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The preprocessing of functional magnetic resonance imaging (fMRI) data is necessary to remove unwanted artifacts and transform the data into a standard format. There are several neuroimaging data processing tools that are widely used, such as SPM, AFNI, FSL, FreeSurfer, Workbench, and fMRIPrep. Different data preprocessing pipelines yield differing results, which might reduce the reproducibility of neuroimaging studies. Here, we developed a preprocessing pipeline for T1-weighted structural MRI and fMRI data by combining components of well-known software packages to fully incorporate recent developments in MRI preprocessing into a single coherent software package. The developed software, called FuNP (Fusion of Neuroimaging Preprocessing) pipelines, is fully automatic and provides both volume- and surface-based preprocessing pipelines with a user-friendly graphical interface. The reliability of the software was assessed by comparing resting-state networks (RSNs) obtained using FuNP with pre-defined RSNs using open research data (n = 90). The obtained RSNs were well-matched with the pre-defined RSNs, suggesting that the pipelines in FuNP are reliable. In addition, image quality metrics (IQMs) were calculated from the results of three different software packages (i.e., FuNP, FSL, and fMRIPrep) to compare the quality of the preprocessed data. We found that our FuNP outperformed other software in terms of temporal characteristics and artifacts removal. We validated our pipeline with independent local data (n = 28) in terms of IQMs. The IQMs of our local data were similar to those obtained from the open research data. The codes for FuNP are available online to help researchers.

Keywords: functional magnetic resonance imaging, data preprocessing, volume- and surface-based preprocessing, fully automated software, fusion of existing software


INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a useful tool for exploring brain functions non-invasively. The preprocessing of raw fMRI data is an essential step before performing further analyses because of the following reasons. First, fMRI measures spontaneous fluctuations of blood oxygen-level dependent (BOLD) signals that are related to neuronal activities. However, BOLD signals contain non-neuronal contributions, such as head motion, physiological contributions, tissues outside the scope of interest, and MRI-induced artifacts, as well as neuronal signals (Murphy et al., 2013; Bright and Murphy, 2015; Caballero-Gaudes and Reynolds, 2017). The non-neuronal components in BOLD signals complicate the interpretation of fMRI signals. Secondly, the quality of fMRI data largely depends on the image acquisition parameters used. Different MRI data might have a different range of intensity values, matrix sizes, and orientations depending on the acquisition parameters used. Thus, preprocessing steps for fMRI data are required to handle these issues.

In previous studies, researchers have developed freely available open-source neuroimaging data preprocessing tools, such as statistical parametric mapping (SPM)1, analysis of functional neuroimages (AFNI) (Cox, 1996), FMRIB software library (FSL) (Jenkinson et al., 2012), FreeSurfer (Fischl, 2012), Workbench (Marcus et al., 2013), and fMRIPrep (Esteban et al., 2019). These are widely used software tools, but each one of them employs a different strategy for data preprocessing. SPM and FSL provide fully automated graphical user interface (GUI)-based preprocessing pipelines and are suitable for volume data. FreeSurfer is suitable for surface data and provides a fully automated command line-based pipeline. AFNI and Workbench process both volume and surface data, but they do not provide a fully automated pipeline in a user-friendly interface. Users need to rearrange different functions in these disparate software tools if they seek to implement automatic data preprocessing. Different data preprocessing strategies across different software packages might yield differing results, which might reduce the reproducibility of the neuroimaging studies. The fMRIPrep is a recent development incorporating many of the state-of-the-art MRI preprocessing steps.

There are many steps in a given preprocessing pipeline, including field inhomogeneity correction, motion correction, registration, and segmentation steps. Many of these steps are standardized, but some of them are still being actively developed and refined to better preprocess fMRI data. For example, many researchers argue that cortical signals are better handled via surface-based approaches, while sub-cortical signals are better handled via volume-based approaches (Glasser et al., 2013, 2016a,b). Data-driven approaches, such as independent component analysis (ICA), to identify unwanted signals are being increasingly adopted (Salimi-Khorshidi et al., 2014; Pruim et al., 2015a,b). Time-series volume data with large head movements are sometimes removed based on frame-wise displacement (FD) (Power et al., 2012; Damaraju et al., 2014; Yeo et al., 2015). To the best of our knowledge, no single software package has all the recent developments fully incorporated. Thus, neuroimaging researchers are forced to integrate different components of various software packages if they seek to adopt all the recent developments in fMRI preprocessing.

Here, we propose a novel software for fMRI data preprocessing, named FuNP (Fusion of Neuroimaging Processing) pipelines, a wrapper software that combines components of existing software tools (i.e., AFNI, FSL, FreeSurfer, and Workbench) to fully incorporate recent developments in MRI preprocessing. Such wrapper software might be of practical impact for researchers with limited data processing background. Our software consists of preprocessing steps for structural (T1-weighted MRI) and functional (fMRI) data. We assessed the reliability of our software by comparing resting-state networks (RSNs) obtained using FuNP with pre-defined RSNs because it is difficult to obtain the ground truth of the preprocessing results. In addition, the quality of the preprocessed data was assessed using the image quality metrics (IQMs) proposed in the previous paper (Esteban et al., 2017). The major advantages of our software are as follows. FuNP can handle both volume- and surface-based preprocessing. The software is fully automated and has a user-friendly GUI.



MATERIALS AND METHODS

FuNP provides two different types of fMRI preprocessing steps: (1) volume-based and (2) surface-based preprocessing pipelines. Both preprocessing pipelines include steps to process structural (T1-weighted MRI) and functional (fMRI) data. In the volume-based pipeline, data are preprocessed in 3D volume space. Volume-based analysis has been widely adopted in many neuroimaging studies. In the surface-based pipeline, data are preprocessed both in volume and surface spaces. The surface-based pipeline operates in 2D surface space but requires intermediate outcomes from volume analyses. In this pipeline, the cortical regions are represented as a 2D surface, while the sub-cortical regions are represented as a 3D volume. This mixing of surface and volume spaces is a recent development, and some researchers have claimed that it can improve the sensitivity of neuroimaging studies (Glasser et al., 2013, 2016a,b). Our software provides flexibility to perform each of the preprocessing steps. Users can select “Yes” or “No” options for every step in our software to selectively perform the steps as required. Furthermore, users can select user specified parameters for each step. For example, the degrees of freedom (DOF) and cost functions for registration could be specified in the GUI. Details of each preprocessing steps can be found in following sections.

Volume-Based T1-Weighted MRI Data Preprocessing

The volume-based preprocessing steps for T1-weighted structural data are presented in Figure 1.
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FIGURE 1. Diagram of the preprocessing steps for volume-based (A) T1-weighted structural MRI and (B) fMRI data.



De-Oblique

During data acquisition, the scan angle is sometimes tilted from the horizontal line (i.e., between the anterior and posterior commissure) to cover the whole brain and to avoid MRI-induced artifacts caused by air and water in the eyes and nose (Figure 2A). Such a tilted scan is referred to as an oblique scan. Oblique scans enable us to acquire data with less noise, but can make the registration between two different images more difficult. Thus, a de-oblique process needs to be performed. De-oblique is performed using the “3drefit” function in AFNI (Cox, 1996).
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FIGURE 2. Preprocessing steps for volume-based T1-weighted structural MRI data. (A) De-oblique step. Example images of (left) tilted and (right) non-tilted data are shown. (B) Matched data with different orientations to the same orientation. (C) Magnetic field inhomogeneity correction. (D) Non-brain tissue removal. (E) Registration onto the standard space. (F) Segmentation of brain tissues into gray matter (GM; red), white matter (WM; yellow), and cerebrospinal fluid (CSF) (blue).



Re-orientation

The orientation of data depends on the settings of the data acquisition process (Figure 2B). Differences in orientation might lead to mis-registration, and thus all data should be matched to have the same orientation. Orientation is specified with a three-element vector: (1) left or right, (2) anterior or posterior, and (3) superior or inferior. For example, if the right, posterior, and inferior directions are chosen, the orientation of the data is called RPI. Orientation can be defined in any way but should be the same for all data. Re-orientation is performed using the “3dresample” function in AFNI (Cox, 1996).

Magnetic Field Inhomogeneity Correction

The brain consists of different tissues, namely gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The magnetic field within the scanner should be constant but, in reality, it decreases when it encounters brain tissue, and the decreasing rate differs across different tissue types (Cheng et al., 2017). This phenomenon is referred to as magnetic field inhomogeneity. These differences in the magnitude of the magnetic field cause abnormally bright and dark areas, which make it difficult to detect tissue boundaries (Figure 2C). Thus, magnetic field inhomogeneity correction should be performed before the non-brain tissue removal and tissue segmentation steps. Magnetic field inhomogeneity correction is performed using the “3dUnifize” function in AFNI by making intensity values in WM more homogeneous (Cox, 1996).

Non-brain Tissue Removal

The region of interest (ROI) of neuroimaging studies lies within the brain. Non-brain tissues, such as those of the skull, neck, eyes, nose, and mouth, are thus not important (Figure 2D). The non-brain tissue removal step is performed by considering the gradient of the intensity values across different types of tissues. Non-brain tissue removal is performed using the “3dSkullStrip” function in AFNI (Cox, 1996).

Registration

Registration is the process of aligning images from different geometric spaces to a common space (Figure 2E). There are three main components of registration. First, a spatial geometric transformation needs to be specified. The 3D transformation parameters are translation, rotation, scaling, and shearing in the x-, y-, and z-directions. Rigid-body transformation consists of six DOF, involving three translations and three rotations, while affine transformation consists of 12 DOFs involving three scaling and three shearing factors in addition to the rigid-body parameters, which we adopt in FuNP. Secondly, a cost function that measures the goodness of alignment has to be specified. In FuNP, users can select either the correlation ratio or mutual information as the cost function. The correlation ratio is useful when registering two images of the same modality, while mutual information is useful for images from different modalities. Finally, an interpolation method has to be specified. In FuNP, the trilinear interpolation technique is used. Registration is performed using the “flirt” function in FSL (Jenkinson et al., 2012).

Segmentation

It has been shown that the fluctuations of time series in GM are associated with neuronal signals, while those in WM and CSF are related to artifacts (Salimi-Khorshidi et al., 2014). Thus, distinguishing between GM, WM, and CSF tissues is important for extracting signals of interest. The Gaussian mixture model distribution is used for discriminating between GM, WM, and CSF tissues (Figure 2F). Segmentation is performed using the “fast” function in FSL (Jenkinson et al., 2012).

Volume-Based fMRI Data Preprocessing

The volume-based preprocessing steps for fMRI data are presented in Figure 1.

Removal of the First N Volumes

The de-oblique and re-orientation steps are first performed on fMRI data as described in Section “Volume-Based T1-Weighted MRI Data Preprocessing.” The next step is to remove the first few volumes. When a magnetic field is applied to the brain, hydrogen molecules are aligned in the direction of the magnetic field. It takes from 5 to 6 s for these molecules to approach to the steady state, and thus the volumes acquired during the first few seconds (typically 10 s) have to be removed (Figure 3A) (Bright and Murphy, 2015; Bijsterbosch et al., 2017). This process is performed using the “fslroi” function in FSL (Jenkinson et al., 2012).


[image: image]

FIGURE 3. Preprocessing steps for volume-based fMRI data. (A) Removal of the first few volumes. (B) Slice timing correction. (C) Head motion correction (left) and volume scrubbing (right). (D) Intensity normalization. (E) Two-stage registration. (F) Nuisance variable removal via ICA-FIX. (G) Temporal filtering. (H) Spatial smoothing.



Slice Timing Correction

Slice timing correction is performed to correct the time differences at which each slice was acquired. For example, as shown in Figure 3B, the time of the signal evoked at slice 8 is shifted toward that of slice 4 to match the starting time. The shifted signal is then interpolated. Because the slice timing correction approach uses interpolation, it causes a temporal smoothing effect, which might cause loss of information. Thus, this step is not recommended if the repetition time (TR) of the fMRI data is short (<1 s) (Bijsterbosch et al., 2017). Slice timing correction is performed using the “slicetimer” function in FSL (Jenkinson et al., 2012).

Motion Correction and Volume Scrubbing

Participants are instructed not to move their heads during an MRI scan. However, there are always unavoidable head movements, and thus the data becomes corrupted with motion-related artifacts. Thus, head motion correction should be performed on all fMRI data. Motion correction is performed by registering all volumes to a reference volume via a rigid-body transformation (Figure 3C). The reference volume can be any volume, but typically the first or middle volume of the whole data is selected. The next step is to remove volumes with severe head motion. This approach is referred to as volume scrubbing (Power et al., 2012). As the rigid-body transformation is used, three translation parameters (with their units in millimeters) and three rotation parameters (with their units in degrees) are calculated. These six motion parameters are used to calculate FD, which measures the degree of head motion (Power et al., 2012). Volumes whose FD exceed 0.5 mm are considered to have severe head motions and are thus removed. Volumes with severe head motion are detected using the “fsl_motion_outliers” function and motion correction is performed using the “mcflirt” function in FSL (Jenkinson et al., 2012).

Field Map Correction

After head motion correction, field inhomogeneity correction can be performed. This step requires the collection of a dedicated field map. However, many neuroimaging studies, especially older ones, did not collect field map data and thus we make this step optional. This was intentional so that our software could be applied to many existing neuroimaging studies. If a certain study has a field map-corrected EPI data (e.g., computed using FSL), the user can supply this data as an optional input to our software and the program will proceed with the rest of the pipeline using the field map-corrected data.

Intensity Normalization

Because MRI data does not have a specific unit, different MRI data might have different ranges of intensity values. Intensity normalization is performed to standardize the range of intensity values across all 4D volumes with a specific value (Figure 3D). In FuNP, a value of 10,000 is used. Intensity normalization is performed using the “fslmaths” function in FSL (Jenkinson et al., 2012).

Registration

Unlike T1-weighted structural MRI data, the resolution of fMRI data is lower and has lower inter-tissue contrast. Thus, it is difficult to directly register fMRI data to the standard space. In FuNP, two-stage registration is adopted (Figure 3E) (Jenkinson et al., 2012; Glasser et al., 2013). Low-resolution fMRI data is registered onto high-resolution preprocessed T1-weighted structural MRI data of the same subject via a rigid-body transformation. The T1-weighted structural MRI data is then registered onto the standard space via an affine transformation. The two transformation matrices are concatenated and then applied to the fMRI data to register them onto the standard space. Registration is performed using the “flirt” function in FSL (Jenkinson et al., 2012).

Nuisance Variable Removal

The fMRI data contains both signal and noise components. The noise components include head motion, WM, CSF, cardiac pulsations, and arterial and large vein-related contributions. The noise components can be removed via ICA-FIX (Figure 3F) (Salimi-Khorshidi et al., 2014). ICA is a method for decomposing fMRI signals into a set of spatially independent components (ICs) (Beckmann and Smith, 2004; Beckmann et al., 2005). The computed ICs are further classified into signal and noise components considering their temporal and spatial features (Salimi-Khorshidi et al., 2014). This classification procedure is performed using a hierarchical classification model described in a previous study and it successfully removed artifacts (Salimi-Khorshidi et al., 2014). There are automatic methods to classify ICs, but their performance can be unreliable at times (Kelly et al., 2010; Griffanti et al., 2017). Thus, a manual approach to classify ICs is recommended. The following three major aspects have to be considered to distinguish between signal and noise components. First, spatial maps of signal components largely overlap with GM, while those of noise components overlap with WM, CSF, and blood vessels (Kelly et al., 2010; Griffanti et al., 2017). Secondly, the time series of signal components are relatively stable without sudden spikes (Kelly et al., 2010; Griffanti et al., 2017). Components with sudden isolated spikes in their time series are often classified as head motion-related artifacts. Finally, the frequency spectrum of signal components usually occupies the low-frequency range (<0.1 Hz), while that of noise components occupies a variable band (Kelly et al., 2010; Griffanti et al., 2017). Once the noise components are defined, they are regressed out from the original fMRI data. Nuisance variable removal is performed using the “fix” function in FSL (Jenkinson et al., 2012). The FuNP uses the pre-trained datasets that were trained using different image acquisition settings provided by the FSL team2. Thus, the users do not need to manually train their data but choose from one of the several choices that best suits the input data.

Temporal Filtering

The signals of interest of fMRI data are known to exist in the low-frequency range (<0.1 Hz) (Biswal et al., 1995; Boubela et al., 2013). However, extremely low-frequency signals (<0.01 Hz) are considered as slow drifts (i.e., non-neuronal signals) (Biswal et al., 1995; Boubela et al., 2013). Thus, band-pass filtering with a frequency range between 0.009 and 0.08 Hz is widely used to capture the signals of interest (Figure 3G). The cut-off frequencies are slightly different across studies, but filtering ranges of 0.008–0.09 Hz and 0.01–0.1 Hz are typically considered (Biswal et al., 1995; Margulies et al., 2010; Yeo et al., 2011; Boubela et al., 2013). In FuNP, users can select either low-pass, high-pass, or band-pass filters with user-set cut-off frequencies. Temporal filtering is performed using the “3dFourier” function in AFNI (Cox, 1996).

Spatial Smoothing

Spatial smoothing is achieved by calculating the weighted average over neighboring voxels using a Gaussian kernel and yields blurred data (Figure 3H). The full width at half maximum (FWHM) of the kernel is usually set as two times the voxel size (Worsley and Friston, 1995; Mikl et al., 2008). Spatial smoothing offers the advantage of reducing noise, but it also can lower the intensity of the signal. Therefore, researchers need to proceed with caution when applying spatial smoothing. Spatial smoothing is performed using the “3dmerge” function in AFNI (Cox, 1996).

Surface-Based T1-Weighted MRI Data Preprocessing

The surface-based preprocessing steps of MRI data contain both volume and surface processing steps. This is because the surface processing steps require output from the volume processing steps. The required volume processing steps are largely the same as those described in the previous sections. The surface-based preprocessing steps for T1-weighted structural data is presented in Figure 4. Initial surface-based preprocessing is performed using the “recon-all” function in FreeSurfer (Fischl, 2012). For volume processing, magnetic field inhomogeneity correction, non-brain tissue removal, intensity normalization, segmentation, and registration are performed. For surface processing, white and pial surfaces are generated. The white surface is located between WM and GM, while the pial surface is located between GM and CSF. These white and pial surfaces are generated by following the boundaries between different tissues. The surfaces are then inflated to spheres, and spherical registration between the T1-weighted structural data and the standard space is performed. The surfaces constructed using FreeSurfer are adjusted to obtain accurate surfaces using Workbench as follows (Marcus et al., 2013). The T1-weighted volume data preprocessed using FreeSurfer are registered onto the standard space via an affine transformation. Afterward, the transformation matrix is applied to the white and pial surfaces to register them onto the standard space. These surfaces are then averaged to generate a mid-thickness surface, which is in turn used to generate an inflated surface. The spherical surface is finally registered onto a 164k vertex mesh and then down-sampled to a 32k vertex mesh.
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FIGURE 4. Diagram of the preprocessing steps for surface-based (A) T1-weighted structural MRI and (B) fMRI data.



Surface-Based fMRI Data Preprocessing

The surface-based preprocessing steps for fMRI data also contain volume and surface processing steps. The volume preprocessing steps are the same as those described in Section “Volume-Based fMRI Data Preprocessing” except for spatial smoothing (Figure 4). Spatial smoothing is only performed to subcortical areas and not to cortical areas. The surface-based preprocessing steps are performed using Workbench and FSL (Jenkinson et al., 2012; Marcus et al., 2013). The preprocessed fMRI cortical volume data are converted into surface data to define vertices within the GM ribbon using a cortical ribbon-constrained algorithm (Glasser et al., 2013). Voxels with high variation in their time series (>0.5 standard deviation [SD] of the mean variation of other voxels in a 5-mm neighborhood) are not converted into a surface because they usually contain large blood vessels (Glasser et al., 2013). Surface smoothing on the cortical areas is applied with a FWHM value of twice the voxel size (Worsley and Friston, 1995; Mikl et al., 2008).

Experiments

The reliability of the developed software was assessed by constructing RSNs using preprocessed resting-state fMRI (rs-fMRI) data obtained from the Human Connectome Project (HCP) database (Van Essen et al., 2013). We hypothesized that if the data were preprocessed properly, the obtained RSNs should be consistent with existing known RSNs. To compare the quality of the preprocessed data from FuNP and other software, we compared our results with those from volume-based preprocessing pipeline using FSL (Jenkinson et al., 2012) and fMRIPrep (Esteban et al., 2019). The IQMs proposed in the previous paper (Esteban et al., 2017) were calculated from the preprocessed data of three different software packages (i.e., FuNP, FSL, and fMRIPrep).

Participants and Imaging Data

The data used in this study came from two sources. The first dataset was obtained from the HCP database. We used all the data in the Q3 release version which had both T1-weighted and rs-fMRI data, which led to 90 healthy subjects (58% female) (Van Essen et al., 2013). The mean age was 28.74 with an SD of 3.42. The Institutional Review Board (IRB) of Sungkyunkwan University approved this retrospective study, and it was performed in full accordance with local IRB guidelines. All participants provided written informed consent. All imaging data were obtained using a Siemens Skyra 3T scanner at Washington University. The imaging parameters of the T1-weighted structural data were as follows: TR = 2,400 ms; echo time (TE) = 2.14 ms; field of view (FOV) = 224 mm × 224 mm; voxel size = 0.7 mm isotropic; and number of slices = 256. The imaging parameters for rs-fMRI were as follows: TR = 720 ms; TE = 33.1 ms; FOV = 208 mm × 180 mm; voxel size = 2 mm isotropic; number of slices = 72; and number of volumes = 1,200.

An additional 28 T1-weighted structural MRI and rs-fMRI data of healthy subjects (100% female) were recruited from Sungkyunkwan University to assess the reproducibility of our software. The mean age was 23 with an SD of 2.09. All subjects provided written informed consent according to the procedures approved by the IRB of Sungkyunkwan University. The imaging data were obtained using a Siemens Skyra 3T scanner at Sungkyunkwan University. The imaging parameters of the T1-weighted structural data were as follows: TR = 2,400 ms; TE = 2.34 ms; FOV = 224 mm × 224 mm; voxel size = 0.7 mm isotropic; and number of slices = 224. The imaging parameters for rs-fMRI were as follows: TR = 1,000 ms; TE = 39.8 ms; FOV = 224 mm × 224 mm; voxel size = 2 mm isotropic; number of slices = 72; and number of volumes = 360.

RSN Construction

RSNs were defined via an ICA approach (Minka, 2000; Himberg and Hyvärinen, 2003; Beckmann and Smith, 2004; Beckmann et al., 2005; Calhoun et al., 2009). Volume-based preprocessed rs-fMRI data were temporally concatenated across all subjects and fed into the “melodic” function in FSL (Beckmann and Smith, 2004; Beckmann et al., 2005; Jenkinson et al., 2012). The number of dimensions was automatically determined via principal component analysis (PCA) (Minka, 2000; Beckmann and Smith, 2004; Beckmann et al., 2005). The generated volume-based ICs (VICs) were classified as signal and noise components via visual inspection (Kelly et al., 2010; Griffanti et al., 2017). The signal VICs were compared with known RSNs via cross-correlation to see whether the generated VICs were similar to the pre-defined RSNs (Smith et al., 2009).

Surface-based preprocessed rs-fMRI data were handled using the ICASSO approach on the temporally concatenated voxel-wise time series across all subjects3 (Himberg and Hyvärinen, 2003). This was done because FSL cannot perform ICA on surface-based preprocessed rs-fMRI data. The generated surface-based ICs (SICs) were visually compared with the known RSNs because there are no openly available RSN data in surface format.

Comparison With Other Software

We compared the results of FuNP with those from volume-based preprocessing pipeline using FSL (Jenkinson et al., 2012) and fMRIPrep (Esteban et al., 2019). The comparison was limited to volume-based approaches as FSL did not provide surface-based results. The preprocessing steps of FSL were as follows: the first 10 s volumes were removed and head motion was corrected. The non-brain tissue was removed using the temporally averaged fMRI data. The noise reduction process was performed using a non-linear filtering. The intensity normalization, high-pass filtering, and spatial smoothing were applied. The fMRI data were registered onto the T1-weighted structural data and then consequently onto the MNI standard space. The preprocessing steps of fMRIPrep were as follows: a reference volume and its skull removed data were generated. Head motion and susceptibility distortions were corrected. The distortion corrected data were registered onto the T1-weighted structural data and then consequently onto the MNI standard space. The nuisance variables including head motion, physiological regressors, and global signals of WM, CSF, and the whole brain were removed. The ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA) was performed to remove the head motion-related artifacts (Pruim et al., 2015b). High-pass filtering was applied and then volumetric resampling configured with Lanczos interpolation was applied to minimize the smoothing effect. The quality of the preprocessed data was assessed using the IQMs proposed in the previous paper (Esteban et al., 2017). The IQMs that assess the temporal information were (1) SD of DVARS (D means temporal derivative of time series, VARS means root mean square variance over voxels) that measures the rate of BOLD signal changes and (2) temporal signal-to-noise ratio (tSNR). The IQMs that assess the artifacts were (1) mean FD that measures the amount of displacement of the head motion, (2) percentage of the volumes with large head motion over the whole volumes, (3) ghost-to-signal ratio (GSR) in x- and (4) y-directions, (5) AFNI’s outlier ratio (AOR) that calculates number of outliers across the time series, and (6) AFNI’s quality index (AQI) that represents mean quality index by measuring whether the intensity values of each volume are not very different from norm of the whole volumes. We also compared the computational performances among the three software packages. The computational performances were measured using running time and peak memory usage over a subset of HCP data (n = 10). The software packages were allowed access to a single-thread CPU resource. The size of the input data (format of .nii.gz) was 1.67 GB on average. Our computation node was equipped with Intel Xeon CPU E5-2637 v3 and 256 GB of memory.



RESULTS

Developed Software

We developed a novel data preprocessing software, called FuNP (Figure 5), for T1-weighted structural MRI and fMRI data. FuNP consists of volume- and surface-based preprocessing approaches. The volume-based approach requires AFNI and FSL (Cox, 1996; Jenkinson et al., 2012), and the surface-based approach requires AFNI, FSL, FreeSurfer, and Workbench (Cox, 1996; Fischl, 2012; Jenkinson et al., 2012; Marcus et al., 2013). Each approach performs the preprocessing of T1-weighted structural MRI and fMRI data separately. Our software, FuNP, is available at in GitLab4.
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FIGURE 5. Screenshot of the developed software, called FuNP.



Reliability of the Software

To assess the reliability of the output of FuNP, we constructed volume- and surface-based RSNs using the HCP rs-fMRI data preprocessed by FuNP. A total of 29 VICs were automatically generated and classified as 24 signals and 5 noise components (Figure 6). VICs 1–5 were the visual network (VN), consisting of the superior-, middle-, and inferior-occipital gyri, cuneus, and the lingual gyrus. VICs 6 and 7 were the default mode network (DMN), consisting of the superior- and middle-frontal gyri, the medial orbitofrontal gyrus, and the posterior cingulate cortex. VICs 8–10 were the executive control network (ECN), consisting of the middle- and medial-orbitofrontal gyri and anterior cingulate cortex. VICs 11–17 were the frontoparietal network (FPN), consisting of the middle- and inferior-orbitofrontal gyri and the superior- and inferior-parietal lobule. VICs 18–21 were the sensorimotor network (SMN), consisting of the paracentral lobule and the postcentral gyrus. VICs 22 and 23 were the auditory network (AN), consisting of Heschl’s gyrus, the superior temporal gyrus, and the supramarginal gyrus. VIC 24 was the cerebellum. These 24 functionally interpretable VICs were compared with pre-defined RSNs by computing cross-correlation (Smith et al., 2009). The mean cross-correlation value was 0.38, with an SD of 0.17. The results obtained with FuNP showed high similarities between the generated VICs and the pre-defined RSNs, indicating that the data were properly preprocessed.
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FIGURE 6. Generated VICs using the HCP data (labeled in a white font) along with pre-defined RSNs (labeled in a yellow font) (Smith et al., 2009). The cross-correlation values of the spatial maps between the generated VICs and RSNs are presented.



In addition to the VICs, 20 SICs were generated and classified as 16 signal and 4 noise components (Figure 7). SICs 1 and 2 were the VN, consisting of the primary visual cortex (V1), the early visual cortices (V2 and V3), and the extrastriate visual cortices [V3A, V6, V6A, middle temporal (MT), and middle superior temporal (MST)]. SICs 3 and 4 were the DMN, consisting of the dorsolateral prefrontal cortex, the medial- and inferior-frontal cortices, the anterior- and posterior-cingulate cortices, and the insula. SICs 5–7 were the ECN, consisting of the dorsolateral prefrontal cortex, the medial orbitofrontal cortex, the inferior frontal cortex, and the anterior cingulate cortex. SICs 8–14 were the FPN, consisting of the dorsolateral prefrontal cortex, the medial- and inferior-frontal cortices, the superior- and inferior-parietal lobules, and the paracentral lobule. SICs 15 and 16 were the SMN, consisting of the somatosensory and motor cortices, the premotor cortex, and the paracentral lobule. Regions of the AN were partly included in the SICs of the FPN (SICs 10, 11, 12, and 14). The SICs showed similar patterns to those of known RSNs, suggesting that the preprocessing pipeline was reliable.
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FIGURE 7. Generated SICs using the HCP data matched with known RSNs.



Comparison With Other Software

The quality of the volume-based preprocessed rs-fMRI data from FuNP, FSL, and fMRIPrep was assessed using the IQMs (Esteban et al., 2017). We found that FuNP yielded lower SD of DVARS compared to other software. The mean FD and percentage of volumes with large head motion of FuNP were comparable to fMRIPrep and lower than FSL. The results suggest the head motion-related artifacts were better removed using FuNP (Figure 8). The tSNR and GSR showed higher values in FuNP compared to other software indicating the processed data using FuNP were robust to noise (Figure 8). In addition, AOR and AQI showed smaller values for FuNP suggesting there was a smaller number of outliers compared to other software (Figure 8). Taken together, our FuNP outperformed other software in terms of temporal characteristics and artifacts removal.
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FIGURE 8. The IQMs of the volume-based preprocessed rs-fMRI data using different software packages. The values were plotted using violin plots. The white circle denotes the median value. The AOR and AQI were very small but the results of some software packages had high variability.



Comparison of Computational Resources

We measured the computational performances among the three software packages using running time and peak memory usage. On average, the running time was approximately 3 h for FuNP, 11 h for fMRIPrep, and 11 h and 30 min for FSL (Table 1). Possible reasons behind the longer computation time for fMRIPrep could be different head motion correction and registration methods compared to ours. The FuNP took 6 min, while fMRIPrep took 86 min on average for the motion correction (Table 1). The FuNP was faster (12 min) than fMRIprep (4 h and 52 min) for the registration procedure on average (Table 1). During the 4D data registration, fMRIPrep splits the 4D data into 3D volumes and performs registration onto the reference space. The results of the registration were stored on a disk for all 3D volumes and later concatenated to form the 4D registered data. The operations involve many disk input/output operations and thus could be slow. Our FuNP performs the entire procedure all within the memory and thus does involve fewer disk input/output operations than fMRIPrep. This could lead to faster computation for FuNP. For both fMRIPrep and FSL, the longer computation time might be due to the use of different noise removal strategies. The FuNP was faster (1 h and 29 min) than the two approaches (fMRIPrep; 9 h and 25 min, FSL; 11 h) (Table 1). The fMRIPrep performs nuisance variable removal by calculating various kinds of confounds of mean global signal, mean tissue class signal, PCA-based noise areas defined by anatomy or temporal variance, FD, DVARS, six head motion parameters, respectively (Esteban et al., 2019). In addition, ICA-AROMA for head motion-related artifact removal is performed if the option is set. In contrast, FuNP only uses ICA-FIX that showed good performance of noise removal (Salimi-Khorshidi et al., 2014). In addition, the use of complex non-linear noise filtering algorithm, smallest univalue segment assimilating nucleus (SUSAN), across the whole time series might affect the computation time (Smith and Brady, 1997). In contrast, FuNP only does temporal filtering using a conventional Fourier transform and spatial smoothing for noise removal. Although simple approaches were adopted in FuNP, it exhibited lower outlier ratio compared to other software packages (Figure 8). In terms of peak memory usage, FuNP used 12.5 GB on average, fMRIPrep used 33.1 GB, and FSL used 9.5 GB. Note that the peak memory usage was dependent on the size of the input data. In summary, the running time for the whole preprocessing was fastest when the FuNP was adopted compared to fMRIPrep and FSL.

TABLE 1. Computation time of each preprocessing step for three software packages.
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Reproducibility of the Software

To assess the reproducibility of our software, FuNP, we performed additional data preprocessing using local data (n = 28). The quality of the results was assessed using IQMs. Figure 8 shows that the IQMs of the preprocessed local and HCP data using FuNP were similar. In addition to the IQMs, we performed volume- and surface-based ICA and found results (from local data) that were similar to the main results (HCP data) (Figures 6, 7 and Supplementary Figures S1, S2). Taken together, we believe our pipeline could yield reproducible results based on the analyses of two independent data sets.



DISCUSSION

In this study, we developed a preprocessing pipeline for T1-weighted structural MRI and fMRI data by combining components of well-known software packages, namely AFNI, FSL, FreeSurfer, and Workbench, to fully incorporate recent developments in MRI preprocessing into a single software package (Cox, 1996; Fischl, 2012; Jenkinson et al., 2012; Marcus et al., 2013). The developed software, FuNP, is not the first wrapper software that incorporates recent developments in MRI preprocessing. The fMRIPrep is a notable software package that incorporates many of the state-of-the-art MRI preprocessing steps from existing software tools of AFNI, FSL, FreeSurfer, and ANTs (Esteban et al., 2019). They reported that the pipeline is robust to the acquisition parameters of the input data, easy to use as it requires a minimum number of user specified parameters for each step, and provides a summary in results of segmentation, registration, global signals, and motion-related artifacts (Esteban et al., 2019). Our software, FuNP, has the following advantages. First, FuNP contains both volume- and surface-based preprocessing pipelines. Using the surface-based pipeline, researchers can handle cortical and sub-cortical data better and more consistently with recent developments (Glasser et al., 2013, 2016a,b). Secondly, FuNP provides a fully automated preprocessing framework. Thirdly, FuNP is user-friendly owing to its graphical interface, which is intuitive and easy to manipulate. Fourthly, we designed our software so that the pipeline could be applied to fMRI data without field map data. This might be important because, in old neuroimaging studies, researchers often did not collect field map data. In such cases, modern researchers cannot use up-to-date preprocessing pipelines that require field map data. The reliability of FuNP was assessed by constructing RSNs using rs-fMRI data from the HCP database (Van Essen et al., 2013). Both the volume- and surface-based brain networks were well-defined and were consistent with pre-defined brain networks (Figures 6, 7). In addition to RSNs, the IQMs of temporal characteristics and artifacts were calculated to assess the quality of the preprocessed data. We found that FuNP outperformed FSL and fMRIPrep in terms of the IQMs (Figure 8). These results indicate that the developed preprocessing pipelines for T1-weighted structural MRI and fMRI data are of high-quality and reliable. Our software can be used as robust and easy-to-use neuroimaging data preprocessing framework.

There are several options to choose from to perform a given preprocessing step. Following statements are the justifications of the choices we made for each preprocessing step. Some choices (e.g., skull stripping) could be considered as optimal (Iglesias et al., 2011; Puccio et al., 2016), still, some could be suboptimal due to on-going controversies (e.g., nuisance removal) (Ciric et al., 2017). To remove the non-brain tissues, we selected “3dSkullStrip” function in AFNI rather than “bet” function in FSL, “antsBrainExtraction” function in ANTs, and “HWA” function in FreeSurfer. Previous studies reported that the function in AFNI outperformed equivalent functions in FSL and FreeSurfer for non-brain tissue removal (Iglesias et al., 2011; Puccio et al., 2016). A previous study reported ANTs showed better skull stripping results than other conventional approaches by visual inspection suggesting that our choice might be suboptimal (Esteban et al., 2019). For the step of magnetic field inhomogeneity correction, we chose “3dUnifize” function in AFNI out of coincidence. There are alternatives of “N4BiasFieldCorrection” function in ANTs and “fast” function in FSL. When performing registration, we chose “flirt” function in FSL. One study reported that neuroimaging registration could be better performed using “antsRegistration” function in ANTs compared to FSL and SPM (Dadar et al., 2018). Thus, we built two versions of FuNP. The new version adopted “antsRegistration” function and is referred to as FuNP v.2.0. We decided to keep the old version, referred to as FuNP v.1.0, because “flirt” requires fewer computation resources (i.e., runs fasters) compared to ANTs. For fMRI data registration, the FuNP used the two-stage registration that aligns the fMRI data to the T1-weighted structural data and then subsequently onto the MNI standard space. However, a previous study demonstrated that registration of fMRI data using echo planar imaging template improved the statistical power and reduced variability across subjects compared to the two-stage registration approach (Calhoun et al., 2017). Thus, our strategy for fMRI data registration might be suboptimal. In the tissue segmentation step, “fast” function in FSL was adopted that showed good performance compared to other algorithms (Eggert et al., 2012; Kazemi and Noorizadeh, 2014; Valverde et al., 2015). For slice timing correction, we chose “slicetimer” function in FSL and there are alternatives of “3dTshift” function in AFNI and “spm_slice_timing” function in SPM. For head motion correction, “mcflirt” function in FSL was adopted. It was shown that there was no single package that outperformed others for head motion correction (Oakes et al., 2005). There are many approaches to remove the nuisance variables in fMRI data such as head motion, cardiac, respiratory, WM, and CSF, but there is no single approach that can eliminate the artifacts completely (Ciric et al., 2017). A previous study reported that there were trade-offs among different strategies for nuisance variables removal and thus users need to select appropriate strategies in the context of their scientific goals (Ciric et al., 2017). In FuNP, “fix” function in FSL, the state-of-the-art approach, was adopted to remove nuisance variables of head motion, WM, CSF, cardiac pulsations, and arterial and large vein-related contributions (Salimi-Khorshidi et al., 2014). This approach requires the pre-trained datasets to classify between the signal and noise components (Parkes et al., 2018). The FuNP uses the pre-trained datasets that were trained using different image acquisition settings provided by the FSL team2. The users of FuNP need to choose which pre-trained data best suits their data being processed. Thus, the users do not need to manually train their data but choose from one of the several choices. However, if the input data were scanned with a very different image acquisition setting compared to existing choices, then “fix” function of FSL might not work well.

We compared the computational performances among three different software packages. We found that FuNP outperformed other software packages in terms of running time. This computational efficiency might be practical beneficial for preprocessing large-scale data which are likely to become more pervasive. A previous study reported that the total processing speed for registration accelerated two to three times when graphics processing unit (GPU) was adopted (Luo et al., 2015). The processing speed of recon-all, which was used for surface-based T1-weighted MRI data preprocessing in FuNP, could be improved 10 to 150 times with the help of GPU based computations according to the FreeSurfer official website6. We plan to update FuNP with GPU capabilities in the future.



CONCLUSION

In this study, we incorporated existing software packages of AFNI, FSL, FreeSurfer, and Workbench to build a preprocessing pipeline for T1-weighted structural MRI and fMRI data. The developed software, FuNP, provides a fully automated and user-friendly GUI volume- and surface-based preprocessing pipelines. The FuNP showed good performance in terms of temporal characteristics and artifacts removal. We believe our pipeline might help researchers who need MRI data preprocessing.
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When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.
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INTRODUCTION

The clinical use of computed tomography (CT) for patient diagnosis and treatment has been increasing steadily throughout the past few decades, particularly in relation to stroke and traumatic brain injury (TBI) (Haydel et al., 2000; Pelc, 2014). In developed countries, the number of CT scanners greatly exceeds that of magnetic resonance imaging (MRI) machines, and CT may be preferable to MRI in emergency radiology settings due to the former modality's convenience, wide availability and speed (Seo et al., 2008). Nevertheless, the task of classifying soft brain tissues based on CT images has long been disregarded because white matter (WM) and gray matter (GM) have relatively poor contrast in CT compared to T1- or T2-weighted MRI. The primary reason for this is that soft brain tissues have relatively similar radiodensities, which means that conventional CT images acquired at standard radiation doses typically differentiate GM from WM rather poorly. This frequently makes the CT-based delineation of WM/GM boundaries difficult and inaccurate; if hard thresholds of image intensity are used as primary criteria for delineation, poor GM/WM contrast can lead to substantial error during tissue segmentation. For similar reasons, models involving seed-based region-growing techniques can also lead to misleading results.

Whereas the automatic segmentation of brain MRI volumes is relatively routine compared to CT segmentation (Friston, 2007; Jenkinson et al., 2012; Velasco-Annis et al., 2017), there are very few software solutions for CT-based brain tissue classification. Nevertheless, recent progress in CT scanner technology and the accompanying improvement in CT image quality both suggest that the ability to distinguish soft tissue types using CT is becoming increasingly feasible (Li et al., 2014). As of the date of this study, only a handful of automatic methods for CT brain tissue segmentation exist, none of which have been applied to or validated on neurotrauma patients. Gupta et al. (2010), for example, proposed a heuristic segmentation method which leverages intensity thresholding to distinguish WM from GM and from CSF. The efficacy of this method, however, was only postulated based on manually-contoured, high-confidence fiducial brain regions and in the absence of independent confirmation by other imaging techniques. By contrast, Kemmling et al. (2012) introduced a probabilistic atlas based on previously-segmented MRI volumes which was co-registered to CT images to perform tissue classification, but no validation or quantitative evaluation of this approach was implemented in their study. More recently, Manniesing et al. (2017) proposed a method for CT-based segmentation which requires manual corrections using dedicated software and which also relies on the averaging of CT volumes acquired longitudinally from the same subject after the administration of a contrast agent to improve SNR. The accuracy of these authors' approach is unknown in the scenario where no more than one CT scan is available, as in our case. Furthermore, averaging of longitudinally-acquired CT volumes may produce undesirable results in cases where pathology evolution between time points modifies brain shape and structure, such as in TBI or stroke. Additionally, the method of Manniesing et al. involves the segmentation of GM, WM and CSF from contrast CT.

The premise of the present study is that brain segmentation methods for MRI hold considerable potential for adaptation to CT image processing. Specifically, our purpose here is to illustrate how two standard MRI analysis methods—namely (A) probabilistic, atlas-based classification and (B) topologically-constrained tissue boundary refinement—can be combined to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. In MRI analysis, voxel intensities are often modeled using a mixture of Gaussian random variables and tissue classification can be performed within a Bayesian framework. The probability that each voxel belongs to a certain tissue class is then calculated based on anatomic priors, and class membership is assigned based on this probability. In CT, however, where GM/WM contrast is typically quite poorer than in MRI, this approach can frequently result in spurious, anatomically-implausible class membership assignments for voxels near tissue boundaries. We propose to address this shortcoming by applying a standard approach to the neuroanatomy-constrained correction of tissue boundaries based on the local topological properties of the GM/WM interface. Because this method was previously applied only to MRI, part of our study's novelty involves its application to CT.

The feasibility and utility of the segmentation approach illustrated here are revealed by direct comparison of MRI vs. CT segmentations in a group of concussion victims from whom both standard-quality CT and T1-weighted MRI were acquired. Here and throughout, “standard-quality CT” refers to CT images acquired at radiation dosages which are typical of routine clinical scans in the United States (~2 mSv). Because radiation dosage is intimately related to CT signal quality and to the signal-to-noise ratio (SNR) of CT images, the utility of contrast-based approaches to brain segmentation is substantially dependent upon radiation dosage. In this context, applying our method to CT scans acquired at a standard radiation dosage is critical for highlighting the broad applicability of the segmentation approach.

To our knowledge, this is the only CT segmentation method to undergo rigorous within-subject comparison with high-fidelity MRI. Furthermore, none of the existing CT methods has been used to segment the brains of older adults or of concussion victims. Both qualitative and quantitative comparison of CT- vs. MRI-based segmentations of WM, GM, and CSF indicate noteworthy agreement between the two, as well as superior segmentation quality compared to the very few other methods currently available. On the other hand, our findings also suggest that—although the reliable CT-based calculation of WM/GM/CSF volumetrics is feasible at standard radiation dosages—the accuracy of CT-derived metrics is unlikely to ever surpass that of MRI-derived ones as the “gold standard” in the field. Scientists who wish to use CT-based volumetrics to make scientific inferences should be mindful that CT-based volumetrics are likely associated with greater error than MRI-based measures. Awareness of this is necessary to prevent future CT-based segmentation studies from conveying an overly optimistic impression regarding the ability of CT segmentations to furnish reliable estimates of brain volumetrics.



MATERIALS AND METHODS


Participants

This study was carried out in accordance with the recommendations of the Institutional Review Board of the University of Southern California with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the Institutional Review Board at the University of Southern California. Study participants were selected from two volunteer pools, namely (i) concussion victims who had participated in an unrelated study, and (ii) individuals who had been scanned using MRI/CT for clinical treatment unrelated to this study. To be included, patients had to (A) have had both MRI and CT volumes acquired and available, (B) be 50 years of age or older at the time of their initial brain scan, and (C) exhibit no gross head pathology detectable using CT or MRI at scan time. The exclusion criteria were (A) unavailability of MRI and/or CT data; (B) patient age under 50 years; (C) the existence of substantial, gross head pathology at scan time, as detected via CT and/or MRI and (D) poor CT/MRI data quality (e.g., visually detectable artifacts of any kind). The concussed group included 10 participants (5 males; age: mean μ = 65 years; standard deviation σ = 7 years; range: 54–75 years). The non-concussed group included 25 participants (12 males; age: μ = 61 years; σ = 9 years; range: 52–83 years). Volunteers under the age of 50 were excluded because of our desire to test our method on brains with variable degrees of atrophy. The most important difference between the two groups pertains to the spatial resolution of CT/MRI data. Specifically, in the concussed volunteer group, CT slice thickness was 1.25 mm and MRI slice thickness was 1 mm; in the non-concussed volunteer group, slice thickness was 3.75 mm for CT and 5 mm for MRI. This selection of data was intentional, as the difference in spatial resolution allowed us to explore segmentation reliability as a function of slice thickness and to illustrate the necessity of evaluating CT segmentation approaches like ours using MRI of research-grade resolution.



Data Acquisition

All data were deidentified and delinked prior to analysis. CT volumes were acquired using a 16-slice General Electric scanner. In the concussed volunteer group, images were acquired clockwise, in helical mode, with a standard convolution kernel and the following parameters: matrix size = 512 × 512; voxel size = 1.5 mm × 1.5 mm × 1.25 mm; kilovoltage peak (kVp) = 120 kV; data collection diameter = 500 mm; exposure time = 600 ms; X-ray tube current = 100 mA; exposure = 100 mA·s; focal spot = 1.2 mm. MRI volumes were acquired at 3 T using a Prisma MAGNETOM Trio TIM scanner (Siemens Corp., Erlangen, Germany). Images were acquired using a magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence with the following parameters: repetition time (TR) = 1,950 ms; echo time (TE) = 3 ms; inversion time (TI) = 900 ms; flip angle (FA) = 9 degrees; percentage sampling = 100; pixel bandwidth (BW) = 240 Hz/pixel; matrix size = 256 × 256; voxel size = 1 mm × 1 mm × 1 mm. In the non-concussed volunteer group, CT volumes were acquired clockwise, in helical mode, with a standard convolution kernel and the following parameters: matrix size = 512 × 512; voxel size = 1.5 mm × 1.5 mm × 3.75 mm; kVp = 120 kV; data collection diameter = 250 mm; exposure time = 750 ms; X-ray tube current = 220 mA; exposure = 130 mA·s; focal spot = 1.2 mm. MRIs were acquired at 3 T using a Signa HDxt scanner (General Electric Corp., Boston, USA). Images were acquired using a fast spin-echo (FSE) sequence with the following parameters: TR = 567 ms; TE = 18 ms; FA = 90 degrees; percentage sampling = 100; pixel BW = 81 Hz/pixel; matrix size = 512 × 512; voxel size = 0.5 mm × 0.5 mm × 5 mm.



MRI Segmentation

MRI volumes were segmented using the widely-utilized FreeSurfer 6.0 software as detailed elsewhere (Dale et al., 1999; Fischl et al., 1999), with default execution parameters. Very briefly, this process includes (1) the removal of non-brain tissue using a hybrid watershed/surface deformation procedure, (2) automated Talairach space transformation, (3) volume intensity normalization, (4) segmentation of cortical and subcortical GM, (5) tessellation of the GM/WM boundary, and (6) automated surface topology correction. The reader is referred to references (Dale et al., 1999; Fischl et al., 1999) for comprehensive details on each of these steps involved in the MRI segmentation procedure.



CT Segmentation

As previously stated, an important goal of this study is to illustrate how MRI-tailored approaches can be combined and adapted for CT. Because of this, our segmentation strategy is inspired by MRI-tailored approaches to template-based tissue classification, including pioneering approaches by Ashburner and Friston (1997, 2000, 2005, 2007) and by Dale et al. (1999) and Fischl et al. (1999). The starting point for our implementation was the probabilistic classification method of Ashburner and Friston (2005), as available in SPM 12.0; this was adapted, modified and augmented in MATLAB to incorporate topology-constrained segmentation (Dale et al., 1999; Fischl et al., 1999). An overview of the entire tissue classification procedure is provided in this section, and details specific to each step are described in subsequent sections. Briefly, to perform tissue classification, voxel intensity values are used to assign their probabilities of belonging to one of several tissue classes by estimating the parameters of the intensity distributions of each class. This is accomplished by first defining an objective function derived from a mixture of Gaussian random variable models, and by then minimizing the value of this function using a parameter optimization process. A set of a priori tissue probability maps specified in a standard space (atlas) are used to assist the classification. The objective function can assist this process by weighing the probability maps of the standard space according to Bayesian inference principles and then deforming them so that they match the volumes being segmented. Specifically, the template is warped to each subject's brain volume (Collins et al., 1995), after which the latter can be segmented and the ensuing spatial classifications can be smoothed (Evans et al., 1994). When combined with a priori information specified by the template, Bayesian inference can be used to calculate posterior probabilities, based on each subject's voxel intensity values. The interface between the resulting GM and WM volumes is smoothed according to principles inspired from nonlinear filter theory, subject to topological constraints dictated by the structural neuroanatomy of the human brain (Dale et al., 1999; Fischl et al., 1999).



Gaussian Mixture Model

The distribution of image intensities in a neuroimaging volume is modeled here by a mixture of K clusters, each consisting of Gaussian random variables (Bishop, 1995). Each Gaussian variable is parameterized by its mean μk, variance [image: image] and mixing coefficient γk, subject to the constraint that the sum of all mixing coefficients must be equal to 1. Fitting this Gaussian mixture model to the image intensity data vector y of length I involves maximizing the probability of observing the data given the model parameterization. The probability that a voxel has intensity yi given that it belongs to the k-th Gaussian random variable (i.e., given that ci = k) parameterized by μk and [image: image] is
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Because the probability that yi belongs to the k-th Gaussian random variable given the proportion γk of voxels which belong to that random variable is P(ci = k|γk), Bayes' rule indicates that

[image: image]

and the total probability of observing yi becomes

[image: image]

whilst the probability

[image: image]

that all I intensities in y are observed given μ, σ, and γ can be maximized by varying the latter parameters in the cost function

[image: image]



Spatial Priors, Deformation, and Regularization

A probabilistic atlas is used to specify the prior probability that each voxel belongs to any tissue class in the Gaussian mixture model. This is done without assuming that any intensity distribution for each class is Gaussian, such that the prior probability of voxel i being drawn from the k-th Gaussian distribution is

[image: image]

where Pik is the tissue probability for class k at voxel i. For voxels located at the boundary between tissues (e.g., the GM/WM boundary), this model accommodates the difficulty of ascertaining the class to which voxel i belongs. The atlas used here is a modified version of the MNI152 atlas (Grabner et al., 2006), which is based on an average of T2-weighted MRI volumes acquired from 152 healthy control subjects. The original atlas has a resolution of 1 mm × 1 mm × 1 mm and its image intensities range from 0 to 90 in increments of 1.3 × 10−3. For the present study, the atlas in question was modified to reflect the intensity profile of CT brain scans, where CSF is hypointense.

Let α be a vector of diffeomorphic deformation parameters which allow the co-registration of the spatial template and a subject volume. Here, spatial priors are deformed according to α, to allow co-registration according to
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With this adjustment, one obtains

[image: image]

or, more explicitly,

[image: image]

The parameterization of the deformation is implemented using a linear combination of sinusoidal transform bases (Christensen et al., 1994) subject to spatial regularization by maximizing P(y, α|μ, σ, γ). Only the lowest frequencies of a discrete sine transform were used, resulting in 392 (7 × 3 × 8) parameters to describe deformations along each spatial dimension. Three additional parameters were used to model linear scaling and one parameter was used to model linear image intensity inhomogeneities (Ashburner and Friston, 1999). The probability densities of the spatial parameters α are modeled by multivariate Gaussian random variables with mean 0 and covariance matrices Cα. The spatial regularization involving these covariance matrices and deformations prevents undesirable interactions between parameter estimates (Evans et al., 1994). Initially, parameter value estimates are assigned randomly, and nonlinear deformation coefficients are set to zero. Model parameters are then optimized using an expectation maximization (EM) algorithm (Bishop, 1995), where the Gaussian mixture and deformations are re-calculated by iteratively updating exactly one while the others are held constant. Deformations are optimized using a Gauss-Newton scheme (Wedderburn, 1974).



Topology-Constrained Refinement

After probabilistic assignment of voxels to one of three classes (WM, GM or CSF), the segmentation is refined iteratively using a priori information concerning the local properties of the cortex (Dale et al., 1999). Specifically, because the surface defined by the WM/GM interface is smooth and its curvature is both defined and finite everywhere on it, the local topology of the brain can be used to correct the probabilistic tissue classification. This process is analogous to the application of a nonlinear, anisotropic filter whose nonlinearity is high near the WM/GM boundary. As the distance from some given voxel to the WM/GM boundary increases, the filter becomes more linear; because the true boundary is topologically smooth, the filter shape must be planar at this interface. In our approach, the segmentation is corrected in two steps. First, we identify the plane crossing the boundary which is intersected by voxels whose intensity variance is minimal. Once this is done, the voxels within this plane are examined to determine whether (A) a substantial proportion of them have ambiguous classifications based on their intensity or whether (B) they are surrounded by voxels whose class memberships vary greatly. If changing the class assignment of these voxels decreases the in-plane intensity variance, the voxels in question are re-assigned to their more appropriate class (Dale et al., 1999).



Qualitative Segmentation Comparison

CT segmentations were compared to MRI-based segmentations within each participant. Prior to this comparison, the skull-stripped MRI and CT volumes were co-registered using a 12-parameter, affine registration. MRI- and CT-based segmentations were compared by plotting both and inspecting the ability of the CT segmentation to reproduce cortical folding patterns and to identify landmarks of interest, including the thalamus, ventricular system, and various gyri. To visually inspect the effect of slice thickness upon segmentation, the CT volume of a representative concussion victim was first down-sampled using trilinear interpolation to change the voxel size from 1 mm × 1 mm × 1.25 mm to 1 mm × 1 mm × 3.75 mm. The lower-resolution volume was then segmented, and the results were compared.



Quantitative Segmentation Comparison

In addition to comparing the CT- and MRI-based GM, WM and CSF classifications qualitatively, four measures were calculated: (1) the Sørensen-Dice coefficient (which conveys the extent of overlap between CT and MRI tissue label maps), (2) the Hausdorff distance (which measures, in this case, how far the CT- and MR-based boundaries are between two tissues), (3) the intraclass correlation coefficient (a measure of how reproducible measurements are when made using distinct techniques) and (4) the stretching distance (a measure of average spatial prior deformations).

For two tissue classes X and Y, the Sørensen-Dice coefficient CSD is defined as

[image: image]

If there is perfect overlap between the two tissue classes, CSD is equal to 1; no overlap results in CSD being equal to 0. The original Hausdorff distance dH is defined as

[image: image]

where X and Y are non-empty sets of a metric space (M, d), sup is the supremum and inf is the infimum. This measure involves the distance between points located along the edges of two surfaces and conveys how well the two surfaces overlap. In the present study, X and Y are MRI- and CT-derived segmentation volume surfaces, respectively, and d is a Euclidian distance. Here, the modified Hausdorff distance is used, as defined formally elsewhere (Dubuisson and Jain, 1994).

The intraclass correlation coefficient rIC is a measure of within-subject measurement variability relative to between-subject variability (Iscan et al., 2015). In the present case, these measurements are volumes of the GM, WM, or CSF computed from either MRI or CT, and their rIC value can be used to quantify the reliability of the CT segmentation. As reported elsewhere, the calculation of rIC is predicated upon experimental design and statistical model assumptions (Shrout and Fleiss, 1979). In cases like ours, the one-way random effect model is appropriate (McGraw and Wong, 1996), such that rIC ≃ (MSb − MSw) /MSb, where MSb and MSw are between- and within-group mean sums of squared measurements, respectively. These quantities were computed like in an analysis of variance (Shou et al., 2013). Bootstrapping was used to calculate the average amount by which CT volume estimates can be expected to deviate from their MRI-derived values.

To assess the relationship between segmentation quality and the amount of deformation applied to the spatial priors, one can calculate the mean absolute stretching distance dS between two volumes (Ewert et al., 2019). Intuitively, this distance can be conceptualized as the average amount by which volume elements within a moving volume must move to match the shape of a target volume. The mapping between volume elements in the two volumes (template and subject) is specified by the deformation field of the transformation. In other words, dS is the average amount by which voxels in the atlas must move to optimize the atlas-subject deformation. The larger the deformation, the greater dS.

To determine whether outliers as well as any bias existed in favor of any of the segmentation classes, the MRI- and CT-derived volumes of WM, GM, and CSF were plotted against each other. The relationships between dH and CSD, and between dH and dS were explored visually in a similar way, i.e., by plotting one against the other. In this study, all GM and WM measures were calculated based on all neuroanatomical structures in the cranial cavity. By contrast, only ventricular CSF volumes and Sørensen-Dice coefficients were compared because T1-weighted MRI is insufficiently suited—compared to T2-weighted MRI—for quantifying water content in the CSF layer around the cerebrum, as well as in locations surrounding the cerebellum, brainstem, etc. However, T2-weighted MRI scans were unavailable to us; to alleviate this drawback, only ventricular CSF measures were compared across modalities.

In implementations like ours, there is a risk that segmentation results could be dominated by the nonlinear deformation of the template to each individual case. In other words, the radiodensities of distinct tissue classes (e.g., GM, WM) may have relatively little influence upon the segmentation. To test this hypothesis, the following analysis was implemented for each CT volume: (A) The mean μ and standard deviation σ were calculated across all brain CT voxels. (B). All brain voxels were assigned radiodensity values sampled at random from a Gaussian distribution with parameters μ and σ. This operation effectively removed the contrast between GM and WM. (C) The modified brain CT volume was segmented. (D) CSD and dH values were computed based on the segmentation of the modified brain CT volume and then compared to the values of these metrics as obtained by segmenting the original CT volume. We argue that, if tissue class radiodensities had no effect upon segmentations, there would be no statistically-significant difference between CSD values calculated based on original CT volumes vs. based on modified CT volumes.




