown distinct mechanisms of activation, i.e., the stimulation of
transforming growth factor (TGF)-b1 or IL-11 and the treatment
of IL-1b or IL-6 that activate the upregulation of inflammatory
CAF-associated marker genes (28). Furthermore, the
differentiation of CAF-related specific markers can result in a-
SMA, also called ACTA2, FAP, S100A4, desmin, collagen, and
circulating pro-inflammatory cytokines, such as IL-1b, IL-6, IL-8,
TGF-b, and CXCL12 (29). CAFs can directly secrete vascular
endothelial growth factor (VEGF) in addition to the other growth
factors that regulate angiogenesis by suppressing the angiogenesis-
blocking role of TSP1 (22). CAFs are additionally typified based on
different cellular sources, such as vascular CAFs that originate
from perivascular areas, cycling CAFs, matrix CAFs, and
developmental CAFs, which are the product of native fibroblasts
found in the TME of the genetically engineered MMTV-PyMT
breast cancer mouse model (30). According to Brown et al. (31), In
a human PDAC model, CAFs are also derived to be
immunomodulatory presenting MHCII genes that regulate
antigen-specific ligation with CD4+ T helper cells by expressing
CD74 (32). Despite this, CAFs deviate in metastatic tumors from
early-stage tumors, including high metabolic synthesis and
released transcriptional profiling. Correspondingly, CAFs release
ECM factors that facilitate collagen crosslinking and regulate the
survival signals of tumor cells, which immunomodulate the TME
avoidance tumor surveillance (22).

MSCs are derived from the umbilical cord, bone marrow,
adipose tissue, etc., and form a fibro-vascular network in
fibroblasts and vascular pericytes via the formation of tumor
barrier differentiation. Emerging evidence has strongly suggested
that MSCs can be activated by exosomes and participate in the
communication of the transfer of proteins in the tumor cells as
well as in the stromal cells (24).

Tumor-associated macrophages (TAMs) are the key cells in
several types of solid tumors, which can promote tumor
progression by generating pro-inflammatory mediators, include
cytokines or chemokines, growth factors that alter the tumor-
supportive TME and encourage tumor cell proliferation,
May 2022 | Volume 13 | Article 882718
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multidrug resistance and plasticity (33, 34). For instance, NF-ĸB-
mediated factors (TNF-a, IL-1b, IL-6, CCL2, CXCL8 and
CXCL10) can protect against apoptosis, and pro-angiogenic
growth factors (such as VEGF or PDGF, TGF-b and FGF) that
adapt tissue architecture and support tumor cell migration,
invasion and metastasis (34, 35). In addition, TAMs destabilize
local immune surveillance as they can directly decrease T cell
and natural killer cell (NK) activities by releasing soluble factors
or by expressing cell surface proteins that exhibit the
immunosuppressive functions [e.g. arginase 1 (ARG1),
indoleamine 2,3-dioxygenase (IDO), programmed death ligand
1 (PD-L1) and TGF-b] or they can indirectly suppress the
activities of T cell through the engagement of other immune
suppressive cells i.e. regulatory T cells (36, 37). In general, TAMs
are a major component of TME that play mutually a significant
role as tumor promoters and immune suppressors because they
could promote tumor initiation, and act as the fundamental
Frontiers in Immunology | www.frontiersin.org 4108
drivers of the immunosuppressive TME, which control the
recruitment and function of multiple immune cells.

Adipocytes are the most abundant cells to compose adipose
tissue and they play key roles in energy storage and homeostasis
in the body. Cancer-associated adipocytes are key players in
cancer progression and migration (38). They highly express
matrix remodeling- and EMT-related factors, produce free
fatty acids (FFAs) through lipolysis and insulin-like growth
factor binding protein 2 (IGFBP-2), and participate in the
development of the TME and metastasis (38, 39) (Figure 2).
IMMUNE CELLS

In the TME, all immune cells aim to protect the whole body but
can ultimately turn into a tumor-supporting cell population (40).
Immune cells are remarkably complex and include several
FIGURE 2 | Stromal cells and the tumor microenvironment. CAA regulates EMT by secreting tumor necrosis factor (TNF)-a, IL-6, and FFA along with MMPs.
Inflammatory cytokines are secreted by TAM and trigger chemokines. In CAF release, secreted factors and MMPs promote ECM remodeling. MSCs secrete
exosomes along with mtDNAs and microRNAs (miRNAs). These molecules synergistically or individually promote tumor proliferation, drug resistance, and
plasticity and affect tumor metastatic alteration. CAA, cancer-associated adipocytes; CAF, cancer-associated fibroblast; MSC, mesenchymal stem cell; TAM,
tumor-associated macrophage.
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different lineages that make them tough to study and target.
Depending upon the stage of cancer, both lymphoid and myeloid
lineage cells play roles in pro- or anti-tumoral activity. For
example, macrophages encourage the activation of T cells to
clear tumor cells at early stages but inhibit T cells from even
identifying the tumor cells as a tumor growth (41). However,
immune cells lead each other to control the mechanisms related
to tissue homeostasis and change the survival rate (42). Cellular
secretions of molecules from immune cells also influence the
activity within the TME. The secretion of cellular molecules, such
as CCL5 and XCL1, from NK cells targets antigen-presenting
dendritic cells (DCs). Moreover, IFNg secretion stimulates
macrophage polarization and Th1 cell hyperactivation that
eventually activates the immune microenvironment against
cancer cells (28, 43). In response, cancer cells secrete
molecules, i.e., pro-inflammatory cytokines, such as IL-8 and
CXCL-1, 2, and 8, that target neutrophils. Despite this,
neutrophils generate neutrophil extracellular traps, which
protect the cancer cells from NK and cytotoxic CD8+ T cells
and reduce the influence of immunotherapies (44, 45).
Understanding the indispensable role of each immune cell
should facilitate the control of immunosuppressive responses
and improvement of immunostimulatory functions in secondary
tumor proliferation. Considering heterogeneity of immune cells,
scRNA-Seq is an advanced technique, which is able to examine
the immune cells that show distinct phenotypes in vivo
models (46).

Monocytes and macrophages are the major phenotypic
markers of the aggressive TME (26). In humans, monocytes are
subdivided into three largest clusters; namely, classical (CD14++,
CD16−), intermediate (CD14+ CD16+), and non-classical (CD14+

CD16++). In tumor cells, recent studies have reported new
monocytic markers, such as CD68, CSF1-R, CSF2-R, CD11C,
CD1C, CD141, and HLA-DR surface markers (47, 48). TIE2 is a
subset of monocytes expressing the angiopoietin receptor that
play an important role in tumor angiogenesis, and its expression
is highly increased in response to hypoxia (49). Monocytes are
absorbed to the TME by chemo-attractants (CCL2 or CCL4),
which further differentiate into TAMs. Macrophages are
conservatively divided into two main clusters: classical
macrophages (CD14+ S100A8/9+ M1-like) with antitumor
functions and alternate macrophages [CD16+(FCGR3A) M2-
like] with pro-tumorigenic phenotypes (50). M2 macrophages
exhibit the phenotypes of aggressive tumor growth, immune
evasion, angiogenesis, and cancer stemness. Furthermore, they
assist tumor initiation and the mutagenic microenvironment by
releasing circulating pro-inflammatory cytokines (IL6, TNF-a,
and IFN-g), growth factors (VEGF and EGF), ROS, and
proteases (51).

The T cell population is usually organized by the cell surface
markers (CD3+CD4+CD8+CD25+). The complication of tumor-
infiltrating T cells indicates a powerful impact of tumors on the T
cell transcriptome (52). Conventionally, T cells are categorized
into naive, effector, and memory T cells. In lung TME study,
single-cell sequencing separated the clusters of T cells into
regulatory (FOXP3+), CD4+ (CD4+), CD8+ (CD8+, naive,
Frontiers in Immunology | www.frontiersin.org 5109
effector, memory, or exhausted), NK (FGFBP2+), and lesser gd
T cells (26). Naive T cells can be separated into effector T cells
following infiltration and further stimulated into cytotoxic
memory T cells (53). Mostly, primary tumors are augmented
with subtypes of effector T cells that are differentiated by the high
expression of chemokine receptors or cytotoxic gene markers
(CD28, CD40L, CD137, ICOS, and OX40) and exhibit decreased
T cell expression. The expression of co-inhibitory receptors (PD-
1, CTLA-4, CD160, LAG3, TIM-3, and TIGIT) leads to
progressive T cell dysfunctions with tumor progression from
primary to metastatic sites (54). The cells expressing co-
inhibitory receptors are immunosuppressive and originate
from several sources induced by the TME, including by
migration from circulatory systems, effector T cell translation,
and separation caused by the inhibition of Antigen Presenting
Cells (55).

