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Editorial on the Research Topic
Innovative biocontrol strategies to manage crop and pest diseases

One of the main issues of human life will always be the efficient supply of food.
During the last century a shift in agricultural practice made it possible to reduce the
amount of labor to feed humanity drastically. But the mechanization of agriculture
could not prevent and diminish crop losses due to plant diseases significantly (whether
microbial or animal) (Vermeulen et al., 2018; Chidawanyika et al., 2019).

Nevertheless, scientists helped to find solutions for crop protection during all
times. In recent years, due to climate change, a more interconnected world and mass
production in combination with higher demands on crop protection solutions aiming for
a lower impact on the environment new challenges arise every day. Visible to everyone
the global climate is changing rapidly and many effects are increasingly manifesting
across all biological and environmental systems. Additionally, humans have traded and
transported species for centuries, but with an increasing speed and long-range. However,
in twentieth century the spreading of species reached a new magnitude and diversity
of biological invasions. Biological pests are beneficiaries of both effects. The two main
methods for disease control currently available in crop production are application of
fungicides (or other pesticides) and the use of plant cultivars resistant or tolerant
to their pest organisms. Nevertheless, both methods have differing limitations. Public
concerns regarding the health and environmental effects of pesticides, as well as the
development of resistant pathogenic strains to fungicides, have reduced their potential.
In many important crops, all cultivars and hybrids available to the growers worldwide
are susceptible to their pest organisms and genetical modifications of the cultivars are
not accepted. One possible solution is the use of biocontrol agents. For that, scientists are
attempting to use the current but long-standing war between microorganisms, plants,
and animals to develop biological solutions useful for broad agricultural deployment.
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The editors aimed for a broad overview shedding
light into different corners of modern and innovative
plant protection with a focus on strategies using
biological approaches.

Therefore, we searched for crop protection solutions using
microorganisms and their products to obtain strategies for a
modern and advanced agriculture. Some of the articles focus
on fungal biocontrol agents (BCAs), such as Trichoderma sp.
by Di Marco et al., and Penicillium sp. by Nguyen et al., while
others focus on bacteria, such as Pseudomonas sp. by Yang et al.
and Bacillus sp. as studied by He et al, Leal et al, Li et al,
and Zhang N. et al.. Biological control, a phenomenon based
on the antagonism between microorganisms, is considered as a
sustainable eco-friendly alternative way to prevent or suppress
pathogens in agriculture. For example, in this Research Topic,
microbial antagonistic strategies against Neofusicoccum parvum,
an aggressive pathogen associated to Botryosphaeria dieback
(BD), are presented for the protection of Chardonnay and
Tempranillo (Leal et al.). The most promising biological control
trials carried out on a number of fungi that antagonize plant
pests and have led to the development of so-called biofungicide
products, e.g., Vintec (Chervin et al.). Another promising field
of research is based on organic volatile compounds (Toral
et al.). In this Research Topic on biocontrol strategies to manage
crop and pest diseases, the antagonistic mechanisms of soluble
non-volatile bioactive compounds emitted from Bacillus have
been studied against plant fungal diseases and promising results
have been published. The publications cover a wide range
of diseases from grapevine trunk diseases to rice pathogens
and nematodes on both monocotyledons and dicotyledons to
Alternaria solani in potato plants (Zhang D. et al.) and bacterial
wilt of tomato caused by Ralstonia solanacearum (Dong et al.).
Innovative approaches also include the application of newly
isolated species from marine to soil environments. The included
articles allow readers an overview and enable to showcase the
variety of crop pests and possible biological control strategies
and methods.

The editors of this special Research Topic launched
highlight modern research

by Frontiers intend to

regarding efficient and sustainable plant protection
and shed a light on possible and rising new fields in
this area.
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Isolation, Characterization, and
Evaluation of Native Rhizobacterial
Consortia Developed From the
Rhizosphere of Rice Grown in
Organic State Sikkim, India, and
Their Effect on Plant Growth
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" Department of Horticulture, School of Life Sciences, Sikkim University, Gangtok, India, ? Department of Microbiology,
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Eight rhizospheric bacteria were isolated from the organic paddy fields of Sikkim,
India, and identified as Pseudomonas kribbensis KSB, Burkholderia cenocepacia SRD,
Kosakonia oryzendophytica YMAT7, Pseudomonas rhodesiae SRB, Bacillus sp. ARA,
Paenibacillus polymyxa COWS3, Bacillus aryabhattai PSB2, and Bacillus megaterium
PSB1. They showed plant growth-promoting attributes in rice and have bio-control
potential against phytopathogen Colletotrichum gloeosporioides of large cardamom
(Amomum subulatum). Burkholderia cenocepacia SRD showed production of indole
acetic acid and ammonia and solubilization of phosphate and potassium and also
possessed nitrogen fixation potential. It showed antagonistic activity against two other
plant pathogens of large cardamom, viz., Curvularia eragrostidis and Pestalotiopsis
sp., under in vitro conditions. The liquid bacterial consortium was prepared using
the bacterial strains SRB, PSB1, and COW3 (Consortia-1); PSB2, SRD, and COW3
(Consortia-2); and COWS3, KSB, and YMA?7 (Consortia-3) to increase the growth and
yield of rice plants under organic farming conditions. Greenhouse and field studies
showed that the Consortia-3 had the highest plant growth-promoting activity. Consortia-
3 demonstrated better agronomic performance in terms of root length (9.5 cm),number
of leaflets per plant (5.3), grains per panicle (110.6), test grain weight (27.4 g), dry root
weight per plant (0.73 g), and total dry biomass per plant (8.26 g).

Keywords: consortia, bio-control, rhizobacteria, bio-fertilizer, organic agriculture, Sikkim, plant growth promoting
rhizobacteria

INTRODUCTION

Northeast India comprises seven sister states, i.e., Assam, Manipur, Meghalaya, Tripura, Mizoram,
Arunachal Pradesh, and Nagaland and one brother state, Sikkim. These regions are globally
acknowledged for their highest rice diversity (Roy Choudhury et al., 2014). Rice (Oryza sativa L.) is
one of the main staple food grains of Sikkim that is cultivated in 11,600 ha with a total production
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Sikkim’s Organic Farming Rice Rhizospheric-Bacteria

of 20,260 tonnes and a productivity of 1.84 t ha™! (Kapoor et al.,
2017). It is also described with an epithet “Denzong Valley,” which
transcribes to “valley of rice.” Rice is grown during the Kharif
season, i.e., monsoon period from July to October. Sikkim alone
has greater genetic rice diversity accounting for more than 57
rice accessions documented to date (Kapoor et al., 2017). Among
the predominant local rice cultivars, Attay is the most common
type found all over Sikkim. Depending on the grain size, it can
be classified as “Thulo attay,” having larger grain size, and “Sanu
attay,” having small grain size.

Sikkim, the Himalayan state of India, is situated at the
27°N-28°N latitude and 88°E89°E longitude with an elevation
ranging from 300 to 6,000 m above the mean sea level (Sherpa
et al., 2015; Najar et al, 2018). The state completely banned
the application of synthetic fertilizers and pesticides from
2003 and ultimately attained the certified organic status in
2016. Nutrient management in organic farming has attracted
the attention of many researchers for exploring the soil
microbes as potent bio-fertilizer that can be used either as a
single inoculum or as consortia. Numerous researchers have
reported the importance of soil bacteria for the production
of plant hormones like indole-3-acetic acid (IAA), gibberellic
acid (GA3), solubilization of phosphate, potassium, and
nitrogen fixation. The most predominant and economically
important soil bacteria isolated from agricultural farmlands
are  Burkholderia, Delftia, Pseudomonas, Agrobacterium,
Azospirillum,  Azotobacter, Rhizobium, Clostridium, and
Serratia (Bhattacharyya and Jha, 2012; Hao and Chen, 2017;
Rajawat et al,, 2019; Venieraki et al., 2020). Three species
from the genera Bacillus, viz., Bacillus luciferensis K2, Bacillus
amyloliquefaciens K12, and Bacillus subtilis BioCWB, were
isolated from the soils of Sikkim and developed as consortia
for use in rice and vegetable cultivation for enhancing their
nutrient quality and controlling the pest management of the
crops (Panneerselvam et al., 2019, 2020).

Bacillus species such as Bacillus thuringiensis, Bacillus
megaterium, B. subtilis, and B. amyloliquefaciens have also
been reported for their effectiveness to suppress diseases and
pests in plants. Among their different modes of antagonism,
antimicrobial peptides (AMPs) such as bacillomycin, iturin,
surfactin, and fengycin produced by Bacillus spp. have been
identified and demonstrated to play an important role in
suppressing several plant pathogens. Bacteria are also known
to produce volatile compounds and soluble metabolites, which
play a key role in plant growth and development, stress
tolerance, and disease suppression (Panneerselvam et al., 2019).
Sikkim has an entirely organic farming system (Kumar J. et al,,
2018), and several management practices including indigenous
technologies are available for improving plant growth. However,
the application of bacterial consortium particularly of native
strain to address the nutrient and pest management has been
proved to be holistic and ecologically sustainable strategy for
agricultural production (Panneerselvam et al., 2020).

Bacterial consortia were developed from the eight native
strains isolated from the rice rhizosphere of the organic farming
fields of Sikkim, India. Few previous reports were based on
either the monocultures or consortia of bacterial strains from

the same genera such as Bacillus sp. showing the plant growth-
promoting (PGP) activity (Panneerselvam et al., 2019, 2020). Our
consortia were constituted with isolates from different genera
having antifungal properties and good nitrogen, potassium, and
phosphorous (NPK) performance and had shown promising PGP
activity in both tested greenhouse experiments and field study.
The consortia developed was tested in local cultivar Sanu attay,
for various agronomic performance in terms of root length, the
number of leaflets per plant, grains per panicle, test grain weight,
dry root weight per plant, and total dry biomass per plant, in the
test fields at Pakyong organic farming. The present study attempts
to identify some of the novel crop-specific multi-potential PGP
bacteria from native rice rhizospheric soils.

MATERIALS AND METHODS

Sampling Sites

The geographical location of Melli, Sajong, and Assam Lingzey
rice fields was determined by GPSMAP 78S (Garmin, Lenexa,
KS, United States) as per the manufacturer’s guidelines. The
study areas were the organic rice fields of the progressive
farmers from South Sikkim (Melli, and East Sikkim (Sajong and
Assam Lingzey) districts of Sikkim, India. Melli (27°06'06.32N;
88°25/38.45E), Sajong (27°18'11.13N; 88°34'26.58E), and Assam
Lingzey (27°16'55.98N; 88°37'06.70E) are located at an elevation
of 991, 1,268, and 1289 m above the mean sea level, respectively
(Figures 1A,B). Four different sampling sites were chosen for the
collection of the rhizosphere soil samples from each of these three
villages, i.e., Melli, Sajong, and Assam Lingzey.

The cultivation of the crop was done by the farmers in a well-
managed contour terrace on hilly and mountainous topography
with ridges almost <30% slope. Melli is characterized by a humid
subtropical climate with an annual average rainfall of about
3,137 mm and an average temperature of 23°C. Similarly, Sajong
and Assam Lingzey are characterized by subtemperate climates
with an average rainfall of about 2,578 mm and an average
temperature of 16°C. At all the places, the soil was loamy sand;
and crops were rain-fed; an assured irrigation source (Bana et al.,
2018) was also available.

Collection of Rhizosphere Soil Samples

and Its Physicochemical Analysis

Soil samples were randomly collected from the four different
sampling sites at Melli, Sajong, and Assam Lingzey rice fields,
during the rainy season of 2019. These samples were collected in
triplicates from each of the sampling sites. The field trial was laid
out in a split-plot design with local rice cultivar “Sanu attay,” a
long duration (120 days) variety of paddy. The top 0- to 15-cm
soils contained high organic carbon (1%-1.3%) and were slightly
acidic in pH (6.5-6.8). One whole paddy plant, after chopping
off the shoots, was carefully uprooted (along with the adhering
soil; without breaking the secondary and tertiary roots), placed
in a polythene bag, labeled and tied (in order to minimize the
evaporation loss), and further placed in a box containing ice.
The approximate distance of soil adhered to the rice root surface
was 12-15 cm. The ice box was transported to a lab where the
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FIGURE 1 | Location of the sampling sites (A) South and (B) East Sikkim, India.
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roots were shaken to dislodge and separate loosely adhering soil
aggregates around primary, secondary, and tertiary roots, and the
adhering soils were collected and stored in a refrigerator at 4°C
for further studies.

These four soil samples collected from the different sampling
sites of a village were pooled together and were used for
determination of the physicochemical analysis of the soil for
that study area. At all the sampling sites, soils are deep, well-
drained, fine-loamy soils with loamy surface, having slight
stoniness and moderate erosion. They show a slight degree of
profile development and are classified as Cumulic Haplumbre
and Pachic Haplumbrepts. They occur in association with
moderately deep, coarse soils with loamy surface having slight
stoniness and moderate erosion. Associated soils are classified
as Typic Udorthents and Typic Haplumbrepts. Most of the area
is under paddy cultivation; limited extent is under temperate
forest (ENVIS, 2007).

Physicochemical parameters such as soil organic carbon
(SOC), nitrogen (N), phosphorus (P), potassium (K), and pH
of the rice field soil (before and after application of consortia)
were analyzed. SOC and available N/P/K of the soil samples
were estimated by the ammonium acetate method (Zhang et al.,
2019); and the pH of the soil sample was measured by digital
pH meter (Mettler-Toledo, India). The soil:water ratio during
the sample collection was 1:2. The soil samples were of loamy
sand texture. The pH of the Melli and Sajong soil was between
6.7-6.8 and 6.6-6.8, while soil sample pH of Assam Lingzey was
recorded as the lowest among other sites, with a pH of 6.4-
6.5. The SOC, available nitrogen, phosphorous, and potassium
were measured as 1.1%, 238 kg ha™!, 19 kg ha™!, and 25 kg
ha~!, respectively, in Melli soil; those of the soil sample of Sajong
were recorded as 1.3%, 235 kg ha™!, 18.1 kg ha™!, and 22 kg
ha=1, respectively; and those of Assam Lingzey soil sample were
measured as 1%, 239 kg ha=!, 16.1 kg ha™!, and 21 kg ha™!,
respectively (Supplementary Table 1).

Isolation and Screening of Plant
Growth-Promoting Rhizobacterial
Strains, Their Morphological and
Biochemical Characterization, and

Molecular Identification

Ten grams of rhizosphere soil from each sampling sites was
separately suspended in 90 ml of physiological saline (0.85% of
NaCl) in a flask and placed on an orbital shaker (at 100 rpm)
at 30°C £ 2°C for 1 h. At the end of shaking, the soil samples
were serially diluted up to 10° dilutions with physiological
saline. Dilutions 10%-10° were plated on Pikovskayas' agar (PA),
Aleksandrov’s agar (AA), and Jensen’s agar (JA) as described by
Panneerselvam et al. (2019, 2020) by spread plate technique and
incubated at 30°C = 2°C for 48 h. The most prominent colonies
were isolated and streaked on PA, AA, and JA plates for obtaining
pure culture isolates and further were preserved as in glycerol
stock stored at -80°C for further studies.

Colony morphology of the pure bacterial isolates was
examined. Gram staining was done as per the universal standard
method. The physiological characteristics such as the effect of
varying temperature, pH, and NaCl concentrations on the isolates
were measured by a UV-Vis spectrophotometer. The optimal
temperature for growth was examined by incubating the isolates
in various temperatures ranging from 5 to 40°C in nutrient broth.
The effect of NaCl concentrations was tested in a range of 1%-
5% and pH tolerance in the pH ranging from 4 to 10 in nutrient
broth at 30 & 2°C for 48 h (Arya et al.,, 2015). The biochemical
characterization of the isolates was done by qualitative analysis
of various enzymes such as indole, methyl red, Voges—-Proskauer,
and citrate utilization. The carbohydrate assimilation test was
performed using glucose, adonitol, arabinose, lactose, sorbitol,
mannitol, rhamnose, and sucrose (Najar et al., 2018).

The bacterial genomic DNA was extracted with the help
of HiPurA™ kit (HiMedia, Mumbai, India) as per the
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manufacturer’s instructions. After extraction of genomic
DNA, it was stored at -80°C for further studies. The
16S rRNA genes were polymerase chain reaction (PCR)
amplified by using two universal bacterial primers 27F
(5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5-
CGGTTAC CTTGTTACGACTT-3') (Kumar J. et al, 2018).
The amplification was done in 50 ] using 4 pl of each ANTP,
2 pl of MgCly, 2 pl of template DNA, 1 pl of each primer
(forward and reverse), 1 il of Taq DNA polymerase, and 33 pl of
nuclease-free water (HiMedia, India). Reactions were performed
in the Mastercycler gradient (Eppendorf, Chennai, India) with
the following reaction conditions; 94°C for 5 min for initial
denaturation followed by 30 cycles of 94°C for 30 s, 55°C for
1 min, 72°C for 1 min, and the final extension at 72°C for
10 min (thermal cycler PCR system, BIO-RAD C1000; Bio-Rad
Laboratories, Singapore) (Najar et al., 2018). The PCR products
were purified with the HiPurA™ PCR clean up system kit
(HiMedia, India) and sequenced by ABI Applied Biosystems™
3500 DNA Analyzer using each universal primer, i.e., 27F and
1492R (Sherpa et al., 2018). The sequences were assembled
and aligned with the aid of Codon-Code Aligner software.
The sequences were identified using the nucleotide blast tool
[National Center for Biotechnology Information (NCBI) search
tool)], and the phylogenetic tree was created by using the
neighbor-joining method with the Jukes-Cantor evolutionary
distance measurement using MEGA v.10 (Saitou and Nei,
1987; Erickson, 2010). After the 16S rRNA gene sequences
were obtained, they were matched with the GenBank database
using the NCBI Basic Local Alignment Search Tool (BLAST).
Identified sequences were submitted to NCBI GenBank data, and
accession numbers of the selected isolates were obtained.

In vitro Bioassay for Plant

Growth-Promoting Traits

Solubilization of Insoluble Phosphate and Potassium
The isolates that were screened for their phosphate-solubilizing
ability on PA were streaked and incubated for 72 h at
30°C £ 2°C. The presence of halo zone around the bacterial
colony indicated positive isolates. These phosphate solubilization
potential isolates were quantitatively estimated in Pikovskayas’
medium enriched with tri-calcium phosphate as an insoluble
phosphate source (Panneerselvam et al., 2019). Each of the pure
isolated bacterial suspension (0.5 ml of 108 CFU ml~!) was
inoculated in a 250-ml flask containing 100 ml of Pikovskayas’
broth. After incubation at 150 rpm at 30°C for 7 days in
an incubator, the cultures were centrifuged at 1,000 rpm for
25 min. The supernatant was used to measure the soluble
P content colorimetrically as described by Ames (1966).
Uninoculated flasks containing the same volume of the medium
were established as the controls. The solubilized P content
was estimated by subtracting the control P from the final
P concentration.

The isolates that were screened for their potassium-
solubilizing ability on AA were streaked and incubated for 72 h
at 30°C = 2°C. The presence of halo zone around the bacterial
colony indicated positive isolates. These potassium solubilization

potential isolates were quantitatively estimated in Aleksandrov’s
medium (Zhang and Kong, 2014; Paul and Sinha, 2017). For the
quantitative estimation of potassium solubilization (Sun et al.,
2020), cultures were grown in Aleksandrov’s broth and incubated
for 5 days at 30°C in an incubator. After incubation, 5 ml broth
was centrifuged at 10,000 rpm for 15 min; and the supernatant
was collected and added to 5 ml of sodium cobalt nitrite solution
and was incubated at 30°C for 40 min. It was then centrifuged
at 10,000 rpm for 10 min. Optical density was taken at 600 nm
in a UV-Vis spectrophotometer. Concentration of potassium
produced by cultures was measured with the help of standard
graph of KCl obtained in the range of 100-1,000 jLg ml~!.

Qualitative Estimation of Siderophore Production

The production of bacterial siderophores was qualitatively
estimated by the method as per Schwyn and Neilands (1987).
Bacteria were streaked on chrome azurol S (CAS) agar media and
incubated at 30°C % 2°C for 48 h. When the bacteria consumed
iron, present in the blue-colored CAS media, orange halos were
produced around the colonies, which indicated the presence
of siderophores.

Production of Indole-3-Acetic Acid

Bacterial isolates were grown in nutrient broth supplemented
with 0.5% (w/v) tryptophan (i.e., precursor of IAA) and
were compared with broths without tryptophan (control) and
incubated at 30°C £ 2°C for 24 h with constant shaking
at 150 rpm. The nutrient broth culture was centrifuged at
3,000 rpm for 20 min; and the supernatant was collected in a
fresh sterile tube. In a sterile tube, 1 ml of the supernatant was
mixed with 2 ml of Salkowski’s reagent (2% 0.5 FeCls in 35%
perchloric acid solution) and kept in the dark. The absorbance
[optical density (OD)] was recorded at 530 nm using a UV-
Vis spectrophotometer (Lambda PerkinElmer, Waltham, MA,
United States). The amount of produced IAA was measured
through a standard curve established by commercially procured
TAA (0-100 pg ml~!) as standard.

Qualitative Analysis of Nitrogen-Fixing Ability

The qualitative nitrogen-fixing ability of the bacterial isolates was
evaluated based on their ability to grow on N-free Jensen’s media
by culturing and incubating them at 30°C = 2°C for 48 h (Jimtha
et al., 2014; Kumar S. et al., 2018).

Qualitative and Quantitative Estimation of Ammonia
All the bacterial isolates were qualitatively tested for ammonia
production as per Cappuccino and Sherman (1992). The
quantitative estimation of ammonia production was assessed by
using nutrient broth at 30°C & 2°C for 24 h with constant
shaking at 150 rpm. Cell-free supernatants of nutrient broth
were added with 5% Nessler’s reagent, and uninoculated nutrient
broth with Nessler’s reagent served as a control. Color changes of
supernatant from pale to deep yellow were observed for positive
isolates. Absorbance was measured at 425 nm, and the amount
of ammonia produced was estimated using the ammonium
sulfate standard curve of concentrations in (0-100 mM) range
(Chrougqi et al., 2017).
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Assessment of the in vitro Antifungal

Activity of Bacterial Isolates

The antifungal activity of the bacterial isolates was evaluated
against the fungal pathogens infecting large cardamom
(Amomum subulatum) of Sikkim by dual culture assay using
Potato Carrot Agar (PCA). The following large cardamom fungal
pathogens were provided by the Department of Horticulture,
Sikkim  University, Sikkim, India, viz., Colletotrichum
gloeosporioides 05 (MN710587), Curvularia eragrostidis04
(MN710527), and Pestalotiopsis sp. 02 (MN710582) used for the
assay. Agar disc (5 mm) of phytopathogens for 5-day-old culture
was placed at one pole of the Petri’s plate, and 24-h-old bacterial
culture was streaked on the opposite pole (Panneerselvam et al.,
2019). Antifungal activity of the bacterial strains was determined
by comparing with the control plates inoculated with the fungus
only. Inhibition of fungal mycelium (halo zone) around the
bacterial colony was a criterion for positive reaction, and its zone
of inhibition was measured. The fungal growth was monitored at
30°C =+ 2°C for 120 h; and the three replications per isolate were
considered. Fungal colony diameter (growth) was measured, and
the percentage of inhibition was calculated as per the methods
suggested by Lahlali and Hijri (2010).

T,
Percentage of inhibition = (Cd—c—d) x 100
d

where C? is the colony diameter (mm) of the control and T¢
is the colony diameter (mm) of the test plate Antagonism was
also assessed under potato dextrose broth methods wherein first
the mycelia dry weight was calculated from which the percentage
inhibition by bacteria was calculated as per the formula described
by Lahlali and Hijri (2010).

TW
Percentage of inhibition = (Cw—a) x 100

where C" mycelia weight (g) is in the control and 7" mycelia
weight (g) is in the treatment broth.

In vitro Bacterial Compatibility Test

Only the selected bacterial strains were investigated for their
compatibility as described by Raja et al. (2006). Each pure
bacterial isolate was cultured individually in Luria Bertani broth
at 30°C = 2°C in a shaker cum incubator at 100 rpm for 48 h.
Later on, all the strains were cross-streaked on Luria Bertani agar
plate. The cross-streaked plates were incubated at 30°C & 2°C
for 48 h and then examined for the formation of inhibition zones
around the colonies.

Preparation of Bacterial Consortia

The selected isolates SRB, SRD, PSB1, PSB2, COW3, KSB, and
YMA?7 were grown until the stationary phase (2 x 10° cells ml~1).
Based on the compatibility test, NPK-producing consortia were
prepared such as SRB (K), PSB1 (P), and COW3 (N) (Consortia-
1); PSB2 (K), SRD (P), and COW3 (N) (Consortia-2); and
COW3 (N), KSB (P), and YMA7 (K) (Consortia-3). The selected
individual pure bacterial strains having potassium-solubilizing,

phosphorous-solubilizing, and nitrogen-fixing abilities were
inoculated into 100-ml conical flask containing each of 50 ml
of nutrient broth and was incubated for 48 h at 30°C. The
bacterial consortia were prepared by inoculating each of the 200
ul of 48-h-old culture (concentration of 2 x 10° CFU ml~!)
into 1,000-ml conical flask containing 500 ml of nutrient broth
supplemented with 5% sucrose. It was incubated in shaker cum
incubator at 150 rpm at 30°C for 48 h. Then the consortia
were centrifuged at 4,000 x g for 5 min and were washed twice
with sterile phosphate-buffered saline PBS (1.24 g of K;HPOy,
0.39 g of KH,PO, and 8.80 g of NaCl per liter). The supernatant
was discarded, and the pellet was suspended in PBS buffer. The
viable count of the suspension was adjusted by adding sterile
distilled water to give a final concentration of 2 x 10° cells
ml~™! (2 x 10° CFU ml™!) with the help of a hemocytometer
(Marienfeld, Lauda-Konigshofen, Germany).

In vivo Root Colonization and Plant
Growth Assessment Through

Greenhouse Pot Experiment

The effect of the bacterial consortia on plant growth was
examined on rice (local cultivar Sanu Attay) in a pot at the
greenhouse (Department of Horticulture, Sikkim University) in a
randomized complete block design method with three replicates.
Rice seeds were surface-sterilized with 95% ethanol for 5 min and
washed several times with sterilized distilled water.

Three different bacterial consortia [Consortia-1 (Pseudomonas
rhodesiae SRB +B. megaterium PSB1 +Paenibacillus polymyxa
COWS3), Consortia-2 (Bacillus aryabhattai PSB2 +Burkholderia
cenocepacia SRD +P. polymyxa COW3), and Consortia-3
(P. polymyxa COW3 +Pseudomonas kribbensis KSB +Kosakonia
oryzendophytica YMA7)] were grown in a nutrient broth
supplemented with 5% sucrose and was incubated at 30°C for
48 h in an orbital shaker at 150 rpm. Rice seeds were inoculated
with each of the bacterial consortia for 5 h at room temperature
before planting in pots. Control seeds were also treated in the
same manner with sterilized distilled water.

Each pot contained 3 kg of autoclaved sterile soil. Each of the
bacterial consortia inoculated seeds was planted 1 cm below the
soil surface in each pot. Three replications were conducted for all
the treatments. The pots were irrigated with sterile distilled water
every day. Rice roots were harvested at the end of the trial, and
their dry weight was measured.

Determination of N, P, and K Uptake by
the Rice Plant Grown in Greenhouse Pot

Experiment

The availability of N/P/K uptake by the rice plant grown in
greenhouse pot was estimated by the analysis of the soil during
each treatment, i.e., at initial stage and after 60 days of treatment.
In case of the first treatment, i.e., at the initial stage, the soil
samples from 0.45 m depth were randomly collected from the
pot for each treatment with the three different bacterial consortia.
The soil samples were aseptically collected with the help of
screw auger. The samples were brought to the laboratory and
air-dried under room conditions for 2 days. To remove the
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further moisture in the soil, the samples were dried in hot air
oven at 35°C =& 2°C for 6 h. Then the dried soil samples were
grinded by wooden roller and thereafter manually sieved through
2 mm stainless steel sieve. The fine-powdered samples were then
processed for their chemical analysis through tri-acid mixture.

In case of the second treatment, the effect of the bacterial
consortia on nutrient uptake of rice plant was analyzed in the
60-day-old plants. The plant samples from the greenhouse pot
experiment were brought to the laboratory, the whole rice plant
was air-dried for 2-3 days, and after that, it was dried in a hot air
oven at 60°C = 2°C overnight to achieve complete dryness of the
samples. Once the plant samples were completely dry, they were
grinded to powder form and passed through 2 mm stainless steel
sieve manually. The filtered powder was then processed for the
various chemical assays through tri-acid mixture.

Total nitrogen (N) was assessed by Kjeldahl digestion method;
total phosphorous (P) was evaluated by ammonium-molybdate
technique in acid digestion procedures; and potassium (K) was
estimated by flame photometric methods (Duarah et al., 2011)
for both the soil samples (during initial treatment) and plant
samples (during second treatment, i.e., after 60 days’ growth in
a greenhouse pot experiment).

In vivo Plant Growth-Promoting
Rhizobacteria Activity of the Consortia in
Field-Based Trials

The bacterial consortia were applied at the rice field at Pakyong
(27°13’45.12 N and 88°35'33.26 E, and elevation is 1,272 m
above the mean sea level), East Sikkim, in triplicates. Soils are
deep, well-drained, fine-loamy soils with loamy surface, have
slight stoniness and moderate erosion, and are classified as
Cumulic Haplumbre and Pachic Haplumbrepts. The consortia
were applied to the field area of 36.57 m x 60.96 m (2,229.3
m?) where local rice variety Sanu attay was organically cultivated.
The consortia were administered to 25-day-old rice plant
saplings through root dipping method (Fasusi et al., 2021).
The uninoculated rice saplings were the controls for the study.
The PGP traits were observed in the plants after 60 days by
transplanting in organic agricultural farming fields.

Statistical Analysis

Data of bacterial consortia treatments were compared by the least
significance difference (LSD) test using R software (Devkota et al.,
2019). The differences at the p < 0.05 value were considered as
significant results.

RESULTS

Bacterial Isolation and Biochemical

Characterization

A total of 25 PGP bacteria were screened and isolated from the
rice rhizospheric soil. Based on the morphological, biochemical
characterization, and PGP attributes, eight bacterial isolates were
selected for further analyses. The cell morphology of the isolates
was Gram-positive and Gram-negative rods. Most of the isolates

were Voges—Proskauer negative, methyl red positive, and citrate
utilization test positive, i.e., seven isolates, six isolates, and seven
isolates. The carbohydrate assimilation test showed that most
of the isolates fermented carbohydrates like glucose, arabinose,
and sucrose (Supplementary Table 2). The physiological analysis
showed that isolates could tolerate a wide range of temperature,
pH, and NaCl concentrations. Growth was observed up to
5% NaCl concentration (Supplementary Figures 1A,B). The
isolates could actively grow in the temperature range from
10 to 40°C. However, most of the isolates showed optimum
growth temperature at 30°C (Supplementary Figures 1C,D).
The isolates were able to grow in both acidic and alkaline
conditions of pH ranging from 4.0 to 10.0 (Supplementary
Figures 1E,F). However, the optimum pH for most of the isolates
was pH 8.0, although few isolates showed growth up to pH 10
(SRB, KSB, and YMA?7).

Identification of Bacteria

Molecular identification revealed the singular dominance of
the genus Bacillus. The other genera found in this study
were Burkholderia, Kosakonia, and Pseudomonas. Identified
isolates of Bacillus were B. aryabhattai PSB2 (MW020338),
B. megaterium PSB1 (MWO020222), and Bacillus sp. ARA
(MW021509). Similarly, identified isolates of Pseudomonas
were P. kribbensis KSB (MW308683) and P. rhodesiae SRB
(MWO020262), while other identified isolates were Kosakonia
oryzendophytica YMA7 (MWO020337), P. polymyxa COW3
(MW020264), and B. cenocepacia SRD (MWO020263). The
alignment and similarity search of 16S rRNA sequence with
nr/nt database of NCBI have shown that many of the isolates
have a percentage of identity >98%.The identified species,
the percentage of identity, and their NCBI accession number
are given in Table 1. The phylogenetic tree was made
with the help of MEGA v.10 software using the maximum
likelihood method and the Jukes-Cantor model as shown in
Supplementary Figure 2.

Plant Growth-Promoting Activity

In this study, eight efficient isolates were selected based on
their PGP traits, in particular, (i) the solubilization of phosphate
and potassium; (ii) production of IAA and siderophore; and

TABLE 1 | Identification of bacteria based on 16S rRNA, the percentage of
identity, and NCBI accession numbers.

Isolates Partial identification % identity Accession no.
based on 16S rRNA gene
sequencing
PSB1 Bacillus megaterium 98 MW020222
COow3 Paenibacillus polymyxa 99 MWO020264
SRB Pseudomonas rhodesiae 99 MW020262
ARA Bacillus sp. 99 MW021509
KSB Pseudomonas kribbensis 99 MW308683
YMA7 Kosakonia oryzendophytica 99 MW020337
SRD Burkholderia cenocepacia 98 MW020263
PSB2 Bacillus aryabhattai 99 MW020338
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(iii) ability to fix nitrogen. The selected bacterial isolates
were identified as P. rhodesiae SRB, B. megaterium PSBI1,
P. polymyxa COWS3, B. aryabhattai PSB2, B. cenocepacia SRD,
Bacillus sp. ARA, P. kribbensis KSB, and K. oryzendophytica
YMA?7 (Table 1). The quantitative estimation of phosphate and
potassium indicated that isolate B. cenocepacia SRD produced
significantly higher phosphate (530 g ml~!) and potassium
(581 pg ml™!) than did the other isolates (Table 2). Similarly,
quantitative estimation of IAA and ammonia showed that the
isolate K. oryzendophytica YMA7 produced a considerably higher
extent of JAA (84 wg ml~!) and ammonia (61 mM) than did
the other isolates (Table 2). However, out of eight isolates,
P. polymyxa COW3 and B. aryabhattai strain PSB2 had only the
nitrogen-fixing ability.

Antagonistic Activity Against Pathogenic

Plant Fungi

The dual-plate studies revealed that B. cenocepacia SRD had
higher antagonistic activity against rice sheath blight and large
cardamom leaf spot disease-causing fungi C. gloeosporioides
(90%-91%), C. eragrostidis (43%-49%), and Pestalotiopsis sp.
(29%-33%) (Supplementary Table 3 and Supplementary
Figure 3). Similarly, K. oryzendophytica YMA7 showed 56%
antagonism against C. eragrostidis and C. gloeosporioides
(53%) and 27% with Pestalotiopsis sp., respectively, in both
culture plate and broth assay (Supplementary Tables 3, 4).
Furthermore, compatibility assays conducted on Nutrient Agar
plate deciphered that all the tested isolates have no antagonistic
effect on each other such as Consortia-1 (P. rhodesiae SRB,
B. megaterium PSB1, and P. polymyxa COW3), Consortia-2
(B. aryabhattai PSB2, B. cenocepacia SRD, and P. polymyxa
COWS3), and Consortia-3 (P. polymyxa COW3, P. kribbensis KSB,
and K. oryzendophytica YMA7).

Root Growth Stimulation Potential

Greenhouse pot assessments of selected bacterial consortia on
rice roots growth have shown the development of the rice
root system as a function of IAA production. Consortia-3
(K. oryzendophytica YMA7 +P. kribbensis KSB +P. polymyxa
COWS3) stimulated the maximum amount of lateral roots on rice
plant as compared with other consortia. The root length of rice

exhibited by all the three different bacterial consortia were higher
than that of the control.

Evaluation of Plant Growth-Promoting
Traits in Field Study

Three bacterial consortia developed in this study were first
tested in greenhouse pot experiments and later on applied to
the rice field (Figure 2). Based on the agronomic parameters,
significant increases were observed in all the plant growth and
yield parameters except leaf number per plant when compared
with uninoculated rice plant (Table 3). All the three bacterial
consortia significantly improved grains per panicle (C1:45.0,
C2:79.0, and C3:110 grain numbers per panicle) (Figures 3, 4and
Supplementary Figures 4, 5), grain weight in grams (C1:24.3 g,
C2:24.8 g, and C3:27.8 g) (Figures 3, 4and Supplementary
Figures 4, 5), and root length in cm (Cl:6.6 cm, C2:9 cm,
and C3:9.5 cm) as compared with uninoculated control rice
plants. However, among the three bacterial consortia, Consortia-
3-inoculated rice plants showed significantly higher biomass
(8.26 g/plant), grains per panicle (110 grain/panicle), test grain
weight (27.4 g), root length (9.5 cm), and dry root weight
(0.73 g/plant)as compared with the other consortia (Table 3).
The combined PGP traits such as phytohormone production
and nutrient solubilization abilities were maximally observed
in Consortia-3 (K. oryzendophytica YMA74-P. kribbensis KSB
+P. polymyxa COW3). The potential assessment of the bacterial
consortia application improved the soil N, P, K value as
compared with the control; but in our study, interestingly, the
pH value of the experimental field soil decreased from 6.5 to 6.0
(Supplementary Tables 5, 6). This result might be due to the fact
that the bacterial colonization in soil decreases pH value due to
the secretion of organic acid by bacteria as secondary metabolites.

Determination of N/P/K Content in Rice
Plant

In order to verify whether consortia-based treatment can
promote nutrient uptake by rice plants, the content of nitrogen,
phosphorus, and potassium in rice plant were determined. Our
results showed that significant increase in rice plant N/P/K
uptake was observed when the soil was inoculated with different
bacterial consortia as compared with the uninoculated control

TABLE 2 | PGP traits of isolated bacterial isolates.

Strain Phosphate (ugmi—1) Potassium (ug mi—1) 1AA (ng mi—1) Ammonia (mM) Siderophore production Nitrogen fixation
PSB1 460 £+ 0.25 250 £ 0.071 21.0+6.1 7.0+£2.13 ++ +

COow3 420 £+ 0.005 250 £+ 0.00 25.0. £ 0.66 5.0 £ 0.00 -+ +++

SRB 210 £ 0.003 580 + 0.008 5.0+ 0.33 10.0 £ 0.33 + +

ARA 480 + 0.03 570 + 0.26 4.0 £ 0.00 6.0 + 0.00 + ++

KSB 410 £+ 0.003 590 + 0.01 59.0 £0.33 35.0 £ 0.33 ++ +

YMA7 517 £ 0.01 570 £ 0.03 84.0 +1 61.0+1.2 +++ ++

SRD 530 + 0.008 581 £ 0.012 20.0 £ 0.66 5.0+ 0.66 + ++

PSB2 450 £ 0.006 330 £ 0.003 10.0 +£ 0.00 2.0+ 0.33 + +

Data are presented as mean of triplicates + standard deviation. “+” denotes weakly positive; “++" denotes moderately positive; and “++-+" denotes strongly positive.
Bold values indicate the highest value obtained among all the strains for the specific PGP trait. PGF, plant growth promoting; IAA, indole-3-acetic acid.
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FIGURE 2 | Flowchart representation of the PGP traits as shown by the individual isolates and consortia.

TABLE 3 | Effect of bacterial consortia inoculation on plant growth promotion after 60 days of transplanting of rice at farmer’s field.

Microbial consortia Tiller number per Root length Number of Grains per 1,000-grain Dry root dry Total dry
bunch (cm) leaflets per panicle wt. (g) wt. per plant biomass per

(5 plants) plant (9) plant (g)

C1-Consortia-1 14.3 + 1.45% 6.6 + 0.66° 4.0 + 0.00° 45.0 4+ 3.51¢ 24.3 +0.88° 0.49 4 0.47° 7.16 4 0.20°

(SRB+PSB+COWS3)

C2-Consortia-2 15.3 +0.332 9.0 + 0.002 5.3+ 0.33 79.3 + 6.56° 24.8 + 0.57° 0.56 + 0.41P 7.66 + 0.28P

(PSB2+-SRD+COW3)

C3-Consortia- 12.6 + 0.88° 9.5 + 0.00% 5.3+ 0.33 110.6 £ 9.172 27.4 £ 0.422 0.73 £0.08% 8.26 + 0.25%

(COWB+KSB+YMA?)

Uninoculated control 12.3 + 0.88° 3.5+ 0.28° 4.3+0.33° 66.6 + 1.73° 18.2 +0.34° 0.42 + 0.09° 6.03 4 0.054

LSD (p < 0.05) 2.579 1.412 0.998 19.892 1.968 0.12 0.39

cVv 9.44 9.86 10.52 13.20 2.55 11.69 2.71

Values are means + SE. a,b,c, and d letters on the bars denote differences on the basis of a t-test (p < 0.05).

plant. Inrice plant, in the soil inoculated with three different
bacterial consortia (Consortia-1, Consortia-2, and Consortia-3),
the plant N/P/K content was N (8.66, 14.66, and 17.33 gkg™!), P
(2.86, 4.83, and 4.83 g kg~ 1), and K (25.66, 33.66, 37.33 g kg !)
and control plant N/P/K (7.0, 2.16, and 24.66 g kg’l) (Figure 5
and Supplementary Table 7).