RESULTS


Qualitative Assessment

The conclusions of our qualitative assessment are reflected by the results conveyed in Figure 1, where both MRI and CT segmentations are displayed for a representative subject. When performing this comparison, the MRI-based segmentation is treated as the gold standard. Overall, the agreement between MRI- and CT-derived classifications is quite reasonable, with our method being able to capture the most prominent features of cerebral neuroanatomy appropriately. In what follows we discuss specific findings, as reflected by the sagittal, coronal and axial views of the brain, respectively.


[image: image]

FIGURE 1. MRI and CT segmentations and their corresponding imaging slices for a representative subject. Colored voxel label maps are translucent to ease inspection of the underlying neuroanatomy. (A) T1-weighted MRI slices show GM (green). The WM is left uncolored to facilitate identifying occasional differences between the true GM/WM boundary and the FreeSurfer-identified boundary. (B) CT slices display labeled GM (red), WM (yellow) and CSF (light blue) based on segmentation at the original CT volume resolution (1 × 1 × 1.25 mm). (C) Like (B), based on segmentation at a down-sampled CT volume resolution (1 × 1 × 3.75 mm).



The sagittal slice of the brain displayed in Figure 1 is approximately co-planar with the longitudinal fissure. This depiction indicates visually-acceptable agreement between the segmentations, with good coverage of cerebral GM, callosal WM and of the brainstem. Ventricular CSF classifications also appear to be satisfactory. There is even agreement between segmentations pertaining to cerebral areas where only little GM is visible in the selected slice, such as the medial parietal lobe and occipital lobes. The most notable difference in the sagittal view pertains to the frontal lobe, where the CT algorithm appears to have classified more tissue along the longitudinal fissure as GM than the MRI method. This, however, is to be expected due to the relatively low SNR of CT compared to MRI as well as to the excellent ability of FreeSurfer software to delineate the natural boundary between hemispheres.

The coronal slice displays a view of the parietal lobe, with a substantial portion of the cerebellum and lateral ventricles being visible as well. This view is particularly useful because it conveys the substantial similarities in gyrification patterns between the two segmentations. Visual assessment confirms that local structural variations are captured relatively well in the CT segmentation. Though the basal ganglia are poorly delineated by CT, our segmentation appears to be able to capture them well. The axial slice is at the level of the inferior temporal lobe, with some frontal lobe structures—such as the orbital gyri/sulci—being visible as well. As in the coronal slice, the overall local shape of the GM/WM boundary is reflected well in the CT segmentation.

Figure 2 displays MRI- and CT-based three-dimensional reconstructions of the ventricular CSF, brain, bones and skin for the volunteer in Figure 1. The second row displays segmentation results based on the original-resolution volume (1 mm × 1 mm × 1.25 mm). Although the MRI-based segmentation is superior in its ability to resolve the gyrification of the cortex, the CT segmentation does reproduce the overall shape of the brain and ventricular system. The reconstruction of the lateral ventricles, third ventricle and inter-thalamic adhesion appears to be within reasonable limits for the purposes of neuroanatomic reference and delineation. Results in the third row are based on the same volume after down-sampling to the resolution of the volumes acquired from non-concussed volunteers (1 mm × 1 mm × 3.75 mm). Here, the method is seen to over-estimate GM volume and to lose some ability to capture cortical folding details; overall, there is some perceived loss of tissue classification fidelity compared to MRI.


[image: image]

FIGURE 2. Reconstructions of the brain (light red), ventricular CSF (blue), bones (white), and skin (translucent) for a representative participant. The brain and ventricular CSF are based on MRI (left) and on CT (right). Bones and the skin surface were reconstructed from CT.





Quantitative Assessment of Concussion Group

Across all concussion cases considered, the mean and standard deviation of the Sørensen-Dice coefficient were found to be 86.7 ± 5.6% for WM, 86.0 ± 2.0% for GM, and 92.2 ± 0.7% for ventricular CSF. The means and standard deviations of the coefficient are more similar for WM and GM, presumably because these tissues' similar radiodensities translates into similar abilities to classify them. On the other hand, ventricular CSF has a somewhat greater coefficient presumably because its lower radiodensity compared to GM/WM makes CSF easier to distinguish from soft brain tissue. The average modified Hausdorff distance was found to be 3.4 ± 1.5 mm (WM), 3.7 ± 1.8 mm (GM), and 2.5 ± 1.3 mm (CSF), which confirms that CSF classification is likely best, followed by WM and then GM. This view is recapitulated by the fact that dS was found to have means of 3.4 ± 2.3 mm (WM), 3.5 ± 1.9 mm (GM), and 1.8 ± 0.6 mm (CSF).

In the concussion sample, the intraclass correlation coefficient was found to be 0.64 for WM, 0.68 for GM, and 0.74 for CSF. Bootstrapping results suggested, based on this sample, that the segmentation method is sensitive enough, to yield WM, GM, and CSF volume estimates within ~5.4%, ~4.3%, and ~3.2% of their MRI-based estimates, respectively. As percentages of the MRI-derived mean volume, the 2σ confidence intervals (CIs) for these error estimates were [2.9, 7.9]% for GM, [2.2, 6.4]% for WM, and [1.4, 5.0]% for CSF. In other words, for a randomly selected volunteer, there was a ~95% estimated probability that the discrepancy between her/his CT-derived and her/his MRI-derived GM volume was between 2.9% and 7.9% of the latter.

The results of the quantitative assessment for concussion victims are summarized in Figure 3. In particular, Figure 3A suggests that, in the case of volume measurements, no outlier or bias in favor of any tissue class are present in our cohort of concussion victims. Figure 3B suggests that, as expected, there is a direct relationship between dH and CSD. Comparison of the plots for WM, GM and CSF illustrates how both metrics have a smaller range and variance for CSF than for the other two classes. This can be explained by the fact that CSF is easier to segment from both CT and MRI due to the relatively large difference in radiodensity between CSF and either GM or WM. This is confirmed by Figure 3C, where the relationship between dH and dS is explored. As expected, these quantities are also directly proportional to each other because they both trend higher as the quality of the segmentation decreases.


[image: image]

FIGURE 3. Results of quantitative analysis for concussion victims. For all quantities plotted, the regression line of best fit (blue) and residuals (red) are shown on plots with identical ranges along both x and y, to facilitate comparison. (A) MRI- vs. CT-derived volumes. (B) The Hausdorff distance dH vs. the Sørensen-Dice coefficient CSD. (C) The Hausdorff distance dH vs. the stretching distance dS. Quantities pertaining to WM, GM, and CSF are displayed in the first, second, and third rows, respectively.



When testing the hypothesis that tissue class intensities had no effect upon segmentations, the Sørensen-Dice coefficients computed based on CT volumes with modified radiodensities were found to be 64.2 ± 8.9% for WM and 69.4 ± 7.3% for GM across all concussion cases. The average modified Hausdorff distance was found to be 5.21 ± 1.61 mm (WM) and 4.87 ± 1.95 mm (GM) in this group. These values are significantly different (p < 0.001) from those obtained based on the original CT volumes, which suggests that tissue class radiodensities do have a significant effect upon segmentations.



Quantitative Assessment of Volunteers Without Concussions

Across non-concussed participants (whose MRI volumes had thicker slices), the mean and standard deviation of the Sørensen-Dice coefficient were found to be 63.7 ± 7.2% for WM, 59.4 ± 8.9% for GM, and 73.5 ± 6.6% for ventricular CSF. In this group, the average modified Hausdorff distance was found to be 6.18 ± 2.34 mm (WM), 6.75 ± 2.87 mm (GM), and 4.89 ± 1.86 mm (CSF). Presumably, the results are substantially inferior to those obtained in the concussed patient sample because the MRI slice thickness in the non-concussed group was 3.75 mm. The intraclass correlation coefficient was found to be 0.51 for WM, 0.56 for GM, and 0.61 for CSF. In this lower-resolution sample, the segmentation method was estimated to be sensitive enough to detect percentage volume differences between MRI and CT which amounted to an average of ~7.1% (CI: [3.9, 10.3]%) for WM, ~6.2% (CI: [3.5, 8.9]%) for GM, and ~5.4% (CI: [3.1, 7.7]%) for CSF. The dS metric was found to be 7.1 ± 4.12 mm (WM), 6.7 ± 3.9 mm (GM), and 3.4 ± 1.6 mm (CSF). Although the means and standard deviations of these quantities differ from those observed in the concussion group, the relationships between quantities recapitulate the findings illustrated in Figure 3 to indicate that dH and dS are directly proportional. Overall, these results thus confirm the necessity of validating CT-based soft tissue segmentations using MRI of standard, research-grade thickness (e.g., 1 mm) rather than MRI with slices of relatively large thickness (e.g., 3.75 mm).




DISCUSSION


Feasibility

The ability to segment soft brain tissues from CT is largely dependent upon image contrast-to-noise ratio (CNR). In CT, the CNR itself depends on tube settings, iterative reconstruction method, radiation dosage and other factors; at standard dosages, the average radio-densities of GM and WM have been reported as 38.7 ± 2.2 Hounsfield units (HU) and 31.8 ± 2.3 HU, respectively (Craddock et al., 2006), resulting in an average X-ray attenuation of ~5 HU. Bier et al. (2016) similarly report radio-densities of 40.2 ± 3.3 HU (GM) and 28.48 ± 3.6 HU (WM) in their CT images, with the GM-WM radio-intensity difference being significantly different (p < 0.0001). The GM-WM CNR is reported as ~3 (Rapalino et al., 2012; Bier et al., 2016), but image filtering techniques have been reported to enhance the CNR by a factor as large as ~10 (Diwakar and Kumar, 2014; Bier et al., 2016). This allows the CT GM-WM CNR to compare favorably with the GM-WM CNR obtained from T1-weighted MRI at 3 T, where a meta-analysis found that single-slice and multi-slice MR images yield CNRs of ~18 and ~9, respectively (Fushimi et al., 2007). Together, these findings suggest that the delineation of the GM/WM boundary from CT is feasible using available CT technology. Nevertheless, it should be reiterated that, when available and of enough quality, MRI is by far preferable to CT for the purpose of brain soft tissue segmentation.



Applications

Despite very limited previous research on CT brain tissue segmentation, there are numerous potential applications for this technology, including (1) the detection of brain pathology, (2) the measurement of brain volumetrics to assist studies of aging in health and disease, and (3) the quantitation of neuroanatomy in settings where MRI is undesirably expensive, unavailable or inaccessible. For example, the US Centers for Disease Control (CDC) report that the number of CT scanners exceeds that of MRI scanners by a factor which ranges between ~1.5 (developed countries) and ~5 (developing countries) (CDC, 2010). Furthermore, CT is more affordable than MRI and additionally constitutes the method of choice in certain clinical settings where image acquisition time is of the essence, such as neurocritical care (Williamson et al., 2017). For the latter reason, the availability of CT segmentation tools could be beneficial for TBI studies.

In stroke, TBI and other conditions which frequently involve CT, segmentation of images acquired with this modality could also be used to analyze perfusion imaging to study blood flow in the brain and to distinguish between the cores and penumbrae of cerebral lesions. CT-based volumetrics could also be useful in quantitative studies of brain atrophy associated with healthy aging, TBI or neurodegenerative diseases. Specifically, because the rate of brain atrophy in health differs from that observed in many diseases of the central nervous system, brain volumetrics can be used in conjunction with other anatomic and functional measures to estimate mortality risk and other parameters which are of substantial interest to clinicians, biomedical scientists, demographers, and epidemiologists.

Given that MRI availability in developing countries is relatively limited, software for CT-based brain segmentation could substantially extend the scope of certain large-scale epidemiological studies being carried out there. One such study is the Tsimané Health & Life History Project now underway in a region of rural Bolivia where MRI is logistically unfeasible yet where CT is available (Kaplan et al., 2017). Furthermore, because some patients cannot undergo MRI scanning due to claustrophobia, pacemaker implantation or other contraindications, techniques such as ours could facilitate the enrollment of these individuals in imaging studies. Given how transformative the research field of brain MRI processing has been over the past 30 years, the potential applicability of CT-based segmentation is thus clear.



Comparison to Other Methods

There are very few other methods to which our approach can be compared quantitatively. One study which reports metrics like ours is that of Manniesing et al. (2017), where averages and standard deviations for CSD, dH, and dC are reported for CT-only segmentations of WM and GM. In all cases, our results compare very favorably to theirs; for example, Manniesing et al. report 〈CSD〉 = 0.79 ± 0.05 and 〈dH〉 = 0.74 ± 0.26 mm for WM, where 〈〉 denotes the mean. In all three cases, our Sorensen-Dice coefficients are greater and the two distances quoted are smaller than theirs, as desirable; this statement also applies to the comparison of GM segmentations. By contrast, as expected, MRI-based segmentations clearly remain preferable. For example, Iscan et al. (2015) report that, for FreeSurfer-segmented GM, 〈rIC〉 = 0.88 ± 0.15 in a dataset of repeated MRI measurements. Furthermore, whereas our approach can—at its best— yield GM volume measurements which are within an average of ~5.4% of their MRI-derived values, the latter typically fall within <1% of their true values, on average (Eggert et al., 2012). Similarly, a comparison of the MRI- and CT-derived surfaces in Figure 1 easily indicates that only MRI-based segmentation can capture fine local variations in cortical shape, such as those due to gyri and sulci. In conclusion, our method could clearly benefit from refinement and from technology improvements to improve CT image SNR and CNR.




LIMITATIONS

For clarity, our study's limitations can be divided into two groups, i.e., extrinsic or intrinsic. Extrinsic limitations involve factors pertaining to the imaging data themselves and which affect the efficacy of the method independently of it; such factors include radiation dose, the number of scans available, and the presence of metal objects inside the head. Since there is a direct—albeit nonlinear—relationship between radiation dose and SNR (Yu et al., 2009), we expect our algorithm to perform better if the data are acquired at higher radiation doses. Similarly, if repeated measurements are obtained, within-subject co-registration and averaging of CT volumes can improve SNR. If, on the other hand, metal objects (e.g., deep brain stimulation electrodes) are present inside the head, resulting artifacts may substantially compromise segmentation efficacy. One intrinsic limitation of our approach is the fact that, as Figure 1 illustrates, its ability to identify tissue boundaries correctly is suboptimal at brain locations where thin, long slabs of WM protrude into GM. Because the ability of our method to capture the geometric variability of the GM/WM interface is dependent upon GM/WM contrast, it results that the algorithm may not perform well in locations where the structure of the boundary is particularly complex. Improvements in the SNR and CNR between GM and WM can alleviate this drawback. A second limitation of this study involves the fact that T2-weighted MRI is preferable to T1-weighted MRI for quantifying water concentration in the brain. For this reason, the validation of CT-based CSF segmentations should be performed, if possible, based on the former MRI technique. Here, to circumvent this problem in the absence of T2-weighted MRI, we opted to compare ventricular CSF segmentations because brain ventricles are typically much larger than the CSF layer around the brain, especially in older adults. Nevertheless, future studies should strive to include T2-weighted MRI when undertaking validation of CT segmentations.



CONCLUSION

The ability to segment soft brain tissues accurately from CT can substantially extend the utility of this important and cost-effective neuroimaging technique. Despite the limitations pertaining to the approach proposed here, our preliminary results indicate that reasonable segmentations of WM, GM and CSF can be obtained based on standard CT volumes of the human head. The methodological contributions described in this study can also be used as a foundation for the development of additional, more complex segmentation procedures for tasks such as the automated labeling of brain lobes and/or the identification of smaller structures such as gyri and sulci. Such refinements of our method, if feasible, would likely increase the utility of CT segmentation for brain imaging studies. Nevertheless, the accurate labeling of GM within thin gyri and of CSF within narrow sulci based on CT is likely to remain quite limited without substantial progress on CT technology to allow major improvements of image quality. When undertaking population-based studies of brain volumetrics calculated from CT data, researchers should duly account for the uncertainty of these measurements, especially in their statistical analyses. Such uncertainties are recapitulated by the magnitude of the variance in our Dice coefficients and Hausdorff distances, and this suggests that our ability to further refine our segmentation approach is largely predicated on the availability of CT head volumes with improved CNRs between WM and GM. MRI+CT data acquired from larger human samples are also required to improve the statistical estimates of our CT-based volume measurement errors relative to MRI.
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Visbrain: A Multi-Purpose GPU-Accelerated Open-Source Suite for Multimodal Brain Data Visualization
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We present Visbrain, a Python open-source package that offers a comprehensive visualization suite for neuroimaging and electrophysiological brain data. Visbrain consists of two levels of abstraction: (1) objects which represent highly configurable neuro-oriented visual primitives (3D brain, sources connectivity, etc.) and (2) graphical user interfaces for higher level interactions. The object level offers flexible and modular tools to produce and automate the production of figures using an approach similar to that of Matplotlib with subplots. The second level visually connects these objects by controlling properties and interactions through graphical interfaces. The current release of Visbrain (version 0.4.2) contains 14 different objects and three responsive graphical user interfaces, built with PyQt: Signal, for the inspection of time-series and spectral properties, Brain for any type of visualization involving a 3D brain and Sleep for polysomnographic data visualization and sleep analysis. Each module has been developed in tight collaboration with end-users, i.e., primarily neuroscientists and domain experts, who bring their experience to make Visbrain as transparent as possible to the recording modalities (e.g., intracranial EEG, scalp-EEG, MEG, anatomical and functional MRI). Visbrain is developed on top of VisPy, a Python package providing high-performance 2D and 3D visualization by leveraging the computational power of the graphics card. Visbrain is available on Github and comes with a documentation, examples, and datasets (http://visbrain.org).

Keywords: visualization, neuroscience, python, open-source, brain, OpenGL, EEG, MEG


INTRODUCTION

The aim of scientific visualization is to graphically illustrate datasets—which are can be highly complex- in order to provide a better understanding and facilitate the interpretation of the data. As scientific technologies continue to evolve, it becomes increasingly important to develop up-to-date and comprehensive visualization software capable of handling complex and large datasets. This is especially true in the field of neuroscience, which involves a myriad of neural recording types, and consequently, a wide and diverse range of possible data representations.

To date, Matlab (Mathworks, 2012) is one of the most widely-used commercial programming language for brain data analysis and visualization, thanks to a large number of toolboxes such as SPM (Penny et al., 2011), Brainstorm1 (Tadel et al., 2011), EEGlab2 (Delorme and Makeig, 2004) and Fieldtrip3 (Oostenveld et al., 2011). Alternative visualization solutions that run on non-commercial open-source programming environments, such as Python, are rare. These include high-quality packages such as MNE4 (Gramfort et al., 2013), PySurfer5, Nilearn6 (Abraham et al., 2014) or 3d slicer (Fedorov et al., 2012). Both MNE and Nilearn rely on Matplotlib for visualizations which is not suited for real-time interactions of brain imaging data involving thousands of data points. In addition, MNE also relies on PySurfer for 3D visualizations. PySurfer is built on top of Mayavi which contains a powerful rendering engine and allows smooth interactions. However, some issues have been reported when installing Mayavi, (which uses VTK), which may affect its user-friendliness.

In this context, we propose a Python open-source software called Visbrain, distributed under a Berkeley Software Distribution (BSD) license and dedicated to the visualization of neuroscientific data. Visbrain is built on top of VisPy (Campagnola et al., 2015), a high-performance visualization library that leverages the Graphics Processing Units (GPU). As a result, Visbrain efficiently handles the visualization of large and complex multi-dimensional datasets. The purpose of Visbrain is two-fold: (1) To provide within a common framework several Python-based visualization tools for neuroscientific data, (2) To allow users, including those with little or no programming skills access to high-end visualization functions, through a comprehensive documentation7 and a user-friendly API.

Many scenarii for the use of Visbrain are possible. For instance, a user with a set of intracranial EEG data could use visbrain to visualize in a first subplot the location of electrodes (e.g., NumPy array) either in individual or standard MNI space. Next, in a second subplot, the user may choose to project the data onto the cortical mesh (e.g., gamma power, t-values, decoding accuracies, etc). Additional subplots can be added, for example, to include data from other subjects, or various contrasts across experimental conditions. Because figures are dynamic, subplots can be added on the fly with various visualization objects such as connectivity, region of interest etc. The same procedure could be applied to M/EEG source data. Finally, each subplot can be animated and exported into a video file (e.g., animated GIF) or in a standard high-resolution publication-ready image file (e.g., PNG, JPG, TIFF).

With the release of this package and publication of this paper, we hope to develop a community of users that could facilitate extending and adapting this software to better cover the needs of researchers in neuroscience.



MATERIALS AND METHODS

The philosophy of Visbrain is to provide elementary visualization building blocks which can easily be combined in a modular manner, and to design a flexible and responsive graphical user interface (GUI) which can be used to change the active visualization parameters in real time. Visbrain is not designed to duplicate data analysis functions which are already available in well-established packages such as scipy8, pandas9, SciKits10, or statsmodels11, except when it serves illustration purposes.


Programming Language and Code Guidelines

Although we initially considered Matlab and Julia (Bezanson et al., 2017) as language for Visbrain given their high level of abstraction, we finally chose Python since this mature and easy-to-learn language benefits from a large range of high-quality packages, a thriving and rapidly growing user community, and thorough documentation. Python software packages are portable, cross-platform, and easily distributed. More importantly, Python is free, open source, open access, and is thereby ideal for open science.

From a programming perspective, we paid particular attention to avoid memory-intensive data copy and to enable loading and processing of large dataset. Visbrain is hosted on GitHub12, and is documented using NumPyDoc, a Sphinx extension to generate NumPy-like documentation. We also provide illustrative examples and datasets. Code blocks are well-commented and follow PEP8 guidelines for code readability. Finally, package installation and features are tested under Linux and Windows through a continuous integration protocol (current coverage >85%).



Dependencies

As Python 2.7 will not be maintained past 2020, Visbrain is a pure Python package for Python 3 only. Here is the list of Visbrain's dependencies are listed in Table 1.



Table 1. List of dependencies and package version.
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In addition to the above-mentioned packages, the use of some specific functionalities will require a few more dependencies. These include:

• Pandas (McKinney, 2011): for importing and exporting region of interest defined in the brain

• MNE-Python (Gramfort et al., 2013): alternative for loading sleep data files instead of using functions included in Visbrain

• Nibabel: for supporting certain file formats

• Tensorpac13 for computing phase-amplitude coupling

• Imageio: for Graphics Interchange Format (GIF) export

Finally, the Visbrain package can be downloaded using the python package manager pip14.



GPU-Powered High-Speed Graphics

As the size, dimensionality and complexity of brain data continues to increase, data visualization tools have to be increasingly efficient, in particular if real-time interaction is needed. For example, high-density EEG or full-night sleep recordings can be associated with files of up to tens of gigabytes. Matplotlib, which is one of the most famous Python plotting libraries (Hunter, 2007), is primarily designed to provide static publication-quality figures and is unfortunately currently not suited for handling large data and user interactions. Seaborn15, which is built on top of Matplotlib is also not a viable option for the same reasons. Among libraries with mature development and real-time interaction, we also considered PyQtGraph16 and Glumpy17 (Rougier, 2015). Both options could certainly have been excellent alternatives. We rather considered the VisPy package (Campagnola et al., 2015), which is a high-performance interactive 2D/3D data visualization library leveraging the computational power of the GPU through OpenGL. The choice of VisPy was made mainly for the ease of installation and also because it is a combined effort by the authors of several visualization libraries (PyQtGraph, VisVis, Galry, and Glumpy)

The use of VisPy library is a critical component of Visbrain. By offloading most of the graphical rendering cost to the GPU, VisPy allows real-time interactivity, even for large datasets, while at the same time minimizing CPU overhead. As a result, Visbrain is able, on any modern-day laptop, to efficiently display large datasets and allows for real-time user interactions.



Graphical Interface and User Interactions

Scientific visualization software often come with easy-to-use GUIs. Although most of the analyses can be performed in the command-line, such interfaces often greatly enhance the user experience. GUIs also allow users with no or little programming knowledge to use the software, making it more accessible to the scientific community.

To embed VisPy graphics in full-featured widgets, we chose to use the cross-platform C++ GUI toolkit Qt18, for which Python bindings are available (i.e., PyQt & PySide). Specifically, GUIs of the different Visbrain modules were built using the Qt designer tool and were then converted to Python code using PyQt.



Documentation and Examples

Visbrain comes with a detailed step-by-step documentation built with Sphinx19 and hosted on the Visbrain website20. This documentation describes how to install Visbrain and use its modules. We also provide a description of GUI components and inputs for all class modules. Moreover, we provide a description of each graphical element using tooltips that appear when hovering corresponding widgets with the cursor. Lastly, we provide examples21 and python scripts that can be downloaded from the website. Some examples requires additional data to be fully functionals. Those data are either generated or comes from other open-sources softwares (i.e., MNE-Python, PySurfer, and Nilearn).




RESULTS

From the user's perspective, Visbrain is subdivided into two main levels: (1) Objects: independent visual primitives that can be defined and used without the need for a GUI. (2) Graphical user interface: a user-friendly interface built on top of Visbrain objects for interactive visualization. The visbrain architecture is summarized in Figure 1.


[image: image]

FIGURE 1. Architecture of the Visbrain software. The left branch in blue illustrates the three included graphical user interfaces (Signal, Brain, and Sleep and). For advanced users that want to interact programmatically with Visbrain, the right branch in red shows 6 of the 14 implemented objects in Visbrain. These objects are presented in circles to emphasize the fact that each of them is independent. Then, using the scene (SceneObj) these objects can be superimposed or juxtaposed into subplots inside a unique figure. The scene offers a finer grain control over the layout. Note that each subplot is interactive, meaning that rotation, translation and zoom can be applied in real time on each subplot.




Objects

Objects represent the lowest level of Visbrain and can be considered as neuro-oriented visual primitives. Each object is highly configurable and serves a single visualization purpose. For example, the brain object (BrainObj) is used to display 3D brains. The definition of every object is independent, but some of them can interact together. For example, the activity of a source object can be projected onto the surface of the brain (see section Source object for the description of the projection). Those primitives bring modularity to Visbrain.

Those objects can then be superimposed and juxtaposed inside subplot (see section Scene object). It should be noted that Figures 2–6, that combine these objects, were not post-paginated (i.e., static rendering), but were generated from the scene object as real-time interactive figures. Finally, objects can also be animated, either independently or within subplots. Furthermore, such animations can be exported as a gif file.
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FIGURE 2. Illustration of the main features of the brain object (BrainObj). This object delivers some basic features as the possibility to display a translucent or opaque brain mesh (A) or to pick only one hemisphere (B). Intracranial data can also be projected onto the surface (C) and other recording modalities can also be displayed [fMRI activation (D) and MEG data (E)]. In addition, parcels can also be used (G) and data can be assigned to those parcels (H). All of those subplots use MNI templates included with Visbrain, but the user can also define and save a custom template by defining subsets of vertices and faces (F).



Implemented Objects

The current version of Visbrain implement many classes, among them 14 defines visual objects that can be directly imported from visbrain.objects and be added to a scene. The API for interacting with those primitives are described inside the documentation22 (see Table 2 for a list of the visual objects).



Table 2. List of the 14 visual objects implemented in Visbrain.
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Illustrations of the Main Functionalities of the Objects

In this section, we provide a non-exhaustive review of the main features of some of the most used objects.

Scene object

Probably one of the most useful objects of Visbrain is called the scene (SceneObj). The scene is not a visual primitive in the sense that it cannot be used to represent any kind of brain data. Instead, it is an equivalent of Matplotlib's subplots meaning that objects can be superimposed inside sub visuals or displayed side by side. While requiring from the user some modest programming skills, the scene presents three major advantages: 1) it is undoubtedly a more flexible way to meet some specific visualization needs, 2) scenes can be integrated inside loops, on a local computer or on a distant server which means that the production of figures can easily be automated,3) the layout of figures for scientific publications can be assessed using this scene and 4) subplots remains interactives which allow the user to continue to interact with each object independently. Figures 2–6 are defined using the SceneObj and the code snippet 1 illustrates a basic example of how to use the scene object to define the layout of a figure.


[image: image]

Code Snippet 1. Display the left and right hemispheres into two separate subplots along with random MNI sources/contacts/electrodes.



Brain object

The brain object (BrainObj) can be used for every scenario where a 3D brain mesh is needed. Left and right hemispheres can be individually displayed on a translucent or opaque mesh. In addition, overlays of data can also be added to the mesh to illustrate fMRI, M/EEG or intracranial activations. The brain object capabilities are summarized in Figure 2.

Region of interest object

Regions of interest (ROI) are labeled volumes, i.e. a 3D array of voxels associated with an anatomical label (e.g., “Somatosensory cortex”). By default, Visbrain supports Brodmann areas, the Automated Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002), the Talairach atlas (Talairach and Tournoux, 1993) and the Multiresolution Intrinsic Segmentation Template (MIST; Urchs et al., 2017). New ROIs can also be defined by providing a 3D array for the volume and labels. The RoiObj provide the users with an interface to the volume and let them extract the mesh of a specific region and assign different colors to it. The code snippet 2 shows how to extract the mesh of the thalamus and Figure 3 demonstrates some core features of this object.
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Code Snippet 2. Display the left and right thalamus
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FIGURE 3. Illustration of the main features of the region of interest (ROI) object (RoiObj). Visbrain provides several default atlases that can be used to extract the mesh of specific regions (A,B,F). In addition, the source object (SourceObj) can interact with the ROI object. For example, sources' activity can be projected onto the mesh (C). The RoiObj can also be used to identify in which region a source is contained. Here, sources are color-coded according to the MIST (D) but a table with all of the anatomical informations can also be exported. Finally, it is also possible to keep only the sources that fall into the volume formed by the mesh (E).



Source object

The source object (SourceObj), depending on the recording modality can either represent intracranial recording sites, M/EEG sensors or reconstructed source activity. A text and marker color can also be assigned to each source. In addition, data can be provided to those sources to have marker radius proportional to the data.

Another useful and relatively rare feature among existing software is the ability to use the source object to project intracranial data onto a mesh (e.g the cortical surface of the brain or onto ROI). Usually, the implantation of intracranial electrodes is subject dependent, which then poses a problem to visualize the results across subjects. Cortical projections can solve this limitation and have been previously used (Combrisson et al., 2017a). When projecting the data, each vertex in the mesh can be considered a bin which simply accumulates the data (e.g. beta power) from nearby intracranial sites. The data from all sites that are under a certain radius (10 mm by default) contribute to this bin. It is what gives the circular aspect to this projection (see Figure 2C). Instead of projecting data, it is also possible to project the number of sources that contribute to each point of the mesh. In this case, the color indicates how many sources participated. Finally, the last feature that we want to point out is the possibility to get anatomical informations on sources using the ROI object. For example, this can be used to deduce in which Brodmann area a source (e.g., or an electrode) is contained. Those functionalities are presented in Figure 4.
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FIGURE 4. Illustration of the main features of the source object (SourceObj) using an intracranial dataset. Additional data can be assigned to sources and the color can either be individually defined or based on a colormap (A). A text can also be attached to sources (B). In a similar way to Figure 3D, here, sources are colored according to Brodmann areas (C). The data attached to sources in (A) is then projected onto the surface of the brain (D) or onto the surface of the default mode network (DMN) (E). Finally, the cortical repartition (F) is the number of contributing sources per vertex. It can be an interesting feature to estimate the number of sources that have contributed to each point of the cortical mesh when projecting source's data.



Connectivity object

The connectivity object (ConnectObj) is used to draw connectivity lines between nodes. We provide three coloring methods: 1) set color to the edges according to connectivity strength, 2) set color to the node according to the number of connections per node or 3) set color of edges manually. Figure 5 shows an example of those differences in coloring methods. Display of directional connectivity is still an experimental feature and therefore is not presented.
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FIGURE 5. Illustration of the main features of the connectivity object (ConnectObj). The three sub-visuals express three coloring methods. The first method (A) is simply to color edges by connectivity strength. The second (B) color edges according to the number of connections per node and finally, (C) use colors that are manually defined.



Other objects

Visbrain contains several other objects serving various purposes, such as drawing vectors, displaying images, time-frequency maps, and phase-amplitude coupling comodulograms. For EEG recordings, topographic representations such as cross-sections previously shown for anatomical and functional MRI can also be plotted. Figure 6 summarizes the use of these objects.
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FIGURE 6. Illustration of additional implemented objects. (A) cross-section of fMRI data (CrossSecObj). The cross-section can be used to load background anatomical images and superimposed activations. It is also possible to move around the volume by clicking on it (still under development). Subplots (B, C) respectively illustrate time-series (TimeSeries3DObj) and pictures (Picture3DObj) embedded inside the mesh. Here, the pictures are time-frequency maps. (D) Plot vector-valued (VectorObj) MEG inverse solution. Visbrain also contains objects to plot images (ImageObj) as illustrated in (E) with a connectivity matrix, time-frequency maps (TimeFrequencyObj) (F), phase-amplitude coupling (PacmapObj) (G). Finally, the TopoObj can be used to plot topographic representations of EEG data, draw levels and connectivity links between EEG sensors (H).



For a list of all supported data types for the various objects we refer the reader to the online API documentation23



GUI Based Interfaces

The main objective of GUIs is to connect and centralize the main features of the smaller visualization bricks. At the moment, Visbrain contains three interfaces:

• Signal: for the inspection of time-series and spectral properties (PSD power and time-frequency map decomposition, phase-amplitude coupling,…)

• Brain: for any type of visualization involving a representation containing an opaque or translucent brain

• Sleep: for plotting, staging, and analyzing sleep data

GUI can be imported from visbrain.gui. Those interfaces share the following properties and functionalities:

- A responsive GUI with a common graphical design and structure: a “quick settings” panel disposed on the left (which can be hidden or displayed) and plot on canvases displayed on the rest of the screen. This settings panel contains PyQt widgets to control objects' properties and apply changes in real time.

- The use of VisPy to exploit GPU capabilities.

- A “File” menu to import and export files (such as datasets, annotations, …). From this menu, it is also possible to save and load the GUI state, i.e., the value of each PyQt graphical elements (checkboxes, comboboxes,…). The configuration is saved into a text file with a JavaScript Object Notation (JSON) structure and can later be reloaded to retrieve the session.

- A “Display” menu that controls which elements are displayed or hidden on the screen.

- A “Help” menu to open an informative web page in a browser about the current module and features. This help can also be downloaded in PDF format.

- The support of keyboard shortcuts and mouse events (left and right clicks, double clicks, mouse wheel scrolling,…). The list of supported shortcuts is referenced in a table accessible from the help menu.

- A screenshot window to either export the entire window or select canvas with controllable size, resolution, and printing options. Visbrain supports several standard picture formats (such as PNG, JPG, PDF, EPS, or TIFF). The transparency and background color can also be controlled from this window. An “auto-crop” option can also be checked to automatically crop the exported image to the closest non-background pixel.

Signal: Time-Series Visualization and Spectral Properties

A common first step when exploring electrophysiological data consists of inspecting time-series. This inspection phase is useful to get an idea of the shape of the signals, as well as quickly detecting artifacts, epileptic spikes, eye movement contamination, etc. Spectral properties such as power spectrum density (PSD) or time-frequency maps are complementary tools for such quality control and data exploration. Such data inspection can be complicated for multi-dimensional datasets (e.g., number of trials x tasks x time points). To address this issue, we developed the Signal24 module for the visualization of multidimensional signals. The GUI is divided into two layouts presented in Figure 7. On the left, the dataset overview. This consists of a grid where all of the time-series in the dataset are displayed. Multi-dimensional arrays are systematically reshaped into a 2D grid. On the right, the detailed view of a single signal. This second layout can be used to plot the time-series, the PSD or the time-frequency map.
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FIGURE 7. Example of the GUI of the Signal module. Leftmost is the setting panel, and side-by-side are all of the time-series re-arranged into a 2D clickable grid and rightmost, an enlarged version of one of those time-series.



Grid disposition

The usefulness of this data exploration module is demonstrated by one of the VisPy examples25, in which thousands of signals, each having thousands of points, can be instantly plotted using the GPU graphics rendering. These signals are presented in a two-dimensional grid and the user can zoom on each of them. Since this grid of signals can be useful for plotting electrophysiological data, this representation has been integrated into the Signal module (see Figure 7). The aim of this grid is to provide an overview of the entire dataset in a convenient way to visualize all the time-series at once. In order to take advantage of the width and height of the screen, the program tries to determine an optimal number of rows and columns for the grid. A title can also be added on top of each signal of the grid to facilitate the orientation of the user. To better visualize the signal on a specific channel, the user can double-click on it in the grid. This enlarges the selected signal by opening it in the second layout.

Plotting forms

In addition to the grid, a second layout is provided to inspect one time series at a time. The default plotting method is a continuous line but it can be changed to markers for a cloud of points. We also included the possibility to compute the histogram, the PSD or a highly configurable wavelet-based time-frequency map (such as normalization method, baseline bounds, etc.). The grid and those plotting forms are summarized in Figure 8.
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FIGURE 8. Plotting capabilities of Signal. (A) 104 intracranial recording sites of 4,000 time points each are rearranged into a clickable 13 rows by 8 columns grid. A double-click on one signal of the grid enlarges it in the second layout. This enlarged time-series can either be displayed as a continuous line (B) or a cloud of points (C). A histogram can also be computed (D) as well as the time-frequency map using Morlet's wavelets (E) or the power spectrum density (F).



Annotations, thresholding, and signal processing tools

This module also supports annotations by double-clicking on the canvas that contains the single time-series. All inserted annotations are referenced in a table that can be exported or imported. Selecting a row of this table displays the annotated trial with associated annotations. Then, the Signal module also allows the user to define a lower and upper threshold for the identification of time-series extrema. These annotations and thresholding capabilities are summarized in Figure 9. We also included some signal processing tools such as filtering, detrending, smoothing, and demeaning.
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FIGURE 9. Thresholding and annotation example of an intracranial time-series. The two horizontal lines indicate the threshold values and time points that are either above or under are turned in red. The green markers show inserted annotations that can also be exported.



Brain: Visualization on a 3D Brain

Brain26 is the second graphical interface that has been developed for all types of visualizations involving a 3D brain. This interface is not intended to provide extra functionality compared to what can be done with the Visbrain objects and scenes. Instead, it provides a GUI to control these objects and the interactions between them.

Object and colorbar control

The Brain class can take as input objects or list of objects from the following classes: brain, sources and connectivity (BrainObj, SourceObj and ConnectObj), 3D time-series, pictures, and vectors (TimeSeries3DObj, Picture3DObj, VectorObj) and volume related objects (VolumeObj, CrossSecObj, and RoiObj). Any object passed to the Brain class can then be directly controlled from the Object tab inside the settings panel (see Figure 10). In addition, since each visual object has its own color properties, the colorbar can be controlled individually for each of them from the Cbar tab (see Figure 11).
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FIGURE 10. Example of the GUI of the Brain module. The settings panel on the left can either be displayed or hidden. This panel contains two tabs: Objects, in order to control the properties of each visual class (e.g., BrainObj, SourceObj, etc.) passed to the interface and Cbar for controlling the colorbar and color properties of a selected object. On the right, the main canvas contains the MNI brain with sources and connectivity links between those sources. This canvas allows fluid rotation, zoom and translation, but also mesh slicing along the (x, y, z) axes. Here, the colorbar of connectivity strength is displayed but it can also be hidden.
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FIGURE 11. Colorbar control. The Cbar tab of the settings panel contains all of the properties to design the colorbar of a specific object (width, colormap, limits, lower and upper thresholds, title, etc.). In addition, these properties can be modified for each object. Here, the widget controls the colorbar for the data projected onto the surface of the brain.



Class method for command line interaction

All the functionality and object properties that are accessible from the GUI can also be used and set using Brain class methods. The use of methods does not require the graphical interface to be open, even for screenshots. Hence, users can leverage those class methods in custom python scripts to speed up the production of large sets of figures. All of these methods are referenced in the documentation26.

Sleep: Polysomnographic Data Visualization and Edition

Sleep27 is the Visbrain module dedicated to the visualization and analysis of sleep data and has been previously described (Combrisson et al., 2017b). It should be noted that new features have been added to the Sleep module since the publication of this article, such as the possibility to replace the default event detections with custom external algorithms. This allows different sleep research teams to use the same data visualization platform while still keeping their custom, lab-specific, algorithms for the detection of transient events during sleep.



API and Scripting

As visbrain is subdivided into two main levels (Objects and GUI where GUIs are built on top of objects) we also provide an API for higher level interactions. GUIs are of course ideal when user interaction is needed. That said, GUIs are obviously not intended to be embedded inside loops for scripting. Conversely, the object level offers less options for graphical interactions (except for translations and rotations) but is ideal for scripting, automating and streamlining the production of high-quality figures. This could be implemented either on a local computer or remotely on a distant server. In addition, the API provision also implies that other toolboxes that have intensive visualization needs (e.g. MNE-Python) can benefit from this API and the modularity of Visbrain objects. The full Visbrain's API can be found in the online documentation28.




DISCUSSION


Summary

The ever-growing complexity of neuroimaging recording techniques, relying on analyses in higher-dimensional space and on larger datasets, are gradually transforming brain data visualization into a real challenge for the existing body of neuroimaging software. This challenge is further complicated by the difficulty of meeting the specific needs from individual research teams and by license compatibility issues with proprietary software. With these problems in mind, we propose Visbrain, a versatile Python 3 package for multi-modal brain data visualization. As other softwares, Visbrain includes graphical user interfaces for higher level interactions with visual primitives. But the greatest novelty and added-value of Visbrain lies in its structure and especially the object level which, once configured properly, can offer a great modularity for designing figures and layout that reflect brain data results. This package is also configured and tested on continuous integration servers to improve its robustness on different platforms using Travis (Linux) and AppVeyor (Windows). In addition, the documentation is built and deployed automatically using CircleCi. This also implies that Visbrain can be used on a remote server in headless mode.



Limitations and Perspectives

Although much effort has been devoted in providing a software compatible with multi-modal data, it is not equally featured across recording techniques. For example, fMRI cross-section is still a beta feature and electrocorticographic data-specific visualization tools are not implemented so far. Secondly, efforts must now be made to make Visbrain fully compatible with Jupyter in order to have visuals embedded inside notebooks and iPython for interactive shell. We are also considering adding the compatibility with the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016; Niso et al., 2018), a set of guidelines for organizing behavioral, MRI and M/EEG data that facilitates data sharing and reproducibility. Finally, Visbrain also contains experimental functions for the compatibility with MNE-Python (Gramfort et al., 2013), but this compatibility will be substantially enhanced in the future.




CONCLUSIONS

In summary, Visbrain is a Python open-source and cross-platform software for brain data visualization which provides, among others, the following features: (1) GPU-powered graphical rendering providing efficient data plotting, even for large datasets and real-time interactions. (2) Modularity and flexibility with respect to users' specific needs through neuro-oriented visual primitives that can be juxtaposed or superimposed into subplots, following a Matplotlib-like behavior. (3) Complete control over the aesthetic through highly customizable configuration of color properties, allowing better use of this particularly informative dimension. Visbrain is in its early stages of development, but the present core should hopefully motivate users and programmers to contribute to the project and build a community-driven, powerful, sustainable, and full-featured open-source solution for brain data visualization.
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21http://visbrain.org/auto_examples/index.html

22http://visbrain.org/api.html#objects

23http://visbrain.org/api.html#module-visbrain.objects

24http://visbrain.org/signal.html

25https://github.com/vispy/vispy/blob/master/examples/demo/gloo/realtime_signals.py

26http://visbrain.org/brain.html

27http://visbrain.org/sleep.html

28http://visbrain.org/api.html
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Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular system, as human movements are the direct outcome of neuromuscular control. However, motion analysis often relies on measures that quantify simplified aspects of a motion, such as specific joint angles, despite the well-known complexity of segment interactions. In contrast, analyzing whole-body movement patterns may offer a new understanding of movement coordination and movement performance. Clinical research and sports technique evaluations suggest that principal component analysis (PCA) provides novel and valuable insights into control aspects of the neuromuscular system and how they relate to coordinative patterns. However, the implementation of PCA computations are time consuming, and require mathematical knowledge and programming skills, drastically limiting its application in current research. Therefore, the aim of this study is to present the Matlab software tool “PManalyzer” to facilitate and encourage the application of state-of-the-art PCA concepts in human movement science. The generalized PCA concepts implemented in the PManalyzer allow users to apply a variety of marker set independent PCA-variables on any kinematic data and to visualize the results with customizable plots. In addition, the extracted movement patterns can be explored with video options that may help testing hypotheses related to the interplay of segments. Furthermore, the software can be easily modified and adapted to any specific application.

Keywords: sensorimotor control, motion analysis, clinical gait analysis, postural control, coordination, principal component analysis PCA


INTRODUCTION

Sensorimotor control of movements is one of the most important functions of the nervous system. It involves detecting the physical state which the biomechanical system is in; processing this information to determine which changes to the system are desired or need to be opposed; and activating the motor system to generate the forces that produce the required changes to the system. From a biophysical viewpoint, the state of the biomechanical system is fully described, when the position and velocity of the body segments are known. Thus, full-body motion analysis offers an approach for studying the function of the nervous system by determining, on the one hand, the state of the system and thus the input to the various sensory systems, and, on the other hand, the accelerations of the body segments and thus the resultant output of the neuromuscular system.

However, multi-segment human movements allow many degrees of freedom DOF and typically allow a large variety of different movement strategies to successfully achieve a goal (Bernstein, 1967), i.e., human movements are mechanically complex. Therefore, conventional movement analyses often look into specific, pre-determined aspects of a motion. Such analyses often neglect important information about segment interactions; and the complex nature of these interactions makes a priori variable determination prone to false identification of important aspects. That is why other approaches quantify whole body kinematics (Honegger et al., 2013; Boström et al., 2018). Nevertheless, most of these approaches still rely on pre-defined aspects of specific movements such as angles, torques, or segment trajectories.

In the past two decades several principal component analysis (PCA) based approaches were developed for various applications in kinematic data analysis (Sadeghi et al., 1997; Troje, 2002; Daffertshofer et al., 2004; Wang et al., 2014), with the aim of determining relevant aspects of a motion in an unbiased and data driven way. One of these approaches identifies whole-body movement components (Troje, 2002; Daffertshofer et al., 2004), later called principal movements PMk (Federolf et al., 2012), thus reducing data complexity without neglecting segment interactions. In this framework, a PCA yields eigenvectors PCk, eigenvalues EVk and score time-series called principal positions PPk(t). Each PCk defines one type of movement or movement strategy that the respective PMk describes, while each EVk determines the amount of total variance in the data explained by the respective PMk. Furthermore, the scores PPk(t) determine the evolution of the respective PMk over time.

Among the first papers applying PCA in this sense were studies on walking patterns and gait forms (Troje, 2002; Daffertshofer et al., 2004; Verrel et al., 2009). In these studies, a separate PCA was conducted for each trial and the individual EV-spectra characterizing the amount of contribution of each individual postural strategy were compared. On the one hand, this approach allowed programming a motion synthesizer that displays gait forms according to different classifiers such as gender, weight, and emotional condition (Troje, 2002). On the other hand, it could be shown that gait regularity is not only affected by cognitive dual-tasking, but that different age groups display different changes in regularity (Verrel et al., 2009).

These results established PCA as a useful tool to analyze human movements. However, only EV-spectra describing the contribution of trial specific movement patterns could be compared, thus the comparison of movements between subjects or trials remained unsolved. Soon after, it was shown that one PCA could be conducted on several trials of various participants simultaneously, if the datasets were normalizing appropriately (Federolf P. et al., 2013). This approach enabled the comparison of the movement executions PPk(t) between trials. Furthermore, the relative contribution of each PMk to a trial's overall variance (corresponding to the EVk) was quantified with the variable rVARk computed on the PPk(t).

Amongst others, the rVARk and PPk(t) have provided new insights into the execution of sports techniques in alpine skiing, cross-country skiing, karate, dancing, cycling and race-walking (Donà et al., 2009; Moore et al., 2011; Masurelle et al., 2013; Federolf et al., 2014; Gløersen et al., 2017; Zago et al., 2017a). Moreover, related variables such as residual variances RVk or relative standard deviations rSTDk have been used to quantify the dimensionality of coordinative tasks such as juggling or balancing (Zago et al., 2017b; Haid and Federolf, 2018).

While the studies discussed so far applied the PCA method to compare movements, they have not calculated velocities or accelerations, and thus have not studied the control of movements. Only in 2016 it was suggested to differentiate the PPk-time series to obtain principal velocities PVk and principal accelerations PAk (Federolf, 2016). Since then, PAk and variables based on PAk have been used to study differences in movement control due to aging (Haid et al., 2018) or leg dominance/laterality (Promsri et al., 2018a). The PPk and PPk-variables were also applied in postural control research and linked to COP-time-series (Federolf, 2016), which are analyzed in a range of clinical applications that investigate impairments due to aging, overweight, back pain, concussion, multiple sclerosis, autism spectrum disorders, or Parkinson's disease (Fino et al., 2016; Huisinga et al., 2017; Lim et al., 2017; Yamagata et al., 2017; Han et al., 2018; MacRae et al., 2018; Nikaido et al., 2018). A recent study evaluated COP-irregularity by linking it to PPk(t) irregularity and to the complexity of the movement structure as defined by rSTDk (Haid et al., 2018).

Variables computed on PM time-series contain information about whole-body positioning, which allows studying the movements of the human body as a system, while preserving or possibly enhancing (Federolf P. A. et al., 2013) the ability to discriminate groups. Therefore, the PCA approach is well-suited for addressing any research questions where coordination or the interplay of segment movements is of importance. However, despite its research potential the implementation of PCA approaches requires a fair amount of programming and mathematical skills, and can be very time consuming. Therefore, the development of new PCA based variables and research output validation comparing different computational options is severely hampered.

The main goal of this paper is to present the PManalyzer-software. It generalizes many of the existing PCA concepts and was designed to motivate the development and validation of kinematic PCA related variables and methods within a user-friendly graphical environment. On the one hand, the software will allow researchers and clinicians without extensive programming or mathematical skills to perform PCA on kinematic data; on the other hand, it will allow users with more advanced knowledge in the area to adapt and further develop the software.



MATERIALS AND METHODS

The software was designed to pre-process the kinematic input data and then compute a PCA on it. Furthermore, the PManalyzer can compute a range of PCA variables. In this section the mathematical background of kinematic feature extraction and some of the most important variables are explained.


General Data Model and Data Pre-processing

Typical kinematic data consists of 3D positions in time obtained by tracking the motion of n anatomical landmarks; either utilizing a motion capture system or video-tracking (Figueroa et al., 2003). The kinematic data is then available in matrix form in which the N = 3·n columns represent the time-series si(t) (i∈{1, 2…, N}) of the respective x-y-z-coordinates of each anatomical landmark. Each row contains the measured 3D positions of all markers at one time-point:

[image: image]

Where T equals the number of measured time-points. The application of PCA to human movement is based on the idea of identifying linear whole-body movement patterns that dominate the recorded movements. However, when identifying movement patterns within a group of several subjects, both the mean positioning of a participant and anthropometrical differences distort the results. To reduce such distortions, the data of each subject can be centered, weighted and normalized (Federolf P. et al., 2013; Zago et al., 2017b; Haid et al., 2018).

The data is centered by subtracting the mean < si> of each individual time-series si (each column) from the respective time-series [image: image]:

[image: image]

preventing differences in mean marker positioning in space to affect the results. Furthermore, a participant's weight distribution can influence marker movements. As an example, when moving a hand, less mass has to be accelerated and controlled, in comparison to moving a thigh. Therefore, each of the N time-series can be scaled according to the weight wi (i∈{1, 2…, N}), that the respective marker represents:

[image: image]

Weighting has been applied in literature (Federolf P. et al., 2013; Gløersen et al., 2017; Haid et al., 2018; Promsri et al., 2018a), often considering gender-specific mass distributions (Defense Technical Information Center, 1988; de Leva, 1996; Gallagher and Heymsfield, 1998).

Another important aspect to be considered when comparing trials is that anthropometric differences can influence the amount of movement produced. Therefore, each data-set should be normalized according to application specific criteria:

[image: image]

Normalization factors dnorm such as the mean Euclidean distance (MED) (Federolf P. et al., 2013; Zago et al., 2017b) or the body height (Haid and Federolf, 2018; Haid et al., 2018) have been proposed to reduce anthropometric differences. In detail, the MED ensures that all subjects contribute equally to the overall variance, while the body height normalization scales the data to a trial-independent anthropometric parameter.

Once the data sets of each participant are centered, weighted and normalized1, one large data matrix Dall is formed, containing all data sets of all X trials concatenated vertically (with index 1.X representing different subjects and/or several trials of different subjects):
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Feature Extraction—PCA

After pre-processing, the eigenvectors PCkand eigenvalues EVk of the covariance matrix of Dall are computed [implemented as SVD (Shlens, 2014)]. The eigenvectors PCk form a new orthonormal basis that spans posture space (Federolf P. et al., 2013), a space in which each of the axes determines one specific linear, one-dimensional whole-body movement. Furthermore, scores S can be obtained by projecting the data onto the new PCk basis:

[image: image]

The k-th column of the score matrix S can be interpreted as time-series PPk(t) that quantitatively describes the evolution over time of the respective principal movement PMk, i.e., the manifestation of the one-dimensional PMk defined by the corresponding PCk:

[image: image]

In addition, the eigenvalues EVk describe the amount of variance (or movement) explained by each PMk and are typically presented as percentages or relative eigenvalues rEVk2.

To compute one PCA on each trial separately can be done by running the software for each trial separately. However, this feature is not explicitly supported, because the authors recommend only comparing trials with respect to one PCA basis that describes the group as a whole. The benefit of the current procedure—being able to compare the PPk(t) of trials—outweighs the benefit of obtaining several, trial-specific PCA-bases that only allow comparisons of rEVk-spectra, but not of PPk(t). Moreover, the PPk(t) can be used to compute variables that describe the subjects specific variance explained by each PMk and further variables that quantify the additional aspects of a movement or of neuromuscular control.



Interpretation of the Movement Components

As mentioned in the previous section, the PCk form a basis of the posture space. Moreover, they have the property that they point in the direction of the largest correlated variance expressed in the data. Therefore, they point in the direction of the most common patterns of correlated marker movements. As a consequence, the PMk are linear approximations of the analyzed movements and interpreting them as real movements should be done with caution. For example, to explain non-linear movements such as rotations at least two linear components are needed. Nevertheless, for movements with small perturbations such as static balancing tasks (tandem, bipedal, one-legged) past research has found the PMk to describe the main dynamics of well established, nonlinear movement strategies, e.g., ankle sway or upper body rotation (Haid and Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a). Moreover, also for movements with higher amplitudes the PMk have been found to reflect the main the dynamics of established movement strategies, such as isolated leg or arm swinging, trunk leaning, or coordinated multi-segment movements (Troje, 2002; Verrel et al., 2009; Eskofier et al., 2013; Gløersen et al., 2017; Zago et al., 2017a,b).

Advantages of analyzing the movement with PMs are that few variables are needed to approximate the movement to great detail and obtaining the PMs is data-driven—not postulated from subjective observations. Moreover, the PMs can be visualized which improves interpretation of results. In the current paper we further propose that movement analysis involving rotational movements of large amplitudes could additionally benefit from non-linear coordinate transformations. To the best of our knowledge, there is no literature to support this assumption, therefore, a motivational example will be presented.



PCA Variables

In the following some of the most common kinematic PCA variables in literature are described. These, amongst others, are pre-implemented in the software.

Trial Specific Movement Structure or Composition

The rEVk determine the overall variance explained by each PMk either in the respective trial—if one PCA is computed for one trial—or in the overall variance produced by all trials—if one PCA is computed for the concatenated trials-matrix. In the latter, trial-specific relative variances rVARk can be computed that represent the explained variance of each PMk (Federolf P. et al., 2013), analogously to the rEVk for applications in which one PCA is computed for each trial. Therefore, the sum of all variances of each trial's individual PPk(t) ~ time-series

[image: image]

can be computed. The subject specific relative variances are then defined by

[image: image]

To obtain a similar variable that quantifies the movement structure and explains the relative contributions to a movement, but scales as the original movement, the variance in the rVARk computation can be replaced by the standard deviation to compute trial-specific relative standard deviations rSTDk (Haid and Federolf, 2018; Haid et al., 2018).

When the dimensionality of a movement is of interest, it makes sense to define subject specific cumulative relative variances as

[image: image]

or analogously CUM_rSTDk, which explain the cumulative contribution of the respective component order. This can further be used to compute subject specific residual variances

[image: image]

where m is the highest PC-order included (Zago et al., 2017b,c).

Kinematics in Posture Space and Measures of Postural Control

Similarly to conventional kinematics in biomechanics (Federolf, 2016) the PPk(t) time-series can be utilized to analyze the execution of movements with respect to their PMk. Different trajectories or performances can therefore be directly compared to another if the PPk(t) of all trials are coordinates in the same posture space, i.e., if one only one PCA was computed.

Furthermore, the PPk(t) can be utilized to compute principal velocities PVk(t) and principal accelerations PAk(t) by differentiating the PPk once and twice, respectively. The dynamics of all three PM time-series can be studied using conventional time-series analysis. For example, postural reconfiguration can be ascribed to acting external forces, such as gravity, and internal forces, such as acting muscle forces. Therefore, the PAk(t) can be used to compute variables that characterize the neuromuscular control of movement, as they represent the acceleration of the postural movements. For example, it has been shown that the PAk can be used to quantify the amount and the variability of the neuromuscular control, by further defining variables Nk and σk (Haid et al., 2018; Promsri et al., 2018a), which represent the number of PAk -zero-crossings (changes in the direction in which the neuro-muscular control3 system influences the current motion) and the time-variability between the zero-crossings, respectively.

Table 1 contains a summary and a description of these PCA variables. However, any other type of time-series analysis that fits the research question may be applied to the three PM time-series.



Table 1. Summary and description of the variables.

[image: image]






PCA Validity Considerations

To quantify which PCk basis is adequate to describe the group as a whole, a leave-one-out cross-validation can be performed (Diana and Tommasi, 2002; Bro et al., 2008; Camacho and Ferrer, 2012). Therefore, the PCk are computed several times, while omitting one trial each time. The changes between the used PCk and the newly obtained [image: image] can be quantified as angles and serve as a PM-inclusion criterion (Federolf, 2016; Haid and Federolf, 2018; Haid et al., 2018).




RESULTS—THE PMANALYZER SOFTWARE


The Interface

As depicted in Figure 1, the PManalyzer interface is organized into five main panels with red margin and font: 1. “Input data,” 2. “Computation and output,” 3. “Plots,” 4. “Videos” and 5. “Save/Load interface settings.” Following the subpanels one by one allows the user to move through the conventional steps for a PCA applied to kinematic data as described in the section Materials and methods. The block scheme in Figure 2 visualizes the steps of the parameter selection when using the PManalyzer.