B cells are adaptive immune cells that infiltrate the
TME through CXCL13 secretions from tumor cells (56). In
solid tumor tissues, B cells are comparatively plentiful
compared to non-tumor tissues (51), and what’s more a
relatively rare number of B cells compared to T cells in the
TME (28). B cells can be separated into five groups, i.e., plasma B
cells expressing IgG (MZB1 and CD138); follicular B cells
expressing CD20, CXCR4, and HLA-DRs; mucosa-associated
lymphoid tissue-derived plasma B cells expressing IgA (CD38+);
germinal center B cells; and granzyme B-secreting B cells (26).
Although migrating through the germinal center, follicular B
cells individually contain mature or naive B cells (CD27−, CD72,
and IGHM) that result in memory B cells (CD27+ and IGHG1)
(51). Compared to B cells in the non-tumorigenic environment,
B cells residing in the TME are characterized by less protein
secretion and the reduction of mTOR or Myc pathways (26). B
cells encourage antitumor immunity by motivating complement
activation, stimulating cytotoxic immune reactions, antibody-
dependent cellular cytotoxicity, phagocytosis, and T cell
activation, and releasing granzyme B or TRAIL factors (57). In
addition, B cells have immunosuppressive subsets of pro-
tumorigenic regulatory B cells (CD1d+CD5+CD19+ and
CD5+CD19+) and CD5+ B cells (58) that modulate the
production of immunomodulatory cytokines (IL10 and TGFb),
which may enhance metastatic ability by transition of CD4+ T
cells into T-reg cells (59).

With the help of a unique set of receptors, NK cells belong to
an innate lymphoid cell group and have a cytotoxic or cytokine-
producing ability and can recognize tumor cells. However, NK
cells are different from the immune cell population as they have
diverse cell surface markers (CD3−CD16+ or CD3−CD56+).
Thus, NK cells are mainly subdivided into distinct subsets
depending upon the expression of CD16 and CD56 markers
with their different phenotypic properties (60). Tumor-specific
NK cells in lung carcinoma reveal the upregulation of CD69 and
NKp44 markers and downregulated NKp30, NKp80, DNAM-1,
CD16, and ILT2 expression against the peripheral blood and NK
cells of normal lung (61). Likewise, DCs have many specific
subtypes (DC1, DC2, and CD3) present in the TME that play a
significant role in adaptive immune responses, antigen
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presentation, and phagocytosis. For the other immune cells, the
distinguishing markers of DC subsets are HLA DR+ lineage−

cells, including CD11C+ conventional DCs, which are also
differentiated into either CD141+ or CD1C+ cells, and CD123+

plasmacytoid DCs (47). DCs are classified based on their
presence in lymph nodes or tumor cells. The clusters of tumor
cDC1 express Cd103 as a dermal DC marker, while the lymph
node population expresses the CD8a marker specific to dendritic
populations of the lymph nodes (29).
ENDOTHELIAL CELLS

Depending on the metabolic needs or requirements of growing
tumors, ECs are in a coefficient mode of activation or
reactivation and quiescence. The phenotypes of ECs are mostly
subdivided into tip and stalk cells that show the different
genotypes. Consistent with the tumor requirements, these
individual cells adopt distinct phenotypes and functions (62).
From the rest of the tumor cells, the first parameter to
differentiate ECs is a division through CD45−, as a pan-
hematopoietic marker that combines with CD31, CD144 (VE-
Cadherin), and vWF (vonWillebrand Factor). However, CD31 is
a transmembrane glycoprotein that develops intercellular
intersections. Similarly, CD144 is an endothelial adhesion
molecule and vWF is a glycoprotein that mediates platelet
adhesion in the endothelium (63). These are the preliminary
markers to disconnect the EC population. In contrast, other EC
markers in different cancer types comprise tip genes (CLDN5,
DLL4, EDNRB, ESM1, KCNE3, NID2, and RAMP3), capillary
markers (CA4 and CD36), arterial markers (FBLN5 and GJA5),
and ACKR1 gene expression by high endothelial venules, non-
myeloid specific marker AIF1, lymphatic markers (PROX1 and
PDPN), and pericyte marker RGS5 (64). According to
Lambrechts et al. (26), tumor ECs in distinct clusters based on
the marker genes are lymphatic ECs (PDPN+ and PROX1+),
tumor-derived blood ECs (FLT1+, IGFBP3+, and SPRY1+), and
malignant or non-malignant ECs. In the TME, the dysregulation
of epigenetic and transcriptional factors triggers the production
of these angiogenic candidates and their subtypes from healthy
blood ECs. The subtypes of tumor ECs directly damage the
vascular integrity and structure of leaking blood vessels and
migration of immune cells, thereby contributing to the growing
tumor’s complexity (65).

A previous study investigated the development of the
heterogeneity of ECs by determining functionally validated
endothelial phenotypes through patients with cancer as well as
in vivo and in vitro models. Compared to aggressive tumors,
non-malignant lung tissues have a relatively high profusion of
alveolar type II, postcapillary, scavenging capillary, and
lymphatic ECs. Even though the phenotypes of the tumor ECs
were primarily immature ECs or human-specific lymphatic
tumor ECs and tip cells, in tumor or non-tumor tissues,
alveolar type II, activated postcapillary vein, and arterial
phenotypes are common (66). Goveia et al. also classified the
top-ranked marker genes and their specified significant roles in
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tumor progression as well as in regulating immune surveillance,
matrix remodeling, EC migration, and angiogenesis by
modulating growth factors and chemical stimuli that activate
the angiogenic cascade within the TME, involving fibroblast
growth factor (FGF), VEGF, PDGF, TGF-b, TNF, insulin-like
growth factor, and MMP (67). In tumor ECs, blood vessels
discharge the interconnecting tight junctions, which are
complex with high interstitial pressure and are irregularly
shaped. However, tumor ECs produce pro-angiogenic growth
factors (FGF, VEGF, and PDGF) that exhibit chromosomal
abnormalities, which function against cancer therapies (68). In
addition, tumor EC-originating cadherin 2 activates VEGF-
associated angiogenesis by controlling MAPK/ERK and
MAPK/JNK signaling pathways (69).
SECRETED MOLECULES

Secreted molecules are major factors in the TME function and
ECM remodeling, such as cytokines, proteases, integrins, and
miRNAs (70). Cytokines are types of proteins that mediate the
interaction between cells in the TME, including TNF,
interleukins, chemokines, and growth factors, and regulate
tumor progression and stromal cells. Moreover, the roles of
cytokines in inflammation, apoptosis, tumorigenesis,
proliferation, and migration depend on the maintenance of
their anti-targets (71). In the TME, extracellular proteolysis
acts as a key role that facilitates the proteolysis of the ECM
and MMPs among other proteinases, having the nearest
connection with tumor progression (72, 73). According to
Kessenbrock et al. (73), the degradation of the ECM is
mediated by MMPs that promote tumor invasion and
metastasis. Additionally, MMPs stimulate tumor growth and
angiogenesis as well as regulate apoptosis, whereas the functions
of certain MMPs include tumor suppression. Therefore, MMPs
are also a set of proteins with inconsistent roles in the TME (74).