DISCUSSION

An assortment of abiotic and biotic elements shape soil-and
plant-related living spaces and adjust the creations and exercises
of their microbial networks, which thus bear upon the nature of

their development of plants and the creation of root exudates
(Jain et al., 2020). Bacteria harbor in roots, depending on the
incredible variety of natural root exudates, which in the long run
influences the growth and development of the plant (Ngalimat
et al,, 2021). Here, in this study, we examined the impact of rice
rhizosphere regulated with local bacterial consortia developed to
increase the uptake the N/P/K as nutrients from the soil.
Bacterial isolation was done from soil rhizosphere fractions
by 16S rRNA gene sequencing. This technique offers a culture-
independent method for tracking dominant bacterial populations
in soil (Sultana et al., 2020). To the best of our knowledge, this
study represents the first approach using culture-independent
method to design a native consortia that can enhance the rice
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FIGURE 3 | Evaluation of three native consortia (Consortia-1, 2, and 3) on rice plants. Values are means + SE.

Control ‘[ Conosrtia-1

Control Consortia-1

Consortia-3
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and Consortia-3 (COW3+KSB+YMAY7), and control rice plant.

FIGURE 4 | Phenotype differences of potted rice plant under different consortia treatments. Consortia-1 (SRB+PSB1+COW3), Consortia-2 (PSB2+SRD+COW3),

crop nutrient quality uptake as in N/P/K from the soil of organic
farming in Sikkim. In brief, soil samples from three different
organic paddy cultivation field sites in Sikkim, India, were chosen
[M (loamy sand), S (loamy sand), and AL soil (loamy sand)]
to screen and isolate PGP rhizobacteria (PGPR) and design
a consortia that can uptake N/P/K nutrients from soil. These
bacterial isolates also had antifungal properties that were effective
against fungal pathogens. To validate the consortia performance,

chemical analysis of soil (before consortia administration and
post-consortia administration) was compared in greenhouse
pot experiments. Later on, field-based trials for 60 days on
application of consortia were also measured to verify the various
agronomic parameters.

Antagonistic and PGPR were screened and isolated from the
rhizosphere of rice and was identified through a polyphasic
approach, based on morphological, biochemical, and partial
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16S rRNA gene sequencing. The cultures isolated were four
Bacillus sp. strains (PSB1, PSB2, COW3, and ARA), two
Pseudomonas sp. strains (SRB and KSB), and one each strain
of Burkholderia sp. (SRD) and Kosakonia sp. (YMA7).16S
rRNA gene sequencing analysis and homology with reference
strains from the nucleotide database of NCBI showed that
the strains PSB1, PSB3, ARA, COW2, SRB, KSB, SRD, and
YMA?7 have average nucleotide identity percentage ranges from
98 to 99% with B. megaterium, B. aryabhattai, Bacillus sp.,
P. polymyxa, P. rhodesiae, P. kribbensis, B. cenocepacia, and
K. oryzendophytica, respectively.

The B. megaterium strain PSB1 isolated in this study showed
high salt tolerance at 8% NaCl as compared with other isolates.

Many studies revealed that the genus Pseudomonas represents
the dominance of PGPR for many crops (Qessaoui et al., 2019).
In the present investigation, P. kribbensis strain KSB showed
multiple PGP activities including siderophore production. This
result corroborates with previous findings wherein multiple PGP
traits have been described from Pseudomonas sp. isolated from
the rhizospheric soil of wheat, barley, and rice (Ahmad et al,,
2008; Sharma et al., 2011).

The member of the genus Kosakonia consists of seven different
species, K. oryzendophytica (Hardoim et al., 2013), Kosakonia
cowanii (Inoue et al., 2000), Kosakonia radicincitans (Kimpfer
et al.,, 2005), Kosakonia oryzae (Peng et al., 2009), Kosakonia
arachidis (Madhaiyan et al., 2010), Kosakonia sacchari (Zhu et al.,
2013), and Kosakonia oryziphilus (Hardoim et al., 2013), which
belong to the family Enterobacteriaceae. Except for K. cowanii,
which is considered to be from clinical origin, other species

of the genus are nitrogen-fixing bacteria, which are commonly
associated with plants (Li Y. et al, 2017). They are most
frequently found in the nitrogen-fixing bacterial community
of some non-leguminous plant, such as rice (Hardoim et al,
2013) and sugarcane (Raju et al., 2020). The Kosakonia species
contains flagella, which enable them to swim and possibly help
in the attachment to the plant surface. It might also produce
different secretion systems that help to interact with both host
plant and associated microbiota (Becker et al., 2018). The present
in vitro screening for characteristics generally associated with
PGP showed that K.oryzendophytica strain YMA7 showed a
higher production of TAA (84 pg ml~!) and ammonia (61 mM).
It also showed higher solubilization for potassium (570 g ml1~1)
and phosphate (517 g ml™!). It also produced siderophores.
It also produced a high amount of phosphate (517 ug ml™!)
as compared with K. oryzendophytica strain NRCSSDCU262
(207 jug ml~1), which is an endophytic-rhizospheric phosphate-
solubilizing bacteria (PSB) isolated from cumin grown in
agricultural fields of Rajasthan, India (Devi et al., 2020).

Other most important soil bacteria that belong to the
genus Burkholderia in the class Betaproteobacteria (Castanheira
et al., 2015) have also been reported as one of the dominant
extracellular PGPR for many crops (Becker et al, 2018).
Burkholderia species in general have symbiotic relationship
with plants, functioning as active rhizospheric components
(Castanheira et al, 2015), endophytic plant colonizers, or
microsymbionts in legume root nodules, as reported by many
researchers (Sutton, 1992). The ability to fix nitrogen was
demonstrated by several Burkholderia spp. associated with
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different plants, for example, maize, coffee (Estrada-de los
Santos et al., 2001), sugarcane, and tomato (Lin et al, 2012;
Paungfoo-Lonhienne et al., 2014), had already been reported in
several studies. In our study, regarding plant growth promotion
traits, B. cenocepacia SRD showed higher solubilization of
phosphate and potassium. It also produced IAA and also showed
antagonistic activity against plant fungus C. gloeosporioides.

Colletotrichum is a broad-spectrum plant pathogen infecting
a host range of plants. Its pathogenicity leads to major losses of
crops and other agricultural products (Saju et al., 2013). They
play a significant role in causing post-harvest loss (Sutton, 1992).
The disease symptoms vary on plant species; but generally, it
has been observed to affect plant leaves, stems, and fruits of the
host plant (Panneerselvam et al., 2019). The antagonistic PGP
microbes directly compete with the plant pathogens for nutrition
and inhibit or reduce the pathogen growth via hyper-parasitism
(Sutton, 1992). Our dual-plate studies on B. cenocepacia SRD
showed 90%-91% antagonistic activity against C. gloeosporioides,
which is a rice sheath blight and large cardamom leaf spot disease-
causing fungi predominantly found in Sikkim. Mahamuni
(2015) found that the B. cenocepacia strain VIMPO1 solubilized
phosphate and potassium and also produced IAA, which was
similar to our isolate B. cenocepacia SRD.

Phosphorous is considered as the second-most key nutrient
after nitrogen for plant growth, although less than 5% of the total
soil phosphorous is found in the available form to plants (Otieno
etal., 2015). Hence, the capability to solubilize the insoluble form
of phosphate is one of the key features of PGP bacteria to boost
plant nutrition through an escalation in phosphorous uptake by
plants (Taurian et al., 2010). The application of these types of PSB
in the soil might contribute to the reduction of excessive usage of
the chemical fertilizers, and thereby, it improves the soil health of
agricultural lands (Taurian et al., 2010).

In the present investigation, the three bacterial consortia
(Consortia-1, Consortia-2, and Consortia-3) were prepared based
on solubilization of phosphate and potassium, and nitrogen-
fixing ability of the bacterial isolates. Application of bacterial
consortia at the rice fields of Pakyong during August 2019
showed that there were significant differences in all the rice plant
growth and yield parameters, except leaflets number per plant
in the rice plants treated with three different bacterial consortia
as compared with uninoculated control. All three consortia
significantly improved grains per panicle, grain weight, and
root length as compared with uninoculated control plants. But
Consortia-3-inoculated rice plants showed higher plant biomass,
grains per panicle, grain weight, root length, and dry root weight
as compared with control plants and other consortia-inoculated
plants. The collective PGP traits and nutrient solubilization
properties observed in Consortia-3 were due to the bacterial
mixture of K.oryzendophytica YMA7, P. kribbensis KSB, and P.
polymyxa COW3. Our results are in agreement with studies
by Di Benedetto et al. (2019) and Devi et al. (2020), who had
showed the PGP properties of Bacillus spp., Pseudomonas spp.,
and Kosakonia spp. Panneerselvam et al. (2019) showed that
B. subtilis strain BioCWB (570 g ml~!) and B. luciferensis strain
K2 (417.3 jug ml~!) produced higher amounts of phosphates.

Similarly, in our findings, P. polymyxa strain COW3 and Bacillus
sp. strain ARA produced higher phosphates, i.e., 580 and 579
g ml~ 1, respectively. In general, the application of Consortia-3
among all the three consortia significantly increased plant growth
parameters as compared with those of the uninoculated control
plant. Many previous studies have proved that Bacillus spp.
(B. aryabhattai, B. megaterium, Bacillus polymyxa),Pseudomonas
spp. (P. kribbensis, P. rhodesiae), Burkholderia spp., and
Kosakonia spp. possessed PGP attributes, enhanced plant growth,
and increased yield in several agricultural and horticultural crops
(Park et al., 2017; Devi et al., 2020; Castanheira et al., 2015).

The difficulties encountered by the native bio-inoculants
might be distinctive all throughout the planet, as the various
abiotic factors such as the edaphic, climatic, and geological
conditions of the local environment vary remarkably (Ojuederie
et al.,, 2019; Orozco-Mosqueda et al., 2021). Consequently, for
quite a long time, it has been attempted to separate local strains
that permit to work on the harvests of similar regions from
which they were secluded, which would recommend superior
productivity to practice their valuable activities when related
with plants in similar sorts of agricultural soils. Consequently,
more investigation is needed to relate abiotic angles with the
useful properties of each native consortia. Reduction of inorganic
farming practices shall also prevent agriculturists from exposure
to harmful chemicals that might be toxic not only to the soil but
also to human health (Wightwick et al., 2010).

Native PGPR strains might help in plant growth development
through various mechanisms. Direct enhancement might be
through the improved nutrient accessibility and its proficiency
in uptake, by increasing the capacity to solubilize P, to fix N2,
and to create siderophores and plant growth hormones, for
example, IAA (Glick, 2012). Native PGPR strains are the natural
flora of the soil, yet their number is not sufficient to rival
different microbes set up in the rhizosphere. Accordingly, the
implementation of consortia developed from the native PGPR
strains is important to increase the local population of the target
microorganism and to boost their helpful properties for plant
yield. The utilization of local soil bacterial consortia has many
advantages when administered into the plant rhizosphere, as
there might be less competition among themselves for nutrient
cycling. Furthermore, they are more impervious to the local
ecological stress conditions particularly experienced under the
anticipated climatic changes (Vimal et al., 2017).

Long-term organic farming/agricultural practices can
directionally change the bounty of certain bacterial phyla.
Yet there is no adequate comparison of soil bacterial taxa in
light of long-term organic farming/agricultural vs. inorganic
farming practices. Long-term organic farming might expand
the availability of natural C to choose for certain microbial
taxa levels that feed fundamentally on natural substrates
and multiply significantly, bringing about the progressions
in microbial local area structure and soil supplement status
(Cederlund et al, 2014). As a result, specific microbial taxa
abundances might be considerably expanded by long-term
organic farming and also should show some level of associations
with soil supplements. Besides, these taxa might show a possible
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beneficial impact on crop efficiency and agro-biological system
stability (Francioli et al., 2016). Network analysis of the taxa,
as estimated by next-generation sequencing, might help with
interpreting the complex microbial communities and the role of
the environmental standards governing the local area (Barberan
et al., 2012; Banerjee et al, 2016). Ongoing analysis through
high-throughput sequencing shall un-reveal the microbial
variety and local area arrangement under long-term organic
farming and inorganic farming (Lentendu et al., 2014; Calleja-
Cervantes et al,, 2015; Zhou et al., 2015; Chen et al,, 2016;
Ding et al, 2016; Francioli et al, 2016; Li F. et al, 2017).
Notwithstanding, very few studies have been done about which
microbial taxa are firmly affected by long-term organic and
inorganic farming practices and how these taxa are connected to
soil supplement boundaries.

Regarding organic and inorganic farming alone, the former
practice ordinarily delivers lower crop yield (Seufert et al., 2012);
however, the latter causes more ecological issues (Davidson,
2009). The integrated technique of periodic alteration between
organic and inorganic farming is assessed as the best method to
upgrade crop productivity and increment of soil organic matter
(SOM) level (Wei et al., 2016). In the interim, consolidated
organic treatment improves the production of soil invertase,
urease, and antacid phosphatase, which are three average
microbial exoenzymes engaged with C, N, and P mineralization
(Li F. et al, 2017). All the more significantly, in contrast
with inorganic farming, the organic treatment improved more
measures of explicit bacterial taxa. These taxa are involved
in the decay of complex natural matters and soil supplement
changes and are accordingly advantageous for plant development
by working on supplement accessibility. Subsequently, we need
to analyze the bacterial diversity to comprehend the long-
term organic farming against inorganic farming in Sikkim. In
any case, an essential issue lies in the fact that Sikkim has
banned inorganic cultivating practices since 2003, so to mirror
inorganic farming in a greenhouse is the solitary choice for better
relative investigation.

CONCLUSION

This is the first-ever study of native consortia developed from the
rice rhizosphere of organic farmlands of Sikkim, which are found
to be effective as an NPK enhancer so as to help in plant growth
promotion. Also, they have antifungal properties that serve
as additional crop security against fungal pathogens. We have
obtained efficient P-solubilizing, K-solubilizing, N-fixing, TAA-
producing, and antagonistic potential bacteria present among the
native rice soil rhizosphere. These characteristics are considered
as important PGP traits; and the bacterial consortia prepared
from N-, P-, and K-producing bacteria have been found effective
in improving the growth and N, P, and K contents of tested rice
plants. Consortia-3 (K. oryzendophytica YMA7 +P. kribbensis
KSB +P. polymyxa COW3) showed promising PGP traits
such as phytohormone production and nutrient solubilization
abilities. In the rice plant, in the soil inoculated with bacterial
Consortia-3, the N/P/K content was N (17.33 g kg_l), P(483g

kg™1), and K (37.33 g kg™!) as observed against the control
plant N/P/K (7.0, 2.16, and 24.66 g kg™ !, respectively). Three
bacterial consortia developed in this study were first tested in
greenhouse pot experiments and later applied to the rice field.
Based on the agronomic parameters, significant increases were
observed in all the plant growth and yield parameters except
leaf number per plant when compared with uninoculated rice
plants. Consortia-3 significantly improved grains per panicle (110
grain numbers per panicle), grain weight in grams (27.8 g),
and root length in cm (9.5 cm) as compared with uninoculated
control rice plants. These bacterial consortia can be potential
candidates for bio-intensive nutrient management in organic
farming systems. Further studies should be focused on the
detailed synergistic effect for the production of N, P, K and
functional characterization of bacterial consortia for practical
applications in the field.
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and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China, ? Ministry of Education Key
Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China, ° College of
Ecology and Environment, Hainan University, Haikou, China, * Key Laboratory of South Subtropical Fruit Biology and Genetic
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Strawberry is a very popular fruit with a special taste, color, and nutritional value.
Anthracnose caused by Colletotrichum fragariae severely limits fruit shelf life during post-
harvest storage. Use of traditional chemical fungicides leads to serious environment
pollution and threatens food safety. Biocontrol is considered as a promising strategy
to manage the post-harvest fruit diseases. Here, strain QN1NO-4 isolated from noni
(Morinda citrifolia L.) fruit exhibited a high antifungal activity against C. fragariae.
Based on its physicochemical profiles and phylogenetic tree of the 16S rRNA
sequence, strain QN1NO-4 belonged to the genus Bacillus. The average nucleotide
identity (ANI) calculated by comparing two standard strain genomes was below 95—
96%, suggesting that the strain might be a novel species of the genus Bacillus
and named as Bacillus safensis sp. QN1NO-4. Its extract effectively reduced the
incidence of strawberry anthracnose of harvested fruit. Fruit weight and TSS contents
were also maintained significantly. The antifungal mechanism assays indicated that
the extract of the test antagonist inhibited mycelial growth and spore germination
of C. fragariae in vitro. Cells of strain QN1NO-4 demonstrated the cytoplasmic
heterogeneity, disappeared organelles, and ruptured ultrastructure. Notably, the strain
extract also had a broad-spectrum antifungal activity. Compared with the whole genome
of strain QN1NO-4, several functional gene clusters involved in the biosynthesis of
active secondary metabolites were observed. Fifteen compounds were identified by gas
chromatography—-mass spectrometry (GC-MS). Hence, the fruit endophyte B. safensis
sp. QN1NO-4 is a potential bio-agent identified for the management of post-harvest
disease of strawberry fruit.

Keywords: Bacillus safensis, Colletotrichum fragariae, biological control, antifungal properties, strawberry fruit,
whole genome sequencing
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INTRODUCTION

Strawberry (Fragaria x ananassa Duch.) is one of the most
popular fruits with more than 6.1 million tons of annual
production in the world (Han et al., 2016; Zhimo et al., 2021).
Strawberry fruit is also highly perishable due to mechanical injury
and pathogen infection, which limits its shelf life during storage
(Rico et al.,, 2019). Strawberry anthracnose is one of the most
serious fungal diseases. It is caused by different Colletotrichum
fungal species including Colletotrichum fragariae, C. acutatum,
and C. gloeosporioides (Denoyes-Rothan et al., 2003; Han et al.,
2016). Among the causal agents, C. fragariae is an important
fungus which causes the disease named anthracnose crown rot
(Miller-Butler et al., 2018). The fungi can infect the whole
strawberry plant containing fruit, and it has become more
destructive in the past decade (Chen et al.,, 2019; Chung et al,,
2020). Currently, the control of strawberry anthracnose is done
primarily through chemical fungicides to reduce post-harvest
losses (Dukare et al., 2019). However, excessive use of fungicides
causes environment pollution and pathogenic resistance (Li et al.,
2021; Wang et al,, 2021). In some developed countries, use of
fungicides has become increasingly limited and even banned
(Wisniewski et al.,, 2016; Wang et al., 2018). Therefore, it is
necessary to develop a safer and eco-friendly strategy to manage
post-harvest diseases of fruit.

Application of biocontrol agents was considered as an
alternative and promising strategy to control plant pathogens
(Feliziani et al., 2016; Ye et al.,, 2021). Biocontrol contributed
to minimize the use of chemical pesticides and reduce
environmental pollution. In the past few decades, some
microorganisms such as vyeasts, Pseudomonas fluorescens,
Streptomyces spp., and Bacillus species were accepted as
important biocontrol agents (Rong et al., 2020; Einloft et al.,
2021). They had potential as an alternative to synthetic
fungicides. The well-studied Pichia membranefaciens and Pichia
guilliermondii were effective in controlling rhizopus rot of
peaches and anthracnose of loquat fruit (Zhao et al., 2019; Zhang
et al., 2020). Recent studies demonstrated that Pseudomonas
synxantha had a biocontrol efficacy against Monilinia fructicola
and Monilinia fructigena in stone fruit (Aiello et al, 2019).
P. fluorescens can suppress post-harvest gray mold in apples
(Zhang et al., 2011; Wallace et al., 2018).

Especially, the Bacillus genera were evaluated as outstanding
biocontrol agents against fungal pathogens, such as Bacillus
halotolerans against Botrytis cinerea in strawberry fruit (Wang
etal., 2021; Ye et al,, 2021), Bacillus sp. w176 against post-harvest
green mold in citrus (Tian et al., 2020), Bacillus atrophaeus
against anthracnose in soursop and avocado (Guardado-Valdivia
et al, 2018), and Bacillus amyloliquefaciens against other
phytopathogens of fruits (Calvo et al., 2017; Gotor-Vila et al,,
2017; Wang et al.,, 2020; Ye et al., 2021). Several Bacillus spp. had
been applied as biofertilizers or biopesticides in different crops (Li
etal., 2019). They inhibited the pathogenic growth and improved
the plant resistance by competition for space or nutrients with
pathogens and production of bioactive substances and cell wall-
degrading compounds (Ye et al., 2021). Although various Bacillus
sp. strains are reported in biocontrol of post-harvest fruit,

little work is conducted to identify a broad-spectrum antifungal
Bacillus strain with an increased efficiency.

In our study, a strain marked with QNINO-4 with a wide-
spectrum antifungal ability is newly isolated from noni fruit.
Based on the physicochemical characteristics as well as average
nucleotide identity (ANI) assay, the strain is identified as a
species of the genus Bacillus, called after Bacillus safensis sp.
QNINO-4. The isolated extracts successfully inhibit the infection
of C. fragariae on strawberry fruit during post-harvest and
could effectively keep the weight loss and TSS of fruit. The
antifungal mechanism is investigated by assaying its effects
on spore germination and morphological profile by scanning
electron microscopy (SEM) as well as hyphal ultrastructure of
C. fragariae by transmission electron microscopy (TEM). The
complete genome of strain QN1NO-4 reveals a number of key
gene clusters of active secondary metabolites. Antimicrobial
compounds of strain QN1NO-4 extracts are further identified by
gas chromatography-mass spectrometry (GC-MS). These results
indicate that the fruit endophyte B. safensis sp. QNINO-4 is a
promising biocontrol agent for controlling post-harvest diseases
of strawberry fruit.

MATERIALS AND METHODS

Fruit Materials

Strawberry (Fragaria x ananassa Duch var. Zhang Ji) fruit with
similar size (approximately 5-cm diameter), color, and shape was
selected from a supermarket. No visible injury and pathogen
infection were detected on the fruit surface. After being surface-
sterilized with 75% (v/v) of ethanol for 2 min, these fruit samples
were rinsed with sterile water for three times and air-dried for 2 h
at 25°C.

Noni (Morinda citrifolia L.) fruit was collected from a planting
farm in Chengmai city (19°58'35”N, 109°55'35”E) of Hainan
province, China. Fruit samples were surface-sterilized with 75%
(v/v) of ethanol for 5 min, disinfected using 2% of sodium
hypochlorite for 20 min, and washed using sterile water for
five times.

Bacterial Isolation

Ten grams of noni fruit was ground in a sterile mortar until paste.
One milliliter of homogenate was mixed with 4 ml of Luria-
Bertani (LB) medium into a 50-ml conical flask. The mixture was
cultured with shaking at 180 rpm for 1 h at room temperature.
The suspension was diluted from 10! to 102 fold with sterile
distilled water. Two hundred microliters of dilution was spread
on the LB solid medium and incubated at 28°C for 2 days.
A single colony was obtained by repeatedly streaking on LB plates
and was kept in 20% (v/v) glycerol at —80°C.

Screening of Biocontrol Bacteria Against

C. fragariae

Fungal pathogen C. fragariae (ATCC 58718) was kindly provided
by the Institute of Environment and Plant Protection, China
Academy of Tropical Agricultural Sciences, Haikou, China. The
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antifungal ability of each isolated bacterium was tested against
C. fragariae using our reported method (Li et al., 2021). Briefly,
fungal pathogen was first cultured on a potato dextrose agar
(PDA) plate for 7 days. A 5-mm-diameter pathogenic disk was
prepared and placed in the middle of the plate. Each isolated
bacterium was spotted on the four symmetrical points of the
pathogen. The fungal disk alone was used as a control. Five
Petri dishes were used for each replicate with a diameter of
90 mm. After culture at 28°C for 7 days, antifungal activity
of the isolated bacterium was assessed by determining the
radial mycelial growth of fungal pathogen. To further detect
the antifungal activity of the isolated bacterium supernatant, the
isolate was inoculated in 50 ml of LB liquid medium in a 250-
ml conical flask. After being cultured at 150 rpm and 28°C for
3 days, the supernatant was filtered using the Whatman no. 1
qualitative filter paper and sterilized through a 0.22-pm sterile
filter (Millipore, Bedford, MA, United States). Twenty microliters
of supernatant was spotted at four symmetrical points of the
tested pathogens, respectively. An equal amount of LB was used
as a control. The antagonistic experiment was kept at 28°C
for 7 days. The antifungal activity of the isolated bacterium
supernatant was assessed by determining the radial mycelial
growth of the fungal pathogen. All experiments were carried
out in triplicate.

Morphological, Physiological, and
Biochemical Characteristics of the

Selected Isolate

Morphological profiles of the selected isolate were observed after
growth at 37°C for 3-4 days. Physiological and biochemical
indexes were tested including resistance to pH, temperature and
NaCl, enzymatic characteristics, and utilization of carbon and
nitrogen sources (Wei et al., 2020). In addition, a disk diffusion
method was applied to test the sensitivity of the selected isolate to
different antibiotics (Kumar et al., 2014).

Antifungal Activity Assays of Extract

From the Selected Isolate

Extract was prepared according to the previous description with
a minor modification (Qi et al., 2019). Briefly, the selected isolate
was inoculated in a 5-1 Erlenmeyer flask containing 1 1 of LB
liquid medium. After culture in a rotary shaker (180 rpm) for
3 days at 28°C, an equal volume of ethyl acetate was added
to the supernatant. The mixture was subjected to ultrasound
for 1 h and then injected into a separating funnel. The organic
solvent in the collected extract was evaporated using a rotary
vacuum evaporator (N-1300, EYELA, Ailang Instrument Co.,
Ltd., Shanghai, China). The dried extract was then dissolved in
100% of methanol, and 10 g 17! of stock solution was prepared.
To detect the antifungal activity assays of the extract, a 5-mm-
diameter pathogenic disk was placed in the middle of the PDA
plate containing 50 mg 17! of extract. After culture at 28°C for
7 days, antifungal activity was assessed by determining the radial
mycelial growth of fungal pathogen. All experiments were carried
out in triplicate.

Inhibitory Efficiency of Extract on

Mycelial Growth of C. fragariae

The stock solution (10 g 171) was diluted into 5, 2.5, 1.25, 0.625,
0.313, 0.156, and 0.078 g 17! using a double continuous dilution
method (Wei et al., 2020). When 50 ml of the sterilized PDA
liquid medium was precooled to 40-50°C, 1 ml of each extract
diluent was added to generate different treatment concentrations
(1.563, 3.125, 6.25, 12.5, 25, 50, 100, and 200 mg 1~ 1, respectively).
The inhibition ability of each extract concentration on the
mycelial growth of C. fragariae was analyzed according to our
previous method (Li X.J. et al.,, 2020). Antifungal activity was
measured according to the growth diameter of C. fragariae at
28°C for 7 days. The morphological profile of pathogenic mycelia
treated with 200 mg 17! of extract was observed using an optical
microscope (Nikon, E200MYV, Japan). The half-maximal effective
concentration (ECsp) of the extract against C. fragariae was
calculated in the light of a toxicity regression equation established
by a least square method (Vanewijk and Hoekstra, 1993).

Inhibitory Efficiency of Extract on

Controlling Decay of Strawberry Fruit
Different fold ECso concentrations (2 x ECsgp, 4 x ECsg, and
8 x ECsg) were first prepared. Based on the extract quantity of
the 1 x ECsg value, the proper volume of the stock solution
(10 mg ml™1) was diluted into 8 x ECso with sterile distilled
water. Then, the double continuous dilution method was used
to obtain 4 x ECsg, 2 X ECsg, and 1 x ECsg, respectively. The
antagonistic ability of the extract was tested for controlling post-
harvest anthracnose decay of strawberry fruit according to our
previous description (Li et al., 2021). A 2-mm-wide and 1-mm-
deep wound was manufactured on the surface of the selected
fruit samples using a sterilized needle. Ten microliters of different
concentrations of extracts (1 x ECsg, 2 x ECsp, 4 x ECsp,
and 8 x ECsg, respectively) was inoculated into fruit wound.
An equal volume of sterile water was used as a control. After
the treated fruits were air-dried, 10 .l of conidial suspension
(1.0 x 10° CFU ml~1) was added to the wounded site. All fruit
samples were kept in an artificial climate cabinet (Ever Scientific
Instrument Ltd., Shanghai, China) at 28°C and 85% relative
humidity under 12 h light/12 h darkness for 7 days. Twenty-
four fruit samples of strawberry were selected for each treatment
in three replicates. The disease incidence (DI) was calculated
according to the following formula:

DI(%) = (D1/D2) x 100 (1)

where D1 and D2 represent the number of decayed fruits and
total fruits, respectively.

Preservative Effects of Extract on Quality

Parameters of Strawberry Fruit

The weight loss and total soluble solids (TSS) of strawberry fruit
were determined after treatment with C. fragariae and different
concentration extracts of the isolated strain for 7 days (Li et al.,
2021). Weight loss was expressed as a percentage of fruit weight
before and after storage. TSS content was measured using the
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refractive index of fruit juice with a MASTER Refractometer
(PAL-1, Atago, Japan).

Antifungal Activity of Secondary

Metabolites Against C. fragariae

The fungal spores were collected from the PDA medium by
rubbing and washing the surface of each petri dish with a
sterile L-shaped spreader. The mycelia were removed using a
sterile muslin cloth. The spore concentration was adjusted to
1.0 x 10° CFU ml~! with a hemocytometer (Neubauer, Superior
Ltd., Marienfeld, Germany). An equal volume of pathogenic
spore suspension (1.0 x 10® CFU ml~!) and each concentration
extract (1 x ECs, 2 x ECsg, 4 x ECsg, or 8 x ECs, respectively)
was mixed at 28°C and 85% relative humidity for 12 h. More
than 200 spores of C. fragariae were used to detect germination
using an optical microscope (Nikon, E200MYV, Japan) (Pei et al,,
2020). Based on the spore germination, 4 x ECs of extract
concentration was selected for the following experiment.

Morphological Profile of C. fragariae

Spores Treated With Extract

To detect the effect of extract on the spore morphology of
C. fragariae, equal volumes of spores (1.0 x 10® CFU ml~!)
and 4 x ECs of extracts were completely mixed in a 10-ml
sterile centrifugal tube. The mixture was incubated at 28°C
for 6 h. After centrifugation at 10,000 rpm for 5 min at 4°C,
spores were collected and fixed with 2.5% (v/v) of glutaraldehyde
overnight. Then, these fixed spores were washed for three
times with a phosphate-buffered saline (PBS, 0.1 mol 171,
pH 7.2) for 15 min. The sample was dehydrated using a
gradient ethanol solution (30, 50, 70, 80, 90, 95, and 100%,
15 min for each time). The dried samples were coated with
gold powder using the ion sputtering instrument (Qi et al,
2019). Platinum was used as the plating material. Samples
coated with a film of gold-palladium alloy under vacuum were
detected by a scanning electron microscope (SEM, Sigma 500/ VP,
Zeiss, Germany).

Ultrastructural Profile of C. fragariae
Cells Treated With Extract

C. fragariae was cultured in the sterilized PDA liquid medium
at 28°C and 200 rpm for 5 days. Cells of fungal pathogen were
collected and fixed as described in Section “Morphological Profile
of C. fragariae Spores Treated With Extract.” The pathogenic
samples were embedded in Epon 812 resin. An 80-nm-thick
section was manufactured by an ultramicrotome (EM UCS,
Leica, Germany). The sections were stained with 3% (v/v)
of lead citrate for 10 min and 3% (v/v) of saturated uranyl
acetate for 30 min. The cell ultrastructure of C. fragariae was
observed by transmission electron microscopy (TEM, HT7700,
Hitachi, Japan).

Hemolytic Assay of Human Red Blood
Cells Treated With Extract

To test the safety of the extract for human, a hemolysis
experiment was performed (Li et al., 2021). The human red

blood cells were collected by centrifugation at 1,000 g for 5 min
and then were washed with 0.85% (w/v) of normal saline for
three times. Two percent of red blood cells was prepared as in
our previous description (Li et al., 2021). Four hundred fifty
microliters of blood cell solution was mixed with 50 1 of extract
(1 x ECsg, 2 x ECsg, 4 x ECsg, or 8 X ECs) at 37°C for 1 h.
The red blood cells treated with 0.85% (w/v) of normal saline and
0.1% (v/v) of Triton X-100 were used as negative and positive
controls, respectively. The release of hemoglobin was monitored
by absorbance at 540 nm. Hemolytic activity was expressed as the
percentage of total hemoglobin released by extract treatment in
comparison with that released by Triton X-100 treatment (Wang
etal., 2018).

Assay of a Broad-Spectrum Antifungal
Activity of the Selected Isolate Extract

In order to test whether the selected isolate extract had a broad-
spectrum antifungal activity, we selected 10 phytopathogenic
fungi, including C. fragariae (ATCC 58718), Fusarium
graminearum (ATCC MYA-4620), C. acutatum (ATCC 56815),
F. oxysporum f. sp. cucumerinum (ATCC 204378), Curvularia
lunata (ATCC 42011), Pyricularia oryzae (ATCC 52352),
C. gloeosporioides Penz. (ATCC 58222), Alternaria sp. (ATCC
20492), C. capsici (ATCC 48574), and C. gloeosporioides (ATCC
16330). These phytopathogenic fungi were kept in our lab.
The antifungal activity of the extract was detected against each
phytopathogenic fungus according to our previous method
(Wei et al., 2020).

Genome Sequencing and Metabolite

Prediction of the Selected Isolate

The genomic DNA of the selected isolate was extracted using
the BioTeke Bacterial Genomic DNA Rapid Extraction Kit
(DP1301, Beijing Biotech Co., Ltd., China) and quantified
using the TBS-380 fluorometer (Turner BioSystems Inc.,
Sunnyvale, CA, United States). Sequencing was performed
on the platform of the Illumina high-throughput sequencing
platform (HiSeq). The complete genome was assembled by
Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China.
Bioinformatics analysis was carried out using the I-Sanger
Cloud Platform 2.0. The ANI was analyzed using the online
OrthoANI (Yoon et al, 2017). The G + C content of the
strain genome was calculated based on the complete genome
sequence. The protein-coding genes were predicted by the
Glimmer v3.02 software (Delcher et al., 2007). The unigenes were
annotated using the public databases of Gene Ontology (GO'),
Clusters of Orthologous Groups of proteins (COG?), and Kyoto
Encyclopedia of Genes and Genomes (KEGG®) (Zhang et al.,
2020). Gene cluster analysis of secondary metabolite synthesis
was carried out by the online antiSMASH v4.2.0 software
(Huang et al., 2019).

Uhttp://www.geneontology.org/
Zhttp://www.ncbi.nlm.nih.gov/COG
3http://www.genome.jp/kegg/
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Identification of Chemical Compounds

From Extracts

The chemical compounds of the extract were identified by gas
chromatography-mass spectrometry (GC-MS) (Ogundajo et al,,
2017). The analysis was performed on gas chromatography (5973
Inert XL MSD, Agilent, United States) plus with DB-FFAP
(30 m x 0.25 mm x 0.25 wm) and a triple quadrupole mass
spectrometer. Helium was used as a carrier gas at 1 ml min~—!. The
temperature program was kept at 70°C for 2 min and increased to
100°C at 5°C min~" for 5 min, 250°C at 10°C min ™" for 35 min,
and 280°C at 4°C min~! for 5 min. The mass spectrometer was
operated in an optimized condition as in our previous description
(Li et al, 2021); these data of mass spectra were determined
by alignment with the National Institute of the Standards and
Technology (NIST) spectral library version 2.0.

Data Analysis

A one-way analysis of variance (ANOVA) was applied to analyze
all data using the SPSS software version 22 (SPSS Inc., Chicago,
IL, United States). Data from three independent experiments
were expressed as the mean =+ standard deviation. A significant
difference was evaluated in the light of the LSD multiple-range
test at the level of p < 0.05.

RESULTS

Isolation and Screening of Biocontrol

Bacteria

A total of 35 endophytic bacteria were isolated from noni
fruit. Twenty-nine bacteria had an antifungal activity against
C. fragariae in vitro in Supplementary Table 1. The fermentation
broth of 10 endophytic bacteria exhibited antagonistic activity
against C. fragariae (Supplementary Table 2). Especially, a
strain labeled with QN1INO-4 had the strongest antagonistic
activity. Compared with 85.50 mm =+ 1.43 of growth diameter
of C. fragariae in the control plate, the growth diameter
was 25.50 mm =+ 0.79 in the presence of strain QNINO-4
(Figure 1A). The inhibition activity of mycelial growth was up
to 70%. To further analyze antifungal components of strain
QNI1INO-4, extracts were isolated using 100% of methanol. The
inhibition activity was approximately 51% in the PDA solid
medium with 50 mg 17! of the final extract concentration
(Figure 1B). Hence, strain QNINO-4 was selected for the
following study.

Identification and Genome Sequencing
of Strain QN1NO-4

Based on the analysis of the morphological properties, strain
QNINO-4 was a round and primrose yellow colony on the LB
plate. The colonial margin became much rougher and more
irregular along with aging. The physiological and biochemical
characteristics showed that strain QN1NO-4 could produce
urease, catalase, and nitrate reductase but could not generate
hydrogen sulfide. Positive results were detected under analysis
of gelatin liquefaction, starch hydrolysis, or V-P test. The

A ] C. fragariae VS
C. fragariae

strain QN1NO-4

Inhibition activity (%): 70.17 + 1.24

C. fragariae VS

B C. fragariae strain QN1NO-4 extracts

Inhibition activity (%): 51.39 + 2.41

FIGURE 1 | Antifungal activity of strain QN1NO-4 and its extract against

C. fragariae of strawberry. (A) In vitro inhibition activity of strain QN1NO-4 on
mycelial growth of C. fragariae. (B) Effects of extract isolated with 100% of
methanol on mycelial growth of C. fragariae.

strain could grow on the medium with up to 13% of NaCl,
temperature from 30 to 65°C, and pH from 5 to 10. It could
utilize all carbon sources and nitrogen sources tested except
for L-glutamate and L-tyrosine. In addition, strain QN1NO-
4 was sensitive to 18 antibiotics tested except for penicillin
and piperacillin (Table 1; Figure 2A and Supplementary
Tables 3, 4).

The complete genome of strain QNINO-4 was sequenced
and submitted to the GenBank with accession number of
SRR15234655. It contained 3,923,715 bp with 46% of G + C
content. The genome consisted of three rRNA genes, 52 tRNA
genes, and 3,917 protein-coding genes (Figure 2B and Table 2).
Based on 16S rRNA gene sequences, a phylogenetic tree was
constructed using the neighbor-joining method (Figure 2C).
Strain QN1NO-4 showed a 100% of similarity with the standard
strain B. siamensis (KCTC 13613). In addition, the ANI value
was calculated to further identify the species of strain QN1INO-
4. Genomic data of the highest homology standard strains
(B. siamensis KCTC 13613 and B. subtilis NCIB 3610) were
downloaded from the EzBioCloud public genome database’
and then were submitted to the ANI computing platform.
The ANI values of strain QNINO-4 were 94 and 77% in

*https://www.ezbiocloud.net/search?Tn=Nocardioides
“https://www.ezbiocloud.net/tools/ani
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TABLE 1 | Physiological and biochemical characteristics of strain QN1NO-4.

of the genus Bacillus, called after B. safensis sp. QNINO-

Characteristics

4.

Result

Biochemical test

Urease production
Tween-20

Tween-40

Tween-60

Catalase

Oxidase

Gelatin liquefaction

Starch hydrolysis
Decomposition of cellulose
Nitrate reduction

H»S production

MR test

V-P test

Physiological test

pH tolerance

NaCl tolerance (%)
Temperature tolerance (°C)

5-10 (optimum 7)
1-13 (optimum 5)
30-65 (optimum 37)

Determination of the Half-Maximal
Effective Concentration Value of the

Extract Against C. fragariae

The effects of strain QN1NO-4 extracts on mycelial growth of
C. fragariae were assayed. The inhibitory efficiency showed a
dose-dependent manner (Figure 3A). After the strain QNINO-
4 extract was co-incubated with C. fragariae at 28°C for 7 days,
significant growth inhibition of the pathogen was observed in all
the concentration groups (1.563, 3.125, 6.25, 12.5, 25, 50, 100, and
200 mg 171). The inhibitory efficiency was 16, 23, 28, 41, 55, 69,
and 83%, respectively (Figure 3B). Compared with the growth
diameter of C. fragariae (68.00 mm = 0.1) in the control plate, the
half-maximal effective concentration (ECsy) value of the strain
QNINO-4 extract was 33.81 £ 0.46 mg 1~} using the toxicity
regression equation. The concentration was defined as 1 x ECsg
for the following study.

Biocontrol Efficiency of Extract on

+, positive reaction; —, negative reaction.

comparison with two standard strains B. siamensis KCTC
13613 and B. subtilis NCIB 3610, respectively (Supplementary
Table 5). Both ANI values were below 95-96% of the threshold
value for novel species definition (Richter and Rossell6-Mora,
2009). Thus, strain QNINO-4 might be a novel species

Controlling Strawberry Anthracnose
Caused by C. fragariae

To investigate the biocontrol efficiency of strain QNINO-
4 against C. fragariae in post-harvest strawberry, each
concentration extract (1 x ECsg, 2 X ECso, 4 x ECsg, or
8 x ECs, respectively) was used to treat the selected fruit
samples (Figure 4A). After artificially co-incubating with
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FIGURE 2 | Identification of strain QN1NO-4. (A) Antibiotic sensitivity test of strain QN1NO-4. (B) Circular map of the strain QN1NO-4 genome. From outside to
center, ring 1 represented the genome-size marker. Rings 2 and 3 showed coding sequences on forward and reverse strands, respectively. Ring 4 demonstrated
rRNAs and tRNAs. Ring 5 represented the G + C content, followed by G + C skew in ring 6. (C) Phylogenetic tree of strain QN1NO-4 based on the 16S rRNA
sequence. The tree was constructed using the neighbor-joining method in the MEGA software. The level of bootstrap support (1,000 repetitions) was indicated at all
nodes.
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TABLE 2 | Summary of the strain QN1NO-4 genome.