[image: image]

FIGURE 1. General user interface (GUI) of the PManalyzer. The input settings shown here were used for the computation of the example discussed in the current paper.




[image: image]

FIGURE 2. Block-scheme of the PManalyzer computation options. Gray fields describe essential parameter selections. White field represent optional GUI features (Welch's PSD-estimation can be used to estimate the power spectral density of data and to determine a plausible cut-off frequency).



Once the computational options are selected, the user can save interface settings and reload them later if needed. To improve efficiency when repeating calculation steps, computed data can also be saved, and loaded. The compatibility of the computing vs. loading vs. disabling options is regulated over the interface to avoid the selection of incompatible features.

Note: The interface was created with the “guide” tool in “MATLAB 2015a” in “Windows 10” on a screen with a 1,920 × 1,080 resolution. Both “Units” and “FontUnits” were set to “normalized” with respect to screen size. For other software or hardware configurations (for example on Mac books) some adaptations may be necessary. Also, some of the plotting features may produce errors if the PManalyzer is run on earlier versions of MATLABTM.



Code Structure and Computation

The source code is built upon the structure of the user interface and kinematic PCA described in the methods. To monitor the code activity a text describing the current computational step is printed in the output-console. Furthermore, the code is documented by comments to identify the task of each code section and help identifying important computational variables and their respective role in the code. Despite the self-regulating interface, it is possible to select options that do not match the data. The code has implemented fail-safes to identify obvious selection errors and forward them to the user, e.g., when users choose to make video files of data that was not read in.

Functions containing computational options meant for the user to customize (pre-processing, coordinate transformations, normalizations, weighting, variables on PM time-series, video-coloring and creating additional plots) are contained in the PManalyzer subfolder “FunctionsToEdit.” Users can follow the descriptions and the examples provided inside each function to implement their new options. When starting, the GUI automatically loads all functions contained in subfolders and updates the interface with the available options.



Application Example

In this section, an example computation will be presented to highlight the flexibility of the software. Then, a standard PCA-analysis procedure is outlined. The input is a data subset taken from a previously published tandem stance study that served as template for the PManalyzer (Haid et al., 2018).

Computational Parameters and Modifications

For the sample tandem-stance data the first two columns containing time-frames and the headers were deleted. Then gap-filling (Gløersen and Federolf, 2016) was performed on each data set if needed, and a pre-processing option was created that mirrors specific data to make it comparable (unsymmetrical markers were deleted and data with left foot in front was mirrored). The data was then centered, weighted to standard human mass distribution (Defense Technical Information Center, 1988) and normalized with the height of the participants. We also filtered the data with a low-pass filter of 7 Hz, since Fourier analysis suggested signal power up to this frequency. As this example shows, standard pre-processing options can be performed on all of the data by simple parameter selection.

Another interesting pre-processing option that is rarely taken advantage of in kinematic PCA-research is a coordinate transformation. The PManalyzer has two types of coordinate transformations pre-implemented (spherical and cylindrical). Hence, we recomputed the analysis twice using the same parameter selection as described above, but transforming the data either into spherical or cylindrical coordinates, respectively.

Moreover, we selected several of the standard plotting options for the standard PCA variables (rEVk, rSTDk, rVARk, PP, PV, PA). Further variables such as Nk or σk (Haid et al., 2018; Promsri et al., 2018a) can be computed by selecting “Compute selfdefined variables” and can either be analyzed via Excel output or plotted by defining plots in the function personalizedPlots.m. In addition, we selected several video options (2D, 3D, and three different coloring choices. The Supplementary Files contain a summary of the important results of these computations, which we will discuss in the following section.

PCA Results

As a common first step, the overall eigenvalues were analyzed to see how much overall variance can be explained by the components (individually or cumulatively). These results (Figure 3) show that using spherical or cylindrical coordinate transformations would allow to explain more variance with fewer components. Therefore, we chose to continue the analysis with the results obtained by using spherical coordinates.


[image: image]

FIGURE 3. Eigenvalue and cumulative eigenvalue spectra obtained from three coordinate systems (standard kinematic PCA applications use Cartesian-coordinate systems). To explain roughly 98% of the variance it takes 9 PMs using Cartesian, 8 PMs using polar and 6 PMs using spherical coordinates.



As a next step, the PM-movies can be used to describe the movement components to form a better understanding of the extracted movements (compare “ColoringNone_2D_PM1-5_vis.mp4”). It is often helpful to implement specific coloring options (compare “Coloring1_2D_PM1-5_vis.mp4” and “Coloring1_2D_PM1-5_vis.mp4”). For this sample data, the first principal movement resembled an anteroposterior ankle sway. The second PM resembled an upper body retraction accompanied by front knee flexion, etc. The amplification factors displayed in the titles can be adjusted individually for every PMk. This is helpful when identifying movements of different magnitudes.

Furthermore, PM time-series plots show the execution of the individual trials with respect to the extracted movements (see Figure 4) and the PP activity over time can also be displayed in the video option (“Subject1_2D_PM-5.mp4” and “Subject1_3D_PM-5.mp4”). Both can be useful developing hypotheses related to the dynamics of PMs or their interplay. Users may define any sort of variable in the function optionsVariablesComp.m. These variables can then be computed on PPk -, PVk- and PAk-time-series, thus describing specific aspects of movement components that were not a priori defined, but play an important role producing the observed variance. As an example, we plotted the trial specific relative variances rVARk and standard deviations rSTDk that have been very useful when comparing movement structures amongst various groups (Federolf, 2016; Haid et al., 2018; Promsri et al., 2018a). In the current example it can be observed that while the overall movement of subject 2 is dominated by anteroposterior ankle sway, subject 3 has a more balanced movement structure, where several movements contribute effectively (Figure 5).


[image: image]

FIGURE 4. Exemplary PP-, PV- and PA-time-series produced by the PManalyser. This specific data was recorded from a subject performing a tandem stance balance trial. The number of trials, subjects and PMs displayed per figure can be selected in the interface. Units are arbitrary (AU), since they represent a combined motion of all markers and may depend on pre-processing options.




[image: image]

FIGURE 5. Subject specific relative variances and standard deviations (rSTD and rVAR) for five subjects performing a tandem stance, using spherical coordinates. These eigenvalues are useful to compare the coordinative structure of a movement. In a similar fashion to Figure 3 the cumulative versions of the variables can also be plotted with the software.






DISCUSSION


Application of PCA-Variables

In human movement analyses, one of the most important steps is the reduction of the numerous degrees of freedom. Several approaches have been proposed in order to reduce the DOF while capturing the most important dynamics of human movements. For example, in static balance research, one of the most common approaches is to quantify the center of pressure movement, reducing the complex whole-body kinematics to the resultant point where the vertical ground reaction forces act. Indeed, COP based variables proved to be effective at distinguishing different pathological groups and different balancing conditions. However, literature findings are inconsistent and some interpretations are controversial. For example, COP-irregularity has been interpreted as a sign of very active and effective postural control (Cavanaugh et al., 2006; Donker et al., 2007; Haran and Keshner, 2008; Stins et al., 2009; De Beaumont et al., 2011), but also as a sign of a disordered and less effective control (Donker et al., 2007; Stins et al., 2009; Borg and Laxåback, 2010; Gao et al., 2011).

Reducing the DOF via PCA has helped to address some of the inconsistencies in COP literature. As a first step it was shown that the information contained in the COP-excursion should also be contained in PCA variables, since the COP-trajectories can be calculated from the PPk and PAk time series (Federolf, 2016). Then, follow-up research found that COP-irregularity correlates with both the mechanical complexity of the movement, as quantified by the movement structure rSTDk, and the irregularity of the neuromuscular control as quantified by PPk-irregularity (Haid and Federolf, 2018). Hence, these findings suggest that COP-irregularity depends on more than one interacting phenomenon, possibly explaining some of the controversial results.

As another example, in research areas that involve postural control and motor control theories, e.g., neurosciences, distinguishing movement strategies can be of great importance. For example, the minimal intervention principle MIP, as discussed in the context of the optimal feedback control theory (Todorov and Jordan, 2002), states that postural control focuses on task relevant movements, while allowing variability in redundant ones. Furthermore, evidence suggests that ankle, knee and hip strategies dominate the whole-body kinematics of balancing tasks (Gage et al., 2004; Kuznetsov and Riley, 2012). In addition, coherence analyses of respective joint angles (Kilby et al., 2015; Masumoto and Inui, 2015) and muscle-EMGs (Alfuth and Gomoll, 2018; Pollock et al., 2019) suggest that these strategies are coordinated (Huisinga et al., 2017; Shahvarpour et al., 2018). Nevertheless, further evidence suggests that when modeling the dynamics according to these segment interactions (Oliveira et al., 2017; McNair et al., 2018), the models seem unable to explain the full extent of the movement dynamics (Hume et al., 2019). Hence, since these studies depend on only a few pre-selected muscles and DOF they might be limited when testing hypotheses related to the MIP.

The advantage of the PCA approach is that the extracted principal movement components are inherent in the data. They represent coordinated marker movements that generate quantifiable amounts of the overall variance produced by the analyzed movement. This allows categorizing them with respect to their relative contribution to the overall movement and to determine a movement's composition of PM, i.e. the movement structure (rSTD). Furthermore, the respective PM-time-series can be used to quantify novel aspects of postural control, such as how tight a movement is controlled (how often the control system intervenes (Nk) and how variable the control (σk) of the respective PMk is). As an example, in accordance with the MIP the tandem stance study mentioned in the results of this paper (Haid et al., 2018) found that aging effects emerged in the movement structure and control of specific, task relevant components, but did not affect other movement components. In detail, the movement component with the least base of support exhibited less relative contribution and tighter control in the younger age group. Also leg dominance was studied in a similar fashion (Promsri et al., 2018b) revealing differing movement control characteristics in different movement components.

In addition, the PCA variables were used in several studies with clinical purposes, or for fundamental research. Specifically, they were helpful to classify gait patterns that are a result of spastic diplegia (Zago et al., 2017c), affect (Karg et al., 2010), gender or age (Troje, 2002; Verrel et al., 2009; Eskofier et al., 2013), or shoe material (Maurer et al., 2012; von Tscharner et al., 2013). Principal movements were also calculated as pre-processing step in research on work-related musculoskeletal disorders that aimed at characterizing the variability and the local dynamic stability of the movements (Longo et al., 2018a,b). The PM calculation allowed distinguishing cycle-to-cycle variability from changes in the overall postural configuration—a prerequisite for the calculation of non-linear variables such as the largest Lyapunov exponent in this context. In sports, coordinative strategies were studied, by identifying and quantifying PCA-eigenvectors, eigenvalues and score time-series, for example in alpine skiing (Federolf et al., 2014), cross-country skiing (Gløersen et al., 2017), Karate (Zago et al., 2017a), dancing (Masurelle et al., 2013), cycling (Moore et al., 2011), diving (Young and Reinkensmeyer, 2014), and race-walking (Donà et al., 2009).

In summary, literature suggests that kinematic PCA can be an effective tool to study pathological conditions or sport performance, and to address unsolved problems of motor control theories such as the minimal intervention principle. The basic code structure of the PManalyzer was originally developed for the tandem stance study (Haid et al., 2018). Later, the code was further developed to be applicable in a wider range of static balancing tasks. However, as discussed in the following section, it is also modifiable to be used in other application areas.



Computational Features and Advantages of the Software

The main purpose of the PManalyzer software was to make PCA computations more easily accessible for users, particularly for users less familiar with programming or with the mathematical background of PCA applications. The PManalyzer offers the broad spectrum of available computational options and the large variety of easily customizable visualization options. It also allows a user to perform pre-processing steps like PCA-based gap-filling (Gløersen and Federolf, 2016), deleting markers, columns or rows, or to integrate any other self-defined data pre-processing steps. Additionally, the PManalyzer can transform data from a Cartesian into a spherical or polar coordinate system. Users with more advanced mathematical knowledge can implement further coordinate transformations. Moreover, a number of pre-defined normalization options are available, of which two have been validated (mean Euclidean distance and height) through previous research (Federolf P. et al., 2013; Zago et al., 2017b; Haid et al., 2018; Promsri et al., 2018a), while others (such as maximum movement range in x, y, or z direction) have yet to be explored. Also the weighting options for the standard 39 and 37 (no fingers) plug-in gate marker systems are pre-implemented, as well as the specialized 28 marker system (only symmetric markers) used in the tandem stance study of the results (Haid et al., 2018).

Furthermore, new variables can easily be implemented to be computed on all PM-time-series. If selected, they will be saved with the other variables on the PP-, PV- and PA-time-series (rVAR, rSTD, N, σ, RMS, mean, standard deviation, amongst others). For users not familiar with Matlab programming, the results of all computed variables can be exported to an Excel spread sheet. Moreover, users can create customized plots that are directly integrated into the interface. Finally, any video coloring option can be added to the software without extensive Matlab skills, saving programming time and effort.

To validate the obtained basis PCk, a leave one out cross-validation has been implemented that produces a figure displaying the angle-changes as described in section PCA validity considerations. Furthermore, a figure containing a Welch's power spectral density estimate can be created to help determine a suitable filtering frequency. Moreover, specifying a vector of cut-off frequencies will run the selected PCA-computations consecutively with different filtering cut-off frequencies and saving the results in separate folders. This is particularly useful, in order to conduct a frequency analysis to ensure that statistical results are stable for various cut-off frequencies (Haid and Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a).



Limitations and Future Research Potential

When it comes to effectively applying kinematic PCA and to establishing reliable norm values for a clinical and sports related environment, several factors should be considered. First, kinematic PCA is only one of many interesting feature extraction algorithms. For example, independent component analysis (von Tscharner et al., 2013), isometric feature mapping (Blackburn et al., 2003) and linear discriminant analysis (Karg et al., 2010) have been used as kinematic feature extraction tools and shown to outperform PCA in specific situations. Hence, there is tremendous potential for systematic research into the advantages and disadvantages of PCA compared to several other feature extraction techniques (Van Der Maaten et al., 2009).

Second, in order to establish norm values it is essential to define standard procedures. Hence, marker systems, pre-processing options, normalization and weighting, and coordinate transformations must be explored and standardized for different types of movements. Specifically, coordinate transformations are an interesting, yet relatively unexplored feature in kinematic PCA. As an example, the tandem-stance study analyzed nine different ankle, knee, upper body and head strategies, explaining 98% of the overall variance. The results in this study show that only 6 PMs would be necessary to achieve the same accuracy, if spherical coordinates were used. Furthermore, also moving coordinate systems offer unexplored potential. The example of alpine skiing technique analysis (Federolf et al., 2014) shows that body-positioning-dependent coordinate systems can help focus the analysis by neglecting movements with respect to specified planes. A similar, implemented pre-processing feature in the PManalyzer is the pre-processing option that moves the coordinate system into the center of mass, which can be used to avoid body displacements being represented as PMs.

Third, PCA based variables described in this study have been applied successfully to quantify movement coordination and complexity (rEV, rVAR, rSTD, and RV), and movement control (N, σ, PP-irregularity), amongst others. However, especially the variables of movement control computed on the PA-time-series (N, σ) react sensitively to the quality of kinematic data and filtering settings, due to double differentiation of the data. Nevertheless, a frequency analysis of the variables of movement control indicated that the underlying effects are robust to changes in filtering frequency and not random artifacts (Haid and Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a). Hence, it should be possible to use PCA variables to establish objective norm values that describe movement performance. However, follow-up research is needed to further validate existing variables and possible to develop new ones.

Finally, the extracted principal movements must be carefully interpreted. Each PM is defined by one linear movement of each marker. Since real whole-body movements are usually not linear, individual PMs can only approximate real movements, at best. However, some of the PMs obtained from movements with small amplitudes, such bipedal static balancing tasks (Federolf, 2016; Haid et al., 2018), seem to be realistic approximations of movement strategies that were already described in the literature, such as ankle sway and hip-strategies (Gage et al., 2004; Kuznetsov and Riley, 2012; Kilby et al., 2015). Others, such as certain upper body strategies have not been described in literature but seem realistic in the author's eyes. Furthermore, non-linear movements with higher amplitudes would require at least two or more PMs to be approximated in a realistic way. In theory, this limitation could be overcome with specialized non-linear coordinate transformations or other feature extraction techniques. At the moment, evidence suggests that the PMs of higher amplitude movements describe interesting features that allow group classifications, e.g., gait recognition (Troje, 2002; Verrel et al., 2009; Karg et al., 2010) or sport performance (Donà et al., 2009; Federolf et al., 2014; Young and Reinkensmeyer, 2014). However, further research is needed to link specific linear PM-combinations to realistic non-linear movements.

In terms of the PManalyzer, some of the GUI options, for example weighing markers according to the segment masses they represent, depend on the input data (number and distribution of markers) and the type of movement analyzed. A flexible usage requires the user to define these options for non-standardized input data, since, specifically for these options, the software relies on pre-implemented options rather than on software recognition. However, only basic, easily acquirable Matlab knowledge is needed to follow the templates in the editable functions and to perform such changes in the according functions. Furthermore, despite beta testing, bugs can never be excluded. Nevertheless, we are confident that the software works well, as it has been tested on various data sets (Haid and Federolf, 2018; Haid et al., 2018; Longo et al., 2018a,b, 2019; Promsri et al., 2018a,b), yielding the expected results. We encourage the community to report possible improvements to the authors.




CONCLUSIONS

We presented the PManalyzer, a software tool that is meant as a basis code for applying PCA in the analysis of human movement and its sensorimotor control. We hope this will encourage colleagues to more often apply PCA in their movement control related research. The computational options are not meant to be complete, but rather to enable easy software modifications to assist future users in the development of specialized applications.
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FOOTNOTES

1The default order in the software is centering, then weighting and finally normalizing the individual data sets. Depending on the pre-processing selection, the order might influence the results.

2In literature the “relative eigenvalues” rEVk are sometimes referred to as EVk out of simplicity. In addition, the term “relative eigenvalues” may refer to the “trial specific relative variances” as described in the following section. In this manuscript we aim at consistency.

3Residual variances can also be computed for the overall contributions by substituting the rVARk with the rEVk.
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A crucial link of electroencephalograph (EEG) technology is the accurate estimation of EEG electrode positions on a specific human head, which is very useful for precise analysis of brain functions. Photogrammetry has become an effective method in this field. This study aims to propose a more reliable and efficient method which can acquire 3D information conveniently and locate the source signal accurately in real-time. The main objective is identification and 3D location of EEG electrode positions using a system consisting of CCD cameras and Time-of-Flight (TOF) cameras. To calibrate the camera group accurately, differently to the previous camera calibration approaches, a method is introduced in this report which uses the point cloud directly rather than the depth image. Experimental results indicate that the typical distance error of reconstruction in this study is 3.26 mm for real-time applications, which is much better than the widely used electromagnetic method in clinical medicine. The accuracy can be further improved to a great extent by using a high-resolution camera.
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INTRODUCTION

The electroencephalograph (EEG) technology is now widely used in clinical medicine such as epilepsy, coma, brain deaths and so on, due to its use, economy, safety, and non-invasive detection (Jeon et al., 2018). To well-use the EEG technology for analyzing the brain activities, it is important to accurately locate the position of scalp signal in the cerebral cortex (Qian and Sheng, 2011; Reis and Lochmann, 2015; Butler et al., 2016; Saha et al., 2017; Liu et al., 2018). At present, there are several kinds of EEG electrode localization methods, including (1) manual method, (2) digital radio frequency (RF) electromagnetic instrument, (3) magnetic resonance (MR), (4) ultrasonic transmission and reflection, and (5) photogrammetric method (Koessler et al., 2007). The manual method needs a relevant tool to measure the distance according to the preset sensor. This method is low in cost, but it is time-consuming and labor-consuming, and it is easy to cause errors due to manual operation (Russell et al., 2005). Electromagnetic RF digital instrumentation is currently the most widely utilized method. The principle is to locate the position of an EEG electrode through the magnetic field, and its accuracy is up to 4 mm. Of course, it is faster and more convenient than the manual method, but the disadvantage is that single point measurements are prone to mistakes, which means that to obtain accurate results the work needs to be repeated many times. Moreover, this method is strict with the overall measurement environment, requiring appropriate air humidity and temperature and no metal artifacts. Additional data conversion tools are also necessary. The specific implementation of the MR method requires an additional calibration object, which is not applicable to multi-sensor situations. The ultrasonic method is the same as the digital electromagnetic conversion method, which requires a single point measurement and consumes time and energy. One of the common disadvantages of the above methods is that the electrical signal will interfere with the weak EEG signals, which will affect the final detection results.

Compared with traditional methods, the photogrammetric method is fast, accurate, and easy to operate. From early 2000, Bauer et al. used a method to achieve the EEG electrode localization system with 12 industrial cameras, which did not specify the system settings and operating procedures (Bauer et al., 2000). Russell et al. used 11 sets of industrial cameras to locate the electrode position (Russell et al., 2005). The method is simple in operation, time-saving for operators, and there is no need for additional devices. The experimental process only takes 15–20 min, and patients are not required to participate in the subsequent data processing, which brings great convenience to patients and doctors. The working principle of this method is to calibrate the 11 cameras and obtain the three-dimensional (3D) information of each electrode with the ideas of stereo matching in computer vision. Yet, there are three shortcomings. Firstly, each electrode of the image must be manually marked, which is likely to cause artificial errors. Secondly, the system is only suitable for self-made electrode caps, not applicable to other types of electrode caps, but other traditional methods do not have this limitation. Thirdly, the system can only identify the visible electrode points. For some invisible electrode points which may be hidden in the hair, this method is useless, but electromagnetic digital method and ultrasonic method do not have this limitation (Zhang et al., 2014). The equipment is so complex that it is not easy to operate. Baysal and Sengül (2010) used only one camera to locate the electrode position, hoping to reduce costs. The working process is to move the camera along a pre-set route, taking pictures at every angle (Koessler et al., 2007). Although the cost is reduced, the patient must stay still for a long period of time, increasing the likelihood of human error and prolonging the duration of data acquisition.

Recently, there has been a great deal of interest in the development and applications of time-of-flight (TOF) depth cameras. In 2015, Yao et al. presented the full very large-scale integration (VLSI) implementation of a new high-resolution depth-sensing system on a chip (SoC) based on active infrared structured light, which estimates the 3D scene depth by matching randomized speckle patterns (Yao et al., 2015). At the same year, Golbach et al. presented a computer-vision system for seedling phenotyping that combines best of both approaches by utilizing TOF depth cameras (Golbach et al., 2016). Although TOF has its unique features, the practical applicability of TOF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine TOF cameras with other sensors in order to enhance and upsample depth images (Eichhardt et al., 2017). Calibration between depth cameras and other sensors has become a major concern. A modified method about multi-modal camera calibration is proposed in this report.

In summary, methods in previous studies, to some degree, can solve data acquisition and operability, but there are still many limitations. This report proposes a convenient and accurate method, which is also based on the photogrammetry principle (Russell et al., 2005; Clausner et al., 2017). The acquisition system of EEG signals based on RGB-Depth (RGB-D) multi-modal data is constructed by using the high resolution industrial camera and the high precision depth camera to capture the object's distance and color information simultaneously. The system captures images from five perspectives, which contains all the collected electrodes from all the perspectives. Electrode distribution of the electrode cap adopts the international 10–20 standard. The information collecting process can be performed in real-time. All image processing algorithms are achieved off-line, which greatly improves the flexibility and operability of the system.

This article reports the design of such a photogrammetry system both theoretically and experimentally. The remainder of this report is structured as follows. Section Technology and Implementation introduces the implementation technology, including the sensing method, camera calibration, and singular value decomposition (SVD) algorithm. The experimental process for electrode identification and localization will be presented in section Experiments and Results. Finally, the report summarizes the findings and concluding remarks.



TECHNOLOGY AND IMPLEMENTATION


System Setup

The existing photogrammetric methods, whether measured through a monocular, binocular, or multi-camera system, without exception, are to obtain 3D information of the electrode positions by adopting the stereo vision method. Theoretically, each electrode point needs to be captured by two or more cameras. They need to deal with more pictures, and the algorithm is more complex. Therefore, this report proposes the use of a depth camera, MESA-SR-4000, based on TOF technology, which can directly obtain the depth information. The existing depth camera cannot directly identify the position of the EEG electrode because of its low resolution. However, the color camera can get the target color, texture and other 2D information. Hence, this project combines the two cameras to get the distance and color information of the scene. Accordingly, the EEG signal acquisition system based on RGB-D multi modal data is built. As long as all the electrodes are captured by the system, all the 3D information of the electrode can be obtained. This system can avoid the complexity of shooting the same electrode from two or more angles. Compared with the multipurpose camera, the system reduces the cost of materials, decreases the number of cameras, and greatly simplifies the algorithm. Compared with the single-camera, this system simplifies the experimental process and makes the operation simpler. There is no need to have a pre-set line nor to debug the angle of the placed mirror (Qian and Sheng, 2011), while at the same time, it improves efficiency.

The system processes in the following way. Firstly, the image is collected by using both the color camera and the depth camera. The color camera is responsible for the color picture of the electrode, so that the EEG electrode can be conveniently detected in the image and the 2D information of the electrode can be obtained. The depth camera is responsible for obtaining the point cloud data of the electrode, so that distance information of the electrode can be obtained. The key issue is the calibration of two different cameras. Secondly, this project uses the multi-camera measurement scheme, which can obtain all the electrodes, rather than the distance information. In this project, a five-camera group is applied to photograph the experimental targets in five angles. The five angles are located around the head. Of course, if the experimental equipment is not complete, the same camera group can also be located around the head at five angles, respectively. Ideally all the electrode information can be captured by the camera in five angles. Compared with the color camera based photogrammetry system, the photogrammetric system designed in this project has greatly reduced the number of angles taken and the complexity of the systematic framework.

In this project, the resolution of the color camera CCD is 1,624 × 1,234, and the depth camera TOF (MESA-SR-4000) has a resolution of 176 × 144. The combined camera system is shown in Figure 1. The electrode cap covered on a head model and a subjective head for practical tests are shown in Figure 2. The 10–20 electrodes are organized on a cap that is placed on the heads. The different colors on the electrode dot can easily be made, e.g., using some paint coat or sticky paper. In either way it is also easy to change colors. Making the dot colors does not affect the electrode functions or costs.


[image: image]

FIGURE 1. The camera system.




[image: image]

FIGURE 2. The electrode cap on a head model and on a subjective head.



According to the accuracy of the TOF camera's sensing range, the best shooting distance of the TOF camera is between 0.5 and 8 m. The schematic diagram is shown in Figure 3. Five groups of cameras are used in this system to take pictures simultaneously, four (1, 2, 3, and 4 in Figure 3) of which are aligned around the head with an angle of 90°, while the last is located overhead. Then all the electrodes will be reconstructed through the color image captured by the CCD camera and depth information is obtained by the TOF camera. The target RGB-D data is obtained from multiple angles. The horizontal distance between the model and the camera is 60 cm and the vertical distance is 40 cm.


[image: image]

FIGURE 3. The schematic diagram.



The operational flow of the system is shown in Figure 4. Firstly, the color images and the 3D point cloud data are obtained by using the color camera and the depth sensor in five angles. Then, electrode coordinates are detected and extracted in color images. Its coordinates in 3D space can be calculated by using the calibration results of color camera and depth sensor. Finally, the correlation algorithm is used to calculate the relationship between the five coordinate systems of the five views (Wang et al., 2017). Therefore, all the electrodes of different angles of view in five different coordinate systems are registered in the same spatial coordinate system.


[image: image]

FIGURE 4. Data processing flow.





System Calibration

Traditionally, the calibration method utilizes the depth map obtained by the TOF camera and the color map obtained by the CCD camera to complete calibration (Cheng et al., 2016; Raposo et al., 2016). Nevertheless, the resolution of the depth image is very low, and the results are often unstable. In order to solve this problem, this project uses a new calibration plate and accurate point cloud data to perform camera calibration (Jung et al., 2015; Wei and Zhang, 2015). The comparison of the two methods will be described in the next section. The camera calibration model is designed as follows. Assuming that Q is a point in the space, the coordinates of the camera coordinate system are [image: image]. The projection of point Q in the normalized image is Xn

[image: image]

If taking into account the lens distortion, the above coordinates are mapped Xd

[image: image]

where [image: image], k1, k2 are radial distortion coefficients. Xd is mapped to the image coordinates Xq, i.e.,

[image: image]

where f x and f y are focal length in x and y directions, respectively, and cx and cy are the principle point coordinates.

The relationship between the camera groups can be described as the relationship between the coordinates of the point Q in the two camera coordinates. Assuming Xcd is the coordinate vector of the point Q in the TOF camera coordinate system, Xcc is the coordinate vector of the point Q in the CCD camera coordinate system, and their relationship can be described as

[image: image]

The goal of calibration is to solve the rotation matrix R and the translation matrix T.



Decomposition for Data Stitching

With regard to the point cloud stitching problem, many works use an ICP algorithm or improved ICP algorithm (Cheng et al., 2016; Yang et al., 2016). However, here, due to the large deviation of the angle of view, the performance of ICP algorithm is not ideal, thus SVD is adopted to calculate the conversion relationship between the two sets of point clouds (Sorkine, 2009; Jung et al., 2015; Raposo et al., 2016). The principle is described firstly from this transform

[image: image]

where wi >0 is the weight of each point in the cloud. Calculate the displacement, and the above formula R is set to invariant to derive t, at the same time F(t) = (R, t), which has the derived derivative

[image: image]

where

[image: image]
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Substitute (6–8) into (5) and we have
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To calculate the amount of rotation (11), is expanded in a matrix representation,

[image: image]

Since the rotation matrix R is an orthogonal matrix, there is RTR = 1. [image: image] and [image: image] are scalar. The transposition of the scalar is still equal to the scalar itself, i.e.,
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Only one of them is related to R and transforms it into the minimum of its variable,
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The conversion of the above formula makes a switch from cumulative to matrix based multiplication. Here, W is a diagonal matrix of n × n, and X and Y are 3 × n matrices. The traces of these matrices are equal to the left-hand side of the equation.
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The last step of the above transformation also uses the nature of (18). Since U, R, and V are orthogonal matrices, O = VTRU is also an orthogonal matrix.
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From the above two terms, if the maximum trace is required, we must make the value of Oii equal to I, while O is the orthogonal matrix. So, O must be the unit matrix

[image: image]




EXPERIMENTS AND RESULTS

This section contains two parts, i.e., camera calibration and electrode identification and localization. The accuracy of camera calibration plays a very important role in the whole system. In this part, a new calibration method for the depth camera is proposed and compared with the traditional method. The experimental results show that the accuracy of our calibration method is more significant. The experimental procedure of electrode identification and localization is also described in detail in this part.


Calibration

The traditional method to calibrate the TOF camera and the CCD camera (Wei and Zhang, 2015; Bonnabel et al., 2016; Onunwor and Reichel, 2017) produces very unsatisfactory results because the resolution of the TOF camera is quite different from the CCD camera resolution, and the acquired parameters are very unstable. The pixel of the depth image acquired by the depth camera represents the distance from the subject to the camera. In 2012, Li and Zhuo proposed a 2.5D calibration plate that takes full advantage of the depth image characteristics, which improves the accuracy of camera registration, and simplifies the complexity of the algorithm (Li and Zhuo, 2012).

Figure 5 shows the calibration plate designed in this project. Figure 5A is the color image of the calibration plate. Figure 5B shows the depth image of the calibration plate. The size of the calibration plate is 500 × 500 mm, round hole diameter is 30 mm, and pitch of holes is 50 mm, there are 100 holes. The characteristic point is the center of each circular hole of the calibration plate.


[image: image]

FIGURE 5. Calibration plate. (A) Color image of the target, (B) depth image, (C) detected points, (D) fitted points.



The calibration process has two main steps. The first is to extract calibration points, i.e., to select a region of interest (ROI), to binarize the image by an automatic threshold, to remove image noise, to calculate the connected area, and to determine the center of each connected area, as shown in Figure 5C. The center of the connected area is regarded as a feature point. The second step is to fit feature points. The least square method is used to fit the characteristic points of each column and row in order to reduce the position error, as shown in Figure 5D.

The above method improves the accuracy of registration, yet the depth map still has radial distortion, as shown in Figure 6A. Although the use of fitting feature points can reduce errors, there is still room for improvement. Therefore, this report modifies the process of cameral calibration proposed in Li and Zhuo (2012) by employing accurate point cloud data other than the depth map. The specific process in this report includes two stages. The first is point cloud interpolation. Since the TOF camera has a low resolution, in order to obtain more accurate data, the system uses the bilinear interpolation algorithm to interpolate the point cloud data, so that its resolution is consistent with the color map. The second stage is to convert a point cloud to a 2D image. Since the point cloud represents 3D data, it cannot be directly calibrated with the color image, and thus the point cloud is required to be converted into a 2D image. In this project, the 3D coordinates are projected onto the 2D plane using the pinhole model as the theoretical basis. The result is indicated in Figures 6B,C. Compared with Figures 6A,C, we may discover that the image distortion is almost resolved.


[image: image]

FIGURE 6. Comparison of the depth map and point cloud. (A) Original depth map, (B) point cloud, (C) projected coordinates without distortion.



According to the results obtained by the two methods, we can compare the distance errors of the two sets of points. The abscissa represents 100 data points, and the ordinate represents the distance difference between the two points before and after the calibration. Figure 7 shows the comparison of errors caused by Li-Zhuo method (Li and Zhuo, 2012) and the proposed method in this study. From the data we can find that the calibration error has dropped from the original average 3.95–1.16 mm.


[image: image]

FIGURE 7. Error comparison.





Electrode Point Identification and Localization

Electrode Identification

Assume that the electrode cap has a 30-channel EEG amplified signal recorder (Trotta et al., 2018). The electrode dot distribution diagram, provided by the electrode cap manufacturers, is typically shown in Figure 8. The electrodes here are marked with black color, and those names are shown in the figure.


[image: image]

FIGURE 8. Electrode distribution diagram.



If the precise position of the EEG electrode in color image is determined, the 3D location of the EEG electrode can be calculated by the transformation presented in section Calibration, using the similar calibration equations. In order to get precise EEG electrodes in the color image, this project adopts a method by detecting the connected region of the color image. When the electrode is detected in the color image, there will be a lot of interference because of the real electrode cap. When the color image is binarized with the appropriate threshold, there are lots of little interference regions, as shown in Figure 9A. In order to solve this problem, all connected regions are calculated and labeled, and the area of each connected region is calculated, after selecting the ROI, which contains the electrodes on the head in this picture, as shown in Figure 9B. In order to detect the electrode accurately, the algorithm adaptively adjusts the appropriate area threshold to preserve the connected area larger than the threshold, filter out the connected area less than the threshold, as shown in Figure 9C. This method reduces the noise of the electrodes. Then, the center of the connected region is calculated, and that is the center of the electrode. The coordinates of the center point are used as the positions of the electrodes, as shown in Figure 9D. Taken as an example, Figure 9 shows the image of view 3, and other views have the same process. When this step is finished, there are five color images with detected electrodes.


[image: image]

FIGURE 9. Real electrode detection on the EEG signal cap (A) Binarization (B) Select ROI (C) EEG detection (D) EEG marker.



Electrode Localization

Figure 10 shows the five shot images from each direction. The first row is the color image which is obtained by the CCD camera, with the detected electrodes. The second row is the depth image which is obtained by the TOF camera with the transformational electrodes, and the third row is the point cloud data with the 3D electrode positions. The electrodes in the first row are detected by the method described in section Electrode identification. The electrodes in the second and third row are determined by using the transformation between the CCD camera and the TOF camera. Of course, the electrodes in the third row have three dimensions.


[image: image]

FIGURE 10. EEG electrode registration.



3D Registration

We need to rebuild the entire brain model and the position of electrodes. In the process of point cloud stitching, many people use the classic ICP algorithm (Kim, 2015), which is only suitable for small angle stitching, i.e., with a large overlapped area, and so it is not ideal for the situation in this study. Since the angle intervals between five camera groups are relatively large, in order to reduce registration errors, this report takes the surrounding four point cloud points, i.e., view1, view2, view3, and view4, to match the view5 point cloud, respectively. The SVD algorithm described earlier in this report is used to solve the transformation relation. The electrodes, the camera angle, and the number of angles are shown in Table 1, which illustrates the situation of how the electrodes are taken. Figure 11 shows the results of the registration for all electrodes into the same coordinate system. Figure 11A is a registration diagram containing only the electrodes. Figure 11B shows the distribution of the electrodes on the head model.



Table 1. Electrodes, camera views, and quantities.
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FIGURE 11. Registration results. (A) EEG electrode registration. (B) Registration of electrodes on head model.



The SVD algorithm can obtain stable and reliable results with only two angles of 5–15 sets of matching points, which is much simpler than traditional photography methods. This is mainly because the TOF camera can directly obtain the exact depth of the value. In the traditional photographic methods, for either multi-camera or single-camera with multi-angle, each electrode must be shot from different directions and the depth information can be calculated according to that. The process is not only complex, but also very easy to cause human errors and matching errors. The algorithm of the multi-purpose camera method is too complicated and requires manual participation in the electrode marking process and can only use the matching electrode cap. A single camera method is a brilliant approach, yet the operation requirements are high, which is easy to cause human error. Qian and Sheng (2011) also proved that only six electrodes could reduce error when shot by more cameras, and that the other electrodes did not have this trend.




RESULTS

In the EEG positioning system, the inaccurate location of the electrode may cause an incorrect location of the source, and thus the accuracy of the electrode positioning is very important for research in brain science. The standard positioning error is given by Δ [image: image], where X, Y, Z are estimated 3D coordinates, Xa, Ya, Za are the real coordinate values obtained by a higher precision device, for which in this study we use a portable 3D handheld scanner, the Artec 3Ds Space Spider, with an accuracy of 0.05 mm.

The experimental process is repeated five times, using the electrode cap on the head model. A typical result of the average error of the 30 electrodes is shown in Table 2. We also tested the same process with the electrode cap on human heads and got the similar results. Therefore, with the RGB-D multi modal system, the proposed method yields an average of 3.26 mm localization error, much better than other digitizer methods where the typical equipment has a mean error of 6.1 mm. Furthermore, if we use a high-precision CCD camera for calibration and measurement, the accuracy can be easily improved up to 10 times, i.e., the error can be reduced to about 0.3 mm. Since the error is much less than the size of an electrode dot which has a diameter of 10 mm, our result is good enough for practical applications. Anyway, there are two sources of the experimental errors. One of them is the error resulting from the camera calibration, introduced in section Calibration the other is from the point cloud splicing. The points with large errors are mainly located in the edge position of the electrode cap. The error of the point in the middle position is much smaller. In fact, it is normally accepted for users if the error is <5 mm for dense arrays of electrodes. Therefore, the proposed system with this accuracy is rather sufficient for most practical applications. Some technology information and data sets carried out in this project are available on the web, http://www.sychen.com/research/vision/LEEG.htm, where some MATLAB codes are provided to demonstrate the main algorithms.



Table 2. Electrode positioning error (mm).
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There is another advantage that the method achieves good performance in terms of flexibility and simplicity of operation, which can be used in EEG source localization applications on the human brain. On the other hand, since the calibration process and brain model building can be done off-line, the on-line process only needs to detect the electrodes and map them to the brain model. This process is performed very fast and can be easily implemented for real-time applications.



DISCUSSION

In this study, we combine a TOF depth camera and a CCD color camera to locate the EEG electrode positions in 3D space and yield satisfactory results for practical use. Compared with the existing contributions in the literature (Table 3), such 3D positions are normally obtained by a stereo vision system, where a pair of CCD cameras used as two eyes for identification and 3-D reconstruction of electrodes. However, stereo vision is normal useful for robots but it always has its own limitations and it's still used for industrial applications, especially when there is a high requirement on precision and reliability. For example, the work by Schulze et al. (2014) is a typical realization of this technology. There are some comparisons between photogrammetry system and manual measurements or electromagnetic digitizers made in Koessler et al. (2007). One main problem of stereo vision is its reliability. The passive vision system is very sensitive to environmental conditions. When anything, like the lighting, the object size in the working space, the vision system structure, the working distance, changes, the vision system will meet a big problem of 3D reconstruction. It even could not obtain a good image for analysis anymore. The calibration of stereo cameras is very tedious because it requires an inconvenient process by an expert in robot vision. Furthermore, such a process has to be redone when either one of the settings, such as the focus, the baseline distance, the camera pose, is changed. That means such an expert has to stay there for making the system use in practical clinical applications.



Table 3. Comparison of the typical methods.
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Regarding the locating accuracy, an error below 5–10 mm can satisfy the current EEG signal research or clinical applications. A manual process with a tool can get the accuracy of 3.6 mm, but it takes about 8 min. Schulze et al. reports their system of camera matrix can achieve a localization error of 0.761 mm. In fact, Koessler et al. (2007) already achieve the position error under 1.27 mm 10 years ago, where they distribute 11 CCD cameras on the dome for imaging. Actually, with the currently new CCD cameras, higher accuracy, e.g., 0.1 mm, can also be theoretically achieved. However, it is hard to produce general systems using such technology of stereo vision for the clinical applications. On the other hand, using laser-based equipment can, of course, get very high accuracy, e.g., the 3D handheld scanner in our laboratory can give us the accuracy of 0.05 mm.

Since there is no complicated computation required to perform the algorithms of this study, the system can be implemented for real-time applications with common personal computers. In the experiments, we mostly use ordinary devices, e.g., TOF camera (MESA-SR-4000) and CCD camera (Manta G-201C 30fps). It is performed in a personal computer with Intel i3-4130 CPU at 3.4 GHz, 4.0 GB RAM, and x64-based Windows 7 OS. A relatively lower configuration of the computer does not much affect the efficiency. Due to the resolution limited by MESA-SR-4000 and MG-201C, the result is got with a precision of 3.26 mm within 30 ms. This is usually adequate for practical real-time applications. Of course, using latest better hardware with higher resolutions, e.g., TOF camera (OPNOUS GC4 NIR) and CCD camera (Kodak KAI-08050 PoE) in our lab, we can get a corresponding higher precision but lower efficiency. Increasing the resolution of the cameras would significantly improve the accuracy, but at the same time it correspondingly decreases the efficiency. On the contrary, the number of EEG sensors has little sense to affect the performance because there are only tens of points in total.

Anyway, we have to concern the aspects of reliability, flexibility, and real-time computation for the positioning system. As we know, due to the corresponding process in stereo vision, it takes several minutes for computing and thus cannot be used for real-time purpose, e.g., when the subject needs to move the heads during a test. One advantage of the technology in this study is that it avoids the complicated computation of correspondence among multiple images, which is unlikely realized in real-time for high-resolution images on a common computer. The data acquisition and registration process is very fast by the method in this report. It means the method can be used for dynamic tests where the patient is free to move its head or body during the acquisition time. Therefore, some other research or test tasks can also be done with a system by this technology. Our method also takes advantage of flexibility. We do not need to setup a large equipment structure or working space, like a dome. The subject will also feel comfortable in the test because both the sensors and the subjects can move freely in the space.



CONCLUSION

In this report, an EEG electrode positioning method using photogrammetry is presented. By combining CCD and TOF cameras, the system can achieve both good accuracy (due to the precise industrial camera) and real-time efficiency (due to the reliable TOF camera). The vision system can reliably get the position and colors of the electrodes at the same time. A depth calibration plate for the TOF camera is designed, according to its distance-sensitive feature. Meanwhile, in order to improve the accuracy we apply the point cloud data to replace the traditional depth map with the calibration. In the experiments, we use a head model and 30-channel EEG electrode cap. The calibration process can be performed off-line, and the on-line acquisition algorithm can be realized in real-time, which can bring great convenience for patients and doctors. Thus, the combination of the TOF camera and the CCD camera can not only ensure the accuracy of positioning, but also simplify the complexity of the algorithm and operation.
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Accurate and automatic segmentation of infant hippocampal subfields from magnetic resonance (MR) images is an important step for studying memory related infant neurological diseases. However, existing hippocampal subfield segmentation methods were generally designed based on adult subjects, and would compromise performance when applied to infant subjects due to insufficient tissue contrast and fast changing structural patterns of early hippocampal development. In this paper, we propose a new fully convolutional network (FCN) for infant hippocampal subfield segmentation by embedding the dilated dense network in the U-net, namely DUnet. The embedded dilated dense network can generate multi-scale features while keeping high spatial resolution, which is useful in fusing the low-level features in the contracting path with the high-level features in the expanding path. To further improve the performance, we group every pair of convolutional layers with one residual connection in the DUnet, and obtain the Residual DUnet (ResDUnet). Experimental results show that our proposed DUnet and ResDUnet improve the average Dice coefficient by 2.1 and 2.5% for infant hippocampal subfield segmentation, respectively, when compared with the classic 3D U-net. The results also demonstrate that our methods outperform other state-of-the-art methods.

Keywords: fully convolutional network, dilated dense network, deep learning, hippocampal subfield segmentation, infant hippocampus


INTRODUCTION

Hippocampus plays important roles in memory and spatial navigation, and is closely related to neurological diseases, such as autism, attention deficit hyperactivity disorder, and Alzheimer's Disease (Shi et al., 2009; Bartsch, 2012; Li et al., 2013). Hippocampus consists of several histologically and functionally specialized subfields (Dalton et al., 2017). It has been shown that different pathological conditions affect subfields differently, suggesting that subfields may provide more precise information for earlier disease diagnosis than simply using the whole hippocampus (Small, 2014).

Accurate segmentation of hippocampal subfields from magnetic resonance (MR) brain images is a critical step for studying memory-related neurological diseases. However, it is a challenging task especially in infant subjects, because of the small size of each hippocampal subfield, the blurred boundaries between subfields, and the large inter-subject variations. Manual segmentation is widely adopted, but it suffers high intra- and inter-operator variability, and is also excruciatingly time-consuming. Therefore, automatic hippocampal subfield segmentation methods are desirable. The existing automatic hippocampal subfield segmentation methods can be mainly categorized into three different types: (1) generative model based method (Van Leemput et al., 2009), (2) multi-atlas based method (Wang et al., 2013; Pipitone et al., 2014; Caldairou et al., 2016; Romero et al., 2017), and (3) multi-modality learning based method (Wu et al., 2018).

In the first category (Van Leemput et al., 2009), a generative model of image around the hippocampal area was produced by using a mesh-based probabilistic atlas learned from a set of ultra-high-resolution training images. The model was used to obtain automated hippocampal subfield segmentations on 10 adult subjects with the age range of 22–89 years.

In the past years, the second category of methods, namely multi-atlas based image segmentation (MAIS) methods, have been widely used in the field of medical image segmentation, including hippocampal subfield segmentation on adult subjects (Wang et al., 2013; Pipitone et al., 2014; Caldairou et al., 2016; Romero et al., 2017). In the MAIS methods, all selected atlas images are first registered to the target image, and the corresponding atlas labels are then warped to the target image space. Afterwards, these warped atlas labels are combined to obtain the final segmentation by label fusion. Note, in the MAIS methods, label fusion plays an important role. For example, a weighed voting label fusion was proposed (called joint label fusion) in a previous work (Wang et al., 2013), in which weights were obtained by minimizing the total expected error between the consensus segmentation and the ground-truth segmentation. This method was later combined with a learning-based error correction method for hippocampal subfield segmentation (Yushkevich et al., 2015). In another work (Romero et al., 2017), a new non-local patch based label fusion method was proposed based on a multi-contrast patch matching process. To further improve the segmentation, authors exploited a neural network-based error correction step for minimizing systematic segmentation errors. MAGeT-Brain (Multiple Automatically Generated Templates) was also proposed for automatic segmentation of the hippocampus and subfields, aiming to minimize the number of atlases needed whilst still achieving similar agreement to the multi-atlas approaches (Pipitone et al., 2014),. Besides, a surface patch-based segmentation method (Caldairou et al., 2016) was proposed for hippocampal subfield segmentation by combining surface-based processing with a patch-based template library and feature matching.

Besides the above two categories of methods, learning-based methods in the third category were also proposed for adult hippocampal subfield segmentation using 3T multi-modality MR images, including structural MRI (T1w, T2w) and resting-state fMRI (rs-fMRI) (Wu et al., 2018). In that paper (Wu et al., 2018), authors extracted both appearance features and relationship features to capture the appearance patterns in structural MR images and the connectivity patterns in rs-fMRI, respectively. These extracted features were then fed into a random forest classifier for voxel-wise classification.

Although several automatic methods have also been proposed for hippocampal subfield segmentation, most of them were evaluated only on the adult subjects, and thus cannot be directly applied to infant subjects due to insufficient tissue contrast and fast changing structural patterns of early hippocampal development.

In the recent years, deep convolutional neural networks (CNN) have been widely applied in the medical image segmentation (de Brébisson and Montana, 2015; Zhang et al., 2015; Moeskops et al., 2016). In CNN based segmentation methods, a patch centered at the target voxel (or pixel for 2D images) is taken as input for networks, and the tissue class of the center voxel is produced as the output of the networks. By learning sets of convolutional kernels, CNNs can capture highly non-linear mappings between inputs and outputs. Compared with MAIS methods and the traditional learning-based methods, CNN based segmentation methods are free of image registration and manual feature extraction.

A drawback of the CNN based segmentation approaches is that the input patches from neighboring voxels have huge overlap and the same convolutions are computed for many times. To address this limitation, fully convolutional networks (FCN) were proposed for voxel-wise dense prediction, by reformatting the fully connected layers as convolutional layers (Long et al., 2015). So far, a number of FCNs have been proposed and successfully used in medical image segmentation, including hippocampal segmentation (Ronneberger et al., 2015; Milletari et al., 2016; Chen Y. et al., 2017; Yu et al., 2017; Cao et al., 2018). For example, in the paper (Ronneberger et al., 2015), a U-net architecture was proposed by comprising a contracting (down-sampling) path, followed by an expanding (up-sampling) path. The features in the contracting path are concatenated to the corresponding features in the expanding path to recover the detailed image information that is lost during the down-sampling process. In the work (Milletari et al., 2016), authors extended U-net to a V-net structure by incorporating residual blocks (He et al., 2016a). In the paper (Yu et al., 2017), authors proposed a new volumetric convolutional neural network with mixed residual connections, where both the short connections between successive layers and the long connections between contracting path and expanding path are implemented with residual connections. In the work (Cao et al., 2018), authors proposed a multi-task CNN for joint hippocampal segmentation and clinical score regression with U-net as a subnet for hippocampal segmentation. In the paper (Chen Y. et al., 2017), authors proposed a multi-view ensemble approach to combine multiple decision maps obtained from several deep neural networks for hippocampal segmentation. Besides these contracting-expanding structures, dilated FCNs were also proposed for image segmentation, which can enlarge the receptive field exponentially without reducing any spatial resolution (Liang-Chieh et al., 2015; Yu and Koltun, 2015;Li et al., 2017; McKinley et al., 2017).

The U-net like structures are particularly successful in the field of medical image segmentation. One of the most important factors in the U-net is the long-skip connections which can concatenate the features in the contracting path to the corresponding features in the expanding path to recover the lost image information. However, the levels of features in the contracting path are much lower than those in the expanding path. Thus, it may not obtain optimal results when directly concatenating these features.

In this paper, we develop an automatic method to address the challenging infant hippocampal subfield segmentation problem with state-of-the-art deep learning techniques (LeCun et al., 2015; Litjens et al., 2017; Shen et al., 2017). To overcome the limitation of U-net structure, we propose a novel network by embedding a dilated dense network in the U-net, namely DUnet. The embedded dilated dense network can generate multi-scale features while keeping high spatial resolution, which is useful in fusing the low-level features in the contracting path with the high-level features in the expanding path. To further improve the performance, we use residual connections to group every pair of convolutional layers in DUnet, and obtain the Residual DUnet (ResDUnet).

The proposed method was applied for segmenting infant hippocampal subfields based on the Baby Connectome Project (BCP) dataset, containing 10 infant subjects. To the best of our knowledge, this is the first work to propose an automatic method for infant hippocampal subfield segmentation. To further illustrate the effectiveness of our proposed method, we also validated our proposed method for segmenting adult hippocampal subfields on a publicly available dataset. Experimental results show that our proposed DUnet and ResDUnet, respectively, improve the average Dice coefficient by 2.1 and 2.5% for infant hippocampal subfield segmentation, and 0.5 and 0.6% for adult hippocampal subfield segmentation, compared to the classic 3D U-net (Çiçek et al., 2016). Our proposed ResDUnet also outperforms both the state-of-the-art ConvNet (Yu et al., 2017) and hippocampal subfield segmentation method (HIPS) (Romero et al., 2017).



MATERIALS

Two image datasets were used for validating our method. The first dataset is from BCP, which was funded by the National Institutes of Health (NIH) as a component of the Lifespan Human Connectome Project. The BCP aims to provide scientists with unprecedented information about how the human brain develops from birth through early childhood and will uncover factors contributing to healthy brain development. For this project, researchers are acquiring MRI scans (including T1- and T2-weighted structural MRI, DTI, and rs-fMRI) of 500 typically developing children, ages 0–5 years, over the course of 4 years. In our experiment, 10 infant subjects (6 females/4 males) were randomly selected, each with T1w and T2w images acquired at 12 months old with 3T Siemens Prisma MRI scanners at the Biomedical Research Imaging Center (BRIC) at the University of North Carolina at Chapel Hill. Table 1 lists the imaging protocol for acquiring the T1w and T2w MR images. Five hippocampal subfields were manually labeled for each subject by the consensus of two neuroradiologists, including cornu ammonis sectors 1 (CA1), CA2/3, subiculum (SUB), CA4/dentate gyrus (DG), and Uncus. All T1w and T2w images underwent intensity inhomogeneity correction using the N3 bias field correction, and T2w images were rigidly aligned with corresponding T1w images. All images were aligned to a selected subject with affine registration.



Table 1. Imaging protocol for acquiring infant T1w and T2w MR images.

[image: image]




The second dataset is a publicly available dataset (https://www.nitrc.org/projects/mni-hisub25), which contains 25 adult subjects (31 ± 7 years, 12 males). Each subject consists of an isotropic 3D-MPRAGE T1-weighted image (TR = 3,000 ms; TE = 4.32 ms; TI = 1,500 ms; flip angle = 7°; matrix size = 336 × 384; FOV = 201 × 229 mm2; 240 axial slices with 0.6 mm slice thickness resulting in 0.6 × 0.6 × 0.6 mm3 voxels; acquisition time = 16.48 min), an anisotropic 2D T2-weighted TSE image (TR = 10,810 ms; TE = 81 ms; flip angle = 119°; matrix size = 512 × 512; FOV = 203 × 203 mm2, 60 coronal slices angled perpendicular to the hippocampal long axis, slice thickness of 2 mm, resulting in 0.4 × 0.4 × 2.0 mm3 voxels; acquisition time = 5.47 min), and a manually labeled image for hippocampal subfields including CA1-3, SUB, and CA4/DG (Kulaga-Yoskovitz et al., 2015). All T1w and T2w images underwent automated correction for intensity non-uniformity and intensity standardization. All images were linearly registered to the MNI152 space and resampled to a resolution of 0.4 × 0.4 × 0.4 mm3. Following the previous work (Romero et al., 2017), we named this dataset as Kulaga-Yoskovitz dataset. Figure 1 shows an example of T1w image and manual hippocampal subfield segmentation from the BCP dataset and the Kulaga-Yoskovitz dataset, respectively.


[image: image]

FIGURE 1. T1w image and manual segmentation of a representative subject from the BCP dataset (top row) and Kulaga-Yoskovitz dataset (bottom row), respectively.



To facilitate the processing, we identified a bounding box that is big enough to cover the hippocampus of unseen target subject (Hao et al., 2014). In particular, for each subject in the BCP dataset and the Kulaga-Yoskovitz dataset, we went through all the training subjects to find the minimum and maximum x, y, z positions of the hippocampus, and empirically add 32 voxels in each direction as a bounding box to cover the hippocampus and its surrounding tissues. This step was done separately for these two datasets given the large hippocampus size differences in infants and adults. Then, we cropped all images with the box and applied a histogram matching method to the cropped images for obtaining similar intensity levels across all training subjects. To leverage the limited data, we left-right flipped each training image to double the number of training subjects.



METHODS

We propose a new FCN for hippocampal subfield segmentation. The FCN based segmentation methods can implement dense prediction by estimating the posterior probabilities for each voxel. Given the posterior probability pk(x|θ) of voxel x belonging to the kth category, where θ is the FCN model parameters, the hippocampal subfield label of voxel x is determined by

[image: image]

where ℂ = {1, 2, …, K}, and K is the number of categories. In the remaining part of this section, we will introduce the details of our proposed FCN architectures and its loss function.


Dilated Dense Network

Recent 3D neural networks often use small convolutional kernels with size 3 × 3 × 3 to reduce the number of parameters, and enlarge the receptive field by alternating convolutions and pooling operations to capture large image contexts (Çiçek et al., 2016). This successive down-sampling process will significantly reduce spatial resolution, which will lose detailed image information. Recently, dilated convolutions were proposed for semantic image segmentation (Liang-Chieh et al., 2015; Yu and Koltun, 2015). By using the dilated convolutions, the feature maps can be computed with a high spatial resolution, and the size of the receptive field can be enlarged arbitrarily. Figure 2 illustrates the dilated convolutional kernels with different dilation rates. Let F:ℤ3 → ℝ be a 3 dimensional discrete function, and h:Ωr → ℝ be a discrete filter with a dilation rate l, where [image: image]. The dilated convolution *l can be defined as (Yu and Koltun, 2015),

[image: image]

Note that, when l = 1, the dilated convolution becomes the normal convolution.


[image: image]

FIGURE 2. Illustration of dilated convolutional kernels: 1-dilated convolutional kernel (left); 2-dilated convolutional kernel (middle); 4-dilated convolutional kernel (right).



With the dilated convolutions, we design a dilated dense network using dense connections (Huang et al., 2016), as shown in Figure 3. In the dilated dense network, we use dilated convolutions with different dilation rates to enlarge the receptive field, and use dense connections to concatenate all previous generated features to the current feature maps. To avoid overfitting, dropout operations are used after each 3 × 3 × 3 convolution with dropout rate 0.5 (Srivastava et al., 2014). Thus, the dilated dense network can capture contextual image information while keeping high spatial resolution and generate multi-scale image features. This dilated dense network will be embedded in our proposed DUnet, as introduced in the next subsection.


[image: image]

FIGURE 3. The structure of the dilated dense network. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D manner, and “c” denotes the concatenation.





Dilated Dense U-Net

U-net (Ronneberger et al., 2015) consists of a contracting path to extract abstract features and an expanding path to recover spatial resolution. The features in the contracting path are concatenated to the corresponding features in the expanding path to provide the detailed image information that is lost during the successive down-sampling steps. However, the level of features in the contracting path is much lower than that in the expanding path. It will not obtain the optimal results when directly concatenating these features. To overcome this limitation, we embed the dilated dense network in the U-net to obtain a new network (DUnet). Figure 4 shows the structure of our proposed DUnet.


[image: image]

FIGURE 4. The structure of our proposed DUnet. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D manner.