Among secreted factors, integrins are essential membrane
proteins and cell surface receptors that have an important role in
the signaling and transfer of cellular information among cells or
between cells and the ECM. In addition, integrins are central to
the control of cell-matrix adhesions and play a critical role in the
adhesion of circulating tumor cells to original sites leading
formation of secondary tumors in TME. However, irregular
cell-cell adhesions are a sign of tumors being triggered by
disturbed integrins. The expression of metastasis-assisting
integrins in the TME is induced, whereas those suppressing
proliferation, migration, and survival are inhibited (75).
Therefore, integrin expression is usually dysregulated in many
solid tumors and play key roles in signaling as well as promotion
of tumor cell invasion and migration. Recently, it has emerged
that integrins are expressed not only in cells but also in
exosomes, which are fundamental units of extracellular vesicles
secreted from cells. Numerous studies are concerned with
exosome originating integrins as the exploration on exosomes
are increasing, in addition integrins are notified to influence the
interior actions of tumors, as nucleus alteration. Most of research
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efforts have focused on supporting incorporation of exosomes by
target cells and facilitating exosome-mediated transfer of the
membrane proteins and associated kinases to target cells in
premetastatic niches. Moreover, integrins have demonstrated
the ability to encouraging stem cell-like properties in tumor
cells as well as drug resistance (76, 77). miRNAs are endogenous
and small non-coding RNAs that negatively regulate specific
target mRNAs or post-transcriptionally activate by disordering
transcription or translation (78). miRNAs are involved in various
pathways and functions in the regulation of distinct constituents
of the TME (79). In addition to miRNAs, long non-coding RNAs
(lncRNAs) are also effective components that are secreted in the
TME. Among lncRNAs, some serve in the interaction between
the TME and stromal cells as the transforming fibroblasts that
are tumor-promoting (80).
CONCLUSION

Despite attempts to discover new anticancer drugs, multidrug
resistance and the risk of recurrence remain. In particular, the
TME in late-stage tumors is very complex and diverse, thus, it is
Frontiers in Immunology | www.frontiersin.org 7111
essential to study the interplay between tumors and the TME for
new drug discovery and validation. It is expected that endeavors
to understand how tumor cells are reprogramed by
communication with adjacent cells and molecules will support
the development of new strategies to treat cancers.
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cytoskeleton remodeling

Jei-Ming Peng1*, Ching-Feng Chiu2, Jai-Hong Cheng3,4,
Hui-Ying Liu5, Yin-Lun Chang5, Jia-Wun Luo1, Yu-Ting Weng1

and Hao-Lun Luo5*

1Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital,
Kaohsiung, Taiwan, 2Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical
University, Taipei, Taiwan, 3Center for Shockwave Medicine and Tissue Engineering, Medical
Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of
Medicine, Kaohsiung, Taiwan, 4Department of Leisure and Sports Management, Cheng Shiu
University, Kaohsiung, Taiwan, 5Department of Urology, Kaohsiung Chang Gung Memorial Hospital
and Chang Gung University College of Medicine, Kaohsiung, Taiwan
Cancer immunotherapy uses the immune system to achieve therapeutic

effects; however, its effect is still limited. Therefore, in addition to immune

checkpoint-based treatment, the development of other strategies that can

inhibit cancer cells from resisting immune cytotoxicity is important. There are

currently few studies on the mechanism of tumors using cytoskeletal proteins

reorganization to participate in immune escape. In this study, we identified

cancer cell lines that were sensitive or resistant to natural killer cells in urothelial

and lung cancer using the natural killer cell sensitivity assay. We found that

immunoresistant cancer cells avoid natural killer cell-mediated cytotoxicity by

upregulation of vimentin and remodeling of actin cytoskeleton.

Immunofluorescence staining showed that immune cells promoted the

formation of actin filaments at the immune synapse, which was not found in

immunosensitive cancer cells. Pretreatment of the actin polymerization

inhibitors latrunculin B increased the cytotoxicity of natural killer cells,

suggesting that cytoskeleton remodeling plays a role in resisting immune cell

attack. In addition, silencing of vimentin with shRNA potentiated the

cytotoxicity of natural killer cells. Interestingly, the upregulation and

extension of vimentin was found in tumor islands of upper tract urothelial

carcinoma infiltrated by natural killer cells. Conversely, tumors without natural

killer cell invasion showed less vimentin signal. The expression level of vimentin

was highly correlated with natural killer cell infiltration. In summary, we found

that when immune cells attack cancer cells, the cancer cells resist immune

cytotoxicity through upregulated vimentin and actin reorganization. In

addition, this immune resistance mechanism was also found in patient

tumors, indicating the possibility that they can be applied to evaluate the

immune response in clinical diagnosis.
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Introduction

For the upper tract urothelial carcinoma (UTUC), the

incidence was less than 10% in the United Sates, whereas it

was very high in Taiwan, being up to 30% of urothelial

carcinomas (1). UTUC and bladder cancer belong to the same

urothelial cell type, but their clinical prognoses are very different.

Tumors invade the muscular layer in 60% of UTUC while

invasion is about 10–20% in bladder cancers. Although most

tumors can be completely removed, a high percentage of patients

die from disease progression and distant metastasis (2). UTUC is

often accompanied by renal insufficiency, which makes it

difficult for the patient to receive an adequate dose of

chemotherapy (3). Therefore, invasive or metastatic UTUC has

a very poor clinical prognosis. At present, effective biomarkers

are still quite limited, and it is necessary to identify markers to

predict tumors and prognoses. There is an urgent need to

develop more effective treatment strategies and improve

prognosis with chemotherapy (4).

The increase in cancer mortality affects human health and

social development, and finding safe and effective treatments is a

challenge for cancer researchers worldwide. Traditional cancer

treatments, such as surgical, radiotherapy and chemotherapy, do

not ensure patient outcomes. In recent years, the development of

gene targeted therapy has extended the survival of tumor

patients, but the recurrence after treatment is still high.

Immunotherapy, which aims to activate the patient’s immune

system to kill cancer cells, has been studied most at immune

checkpoint inhibitors, while others include chimeric antigen

receptor T cell therapy (CAR‐T). Tumor cells can inhibit the

function of natural killer cells (NK) and cytotoxic T lymphocytes

(CTLs) through cytokines, chemokines and metabolites, thus

helping tumor cells escape recognition and attack by the

immune system (5). Among these immune cells, NK cells play

a key role in the first-line immune response and are

characterized by rapid response. The main approaches to NK

cell-based cancer treatment include cytokines, antibodies, and

adoptive transfer of NK cells by increasing the persistence,

activation, number, or targeting of tumor cells (6)

Recent literature reveals that treatment of TGF-b blocking

agent can enhance immune cell response and infiltration (7).

Upregulation of TGF-b1 mediated vimentin is one of the key

hallmarks of epithelial–mesenchymal transition (EMT)
115
progression (8). Vimentin is an intermediate filament protein

and a member of cytoskeletal proteins. TGF-b1 drives vimentin

activation, which plays a key role in the cytoskeleton remodeling

and mobility during EMT (9). Recent studies have found that

vimentin can be detected in many types of cancers, including

lung, colon, cervical and prostatic cancers, and the expression of

vimentin is highly correlated with extent of these tumors (8, 10–

12). vimentin is originally expressed in mesenchymal cells, such

as fibroblasts, chondrocytes, macrophages and endothelial cells,

rather than in epithelial cells (13). The determination of

vimentin was thought to be as a predictive factor of poor

prognosis in patients with gastric cancer (14), but this result is

still controversial in other cancers (15). Thus, exploring the

mechanism and the role of TGF-b or vimentin mediated

signaling in the immune cell response can provide a clearer

definition in patient samples.

Mechanotransduction in cancer cells contain variable

processes of physical structure rearrangement that force

chemical stimulation and cause signal transduction of cell

function (16, 17). Our results show that vimentin upregulation

and cytoskeleton remodeling are the novel tumor suppression

strategy for enhancing immune cell-mediated cytotoxicity. Both

silencing of vimentin and inhibiting the formation of actin

filaments increased cytotoxicity of NK cells. Excitingly, these

results are even more obvious in tumor tissue from patients with

UTUC. It is currently unclear how vimentin and cytoskeleton

remodeling affect the immune cell response in the primary and

invasive tumors. Here, we uncover a novel strategy for

improving clinical diagnosis by regulating vimentin and

cytoskeleton remodeling to modulate the immune response of

cancer cells.
Materials and methods

Cell lines and materials

Human cells, HT24 (bladder cancer, HTB-4, ATCC), J82

(bladder cancer, HTB-1, ATCC), BFTC909 (colorectal

cancer, 60069, BCRC), H292 (lung cancer, CRL-1848, ATCC),

A549 (lung cancer, CCL-185, ATCC) and NK-92MI

(lymphoma, CRL-2408, ATCC) were obtained from the

American Type Culture Collection (ATCC) or Bioresource
frontiersin.org
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Collection and Research Center (BCRC). Cells were cultured