Attribute Value % of total
Genome size (bp) 3,923,715 100
DNA coding region (bp) 3,428,622 87.38
DNA G + C content (bp) 1,824,135 46.49
Total genes 3,972 100
tRNA genes 52 1.31
rRNA genes 3 0.08
Protein-coding genes 3,917 98.62
Genes assigned to COGs 2,967 75.75
Genes assigned to GO 2,654 65.20
Genes assigned to KEGG 2,190 55.91
CRISPR repeat 10 0.26

C. fragariae (1.0 x 10° CFU ml~!) for 7 days, the DIs and
quality parameters of strawberry fruit were measured. Compared
with the control group, all treatments alleviated significantly
the infection of C. fragariae in post-harvest strawberry fruit
at 7 days post-inoculation (dpi). The DIs were 67, 46, 29, and
13% in treatment groups of 1 x ECsg, 2 X ECsg, 4 x ECsg, and
8 x ECs, respectively (Figure 4B). Therefore, strain QN1NO-4
extract can inhibit effectively the infection of C. fragariae in
post-harvest strawberry fruit.

Weight loss and TSS were measured to evaluate the effects of
the strain QNINO-4 extract on the fruit quality of strawberry.
Weight loss showed a continuous decrease along with the
increasing dose of extract (Figure 4C). Compared with the
control group, weight loss was reduced by 4 and 3% after
treatment with 4 x ECsp and 8 x ECs, respectively. No obvious
difference was observed between 1 x ECsy and 2 x ECs
treatment groups. Moreover, strain QNINO-4 extract also
delayed the decrease in TSS content during storage. Compared
with the control group at 7 dpi, high TSS contents were kept in
the treated fruit samples (Figure 4D).

Effects of Strain QN1NO-4 Extract on
Spore Germination, Morphological
Profile, and Cell Ultrastructure of

C. fragariae

To further investigate the possible mechanism of the strain
QNINO-4 extract inhibiting fruit decay of post-harvest
strawberry, the spore germination of C. fragariae was first
analyzed after treatment with extract. The results showed
that spore germination was inhibited, and the inhibitory
efficiency was gradually increased with the increase of extract
concentrations (Figure 5A). In the control group, 95% of spore
can germinate, but only 36% and 18% of germination rates were
detected in 1 x ECsp and 2 x ECsg treatment groups for 12 h,
respectively. Especially, more than 4 x ECs extract completely
inhibited the spore germination of C. fragariae. Dense and short
hypha at the colony edges were observed in comparison with the
sparse and slender mycelia in the control plate (Figure 5B).

We further analyzed the morphological characteristics of
C. fragariae spores before and after extract treatment. A wizened
and distorted surface of spores was observed in the treatment
group of 4 x ECsy extracts for 12 h. The regular and
smooth morphology of hypha was displayed in the control
group (Figure 5C). By contrast, vacuoles became bigger and
disintegrated gradually after treatment with strain H4 extract.
The organelle integrity was also broken, and cells showed a
cytoplasmic heterogeneity (Figure 5D). In the control group,
some complete organelles such as vacuoles and mitochondria
could be clearly detected by TEM (Figure 5D).

Hemolytic Activity Assay of Extract on
Eukaryotic Cells

To investigate the toxicity of strain QNINO-4 extract on
eukaryotic cells, the hemolytic activity of extract (1 x ECso,
2 X ECsp, 4 x ECsg, or 8 x ECs0) on human red blood cells
was assayed using the release of hemoglobin after treatment at

Different concentrations of extracts (mg L") 3
Different concentrations of extracts (mg L)

FIGURE 3 | Determination of the half-maximal effective concentration value of extract against C. fragariae. (A) Growth inhibition of C. fragariae on the PDA medium
after treatment with different dose extracts. (B) Quantitative analysis of C. fragariae growth diameters. Error bars indicated standard errors of the means of three
repeated experiments. Different lowercase letters represented a significant difference (p < 0.05) of mycelial growth diameter at the same time point using the LSD

multiple-range test.
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FIGURE 4 | In vivo effects of strain QN1NO-4 extract on fruit decays and disease incidence caused by C. fragariae. (A) Disease inhibition of extract on strawberry
fruit. Four extract concentrations (1 x ECsp, 2 x ECsg, 4 x ECsp, and 8 x ECsg) were selected. The treated fruit samples were stored at 28°C for 7 days.

(B) Quantitative analysis of disease incidence of strawberry fruit treated with different dose extracts. (C) Effects of strain QN1NO-4 extract on weight loss of
strawberry fruit. (D) Effects of strain QN1NO-4 extract on TSS contents of strawberry fruit. Error bars indicated standard errors of the means of three repeated
experiments. Different letters indicated a significant difference (o < 0.05) among different dose extracts using the LSD multiple-range test.

37°C for 1 h (Supplementary Figure 1). A percentage of 0.1% of
Triton X-100 exhibiting 100% of hemolytic activity was selected
as a positive control. No obvious hemolytic activity appeared in
all treatment groups. Therefore, extract had non-specific cell lytic
activity and toxicity to eukaryotic cells.

Assay of a Broad-Spectrum Antifungal
Activity of Strain QN1NO-4 Extract

Based on the prediction of secondary metabolites by genomic
sequencing, we further analyzed whether strain QNINO-
4 extract had a broad-spectrum antifungal activity against
10 phytopathogenic fungi selected in our study. After co-
incubating for 7 days, the extract exhibited an excellent inhibitory
activity for mycelial growth of the selected fungi, ranging
from 35 to 56% (Figure 6). The best inhibition activity with
56% was found against Alternaria sp., suggesting that the
extract had the strongest antifungal activity against the fungi,
followed by C. lunata (54%) and F. graminearum (50%). The
minimal inhibition activity of the extract was 35% against
C. gloeosporioides, indicating that the fungus had the highest
tolerable ability for extract treatment.

Genome Annotation and Metabolite
Prediction of Strain QN1NO-4

Functional analysis showed that 2,554, 2,967, and 2,190
out of the identified 3,917 protein-coding genes were
annotated into GO, COG, and KEGG categories, respectively

(Supplementary Figure 2). For GO categories, the predicted
genes were divided into three classes including biological process
(27%), cellular components (27%), and molecular function
(45%) (Supplementary Figure 2A). For COG categories,
these genes were classified into 20 types of four categories.
The largest category was metabolism (41%), followed by
cellular processes and signaling (18%) as well as information
storage and processing (16%). Twenty-five percent of the
proportion was classified into the poorly characterized category
(Supplementary Figure 2B). KEGG analysis showed that 2,190
of identified protein-coding genes were annotated into 41
pathways (Supplementary Figure 2C). Notably, some pathways
including signal transduction, biosynthesis of other secondary
metabolites, and metabolism of terpenoids and polyketides were
pivotal for disease resistance.

By alignment of antiSMASH software and GenBank, 14
biosynthetic gene clusters containing 457 genes were predicted
in the strain QNINO-4 genome, including three NRPS gene
clusters (54 genes), one PKS-like gene cluster (48 genes), one
transAT-PKS gene cluster (48 genes), two transAT-PKS-like
gene clusters (36 genes), two terpene gene clusters (48 genes),
one LAP gene cluster (20 genes), one PKS III gene cluster
(48 genes), one beta-lactone gene cluster (50 genes), and one
MerR family transcriptional gene cluster (58 genes) (Table 3
and Supplementary Table 6). Among them, eight chemicals
produced by gene clusters were involved in the biosynthesis
of antimicrobial metabolites, such as bacillibactin, bacilysin,
bacillaene, macrolactin, butirosin, difficidin, plantazolicin, and
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FIGURE 5 | Inhibitory effects of strain QN1NO-4 extract on conidial germination, mycelial morphology, and ultrastructure of C. fragariae. (A) Conidial germination
assay of C. fragariae after treatment with 1x, 2x, 4x, or 8 x ECsq extracts. Bar = 20 um. CW: cell wall; CM: cell membrane; M: mitochondria; V: vacuole.

(B) Growth characteristics of C. fragariae mycelia treated with 4 x ECsq of extract. Bar = 20 pm. (C) Representative pictures showing the mycelial morphology of
C. fragariae after treatment with 4 x ECs of extracts. Bar = 20 pm. (D) Representative pictures showing the ultrastructure of C. fragariae after treatment with
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kalimantacin A (Supplementary Figure 3). Four gene clusters
(clusterl, cluster2, cluster4, and cluster5) presented a 100%
similarity with the known compounds. However, 2 out of
14 clusters exhibited a 13% similarity with the predicted
compounds, suggesting that these clusters might be involved in
the biosynthesis of novel metabolites.

Bioactive Compound Identification of the
Strain QN1NO-4 Extract by GC-MS

GC-MS was employed to analyze the bioactive compounds of
the strain QN1NO-4 extract. A total ion current chromatogram

is shown in Supplementary Figure 4. Based on retention time,
molecular mass, and molecular formula, 15 chemical compounds
were identified by the alignment of their mass spectra against
the NIST library (Supplementary Table 7). These compounds
mainly contained hydrocarbons, acids, pyrrolizidine, esters, and
phenol. The predicted chemical structures are shown in Figure 7,
including 2-methyloctanoic acid (1), 2,3-butylene glycol diacetate
(2), phenylacetaldehyde (3), 7-hexadecene (4), pantolactone (5),
propanoic acid, 3-(methylthio) (6), 2(3H)-benzofuranone (7), 1-
octadecene (8), 2,4-bis(1,1-dimethylethyl)-phenol (9), indolizine
(10), ethyl palmitate (11), 2-tetradecanol (12), trichloroacetic acid
myristyl ester (13), 17b-methyl-5a-androstan-3a,17b-diol (14),
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TABLE 3 | Cluster number and gene number shown in different cluster types.

Cluster type Cluster number Gene number
NRPS 3 54
PKS-like 1 48
TransAT-PKS 1 48
TransAT-PKS-like 2 36
Terpene 2 48
LAP 1 20
PKS I 1 48
Beta-lactone 1 50
MerR family transcriptional 1 58
other 1 47
Total 14 457

The bold values represent the total of cluster and gene numbers.

and butyl isobutyl phthalate (15). The peak areas of compounds
represented the portions of different compounds in the strain
QNINO-4 extract. Among these compounds, the peak area of
17b-methyl-5a-androstan-3a,17b-diol was 42%, suggesting that it
was a dominant compound in strain QN1NO-4 extracts.

DISCUSSION

Anthracnose caused by C. fragariae is a common and destructive
disease of strawberry (Mehmood et al., 2021). Biocontrol has
received an increasing attention in controlling post-harvest fruit
diseases (Li X.J. etal., 2020). Several endophytes play a vital role in
plant protection and plant growth promotion. Many promising
endophytic bacteria have been reported as biocontrol candidates
against plant pathogens (Morales-Cedeno et al., 2021). Especially,
Bacillus strains draw more and more attention due to their
ability to produce resistant endospores and bioactive metabolites
(Zhou et al, 2021). In our present study, a strain labeled
QNI1INO-4 was isolated from noni fruit and exhibited a strong
antifungal ability against C. fragariae (Figure 1). According to
morphological characteristics as well as genome alignment, strain
QNINO-4 was identified as a novel species of the genus Bacillus
(Table 1, Figure 2 and Supplementary Tables 3, 4). As potential
biocontrol agents, Bacillus species had also been successfully
used to control other post-harvest diseases of different fruit,
such as Bacillus species against B. cinerea and green mold in
strawberry fruit and citrus (Tian et al, 2020; Wang et al,
2021), B. amyloliquefaciens against Penicillium in oranges and
apples (Calvo et al., 2017; Wang et al,, 2020; Ye et al., 2021),
and B. atrophaeus against anthracnose on soursop and avocado
(Guardado-Valdivia et al., 2018).

To further elucidate the antifungal mechanism of the strain
QNINO-4 extract against C. fragariae, we examined the spore
germination, morphology, and ultrastructure of pathogenic cells
after extract treatment. Consistent with antifungal activity in vivo,
more than 4 x ECsg of strain QNINO-4 extract completely
inhibited the spore germination of C. fragariae. In addition, the
extract also caused the irregular morphology, cell wall thickening,
extensive vacuolization, and intracellular organelle degradation
of C. fragariae (Figure 5D). Inhibition of spore germination

was essential for protecting post-harvest fruit from pathogenic
infection (Miyara et al., 2010). A similar germination inhibition
of spores was detected in P. digitatum treated with C. lusitaniae
and P. fermentans, P. horianna treated with Bacillus species, and
F. incarnatum treated with B. amyloliquefaciens (Dheepa et al.,
2016; Perezetal., 2019; Li Y.G. et al., 2020). Moreover, the toxicity
and broad antimicrobial activity of the strain QN1INO-4 extract
were also determined (Supplementary Figure 1 and Figure 6),
suggesting that it is a promising alternative biological fungicide
to control post-harvest diseases.

Natural antimicrobials were an attractive source of controlling
post-harvest diseases, mitigating the reliance on synthetic
fungicides (Kim et al., 2020). We found that the strain QN1INO-
4 extract effectively inhibited mycelial growth of C. fragariae
in vitro, and the mycelial inhibition rate depended on a dose-
dependent manner (Figure 3A). The previous study showed
that a novel peptide produced by B. amyloliquefaciens W10 had
a strong antifungal activity (Zhang et al., 2017). It suggested
that high antagonistic components were different from diverse
Bacillus species. Fox example, extracts from different Bacillus
species significantly inhibited different mycelial growths of
Fusarium solani, P. digitatum, and Fusarium incarnatum (Ahmad
et al., 2012; Tian et al., 2020). Moreover, the extract effectively
kept the fruit quality of post-harvest strawberry by inhibiting fruit
weight loss and TSS decrease (Figures 4C,D). Similarly, weight
loss in L. plantarum-treated litchis was lower than the control
fruit (Martinez-Castellanos et al., 2011).

GC-MS was used to further identify antifungal metabolites of
strain QN1NO-4. A total of 15 chemical compounds including
hydrocarbons, acids, pyrrolizidine, esters, and phenol were
identified (Supplementary Table 7 and Figure 7). Among
them, 2(3H)-benzofuranone, 2,4-bis(1,1-dimethylethyl)-phenol,
and butyl isobutyl phthalate exhibited high antifungal and
antibacterial activities. 2(3H)-benzofuranone produced by the
indigenous fungus remarkably inhibited the mycelial growth of
M. oryzae (Fan et al., 2019). 2,4-bis(1,1-Dimethylethyl)-phenol
effectively inhibited the spore germination of P. cinnamomi
and Aspergillus and controlled tomato fungal diseases such as
early blight and gray mold (Rangel-Sanchez et al., 2014; Gao
et al., 2017). Butyl isobutyl phthalate exhibited an antibacterial
activity with an MIC value of 128 g 17! (Hussain et al., 2017).
Interestingly, the compounds in the strain QN1NO-4 extract
identified by GC-MS were different from those involved in the
synthesis of the above gene clusters (Supplementary Tables 6, 7).
It might be because the identification method is not enough to
identify all metabolites of strain QNINO-4 (Wei et al., 2020).
Thus, further study was necessary to identify specific active
metabolites of strain QN1NO-4, contributing to the broad-
spectrum antifungal activity.

Considering the deficiency of the GC-MS method,
whole-genome analysis was used to predict rare and novel
secondary metabolites, which cannot be detected directly in
the fermentation broth using the current technology. In our
study, the genome of strain QN1NO-4 was sequenced, revealing
numerous unknown and known gene clusters of secondary
metabolites (Table 3 and Supplementary Figure 3). These gene
clusters might be responsible for the production of microbial
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natural products. For example, the biosynthetic gene clusters
encoding for polyketides (PKS) and non-ribosomal peptides
(NRPS) were identified. They belonged to a structurally varied
group of compounds and participated in the biosynthesis
of antifungal compounds (Nimaichand et al., 2015; Prasad
et al., 2015). In addition, some antimicrobials were also
found such as bacillibactin, bacilysin, fengycin, bacillaene,
macrolactin, butirosin, difficidin, plantazolicin, and kalimantacin
A (Supplementary Table 6 and Supplementary Figure 3).
Bacillibactin was a specific transport system enabling Bacillus
cells to accumulate and take up limited iron ions from their
natural environment (Chen et al., 2009). Bacilysin participated
in the antagonistic activity of B. velezensis against Gram-negative
foodborne pathogens (Nannan et al., 2021). As a potent inhibitor
of filamentous fungi, fengycin owned a strong antifungal ability
against V. dahliae and B. cinerea (Li Q.R. et al., 2020; Su et al,,
2020). Bacillaene can inhibit prokaryotic protein synthesis (Li
Q.R. etal,, 2020). Macrolactin effectively inhibited the replication
of mammalian Herpes simplex virus and HIV in lymphoblast
cells (Gustafson et al., 1989). Butirosin was an aminoglycoside
antibiotic produced by Bacillus circulans (Llewellyn et al., 2007).
Difficidin exhibited a broad-spectrum antibacterial activity
(Anthony et al, 2009). Plantazolicin belonged to a type of
polyheterocyclic natural product with highly selective and potent
activity against anthrax-causing bacteria (Hao et al., 2015).
Thistlethwaite et al. (2017) found that kalimantacin showed a
selective and high activity against staphylococci with an MIC
value of 0.064 g 1=!. Considering the novel species of strain
QNINO-4 in our study, some unknown function gene clusters
might encode some new secondary metabolites. It will be further
proved that strain QN1NO-4 has a broad-spectrum resistance to
phytopathogen fungi.

CONCLUSION

In the present study, a newly isolated strain QNINO-
4 from noni fruit was identified as B. safensis sp. and
exhibited a strong antifungal ability against C. fragariae.
Its extract can effectively reduce the fungal disease index
and preserve the post-harvest quality of strawberry fruit.
Moreover, strain QNINO-4 extract can significantly inhibit
mycelial growth and spore germination of C. fragariae, causing
morphological and ultrastructure changes of fungal pathogen.
Fifteen chemical compounds were identified from strain
QNINO-4 extracts by GC-MS. In addition, the whole-genome
analysis revealed that some key function gene clusters in the
strain QN1NO-4 genome were involved in the biosynthesis of
active secondary metabolites. These diverse gene clusters and
metabolites might contribute to its broad-spectrum antifungal
activity. Therefore, strain QN1NO-4 is an effective bio-agent
for controlling strawberry post-harvest diseases caused by
C. fragariae.
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Bacillus spp. is effective biocontrol agents for Fusarium wilt of banana (FWB), tropical
race 4 (TR4). This study explores the colonization by Bacillus subtilis, Bacillus velezensis,
and Bacillus amyloliquefaciens of host banana plants and elucidates the mechanism of
antagonistic TR4 biocontrol. The authors selected one B. subtilis strain, three B. velezensis
strains, and three B. amyloliquefaciens strains that are proven to significantly inhibit TR4
in vitro, optimized the genetic transformation conditions and explored their colonization
process in banana plants. The results showed that we successfully constructed an
optimized fluorescent electro-transformation system (ODgy, Of bacteria concentration=0.7,
plasmid concentration=50ng/pl, plasmid volume =2 pl, transformation voltage=1.8kYV,
and transformation capacitance =400 ) of TR4-inhibitory Bacillus spp. strains. The red
fluorescent protein (RFP)-labeled strains were shown to have high stability with a plasmid-
retention frequency above 98%, where bacterial growth rates and TR4 inhibition are
unaffected by fluorescent plasmid insertion. In vivo colonizing observation by Laser
Scanning Confocal Microscopy (LSCM) and Scanning Electron Microscopy (SEM) showed
that Bacillus spp. can colonize the internal cells of banana plantlets roots. Further,
fluorescent observation by LSCM showed these RFP-labeled bacteria exhibit chemotaxis
(chemotaxis ratio was 1.85+0.04) toward green fluorescent protein (GFP)-labeled TR4
hyphae in banana plants. We conclude that B. subtilis, B. velezensis, and B. amyloliquefaciens
can successfully colonize banana plants and interact with TR4. Monitoring its dynamic
interaction with TR4 and its biocontrol mechanism is under further study.

Keywords: Bacillus spp., biocontrol, electro-transformation, RFP-labeled Bacillus, Bacillus interaction with TR4
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INTRODUCTION

Fusarium wilt of banana (FWB) caused by Fusarium oxysporum
f. sp. cubense, especially Tropical Race 4 (TR4), is one of the
most destructive diseases affecting the crop (Ghag et al., 2015;
Presti et al,, 2015; Carvalhais et al, 2019). Pathogen spores
invade the vascular bundles of banana roots through wounds
and then extend to the corms and pseudostems, causing the
vascular bundles to become brown and necrotic, the leaves
gradually wither and eventually the whole plant dies (Swarupa
et al, 2014). Due to its characteristic of surviving in the soil
for decades, once the pathogen is introduced into the soil,
the infected banana orchard cannot be used for growing
susceptible banana cultivars, which seriously affects the
sustainable development of the banana industry, as there are
few proven TR4-resistant cultivars (Ploetz, 2006, 2015).

Like all the other Foc strains, TR4 cannot be controlled
using fungicides and cannot be eradicated from soil using
fumigants (ProMusa, 2021). Crop rotation and intercropping
have been used to reduce the infections and inoculum levels
(Nadarajah et al., 2016). In China, farmers have been growing
bananas in the presence of TR4 by rotating or intercropping
with Chinese leek (Allium tuberosum; Nadarajah et al., 2016;
Li et al, 2020a,b). The most effective solution supporting
continued production of bananas in infested soils would
be replacing susceptible cultivars with resistant ones. However,
almost all important banana cultivars are susceptible to TR4
(Ploetz, 2015; Chen et al., 2019; Sun et al., 2019), and most
commercial cultivars are triploid and sterile (non-seed bearing)
makes banana breeding more difficult (Hwang and Ko, 2004;
Heslop-Harrison and Schwarzacher, 2007). At present, few
TR4-resistant banana cultivars have been bred and popularized
(Daniells, 2011). Furthermore, even those cultivars still have
to adapt to local cultivation practices and conditions. As a
result, the spread of TR4 has led to an increase in research
on biological control and biocontrol agents (BCAs) in suppressing
the pathogen (Nadarajah et al, 2016; Bubici et al, 2019;
Damodaran et al., 2020).

So far, many microbes such as Trichoderma spp.,
Pseudomonas spp., and Bacillus spp. have been widely used
as BCAs (Bubici et al.,, 2019). The characteristics of spore-
forming and rapid growth of Bacillus species confer them
with an important advantage over other beneficial biological
control microorganisms. In addition, many Bacillus species
can synthesize a large number of secondary metabolites,
which play a key role in antibiosis against detrimental
microorganisms (Radhakrishnan et al., 2017; Fira et al., 2018).
Bacillus subtilis is a representative Bacillus, which could
produce a variety of antibiotics with different structures and
activities; it also exhibits a wide range of antibacterial activities
against different plant pathogens under in vitro conditions
(Stein, 2005). Bacillus amyloliquefaciens, a type of Gram-
positive bacterium (Priest et al., 1987), highly homologous
with B. subtilis, has a single nutrient requirement and is
harmless to the environment and human health. Due to
these positive characteristics, many B. amyloliquefaciens strains
have been isolated and identified as having significant inhibition

and control effects on Ceitocybe bescens and Fusarium
oxysporum (Guan and Jiang, 2013). Wang et al. (2015) and
Xue et al. (2015) found that B. amyloliquefaciens combined
with organic fertilizers can significantly reduce the incidence
of Fusarium wilt. The B. amyloliquefaciens isolated by Zhang
et al. (2014) showed a good biocontrol effect on banana
wilt, and this strain can produce IAA and siderophore,
promote the growth of banana plants, and has a high biocontrol
potential. Bacillus velezensis is also a Gram-positive bacterium
that is closely related to B. amyloliquefaciens. FZB42 is
currently the most researched B. velezensis strain, which has
been commercialized, and it is effective against various
pathogens caused by bacteria and fungi (Borriss et al., 2011).
Fan et al. (2011) integrated a plasmid carrying a gene encoding
a fluorescent protein into the chromosome of the FZB42
strain and successfully observed the colonization and
distribution in the roots of corn, Arabidopsis, and duckweed.
However, so far there are few reports on the colonization
and distribution of Bacillus on banana plants. Understanding
how these beneficial microorganisms colonize and distribute
in host banana plants will provide an important and favorable
theoretical basis for using biocontrol strains to control FWB.

Most biocontrol Bacillus species are soil microorganisms
that colonize the rhizosphere of plants and directly or indirectly
promote plant growth through different mechanisms (Compant
et al.,, 2005; Scherwinski et al., 2008; Malfanova et al., 2013).
These play an important role in many fields, such as ecological
restoration, biocatalysis, and biological control. The successful
colonization of biocontrol strains is a prerequisite for the
development of biocontrol promotion and disease prevention,
and it is vital to explore their interaction processes with plants
(Kang, 2019). Fluorescence transformation is currently the most
successful approach for studying the colonization of Bacillus
spp. and the interaction with plants in vivo (He, 2014). However,
many wild-type Bacillus species with good bio-promoting and
disease-preventing effects cannot easily form competent cells
because of the unknown cellular restriction-repair system, which
leads to constraints to a low efficiency of electric shock
transformation (Alegre et al., 2004; Yasui et al., 2009). This
seriously hinders banana research on horizontal manipulation
or modification of Bacillus, as well as the further utilization
and exploitation of the potential value of these biocontrol
agents. Hence, there is a need to develop a reliable and efficient
fluorescent-transformation system for monitoring the interactions
between Bacillus, Foc TR4, and banana plants.

In this study, seven Bacillus species containing one B. subtilis,
three B. velezensis, and three B. amyloliquefaciens strains with
strong antagonistic effects on TR4 in vitro were selected. In
order to obtain stable fluorescent-marked transformants and
develop an efficient genetic transformation system, pYP69
carrying red fluorescent protein (RFP) was used as the fluorescent
expression vector, which was successfully introduced into
wild-type Bacillus strains according to the optimized
experimental parameters. Furthermore, laser confocal
observation confirmed that the fluorescent-transformed strains
could be used for monitoring how Bacillus colonizes host
banana plants (Figure 1).
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FIGURE 1 | The schematic diagram of tritrophic biocontrol interactions.

MATERIALS AND METHODS

Source of Strains and Plasmid

Bacillus subtilis strain YN1419 (GenBank Accession No.
MW647761) was isolated from banana cultivar Brazilian
in Xishuangbanna, Yunnan, China. Bacillus velezensis strain
YN1282-2 (GenBank Accession No. MW 663765) was isolated
from banana cultivar GCTCV-119. Bacillus velezensis N67
(GenBank Accession No. MW672323), WBN06 (GenBank
Accession No. MW672324), and B. amyloliquefaciens G9R-3
(GenBank Accession No. MW674627; Zhou et al., 2020),
HNO04 (GenBank Accession No. MW674626) were isolated
from Guangxi banana plantations. Bacillus amyloliquefaciens
YN0904 (GenBank Accession No. MW647760) was isolated
from Yunnan banana plantation. All experimental strains
had proven strong Foc TR4 antagonistic effects in vitro
(Li et al., 2021). Foc TR4 strain 15-1 (Zhang et al., 2018)
was isolated from infected banana plants in Xishuangbanna,
Yunnan, China. GFP-TR4 was constructed in our laboratory
(Zhang et al., 2018) and was used in monitoring the
interaction with bacteria. The plasmid pYP69 expressing
RFP and  the chloramphenicol-resistance ~ gene
(Supplementary Figure S1) were obtained as a gift from
Dr. Yongmei Li (Plant Protection College of Yunnan
Agricultural University, Kunming, China) and Dr. Yiyang
Yu (Plant Protection College of Nanjing Agricultural
University, Nanjing, China). pYP69 was constructed by the
pYC127 as backbone and cloned with mKate2 coding
sequence (Chen et al., 2012). The Escherichia coli DH5a
was purchased from Beijing Biomed Biotechnology Co.,
Ltd. (Beijing, China). The strains were stored in 25% glycerol
at —80°C. The isolates were reactivated on nutrition agar
(NA) medium at 37°C for 24h.

Culture Media

LB broth medium (LB; tryptone 10g, yeast extract 5g, NaCl
10g, pH 7.0 for 11 with deionized water) was used to cultivate
the bacteria and prepare the bacterial suspension. Potato Dextrose
Agar (PDA) medium (200g potato, 20g glucose, 20g agar,
diluted to 11, natural pH) was used to activate the Foc TR4
and conduct the dual-culture experiments. Growth Medium
[GM; LB with 3% glycine (Gly), 1% p;-threonine (p;-Thr),
0.03% Tween 80, and 9.1% sorbitol] was used to prepare
competent cells. ETM buffer (40ml glycerol, 360ml deionized
water, 36.4 g sorbitol, 36.4 g mannitol, 0.25 mM KH,PO,, 0.25mM
K,HPO,, and 0.5mM MgCl,) was used to wash away the ion
components in competent cells. Recovery Medium (RM; LB
with 9.1% sorbitol and 6.92% mannitol) was used for resuspension
of competent cells after electroporation.

Detection of Plasmid pYP69 Expression in
Escherichia coli

The Escherichia coli competent cells were thawed on ice. One
microliter pYP69 was mixed gently into competent cells and
put it on ice for 30min stationary Then, the heat shock was
applied at 42°C for 60s, and then, the culture was put on ice
for 2min. Five hundred microliter LB liquid medium was then
added to the culture and resuscitated at 37°C, swirling at
180rpm for 60 min, and then, the transformative culture was
evenly spread on the 100pg/ml ampicillin-resistant medium.
The transformative plates were cultured at 37°C for 16h, and
then, single colonies were selected to observe fluorescence by
the Fluorescence Microscope (Nikon 80I).

Plasmid Extraction
The E. coli-carrying pYP69 plasmid was inoculated into LB
liquid medium containing ampicillin (100 pg/ml), and cultured
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at 37°C, swirling at 220 rpm for 16 h. Plasmid extraction followed
the instructions accompanying the OMEGA Plasmid DNA
Extraction Kit (E.Z.N. A® Plasmid DNA Mini Kit I).

Electroporation

Preparation of Competent Cells

Competent cells preparation (Zhang et al., 2011) was carried
out as follows. Bacillus strains stored at —80°C were inoculated
in the LB solid medium overnight. Each single colony was
individually selected and inoculated in 30 ml GM liquid medium
by inoculating loop, cultivated at 37°C, 220rpm for 16h. Two
milliliter cultured bacteria suspension was inoculated into 200 ml
GM liquid medium, cultured at 37°C, and swirled at 220rpm
for 3h. ODyy, value was determined by spectrophotometer
(Nanophotometer NP80 Touch). When ODg, value reached
0.5, 3% Gly, 1% p;-Thr, and 0.03% Tween 80 were added into
the culture for cell-wall weakening. The culture was arrested
when the ODy, value reached 0.7. The bacterial suspension
was put on ice for 10min and centrifuged at 4°C, 1,300¢ for
10min; then, 50ml precooled ETM solution was used to wash
away the ion components in the GM medium for three times.
About 500pul ETM was used to suspend the competent cells,
competent cells were divided into 100pl per EP tubes and
stored at —80°C.

Electroporation

The transformation (Kang, 2019) was carried out as follows.
Two microliter plasmid pYP69 were added into 100 pl competent
cells culture, mixed the plasmid and competent cells, and
electroporation was carried out. The electroporation voltage
was 1.8kV, and the capacitance was 400 Q. After electroporation,
1 ml RM medium was immediately added to the electroporation
cup and then transferred to a 1.5ml centrifuge tube, cultured
at 37°C, shook at 220rpm for 4h. The culture was spread on
the LB solid plate containing 10pug/ml chloramphenicol, the
positive transformants designated according to the format of
RFP-Bacillus, e.g., RFP-N67, etc., were selected, and the
fluorescence labeling was observed under the fluorescence
microscope (Excitation wavelength: 555 nm/Emission wavelength:
584 nm).

Stability Determination of Plasmid

pYPG69 in Bacillus

The activated RFP-Bacillus strains were inoculated into liquid
LB medium without antibiotics, cultured at 37°C, and shook
at 180rpm, with samples being taken every 5h and spread
on LB solid plates, and bacteria colonies were observed by
fluorescence microscope. The percentage of red fluorescent
colonies in total cells colonies used to calculate the stability
of the plasmid in the RFP-strains. Three replicates were conducted.

Cell Growth Determination of RFP-Strains

Red fluorescent protein-Bacillus and wild-type (WT) strains
were inoculated in the LB liquid medium and cultured to the
concentration was ODgy, reaching 1.0, and then, the bacteria
suspension was transferred to the blank medium at a ratio of 1%.

Bacteria were cultured at 37°C and shook at 180rpm for 60h.
ODy, values of samples were measured every hour in the first
6h. ODgy was measured every 2h during 8-20thh, and ODy,
was measured every 4h during 22nd-60thh. Three replicates
were made.

Antagonistic Activity of RFP-Strains on
TR4

The dual-culture method was used to compare the antagonistic
activity of the RFP-labeled Bacillus and WT strains against
Foc TR4. TR4 was activated in PDA for 7days at 28°C, and
RFP-labeled bacteria and WT bacteria were activated at 37°C
for 24h. Individual 5mm diameter disks of TR4 hyphae were
placed in the center of each PDA plate. Plates were then
inoculated with the RFP strain and the WT strain at 2.5cm
from the center by using inoculating loop. These were cultivated
for 7days, and the growth of TR4 hyphae was measured. The
inhibition dual culture assay was carried out in three replicates.

Colonizing Observation of Biological
Control Bacillus

A 10ml red fluorescent bacterial suspension (cultivated 24h
at 37°C and 180rpm, diluted to 1x10°cfu/ml) was pour into
the tissue-culture bottle which cultured five banana plantlets
by MS medium, gently shaking the bottle and placing in a
culture incubator (30°C, 80% humidity, 12h light/12h dark),
with the treatment adding just sterilized water as the control.
Five replicates were made. Ten banana plant roots per treatment
were randomly selected after inoculation for 7days, and the
roots were washed with flowing sterile water to remove
the medium.

For fluorescent microscopy, tissue slices (thickness: 50nm)
were excised by freezing microtome and any bacteria in root
tissues were observed by Laser Confocal Electron Microscope
(Leica TCS-SP8). Excitation/emission wavelengths were
561 nm/570-640nm for RFP (mKate2 protein).

For scanning microscopy, the critical point drying sample
processing method was conducted. Tissue slices (thickness:
50nm) were immersed in FAA fixative (5ml 38% formaldehyde,
5ml glacial acetic acid, 90ml 70% ethyl alcohol, and 5ml
glycerol) at 4°C overnight. Then: the fixed samples were immersed
in 50, 60, 70, 80, 90, and 95% alcohol successively to dehydrate
30min was conducted in each alcohol concentration, then the
samples were immersed in absolute ethanol for 30 min, and
three replicates were conducted. Banana tissue samples were
then put into Critical Point Dryer (K850) and Cressington
Sputter Coater (108 AUTO) to spray gold coating. The fixed
samples were put into Scanning Electron Microscope (ZEISS
Sigma 300, Germany) to observe the bacterial colonization.

Laser Confocal Electron Microscope
Observation of Interaction in vivo

In order to observe the interactions between strains and TR4
in vivo, 3ml RFP-labeled bacterial culture in 9% physiological
saline solution was inoculated into the leaf vascular bundles
of the banana cultivar Brazilian by injection (Liu et al., 2020),
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and a 5mm agar disk with GFP-labeled TR4 mycelia (Zhang
et al,, 2018) was placed on the wound by inoculation loop.
The latest fully expanded leaves were selected. Fluorescent
observation by laser scanning confocal microscope (Leica
TCS-SP8) was carried out after the leaves were cultured in
28 °C, 60% light, and 50% humidity for 7days. Excitation/
emission wavelengths were 561 nm/570-640 nm for RFP (mKate2
protein). Excitation/emission wavelengths were 488 nm/500-
540nm for GFP (AmCyan protein).

Chemotaxis Assay of Bacteria to Pathogen
Seven day-old Foc TR4 were inoculated in 50ml diluted PDB
(1: 50; v: v in H,O) at 28°C with shaking at 150rpm for 24h
to obtain spores suspension of Foc TR4. Suspension was then
washed twice with sterile ddH,O and incubated for 48h in
5ml sterile ddH,O at 28°C and 150rpm. The supernatant was
sterilized by filtration through a 0.22 pm membrane (Millex-GP)
for use.

To obtain bacterial suspension, 1x 107 colony ml™' RFP-N67
strains were grown in LB overnight at 37 °C, washed either
with sterile ddH,0, and diluted in ddH,O to the ODg, of 0.1.

Chemotaxis capillary assays (Palmieri et al., 2020) were
carried out as follows. 250 ul bacterial suspension was added
to the well (1.5cmx1.5cm) in the glass slide together with a
10pl capillary containing the test compound (Foc TR4 hyphal
exudate or ddH,0). Slides were incubated for 60 min at 28°C,
capillaries were carefully lifted, the content was serially diluted
and plated onto LA medium with 10pug/ml chloramphenicol,
and CFUs were counted 24h after incubation at 37°C. The
chemotaxis ratio was calculated by dividing the number of
bacteria in the tube containing the test compound (Foc TR4
hyphal exudate) by the number of bacteria in the tube containing
the control (ddH,O). All experiments included four replicates
and were performed three times with similar results.

Statistical Analysis

Data were analyzed by one-way ANOVA using the SPSS version
18.0 for Windows (Chicago, IL, United States). The figures
and charts were drawn using ORIGIN 2018 (Massachusetts,
United States).

RESULTS

Plasmid pYP69 Expresses Fluorescence in
Escherichia coli

Before transforming Bacillus, we aimed to verify whether this
plasmid could be expressed in E. coli, preserved, and extracted.
Heat-shock transformation was used to transform the plasmid
pYP69 into E. coli DH5x competent cells. We obtained positive
transformants on plates containing ampicillin. Colonies glowed
an obvious red color under the fluorescence microscope, and
the red E. coli cells could still be visualized even after being
cultured in the liquid. This verified that RFP-labeled cells can
be observed under the fluorescence microscope (Figure 2A),
indicating that the plasmid pYP69 can be expressed in E. coli.

Plasmid pYP69 Expresses Fluorescence in
B. sublitis, B. velezensis, and

B. amyloliquefaciens

Fluorescence labeling is one of the best methods for tracing
bacterial colonization (including B. sublitis, B. velezensis, and
B. amyloliquefaciens) in plants. Here, electroporation with
optimized conditions was used to transfer the plasmid pYP69
into competent cells of WT Bacillus strains. Positive transformants
of Bacillus were obtained on the solid plate of 10pg/ml
chloramphenicol. These can be seen with the naked eye as
the colonies of strains formed on the antibiotic plate gradually
become light red. Fluorescence microscope observation results
showed that the plasmid pYP69 has been successfully transformed
into the WT strains and can express RFP in the Bacillus strains
(Figure 2B; Supplementary Figures S2A-E). Several repeated
experiments showed that although there was still relatively
low trans-formants efficiency (1x10*-10°cfu/pg of plasmid
DNA); stable transformants from each Bacillus strain had already
been generated.

RFP-Labeled Strains Possess High
Plasmid Stability

The stability of plasmid expression in the strains is important
for the construction of fluorescent strains. Under condition of
no antibiotic pressure, the red fluorescent strain was cultured
in serial dilutions, and the samples were taken every 5h. The
dilution was evenly spread on a non-resistant plate. The
proportion of colonies with fluorescence was counted under
a fluorescence microscope to determine the frequency of plasmid
retention. We found that the frequency of RFP plasmid cells
is all greater than 98% after being cultured for 10 consecutive
generations (Figure 3). Results confirmed the plasmid is rarely
lost due to the proliferation of bacterial cells, indicating that
the plasmid pYP69 can be stably expressed in these Bacillus
strains, and it can be used for experiment tracing colonization
and migration in plants.

RFP-Labeled Strains Have the Similar
Growth Condition of WT-Strains

The growth of the RFP-Bacillus and WT strains was compared
under the same inoculation and culture conditions. The results
showed that the growth of RFP-YN0904, RFP-YN1282-2,
RFP-WBNO06, and RFP-N67 was consistent to WT strains,
indicating that the plasmid pYP69 had no significant effect
on the growth of these three B. velezensis. The wild-type strains
of HN04 and G9R-3 grew slight faster in the log phase and
reached the stable phase earlier than RFP strains, the wild-
type strains YN1419 grew lower before the stable phase than
the RFP strain, but they did not significantly affect normal
growth of RFP bacteria (Figure 4;
Supplementary Figures S3A-E). We speculate that it may
be that the introduction of multicopy large plasmids affects
the growth rate of B. amyloliquefaciens and B. subtilis, and
good fluorescence performance of the plasmids in the Bacillus
host may also create an additional metabolic burden on
the strains.
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FIGURE 2 | Fluorescence observation of Escherichia coli and N67 under microscopy. DIC, differential interference contrast field; RFP, red fluorescence field; and
GFP, green fluorescence field. (A) Representative fluorescent micrograph of E. coli under fluorescent microscope. Heat-shock transformation was used to transform
pYP69 into E. coli DH5a competent cells. The positive transformants on the solid medium containing 100 pg/ml ampicillin/ could be observed under the microscope.
(B) Representative fluorescent micrograph of N67 under fluorescent microscope. Electric-transformation was used to transform pYP69 into N67 competent cells.
The positive transformants on the solid medium containing 10 pg/ml chloramphenicol could be observed under the microscope. Scale bar: 10 um.
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FIGURE 3 | Fluorescence plasmid retention frequency of RFP-labeled
Bacillus. Samples were taken every 5h. The proportion of colonies on a non-
resistant plate with fluorescence was assessed (with three replicates) under
fluorescence microscope to determine the frequency of plasmid retention.