Same to U-net, the proposed DUnet consists of a contracting path and an expanding path. The contracting path is built by alternating two 3 × 3 × 3 convolutions and one 2 × 2 × 2 max pooling operation with stride 2. The contracting path is followed by two 3 × 3 × 3 convolutions. Correspondingly, the expanding path is built by alternating one 4 × 4 × 4 deconvolution with stride 2, and two 3 × 3 × 3 convolutions. The expanding path is then followed by a 1 × 1 × 1 convolution, which outputs K feature maps (K is the number of label categories including the background). Each 3 × 3 × 3 convolution is followed by a batch normalization layer and a rectified linear unit (ReLU). Different from the original U-net, some padded convolution layers are also used to maintain the spatial dimension.

The feature maps before the first pooling layer and the last pooling layer are concatenated to the corresponding feature maps in the expanding path. The feature maps before the second pooling layer are first input into the dilated dense network which is introduced in the last subsection of this paper. Then, the output features of the dilated dense network are concatenated to the corresponding feature maps in the expanding path. The dilated dense network can provide multi-scale features while remaining high spatial resolution. Moreover, two different kinds of features provided by the dilated dense network and the contracting-expanding path are fused, providing more abundant image information for dense prediction.



Residual Dilated Dense U-net

To further improve the performance, we use residual connections in DUnet to promote the information flow within the network (He et al., 2016a). Formally, the residual connection can be expressed as:

[image: image]

where xl−1 and xl are the input and output of the lth unit, and Hl(·) is a non-linear function which is used to learn the residual xl − xl−1 of the lth unit. We group every pair of convolutional layers with one residual connection along the contracting path and the expanding path of DUnet, and obtain the Residual DUnet (ResDUnet). Figure 5 shows the structure of our proposed ResDUnet. The difference between ResDUnet and DUnet is the use of residual connections in ResDUnet, which connects two adjacent convolutions with an identity mapping (or a 1 × 1 × 1 convolution if the number of feature maps is not matched).


[image: image]

FIGURE 5. The structure of our proposed ResDUnet. The number in each operation rectangle is the number of kernels. “⊕” denotes the element-wise summation, and all operations are implemented in a 3D manner.





Loss Function

We train our models using Softmax loss (Gu et al., 2017):

[image: image]

where zk, i represents the kth output of the last network layer for the ith voxel, yi ∈ {1, 2, …, K} represents the corresponding ground-truth label, K and N are the number of categories and the number of voxels, respectively. The term [image: image] represents the prediction probability for the kth class of the ith voxel, which is computed by the Softmax function.



Evaluation Metrics

We evaluated the image segmentation results based on two types of segmentation evaluation measures (Jafari-Khouzani et al., 2011): Dice coefficient (Dice) and Average Symmetric Surface Distance (ASSD). Dice is used to measure the relative volumetric overlap between the automated segmentation and the manual segmentation, and ASSD is used to measure the agreement between segmentation boundaries. By denoting A as the manual segmentation, B as the automated segmentation, and V(X) as the volume of segmentation X, the two evaluation measures are defined as:

[image: image]

where ∂A denotes the boundary voxels of A, and d(·, ·) is the Euclidian distance between two points.




EXPERIMENTS AND RESULTS


Experimental Details

Five-fold cross validation was used in the experiment for the BCP dataset. In each fold, we selected 7 subjects for training, 1 subject for validation, and 2 subjects for testing. Experiments were performed using a NVIDIA Titan Xp with 12 GB memory. Because of the restriction of limited training subjects and GPU memory, we randomly extracted patches from each training subject, instead of using the whole images as input for each network. We extracted about 1,300 patches from each subject. These patches were extracted as follows. First, we extracted patches one by one with stride of 2 × 2 × 2. The extracted patches that contain at least one hippocampal voxel were taken, and were numbered as 1, 2,…, n. Then, these numbers were randomly reordered. At last, we took the first half part of the reordered patches as our training patches. The patch size was optimally set to 24 × 24 × 24 by comparing the results obtained by the baseline 3D U-net method with different patch sizes, which is shown in Table 2. Since both T1w and T2w images were available, we concatenated the corresponding T1w and T2w image patches as input for each network. The networks were trained by Adam method with a batch size of 5, which were implemented with Caffe (Jia et al., 2014). The learning rates were initially set to 0.0001 and were decreased by a factor of γ = 0.1 every 10,000 iterations. We used a weight decay of 0.0005 and a momentum of 0.9 in all networks. The training process was stopped after 60,000 iterations. For segmenting a testing image, patches were extracted to feed into the trained models with an overlapped sliding windows strategy. The patch size was set to 24 × 24 × 24 with stride of 8 × 8 × 8. We used a majority voting strategy for the overlap regions to get the whole image prediction. Note that we used the same hyper-parameters during the 5-fold cross-validation.



Table 2. Mean (STD) values of Dice for each subfield segmentation using different patch sizes (R×R×R) on the BCP dataset by 3D U-net.
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As the networks are trained based on image patches extracted around the hippocampus, the global spatial information of brain structures may not be perfectly captured. Thus, the obtained network models can well-recognize the hippocampal subfields around the hippocampus, but cannot recognize those far away from hippocampal region. For example, a patch in the caudate (denoted by the pink circle in the left of Figure 6) may look similar to the patches in the hippocampus, and will be classified to hippocampal subfields in the testing stage. As a result, there are some isolated false positives outside the hippocampal region, as shown in Figure 6. To remove these artifacts automatically, our post-processing steps include searching the voxels of each automated segmentation to find the non-zero neighbors of current voxel, and to obtain several connected regions. Then, we selected two regions with maximum volumes for the final left and right hippocampal subfields.


[image: image]

FIGURE 6. An example of isolated tiny blocks, outside the hippocampal region, appeared in the automated segmentation.



Five-fold cross validation was also used in the Kulaga-Yoskovitz dataset. In each fold, we selected 15 subjects for training, 5 subjects for validation, and 5 subjects for testing. The same experimental settings were used as the BCP dataset, except that the patch size was set to 32 × 32 × 32 as the resolution of images in this dataset is much higher, and the batch size was set to 3 because of the GPU memory limit. The same post-processing was used to remove isolated tiny blocks outside the hippocampal region.



The Efficacy of Multi-Modality

In this subsection, we studied the efficacy of multi-modality by comparing the segmentation results obtained using only single modality images (i.e., T1w or T2w) and multi-modality images (T1w+T2w), respectively. All experiments were carried out on the BCP dataset with the same network architecture (ResDUnet) and the same training strategies. Table 3 lists the Dice coefficients of segmentation results using different image modalities. It shows that training using multi-modality images can obtain better results in the most subfields, compared with those using only either T1w or T2w single-modality images. This demonstrates that the network trained with multi-modality images can generate more discriminative features, which improves the performance of hippocampal subfield segmentation. From the results, we also find that T1w images can provide more useful information than T2w images for hippocampal subfield segmentation on the BCP dataset. In some subfields, training using only T1w images obtains similar or even a little better segmentation results than those using multi-modality images.



Table 3. Mean (STD) values of Dice for each subfield segmentation using different modalities on the BCP dataset.
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Comparison With State-of-the-Art Methods

Our proposed method was also compared with two state-of-the-art networks, namely, 3D U-net (Çiçek et al., 2016) and ConvNet (Yu et al., 2017). The 3D U-net is extended from the previous 2D version (Ronneberger et al., 2015) into a 3D variant for volumetric feature representation. For a fair comparison, the 3D U-net used in our experiments consists of three pooling layers and three deconvolutional layers, which are the same as our proposed DUnet. The only difference is that the dilated dense network is used to fuse the middle level features of the contracting path with those of the expanding path in DUnet, instead of directly concatenating them as in 3D U-net. ConvNet (Yu et al., 2017) is a volumetric convolutional neural network with mixed residual connections, which also consists of three pooling layers and three deconvolutional layers. In ConvNet, residual connections are used between the successive convolution layers to form the residual blocks, and also between the feature maps of contracting path and those of expanding path. Besides, ConvNet (Yu et al., 2017) exploits a deep supervision mechanism to accelerate its convergence speed. All these comparative networks use Softmax loss as loss function, and the same post-processing is used to remove the tiny isolated blocks of segmentation results that appear outside of the hippocampal region.

Table 4 reports the Dice coefficients of the segmentation results obtained by different networks on the BCP dataset. It shows that our proposed DUnet outperforms 3D U-net (Çiçek et al., 2016) in segmenting CA1, SUB, CA4/DG and Uncus, and our proposed ResDUnet outperforms 3D U-net (Çiçek et al., 2016) in segmenting CA1, CA2/3, SUB, and Uncus, according to the Wilcoxon signed rank tests with p < 0.05. As can be seen in the table, our proposed ResDUnet achieves the highest Dice coefficient for the average of subfields. Table 5 reports the ASSD coefficients of the segmentation results, which shows that our proposed ResDUnet achieves the best ASSD coefficient for the average of subfields. Figure 7 shows hippocampal subfield segmentations of a randomly selected subject from the BCP dataset, obtained by manual segmentation and four different networks. It can be seen that our proposed ResDUnet achieves the most accurate results.



Table 4. Mean (STD) values of Dice for each subfield segmentation by different networks on the BCP dataset.
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Table 5. Mean (STD) values of ASSD for each subfield segmentation by different networks on the BCP dataset.
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FIGURE 7. Hippocampal subfield segmentations of a randomly selected subject from the BCP dataset, obtained by manual segmentation, and four different networks.





Results on a Public Adult Dataset

Tables 6, 7 list the Dice and ASSD coefficients of the segmentation results obtained by five different networks on the Kulaga-Yoskovitz dataset. The results show that our proposed DUnet outperforms 3D U-net (Çiçek et al., 2016) and ConvNet (Yu et al., 2017) in segmenting CA1-3 and SUB, and our proposed ResDUnet outperforms 3D U-net (Çiçek et al., 2016) and ConvNet (Yu et al., 2017) in segmenting all subfields, according to the Wilcoxon signed rank tests with p < 0.05. Table 6 also lists the comparison of our proposed method with the state-of-the-art hippocampal subfield segmentation method (HIPS), which obtained the best segmentation results on the Kulaga-Yoskovitz dataset so far (Romero et al., 2017). Note that, for a fair comparison, we use the published results of HIPS as reported in Romero et al. (2017). It shows that our proposed DUnet and ResDUnet also outperform HIPS method, especially for segmenting the CA4/DG subfield which is the most difficult task (Dalton et al., 2017). Figure 8 shows hippocampal subfield segmentations of a randomly selected subject from Kulaga-Yoskovitz dataset, obtained by manual segmentation and four different networks. It can be seen that our proposed DUnet and ResDUnet achieve the most accurate results.



Table 6. Mean (STD) values of Dice for each subfield segmentation by five different methods on the KULAGA-YOSKOVITZ dataset.
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Table 7. Mean (STD) values of ASSD for each subfield segmentation by four different networks on the KULAGA-YOSKOVITZ dataset.
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FIGURE 8. Hippocampal subfield segmentations of a randomly selected subject from the Kulaga-Yoskovitz dataset, obtained by manual segmentation, and four different networks.






DISCUSSION

FCNs have achieved great success in the field of medical image segmentation, which usually consist of a contracting path to extract abstract features, and an expanding path to up-sample the feature maps for dense prediction (Ronneberger et al., 2015; Çiçek et al., 2016; Chen H. et al., 2017; Lian et al., 2018; Nie et al., 2018). The detailed image information may be lost during these contracting and expanding processes. The existing U-net-like FCNs concatenate the feature maps in the contracting path to the corresponding feature maps in the expanding path to recover the lost image information. However, the levels of features in the contracting path are much lower than those in the expanding path. It may not obtain the optimal results when directly concatenating these features. To overcome this limitation and fully exploit multi-level image features, we proposed a new FCN by exploiting a dilated dense network to connect the features of the contracting path and the features of the expanding path. The dilated dense network uses the dilated convolutions to extract contextual features without reducing spatial resolution, and it also employs dense connections to aggregate multi-scale features. Thus, multi-scale features can be generated from the dilated dense network, which are fused with the corresponding features in the expanding path. To avoid overfitting, dropout operations are also used in the dilated dense network (Srivastava et al., 2014).

By using the dilated dense network to connect the feature maps in the contracting path and expanding path, our proposed method provides a way to fuse the finer-grained low-level features in the contracting path and the coarse high-level features in the expanding path. Moreover, the multi-scale features extracted by the dilated dense network are useful for segmenting multi-structures with different shapes and different scales. To further promote information propagation and accelerate the convergence, we introduce residual connections to group every pair of convolutional layers (He et al., 2016a,b).

Different from natural images, many imaging modalities are 3D in the field of medical image analysis. In the past few years, a lot of effort has been dedicated to exploit CNNs to process volumetric data. Some of them applied 2D CNNs to each slice of volumetric images (Prasoon et al., 2013; Setio et al., 2016; Chen Y. et al., 2017). To effectively make full use of the 3D spatial information, recent studies applied 3D CNNs to deal with volumetric images (Çiçek et al., 2016; Chen H. et al., 2017;Nie et al., 2018; Wachinger et al., 2018). Following these methods, our proposed FCNs were also implemented in a 3D manner. As the number of our training subjects is limited, we randomly extracted patches from each training subject, instead of using the whole image as the input for each network. The patch size was set to 24 × 24 × 24 for the BCP dataset and 32 × 32 × 32 for Kulaga-Yoskovitz dataset, considering different image resolutions in these two datasets.

As both T1w and T2w images were available for each subject, we concatenated the extracted T1w and T2w image patches as input to the networks. Compared with single modality data, multi-modality MR images can provide complementary contextual information, which contributes to better segmentation performance. From our experiments, we find that training using multi-modality images can obtain better results than using only single-modality images, and we also find that T1w images can provide more discriminative information than T2w images for hippocampal subfield segmentation.

Experimental results on the BCP dataset show that our proposed DUnet and ResDUnet improve the average Dice coefficient by 2.1 and 2.5%, respectively, for infant hippocampal subfield segmentation, compared with the 3D U-net (Çiçek et al., 2016). To further validate the effectiveness, we also applied our proposed method for adult hippocampal subfield segmentation based on a publicly available dataset. The results show that our proposed DUnet and ResDUnet improve the average Dice coefficients of 0.5 and 0.6%, respectively, compared with the 3D U-net (Çiçek et al., 2016). The improvement of our proposed ResDUnet method on both infant dataset and adult dataset comes from (1) multi-scale image features aggregation for distinguishing different hippocampal subfields; (2) utilization of the embedded dilated dense network for effectively fusing the low-level features in the contracting path and the high-level features in the expanding path; and (3) utilization of residual connections for promoting information propagation and accelerating the convergence.

However, the proposed method was mainly designed for infant hippocampal subfield segmentation on the BCP dataset. First, the embedded dilated dense network can provide multi-scale image features, which are especially useful for segmenting infant hippocampal subfields, since tissue contrast between infant hippocampal subfields are much blurrier than in adults. Second, the task of infant hippocampal subfield segmentation on the BCP dataset is to segment hippocampus into five parts (CA1, CA2/3, SUB, CA4/ DG, and Uncus), while there are only three parts (CA1-3, SUB, and CA4/DG) on the Kulaga-Yoskovitz dataset. Therefore, the segmented hippocampal subfields in the infant subjects are much smaller than those of the adult subjects. In our proposed network, the embedded dilated dense network can capture contextual image information without losing detailed image information, which is extremely useful for segmenting small structures.



CONCLUSION

In this paper, we have proposed a new FCN by integrating U-net and dilated dense network for hippocampal subfield segmentation. Our proposed method can avoid losing the detailed image information in the successive down-sampling steps, effectively fuse the low-level features of the contracting path with the coarse high-level features of the expanding path, and generate multi-scale image features. Experimental results show that our proposed method outperforms the state-of-the-art methods.
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Our knowledge of the brain has evolved over millennia in philosophical, experimental and theoretical phases. We suggest that the next phase is simulation neuroscience. The main drivers of simulation neuroscience are big data generated at multiple levels of brain organization and the need to integrate these data to trace the causal chain of interactions within and across all these levels. Simulation neuroscience is currently the only methodology for systematically approaching the multiscale brain. In this review, we attempt to reconstruct the deep historical paths leading to simulation neuroscience, from the first observations of the nerve cell to modern efforts to digitally reconstruct and simulate the brain. Neuroscience began with the identification of the neuron as the fundamental unit of brain structure and function and has evolved towards understanding the role of each cell type in the brain, how brain cells are connected to each other, and how the seemingly infinite networks they form give rise to the vast diversity of brain functions. Neuronal mapping is evolving from subjective descriptions of cell types towards objective classes, subclasses and types. Connectivity mapping is evolving from loose topographic maps between brain regions towards dense anatomical and physiological maps of connections between individual genetically distinct neurons. Functional mapping is evolving from psychological and behavioral stereotypes towards a map of behaviors emerging from structural and functional connectomes. We show how industrialization of neuroscience and the resulting large disconnected datasets are generating demand for integrative neuroscience, how the scale of neuronal and connectivity maps is driving digital atlasing and digital reconstruction to piece together the multiple levels of brain organization, and how the complexity of the interactions between molecules, neurons, microcircuits and brain regions is driving brain simulation to understand the interactions in the multiscale brain.

Keywords: simulation neuroscience, digital reconstruction, brain modeling, neuronal types, connectome, brain structure and function, history


THE NEXT PHASE OF BRAIN RESEARCH

Over past millennia, brain research evolved through a series of fundamental transformations of human thinking to approach the mind and the brain. At the dawn of human civilization, mainly based on intuitive and analogical thinking, the deeply philosophical phase relied on subjective experience and “pure reason” (Lamb, 1925), without any empirical method for proving suggested ideas. To gain empirical evidence, mainly based on reductionist thinking, brain research evolved into an experimental phase, by means of observation, measurement and experimentation, which led to the hyper-specialization we see in modern neuroscience. During this phase, huge amounts of disconnected datasets were produced, each limited to a certain level of brain structure and function (Frackowiak and Markram, 2015). To deal with the daunting forests of data, abstraction and simplification methods from physics, mathematics and computer science gave rise to the theoretical phase of neuroscience. This kind of abstractive thinking follows the logic that “if one squeezes out all the complexity from a system, one eventually reaches its essence and then, and then only, does one truly understand the brain.” Theoretical neuroscience tries to interpret experimental data and to gain analytical tractability by simplifying experimental observations, generating concepts and building minimal mathematical models (Gerstner et al., 2012). This phase also gave rise to artificial intelligence and its evolution to its current form today.

Experimental and theoretical phases have developed through three main paths: neuronal mapping that tries to classify and catalog different types of cells in the brain; connectivity mapping that aims to map connectivity between individual neurons (neighboring neurons, neurons in neighboring groups, neurons in distant brain regions), between groups of neurons (layers, columns, nuclei, etc.) and between brain regions (visual area, auditory area, etc.); functional mapping that tries to relate brain function and behavior to the structure of the brain (e.g., role of partial connectomes or the whole connectome).

Neuronal mapping is evolving from subjective descriptions towards objective classifications of cell types, from morphological types (Berlin, 1858; Meynert, 1867; Golgi, 1883; Ramón y Cajal, 1909) to genetic types (Monyer and Markram, 2004; Toledo-Rodriguez et al., 2004; Urban and Rossier, 2012; Wagner et al., 2016) and multidimensional types (e.g., according to a combination of morphological, electrical, afferent, efferent, molecular and genetic types; Markram et al., 2004, 2015; Zeng and Sanes, 2017).

Connectivity mapping is evolving from loose topographic maps of major nerve tracts between brain regions (Vicq-d’Azyr, 1786; Gall and Spurzheim, 1810; Meynert, 1871) towards dense anatomical and physiological maps of connections between individual genetically distinct neurons (Oh et al., 2014; Swanson and Lichtman, 2016). The nomenclature of the types of connections formed in the brain evolves at the pace of the development of the nomenclature of cell types and is set on a path towards a nomenclature for a large addressing system indicating each cell type in the brain.

Functional mapping is evolving from psychological and behavioral stereotypes towards a map of behaviors emerging from structural and functional connectomes (Gall and Spurzheim, 1810; Vogt and Vogt, 1903; Brodmann, 1908; Sporns, 2016), from observing and characterizing brain responses to stimulation (Hitzig and Fritsch, 1870; Penfield and Boldrey, 1937) towards understanding the causal relationship between neural connectivity and brain function (Bassett and Sporns, 2017; Reimann et al., 2017a). Today, at the cellular level, neuroscientists are still surprised to find that different neurons respond to different inputs in a different manner and are still composing an endless spectrum of stimulus preference maps for neurons, while we are moving from considering only how the type of neurons is responsible for their different responses towards identifying the contribution of the underlying networks. At the whole-brain level, studies are beginning to reveal how the underlying connectome shapes, for example, functional magnetic resonance imaging (fMRI) image patterns. At the behavioral level, attempts to map signatures of specific cognitive functions to the underlying structures are still limited to networks of brain regions. As the number of brain regions found to be involved in any cognitive task grows, functional mapping will likely evolve from statistical subgraphs of the brain towards dynamic full graphs.

However, in these three paths, experimental and theoretical approaches are hindered by the barriers of scale and complexity. How can we scale up cellular phenotyping and deal with the dynamics of cellular properties to achieve a comprehensive census of cell types in mammalian brains? How can we rise to the challenge of volume, time and dynamics in full connectome mapping potentially even down to the nanoscale? How can we trace all the molecular and cellular mechanisms that give rise to brain function and behavior?

To transcend these barriers, simulation neuroscience was born. It is arguably the next phase of brain research, after its philosophical, experimental and theoretical phases. Simulation neuroscience combines experimental and theoretical approaches to achieve a dense digital reconstruction of the brain consistent with experimental data, which in itself forms a unifying theory of brain structure and function and which can be used to test and evolve new theories (Figure 1). The goal of simulation neuroscience is to build a digital copy of the brain instead of an arbitrary model, even if that model could imitate certain brain functions (Markram, 2006; Markram et al., 2015). Since neither a comprehensive repertory of data nor a complete map of the brain exists or will likely be obtained purely from experiments, we obviously cannot do this blindly. It requires building the digital copy by formulating principles of cellular structure to synthesize all the neurons and glial cells, principles of molecular organization and interaction, principles of how ion channels and receptors are formed and distributed in neurons, principles of synaptic connectivity, principles of how brain regions are connected, and ultimately, principles of how the brain is coupled to the body. It is through formulating and exercising these principles that simulation neuroscience makes progress systematic and understanding tractable. If correct, these principles allow predicting vast gaps in data and drive a new question: what is the minimal, not maximal, data we need to reconstruct the brain? Indeed, experimental neuroscience should be asking what can be predicted and what must be measured.
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FIGURE 1. Understanding the multiscale brain.



Reconstructing the brain recapitulates the history of neuroscience by evolving and accelerating its major steps, from early morphological descriptions of the nerve cell to later electrophysiological and biochemical studies of neural connectivity: synthesize and evolve available knowledge, methods and technologies into a new science, and take a quantum leap onto a path that, in the end, can lead to understanding the multiscale brain. Industrialization of neuroscience and the resulting large disconnected datasets are generating demand for integrative neuroscience; the scale of neuronal and connectivity maps is driving digital atlasing and reconstruction to piece together the multiple levels of brain organization, and the complexity of the interactions between molecules, neurons, microcircuits and brain regions is driving simulation neuroscience to understand the multiscale brain. To explore the origin and making of this paradigm shift, we reconstruct the deep historical paths leading to simulation neuroscience through the philosophical, experimental and theoretical phases of brain research, in particular, from the first observations of the nerve cell to modern attempts to digitally reconstruct and simulate the brain, by identifying the major scientific, technological and conceptual breakthroughs that have guided this passionate quest of humans to understand the brain and their own condition.



FROM THE WEIGHT OF THE HEART TO BRAIN SIMULATION

Humans see and feel, live and die, conscious of their own existence. They think and desire to understand themselves.

About 3,000 years ago, in ancient Egypt, almost 200,000 years after the birth of Homo sapiens and 9,000 years after the Agricultural Revolution (Harari, 2014), the heart was still considered to be the seat of emotions and thoughts, weighed after death by gods against a feather representing truth and order to determine the destiny of the deceased: to go to heaven or to be devoured by a monster (“Book of the Dead,” Papyrus of Ani, 1250 BC). The brain, considered trivial, was the first organ to be thrown away during embalming: part of it was drawn out through the nostrils with a crooked piece of iron, and the rest was rinsed with drugs (Herodotus, 1875).

About 2,500 years ago, in Ancient Greece, Alcmaeon of Croton (~460 BC), a great philosopher and pioneer of anatomical dissection, traced the nerves of the sense organs until their terminations in the brain and inferred that the brain was the seat of sensation and thought (Tannery, 1887). Thus were laid the foundations of brain science. One century later, influenced by Alcmaeon of Croton, Plato (~360 BC) located the immortal soul, the logos (thinking and reasoning), in the head, since it is in the form of a globe, at the top of the body, close to the heaven, reflecting the perfect image of God and the Universe (Lamb, 1925). The logos is a dæmon inside each of us, a genius given by God to guide humans to communicate with the divine soul of the Universe. Plato located in the thorax the mortal soul—the thymos and the eros—our fearful but ineluctable passions and desires. However, in Aristotle’s view (~350 BC), the intellectual soul (nous), imperishable and self-existing, which bestowed on humans the ability to understand and which distinguished them from plants and animals, did not operate through any specific bodily organ (Hicks, 1907). Relating sensation to the blood, relying on the idea that the brain was bloodless and cold, Aristotle thought that the heart was the seat of sensation, while the brain was just an organ for cooling the heat produced by the heart (Ogle, 1911).

About 500 years ago, what has become known as the “Scientific Revolution” began (Burtt and Edwin, 1923; Butterfield, 1959). We acknowledged our ignorance (Harari, 2014) and embarked on an exploration of the unknown. Modern science was born. The view of the universe and the nature of human life was transformed through the transition from mainly relying on the internal mind to external observation. To survive and evolve, to increase their capacities and to produce new resources, humans gained knowledge and invented technologies both transmittable to others to accelerate scientific discoveries—therefrom arose the powerful collective scientific process. We explored the world and our own body, including the brain. Brain science accelerated.

About 475 years ago, Vesalius (1543) dissected human corpses, described the anatomy of the brain and first distinguished between gray matter and white matter. About 300 years ago, “fine vessels” were observed within a nerve under a self-made one-lens microscope (van Leeuwenhoek, 1719). More than 100 years later, “large, colorless and free globules” and “granules connected in rows by delicate filaments” were described in leech nervous tissue through an achromatic microscope (Ehrenberg, 1833). About 30 years later, “protoplasmic processes” were identified through carmine staining (Deiters, 1865). In about 150 years, “vessels,” “globules” and “protoplasmic processes” were finally connected together in the human mind to form a single cellular unit, the nerve cell, named later the “neuron” (von Waldeyer-Hartz, 1891).

Where are we now? Our quest to understand the brain has advanced in scale and complexity through the experimental and theoretical phases of brain research. We are beginning to understand the structural and functional diversity of neurons, how they are connected, and how a specific network of neurons gives rise to emergent functions.

However, since Alcmaeon of Croton dissected brains and suggested that the brain was the seat of sensation and thought, almost 2,500 years have elapsed (Tannery, 1887). We still do not understand the basic neural mechanisms underlying brain function, which give rise to our emotions, thoughts and memories (Koch et al., 2016; Südhof, 2017). We remain “strangers to ourselves” (address by Shimon Peres when the Human Brain Project was awarded, the European Parliament, March 12, 2013).

Modern philosophers continue to reason about the mind and the brain in diverse forms. Dualists argue for the irreducibility of conscious experience and sensory qualia—surviving forms of Plato’s and Descartes’ substance dualism. In their view, we will probably never obtain a complete explanation of consciousness based on neural mechanisms—What is it like to be a bat or a zombie (Nagel, 1974; Chalmers, 1996)? Relying on the concept of multiple realizability and the computational theory of mind, functionalists pay little attention to neuroscientific details, presuming that a given mental state can be realized through diverse physical mediums, either a brain or a computer (Fodor, 1975; Putnam, 1965). The rise of neurophilosophy fosters the co-evolutionary research methodology, in particular the co-evolution of philosophy with cognitive and computational neuroscience (Churchland, 1986), with the aim of applying neuroscientific findings to classical philosophical concepts such as morality (Prinz, 2007; Churchland, 2011). On the basis of eliminative materialism, neurophilosophers try to replace the categories of “folk psychology” with neuroscientific ontology (Churchland, 1986). Contrary to dualists, they search for a neurobiological explanation of consciousness, a unified theory of how the mind-brain works (Searle, 1992; Dennett, 1993; Churchland and Churchland, 1997). However, today, this goal still remains vague.

In parallel with these philosophical pursuits, methodologies in neuroscience also evolved by crossing the boundaries between different doctrines and disciplines. Against rationalist Descartes’ “Cogito ergo sum” (Descartes, 1905), empiricists argued a half-century later for “tabula rasa” and thought that instead of a priori reasoning, the nature of the world and the mind could only be understood through empirical research with observations and experimental reasoning (Locke, 1689). This view prepared the philosophical ground for the rise of experimental neuroscience. Influenced by modern mathematical logic developed in the late 19th century (Frege, 1879, 1960), early empiricism further evolved into logical empiricism (Carnap, 1928; Neurath, 1932), which led to the idea of the mind as a logic machine and the computational theory of mind (McCulloch and Pitts, 1943; Putnam, 1965; Fodor, 1975). This gave rise to another phase in brain research—theoretical neuroscience.

Reduction is the major form of reasoning in both experimental and theoretical neuroscience, although it varies from intertheoretic reduction to “reductionism-in-practice” (Hooker, 1981a,b,c; Bickle, 2003). This kind of reasoning has been challenged by several theories of neuroscientific explanations. Causal-mechanistic reasoning aims to capture the unity of neuroscience by producing a mosaic of explanations at different levels, instead of reductive, unifying or model-based forms of scientific explanations (Craver, 2009). However, to the philosophers of neuroscience in search for a unified theory of brain function and behavior, understanding the brain will require both neurobiology and large-scale theoretical frameworks. In this view, a major methodological theme consists in the co-evolution of macrotheory and microtheory, an interanimation of philosophy, psychology, computer science and neuroscience, of top-down and bottom-up research (Churchland, 1986). This endeavor aims to combine multiple disciplines, in particular philosophy and neuroscience, into a unified science, to obtain a unified theory of the mind-brain. However, since the birth of neurophilosophy, more than 30 years have passed, this goal still remains remote. Why cannot we understand the mind-brain?

Brain research over past millennia is like solving a strange jigsaw puzzle that is devoid of a predetermined picture—various pieces have been accumulated semi-randomly in the hope that all the data and knowledge will self-organize. The mind does not have a shape, but the brain does. Instead of imposing arbitrary forms on the mind, can we reconstruct a brain from its basic molecular and cellular units, find out the principles that connect them together and test our theories in a systematic manner? This quest gave rise to simulation neuroscience. What is the philosophy of this new science?

For thousands of years, seeking truth, philosophers have been addressing fundamental questions about the mind and ourselves, yet without producing empirical evidence; their reasoning wanders in the silence of the desert. For hundreds of years, seeking completeness, experimental neuroscientists have been trying to understand every single part of the brain by breaking it into its basic components and have built forests of datasets, but how much more elements are there still to map, are we lost? For nearly a century, seeking a single unified theory, theoretical neuroscientists have been trying to walk out of these forests by cutting down trees; the complexity indeed decreases but also the structural and functional richness of the ecosystem. Finally, have not the models simply become data fitting functions? If several models can fit the data, does it mean that they all explain brain function? To transcend the barriers to these endeavors, can we get an overview of all the forests of datasets, reorganize and integrate them in the context of the whole brain, while filling the gaps that experiments will never be able to fill and finding ways through the forests by considering the ecosystem of the brain? The deep meaning of simulation neuroscience consists in reconstructing and simulating the brain from the most fundamental principles we can isolate to understand and link the multiple layers that form ourselves, from molecules and cells to brain function and behavior, to give meaning and life to data and theories.

Due to reductionist thinking, experimental neuroscience is hindered by huge amounts of disconnected datasets and seemingly infinite scale and complexity. Based on abstractive thinking, theoretical neuroscience tries to address these problems through simplification but abstracts away detailed brain structures and their emergent functional properties. To reconcile and transcend these two extremes, by leveraging high performance computing, simulation neuroscience approaches the brain through integrative and predictive thinking: integration of experimental and theoretical approaches, integration of disconnected datasets and knowledge and integration of the multiple scales of brain structure and function, in association with predictive methods for filling the gaps (Figure 2).
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FIGURE 2. Epistemological and methodological evolution of brain research.



The brain is a multidimensional network of networks of genes, proteins, cells, synapses and brain regions, all interacting inside a dynamically changing environment of neurochemicals. Brain functions emerge as electrical, chemical and mechanical chain interactions through these networks. Since there is no scientific evidence that we can ignore any kind of these interactions, the only way to understand all aspects of the multiscale brain is to reconstruct and simulate all these types of interactions.

The philosophy of simulation neuroscience originates from the will to transcend the barriers of scale and complexity during the evolution of neuronal mapping, connectivity mapping and functional mapping in the experimental and theoretical phases of brain research. The present review will trace the historical evolution of this pursuit by identifying the major milestones that are the most related to it and that are capable of characterizing it in a concise way, instead of conducting an exhaustive survey of all the investigators whose important work has contributed to the evolution of brain research.



NEURONAL MAPPING: FROM THE BIRTH OF THE NEURON TOWARDS A COMPREHENSIVE CENSUS OF BRAIN CELL TYPES

Neurons and glial cells constitute the two major cellular populations in the human brain (~86 billion neurons vs. ~85 billion non-neuronal cells; von Bartheld et al., 2016). Although they were probably first described at the same time (Dutrochet, 1824), neurons have been more studied because their electrical excitability correlates well with higher brain functions and are therefore considered essential to brain function and behavior (Galvani, 1791; du Bois-Reymond, 1843). Neurons are divided into diverse types characterized by their morphological, physiological or molecular properties. Just in the retina, the number of neuronal types is estimated to be 100–150, and 2,500–5,000 in the adult mammalian nervous system (Bota et al., 2003; Zeng and Sanes, 2017). Although efforts are underway to try to achieve a comprehensive census of neuronal cell types over the next decade (Zeng and Sanes, 2017), neuronal cell-type classification is controversial and extremely challenging for the future of neuroscience. Even so, then we will still need to ask: “What does each cell type do?”

To better visualize the trajectory of neuronal mapping in the future, we need to understand its origin. What is the history of the neuron, from its first descriptions to modern neuronal classification? First of all, how did humans discover the neuron?

In fact, humans did not discover the neuron; they reconstructed it.


All Began With a Nerve

About 300 years ago, “fine vessels” were observed within a nerve under a self-made one-lens microscope (van Leeuwenhoek, 1719), clearly identified as axons only more than 60 years later (Fontana, 1781). After about 50 years, “large, colorless and free globules” and “granules connected in rows by delicate filaments” were described in leech nervous tissue through an achromatic microscope, considered yet to be the “excreted nuclei” of red blood cells (Ehrenberg, 1833). Three years later, appeared the first microscopic image of the nerve cell body with the nucleus and nucleolus, but the “primitive fiber” (axon) and the “globule” (soma) were still considered to be separated elements (Valentin, 1836). Nevertheless, in the same year, the anatomical continuity between the nerve fiber and the nerve cell body was observed (Remak, 1836). However, “protoplasmic processes” (dendrites) were only described more than 80 years after the identification of the axon, owing to chromic acid fixation and carmine staining (Deiters, 1865). Only then did humans succeed to reconstruct together the “vessel,” “globule” and “protoplasmic processes” into a single nerve cell, which took almost 150 years.

However, at that time, the soma and fiber of the nerve cell were still considered functionally separated. The nerve cell body, often taken for a trophic center, was thought unnecessary to nerve conduction because most anatomists believed that the nerve fiber ran straight through the cell body (Bernard, 1858; Lorente de Nó, 1935). Therefore, electrophysiology was only based on the study of nerves. Nevertheless, recordings of spinal cord antidromic evoked potentials showed that the polarization of conduction in the spinal cord was not a property of nerve fibers, but rather localized in the soma (Sherrington, 1897). However, it was not until the development of intracellular recording (Hodgkin and Huxley, 1939; Ling and Gerard, 1949), making it possible to characterize local potentials in different parts of a neuron, that the soma and fiber of the neuron were functionally reconstructed together by humans, almost 90 years after the morphological reconstruction of the nerve cell (Eccles, 1952).

Even so, at this stage, humans still did not succeed to completely reconstruct the neuron, hindered by the fierce controversy over the mode of connection between nerve cells. On the one hand, nerve cell anastomotic networks connected by axons and/or by dendrites were observed through ammoniated carmine and gold chloride staining or Camillo Golgi’s “black reaction” (silver nitrate impregnation after fixation with potassium dichromate and osmic acid), which established the reticular theory (von Gerlach, 1872; Golgi, 1875). On the other hand, ontogenetic method and retrograde degeneration method revealed that each nerve fiber originated from a single cell and that the degeneration of the fibers and somas of nerve cells was limited to the units directly affected (Forel, 1887; His, 1887). These observations were later supported by direct histological evidence obtained with improved Golgi’s method, which showed the individuality of each nerve cell and founded the neuron doctrine (Ramón y Cajal, 1888; von Waldeyer-Hartz, 1891).

And yet, neuroscientists at that time were still confronted with another question: how do nerve cells communicate between them? Camillo Golgi thought that the communication between nerve cells and the unified functioning of the nervous system could only be achieved through a continuous network, while Santiago Ramón y Cajal suggested that neural transmission could occur through a kind of “granular cement” or a “particular conductive substance” connecting the surfaces of nerve cells in contact. Ramón y Cajal’s idea announced the concept of the synapse (Foster and Sherringon, 1897), demonstrated later through Loewi’s famous experiment during which a substance collected from a stimulated heart stimulated another heart in the same way as the action of a nerve (Loewi, 1921).

However, it was not until the mid-20th century that the individuality of each nerve cell and the existence of the synaptic cleft were finally confirmed, owing to electron microscopy (EM) observations (Palade and Palay, 1954; De Robertis and Bennett, 1955). Since the first observation of nerve fibers (van Leeuwenhoek, 1719), the human reconstruction of the neuron as an independent cellular unit had taken almost 240 years. How much time would take the classification of different types of neurons?



A Way Through the “Butterflies of the Soul”

What is the path through the labyrinth of billions of the “butterflies of the soul” (Ramón y Cajal, 1917)? Early researchers first noticed different shapes of nerve cells and named them either by their morphological features or after their discoverers. With the development of histological techniques in the mid-19th century, nerve cells were first classified into pyramidal cells, small and irregular or granular cells and spindle-shaped cells, which founded cytoarchitectonics (Berlin, 1858). Then this morphological classification was further elaborated in association with cortical layers and cell function (Meynert, 1867). About 16 years later, using the “black reaction,” Golgi distinguished two basic types of nerve cells in the cerebral cortex and suggested their functions: Type I cell with a long axon giving off a small number of lateral filaments was motor cell; Type II cell with a short axon divided into many complex lateral branches was sensory cell (Golgi, 1883). However, this functional definition of the two cell types was later refuted by Ramón y Cajal (1894), who observed that Type I cells were abundant in sensory organs and Type II cells were distributed in all nerve centers. This revealed the complex relationship between nerve cell morphology and function. Ramón y Cajal (1909) also attempted to classify neurons by their shapes. However, were these morphological descriptions a reliable way to classify neurons?

Confronted with the subjectivity of these morphological classifications determined by single investigators, some researchers tried to establish objective criteria to classify nerve cells by their electrophysiological or biochemical features. Nissl (1894), using basic aniline dyes, classified nerve cells according to which parts of the cell content were stained and which parts were not and the relationships between the stained and unstained parts. Neurons were also classified by the velocity of their action potentials measured with the cathode ray oscilloscope (Gasser and Erlanger, 1922). Due to a better understanding of the chemical transmission of nerve impulses, neurons were divided into two types: cholinergic and adrenergic cells (Dale, 1933).

However, electrophysiological and biochemical states are limited by their sensitive condition-dependence. Faced with this problem, researchers attempted to characterize neurons with more stable features. With the development of immunohistochemistry in the 1940s and that of RNA and DNA sequencing in the 1970s (Coons et al., 1941; Min Jou et al., 1972; Wu, 1972), molecular classification methods were introduced to classify neurons according to their molecular properties, in particular protein composition and mRNA composition, with the assumption that some molecular features stay permanent to maintain cell identity (Fishell and Heintz, 2013; Deneris and Hobert, 2014). Single-cell transcriptomics, developed in the early 1990s, is considered to have the potential to provide a “complete” census of neuronal types (Toledo-Rodriguez et al., 2004; Poulin et al., 2016; Zeng and Sanes, 2017). High-throughput, multiplexed methods, such as multiplexed fluorescence in situ hybridization (FISH) and in situ sequencing methods, are being developed to scale up the enterprise of neuronal cell-type classification (Ke et al., 2013; Lee et al., 2014; Chen et al., 2015, 2016).

In 160 years, neuronal classification has evolved from subjective, morphological description to objective, multi-criteria identification; from monothetic approach to polythetic clustering (Berlin, 1858; Ramón y Cajal, 1909; Markram et al., 2004; Migliore and Shepherd, 2005; Armañanzas and Ascoli, 2015). However, a comprehensive census of neuronal cell types is still out of reach. What are the major challenges?



Towards a Comprehensive Census of Brain Cell Types

Neuroscience aims to achieve a comprehensive census of neurons and glial cells in the brain, with molecular annotation at subcellular resolution, such as mRNA expression, ion channels and synaptic proteins. However, there are ~86 billion neurons in the human brain, and every neuron appears unique; single-cell transcriptome analysis represents only a snapshot due to cyclic and stochastic fluctuations in RNA content (Raj and van Oudenaarden, 2008; Shapiro et al., 2013); gene expression and phenotypic properties of cells can dynamically change in response to internal and external cues (Cohen and Greenberg, 2008; West and Greenberg, 2011). Due to these factors, all neuronal classifications are provisional and hypothetical.

Faced with these challenges, how can we build a way through billions of the “butterflies of the soul”? It is true that there are ~86 billion neurons in the human brain, but it is possible to define a minimum sample size able to reliably reveal distinct types. It is true that every neuron appears unique, but we have to reduce dimensionality by defining a relevant level of granularity to identify neuronal types. It is true that gene expression in cells is dynamic, but we have to find out their molecular ground states that maintain cell identity. So, the question is: how can we overcome the barriers of scale and complexity to achieve a reliable neuronal cell-type classification?




CONNECTIVITY MAPPING: FROM WHITE MATTER TRACTS TOWARDS A FULL CONNECTOME


Leaves of a Cabbage

Arising from a stem, dispersed into leaves spreading out in a circular shape to form cavities, in the eyes of a 17th-century anatomist, the extending nerve tracts in the brain formed loose nets and ventricles like the leaves of a cabbage (Malpighi and Fracassati, 1669). Since Ancient Greece, nerve tracts had been considered related to brain function (Tannery, 1887). A question then arose: how to trace these tracts?

About 330 years ago, white matter was observed to be composed of fibrils arranged in bundles through the scraping method of dissection (Vieussens, 1684). A century later, nerve tracts were divided into inter- and intra-hemispherical pathways (callosal and association systems; Vicq-d’Azyr, 1786). The first category connected the two hemispheres, including the corpus callosum, the corpora quadrigemina, the anterior and posterior commissures, the cerebral peduncles, the pons, the anterior medullary velum, the interthalamic adhesion and the trigeminal tubercle. The second category was supposed to assure the communication between the base and other parts of the brain, including the arcuate fasciculus, the pillars of the fornix, the peduncles of the pineal gland, the tracts connecting the mammillary tubercles and the anterior thalamic tubercles. More than 20 years later, the projection system was identified through blunt dissection, including afferent and efferent fiber pathways linking the cortex with the subcortical regions, the brain stem and the spinal cord (Gall and Spurzheim, 1810).

However, dissection techniques could not determine the precise trajectory and arrangement of nerve tracts. Detailed tract tracing only became possible with the development of histological methods. Using a Zeiss-microscope and carmine or gold chloride staining, Theodor Meynert identified clearly the three main types of white matter tracts: the association systems—the short arcuate fibers and long association fibers connecting the various parts of the cerebral cortex; the commissural pathways connecting the two hemispheres; the afferent and efferent projection systems linking the cortex to the subcortical structures (Meynert, 1871).

Early tracing studies, relying on physical diffusion of dyes in fixed material, were limited to large fiber tracts between brain regions. The studies of neurocircuitry required more refined methods applicable to living tissue. Degeneration methods inferred neuronal connectivity from pathological changes following experimental lesions to the nervous system (Türck, 1849; Waller, 1850; von Gudden, 1870; von Monakow, 1897). However, lesions were usually nonspecific, degeneration altered the normal morphology of neurons, and pathological changes were extremely variable (Cowan et al., 1972).

To remedy this, tracing methods exploiting axonal transport in living neurons were developed in the 1970s. Retrograde tracing techniques introduced an enzyme or fluorescent tracer in a downstream location relative to the targeted neurons, capable of labeling the somas of the neurons projecting to the injection site, but unable to visualize the fiber pathways linking them (Kristensson, 1970; Kristensson and Olsson, 1971; LaVail and LaVail, 1972). This problem was resolved by anterograde tracing techniques, based on macromolecule transport from the soma to the axon terminals, such as autoradiographic tracing method (Cowan et al., 1972).

Nevertheless, injections of tracers usually resulted in indiscriminate labeling of different types of neurons, and the surgical procedure to introduce an exogenous tracer was complex. To deal with this, tracing techniques exploiting genetic engineering were developed more than 20 years ago (Prasher et al., 1992; Chalfie et al., 1994), which use intrinsic fluorescence to label exclusively the projections of neurons that express a specific molecular phenotype (Feng et al., 2000; Livet et al., 2007; Kuhlman and Huang, 2008). These techniques were even adapted for live imaging of intact animals such as Drosophila (Boulina et al., 2013). The leaves of a cabbage have become a forest of rainbow trees.

However, these tracing methods are limited to anatomical connectivity, which alone is not sufficient to account for brain function, because the synapse is dynamic (Tsodyks and Markram, 1997). Therefore, physiological methods were invented. Owing to intracellular recording techniques, synaptic plasticity was better understood, such as the quantal release of neurotransmitters (Fatt and Katz, 1952), central synaptic inhibition (Coombs et al., 1953), short-term synaptic plasticity (Curtis and Eccles, 1960) and spike-timing-dependent plasticity (STDP; Markram and Sakmann, 1995). Neural plasticity also inspired theoretical studies, such as Hebbian cell assembly and learning rule (Hebb, 1949) and the theoretical study of STDP (Abbott and Blum, 1996; Gerstner et al., 1996). Theoretical approach abstracts away detailed biological mechanisms to loosely model neural connectivity by building artificial neural networks. About 75 years ago, the first mathematical model of a simplified neural network appeared (McCulloch and Pitts, 1943), which led to the computational theory of mind and machine learning. This model then evolved into more sophisticated ones, in particular, multilayer perceptrons (Rosenblatt, 1957), recurrent neural networks (Hopfield, 1982) and convolutional neural networks (Cireşan et al., 2011). However, to get deep insights into the detailed neural structures and mechanisms underlying brain function, we still need biologically realistic models.

Although the aforementioned experimental methods are able to trace neuronal connections on the cellular or even molecular scale, these invasive techniques are limited to postmortem brain tissue and experimental animals. To better understand our own brain, would it be possible to trace the neural connections in the living human brain? In the early 1970s, the development of noninvasive neuroimaging techniques, in particular MRI, made it possible to study the structural and functional connectivity of the human brain in vivo (Damadian, 1971; Lauterbur, 1973). Nowadays, human brain atlasing combines MRI with gene expression studies, such as the Allen Human Brain Atlas that comprises a comprehensive “all genes–all structures” array-based dataset (Shen et al., 2012). Nevertheless, generally, MRI methods can only trace neural connections between brain regions usually with millimeter resolution.

Over the past 300 years, connectivity mapping has evolved from gross tracing of major tracts in fixed brains to mapping neuronal projections with cellular and molecular resolution in living tissue, from mapping static neural connectivity to dynamic synaptic plasticity, from postmortem studies to in vivo large-scale mapping of human brain connectivity including structure, function and gene expression. Is it possible to experimentally map all the neural connections of the brain—the “connectome”?



Towards Completeness

Science dreams of completeness. Since the emergence of the term “genome” in 1920 (Winkler, 1920), fostered by technological advances in large-scale, high-throughput research, the “ome” has become a doctrine, aiming to capture all the parts of biological systems and their interactions (Sporns, 2013b). Inspired by the “genome,” the term “connectome” was introduced in 2005, initially referring to a comprehensive structural description of the network of brain elements and connections (Sporns et al., 2005) or the set of all neuronal connections of the brain (Hagmann, 2005). “Connectomics” aims to map the connectome on the macro-, meso-, micro- and nano-scales and to explain its relation to brain functions (Hagmann, 2005; Sporns, 2013a; Swanson and Lichtman, 2016).

The concept of the connectome originated from the long-held belief that neural connections are related to brain functions, as illustrated by tract tracing since the 17th century. This relationship has been further revealed by recent research: at the microscale, synaptic connectivity is linked to neuronal network dynamics (Chambers and MacLean, 2016); at the macroscale, the anatomical connectivity of the brain is related to its functional connectivity and different states (Hermundstad et al., 2014), and the “connectivity fingerprint” of brain regions may predict their specific functional properties (Saygin et al., 2016; Tavor et al., 2016).

Since the function of neural circuits and systems cannot be explained only through wiring diagrams, we also need information such as the types of neurons and synapses, the dynamics of neuronal synchronization, and the role of different types of glial cells and neuromodulators (Sporns, 2013b; Fields et al., 2015). Therefore, the concept of the “connectome” is evolving to include all the structural and functional relationships between different types of neurons, as well as all their connections with their cellular partners in a defined neural region or the whole brain (Marc et al., 2013; Sporns, 2016; Swanson and Lichtman, 2016). Nevertheless, this concept owes its origins to MRI methods, which enable in vivo rapid-throughput mapping of human brain connectivity at the macroscale.


Mapping Long-Range Neural Connections Between Gray Matter Regions

Macroconnectomics aims to map all the neural connections between gray matter regions at millimeter resolution. It is best suited to in vivo human studies with neuroimaging methods, where few of fine-scale methods used in laboratory animals are applicable (Sporns, 2013b; Van Essen, 2013). MRI, the major noninvasive neuroimaging technique for in vivo human connectome mapping, was developed in the early 1970s, first used to diagnose cancer (Damadian, 1971; Weisman et al., 1972; Lauterbur, 1973). Described as “in vivo Brodmann mapping” (Brodmann, 1908; Turner and Geyer, 2014), MRI cerebral cartography has inherited the long tradition of connectivity mapping, established since the 18th century (Vicq-d’Azyr, 1786).

Diffusion MRI (dMRI) is the main MRI method of mapping structural connections of the brain (Glasser and Van Essen, 2011; Craddock et al., 2013). Invented in the 1980s, dMRI uses water diffusion anisotropy along myelinated axons to map large white matter fiber bundles, combined with probabilistic tractography to estimate fiber trajectories (Le Bihan and Breton, 1985; Margulies et al., 2013; Le Bihan and Iima, 2015). About 30 years ago, the first dMRI images of the human brain were obtained at 0.5T, with an in-plane spatial resolution of 1.09 × 1.09 mm (Le Bihan et al., 1986). Since then, the sensitivity to diffusion has augmented about 100 times (McNab et al., 2013). To improve spatial resolution of white matter fiber tracking, ultrahigh field magnetic resonance engineering is a basic solution. MRI for clinical use is usually at 1.5T or 3T, and more recently at 7T. The first human 8T MRI was installed in 1999 (Robitaille et al., 1999), and 18 years later, a human whole-body 11.7T MRI (Quettier et al., 2017). Efforts are underway for human 14–20T MRI (Ekosi 20 Tesla Project, 2018). Human brain in vivo imaging was already performed at 9.4T (Vaughan et al., 2006); rodent brain and human postmortem tissue imaging at 21.1T (Qian et al., 2012). The final resolution also depends on the acquisition and reconstruction of diffusion images. For example, reconstructing nerve fiber orientations, especially in brain regions where fibers of multiple orientations intersect, involves a trade-off between the accuracy of the peak orientation and the sensitivity to crossing fibers and minor fiber bundles (Van Essen et al., 2012; Lowe et al., 2016). Hitherto, the highest resolution for the human brain achieved at 7T is 0.2 mm, owing to motion correction methods (Stucht et al., 2015). However, even this rare performance is not sufficient to study the connections between individual neurons.

Functional MRI (fMRI) is the main MRI method for studying functional connections in the human brain. Developed in the early 1990s, fMRI first used contrast agents administrated intravenously (Belliveau et al., 1991), then exploited correlations in blood oxygen level dependent (BOLD) signals, based on different magnetic susceptibilities of oxygenated and deoxygenated hemoglobin to detect functional correlations between brain regions (Ogawa et al., 1990, 1992; Bandettini et al., 1992; Kwong et al., 1992). Functional MRI includes two main methods: resting-state fMRI (rsfMRI), measuring correlations in spontaneous activity between brain regions in resting subjects, and task-evoked fMRI (tfMRI), trying to detect functionally distinct brain regions during various tasks such as visuomotor or cognitive processes (Glasser et al., 2016). Almost 30 years ago, human fMRI studies were mostly performed at 1.5T with a spatial resolution of 3–4 mm (Bandettini et al., 1992; Kwong et al., 1992). Since then, the spatial resolution of fMRI has been largely improved, such as the achievement of 0.65-mm resolution in the human brain at 7T (Heidemann et al., 2012), but this is still not sufficient to study how individual neurons are connected to generate brain functions. Furthermore, the temporal resolution of fMRI is fundamentally limited by the nature of BOLD signals, which only indirectly reflect neuronal activity. Due to the temporal dynamics of neurovascular coupling, the peak of BOLD response to a neural stimulus occurs with 5–6 s delay (Glover, 2011). Finally, as a result of artifacts and noises, neurobiologically relevant signals represent only ~4% of primary data (Glasser et al., 2013).

Although MRI is a useful tool for studying human brain connectivity in vivo, it offers little data on the connectivity between neurocircuits and between individual neurons that is essential for understanding the mechanisms underlying brain function. Hence the need for meso-, micro- and nano-connectomics.



Mapping Connections Between Neuronal Groups and Between Individual Neurons

Meso- and micro-connectomics aim to map all the connections between different neuronal groups defined by cell types or connectivity patterns and between individual neurons at the micrometer scale. Such studies, using invasive techniques, are limited to experimental animals and postmortem human brain tissue. The first mesoconnectome, capturing cell type-specific connections as well as short- and long-range interregional axonal projections, was achieved in the mouse in 2014, through enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors and high-throughput serial two-photon tomography (Oh et al., 2014).

Single-cell staining is the first and most influential method for studying neural circuits at microscale, established by Golgi and Ramón y Cajal in the late 19th century (Golgi, 1875; Ramón y Cajal, 1888). However, dyes could only be applied to small blocks of tissue, making this method unsuitable for tracing long-distance connections. To resolve this problem, chemical markers were injected into circumscribed neural areas, which, however, could not label selectively different types of neurons (Kristensson, 1970; Kristensson and Olsson, 1971; Cowan et al., 1972; LaVail and LaVail, 1972). This was later remedied by transgenic multicolor labeling strategies such as “Brainbow” (Livet et al., 2007). More recently, non-optical, high-throughput methods were invented, such as Barcoding of Individual Neuronal Connections (BOINC), which barcodes individual neurons and introduces transsynaptic viruses to map synaptic connections, based on high-throughput DNA sequencing (Zador et al., 2012). Nevertheless, due to several factors, connectivity reconstructed by this method is difficult to interpret as neuronal connectivity with single-synapse precision (Oyibo et al., 2018).

Light microscopy was, at the origin of the history of neuroscience, the major tool for elucidating the problem of intra-/inter-neuronal and interregional connectivity in the brain. However, conventional light microscopes cannot resolve neural structures smaller than ~0.25 μm, due to the diffraction barrier identified almost 150 years ago (Abbe, 1873). This barrier was finally broken by super-resolution microscopy developed in the late 20th century, which can routinely resolve a few tens of nanometers, such as stimulated emission-depletion (STED) microscope (Hell and Wichmann, 1994), structured illumination microscopy (SIM; Gustafsson, 2000) and photoactivated localization microscopy (PALM; Betzig et al., 2006). Yet, even so, major challenges still lie ahead, in particular, mapping connections in small neural areas where many cells are targeted at the same time and where the connection density is high (Lichtman et al., 2008). This may require a resolution of a few nanometers (Huang et al., 2010). How to map neuronal connections at this scale?



Mapping Neural Connections at Individual Synapses and Gap Junctions

Nanoconnectomics uses EM, the only method capable of identifying unequivocally synapses and gap junctions at nanometer or even sub-nanometer resolution. EM provides high-resolution validation of macro-, meso- and micro-connectomes.

The first electron microscope, a transmission electron microscope (TEM), was built in 1931, only capable of 14.4× magnification (Ruska, 1993). However, 2 years later, the resolving power of the TEM (12,000×) surpassed already the resolution limit of light microscopy at that time (Ruska, 1993). Another major type of EM is scanning electron microscopy (SEM), introduced in 1937 (von Ardenne, 1937), capable of sub-nanometer resolution (Masters et al., 2015). TEM remains to date the highest resolution technology able to validate specific gap junctions and small synapses requiring, for example, 0.3 nm resolution (Marc et al., 2013). Recently, using the aberration correction technique, scanning TEM (STEM) has even achieved a sub-ångström resolution of 45 pm (Sawada et al., 2015).

However, EM methods are extremely time-consuming and labor-intensive, so currently limited to very small postmortem specimens. The first and the only almost complete nanoconnectome, that of Caenorhabditis elegans hermaphrodite, whose nervous system has in total 302 neurons, was achieved in 1986 with serial-section TEM, containing about 5,000 chemical synapses, 2,000 neuromuscular junctions and 600 gap junctions (White et al., 1986). Today, studies continue to fill the gaps in this original connectome and to address further questions such as the nature of individuality and how genetic and environmental factors regulate connectivity (Mulcahy et al., 2018).

The goal of connectomics is to experimentally map a full connectome of the mammalian brain, and ultimately the human brain. Is this achievable?




Metaphor and Myth


What About Biological Reality?

Although MRI methods are capable of large-scale, rapid-throughput mapping of human brain connectivity at macroscale, MRI-derived macroconnectomes result from data reduction, simplification and assumptions, and they do not necessarily reflect the actual structure and function of the brain. They are even described as “metaphors” or “caricatures” (Catani et al., 2013; Margulies et al., 2013).