in DMEM medium (Thermo Fisher Scientific, Waltham, MA,

USA) containing 10% (volume/volume; v/v) fetal bovine serum

(FBS), sodium bicarbonate and 1% (v/v) antibiotic-antimycotic

(Thermo Fisher Scientific, Waltham, MA, USA) at 37°C in an

incubator with a humidified atmosphere of 5% CO2. NK-92MI

cells were cultured in alpha minimum essential medium

(Thermo Fisher Scientific) supplemented with 12.5% fetal

bovine serum (FBS, Sigma-Aldrich, St. Louis MO, USA), 2

mM L-glutamine (Thermo Fisher Scientific), 1.5 g/L sodium

bicarbonate (Thermo Fisher Scientific), 0.2 mM inositol; (I7508,

Sigma-Aldrich), 0.1 mM 2-mercaptoethanol; (M6250, Sigma-

Aldrich), 0.02 mM folic acid; (F8758, Sigma-Aldrich), 12.5%

horse serum. Latrunculin B (L5288, Sigma-Aldrich). Antibodies,

CD161/NK1.1 was from Novus Biologicals (NB100-77528SS,

Littleton, CO, USA), vimentin was from abcam (ab92547,

Cambridge, UK). Phalloidin staining reagent was from Abcam

(ab112125, Cambridge, UK).
Natural killer cell cytotoxicity assay

Cells were seeded at 2 x 104 or 4 x 104 cells per well in a 96-

well plate (Jet Biofil, Guangzhou, China). Next day, NK-92MI

cells were added into well in a serial dilution for 24 or 48 h

(dilution 1:0.25, 1:0.5, 1:1, 1:3, 1:6 in culture media, #356234,

Corning, Bedford, MA, USA). The fixed cells were stained with

crystal violet (0.1 mg/mL) for 2 h, and the images were

photographed under an inverted microscope (IX51, Olympus,

Japan). The crystal violet staining cells were quantitatively

analyzed and modified according to the study of Cvetannova

et al. (18). The crystal violet-stained cells were then dissolved in

250 mL 20% acetic acid. Absorbance (O.D. 595 nm) was

measured using an ELISA reader (Varioskan LUX Multimode

Microplate Reader, Thermo Fisher Scientific, USA). The plots of

NK cell cytotoxicity were analyzed using GraphPad Prism 8

software (GraphPad, San Diego, CA, USA).
shRNA and lentivirus infection

RNA was knocked down using lentivirus containing the

shRNA for empty vector (shEV) or vimentin (shVimentin),

virus was obtained from National RNAi Core in Taiwan.

Cells were seeded at 1 x 105 cells per well in a 12-well

plate and infected with shEV and shVimentin with MOI 2

for 48 h prior to puromycin selection. The shRNA targeting

s e q u e n c e s o f v i m e n t i n w e r e s h V i m e n t i n # 1 :

GCTAACTACCAAGACACTATT and shVimentin#2:

GCAGGATGAGATTCAGAATAT. PCR was performed using

PFU Turbo polymerase (Agilent, Santa Clara, CA, USA)

according to the manufacturer’s instructions.
Frontiers in Immunology
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Quantitative real-time PCR

RNA was isolated using TRIzol reagent (Thermo Fisher

Scientific, Waltham, MA, USA) and cDNA was synthesized using

SuperScript™ III Reverse Transcriptase (Thermo Fisher Scientific).

qRT-PCR was performed using SYBR Green PCR Master Mix

(Thermo Fisher Scientific, Waltham, MA, USA) and ABI

StepOnePlus sequence detection system (Thermo Fisher

Scientific, Waltham, MA, USA). The real-time PCR primers were

as follows: Vimentin forward, 5′-GACGCCATCAACACCG
AGTT-3′; Vimentin reverse primer, 5′-CTTTGTCGTTGGT
TAGCTGGT-3′; GAPDH forward, 5′-TGAAGGTCGGAGTC
AACGGATT-3′; GAPDH reverse primer, 5′-CCTGGAA
GATGGTGATGGGATT-3′.
Immunofluorescence staining

The cancer cell lines (2 x 104 cells) were seeded on

coverslips in a 12-well plate overnight. The next day, the

NK-92MI cells were stained with CellTracker Red CMTPX

dye (C34552, Thermo Fisher Scientific) for 30 min and washed

twice with PBS. Cancer cells were treated with CMTPX-

stained NK-92MI cells for 2, 6, and 24 h (dilution, 1:0.5).

Cells were fixed in 4% paraformaldehyde for 20 min and

parametrization was performed in 0.1% Triton X-100 for

15 min. Blocking buffer (1% BSA, 0.1 M glycine) was added

for 30 min and then reacted with first antibodies (1:200) in

blocking buffer overnight. The samples were washed with

PBST (0.1% Tween-20) three times and then secondary

antibodies conjugated with Alexa Fluor 488 or Alexa Fluor

594 (1:200) in blocking buffer were added for 2 h. Samples

were stained with DAPI and mounted with Prolong Gold

antifade reagent (Thermo Fisher Scientific, Waltham, MA,

USA). The samples were stored at 4°C in the dark. Fluorescent

cells were observed using a confocal laser scanning microscope

(FluoView FV10i, Olympus, Tokyo, Japan). Ten fields for each

experiment were examined at 100-fold magnification and up

to 630-fold magnification to obtain detailed images.

Quantification of b-tubulin and vimentin was performed

after the cells were selected, and the intensity of the

fluorescent protein was analyzed with and without NK cell

interaction. Quantitative analysis of actin responses in front

regions of the immune synapse bound to NK cells, marked

with dotted rectangles (F), and unbound regions at the rear,

marked with dotted rectangles (R), was performed.

Fluorescence intensity (unit) = F-R in the immune synapse,

showing the level of F-actin aggregation. Fluorescence

intensity and quantification were analyzed using the FV10-

ASW software (version 4.0) and ImageJ software (version 1.8).

For analysis of immunofluorescence staining of tumor

sections, a Vectra Polaris Automated Quantitative Pathology
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Imaging System (PerkinElmer, Boston, MA, USA) was used to

scan the slides. Fluorescence intensity and quantification were

analyzed using inForm software (version 2.3, PerkinElmer).
Immunohistochemistry staining

Tumors were fixed in 10% formalin overnight and

embedded in paraffin for sectioning. The sections were cut at

4-5 µm. Tumor sections were deparaffinized in xylene and

antigen retrieval reagent was added for 30 min (Agilent Dako,

Santa clara, CA, USA). Tissue sections were added blocking

buffer (1% BSA, 0.1% Tween-20) for 30 min and then reacted

with first antibodies (1:200) in blocking buffer overnight. The

samples were washed with PBST for three times and then added

secondary antibodies-conjugated with horseradish peroxidase

(HRP) (1:200) in blocking buffer for 2 h. Samples were

counterstained with hematoxylin and stained with 3,3’-

Diaminobenzidine (DAB). For analysis of tumor sections, a

Vectra Polaris Automated Quantitative Pathology Imaging

System (PerkinElmer, Boston, MA, USA) was used to scan the

slides. Intensity and quantification were analyzed using inForm

software (version 2.3, PerkinElmer).
Western blot assay

Cells were washed in ice-cold PBS and lysed in a RIPA buffer

containing 50 mM Tris-HCl pH 8.0, 120 mM NaCl, 0.5% NP-40,

0.25% Na deoxycholate, 1 mMDTT, 1 mMPMSF, 1 mM EDTA, 1

mM NAF, 1 mM Na3VO4, 2 mg/mL aprotinin, and 2 mg/ml

leupeptin. Cellular debris were removed by centrifugation at 13

krpm at 4°C for 15 min. The protein lysates were quantified by

BCA assay (Thermo Fisher Scientific, Waltham, MA, USA) and

equal amounts of protein (20 µg) was resolved on SDS

polyacrylamide gels, transferred to PVDF membranes (Schleicher

& Schuell, Dassel, Germany), and then incubated with primary

antibodies overnight. After reaction with HRP-conjugated

secondary antibody (1:2000 dilution; Cell Signaling Technology,

Beverly, MA, USA) for 2 h, each membrane was scanned using a

UVP ChemStudio PLUS instrument (UVP Inc., Upland, CA,

USA) and analyzed with the ImageJ software (version 1.8).
Statistical analysis

Unless otherwise stated, all experiments were conducted at

least three times. Data from the NK cytotoxicity assay, real-

time qPCR, immunohistochemistry staining in this study was

expressed as mean ± s.d. Statistical significance between

different experimental groups was analyzed using the

Student’s t-test (two-tailed), 1-way with Dunnett’s multiple
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comparisons test or 2-way ANOVA with Tukey’s multiple