RFP-Labeled Strains Retain Their
Antagonistic Activity Against TR4
The metabolic burden caused by the introduction of exogenous
plasmids sometimes affects other functions of the strain. In
order to explore the effect on the biological characteristics of

3.0 —a— RFP-N67

—o— WT-N67

30
Time (h)

20

FIGURE 4 | The growth rate of RFP-N67 compared to wild-type N67.
OD600 measures were used to determine bacterial growth rate. Three
replicates were included.

plasmid pYP69 insertion, the antagonistic activities of the
RFP-Bacillus strain and the WT strain against the pathogenic
fungus Foc TR4 were compared. The results showed that there
was no significant difference in the antagonistic activity of the
two types of strains against the tested pathogenic fungi (Figure 5;
Supplementary Table S1). It shows that the expression of
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plasmid pYP69 does not affect the inhibitory activity of the
Bacillus strains on the growth of the pathogenic fungus.

Bacillus Can Successfully Colonize
Banana Root Cells

Biocontrol bacteria successfully colonizing plants are a necessary
pre-condition for their biocontrol function. To explore the
colonization capacity of Bacillus in banana plants, we inoculated
tissue-cultured banana plantlets with B. velezensis RFP-N67.
After 7days of co-culture, we sampled the banana plantlets’
roots, and slice observation by Laser Confocal Microscopy
(LCM) showed that RFP-N67 colonized the banana roots cells
(Figure 6A) and Scanning Electron Microscopy (SEM) confirmed
the bacteria could successfully colonized the roots xylem cells
(Figures 6B,C). We also found that there were no bacteria in
banana plants subject to low inoculation concentrations (1x 10°~
10°cfu/ml), and that Bacillus can enter the root when the
inoculation concentration reached a higher density (1 x 10°cfu/
ml). However, concentrations could damage
banana plantlets.

excessive

Bacillus Exhibits Chemotaxis Toward Foc
TR4 in Banana Plants

The interactions between beneficial Bacillus strains and pathogens
are the key to crop disease control. There are few studies on
the interactions between biocontrol bacteria and TR4 in banana.
Therefore, we selected RFP-labeled Bacillus RFP-N67 and used
available green fluorescent labeled pathogens GFP-TR4,
inoculating banana leaves simultaneously to observe whether
they will interact in vivo. Leaf phenotypic observation showed
that the lesion size in both the front and back sides of the
leaves after the treatment inoculated with RFP-N67 and GFP-TR4
was significantly smaller than those found in leaves inoculated

with GFP-TR4 only (Figure 7A). Then, we made ultrathin
sections around the leaf lesions and successfully observed
RFP-N67 and GFP-TR4 simultaneously under laser confocal
microscopy, finding that RFP-N67 often appeared around
GFP-TR4 mycelia (Figures 7B,C), and further chemotaxis assay,
indicating that RFP-N67 exhibits a strong chemotaxis toward
Foc TR4 (Figure 7D). Therefore, we can speculate that the
biocontrol bacteria RFP-N67 we used can grow and reproduce
normally in banana to exert their biocontrol functions, and
that in the presence of pathogens, it can be quickly found to
inhibit pathogen growth. However, this study only provides
histological evidence. Quantitative analysis of specific pathogen
growth inhibition needs to be carried out.

DISCUSSION

Over the last decade, many studies have focused on the
interactions of Foc with beneficial microorganisms. Generally,
researches have centered around “growth promotion,” “systemic
resistance induction,” “secondary metabolites syntheses,” etc.,
which were facilitated by the rapid development of “-omics”
tools (Bubici et al., 2019). However, as we know, there are
no reliable currently available fluorescent labeled Bacillus strains
for Banana-Endophyte-Pathogen tritrophic interaction studies.
Currently, fluorescence labeling is the best approach for exploring
interactions of Bacillus spp. with plants in vivo. Hence, the
fluorescence transformation system we constructed is the first
step and of great significance to study the interaction mechanisms
associated with TR4 and biological control Bacillus. In the
process of manipulation, the wild-type Bacillus generally has
a low transformation efficiency, and some inert Bacillus strains
cannot even be transformed at all, which seriously affects

internal mechanism research of its beneficial properties, such as

FIGURE 5 | Antagonistic effect of RFP-labeled Bacillus compared to the WT Bacillus. The plate inoculated with pathogen only was used as the control (CK). The
antagonistic effect of RFP-strains (left) and WT strains (right), respectively, and the pathogen was inoculated in the center. Five replicates were used.
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RFP-N67

RFP-N67

FIGURE 6 | Bacillus velezensis N67 colonies in banana roots. Banana roots were randomly selected 7 days after inoculant, and the roots were washed with sterile
water to remove the medium and bacteria adhering to the surface. Tissue slices were cut out to Laser Confocal Microscopy (LCM) observation and subjected to
critical point drying before Scanning Electron Microscopy (SEM) observation. (A) Representative fluorescent micrograph of RFP-N67 distributed in banana root cells.
Scale bar: 10pm. (B) Scanning electron micrograph of control treatment that there were no any bacteria in the banana root cell. (C) Representative micrograph of
RFP-N67 distributed in banana root xylem cells. The white arrows indicate the bacteria RFP-N67. Three replicates were used. Scale bar: 2 um.

disease prevention, growth promotion, efficient enzyme

production, or antibiotics (He, 2014). Currently, the
transformation of Bacillus mainly includes protoplast
transformation, electric shock transformation, natural

transformation, and protoplast electric shock transformation
(Shen et al., 2013; He, 2014; Kang, 2019; Plucker et al., 2021;
Wang, 2021). In this study, we have explored the different
methods and conditions of fluorescent transformation of
TR4-antagonistic strains. The results showed that we only got
the positive transformants by the method of electric shock
transformation. Through the natural transformation method,
all seven Bacillus strains could not form naturally competent
cells or positive transformants, even if we tested in the different
transformation conditions, such as culture time, plasmid
concentration, and recovery time. The low electro-transformation
efficiency of wild-type Bacillus may be related to the

restriction-repair system in the cell (Zhang et al, 2012).
According to the statistics of REBASE (a professional database
of restriction endonucleases), approximately 88% bacterial
genomes contain restriction-repair systems, and 43% contain
four or more restriction-repair systems (Roberts et al., 2007).
The restriction-repair system is a barrier for bacteria to exclude
external DNA, thus preventing the transformation of
bacteriophages and external plasmids, thereby maintaining the
integrity and functional stability of its own genetic material.
At present, the restriction-repair systems have been found in
a variety of bacteria and archaea (Roberts et al., 2003). Finding
a way to prevent the wild-type bacteria from degrading the
external DNA during the transformation process is the key
to improving the efficiency of electric shock transformation.

In the process of cell-wall synthesis, glycine can replace
D(L)-alanine in the peptidoglycan component of the bacterial
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FIGURE 7 | Bacillus velezensis RFP-N67 exhibits chemotaxis toward the GFP-TR4 pathogen. N67-RFP in 9% physiological saline solution was injected into the
leaf vascular bundles, and the pathogen GFP-TR4 was placed on the injection wound. (A) Disease incidence of banana leaves after 7 days’ inoculation. The first two
pictures show the front side of the leaves, and the last two pictures show the back side of the leaves. Three replicates were used. (B) Microscopy of the control
treatment, which injected 9% physiological saline solution with no bacteria, inoculated the GFP-TR4 only. (C) Representative micrographs of N67-RFP showed
significantly chemotropic toward GFP-TR4. BF, bright field; RFP, red fluorescent field; GFP, green fluorescent field; and MERGE, merge image with BF, RFP, and GFP
fields. Three replicates were used. (D) Chemotaxis ratio of RFP-N67 toward Foc TR4. “indicate the significance between treatments at the 0.05 level.

Foc TR4

cell wall, which reduces the degree of cross-linking of
peptidoglycan and interferes with the synthesis and assembly
of the cell wall, thus loosening the cell wall (Anderson et al.,
1966; Zhu et al., 2020). It has been reported that the addition
of some compounds that inhibit cell-wall synthesis [such as

glycine, threonine, penicillin, or Tween 80 (affecting cell
membranes’ fluidity)] during the exponential growth stage of
Bacillus can improve the transformation efficiency (Holo and
Nes, 1989; Zhang et al, 2011). After numerous repeated
experiments, we added glycine, sorbitol, threonine, and Tween
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80 to the electro-transformation growth medium, finding this
helps Bacillus more easily absorb external DNA to form positive
transformants. Although transformation efficiency is between
1x10°-10°cfu/pg of plasmid DNA in the repetitive experiment,
indicating our transformation system is still needed to be further
optimized, which means that there is still much space for
improvement in the transformation of inert Bacillus strains.
However, this electric shock transformation system is reproducible
and stable because we have generated RFP-labeled Bacillus in
all seven strains from two main banana producing areas, Yunnan
and Guangxi provinces, China (Figure 2B;
Supplementary Figures S2A-E).

There are other methods that can also improve transformation
efficiency: a good way to temporarily inactivate restriction
endonuclease in the host bacterium is by incubating at a certain
temperature for a couple of times after electric shock.
Corynebacterium glutamicum was cultured by shaking under
low-temperature to prepare electro-transformation competent
cells, and then rapidly heat shocked after the electric shock,
the results showed that the electro-transformation efficiency
was increased fourfold (Rest et al., 1999). Heat-shocking after
electric shock transformation of B. amyloliquefaciens, increased
transformation efficiency by 10-fold (Zhang et al, 2011). In
addition, due to the restriction endonuclease and methylase
in the wild-type bacteria restriction-repair systems often
appearing in pairs, the in vivo methylation modification of
the exogenous plasmid to be transformed in the same cell
can evade restriction-enzyme digestion and degradation of the
host wild-type bacteria during the transformation process,
thereby improving the transformation efficiency. Through this
strategy, the transformation efficiency of Bifidobacterium
adolescentis ATCC15703 was increased fivefold (Yasui et al,
2009), and the transformation efficiency of B. amyloliquefaciens
TA208 and B. cereus ATCC10987 was increased almost fourfold
(Zhang et al.,, 2012).

A vital factor affecting the expression of fluorescent proteins
in Bacillus is plasmid instability. In order to explore the stability
of plasmid pYP69 in Bacillus strains, we detected RFP expression
and the loss-ratio of plasmid in the transformed strains with
regularly sampling. This showed that within 50h of culture,
more than 98% of the cells expressed RFP, indicating that
very few cells lost their plasmids (Figure 3), and Bacillus
growth rate was not affected (Figure  4;
Supplementary Figures S3A-E). According to previous reports
(Bonfrate et al, 2013), the propagation rate of Bacillus in
natural environments is 50-100h/generation, and the rate of
propagation under laboratory conditions is 20-30 min/generation.
Based on this, it could be calculated that the number of
fluorescent strain propagations during 50h is about 100-150
generations. In other words, the plasmid pYP69 still exists
stably after 100-150 generations, indicating that it has a very
strong compatibility with bacteria. Therefore, RFP-labeled Bacillus
will be suitable for monitoring its colonizing activities in banana
host plants in our next research step.

Nowadays, the biological control of banana Fusarium wilt is
always focused on screening antagonistic strains, while ignoring
the research on the colonization of antagonistic bacteria in soil

or plants. Many of the selected antagonistic bacteria have obvious
antibacterial effects in vitro or pot experiments, but they usually
lose biocontrol effects in the field (Jing et al., 2020; Wei et al.,
2020). Therefore, the successful colonization of biocontrol bacteria
is an important pre-condition for its application and function
in field. Some studies have shown that the colonization of plant
growth promoting rhizobacteria (PGPR) is affected by abiotic
factors, such as soil temperature, texture, water content, and
oxygen content. Biotic factors including root exudates, plant
growth conditions, bacterial chemotaxis, the nature of self-
regulation mechanisms, and bacterial trophic type also affect
colonization (Yajing, 2018). At present, a few studies have been
carried out on the colonization of strains controlling banana
wilt. Dai (Yajing, 2018) detected the quantity of different PGPR
in banana soil rhizosphere by fluorescence quantitative PCR.
The results indicated that the biomass of three antagonistic
bacteria in banana rhizosphere soil was increased significantly,
indicating that the three PGPR strains M8, C5, C14 can colonize
banana roots (Lin, 2011). Their colonization determination studies
used antibiotic-labeled strains and showed that labeled strains
could be isolated by wound inoculation, irrigated inoculation,
and axil inoculation. The control did not show any bacterial
colonies, indicating that with three methods of inoculation, the
labeled strains can be colonized in banana. Chao et al. (2010)
used the scanning electron microscope to observe biocontrol
bacteria FJAT-346-PA-K in tissue-cultured banana plantlets 10days
after inoculation. They successfully found that there were biocontrol
bacteria in the roots internal tissues and banana stems.
We inoculated the wild-type strain N67 into tissue-cultured
banana plantlets, and it was also confirmed by scanning electron
microscope that N67 could successfully colonize the banana
root cells (Figures 6B,C). However, this method can only
preliminarily judge the existence of biocontrol strains in the
plant, and it cannot clearly figure out the internal activity in
vivo. Therefore, we constructed red fluorescent-labeled strains
to observe its dynamic migration in banana plants, and the
results showed that the biocontrol strains can successfully colonize
the roots but not in the corm or pseudostem due to short
incubation period (Figure 6A). We also injected RFP-labeled
bacteria into the detached leaf which is proved to be a reliable
protocol (Liu et al., 2020). The results showed that the biocontrol
strains can successfully colonize and grow in the leaf, as well
as displaying a positive chemotaxis response toward TR4 hyphae,
indicating that the biocontrol bacteria can effectively interact
with and inhibit the pathogen in vivo (Figure 7). Other studies
have shown that chemoattraction of bacteria could contribute
to its root colonization (Palmieri et al., 2020). Fusarium oxysporum
f. sp. lycopersici (Fol) is known to facilitate bacterial movement
in search of nutrients which also exhibits chemotaxis toward
plant roots (Furuno et al, 2009; Turra et al., 2015). We thus
conclude that N67 not only directly inhibits TR4 hyphae growth,
but it could also benefit from the capacity of pathogen hyphae
trends to plant colonization and thus increases colonization
efficiency. Significant progress has been made in other crops
by using fluorescent-labeled strains for colonization observation.
Kang (2019) observed that the endophytic B. velezensis CC09
Bv-GFP can not only effectively colonize wheat roots, but also
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migrate to stem and leaf organs to achieve whole plant distribution.
He (2014) observed the roots of maize seedlings inoculated
with Y2-P43GFPmut3a by fluorescence microscope, showing that
Y2 strain successfully colonized root surfaces and interiors.
However, as far as we know, there is no research on the in
vivo interaction of RFP-Bacillus for monitoring TR4 in banana,
so dynamic migration is our next proposed research.

With the great progress of gene-sequencing technology,
more and more Bacillus whole genomes have been sequenced.
Using such tools, it will be important to explore the potential
biocontrol mechanisms among Bacillus, pathogens, and plants
(Bubici et al., 2019; Carrion et al.,, 2019; Jiang et al.,, 2019;
Chen et al., 2020; Jing et al., 2020; Wei et al., 2020). The
biocontrol mechanisms of Bacillus are usually considered to
be based on one or more of: (1) Antagonism: Bacillus often
secretes secretory secondary metabolites that inhibit pathogen
growth. (2) Competition: Bacillus competes for niches with
pathogens and other microorganisms to obtain nutrients and
other resources. (3) Inducing systemic resistance: they can
activate host defense responses by inducing systemic resistance.
(4) Promoting growth: Bacillus can provide necessary mineral
nutrition and plant hormones (e.g., IAA) for plant hosts to
support their life activities. These mechanisms of Bacillus
are interrelated and synergistic. Of course, the principal
Bacillus biocontrol mechanism(s) could be different in
different crops.

It is an innovative research direction to develop new
biopesticides and new agricultural antibiotics by using the
antagonistic behavior of microorganisms (Yajing, 2018). It has
become an important measure for biological control of TR4 in
organic farming by researching “biological fertilizer” (where
organic fertilizers are inoculated with biocontrol agents) and
banana growth-promoting bacterial agents to increase yield
and disease resistance (Ling et al, 2014; Fu et al, 2016).
Nowadays, biological control for sustainable banana production
has attracted much attention. New biological microorganism
agents are urgently needed to replace traditional chemical
pesticides, which continue to cause pollution and damage the
environment, and degrade soils. Microbial agents as recognized
promising “pollution-free pesticides” will play a crucial role
in managing agricultural and silvicultural diseases and protecting
ecological balance.

CONCLUSION

We successfully developed an optimized fluorescent electro-
transformation system of TR4-inhibitory Bacillus spp. strains
(OD600=0.7, plasmid concentration=>50ng/pl, volume=2pl,
voltage=1.8kV, and capacitance=400Q). The RFP-labeled
Bacillus strains have high stability, and their growth rates and
inhibition effects on TR4 are unaffected by fluorescent plasmid
insertion. In vivo colonizing observation by Laser Scanning
Confocal microscopy (LSCM) and SEM showed that Bacillus
spp. can colonize the xylem cells of banana plantlets’ roots.
Further fluorescent observation by LSCM showed these
RFP-labeled bacteria exhibit chemotaxis toward the hyphae of

the green fluorescent protein (GFP)-labeled TR4 pathogen in
banana leaves.
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Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective
chemicals, biocontrol strategies are developed as alternatives to better cope with
environmental concerns. A combination of biological control agents (BCAs) could even
improve sustainable disease management through complementary ways of protection.
In this study, we evaluated the combination of Bacillus subtilis (Bs) PTA-271 and
Trichoderma atroviride (Ta) SC1 for the protection of Chardonnay and Tempranillo
rootlings against Neofusicoccum parvum Bt67, an aggressive pathogen associated
to Botryosphaeria dieback (BD). Indirect benefits offered by each BCA and their
combination were then characterized in planta, as well as their direct benefits in vitro.
Results provide evidence that (1) the cultivar contributes to the beneficial effects of Bs
PTA-271 and Ta SC1 against N. parvum, and that (2) the in vitro BCA mutual antagonism
switches to the strongest fungistatic effect toward Np-Bt67 in a three-way confrontation
test. We also report for the first time the beneficial potential of a combination of BCA
against Np-Bt67 especially in Tempranillo. Our findings highlight a common feature for
both cultivars: salicylic acid (SA)-dependent defenses were strongly decreased in plants
protected by the BCA, in contrast with symptomatic ones. We thus suggest that (1)
the high basal expression of SA-dependent defenses in Tempranillo explains its highest
susceptibility to N. parvum, and that (2) the cultivar-specific responses to the beneficial
Bs PTA-271 and Ta SC1 remain to be further investigated.

Keywords: Chardonnay, Tempranillo, biocontrol, Neofusicoccum parvum, plant immunity, synergistic effect

INTRODUCTION

Global environmental changes promote the incidence of plant diseases by increasing the pathogen
pressure or make the plants more susceptible to them (O’Brien, 2017; Veldsquez et al., 2018).
Grapevine trunk diseases (GTDs) are among the most important groups of grapevine diseases all
over the world, creating a big concern in all wine-producing countries (Mondello et al., 2018).
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Botryosphaeria-Dieback Biocontrol Is Grapevine Cultivar-Dependent

Attacking the plant perennial part and leading inevitably to the
short- or long-term death of vines, the pathogens responsible of
GTDs are described as very injurious for the sustainability of the
winemaking industry (Hofstetter et al., 2012). As main restrictors
for viticulture, GTDs can lead to high economic losses, less table
grape for consumers, and social and environmental disturbances
(O’Brien, 2017). Both young and mature vines are affected by
GTDs, even as nursery staged plants, reducing both productivity
and longevity of the vineyard, thereby causing massive economic
losses (Gramaje and Armengol, 2011).

Botryosphaeria dieback (BD) is one of the most significant
GTDs, triggerable by more than 25 distinct species of
Botryosphaeriaceae including the aggressive Neofusicoccum
parvum (Urbez-Torres, 2011; Billones-Baaijens and Savocchia,
2019; Reis et al.,, 2019; Larach et al., 2020). Symptomatic plants
develop a low or apoplectic dieback phenotype, including a low
budburst rate, a poor vegetative development, external canker,
and internal longitudinal necrotic lesions that can lead to a
full dead branch (Larignon et al., 2001, 2009; Larignon, 2004;
Billones-Baaijens and Savocchia, 2019; Larach et al., 2020).
Susceptibility to BD pathogens also differs between cultivars
(Travadon et al., 2013; Fontaine et al., 2016a; Chacon et al., 2020;
Claverie et al., 2020).

Due to the undetermined period of latency within the
vines (asymptomatic state), early detection and management
of GTDs remain presently a challenge in both nursery and
vineyard, and only few preventives, but no curative methods,
are available. Indeed, few chemicals are applied on pruning
wounds in vineyards to prevent dissemination of the conidia
of fungal pathogens (Sosnowski et al., 2004), preferring cultural
practices in vineyard (Mondello et al., 2018) and sanitation
methods (Gramaje and Armengol, 2011; Gramaje et al., 2018).
However, these kinds of treatments cannot eradicate the
pathogens once established in a vineyard (Calzarano et al., 2004;
Gramaje and Armengol, 2011). An interesting alternative and
complement to the previously cited GTDs control methods
in vineyard is the use of biological control agents (BCAs)
as reported by Mondello et al. (2018). For instance, several
microorganisms have already been evaluated, both in vitro
and in planta against BD pathogens (Hunt et al, 2001; Di
Marco et al., 2004; John et al, 2004; Compant et al., 2013;
Compant and Mathieu, 2017; Trotel-Aziz et al., 2019). Among
them there are bacterial BCAs such as Pseudomonas, Bacillus,
and Enterobacter species, and fungal BCAs such as several
Fusarium and Trichoderma species (Mondello et al., 2018).
Some of them, such as Trichoderma atroviride, Trichoderma
harzianum, Bacillus subtilis, and Bacillus amyloliquefaciens, are
already commercialized against some GTDs pathogens, or against
other hemibiotrophic and necrotrophic pathogens including
Botrytis cinerea, Fusarium oxysporum, or many others (Elad,
2000; Schmidt and Panstruga, 2011; Kuzmanovska et al., 2018;
Thambugala et al., 2020; Alfiky and Weisskopf, 2021).

To date, Trichoderma species are the most used fungal-
based BCA in viticulture (Harman, 2006; Muckherjee et al.,
2012; Waghunde et al, 2016) and have been also widely
investigated as BCA against GTDs (Di Marco et al., 2002, 2004;
John et al,, 2008; Halleen et al., 2010: Berbegal et al., 2020;

Martinez-Diz et al., 2021a,b). Trichoderma spp. are described to
directly antagonize GTD pathogen aggressiveness by competition
for nutrients and space, mycoparasitism, cell-wall degrading
enzymes, and antibiosis (Harman, 2006; Van Wees et al., 2008;
Vinale et al., 2008; Pieterse et al., 2014; Waghunde et al., 2016).
Trichoderma spp. have also been described as plant growth and
defense stimulators (Harman, 2006; Van Wees et al., 2008; Vinale
et al,, 2008; Pieterse et al., 2014; Waghunde et al., 2016). Among
Trichoderma spp., T. atroviride SC1 was shown to strongly reduce
the infections caused by some GTD pathogens in nurseries
and established vineyards at the registered dose rate of 2 g/L,
equivalent to the density of 2 x 10'* conidia/L recommended by
the commercial product (Pertot et al., 2016; Berbegal et al., 2020;
Martinez-Diz et al., 2021a). Bacillus strains are another group
of microorganisms extensively studied as BCA and reported to
directly and indirectly protect plants against pathogens with
different lifestyles (Magnin-Robert et al., 2007; Trotel-Aziz et al.,
2008; Nguyen et al., 2020), including the GTD hemibiotrophic
pathogens (Schmidt et al., 2001; Halleen et al., 2010; Rezgui et al.,
2016; Kotze et al., 2019; Trotel-Aziz et al., 2019). A broad range
of beneficial molecules are produced or encoded by the genome
of Bacillus spp., both to induce or elicit plant defenses (as with
phytohormones precursors, lipopolysaccharides, siderophores,
etc.) and to directly compete, antagonize, or alter plant pathogens
or their aggressiveness (Kloepper et al., 2004; Ongena and
Jacques, 2008; Leal et al., 2021). Among Bacillus spp., B. subtilis is
one of the most frequently tested against GTDs (Mondello et al.,
2018), and B. subtilis PTA-271 has shown promising results in
reducing infections caused by the aggressive strain N. parvum
Bt67 (Trotel-Aziz et al., 2019). Literature also reports that the
combination of two or more BCAs can improve the management
of plant diseases (Weller, 1988; Guetsky et al., 2002; El-Tarabily,
2006; Yobo et al., 2011; Magnin-Robert et al., 2013), probably due
to additive or synergistic effects of combined mechanisms in a
complex changing environment (Meyer and Roberts, 2002).

Beneficial microbial interactions conferred by BCA lead to
induced systemic resistance (ISR) in the plant, giving it greater
protection to pathogens in spatially separated parts of the plant
(Alstrom, 1991; Van Peer et al.,, 1991; Wei et al., 1991; De
Vleesschauwer and Hofte, 2009). ISR is associated with an early,
strong, and rapid activation of plant defenses upon pathogen
infection, a phenomenon known as the priming state (Conrath
et al, 2001, 2015; Pieterse et al, 2014). Among the BCA-
induced defense responses, the most relevant are jasmonate (JA)-
and ethylene (ET)-dependent ones, described as useful defenses
against necrotrophs (Pieterse et al., 2001, 2014; Verhagen et al,,
2004; Van der Ent et al., 2009; Niu et al., 2011; Nie et al., 2017).
However, Niu et al. (2011) also reported that some BCAs may
mediate ISR in a salicylic acid (SA)-dependent manner. In brief,
the diversity of BCA ways of protection may depend on both the
BCA and the pathogen, but also on the plant and even the cultivar
(Mutawila et al., 2011; Pacifico et al., 2019; Nguyen et al., 2020;
Stempien et al., 2020).

In this study, we evaluated the effect of combining a
potential BCA, B. subtilis PTA-271 (thereafter Bs PTA-271),
and a BCA-commercial product containing T. atroviride SC1
(thereafter Ta SC1), on the protection of two distinct grapevine
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cultivars, Chardonnay and Tempranillo, potentially showing
distinct susceptibilities to GTDs. The pathogen selected was
N. parvum Bt67 (thereafter Np-Bt67), described as a very
aggressive pathogen associated to BD. As each BCA has already
been recognized as beneficial to at least one cultivar (Trotel-
Aziz et al, 2019; Berbegal et al., 2020; Martinez-Diz et al,
2021a), their beneficial effect was additionally investigated on the
other cultivar, as single BCA and in dual combination of two
BCAs. To compare the two BCAs, densities were aligned to the
density optimized for Bs PTA-271 with Chardonnay rootlings.
After looking for the protective capacity of BCAs in planta,
their ways of action leading to protection were further explored.
Thus, the indirect and direct benefits offered by each BCA and
their combination were investigated, focusing on both grapevine
immunity and the direct beneficial or detrimental physical
interplays among the microorganisms in vitro (Bs PTA-271, Ta
SC1, and Np-Bt67).

MATERIALS AND METHODS

Plant Material and Growth Conditions
Three-node-long cuttings of grapevine Vitis vinifera L. cv.
Tempranillo (clone RJ-26) and cv Chardonnay (clone 7535)
were provided by Viveros Villanueva nursery (Navarra, Spain)
and Pommery’s vineyards in Reims (France), respectively.
Tempranillo cuttings were surface-sterilized for 6 h in a 0.05%
cryptonol (8-hydroxyquinoline sulfate) solution, waxed and
stored at 4°C in a cold chamber for 3 weeks, and then rehydrated
with 0.05% cryptonol solution overnight. Chardonnay cuttings
were directly surface-sterilized with 0.05% cryptonol solution
overnight. Cuttings of both cv were then rooted as described
by Lebon et al. (2005), using an indole-3-butyric acid (1 g/L)
solution before being placed by 15 in 350-ml pots containing
the soil Sorexto (horticultural soil M4600, Grenoble, France) in
a culture chamber (24/20°C day/night, 55-65% relative humidity
day/night, and 16-h photoperiod at 400 jLmol/m?/s). They were
watered three times a week. Only rootlings that have developed
roots (30% rooting rate in 15 weeks) were kept for further
experiments and transferred to individual 200-ml pots with the
same culture conditions.

Biocontrol Agent’s Growth and Plant

Treatments

Bacillus subtilis PTA-271

Bacillus subtilis PTA-271 (GenBank Nucleotide EMBL Accession
No. AM293677 for 16S rRNA and DDBJ/ENA/GenBank
Accession No. JACERQ000000000 for the whole genome) was
isolated in 2001 from the rhizosphere of healthy Chardonnay
grapevines (V. vinifera L. cv. Chardonnay) from a vineyard
located in Champagne (Marne, France) (Trotel-Aziz et al., 2008;
Leal et al,, 2021). Bacterial growth started by adding 100 pl of
glycerol stock suspension to sterile Luria Bertani (LB) medium
and incubating at 28°C with agitation (100 rpm). Experiments
were performed when the bacterial culture is at the exponential
growth phase. After centrifugation (5,000 g, 10 min), the pellet
was washed once with a sterile 10 mM MgSO4 medium and

resuspended in a same MgSO,4 medium. Bacterial density was
measured by spectrophotometry at 450 and 650 nm, and the
mean density was adjusted with a sterile MgSO4 medium before
treatment according to Trotel-Aziz et al. (2019). The bacterial
suspension was applied twice by drenching the soil at the root
level of rootlings at a final density of 108 CFU/g soil. Inoculations
were carried out when rootlings were 16 weeks old (considered
as day 0) and 2 weeks later (day 15) as indicated in Figure 1.
Control rootlings were similarly drenched twice with MgSO4
solution (Figure 1).

Trichoderma atroviride SC1

Trichoderma atroviride SC1 (Vintec®, Belchim Crop Protection,
Bi-PA; 100 conidia per gram of formulated product) was
suspended in water at 103 CFU/ml to compare the effect of each
BCA at an equal density. In order to also take advantage of an
eliciting effect, the Ta SCI fungal suspension was applied once
with a paintbrush to the second node of the previously wounded
lignifying stem (5 mm diameter and 1 mm deep; made just
before Ta SC1 apply) of 18-week-old rootlings (Figure 1). The
inoculation site was immediately covered with parafilm (day 15).

Pathogen Strain and Growth

Neofusicoccum parvum strain Bt67 isolated from Portuguese
vineyards (Estremadura region) is inscribed in the HIA collection
(Lisbon University, Portugal). This fungus was maintained
on potato dextrose agar (PDA, Sigma, Saint-Quentin-Fallavier,
France) plates and stored at 4°C (Trotel-Aziz et al., 2019). The
resulting mycelium was plated on PDA medium and incubated
in the dark at 22°C for 7 days before inoculation.

Pathogen Inoculation to Plants,
Quantification of Disease Symptoms,

and Re-isolation of the Pathogen

Half of the 20-week-old rootlings that were treated with Bs PTA-
271 (day 0 and day 15) and/or Ta SC1 (day 15) were further
infected with the pathogen at the wounding area with a 3-mm-
diameter mycelial plug from a 7-day-old culture of Np-Bt67 strain
(day 30), thus at distinct time points (days 0-30) as summarized
in Figure 1. The inoculation site was then covered with moist
hydrophilic cotton before sealing with parafilm. The experiment
was composed of five repetitions for each modality (treatment),
with 8-10 replicate plants per treatment (Figure 1). To confirm
that lesions were due to pathogen infection and not to the injury,
the control plants were also injured and inoculated with sterile
3-mm PDA plugs (Figure 1). Rootlings, namely, “control,” are
those that are neither treated with BCA nor infected with the
pathogen. After inoculation, vines were kept in the same culture
chamber and BD symptoms were assessed at 2.5 months post-
inoculation (mpi) (Figure 1). Disease symptoms were evaluated
as described by Trotel-Aziz et al. (2019) by quantifying the
percentage of the full dead shoots from inoculated rootlings
(Figure 2A, “Full dieback”) and by measuring both the external
canker area and the internal necrosis length of the other lignified
shoots (Figures 2B,C, respectively). To check the success of the
infection and the lack of contaminations, re-isolation of pathogen
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FIGURE 2 | The beneficial combination of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 attenuates the Botryosphaeriaceae dieback symptoms induced
in Chardonnay (D-F) and Tempranillo (G-I) rootlings by the Neofusicoccum parvum strain Np-Bt67. One-month pretreated grapevine rootlings with PTA-271, Ta
SC1, and both BCA (Bs, Ta, and Bs + Ta) and non-treat plants (Ctl) were inoculated with pathogen mycelium (Np). Non-infected plants were inoculated with sterile
medium without pathogen (Control). Compared to healthy asymptomatic rootlings (A, right), the infected symptomatic rootlings showed the typical Botryosphaeria
dieback symptoms: full dieback percentage (A left, E), stem external canker (B,E,H) and stem internal necrosis (C,F,l) that were photographed (A-C) and quantified
(D-I) at 2.5 months post-inoculation. Data are means + standard deviation (SD) for at least three independent experiments with 10 biological replicates per
treatment. Vertical bars with different letters are significantly different (multiple comparison procedures with Tukey’s test, p < 0.05).
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was performed as described by Pinto et al. (2018), by quickly
passing the infected stems onto the flame, then removing the top
of the necrotic zone with a scalpel, before plating seven small
pieces of tissue per plant onto PDA plates. Plates were then
incubated at 28°C for at least 7 days. For every repetition of
the experiments, re-isolations were performed with seven of the
infected rootlings per infected combination (i.e., Np, Bs + Np,
Ta 4+ Np, and Bs + Ta 4+ Np) and each replicate, and one negative
control rootling per non-infected combination (i.e., Control, Bs,
Ta, and Bs + Ta).

Direct Confrontation Tests With

Biocontrol Agents and Pathogen

Antagonism among microorganisms was checked in vitro, using
B. subtilis PTA-271, T. atroviride SC1, and N. parvum Np-
Bt67, in dual or three-way confrontation tests on PDA plates
(9 mm diameter). Bs PTA-271 grown in LB medium and Ta SC1
resuspended in sterilized water were both used at 108 CFU/ml
(5 pl drop), while a 7-day-old mycelium plug (3 mm) was
used for the pathogen. Three types of direct confrontation were
performed: (A) the pathogen/BCA combinations were plated
at the same time, but at distinct areas (i.e., 5 cm away from
each other); (B) one or two isolates (Bs PTA-271, Ta SCI, or
Np-Bt67) were plated 48 h before the other(s), and at distinct
areas; and (C) isolates were plated simultaneously and at the
center of the plate. Controls containing one single isolate (Bs
PTA-271, Ta SC1, or Np-Bt67) were also made, either on the
side of the plate or at the center. All plates were incubated
in the dark at 28°C for at least 11 days and photographed
daily. Antagonistic effect was characterized by an inhibition zone
around the BCA and/or the pathogen. Since the first kind of
confrontation (A) added no more information compared to the
others (B and C), it was not shown in this study. The experiment
was conducted twice with three replicate plates per treatment,
and the area occupied by each microorganism was measured daily
using Image] software (Rueden et al., 2017), based on a reference
distance common to all images.

RNA Extraction and Quantitative
Reverse-Transcription Polymerase Chain
Reaction Analysis

From the in planta assays with rootlings, leaf samples were
collected 4 days post-inoculation of pathogen (dpi), ground
in liquid nitrogen, and then stored at —80°C. RNA was
extracted from powdered 40 leaves of 8 rootlings per replicate
of each modality. Total RNA was extracted from 50 mg of
leaf powder with Plant RNA Purification Reagent according to
manufacturer instructions (Invitrogen, Pontoise, France), and
DNase treated as described by the manufacturer’s instructions
(RQ1 RNase-Free DNase, Promega). RNA quality was checked
by agarose gel electrophoresis, and total RNA concentration
was measured at 260 nm for each sample using the NanoDrop
One spectrophotometer (Ozyme) and adjusted to 100 ng pl=!.
First-strand cDNA was synthesized from 150 ng of total
RNA using the Verso ¢cDNA synthesis kit (Thermo Fisher
Scientific, Inc., Waltham, MA, United States). Polymerase chain

reaction (PCR) conditions were the ones described by Gruau
et al. (2015). Quantitative reverse-transcription polymerase
chain reaction (qQRT-PCR) was performed with Absolute Blue
qPCR SYBR Green ROX Mix according to manufacturer
instructions (Thermo Fisher Scientific, Inc., Waltham, MA,
United States), in a BioRad C1000 thermocycler using the Bio-
Rad manager software CFX96 Real-Time PCR (BioRad, Hercules,
CA, United States). A set of six defense-related genes, selected
for their responsiveness to pathogen or priming state induced by
beneficial microorganisms (Trotel-Aziz et al., 2019), was tracked
by qRT-PCR using specific primers (Table 1). Quantitative RT-
PCR reactions were carried out in duplicate in 96-well plates
in a 15-pl final volume containing Absolute Blue SYBR Green
ROX mix including Taq polymerase ThermoPrime, dNTPs,
buffer, and MgCl, (Thermo Fisher Scientific, Inc., Waltham, MA,
United States), 280 nM forward and reverse primers, and 10-
fold diluted cDNA according to the manufacturer’s protocol.
Cycling parameters were 15 min of Taq polymerase activation
at 95°C, followed by 40 two-step cycles composed of 10 s of
denaturation at 95°C and 45 s of annealing and elongation
at 60°C. Melting curve assays were performed from 65 to
95°C at 0.5°C s~!, and melting peaks were visualized to check
amplification specificity. EF1 and 60SRP genes were used as
references and experiments were repeated five times. Relative
gene expression was determined with the formula fold induction:
2(—11Ct), where 11Ct = [Ct TG (US) — Ct RG (US)] —
[Ct TG (RS) — Ct RG (RS)], where Ct is cycle threshold, Ct
value is based on the threshold crossing point of individual
fluorescence traces of each sample, TG is target gene, RG
is reference gene, the US is an unknown sample, and RS is
reference sample. Integration of the formula was performed by
the CFX Manager 3.1 software (Bio-Rad). Although the genes
analyzed were considered significantly up- or downregulated
when changes in their expression were >2-fold or <0.5-fold,
respectively, we still performed a statistical analysis. Control
samples for the rootlings model are cDNA from leaves of
rootlings untreated with BCA and inoculated with sterile PDA
plugs (1x expression level).

Statistical Analysis

Data of canker area and length of external and internal necrosis
of the stems were obtained by the analysis of photos using
Image] software (Rueden et al., 2017). Statistical analyses were
carried out using all the vines of three replicates among five for
each modality with RStudio software (Horton and Kleinman,
2015). For modality significance, mean values were compared
by Tukey’s test (p < 0.05). Results of confrontation tests are
from one representative repetition out of two showing the
same trends. Statistical analyses were carried out using the
SigmaStat 3.5 software. For treatment effect, mean values were
compared by Tukey’s test (p < 0.05). Results of gene expression
by qRT-PCR analysis correspond to means & SEM deviation
from three representative repetitions out of five showing the
same trends. Statistical analyses were carried out using the
XLSTAT 2021.1.1 5 software (Addinsoft, Paris, France). For
treatment effect, mean values were analyzed using one-way
analysis of variance (ANOVA). When differences in the means
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TABLE 1 | Primer sequences used for gRT-PCR analysis of defense-related genes (Trotel-Aziz et al., 2019).

Gene Name Accession Forward primer (5'-3') Reverse primer (5'-3') Annealing Amplicon Efficiency of
number! temperature size (bp) primers pairs
(°C) (%)

60RSP 60S ribosomal XM_002270599"  ATCTACCTCAAGCTCCTAGTC CAATCTTGTCCTCCTTTCCT 60 166 100.0
protein L18

EF1 Elongation factor XM_002284888" AACCAAAATATCCGGAGTAA GAACTGGGTGCTTGATAGGC 60 164 100.0
1-alpha AAGA

LOX9 Lipoxygenase NM_001281249"  CCCTTCTTGGCATCTCCCTTA TGTTGTGTCCAGGGTCCATTC 60 101 90.0

PR1 Pathogenesis- XM_002273752"  GGAGTCCATTAGCACTCCTTTG CATAATTCTGGGCGTAGGCAG 60 168 90.0
related protein 1

PR2 Class | NM_0012809671 TCAATGGCTGCAATGGTGC CGGTCGATGTTGCGAGATTTA 60 155 97.2
beta-1,3-glucanase

GST1 Glutathione-S- NM_001281248" TGCATGGAGGAGGAGTTCGT CAAGGCTATATCCCCATTTTCTTC 60 98 90.0
transferase

PAL Phenylalanine XM_003635637" TCCTCCCGGAAAACAGCTG TCCTCCAAATGCCTCAAATCA 60 101 92.9
ammonia lyase

STS Stibene synthase  NM_001281117"  AGGAAGCAGCATTGAAGGCTC  TGCACCAGGCATTTCTACACC 60 101 94.3

TNCBI accession number.

were significant, Fisher’s LSD post hoc test (a = 0.1) was applied
to determine which treatments were significantly different
from others.