MRI methods suffer from low spatial resolution. The isotropic voxel size often used is 2 mm (dMRI) or 3 mm (rsfMRI) at 3T and 1–2 mm at 7T. However, the human cerebral cortex contains on average 40,000 neurons and 3 × 108 synapses/mm, and the white matter contains ~300,000 axons/mm2 (Van Essen et al., 2012).

The fundamental concept of dMRI consists in using water molecules to probe neural tissue structure (Le Bihan and Johansen-Berg, 2012). However, the basic mechanism underlying water diffusion in neural tissue, especially the role of cell membranes in modulating water diffusion, remains to be clarified, hence the fundamental limitation of the sensitivity of dMRI resides in the complexity of water diffusion in the microenvironment of the brain (Van Essen et al., 2014; Le Bihan and Iima, 2015). MRI tractography is indirect and probabilistic: it reconstructs neuronal connections by estimating the “most likely” fiber orientations at every voxel, which may contain tens of thousands of diverging axons; it produces more invalid than valid bundles (Margulies et al., 2013; Maier-Hein et al., 2017). MRI tractography is also biased towards some brain regions, such as the famous “gyral bias,” induced by current fiber tracking algorithms which tend to track towards gyral crowns rather than the walls of sulci or the sulcal fundi (Van Essen et al., 2014; Schilling et al., 2018). The signal-to-noise ratio (SNR) in subcortical regions is usually weaker than in cortical regions, mainly due to their buried location relative to the head coil (Uğurbil et al., 2013). Data processing introduces artifacts and distortions that are difficult to distinguish from actual neural connections (Jones et al., 2013).

The sensitivity of fMRI is affected by the fundamental problem of neurovascular coupling. BOLD signals reflect a complex combination of vascular system dynamics as well as the activity of neurons, astrocytes (Iadecola and Nedergaard, 2007), interneurons (Cauli et al., 2004), pericytes (Hall et al., 2014), vascular endothelium (Hillman, 2014) and smooth muscle cells (Cipolla, 2009). However, the way all these elements contribute to fMRI signals still remains to be clarified. Furthermore, fMRI detects only functional correlations between brain regions, and most functional connections show significant temporal fluctuations depending on measurement and analysis methods—they do not necessarily reflect the causal relationships between neural connections (Friston, 2011). This means that the interpretation of results is often doubtful.

From this point of view, current macroconnectome maps do not offer an actual image of the brain. Reproducibility is also a major concern for MRI studies (Zuo et al., 2014).



Volume, Time and Dynamics

The major challenge for micro- and nano-connectomics is the huge number of neurons in the human brain: ~86 billion (Herculano-Houzel, 2012). With current techniques, it would take ~10 million years to map all the synapses in a single human brain (Morgan and Lichtman, 2013). Moreover, the reconstruction of a complete nanoconnectome would only be possible in some invertebrates or simple nervous systems, because the magnification required to visualize synapses produces very small images of tens of μm2 (DeFelipe, 2015).

The storage and processing of gigantic volumes of data are problematic (Schreiner et al., 2017). The first fairly complete reconstruction of the C. elegans nanoconnectome required ~10,000 EM images (White et al., 1986). Recent local circuit mapping by EM has high data output rates of gigabytes per minute (Helmstaedter and Mitra, 2012). At synaptic resolution, a human brain may require ~2 million petabytes (Swanson and Lichtman, 2016). And this is just for the anatomical data, but what if we include the electrophysiological, biophysical and biochemical counterparts?

Although section preparation automation techniques such as SBF (serial block-face) SEM (Denk and Horstmann, 2004) and ATUM (automated tape ultramicrotomy) SEM (Schalek et al., 2011) were invented and data acquisition has been accelerated through parallel image processing (Eberle et al., 2015), the automation of large-scale image segmentation and reconstruction remains the fundamental bottleneck for EM. Methods such as machine learning and crowdsourcing are gradually reducing the problem (Kim et al., 2014; Greene et al., 2016; Staffler et al., 2017), but no existing computational segmentation algorithm is accurate enough to completely replace human annotators. A recent reconstruction of the nanoconnectome of 950 neurons in the mouse retina took ~30,000 h (Helmstaedter et al., 2013). At current speeds, the complete reconstruction of the nanoconnectome of the human brain may require ~14G person-years (Plaza et al., 2014).

Therefore, it seems impossible that we will ever resolve the full micro- or nano-connectome of any mammal by only relying on experimental methods (Schröter et al., 2017), which in the opinion of many researchers, is nothing more than a myth (Catani et al., 2013). Moreover, the very concept of “full” connectome mapping is problematic: (1) due to connectivity deduction from primary experimental data, individual variability and the parallel application of multiple imaging, reconstruction and analysis methods, any unified map would be based on probabilistic representations of connectivity data (Sporns, 2013b); (2) all the molecular and cellular components of the nervous system are constantly resynthesized or replaced; development involves changes in myelination and the number of neurons; synaptic connections are subject to continuous rewiring and changes in strength and dynamics driven by experiences (Markram and Tsodyks, 1996; Holtmaat and Svoboda, 2009; Bennett et al., 2018; Roelfsema and Holtmaat, 2018). Therefore, any connectome map represents only a snapshot of the dynamic brain; and (3) neurons can rapidly change their functional roles in response to chemical signals such as peptides, hormones or neuromodulators, all with no visible modification to the connectivity diagram, and each wiring diagram can encode many possible circuit outcomes (Bargmann and Marder, 2013).

However, if we want to understand the neural mechanisms underlying brain function, we have to identify their constituent neural connections from the molecular and cellular levels to the whole brain. Facing the “metaphor” of macro-connectomics and the “myth” of micro- and nano-connectomics, how can we overcome the barriers of scale and complexity to reconstruct the neural connections that give rise to brain function?





FUNCTIONAL MAPPING: FROM CRANIAL BUMPS TOWARDS NEURAL MECHANISMS


Feeling the Bumps of the Skull

What is the link between verbal memory and bulging eyes, the cerebellum and sexuality? About 200 years ago, early attempts to localize brain functions and behaviors in cerebral structures began with Franz Gall’s phrenology (Gall and Spurzheim, 1810). The brain was considered to be composed of different “organs,” each with its own function, and the size of cortical organs depended on the development of mental faculties, reflected through cranial bumps. Gall noticed that individuals with a retentive verbal memory had bulging eyes and that several cases of aphasia were caused by the damage to the frontal lobe. Therefore, he localized verbal memory in the frontal lobes, assuming that the super development of these lobes pushed out the eyes. Feeling the burning nape of a nymphomaniac widow, he considered the cerebellum to be the organ of the sexual instinct (Gall et al., 1838). Although phrenology was based on such false assumptions, it drove the functional mapping of the brain. After all, Gall was not completely wrong with the relation between brain structure and function, which has been partly supported by some modern studies, in particular, the famous MRI study showing that London taxi drivers have larger posterior hippocampi (Maguire et al., 2000).

To surpass the simplistic correlation between cranial bumps and mental faculties, functional mapping further developed in cytoarchitectonics and myeloarchitectonics to build maps of cerebral regions according to their structure and inferred function. Motor function was one of the first functions to be located in the brain, owing to the identification of the giant pyramidal cells (Meynert, 1867; Betz, 1874; Lewis, 1878; Campbell, 1903). Cécile and Oskar Vogt mapped 200 structural and functional areas in the monkey cortex, using myelin-stained histological sections (Vogt and Vogt, 1903). Five years later, Brodmann (1908) distinguished 43 cytoarchitectonic areas in the human cortex, using cell body-stained histological sections, and assigned to each of them a function. Although today Brodmann’s map is still largely used to localize neuroimaging data (Turner and Geyer, 2014), it does not match recent anatomical and functional data in many brain regions, and the mosaic-like segregation of the cerebral cortex is far from reflecting its heterogeneous structure (Amunts and Zilles, 2015).

Methods in cytoarchitectonics and myeloarchitectonics mapped brain functions to brain areas mainly by inference. To relate directly behaviors to brain regions, clinicopathological correlation was one of the first methods developed in the history of functional mapping. The faculty of speech was located in the anterior lobes, the lesions to which led frequently to the loss of speech (Bouillaud, 1825; Broca, 1861). Motor centers were located in the region of the middle cerebral artery through the observation of “Jacksonian seizures” with unilateral convulsions (Jackson, 1870). These early studies suggested that the brain consisted of specific, circumscribed, yet interconnected functional areas, the disconnection of which caused neurological disorders. This led to the concept of disconnection syndromes, caused by the destruction of either the centers of convergence where crucial associations were formed or the conduction pathways transmitting information between these centers (Wernicke, 1874; Dejerine, 1892). The concept of disconnection syndromes was further developed in the 1960s: the studies of split-brain patients revealed the topographic organization and functional specificity of the corpus callosum (Gazzaniga et al., 1962), and neo-associationism reinterpreted apraxia, amnesia, agnosia and hemispatial neglect (Geschwind, 1965a,b). However, the phenomenon of “diaschisis” questioned localization of brain functions: the destruction of a cortical area could produce transient symptoms in other distant areas, which showed that immediate symptoms were not a reliable guide to the function of a destroyed cortical area (von Monakow, 1914). This was one strong argument held by holists. They considered that brain functions were distributed continuously throughout the brain: stimulation of a single point in the nervous system stimulated the whole system; a weakened point weakened the whole system (Flourens, 1842). In the late 20th century, brain functions and dysfunctions were further investigated in vivo in human subjects with neuroimaging techniques, in particular positron emission tomography (PET) and fMRI (Frackowiak, 1986, 1994). Today, the relationship between segregation and integration, localized and distributed aspects of brain functions still poses a major challenge to neuroscience (Cauda et al., 2014; Sporns, 2014), and new approaches are mandatory (Frackowiak and Markram, 2015).

To directly test the function of brain regions, experimental methods, in particular, electrical stimulation and ablation techniques were developed. Through electrical stimulation that induced motor responses, the motor centers were first mapped in the dog cerebral cortex (Hitzig and Fritsch, 1870), then in a patient with a cranial malformation exposing parts of both cerebral hemispheres (Bartholow, 1874). These results were demonstrated by destructing the motor centers in the monkey brain, which caused motor paralysis totally dissociated from sensory paralysis (Ferrier, 1875). However, the localization of the motor centers was questioned by the “functional instability” of the motor cortex, revealed by stimulating repetitively the same point in the motor cortex (Brown et al., 1912), which suggested that the motor cortex was a changing organ. The famous “sensory and motor homunculi” were built through electrical stimulation of the cerebral cortex in conscious patients undergoing surgery for epilepsy (Penfield and Boldrey, 1937). Owing to ablation techniques, vision was located in the occipital lobe and auditory function in the temporal lobe (Panizza, 1855; Munk, 1890). And ablation of the frontal lobe in monkey was found to disintegrate the personality and to destroy the ability to classify and synthesize groups of representations (Bianchi, 1920). However, these experimental methods suffered from low resolution and lacked specificity.

With the development of single-cell recording techniques, in particular tungsten microelectrodes invented in the 1950s (Hubel, 1957), specific brain functions were localized in certain populations of cells, such as “complex cells” in the visual cortex with specific oriented receptive fields (Hubel and Wiesel, 1962), “place cells” in the hippocampus that respond to stimuli in specific spatial locations (O’Keefe and Dostrovsky, 1971), “face cells” in the superior temporal sulcus that respond selectively to faces (Desimone et al., 1984), and “mirror neurons” in the rostral part of the inferior premotor cortex that become active not only during the execution but also during the observation of specific movements (di Pellegrino et al., 1992). During the same period, theoretical neuroscience explored brain functions through mathematical modeling, such as Marr’s famous models of visual processing widely adopted in computer vision (Marr, 1982). Nevertheless, both of these approaches could not resolve how different types of brain cells and circuits interact together to generate the full array of diverse brain functions.

Over the past 200 years, functional mapping has developed from correlation-based methods to experimental perturbation of brain activity; from observing correlations between cranial bumps and behavioral stereotypes, cyto-/myelo-architectures and brain functions, brain lesions and behavioral deficits, to relating brain regions to behavioral outputs through electrical stimulation or ablation techniques; from localization of brain functions in brain regions to those in specific populations of cells. Functional mapping is evolving towards causally linking brain structure to function with high resolution and specificity. How does modern neuroscience face this major challenge?



Recording and Manipulating Neural Activity

Current correlation-based methods are particularly represented by fMRI studies that detect the similarity of regional activation profiles reflected indirectly in BOLD signals to extract patterns of correlation or covariance and to infer functional connectivity between brain regions. Trying to correlate neural connections and brain regions to pre-defined behavioral categories, this approach is described by some researchers as “neophrenology” (Miller, 2008). The biophysics of how BOLD signals relate to underlying neural activity remains an unsolved question and represents a fundamental limitation of fMRI studies (Hillman, 2014; Gao et al., 2017). Since correlation-based methods deliver non-causal similarity-based metrics of statistical dependence (Bassett and Sporns, 2017), other methods are used to unravel the causal relationship between neural activity and brain function, in particular recording and manipulating neural activity and observing the behavioral outputs.

About 150 years ago, resting and action potentials were first recorded from frog sciatic nerves with a differential rheotome (Bernstein, 1868). Almost 80 years ago, the first intracellular recording of individual neurons was achieved in the squid giant axon with glass microelectrodes (Hodgkin and Huxley, 1939). Ten years later, voltage clamp was developed, and patch clamp in the 1970s (Cole, 1949; Marmont, 1949; Neher and Sakmann, 1976). About 60 years ago, implantable microelectrodes were developed to record from single neurons in a freely behaving ground squirrel during 4 days (Strumwasser, 1958). Nowadays, penetrating multi-electrode arrays (MEAs) can record from individual neurons simultaneously at multiple sites to study distributed neural circuits (Gehring et al., 2015; Maccione et al., 2015), and mesh nanoelectronics, which are tissue-like electronics consisting of a macroporous mesh structure with addressable electronic devices, have achieved stable single-neuron level chronic recording and stimulation in freely behaving animals for at least 8 months (Fu et al., 2016). Yet, even so, the huge number of neurons and the complexity of neural interactions preclude the high-density parallel recordings of the whole mammalian brain.

Almost 230 years ago, experimental manipulation of neural activity began with electrical stimulation of nerves. The first electrophysiological experiments were achieved in frog neuromuscular preparations through electrical stimulation of sciatic nerves by using electric machine or atmospheric electricity during lightening (Galvani, 1791). Electrical stimulation provides high temporal resolution and can be used in humans to modulate neural activity, such as deep brain stimulation, introduced in clinical practice in the 1950s to treat psychiatric disorders such as schizophrenia (Delgado et al., 1952) and neurological disorders such as Parkinson’s disease (Benabid et al., 1987). Multi-electrode arrays were developed in the 1950s to record and manipulate neural activity in living laboratory animals (Strumwasser, 1958) and are evolving towards chronic, large-scale recording and stimulation at the single-neuron level in freely behaving animals (Fu et al., 2016). Optogenetics, developed in the early 21st century, has been generalized during the last decade to test and generate hypotheses on brain function in non-human neuroscience, using genetically encoded light-activated proteins to manipulate cell activity with cell type-specific and high temporal resolution (Zemelman et al., 2002; Boyden et al., 2005; Lima and Miesenböck, 2005). Nevertheless, it is extremely challenging to control separately all of the cells in the mammalian brain with high spatiotemporal resolution during behavior, particularly due to light scattering and power deposition requirements (Deisseroth, 2015).

Noninvasive approaches such as EEG and MEG are suitable for human studies and long-term monitoring of brain activity, but their low spatial resolution precludes studies at the cellular level (Babiloni et al., 2009; Wendel et al., 2009). Efforts are underway to measure at the cellular level brain activity in persons carrying recording or stimulation electrodes or neurotechnological devices for therapeutic applications or experimental studies, such as deep brain stimulation and brain-machine interface (Moran, 2010; Lozano and Lipsman, 2013). However, these studies are not scalable to large-scale monitoring. Noninvasive stimulation techniques for human studies usually activate brain areas on a centimeter scale, such as transcranial magnetic stimulation, introduced in 1985 to stimulate the human motor cortex for neurological examination (Barker et al., 1985). These techniques lack accuracy and specificity.

Over the past 200 years, experimental studies trying to unravel the causal relationship between neural activity and behavior have evolved from recording and stimulating nerves in frog neuromuscular preparations to chronic monitoring and manipulation of individual neurons in freely behaving animals, from electrical stimulation and ablation techniques to optogenetic manipulation with cell type-specific and high temporal resolution, from univariate correlation between brain regions and behavioral stereotypes to large-scale multivariate monitoring and manipulation of neural circuits, with the ultimate goal of producing a dense functional map of the dynamic brain (Insel et al., 2013).

However, to demonstrate the causal relationship between neural activity and brain function, dense functional mapping requires in principle a comprehensive map of the connectome and the parallel recording from the interacting molecules, cells, circuits and areas throughout the brain. Even with technological advances, dense functional mapping of the whole brain is extremely challenging and thus considered by many researchers to be science fiction (Shen, 2013). How can we overcome this challenge to identify all the molecular and cellular mechanisms underlying brain function and behavior?



Identifying the Molecular and Cellular Mechanisms Underlying Brain Function and Behavior

Quantifying behavior is a major challenge to studies that aim to identify the neural correlates of pre-defined classes of behavioral stereotypes, from the movement of a limb to decision making and emotions (Blakemore and Robbins, 2012; Koelsch, 2014; Uhlmann et al., 2017), based on psychological taxonomy or descriptive representations of observable behavioral outputs which are individual- and context-dependent. In these kinds of studies, behaviors are classified into schemes that are either coarse-grained or intuitively defined and biased by human observers’ assumptions (Berman, 2018). Such behavior classifications do not necessarily correspond to inherent behavior structure constrained by biophysics and neural activity, and they preclude the identification of intrinsic neural mechanisms that give rise to behavior—the output of the functioning brain as an integrated system.

Automated behavior quantification and classification using techniques such as machine vision and learning to extract representations of stereotyped behaviors are the first steps towards objectivity and consistency in behavior classification and have the potential to reveal behavioral patterns overlooked by human observers, although these approaches are still based on assumptions and biased (Hong et al., 2015; Robie et al., 2017; Todd et al., 2017; Berman, 2018).

Dense functional mapping is producing huge amounts of data, ranging from molecular and cellular interactions to the connectivity between brain regions and behavioral outputs. Network-based approaches propose to analyze these big, complex data and to model brain networks with theoretical and computational methods such as graph theory and algebraic topology, through statistical inference and dimensionality reduction (Bassett and Sporns, 2017). Although these approaches have the potential to uncover structural and functional features of brain activity, they are subject to methodological and interpretational limitations that result from uncertainties in data acquisition and network definition, thus requiring sophisticated, neurobiologically based brain models down to the molecular scale to reveal the mechanisms underlying brain function and behavior (Sporns, 2014; Medaglia et al., 2015; Bassett and Sporns, 2017).

Organism-level behavior emerges from the interaction of structural connectivity and signaling processes at the molecular, cellular and circuit levels, involving the dynamic activity of huge numbers of molecules and cells as well as multiple physiological and biochemical systems. It is the output of the functioning brain as an integrated system. How can we avoid assumptions in behavior classification that bias our research on the causal relationship between brain structure and function? How can we overcome the barriers of scale and complexity to trace the causal chains of events leading from molecular and cellular mechanisms to brain function and behavior?




SIMULATION NEUROSCIENCE: FROM THE SQUID GIANT AXON TO THE HUMAN BRAIN

Over past millennia, brain research has evolved through philosophical, experimental and theoretical phases, all of which have contributed to the development of modern neuroscience. Great achievements have been realized in neuronal mapping, connectivity mapping and functional mapping, but these endeavors are hindered by the barriers of scale and complexity. How can we scale up cellular phenotyping and deal with the dynamics of cellular properties to achieve a reliable neuronal cell-type classification? How can we rise to the challenge of volume, time and dynamics in full connectome mapping? How can we identify the molecular and cellular mechanisms that give rise to brain function and behavior? To overcome these fundamental barriers, brain research has to shift to a new phase.

Simulation neuroscience aims to fill the gaps in our knowledge of brain structure and function through building a digital copy of the brain with predictive methods, by combining experimental and theoretical approaches (Markram, 2006; Markram et al., 2015; Figure 3). It has the potential to overcome the challenge of scale and complexity. The following pages are aimed at exploring the historical roots of this endeavor by identifying the major milestones that are the most related to it and that are capable of characterizing it in a concise way, instead of conducting an exhaustive survey of all the investigators whose important work has contributed to the evolution of modeling and simulation in neuroscience.
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FIGURE 3. Simulation neuroscience workflow.




All Began With an Axon

Neuroscience originated in a nerve, while detailed simulation in neuroscience began with an axon.

Action potentials were already measured in frog nerve-muscle preparations more than 170 years ago (du Bois-Reymond, 1843), but how is the action potential generated? Although a mathematical model of nerve excitability, the “integrate and fire” model, was built in the early 20th century, based on data obtained from frog nerve stimulation, it was a simple capacitor circuit model (Lapicque, 1907). Since the first measurement of action potentials, the molecular mechanisms of action potential generation had remained an open question over the following 100 years.

More than 60 years ago, two neuroscientists managed to insert voltage clamp electrodes into a squid giant axon and measured the flow of electric current through its surface membrane (Hodgkin and Huxley, 1952). On the basis of their experimental data and inspired by cable theory rooted in the 19th-century model of signaling through submarine telegraph cables (Thomson, 1857), they built a mathematical model of ionic currents to quantitatively account for conduction and excitation and simulated the action potential on the Cambridge University computer. Simulations showed how potassium and sodium ion channels could generate the action potential and predicted the electrical behavior of the axon consistent with experimental data. This was the first detailed digital simulation of a physiological property of a neuron.

Cable theory was further developed to take account of dendritic branching that largely affects neuronal processing. This endeavor gave birth to the first multicompartment dendritic neuron model, based on anatomical and electrophysiological data and simulated on an IBM 650 computer (Rall, 1959, 1962; Segev and Rall, 1998), which was further developed in the following years to unravel the role of dendrites in information transmission (Segev and London, 2000). Single neuron models then evolved into neurocircuit models to study the activity of neuronal populations and synaptic connectivity. The pioneering studies consisted in reconstructions of field potentials and dendrodendritic synaptic circuits in the olfactory bulb for interpreting their underlying mechanisms, based on known anatomical organization and nerve membrane properties and simulated on Honeywell 800 and IBM 370/168 computers (Rall and Shepherd, 1968; Shepherd and Brayton, 1979).

The development of supercomputers in the 1980s drove large-scale simulation of detailed neuron networks, which made it possible to study collective neuronal activities and the neural mechanisms underlying certain brain functions. In 1982, a network model of 100 multicompartment hippocampal neurons, each capable of intrinsic bursting and interconnected by excitatory chemical synapses, was simulated on an IBM 370/168 to reproduce field potentials and intracellular recordings during interictal spikes in epilepsy and to identify the mechanisms underlying this form of neuronal synchronization (Traub and Wong, 1982; IBM Archives, 2003). Six years later, a network of 990 multicompartment hippocampal neurons with different types of cellular interactions was simulated on an IBM 3090 to analyze in particular the mechanisms regulating neuronal synchronization in epilepsy (Traub et al., 1988). At the same time, began the early efforts to simulate neurocircuitry underlying vertebrate behavior, in particular simulation of a segmental network of inhibitory and excitatory interneurons underlying locomotor behavior in lamprey, using Rall neuron models with one soma and a three-compartment dendritic tree, which unraveled the cellular bases of segmental pattern generation, including central and sensory mechanisms and the immediate supraspinal mechanisms initiating locomotion (Grillner et al., 1988, 1991).

In the early 1990s, the simulator “NEURON” was developed for empirically based simulations of single and networks of neurons with complex anatomical and biophysical properties, such as complex branching morphology, multiple channel types, inhomogeneous channel distribution, ionic diffusion and the effects of second messengers (Hines, 1989, 1993). During the same period, was released the GEneral NEural SImulation System (GENESIS), a simulation environment for constructing realistic models of neurobiological systems from subcellular processes and individual neurons to networks of neurons and neuronal systems (Wilson et al., 1989; Bower et al., 2013). In the following years, simulators such as MCell and STEPS were developed to simulate biochemical signaling pathways at the molecular scale (Stiles et al., 1996; Hepburn et al., 2012). As detailed models of neural systems have become more and more sophisticated, efforts are underway to develop a language that provides a common data format for defining and exchanging descriptions of these detailed models, such as the NeuroML project which aims to develop an eXtensible Markup Language (XML) based description language (Goddard et al., 2001).

In parallel with the development of simulators, large-scale simulations continued to grow. A single-column thalamocortical network model with 3,560 multicompartment neurons, including seven cell types characterized by different types of morphology, connectivity and electrical behavior, was simulated on a Linux cluster (IBM e1350) to particularly address the physiology of network oscillations and epileptogenesis (Traub et al., 2005). Although the model exhibited gamma oscillations, sleep spindles and epileptogenic bursts, it was insufficient to describe other neuronal network behaviors, particularly due to the omission of many cell types, many unknown structural details, the absence of synaptic plasticity and the restriction of the model to a single column. In the modelers’ view, their work represented an extremely preliminary step towards understanding subtle aspects of brain function, such as learning or information processing, and they hoped for more detailed models to study a broader range of network phenomena. They considered that detailed modeling of extensive brain circuits was necessary for understanding brain function and for making important experimental predictions that would not have been made without the model.

These previous endeavors mainly aimed to build models to reproduce certain brain functions or dysfunctions, such as action potential generation or neuronal synchronization in epilepsy. However, to trace the causal chains of events leading from molecular and cellular mechanisms to diverse brain functions and behaviors, biologically realistic dense reconstructions of the brain realized without the goal of fitting the model to any specific function (if reconstructions are correct, functions should arise naturally) are demanded. This need led to the birth of simulation neuroscience in the early 21st century (Markram, 2006). Since then, digital reconstructions have increased in size and biological accuracy to unravel deeper mechanisms underlying brain function. To date, the most detailed reconstruction concerns the microcircuitry of rat somatosensory cortex, containing ~31,000 multicompartmental conductance-based neuron models, including 55 layer-specific morphological and 207 morphoelectrical subtypes, and simulated on supercomputers such as the Blue Brain IV, ranked the 100th most powerful supercomputing system (Top500, June 2015). This digital reconstruction is able to generate emergent network activity and to reproduce an array of in vitro and in vivo experiments without parameter tuning, and it enables experiments so far impossible either in vitro or in vivo (Markram et al., 2015).

Since its origin, detailed simulation in neuroscience has evolved from a single cell type to more than 200 cell types characterized by morphological and physiological features, from one type of synaptic connectivity to the predicted anatomical and physiological properties of all the intrinsic synapses formed onto and by any neuron, from specific models aimed at reproducing certain forms of neuronal activity to generic dense reconstructions of brain regions with various neuronal activity patterns and emergent network behaviors, from an action potential generated through a squid giant axon to diverse network behaviors of rat neocortical microcircuitry with 31,000 neurons connected through 36 million synapses. A large body of disconnected experimental datasets and knowledge accumulated since the origin of neuroscience have been integrated into a unified digital copy of neocortical microcircuitry, allowing deeper insights into the neural mechanisms underlying brain function. Efforts are underway to reconstruct more electrophysiological and biochemical mechanisms and to simulate the human brain.



Transcending Scale and Complexity

Simulation neuroscience identifies strategic data and formulates principles of brain structure and function to accelerate our understanding of the brain, instead of experimentally mapping all the elements and activities in the brain, which is impossible to achieve due to their scale and complexity (Markram, 2006; Markram et al., 2015; Figure 4).
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FIGURE 4. Transcending scale and complexity.




Neuronal Reconstruction and Simulation

Reconstructions of single neurons are the building blocks of the digital brain. In the early years of simulation in neuroscience, some researchers were aware of the importance of describing the detailed structure of neurons to simulate the voltage response to inputs impinging on the cell in different locations and interactions between cells generated by extracellular current flows. They were also aware of the importance of reconstructing the diverse types of electrical behavior of neurons. Therefore, they argued against using point neuron models (Traub et al., 1988). Nevertheless, at this stage, the endeavor to digitally reconstruct the morphological and physiological types of neurons was limited in scale and accuracy, so new approaches were to be developed.

Historically, neuronal morphologies were first qualitatively described through visual inspection, then quantitatively described based on morphometric parameters. Since these methods are not standardized to objectively describe complex branching patterns of neuronal trees, topological methods have been developed in simulation neuroscience to rigorously quantify the structural differences of neuronal trees and to classify neurons into distinct morphological types by encoding the spatial structure of each neuronal tree with a unique topological signature (Kanari et al., 2018). Then cloning each morphological type with statistical variations allows scaling up the reconstruction of neurons belonging to each morphological type while respecting biological variability.

Automated statistical analysis can reveal distinctive electrical types; computational multi-parametric approach can extract combinatorial expression rules of ion channel genes underlying electrical phenotypes; ion channels can be automatically inserted by simulators combined with an automated fitting algorithm. These methods developed in simulation neuroscience allow objective and high-throughput reconstruction of electrical types (Khazen et al., 2012; Druckmann et al., 2013; Markram et al., 2015).

The high-throughput digital reconstruction of different types of neurons can be extended from morphological and electrophysiological features to other dimensions such as projection and molecular features when sufficient data that allow quantifying these features become available. Furthermore, the structure and function of brain cells vary according to their position in the brain; this should be considered while reconstructing different classes of brain cells. To support this endeavor, whole-brain cell atlases are being built, providing insights into cellular organization only possible at the whole-brain scale. The first dynamic 3D cell atlas for the whole mouse brain has recently been achieved, showing cell positions constructed algorithmically from whole brain Nissl and gene expression stains, and providing the densities and positions of all excitatory and inhibitory neurons, astrocytes, oligodendrocytes and microglia in each of the 737 brain regions defined in the Allen Mouse Brain Atlas (Erö et al., 2018).

During the evolution of simulation neuroscience, the digital reconstruction of different types of neurons has become more and more multi-constrained, realistic and high-throughput, and it allows evolving current neuronal classifications (Deitcher et al., 2017). Today, we have objective classification of morphologies which is helping define morphological types; we have more or less agreed electrical protocols that can be used to describe electrical types; we have tracing studies that are helping define the projection types, and we have single cell transcriptome data that are beginning to describe the genetically different types of cells. Efforts are underway to define a minimum sample size capable of reliably revealing distinct types of brain cells, to reduce dimensionality by defining a relevant level of granularity and to identify permanent molecular features that maintain cell identity—a step forward towards an objective and comprehensive classification of neuronal types.



Connectivity Reconstruction and Simulation

More than 100 years ago, Santiago Ramón y Cajal initiated predictive reconstruction by inferring neuronal connectivity from morphological features of neuronal arbors (Ramón y Cajal, 1894). About 80 years later, trying to digitally reconstruct neuronal circuits, some researchers considered pointless to explicitly specify all the neuronal connections, which is unattainable experimentally (Traub et al., 1988). They chose to reconstruct neuronal connections by a series of random choices, based on the statistical properties of the network topology, such as the average number of inputs or outputs per cell and the probability of connection between pairs of cells.

New approaches based on statistical modeling and synaptic rules have been developed in simulation neuroscience to accurately predict synaptic connectivity (Perin et al., 2011; Hill et al., 2012; Ramaswamy et al., 2012), in particular data-driven algorithmic approaches based on established principles of synaptic connectivity and constrained by interdependencies between microcircuit properties such as the number of synapses and bouton densities. With these approaches, it is possible to predict the number and location of all synaptic connection types shown experimentally and connection properties impossible to measure experimentally such as the number of source and target cells and synapses (Markram et al., 2015; Reimann et al., 2015). The physiology of synapses can be predicted by formulating rules of synaptic types based on experimental data to generate a relatively complete map of synaptic dynamics (Markram et al., 2015). Synaptic plasticity rules can also be formulated (Kalisman et al., 2005; Loebel et al., 2013). In this way, it is possible to predict the anatomical and physiological properties of all the intrinsic synapses formed onto and by any neuron. These predictions combined with future experiments could be used to further refine connectivity reconstruction and simulation.



Functional Reconstruction and Simulation

More than 60 years ago, Hodgkin and Huxley’s reconstruction and simulation of the action potential predicted the properties of the gating structures of ion channels (Hodgkin and Huxley, 1952), showing the power of simulation in neuroscience to unravel biological mechanisms long before their experimental observations. Since the birth of simulation neuroscience, digital reconstructions and simulations have been used to fill the vast gaps in our data, to interpret experimental observations and identify the underlying mechanisms, and to test and generate theories about brain function and dysfunction (Markram, 2006; D’Angelo, 2014; Frackowiak and Markram, 2015).

To identify neural mechanisms that give rise to emergent complex behavior, reconstructing and simulating neurons embedded in microcircuits, microcircuits embedded in brain regions and brain regions embedded in the whole brain is an approach consistent with the biological reality that organism-level behavior is the output of the functioning brain as an integrated system, from molecular and cellular interactions to connections between neurocircuits and between brain regions. Neurorobotics, combined with digital reconstructions, creates new possibilities for studying neural mechanisms leading to emergent behavior across different spatiotemporal scales (Falotico et al., 2017).

The deep relationship between structure and function that guided the first investigators at the origin of neuroscience is the foundation of simulation neuroscience. Recent digital reconstructions and simulations of rat neocortical microcircuitry could reproduce the spatial mode and the temporal dynamics of empirically observed functional networks without parameter tuning and showed emergent network states modulated by physiological mechanisms (Markram et al., 2015). In the same reconstructions, a new algebraic topology approach revealed that synaptic networks contain an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity, showing a formal link between neural network structure and function (Reimann et al., 2017b). Our understanding of brain structure and function is being deepened through building a digital copy of the brain.



Perspectives and Challenges

The dense digital reconstruction of the brain from sparse, complementary datasets by predicting biological parameters that are not available experimentally involves dealing with the relationships between known and unknown parameters, deriving principles from experimental data, and reducing biological complexity while preserving the principles of brain structure and function.

Initial digital reconstructions need to integrate more types of neural mechanisms and signaling systems, such as neuro-glio-vascular unit and neuromodulation (Jolivet et al., 2015; Ramaswamy and Markram, 2018). They will be challenged and refined by new experimental observations. As more types of datasets and parameters are to be integrated, more relevant biological principles have to be derived, and programming complexity will largely increase. Efficient computational methods have to be developed to satisfy the requirements of this nascent science in rapid evolution. Simulation neuroscience is rising to these challenges and constitutes an essential phase of brain research towards transcending scale and complexity to causally link molecules, genes and cells to brain function and behavior.




The Next Phase of Brain Research

Simulation neuroscience is an efficient approach to integrating disconnected datasets and knowledge in neuroscience that have been accumulated over hundreds of years. The extraction of the rules of the relationships between datasets that concern different levels of brain organization helps to build an integrated view of brain structure and function (Tiesinga et al., 2015). Through digital reconstructions and simulations, researchers can conduct in silico experiments, improve experimental methods, test and generate hypotheses and theories, make predictions and suggest new experiments (Druckmann et al., 2011; Reimann et al., 2013; Abdellah et al., 2015; Hay and Segev, 2015).

Neuromorphic computing uses very-large-scale integration (VLSI) systems containing electronic analog circuits to mimic neuroarchitectures of the nervous system (Mead, 1990). This approach has the potential to overcome the major limitations of traditional computing, such as energy consumption, software complexity and component reliability. Current neuromorphic computing consists in large-scale simulations of neuronal connectivity with few biological details (Furber et al., 2014; The FACETS Project, 2018). This research field would benefit from simulation neuroscience, which has the potential to provide the blueprints of neurocircuits.

Without deeper insights into the fundamental mechanisms underlying brain function, we cannot effectively treat neurological disorders, which result from dysfunctions of neural systems down to the molecular scale. The widely known neurodegenerative disease, Alzheimer’s disease, was described more than 110 years ago (Alzheimer, 1906). Today, there is still no effective treatment (The Lancet, 2016). In fact, this “disease” is poorly defined, referring to an array of various symptoms ranging from memory loss to diverse cognitive impairments, caused by multiple distinct brain dysfunctions (Scheltens et al., 2016; Frisoni et al., 2017). How can we treat a brain disease if we cannot identify its underlying mechanisms and clearly define it? How can we restore brain dysfunctions if we do not even understand the neural mechanisms underlying normal brain function? Deep understanding of brain structure and function is fundamental to clinical research, which will make it possible to identify the “biological signature” of each brain dysfunction instead of simple syndromic descriptions (Frackowiak and Markram, 2015). This is why biologically realistic digital reconstructions of the brain can be a valuable tool for modeling and simulating brain dysfunctions and for developing and validating treatments (D’Angelo, 2014; Frackowiak and Markram, 2015).

Our understanding of brain structure and function is being deepened as we build and refine a digital copy of the brain. Each step unravels new aspects of brain structure and function in a systematic manner. Even though an accurate and complete reconstruction and simulation of the human brain will require at least yottaflop (1024 flops) computing or even more1, we are getting closer to a comprehensive understanding of the brain by developing multiscale simulations. According to the nature of the studied question, some parts of the brain can be simulated at low resolution, and others at high resolution. This allows accelerating our understanding of the brain even before enough computing power becomes available. Finally, it would be possible to trace the neural mechanisms leading to the emergence of biological intelligence and to challenge the foundations of our understanding of consciousness through building a digital copy of the brain.




UNDERSTANDING THE MULTISCALE BRAIN

Since the dawn of neuroscience, hundreds of years ago, this human endeavor has fundamentally been a series of reconstructions: reconstruction of the neuron as a single cellular unit; reconstruction of neurons into distinct types according to their morphological, electrophysiological, biochemical and molecular properties; reconstruction of neural connectivity between brain regions, neuronal groups, individual neurons; reconstruction of the neural mechanisms underlying brain function and behavior. In attempting to complete the reconstruction of brain structure and function, experimental and theoretical approaches are hindered by the fundamental barriers of scale and complexity.

To overcome these barriers, the tools for reconstructing neurons and the brain have dramatically evolved, from Leeuwenhoek’s self-made one-lens microscope to compound achromatic microscope and Ramón y Cajal’s pencil until today’s supercomputers. Leveraging high performance computing, data analysis and statistical inference methods as well as algorithmic approaches, simulation neuroscience quantifies, integrates, scales up and accelerates all the previous reconstruction processes and evolves them into a unified digital copy of the brain—a quantitative and qualitative shift through the dense digital reconstruction and simulation of the brain from sparse experimental data, with the aim of causally linking molecular, cellular and synaptic interactions to brain function and behavior (Figure 5).
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FIGURE 5. Evolutionary milestones towards simulation neuroscience.



Since the introduction of the first supercomputers in the mid-20th century, in 70 years, processing power has increased from ~103 to ~143.5 × 1015 flops (Dongarra, 2006; November, 2018 | TOP500 Supercomputer Sites). Since the first observation of nerve fibers, the microscopic and physiological reconstruction of the neuron as an independent cellular unit had taken almost 240 years, while the evolution from the first digital reconstruction of the action potential to the dense digital reconstruction of neocortical microcircuitry took about 60 years. What will the future hold for the reconstruction and simulation of the entire brain?

From the dawn of human civilization, the advances in brain research have been generated through a series of fundamental shifts in the types of human thinking to understand the mind and the brain. Relying on intuitive and analogical thinking, ancient philosophers tried to address fundamental questions but were unable to provide empirical evidence. Seeking evidence, reductionist thinkers in experimental neuroscience have gained a deep understanding of many components of the brain but have also produced a huge number of disconnected datasets and knowledge. Theoretical neuroscience applies abstractive thinking to be free from the details in the brain, which may advance artificial intelligence but leaves open the question whether it will advance our understanding of the causal links between brain structure and function. To transcend these barriers, brain research needs a new way of thinking and a new approach. This new phase is proposed to be simulation neuroscience, which is based on integrative and predictive thinking.

Will simulation neuroscience be able to go deep enough through multiple different layers to finally understand the multiscale brain, to answer the probably ultimate question for us, humans, of understanding ourselves, which has haunted us since the dawn of time?

Atoms are combined into molecules; DNA molecules are bound into sequences to produce genes; genes produce proteins; different combinations of proteins produce various types of cells, which are combined into different brain regions to finally form the unique human brain. How do these complex mechanisms interact, leading from single atoms and molecules to brain function and behavior? How does the brain create our small world immersed in the universe? How does the brain incorporate our experiences that define our existence? Still so many unsolved questions.

After thousands of years of brain research, hundreds of years of neuroscience, we remain strangers to ourselves. From the Temple of Apollo, traveling through millennia, the Delphic maxim is still resonating: “Know thyself (Pausanias, 1918).” What will the future hold for us, in 10 years, 100 years, 1,000 years? To understand the multiscale brain, neuroscience now has to shift to a new phase.
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FOOTNOTES

1^High-resolution real-time molecular simulation of the human brain would need ~4 × 1029 flops*:

• ~90 billion neurons, ~1,000 trillion synapses

• ~90 billion glial cells, ~450 billion vascular end feet, supporting ~450 trillion synapses

• ~1 trillion molecules/cell, ~1,000 reactions/molecule/s, ~20 diffusion jumps/s

• ~10,000 time steps/s

*Henry Markram. “Will Computers Become as Capable as the Brain?” presented at the conference “What Makes Us Human: From Genes to Machines,” The Hebrew University, Jerusalem, June 4–6, 2018.
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Reconstructing neuronal microcircuits through computational models is fundamental to simulate local neuronal dynamics. Here a scaffold model of the cerebellum has been developed in order to flexibly place neurons in space, connect them synaptically, and endow neurons and synapses with biologically-grounded mechanisms. The scaffold model can keep neuronal morphology separated from network connectivity, which can in turn be obtained from convergence/divergence ratios and axonal/dendritic field 3D geometries. We first tested the scaffold on the cerebellar microcircuit, which presents a challenging 3D organization, at the same time providing appropriate datasets to validate emerging network behaviors. The scaffold was designed to integrate the cerebellar cortex with deep cerebellar nuclei (DCN), including different neuronal types: Golgi cells, granule cells, Purkinje cells, stellate cells, basket cells, and DCN principal cells. Mossy fiber inputs were conveyed through the glomeruli. An anisotropic volume (0.077 mm3) of mouse cerebellum was reconstructed, in which point-neuron models were tuned toward the specific discharge properties of neurons and were connected by exponentially decaying excitatory and inhibitory synapses. Simulations using both pyNEST and pyNEURON showed the emergence of organized spatio-temporal patterns of neuronal activity similar to those revealed experimentally in response to background noise and burst stimulation of mossy fiber bundles. Different configurations of granular and molecular layer connectivity consistently modified neuronal activation patterns, revealing the importance of structural constraints for cerebellar network functioning. The scaffold provided thus an effective workflow accounting for the complex architecture of the cerebellar network. In principle, the scaffold can incorporate cellular mechanisms at multiple levels of detail and be tuned to test different structural and functional hypotheses. A future implementation using detailed 3D multi-compartment neuron models and dynamic synapses will be needed to investigate the impact of single neuron properties on network computation.

Keywords: cerebellum, computational spiking models, Python, pyNEST, pyNEURON, connectome


INTRODUCTION

The causal relationship between components of the nervous system at different spatio-temporal scales, from subcellular mechanisms to behavior, still needs to be disclosed, and this represents one of the main challenges of modern neuroscience. The issue can be faced using bottom-up modeling, which allows propagating microscopic phenomena into large-scale networks (Markram, 2012; Markram et al., 2015; D'Angelo and Wheeler-Kingshott, 2017). This reverse engineering approach integrates available details about neuronal properties and synaptic connectivity into realistic computational models and allows to monitor the impact of microscopic variables on the integrated system. Realistic modeling can predict emerging collective behaviors producing testable hypotheses for experimental and theoretical investigations (Llinas, 2014) and might also play a critical role in understanding neurological disorders (Soltesz and Staley, 2018). In practice, realistic modeling of microcircuit dynamics and causal relationships among multi-scale mechanisms poses complex computational problems. First, the modeling strategy needs to be flexible accounting for a variety of neuronal features and network architectures, to be easy to update as new anatomical, or neurophysiological data become available, and to be easy to modify in order to test different structural and functional hypotheses. Secondly, the modeling tools need to be scalable to the dimension of the network and to the nature of the scientific question (Destexhe et al., 1996), to be suitable for available simulation platforms, e.g., pyNEST and pyNEURON (Brette et al., 2007; Eppler et al., 2008; Hines et al., 2009), and to efficiently exploit High-Performance Computing (HPC) resources.

Markram et al. recently carried out a digital reconstruction of the neocortical microcolumn by integrating experimental measurements of neuronal morphologies, layer heights, neuronal densities, ratios of excitatory to inhibitory neurons, morphological and electro-morphological composition, electrophysiological properties of neurons, and synapses (Markram et al., 2015). Neuron parameters were derived from databases specifically addressing cerebro-cortical neuron properties (e.g., Blue Brain Project and Allen Brain Atlas; Markram, 2006; Sunkin et al., 2013). Microscopic network wiring was then estimated computationally through a touch detection algorithm, that is based on a probability/proximity rule (i.e., the probability that morphologically defined dendrites and axons make a synaptic connection depends on their spatial proximity). This approach, in which the reconstruction of microcircuit connectivity depends on the 3D morphology of the axonal and dendritic processes of individual cells, may apply to brain structures for which datasets comparable to neocortex are available. However, such specific datasets are not available in general for all brain regions and it seems convenient in principle to keep separated neuronal morphology from network connectivity, which is reported as convergence/divergence ratios and axonal/dendritic field geometries in the literature in many cases.

The cerebellum hosts the second largest cortical structure of the brain and contains about half of all brain neurons. Modeling the cerebellum brings about specific issues reflecting the peculiar properties of this circuit, which shows a quasi-crystalline geometrical organization well-defined by convergence/divergence ratios of neuronal connections and by the anisotropic 3D orientation of dendritic and axonal processes (Figure 1) (D'Angelo et al., 2016). Moreover, the morphological reconstruction of axonal and dendritic processes of cerebellar neurons is not as developed as for other brain microcircuits, like cerebral cortex, and hippocampus (e.g., see the NeuroMorpho.org repository —https://www.re3data.org/repository/r3d100010107; Akram et al., 2018). Therefore modeling the cerebellum relies on a knowledge base that differs from that available for the cerebral cortex and thus requires a more general approach than in the Markram's modeling workflow (Markram et al., 2015).
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FIGURE 1. Reconstruction of a scaffold model of the cerebellar network. Schematic representation of the cerebellar network (from D'Angelo et al., 2016). Glomeruli (Glom); mossy fiber (mf); Granule cells (GrC); ascending axon (aa); parallel fiber (pf); Golgi cells (GoC); stellate cell (SC); basket cell (BC); Purkinje cell (PC); Deep Cerebellar Nuclei cell (DCNC). Gloms transmit mf inputs to GrCs, which emit aa and pf, which in turn activate GoCs, PCs, SCs, and BCs. GoCs inhibit GrCs, SCs and BCs inhibit PCs. DCN cells are inhibited by PCs and activated by mf. Note the precise organization of PC dendrites, SC/BC dendrites and GoC dendritic arborization mainly on the parasagittal plane. The same abbreviations are used also in the following figures.



Some recent models were purposefully designed to reproduce a limited section of the cerebellar cortex, the granular layer (Maex and De Schutter, 1998; Solinas et al., 2010; Sudhakar et al., 2017), in great detail and incorporated Hodgkin-Huxley-style mechanisms and neurotransmission dynamics (D'Angelo et al., 2001; Solinas et al., 2007a,b; Nieus et al., 2014; Masoli et al., 2015, 2017; Masoli and D'Angelo, 2017). Other models were designed to simulate, in a simplified form, large-scale computationally efficient networks of the olivo-cerebellar system (Medina and Mauk, 2000; Yamazaki and Nagao, 2012). In this work, a new cerebellum scaffold model has been developed and tested, allowing to incorporate axonal/dendritic field geometries specifically oriented in a 3D space and to reconnect neurons according to convergence/divergence ratios typically well-defined for the cerebellum (D'Angelo et al., 2016). The cerebellum scaffold model maintains scalability and can be flexibly handled to incorporate neuronal properties on multiple scales of complexity and to change its connectivity rules. For the sake of simplicity, here we used first simplified neuron and synaptic models to evaluate the impact of construction rules. The cerebellum scaffold model was validated by testing its ability to reproduce the structural properties anticipated experimentally and the emergence of complex spatiotemporal patterns in network activity. The model was run on the pyNEST and pyNEURON simulators (Brette et al., 2007; Eppler et al., 2008; Hines et al., 2009) and a test workflow was integrated into a large-scale neuroinformatics infrastructure, the Brain Simulation Platform (https://collab.humanbrainproject.eu/).



MATERIALS AND METHODS

This paper reports the design and implementation of a scaffold model of the cerebellum microcircuit. The model architecture is scalable and is designed to host different types of neuronal models and to determine their synaptic connectivity from convergence/divergence ratios and axonal/dendritic field geometries reported in literature. The workflow encompasses two main modules in cascade: cell placement into a user-defined volume; connectivity among neurons. The scaffold can then be used for functional simulations of network dynamics (Figure 1).The scaffold is designed to be embedded into different simulators, e.g., pyNEST and pyNEURON. This workflow, by allowing a flexible reconstruction of the cerebellar network, will eventually allow to evaluate physiological, and pathological hypotheses about circuit functioning.


Cell Placement Module

The Cell Placement Module placed the cells in a virtual network volume divided in layers based on morphological definitions. The process took into consideration the different cerebellar neuron types: the Golgi Cell (GoC), Granule Cell (GrC), Purkinje Cell (PC), Stellate Cell (SC), Basket Cell (BC), Deep Cerebellar Nuclei glutamatergic GAD-positive Cell (DCNC), and glomerulus (Glom). Glom is actually a mossy fiber terminal and is represented as a neuronal element at the input stage, while DCNCs are placed at the output stage of the circuit. For each neuron type, the density value in a specific layer was derived from literature, and geometric features (including soma radius and 3D-oriented dendritic and axonal fields) were defined according to experimental data. Through ad hoc algorithms (Bounded Self-Avoiding Random Walk Algorithm and Purkinje Cells placement algorithm, see below; and details in Supplementary Material Placement workflow), the cells were positioned in the 3D volume of each layer, according to their density, soma radius, and anisotropic extension, ensuring that their somata did not overlap. The module was implemented in Python, and its output was saved in an. hdf5 file containing the unique identification number (ID) of each cell, its corresponding type (an integer value between 1 and 7, as in Table 1), and the three spatial coordinates of the soma center (x, y, z). To evaluate the effectiveness of the cell positioning algorithms, we derived a continuous distribution of pair-wise distances using kernel density estimation (KDE), in which the Gaussian kernel had fixed bandwidth for each cell population. KDE yielded a single maximum when pair-wise distances were distributed homogeneously (GrC, GoC, SC, BC, DCNC) and multiple local maxima when distances were placed according to different geometric rules (PC). A reconstructed network volume and pair-wise soma distances yielded by this module are illustrated in Figure 2.



Table 1. Neuron types, size, and density.
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FIGURE 2. Cell placement and network architecture. (A) The cells are placed in the network 3D space using a Bounded Self-Avoiding Random Walk Algorithm. The figure shows the volume of 400 × 400 × 900 μm3 containing 96,737 neurons and 4,220,752 synapses used for simulations. (B) Projection of GrC axons to the molecular layer hosting the PCs (green dots in the PC layer are the somata, the thin green parallelepipeds above are the corresponding dendritic trees occupying the molecular layer). The figure shows two clusters of GrCs and the corresponding aa and pf, illustrating that the cerebellar network connectivity respects the 3D architecture shown in Figure 1. (C) Distributions of 3D pair-wise inter-soma distances within each neuronal population: GrCs, SCs, GoCs, BCs, and PCs. Note that the distributions are nearly normal, except for the PCs.



GrCs, GoCs, SCs, BCs, and DCNCs were placed in thin sublayers (with height = 1.5x soma diameter) using a bounded self-avoiding random walk algorithm. In each sublayer, the cells were initially distributed in 2D and then sublayers were piled one on top of the others. The first cell was placed randomly and each subsequent one was positioned nearby along a random angular direction. The overlap among somata was avoided since, along the selected direction, the minimum distance to place the next cell was equal to the soma diameter. A term was added to the minimum distance to scatter the somata. In details, a potential volume for each cell was computed from density values, then deriving the difference between this compound sphere radius and the soma radius (ε); a value was randomly sampled from as a normal distribution around ε (minimum 0.75· ε, maximum 1.25· ε). This guarantees natural randomness but at the same time a good exploitation of the whole available volume, avoiding undesired clusters or not uniform occupancy. If the surrounding space was completely occupied, i.e., there was insufficient space to place a further cell, a new starting point was selected resetting the random walk process for the remaining neurons in that sub-layer. Once completed, the 2D sub-layer was piled on top of the underlying one. Then, a vertical coordinate was assigned to each cell, from a random uniform distribution within the sublayer height (Korbo et al., 1993). This approach maintained randomness achieving a realistic quasi-Gaussian distribution of pair-wise inter-neuron distances (see Figure 2C) and proved computationally efficient.

The PCs were distributed in a single sub-layer forming an almost planar grid between the granular and molecular layers. The PC inter-soma distances over this plane were constrained by the dendritic trees, which are flat and expand vertically on the parasagittal plane (about 150 μm radius × 30 μm width) without overlapping (Masoli et al., 2015). Since PC somata do not arrange in parallel arrays but are somehow scattered, a noisy offset was introduced creating an average angular shift of about 5° between adjacent PCs. As for the other neuron types, a small random noise was also imposed on the vertical coordinate (Korbo et al., 1993).

The data required for cell positioning in the cerebellar cortex were obtained from literature (Eccles et al., 1967; Magyar et al., 1972; Mezey et al., 1977; Hamori and Somogyi, 1983; Jakab and Hamori, 1988; Korbo et al., 1993; Sultan, 2001; Santamaria et al., 2007; Barmack and Yakhnitsa, 2008; Solinas et al., 2010) and are summarized in Table 1. GoCs, GrCs, and Gloms were placed into the granular layer; BCs and SCs in the lower and upper half of the molecular layer, respectively. A certain number of DCNCs was randomly distributed in DCN volume according to the PC/DCNC ratio, since more specific parameters are still missing (Gauck and Jaeger, 2000; Aizenman et al., 2003; Person and Raman, 2012). Special care was given to the GrC ascending axon (aa) that, starting directly from the soma, makes its way up vertically toward the molecular layer. The height of each ascending axon was chosen from a Gaussian distribution in the range of 181 ± 66 μm (Huang et al., 2006). This value represents also the vertical coordinate of the corresponding parallel fiber (pf), running transversally and parallel to the cerebellar surface.



Connectivity Module

The connectivity module created structural connections between pairs of neurons belonging to specific types. Each neuron type formed input and output connections with other neurons of the same or different types. Therefore, once the placement was completed, it was possible to reconstruct the connectome applying intersection-connectivity rules based on proximity of neuronal processes and on statistical ratios of convergence and divergence. When available, morphological and statistical literature data were used, otherwise plausible physiological constraints were applied. In our scaffold, 16 connection types were generated (the most important are shown in Figure 3), from the volume covered by pre-synaptic axonal processes to that covered by post-synaptic dendritic trees of specific neuron types:

1. From glomeruli to granule cells (Glom-GrC);

2. From glomeruli to basolateral dendrites of Golgi cells (Glom-GoC);

3. From Golgi cells to Gloms (GoC-Glom): this is fused together with Glom-GrC to generate directly GoC-GrC connections;

4. Among Golgi cells (GoC-GoC);

5. From ascending axons of granule cells to Golgi cells (aa-GoC);

6. From parallel fibers of granule cells to apical dendrites of Golgi cells (pf-GoC);

7. Among stellate cells (SC-SC);

8. Among basket cells (BC-BC);

9. From parallel fibers of granule cells to stellate cells (pf-SC);

10. From parallel fibers of granule cells to basket cells (pf-BC);

11. From stellate cells to Purkinje cells (SC-PC);

12. From basket cells to Purkinje cells (BC-PC);

13. From ascending axons of granule cells to Purkinje cells (aa-PC);

14. From parallel fibers of granule cells to Purkinje cells (pf-PC);

15. From Purkinje cells to DCN cells (PC-DCNC);

16. From glomeruli to DCN cells (Glom-DCNC).
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FIGURE 3. Cell connectivity: examples for specific connections. Examples of divergence and convergence at different connections in the cerebellar network space. The plots have base area (400 × 400 μm2) and thickness specific for each layer. The plots show a randomly selected pre-synaptic cell together with its connected post-synaptic neurons (divergence) or viceversa (convergence). (A) Connections of GrCs and GoCs. (B) Connections of PCs, SCs, and BCs. (C) Connections of DCNCs.



Given a connection type, for each pre-synaptic neuron, the potential post-synaptic cells were identified as those that met geometric neuron-specific constraints. Then, given the convergence and divergence ratios, post-synaptic neurons were selected among the potential ones, through a pruning process using distance-based probability functions specific for each volume direction (details and examples in Figure S1). The module was implemented in Python, and its output saved in an. hdf5 file containing a matrix for each connection type, in which each row was defined by three values: the unique ID of the pre-synaptic neuron, the unique ID of the post-synaptic neuron and the inter-soma 3D distance between that pair (see Figure 4A).The plots in Figures 4B,C compare, for each connection type, the divergence and convergence ratios reported by literature to the values obtained after scaffold reconstruction in a sample volume. The cell placement and connections rules yielded indeed a very good approximation of the anatomical and physiological parameters reported in literature.
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FIGURE 4. Cell connectivity: pair-wise distance prediction and convergence/divergence validation. (A) Pair-wise distance prediction deriving from the placement and subsequent cell-to-cell connectivity. The data that find correspondence in literature are indicated as asterisks. For each connection type, the pair-wise distances between connected cells (inter-soma distance) are reported. Data from: (1) (D'Angelo et al., 2013), (2) (Barmack and Yakhnitsa, 2008), (3) (Rieubland et al., 2014). (B,C) The plots compare divergence and convergence for the different connections of the scaffold with those anticipated experimentally. The regression lines show a very close correspondence of the model to experimental results. Linear regression lines are fitted to the data (divergence: r2 = 0.98, slope = 0.88; convergence: r2 = 0.99, slope = 0.99). Data from: (1) (Nieus et al., 2006), (2) (Dieudonne, 1998), (3) (D'Angelo et al., 2013), (4) (Solinas et al., 2010), (5) (Kanichay and Silver, 2008), (6) (Cesana et al., 2013), (7) (Hull and Regehr, 2012), (8) (Lennon et al., 2014), (9) (Huang et al., 2006), (10) (Jorntell et al., 2010), (11) (Sultan and Heck, 2003), (12) (Person and Raman, 2012), (13) (Boele et al., 2013).