comparisons test. P values less than 0.05 were considered

significant. Statistical analyses were performed using

GraphPad Prism 8 (GraphPad software, San Diego, CA, USA).
Results

Identifying cancer cell groups that were
sensitive or resistant to immune cells

Currently, few studies have investigated the mechanism of

the involvement of cytoskeleton-associated proteins of cancer

cells in immune cell tolerance (19, 20). First, a NK cell

cytotoxicity assay was performed to explore the mechanism

by which cancer cells resist cell death caused by NK cells. The

purpose of this analysis was to identify the sensitivity of cancer

cells to the cytotoxicity of immune cells. Cancer cells used in

the analysis were urothelial cancer cells (J82, T24, and

BFTC909). Since the immune response regulated by NK

cells had been widely studied in lung cancer, the lung cancer

cells (H292 and A549) were also studied. Cancer cells were

seeded into 96-well plates and incubated for 24 h. Next day,

different proportions of NK cells were added (NK-92MI). The

ratios of cancer cells to NK cells were 1:0.25, 1:0.5, 1:1, 1:3, and

1:6. The cancer cells and immune cells were co-incubated for

24 or 48 h and then fixed and stained with crystal violet dye

(Figure 1A). To quantify the number of cells, acetic acid was

used to dissolve the crystal violet dye and absorbance was

measured. T24 cells were found to be more sensitive to NK

cells than the other two cell lines. Over 90% of the cells died at

an NK cell ratio of 1:1. In contrast, J82 and BFTC909 cell lines

were resistant to NK cells, with approximately 20% of cell

death occurring after incubation with NK cells at a ratio of 1:3

for 48 h. The crystal violet-stained cells in Figure 1A were

observed using a microscope to observe the morphology of

cancer cells after treatment with NK cells (Figure 1B). The

shape of the T24 cells changed from round to elongated at a

ratio of 1:1 (Figure 1B). Only some J82 and BFTC909 cells

appeared to shrink at a ratio of 1:6, while the remaining

cells showed normal morphology. The crystal violet-stained

cells from the plate in Figure 1A were quantitatively analyzed

and modified according to the study of Cvetanova et al. (18).

The fixed cells were dissolved in 20% acetic acid, and the

absorbance at 595 nm was measured using an ELISA reader

(Figure 1B, right panel). Statistical quantification of cells

revealed that when treated with NK cells at a ratio of 1:3,

the rate of T24 cell death was 95.8%, whereas that of J82 and

BFTC909 cells were 22.4% and 15.4%, respectively

(Figure 1B). This result showed that T24 cells were sensitive

to NK cells, while J82 and BFTC909 cells were resistant to

cancer cells.
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We then investigated the cytotoxicity of NK cells on lung

cancer cells. After adding NK cells at different ratios, cancer

and immune cells were incubated for 24 and 48 h, respectively,

and the cells were then fixed and stained with crystal violet dye

(Figure 1C). H292 cells were found to be more sensitive to NK

cells than A549 cells. Over 90% of cells died when incubated

with NK cells at a ratio of 1:0.5. In contrast, A549 cells were

resistant to NK cells, with approximately 20% cell death

occurring in the presence of NK cells at a ratio of 1:3,

indicating that A549 cells had low sensitivity to NK cells.

The morphology of cancer cells after treatment with NK cells

was observed with a microscope, and H292 cells were found

with round shape in the presence of NK cells a ratio of 1:0.5

(Figure 1C). However, at a ratio of 1:6, only a few A549 cells

shrank and the rest of the cells had normal morphology.

Statistical quantification of the cells showed that when

treated with NK cells at a ratio of 1:3, the rate of H292 cell

death was 96.2%, while that of A549 cells was 23.6%

(Figure 1C). This result showed that H292 cells were

immunosensitive to NK cells, while A549 were resistant to

cancer cells. To summarize, these cells were classified as

sensitive or resistant urothelial or lung cancer cells based on

their sensitivity to NK cells (Figure 1D). The immunosensitive
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cancer cells were T24 and H292, and the immunoresistant

cancer cells were J82, BFTC909, and A549.
Accumulation of actin filaments was
formed at the junction of immune cells
and resistant cancer cells

After categorizing the immune sensitive and resistant

cancer cells, we then investigated whether they responded

differently when attacked by NK cells. In recent years,

immunosuppression-related research has mostly focused on

immune checkpoint proteins, PD-1 and PD-L1 (21). Although

both BFTC909 and A549 were highly resistant to NK cells,

A549 was known to express lower levels of PD-L1. This shows

that there were other reasons for the immunoresistance of

cancer cells. Mariathasan et al. and Tauriello et al. found that

the use of TGF-b1-blocking antibody significantly promoted

immune cell invasion (7, 22). TGF-b1 has been found to

trigger many deteriorating reactions in cancer cells. Most of

these reactions result in the reorganization of cytoskeletal

proteins and fibrin. Therefore, we further explored whether

cytoskeletal proteins of cancer cells affected immune cell
A B
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FIGURE 1

Identification of the cancer cell lines susceptible or resistant to NK cell-mediated cell death. (A) NK cytotoxicity assay using cancer cells from urothelial
cancer (UC) and lung cancer (LC). Cells were seeded in the 96-well plate and incubated with NK cells for 24 or 48 h. (B) J82, T24 and BFTC909 cells
were co-cultured with NK cells for 48 h and stained with crystal violet. The stained cells were observed by microscope. (C) A549 and H292 cells were
co-cultured with NK cells for 48 h and stained with crystal violet. The stained cells were observed by microscope. (D) The NK sensitive or resistant
cancer cells and the dose of NK ratio are listed. Scale bars, 1 mm. *P < 0.05; ***P < 0.001. Data are presented as mean ± s.d. (one-way ANOVA with
Dunnett’s multiple comparisons test) and experiments were repeated three times (n = 3).
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attack. The three most important cytoskeletal proteins,

namely b-tubulin, vimentin, and actin filaments were

screened to observe any significant changes due to immune

cell attack. The immunoresistant cancer cell line BFTC909 in

Figure 1 was used to detect changes in these cytoskeletal

proteins and fibrin. The experimental design involved co-

culture of the resistant cancer cells and NK cells for 6 h (the

ratio of cancer cells to NK cells was 1:0.5), followed by fixing of

the cells for immunofluorescence staining.

The staining results for b-tubulin, vimentin, and actin filaments

showed that NK cells did not cause changes to b-tubulin until 6 h. It
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was unexpectedly observed in the staining of the other two

cytoskeletal proteins that NK cells significantly caused the

upregulation of vimentin and actin response (Figure 2A).

Quantification of b-tubulin and vimentin was performed after the

cells were selected, and the intensity of the fluorescent protein was

analyzed with and without NK cell interaction. Quantitative

analysis of actin responses was performed as described by Al Absi

et al. (19). Front regions of the immune synapse bound to NK cells

are marked with dotted rectangles (F), and unbound regions at the

rear are marked with dotted rectangles (R). Mean fluorescence

intensity (unit/µm2) = F-R in the immune synapse, showing the
A B
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FIGURE 2

Induction of cytoskeleton remodeling by NK cells. (A, B) Comparison of the expression of b-tubulin, vimentin and actin filaments in NK cell-
mediated cell lysis. BFTC909 cells were incubated with NK cells for 6 h and the expression b-tubulin, vimentin, and actin filaments was detected
by immunofluorescence assays. (C) T24 or J82 cells were co-cultured with NK cells for 6 h and stained with a b-actin antibody. The stained
cells were observed using a fluorescence microscope. (E) H292 and A549 cells were co-cultured with NK cells for 6 h and stained with a b-
actin antibody. The stained cells were observed using a fluorescence microscope. (D, F) The intensity of prominent fibrous actin near the
immunologic synapse was measured and quantified by ImageJ. ns, not significant; ***P < 0.001. Data are presented as means ± s.d. (two-way
ANOVA with Sidak's multiple comparisons test). Red arrowhead, NK cell; white arrowhead, actin aggregation. Scale bars, 20 mm. Experiments
were repeated at three times (n = 3).
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level of F-actin aggregation (Supplementary Figure 1). After 6 h of

NK cell treatment, the expression of b-tubulin, vimentin, and actin

filaments was quantified. We performed the quantification of

fluorescence intensity in 10 fields (2–3 cells per field) after cells

were selected and analyzed, and the results showed that after adding

NK cells, the mean intensity of b-tubulin was NK-:NK+ =

50.75:45.48 (P = not significant, ns), mean intensity of actin

response was NK-:NK+ = 0.05:47.21 (P < 0.001), and the mean

intensity of vimentin was NK-:NK+ = 33.69:83.87 (P < 0.001)

(Figure 2B). The expression of the fluorescence signal was obvious

at 6 h after treatment with NK cells, indicating that vimentin and

actin filaments of cancer cells may reflect NK cell attack.