RESULTS

Effects of Bacillus subtilis PTA-271 and
Trichoderma atroviride SC1 on Two
Cultivars Infected With Neofusicoccum
parvum Bt67

In control Chardonnay infected with the pathogen, the results
of infection showed a rate of 28 & 1.24% for dead shoot (full
dieback), of 80.6 &+ 7.35 mm? for external canker size, and of
55.4 £+ 9.44 mm for internal necrosis length (see Np-Bt67 in
Figures 2D-F), while in Tempranillo, they reached 37.5 £ 4.56%,
65.2 £+ 6.23 mm?, and of 77.8 £ 11.95 mm, respectively (see
Np-Bt67 in Figures 2G-I).

In BCA-treated Chardonnay rootlings then infected with
the pathogen, the results of the biocontrol assays showed
that Bs-PTA-271-pretreated plants presented a significant lower
number of plants with full dieback (by approximately 45%)
than the infected control (Figure 2D). Infected plants pretreated
with Ta SC1 did not reduce the full dieback development
compared to infected control plants, while infected plants
pretreated with both BCAs showed a great variability in the
development of full dieback symptoms. Similarly, the external
canker area (Figure 2E) and the internal necrosis length of
infected Chardonnay (Figure 2F) were solely slightly reduced in
Bs-PTA-271-pretreated rootlings (by 16 and 22%, respectively),
but insignificantly (Figure 2E). In contrast, necrosis length was
increased in Ta SC1 and both BCAs pretreated plants compared
to infected control, although non-significant (Figure 2F).

In BCA-treated Tempranillo rootlings then infected with
the pathogen, the results of the biocontrol assays showed
that Ta-SC1- and combined-BCA-pretreated plants showed a

significant lower number of full dieback (by approximately 80
and 91%, respectively) and length of stem internal necrosis
(by approximately 70 and 81%, respectively) than the infected
control (Figures 2G,I, respectively). In contrast, infected plants
pretreated with Bs PTA-271 showed that neither full dieback
development nor internal stem necrosis reduced, compared
to infected control plants. Looking at the external canker
area (Figure 2H), none of the treatments with Bs-PTA- 271-,
Ta- SCl1-, and combined-BCA-pretreated plants, consecutively
infected, induced any significant difference with the infected
control. Therefore, external canker may not appear as a relevant
indicator for Np dieback with this experimental model, for both
Tempranillo and Chardonnay.

Re-isolations of the pathogen confirmed that (1) there was
no background infection elsewhere than in the artificially
infected rootlings, satisfying thus the Kochs postulates,
and that (2) the pathogen was still alive in both dead
and living stems of plants, as well as in infected plants
pretreated or not with BCA. From all infected plants, the
pathogen was successfully isolated with a percentage of
success >90% that indicated no fungicidal effect from BCA
toward Np-Bt67.

Effects of Biological Control Agents on
the Basal Defense of Chardonnay and

Tempranillo

The ability of Bs PTA-271 or Ta SC1 or both BCAs to enhance
grapevine immunity was addressed in leaves of control rootlings.
Six selected defense genes were targeted by qRT-PCR: the
lipoxygenase LOX9 involved in oxylipin synthesis and described
as dependent to JA/ET (Hamiduzzaman et al., 2005; Naznin et al.,
2014); PRI described to be regulated by SA(Dufour et al., 2013;
Naznin et al., 2014; Caarls et al., 2015); the B-1,3-glucanase PR2
described to be regulated by various phytohormones such as
SA, JA, and ET (Liu et al., 2010); the glutathione-S-transferase
GST1 putatively involved in the detoxification process; the
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phenylalanine ammonia-lyase PAL catalyzing the first step in
the phenylpropanoid pathway; and the stilbene synthase STS
involved in the synthesis of phytoalexins. Since BCAs were not
detected in leaves (not shown) where defenses were induced, the
induction of plant defense by BCAs is systemic.

Data showed some differences in the level of expression of the
basal defense genes between the greenhouse cultivars (Figure 3),
despite the fact that rootlings all grew in the same chamber
of the greenhouse with similar culture conditions. The cultivar
Chardonnay exhibited a weak constitutive expression of targeted
defense genes (Figure 3A) compared to Tempranillo (Figure 3B).
In Chardonnay (Figure 4 and Supplementary Figure 1A), the
application of Bs PTA-271 at root level induced a 2.8-fold increase
of PRI and PR2 expression in leaves, while the application of Ta
SC1 at stem level did not induce any consistent changes in the
expression of these same defense genes in leaves. Interestingly, the
application of both BCAs induced the expression of the greatest
number of targeted genes in the leaves: a 2.6-fold expression
of LOX9 and a 6.6- or 6.8-fold expression of PR2 and STS,
respectively. Bs PTA-271, alone or together with Ta SC1, may thus
act as a priming stimulus for Chardonnay cultivar.

Tempranillo (Figure 3B) showed a high basal expression
of the targeted gene responsive to SA (i.e., PRI) compared to
Chardonnay (Figure 3A). Interestingly, while the application of
Bs PTA-271 (Figure 5 and Supplementary Figure 1B) did not

induce any consistent changes of defense gene expression, that of
Ta SC1 induced the expression of the greatest number of studied
genes: by a factor of 2.4 for LOX9, 13.0 for PR2, 12.0 for GST1,
4.3 for PAL, and 6.2 for STS. To contrast with Chardonnay, no
relevant number of targeted genes were overexpressed with the
application of both BCAs (2.7-fold for PR2, 9.6-fold for GST1I,
3.6-fold for PAL, and 5.3-fold for STS) compared to Ta SC1 alone.
Ta SC1, alone or together with Bs PTA-271, may thus act as a
priming stimulus for Tempranillo.

Effects of Biological Control Agents on
the Induced Defense of Chardonnay and

Tempranillo Upon Pathogen Challenge

In leaves of Chardonnay rootlings infected with Np-Bt67,
data from qRT-PCR showed that except for PRI (0.8-fold
expression), the expression of all targeted defense genes was
consistently upregulated from 2.9- to 9.8-fold (4.3 for LOX9,
4.7 for PR2, 2.9 for GSTI, 3.7 for PAL, and 9.8 for STS)
(Figure 4 and Supplementary Figure 1A). As indicated before,
in the absence of pathogen infection, Bs PTA-271 only induced
a weak expression of PR2 and PRI (2.8-fold increase) but
was not significant according to ANOVA analysis (Figure 4
and Supplementary Figure 1A), suggesting that Bs PTA-271
may act as a priming stimulus in Chardonnay. However,
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FIGURE 3 | Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 attenuates induced differential expression of defense-related genes in leaves of Chardonnay
(A) and Tempranillo (B) rootlings before and after pathogen challenge. Twenty-week-old rootlings untreated or pretreated with PTA-271 or SC1 or both were further
infected with sterile PDA plugs (Control, Bs, Ta, and Bs + Ta, respectively) or with mycelium plugs of Np-Bt67 (Ctl + Np, Bs + Np, Ta + Np, and Bs + Ta + Np,
respectively). Transcript levels of defense-related genes monitored by gRT-PCR in plant leaves after 4 days of inoculation. Uninfected control of Chardonnay was
considered as a reference sample (1x expression level) for both cultivars, and heatmaps represent changes in the transcript expression levels as indicated by the
color shading. Data are the means from three representative replicates among five showing the same trends. Different letters indicate statistically significant
differences between the treatments (ANOVA, Fisher’s LSD post hoc test, a = 0.1). Legends for genes are LOX9, lipoxygenase 9; PR1, pathogenesis-related protein
1; PR2, class | B-1,3-glucanase; GST1, glutathione-S-transferase 1; PAL, phenylalanine ammonia lyase; STS, stilbene synthase.
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FIGURE 4 | Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 attenuates induced differential expression of defense-related genes in leaves of Chardonnay
rootlings before and after pathogen challenge. Twenty-week-old rootlings untreated or pretreated with PTA-271 or SC1 or both were further infected with sterile PDA
plugs (Control, Bs, Ta, and Bs + Ta, respectively) or with mycelium plugs of Np (Ctl + Np, Bs + Np, Ta + Np, and Bs + Ta + Np, respectively). Transcript levels of
defense-related genes monitored by gRT-PCR in plant leaves after 4 days of inoculation. Uninfected control was considered as the reference sample (1x expression
level). Data are the means from three representative replicates among five showing the same trends. Different letters indicate statistically significant differences
between the treatments (ANOVA, Fisher’s LSD post hoc test, a = 0.1). Legends for genes are as in Figure 2.

upon pathogen challenge, no post-priming was observed in
Bs-PTA-271-pretreated plants since it did not induce any stronger
activation of the targeted plant immune defenses compared to
Chardonnay-infected control at 4 dpi (Figure 3). In contrast, Ta
SC1 showed no sign of priming stimulus in control Chardonnay,
but it induced similar expression of PR2 (6.5-fold increase)
and STS (11.1-fold increase) than infected control (4.7 and 9.8,
respectively). Interestingly, the application of both BCAs enabled
to reach the highest level of Chardonnay defense gene expression
upon pathogen challenge (3.1-27.8) compared to infected control
(0.8-9.8), a priming effect shown as consistent according to the
discriminating capacity of the QRT-PCR technique, but still not
yet significant according to the ANOVA analysis. Anyway, such a
synergy at 4 dpi can result from a priming stimulus by Bs PTA-
271, followed by a post-primed phase upon pathogen inoculation
with a more rapid and strong activation of immune defenses due
to interactions among each actor (Bs PTA-271, Ta SC1, Np-Bt67,
and Chardonnay).

In leaves of Tempranillo infected with Np-Bt67, the expression
of all targeted defense genes was consistently upregulated from
2.0- to 31.5-fold, and significantly for LOX9, PR2, PAL, and STS
(Figure 5 and Supplementary Figure 1B). Compared to infected
Chardonnay (Figure 3A), expression of the basal defense genes
was significantly stronger in infected Tempranillo (Figure 3B),
highlighting a higher basal defense level in Tempranillo toward
Np-Bt67 than in Chardonnay at 4 dpi. The ability of each BCA
or both to enhance Tempranillo immunity was also addressed
(Figure 5 and Supplementary Figure 1B). As reported above,
in the absence of pathogen infection, Ta SC1 alone induced
a consistent expression of almost all the targeted defenses
(2.44-13.03 for LOXY, PR2, GST1, PAL, and STS), suggesting
that Ta SC1 may act as a priming stimulus for Tempranillo
cultivar, but in a lesser extent when combined with Bs PTA-271
(1.84-9.66). However, upon pathogen challenge, no post-priming
was observed in Ta SCl-pretreated rootlings since it did not
induce any stronger expression of the targeted immune defenses
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FIGURE 5 | Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 attenuates induced differential expression of defense-related genes in leaves of Tempranillo
rootlings before and after pathogen challenge. Twenty-week-old rootlings untreated or pretreated with PTA-271 or SC1 or both were further infected with sterile PDA
plugs (Control, Bs, Ta, and Bs + Ta, respectively) or with mycelium plugs of Np-Bt67 (Ctl + Np, Bs + Np, Ta + Np, and Bs + Ta + Np, respectively). Transcript levels of
defense-related genes monitored by gRT-PCR in plant leaves after 4 days of inoculation. Uninfected control was considered as the reference sample (1x expression
level). Data are the means from three representative replicates among five showing the same trends. Different letters indicate statistically significant differences
between the treatments (ANOVA, Fisher’s LSD post hoc test, a = 0.1). Legends for genes are as in Figure 2.

than in the Tempranillo-infected control at 4 dpi, but lower
(Figure 5 and Supplementary Figure 1B). Regarding Bs PTA-
271 effect (i.e., Bs + Np), while it showed no sign of priming
stimulus in control Tempranillo, it induced the expression of
almost all targeted defenses, but similarly to Ta SC1, thus
in a lower extent than the infected control (thus, no more
priming in that condition with Bs PTA-271). Additionally, the
pretreatment with both BCAs induced a lower expression level of
Tempranillo defense genes upon pathogen challenge (0.63-2.57)
than in infected control (2.0-31.56). However, such apparent
non-expression of Tempranillo defenses at 4 dpi did not presume
any useful induced defenses at other key times or among other
defenses that were not targeted in this study.

Taking the uninfected control of Chardonnay as the reference
sample for both cultivars, we can compare the immunity
between Tempranillo and Chardonnay upon pathogen challenge

(Figures 3A,B, respectively). As observed in control condition
(i.e., high basal expression of PR1), infected Tempranillo showed
once again a high expression of this targeted gene presumably
responsive to SA, compared to Chardonnay. This suggests that
Tempranillo would use SA-dependent defense pathways toward
N. parvum, even when overexpressing PR2, GST1, PAL, and STS,
unlike Chardonnay. These data thus highlight the possible role
of SA signaling in Tempranillo, especially when infected and
pretreated with Bs PTA-271 (i.e., PRI). Curiously, the JA/ET-
responsive gene LOX9 was also highly upregulated in infected
Tempranillo, while LOX9 was severely downregulated in infected
Tempranillo pretreated with single or both BCAs, as well as PR2,
PAL, and STS. Opposite trends were observed in Chardonnay:
(i) no prominent role of SA signaling in infected Chardonnay,
especially when pretreated with Bs PTA-271; and (ii) LOX9 was
not so highly upregulated in infected Chardonnay (i.e., Ctl + Np),
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but LOX9 was upregulated in infected Chardonnay pretreated
with both BCAs, and PR2, PAL, and STS with Ta SC1 or both
BCAs. These data could suggest the prominent role of JA/ET
signaling in Chardonnay, especially when infected and pretreated
with BCA. Interestingly, PR2, PAL, and STS are common defenses
induced by each BCA against Np-Bt67 for the two cultivars,
prossibly through two distinct signaling pathways.

Direct Beneficial or Detrimental

Interplays Between Bacillus subtilis
PTA-271, Trichoderma atroviride SCA1,

and the Pathogen Neofusicoccum
parvum-Bt67

Regarding the in vitro tests with Np-Bt67 (Figure 6), results
showed that Bs PTA-271 and Ta SC1 antagonize Np-Bt67 when
plated 48 h before the pathogen. As shown in Figures 6A,B, the
growth of Np-Bt67 was consistently reduced by Ta SC1 or Bs PTA-
271 in dual confrontation compared to the control. However,
while the growth of Np-Bt67 was completely repressed from
day 3 by Ta SC1 (Figure 6A), it was half-repressed by Bs PTA-
271 (Figure 6B), enabling the pathogen to grow consistently
less than the control over the same time period. Thus, Ta SC1
antagonistic effect was stronger than that of Bs PTA-271, although
only a fungistatic effect was observed between them (since when
transplanted, the pathogen grows back).

In three-way confrontations (Figures 6C,D), the antagonistic
effect of Bs PTA-271 against Np-Bt67 was still reinforced in the
presence of Ta SC1, even applied 48 h later (Figure 6C). Such
benefit was yet reinforced when the two BCAs were both applied

48 h before the pathogen, in which the growth of Np-Bt67 was
close to 5 mm? (Figure 6D). However, it should be noted that
Ta SC1 did not grow as fast when applied 48 h after Bs PTA-271,
since Ta SC1 slopes are not parallel but weaker in Figure 6C than
in Figure 6D.

To check the Ta SCI1 capacity to keep its antagonistic
effect when applied simultaneously with Bs PTA-271, dual
confrontations were made between the two BCAs applied in the
same area, with or without pathogen (Figure 7). As shown in
Figure 7A, the growth of Ta SC1 was slowed down with Bs
PTA-271, leading to a smaller Ta SCI area than for the Ta SC1
control over the same time period. Interestingly, this detrimental
effect of Bs PTA-271 on Ta SC1 disappeared in the three-way
confrontation with the pathogen Np-Bt67 (Figure 7B), being all
applied simultaneously at the same area. Thus, Ta SC1 and/or Bs
PTA-271 may keep their strong antagonistic activity when facing
a common adversary.

DISCUSSION

In search of an effective protective BCA combination against
N. parvum, we investigated a potential BCA and a BCA-
commercial product, each already described as protectors against
GTDs on distinct cultivars: B. subtilis PTA-271 with Chardonnay
(Trotel-Aziz et al,, 2019) and T. atroviride SC1 with different
cultivars (Pertot et al,, 2016; Berbegal et al., 2020; Martinez-
Diz et al, 2021a). This study assessed the combined impact
of these two BCAs on two cultivars artificially infected or
not with one pathogen. N. parvum Bt67 was used, as a very
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FIGURE 6 | Antagonistic activity of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 against the Neofusicoccum parvum strain Bt67. (A) T. atroviride SC1
(Ta) was applied 48 h before N. parvum (Np) in the opposite sides of PDA plates. (B) B. subtilis PTA-271 (Bs) was applied 48 h before N. parvum (Np-Bt67) in the
opposite sides of PDA plates. (C) B. subtilis PTA-271 (Bs) was applied 48 h before N. parvum (Np) and T. atroviride (Ta) at distinct areas of the PDA plates.

(D) B. subtilis PTA-271 (Bs) and T. atroviride SC1 (Ta) were applied 48 h before N. parvum (Np) at distinct areas of the PDA plates. All plates were incubated at 28°C.
Pictures of each plate condition were taken from day 1 to day 11 after the first inoculation. Photos on top are the control of Np-Bt67 and photos at the bottom
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FIGURE 7 | Antagonistic activity of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 against Neofusicoccum parvum Bt67. (A) B. subtilis PTA-271 (Bs) and
T. atroviride SC1 (Ta) were applied simultaneously in the center of the PDA plates. (B) B. subtilis PTA-271 (Bs), T. atroviride SC1 (Ta), and N. parvum (Np) were
applied simultaneously in the center of the PDA plates. All plates were incubated at 28°C. Pictures of each plate were taken from day 1 to day 11 after the first
inoculation. Photos on top are SC1 control (A) and Np-Bt67 control (B), and pictures at the bottom indicate the confrontation assay at day 4 (left) and day 11 (right).

aggressive pathogen associated to BD. Our investigation focused
on the capacity of single and combined BCAs to counteract BD
symptoms on both cultivars. To compare the two BCAs, densities
were aligned to the density optimized for Bs PTA-271. After
looking for the protective capacity of BCA in planta, their modes
of action leading to protection were further explored. Thus, we
investigated whether these BCAs could affect pathogen growth
in vitro and cultivar immunity upon infection in planta.
Neofusicoccum  parvum-Bt67 caused BD symptoms on
the rootlings of the two grapevine cultivars, as shoot full
dieback, canker external necrosis, and shoot internal necrosis.
Interestingly, the full dieback symptoms were more severe
on Tempranillo than on Chardonnay (i.e., 37.5 and 28%,
respectively, Figures 2D,G), suggesting a greater susceptibility
to BD for Tempranillo than Chardonnay, as already reported
by Luque et al. (2009) and Cobos et al. (2019). Although there
is a lack of comparative data between cultivars, the distinct
susceptibility of some cultivars to GTDs has already been
reported (Travadon et al., 2013; Fontaine et al., 2016b; Chacon
et al.,, 2020; Reveglia et al., 2021), even within a same cultivar
from one region to another or depending on the vintage
(Mimiague and Le Gall, 1994). However, in Chardonnay and

Tempranillo rootlings pretreated with one or both BCAs before
inoculation of the pathogen, BD symptoms were significantly
reduced with Bs PTA-271 or Ta SC1, respectively. Grapevine
effective protection against Np-Bt67 has already been reported
with Bs PTA-271 on Chardonnay rootlings (Trotel-Aziz et al,
2019), and with Ta SC1 on Tempranillo in nursery and
vineyards conditions (Berbegal et al., 2020; Blundell et al., 2021).
Additionally, in our experimental conditions, Chardonnay
seems to favor the beneficial effect of Bs PTA-271, while
Tempranillo favors that of Ta SC1 beneficial effect, highlighting
the relationship between cultivar response and BCA effect.
Manter et al. (2010) suggested that the differences between
cultivars may result from minor changes in the composition of
their endophyte community, with Trichoderma species being
among the most common endophytic fungal isolates from
Tempranillo (Gonzilez and Tello, 2011). Therefore, Tempranillo
could be subjected to Trichoderma’s influence. Similarly, the
efficiency of Bs PTA-271 toward Chardonnay may be explained
by its origin of sampling from an established Chardonnay
vineyard, screened from healthy vines (Trotel-Aziz et al., 2008).
In combination and according to our experimental conditions,
despite cited as compatible strains (Kumar, 2013), Ta SC1 + Bs
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PTA-271 are less protective against Np-Bt67 in Chardonnay
than Bs PTA-271 alone. The authors reported that Trichoderma
spp. can interfere the plant signaling networks and secrete an
arsenal of degrading enzymes (i.e., proteases) and secondary
metabolites (Tiwari and Verma, 2019; Alfiky and Weisskopf,
2021), suggesting that Ta SC1 may alter both Bs PTA-271
integrity and beneficial effects in Chardonnay. However, the
application of both BCAs enabled to reach the highest level of
Chardonnay defense gene expression upon pathogen challenge
(see Figure 3A), and the highest protection in Tempranillo
cultivar (see Figure 2G), highlighting that Ta SC1 on its own
would not interfere with the beneficial effects of Bs PTA-271.

Beneficial effects of combined BCAs have yet been reported
in different pathosystems (Yobo et al., 2011; Magnin-Robert
et al, 2013), and our study reports for the first time the
biocontrol potential of the combination of Bs PTA-271 and Ta
SC1 against Np-Bt67 in Tempranillo. Our results showed that Ta
SC1 efficiently protects Tempranillo, and this protection is still
observed in rootlings pretreated with both BCAs (see Figure 2G).
Thus, a significant benefit is observed when using both BCAs
in Tempranillo, despite the fact that they could antagonize each
other. In this respect, Leal et al. (2021) reported that the genome
of Bs PTA-271 encodes for the synthesis of bacillaene, a polyketide
already described to antagonize Trichoderma spp. (Caulier et al.,
2019). Therefore, the positive contribution of Bs PTA-271 and Ta
SC1 to Tempranillo protection against Np-Bt67 suggests a fine-
tuned orchestrated cooperation of BCAs when facing adversity,
as supported by the Figure 7 results and highlighted by Alfiky and
Weisskopf (2021). However, the application of BCAs to rootlings
was spatially separated.

Empowered with aggressive molecules, Bacillus spp. and
Trichoderma spp. can possibly exert direct beneficial or
detrimental interplays within the host's microbiome, and
especially on the other BCA and pathogens such as GTDs
fungi (Di Marco et al,, 2002; Kloepper et al., 2004; Ongena and
Jacques, 2008; Haidar et al., 2016; Trotel-Aziz et al., 2019; Yacoub
et al,, 2020; Urbez-Torres et al., 2020; Blundell et al., 2021).
In vitro dual confrontation tests confirmed the antagonistic
activity of Bs PTA-271 or Ta SC1 toward Np-Bt67 since each of
them significantly inhibits the mycelium growth of Np-Bt67 (see
Figures 6A,B). This also prompts us the idea that the not-yet-
convincing protection assay of Bs PTA-271 and Ta SC1 in infected
Chardonnay would not result from a detrimental effect of Ta SC1
on some putative direct effects of Bs PTA-271. Indeed, the strong
direct antagonistic activity of Bs PTA-271 and Ta SC1 toward Np-
Bt67 also operates when the two BCAs were applied both 48 h
before the pathogen (see Figure 6D). This antagonistic benefit is
in accordance with the significant synergy of the protection in
Tempranillo by both BCAs (see Figure 2G), and it confirms the
benefit of using them in combination in Tempranillo to optimize
the direct fight against Np-Bt67. A similar outcome was reported
by Alexander and Phin (2014) using an effective combination
of Bacillus spp. and Trichoderma spp. against Ganoderma spp.
Such direct effects of BCA against pathogens are important life
traits to protect grapevine from BD, still deprived of effective
curative treatments nowadays (Mondello et al., 2018). In nursery
too, healthy mother plants require a control of their sanitary

status (Pertot et al, 2016), eventually provided by an early
inoculation of such beneficial BCA with a strong antagonistic
activity toward pathogens.

Direct beneficial or detrimental interplays between BCAs
also condition their capacity to live together in symbiosis, even
in planta as part of the holobiont (Bettenfeld et al., 2020).
Dual confrontation was thus also performed between Bs PTA-
271 and Ta SC1. As expected, Bs PTA-271 antagonized Ta SC1
(see Figure 7A; Caulier et al., 2019; Leal et al., 2021). However,
this detrimental effect of Bs PTA-271 on Ta SCI disappears
in a three-way confrontation with Np-Bt67, when they were
all applied simultaneously at the same area (see Figure 7B).
These data confirm that Ta SC1 and Bs PTA-271 can positively
interact to better confine Np-Bt67 and can lead to a direct
positive contribution of this combination to the protection of
Tempranillo against Np-Bt67. However, such a direct positive
contribution of combined BCAs did not operate on the infected
Chardonnay rootlings. Our experimental conditions could have
altered the ability of Ta SC1 to exert its direct fungistatic effect
(applied once at 108 CFU/ml with a paintbrush over a 5-mm?
area). This also strongly suggests that Chardonnay itself alters the
fine-tuned orchestrated cooperation of BCAs, probably targeting
the indirect Ta SC1 beneficial effect since BCAs are spatially
separated. This prompts us to pursue our investigations further in
order to decipher the indirect interactions driving to a beneficial
outcome in grapevine control of Np-Bt67.

According to our previous works, a focus on grapevine
systemic immunity was made by targeting six selected defense
genes in leaves: the lipoxygenase LOX9 involved in oxylipin
synthesis and described as dependent to JA/ET; PRI described
to be regulated by SA; the B-1,3-glucanase PR2 described to
be regulated by various phytohormones such as SA, JA, and
ET; the glutathione-S-transferase GST1 putatively involved in
the detoxification process; the phenylalanine ammonia-lyase PAL
catalyzing the first step in the phenylpropanoid pathway; and the
stilbene synthase STS involved in the synthesis of phytoalexins
(Trotel-Aziz et al., 2019). Interestingly, basal immunity results
in a weak constitutive expression of the targeted defense genes
in Chardonnay compared to Tempranillo (see Figure 3), despite
the fact that literature described Chardonnay as less susceptible
to BD than Tempranillo (Luque et al., 2009). Maybe our six
targeted genes are not sufficiently exhaustive to presume at this
preliminary stage of the susceptible versus tolerant status of
both cultivars. However, looking at the specific red and white
cultivar responses, the same studied genes are of interest: those
specific to white grape cultivars include transcription factors from
the ET pathway and lipid metabolism (e.g., lipoxygenase), while
those specific to red grape cultivars are linked to the secondary
metabolism in connection with the pathway of phenylpropanoids
(e.g., PAL and its derivatives) and are expressed more strongly
in the red cultivars, to distinguish them from the white ones
(Lambert et al., 2012; Massonnet et al., 2017). Upon abiotic or
biotic stress, other authors pointed out the highest synthesis of
resveratrol in the most tolerant grapevine (Corso et al.,, 2015,
Lakkis et al., 2019), but a gain of protection due to the BCA
presence in susceptible cultivar (Lakkis et al., 2019). Considering
that susceptible plants rather benefit from the help of BCA to
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induce their immunity, unlike resistant plants that already have
high basal immunity, we examined the immunity induced by
both cultivars studied.

In Tempranillo (see Figures 3B, 5 and Supplementary
Figure 1B) under our experimental conditions, application of
Bs-PTA-271 did not induce significant changes in plant defense
responses compared to control, whether infected or not. Since
Tempranillo basal immunity strongly upregulates PRI as a
marker of SA-dependent defenses, we can speculate that high
basal SA content might contribute to prevent the beneficial effect
of Bs PTA-271 on Tempranillo immunity. Our previous study
showed that Bs PTA-271 primed the expression of the plant
JA/ET-dependent defenses in Chardonnay rootlings (Trotel-Aziz
et al, 2019), whereas it is reported that early activation of
SA signaling could antagonize the expression of these JA/ET-
dependent defenses (Pieterse et al., 2012; Van der Does et al,
2013). In this sense, Bs PTA-271 did not provide protection in
Tempranillo against Np-Bt67. These results show therefore that
cultivars differing in their basal immunity can condition the
success of a BCA protection toward a pathogen. In contrast,
Ta SCI1 alone or together with Bs PTA-271 acts as a priming
stimulus for Tempranillo, but no post-priming was observed
with Ta SC1 alone and with Ta SC1 + Bs PTA-271 upon
pathogen challenge. Looking at the defenses induced by these
two protective modalities (Ta SC1 and Ta SC1 + Bs PTA-271)
against Np-Bt67: the SA-dependent defenses (i.e., PR1, PAL, and
STS) were rather strongly decreased in protected plants (ie.,
asymptomatic despite infected), while they were the highest
in symptomatic plants (Bs PTA-271). Since Botryosphaeriaceae
are known to specifically metabolize grapevine phytoalexins
(Stempien et al., 2017), which benefits pathogen fitness, we could
suggest that the SA stimulation of the phenylpropanoid pathway
and derivatives would wrongly serve the plant. In the case of
Tempranillo exposed to Botryosphaeriaceae, the high constitutive
expression of SA-dependent defense genes could thus appear as a
disadvantage, confirming that Tempranillo would be less tolerant
than Chardonnay to BD, as already reported by Luque et al.
(2009) and Cobos et al. (2019). Fortunately, in the Tempranillo
pretreated with both BCAs, the expressions of genes PRI, PAL,
and STS were repressed, and in the Tempranillo pretreated
with Ta SCI1 alone, the expression of the genes PAL and STS
were repressed. Therefore, the beneficial effect of Ta SC1 on
Tempranillo to control Np-Bt67 could result from a repressive
effect on detrimental SA-dependent defenses. Complementary
approaches are in progress to screen the induced key levers able to
trigger ISR in the whole plant. Additionally, the Ta SC1 beneficial
effect on Tempranillo could also result from a direct antagonism
toward Np-Bt67 since it is applied in the same area as Ta SC1.

In non-infected Chardonnay rootlings (see Figures 3A, 4
and Supplementary Figure 1A), Ta SC1 shoot application did
not induce any significant changes of the selected targeted
responses of plant defenses in leaves, while Bs PTA-271 root
application upregulated the PRI and PR2 gene expression and
the combined application induced the expression of almost
all targeted genes at a higher level than Bs PTA-271 alone.
Bs PTA-271, alone or together with Ta SC1, may thus act as
a priming stimulus in Chardonnay. However, upon pathogen

challenge (4 dpi, designed as a relevant sampling time point for
such experiment), Bs PTA-271 did not prime any of the targeted
defenses, probably due to low to medium pathogen pressure
compared to that reported in Trotel-Aziz et al. (2019). However,
Bs PTA-271 beneficial effect on Chardonnay is supported by
the phenotype of the Bs-PTA-271 treated rootlings, showing
a significant protection for Chardonnay against Np-Bt67 at
2.5 mpi. This contrasts with the detected non-benefit provided
by the combined application of both BCAs at 2.5 mpi, despite
the fact that defenses were primed at 4 dpi, possibly due
to a very high level of reactive oxygen species (ROS) that
could amplify the plant defenses. It is interesting to note that
GST1 (involved in the ROS detoxification process) is the only
useful targeted gene that was weakly expressed in non-protected
Chardonnay pre-treated with both BCAs and further infected
with N. parvum (see Figure 3A). This may suggest that when
a pathway with high induced defenses is not combined with
sufficient ROS detoxification, a plant could potentially trigger
many symptoms. In our experimental conditions, Chardonnay
therefore favors Bs PTA-271’s beneficial effect, probably thanks
to the different key levers including the induced grapevine
immunity. Present at the root level, these results and those
reported in Trotel-Aziz et al. (2019) suggest that systemic
induced immunity conferred by Bs PTA-271 drove the plant
ISR against Np-Bt67. Amazingly, the application of both BCAs
enabled to reach the highest level of Chardonnay defense gene
expression upon pathogen challenge (see Figure 3A), despite no
protection at 2.5 mpi (see Figure 2D). Since Ta SCI1 contributes
to actively reducing the SA-dependent defenses in Tempranillo,
one can hypothesize that Ta SC1 would also promote the
Bs PTA-271 way of triggering immunity in Chardonnay. The
authors also indicated that Trichoderma spp. may produce
enzymes (i.e, ACC deaminase) able to shunt ET synthesis
(Alfiky and Weisskopf, 2021), but in Tempranillo, the application
of both BCAs enabled reaching the highest protection (see
Figure 2G). Thus, it would be surprising that Ta SC1 on
its own would succeed to interfere with the beneficial effects
of Bs PTA-271 in Chardonnay. This opens the discussion of
how the cultivar interacts with BCAs and the pathogen to
condition the beneficial or detrimental outcome against Np-
Bt67. Complementary approaches are already in progress to
screen which are the induced key levers useful to control ISR in
the whole plant.

CONCLUSION

Altogether, our results provide evidence that grapevine
susceptibility to BD is cultivar-dependent, as well as the
BCA beneficial effects. Bs PTA-271 was confirmed as an effective
protector for Chardonnay against Np-Bt67, and Ta SC1 was
shown for the first time as a good protector for Tempranillo.
This study also reports for the first time the biocontrol potential
of the combination of Bs PTA-271 and Ta SC1 against Np-Bt67
in Tempranillo. This is a promising result for an improved
efficiency of sustainable biological control in a proven context of
lack of effective chemicals to manage GTDs.
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Endowed with aggressive molecules, Bs PTA-271 and Ta
SCI can antagonize each other, but Bs PTA-271 inhibits Np-
Bt67 development with a greater efficiency in a three-way
confrontation. This beneficial BCA collaboration against Np-
Bt67 still operates in Tempranillo and confirms the interest
of using both BCAs in combination to optimize the direct
fight against Np-Bt67. These results are of great interest for
effective curative treatments to obtain healthy mother plants in
the nursery and to control BD in vineyard. However, the direct
beneficial effect of combined BCAs did not operate to protect
Chardonnay, suggesting that Chardonnay itself probably alters
the fine-tuned orchestrated cooperation of BCAs that drives such
direct beneficial effect.

Plant systemic immunity was also affected by each BCA.
Our findings suggest a common feature for the two cultivars:
the defenses that are greatly diminished in BCA-protected
plants appear to be those that are responsive to SA, in
contrast to symptomatic plants. For Tempranillo, the high
basal expression of SA-dependent defenses may thus explain
the highest susceptibility to BD and also the ineffectiveness of
Bs PTA-271 in our experimental conditions. Complementary
approaches are underway to further investigate the responses of
each cultivar to both Bs PTA-271 and Ta SC1 under controlled
conditions and upon pathogen challenge.
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Bactericidal Effect of Pseudomonas
oryziphila sp. nov., a Novel
Pseudomonas Species Against
Xanthomonas oryzae Reduces
Disease Severity of Bacterial Leaf
Streak of Rice
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7 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China, ? State Key Laboratory of Microbial
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Pseudomonas is a diverse genus of Gammaproteobacteria with increasing novel
species exhibiting versatile trains including antimicrobial and insecticidal activity, as
well as plant growth—-promoting, which make them well suited as biocontrol agents
of some pathogens. Here we isolated strain 1257 that exhibited strong antagonistic
activity against two pathovars of Xanthomonas oryzae, especially X. oryzae pv.
oryzicola (Xoc) responsible for the bacterial leaf streak (BLS) in rice. The phylogenetic,
genomic, physiological, and biochemical characteristics support that strain 1257 is
a representative of a novel Pseudomonas species that is most closely related to
the entomopathogenic bacterium Pseudomonas entomophila. We propose to name
it Pseudomonas oryziphila sp. nov. Comparative genomics analyses showed that
P oryziphila 1257 possesses most of the central metabolic genes of two closely related
strains P entomophila L48 and Pseudomonas mosselii CFML 90-83, as well as a set
of genes encoding the type IV pilus system, suggesting its versatile metabolism and
motility properties. Some features, such as insecticidal toxins, phosphate solubilization,
indole-3-acetic acid, and phenylacetic acid degradation, were disclosed. Genome-wide
random mutagenesis revealed that the non-ribosomal peptide catalyzed by LgrD may
be a major active compound of P oryziphila 1257 against Xoc RS105, as well as
the critical role of the carbamoyl phosphate and the pentose phosphate pathway that
control the biosynthesis of this target compound. Our findings demonstrate that 1257
could effectively inhibit the growth and migration of Xoc in rice tissue to prevent the
BLS disease. To our knowledge, this is the first report of a novel Pseudomonas species
that displays a strong antibacterial activity against Xoc. The results suggest that the
P, oryziphila strain could be a promising biological control agent for BLS.

Keywords: Pseudomonas oryziphila, Xanthomonas oryzae, bactericidal effect, biocontrol agents, bacterial leaf
streak of rice
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INTRODUCTION

Pseudomonas species are gram-negative bacteria that are
ubiquitous in soil, water, animals, and plant rhizosphere
(Weller, 2007). Pseudomonads have the ability to grow
rapidly and persist in plant rhizosphere, produce a wide
range of secondary metabolites (i.e., antibiotics, siderophores,
volatiles, and growth-promoting substances), and adapt to
environmental stresses, which make them suitable as biocontrol
agents of plant pathogens (Weller, 2007; Couillerot et al,
2009). Certain species of this genus have been demonstrated
to be the effective biocontrol or growth-promoting agents.
The 2,4-diacetylphloroglucinol (2,4-DAPG)-producing
Pseudomonas  fluorescens can suppress Gaeumannomyces
graminis, a fungal pathogen, to control the take-all disease
of wheat (Thomashow and Weller, 1988; Landa et al., 2003;
Kwak et al, 2009). Besides significant suppression of the
take-all disease, P. fluorescens strain 2-79 increased yields
by an average of 17% in field trails (Weller, 2007). Some
Pseudomonas chlororaphis strains are proficient biocontrol
agents of many fungal, bacterial, and oomycete plant pathogens,
which attributes to their ability to produce phenazines,
pyrrolnitrine, hydrogen cyanide (HCN), siderophores, and
volatile organic compounds (VOCs) (Anderson and Kim,
2018; Biessy and Filion, 2018). Phenazines and some VOCs
are also involved in the induction of systemic resistance in
plants (Raio and Puopolo, 2021). Therefore, there has been high
increasing interest in Pseudomonas species for commercial and
biotechnological applications.

Recent studies have shown that pseudomonads are
also a resource reservoir for the control of plant bacterial
diseases especially caused by plant pathogenic Xanthomonas.
Pseudomonas entomophila is an entomopathogenic bacterium
that is able to kill Drosophila larvae and adults. Its
entomopathogenic property and hemolytic activity have
been associated with insecticidal toxins and cyclic lipopeptides
(Vodovar et al., 2005; Vallet-Gely et al., 2010). A recent study
showed that P. entomophila harbors the bactericidal effect
against Xanthomonas citri subsp. citri (Xcc), a causative agent
of citrus canker (Villamizar et al.,, 2020). The saprophytic soil
Pseudomonas putida has been reported to have the ability
to inhibit three Xanthomonas bacteria Xcc, Xanthomonas
oryzae pv. oryzae (Xoo), and X. oryzae pv. oryzicola (Xoc)
(Sun et al, 2017). The P. putida group members including
Pseudomonas soli and Pseudomonas mosselii produce a mixture
of cyclic lipopeptides designated xantholysins that has the
specific anti-Xanthomonas activity (Li et al., 2013; Pascual
et al, 2014). Whether there are some unknown species in
Pseudomonas genus that have the potential for controlling plant
bacterial diseases caused by phytopathogenic Xanthomonas
remains to be explored.

Xoc can infect the host rice causing bacterial leaf streak
(BLS) that has gradually become the fourth major disease
on rice in some rice-growing regions in southern China,
resulting in a yield reduction of 10-30% in some severe
cases (Nino-Liu et al., 2006; Ji et al, 2014). To date, no
rice variety that is completely immune to Xoc was found

(Xu et al, 2021). At present, all rice varieties commonly
planted in China are susceptible to Xoc, even some hybrid
rice varieties are highly susceptible. Currently, bactericides
such as bismerthiazole or cupric pesticides are frequently
used to control BLS in China (Xu et al, 2015; Pan et al,
2017), which has caused Xoc to develop resistance. Therefore,
an effective and environmentally friendly biocontrol method
for BLS is needed.

Our laboratory has been working to develop biological
control methods to control BLS. As a part of our work on
identifying useful bacterial resources, we screened 223 candidate
isolates that exhibited apparent antagonistic activity against
the Xoc wild-type strain RS105. In our previous studies, three
Bacillus strains, Bacillus velezensis 504, B. altitudinis 181-
7, and Bacillus cereus 512, have been reported to exhibit
significantly inhibitory effects on water-soaked lesions caused
by Xoc in rice leaves (Li et al, 2019; Li S. Z. et al.,, 2020).
In this study, we characterized a Pseudomonas strain 1257
from the 223 candidate isolates. The phylogenetic, genomic,
physiological, and biochemical characteristics demonstrated
that strain 1257 is a representative of a novel Pseudomonas
species, for which we propose to name Pseudomonas oryziphila
sp. nov as its specific antibacterial activity against Xoo and
Xoc. Genomic information showed that P. oryziphila 1257
is most closely related to the entomopathogenic bacterium
P. entomophila. Genome-wide random mutagenesis revealed that
a non-ribosomal peptide may be the major active compound
involved in biocontrol agent of the P. oryziphila strain for
BLS. To our knowledge, this is the first report of a novel
Pseudomonas species that displays a specific antibacterial activity
against Xoc.