Functional Simulations

In order to test the functionality of the scaffold, single neuron models were placed in the corresponding positions of the connectome matrix. In this first version of the cerebellar microcircuit, spiking point-neuron models based on Integrate&Fire (I&F) dynamics with conductance-based exponential synapses (i.e., synaptic inputs cause an exponential-shaped change in synaptic conductances) were used. The output files of these simulations contained all the spike events (neuron IDs and relative spike times). Glomeruli were represented as “parrot neurons” just able to pass the imposed stimulation patterns unaltered. Each other neuron type was characterized by specific values, directly related to neurophysiological quantities (Cm, τm, EL, Δtref, Ie, Vr, Vth), corresponding to biological values taken from literature available from animal experiments or databases (https://neuroelectro.org/) (Tripathy et al., 2014; Table 2). In order to account for the neuron-specific dynamics of GABA and AMPA receptor currents, also the decay times of the excitatory and inhibitory synaptic exponential functions (τexc, τinh) were set differently for each neuron type (Table 2). Each synaptic connection type was characterized by specific values of weight and delay (Table 3). These estimates approximated literature data values so that, for example, the synaptic delay was shorter when fibers impinging on PCs came from aa than pf synapse.



Table 2. Neuron-specific parameters.
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Table 3. Synaptic parameters for each connection type.
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The input stimulus was set by defining the volume where Gloms were activated, the onset time, the duration and the frequency of spikes. A background activity was generated by a Poisson process of stochastic neuronal firing at 1 Hz on all the glomeruli. Superimposed on it, a burst at 150 Hz lasting 50 ms (Rancz et al., 2007) was activated 300 ms after the beginning of simulation. Indeed, mossy fibers have a low basal activity, but in response to sensorimotor stimuli, can fire at rates beyond 100 Hz. The stimulated volume had a radius of 140 μm; the simulation lasted 1 sec, including 300 ms pre-stimulus, 50 ms stimulus, and 650 ms post-stimulus.

In a specific set of simulations (see Figure 8), we tested the partial contribution of SCs and BCs to the spatiotemporal diffusion of activity among PCs. BCs axonal plexus is preferentially oriented along the parasagittal axis (see Eccles et al., 1967). In these simulations, we oriented the SC and BC axonal plexus orthogonally one to each other and concentrated the stimulation burst in a sphere of 30 μm radius.



Network Data Analysis

For each neuron population, mean frequency rates were extracted in three time windows: baseline pre-stimulus, during stimulus, and steady-state after-stimulus. We then generated peri-stimulus time histograms (PSTH) for each neuronal population with time bins of 3 ms. For each neuron population, we also separated excited from inhibited sub-groups, responding with an increased, or decreased firing rate during the stimulus. To do so, we compared the number of spikes during stimulus vs. pre-stimulus normalized by the time-window durations. If the pre-stimulus firing frequency (i.e., baseline) was at least doubled during stimulation, then the cell was classified as excited. Conversely, to classify the inhibited cells. For GrCs, we added a second constraint: to be labeled as excited, a GrC should fire more than 1 spike during stimulation, allowing to exclude spikes determined by the background noise. For DCNC, all cells stopped firing during the stimulation time-window. For each PC, a further ad-hoc analysis allowed to identify burst–pause responses. The cells showing a significant stimulus-induced pause (Cao et al., 2012; Herzfeld et al., 2015) were recognized as those in which the first Inter-Spike-Interval (ISI) after the end of the stimulus was >2 standard deviation (sd) of the pre-stimulus ISIs. This comparison was computed within-cell, i.e., for each PC individually.

Center-Surround Analysis

The Excitatory-Inhibitory balance (EI) and Center-Surround (CS) were calculated from firing rates (FR) according to Mapelli and D'Angelo (2007) and Solinas et al. (2010) by considering that inhibition occurs only after a delay following the beginning of stimulation. GrC firing rate was then measured 0–20 ms (T1) and 20–40 ms (T2) after the beginning of stimulation in response to 50 ms at 150 Hz bursts, both in control (con)and with GoC-GrC inhibition switched off (in_off ). The CS and EI were calculated as follows:
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The CS values were normalized between 1 and −1. The extension of the center and surround was calculated by including zones with CS > 0.5 in the center, and zones with CS < −0.5 in the surround. The center and surround relative areas could then be calculated by counting the respective number of pixels and normalizing by the total number of pixels (see Figure 7C).

Oscillation Analysis

In order to determine the presence and properties of coherent oscillations in granular layer activity, the activity in a subset of GoCs with overlapping incoming parallel fibers and the related GrCs was analyzed (Maex et al., 2000) during a 5 s at 5 Hz noisy background mossy fiber activity. The autocorrelations of GoCs and GrCs spike trains and the cross correlation between GrCs and GoCs spike trains were calculated using the equation
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Where C is the index of coherence, A is the array of autocorrelation values, and len(A) is the size of the spike train data array. The same calculus was executed also for the crosscorrelation.



Simulations in pyNEST, pyNEURON, and Implementation on the Brain Simulation Platform

The microcircuit was implemented and simulated both in pyNEST version 2.14 (Eppler et al., 2008) and in pyNEURON (Hines et al., 2009). These neural simulators are commonly used for applications starting from realistic neuron models and up to more abstract representations. These tests were run using external HPC and local resources, maximizing available parallel computing. The time resolution for both simulators was 0.1 ms. As internal validation tests, some exemplificative ad-hoc structural and functional alternatives (see Figure 5) were made in the network and then the same simulations were run (in pyNEST). The firing rates of each cell population and their sub-groups affected by stimulus are reported in Table 4 and Figure 5 to illustrate the spiking network behaviors.
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FIGURE 5. Neuronal discharge. Raster plot and PSTH of the different neuron populations of the cerebellar network model in response to a mossy fiber burst (50 ms at 150 Hz on 2,932 gloms) superimposed on a 1 Hz random background. The two simulations used the same cerebellar scaffold and neurons, which were translated from pyNEST into pyNEURON. The basal activity of the different cell populations is visible before and after the stimulus. The Glom patterns at the input are imposed, so they are identical for both simulations. The mean population firing rates for GrCs are similar between the two simulations, probably due to the very high number of GrCs. Minor differences are detectable for the other neuron types.





Table 4. Firing rates.
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The entire scaffold can be built and run as a Jupyter Notebook in the Brain Simulation Platform (BSP), one of the platforms of Human Brain Project (Markram, 2012). The BSP is an internet-accessible collaborative platform that comprises a suite of software tools and workflows to reconstruct and simulate multi-level models of the brain at different levels of description, from abstract to highly detailed. Here, cells, network, and volume configuration parameters can be easily read and modified, since they are stored in a single Python script. Such flexible parametric approach allows to continuously include and tune relevant neurophysiological information and to operate at different simplification levels. A test version of the scaffold model is running on the Brain Simulation Platform at https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/.




RESULTS

The cerebellar network is unique for its precise geometrical organization (Figure 1), which was reconstructed generating a scaffold model capable of handling neuronal placement, connectivity, and simulations. The neurons were represented as single-point leaky integrate-and-fire (LIF) models (Maas, 1997), tuned to match the input resistance and capacitance, basal discharge, and input-output relationship of the specific cerebellar neuron types. The choice of LIF neuron models was motivated by the need to focus first onto the two main construction operations of the scaffold, cell placement and connectivity, and on the role of these latter in determining network properties.

The scaffold is demonstrated here through the exemplar reconstruction and testing of a cerebellar volume of 0.077 mm3. The cerebellar cortex volume had 400 × 400 μm2 base and 330 μm height subdivided into different layers: molecular layer (150 μm), Purkinje cell layer (30 μm), granular layer (150 μm). The DCN layer had 200 × 200μm2 base (1/4 of cortex) and 600 μm height. As a whole, the model contained 96,734 cells. It should be noted that these parameters were all user-defined and may be modified depending on the needs, as the model is scalable.


Cell Placement

The Bounded Self-Avoiding Random Walk algorithm (see section Materials and Methods) successfully placed the neurons into all cerebellar regions with the only exception of PCs, which were positioned using a specific algorithm designed to respect their regular spatial organization (Figure 2A). Figure 2B shows a row of almost equally distanced PCs connected to incoming parallel fibers, faithfully reproducing the typical PCs geometrical organization. These examples show that the placement algorithms can be flexibly configured to account for complex and variable rules of cellular positioning.

As an internal validation, the distribution of pair-wise distances for each cell type was calculated (Figure 2C). For all cell types (except PCs), pair-wise distances were distributed almost normally and the minimum inter-soma distance equated twice the soma radius. As expected, KDE for GrC, GoC, SC, and BC pair-wise distances returned a single maximum (at 180.1, 191.0, 184.6, and 188.5 μm, respectively), while for PCs three local maxima occurred (at 48.6, 142.1, and 267.0 μm) (for DCNC, KDE analysis was meaningless, given the low number of cells).



Cell Connectivity

The connection rules adopted in this work were designed to account for the rich and specific information available from literature (Eccles et al., 1967; Palay and Chan-Palay, 1974; Korbo et al., 1993), which accounts for convergence/divergence ratios, number of synapses, and spatial distribution of axons and dendrites (Figure 3). The connecting algorithm imposed these geometrical constraints allowing to wire the different neuronal types for a whole of 16 connection types. Five connection types did not require other than these geometric constraints, while pruning was needed in the other 11 cases (either for convergence or divergence or both). The resulting connectome was then compared to the experimental one for validation. Figure 4 shows that the connection ratios of the scaffold were indeed correctly scaling to the physiological ones. Some specific cases are considered below.

Concerning Glom-GrC connectivity, experimental data demonstrated that granule cell dendrites have a maximum length of 40 μm, with a mean value of ~13 μm (Solinas et al., 2010). By imposing a convergence value of 4 (each GrC received one Glom on each of its 4–5 dendrites), a mean dendrite length of about ~12 μm was found, therefore matching experimental and theoretical determinations (Hamori and Somogyi, 1983; Billings et al., 2014).

Concerning connectivity between the aa and PC dendrites (aa-PC), connections were possible only when the aa-segment was very close to the PC dendritic plane. By analyzing the placement of GrCs in the x-z plane and the vertical extension of the aa, it is estimated that only ~20% of GrCs developed an aa that is sufficiently close to a PC dendrite tree to form a synaptic contact (Bower and Woolston, 1983; Gundappa-Sulur et al., 1999). This estimate was indeed closely matched by the scaffold reconstruction.

Concerning connectivity of parallel fibers with receiving neurons (pf-GoC, pf-SC, pf-BC, pf-PC synapses), the literature is incomplete and shows variable estimates. This most likely reflects difficulties in estimating exact numbers, since the pf can be several millimeters long and they are often cut on the parasagittal plane in histological preparations. In the scaffold reconstruction, the maximum pf length (along z-direction) was bounded to 400 μm (Barbour, 1993; Huang et al., 2006) and pf from GrCs beyond this length were not taken into account.

The statistical distribution of distances between connected cells (Table 4) shows a good matching with anatomical values. This validation of the connectome supports the appropriateness of cell placement and connecting rules. Biological randomness in the 3D placement with uniform occupancy of appropriate layers ensures that the resulting connectivity (based on geometrical proximity) has plausible biological values and variability for statistical convergence/divergence ratios, and for distances among connected neurons.



Neuronal Activations in the Cerebellar Network Following Mossy Fiber Stimulation

The aim of these simulations was to assess the emergence of typical spatio-temporal patterns of cerebellar network activity as a consequence of mossy fiber inputs. Simulations were carried out both in pyNEST and pyNEURON. For simplicity, the following data and figures are taken from pyNEST simulations, except for a comparison of the two in Figure 5 and Table 4. As expected, the two simulators yielded similar firing rates in each cell population. The Glom patterns at the input were imposed, so they were identical for both simulation platforms, while very small differences were detectable for the other neuron types.

Evoked activity simulating the effect of natural sensory stimulation (Chadderton et al., 2004; Roggeri et al., 2008; Ramakrishnan et al., 2016)was elicited over a noisy background (see above) by a 150 Hz−50 ms mossy fiber burst. The mossy fiber activity spread over about 0.012 μm3 of the granular layer involving 2,932 glomeruli out of the 7,070 placed in the reconstructed volume. Glomeruli had mean firing rate of ~1 Hz before the burst, 140 Hz during the burst, and ~1 Hz after the burst. The burst induced transient activity changes, specific for each neuronal population, which reverted back to baseline after the end of the stimulus (Figure 5). The sequence of neuronal activations depended on synaptic delays that were set according to physiological data (Eccles et al., 1967; Figure 6). The response of the individual neuronal populations was as follows (Figures 5, 6, and Table 4):

• The GrCs discharged at 1.8 Hz at rest and at 114 Hz during burst stimulation, consistent with in-vivo data showing that GrCs had sparse activity characterized by low background firing rates (partly due to the presence of tonic GABAergic inhibition) and high-frequency bursts in response to evoked sensory stimulation (Chadderton et al., 2004).

• GoCs discharged above 22 Hz at rest and above 150 Hz during burst stimulation, consistent with in-vivo data (Heine et al., 2010). The basal GoCs firing rate was raised by the noisy background over the autorhythmic frequency and showed a high variability among cells.

• Molecular layer interneurons, SCs and BCs (N = 603 for each cell type), discharged at ~30 Hz at rest and above 120 Hz during burst stimulation, consistent with the observation of high-frequency activity during sensory stimulation (Chu et al., 2012).

• PCs discharged at ~58–60 Hz at rest and at ~255 Hz during burst stimulation consistent with in-vivo data (Heine et al., 2010). Interestingly, PCs showed either bursts, or pauses, or burst-pause responses as observed in vivo (Herzfeld et al., 2015): out of 69 PCs, the burst was observed in 48 PCs and the pause in 41 PCs. Of the PCs that showed a pause, in 17 PCs it occurred after a burst, while in the other 24 PCs it happened alone.

• DCNCs discharged at ~16 Hz at rest and were completely silenced during burst stimulation. This behavior was expected from the convergent inhibition coming from PCs, supporting the hypothesis that cortico-nuclear synapses act as simplified inverters (Person and Raman, 2012).


[image: image]

FIGURE 6. Cerebellar network response to a mossy fiber burst. (A) Spikegrams of all cerebellar neurons in the model. A burst in gloms causes a burst-to-burst propagation in GrCs and PCs. GoCs, SCs, and BCs also generate bursts that, by being inhibitory, contribute to terminate the GrC, and PC bursts and to generate the burst-pause PC response. The DCN cells show a pause during stimulation. (B) Raster plot of one cerebellar neuron for each population in the model. Note the spread of the mf bursts inside the cerebellar cortical networks and the corresponding pause in the DCN. (C) Spike-time response plot showing the temporal sequence of neuronal activation and inhibition. The arrows represent the connectivity (solid lines show excitatory connections, dashed lines inhibitory connections). The stars represent the post-synaptic neuron response: white stars are excited neurons, black stars are inhibited neurons.





Center-Surround Organization of Granular Layer Responses

A relevant aspect of network activation that emerged in electrophysiological and imaging experiments is the center-surround organization (Mapelli and D'Angelo, 2007; Diwakar et al., 2011; Gandolfi et al., 2014). In the scaffold, the neuronal response of the granular layer to mossy fiber stimulation showed a typical center-surround organization (Figure 6). This reflected the excitatory/inhibitory ratio (see section Materials and Methods) with the center more excited than the surround due to lateral inhibition provided by GoCs. The center-surround had a diameter of about 50 μm and GrCs inside the core discharged up to 3–4 spikes organized in a short burst, reflecting previous experimental estimates (Gandolfi et al., 2014). Therefore, the scaffold correctly predicts the consequences of activity in bundles of mossy fibers.

Recently the connectivity of GoCs and GrCs has been extended by the demonstration of new synapses, in particular those between the GrC ascending axon and GoCs (aa-GoC, excitatory) (Cesana et al., 2013) and between GoCs (GoC-GoC, inhibitory) (Hull and Regehr, 2012). The selective switch-off of aa-GoC connections enhanced the center and reduced the surround, the switch-off of GoC-GoC connections reduced the center and increased the surround, while smaller effects followed the switch-off of pf-GoC or mf-GoC synapses (Figure 9C).



The Impact of Molecular Layer Interneurons on PC Activation

The molecular layer is critical to regulate PC activity in a way that is still debated (e.g., see Rokni et al., 2007; Santamaria et al., 2007). The first assumption is a differential orientation of SC cell axons (mostly transversal or “on-beam”) vs. BC axons (mostly sagittal or “off-beam”) (Eccles et al., 1967). Moreover, both aa and pf are used to activate PCs, as reported in literature (Jaeger and Bower, 1994; Canepari et al., 2001; Figure 8). Consistently, in the scaffold model, PC responses were circumscribed into a central spot overlaying the center/surround generated in the granular layer with little diffusion along either transversal or sagittal axis. On both axes, in turn, some PCs were clearly inhibited by the molecular layer interneuron inhibitory network.
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FIGURE 7. Center-surround organization of activity in the granular layer. (A) In response to a mossy fiber burst (40 gloms at 150 Hz for 50 ms), the granular layer responds with a core (red area) of activity surrounded by inhibition (blue area). (B) PSTH of GrCs in the center-surround. The activity in the core is characterized by robust spike bursts, while just sporadic spikes are generated in the surround. No activity changes are observed outside the center-surround structure. (C) The histogram shows the changes in center-surround extension that occur following selective switch-off of synapses impinging on GoCs. Note the prominent role of aa-GoC synapses and GoC-GoC synapses (bars are values normalized to control).
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FIGURE 8. Maps of PC activation and sensitivity to molecular layer connectivity. (A) The maps show the activity change of PCs in response to a mossy fiber burst (40 glom at 150 Hz for 50 ms). The pattern of activity is determined by various connection properties that are tested in turn. (all active) PC inhibition is achieved through a differential orientation of SC axons (mostly transversal or “on-beam”) vs. BC axons (mostly sagittal or “off-beam”) and that PC excitation depends on both aa and pf synapses with specific origin from GrCs. Alternative patterns are generated by (SC off) the specific switch-off of SC, (BC off) the specific switch-off of BC, or (SC&BC off) the complete switch-off of both SC and BC, (aa off) the specific switch-off of aa synapses, (pf off) the specific switch-off of pf synapses. It should be noted that these changes in network connectivity modify the PC discharge patterns both on-beam and off-beam and extend to a distance that reflects the propagation of activity through the molecular layer interneuron network. The circles indicate the location of the underlying active spots of activity in the granular layer. The bottom plot represents the activity of GoCs (blue) and GrCs (red) before, during and after the stimulus burst. This activity occurs in a spot (enlarged in the inset) corresponding to the center-surround shown in Figure 7. (B) The schematic diagrams show the orientation of fibers and connections in the network. (C) The PC activity was averaged into 3 × 3 matrices in order to better appreciate where activity changes take place. Note the emergence of the central spot in several cases.



Then, the effect of disconnecting different network elements was tested. Following the switch-off of both SC and BC inhibition, the responsiveness of PCs increased, as expected from SC and BC inhibitory action on PCs. As expected from anatomy, when only BCs were present (i.e., selective switch-off of SCs), excitation extended more effectively along the transverse axis, while when only SCs were present (i.e., selective switch-off of BCs) excitation extended more effectively along the sagittal axis. However, in both cases there was a diffused (though slight) increase of excitation, due to the reduced background inhibition exerted by intrinsic SC and BC discharge. It should also be noted that the activation of PCs in the central spot remained poorly altered, suggesting that these PCs were already nearly maximally activated in control. The selective switch-off of aa synapses caused a diffuse reduction of PC activation, while the selective switch-off of pf synapses had a much smaller effect. Therefore, changes in molecular layer connectivity consistently modified the PC discharge patterns both on-beam and off-beam and extended to a distance that reflects the propagation of activity through the pfs and the molecular layer interneuron network.



Synchronous Oscillations Caused by Noisy Background Activity in Mossy Fibers

Recordings from the granular layer in vivo have revealed low-frequency local field potential oscillations that occur synchronously over distances of several hinders of micrometers (Pellerin and Lamarre, 1997; Hartmann and Bower, 1998). Similar properties were observed also in previous granular layer models (Maex and De Schutter, 1998; Solinas et al., 2010; Sudhakar et al., 2017). In the scaffold model, spontaneous circuit activity clearly emerged due to background firing in the mossy fibers, provided that the frequency of the background mossy fiber discharge was increased from 1 to 5 Hz and pfs-GoCs connection weight was increased from 0.4 to 30.4, supporting the concept that oscillations require a specific synaptic balance to emerge (Maex and De Schutter, 1998; Solinas et al., 2010; Sudhakar et al., 2017; Figure 9). In response to the input, GrCs sparsely discharged at low frequencies (GrCs do not show intrinsic spontaneous activity), while the intrinsic activity of all the other neurons was modulated (GoC, PC, MLI, and DCNC are autorhythmic) (see Ie values in Table 3). Interestingly, the neurons of the granular layer (GrCs and GoCs) showed a pattern of low-frequency oscillations (mean frequency of 1.8 Hz) that was evident across the whole network. The oscillation frequency is the same in autocorrelograms of both GrCs and GoCs, and in the cross-correlogram between Golgi and granule cells. This ensemble behavior is probably due to the inhibitory feedback from GoCs to GrCs in the following way: (1) GrCs activity sums up in several GoCs, (2) GoCs, which are synchronized through parallel fibers and reciprocal inhibitory synapses, discharge almost synchronously, (3) a large population of GrCs is phasically inhibited, (4) inhibition terminates and GrCs recover responsiveness to the background mossy fiber input, then restarting the cycle.
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FIGURE 9. Coherent low-frequency oscillations in granular layer neurons. Activity of GrCs (red) and GoCs (blue) during sustained 5 Hz random mf input. (A) Raster plots from exemplar GrCs and GoCs. Note that synchronous patterns are visible in the neuronal response (arrows). In this regimen, GoC activity is more intense than GrC activity due to the autorhytmic discharge of GoC neurons. The neurons are not necessarily part of a center-surround and therefore not all activities appear correlated. (B) Cumulative PSTH of the whole GrC and GoC populations of the model along a 5 s period. Note that the two PSTH show marked low-frequency oscillations (average 1.8 Hz) around their average level of activity. (C) Autocorrelograms of activity in the GrC and GoC populations and crosscorrelogram of the GrC and GoC populations (in this example the inhibition among GoCs is switched off). Note the high level of correlation in all the three cases on the same main frequency of 1.8 Hz.






DISCUSSION

In this paper a new scaffold modeling strategy is presented, that is used to simulate fundamental functional properties of the cerebellar microcircuit. The cerebellar scaffold includes the canonical neuron types (GrCs, GoCs, PCs, SCs, BCs, DCNCs), each one with specific geometry of dendritic and axonal fields and with specific convergence/divergence ratios for connectivity. The neurons were purposefully simplified into single point models in order to focus on network connectivity before involving more complex neuronal geometries and properties. The circuit functionality was then tested by applying background activity and burst stimuli and evaluating the network responses. In addition to faithfully reproduce a broad range of experimental observations, the cerebellar scaffold shows the emergence of complex spatiotemporal patterns of activity similar to those observed in vivo and eventually predicts the critical role of local connectome for network functionality.


The Scaffold Design

The scaffold includes two modules: cell placement and connectivity. The first module placed neurons in their corresponding layers according to density values derived from literature. Cell placement exploited a bounded self-avoiding random walk algorithm, except for PCs, which required a placement rule accounting for their regular disposition and quasi-planar non-intersecting dendritic trees. The second module generated microcircuit connectivity by defining the pre- and post-synaptic neurons among those intersecting their dendritic and axonal fields and then establishing the corresponding number of synapses through specific connection probabilities. Geometrical constraints and divergence/convergence ratios derived from literature played a critical role to implement the microcircuit connectome. The distributions of soma distances, both for cell positioning and connectivity, were assessed and provided an internal validation for the network construction processes. The cerebellar scaffold was then implemented using LIF neuron models, whose parameters were tuned to approximate the basal firing and input-output relationships of cerebellar neurons. Finally, functional simulations required the scaffold to be uploaded into a neuro-simulator, either pyNEST or pyNEURON, that worked equivalently well for this purpose.

The scaffold modeling strategy used for the cerebellum microcircuit differs from that used for the cortical microcolumn mostly because here the connectivity rules are based on available statistical and geometrical information rather than on single neuron morphologies and touch-detection (Markram et al., 2015). This allows the scaffold to fully exploit the experimental data available in the cerebellar literature despite incomplete availability of detailed morphological reconstructions of cerebellar neurons. By considering that neuron models based on detailed morphological reconstructions are still unavailable in most neuronal circuits, the strategy adopted here for the cerebellum has a large potential for applicability in a variety of different brain microcircuits. It should be noted that our “intersection-connection” rule is formally similar to the “proximity-connection” rule used for touch-detection in Markram et al. (2015). Eventually, the touch detection strategy could be implemented in the scaffold providing a construction alternative, in which connectivity is directly constrained by neuronal morphology. The advantage would be to specifically connect synapses on specific positions of the dendritic tree, fully exploiting non-linear dendritic computations. Also the data positioning rules could be changed, for example by importing cell positions from the Allen Brain Atlas directly (available at https://portal.bluebrain.epfl.ch/) or using network growing algorithms (Setty et al., 2011; Nguyen et al., 2016).



Simulation and Validation of Cerebellar Network Properties

Following background random inputs and punctuate sensory stimulation, the scaffold model predicted a set of relevant network response properties that matched experimental observations. In the granular layer, the GrC and GoC activity in response to random mossy fiber inputs showed loose synchronicity, as observed in vivo (Pellerin and Lamarre, 1997; Hartmann and Bower, 1998). The GrC and GoC activity in response to bursts in mossy fiber bundles revealed a center-surround organization, as reported in vitro (Mapelli and D'Angelo, 2007; Diwakar et al., 2011; Gandolfi et al., 2014), which was enhanced by aa synapses (Cesana et al., 2013). At the level of molecular layer, the spatial PC discharge patterns depended on the geometry of SC and BC inhibition (Santamaria et al., 2007), and PC burst-pause discharges were generated (Herzfeld et al., 2015). The local PC response was enhanced by granule cell aa, as anticipated by Bower and Woolston (1983), Walter et al. (2009), and Cesana et al. (2013), supporting the vertical organization of GrC-PC transmission (Rokni et al., 2007).

Interestingly, despite the use of simplified LIF neuron models, the observation of these activity patterns suggests that structural constraints play a critical role in determining local neuronal dynamics. In particular, connectivity allows the emergence of center-surrounds in the granular layer and spots of PC activity in the molecular layer. There are several aspects that remain to be assessed and will be easily incorporated into more advanced versions of the cerebellar scaffold.

First of all, assessing the role of non-linear neuronal properties, like intrinsic oscillations, resonance bursting and rebounds, requires to incorporate into the scaffold realistic ionic-channel based neuronal models. Along with this, dendritic computation needs morphologically detailed neuron models that are currently under construction and testing. These include the PCs model (e.g., De Schutter and Bower, 1994; Masoli et al., 2015; Masoli and D'Angelo, 2017), the GrC model (Masoli et al., 2017), the GoC model (Solinas et al., 2007a,b; Kanichay and Silver, 2008), the SC and BC model (currently under construction), the DCN model (Steuber and Jaeger, 2013). Dynamic synapses (Tsodyks and Markram, 1997; Nieus et al., 2006; Migliore et al., 2015) will likewise be incorporated to introduce synaptic strength modulation mechanisms.

Secondly, the scaffold could be used to evaluate the trade-off between computational efficiency and precision. Therefore, the present LIF single point neurons could be substituted by others (extended generalized LIF, E-GLIF) embedding non-linear firing properties (e.g., Brette and Gerstner, 2005; Geminiani et al., 2018) and accounting for synaptic dendritic location by modifying the transmission weight depending on the distance of synapses from the soma (Rössert et al., 2016) or based on experimental data when available.

Thirdly, fully implementing cerebellar connectivity requires the introduction of models of the inferior cerebellar olive (IO) (Libster and Yarom, 2013; De Gruijl et al., 2014). This will complete the DCN-PC-IO cerebellar circuit, allowing the model to simulate oscillations in the olivo-cerebellar circuit, their impact on PC dendritic calcium signaling and computation, and eventually climbing fiber control of plasticity at parallel fiber synapses (Coesmans et al., 2004).

Finally, the addition of novel connections and cells, like the PC to GrC inhibition (Guo et al., 2016) in the anterior cerebellum, the unipolar-brush cell subcircuit in the flocculo-nodular lobe (Mugnaini and Floris, 1994; Subramaniyam et al., 2014), or the DCN to granular layer connections (Gao et al., 2016) will allow to further expand the simulation of cerebellar processing in different cerebellar modules.




CONCLUSIONS

The scaffold model was able to reconstruct the complex geometry and neuronal interactions of the cerebellar microcircuit based on intersection-connection rules. Given its architectural design, that puts in series interchangeable programming modules, the scaffold could now be used to plug-in different network configurations into neuronal simulators like e.g., pyNEST and pyNEURON. Both the cell placement algorithm, the neuron model types and the connectivity rules could be substituted to assess different construction strategies and adapted to available data to probe specific functional hypotheses. For example, the connectivity could be recalculated using realistic neuronal morphologies and touch-detection algorithms (proximity-connection rule), as in the cortical microcolumn model (Markram et al., 2015). We envisage that this scaffold modeling strategy, given its versatility, will also be able to host microcircuits different from cerebellum, thus providing a new tool for neurocomputational investigations. It should be noted that the reconstruction procedure is python-based and can be imported in many different simulation frameworks. For example, translation of the scaffold model into PyNN would facilitate neurorobotic and neuromorphic hardware applications (Davison et al., 2008).
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Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.

Keywords: electroencephalography, distress, non-linear metrics, delayed permutation entropy, permutation min-entropy


1. INTRODUCTION

Emotions are essential in human communication and interaction, and considerably influence on daily tasks related to cognition, perception and rational decision-making processes (Coan and Allen, 2007). Traditional techniques for emotion recognition are mainly focused on the analysis of physical aspects like facial expressions and speech characteristics (Calvo and D'Mello, 2010). However, given that emotional responses are initiated in the brain and then spread to other biological systems (Gao et al., 2015), interest in electroencephalogram (EEG) signals for emotion recognition has notably increased during the last years (Martínez-Rodrigo et al., 2017; Fernández-Sotos et al., 2018; Ramirez et al., 2018).

Existing affect models include from a few basic emotions (Ekman, 1992) to a wide variety of emotional states derived from the combination of basic ones (Schröder and Cowie, 2011). Russell's circumplex affect model is one of the approaches most widely used for emotion classification (Russell, 1980). In this bidimensional approach, emotions are distributed according to their level of valence (ranging from negative to positive) and arousal (from deactivated to activated). A relevant emotion that is receiving growing attention is negative stress, also called distress, because it presents a high prevalence in developed countries (Bong et al., 2013; Alberdi et al., 2016). Although today short-term distress is not considered a risk factor for health, a chronic condition of this emotion often causes or aggravates physical and mental disorders (Bender and Alloy, 2011; Mozos et al., 2017). In this regard, automatic distress identification from EEG signals would help prevent health problems and improve people's quality of life.

Since neural processes are non-linear and non-stationary, both at cellular and global level (Cao et al., 2015), non-linear metrics applied to EEG signal analysis should provide more relevant findings than linear indices traditionally used (Valenza et al., 2012). But, few studies have applied non-linearity to automatic detection of negative stress through EEG recordings (García-Martínez et al., 2019a). This is the case of symbolic entropies, such as Permutation Entropy (PE) (Bandt and Pompe, 2002) and Amplitude-Aware Permutation Entropy (AAPE) (Azami and Escudero, 2016), having demonstrated their efficiency in discriminating between calmness and distress (Hosseini and Naghibi-Sistani, 2011; García-Martínez et al., 2017; Martínez-Rodrigo et al., 2019). Here, the quantification of similar patterns is typically obtained through consecutive samples, or their averaging, within a complete time series.

No lag or time delay between patterns is necessary in those cases where the autocorrelation function of the signal presents a steep decay. However, a time series with long-range linear correlations shows a slow decay in its autocorrelation function. Not applying a lag may hinder entropy metrics from properly quantifying the complexity and non-linear dynamics of the signal. Indeed, it has already been demonstrated that time-delayed entropy tests are helpful to diminish the influence of autocorrelation for better evaluation of the non-linearity of time series (Kaffashi et al., 2008). Hence, a multi-lag approach has been applied to localization of epileptogenic areas through EEG recordings (Zhu et al., 2015).

Let us highlight that an improvement of PE called Permutation Min-Entropy (PME) has been recently introduced (Zunino et al., 2015). PME consists of an improved time-delayed symbolic alternative for identifying the existence of hidden temporal correlations in time series. This allows a better discrimination of time series with similar temporal correlations. Moreover, PME has been very recently applied to emotion recognition by using heart rate variability (Xia et al., 2018). The promising outcomes open a door to the hypothesis that time-delayed analysis may uncover existing information in physiological systems, not revealed before through non-delayed or basic multiscale entropy (MSE) analyses. Furthermore, to the best of our knowledge, no previous research has focused on the study of multi-lag approaches for emotion recognition from EEG signals.

For this reason, in the present manuscript a time-delayed version of AAPE—called Delayed Permutation Entropy (DPE)—and PME metrics are applied for the first time with several time delays for the sake of checking the influence of the lag on discrimination between calmness and distress from EEG recordings. The remainder of this paper is structured as follows. Section 2 details the analyzed database, the DPE and PME metrics computed from the EEG recordings and the statistical analysis. Section 3 summarizes the results, which are then discussed in section 4. Finally, section 5 concludes the most remarkable findings related to this study.



2. MATERIALS AND METHODS


2.1. Database

EEG signals were extracted from the publicly available Database for Emotion Analysis using Physiological Signals (DEAP) (Koelstra et al., 2012) to guarantee the reproducibility of this study as well as its fair comparison with previous or future works. This dataset contains a total of 1,280 EEG recordings and other peripheral variables from 32 healthy participants with ages ranging 19–37 (mean age of 26.9; 50% male) under different affective conditions. Forty one-minute length video clips with emotional content were used as stimuli in the experiment leading to the dataset. After each visualization, the participants described their emotional state by means of self-assessment manikins (SAM), two graphical scales representing nine intensity levels of valence and arousal (Morris, 1995).

Although the trials contained within the dataset cover the whole valence-arousal space, only two subsets corresponding to distress and calmness emotional states were studied in the present study, as shown in Figure 1. Indeed, calmness and distress groups were selected according to previous works dealing with the same problem (Bastos Filho et al., 2012; Pomer-Escher et al., 2014; García-Martínez et al., 2016; García-Martínez et al., 2017). Hence, distress trials were selected from arousal and valence levels higher than 5 and lower than 3, respectively. On the other hand, the calmness group contained trials with arousal and valence values lower than 4 and between 4 and 6, respectively. Therefore, a total number of 122 and 137 trials of distress and calmness, respectively, were finally analyzed in this work. Moreover, it is important to highlight that only the last 30 s of each trial were selected for further analysis.
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FIGURE 1. Trials distribution included in DEAP database in the arousal–valence space. Selected groups of distress and calmness trials are highlighted.





2.2. EEG Signal Preprocessing

EEG signals were recorded at a sampling rate of 512 Hz with 32 electrodes placed according to the 10–20 standard system of electrode location (Klem et al., 1999). Before starting any kind of analysis, the recordings were preprocessed to eliminate noise and artifacts, thus preserving only the information related to brain activity. To this respect, the signals were initially down-sampled to 128 Hz and all EEG channels were re-referenced to the average potential of all electrodes. Next, a forward/backward high-pass filter at 3 Hz and a low-pass filter at 45 Hz cutoff frequency were applied to remove baseline and power line interferences, maintaining the frequency bands of interest in EEG recordings (Koelstra et al., 2012). After that, artifacts derived from physical activity (e.g., facial movements, eye blinks, heart bumping, etc.) and technical sources, such as electrode-pops were eliminated by means of independent component analysis (ICA) (Goh et al., 2017).

A well-known method with ability to automatically identify noisy independent components (ICs) was used (Nolan et al., 2010). Briefly, the algorithm firstly computed correlation between all ICs and electrooculography channels, as well as spatial kurtosis, power spectrum slope, Hurst exponent and median gradient for all ICs. Those components presenting at least an index with a value three times higher than standard deviation for all ICs were then removed. As a final step, the denoised EEG signal was reconstructed from the remaining ICs. It is worth noting that 1.05 ± 0.60 ICs were removed in average for each trial. More precisely, any artifactual IC was identified in 38 trials (14.67%), only one was removed in 168 trials (64.86%) and two were rejected in the remaining 53 trials (20.47%).

The EEG channels presenting high-amplitude noise were also detected and replaced by interpolation from adjacent electrodes (Reis et al., 2014). Although these signals were identified before ICA-based denoising of artifacts, their interpolation was developed after that preprocessing. This approach has been previously used by other authors (Forscher et al., 2016; Pincham et al., 2016; Bennett et al., 2018) and its main goal is to avoid mixing any non-linearity introduced by interpolation into the ICA decomposition (Nolan et al., 2010). Nonetheless, noisy EEG channels did not contribute to the rejection of artifacts (Nolan et al., 2010). As a result, the number of interpolated EEG channels was zero for 162 trials (62.55%), one for 83 trials (32.05%), two for 13 trials (5.02%) and three for the remaining trial (0.39%). Additionally, the most frequently interpolated channels were CP1 (in 21 trials, 21.65%), T8 (in 11 trials, 11.34%), CP5 (in 9 trial, 9.28%), AF4 (in 8 trial, 8.25%), T7 (in 6 trials, 6.19%), and FC2 (in 5 trials, 5.15%). The remaining channels were interpolated in <4% of trials.



2.3. Time-Delayed Version of Amplitude-Aware Permutation Entropy

Amplitude-Aware Permutation Entropy (AAPE) is an improvement of Permutation Entropy (PE) to consider amplitude information from analyzed time series (Fadlallah et al., 2013). Although this index has been mainly used in single-lag analyses, it can be adapted to deal with different time scales by changing the embedding delay τ (Azami and Escudero, 2016). Thus, for delayed-time PE computation, a time series x(n) = {x(1), x(2), …, x(N)} of length N is converted into N − (m − 1)·τ vectors of m samples, such that [image: image], for 1 ≤ i ≤ N − (m − 1)·τ. Each vector [image: image] is associated with an ordinal pattern, described as permutation κi = {r0, r1, …, rm−1} of {0, 1, …, m − 1}, such that its single components fulfill [image: image]. Hence, a total number of m! ordinal sequences πk are obtained from patterns [image: image]. Then, the relative frequency of each sequence πk is used to estimate its probability of appearance such that

[image: image]

being δ(u, v) the Kronecker delta function modified specifically to work with sequences, i.e.,

[image: image]

Then, delayed-time PE is finally obtained by computing the Shannon entropy from the probability distribution of all symbols, such that

[image: image]

The index is normalized by term ln(m!) to obtain values ranging between 0 and 1. In the case of a completely predictable signal, only a pattern πk is found and PE reports a 0 value. On the contrary, symbols πk in unpredictable time series present the same probability of occurrence. Thus, PE provides the highest value 1. Hence, predictability information reported by PE is easily interpretable (Zanin et al., 2012). Nevertheless, only the ordinal structure of patterns is considered by this index, thus discarding the information related to the amplitude of each sample.

As amplitude differences could play a key role to determine the predictability of a time series, AAPE was introduced to overcome this limitation (Azami and Escudero, 2016). AAPE computation is based on calculating the probability of repetition of each pattern πk by considering its relative frequency, and also the average absolute (AA) and relative amplitudes (RA) of vectors [image: image]. Amplitudes AA and RA are obtained, respectively, for a specific vector [image: image] as
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and

[image: image]

Then, the relative frequency of πk is computed as

[image: image]

being K an adjusting coefficient of terms AA and RA, ranging from 0 to 1. As recommended by the authors, a value K = 0.5 was considered here. Finally, delayed-time AAPE, referred to as Delayed Permutation Entropy (DPE), is computed by means of Shannon entropy, such that

[image: image]



2.4. Permutation Min-Entropy

Recently, PE has also been generalized by replacing Shannon entropy with Rényi one, reaching a better characterization of some rare and frequent ordinal patterns (Zhao et al., 2013). More precisely, Rényi Permutation Entropy (RPE) is defined as

[image: image]

where order q (q ≥ 0 and q ≠ 1) is a bias parameter. Indeed, q < 1 benefits rare events and, contrarily, q > 1 privileges salient ones. It is mandatory to note that Shannon entropy is an instance of Rényi entropy for q = 1 and, hence, RPE is a more flexible tool than PE. In this respect, RPE has reported a more complete characterization of a variety of complex dynamics, including physiological processes (Mammone et al., 2015). In addition, RPE is featured to converge to a minimum entropy in the limit q → ∞, thus providing Permutation Min-Entropy (PME) (Zunino et al., 2015). This new entropy-based metric is quickly and simply computed as
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still retaining the main advantages of PE, such as its simplicity, low computational cost, noise robustness, and invariance with respect to non-linear monotonous transformations. This index has also proven a greater ability than PE to detect the existence of subtle temporal structures in EEG channels (Zunino et al., 2015).



2.5. Feature Selection

Firstly, single DPE and PME values from lag τ = 1 to lag τ = 10 were computed for each subject by using a pattern length m = 6. Entropies computed for each time-lag are a measure of predictability of the time series and assess the effect of time dynamics from an inter-lag perspective. Indeed, larger entropy values represent more unpredictable dynamics of the EEG signals, showing an increase of autocorrelated patterns in a long-term fashion.

On the other hand, multi-lag entropy curves were parameterized by means of slopes, areas under curves and arc lengths. Indeed, some studies have previously reported that features extracted from parameterized curves may reveal important information related to the dynamics of the signals across different temporal intervals (Escudero et al., 2006). In this regard, to estimate the trend evolution of each time-lag curve, slopes between delay τ = 1 and τ = 2, 4, 6, 8, and 10 were calculated from all EEG channels of each trial and denoted as Slp1 − τ. The slope is estimated as the straight line connecting the multi-lag entropy values under study. Higher slope values suggest larger entropy increases between the original signal (τ = 1) and higher versions in consecutive multi-lag time delays (τ = 2–10).

Furthermore, areas enclosed under the multi-lag curve between lag τ = 1 and lags τ = 2, τ = 4, τ = 6, τ = 8, and τ = 10 were computed and denoted as Ar1 − τ. In this sense, a higher area is achieved when DPE and PME entropy values are higher for the majority of time delays, suggesting that time series are less predictable. Finally, the arc length (AL) for each time-delayed curve was computed between lags τ = 2 and τ = 10. An arc length value shows the morphological alterations of the curve across different lags, and may show significant differences among lags from different groups of study. The arc length of each multi-lag curve was computed as

[image: image]

referring E to the values of DPE and PME for the corresponding time-lag τ in each case.

Hence, a total of 21 features were computed for symbolic-based entropies DPE and PME on each EEG channel. More precisely, 10 single entropy values (one for each of the 10 time-lags computed), 5 tendency parameters related to time-lag curves (slopes Slp1 − 2, Slp1 − 4, Slp1 − 6, Slp1 − 8, Slp1 − 10), and 6 shape-related features (areas under curves Ar1 − 2, Ar1 − 4, Ar1 − 6, Ar1 − 8, Ar1 − 10, and arc length AL) were obtained for each EEG channel.



2.6. Statistical Analysis

Once the features were computed for each metric under study, Shapiro-Wilks and Levene tests corroborated the normality and homoscedasticity of the data, such that the results are expressed as mean and standard deviation. Then, statistical differences between features obtained for emotional states of calmness and distress were assessed for each time lag τ using a one-way analysis of variance (ANOVA). A value of statistical significance ρ < 0.05 was considered as significant.

Furthermore, the discriminatory power of each feature to distinguish between both groups of emotions was tested by using a stratified 10-fold cross-validation scheme. This methodology prevents over-fitting as well as other biases when performing the training/test operation on classifiers (Jung and Hu, 2015). Thus, the database selection containing 259 recordings was sliced into ten equally-sized folds with a balanced number of trials from both groups. Next, ten iterations were performed, such that in each one 9 out of 10-folds were used as a training subset, and 1 out of 10-folds was used as the test subset. To perform the classification, a receiver operating characteristic (ROC) approach was computed using the training trials to obtain an optimal threshold, which was then used to classify the trials in the test subset. It is worth noting that the threshold was selected as the cut-off point that maximizes accuracy (Acc). Values of sensitivity (Se), specificity (Sp), and Acc, obtained from the 10 iterations, were finally averaged to provide global and robust estimates.

Keeping in mind the objective of assessing possible relationships and complementary information among features, several advanced classifiers were used. Thus, a decision tree classifier (DTC), a support vector machine (SVM), a quadratic discriminant analysis (QDA) and a k-nearest neighbor (KNN) classifier were used. Regarding DTC, the nodes' growth was stopped when each node solely contained either fragments from only one group or a number of trials <20% of the entire dataset. Moreover, every node was split by using an impurity-based Gini index. Furthermore, the SVM classifier was run with a cubic kernel function and kernel scale of 1. Finally, the KNN classifier used an Euclidean distance metric with 10 neighbors, where the weight of the distance was computed to perform the classification by means of squared inverse. Nonetheless, given the high amount of analyzed features (21 features × 2 metrics × 32 channels), the subset providing most information was selected in first place for each classifier. Thus, a sequential forward selection (SFS) approach was used to select the subset of features minimizing misclassification rate for each classifier. A stratified 10-fold cross-validation scheme was also used to reduce overfitting in this analysis.




3. RESULTS


3.1. Results for Delayed Permutation Entropy and Permutation Min-Entropy

Mean and standard deviation of DPE and PME values for the most relevant EEG channels at different time-lags (1 ≤ τ ≤ 10) are shown in Figures 2, 3, respectively. As can be observed, both metrics obtained a similar trend throughout the increasing time-lags. DPE and PME values for calmness are higher than for distress trials, especially at lower lags. However, as time-lag increases the average differences between groups become smaller, such that at higher time-lags the mean entropy differences between groups become imperceptible. Furthermore, a certain degree of stabilization at time-lags >3 for both metrics can also be noticed, where the standard deviation decreases as the analyzed time-lag increases.
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FIGURE 2. Mean and standard deviation values of DPE at different time-lags for calmness and distress at the most significant EEG channels.




[image: image]

FIGURE 3. Mean and standard deviation values of PME at different time-lags for calmness and distress at the most significant EEG channels.



Table 1 shows the statistical significance and global classification performance, that is accuracy (Acc), for time-lags (1 ≤ τ ≤ 10) in DPE and PME metrics, respectively. Although there are similarities among mean entropy curves, the performance achieved for each metric differs considerably throughout the time-lags. In general terms, DPE shows a poorer performance discriminating between emotional states of calmness and distress than PME. As can be observed in Table 1, only lower time-lag entropies show a relevant statistical significance. Moreover, the overall discriminatory power for all cases is around 60%, decreasing even more when higher time-lags are analyzed. This effect is clearly seen at parieto-occipital and occipital channels PO3, O1, O2, and Oz. For instance, PO3 channel achieved a global performance of 62.9% at time-lag τ = 1, while accuracy decreased down to 57.10% at time-lag τ = 9. Only parietal channel P3 showed a regular statistical significance throughout every single time-lag, reaching a maximum global classification performance at time-lag τ = 2 with 63.7% of subjects classified correctly.



Table 1. Results of ρ and Acc of the most relevant EEG channels for DPE and PME at different time-lags.
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On the contrary, PME showed better global classification performance for certain channels, especially at higher time-lags. For instance, parietal channel P3, classified correctly 68.3% of trials between calmness and distress at time-lag τ = 9. Similarly, centro-parietal channel CP2 showed a poor performance when no lag was applied (τ = 1), but it raised at higher time-lags, achieving the best single global performance at time-lag τ = 9, classifying correctly the 68.7% of the subjects. This improvement supposes an increase of more than 13% regarding PME at no lag τ = 1 and more than 8% compared with DPE metric at time-lag τ = 9. Moreover, there seems to be a certain degree of complementarity between DPE and PME at different time-lags, because the same EEG channels measured with each metric show relevant information at different time-lags. This contrast is well-noticed at parietal channel P3. No relevant differences between several time-lags were found when DPE was computed for P3, i.e., all time-lags presented a similar discriminatory power. On the contrary, the same channel showed an important increasing performance when it was analyzed by means of PME metric at higher time-lags; hence relevant information was noticed when time-delay was performed.



3.2. Results From Curve-Related Parameters

Table 2 summarizes diagnostic accuracy of every curve-based parameter derived from DPE analysis for the most relevant channels. As can be seen, almost all features achieved statistically significant differences between groups (ρ < 0.05). Features obtained from parietal channel P3 achieved a notable statistical significance, especially in the area under the time-lag curve (Ar1 − 2 to Ar1 − 6), thus stating the differences between curves at lower and their convergence at higher time-lags. It is also remarkable that parieto-occipital channel PO3 achieved a good performance for all features. With respect to slope-based parameters, global accuracy ranged from 60.62 to 62.23%, Slp1 − 10 being the feature with maximum performance for this channel. Similarly, accuracy of area-based lag parameters ranged from 59.07 to 62.16%, where Ar1 − 2 reported the maximal performance. It is also worth noting that arc-length reached the maximum global accuracy, classifying correctly 63.47% of trials, and thus overcoming the best performance obtained by single DPE entropy at the same channel at lag τ = 1. Finally, the rest of the parameters computed from occipital channels O1, O2, and Oz and centro-parietal channel CP2 obtained a more limited performance, their global accuracy ranging from 53.28 to 61.12%.



Table 2. Results of ρ and Acc of the DPE curve-related parameters.
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Similarly, Table 3 summarizes discriminant ability of all curve-based parameters derived from PME analysis for the most relevant channels. In this case, both statistical significance and global accuracy are more limited than for DPE curve-related parameters. All features computed on parietal channel P3 and parieto-occipital channel PO3 resulted to be statistical significant. The global accuracy obtained for these channels ranged from 57 to 61%, thus achieving a worse performance than before. Moreover, only a few curve-related parameters from occipital channels O1, O2, and Oz showed statistical significance, and the global accuracy was below 60% for all the parameters. Finally, CP2 achieved the worst performance, where global accuracy was around 55%.



Table 3. Results of ρ and Acc of the PME curve-related parameters.
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3.3. Multi-Parametric Analysis and Advanced Classification

For each classifier, the optimal number of features minimizing its misclassification rate through an SFS scheme ranged from 5 to 8 in each iteration of a 10-fold cross-validation approach. The occurrence of the most relevant variables are displayed in Figure 4. As can be seen, entropy-based metrics were mainly chosen for time-lags longer than 1 and curve-related variables both from DPE and PME. Moreover, it should be noted that most of these features were selected in nearly all folds, thus only changing the less relevant ones for the resulting classification models. More precisely, for all classifiers, most DPE-based parameters were chosen from EEG channels P3 and PO3 and most PME-based features from channels P3, Pz, FC5, C4, and CP5.


[image: image]

FIGURE 4. Occurrence of the most selected features through an SFS scheme within a 10-fold cross-validation approach for each classifier.



Once the feature selection process finished for each classifier, the obtained classification results are displayed in Table 4 in terms of sensitivity, specificity and accuracy. Note that global discriminant ability for all approaches ranged from 75.66% (for QDA) to 92.32% (for KNN). Furthermore, the SVM classifier achieved a comparable performance to KNN, classifying correctly 91.12% trials. Finally, it should also be highlighted that both SVM and KNN classifiers reported the largest diagnostic accuracies with well-balanced values of sensitivity and specificity.



Table 4. Values of sensitivity, specificity, and accuracy obtained for each classifier once the feature selection process had finished.
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4. DISCUSSION

During the last years automatic emotion recognition has received special attention due to its importance in areas, such as medicine and education. Among the different types of emotions, continued distress is one of the most studied because it is often harmful for health. Considering its relevance, distress has been assessed in a wide variety of scenarios, including driving tasks (Healey and Picard, 2005), military exercises (Skinner and Simpson, 2002), surgical procedures (Marrelli et al., 2014), and on-line exams (Gomes et al., 2014), among others. An interesting study recently published shows a methodology to redirect stress episodes toward positive moods (Fernández-Caballero et al., 2016).

Taking into consideration this preamble, several works have been published in the literature. Their research is focused on automatic distress recognition using EEG recordings (Hosseini et al., 2010; Khosrowabadi et al., 2011; Peng et al., 2013; Minguillon et al., 2016; Al-Nafjan et al., 2017; Al-Shargie et al., 2018; Jebelli et al., 2018; García-Martínez et al., 2019b). However, only a few of them have analyzed this phenomena from a non-linear point of view (García-Martínez et al., 2016). Recently, another approach reported that symbolic analysis of brain dynamics was able to detect distress (García-Martínez et al., 2017). In that study, PE and its extension called AAPE were used to assess brain dynamics for each EEG channel. However, the analysis was carried out without considering the possibility of exploring hidden non-linear information at time-lags higher than one. This was the starting point that motivated the present study.

To the best of our knowledge, this is the first work addressing the effects of multi-lag for distress recognition from EEG recordings. For this purpose, a modified version of AAPE was used to analyze EEG signals with distinct time-lags. Additionally, PME was also considered in this study, since it is an improved symbolic alternative for identifying the existence of hidden temporal dynamics in time series and it allows a better discrimination of signals with similar temporal correlations (Zunino et al., 2015). Indeed, it has been recently applied in the study of emotion recognition using heart rate variability with promising results (Xia et al., 2018).

As expected, both DPE and PME metrics reported the same trends when calculating the mean entropy values across the different time-lags, as was observed in Figures 2, 3. Calmness emotional state reported higher entropy values than distress for all EEG channels, especially at lower time-lags. However, this difference became smaller as the time-lag increased. Furthermore, the time-lag analysis revealed additional entropy information not observed at time-lag τ = 1, especially at centro-parietal and occipital channels. This effect can also be well-noticed in Figure 5, which shows a topological representation of mean entropy values for each channel at the first nine time-lags using PME. Although the general trend is maintained across time-lags, the imprint patterns change, thus revealing information at certain channels not seen before.
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FIGURE 5. Topological EEG representation of average calmness and distress values for time-lags from τ = 1 to τ = 9 using PME metric.



These results enhance the presence of a larger diversity of ordinal patterns in some local time series in calmness trials in comparison to distressed ones, thus suggesting the existence of more complex brain dynamics in calmness state. Such loss of complexity under distress might be associated to a lower brain's ability of adaptation to external stimuli and environmental changes. Indeed, decomplexification of physiological systems has been traditionally identified with a lower ability to manage information, and therefore with a higher probability of suffering a pathological condition (Goldberger et al., 2002; Lipsitz, 2004). Interestingly, these findings are in agreement with other studies published during the past years. In this sense, increased values of correlation dimension in calm participants with respect to distressed subjects have been reported so far (Hosseini et al., 2015). In another work, a decrease of relative power in subjects facing a series of distressful stimuli was also described (Bastos Filho et al., 2012). Finally, the fact that this trend is maintained throughout the different time-lags reinforces a previous study where no lag was applied (García-Martínez et al., 2017).

Another relevant finding is that single discriminatory power in multi-lag analysis has notably improved with respect to other previous studies dealing with singe-lag (García-Martínez et al., 2017) and MSE (Martínez-Rodrigo et al., 2019) analysis, especially in some specific channels. Thus, left parietal channel P3 is still a very relevant channel for distress detection using symbolic analysis. This finding was already reported in our recent previous work where AAPE was applied to the data (García-Martínez et al., 2017). Nevertheless, other studies have already corroborated this association with the left parietal area. Thus, a higher activation has been observed during normal non-depressed and reasonably positive moods in the left parietal area than in the right one (Davidson, 1988). In the same line, meditation has also been characterized by an increasing activity of the left parietal region (Manna et al., 2010). In the present study, P3 showed robustness and consistency across different time-lags when discriminating between emotional states of calmness and distress. Nevertheless, the global classification performance was improved notably for time-lags higher than one, especially when data was analyzed by means of PME metric, increasing from 61% when no lag was applied up to 68.30% when time-lag τ = 9 was computed.

These findings may indicate the existence of long-range correlations in the data, which have only been sufficiently highlighted by considering a multi-lag entropy-based analysis. Indeed, these observations can be visually corroborated in the topological representation of brain areas depicted in Figure 6. It represents average PME values computed from emotional states of calmness and distress for time-lags τ = 1 (a) and τ = 9 (b). As can be seen, entropy values obtained at time-lag τ = 9 are quite different compared to the analysis with no lag, showing a more balanced pattern between left and right hemispheres throughout frontal, parietal and occipital areas. In addition, the entropy differences between calmness and distress are also shown in this figure (on the right column). Thus, the higher differences are found in left central region for τ = 1, whereas a higher activation of left parietal region is obtained for τ = 9.


[image: image]

FIGURE 6. Topological EEG representation of average calm and distressed patients for time-lag τ = 1 vs. τ = 9 using PME metric.



The right frontal channel F4 also presents a considerable difference of activation between calmness and distress states both in τ = 1 and τ = 9 cases. Interestingly, the relevance of the mentioned areas and the possible relation between frontal and parietal areas of opposite hemispheres has already been depicted in our previous studies. In fact, 30 years ago it was verified that a relative left parietal brain activation is balanced by a relative right parietal brain activation and vice-versa (Davidson, 1988). A similar outcome has also been observed in another study where patients with different mental disorders were conducted to practice meditation (Rubia, 2009).

Moreover, the right brain hemisphere deserves especial attention in this work. Considering our previous findings, the right centro-parietal channel CP2 showed no relevance when analyzing emotional states with symbolic entropies (García-Martínez et al., 2017). This outcome has been corroborated again in this work, where neither DPE nor PME showed statistical significance at τ = 1 (no lag), and the global classification was below 55% in both cases (see Table 1). However, when analyzing the same brain area at higher time-lags, a notable increase of statistical significance and discriminatory power was observed. It is especially the case for CP2 with PME at time-lag τ = 9 (ρ = 0.0026 and Acc = 68.70%), thus achieving the highest global classification in this study. The relevance of the channel CP2 can also be observed in Figure 6, where the difference is not notable for τ = 1, but it is for τ = 9.

These findings, together with the relevance of the results reported by the left parietal channel P3, reveal the possible existence of complementary information among the parietal lobes of both brain hemispheres. Indeed, a number of previous works reported a certain degree of complementarity between right and left posterior areas under stimulation of distress and calmness. For instance, interesting information about parietal and occipital asymmetry at different frequency bands during distressful tasks has been described (Park et al., 2011). Furthermore, an intensive parietal lobe activation under anxiety and distress conditions has also been reported (Nitschke, 1998).

Recently, occipital electrodes O1 and O2 have also been explored to evaluate variations in complexity provoked by visual elicitation (Tonoyan et al., 2016). In a similar line, the posterior brain area has been related to the arousal component of emotions, thus being their processing essential for the recognition of emotions (Dolcos and Cabeza, 2002). Interestingly, in our previous study the combination of the left parietal channel P3 and the right parietal channel P4 achieved a notable performance discriminating between emotional states of calmness and distress, thus demonstrating the inter-correlation of these brain regions (García-Martínez et al., 2017). However, in that study, brain dynamics were assessed by means of different computation approaches, where each methodology highlighted one of the hemispheres in isolation. In the present work, both areas have resulted to be significant when analyzed with PME metric at higher time-lags, obtaining results comparable to those reported individually by other metrics used in our previous works.