We wanted to further compare whether actin filaments

responded differently in sensitive and resistant cancer cells

when attacked by NK cells. First, the urothelial cancer cells

T24 and J82 were co-cultured with NK cells for 6 h, and no

change was observed in actin filaments of T24 cells (Figure 2C,

and Supplementary Figure S2A). However, 6 h after addition of

NK cells to the resistant cell line J82, aggregations of actin

filaments were clearly observed following the contact between

cancer cells and immune cells (Figure 2C and Supplementary

Figure S2B). Quantitative analysis showed that the expression of

actin filaments at the immune synapses was high in J82 cells and

low in T24 cells (Figure 2D).

We then investigated whether actin filaments of sensitive

and resistant cancer cells responded differently upon attack by

NK cells in lung cancer cells H292 and A549. After co-

incubation with NK cells for 6 h, no change in actin filaments

was observed in H292 cells (Figure 2E, and Supplementary

Figure S2C). As expected, 6 h after adding NK cells to A549

cells (resistant cells), accumulation of actin filaments was clearly

detected (Figure 2E and Supplementary Figure S2D). We

concluded that cancer cells with high immunoresistance

produced and aggregated of actin filaments in response to

immune cell attack (Figure 2F).

To further confirm the effect of NK cells on the

organization and expression of cytoskeletal proteins after

binding to cancer cells, we co-cultured NK cells with cancer

cells and performed immunofluorescence staining in a time-

dependent manner. The fluorescence was quantified in 10 fields

(2–3 cells each field). The mean fluorescence intensity (F-R) of

the actin response at the immune synapse in T24 cells co-

cultured with NK cells for 2, 6, and 24 h were NK-:NK+ =

0.01:5.56, 5.96:8.72, and 0.25:-2.53, respectively (all P = ns)

(Figures 3A, B). The mean fluorescence intensity (F-R) of the

actin response at the immune synapse in J82 cells after 2, 6, and

24 h with NK cell co-culture was NK-:NK+ = -1.34:22.12,

1.87:39.56, and 3.84:37.36, respectively (P < 0.05, < 0.001, and <

0.01, respectively) (Figures 3C, D). In J82 cancer cells, the mean

intensity of actin response was higher after adding NK cells at 6

and 24 h than at 2 h (2, 6 and 24 h; 22.12, 39.56, and 37.36,

respectively) (Figure 3D).
Frontiers in Immunology
120
We performed the same experiment on lung cancer cells and

quantifiedproteins in10fields.Themeanfluorescence intensity(F-R)

of theactin responseat the immunesynapse inH292cells co-cultured

withNK cells for 2, 6, and 24 hwasNK-:NK+= 1.23:5.55, -1.13:8.85,

and -3.38:0.1, respectively (all P = ns) (Figures 3E, F). The mean

fluorescence intensity (F-R) of the actin response at the immune

synapse in A549 cells after 2, 6, and 24 hwithNK cell co-culture was

NK-:NK+=-0.54:12.52, -0.36:30.01,and-0.68:37.55,respectively(P=

ns, < 0.01, and < 0.001, respectively) (Figures 3G, H). Since vimentin

can directly interact with actin filaments through its C-terminal tail

(23, 24), and mutually affect actin stress fiber assembly and actin-

dependent processes such as cell adhesion andmigration (9, 25–29),

we subsequently explored whether vimentin participates in the

resistance response against immune cells.
Attack by NK cells upregulated vimentin

Jiu et al. demonstrated that one of the functions of vimentin

was to facilitate the aggregation and localization of actin. A lack

of vimentin disables the cancer cells to promote actin

polymerization (25). The results in Figure 2A confirmed that

the expression of vimentin was significantly increased after NK

cell attack. Therefore, a further comparison of the response of

vimentin was made between sensitive and resistant cancer cells

when attacked by NK cells. Urothelial cancer cells T24 and J82

were used, and after co-cultured with NK cells for 6 h, no change

was observed in the vimentin content of T24 cells (Figure 4A and

Supplementary Figure S3A). However, expression of vimentin

was clearly detected in BFTC909 cells along with obvious

polymerized morphology (Figure 4B and Supplementary

Figure S3B). The quantitative results showed that the vimentin

expression after exposure to immune cells was high in J82 and

low in T24 (Figure 4B).

We then examined whether the vimentin responded

differently within sensitive and resistant lung cancer cells upon

attack by NK cells. After co-culture of the lung cells H292 and

A549 with NK cells for 6 h, no change in the vimentin expression

was observed in H292 cells (Figure 4C and Supplementary

Figure S3C). Conversely, an expansion of vimentin network

was detected in A549 cells (Figure 4C and Supplementary Figure

S3D). Therefore, we found that vimentin was upregulated in

highly immunoresistant cancer cells in response to immune cell

attack (Figure 4D).

The mean fluorescence intensity of vimentin in T24 cells co-

cultured with NK cells for 2, 6, and 24 h was NK-:NK+ =

16.02:18.39, 17.6:17.76, and 19.4:21.78, respectively (all P = ns)

(Figures 5A, B). The mean fluorescence intensity of vimentin in J82

cells after 2, 6, and 24 h with NK cell co-culture was NK-:NK+ =

28.85:50.09, 33.68:71.39, and 46.48:91.96, respectively (P = ns, <

0.001, and < 0.01, respectively) (Figures 5C, D). In J82 cancer cells,

the mean intensity of vimentin was higher at 24 h than at 2 h after
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adding NK cells (2 and 24 h; 50.09 and 81.96, respectively, P <

0.01) (Figure 5D).

The mean fluorescence intensity of vimentin in H292 cells

co-cultured with NK cells for 2, 6, and 24 h was NK-:NK+ =

12.3:15.66, 12.87:16.8, and 14.74:13.7, respectively (all P = ns)

(Figures 5E, F). The mean fluorescence intensity of vimentin
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in A549 cells after 2, 6, and 24 h with NK cells co-culture was

NK-:NK+ = 33.46:49.28, 49.75:70.64, and 37.16:55.85,

respectively (P < 0.05, < 0.01, and < 0.01, respectively)

(Figures 5G, H). In summary, the accumulation of actin

filaments and the upregulation of vimentin were involved in

the response of cancer cells to immune cells. However, the
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FIGURE 3

NK cells induced actin responses at the immune synapses in the immune-resistant cancer cells. (A, C) Comparison of the expression of actin
filaments in NK cell-interacted cancer cells. T24 and J82 cells were incubated with NK cells for 2, 6 and 24 h, and the expression of actin
filaments was detected using immunofluorescence assays. (B, D) The intensity of actin’s response at the immune synapses was measured and
quantified by ImageJ. (E, G) H292 and A549 cells were incubated with NK cells for 2, 6 and 24 h, followed by the detection of actin filaments
expression. (F, H) Quantification of the intensity of actin response at the immune synapses using ImageJ. ns, not significant; *P < 0.05; **P <
0.01; ***P < 0.001. Data are presented as mean ± s.d. (two-way ANOVA with Sidak's multiple comparisons test). Red arrowhead, NK cell; white
arrowhead, actin filaments. Scale bars, 20 µm. Data derived from 10 fields, each including 2–3 cells.
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presence of such phenomena in UTUC tumors is what we

want to explore next.
Invasion of NK cells in UTUC upregulated
vimentin in cancer cells

First, we investigated whether changes in vimentin of cancer

cells caused by NK cells could be detected in cancer patients.