MATERIALS AND METHODS

Strains, Plasmids and Primers, Growth

Conditions, and Plant Materials

The bacterial strains and plasmids are listed in Supplementary
Table 1, and primers are listed in Supplementary Table 2.
All Xanthomonas species strains were cultured in nutrient
agar (NA) or nutrient broth (NB) medium at 28°C (Cai
et al, 2017); Escherichia coli DH5a and EC100D were
grown in Luria-Bertani (LB) medium at 37°C. Rice seeds
(Yuanfengzhao) were provided by Dr. Youlun Xiao from the
Institute of Plant Protection, Hunan Academy of Agricultural
Sciences. Antibiotics were used at the following final
concentrations (jLg mL~1) as required: rifampicin (Rif), 75;
kanamycin (Km), 25; gentamicin (Gm), 10; and spectinomycin
(Sp), 25.

Isolation of Biocontrol Strains and
Antimicrobial Activity Assays

The rhizosphere soil samples from healthy plants were collected
from 23 provinces in China. Briefly, a 10-g soil sample with
several steel balls was added to a triangular conical flask with
90-mL sterilized water and then was shaken for 20 min at 28°C,
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200 revolutions/min (rpm). A 1-mL suspension was diluted to
three gradients of 1073, 1074, and 107> in sterilized water.
The Xoc RS105 was used as an indicator, through inhibiting its
growth to screen biocontrol strains. A 100-pL diluted solution
was plated onto NA agar plates containing RS105. The plates were
incubated at 28°C for 2 days. Colonies with antagonistic activity
were transferred and purified and then were further confirmed
by the Oxford Cup method. The inhibition zones were measured
by Kirby-Bauer (KB) test method. Each inhibitory phenotype
was repeated in triplicate. The antagonistic bacterial isolates were
collected and stored at -80°C with glycerol (50%, vol/vol). Strain
1257 was isolated from the rhizosphere soil of cabbage collected
on September 27, 2017 from Cungu village in Zhuanghang town,
Fengxian District, Shanghai, China.

The antimicrobial activity of P. oryziphila 1257 was examined
using Xanthomonas strains, non-Xanthomonas strains, and some
fungal pathogen strains listed in Supplementary Table 1. All
bacterial strains were inoculated into NB medium, followed by
shaking at 28°C, 200 rpm for 12 h. The harvested cells were
suspended and adjusted to a final concentration of ODggg = 2.0
using NB medium, and then the 200 pnL solutions were added
into the NA medium plates. A 50 WL (ODggo = 2.0) P. oryziphila
1257 solution was added into the Oxford Cup. The inhibition
zones were measured using KB method and sterile water as
the negative control. Three biological replicates were performed.
The antifungal activity of P. oryziphila 1257 was further studied
by confrontation-culture plating method according to the
reported protocols.

Phylogenetic Analysis Based on
Multilocus Sequence and Average

Nucleotide Identity Calculation

The morphology and physiological and biochemical
characteristics of strain 1257 were identified by China Center
for Type Culture Collection. Its 16S rRNA gene sequence
was amplified using universal primers of 27F and 1492R
(Supplementary Table 2; Dorsch et al, 1992). The 50-pL
reaction mixtures contained 5 WL of 10 x Ex Taq buffer (Mg?*
Plus) (20 mM), 4 wL of ANTP mixture (10 mM), 1 wL of each
primer (10 pM), 1 pL of genomic DNA template (30-50 ng/jLL),
and 0.25 pL of Ex Taq DNA polymerase (TaKaRa,5 U/nL),
with double-distilled water up to 50 wL. The polymerase chain
reaction (PCR) amplifications were performed according to the
following parameters: initial denaturation at 95°C for 8 min and
then 32 cycles of 30 s of denaturation at 95°C, 30 s of annealing
at 55°C, and 1.5 min of extension at 72°C, and a final extension
at 72°C for 10 min. The 1,500-bp fragment was purified and
sequenced in BioSune Biotech (Shanghai, China). The complete
DNA sequence was used for blast search in the National Center
for Biotechnology Information (NCBI) database. The multilocus
sequence analysis (MLSA) phylogenetic tree was established and
performed. The genome sequences for the other 15 representative
Pseudomonas species were obtained from the NCBI database.
The nucleotide sequences of 10 housekeeping genes 165r RNA,
aroE, dnaA, guaA, gyrB, mutL, ppsA, pyrC, recA, and rpoB
were aligned using Muscle (version 3.8.425), and the unreliable

comparison points were removed using Gblock (version 0.91b)
to ensure that these sequences were suitable for phylogenetic
analysis. A maximum likelihood-based phylogenetic method
was performed with MEGE 7.0 software, with 1,000 bootstrap
replicates; the internodes of branches indicated the percentage
(Kumar et al, 2016). The average nucleotide identity (ANI)
values among 16 genome sequences including P. oryziphila 1257
and other closest strains were calculated using the J Species WS
Online Service (Richter et al., 2016). The relatedness of strains
P. oryziphila 1257, P. entomophila 148, and P. mosselii CFML
90-83 was further determined by DNA-DNA hybridization as
described by Fischer et al. (2011).

DNA Extraction and Genome Sequencing
The genomic DNA of P. oryziphila 1257 was extracted using
the Hipure bacterial DNA kit (Magen, Guangzhou, Guangdong,
China); DNA quality and integrity were determined by using a
Qubit Flurometer (Invitrogen, United States) and a NanoDrop
Spectrophotometer (Thermo scientific, United States). The whole
genome was sequenced using the Pacific Biosciences platform
and the Illumina Miseq platform at Personalbio (Shanghai,
China). The complete genome sequence of P. oryziphila 1257 was
deposited in GenBank under accession number CP034338.1.

Gene Family Construction and

Collinearity Analysis

For comparative analyses of the orthologous and exclusive
genes between 1257 and the other two closest genomes, the
protein sequences of P. oryziphila 1257, P. entomophila 148,
and P. mosselii CFML 90-83 were filtered to remove low-quality
sequences based on length and percent stop codons in FASTA
format. Then these proteomes were compared to each other based
on an all-versus-all BLASTP alignment with an E value of le-
10, I (Inflation) of 1.5 and at 70% identity. The BLASTP results
are retrieved with the MCL program for clustering to construct
gene families using OrthoMCL software (version 2.0.8). At last,
through the Perl 5.8, DBI libraries to organize and count above
clustering results were included.

Collinearity of the conserved and highly orthologous genomic
regions were determined and plotted among P. oryziphila 1257,
P. entomophila 148, and P. mosselii CFML 90-83 by using Mauve
software (version 2.3.1) with default parameters (Darling et al.,
2004). The colored, locally collinear blocks (LCBs) show the
conserved and highly similar genomic regions. The white areas
inside colored regions indicate sequence elements specific to one
genome that are not aligned. The height of similarity profile is
present inside each block. The colored lines that connect LCBs
represent translocations of homologous regions. Blocks above or
below the horizontal bar indicated regions that aligned in the
forward or reverse orientation, respectively.

The antiSMASH Analysis

The genomes of P. oryziphila 1257, P. entomophila 148, and
P. mosselii CFML 90-83 were analyzed by antiSMASH 5.0
with web server' to predict the putative secondary metabolite

'https://antismash.secondarymetabolites.org/
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biosynthesis gene clusters (Blin et al., 2019). Detailed gene cluster
information was obtained from the GenBank databases.

Siderophore Production Detection

The chrome azurol S (CAS) assay was used for detecting the
siderophore production according to the published methods
(Schwyn and Neilands, 1987). Three strains of P. oryziphila 1257,
P. entomophila 148, and P. mosselii CFML 90-83 were cultured
in LB overnight, and then the suspensions of concentration with
ODgpp 2.0 in LB were obtained. A 5-pL solution was spotted
on CAS agar plates, incubating at 28°C for 24 h, with three
technical replicates.

EZ-Tn5 Mutagenesis and Screening

Random mutagenesis was performed by electroporation of
P. oryziphila 1257 competent cell with 1 pL of the EZ-
Tn5 < R6Kyori/KAN-2 > Tnp transposome. The electroporated
cells were immediately recovered with LB medium to the
electroporation cuvette to 1-mL final volume. The medium was
mixed gently by a pipette, transferred to a tube, and incubated
on a 28°C shaker for 2 h to facilitate the cell outgrowth. Each
200 L of the cells was plated on four plates containing Km
and incubated at 28°C for 2 days. The colonies were moved
individually to the NA agar medium containing Xoc RS105
and Km to screen the mutants that exhibited absolutely losing,
apparently and partially attenuated antagonistic activity against
Xoc RS105.

The genomic DNA from chosen mutants was digested by
EcoRI and then were self-ligated by mixing 8 L of the digested
DNA with 1 pL of ligation buffer and 1 wL of T4 DNA ligase
(5 units; Thermo). The mixture was incubated at 22°C for 12 h
and then inactivated at 70°C for 10 min. An aliquot of 5 pL
of the ligation mixture was used to transform E. coli EC100D
pirt electrocompetent cells and then were plated on LB plates
containing Km. Colonies were screened by amplified with the
primers Tn5-F and Tn5-R in Supplementary Table 2. Insertion
sites were confirmed by sequencing using the forward or reverse
EZ-Tn5 < R6Kyori/KAN-2 > transposon-specific primers that
were supplied in the kit.

Construction of the Complemented

Strains

Here we selected five mutants of 100-12, 56-11, 62-42, 62-
27, and 92-23 to complement. Briefly, the open reading frame
sequences with the promoter regions of IgrD, carA, carB, purF,
and serC genes were amplified by PCR with primers listed in
Supplementary Table 2. The corresponding PCR products were
cloned into pML123, resulting in pML-IgrD by Xbal and HindIII
digestion resulting in pML-carA and pML-carB by BamHI and
Xbal digestion, resulting in pML-serC by BamHI and Sacl
digestion, as well as resulting in pML-purF by HindIIl and
Sacl digestion. Correct recombinant plasmids were confirmed
by PCR using the primers pML123-F and pML123-R listed
in Supplementary Table 2. Subsequently, the recombinant
plasmids were introduced into the corresponding mutants by
electroporation.

Biocontrol Assays

For biocontrol assays in rice fields, 10 leaves from the highly
susceptible rice cultivar Yuanfengzao at booting stage were
inoculated with Xoc RS105 (ODggp = 0.6) by needle injection.
1257 treatment (1257-Tre) meant that rice leaves were sprayed
with 1257 (ODggp = 1.0) 12 h after inoculation with Xoc RS105
suspension. 1257 preventive treatment (1257-Pre) indicated that
rice leaves were sprayed with 1257 12 h before inoculation with
Xoc RS105 suspension. Three independent experiments were
performed. The BLS disease severity under all treatments was
investigated after 15 ays. For biocontrol assays in greenhouse,
three leaves from 2-week-old Yuanfengzao were inoculated with
Xoc RS105-Gus (ODggp = 0.6) by needleless syringe. The 1257-
Tre and 1257-Pre indicated that rice leaves were injected with
1257 at 3 h after and before inoculation with Xoc RS105-Gus
suspension, respectively. Three pots were injected in one leaf.
Two independent experiments were performed. The BLS disease
severity under all treatments was observed after 1, 3, 5, and
7 days. The inhibitory percentages (IPs) were calculated by the
formula: IP = (1-lesions length of treatment/lesions length of
control) x 100. The IP was calculated by using three technical
replicates per assay. Student t test was used for significance
(p < 0.05), and the statistical results were treated by GraphPad
Prism 8 version.

B-Glucuronidase Activity Assays

The B-glucuronidase (GUS) activity of Xoc RS105-Gus strains
including staining and quantitative detection for each treatment
in greenhouse was conducted as our previous methods (Li Y. L.
etal.,, 2020; Zou et al., 2021).

RESULTS

Isolation of Strain 1257 That Exhibits
Strong Antagonistic Activity Against

Xanthomonas oryzae

To screen beneficial bacterial resources to control BLS, we
attained 223 bacterial isolates that displayed evident antibacterial
activity against the Xoc wild-type strain RS105 from the 248
rhizosphere soil samples collected from 23 provinces in China.
Among these isolates, we found that one strain, 1257, strongly
inhibited Xoc RS105 (with an inhibition zone > 40 mm) and
other eight Xoc strains isolated from Chinese major rice-growing
regions (Figure 1A and Supplementary Figure 1). We found that
1257 also exhibited antagonistic effect against the Xoo wild-type
strain PX099; however, the antibacterial activity against the Xoc
strains by 1257 was significantly stronger than the Xoo strains
(Figure 1A and Supplementary Figure 1). Further antibacterial
activity assays showed that 1257 displayed a week antagonistic
activity against other five Xanthomonads including Xanthomonas
campestris pv. phaseoli, Xanthomonas axonopodis pv. glycines,
X. campestris pv. vesicatoria, X. campestris pv. malvacearum, and
X. campestris pv. juglandis (Figure 1A), and no evident inhibitory
effect against X. axonopodis pv. vasculorum, X. axonopodis pv.
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allii, and X. campestris pv. musacearum, as well as other four non-
Xanthomonas bacterial pathogens such as Pseudomonas syringae
pv. tomato DC3000, Ralstonia solanacearum, Burkholderia
glumae, and Acidovorax citrulli (data not shown). The antifungal
activity assays showed that 1257 displayed no any inhibitory
effect on five fungal pathogens including Magnaporthe oryzae,
Fusarium graminearum, Fusarium oxysporum, Botrytis cinerea,
and Phytophthora capsici (data not shown). These results suggest
that 1257 exhibits specific inhibitory activity against Xoc and Xoo,
two pathovars of X. oryzae.

1257 Is a Novel Pseudomonas Species
Closely Related to Pseudomonas

entomophila

The partial 16S rRNA gene sequence of 1257 was amplified
and aligned with the 16S rRNA gene sequences that
have been deposited in the NCBI database. The BLAST
analysis indicated that 1257 belongs to the Pseudomonas
genus; however, the 16S rRNA gene sequence of 1257
exhibited more than 99% similarity with the corresponding

sequences of P. entomophila 148 (99.54% similarity)
and P. mosselii CFMT90-83 (99.48% similarity). To
define the phylogenetic status of 1257, we sequenced

the complete genome of 1257 (Figure 1B), which has
been deposited in GenBank under accession number
CP034338.1. The dendrogram deduced from 10 housekeeping
genes (16Sr RNA, aroE, dnaA, guaA, gyrB, mutL, ppsA,
pyrC, recA, and rpoB) using MLSA showed that 1257
located in a separate branch with the type strains of
P. entomophila 148 and P. mosselii CFMT90-83 as its nearest
neighbors (Figure 1C).

Further, we conducted an ANI analysis between 1257 and
other 15 sequenced different species in the phylogenetic tree.
All ANI values (ANIb and ANIm) between 1257 and individual
species of the genus are in the range of 73.77 to 89.13%
(Table 1), which is clearly below the threshold of 95% for
species demarcation, indicating that 1257 was distinct to the
type strains of all species. 1257 displayed an ANIb value
of 86.55% with P. entomophila 148, and an ANIb value of
86.72% with P. mosselii CFMT90-83, confirming that 1257
should not be grouped into P. entomophila or P. mosselii.
The DNA-DNA hybridization (DDH) value between 1257 and
P. entomophila 148 was 34.10%, and the DDH value between
1257 and P. mosselii CFML 90-83 was 34.70%. These two values
were less than the accepted species threshold of 70%. Together,
these results suggested that 1257 is a novel species within the
Pseudomonas genus, which is closely related to P. entomophila
and P. mosselii species.

Additional physiological and biochemical characteristics
including enzyme activity, carbon source assimilation and acid
production were tested by Biolog system using the Biolog
GN2 microplates (Supplementary Table 3). The physiological
and biochemical characteristics of P. entomophila 148 and
P. mosselii CFML 90-83 were attained from the previous studies
(Dabboussi et al., 2002; Mulet et al, 2012; Supplementary
Table 3). These results showed that 1257 exhibited more

than 21 phenotypic features similar to P. entomophila 148
and P. mosselii CFML 90-83, whereas 1257 differed from
P. entomophila 148 and P. mosselii CFML 90-83 in the utilization
of nine carbon sources especially in N-acetyl-D-glucosamine,
D-arabitol, D-(+)-glucuronic acid, and 2,3-butanediol. 1257
displayed the same as P. entomophila 148 in urease activity
and in the ability to use L-fucose, psicose, a-ketobutyric acid,
and dimethyl succinate as carbon sources. 1257 differed from
P. entomophila 148 in the capacity to use glycogen, which is
negative for 1257 and P. mosselii CFML 90-83. Combined with
the antagonistic phenotypes that P. entomophila 148 exhibited
similar antibacterial activity against Xoc RS105 with 1257, but
P. mosselii CFML 90-83 displayed no inhibitory effect on Xoc
RS105 (Figure 2A), we concluded that 1257 is most closely related
to P. entomophila.

Synthetically considering the phylogenetic, genomic,
physiological, and biochemical characteristics, we propose strain
1257 as a representative of a novel Pseudomonas species, for
which we propose to name P. oryziphila sp. nov. The type stain is
P. oryziphila 1257 (1.

Genome Features and Comparative

Genomics Analysis

The genome of P. oryziphila 1257 is composed of a circular
chromosome of 6,049,604 base pairs (Figure 1B) with an overall
G + C content of 63.76% and 5,441 protein coding sequences
(CDSs), 22 rRNA genes, 76 tRNA genes, and 73 other non-
coding RNA genes, without plasmid, which is similar with
P. entomophila 148, but distinct from P. mosselii CFML 90-
83 (Table 2). The P. oryziphila 1257 genome is larger than
that of the P. entomophila L48 and smaller than P. mosselii
CFML 90-83. The collinearity analysis is consistent with the close
relatedness among P. oryziphila, P. entomophila, and P. mosselii
(Figure 2B). OrthoMCL analysis of the orthologous genes among
the three genomes showed that 11,791 genes constitute the core
genome, occupying 83.6 to 87.1% of each genome (Figure 2C);
89.6% (12,449 genes) and 88.6% (12,308 genes) of P. oryziphila
1257 genes have orthologs in the P. entomophila 148 and
P. mosselii CFML 90-83, respectively (Figure 2C). Based on
this analysis, we found that 933 genes (6.7%) are unique to the
P. oryziphila 1257 genome.

The P. oryziphila 1257 genome possesses most of the
genes involved in the central metabolic pathways similar with
P. entomophila 148 and P. mosselii CFML 90-83 including
pentose phosphate pathway (PPP), the tricarboxylic acid cycle
(TCA), and the Entner-Doudoroff (ED) pathway. We found
no gene encoding a 6-phosphofructokinase present in the
P. oryziphila 1257 genome. This is consistent with P. entomophila
metabolism (Vodovar et al., 2006), indicating that P. oryziphila
has an incomplete Embden-Meyerhof-Parnas pathway, and
relies on a complete ED pathway for hexose utilization.

The P. oryziphila 1257 genome contains more than 25
transport-encoding genes, three of which encode TolC, HlyD,
and PrtD related to type I secretion system. Notably, 21 genes
encoding the type IV pilus system (T4P) were found in the
genome of P. oryziphila 1257 (Supplementary Figure 2 and
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FIGURE 1 | Isolation, identification, and antibacterial activity assays of strain 1257. (A) Colony morphology and antagonistic activity of strain 1257. From left to right
represents strains of Xoc (RS105), Xoo (PX099%), X. campestris pv. phaseoli, X. axonopodis pv. glycines, X. campestris pv. vesicatoria, X. campestris pv.
malvacearum, and X. campestris pv. juglandis and control (CK). All tests were performed three times with similar results. (B) Circular genome map for strain 1257
using CG View. The outermost and second circles of all replicons indicate CDS on forward and reverse strands colored according to COG category. The third and
fourth circles show G + C content and the G + C skew in green (+) and purple (—), respectively. The fifth circle shows the insertion sequences in red, putative
prophage remnants in brown, and MITEs in blue. The scale is shown in the innermost circle. (C) The MLSA-based phylogenetic tree of strain 1257. The tree is based
on 10 housekeeping genes. Maximum likelihood-based phylogenetic inference was performed with Mega 7. The bootstrap values of 1,000 replicates display the
significance of each branch. Numbers at the branches indicate the confidence values of taxa clustered in the tree.

Supplementary Table 4), suggesting that P. oryziphila could
move on solid surface through twitching or gliding motility.
Three T4P genes, pilN (chr_orf 05630), pilO (chr_orf 05631),
and pilS (chr_orf 05634), are involved in encoding type IVB
pilus biosynthesis protein. Only seven T4P homologous genes in
P. oryziphila 1257 were identified in the genome of P. entomophila
L48, whereas 17 T4P orthologous genes were found in the
genome of P. mosselii CFML 90-83 (Supplementary Table 4),
indicating that P. entomophila and P. mosselii may have a
dysfunctional T4P. A virB4 gene encoding the conjugative
type IV secretory system protein was found in the genome of
P. oryziphila 1257, but not in P. entomophila and P. mosselii. No
gene encoding the type III secretion system (T3SS) was found
in the genome of P. oryziphila 1257, but one gene encoding the
T3SS effector HopPma] (T3SE) was found in P. oryziphila 1257,

which is in agreement with the previous report in P. entomophila
(Vodovar et al., 2006).

Secondary Metabolite Biosynthetic Gene

Clusters

Some potential second metabolites including toxins, antibiotics,
and cyclic lipopeptides were found and are listed in
Supplementary Table 5. P. oryziphila 1257 produces an
insecticidal toxin AprA, an alkaline protease, which has been
shown to be a key virulence factor in P. entomophila (Opota
et al,, 2011; Lee et al, 2018). Another gene rtx encodes the
repeats-in-toxin (RTX) protein with cytotoxic and hemolytic
activity (Vodovar et al, 2006; Zhang et al, 2014), which
exhibits approximately 75% similarity with the homologs of
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TABLE 1 | ANI analyses between strain 1257 and other representative Pseudomonas species.

Query genome of 1257
Reference genomes
ANIb and [aligned ANIm and [aligned
nucleotides] (%) nucleotides] (%)

Pseudomonas entomophila L48 (DSM 28517) 86.55 [71.95] 89.10 [69.64]
Pseudomonas mosselii CFML 90-83 (DSM 17497) 86.72 [68.97] 89.13 [67.56]
Pseudomonas taiwanensis CMS (DSM 21245) 83.23 [63.20] 86.86 [63.72]
Pseudomonas plecoglossicida FPC951 (DSM 15088) 84.23 [62.41] 87.64 [66.13]
Pseudomonas monteilii strain 1 (DSM 14164) 83.92 [64.38] 87.21[57.88]
Pseudomonas putida KT2440 (NBRC 14164) 83.96 [66.37] 87.36 [59.10]
Pseudomonas oryzihabitans L-1 (NBRC 102199) 73.77 [36.02] 83.94 [13.23]
Pseudomonas fuscovaginae LMG 2158 (ICMP 5940) 77.68 [49.92] 85.01 [27.95]
Pseudomonas asplenii 4A7 (DSM17133) 76.48 [64.33] 84.38 [24.32]
Pseudomonas parafulva CB-1 (DSM17004) 81.96 [57.30] 86.37 [44.99]
Pseudomonas cremoricolorata CC-8 (DSM 17059) 80.58 [50.98] 86.14 [38.63]
Pseudomonas koreensis Ps 9-14 (LMG 21318) 77.14 [64.28] 84.65 [28.37]
Pseudomonas fulva YAB-1 (DSM17717) 80.45 [66.12] 85.95 [38.51]
Pseudomonas fluorescens F113 (DSM50090) 76.53 [51.08] 84.47 [23.57]
Pseudomonas aeruginosa PAO1 (DSM50071) 76.10 [46.39] 84.36 [22.89]

ANIb and ANIm values indicate the pairwise comparisons of given genomic sequences with the genome of strain 1257.
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FIGURE 2 | Comparative genomics analysis and antibacterial phenotypes of P oryziphila 1257 with its closely related two pseudomonas species. (A) The inhibitory
phenotypes of strains P, oryziphila 1257, P entomophila L48, and P mosselii CFML 90-83 against Xoc RS105. (B) Genome-to-genome alignment of R oryziphila
1257, P. entomophila .48, and P mosselii CFML 90-83 using a progressive mauve software with a window of 1,000 nucleotides and P, oryziphila 1257 as the
reference genome. Boxes with the same color indicate the syntenic regions. Boxes below the horizontal line indicate inverted regions. Rearrangements are shown by
colored lines. (C) Venn diagram showing the number of genes of orthologous CDSs shared and unique between three strains of P oryziphila 1257, R entomophila
L48 and R mosselii CFML 90-83.
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P. entomophila and P. mosselii. We found that three TcdA-,
TedB-, and TccC-like insecticidal toxin complexes unique to
P. entomophila are absent from P. oryziphila 1257. P. oryziphila
1257 possesses the HCN biosynthesis operon (hcnABC) but
not the genes associated for the biosynthesis of 2,4-DAPG,
phenazines, pyoluteorin, pyrrolnitrin, pyochelin, pyocyanine,
and xantholysinABCD. We also detected several genes or
gene clusters involved in plant-bacteria interactions in the
genomes of P. oryziphila 1257, including the iacR gene
involvement in the indole-3-acetic acid (IAA) degradation
pathway, the paa gene involved in the phenylacetic acid (PAA)
degradation pathway, indicating that P. oryziphila 1257 might
help to balance the delicate TAA and PAA equilibrium in
the rhizosphere. A unique acoABC operon involved in the
biosynthesis of acetoin that has been known as one kind of
VOC promoting plant growth was detected in the genome of
P. oryziphila 1257. Similar to P. entomophila and P. mosselii,
P. oryziphila also possesses the pyrroloquinoline quinone
(PPQ) biosynthesis genes pgqE, pqqD, and pgqgqB, which were
predicted to participate in phosphate solubilization. These results
suggested that P. oryziphila 1257 may have the potential to
promote plant growth.

The antiSMASH analysis showed that the genome of
P. oryziphila 1257 contains eight candidate gene clusters
encoding a dipeptide N-acetylglutaminylglutamine amidc
(NAGGN), four non-ribosomal peptide synthetase (NRPS),
and two ribosomally synthesized antimicrobial peptides, and
a pigment of the aryl polyene (APE) type (Figure 3 and
Supplementary Table 6). The NAGGN cluster was predicted to
synthesize NAGGN that is unusual dipeptide previously reported
only in osmotically stressed Rhizobium meliloti, P. fluorescens,
and P. aeruginosa PAO1 (Sagot et al., 2010). The two Bac 1 and
Bac 2 clusters were predicted for the bacteriocin biosynthesis.
However, these two clusters exhibited no apparent sequence
similarity with the known strain. Three of four NRPS were
predicted to be the siderophores biosynthetic gene clusters.
The NRPS 1 and NRPS 3 are associated with the biosynthesis
of pyoverdines. Nearly all fluorescent Pseudomonas species
produce this yellow-green fluorescent that enable acquisition
of Fe (III) ions from the surrounding environment (Gross
and Loper, 2009). The genomes of P. entomophila 148 and
P. mosselii CFML 90-83 also contain two independent clusters
responsible for the biosynthesis of pyoverdines. In addition to
pyoverdine, P. entomophila 148 can produce pseudomonine,
an isoxazolidone siderophores, and pyochelin, a salicyl-capped
siderophores. This is in agreement with our CAS agar diffusion
assay, which showed that P. entomophila 148 can produce
more total siderophores irrespective of chemical nature of the
siderophores compared to P. oryziphila 1257 and P. mosselii
CEML 90-83 (Supplementary Figure 4). Blast comparison
showed that the NAGGN, NRPS 3, APE, and NRPS 4 cluster is
conserved among the genomes of P. oryziphila, P. entomophila,
and P. mosselii, whereas P. entomophila contains more candidate
secondary metabolite biosynthetic gene clusters than that of
P. oryziphila and P. mosselii (Figure 3). Combined with the
antagonistic activity of three strains against Xoc RS105, we
speculate that NRPS cluster but not the siderophores-producing

TABLE 2 | General features of genomes of Pseudomonas oryziphila (Po) 1257,
Pseudomonas entomophila (Pe) L48, and Pseudomonas mosselii
(Pm) CFMT90-83.

General features Po Pe Pm
1257 L 48 CFMT90-83

Genome size (Mb) 6.05 5.89 6.28

GC content (%) 63.76 64.20 63.95
rRNA genes 22 22 22
tRNA genes 76 78 80
Other RNA genes 73 4 192
Coding density (%) 86.38 89.1 87.66
Protein coding sequences (CDS) 5,441 5,056 5,731
Plasmid - - +

NRPS cluster may be the target compound of P. oryziphila 1257
against Xoc RS105.

Genome-Wide Identification of

Antibacterial Mechanisms Against Xoc
Our multiple attempts including utilization of ion exchange resin
or optimization of the solvent were all failed to obtain the
purified compound from 1257 that exhibited antibacterial activity
against Xoc RS105. However, these attempts indicated that the
active substance may be a strong polar compound. To elucidate
the antibacterial mechanism of 1257, we used the transposon
mutagenesis based on the EZ-Tn5 < R6Kyori/KAN-2 > Tnp
transposome system to screen functional genes associated with
antibacterial active compounds. Among the 10,080 mutants, we
screened 30 mutants that exhibited absolutely lacking, apparently
or partially attenuated antagonistic activity toward Xoc RS105
(Supplementary Figure 3). Southern blot analysis indicated that
all mutants carried only a single copy of the transposon (data
not shown). The Tn5 transposon insertions were mapped to
19 genes including carAB, purMF, purCLDK, gntR-IgrD, sdhA,
dsbB1, tufl, serC, gph, dnaK, argG, sohB, and rRNA2 located
in 13 different districts in the genome of 1257 (Figure 4A). In
the carA-carB, purM-purF, purC-purK, and gntR-IgrD regions,
transposons were inserted more frequently. Six independent
insertions in the carB gene and three independent insertions in
the purL gene resulted in loss of antagonistic activity of these
mutants against Xoc RS105. One insertion in the purF, sdhA,
dsbB1, serC, and gph genes also made 1257 lose the antagonistic
activity. Two independent insertions in the purD and purK genes
and one insertion in the carA, purM, purC, and tufl genes
reduced the antagonistic properties of 1257 against Xoc RS105.
We constructed the full functional segments of the carA, carB,
purF, and serC genes and introduced the relative plasmids into
the corresponding insertion mutants. The complemented strains
were found to restore the antagonistic activity against Xoc RS105
to the wild-type levels (Figure 4B), indicating the critical role
of these genes in biosynthesis of active compounds antagonizing
Xoc RS105.

To define the biological process involved by the function
genes mentioned previously, we exerted a Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis (Figure 5). The carA
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FIGURE 3 | Comparison of the secondary metabolite biosynthesis gene clusters of P. oryziphila1257 with P entomophila L48 and P mosselii CFML 90-83. The
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and carB genes encode the carbamoyl phosphate synthetase
that catalyzes the synthesis of carbamoyl phosphate (CP),
a precursor of arginine and pyrimidines metabolism. ArgG
encoded by the argG gene is an argininosuccinate synthetase
responsible for producing argininosuccinic acid from aspartate.
The sdhA gene encodes a subunit A of succinate dehydrogenase
that is a key enzyme in the TCA cycle. The six pur genes
encoded PurF, PurD, PurL, PurM, PurC, and PurK, which are
metabolic enzymes in the PPP, converting ribose-5P from the
glycolytic pathway (PP) into 5-carboxyamino-1-(5-phospho-D-
ribosyl) imidazole (CPR). Together, these analyses indicated
that CP and CPR may be the important precursors for
synthesis of the activate compounds and also provided some
important evidences for further identification of the target
compounds.

Three independent insertions have been shown in dnaK
encoding a chaperone protein foldase Dnak that enable the RNA
polymerase to sustain bacterial life in response to the stringent
response (Kim et al., 2021). Another two Tn5 insertions in the
sohB gene encoding a periplasmic serine protease (ClpP class)
and rRNA2 gene encoding the 23s_rRNA, respectively, resulted in
partially impaired antagonistic activity of the mutants against Xoc
RS105, indicating that posttranscriptional mechanisms may be
involved in the modulation of genes associated with biosynthesis
of active compounds.

In particular, two individual insertions have been found
in the gntR and IgrD genes that located in the NRPS 4
cluster exhibiting 40% similarity with the L-2-amino-4-methoxy-
trans-3-butenoic acid (AMB) biosynthetic gene cluster from
P. aeruginosa PAO1 by the antiSMASH analysis. However, the
gntR gene encodes a GntR family transcriptional regulator, and
the IgrD gene encodes a non-ribosomal peptide synthethase
of linear gramicidin synthase subunit D. The gntR and IgrD

insertion mutants (43-13 and 100-12, respectively) exhibited
significantly reduced antibacterial activity against Xoc RS105
when compared with the wild-type P. oryziphila 1257, whereas
the complemented strain of IgrD insertion mutant nearly restored
the antibacterial activity to the wild-type levels (Figure 4B). These
results indicated that the non-ribosomal peptide catalyzed by
LgrD may be a major active compound of P. oryziphila 1257
against Xoc RS105.

Sequence alignments showed that proteins encoded by the
19 genes mentioned previously in P. oryziphila 1257 exhibited
more similarity with the homologs in P. entomophila 148 than
P. mosselii CFML 90-83 (Supplementary Table 7), further
supporting that P. oryziphila 1257 is most closely related to
P. entomophila species.

Biocontrol Effect of Pseudomonas
oryziphila 1257 in Bacterial Leaf Streak

To investigate the biocontrol efficiency of P. oryziphila 1257 in
BLS caused by Xoc RS105, we executed a field trial experiment
using a highly susceptible cultivar Yuanfengzao as follows: Xoc
RS105 only (control), rice leaves sprayed with 1257 12 h after
inoculation with Xoc RS105 suspension (1257-Tre) and rice
leaves sprayed with 1257 12 h before inoculation with Xoc
RS105 suspension (1257-Pre). We fist tested the appropriate
concentration of 1257 and found that 1257 as ODgyy of 1.0
did not influence the morphology and growth of the rice plants
during 15 days in our field trial experiment. Therefore, we used
this concentration in all our biocontrol assays. The BLS disease
severity under all treatments was investigated after 15 days.
Compared with the control treatment, the 1257-Tre and 1257-
Pre treatments significantly reduced the severity of BLS in
paddy fields with relative control efficiencies of 53.9 and 39.7%,
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FIGURE 4 | Genome-wide identification of the antibacterial functional genes of P, oryziphila 1257 against Xoc RS105. (A) Characterizations of Tn5 insertion mutants
of P oryziphila 1257. Arrows represent the Tn5 transposon insertion sites in 19 genes on the 1257 genome. Red, blue, and green arrow boxes indicate genes
associated with absolutely losing, apparently, and partially attenuated antagonistic activity against Xoc RS105, respectively. (B) Antibacterial activity assays of the
wild-type R, oryziphila 1257, carA, carB, purF, serC, and IgrD mutants and their corresponding complemented strains.

respectively (Figure 6A). This demonstrated that the 1257-Tre
treatment exhibited efficient biocontrol of BLS in the field.
Further, we carried out a greenhouse trial experiment using a
Xoc RS105-Gus strain in which the wild-type Xoc RS105 carried
a hrcC-uidA reporter plasmid as the control treatment. The
1257-Tre and 1257-Pre indicated that rice leaves were injected
with 1257 3 h after and before inoculation with Xoc RS105-
Gus suspension, respectively. The BLS disease severity under
all treatments was observed after 1, 3, 5, and 7 days. On the
third and fifth day, significantly reduced water-soaked lesions
were observed on the leaves of Yuanfengzao by the 1257-Tre
and 1257-Pre treatments compared to the control (Figure 6B).
The relative control efficiencies by the 1257-Tre and 1257-Pre
treatments were 66.10% and 54.30% on day 7, respectively.

The GUS histochemical staining with the corresponding leaves
showed similar result.

Given that the depth of GUS staining in rice leaves was
dependent on bacterial multiplication, we used the quantifiable
GUS measurement to determine the growing bacterial population
in rice leaves by the control, 1257-Tre, and 1257-Pre treatments
using our new method, which is more rapid and accurate than the
conventional bacterial number counting (Zou et al.,, 2021). The
quantitative GUS assays showed that the Xoc RS105 population-
related GUS activity was dramatically lower in the rice leaves
treated by 1257 regardless of the 1257-Tre or 1257-Pre treatment
than that treated by the control at 1, 3, 5, and 7 days (Figure 6C).
Taken together, these results indicate that 1257 could effectively
inhibit the growth and migration of Xoc RS105 in rice tissue
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to prevent the BLS disease, making it a promising biological
control agent for BLS.

DISCUSSION

Xoo and Xoc cause bacterial leaf bright and BLS of rice,
respectively, which are two major bacterial diseases of rice in
some Asian rice-growing regions (Nino-Liu et al., 2006). In this
study, we identified a novel Pseudomonas species, P. oryziphila,
which has the capacity to inhibit Xoo and Xoc and especially
inhibit the growth and migration of Xoc in rice tissue to prevent
the BLS disease. Genomic information revealed that P. oryziphila
may have potential to kill insects, solubilize phosphate, move
dependently on the T4P system, and degrade IAA and PAA,
indicating that it is a versatile bacterium. Our findings collectively
indicate that a non-ribosomal peptide may be the major active
compound involved in this biocontrol of BLS. The new discovery
of P. oryziphila also provides more microbial resources for
biocontrol of bacterial diseases of rice.

Pseudomonas is a diverse genus with more than 200 different
species, whereas many new isolates are being classified as a novel
species. In 2019, for instance, 16 novel Pseudomonas species
were described from different sources such as tree bark, sewage,
or raw milk (Hofmann et al.,, 2021). Our results support that
strain 1257 is a novel Pseudomonas species, which is more closely
related to P. entomophila than P. mosselii. In this study, we
used a polyphasic approach including genotypic and phenotypic
analyses to characterize this novel species. At first, 1257 could
be assigned to the genus Pseudomonas by the 16S rRNA-based
dendrogram, but not to any validly named species because the
16S rRNA gene sequence of 1257 exhibited more than 99%
similarity with the one of the type strains of P. entomophila
L48 and P. mosselii CFMT 90-83. Further MLSA, ANI, and
DDH analyses showed that 1257 located in a separate branch
with P. entomophila and P. mosselii; however, the relatedness
of this species could not be defined, indicating that sometimes
genomic analyses such as MLSA, ANI, and DDH values are
not enough to define the close relative relationship of some
species. A similar case about the taxonomic characterization of P.
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FIGURE 6 | Biocontrol effect of P. oryziphila 1257 in BLS of rice. (A) Lesion lengths of the susceptible rice cultivar Yuanfengzao inoculated by P, oryziphila 1257 and
Xoc RS105 at 15 days in rice field trials. 1257 treatment (1257-Tre) meant that rice leaves were sprayed with 1257 12 h after inoculation with Xoc RS105
suspension. 1257 preventive treatment (1257-Pre) indicated that rice leaves were sprayed with 1257 12 h before inoculation with Xoc RS105 suspension (1257-Tre).
(B) Lesion lengths of the rice cultivar Yuanfengzao inoculated by P, oryziphila 1257 and Xoc RS105 at 1, 3, 5, and 7 days in greenhouse. The 1257-Tre and 1257-Pre

than two times and showed the similar results.

indicated that rice leaves were injected with 1257 after and before 3 h inoculation with Xoc RS105-Gus suspension, respectively. (C) Dynamic population of Xoc
RS105-Gus in rice leaves monitored by the GUS quantification detection and histochemical staining at 1, 3, 5, and 7 days after inoculation. Xoc RS105 and Xoc
RS105-Gus were adjusted to ODgog = 0.6, and R, oryziphila 1257 was adjusted to ODggp = 1.0. Different treatments were compared using the least significant
difference test method; error bars indicate standard deviation, and the different letters indicate significant differences (o < 0.05). Experiments were repeated more

cremoris sp. nov. was reported in the previous study (Hofmann
et al,, 2021). For example, ANIm comparisons indicated that the
type strain WS 5106 was a novel species within the P. fluorescens
subgroup, but the pairwise ANIm values of 90.1 and 89.8%
showed that WS 5106 was most closely related to Pseudomonas
nabeulensis CECT 9765" and Pseudomonas kairouanensis CECT
97667 (Hofmann et al., 2021). Therefore, some phenotypic
analyses such as physiological and biochemical characteristics,
or antagonistic activity, are necessary for further classification
status. Our additional phenotypic analyses including enzyme
activity, carbon source assimilation, and acid production showed
that 1257 exhibited more similar phenotypic features with
P. entomophila 148 than P. mosselii CEML 90-83, supporting that
1257 is most closely related to P. entomophila. We designated
this novel species as P. oryziphila sp. nov., given its specific
antibacterial activity against Xoo and Xoc, which is similar with
P. entomophila that was named for its unique entomopathogenic
property (Vodovar et al., 2005; Mulet et al., 2012).