The obtained multi-lag curves were also parameterized and studied to compare the relative complexity of normalized time series. The use of curve profiles for characterization of biological signals has been already proposed by other authors (Costa et al., 2005). Accordingly, Slp1−4 and Slp1−6 reflect that the degree of change in the complexity of some EEG channels is more relevant in smaller time-lags. These outcomes were observed in Figures 2, 3, where changes in the slopes could be seen until the curves stabilized around time-lag τ = 5. In this regard, parietal and occipital channels showed statistical relevance at these slopes for DPE metric, but only parietal channels resulted relevant when curved-related parameters were calculated for PME metric. It is worth noting that the same outcomes were also obtained for the area under curve parameters.

On the other hand, the developed multivariate analysis has shown that putting all the data together led to a notably overall performance increase, which demonstrated that multi-lag analysis is able to provide additional, as well as complementary information, to single-lag one. To this respect, an SFS scheme was applied under a 10-fold cross-validation approach to choose the optimal subset of features maximizing the classification rate for each classifier. Interestingly, the most relevant features selected for each classifier were mainly computed from EEG channels showing the largest differences between emotional states of calmness and distress. Indeed, DPE computed from channels PO3 and P3 reported high statistically significant differences between the two groups of trials, as shown in Tables 1, 2. Similarly, PME obtained from channels P3, Pz, FC5, C4, and CP5 provided high visual differences, as shown in Figures 5, 6. Moreover, let us highlight that all selected features were computed from time-lag longer than 1 or from τ-based curves, as shown in Figure 4.

Another relevant aspect is that the results obtained in the present study outperformed notably other similar works that have analyzed non-linear metrics from the same database with no lag, such as summarized in Table 5. Indeed, a global accuracy of 69.6% has only been reported by applying a high-order crossing approach to four EEG channels (Bastos Filho et al., 2012). In addition, different non-linear metrics have reported a higher level of complexity in stressed subjects (Peng et al., 2013). In other work, combining quadratic sample entropy values from several EEG channels through a DTC classifier, a discriminant ability around 75% has been provided (García-Martínez et al., 2016). On the other hand, a discriminant model based on SVM and using irregularity and symbolic metrics reached a diagnostic accuracy >80% (García-Martínez et al., 2019b). Similarly, variants of PE have already been applied to distress recognition, with a classification performance of 81.31% (García-Martínez et al., 2017). However, in the present study an improvement of about 10% has been reported by making use of the same kind of SVM classifier.



Table 5. Comparison of the most relevant works dealing with automatic identification of negative stress from the recordings.
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Likewise, the classification results obtained in the present study also significantly improved the sole recent work conducting a MSE analysis on EEG signals for distress identification (Martínez-Rodrigo et al., 2019). In fact, making use of the same SVM-based approach, here a classification rate between distress and calmness emotional states has been obtained about 6% higher than for MSE. It should be noted that both MSE and multi-lag entropy analyses pursue the same goal of quantifying complexity at different time scales. For this purpose, MSE uses a rescaling procedure based on filtering out the shorter oscillations and keeping the longer ones (Humeau-Heurtier, 2015). This approach unavoidably removes some frequency content, specially from rescaled time series presenting very fast oscillations (Humeau-Heurtier, 2015). Such loss of frequency information could explain the aforementioned poorer outcome reached by MSE, because entropy computation from time-lagged samples does not alter time and frequency information from original data (Govindan et al., 2007; Kaffashi et al., 2008). Moreover, this finding could also justify the fact that, whereas no changes were noticed across all time scales in MSE analysis in brain areas activating and supporting distress (Martínez-Rodrigo et al., 2019), large differences have been observed for different time-lags, as extensively described in previous paragraphs.

Finally, there are some limitations in this study that deserve our attention. Firstly, the studied DEAP database is not exclusively designed for recognition of calmness and distress emotions. In fact, many other emotional states were also recorded during the experiment (Koelstra et al., 2012). Moreover, the number of trials eliciting calmness and distress is notably unbalanced for each healthy volunteer, thus making the use of a subject-based classification impossible. Secondly, further analyses on other similar databases like ASCERTAIN (Subramanian et al., 2018), AMIGOS (Miranda Correa et al., 2018), and DREAMER (Katsigiannis and Ramzan, 2018) are required to corroborate and generalize the obtained results. However, the impact of some potential confounding aspects on the results provided by several databases will have to be carefully analyzed for this purpose. Thus, it should be thoughtfully scrutinized how different experimental setups, population distributions in terms of age and gender, and technical aspects related to the acquisition of EEG signals mask changes in brain dynamics under distress. Thirdly, the video clips used as stimuli have a duration of 1 min, which may be too much time to just elicit a single emotional state. Thus, participants may present different emotions for the same stimulus, making it difficult to properly rate their level of valence and arousal. Finally, only EEG signals were assessed in this work, thus discarding the information reported by other physiological variables. However, peripheral recordings also contained in DEAP and other databases, in combination with brain dynamics, will be explored in further studies for the sake of detecting distress episodes.



5. CONCLUSIONS

In this study, two permutation entropies, adapted to work in a multi-lag context, have been analyzed for the first time to automatically identify negative stress. This multi-lag analysis has revealed new insights never seen before, thus notably improving the performance of distress identification. Considering the relevant results that permutation entropy has previously reported in non-lag and multiscale contexts for human emotion detection, it becomes highly interesting to analyze brain dynamics from a time delay viewpoint. For this reason, we hypothesized that there might exist relevant and complementary information at higher time-lags among different brain areas. The results obtained after performing the analyses have confirmed our initial ideas, reporting an improved classification between emotional states of calmness and distress.

Moreover, left parietal and right centro-parietal channels showed remarkable activation at higher time lags, suggesting that removing long-range linear correlations may help to better evaluate the non-linear information of the data. Finally, several discriminant models obtained from advanced classifiers were used to study the complementarity of the features computed at different time-lags for each EEG channel. The resulting functions have combined single entropy values from different channels calculated at lags higher than one with curve-related parameters, thus corroborating that there are more relevant information when time-lags are applied to the time series than when data are analyzed without any time delay or averaging consecutive samples.
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Magnetic resonance imaging (MRI) is a key technology in multimodal animal studies of brain connectivity and disease pathology. In vivo MRI provides non-invasive, whole brain macroscopic images containing structural and functional information, thereby complementing invasive in vivo high-resolution microscopy and ex vivo molecular techniques. Brain mapping, the correlation of corresponding regions between multiple brains in a standard brain atlas system, is widely used in human MRI. For small animal MRI, however, there is no scientific consensus on pre-processing strategies and atlas-based neuroinformatics. Thus, it remains difficult to compare and validate results from different pre-clinical studies which were processed using custom-made code or individual adjustments of clinical MRI software and without a standard brain reference atlas. Here, we describe AIDAmri, a novel Atlas-based Imaging Data Analysis pipeline to process structural and functional mouse brain data including anatomical MRI, fiber tracking using diffusion tensor imaging (DTI) and functional connectivity analysis using resting-state functional MRI (rs-fMRI). The AIDAmri pipeline includes automated pre-processing steps, such as raw data conversion, skull-stripping and bias-field correction as well as image registration with the Allen Mouse Brain Reference Atlas (ARA). Following a modular structure developed in Python scripting language, the pipeline integrates established and newly developed algorithms. Each processing step was optimized for efficient data processing requiring minimal user-input and user programming skills. The raw data is analyzed and results transferred to the ARA coordinate system in order to allow an efficient and highly-accurate region-based analysis. AIDAmri is intended to fill the gap of a missing open-access and cross-platform toolbox for the most relevant mouse brain MRI sequences thereby facilitating data processing in large cohorts and multi-center studies.

Keywords: processing pipeline, MRI, atlas registration, stroke, preclinical neuroimaging


INTRODUCTION

Understanding brain function in health and disease at different hierarchical levels requires collaborative interdisciplinary efforts using multiple experimental methods. Neuroimaging, especially magnetic resonance imaging (MRI), is a critical element of that approach since the use of MRI preserves the anatomical morphology of the brain tissue almost perfectly. Conscious of the high data integrity, large-scale human MRI initiatives are currently underway to provide standardized sharing repositories (Hodge et al., 2016; Gorgolewski et al., 2017) and processing tools (Rex et al., 2003; Jenkinson et al., 2012). In order to be able to compare information derived from different studies, images are spatially normalized to a common coordinate system such as the brain atlas with defined coordinates and assigned structures from Talairach and Tournoux (Fang et al., 1995) or the Montreal Neurological Institute/International Consortium of Brain Mapping (MNI/ICBM; Mazziotta et al., 1995). In order to achieve similar routine atlas-based neuroinformatics of mouse brain MRI, several challenges need to be overcome: (1) the image signal-to-noise ratio (SNR) is dramatically reduced due to image voxels in mice which are 10–15-fold smaller in all dimensions (Nieman et al., 2005); (2) scanner hardware consisting of gradients, coils as well as the animal fixation and anesthesia need to be miniaturized and adapted to the mouse body and physiology (Driehuys et al., 2008); (3) human MRI processing tools usually do not work with mouse brain data due to the striking differences in voxel size; and (4) a common 3D MRI-compatible brain atlas with a detailed segmentation is needed to facilitate atlas-based neuroinformatics at different scales. Recent developments in scanner hardware, e.g., ultra-high-field MRI scanner (>7T) and dedicated ultra-sensitive coils, enabled in vivo mouse brain MRI with structural anatomical details at 100 μm in-plane resolution as well as brain-wide network analysis at the functional and structural level (Hoehn and Aswendt, 2013). However, there is currently no standardization or consensus on MRI acquisition, processing, and atlas-based neuroinformatics. Although several mouse brain atlases have been developed and applied (Hess et al., 2018), not all of them are continuously updated and maintained to be accessible online. The most detailed 3D mouse brain atlas, the Allen Brain Reference Atlas (ARA), provides more than 1,000 brain structures (Lein et al., 2007; Dong, 2008). However, the ARA was generated from two-photon microscopy images with a very low image correlation to MRI (e.g., ventricles appear black and not white as in T2-weighted MRI). Most labs rely on custom-made code or adapt their data to the processing requirements of human imaging toolboxes (van Meer et al., 2010; Hübner et al., 2017; Green et al., 2018), often with lack of validation. Existing software pipelines (Supplementary Table S1) require commercial software, use different MRI atlases or do not incorporate algorithms for both, structural and functional MRI (Budin et al., 2013; Koch et al., 2019). The associated lack of reproducibility and comparability represents a key drawback for reliable multi-center and translational animal studies. Therefore, we developed a novel the Atlas-based Imaging Data Analysis Pipeline, AIDAmri, for structural and functional MRI of the mouse brain using the ARA coordinate system. AIDAmri provides an automated, efficient and highly accurate region-based analysis of multi-parametric MRI, such as anatomical T2-weighted MRI, diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI). The modular and open-source concept was developed in Python 3.6 for cross-platform use. That allows the critical comparison of different imaging methods and studies. Each processing step of the pipeline was validated with qualitative and quantitative measures on mouse brain MRI data acquired at 7.0, 9.4 and 11.7T using different mouse strains and experimental stroke models. Stroke was chosen as an example, as lesions result in dynamic brain deformations due to tissue swelling and atrophy, which presents a major challenge for all automated processing and atlas registration algorithms.



MATERIALS AND METHODS


Pipeline Overview

The AIDAmri pipeline enables the processing and analysis of both structural and functional mouse brain MRI through distinct modules which can also be used separately. In the following, we provide a detailed explanation of the processing steps (Figure 1). The software pipeline is freely available on Github1. For a detailed how-to and installation instructions see the manual (Supplementary Material, Manual). The AIDAmri interface (GUI) is available for executing the main functions.


[image: image]

FIGURE 1. Schematic overview of AIDAmri processing modules and subsequent computational steps for anatomical data (T2-weighted and T2 map), structural (diffusion tensor imaging, DTI) and functional data (resting-state functional magnetic resonance imaging, rs-fMRI). The given image function I(x) represents the 3D MRI image space and describes all intensities at the position [image: image]. All data types are pre-processed using a re-orientation fre(x), bias correction fbc(x) and brain extraction fex(x). The user has the opportunity to define individual regions of interest (ROIs), e.g., a lesion mask, to compare particular areas over different measurements by generating an incidence map. The combined transformation f of the affine fA and non-linear transformation fNL is applied to MRI template MTPL IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT2(x). DTI IDTI(x) and rs-fMRI IfMRI(x) processing steps were implemented based on established protocols (Budde and Song, 2010; Kim et al., 2012; Gorges et al., 2017). AIDAmri generates a variety of outputs such as the connectivity matrices which can be used for further atlas-based connectivity analysis. Icons designed by Smashicons from www.flaticon.com.



A reference adult mouse T2-weighted (T2-w), DTI and rs-fMRI data set acquired at 9.4T is available for testing purposes2. Image processing is performed in the Allen Mouse Common Coordinate Framework (CCF v3) using the Allen Mouse Brain Reference Atlas, ARA3. It is possible to use manually drawn regions-of-interest (ROIs) or other brain atlases as well. Here, the ARA was implemented as it is the most advanced brain atlas to-date (Supplementary Figure S1 and Supplementary Table S2). To describe the following complex morphological operators (e.g., the image registration), we chose the commonly used mathematical model to describe the image with the given image function I(x) where x describes all voxel positions with [image: image]. Based on that model, the given functions transfer voxels of one subset X into another subset Y with f(x) = x ∈ X | f (x) ∈ Y} in the three-dimensional image space.

We have included algorithms for the most widely used and most relevant MRI sequences assessing structural and functional connectivity changes using MRI which are not available in other pipelines (see Supplementary Table S1, for a selection of other mouse brain imaging pipelines):


(1) T2-weighted MRI (acquired with Turbo spin echo (TSE) or Rapid Acquisition with Refocused Echoes (RARE) sequences) for high-contrast and high spatial resolution imaging of brain anatomy and pathophysiology (e.g., hyperintense signal for segmentation of stroke lesions),

(2) Quantitative T2-mapping (measured for example by multi slice multi echo, MSME, sequences), e.g., for longitudinal monitoring of contrast agent accumulation or lesion development,

(3) DTI, which maps the diffusion process of the water molecules in biological tissues (acquired with diffusion-sensitized sequences such as echoplanar imaging, EPI, along at least 6 directions). DTI is used to derive quantitative measures such as Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD), and Axial Diffusivity (AD). These measures relate to biological differences and are used for clinical diagnosis (Bihan et al., 2001). Furthermore, MRI-based tractography using DTI, provides non-destructive, 3D, brain-wide connectivity maps, which are used in animal and human studies too (Budde and Song, 2010),

(4) Resting state functional MRI (rs-fMRI), which provides functional data on temporal correlation of spontaneous blood-oxygenation level-dependent (BOLD) changes at rest that reflect regional interactions between two particular brain regions in task-negative state. Functional connectivity derived from rs-fMRI is used in preclinical and clinical studies (Grefkes and Fink, 2014; Gorges et al., 2017).





MRI Data Acquisition

The MRI data was acquired at the Max Planck Institute for Metabolism Research, Cologne, using a 94/20USR BioSpec Bruker system (Bruker, BioSpin, Ettlingen, Germany) equipped with a cryo-coil and operated with ParaVision (v6.0.1). The mice were anesthetized initially with Isoflurane (2%–3% in 70/30 N2/O2) and head-fixed in an animal carrier using tooth and ear bars. Fixation and anesthesia are necessary to minimize movement artifacts. Respiration, and body temperature were noninvasively monitored using an MR-compatible monitoring system (Small Animal Instruments Inc., New York, NY, USA) and displayed and recorded using a custom-made data acquisition system based on DASYLab (measX, Mönchengladbach, Germany). To maintain body temperature at 37°C, a feedback-controlled water circulation system (medres, Cologne, Germany) was used. T2-weighted, rs-fMRI and DTI scans (Table 1) were sequentially acquired using n = 22 C57BL6/J mice which received photothrombotic stroke in contrast to sham surgery as described previously (Toda et al., 2014). The animal experimental data were collected and managed using a custom-made and cloud-based relational animal database4 described in detail elsewhere (Pallast et al., 2018). Also, NT = 40 test data sets linked to previously published (Aswendt et al., 2012; Green et al., 2018) or unpublished (provided by Mathias Hoehn) projects. The data sets were acquired at different field strengths and with animals of different strains.


TABLE 1. Characteristics of the performed 9.4 T MRT measurements.
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The pipeline AIDAmri processes DTI and rs-fMRI data independently, but it is necessary to acquire an anatomical reference image in the same measurement, such as a T2-weighted image.


Step 1–Data Conversion and Signal-to-Noise Calculation

In the first step, Bruker raw data are converted to the commonly used format of the Neuroimaging Informatics Technology Initiative (NIfTI; Cox et al., 2004). Other imaging formats, such as DICOM, need to be converted including all header information (e.g., using the software MRIcron5 or the Python package dicom2nifti6). The AIDAmri converter algorithm automatically detects the type of performed measurement and applies conversion in the correct order by reading the respective image header. According to that information, the converted NIfTI-files are sorted in related folders. The anatomical dataset is used to calculate the nonlinear registration which is later applied to the structural and functional data. AIDAmri not only transforms T2-weighted images from the raw data but also calculates the exponential decay over the echo time from multi-echo sequences to calculate quantitative T2 maps.

Automated quality control is included based on SNR calculations based on the automatic noise variance estimation which was chosen proven to be more precise in human MRI (Brummer et al., 1993). Furthermore, that method is less error-prone as the common approach to calculate the SNR (Henkelman, 1985), by placing a ROI inside anatomical regions and another ROI in the noise, and calculate the ratio of the mean signal and the standard-deviation as SNR (Levenberg, 1944).



Step 2–Pre-processing


Image Re-orientation

All subsequent steps, especially the atlas registration, depend on a defined image orientation of the input data. According to the common three-dimensional coordinate system with three planes, we decided to implement the right-hand “neurological” RAS system. In our setting, the mouse lies prone and is inserted with the head-first into the scanner. Images were acquired selecting “head-supine” in ParaVision. Hence, a transformation fre(x) is necessary to re-orientate the images in standard space. This results in images viewed from feet-to-head direction and the right side of the mouse is on the right side of the image.



Bias-Field Correction and Brain Extraction

In case of surface coils, there is a strong bias field on the MR image (Figure 2A). AIDAmri contains an automated bias-field correction fbc(x). We implemented the multiplicative intrinsic component optimization (MICO) which was previously used only in human MRI (Li et al., 2014). We compared MICO to the widely-used N4 bias-field correction (Tustison et al., 2010). A total of n = 22 T2-weighted (T2-w) data sets and 10 DTI data sets were compared using the coefficient of variations (CV) metric (see “Results” section) leading to full integration of MICO. The corrected images (Figure 2B) are used to apply the brain extraction (skull stripping). AIDAmri runs the FMRIB Software Library (FSL) tool BET with the options -r set to the brain radius in mm and -R for an “robust” iterative estimation of the brain center. Thus, MR images with variable center-of-gravity from animals positioned slightly different between scans will not affect the skull stripping accuracy (Figure 2C; Smith, 2002). To allow FSL to process the data, the data dimension of need to be scaled by a factor of 10 to simulate human-similar voxel sizes. In order to avoid image interpolation, up- and downscaling is carried out automatically only for the related NIfTI header file, whereas the voxel size of the raw image remains the same.


[image: image]

FIGURE 2. Visualization of step 2—pre-processing for a representative T2-weighted data set. The raw data set IT2(x) (A) underwent a re-orientation fre(x) and bias field correction using multiplicative intrinsic component optimization (MICO) fbc(x) to reduce inhomogeneities (B). The subsequent registration is done on a brain extracted volume [image: image] (C) by deforming the MTPL IT(x) (D) with affine fA(x) and non-linear fNL(x) transformation.





Region-of-Interest Segmentation

The user then has the option to define ROIs. We use that option to delineate the ischemic stroke lesion on T2-weighted images using the 3D snake evolution tool of ITK-SNAP7 (Yushkevich et al., 2006). The resulting segmentation is used to evaluate specific areas separately by generating a list of regions that are overlaid with the segmented area of the brain, e.g., to proof the position of an electrode. If several segmented ROIs are provided, a color-coded incidence map can be created, e.g., to highlight how many mice had a certain brain area affected by the stroke.



Mouse Brain Atlas and MRI Template

We developed an in-house MRI template (MTPL) IT(x) with strong correlation to the T2 raw images IT2 (see Supplementary Figure S2) by using N = 30 randomly chosen data sets of healthy C57BL6 mice of similar age. The mean of all voxels described in the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were calculated over all N, and the resulting template was associated with the original ARA (Allen Brain Reference Atlas, CCF v3, 50 μm isotropic resolution; Figures 3A,B). To obtain a complete overview of the ARA label IDs, we transferred the available information about label IDs, acronyms and names to a custom-made relational database (https://github.com/maswendt/AIDAdb; to access the file, a www.ninoxdb.de account is required). The database lists all brain regions according to the atlas ontology and provides simple access to associated parent and child labels. Using that database, we selected hierarchical lower regions of interest and defined the related parent labels (Figure 3C) to build a parental atlas IA↑(x). This results in a reduction from >1,000 regions in IA(x) to 49 regions in IA↑(x). In order to compare regions of the left vs. right hemisphere, the original ARA and the custom parental ARA were we splitted along the sagittal plane (Figure 3D).


[image: image]

FIGURE 3. 3D cut-outs of the (A) Allen Brain Reference Atlas (ARA) and (B) the in-house developed MRI template (MTPL). The annotations of the ARA IA(x) and the related ARA template (A) are overlaid with the MTPL IT(x) consisting of N = 30 T2w. Parental ARA labels IA↑(x) (C) and detailed ARA labels with hemisphere split (D).





Registration

We decided to use a specific multi-step registration scheme (Figure 4). The initial assumption of AIDAmri is that all given information of the ARA IA(x) is represented in the reference image space X. The assignment of this information to the individual MRI measurements IT2(x), IDTI(x) and IfMRI(x) is achieved by a suitable transformation f which transforms X in the acquisition image space Y, such that


[image: image]


Each individual transformation f is a combination of an affine fA(x) and non-linear fNL(x) transformation computed using NiftyReg (Centre of Medical Image Computing, University College London, UK). NiftyReg was chosen based on a direct comparison (see Figure 2D and Supplementary Figure S2) of registration accuracy with the developed MTPL IT(x) to FSL (Jenkinson et al., 2012), Advanced Normalization Tools (ANTs; Avants et al., 2008) and elastiX (Klein et al., 2010). Consequently, for linear affine registration the symmetric global block matching approach was implemented [NiftyReg, reg_aladin (Modat et al., 2014) with 6 degrees-of-freedom (DOF)]. To describe non-linear deformations, landmark points are placed on the reference image and iteratively deformed [NiftyReg, reg_f3d (Modat et al., 2010), with 12 DOF]. The non-linear transformation fNL(x) describes subcortical brain changes, such as a baseline shift. The multi-step registration requires the different scans to be orientated the same, which can be achieved by copying the orientation from the first to the subsequent scan(s). In that scenario, the non-linear deformations do not change significantly over different scans of one imaging session. Hence, the quantification of fNL(x) is only necessary once and the relative change can be applied to all data sets that are acquired in one session (Figure 4). The differences between each data set in one section can be adequately described by an affine fA(x) transformation which includes scaling, rotation, translation, compression and shearing. The registration procedure exclusively serves the purpose to transfer data of ARA to the related MRI data sets and to correlate functional and structural data. The processing steps to extract the connectivity information from DTI and activity information from rs-fMRI are conducted with the unmodified raw-data.


[image: image]

FIGURE 4. Schematic overview of the multi-step registration procedure for the T2-weighted, DTI and rs-fMRI data [IT2(x), IDTI(x) and IfMRI(x)]. The affine fA and non-linear transformation fNL is applied to MRI template (MTPL) IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT2(x). The non-linear deformation fNL between MTPL and the T2w/T2m is calculated only once and then linked to the respective affine transformation to pre-processed data of DTI IDTI(x) and rs-fMRI IfMRI(x).



The deformation f between IT2(x) and IT(x) is quantified minimizing the Kullback–Leibler divergence (Figure 4; Kullback and Leibler, 1951). The combined transformation f of the affine fA(x) and non-linear transformation fNL(x) are applied to the MTPL IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT2(x). Both, the affine transformation fA(x) and the non-linear transformation fNL(x) are stored for each processed data set separately. As an important factor influencing registration precision, we set the Jacobian determinate penalty to 0.3 where the user can increase the minimum deformation field from 1 mm to 5 mm depending on the strength of the required deformation. The affine transformation fA(x) is quantified by minimizing the Kullback–Leibler divergence between the current DTI or fMRI measurement and the related T2 measurement IT2(x). At this processing step, we have an ARA for all assumed data sets IT2(x), IDTI(x) and IfMRI(x), which lies in the same image space and is completely superimposed with the respective data. All subsequent fully automatic analysis steps of functional and structural data are based on a quantification that are provided by the anatomical regions of the associated ARA.

In order to validate the performance of the automated registration, we compared the automatically transformed ARA template of NT = 40 test data sets (Table 2) with an ARA template that was semi-automatically registered by two independent observers O1 and O2 using a previously described landmark-based registration approach with the help of the software 3DSlicer8 (Kikinis et al., 2014; Ito et al., 2018). The error range between the transformations of both observers was set as a reference. We calculated the distance between IA(x) and the ARA templates of both approaches to find out where a high agreement exists. The Euclidian distance or L2-Norm were used as one of the most common mathematical quantity of the distance between two-dimensional image functions. However, a slight shift or a rotation would hardly change the appearance of the image and possibly not be detectable by the human viewer at all. To avoid any dependency on changes in intensity the normalized cross-correlation (CrC) has been established (Avants et al., 2008). Since, the correlation between image fidelity and image quality is in some cases insufficient (Silverstein and Farrell, 1996), we also applied the Structural Similarity Index (SSIM; Wang et al., 2004) to end up with a satisfactory quality description. The idea of structural information is that pixels have strong interdependencies especially if they are spatially close. With these three metrices, we quantified the overall characteristic of the human perception to detect distortion between two images.


TABLE 2. Data overview of NT = 40 data used to validate the registration.
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Step 3–DTI and rs-fMRI Processing


Pre-processing and Registration

To correlate all given information of the anatomical information of the IT2(x) to its related DTI IDTI(x,t) or fMRI IfMRI(x,t) measurements, some additional pre-processing steps are necessary. First, the dimension of the data must be reduced from 4D to 3D from I(x,t) to I(x). For this purpose and to minimize the noise and reduce artifacts, a minimum filter is applied over time and then the resulting three-dimensional data set is filtered with a Gaussian kernel. These filters preserve structures necessary for a sufficient registration whereas image noise is suppressed. Based on the previously mentioned assumption, for the registration of IDTI(x) or fMRI IfMRI(x) only an affine transformation fA(x) is performed and the non-linear transformation fNL(x) is applied from the previous T2 calculation (Figure 4). Subsequent DTI and rs-fMRI processing steps were implemented based on established protocols, which led to valid results in previous studies (Budde and Song, 2010; Kim et al., 2012; Gorges et al., 2017).



DTI—Structural Connectivity

Motion artifacts in diffusion imaging mostly origin from subtle head movements due to the fast breathing rhythm, which results in repetitive voxel displacements in the x-y plane. To quantify and spatially correct anatomical dissimilarities with 6 degrees of freedom (DOF), we apply a slice-wise motion correction using FSL MCFLIRT (Jenkinson et al., 2002). Unfortunately, MCFLIRT co-registers every volume in a time series to the one volume in the midst of the series to detect slow physical movement. By adapting the correction from a volume based to a slice-based mode of operation, AIDAmri splits each data set into slices, correcting them separately and merging the motion corrected slice series back into one 4D data set. The motion-corrected data are then fed into DSI-Studio (Yeh et al., 2013). The non-brain tissue was discarded by applying a binary mask of the brain extraction to the original DTI data set IDTI(x, t). The data are reconstructed within DSI-Studio, based on an electrostatically optimized protocol of Jones30 (Skare et al., 2000) with 30 gradient directions. The reconstructed diffusion images are used to perform fiber tracking and analyze the data with respect to the associated regions of the ARA. All reconstructed data sets, AD, radial (RD), MD and the fraction anisotropy (FA) are being exported separately.

The whole brain tractography is conducted with the deterministic streamline propagation using Euler’s methods (Basser et al., 2000) and terminates if a total fiber number of one million fibers is reached. The tracking starts from a random voxel position and propagated with a step size of 0.5 mm. All fibers shorter than 0.5 mm or longer than 12 mm were discarded, whereas the tracking is terminated if the angle between two consecutive directions exceeds 55°. The fiber termination criteria were previously tested on several data sets with healthy animals for best parameter settings, concerning true and false fiber generation. The analysis provides connectivity matrices, in which the rows and columns of the matrices represent a region of the ARA and the entries display the connectivity strength between two particular regions.



rs-fMRI—Functional Connectivity

Before the regional characteristics can be evaluated by means of rs-fMRI, some optimizations need to be implemented. The mouse in our setup is fixed with ear bars and a tooth bar minimizing head movements during acquisition. Nevertheless, spontaneous excitement due to fluctuations in anesthesia phases and respiratory motion may affect image stability. Therefore, we recorded the breathing during the measurement to identify regressors describing respiratory artifacts. The physiological data were sampled during EPI data acquisition, indicated by overlaid trigger pulses. The pre-processing of the breathing signal included the detection of inspiration peaks and baseline correction using the median values. Additionally, slice-wise motion correction is applied to the raw rs-fMRI IfMRI(x,t) by the same approach as for DTI. This additional correction is necessary to detect additional displacement between slices or fast respiratory rhythms. Since for many scientific applications, such as event-triggered fMRI, a slice time correction is essential, it is possible to switch on that function in AIDAmri and perform a correction with FSL SliceTimer (Jenkinson et al., 2002).

Completed by the pre-processed physiological recording, all of this data has been merged into a single multichannel file. The following processing steps were implemented based on the processing steps in FSL FEAT (Woolrich et al., 2001) with some modifications. For example, the smoothing was adapted with a spatial filter. Due to anisotropy of the voxels in z-direction, the spatial filter is applied in the x- and y-plane and not over the whole volume as in FSL FEAT. In our case, the spatial filter smooths the data with FWHM of 3.0 mm and a high-pass filter with a cut-off frequency of 0.01 Hz that reduces additional noise sources. The registered ARA is used to extract the regions in the functional domain generating a 4D file (x, y, slices, region masks) in NIfTI format. That file includes all transformed ARA regions, whereas each three-dimensional region is defined by a binary mask. Among all repetitions of the resting state fMRI data, the mean of the intensities of the voxels of a region is calculated and this average constitutes the averaged time series of the specific region.






RESULTS


Bias-Field Correction

Magnetic field inhomogeneities induced by insufficient shimming, imperfect coil placement and susceptibility artifacts at tissue borders directly relate to image quality. To measure the bias-field, we tested the N4 against the MICO algorithm (Figure 5). MICO has so far only been tested for human MRI. The comparison was conducted on 22 T2w data sets and 10 DTI data sets with the CV as metric. For both data sets, MICO-based bias-field correction resulted in lower CV values compared to the N4 algorithms (p < 0.001) and better corrections of the bias-field.


[image: image]

FIGURE 5. Quantitative and qualitative comparison of MICO and N4 bias-field correction. The calculation of the degree of homogeneity revealed lower coefficient of variations (CV) for MICO compared to N4 for 22 T2w and 10 DTI measurements (A,B). Representative MR images comparing MICO (C,D) and N4 (E,F) bias-field corrected images for T2w and DTI, respectively.





Registration

The results of the multi-step registration for a representative mouse brain with large stroke-related deformations are shown in Figure 6. The stroke lesion is distinguishable in the anterior slides of T2w data set as the hyperintense regions. Even strong deformations of the anatomical structure are realistically contoured by the algorithm, such that the ARA is precisely overlaid with the T2w data set. In addition to the qualitative assessment, we applied a quantitative quality control (Figure 7) using a slice-wise comparison of NT = 40 MR images selected from four different MRI datasets (Table 2). Two experienced observers used a semi-manually landmark-based approach to overlay the atlas.


[image: image]

FIGURE 6. Registration results. Representative transformed ARA annotations (A) that are registered on an T2w data set (B) with detailed views shown as overlay (C).




[image: image]

FIGURE 7. Quantitative registration quality control using a slice-wise comparison of NT = 40 imaging data grouped in four sets with three metrics [L2-Norm, Structural Similarity Index (SSIM), Cross-Correlation (CrC)] between AIDAmri IA and two observers I01 and I02. The different properties of each data sets are listed in Table 2 and one example slice is shown above each evaluation. Whereas, the ground-truth was determined with the error range of I01/I02, the average error between the automated approach of AIDAmri and the observer-dependent approach IA/I01 and IA/I02 showed no significant differences in all three metrices.



For each data set the error range between the transformations made by observer 1 and 2 I01/I02 was used as reference. Due to the different imaging properties and the subjective landmark placing there was a large variability in the median between both observers. In comparison to the automatic registration of AIDAmri the deviation to the ground truth defined by both observers, minimal and not statistically significantly differences for all quantitative measurements (L2, SSMI, CrC). For example, for data set 3 in Figure 7; the median of the SSMI between both observers I01/I02 is 0.878. Compared to that reference value the median of AIDAmri to both Observes is 0.870 for IA/I01 and 0.880 for IA/I02. In conclusion, the deviation varies only between 0.81 and 0.92 in the SSIM for all evaluated data sets and shows comparable error values for the CrC.

After successful processing with AIDAmri, the results offer various possibilities for further data analysis (Figure 8). Depending on the field of research, users have the opportunity to evaluate their data quantitatively and qualitatively. AIDAmri includes plot functions to visualize structural and functional information of DTI (Figure 8A) and rs-fMRI (Figure 8B) as adjacency matrices. To achieve a more detailed quantitative evaluation a variety of possibilities are freely available and can be used regardless of the processing pipeline. For example, predefined regions can be examined in regard of their structural and functional properties9. Relationships between the ARA regions can also be visualized in a circular Graph10. The Brain Connectivity Toolbox (Rubinov and Sporns, 2010) can be used for a quantitative evaluation of the DTI data based on graph theory. Likewise, rs-fMRI data can be evaluated with FSLNETS11. In each case, no further pre-processing steps are necessary and the output of AIDAmri can be directly fed into the established tools.


[image: image]

FIGURE 8. AIDAmri output. Structural and functional information of DTI (A) and fMRI (B) can be represented as adjacency matrices by using the plot function. The entries in the matrices represent the number of tracks passing or ending in the ARA regions of the DTI and activity pattern of rs-fMRI among all ARA regions to evaluate the results using graph theoretical approaches. Other ways to visualize connectivity patterns (plot function not included in AIDAmri): the circular representation of a row or column vector (C) where thicker lines relate to higher matrix values (C) and 3D visualization of connectivity in the anatomical context, here the registered atlas (D).






DISCUSSION

Currently, a variety of tools are available for human imaging studies, offering either a full evaluation (Cui et al., 2013) and/or step-by-step workflow (Rubinov and Sporns, 2010). In the pre-clinical environment, standardization of MRI acquisition, processing and sharing standards still need major development. Therefore, the unique translational advantage of MRI, e.g., to directly probe novel scan protocols and biomarker findings from bench to bedside awaits exploitation (Jaiswal, 2015). Here, we present a novel Atlas-based Imaging Data Analysis Pipeline (AIDAmri) for structural and functional MRI of the mouse brain. AIDAmri represents the first region-based processing pipeline, that extracts the structural and functional information from T2w, DTI and rs-fMRI data, and which enables a region-by-region analysis of preclinical MRI data based on the Allen Brain Reference Atlas (ARA). Importantly, the developed MRI template facilitates co-registration of MRI data with the ARA, which would be impossible by a direct registration. Since the template is co-registered with the ARA in the original image space, research groups of other labs can customize the ARA in higher hierarchical levels to map their individual regions-of-interest without the need to downscale the information. For example, we provide both a (hemisphere-splitted) detailed as well as custom-made parental atlas. The parental atlas is particularly useful for the analysis of DTI and rs-fMRI with have intrinsically lower image resolution and are stronger affected by susceptibility artifacts. Although we carefully validated the registration, the striking differences in original image size and resolution between the atlas and the DTI/rs-fMRI can result in pixel interpolations and region-mismatches, e.g for small thalamic nuclei or single cortical layers. In that case, we recommend the parental atlas, with larger brain regions, where interpolations have negligible effects. In comparison to other atlases, the ARA provides not only the most-detailed structural 3D atlas but also access to the Allen Institute cell type, transcriptomics and brain connectivity database (Lein et al., 2007; Oh et al., 2014). AIDAmri was written in Python 3.6 using freely available algorithm tools. The modular structure enables efficient processing and the possibility to modify or add modules. To enhance the comparability to other fields of research and to ensure its applicability to a variety of neurological questions, AIDAmri has been comprehensively tested and optimized by following steps. First, we implemented a novel SNR measurement, which has been shown to outperform manual or other semi-automatic measurements (Sijbers et al., 2007). Second, to prepare the data for registration with the ARA, pre-processing steps including re-orientation, bias-field correction, and brain extraction were implemented. We successfully implemented the MICO bias-field correction, which was applied before only on human data (Li et al., 2014). We could show, that MICO generates significantly better data even in the pre-clinical environment than the well-known N4 algorithm. Finally, we applied a quantitative quality control to verify that the developed multi-step registration process works robustly. In a statistical analysis, the results achieved by two-independent and trained observers were found to be not different from the automated registration for various mouse strains. Registration accuracy was also valid for pathologies such as stroke with significant brain deformation due to, e.g., oedema or necrosis. The AIDAmri output contains functional and structural connectivity matrices for all (selected) ARA regions. These matrices can be used to analyze differences in the brain network between health and disease. For the first time, AIDAmri provides in one common processing pipeline and one common atlas system quantitative structure-function relationships, which are known to be crucial to understand the structural underpinnings of brain function and brain plasticity (Straathof et al., 2019). Future studies may focus on the integration of other imaging modalities, e.g., single photon emission computed tomography (SPECT) or positron emission tomography (PET), to the ARA. AIDAmri contributes to the awareness-raising effort of the scientific community to standardize diverse datatypes and analyses across species (Sejnowski et al., 2014) and will facilitate data processing in large cohorts and multi-center studies.
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1^https://github.com/maswendt/AIDAmri

2^https://doi.org/10.12751/g-node.70e11f

3^http://mouse.brain-map.org/static/atlas

4^https://github.com/maswendt/AIDAdb

5^https://www.nitrc.org/projects/mricron

6^https://pypi.org/project/dicom2nifti/

7^www.itksnap.org

8^https://www.slicer.org/

9^https://de.mathworks.com/matlabcentral/fileexchange/27983-slicer

10^https://github.com/paul-kassebaum-mathworks/circularGraph

11^www.fmrib.ox.ac.uk/fsl
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Alzheimer's disease, and dementia, represent a common cause of disability and one of the most relevant challenges in the health world. In addition, these conditions do not have, at moment, a pharmacological treatment that can stop the pathological progress. Mild cognitive impairment (MCI), defined as the borderline between normal aging and early dementia, represents a meaningful field of study because, in the transition to dementia, clinicians have defined a useful therapeutic window. Additionally, due to the lack of effective pharmacological interventions, recent years have seen an increase in research into new technological solutions to assess, stimulate, and assist patients afflicted with Alzheimer's disease. This review aims to outline the use of information and communication technologies in the field studying MCI. Particularly, the goal is to depict the framework and describe the most worthwhile research efforts, in order to display the current technologies available, describe the research objectives, and delineate prospective future researches. Regarding data sources, the research was conducted within three databases, PubMed Central, Web of Science, and Scopus, between January 2009 and December 2017. A total of 646 articles were found in the initial search. Accurate definition of the exclusion criteria and selection strategy allowed identification of the most relevant papers to use for the study. Finally, 56 papers were fully evaluated and included in this review. Three major clinical application areas have been portrayed, namely “Cognitive Assessment,” “Treatment,” and “Assistance.” These have been combined with three main technological solutions, specifically “Sensors,” “Personal Devices,” and “Robots.” Furthermore, the study of the publications time series illustrates a steadily increasing trend, characterized by the enrollment of small groups of subjects, and particularly oriented to the subjects assistance using robots companion. In conclusion, despite the new technological solutions for people with MCI have received much interest, particularly regarding robots for assistance, nowadays it still owns vast room for improvement.

Keywords: mild cognitive impairment, ICT, cognitive stimulation, neuropsychological measures, cognitive support technologies, social robotics/HRI, dementia-Alzheimer disease, assistive technologies


1. INTRODUCTION

Worldwide, dementia represents one of the most important causes of disability and reduced autonomy in the elderly population. It is defined, in fact, as a syndrome, generally of a chronic or progressive nature, in which is observed deterioration in cognitive function. Alzheimer's Disease (AD) is the most common type of dementia, with a prevalence of 60–65% of the cases (Alzheimer Association, 2017). According to the statistics and the forecasts about AD, today people afflicted by this condition number approximately 46.8 million. This number is expected to steadily increase over the next few years, reaching 74.7 million by 2030 and 100 million by 2050 (Prince et al., 2016). The growth in dementia cases is resulting in an increase in the associated global costs. Particularly, between 2010 and 2015, the expenditure is expected to increase by 35.5%. Furthermore, projections indicate that the expense will reach $1 trillion by the end of 2018 (Prince et al., 2016). Due to the increase in the elderly population, with an increase in the associated costs, the social impacts, and the apparent lack of effective pharmacological treatments, AD and the others types of dementia constitute a dramatic challenge for the public health services. Furthermore, caregivers of patients with dementia have a higher prevalence of mental health disorders, particularly depression and anxiety (Sallim et al., 2015). For this reason, a strong commitment has been made to find ways to exploit and maximize the remaining cognitive resources of patients with initial symptoms of dementia. These patients, in fact, maintain the ability to learn new skills and strategies, and moreover preserve a good awareness (Olazarán et al., 2004; Belleville et al., 2016). Among all the medical labels developed to describe the pre-dementia stage, Mild Cognitive Impairment (MCI) has been recognized as one of the most useful clinical classifications, and it is one that can represent a therapeutic window for early treatment. This nosographic category defines those who are showing the cognitive depletion which is the manifestation of an intermediate stage between healthy aging with slight cognitive changes and dementia, but able to perform the activities of the daily living, and be essentially autonomous (Petersen et al., 2009). For these reasons, in the last decade, a notable amount of research has committed to the identification of signs and symptoms that could be used as reliable predictive markers of the disease. The MCI early identification, and afterward, dementia identification, would allow the implementation of non-pharmacological interventions that may change the natural history of the disorder, slowing down its development (Petersen et al., 2014).


1.1. Traditional Intervention on MCI

Cognitive training (CT) is the most widespread and effective type of cognitive stimulation, among those commonly used in MCI treatment. Particularly, CT protocols take into account bottom-up, and modular tasks aimed at the stimulation of selective cognitive functions, such as memory, language, or, for example, attention (Belleville et al., 2016). Due to their flexibility, CTs are reported as one of the most appropriated technique in the field of MCI. In fact, thanks to their adaptability CTs are particularly recommended with such variegate condition as MCI. On the other hand, more modern stimulation protocols refer to a more complex and holistic model of health that considers physical, emotional, and cognitive aspects. That is due to the high prevalence of Behavioral and Psychological Symptoms of Dementia, namely: agitation, aberrant motor behavior, anxiety, depression, irritability, and apathy, in subjects with dementia (90%) and even in subject with MCI (35–80%) (Monastero et al., 2009; Cerejeira et al., 2012). Particularly, in these cases, apart from the use of CT, are generally adopted, among the others, the music therapy, the multi-sensory behavioral therapy, and the occupational activities (de Oliveira et al., 2015; Massimo et al., 2018). Recently, the relationship between physical practice and other health spheres has become a popular topic. It was demonstrated, indeed, that exercise has a positive influence on hippocampal functions. This effect might facilitate the regulation of long-range cortical networks with a good effect on memory and executive functions (Voss et al., 2010; Chirles et al., 2017). On the other hand, a recent research branch is interested in characterizing the effect of cognitive health on physical activity. It seems that preserved cognitive abilities could allow MCI subjects to perform physical tasks better (Montero-Odasso et al., 2012). According to advanced guidelines, non-pharmacological treatment should possess certain characteristics: they should be performed with high frequency and high intensity; they should provide for a combination of cognitive stimulation and physical exercise; the training should be customized according to the bio-psycho-social characteristics of each participant; and the protocols should be designed in a more ecological fashion and be more generalizable (Belleville et al., 2016).



1.2. The Role of ICT With MCI Subjects

In this framework, information and communication technologies (ICT) are accumulating much interest, particularly concerning the applications of these devices in the neuropsychological field. ICTs have been used as assessment tools (Charchat-Fichman et al., 2014; García-Casal et al., 2017) and also as instruments for cognitive intervention (Charchat-Fichman et al., 2014; Ballesteros et al., 2015; García-Betances et al., 2017), enhancing, or, at least, maintaining AD patients' cognitive skills. Although ICTs are more related to patients with a severe grade of impairment, they are now playing an important role as assistive technologies and are serving to promote the independence and the autonomy of individuals with MCI as well as healthy elderly people (Eghdam et al., 2012; Teipel et al., 2016). In light of the information presented in the previous paragraph, technology should play a crucial role in assessment, treatment, and monitoring of MCI patients, allowing the combination of cognitive and physical treatments and melding of the stimulation protocols with subjects' daily activities (Maselli et al., 2018; Fiorini et al., 2019). Moreover, these technologies should be able to aid in gathering data about the changes in the subjects' autonomy and in their physical and cognitive abilities, and give feedback to patients themselves and to the stakeholders (Rebok et al., 2007; Belleville et al., 2016). There remains a paucity of technological interventions for caregivers who are living with people with dementia (Zhang et al., 2016). In this perspective, the need to develop technologies that can be used in the patient's home, without the physical presence of the therapist, is crucial. Moreover, these technologies should be embedded in the user daily life and generate a coupled system with the user him/herself, so to produce an enriched environment (Turchetti et al., 2011).

Although this field is rapidly increasing, ICT applications are generally related to dementia. This study aims to review the literature concerning the use of ICT for assessment, cognitive intervention, and assistance of people who are suffering from MCI, provide a comprehensive view of the current state of the art, and highlight current limitations and future perspectives.




2. METHODS


2.1. Search Strategy

An electronic database search was performed for the period from November 2017 until December 2017 using the U.S. National Library of Medicine (PubMed®), Web of Science (ISI®), and Scopus® databases to identify and select articles concerning the clinical applications of ICTs in the neuropsychological field of MCI. Specifically, the search queries included the following terms: [(Information and Communication Technology OR ICT) OR (Internet of Things) OR (Assistive Technology) OR (Cognitive Support Technology OR CST) OR (Robot)] combined with terms to determine outcomes of interest: (Mild Cognitive Impairment OR MCI) AND [(Cognitive Stimulation) OR (Neuropsychological Assessment)].

The terms research was performed regarding titles and/or abstracts. Only original, full-text articles published in English, which addressed the clinical applications of ICTs on MCI, were included in this review. The reference lists of included papers were examined to identify relevant studies which the electronic search might have missed. Duplicated documents were eliminated; thereafter, the abstracts of the papers, retrieved by the electronic search, were examined to identify which deserved a full evaluation. Finally, similar studies published by the same authors were compared to select the most suitable for our purpose. Obtained in the research were 226 references from PubMedCentral®, 285 references from Web of Science®, and 135 references from Scopus®.

During the process, the identified papers were screened and evaluated from three independent reviewers (i.e., the authors). Meetings and discussions were held to resolve disagreements and find solutions.



2.2. Selection Criteria

First, duplicated references were excluded. Then, during the screening procedure, items were excluded if they (i) were an abstract, a short communication, a review article, or a chapter from a book; (ii) were not written in the English language; (iii) were from years prior to 2009. One hundred and seventy-eight references were fully assessed during the evaluation procedure, and papers were excluded if (1) they did not use any type of ICTs; (2) they did not appear appropriate for this review after the reading of title and abstract; (3) they did not address the mild cognitive impairment issue; and (4) they were not full access. In addition, if multiple papers written by the same author had similar content, papers published in journals were selected instead of papers presented at conferences. Furthermore, if multiple papers written by the same author with similar content were presented at conferences, the most recent paper was selected. Finally, 56 papers were fully evaluated and are included in this review (Figure 1).
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FIGURE 1. Research methodology for review process.






3. RESULTS

Fifty-six papers were selected according to the aforementioned methods and classified on the basis of three major clinical application areas: “Cognitive Assessment,” “Treatment,” “Assistance.”

Among these applications, the majority of the papers (58%) concern the “Assistance” of subjects with MCI (see Figure 2B). In particular, these articles address the functional assessment, monitoring, and assistance during the daily activities of MCI subjects, in a prosthetic manner. Conversely, the studies labeled as “Treatment” refer to the specific and unspecific cognitive stimulation of MCI subjects, which results in a overall activation, according to Engel's bio-psycho-social model (Engel, 1978). In conclusion, the articles encompassed in the “Cognitive Assessment” category address the use of new technological solutions for the evaluation and the measurement of subjects cognitive performance. They represent, respectively, the 30.4% (Treatment) and the 11.6% (Cognitive Assessment) of the studies reviewed. Note that a certain percentage of the papers reviewed (18.9%) deal with multiple topics (i.e., assistance and evaluation or treatment and assistance) at the same time.
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FIGURE 2. (A) Publication trend per year. (B) Paper distribution per service. (C) Paper distribution per technologies used; Robot (both stand alone and cloud robots), Sensors (both environmental and wearable), Personal Devices (Personal Computer, Smart phones, and TV). (D) MCI patients involved in the studies.



Regarding the technologies used in these works, most of the studies (54.1%) display a scenario in which service robots, both standalone and cloud networked, interact and support people with MCI. The second most represented technologies are sensors, both environmental and wearable, followed by personal devices, including personal computers, smartphones, tablets, and televisions (see Figure 2C). Regarding the sample size of these studies, an ample amount of the research (35.7%) does not include any subject with MCI, but rather healthy controls (HC), caregivers, experts, or no subject at all. This outcome and the general trend represented in Figure 2D can be explained by the theoretical nature of the majority of these studies, or, in a smaller portion, by the primary interest in the technical side. Nevertheless, the growing interest and the technical advances achieved seem to be able to reverse this trend, and lead the scientific community toward more practical implementations, although, nowadays, the clinical validation of the proposed solutions is still a matter of debate. Of the 56 fully evaluated papers, 14 (25%) were published in 2017, while 31 (55.4%) were published over the past 3 years. This result confirms the increasing interest for the ICTs application in subjects with MCI (see Figure 2A).

Analyzing the journals for the fields of interest of published articles, it can be observed that the leading research sector is the clinical field–17 articles were published in pure clinical journals, indeed. In contrast, only six articles were published in pure technological journals. It is worth mentioning that 4 papers were published in mixed clinical-technological journals. Regarding the clinical side, as summarized in Figure 2A, it can be seen that the leading topic is represented by “Medicine,” particularly concerning general medicine and geriatrics and gerontology topics (see layer 3, Figure 3). The second most sizable category present is, by far, “Neuroscience.” On the other hand, regarding technological journals, it can be seen that “Computer Science” is the technological leading area, followed by the engineering field, equally represented by biomedical and electronic, Figure 4. This analysis suggests a prominent interest coming from the clinician side, with a wider arrangement of objectives, models, and requirements. This interest seems to be not completely matched with the technical community. It could be explained by a high grade of complexity examined by the clinicians, compared with the level of technological advancement. Notwithstanding, the technological community is approaching the topic in a shorter time frame. The average of the publication year for technological journals, in fact, is about 2016. In contrast, the average is about 2014 for clinical journals as well as for mixed clinical-technological journals.
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FIGURE 3. Graphical description of topics touched by articles published in clinical journals. Layer 1, number of general clinical topics; layer 2, main topic categories; layer 3, subcategories of topics.
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FIGURE 4. Graphical description of topic touched by articles published in technological journals. Layer 1, number of general technological topics; layer 2, main topics categories; layer 3, subcategories of topics.



In addition, Table 2 summarizes the data gathered from the reviewed papers. This table reports some facts, among which are the technology used in the different works, technology service and domain, subjects' clinical profiles, experimental design, and research goal. All 56 papers are illustrated in detail in Table 2. In addition, a brief summary of the data included in this paragraph is included in Figure 2 and Table 1.



Table 1. Numbers of paper regarding different technologies and their scopes.
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4. APPLICATION 1: COGNITIVE ASSESSMENT

The category “Assessment” represents the smallest group of papers among all the applications, with only 8 articles reviewed. This category gather articles that aim at the appraisal of cognitive state using both robotic platform, sensors, and personal devices. More specifically, the articles that consider robots are 2, Kintsakis et al. (2015) and Demetriadis et al. (2016); papers that regard sensors and personal devices (in this case PCs) are 6, equally distributed, Dougherty et al. (2010); Zuchella et al. (2014); Manera et al. (2017) use PC, while (König et al., 2015b; Fiorini et al., 2017; Maselli et al., 2017) study the use of sensors.

Below are described the purposes that have pushed the works and the results obtained. A summary of the characteristics of these studies is included in Table 2.



Table 2. Papers about evaluation.
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4.1. PC Based Cognitive Assessment

One of the first contributions to the use of PC-based tests for MCI cognitive assessment is the work of Dougherty et al. The authors calculated correlations between subjects' performance in traditional cognitive tests (MMSE and Mini-Cong) and a new PC-based neuropsychological battery called CST. The study results indicate that the CST is a valid and sensitive instrument for evaluating cognitive deficits; in fact, its accuracy in distinguishing between controls and MCI subjects achieved 96%, while the Mini-Mental Status Examination (MMSE) accurately classified 71% and the Mini-Cog 69%. The authors state that PC-based cognitive screening tools may aid in MCI early detection in the primary care setting, and, moreover, due to their ease of use and interpretation, may provide an accurate baseline from which to monitor cognitive changes over time (Dougherty et al., 2010).

Another article about computer-based assessment for people with MCI is the work by Zucchella et al. In this paper, the development and the usability test of a 3D Serious Game (SG), using a virtual environment-based platform for the early identification and characterization of MCI, is described. This SG can record various parameters related to the subjects' cognitive status, including number of correct actions, number of errors, number of false recognitions, number of omissions, and time needed to complete the task. Although the authors claim that SGs could be used in the health domain, in particular in the assessment and rehabilitation of psychiatric and neuropsychological conditions, this usability test underlines problems related to the high complexity of some tasks. For this reason, especially with older people who have limited familiarity with technologies, will need some assistance in the beginning phase. Notwithstanding, SGs have the potential to be new and effective tools in the management and treatment of cognitive impairments (Zuchella et al., 2014).

According to Zucchella et al., a recent work by Manera et al. proposes recommendations for the use of SGs with patients with MCI. Results obtained report that SGs were rated between very adapted and completely adapted for people with MCI. Moreover, SGs are considered as more adapted to people with initial cognitive decline than to people who are already losing autonomy in the activities of daily living. Concerning the use of SGs, participants reported that they found them to range between very adapted and completely adapted for cognitive assessment, as well as to train for physical and cognitive functions, improve well-being, and teach contents. Moreover, concerning the possibility to improve autonomy and social exchanges, they were considered between adapted and very adapted. Importantly, in this paper, the authors stress that the target of SGs, their frequency of use, and the context in which they are played depend on the typology of the SGs (e.g., Exergame, cognitive game), and should be personalized with the help of a clinician (Manera et al., 2017).



4.2. Sensors Based Cognitive Assessment

Different types of sensors have been used for MCI cognitive assessment. One example is the work by König et al., in which the authors aim to identify vocal markers correlated to subjects' cognitive status. The classifier developed by the authors showed an accuracy of 79% in discerning between HCs and people with MCI, of 87% in discerning between HCs and people with AD, and of 80% in discerning between people with MCI and people with AD, demonstrating its assessment utility (König et al., 2015b).

Another work was presented by Fiorini et al. The authors designed, and developed, a new tool called SmartWalk System, which aims to assess the sustained auditory attention while the subject walks and simultaneously stimulate the sustained attention domain. The authors compared a traditional test for auditory sustained attention with their SmartWalk system, and the results suggest a good correlation between the two approaches. The results, in fact, show a high significant (p < 0.05) correlation for the “correct” and “omitted” scores of the two protocols (r = 0.73 and r = 0.59, respectively). Also, the “mean” and the “median” response times are significant correlated (r = 0.59 and r = 0.70, respectively). The authors state that a future research should be focused to increase the number of participants to corroborate the study. Furthermore, a usability study should be planned to estimate whether the SmartWalk system could be used in a daily cognitive training at users' homes (Fiorini et al., 2017).

Similarly, Maselli et al. evaluated the sensitivity of their SmartTapestry System to assess the episodic verbal memory. The results reported by the authors suggest a good correlation between the two approaches. Such findings indicated that the new system was substantially equivalent to the traditional test for the assessment of episodic memory. Furthermore, the results showed a better performance in the consolidation-retrieval process when assessed using SmartTapestry rather than the traditional test. These results suggest that a facilitation in the memory performance may be due to the multiple nature of the mnemonic trace; in fact, the SmartTapestry task involves auditory (the auditory track repeating the list of words), visual-spatial (the position of the letters in the tapestry), and kinesthetic information (the movements of the arms needed to press the letters in the tapestry) that may help the consolidation-retrieval process (Maselli et al., 2017).



4.3. Robot Based Cognitive Assessment

Concerning the use of robots in MCI cognitive assessment, it may seem that the development of a robotic assistant, able to assess patients autonomously, would be just a prospect for the future. Nevertheless, Kintsakis et al. proposed the design of a cloud-based NAO robot that aims to engage subjects suffering from MCI during the cognitive test administration. The authors state that use of the robot would increase the compliance and arouse the interest of the subjects during the administration of tests to work memory, arithmetic skills, reasoning, recall, and awareness. Notwithstanding, in this paper, the robotic platform only was presented; the system, in fact, has not yet been evaluated in a real-world scenario (Kintsakis et al., 2015).



4.4. Recommendations and Trends

The research for technological solutions able to address the cognitive assessment of subjects with MCI is a fast-growing niche, as demonstrated by the high number of papers (62.5%) in the field that have been published in the past two years. Although the number of articles encompassed in this section does not permit drawing of precise trends, it is possible to observe that some tendencies are emerging in the three different groups of papers. For example, among the articles that examined PC-based technology, it can be seen that the last articles focused their attention more on SGs and virtual reality (VR) than on self-administered batteries of tests, perhaps because they assessed the subjects' performances in a more ecological way (Zuchella et al., 2014; Manera et al., 2017). In a similar way, the use of sensors aims at the detection of parameters that can provide the clinicians with more direct information about subjects' cognitive status, using these parameters as a window on brain activity and functioning. Through the use of a smart environment, it could be possible to detect information about the patients while they perform their activities of daily living (König et al., 2015b; Fiorini et al., 2017; Maselli et al., 2017). In contrast, the introduction of a robotic therapist, able to conduct a cognitive assessment autonomously, which can increase subjects' compliance and arouse their interest, compared to PC-based technology, has, until now, seemed only to be a future prospect and a target to hit (Kintsakis et al., 2015).