Staining of immune cells and vimentin was performed in stage

III tumors of UTUC. Tumors were fixed and cut into slices for

immunofluorescence and immunohistochemistry staining. The

NK1.1 is expressed primary on NK cells and also found on NKT

cells, a subset of CD4+ T cells and dendritic cells. The specificity

of NK1.1 and vimentin antibodies was verified using an IgG

antibody (Supplementary Figure S4). In the cold areas for the

immune responses, i.e., the tumor without invasion by NK cells,

less vimentin signal was detected either.

Interestingly, in tumor islands invaded by a small number of

NK cells, vimentin was significantly detectable in the cancer cells

surrounding the NK cells (Figure 6A). This was more apparent

in tumors invaded by a large number of NK cells (hot areas),

wherein strong vimentin signals were detected in the cancer cells

around the NK cells (Figure 6A). Vimentin was also detected by
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immunohistochemistry assay, and hematoxylin staining was

used to visualize cell morphology of the tissue (Figure 6A).

Quantification of these results showed a high level of correlation

between the NK cells in tumor and vimentin in cancer cells

(Figure 6B). In tumors where no NK cell invasion was detected,

the vimentin signal was extremely low (mean intensity 7.1 –

20.9), while in tumor islands with high level of invasion by NK

cells, the mean intensity of vimentin was 79.1 – 113.7

(Figure 6B). These results showed that vimentin expression in

the cancer cells caused by invasion of NK cells was indeed

upregulated in UTUC tumors (Figure 6C). In summary, the

expression of vimentin was stimulated in tumors invaded by

NK cells.
Interference with actin filament
polymerization promoted the
cytotoxicity of NK cells

Reorganization of actin cytoskeleton plays a role in

promoting the migration and metastasis of malignant tumors.

Our previous study reported that inhibiting actin reorganization

limited tumor progression and metastasis (30). The results in

Figures 1 and 2 demonstrated that NK cells promoted the
A B
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FIGURE 4

Upregulation of vimentin upon NK cell interaction. (A) T24 or J82 cells were co-cultured with NK cells for 6 h and stained with a vimentin
antibody. The stained cells were observed using a fluorescence microscope. (C) H292 and A549 cells were co-cultured with NK cells for 6 h
and stained with a vimentin antibody. The stained cells were observed using a fluorescence microscope. (B, D) The intensity of upregulated
vimentin in the cancer cells was measured and quantified by ImageJ. Red arrowhead, NK cell; white arrowhead, vimentin upregulation. Scale
bars, 20 mm. Experiments were repeated at three times (n = 3).
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accumulation of actin filaments in resistant cancer cells.

Therefore, we further investigated whether actin filament

polymerization affected the cytotoxicity of immune cells

(Figure 7A). Immunoresistant cells (BFTC909 and A549) were

pretreated with an actin polymerization inhibitor (latrunculin

B), which could inhibit actin polymerization (Figure 7B). After
Frontiers in Immunology
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pretreatment with latrunculin B for 6 h, the inhibitor was

removed, and NK cells were added for another 24 h (the ratios

of cancer cells to NK cells were 1:0.25; 1:0.5, 1:1, 1:3, and 1:6).

Subsequently, cells were fixed and stained with crystal violet dye

(Figures 7C, D), and the morphology after treatment with NK

cells was observed under a microscope. The result demonstrated
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FIGURE 5

NK cells induced vimentin expression in the immune-resistant cancer cells. (A, C) Comparison of the expression of vimentin in NK cell-interacted
cancer cells. T24 and J82 cells were incubated with NK cells for 2, 6 and 24 h, and the expression of vimentin was detected using
immunofluorescence assays. (B, D) The intensity of vimentin was measured and quantified by ImageJ. (E, G) H292 and A549 cells were incubated
with NK cells for 2, 6 and 24 h, followed by the detection of vimentin expression. (F, H) Quantification of the intensity of vimentin using ImageJ. ns,
not significant; *P < 0.05; **P < 0.01; ***P < 0.001. Data are presented as mean ± s.d. (two-way ANOVA with Sidak's multiple comparisons test). Red
arrowhead, NK cell; white arrowhead, vimentin. Scale bars, 20 µm. Data derived from 10 fields, each including 2–3 cells.
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that when BFTC909 cells were treated at a ratio of 1:6, the

morphology of the cells was normal. By contrast, after the NK

cells were co-incubated with cancer cells pre-treated with

latrunculin B at a ratio of 1:3 for 24 h, the cancer cells

changed shape from round to elongated type. We speculated

that pretreatment with latrunculin B altered the regulation of

cancer cell cytoskeletal proteins to respond to NK cell attack

(Figure 7C). The results revealed that BFTC909 cells were not

sensitive to NK cells before treatment with latrunculin B, with

39.7% of cell death at a ratio to NK cells of 1:6. In contrast, cells

became sensitive to NK cells after treatment with latrunculin B,

with approximately 84.6% of cells dying after co-culture with NK

cells at a ratio of 1:3. Up to 47.2% of cells died after co-culture

with NK cells a ratio of 1:1 for 24 h (Figure 7D).

Similar results were obtained using another resistant cancer

cell line, J82. Statistical quantification of the cells showed that the

rate of cell death was 43.2% at a ratio to NK cells of 1:6, while the
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rate reached > 90% in cells treated with latrunculin B after co-

culture with NK cells a ratio of 1:3 for 24 h (Figure 7C). This

result showed that in urothelial cancer cells, pretreatment with

actin polymerization inhibitors changed the response of

BFTC909 and J82 cells to NK cells from resistant to sensitive

cells. Our results show that the inhibition of actin reorganization

in resistant cancer cells may enhance immune cell attack.
Silencing vimentin promoted the
cytotoxicity of NK cells

Previously, the vimentin expression was found to be

increased in many cancers, such as colorectal and lung

cancer. However, the correlation between vimentin and

tumor progression remained controversial (14). As shown in

Figures 2 and 3, high vimentin expression was found when
A
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FIGURE 6

Upregulation of vimentin in NK cell infiltrated tumor of UTUC. (A) Different levels of NK cell-infiltrated tumors from patients with UTUC were
collected. The tissue sections of UTUC were co-stained with NK1.1 and vimentin antibodies followed by detection of fluorescence signals using
a confocal fluorescence microscope. Vimentin was also detected using immunohistochemistry staining. (B) The fluorescence intensity of NK1.1
and upregulated vimentin in the tumor was quantified by ImageJ. ***P < 0.001. Data are presented as means ± s.d. (two-way ANOVA) from
three fields (n = 3). (C) Schematic represented the upregulation of vimentin induced by NK cells. Yellow arrowhead, NK cell; white arrowhead,
vimentin. White scale bars, 50 µm, Black scale bars, 100 µm.
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cancer cells were attacked by NK cells. Such phenomena were

also verified in patient tumor tissues (Figures 6A, B). Based on

this, we further explored if vimentin expression affected the

cytotoxicity of immune cells. The experiment was designed to

suppress the expression of vimentin in the immunoresistant

cells (BFTC909) by using shRNA, which inhibited the

expression of vimentin (Figure 8A). A stable cell line was

selected from cells with knocked-down vimentin and was

then co-cultured with NK cells for 24 h (the ratios of cancer

cells to NK cells were 1:0.25, 1:0.5, 1:1, 1:3, and 1:6). Cells were

then fixed and stained with crystal violet dye (Figure 8B). The

morphology of cancer cells treated with NK cells was observed

using a microscope, and shrinkage of some cells was observed

in BFTC909 cells at a ratio of 1:6, while other cells showed

normal morphology. After silencing vimentin, cancer cells

were co-cultured with NK cells at a ratio of 1:3 for 24 h and

the cancer cells were sensitive to immune cells (Figure 8C).