The collinearity analysis that more than 85% of P. oryziphila
1257 genes have orthologs in the P. entomophila 148

and P. mosselii CFML 90-83 is consistent with the close
relatedness among P. oryziphila, P. entomophila, and P. mosselii.
Interestingly, comparative genomics analysis revealed that
P. oryziphila contains a set of T4P biogenesis-associated genes
(21 genes) including pilA encoding the major pilin protein
(Maier and Wong, 2015); the pilM, pilN, pilO, and pilP genes
encoding the alignment complex (PilM, PiIN, PilO, and PilP)
(Gold et al., 2015); the pilT and pilC genes encoding the motor
(PilT1, PilT2, and PilC) (McCallum et al., 2019); the pilQ genes
encoding the outer membrane (OM) pore complex PilQl or
PilQ2; other genes such as pilD encoding a pre-pilin peptidase
PilD; pilS encoding one of the two-component system PilS
(Kilmury and Burrows, 2018); and the minor pilins FimT, PilV,
and PilE-encoding genes (Treuner-Lange et al., 2020). These
findings indicated that P. oryziphila may have a functional
T4P. However, only seven T4P homologous genes were found
in P. entomophila 148, whereas 17 T4P orthologous genes
were found in P. mosselii CFML 90-83, indicating that T4P
biogenesis-associated genes exhibit a high degree of variability
among P. oryziphila, P. entomophila, and P. mosselii.
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The biocontrol properties of Pseudomonas species are
largely dependent on its secondary metabolites such as toxins,
lipopeptides, polyketides, fatty acids, and phenazines (Gross and
Loper, 2009). P. oryziphila 1257 contains the insecticidal toxin
AprA and hemolytic RTX toxin, which is in agreement with
the previous finding in P. entomophila 148 (Vodovar et al,
2006). This indicates that P. oryziphila stain could be a versatile
bacterium capable of inhibiting X. oryzae and Kkilling insects
or Drosophila melanogaster. A similar study has been reported
that P. entomophila JS2 displayed a clear antibacterial effect
against Xcc 306, the causal agent of citrus canker (Villamizar
et al,, 2020). We found that P. oryziphila 1257 possesses the
HCN biosynthesis operon (hcnABC) but not the genes associated
for the biosynthesis of 2,4-DAPG, phenazines, pyoluteorin,
pyrrolnitrin, pyochelin, pyocyanine, and xantholysinABCD.
Xantholysins, a family of lipodepsipeptides produced by some
P. putida and P. soli strains, exhibits Xanthomonas-inhibitory
activity, including Xoo-antagonistic activity (Vallet-Gely et al.,
2010; Pascual et al., 2014). Although P. soli is closely related to
P. entomophila and P. mosselii, the xantholysin-encoding genes
are distinguishable targets between two novel Pseudomonas
species of P. oryziphila and P. soli. We also detected several
genes or gene clusters including the iacR gene (IAA degradation
pathway) and the paa gene (PAA degradation pathway) in the
genomes of P. oryziphila 1257, indicating that P. oryziphila 1257
might help to balance the delicate IJAA and PAA equilibrium
in the rhizosphere. The acoABC operon putatively participated
in the biosynthesis of acetoin, one kind of VOC promoting
plant growth (Wu et al, 2019), and PPQ biosynthesis genes
PqqE, pqqD, and pqqB predicted to participate in phosphate
solubilization were found in the genome of P. oryziphila 1257.
These findings suggested that P. oryziphila 1257 has the potential
to promote plant growth, but whether P. oryziphila 1257 is
a plant growth-promoting rhizobacteria strain needs more
experimental evidences.

Our unsuccessful attempts to purify the active substance
against Xoc RS105 indicated that it could be a strong polar
compound; however, the Tn5-based mutagenesis indicated that a
non-ribosomal peptide catalyzed by LgrD may be a major active
compound of P. oryziphila 1257 because the complementary
strain of IgrD insertion mutant nearly restored the antibacterial
activity to the wild-type levels. In our antiSMASH analysis,
the gntR and IgrD genes that located in the NRPS 4 cluster
exhibiting 40% similarity with the AMB biosynthetic gene
cluster ambABCDE of P. aeruginosa PAO1. However, the BLAST
analysis in NCBI database showed that the IgrD gene encodes a
non-ribosomal peptide synthethase of linear gramicidin synthase
subunit D. Sequence comparison showed that the gramicidin
biosynthetic gene cluster of IgrABCDT in Brevibacillus brevis
displayed 55% similarity with the IgrD-related cluster in
P. oryziphila 1257, and LgrD of P. oryziphila 1257 exhibited
43% similarity with the AmbB of P. aeruginosa PAO1 and
50% similarity with LgrD proteins of B. brevis. These results
provide some useful clues for further purification of the target
active compound; however, the structure of which needs more
verifications from biochemical methods such as high-pressure
liquid chromatography and nuclear magnetic resonance. From
our Tn5 transposon mutant library, we found that one insertion

in the purF, sdhA, dsbB1, serC, and gph genes made 1257 lose
the antagonistic activity. Two independent insertions in the
purD and purK genes and one insertion in the carA, purM,
purC, and tufl genes reduced the antagonistic properties of 1257
against Xoc RS105. Based on the KEGG analyses, we found
that these genes were mainly involved in the synthesis of CP
and the PPP pathway. Therefore, we speculated that CP and
CPR may be the important precursors for synthesis of the
activate compounds.

Some studies have shown that most of the bacterial strains
applicable for the BLS biocontrol were Bacillus strains including
Bacillus amyloliquefaciens, B. velezensis and B. cereus (Zhang
et al.,, 2013; Li et al,, 2019; Li S. Z. et al., 2020). For instance,
compared to the control treatment, B. amyloliquefaciens LX-
11 significantly reduced the severity of BLS in paddy fields
with relative control efficiencies of 60.2% (Zhang et al., 2013).
Our results showed that the relative control efficiencies by the
P. oryziphila 1257 treatments in rice fields and in greenhouses
were 53.9 and 66.10%, respectively, which was near to the
one by B. amyloliquefaciens LX-11. However, there are still
some problems in practical use, such as tolerance to stress
(high temperature in rice-growing season) and stability of P.
oryziphila 1257. We are trying to improve the stress tolerance
of P. oryziphila 1257 through fermentation techniques such as
microcapsule bacterial agent to improve its biocontrol effect.
Some studies showed that phenazine-1-carboxylic acid (PCA)
from Pseudomonas species is very effective against Xoo and Xoc
(Xu et al., 2015). PCA as the same name of shenqinmycin has
received a pesticide registration certification in China (Jin et al.,
2015; Xu et al, 2015). Although P. oryziphila 1257 does not
produce PCA, there is a long way to go, but it is challenging from
purification to commercial use of the antagonistic compounds
from P. oryziphila 1257 such as PCA. Our results showed that
P. oryziphila 1257 exhibited specific antagonistic activity against
Xoc and Xoo, whereas whether P. oryziphila 1257 is a promising
biological control agent for BB needs more evidences from
rice field trails.

In summary, we have reported the identification of a novel
species, P. oryziphila, in the Pseudomonas genus. Our results
indicated that a non-ribosomal peptide may be one of the major
active compounds of P. oryziphila 1257 against Xoc. Meanwhile,
we demonstrated that the type strain P. oryziphila 12577 is
an effective biological control agent for BLS, providing a new
microbial resource for biological control of bacterial diseases
caused by X. oryzae.
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Phytopathogenic fungal growth in postharvest fruits and vegetables is responsible for
20-25% of production losses. Volatile organic compounds (VOCs) have been gaining
importance in the food industry as a safe and ecofriendly alternative to pesticides for
combating these phytopathogenic fungi. In this study, we analysed the ability of some
VOCs produced by strains of the genera Bacillus, Peribacillus, Pseudomonas,
Psychrobacillus and Staphylococcus to inhibit the growth of Alternaria alternata, Botrytis
cinerea, Fusarium oxysporum, Fusarium solani, Monilinia fructicola, Monilinia laxa and
Sclerotinia sclerotiorum, in vitro and in vivo. We analysed bacterial VOCs by using GC/
MS and 87 volatile compounds were identified, in particular acetoin, acetic acid,
2,3-butanediol, isopentanol, dimethyl disulphide and isopentyl isobutanoate. In vitro growth
inhibition assays and in vivo experiments using cherry fruits showed that the best producers
of VOCs, Bacillus atrophaeus L1938, Bacillus velezensis XT1 and Psychrobacillus vulpis
Z8, exhibited the highest antifungal activity against B. cinerea, M. fructicola and M. laxa,
which highlights the potential of these strains to control postharvest diseases. Transmission
electron microscopy micrographs of bacterial VOC-treated fungi clearly showed antifungal
activity which led to an intense degeneration of cellular components of mycelium and
cell death.

Keywords: volatile compounds, antifungal activity, biocontrol, fungal phytopathogens, postharvest diseases

INTRODUCTION

The world population has increased by 1 billion over the last 10years, reaching a total
of 7.8 billion currently, which is expected to rise by a further 1 billion by 2030. Regardless
of environmental damage and potential risks to human health, the use of chemical fertilisers
in agriculture and during postharvest storage has increased and remains at high levels
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given the growing demand for food worldwide (Goswami
and Deka, 2020). The factors responsible for postharvest
losses include fungal pathogen infections which are estimated
to account for approximately 20-25% of fruit and vegetable
postharvest decay in developed countries and contribute
significantly to a deterioration in quality and nutrient
composition, mycotoxin contamination and a reduction in
the market value of fruit (Frankowski et al., 2001; Mari
et al., 2016; Gotor-Vila et al.,, 2017; Tozlu et al.,, 2018).
Many fungal species of the most diverse genera have been
reported to be associated with postharvest diseases in fruits
and vegetables worldwide. These include Penicillium expansum,
Penicillium italicum and Penicillium digitatum (Cheng et al,,
2020; Kanashiro et al., 2020; Yu et al., 2020; Zhang et al,,
2020a), Alternaria alternata (Tozlu et al., 2018; Garganese
et al.,, 2019), Phytophthora citrophthora (Diaz et al., 2020)
the necrotrophic pathogens Sclerotinia sclerotiorum and
Botrytis cinerea (Fernando et al., 2005; Giorgio et al., 2015;
Massawe et al., 2018; Zhao et al., 2020), Colletotrichum
gloeosporioides (Jin et al,, 2020; Shi et al., 2021), various
species belonging to the genus Fusarium (Medina-Romero
et al,, 2017; Go et al,, 2019; Lee et al., 2019) and the genus
Monilinia, known to be the most important fungal pathogen
to infect stone fruits (Martini and Mari, 2014; Rungjindamai
et al., 2014; Obi et al., 2018).

Although postharvest decay has traditionally been controlled
through chemical fungicides, their intensive use can cause
problems, such as pathogen resistance, pesticide residues, human
health hazards and environmental pollution (Mari et al., 2016;
Lim et al, 2017). Moreover, due to the toxicological risks
involved, chemicals registered for postharvest use are severely
limited while consumer awareness of the need for pesticide-
free food has been increasing (Gao et al., 2017; Lastochkina
et al., 2020). Thus, given their safe, ecofriendly and sustainability
properties, biopesticides, which meet the global strategic
requirements of organic agriculture, could be a desirable
alternative to traditional pesticides (Wu et al., 2019; Zheng
et al., 2019).

A wide range of ecological strategies has emerged with the
use of anti-phytopathogenic microorganisms and the use of
plant-defence hormones or glucosinolates (Poveda, 2020; Poveda
et al., 2020). Given the variety of possible fungal inhibition
pathways and the wide range of microbial secondary metabolites,
postharvest disease management involving biocontrol agents
(BCAs) has, in recent years, focused on the use of volatile
organic compounds (VOCs; Ryu et al., 2004; Guevara-Avendano
et al,, 2019). Species of the genera Streptomyces, Pseudomonas,
Serratia, Xanthomonas, Alcaligenes, Bacillus and Agrobacterium
are reported to be the most frequent producers of these bioactive
VOCs (Chaves-Lopez et al., 2015; Schmidt et al., 2015; Asari
et al., 2016; Mari et al,, 2016; Dias et al., 2017; Gotor-Vila
et al, 2017; Lim et al., 2017; Khan et al., 2018).

Microbial volatile organic compounds (MVOCs), which
originate from different metabolic pathways during fungal
and bacterial growth, contain low molecular weight and
high vapour pressure molecules that readily diffuse through
water and gas-filled pores in soil environments

(Chaves-Lopez et al., 2015; Parafati et al, 2017; Toffano
et al., 2017). From a control perspective, these characteristics
expand the area of influence, improve membrane penetration
and consequently enhance the Ilethality of these
microorganisms (Logan et al., 2009). Bacterial VOCs inhibit
spore germination and mycelial growth of various
phytopathogens, promote plant growth and induce plant
resistance (Gotor-Vila et al.,, 2017; Lazazzara et al., 2017;
Syed-Ab-Rahman et al., 2019; Di Francesco et al.,, 2020;
Poveda, 2021). However, the composition and antifungal
properties of volatiles produced by microorganisms can vary
according to the growing medium, oxygen availability,
moisture, temperature and pH, as well as the population
involved and functional dynamics (Chaves-Lopez et al., 2015;
Schmidt et al., 2015). Moreover, MVOCs produced by BCAs
can play different regulatory roles in different species, the
extent of whose inhibition depends on specific bacterium-
fungus interactions (Schmidt et al., 2015; Zheng et al., 2019).

This study thus aims to evaluate the antifungal activity of
VOCs produced by bacteria obtained from extreme environments
and belonging to the genera Peribacillus, Pseudomonas,
Staphylococcus, Psychrobacillus and Bacillus against seven
postharvest fruit pathogens. (i) An in vitro approach, together
with scanning and transmission microscopy, was used to evaluate
the antifungal effect of antipathogenic bacterial VOCs on colony
and mycelial growth; (i) VOCs were identified using headspace
solid-phase microextraction coupled with gas chromatography-
mass spectrometry (HS-SPME-GC/MS); (iii) the effect of pure
compounds on the target pathogens was tested in vitro; and
(iv) the impact of antifungal activity of bacterial VOCs and
synthetic compounds was assayed in vivo on fruits. The impact
of the culture medium on VOCs composition and its antifungal
activity was also evaluated.

MATERIALS AND METHODS

Bacterial and Fungal Strains, Growth
Media and Culture Conditions

The bacterial strains used in this study had been isolated from
different sources: Peribacillus sp. N3 from river otter (Lutra
lutra) faeces and strains Bacillus atrophaeus 1193 (Rodriguez
et al., 2018), Bacillus velezensis XT1, a patented strain (Béjar
et al., 2014), Pseudomonas segetis P6 (Rodriguez et al., 2020b),
Psychrobacillus  vulpis 7Z8 (Rodriguez et al, 2020a) and
Staphylococcus equorum subsp. equorum EN21 (Vega et al,
2019) from saline and hypersaline environments. We examined
the phytopathogenic fungi A. alternata CECT 20560, B. cinerea
(isolated from Vitis vinifera L. and kindly provided by the
Plant Food Research Group, University of Zaragoza, Spain),
Fusarium oxysporum CECT 2159, Fusarium solani [isolated
from Solanum tuberosum and kindly provided by the Andalusian
Agricultural and Fisheries Research and Training Institute
(IFAPA), Cordoba, Spain], Monilinia fructicola, Monilinia laxa
(both isolated from Prunus persica L. and kindly provided by
the Plant Food Research Group, University of Zaragoza, Spain)
and S. sclerotiorum CECT 2769.
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Bacillus velezensis strain XT1 was cultured in nutrient broth
(NB) medium (No. 3 NutriSelect® Plus, Merck) while the other
bacterial strains were cultured in tryptic soy broth (TSB,
Panreac® Applichem) at 28°C and 120rpm in a rotary shaker
unless otherwise stated. Fungal strains were cultured in potato
dextrose agar (PDA, Difco®) medium at 21°C. To produce
bacterial volatile compounds, strains were cultured in tryptic
soy agar (TSA, Panreac® Applichem) medium, Schaeffer’s growth
(SG) medium (Kovacs, 1928) and the medium optimal for
lipopeptide production (MOLP; Ahimou et al., 2000). The pH
of each medium was adjusted to 7.2-7.4 using NaOH 1M
or HCI 1IN.

Gas Chromatography Analysis of Bacterial
Volatile Compounds

The bacterial strains were cultured in flask containing 200 ml
of MOLP, SG or TSB for 24h at 28°C and 120rpm, and the
volatile ~compounds produced were analysed using
HS-SPME-GC/MS according to the procedure described by
Montano et al. (2021). Uninoculated MOLP, SG and TSB
samples were analysed as controls in order to remove natural
occurring volatile compounds from each medium. An aliquot
of each sample (5ml) was inserted into a 15ml glass vial
and 50 pl of internal standard (5-nonanol; 2mgL™") was added.
The vial was closed and placed in a water bath adjusted to
40°C and stirred at 600 rpm using a stirring bar. After 15min
of equilibration, the headspace volatile compounds were
extracted for 30min wusing a divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/PDMS) fibre (2 cm, 50/30 pm;
Supelco, Bellefonte, PA). The volatiles were then desorbed for
15min at 265°C in a GC injector port interfaced with a mass
detector with a scan range of m/z 30-400. Separation was
carried out on a VF-WAX MS capillary column
(30mx0.25mmx0.25pm thickness film) from Agilent
Technologies (Santa Clara, CA, United States). The initial oven
temperature was 40°C (5min), followed by 40-195°C at 3°C
min~' and then held at 195-240°C at 10°C min™" for 15min.
Helium was used as the carrier gas at 1mlmin™" constant
flow. Data processing was carried out using MassHunter software
(Agilent Technologies). The volatile compounds were initially
identified by comparing MS peaks to those in the NIST 17
MS library. The results were then confirmed by comparing
the retention indices to literature data reported for equivalent
columns and to authentic standards when available. The volatile
compounds were quantified by comparison of peak areas to
that of internal standard (5-nonanol). All analyses were done
in duplicate (i.e., two vials for each bacterial strain).

In vitro Antifungal Activity of Bacterial
Volatile Compounds

The effects of bacterial volatile compounds on the mycelial
growth of the fungal phytopathogens A. alternata, B. cinerea,
E oxysporum, F. solani, M. fructicola, M. laxa and S. sclerotiorum
were assessed using the bi-plate Petri dish method (Lim et al,
2017), as well as MOLP, SG and TSA media to assess bacterial
growth. Briefly, 5pl from an overnight culture (10°CFUml™)

of each bacterial strain in NB or TSB was spotted in the
centre of one of the bi-plate compartments. In the other
compartment containing the PDA medium, a mycelium plug
(@ 5mm) of each fungus from a 15day culture was removed
using a sterile cork borer and deposited on the agar bi-plates.
The plates were immediately sealed with a double layer of
Parafilm to prevent volatile leakage and then incubated at 28°C
for 24h followed by incubation at 21°C for 15days. Antifungal
activity was measured by the percentage reduction in the
mycelial growth with the aid of Image] software (Schneider
et al., 2012). The experiments were repeated in triplicate using
bi-plates with sterile liquid medium instead of bacterial inoculum
as control for fungal growth.

In vivo Biocontrol of Fungal
Phytopathogens by Bacterial and
Synthetic Volatile Compounds

In vivo antifungal activity of bacterial volatile compounds,
together with the main synthetic compounds identified by
GC/MS, was analysed in cherry fruits (Prunus avium cv.
Picota) according to the protocol described by Gotor-Vila
et al. (2017) and Gao et al. (2018), since cherry fruits are
the shared host for all fungal pathogens tested. Briefly,
cherries were tap-washed and surface-sterilised by spraying
with 1% (w/v) sodium hypochlorite solution followed by
70% (v/v) ethanol and sterile distilled water. Each fruit was
wounded using a sterile scalpel, and 10pl of each fungal
suspension (10° spore ml™') was deposited. The fruits were
placed in 2L (13x13x12cm) plastic boxes with 20ml of
sterile water-soaked medical gauze (13x13cm). Three
uncovered Petri dishes containing MOLP medium for each
bacterial strain were placed inside the boxes and incubated
at 21°C for 7days. The same protocol was used for testing
the synthetic volatile compounds acetic acid, acetoin,
2,3-butenodiol, dimethyl disulphide (DMDS), isopentanol
and isopentyl isobutanoate using 10 ml glass vials containing
5ml of a solution of each compound (50pm) in sterile
distilled water. Disease incidence and symptom severity were
then determined. Experiments were carried out in triplicate
using five fruits per replicate; negative controls consisted
of a box containing Petri dishes with uncultured media.

Microscopic Analysis of Structural Effects
of Volatile Compounds
Fungal morphology following bacterial VOC treatments (bi-plate
method) was studied using a transmission electron microscopy
(TEM) high-resolution FEI Titan G2 50-300 microscope equipped
with a high angle annular dark field detector. For this purpose,
mycelium blocks were cut into 1x1mm pieces, fixed with
2.5% glutaraldehyde in phosphate buffer (pH 7.2), dehydrated
with an ethanol gradient and embedded in Epon 812 resin.
Thin sections (70nm) were cut with a diamond knife (Leica,
EM UC7, Germany) and stained with 2% uranyl acetate for
10min, followed by 3% lead citrate for 3min.

Untreated fungal samples were used as negative controls
for comparative purposes.
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Statistical Analysis

The Shapiro-Wilk test was used to verify data normality, and
the data were statistically analysed with the aid of the ANOVA
(p<0.05) and Tukey tests using SPSS software. In order to
detect any groupings of volatile compounds based on the
composition of the culture media and the strains, as well as
to identify the main components of each group, the data were
subjected to principal component analysis (PCA) using SIMCA
software version 14.1 (Umetrics, Sweden).

RESULTS

Characterisation of Bacterial Volatile
Compounds Using GC/MS

The VOCs produced by the six bacterial strains, B. atrophaeus
L193, B. velezensis XT1, Peribacillus sp. N3, P. segetis P6, P
vulpis Z8 and S. equorum subsp. equorum EN21, grown in
24h cultures, were identified and quantified using GC/MS
following headspace solid-phase microextraction (HS-SPME).
The culture media MOLP, SG and TSA were tested in order
to determine the impact of their composition on the production
of VOCs and their involvement in antifungal activity. A total
of 87 compounds were identified after analysing the uninoculated
sterile media and each strain culture in all media
(Supplementary Table S1). Butanal, methyl acetate and 2-methyl-
2-butenal compounds, which were found exclusively in MOLP
and TSB uninoculated sterile media, were not also detected
in the cultured media. The remaining 84 compounds were
identified as ketones (21.4%), esters (21.4%), alcohols (15.5%),
carboxylic acids (11.9%), sulphur compounds (11.9%), aromatic
hydrocarbons (10.7%), aldehydes (4.8%), halogenated compounds
(1.2%) and terpens (1.2%).

Principal component analysis was used to detect VOCs
clustering and to determine the relationships between the
bacterial strains and culture media. The principal components
(PCs), which accounted for the largest variations in data points,
were extracted in order to better visualise the data structure
in a reduced dimension. The overall PCA dataset consisted
of a 21 x 87 matrix, with rows representing 21 bacterial cultures
and uncultured media, as well as columns representing volatile
compound concentrations. General PCA (Figure 1) revealed
two main components which, as indicated by the score plot,
accounted for 32% of total variance (Figure 1A). 19.1% of
variance was attributable to principal component 1 (PC1), while
12.9% of variance corresponded to PC2. All culture strains
clearly formed a highly correlated group, except for strain P
vulpis Z8 cultured in MOLP, SG and TSB media and strain
S. equorum EN21 cultured in MOLP medium, which were
segregated from the main group. The PCA loading plot
(Figure 1B) shows that this segregation is mainly associated
with the volatile compounds butyl isobutanoate (80), isopentyl
isobutanoate (82), methanethiol (60), 2-phenylethyl isobutanoate
(87), S-methyl thio-3-methylbutanoate (83), butyl propanoate
(79) and ethyl 2-methylbutanoate (75) produced by strain
P vulpis Z8 for PCI1, while PC2 was mainly associated with

the volatile compounds propanoic acid (29), butyl acetate (33),
hexanoic acid (38), octanoic acid (39), acetic acid (24), butanoic
acid (27), 2,6-diethyl-pyrazine (35) and acetone (1) produced
by strain S. equorum EN21 in the MOLP medium. These
volatile compounds were mostly or exclusively released from
stains P vulpis Z8 and S. equorum EN21 and at very low
levels from other strains.

In order to identify the impact of culture media composition
on volatile compound production, each bacterial strain was
cultured in MOLP, SG and TSB media. Strain B. atrophaeus
L193 produced 25, 22 and 25 volatile compounds in MOLP,
SG and TSB media, respectively, most of which were ketones
and aromatic hydrocarbons. In the case of strain B. velezensis
XT1, the 27, 16 and 27 volatile compounds in MOLP, SG and
TSB media, respectively, also mainly corresponded to ketones
and aromatic hydrocarbons. With regard to strain Peribacillus
sp. N3, a total of 37, 20 and 23 compounds were identified
in MOLP, SG and TSB media, respectively, most of which
were carboxylic acids and ketones. Strain P. segetis P6 produced
21, 10 and 21 volatile compounds, mostly ketones, aromatic
hydrocarbons and sulphur compounds, in MOLP, SG and TSB
media, respectively. In the case of strain S. equorum EN21, a
total of 28, 18 and 21 volatile compounds, mostly alcohols,
carboxylic acids and aromatic hydrocarbons, were detected in
MOLP, SG and TSB media, respectively. Finally, with regard
to strain P vulpis Z8, a total of 40, 22 and 29 compounds,
for the most part esters and sulphur compounds, were identified
in MOLP, SG and TSB cultures, respectively.

The main volatile compounds produced by each strain were
then selected on the basis of two criteria: their absence from
uncultured media and a 2-fold increase in their concentrations
in uncultured media. The volatile compounds selected are
shown in Table 1. High levels of acetoin and 2,3-butanediol
were produced by strains B. atrophaeus L193 and B. velezensis
XT1. Acetoin was synthesised in all media, with particularly
high levels of production in MOLP, while 2,3-butanediol was
only detected in MOLP cultures. Acetic acid was the principal
volatile compound detected when strains Peribacillus sp. N3
and S. equorum EN21 were cultured in MOLP and SG media.
High levels of isopentanol were also produced by S. equorum
EN21 culture in all media, especially TSB. DMDS was the
main volatile compound produced by strain P. segetis P6 when
cultured in SG medium, as well as by strain P. vulpis Z8 when
cultured in all media. High concentrations of isopentyl
isobutanoate were only detected when strain P. vulpis Z8 was
cultured in all media.

Principal component analysis based on intraspecific differences
in medium composition showed a distribution very similar to
that previously obtained even though a higher level of correlation
was observed for PCl and PC2 in each medium
(Supplementary Figure S1).

In vitro Antifungal Activity of Bacterial
Volatile Compounds

The effects of VOCs on the mycelial growth of fungal
phytopathogens A. alternata, B. cinerea, F. oxysporum, E. solani,

Frontiers in Microbiology | www.frontiersin.org

84

November 2021 | Volume 12 | Article 773092


https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Toral et al.

Volatile Compound-Mediated Biocontrol of Phytopathogens

A
|
@cen21 MOLP
10-
g s
o
S @25 MoLp N3
o~ 10}
(@) 0- - 78 148 N2 TED,
a 755:@ @ETSH copt SR @BT1930uELP
PETSISG @G 1388
_ L193 SG
<5
-10- , ‘ | ; ‘ o~
-15 -10 -3 0 5 10
PC1 (19.1%)
B
) o
03893 .,
0.25- o1 o35 347
*30
0.2-
] 028
37 “
0.15-
* 1 i o3 -
D 01- 10212
S ’ o2 '.,'%%3 e
~ 005 85 *3t o5 = °16 -
g 1 228" oz
0 '>/." 27 77 —— °39
] ! ¥ .‘1‘3 o
022
0.05 34
-0.1-
0.15 T T T T 1 T -
-0.25 -0.2 -0.15 -0.1 -0.05 o] 0.05
PC1 (19.1%)
FIGURE 1 | Principal component analysis of volatile compounds obtained using HS-SPME and identified with the aid of GC/MS in B. atrophaeus L193 (L193),
B. velezensis XT1 (XT1), Peribacillus sp. N3 (N3), P. segetis P6 (P6), S. equorum EN21 (EN21) and P, vulpis Z8 (Z8) grown in MOLP, SG and TSB media, as well
as in uncultured control media. (A) Score plot. (B) Loading plot. Each volatile compound, which is assigned a reference number, can be seen in
Supplementary Table S1.

M. fructicola, M. laxa and S. sclerotiorum were assessed using
the bi-plate Petri dish method, in the three-culture media
assayed previously for VOC characterisation.

The highest antifungal activity was observed when strains
were cultivated in the MOLP medium. Thus, volatile compounds
produced by strains B. atrophaeus 1193, B. velezensis XT1 and
P, vulpis Z8 synthesised in the MOLP medium greatly inhibited
the growth of S. sclerotiorum (82, 96 and 56%, respectively),
M. fructicola (42, 37 and 83%) and M. laxa (51, 54 and 15%).
With regard to B. cinerea plates, B. atrophaeus 1193 and B.
velezensis XT1 produced reductions of 27 and 46% in fungal
growth, respectively, while P. vulpis Z8 shows no effect on the
mycelial growth of B. cinerea (data not shown). Fungal growth
inhibition of some bacterial strains cultured in the MOLP

medium is shown in Figure 2. By contrast, no inhibition of
mycelial growth was detected against A. alternata, F. oxysporum
and E solani following exposure to VOCs produced by the
bacterial strains.

In vivo Biocontrol of Fungal
Phytopathogens by Bacterial Volatile
Compounds

To examine in vivo antifungal activity, VOCs produced by
strains B. atrophaeus L193, B. velezensis XT1 and P. vulpis
Z8 cultured in the MOLP medium were assayed in cherry
fruits, together with some of the principal synthetic volatile
compounds characterised by GC/MS. With regard to the
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TABLE 1 | Principal volatile compounds for each strain after culturing in MOLP, SG and TSB media.

Concentration of principal volatile compounds (ugL~")

Sample Cultl.Jre .
medium Acetoin Acetic acid 2,3-butanediol Isopentanol I_Jlmeﬂ?yl . Isopentyl
disulphide isobutanoate
Uninoculated media MOLP - 3.8 (3.0) - - - -
SG - - - - - -
TSA - - - - - -
B. atrophaeus L193 MOLP 174.0 (10.4) 36.9 (7.1) 268.8 (23.0) - - -
SG 60.5 (15.6) 10.0 (6.5) - - - -
TSA 44.5 (0.3) 3.6(1.1) - - - -
B. velezensis XT1 MOLP 111.0 (8.5) 21.9(0.4) 261.7 (49.3) - - -
SG 64.0 (9.6) 6.1 (4.1) - - - -
TSA 60.0 (0.5) 2.1 (0.0 - - - -
Peribacillus sp. N3 MOLP - 32.9 (4.5) - 7.7(0.2) - -
SG - 30.8 (0.4) - - - -
TSA - - - - 5.6 (1.8 -
P, segetis P6 MOLP - - - - 3.6 (0.3 -
SG - - - - 46.1 (2.9) -
TSA - - - 3.1(0.1) - -
P, vulpis Z8 MOLP - - - 6.1(1.1) 88.4 (2.7) 82.5(1.3)
SG - - - - 139.7 (1.5) 27.4 (1.9)
TSA - - - - 140.1 (4.3) 52.0(1.1)
S. equorum subsp. MOLP - 180.2 (17.1) - 34.3(2.1) - -
equorum EN21 SG - 25.6 (1.9) - 73.4 (3.5) - -
TSA - 4.1(2.0) - 110.6 (27.7) - -

Concentrations of each volatile compound are expressed as the mean of two determinations, with standard deviation (SD) indicated in parenthesis — concentration not detected or

insignificant.

percentage of disease incidence, the pathogen M. laxa was
susceptible to VOCs produced by the strains B. atrophaeus
L193 and B. velezensis XT1 (Figure 3). In both cases, the
VOCs reduced disease incidence by over 50% as compared
to the control. For its part, no significant antifungal activity
against M. laxa was produced by P. vulpis Z8 VOCs. Similar
results were obtained with regard to the synthetic volatile
compounds isopentanol and DMDS. A very different scenario
was observed for antifungal activity against the pathogen
M. fructicola, where VOCs produced by B. atrophaeus L193
had no effect, while P. vulpis Z8 completely inhibited this
pathogen’s growth. The VOCs produced by strain B. velezensis
XT1, and the synthetic compound isopentanol, reduced
disease incidence in cherries by 50% as compared to the
infection control, while the pathogen B. cinerea was
completely inhibited by B. atrophaeus L193 VOCs. Similarly,
strains P vulpis Z8 and B. velezensis XT1 reduced the
incidence of B. cinerea by 48 and 62%, respectively. By
contrast, isopentanol and DMDS showed no antifungal
activity against B. cinerea. The quantity of spores from all
pathogenic fungi on the surface of fruits was small and
limited to the wound observed when B. atrophaeus L193,
B. velezensis XT1 and P. vulpis Z8 VOCs were tested
(Supplementary Figure S2). On the other hand, while
isopentanol and DMDS had no effect on disease sporulation
of M. fructicola or B. cinerea, they did have a slight impact
on M. laxa. The synthetic compounds acetoin, acetic acid,
2,3-butanediol and isopentyl isobutanoate did not reduce
the disease incidence or fungal sporulation of any
target pathogens.

Microscopic Analysis of Structural Effects
of Volatile Compounds

To identify structural disorders caused by bacterial VOC
treatment of the phytopathogenic fungi, hyphae were analysed
after a 7day incubation period using TEM. Micrographs of
control fungi show well-organised cell walls, as well as cellular
membranes, while organelles, such as endoplasmic reticula,
abundant mitochondria, nuclei, and vacuoles, can be clearly
observed in most of these micrographs (Figures 4A,D,G). By
contrast, while maintaining the cell wall structure, B. cinerea
hyphae treated with B. velezensis XT1 (Figure 4B) and
B. atrophaeus L1193 volatiles (Figure 4C) showed severe
cytoplasmic cavitation and vacuolation and no organelles were
identified. When M. laxa was exposed to B. velezensis XT1
(Figure 4E) and B. atrophaeus 1193 (Figure 4F) VOCs, the
hyphal membrane and cell walls appeared to be thinner and
degraded, cytoplasmic content was completely coagulated and
no organelles could be identified. These effects were also
observed in M. fructicola hyphae treated with VOCs produced
by the P vulpis Z8 strain (Figure 4H).

DISCUSSION

Bacteria emit VOCs that can inhibit the growth of specific
microbial populations (Larkin and Stokes, 1967; Chaves-Lopez
et al., 2015). These VOCs, which are easily degraded and act
over long distances (Gao et al., 2017), exhibit major advantages
over conventional fungicides. In this study, we examined the
diversity of VOCs produced by extremophilic bacteria and

Frontiers in Microbiology | www.frontiersin.org

86

November 2021 | Volume 12 | Article 773092


https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Toral et al. Volatile Compound-Mediated Biocontrol of Phytopathogens

B. atrophaeus B. velezensis P. vulpis
L193 XT1 Z8

Control

M. laxa M. fructicola S i
sclerotiorum

B. cinerea

FIGURE 2 | /n vitro fungal growth inhibition by bacterial volatile compounds produced by B. atrophaeus L193, B. velezensis XT1 and P, vulpis Z8 when cultured in
MOLP medium using the bi-plate method.

100
%0
80
70
60
50
40

Disease incidence (%)

30
20
10

M. fructicola B. cinerea

M Control MWIC MWL193 mZ8 MXT1 MIsopentanol M DMDS

FIGURE 3 | /n vivo antagonistic activity of volatile organic compounds (VOCs) from B. atrophaeus L193, B. velezensis XT1 and P, vulpis Z8, as well as the synthetic
compounds isopentanol and dimethyl disulphide. The figure shows the disease incidence of cherry fruits artificially inoculated with M. laxa, M. fructicola and

B. cinerea. Control: control treatment without bacterial VOCs or volatile synthetic compounds. IC: pathogen infection control without VOC treatment. Differences
between treatments were tested for statistical significance using Chi-squared test: *(p <0.05), "(p <0.01), **(p <0.001) and ns (not significant).
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FIGURE 4 | Transmission electron micrographs of fungal hyphae after 7 days of bacterial VOC treatment. (A) Untreated B. cinerea. (B) B. cinerea — B. velezensis
XT1 strain. (C) B. cinerea — B. atrophaeus 193 strain. (D) Untreated M. laxa. (E) M. laxa — B. velezensis XT1 strain. (F) M. laxa — B. atrophaeus L.193 strain.
(G) Untreated M. fructicola. (H) M. fructicola — R vulpis Z8 strain. ER, endoplasmic reticulum; M, mitochondria; N, nucleus; and V, vacuole.

their antagonistic activity against certain phytopathogenic fungi.
Their ability to secrete a wide range of antifungal VOCs could
make these bacteria useful in the search for potential biological
agents to control postharvest diseases.

Roughly 2,000 compounds produced by almost 1,000
microorganism species are listed in the MVOC database (Lemfack
et al., 2018; Caulier et al., 2019). We found acetoin, acetic
acid, 2,3-butanediol, isopentanol, dimethylsulfide and isopentyl
isobutanoate to be the principal volatile compounds produced
by the studied strains.

GC/MS analysis showed that high levels of acetoin and
2,3-butanediol are produced by Bacillus strains. Acetoin, which
stimulates induced systemic resistance against Pseudomonas
syringae DC3000 (Sierra, 1957) and plant growth (Kai and
Piechulla, 2009) and is produced by other Bacillus strains (Asari
et al,, 2016; Caulier et al., 2019), is synthesised in all media,
with particularly high levels detected in MOLP medium, while
2,3-butanediol was exclusively found in MOLP cultures. In
addition, the volatile compound 2,3-butanediol is not only
known to promote plant growth (Wu et al., 2019) but also

to induce modifications in the expression of genes linked to
Ralstonia  solanacearum and Pectobacterium carotovorum
pathogenicity (Marquez-Villavicencio Mdel et al., 2011; Tahir
et al.,, 2017).

The antifungal activity of VOCs has been reported to
be associated with functional groups (Sasser, 1990; Chaves-
Lopez et al., 2015). In addition, solute hydrophobicity affects
membrane integrity, which is undermined by the application
of lipophilic compounds. This may affect DMDS, the
principal volatile compound produced by Z8, and could
be responsible for the strong antifungal activity of this
bacterium against Monilia sp. and S. sclerotium. The
antifungal activity of this volatile compound has been
characterised in Bacillus strains (Coosemans, 2005; Caulier
et al, 2019) and in Pseudomonas donghuensis against
Rhizoctonia solani (Ossowicki et al., 2017; Guevara-Avendano
et al, 2019). DMDS, a sulphur-containing compound
produced by Pseudomonas sp., also inhibits Phytophthora
infestans growth and development (De Vrieze et al., 2015;
Guevara-Avendano et al., 2019).
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Acetic acid is the principal volatile compound produced
by strains Peribacillus sp. N3 and S. equorum EN21 when
cultured in MOLP and SG media. Acetic acid has been found
to be an effective antifungal compound in several fruits (Baird-
Parker, 1963; Fuqua et al., 1994), in low concentrations, reduce
B. cinerea and P. expansum germination to zero (Baird-Parker,
1963) and, at a concentration of 50mm significantly inhibit
the growth of the phytopathogenic fungus C. gloeosporioides
(Kang et al, 2003). The inhibition by this organic acid is
closely related to reduced respiration levels rather than to
structural cellular damage. Momma et al. (2006) have described
how the treatments of soil with acetic acid suppress the survival
of R. solanacearum.

In addition, high levels of isopentanol were produced by
strain S. equorum EN21 in all media, especially in TSB. The
antifungal activity of alcohols has been described in previous
studies; for example, the phenol 4-chloro-3-methyl has been
reported to have a strong antifungal effect on Alternaria solani
and B. cinerea (Gao et al, 2017), allyl alcohol inhibits S.
sclerotiorum germination in bean plants (Lim et al, 2017),
while phenylethyl alcohol inhibits the mycelial growth of P,
italicum (Li et al., 2010).

High concentrations of isopentyl isobutanoate/isobutyrate
were only detected when strain P vulpis Z8 was cultured in
all media. To the best of our knowledge, no information
concerning the antifungal activity of this compound, which
could be responsible for the intense antifungal activity of Z8
against M. fructicola o S. sclerotiorum, existed prior to our study.

A group of highly correlated VOCs was clearly identified
for all the strains investigated except for P. vulpis Z8 and S.
equorum EN21. Several studies have analysed volatile metabolites
emitted by clinical Staphylococcus sp. strains (Nasir et al., 2018)
but only one has identified antifungal volatile agents produced
by Staphylococcus pasteuri against the commercial truffle species
Tuber borchii Vittad (Barbieri et al., 2005).

The VOC 2,6-diethyl-pyrazine produced by S. equorum strain
EN21 is involved in segregating this bacterium from other
bacteria. A large proportion of microbial volatiles is pyrazines,
which are produced by many strains such Bacillus subtilis and
are known to exhibit antifungal activity (Chaves-Lopez et al.,
2015; Haidar et al., 2016; Caulier et al., 2019). Some of these
compounds affect the sporulation and elongation of B. cinerea
germ tubes (Chaves-Lopez et al, 2015; Haidar et al, 2016;
Caulier et al.,, 2019), while 2,3,5-trimethylpyrazine antifungal
activity against bacterium Fusarium sp. has also been studied
(Guevara-Avendano et al., 2019).

The antifungal activity of bacterial volatile compounds tested
in vitro demonstrated that strains B. atrophaeus L193, B. velezensis
XT1 and P, vulpis Z8 cultured in MOLP medium significantly
inhibited the growth of S. sclerotiorum and M. fructicola. Strains
B. atrophaeus 1193 and B. velezensis XT1 reduced the growth
of M. laxa and B. cinerea by between 30 and 55%. Species
of the genus Bacillus have been reported to be the most common
producers of bioactive VOCs (Chaves-Lopez et al., 2015). The
in vitro activity of VOCs against the major phytopathogenic
species B. subtilis, Bacillus amyloliquefaciens and B. velezensis
has been studied previously (Chaves-Lopez et al., 2015). However,

few studies have analysed the volatilome produced by B.
atrophaeus, and, to the best of our knowledge, this is the first
study of the antifungal activity of VOCs produced by the
genera Psychrobacillus and Peribacillus.