Statistical quantification of the cells found that BFTC909 cells

were not sensitive to NK cells, with 46.1% of dead cells

observed at an NK cell ratio of 1:6. In contrast, after

silencing vimentin, BFTC909 cells became sensitive to NK

cells, and 77.9% - 89% of cells died after co-incubation with

NK cells at a ratio of 1:3 for 24 h. After co-culture with NK cells

at a ratio of 1:1 for 24 h, 32.1% – 49.1% of the cells were dead

(Figure 8D). These results demonstrated that silencing

vimentin in urothelial cancer cells transformed the response

of BFTC909 cells to NK cells from being resistant to being
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sensitive. It is implied from this conclusion that inhibiting the

expression of vimentin in resistant cancer cells may enhance

the cytotoxicity of immune cells.
Discussion

Tumor evasion of immune surveillance is the main reason

for the inefficiency of immunotherapy. Here, we demonstrated

that actin cytoskeleton reorganization and vimentin expression

in urothelial cancer cells were resistant to NK cell-induced

cytotoxicity. Using the NK cytotoxicity assay, we found that in

urothelial and lung cancer cell lines, two types of cells can be

distinguished, which differ in their sensitivity and resistance to

NK cell attack (Figure 1). Notably, when resistant cancer cells

were attacked by NK cells, obvious actin filaments aggregation

occurred at the immune synapse, whereas this phenomenon was

not evident in sensitive cells (Figure 2). The same phenomenon

was observed when detecting vimentin expression, and resistant

cells exhibited vimentin upregulation after NK cell attack

(Figure 3). Tissue staining provided direct evidence that

tumors with high NK cell infiltration exhibited more vimentin

expression (Figure 4). Furthermore, in highly resistant cells,

pretreatment with latrunculin B promoted the cytotoxicity of

NK cells (Figure 5). Inhibition of vimentin expression by shRNA

was also sufficient to convert the resistant cancer cell lines to a

sensitive phenotype (Figure 6). Taken together, these findings
A

B

DC

FIGURE 7

Disruption of actin filaments formation enhanced NK cell-mediated cell death. (A) Pretreatment of latrunculin B, an actin filaments inhibitor,
increased NK cytotoxicity using urothelial cancer cells. Cells were seeded in the 96-well plate and pretreated with 0.5 µM latrunculin B for 6 h
following which the inhibitor was removed. The cancer cells were then incubated with NK cells for 24 h. (B) Representative images of
latrunculin B showing reduced actin filaments formation. (C) J82 and BFTC909 cells were co-cultured with NK cells for 24 h and stained with
crystal violet. The stained cells were observed using a microscope. (D) The stained cells were counted and statistically analysis was performed
using the Prism software. ***P < 0.001. Data are presented as means ± s.d. (two-way ANOVA with Tukey’s multiple comparisons test) and
experiments were repeated three times (n = 3). Latrunculin B, LatB.
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demonstrated that actin reorganization and vimentin expression

of cancer cells affected NK cell cytotoxicity.

NK cell cytotoxicity is regulated by a multistep process. NK

cells interact with intercellular adhesion molecule 1 (ICAM1) and

activating receptors, such as NCR, NKG2D, and DNAM1 via CD2,

selectin CD62L, and adhesion integrin receptors (LFA1 and Mac1)

(31, 32). These processes cooperate with integrin signaling to

promote the formation of NK cell immunological synapses

(NKIS). The formation of adhesion ring junctions after NK cell

contact with cancer cells requires signaling mediated by

cytoskeleton remodeling (33). F-actin accumulates in NKIS and

is important for promoting the aggregation of various activating

receptors. F-actin organization is a major driver of immune synapse

formation and lipid raft polarization between NK and target cells

(34–36). Actin retrograde flow (ARF) regulates NK cell signaling

and NK cell activation and inhibition. This mechanotransduction

process is regulated by the dynamics of actomyosin (37–39).

The stiffness of the matrix affected the cytotoxicity of NK

cells and promoted the secretion of the NK cytokine interferon-

gamma (IFN-g). Cytokine release increases when NK cells

interact with stiffer substrates. Cell stiffness changes

continuously during the tumor process, with primary tumor

cells being stiffer than healthy cells, and highly metastatic cells

being less stiff (40). Additionally, viral infections can increase

stiffness by inducing cortical actin rearrangement (41).

Therefore, we speculated that the stiffness of the cells could

affect the responsiveness of NK cells to infiltrate tumors.
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Al Absi et al. found that actin cytoskeleton remodeling

drives cancer cells to escape NK cell-mediated cytotoxicity

(19). For example, after breast cancer cells encounter NK cells,

actin accumulates at the immune synapses, which in turn

limits the accumulation of the cytotoxic molecule granzyme

B (GrzB) in cancer cells. Thus, cancer cells are protected from

lysis and apoptosis (42, 43). The urothelial and lung cancer cell

lines used in this study also exhibited actin accumulation at the

immune synapses in resistant cancer cells but not in NK-

sensitive cancer cells (Figure 2). This suggests that sensitive

cancer cells may have a higher capacity to accumulate actin

filaments at the immune synapses than resistant cancer cells.

This reveals that differences in the accumulation of actin

filaments in cancer cells at immune synapses may affect NK

cell killing and cancer cell resistance. Most studies so far have

focused on actin reorganization regulating NK cell function,

and our study showed that interference with actin

reorganization and vimentin expression affected the ability of

NK cells to kill cancer cells (Figures 2, 3). Our findings reveal

the molecular and biophysical mechanisms by which dynamic

cytoskeletal networks within cancer cells regulate NK

cytotoxicity. The expression of vimentin, which coordinates

lytic granule trafficking, MTOC polarization and actin

dynamics at the immune synapses, remains unclear. An in-

depth exploration of this information will help classify cancer

cell sensitivity to NK cells and provide opportunities for future

cancer treatment.
A

B

DC

FIGURE 8

Silencing of vimentin enhanced NK cell-mediated cell death. (A) Silencing efficacy of shVIM#1 and shVIM#2 by western blot. (B) Silencing of
vimentin in urothelial cancer cells increased NK cytotoxicity. BFTC909 cells were silenced with shEV, shVIM#1 or shVIM#2 and stable cells were
screened. The stable cells were seeded in the 96-well plate 24 h and then incubated with NK cells for 24 h. (C) BFTC909-shEV, shVIM#1 or
shVIM#2 cells were co-cultured with NK cells for 24 h and stained with crystal violet. The stained cells were observed using a microscope. (D)
The stained cells were counted and statistically analysis was performed using the Prism software. *P < 0.05; ***P < 0.001. Data are presented as
means ± s.d. (two-way ANOVA with Tukey’s multiple comparisons test) and experiments were repeated three times (n = 3).
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Al Absi et al. demonstrated that actin accumulation

significantly protects cancer cells from NK-mediated

cytotoxicity (19). A possible reason why cancer cells escape

death is the creation of a physical barrier that renders lytic

particles ineffective. Another escape mechanism can be the

aggregation of the inhibitory checkpoint ligands. We

speculated that actin reorganization and vimentin expression

may induce PD-L1 coalescence at NKIS to evade NK cell

surveillance. Studies from Al Absi et al. also showed that the

inhibition of actin nucleation factors, such as N-WASP or

Cdc42, in cancer cells restored NK cell-mediated cytotoxicity

(19). In our study, interference with the remodeling of actin

cytoskeleton and inhibition of vimentin can effectively promote

NK cytotoxicity. Therefore, approaches aiming to modulate

c y t o sk e l e t a l p ro t e i n s o f c anc e r c e l l s may hav e

therapeutic potential.

Periodic exposure to the tumor microenvironment may

induce NK cell exhaustion (44–48). Such exhausted NK cells

typically express one or more inhibitory checkpoint receptors,

such as programmed cell death protein 1 (PD-1), TIM-3, or

TIGIT, which limits their cellular activity. Exhausted NK cells

show reduced proliferation, cytokine release and degranulation.

Actin cytoskeleton remodeling of target cells affects CTL

recognition and lysis efficiency of NK cells. Changes in the

actin dynamics in cancer cells result in immune evasion by

inhibiting immune synapse formation or interfering with

effector functions (19, 49–51). Decreased actin on the surface

of cancer cell membranes may not only prevent strong adhesion

of immune cells but also reduce the strength of mechanoreceptor

signaling, resulting in insufficient NK activation signaling at the

immune synapse. Enhanced actin dynamics in cancer cells

reduce the cytotoxic enzymes perforin and GrzB (19). The

actin cytoskeleton flanking the immune synapse determines

lymphocyte cytotoxic attack and cancer cell resistance.

An interesting finding of our study was that urothelial cancer

cell lines contain two types of cells, one of which was

immunoresistant cells that responded to NK cell attack by

regulating actin reorganization and vimentin expression while

surviving this attack. Another group of immune-sensitive cells

lacked this regulatory function and was highly sensitive to lysis

by NK cells. Therefore, when studying cytotoxic immune

responses against tumors, the immunoresistance caused by

reorganization of cytoskeletal proteins in response to immune

cell attack should be considered. We propose that targeting

cytoskeleton remodeling in cancer cells may improve the efficacy

of immunotherapy.
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