Our findings show that none of the bacteria tested were
effective against all phytopathogenic fungi. Similar results were
obtained by Chaves-Lopez et al. (2015) in their study of Bacillus
strains. The variations in fungal responses could reflect differences
in the sites of action or in the ability of fungi to detoxify the
metabolites (Chaves-Lopez et al., 2015). Strains Bacillus and
Psychrobacillus, but not B. frigotolerans, showed antifungal
activity against major phytopathogens such Monilinia
and Sclerotinia.

Previous in vitro studies have demonstrated that VOCs
produced by B. velezensis inhibit the growth of B. cinerea and
M. fructicola by over 70% (Gao et al., 2017; Guevara-Avendano
et al,, 2019), which is within the 50-97% range observed in
our study of B. velezensis XT1 and B. atrophaeus 1193. We found
lower levels of antifungal activity against Fusarium for all strains
tested, with a 38% reduction observed following exposure to
VOCs produced by B. atrophaeus strain L193, which is very
similar to the reduction observed for other Bacillus strains
(Yuan et al.,, 2012; Guevara-Avendano et al., 2019). The bacteria
which generally showed the most effective antifungal activity,
B. velezensis XT1 and B. atrophaeus 1193, was found to
be producers of metabolites with antifungal activity, such as
lipopeptides in previous studies (Rodriguez et al., 2018; Toral
et al.,, 2018). Although little is known about VOCs produced
by B. atrophaeus, the volatilome of B. atrophaeus HAB-5 has
been identified which has a moderate antifungal effect on the
common disease of anthracnose caused by the major fungus
C. gloeosporioides (Rajaofera et al,, 2019). No information on
the antifungal activity of volatile compounds produced by
B. atrophaeus against the major phytopathogens analysed existed
prior to our study.

The bacterial genus Pseudomonas is also capable of emitting
VOCs that inhibit the mycelial growth of S. sclerotiorum
(Fernando et al., 2005; Guevara-Avendano et al., 2019), although
the inhibition rate recorded for P. segetis P6 in this study was
very low as compared to the other strains tested. Species of
the genus Staphylococcus are mostly known to cause opportunistic
human diseases, some of which are frequently found in
rhizospheric soil. Although antifungal activity of the bacterium
S. equorum against B. cinerea has been observed (Sadfi-Zouaoui
et al, 2008; Reverchon et al, 2019) to our knowledge, the
VOCs produced by this bacterium have not previously been
described. In our study, the antifungal activity of S. equorum
strain EN21 against E solani was found to be very low, with
a reduction in fungal growth of only 2%. Reverchon et al.
(2019) have shown that VOCs emitted by some Staphylococcus
species, which are capable of inhibiting the growth of F solani
by over 20%, can, however, increase that of F oxysporum.

Overall, our results suggest that the antifungal activity of
VOCs produced by the extremophilic bacteria studied is
dependent on a combination of a limited number of molecules,
while the composition of VOC profiles not only depends on
species but also on the growing medium (Larkin and Stokes, 1967;
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Chaves-Lopez et al., 2015). The differences in proteins and
sugar content in all media reflect differences in the volatilomes
produced, whose composition and functional properties are
known to be influenced by the growth medium (Asari et al,
2016; Lazazzara et al., 2017). The profiles of VOCs obtained
in the present study for different Bacillus strains confirmed
the genetic impact on their composition.

Previous studies have shown that bacterial VOCs can affect
the hyphal growth, sporulation and spore germination of fungi
(Wenke et al., 2010; Asari et al, 2016). Zhou et al. (2019)
have suggested that VOCs produced by B. subtilis permeabilize
fungal spores and inhibit the germination of M. fructicola.
Other studies have highlighted how the fungal hyphae of A.
solani are deformed when treated with VOCs produced by B.
subtilis strains (Zhang et al., 2020b).

The effects of VOCs produced by the strains tested on the
morphology of phytopathogens were evaluated using microscopic
analysis. TEM micrographs of fungi treated with bacterial VOCs
clearly show the impact of antifungal activity, which causes a
marked deterioration in cellular components and cell death
and inhibits fungal growth and development. Some studies
have previously described a similar destruction of fungal
structures and cell death induced by VOCs from Pseudomonas
spp. strains USB2104 and USB2105, as well as Bacillus sp.
USB2103, against S. sclerotiorum (Giorgio et al, 2015), from
B. subtilis CF-3 against M. fructicola (Zhou et al., 2019) and
by synthetic COVs against B. cinerea (Liu et al, 2016). By
contrast, no antifungal activity mediated by VOCs from species
of the genus Psychrobacillus was analysed prior to our study.

We investigated the production of several volatile metabolites
with different types of biological activity. Previous studies have
shown relationships between phytotoxicity and VOCs (Arimura
et al,, 2010). In some cases, terpenic VOCs inhibited or reduced
the germination of seeds of cereals (He et al., 2014). However,
exposure of Arabidopsis thaliana of alcoholic VOCs showed
non-effect on germination (Lee et al., 2014). These studies
highlighted the influence of the origin, dose and application
form in the antimicrobial activity of VOCs. In vivo analyses
described the potential of VOCs emitted by Bacillus sp. to
control postharvest diseases (Zheng et al., 2019). The presence
of residual antibiotics produced by these bacteria in fruits
constitutes an important health risk because the increased
microbial resistance detected in last years (Rashmi et al., 2017).
However, VOCs are naturally occurring (emissions by
microorganisms) at very low concentrations and do not leave
toxic residues on fruit surfaces (Mercier and Smilanick, 2005;
Qin et al, 2017). The biological fumigation with VOCs is an
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Among 200 fungal strains isolated from the soil, only one culture filtrate of Aspergillus
flavus JCK-4087 showed strong nematicidal activity against Meloidogyne incognita. The
nematicidal metabolite isolated from the culture filtrate of JCK-4087 was identified as
cyclopiazonic acid (CPA). Because JCK-4087 also produced aflatoxins, six strains of
Penicillium commune, which have been reported to be CPA producers, were obtained
from the bank and then tested for their CPA productivity. CPA was isolated from the
culture filtrate of P commune KACC 45973. CPA killed the second-stage juveniles
of M. incognita, M. hapla, and M. arearia with ECs0_3 gays 4.50, 18.82, and 60.51
g mL~", respectively. CPA also significantly inhibited egg hatch of M. incognita and
M. hapla after a total of 28 days of treatment with the concentrations > 25 pwg mL~".
The enhancement of CPA production by P commune KACC 45973 was explored using
an optimized medium based on Plackett—-Burman design (PBD) and central composite
design (CCD). The highest CPA production (381.48 g mL~") was obtained from the
optimized medium, exhibiting an increase of 7.88 times when compared with that from
potato dextrose broth culture. Application of the wettable power-type formulation of the
ethyl acetate extract of the culture filtrate of KACC 45973 reduced gall formation and
nematode populations in tomato roots and soils under greenhouse conditions. These
results suggest that CPA produced by P commune KACC 45973 can be used as either
a biochemical nematicide or a lead molecule for developing chemical nematicides to
control root-knot nematodes.

Keywords: cyclopiazonic acid, nematicidal activity, Plackett-Burman, central composite design, response
surface methodology, root-knot nematode

INTRODUCTION

Plant-parasitic nematodes (PPNs) are economic burdens in agriculture, owing to their direct and
indirect damages that lead to crop yield losses (Bogner et al., 2017); they are estimated to cause
an annual yield loss of $173 billion. Root-knot nematodes (RKNs; Meloidogyne spp.) are the most
damaging PPN to various crops (Termorshuizen et al., 2011; Kim et al., 2016; Gamalero and Glick,
2020). RKNs cause nutrient deficiency, stunting, wilting, chlorosis, reduced tillering, immature fruit
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drop, and leaf drying (Moens et al, 2009; Palomares-
Rius et al, 2017). Among several identified RKN species,
Meloidogyne arenaria, M. hapla, M. incognita, and M. javanca
are commonly reported worldwide (Anwar and McKenry,
2010; Jones et al,, 2013; Dong et al, 2014; Kim et al., 2018;
Gamalero and Glick, 2020).

Various chemical nematicides have been used to control
RKNs on different crops worldwide. However, most chemical
nematicides have a broad spectrum of activity, adversely
affecting beneficial soil microbes; they often cause a rapid
resurgence of soil-borne pathogens (Sanchez-Moreno et al.,
2010; Watson et al, 2017). Therefore, developing new,
reduced risk nematicides for RKN control is necessary.
Recently, various biological control agents have been studied
as alternatives to chemical nematicides to control RKNs.
Several bacteria and fungi as biological control agents
have been reported to have nematicidal activities against
RKNs (Martinez-Medina et al., 2017; Ghahremani et al,
2019). Additionally, numerous nematicidal metabolites
from fungal biocontrol agents have been reported for
the control of RKNs, including thermolides A and B,
omphalotins, ophiobolins, bursaphelocides A and B, illinitone A,
speudohalonectriins A and B, dichomitin B, and caryopsomycins
A-C (Degenkolb and Vilcinskas, 2016).

Several secondary metabolites isolated from the genera
Penicillium and Aspergillus exhibit antimicrobial, anticancer,
antiparasitic, insecticidal, and biocontrol activities (El-Hawary
et al., 2020; Toghueo and Boyom, 2020). Furthermore, both these
genera are commonly found in the soil and have been known to
produce various nematicidal metabolites against RKNs (Siddiqui
and Akhtar, 2009; Murslain et al., 2014; Jang et al., 2016). Several
studies have reported that Penicillium commune has potent
inhibitory activity against bacteria such as Staphylococcus aureus,
Pseudomonas fluorescens, P. aeruginosa, Bacillus subtilis, and
Escherichia coli and fungi such as Candia glabrata and C. albicans
(Gao et al,, 2011; Shang et al, 2012; Malhadas et al., 2017).
However, the nematicidal metabolites from P. commune have not
been reported yet.

Optimization of the culture fermentation process is critical
to ensure high productivity at a low cost (Calvo et al., 2002;
Keller, 2019). The production of secondary microbial metabolites
can be enhanced by optimizing physical and chemical conditions
(Yang et al, 2016; Zhang et al., 2020). Optimization can be
performed using a conventional one-factor-at-a-time approach,
a statistical method, or a combination. The conventional
approach entails changing one independent factor or variable
while keeping the other variables stable. It is labor-intensive,
costly, and time-consuming, particularly when many factors are
involved. Conversely, the statistical approach is markedly cost-
effective, time-efficient, and significantly decreases the number
of experimental runs (Rigas et al., 2005 Arul Jose et al,
2013; Nor et al.,, 2017; Singh et al, 2017; Lim et al., 2019).
Three different techniques, such as namely screening, factorial,
and response surface methodology, have been used in the
statistical method in previous research (Hanrahan and Lu,
2006; Bezerra et al., 2008; No, 2013; Singh et al.,, 2017; Lim
et al., 2020). For screening, the most critical variables affecting

maximum response production were identified by the Plackett-
Burman design (PBD). Because PBD focuses on selected main
effects and disregards the interaction between variables, another
step of optimization using a central composite design (CCD)
is required. CCD comprises three parts—a factorial portion,
central points, and star points—that mathematically evaluate
the interactions among various variables and establish the
relationship between response and variables (Raissi and Farsani,
2009; El-Naggar et al, 2016; Kundu et al, 2016; Srivastava
et al., 2018). Even though several studies on the fermentation
process for producing cyclopiazonic acid (CPA) by Aspergillus
flavus and P. commune were conducted in the 1990s using
full factorial design, its production concentrations were low
(Gqaleni et al., 1996, 1997).

Initially, we screened 200 fungal isolates against M. incognita
and found that A. flavus JCK-4087 showed very strong
nematicidal activity. The nematicidal metabolite was
identified as CPA through organic solvent extraction, repeated
chromatography, and instrumental analysis. However, A. flavus
JCK-4087 also produced aflatoxins toxic to mammals (Abnet,
2007; Shephard, 2008; Zain, 2011). Therefore, six strains of
P. commune were obtained from the Korean Agricultural
Culture Collection (KACC), Rural Development Administration,
Republic of Korea, which are known as CPA producers
(Hermansen et al., 1984; Ggaleni et al, 1996; Ostry et al.,
2018), were used in this study. Then, one strain was selected
for further study. This research was performed to evaluate the
potential of CPA as a biochemical nematicide for the control of
root-knot nematode diseases. Therefore, the objectives of this
study were (1) to isolate and identify CPA from the fermentation
filtrate of A. flavus JCK-4087 and P. commune KACC 45973,
(2) to investigate in vitro nematicidal activity of CPA against
RKNs, (3) to optimize culture conditions using PBD and CCD
for CPA production by P. commune, and (4) to evaluate the
disease control efficacy of ethyl acetate layer extracted from
P. commune KACC 45973 against root-knot nematode disease
in tomato plants.

MATERIALS AND METHODS

Root-Knot Nematode Culture and

Preparation

M. incognita was obtained from the Korea Research Institute
of Chemical Technology (Daejeon, Republic of Korea). Both
M. arenaria and M. hapla were kindly supplied by the
National Institute of Agricultural Sciences, Rural Development
Administration (Wanju-gun, Jeollabuk-do, Republic of Korea).
Second-stage juveniles (J2s) were collected from the populations
of M. arenaria, M. hapla, and M. incognita on infected tomato
(Solanum lycopersicum Mill. cv. Seokwang) plants maintained for
at least 2 months at 28 £ 2°C and 75 £ 5% relative humidity
(RH) in a greenhouse at Chonnam National University, Korea.
The infected tomato plants were uprooted and washed with
tap water; the nematode eggs were extracted with 1% sodium
hypochlorite (Jang et al., 2016). Egg suspension was passed
through a 63 pum sieve and then retained in a 25 pm sieve. The
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eggs were washed with distilled water and then hatched using
the modified Baermann funnel method at 28°C within 5 days
(Viglierchio and Schmitt, 1983). Fresh eggs and J2s were used for
further experiments.

Isolation and Identification of Fungal
Strain JCK-4087

The method for isolating 200 fungal strains from soil samples
collected from the Gwangju campus of Chonnam National
University, Sunchang mountain, and Gok-Seong, Korea, was
according to Aziz and Zainol (2018). All the isolated fungal
strains were cultured on potato dextrose broth medium (PDB;
Becton, Dickinson and Company, Sparks, MD, United States) at
25°C with rotary shaking (150 rpm) for 2 weeks and under static
conditions for 3 weeks. Each isolated fungal stock was stored at
—80°C in 25% glycerol until further use. The nematicidal activity
of 200 culture filtrates were tested against second-stage juveniles
(J2s) of M. incognita as previously described (Cayrol et al., 1989;
Nguyen et al., 2018). A fungal strain JCK-4087 was selected
based on its high nematicidal activity against M. incognita
(data not shown).

Total deoxyribonucleic acid (DNA) of JCK-4087 was
extracted and amplified in the internal transcribed spacer
(ITS) region, and a PCR was performed as previously reported
(Nguyen et al, 2019). Amplified fragments were purified
and sequenced at Genotech Crop (Daejeon, South Korea).
Additionally, B-tubulin (Bt2) and calmodulin (Cmd) genes
were amplified using the primer pair Bt2a and Bt2b (Glass
and Donaldson, 1995) and Cmd5 and Cmd6 (Hong et al,
2005), respectively. The result from ITS, Bbt2, and Cmd
sequencing was used to identify JCK-4087 based on the National
Center for Biotechnology Information (NCBI) blast database.
Multiple sequence alignments were generated with Clustal
W and phylogenetic analysis was performed using MEGA
version 6 (with the maximum likelihood method), with 1,000
bootstrapping trials (Hasegawa et al., 1985; Tamura et al., 2013;
Newman et al., 2016).

Extraction and Purification of a

Nematicidal Metabolite From JCK-4087

The JCK-4087 was cultured on a PDB medium at 25°C on a
rotary shaker (150 rpm) for 14 days and then filtered through
four cheesecloth layers to segregate culture filtrate and mycelia.
Then, the culture filtrate (2.8 L) was partitioned twice with
ethyl acetate into a 1:1 ratio (v/v). The crude extract (5.1
g) was loaded onto a chromatography column (3.5 x 60
cm, inner diameter x length) containing silica gel (70-230
mesh, 400 g; Merck, Darmstadt, Germany) and then eluted
with chloroform: MeOH (9:1, v/v), yielding eight fractions
(F1-F8). These eight fractions were tested for J2s mortality
against M. incognita. F8 (315 mg), which exhibited nematicidal
activity, was further separated using Sep-Pak® Vac 35 cc (10
g) C18 cartridge (Waters Corp., Premier, United Kingdom)
with stepwise elution of a mixture of water: methanol (10:0,
9:1, 82, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1.9, 0:10, 50 mL per
mixture), yielding five fractions (F81-F85). F81 (15.6 mg)

showed nematicidal activity against Meloidogyne spp. Thus, one
nematicidal metabolite (1) was purified, and its purity was
evaluated via thin-layer chromatography and high-performance
liquid chromatography (HPLC) using a Shimadzu LC-20AT
HPLC pump and Shimadzu SPD-M20A PDA detector (Shimadzu
Corp., Kyoto, Japan) with a C18 column (Xbridge 5 pm,
4.6 x 250 mm, Waters Corp.).

Structural Determination of a

Nematicidal Metabolite

High-resolution electrospray ionization-mass spectrometry (HR-
ESI-MS) and nuclear magnetic resonance spectroscopy (NMR)
analyses were performed to identify the purified metabolite.
HR-ESI-MS analysis of compound 1 was conducted using a
Synapt G2 HDMS quadrupole time-of-flight mass spectrometer
equipped with an electrospray ion source (Waters Corp.). 'H-
and 3C-NMR, COSY, HSQC, and HMBC were recorded on
Bruker Avance III HD 500 MHz instrument (Bruker Biospin
GmbH, Rheinstetten, Germany) and dissolved in methanol-
d4 (Cambridge Isotope Laboratories, Inc., Andover, MA,
United States). The internal standard for NMR analysis was
tetramethylsilane.

Quantification of Aflatoxins

Quantitative determination of total aflatoxin was carried out
using commercially available Veratox for Aflatoxin ELISA kit
(Neogen Food Safety, Lansing, MI, United States) and measured
on a Microplate Reader (Benchmark Plus; Bio-Rad, Laboratories
Inc., Hercules, CA) at 600 nm (ODgq).

Six Fungal Strains From Korean

Agricultural Culture Collection

The chemical structure of compound 1 produced by JCK-4087
was determined as CPA and then the fungal strain was identified
as A. flavus. Because the fungal strain also produced aflatoxins,
which are very strong carcinogenic mycotoxins, JCK-4087 cannot
be used as a microbial nematicide. Therefore, we obtained six
P. commune strains, known as CPA producers (Hermansen
et al, 1984; Gqaleni et al, 1996; Ostry et al, 2018), from
the Korean Agricultural Culture Collection (KACC). The J2s
mortality of culture filtrates and ethyl acetate extracts of the
six strains was tested against M. incognita as described (Cayrol
et al., 1989; Nguyen et al., 2018). In addition, the production of
CPA in the PDB culture filtrates of the six strains was analyzed
by HPLC as described (Pourhosseini et al., 2020). Based on
the HPLC results and in vitro bioassay, P. commune KACC
45973 was selected and then CPA was also isolated from the
culture filtrate of the fungal strain using the same method as
described above.

Mortality Assay

Compound 1 extracted from P. commune 45973 fungal strain
was evaluated J2s of M. incognita as previously described (Cayrol
et al., 1989; Nguyen et al., 2018). Compound 1 was dissolved in
methanol at a concentration of 30 mg mL™!, and its toxicity was
tested against J2s of M. arenaria, M. hapla, and M. incognita.
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1% Methanol was used as a negative control. J2s mortality was
evaluated after 3 days of treatment and then calculated according
to the following formula (Schneider and Orelli, 1947):

Mortality(%)

Mortality percent of treatment — mortality percent
of untreated control

100 — mortality percent of untreated control

The experiment was conducted with six replicates per
treatment and was performed twice.

Hatching Assay

Compound 1 dissolved in methanol was employed to immerse
approximately 50 egg suspensions of the mixed-development
stage in a 96-well tissue plate (Becton, Dickinson and Company,
Franklin Lakes, NJ) at concentrations of 0, 5, 25, and 50 pg mL ™~ 1
The plates were sealed with parafilm to prevent evaporation and
were kept in a humid chamber at 26 £+ 2°C. The number of
eggs and J2s of the three Meloidogyne spp. were counted at 0
(Do), 3 (D3), 7 (D7), 15 (Dy5), 21 (D31), and 28 (Dag) days after
treatment (Leica DM IL LED; Leica Microsystems CMS GmbH,
Wetzlar, Germany). All the experiments were repeated twice with
six replicates. The following formula was used to calculate the
cumulative percent of egg hatch (Wu et al., 2014):

J2sDx — J2sDo
EggDo

Cumulative percent of egg hatch( %) = x 100

where Dx = x days after the start of the assay.

Plackett-Burman Design

PBD was used to determine nutritional and environmental
variables affecting the production of compound 1 (Plackett and
Burman, 1946). The total number of experiments is n+1, where
n is the number of variables. With 14 medium components
(independent variables) and 20 experimental runs represented in
two levels, the design matrix was used to evaluate independent
factors that affected compound 1 production, as shown in
Table 1. On PBD design, five dummy variables (D1-D5) did
not affect the data analysis used to estimate experimental error
(No, 2013; Phukon et al., 2020). Fourteen different independent
variables were evaluated at two levels of high and low [denoted
by (+1) and (—1, respectively; Table 1]. All the trials were carried
out in triplicate, and the average concentration of compound 1
determined from the peak areas in HPLC chromatogram was
considered the response variable, depending on the first-order
Plackett-Burman model:

Y = Bo+ ZRiXi

where Y is the concentration of compound 1 (the response or
dependent variable), o is the model intercept, i is the linear
coefficient, and Xi is the level of the independent variable.

Response Surface Methodology
The optimal levels of the significant variables and the interactions
of these variables during the production of compound 1 were

TABLE 1 | Coded and actual values of the medium used to produce cyclopiazonic
acid by Penicillium commune KACC 45973 using Plackett-Burman design.

Symbol code Variables Units Code values
-1 1
A NaNO3 gL’ 0 8
B Tryptone gL? 0 8
C Yeast extract gL? 0 8
D Glucose gL’ 0 90
E Starch gL? 0 90
F MgS0y4.7H,0 gL? 0.05 1
G KCL gL’ 0.05 1
H FeS04.7H,0 gL’ 0.001 0.02
J KoHPO,4 gL? 1
K PDB gL’ 0 24
L pH 5 8
M Agitation speed rpm 0 150
N Incubation time Days 14 21
O Inoculum size Plugs 5 10

analyzed by the CCD (Plackett and Burman, 1946; Lim et al.,
2019). CCD was used to analyze three factors (NaNOs, tryptone,
and yeast extract) at five levels [very low, low, intermediate,
high, and very high as coded by numbers (—1.68), (—1), (0),
(1), and (1.68), respectively]. The experiment was performed
in triplicates. The average concentration of compound 1 from
the HPLC analysis was considered the value of the response
or dependent variable. For predicting the optimal point, the
relationship between independent variables and the response or
dependent variable was fitted in the quadratic polynomial of the
second-order model:

Y = Bo+ ZPiXi+ TPiiXi® + TPijXiXj

where Y is the predicted response, o is the regression coefficient,
Bi is the linear coeflicient, Bii is the quadratic coefficient, Bij is
the interaction coeflicient, and Xi is the levels of independent
variables. The interaction and quadratic terms are denoted by the
Xi? and XiXj.

Disease Control Efficacy of the

Wettable-Powder Type Formulation

The wettable-powder type formulation of the ethyl acetate extract
of P. commune KACC 45973 (Pc45973-WP20) was prepared as
previously described (Kim et al., 2018). The ethyl acetate extract
was included in the formulation at a level of 20%. The disease
control efficacy of Pc45973-WP20 was evaluated against tomato
RKN disease caused by M. incognita using pot experiments.
Susceptible tomato cv. Seokwang seeds were planted in nursery
soil (Bunong horticulture nursery soil, Bunong, Korea) and
maintained at 25 + 2°C and 77 & 5% RH for 4 weeks. Pc45973-
WP20 was applied at 250, 500, and 1,000-fold dilutions by soil
drench (20 mL per pot) twice (1 day before and 6 days after
inoculation). A total of 1,500 J2s of M. incognita were inoculated
into four-leaf stage tomato plants in a 9.5 cm diameter plastic
pot containing a pasteurized nursery soil: sand (1:1, v/v) mixture.
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Sunchungtan® containing 30% fosthiazate (SL; Farm Hannong
Co., Seoul, Republic of Korea) was used as a positive control
and applied twice at 4,000-fold dilutions. Distilled water was
used as a negative control. The treated plants were arranged in
a completely randomized design in the greenhouse at 28-33°C.
Their roots were washed with tap water to remove adhered soil
particles 6 weeks after the first application (Nguyen et al., 2018).
Plant growth parameters, such as plant height and fresh weight of
shoot and root, were recorded. Gall index (GI) was used based on
a 0-5 galling scale, where 0 = 0-10%, 1 = 11-20%, 2 = 21-50%,
3 = 51-80%, 4 = 81-90%, and 5 = 91-100% root galls (Barker
et al., 1985). Eggs and ]J2s were extracted from the root system
and soil and counted under an optical microscope (Leica DM
IL LED). Control values of gall index were calculated using the
following equation (Yeon et al., 2019; Rajasekharan et al., 2020):

Control value (%)

(galling index of untreated control

—galling index of treatment) 100
~ galling index of untreated control *

Nematodes were collected from a 100 cm?® soil sample

using the modified Baermann technique and were then counted
(Hajihassani et al., 2019; Kalaiselvi et al., 2019). The experiment
was repeated twice with four replications per treatment.

Statistical Analysis

The repeated measure ANOVA with SAS University Edition (SAS
Institute Inc., Cary, NC) was used to analyze cumulative eggs
hatch bioassay. Probability levels of P < 0.05 were considered
statistically significant. The 50% effective concentration (ECs)
values were calculated by dose-response curves using the
non-linear regression function of GraphPad Prism software
version 8.0 (GraphPad Software, Inc.); these values were used
for determining paralysis activity. Minitab Statistical Software
(version 19, Minitab Inc., United States) was used for optimizing
the statistical experimental design and performing regression
ANOVA. For in vitro experiments, the one-way analysis of
variance (ANOVA) with Tukey’s test was used with SPSS version
23.0 (SPSS Inc., Chicago, IL, United States).

RESUTLS

Identification of Fungal Strain JCK-4078

The fungal strain JCK-4087 was identified as A. flavus
through phylogenetic and BLAST analysis using ITS, Bt2,
and Cmd (Supplementary Figure 1). The ITS, Bt2, and Cmd
sequences of JCK-4087 were deposited in Genbank under the
accession numbers MW786751, MW894649, and MW894650,
respectively. The phylogenetic tree constructed using Cmd
provided better resolution in identifying the strain JCK-4087 than
that constructed using ITS and Bt2.

Nematicidal Activity of Fungal Strains
Three days after treatment, the culture filtrate of A. flavus
JCK-4087 showed killing effects against J2s of M. incognita

with an ECsy value of 3.48% (Supplementary Figure 2).
Aflatoxin was detected at a concentration of 151 ppb in
the culture filtrate of A. flavus JCK-4087 (data not shown).
Conversely, the culture filtrates of P. commune strains obtained
from KACC exhibited weak nematicidal activity against J2s
of M. incognita (Supplementary Figure 3A). However, the
ethyl acetate extracts of the six P. commune strains caused J2s
mortality with ECsq values ranging from 312.5 to 653.3 ug mL™!
(Supplementary Figure 3B).

Isolation and Identification of a

Nematicidal Metabolite

One nematicidal metabolite (compound 1) was purified from the
crude extract of A. flavus JCK-4087. HR-ESI-MS of compound
1 displayed [M + H]T molecular ion peak at m/z 337.15198 in
the positive ion mode and [M + H]™ molecular ion peak at
m/z 335.13750 [M — H] ~ in the negative ion mode, indicating
its molecular formula to be CyoH3oN203; (Supplementary
Figure 4). The UV-visible absorption spectrum of the compound
showed the UV maxima at 223 and 279 nm (data not shown).
NMR data of compound 1 are summarized in Supplementary
Table 1 based on the 'H- and '?C-NMR, COSY, HSQC, and
HMBC spectra. All the instrumental data of compound 1 were
identical to those of CPA (Holzapfel, 1968; Luk et al., 1977;
Lin et al., 2009). Therefore, compound 1 was identified as CPA.
Among the six P. commune strains obtained from KACC, KACC
45973 produced CPA at the highest level (10.5 g mL™!) in
the PDB medium (Supplementary Table 2). Therefore, this
fungal strain was used to further study the isolation of CPA,
optimization of the culture fermentation process, formulation,
and in vivo bioassay.

Mortality and Cumulative Percent of Egg
Hatch of Compound 1 Against
Meloidogyne spp.

The nematicidal activity of CPA was tested against ]J2s of
three Meloidogyne species (M. incognita, M. hapla, and M.
arenaria). Compound 1 was more effective at causing mortality
of M. incognita than of M. arenaria and M. hapla (Table 2). After
3 days, the ECs value of compound 1 against J2s of M. incognita
was 4.5 jLg mL ™. In comparison, the ECsy values of compound
1 against M. arenaria and M. hapla were 60.51 and 18.82 g
mL~1, respectively.

Compound 1 also suppressed egg hatch of the three
Meloidogyne species (Figure 1). The cumulative percentage of
egg hatch of M. incognita and M. hapla at 28 days after exposure
to compound 1 at 25 and 50 g mL™! was significantly lower
than that of the untreated control of M. incognita and M. hapla,
respectively. The egg hatch of M. arenaria was significantly
reduced two times when exposed to only 50 pg mL™! of
compound 1.

Optimization by Plackett-Burman Design

PBD was used to identify the most significant variables affecting
compound 1 production from P. commune strain. Compound
1 was produced in a wide range from 1.5 to 204.2 g mL™ L.
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TABLE 2 | ECs values (ug mL~") for cyclopiazonic acid-induced mortality of
Meloidogyne incognita, Meloidogyne hapla, and Meloidogyne areaniana after 72 h
of nematode immersion in test solution with respective SE and 95% Cl values.

Nematode species ECsp (kg mL~1) SE 95% CI

M. incognita 4.50 0.012 4.472-4.538
M. hapla 18.82 3.70 11.42-33.10
M. arenaria 60.51 10.96 40.15-110.30

ECs0, 50% effective concentration,; SE, standard error; Cl, confidence interval.

Compound 1 production was the highest in run 11, followed by
runs 14 and 17 (167.4 and 130.8 ug mL~ !, respectively; Table 3).

ANOVA, as well as a sum of squares, mean squares, F-value,
t-value, and P-value, were used to test the model’s adequacy.
The statistical significance was determined using the P-value
(probability value). Fisher’s statistical test (F-test) was also used
for evaluating the statistical significance of the model. A model
F-value of 9.49 and a P-value of 0.00 imply that the model is
significant; there was merely a 0.0001% chance that a “Model
F-value” this large could occur because of noise. Based on
the ANOVA analysis, Table 4 indicates that the factor that
contributed the most to compound 1 production is NaNOs,
followed by agitation speed, FeSO4.7H,O, tryptone, and yeast
extract in that order. The remaining variables did not contribute
significantly to CPA production. Out of 14 factors affecting
compound 1 production, only 3 factors—NaNOs3 (A), tryptone
(B), and yeast extract (C)—both positively and significantly
caused an increase in CPA production (Figure 2 and Table 4).
However, both agitation speed (M) and FeSO4.7H,O (H) exerted
significant negative effects.

The value of the coefficient of determination (R?) was 81.85%
of the variability in compound 1 production, indicating that only
18.15% of the total variances do not explain the independent
factors. The high adjusted R* (adj R?) value of 72.23% also points
to the accuracy of the model. The predicted R? (pred R?) value
of 59.16% is in reasonable agreement with the adj R* value of
81.73%. It proved that this model is good at predicting compound
1 production, matching between the observed values and the
predicted response value.

The first-order polynomial Equation (3) was established based
on the results of regression analysis and represents compound

1 production as a function of the independent variables that
deserve the highest response:

Y = 605526 + 471500A + 293603B + 280882C — 81339D
+ 78134E + 82255F 4 40002G — 325196H — 26807]
— 54016K — 11162L — 403865M + 169532N + 1691420
— 219931P + 106629Q + 52084R — 150120S + 101345T(3)

where Y is compound 1 production, and A, B, C,E,E H, ], K, L,
M, N, and O are NaNOs, tryptone, yeast extract, glucose, starch,
MgSO4.7H,0, KCL, FeSO4.7H,0, K;HPOy, PDB, pH, agitation
speed, incubation time, and inoculum size, respectively.

NaNOs3, tryptone, and yeast extract were chosen as the
central points for further optimization using CCD based
on the effect, coeflicient, contribution, and P-value of each
variable, as these factors had the most positive significant effects
on CPA production.

Optimization by Response Surface
Methodology

In this study, a CCD was employed to optimize different levels
of the three main factors (NaNOs, tryptone, and yeast extract)
that affect compound 1 production from P. commune KACC
45973. Based on the experimental data obtained in Table 5, the
concentrations of compound 1 ranged from 1.5 to 343.5 pug
mL~!. The highest concentration of compound 1 produced from
P. commune KACC 45973 (which represented the central point of
CCD), was detected in run 20 (343.5 ug mL~h).

The R?-value of 71.07% indicated that the three independent
factors predicted 71.07% of the total variance in the dependent
variable (compound 1 production) and that the model could not
explain 28.93% of the total variance. In the quadratic model,
the adj R? (62.39%) and pred R?> (51.89%) values were found
with an insignificant lack of fit (P > 0.05). All R?, adj R?,
and pred R? analyses indicated a good agreement between the
experimental and predicted compound 1 and implicated that the
analytical model fitted for stimulation of compound 1 production
by P. commune KACC 45973.

The effects of NaNOjs, tryptone, and yeast extract on the CPA
production were analyzed based on the predicted response for

-+ 5mg/mL
-*- Omg/ml

-¥- 0mg/mL,””

Meloidogyne incognita B Meloidogyne hapla C Meloidogyne arenaria
80 b
* 50 mg/mL el 80 80 b
70 .- b - 50 mg/mL 50 mg/mL ¥
-® 25 mg/mL I i 70 b 70 -
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FIGURE 1 | Effect of cyclopiazonic acid on cumulative percent of egg hatch of Meloidogyne incognita (A), Meloidogyne hapla (B), and Meloidogyne arenaria (C).
Different letters above bars indicate statistical significance based on Tukey—Kramer/Tukey’s HSD test (P < 0.05). Each value represents the mean + standard

deviation of two experiments with three replicates.
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TABLE 3 | Twenty-trial Plackett-Burman experimental design for evaluation of independent variables with coded values along with the observed cyclopiazonic acid.

Run A B C D E F G H J K L M N O D1 D2 D3 D4 D5 Actual value
Area (mAU) Conc.CPA (ng mL—7)

1 11 1 1 1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 878980 73
S T S L L et L T R R R G R T A N BRS¢ 55
3 -1 -1 -1 1 1 1 1 -1 1 -4 -1 1 1 1 -1 1 -1 1 0.0 15
4 11 1 1 -1 1 1 1 1 =1 1 =1 1 -1 -1 -1 -1 -1 1  1434859.7 95.4
5 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 1 2137203 15,5
6 11 1 =1 -1 1 -1 1 1 1 1 =1 =1 111 =11 -1 1174583 9.2
7 11 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1 1 1 -1 759080 6.5
8 11 1 1 1 -1 1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 546133 5.1
9 -1 -1 -1 -1 -1 -1 -1 -1 =1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 328370 37
0 -1 -1 1 1 -1 1 -1 -1 =1 1 1 1 1 1 1 -1 1 -1 -1 0.0 15
11 1 1 -1 11 -1 -1 =1 -1 -1 -1 1 1 1 1 -1 -1 1 30090197 204.2
2 -4 1 1 -1 -1 1 1 1 -1 1 =1 1 -1 1 -1 -1 -1 1 1 1009877 8.1
301 -1 1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 11551883 77.1
41 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 25361940 167.4
5 -1 1 1 -1 1 -1 =1 1 1 1 1 1 1 =1 -1 1 -1 -1 -1 2483043 17.8
% -1 1 1 1 1 1 -1 1 1 -1 -4 =1 -1 -1 1 -1 1 1 -1 0.0 15
701 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 19764943 130.8
8 1 1 -1 1 -1 -1 =14 -1 1 1 =1 1 1 =1 1 -1 -1 1 1 2326763 16.7
19 -1 -1 -1 =1 1 -1 1 1 1 1 =1 -1 1 1 1 -1 1 -1 1 1416.7 1.6
20 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 6819090 46.1

mAU, milli-Absorbance Units; Conc.CFA, concentration of cyclopiazonic acid; D1-D5, dummy1-dummyb.

TABLE 4 | Regression statistics and analysis of variance (ANOVA) for the experimental results of Plackett-Burman design used for cyclopiazonic acid production by
Penicillium commune KACC 45973.

Source Adj SS DF Adj MS F-value p-value Contribution (%)
Model 5.00E+13 19 2.63E+12 9.49 0.00

Linear 5.00E+13 19 2.63E+12 9.49 0.00

A- NaNO3 1.33E+13 1 1.83E+13 48.09 0.00 21.82
B-Tryptone 517E+12 1 517E+12 18.65 0.00 8.46
C-Yeast extract 4.73E+12 1 4.73E+12 17.07 0.00 7.75
D-Glucose 3.97E+11 1 3.97E+11 1.43 0.24 0.65
E-Starch 3.66E+11 1 3.66E+11 1.32 0.26 0.60
F-MgSQ,4.7H,O 4.06E+11 1 4.06E+11 1.46 0.23 0.66
G-KCL 96010720299 1 96010720299 0.35 0.56 0.16
H-FeSO4.7H, O 6.35E+12 1 6.35E+12 22.88 0.00 10.38
J- KoHPO, 43118201686 1 43118201686 0.16 0.69 0.07
K-PDB 1.75E+11 1 1.75E+11 0.63 0.43 0.29
L-pH 7475950426 1 7475950426 0.03 0.87 0.01
M-Agitation speed 9.79E+12 1 9.79E+12 35.29 0.00 16.01
N-Incubation time 1.72E+12 1 1.72E+12 6.22 0.01 2.82
O-Inoculum size 1.72E+12 1 1.72E+12 6.19 0.01 2.81
P-Dummy 1 2.90E+12 1 2.90E+12 10.46 0.00 4.75
Q-Dummy 2 6.82E+11 1 6.82E+11 2.46 0.12 1.12
R-Dummy 3 1.63E+11 1 1.63E+11 0.59 0.44 0.27
S-Dummy 4 1.35E+12 1 1.835E+12 4.87 0.038 2.21
T-Dummy 5 6.16E+11 1 6.16E+11 2.22 0.14 1.01
Error 1.11E+13 40 2.77E+11

Total 6.11E+13 59

R2, 81.85%, Adj R?, 73.23%; Pred R?, 59.16%; SS, a sum of a square; MS, mean square; DF, degree of freedom; F, Fisher’s function; F, level of significance.
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FIGURE 2 | The main effects of the variables (A) and Pareto chart of the standardized effects of 14 variables design at a 95% confidence level (B) and the normal
plot of the standardized effects of 14 variables design at a 95% confidence level (C) of a Plackett-Burman design for cyclopiazonic acid production by Penicillium
commune KACC 45973.
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TABLE 5 | Matrix of the central composite design and the corresponding experimental and predicted concentrations of cyclopiazonic acid produced by Penicillium

commune KACC 45973.

StdOrder Run Variables Area (mAU)
A B (o] Experimental Predicted

1 1 -1 -1 —1 0.00 469312.00
6 2 1 -1 1 657723.33 1344140.00
10 3 1.68179 0 0 3272122.00 3477750.00
5 4 -1 -1 1 1221872.67 1352719.00
16 5 0 0 0 3315119.33 3307446.00
15 6 0 0 0 3516230.33 3307446.00
20 7 0 0 0 4343611.00 3307446.00
19 8 0 0 0 2572035.67 3307446.00
17 9 0 0 0 4053908.33 3307446.00
3 10 -1 1 —1 862777.33 166334.00
1 11 0 —1.6818 0 296348.67 —26798.40
13 12 0 0 —1.6818 0.00 660673.00
9 13 —1.6818 0 0 0.00 —25874.20
12 14 0 1.68179 0 4334571.00 4671898.00
18 15 0 0 0 2211776.00 3307446.00
2 16 1 -1 -1 2349285.67 1599046.00
4 17 1 1 -1 4482329.00 4341456.00
7 18 —1 1 1 3691986.33 4198043.00
14 19 0 0 1.68179 4483061.00 386568.00
8 20 1 1 1 5229002.33 4984819.00
Variables Code symbol Code values

—1.68 -1 0 1 1.68
NaNO3 A 0 2 5 8 11
Tryptone B 0 5 8 11
Yeast extract C 0 5 8 11

StdOrder, standard order; mAU, milli-Absorbance Units.
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