5. APPLICATION 2: TREATMENT

This category, with 21 articles, is the second most sizable category in this review. Robots represent the technology used most heavily for MCI treatment, with 13 out of 21 articles (Tapus et al., 2009; Chan and Nejat, 2010; Wu et al., 2011, 2013, 2016; Tiberio et al., 2012; Granata et al., 2013; Yamaguchi et al., 2014; Kintsakis et al., 2015; Demetriadis et al., 2016; Reppou et al., 2016; Garcia-Sanjuan et al., 2017; Korchut et al., 2017). On the other hand, papers that consider personal devices and smart environment-based treatment make up 8 out 21: (Zaccarelli et al., 2013; Zuchella et al., 2014; Muscio et al., 2015; Segkouli et al., 2015; Fiorini et al., 2017; Kyriazakos et al., 2017; Manera et al., 2017; Maselli et al., 2017). The articles, organized on the basis of different types of technologies, are presented in the following sections.


5.1. Robot Based Treatment

Although robots represent the most commonly used technology in MCI non-pharmacological treatment, generally the purpose of this technology is mixed. Only 5 papers, in fact, address selectively this topic, the others (8 papers) concern also the assistance (6 out 8 papers) and the assessment (2 out 8 papers) of MCI subjects.

The first work related to the use of robots and cognitive stimulation is an interesting paper by Tapus et al., which aims to assess differences in preferences between the use of a robot therapist, instead of an avatar therapist. Basically, with this study they tried to quantify the “embodiment effect” related to the submission of cognitive games through a robot therapist, involving subjects in an 8 month-long stimulation trial. The authors state that the service robot was able to improve or maintain the cognitive attention of the patients with dementia and/or cognitive impairments through its encouragements in a specific music-based cognitive game. Moreover, the robot's ability to adapt maximized the positive effect of the intervention (Tapus et al., 2009).

Chan and Nejat, similarly, proposed a work that aimed at the possibility to develop a robotic therapist that could stimulate and encourage MCI subjects during memory stimulation games. The authors reported a success rate in identifying and recognizing memory game cards between 96%. Moreover, the robot was successful at selecting and executing appropriate emotion-based behaviors throughout the interactions with the participants. Success rate in providing correct behavioral feedback was about 74%. Concerning the participants feedback, 83% of them stated that the robot helped them stay engaged and interested in the memory game (Chan and Nejat, 2010).

As mentioned, emotion recognition and, more generally, the effective channel could provide the robot with useful information for it to model its behavior. A work proposed by Tiberio et al. describes the assessment of tolerance indicators, heath rate (HR), and hearth rate variability (HRV) in subjects who were collaborating with a robot therapist during a cognitive stimulation task. The authors did not find differences between sympathetic activation during the tasks conducted by human or robot. These results emphasize the sample tendency to tolerate the presence of the robot (Tiberio et al., 2012).

Similarly, Yamaguchi et al. presented a robot designed to warm up group conversations of older adults by a cognitive stimulation technique called the “coimagination” method, which is used to prevent the development of MCI and dementia. The authors state that the robot successfully elicited more laughter, which is seen as an enjoyment parameter, than did the human participants (Yamaguchi et al., 2014).

Among the articles about robotic therapists, two, more recent papers, propose an alternative way to administer cognitive stimulation through the robots. Demetriadis et al. and Garcia-Sanjuan et al., in fact, presented two works in which the robot is not an agent that leads people in the cognitive stimulation task performance, but, instead, the robot is the tool for the cognitive stimulation process. In the first case, in fact, the stimulation protocol provides for the use of a programmable tangible interface. So, the stimulation program is made possible through the use of the robot and not the robot assistance (Demetriadis et al., 2016).

In the second example, instead, each participant was involved in the therapeutic use of the robot. Particularly, each participant was asked to perform three different tasks using a tangible-mediated robot: control the orientation of the robot, move the Tangibot from one location to another, and perform a combination of the first two (Garcia-Sanjuan et al., 2017). Contrary to the use of therapeutic robots, the use of a tangible robotic interface is recommended more for people with no or mild cognitive impairments. It seems to be too demanding for those with severe cognitive impairments, but up to now this research field has remained mostly unexplored.



5.2. Personal Devices and Smart Environment-Based Treatment

Papers regarding the use of personal devices and smart environment for cognitive non-pharmacological treatment are numerically less represented compared with robotic articles. Despite this, their level of development is, in most cases, higher and better defined compared to the idea of robot therapists or a fortiori the use of robots as assistance in the activities of daily iliving.

The first article, here reviewed, about a computer-based cognitive battery, is the work conducted by Zaccarelli et al. In this paper, the authors aim to evaluate the impact of the three-month-long SOCIABLE program on the different cognitive skills. The analysis conducted at the end of the program revealed that MCI patients experienced a positive effect in terms of global cognition, memory, and executive functions. A follow-up examination was conducted to establish the duration of the aftereffects. Examination of follow-up results revealed that healthy elderly individuals showed an increase in memory and language abilities after the use of the program. However, subjects' moods showed an opposite trend and became worse after training, probably due to the increase of self consciousness related to the improvement of cognitive functioning. In conclusion, the authors state that SOCIABLE is an effective intervention suitable for patients suffering from MCI and mild AD (Zaccarelli et al., 2013).

On the other hand, Muscio et al. addressed the topic of SGs for cognitive and social stimulation of MCI subjects. The authors claim that, due to the popularity of video games among the baby-boomers, and a fortiori among millennials, video games could be easily turned into enjoyable intervention for cognitive stimulation. In their opinion paper, the authors highlighted the importance of defining harmonized SG parameters and proposed the implementation of bio-markers as enrichment strategy and outcome measures in SG trial design (Muscio et al., 2015).

Another work concerning the use of PC-based technologies is the study by Segkouli et al. The authors developed and tested, a virtual user model (VUM) that simulated the performance of a subject with MCI performing a cognitive task. The purpose of the VUM was to identify and deal with common interface accessibility issues that might occur when people with MCI use PC-based tools for cognitive stimulation. The authors proposed a four-step trial. During the first phase, MCIs and controls were assessed using standard neuropsychological tests and a computer-based battery. Then, during the second phase, the VUM proposed was trained using real users' performances. In the third phase, the authors optimized the VUM and the virtual user interface (VUI). In the last phase, the authors assessed again differences between real and virtual MCIs using the optimized VUI. The authors' new system was able to deal with over 90% of all common interface accessibility issues (Segkouli et al., 2015).

The last, and perhaps, more complete work about the MCI cognitive stimulation, through the use of personal devices, is the research conducted by Kyriazakos et al., also mentioned in section 6. The authors presented the e-Health platform for MCI, in which several personal devices and both environmental and wearable sensors are connected together, via a cloud environment. Among their applications, the e-Health system provides for cognitive games, among which are memory games and tests, attention games, and games using executive functions. This system aims at the preservation of cognitive functions in healthy subjects and especially in MCI subjects. Beyond the good effect on cognition, this type of intervention should help MCI subjects to maintain a good quality of life. This research is still in the design phase, and no results have been reported to date (Kyriazakos et al., 2017).



5.3. Recommendations and Trends

The literature about robots and cognitive stimulation is growing faster, and it is becoming recognized by the academic world. For example, about 66% of the papers presented during some conferences address the topic. In this context, it is possible to observe how the majority of the literature concerns the development of a robotic therapist (Tapus et al., 2009; Chan and Nejat, 2010; Tiberio et al., 2012; Yamaguchi et al., 2014). Meanwhile, a small niche of papers concerns the use of robots as tools for cognitive stimulation, instead of as instruments that administer and assist the patients during tasks. A couple of articles reviewed here propose programming or steering a robot to use it for stimulation protocols (Demetriadis et al., 2016; Garcia-Sanjuan et al., 2017). Although the purpose, shared by all the articles in this section, is the stimulation, just the work by Tapus et al. provided for a long-lasting intervention. On the other hand, other articles concern a preliminary study about usability and acceptance. Notwithstanding this lack of experimental data, the literature reviewed here confirms that, generally, elderly people and subjects with MCI prefer robot therapists over virtual therapists. However, generally, they prefer the use of a PC instead of a robot. Despite this, research into the topic has not found differences in perceived stress between the use of PC or robot, neither from physiological signals nor questionnaires. Moreover, research has shown that for robot therapists, along with the ability to administer cognitive stimulation tasks, considering also the emotional and the social spheres is crucial. The positive aspects of using a robot therapist, in fact, is largely related to the embodiment effect, but also to the perception of interacting with a smart agent. For this reason, the ability to empathize with the user cannot be ignored.

However, concerning the use of personal devices and smart environments in cognitive stimulation, it can be observed that this field is less addressed with respect to robotic solutions. Nonetheless, as mentioned, their level of development is higher and better defined compared to that for robot therapists. This fact is also pointed out by the substantial presence of literature published in scientific journals. In fact, just one research effort was presented in a conference and is reported as a proceeding. Generally, the studies of such systems, most of which are PC-based battery, are quite sizable, such as in the case of Zaccarelli et al. (2013). In addition, the time span in which the experiments were conducted was more adequate. In fact, the trials, generally, were scheduled over several weeks. Among the different papers reviewed, as noted previously, the use of PC-based batteries for cognitive stimulation represent the central bulk of contributions. Particularly, different aspects of memory, attention and executive functions were addressed. Moreover, mood and self-awareness were also investigated. A significant aspect of these studies provided for the use of serious games and virtual reality environments to exploit the level of engagement and the ecology of the treatments.




6. APPLICATION 3: ASSISTANCE

The category “Assistance” represent the largest group of articles encompassed in this systematic literature review. This category comprises 40 papers, gathering research from 2010 to 2017, and also in this case the overwhelming majority of the study took into consideration robots as the technology used: 26 out 40 papers (Granata et al., 2010, 2013; Gross et al., 2011, 2012; Wu et al., 2011, 2012, 2013, 2014, 2016; Pino et al., 2012, 2015; Seelye et al., 2012; Bruno et al., 2013; Schroeter et al., 2013; Nishiura et al., 2014; Pahl and Varadarajan, 2015; Agrigoroaie and Tapus, 2016, 2017; Broughton et al., 2016; Nakahara et al., 2016; Reppou et al., 2016; Bellotto et al., 2017; Darragh et al., 2017; Foukarakis et al., 2017; Korchut et al., 2017; Tsardoulias et al., 2017). The remaining papers are shared between two types of technology: namely, personal devices and wearable sensors, making up 14 out 40 papers (Mitseva et al., 2009; Martínez et al., 2011; Sacco et al., 2012; Diaz-Orueta et al., 2014; Meiland et al., 2014; Batista et al., 2015; König et al., 2015a; Lazarou et al., 2016; Mainetti et al., 2016, 2017; Vasileiadis et al., 2016; Kyriazakos et al., 2017; Mighali et al., 2017; Stavropoulos et al., 2017).

The papers are summarized in the following sections.


6.1. Robot Based Assistance

The robotic application in the assistance of people with MCI represent the majority of the papers reviewed. As already stated, this is a complex research field because people with Alzheimer's disease require care throughout the day, in different environments, and for varied needs. For these reasons, a significant number of the articles about service robots for assistance are completely theoretical, such as a study by Gross et al., in which they tried to identify the most important functionality for a service robot (Gross et al., 2011), or the work by Agrigoroaie and Tapus, in which the authors suggest that providing further information such as personality attributes, cognitive disability level, emotional internal states, and subjects' preferences would be useful for the process of robot behavior modeling (Agrigoroaie and Tapus, 2016). In an article by Pahl and Varadarajan, the authors suggest the use of unconventional channels to convey meaningful information to the robot, such as haptic inputs for a socially/emotionally based interaction between human and robots (Pahl and Varadarajan, 2015). Concerning theoretical study, an atypical work is the research by Bruno et al., in which the authors proposed the design of a wearable context-aware robot able to share information with a person via speech recognition and production (Bruno et al., 2013).

Another sizable group of papers report that the results came from the clinical and technical experience after focus groups, or were gained through the use of questionnaires and interviews. The work of Wu et al. is an example of that. These authors studied MCI subject's preferences toward robot functionality (Wu et al., 2011) and appearance (Wu et al., 2012). Through their studies they extrapolated seminal insight concerning the embodiment effect, and the interaction aspects between human and robot. The authors state that a robot might offer opportunities for interaction among all members of the elder community, and allow the elders to experience the same power, control, and agency as others.

Similarly, Pino et al. confirmed that learning to perform basic actions using a graphical user interface (GUI) is possible for elderly individuals, either cognitively healthy or impaired (Pino et al., 2012), even though the interfaces should be customized on the basis of the subject's preference, cognitive status, and way of thinking, according to Granata et al. (2010) and (Granata et al., 2013) also investigated the assistive robot acceptance among different groups of older adults living in a community. They evaluated robot and user characteristics, potential applications, feelings about technology, ethical issues, and barriers and facilitators for robot adoption. According to Wu et al. (2012), subjects with MCI preferred robots with animal-like designs instead of the machine-like robots that were preferred by HCs. This study showed that participants with MCI and caregivers had more positive perceptions of the usefulness of the robot than HCs. Furthermore, they recognized the potential of robots for supporting health and social care at home (Pino et al., 2015).

Differently, Schroeter et al. studied the acceptance of robots after participants lived in a smart home for two days, continuously. During this period, the subjects had the chance to interact with the robotia and perform activities such as video calls with short interviews, interviews on site, and also free robot usage. At the end of the trial, information was gathered via interviews and questionnaires. As observed also by Gross et al. (2012), at the beginning of several trial sessions, participants were a bit skeptic about the robot and had stereotypical ideas about robots. After being introduced to the robotic system, all of them expressed interest and appreciation and actually started to think about ways in which the robot could better meet their needs. Most of the users described the trials as an enjoyable experience. Moreover, results also showed that robots were perceived more as a pet (with personality) than as a passive device like a PC or TV, increasing subjects' acceptance (Schroeter et al., 2013).

Recently, Reppou et al. described a novel architectural design for robotic platforms and reported that older adults did not worry about robots and found them useful. Moreover, the authors stated that new technologies and service robots could assist older adults with cognitive impairment by informing them, ensuring their safety with hazard detection, and practicing their cognitive skills with games that stimulate attention and memory. According to Pino et al. (2015), robots should also show emotion and feelings. Reppou et al. (2016) also found that the ability to show emotions is a key feature for a successful robot.

These findings are consistent with more recent studies by Wu et al., who compared cognitive stimulation protocols conducted by computer-based tools in one case a virtual therapist in another case, and a robot in a third case. Although statistical analysis did not show a significant difference among the different methodologies, qualitative analysis revealed the participants' preference for the laptop PC, followed by the robot, and then the virtual agent. The authors stated that individuals with MCI preferred the laptop PC condition mainly because it provided less distracting interfaces compared with the task proposed by the other conditions. Furthermore, the robot was preferred to the virtual agent because of its physical presence, according to some studies (Tapus et al., 2009; Wu et al., 2013). In another study, Wu et al. invited people with MCI and HCs to their living lab to interact with a Kompaï robot once a week for 4 weeks. The study results suggest that both groups could learn and remember how to use the robot, but MCI participants might encounter more difficulties. Moreover, the subjects with MCI did not perceive the robot as useful. However, they found it easy to use, amusing, and unthreatening (Wu et al., 2014, 2016).

The most recent works about theoretical design of service robots define more precisely the users' needs and the robot's functionalities. They found that robots should be able to track physical and psychological well-being, and deliver therapeutic intervention, specifically for individuals with MCI. Two key recommendations for developing a robot for robotic daily assistance were identified. First, subjects with MCI need particular help with daily challenges related to memory issues, including confusion or uncertainty, and help filling the time. Second, the robot should monitor different health indices, such as cognitive skills, movement, and mood (Darragh et al., 2017). Today, researchers studying technological solutions for people with MCI take into account not only the assistance side, but also the chance to stimulate these subjects' cognitive repertoire. The idea behind the latest works is that people with MCI should be helped to communicate with friends and family, keeping themselves informed about regional and international news and weather conditions, but also practicing their cognitive skills with games that exercise attention and memory and supporting them in the rehabilitation process following, for example, a hip fracture (Tsardoulias et al., 2017). The social acceptance of robotic assistants was studied by Korchut et al., who saw robots as a novel tool to improve cognitive functions and prevent cognitive decline, and stressed that the socio-emotional interaction represents a key requirements to create sustainable relationships between elderly individuals and robots. This type of interaction will enhance the users' acceptance and encourage the adoption of the assistive robotic system. For this reason, the robots should be able to understand the psychological state of the user and then provide for positive impact (Korchut et al., 2017).

Even though researchers try to find more and more channels to exploit the communication between humans and robots (e.g., GUI, social/emotional-based communication, and so on), human communication is based on spoken language. The importance to address this topic properly is seminal, taking into account older people affected by cognitive impairment. An example is offered by the work of Nishura et al. The authors presented results from a report case study, in which a PaPeRo robot asked the participants to perform some daily activities, including taking medicines, measuring blood pressure, and cleaning up the room in three different ways for each task. Study results showed that the talking pattern changed the subjects' performances of daily activities (Nishiura et al., 2014). Another example is the study by Foukarakis et al. in which the authors reported that, regarding the robot speech synthesis system, the users had difficulties understanding some phrases. This could be attributed to the quality of the voice used, or maybe to the fact that some of the users had hearing impairments or were old enough to have lower than average hearing, but also the speaking rate setting of the voice could be higher than the optimal setting, considering the target user group (Foukarakis et al., 2017). Introducing new technologies to those who have MCI could be problematic under several aspects, both related with the subjects' cognitive condition, and with general old age issues. The authors found that people with MCI had more difficulty with technology than healthy older adults, and they were confused about the robot's purpose and function. For this reason, technology should be introduced to them as early as possible to give them time to become familiar with it, and to increase acceptance and long-term use (Seelye et al., 2012).

While the aforementioned group of papers comprises studies focusing on the subjects' attitudes toward the robots, another branch of research is more interested in the ability of the robot itself to understand and interact with the subjects, as well as with the environment. Nakahara et al., in fact, did not work on a robot's service, but on the robot's functionality. The authors believed that, to enable the robot to help subjects in their daily lives and to identify risky situations, the robot should be able to recognize humans' activities. The results showed that the developed system was able to recognize correctly the action performed with the following accuracy levels: eating 46%; drinking 59%, calling 26%, walking 89%, writing 25%, reading 40%, cleaning 42%, cooking 43%. This type of technology could be useful for the collection of micro-motion data, which can be used to monitor subjects, but also for the early detection of MCI (Nakahara et al., 2016). Another similar work is the paper by Agrigoroaie and Tapus, in which the authors presented an algorithm that should enable the robot to extract and analyze physiological parameters such as respiration rate, blinking rate, and temperature variation across different regions of the face, to monitor and evaluate the users' emotional states. Particularly, among all the signals analyzed, during this experiment, the authors affirmed that the thermal data represent the most precise indicator of the subject's internal state. In fact, an increased temperature in the periorbital region is related to the growth of anxiety level (Agrigoroaie and Tapus, 2017). Works by both Korchut et al. and Agrigoroaie and Tapus address an important topic: namely, the Human-Robot Interaction (HRI). In this field, as mentioned in previous works, it is becoming crucial to study several interaction channels, even the emotional channel, to ensure a natural interaction between the robot and the users (Agrigoroaie and Tapus, 2017; Korchut et al., 2017).

A last sub-field of research, which takes into account the use of a robotic platform for MCI assistance, addresses the topic of how a service robot should interact with the surroundings to exploit its capability to assist older adults with MCI. A couple of articles concerning this argument are reported below.

As reported by Darragh et al., subjects with MCI need help particularly with daily challenges related to memory issues. For this reason, Broughton et al. and Bellotto et al. focused their attention on how the assistive robot could help the user in practical problems, such as finding objects in the patient's house. At the moment, one of the main problems with robots is that they still have difficulty in perceiving and making sense of the world around them. For this reason, the authors proposed an RFID-based technology that can localize objects (Broughton et al., 2016; Bellotto et al., 2017).



6.2. Sensors and Personal Device-Based Assistance

This section encompasses articles concerning assistance through the use of new technological solutions. The independent living of older adults is one of the main challenges linked to the aging population, especially those living with MCI and the consequent frailty. This type of patient needs more support in everyday life and needs to be frequently monitored by formal and informal caregivers. The new ICT solutions, among which are sensors and personal devices, are providing a crucial step forward in the assessment and treatment of these subjects.

One of the first works about the assistance of MCI subjects is the study presented by Mitseva et al., in which the authors evaluated the initial phases of the development of an intelligent system for independent living and self-care of MCI subjects. The authors stated that the starting point is represented by the definition of users' needs, and the proposition of smart solutions for them. They contemplated a three-bundle environment in which users themselves, relatives, and caregivers are immersed together (Mitseva et al., 2009). Similarly, Mainetti et al. discussed the use of wearable and environmental sensors to monitor elderly people with MCI. In their first work, the authors described an unobtrusive system that enables clinicians and caregivers, to monitor the MCI subjects by tracking them during indoor and outdoor activities (Mainetti et al., 2016). In addition, after the authors compared their architecture system with others, they concluded that the key point of their system is its ability to automatically recognize behavioral changes in elderly people with an unobtrusive, low-cost, and low-power technique (Mainetti et al., 2017).

Following the Mitseva et al. instructions, Martinez et al. tried to define MCI needs to develop a smart assistance system. The authors opted for focus group work and ad hoc questionnaires to define typical symptoms and behaviors or people with MCI. According to focus group results, the authors determined that the main problems correlated with cognitive decline are forgetfulness, reduction of attention, losing items, forgetting medical appointments, repetitive behavior, difficulty in coordination and organization, use of paspartout words, lack of interest in things, and changes in personal hygiene (Martínez et al., 2011). In contrast, Meiland et al. asked MCI subjects, people with dementia, and caregivers to rank the proposed functionality of a smart system in relation to their needs. Consistent with the literature, the functionality most often mentioned as relevant and useful by persons with MCI was “help in cases of emergencies.” However, the functionalities most often preferred by caregivers were support with navigation outdoors and the calendar function. However, some functionalities proposed were not considered useful, such as providing an overview of activities that were performed during the day (Meiland et al., 2014).

As for the other services analyzed, also in this case, the use of sensors and personal device applications is greater than the robot applications. Although the overwhelming majority of papers regarding robots and assistance is relegated to discussing designing and development steps, in contrast, a notable part of this paper encompasses concerns about the system testing step. An example is the work of Sacco et al., which, following the target set by Martinez et al., aims at the usability demonstration of a video monitoring system to obtain a quantifiable assessment of instrumental activities of daily living (IADLs) in subjects suffering from MCI. Experimental protocol provides for specific tasks concerning a daily activity scenario (DAS), performed by subjects while they are recorded with cameras. The authors report that a receiver operating characteristic (ROC) analysis, conducted on the results of the DAS score, showed 89% sensitivity and 73% specificity for discriminating MCI from HC participants. These authors developed an algorithm able to recognize and assess the performance of subjects. Moreover, the DAS score provided a pragmatic, ecological, and objective measurement that might improve the prediction of future dementia and help the clinician to lead an early intervention (Sacco et al., 2012).

Similarly, a more recent paper by König et al. examines the use of fixed cameras in the functional assessment of people suffering from MCI. The authors conducted a two-step experiment in which subjects, both controls and MCI, had to perform a set of physical tasks before, and a set of typical IADLs after, the assessment. All the experiment were recorded u a set of sensors. Koönig et al. reported that the activities were correctly and automatically detected, using an algorithm developed by the authors themselves, with a sensitivity of 85.31% and a precision of 75.90%. The authors noted that the proposed method for monitoring and assessing ADL permits the gathering of objective and accurate information about the functional decline of MCI patients. Moreover, the use of such systems could facilitate and support aging-in-place and improve medical care in general for these patients (König et al., 2015a).

The use of cameras represents a mainstream solution for monitoring of MCI at home Vasileiadis et al. used RGB-D cameras to monitor the subjects' performance in ADL. The authors used cameras and infrared sensors in an eight-day-long test. Then, using the SVM technique, the authors were able to recognize the subjects' activities with a precision and recall rate above 80% using only sensor or tracking data, while the precision rate was over 90% through the combination of both data. Additionally, to test the activity detection potential of a sensor-less infrastructure design, an HCRF-based approach was employed, using only the vision-based features described with data sequences extracted from the occupant's movement, body posture, and upper-body geometry, leading to a precision rate of 90.5%. The authors assessed also the acceptance of the infrastructure, and although participants were hesitant to have guests during the experimental protocol, they showed a positive attitude toward the installations of the sensors in their residences (Vasileiadis et al., 2016).

A last, more recent, work that considers action recognition through cameras is the work of Stavropoulos et al. The authors concluded that a key prerequisite for the development of a service robot, which aims to monitor and support MCI patients at home, is the ability to assess the user's behavior during their daily activities. The authors, starting from the EigenJoints descriptor, developed their own action recognition method. More specifically, they proposed novel features that take into account further descriptive information of the user's actions, such as the traveled distance of the joints and how the user's pose evolves in subsequent frames from the reference frame. The obtained results show that the authors' proposed features improve action recognition performance compared to the original EigenJoints method (Stavropoulos et al., 2017).

The assistance of people with MCI goes beyond the use of cameras—other studies address, in fact, different types of technologies, such as smart phones, as in the case of the paper of Battista et al., but also more complex systems, which combine several wearable and environmental sensors with personal devices.

Some examples of that are represented by the work of Lazarou et al., Mighali et al., and Kyriazakos et al. The first paper is the less complex work on the topic. It provides for a set of sensors and personal devices, which encompass bracelets to evaluate movement, cameras, and devices for sleep monitoring, which provide all the necessary tools to clinicians for efficient monitoring of the participants and promote their quality of life via ICTs by focusing on practical aspects of everyday activities (Lazarou et al., 2016).

The papers by Mighali et al. and Kyriazakos et al. propose a similar concept. Both display a two-block structure, a cloud one and a local one (Kyriazakos et al., 2017; Mighali et al., 2017). Particularly, the first structure takes into account the need to recognize and classify typical elderly activities, such as sitting, standing still, lying down, or walking fast/normal. The authors developed a classifier that showed the capacity to correctly recognize the user's body state with an accuracy level equal to 97% (Mighali et al., 2017).

In conclusion, it is worth mentioning also the study by Diaz et al., which aimed to clarify how some cognitive functions might determine the interaction of MCI with technology. The authors found that, first, some functional measures, such as the Barthel ADL index, are related to the expected number of trials needed by a person for the interaction—for example, with an avatar on TV. Second, cognitive measures, especially those related to attention, processing speed, and discrimination between relevant and irrelevant information, can relate to the latency of response that the subjects show when they respond to the avatar. The authors concluded that cognitive and functional measures may help to predict users' expected response to the avatar. Also, these measures may explain how much time that the interaction will take. For these reasons, the authors noted that cognitive and functional measures should be used for guidance to result in a better adaptation of ICTs to elderly people with MCI (Diaz-Orueta et al., 2014).



6.3. Recommendations and Trends

The literature concerning the research in service robots for people with MCI is quite large. This fact can be explained by the fact that, in the overwhelming majority of the cases, the final aim of robots developed for elderly people and/or subjects with MCI are the same they both encompass the design and development of robotic companions for the activities of daily life. For that reason, this section encompasses almost all of the papers about robots, here reviewed. Despite this strong interest in the design and development of robots able to help people with MCI during their daily activities, the technological progress is still in the study of individualization of needs, and in developing usability or acceptability tests. Generally speaking, the sample size of this study is limited, and, moreover, the experimental trial period is a brief and not long enough to draw complete conclusions. Notwithstanding, some results can be presented and some recommendation can be offered. For instance, one of the possible future fields of interest should be the attempt to make the robots more flexible and suitable, to better address subjects' needs. Particularly, concerning MCI, also the stakeholders must be considered. In fact, due to the subjects' conditions, they are not aware of some of their needs, and for this reason they do not find it useful that the robot would be able to remember them of their appointments or when to take their medicines (Korchut et al., 2017).

Concerning the aspects of robots, generally elderly people find that small size, in comparison to human-size, is more tolerated. Furthermore, anthropomorphic or life-like features should be carefully designed with the aim to make the interaction with the robot more intuitive, pleasant, and easy (Wu et al., 2011). Research specifically focused on individuals with MCI reveal that they prefer animal-like shapes and that they like the possibility to interact with the robot, not only via speaking, but also in a more socially and emotionally based way (Pino et al., 2015). In addition, elderly people seem to prefer a robot that looks like a familiar object in a home setting. For this reason, robots might offer opportunities for interaction among all members of the elder community, and they should allow the older people with MCI to experience the same power, control, and agency as others (Wu et al., 2012).

A last thought goes to the tendency of people with MCI to be unwilling to accept an assistive robot for use at home. This observation seems to be a sort of watershed between healthy elderly and people with cognitive impairment. Even if neither the first nor the second are totally enthusiastic to the idea of living with a companion robot, healthy subjects seems to have a more positive attitude toward this kind of robots. For this reason, and thinking to maximize the residual ability to learn how to use robots, it is recommended to introduce elderly people, even those with MCI, to the robots as early as possible (Pino et al., 2012; Seelye et al., 2012). A last comment concerning the attitude of elderly people and this type of technology is drawn to the fact that in coming years we will begin to meet elderly individuals who are increasingly confident and more expert with technologies. This expected change in the way that older will behave should not be neglected.

Concerning the use of personal devices and/or sensors, and their differences with robot-based solutions, this branch of research is not as advanced as in the other fields. This perhaps explains why assistance represents the last step that can be achieved concerning elderly people in general and subjects with MCI, specifically. When comparing the act of assisting people with the act of assessing or stimulating them, assistance is a more complex task. Assistance should provide for monitoring of the subjects, giving them practical assistance, and also giving them social assistance; it requires a higher level of development both in terms of knowledge about pathological condition and in terms of level of technological progress. Overall, when comparing robotic assistance with the idea of assisting people using personal devices, we note that the sample size of the recent is slightly wider, and its trial duration is more appropriate. Moreover, generally, people seem to be more inclined to use assistive technology during their daily activities (Batista et al., 2015). Furthermore, the use of sensors, personal devices, and avatar displayed on TV seem to be less obtrusive (especially regarding cameras), but low-cost and low-power modes are crucial for all of the solutions mentioned (Mainetti et al., 2017). Also, with the use of personal devices, the act of gathering data seems to be simpler. Notwithstanding, the research field appears less appealing and less studied.




7. DISCUSSION AND CONCLUSIONS

Dementia, and particularly AD, is one of the principal causes of disability and reduced autonomy among the elderly population (Alzheimer Association, 2017). It represents one of the most crucial challenging issues that the “health world” will face in coming years, in terms of economic and social costs (Prince et al., 2015, 2016). As mentioned previously, this disease could evolve over as long as twenty years before subjects meet the dementia criteria (Belleville et al., 2016). Due to the minor level of impairment presented by subjects with MCI, it constitutes a valuable therapeutic window for cognitive stimulation (Olazarán et al., 2004; Belleville et al., 2016). From this literature review, despite the limitation of having a research window confined until 2017, it is possible to identify some key points, such as the importance of frequent and intensive sessions of training, the positive influence of a tailored treatment, and furthermore, the value of using an interpretative model that embraces biological, psychological, and social aspects together, to maximize the treatment effect-size. The development of new ICT solutions, usable at the patient's home, without the need for the physical presence of a therapist, allows us to combine cognitive treatments with exercise and social activity (Belleville et al., 2016; Chirles et al., 2017). Although the interest in applying ICT in assessment, treatment, and assistance of people with MCI is steadily increasing, its study is generally related to more severe forms of impairment, such as dementia. However, through a careful literature review, we can recognize several types of ICT applications concerning MCI: “Evaluation,” “Treatment,” and “Assistance.” It is relevant to observe that of the different studies reviewed, most of them encompassed more than application field. In fact, even though the different research works focused their attention on a different, related topic, such as monitoring, for instance, rather than cognitive stimulation, the idea underlying the overwhelming majority of the literature corpus generally referred to a complex way to think about the final aim of the technology: namely, the assistance of MCI subjects. In fact, even though the specific papers debated on single topics, the final purpose was to develop a modular, redundant, and synergistic system to take care of the subjects' needs and assist them. Having said that, we encourage the reader to imagine the use of these technologies as spread in a sort of continuum among early diagnosis, stimulation, assistance, and monitoring. Even though this field of research has been growing faster in recent years (see Figure 2), some substantial limitations are experienced because of the low number of participants in the different studies. Another index, concerning the novelty of the field, is related to the number of contributors that presented during conferences almost half of the total number of papers. Nonetheless, it is possible to report some considerations and to draw some recommendation for future works.

Concerning the “Assessment,” section, it was not possible to find a dominant type of ICT used. However, SGs and VR will likely be used in increasingly greater numbers. Interesting insights can be drawn from the use of wearable sensors, which would allow clinicians to assess patients during their activities of daily life, increasing the ecology of the measurements. Moreover, thanks to the flexibility of these technologies, they could potentially be combined for assessment and stimulation, both physical and cognitive. The development of robotic therapists just for assessment has been, up to now, minimally studied and used. This kind of solution seems that it will provide a better fit for the stimulation of these patients. The literature regarding stimulation, on the other hand, is more sizable. As just noted, for this application, the development of a robotic therapist is more common, and is one of the driving topics covered in research papers. Notwithstanding the interest gathered by this topic, the literature is lacking experimental data; several works reviewed report usability and acceptance tests. However, some steps forward have been taken. One research study on the topic concluded that a robotic therapist should take into account not only the administration of cognitive stimulation tasks, but also be able to interact with the users in a more emotionally/socially manner. Alternatively, regarding the use of personal devices and smart environments in cognitive stimulation, it is possible to observe a more mature field of research, with wider samples and longer-lasting trials. As aforementioned, regarding the Assessment section, SGs and the use of the VR environment are growing faster and gathering significant interest. Finally, concerning the Assistance section, it represents the widest group of papers, and it is mainly composed of work that examines the use of robots for assistance (Cavallo et al., 2011). Apart from the impressive interest that this field is attracting, it seems to be more a target for future development than a feasible reality, at least for now. That is likely due to a couple of limitations: one, the current state of development for companion robots that assist people, compared to the actual amount of help, in terms of quantity and quality, that the people need, and, two, the massive difficulties in gathering reasonable data. These limitations are primarily related to the complex nature of the service that we need to deliver: assistance. In fact, the gap, present in the other two sections, between the use of robots instead of other technological solutions, is reduced here or, even partially erased. That testifies to the inherent difficulty in assisting properly a human-being, especially one with cognitive impairment.

In conclusion, in our opinion, the challenge should be to address, in a systematical way, the act of steadily stepping up the level of intervention, starting from assessment until complete assistance is provided. Now that users' needs are precisely outlined, and the helpful technologies are identified, a modular, suitable system should be developed that addresses the subjects' strengths and weaknesses; features a smart environment and a cloud architecture; and includes more powerful and intelligent robots. The complexity of the intervention reflects, in fact, the complexity of human beings.
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Quantifying, controlling, and monitoring image quality is an essential prerequisite for ensuring the validity and reproducibility of many types of neuroimaging data analyses. Implementation of quality control (QC) procedures is the key to ensuring that neuroimaging data are of high-quality and their validity in the subsequent analyses. We introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based system featuring a workflow for the assessment of various modality and contrast brain imaging data. The design allows users to anonymously upload imaging data to the LONI-QC system. It then computes an exhaustive set of QC metrics which aids users to perform a standardized QC by generating a range of scalar and vector statistics. These procedures are performed in parallel using a large compute cluster. Finally, the system offers an automated QC procedure for structural MRI, which can flag each QC metric as being ‘good’ or ‘bad.’ Validation using various sets of data acquired from a single scanner and from multiple sites demonstrated the reproducibility of our QC metrics, and the sensitivity and specificity of the proposed Auto QC to ‘bad’ quality images in comparison to visual inspection. To the best of our knowledge, LONI-QC is the first online QC system that uniquely supports the variety of functionality where we compute numerous QC metrics and perform visual/automated image QC of multi-contrast and multi-modal brain imaging data. The LONI-QC system has been used to assess the quality of large neuroimaging datasets acquired as part of various multi-site studies such as the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). LONI-QC’s functionality is freely available to users worldwide and its adoption by imaging researchers is likely to contribute substantially to upholding high standards of brain image data quality and to implementing these standards across the neuroimaging community.
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INTRODUCTION

To ensure the highest standards of research quality, reliability, validity, and reproducibility in brain imaging studies, investigators who acquire and/or analyze neuroimaging data are required to test and monitor all facets of image acquisition. For this reason, image quality control (QC) is a prerequisite to most single and multisite projects. Acquisition protocols with relatively long scanning times, such as diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), may be sensitive to substantial noise or artifacts during scanning – for instance, artifacts related to subject motion during relatively long duration acquisitions. Adherence to standardized protocol compliance may be inconsistent. Such neuroimaging challenges become more germane in imaging studies of children (Yoshida et al., 2013) and adolescents (Satterthwaite et al., 2012); the confounding influence of head motion on resting-state functional connectivity and DTI structural connectivity (Lauzon et al., 2013; Yoshida et al., 2013) have received substantial attention (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Similar effects (Reuter et al., 2015) are evident in 3D acquisitions of structural MRI (sMRI).

In addition to head motion-induced artifacts, the common classes of artifacts found in MRI include ringing artifacts driven by aliasing, EPI distortions due to gradient effects, intensity inhomogeneity across regions due to MR strength attenuation and use of multiple channel coils, zero fill artifact, zipper artifact related to blood flow, impulse noise that likely drops the signal-to-noise ratio (SNR), magnetic susceptibility creating image geometric distortion (Bastin et al., 1998; Skare et al., 2000; Anderson, 2001), chemical shift due to the differences between resonance frequencies of fat and water (Reiser et al., 2008), and aliasing artifacts resulting from a field of view that is smaller than the object (Heim et al., 2004; Owens et al., 2012; Jones et al., 2013; Pizarro et al., 2016). Beyond the aforementioned artifacts, the quality of DTI measurement is also susceptible to eddy currents. These confounds likely contribute to inaccuracies in segmentation of anatomical MRI images (Pizarro et al., 2016; Keshavan et al., 2017), assessment of inter-regional correlation of blood-oxygen-level dependent (BOLD) time courses on resting state-fMRI (Power et al., 2012, 2014), and the tensor fitting of DTI data (Le Bihan et al., 2006). Poorly inspected data has the potential to obscure the presence of actual biological changes and/or produce spurious associations with study phenotypes. However, most neuroscientific and clinical studies do not describe whether or not image QC was performed in their research publications. Others rely solely upon a visual inspection method of image QC and follow in-house QC protocols, which may not be well documented. The use of visual inspection methods which often rely on subjective interpretation to identify ‘bad’ quality data are mainly due to the absence of an existing standardized procedure for QC. Furthermore, variations in QC approaches make data aggregation across datasets even more difficult.

Development of quantitative QC metrics is imperative for addressing the subjectivity in visual assessment and would serve to facilitate an automated QC system of brain image data so that methods of assessment can be reproduced across multisite datasets. A survey of the literature (Supplementary Data 1) presents studies performing systematic assessment of image quality of MRI data using quantitative QC for typical MRI modalities (sMRI: n = 9; fMRI: 5; DTI: 3). The types of QC (i.e., manual or fully automated annotation of ‘bad’ images), the number of QC metrics (n = 1–190) and the type of datasets (i.e., inclusion of patients or healthy subjects only, age range, sample size, use of publicly open data or their own data) used in these studies vary considerably. In particular, inclusion of pathologic brains or inclusion of pediatric or elderly groups in some studies may result in a different distribution of the QC metrics – suggesting different interpretations of their relative image quality since these are factors likely changing the degree of artifacts or degrading the image preprocessing for the computation of QC metrics. This may ultimately present confounds for the users during their interpretation of the QC results. Recent work shows more promising results and provides more advanced features that improve the accessibility and reliability of the QC system: The nine studies shown in Supplementary Data 1 focused on developing a QC system for structural MRI (sMRI). Similarly, these studies derived a number of QC metrics that characterize different aspects of imaging artifacts on sMRI and used supervised classifiers to determine a decision boundary by which the best agreement with visual inspection results was obtained. One of these frameworks is not publicly available (Pizarro et al., 2016). Roalf et al. (2016) recently developed a publicly open script which calculates several QC metrics to assess the image quality of DTI data. They performed a systematic evaluation on a large DTI dataset showing sensitivity and specificity of their proposed QC metrics to bad quality data. Oguz et al. (2014) have also developed the DTIPrep tool, open-source software featuring a graphical user interface (GUI), which can perform QC on DTI images. This tool has two separate modules including an automatic QC and artifact correction/removal as well as a module enabling visual assessment. One fMRI study using a QC metric of temporal variation in signal changes showed that this metric is sensitive to motion artifacts and also related to reductions in functional connectivity (Power et al., 2012). In their follow-up study, they expanded their findings by investigating methods to remove the censored motion artifact (Power et al., 2014). There have also been efforts made for the quality assurance of post-image processing such as in the studies evaluating brain structural segmentation on sMRI (Keshavan et al., 2017) and fiber tractography extracted from DTI data (Sommer et al., 2017). However, this type of QC processing may tend to be computationally costly, requiring numerous stages of image processing prior to the image quality evaluation.

Despite these recent efforts in various MRI modalities, several challenges exist which potentially limit neuroimaging researchers’ and clinicians’ access to or familiarity with currently available QC tools: First, There are no other comprehensive QC tools covering sMRI, fMRI, computed tomography (CT) and DTI simultaneously, even though there are other QC tools covering part of these image modalities1 ,2 (Marcus et al., 2013; Esteban et al., 2017). Second, most of the QC tools do not provide a user-friendly GUI which can increase the accessibility of novice-level users to these tools. Most tools also require preinstalled software libraries such as FSL, SPM or AFNI in order to enable their functionality on a local host computer. Furthermore, the facility for automated QC is not routinely included in many neuroimaging software packages, which potentially implies a dependence on human efforts in the QC process. Lastly, running a given QC tool on a personal computer or small size compute clusters may limit QC efforts in large-scale data collections.

Here, we describe the LONI QC system (version 1.0) which features a detailed scientific workflow for the objective review and assessment of various modality and contrast imaging data including sMRI, fMRI, DTI, and CT data. The current QC system has two options to perform its functionality: (1) a completely online system supported by various commonly-used web-browsers and which requires no preinstalled software; (2) a downloadable framework which runs on the user’s local computing environment but does necessitate prerequisite software. In the online system, the design allows users to anonymously upload imaging data to the LONI QC system, either through LONI Integrated Data Archive (IDA) or using a direct uploading interface. It computes a comprehensive set of standard QC metrics that have been described in the literature and performs a standardized QC via an automated pre-processing system specifically designed to generate a range of scalar and vector statistics along with derived images. LONI QC data processing workflows are implemented using the LONI Pipeline3 that facilitates designing, modifying, and maintaining the system, whilst the QC data processing is performed on the LONI processing grid in the Mark and Mary Stevens Neuroimaging and Informatics Institute at the University of Southern California (USC) – a cluster of thousands of central processing units (CPUs). LONI QC system also features a user-friendly web GUI that is designed for those whose level of expertise can range from novice to expert. Upon completion of the QC process, the system provides the users a detailed report containing a range of quantitative metrics which can be used to assess neuroimaging data quality. Finally, the LONI QC system enables image evaluation based on flagging each QC metric as ‘good,’ ‘questionable,’ or ‘bad’ based on a statistical distribution of prior results.

To provide an illustration of the LONI QC system, we evaluate various datasets including imaging data scanned with different imaging modalities (sMRI, fMRI, DTI), sequences (T1-weighted, T2-weighed, FLAIR) and different acquisition parameters (e.g., repetition time, echo time, voxel size). We also evaluate the QC metrics’ reproducibility (for a dataset collected from the same scanner and collected from multiple scanners with different acquisition parameters) as well as sensitivity and specificity to the identification of ‘bad’ quality images in comparison to visual inspection to assess the utility of the automated QC rating process.



MATERIALS AND METHODS

The online LONI QC system consists of the following three stages (Figure 1): (1) Initialization, including online account creation and uploading data; (2) Computation of QC metrics for various modality images; and (3) Image QC reporting including automated QC rating and user’s visual inspection. The automated QC feature provides a way for users to be informed about whether the assessed image data is of good quality or needs further careful inspection by a human expert. In the following sections, the workflow and technical specifications of the system are described. More details that explain how the GUI of the current system interacts with the workflow and the proposed features are provided in Figure 2 and Supplementary Data 2.


[image: image]

FIGURE 1. Overall workflow for the LONI QC system. The LONI QC system consists of the three main stages: (1) Initialization including the creation of an online account and uploading data; (2) Computation of QC metrics for different image modalities. The system computes and generates various QC metrics, vectors and 3D maps and renderings for user’s comprehensive evaluation of image quality; and (3) Image QC including automated QC and user’s visual evaluation. The automated QC feature provides a way for users to be informed about whether the assessed image data is of good quality or needs further careful inspection by a human expert. IDA, Integrated Data Archive; QC, quality assessment; QC, quality control; MSI, mean slice intensity; SNR, signal-to-noise ratio; CoM, Center of Mass; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FA, fractional anisotropy; SVNR, signal variance-to-noise variance ratio; TCTV, tissue contrast-to-tissue variance ratio; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; FWHM, full width half maximum; FD, frame-wise displacement; SD, standard deviation.
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FIGURE 2. The web-based user-friendly GUI for LONI QC system. (a) Entering to http://qc.loni.usc.edu using any web-browser, users can register their accounts and log in to LONI QC system. (b) After sign-in, users enter into the main page. In the left panel the user can first select a data collection. The user can select image(s) in the selected collection in the middle panel. Finally, in the left panel, the user can select an Action related to the selected image(s): either run new QC, evaluate QC result, create QC report, export QC data to a CSV file or refresh collection data. (c) The user can set or change the cutoff values/ranges in ‘auto QC setting.’ The cutoff ranges are set per image modality by selecting it on the left-bottom panel. The ranges can be compared to the mean and SD of the previously processed datasets. (d) Once QC metrics computation were completed and the user clicked “Evaluate scan quality” in the left panel of the main page, the user can appreciate and evaluate the calculated QC metrics (d-1), vectors (d-2), and 3D maps and renderings (d-3,4,5) per image. If the auto QC was performed, they can find the ‘good,’ ‘questionable’ or ‘bad’ flags and can revise the results if they do not agree. After the evaluation and revision of QC, users can submit the final evaluation to the system and request to export the QC reports in various formats such as XML or PDF (e).



The offline version of the LONI QC framework may be downloaded at http://qc.loni.usc.edu. This package includes the related LONI pipeline workflow file, the scripts required by the workflow, and a document instructing the installation and the list of the packages to be preinstalled, such as FSL, AFNI, FreeSurfer, and SPM.


Initialization (Figure 1-1)

Once users create their account on the LONI QC system and login, they can submit image data from the existing data collection to the QC processing workflow. To enable the submission of image data by a user, the LONI QC system either interacts with the LONI-Image Data Archive (IDA)4 or uses a separate module that allows the user to directly upload their data to the QC system. The IDA is a user-friendly environment for archiving, searching, sharing, curating and disseminating neuroimaging and related clinical data (Crawford et al., 2016). It has been employed in a large number of neuroimaging research projects across the globe and accommodates MRI, MR angiography (MRA), magnetic resonance spectroscopy (MRS), DTI, CT, positron emission tomography (PET) and other imaging modalities. An engine for flexible data de-identification and encrypted file transmission are then used to ensure compliance with patient-privacy regulations. Uploading data through the IDA automatically archives the data in the IDA securely, which requires no specialized hardware, software or personnel. The IDA and the direct upload module automatically extract relevant metadata from all de-identified image files. The direct upload method implemented in the current system version (v1.0) permits DICOM and Nifti formats as well as uploading multiple files at a time (up to 2 gigabytes or up to 30 files).



Computation of QC Metrics for Various Modality Images (Figure 1-2)

The users can initiate the system for computation of the QC metrics by selecting data included in the existing data collection. The LONI QC system uses a LONI Pipeline workflow (Rex et al., 2003) to pre-process image data prior to the calculation of QC metrics including correction for intensity inhomogeneity (Sled et al., 1998) and eddy current correction for the geometric distortion on DTI (Jezzard et al., 1998). Once the preprocessing is done, the system then inspects all XML header information and verifies that the data are suitable for analysis: e.g., whether the modality of the image is within the category of sMRI, fMRI, DTI or CT, and whether there is missing information about the imaging parameters. The results of this inspection are used as input to a module which either instructs the system to proceed with the calculation of metrics or transmits information to an error reporting module. We describe in the following sections how and what QC metrics are computed in each imaging modality.


Workflow and QC Metrics for sMRI and CT

The following QC metrics are computed: (1) mean slice intensity (MSI): AFNI software is used to calculate MSI, a vector representing the mean intensities for all the slices. A quick change in mean intensity at a slice compared to its previous one may indicate a quality issue; (2) SNR: The lower 10% of the intensity distribution is used to separate the image background from the head. The SNR is, then, computed as mean signal intensity of the head divided by the standard deviation (SD) of the intensity in the background. The range of possible values is between zero and infinity. Lower SNR indicates poorer image quality; (3) signal variance-to-noise variance ratio (SVNR): Signal intensity variance of the head is divided by the signal intensity variance of the background. Here, the range of possible values is between zero and infinity. Higher SVNR indicates bad image quality; (4) contrast-to-noise ratio (CNR): Image is skull stripped to label the brain using FSL-BET5. The FSL-BET is subject to the generation of a poorly fitting brain mask. However, we intend for the LONI QC system to use simple and minimum image pre-processing steps rather than employing learning-based approaches, per se, which often perform better or worse depending on the training-set. Furthermore, the LONI QC system has the functionality for users to visually check the quality of the BET-generated mask, allowing for the finalization of the QC more comprehensively. Segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) is performed on the skull-stripped brain using SPM86 package. The means of GM and WM signal intensities are subtracted from one another. Their absolute value is divided by the SD of the background signal intensity. Possible values range from zero to infinity. Lower CNR indicates poorer image quality; (5) Contrast of Variance-to-Noise Ratio (CVNR): Instead of the means of GM and WM intensities, their SDs are used; (6) brain tissue contrast-to-tissue intensity variation (TCTV): The means of GM and WM signal intensities are subtracted from one another. Their absolute value is divided by the pooled SD of the GM and WM as [image: image] where σ is SD of the signal intensities for a given tissue type. Range of values is zero to infinity. Smaller TCTV indicates poorer image quality. This metric was used in a recent study (Pizarro et al., 2016) and we observed this is sensitive to the motion artifact more than SNR or CNR; (7) full-width-at-half-maximum (FWHM): This metric that characterizes the smoothness of the image is determined using the variance of derivatives method of Worsley et al. (1992): The FWHM was computed within the brain area and calculated separately for each axis in the image volume. Also, the number of ‘resolvable elements’ is calculated by dividing the number of voxels in the brain by the geometric mean of the FWHM of each axis; (8) center of mass (CoM) of the volume in each dimension (X, Y, and Z). The CoM is computed by dividing the sum of each coordinate X, Y, or Z for the voxels inside the brain by the number of these voxels (Fesl et al., 2008).



Workflow and Metrics for DTI

The module first ensures whether data for all gradient directions are available or not by extracting B0 values and the diffusion gradient direction matrix from DICOM headers. If this is not the case, the workflow generates error messages to the user. The following QC vectors are computed: (1) the SNR; (2) CoM computed for each gradient direction volume; (3) histogram of image intensities and its related descriptive statistics for each volume are generated within the head mask; (4) the mean signal intensity (MSI) and SNR for volumes associated with each gradient direction; and (5) the displacement from the mean of the CoM in each of the X, Y, and Z directions is calculated for each gradient direction. Using TrackVis7, the following features as volume maps are computed and visualized for users to examine: B0, fractional anisotropy (FA), mean diffusivity (MD) and apparent diffusion coefficient (ADC) volumes. The 3D rendering of WM fibers is generated using streamline tractography methods (Mori et al., 1999; Lazar et al., 2003). A detailed report containing information about the number of voxels, mean intensity, standard deviation, and minimum and maximum intensities for each slice is also generated.



Workflow and Metrics for fMRI

For each point in an fMRI time series, capabilities are provided to calculate the following scalar metrics: (1) MSI per volume; (2) the average temporal SNR; (3) the frame-wise displacement (FD): the mean displacement of the head for each frame from the first frame volume using the algorithm of Power et al. (2012). The maximum FD and the number of the volume frames with FD > 0.5 are also computed; and (4) DVARS: The algorithm of Power et al. (2012) is also used to compute the root-mean-squared change in blood oxygenation level-dependent (BOLD) signal across time, which is known as the DVARS measure. We used FSL tools called fsl_motion_outliers to compute FD and DVARS. We further compute the maximum DVARS, the number of frames with DVARS > 50. Plots across time (i.e., across the volume frames) are also provided for the following quantities: (1) FD; (2) DVARS; (3) the volume mean of SNR; (4) estimated head translations and rotations in each dimension; (5) the volume mean of the signal intensity; (6) the volume mean of the running difference (‘velocity’); (7) percentage of outlier voxels [using the 3dToutcount function in the AFNI software package (Cox, 1996)]; (8) the FWHM in each dimension; (9) the CoM change in each dimension; (10) the mean and maximum of the fMRI signal’s frequency spectrum over the brain-masked volume; and (11) the image intensity variation per slice and the signal-to-fluctuation noise ratio (SFNR) computed as described by Friedman and Glover (2006). In the processes where the alignment was required, we used FSL-FLIRT and MCFLIRT tools with the cost function of the normalized correlation.



Workflow and Metrics for Phantoms

The LONI QC system accommodates data collected from MRI phantoms as a separate category and all the metrics described above for human data can be computed automatically for MRI phantoms as well. This process can be essential for helping the user to decide on acceptable values and ranges for metrics computed from human data. The QC protocol for phantoms is similar to that for each type of imaging (sMRI/CT, DTI or fMRI), with minor differences. The QC metrics reported for phantoms are the MSI, odd-even slice intensity differences, the SFNR, the CoM in each dimension, and to obtain plots of the raw fMRI signal and Fourier spectrum magnitude.




Image QC (Figure 1-3)


User’s Qualitative and Quantitative QC of Image Data

Once the image data were processed and QC metrics have been computed, the system awaits the users’ evaluation. The graphical user interface (GUI) of LONI QC system then is provided for users’ visual inspection of the quality of images as well as their quantitative evaluation of QC metrics (Figure 2):

• Visual inspection: The GUI is fully integrated with the LONI Viewer based on a web-enabled neuroimage viewing engine. For sMRI volumes, the LONI viewer allows users to inspect neuroimaging slices in the axial, sagittal and coronal planes. For DTI volumes, a magnetic field gradient direction table is provided in addition to FA, MD and ADC images. DTI tractography files can be inspected using the LONI Viewer with an online 3D visualization module.

• Quantitative evaluation: Using the GUI of the system, the users can view and examine the resulting QC metrics as in value for the following metrics [sMRI: SNR, CNR, SVNR, CVNR, TCTV, COV, FHWM [x,y,z], CoM [x,y,z]; fMRI: average temporal SNR, maximum FD, number of frames with FD > 0.5, minimum DVARS, maximum DVARS, number of frames with DVARS > 50; DTI: N/A], as in graph plotting the vector of image arrays (sMRI), gradient volume series (DTI), and time series profiles (fMRI) for the following metrics: [sMRI: MSI; DTI: MSI per gradient volume, SNR changes, CoM change in each dimension; fMRI: FD, DVARS, volume mean of SNR, head translations, and rotations in each dimension, volume mean of signal intensity, volume mean of running difference (‘velocity’), percentage of outlier voxels, FWHM in each dimension, CoM change in each dimension, mean and maximum of the fMRI signal’s frequency spectrum over the brain-masked volume, image intensity variation per slice and signal-to-fluctuation noise ratio], and as in voxel-wise volume map (sMRI: SNR; DTI: SNR, B0, FA, MD, ADC; FMRI: SNR, temporal mean, temporal SD).



Automated QC and User’s Revision

It is almost impossible for users to perform image QC for all the data in instances of the analysis of large or multisite datasets. Even analyzing a smaller dataset, image QC for every single subject is time-consuming. To facilitate, the LONI QC system provides a user-friendly automated QC system that flags each scan with ‘good,’ ‘questionable’ or ‘bad’ and suggests the user to carry out an additional visual QC on those with ‘questionable’ or ‘bad’ flags. This feature is currently available for the sMRI and fMRI data where we have single-value QC metrics whereas the QC metrics for DTI are in a vector format. The system’s GUI provides the users a way to set a range for each QC metric, with which they can classify the resulting metric to the ‘good,’ or ‘bad’ category (note: ‘questionable’ is merged into either ‘good’ or ‘bad’ in autoQC, see Evaluation section). This is performed by comparing the location of each metric value with a user-defined cut-off range. Metrics whose values fall outside this interval are then labeled automatically as ‘bad.’ In the current study, the criteria for the classification of ‘good’ or ‘bad’ were determined compared to the visual QC as the gold standard. More specifically, the criteria were defined based on the cut-off values which we determined at the best performance in terms of (sensitivity + specificity)/2. More details and the best cut-off values used for the current version of autoQC are found in the Evaluation section. Finally, if more than a user-specified number (system default: 3) of computed metrics are flagged as ‘bad,’ the system flags the assessed case as ‘bad’ and suggests it to be more closely checked.

To finalize a QC report review and submission, the user provides an overall evaluation of the volume on the basis of the result of the auto QC as well as that of their own qualitative QC. The users can either accept the auto QC result or submit their revised annotation. Once reviewed, the report can be saved only, or saved and submitted to the QC database. If the report is only saved, additional changes can still be made until its final submission to the QC database. In each case, the users can convert the report into either PDF or CSV format for further download, distribution, or offline analysis. The entire QC process can be completed within less than a minute for each scan by an expert neuroimaging researcher who has been trained on how to use the system.



QC Study Summaries

One feature being provided by the QC system is the ability is to compile summaries of volume quality over a study or multiple studies with hundreds to thousands of participants, over particular acquisition types (sMRI, DTI, fMRI, etc.), over distinct project sites and over user-defined date ranges when the data were acquired.




Evaluation of the QC Metrics and the Auto QC

To aid in a better understanding of the QC metrics used by the system and provide a guideline to set up the cutoff ranges for the auto QC, we performed the following evaluations with various datasets:


Distribution of QC Metrics in Data Collected Using a Single MRI Sequence

We computed the QC metrics on sMRI data (n = 642; age = 74 ± 8 years, 25–75% = 68–78 years) that have been collected in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) using the same imaging parameter setting (T1-weighted Sagittal MP-RAGE; details found in Table 1). In the following analyses, we used the magnitude of each CoM and FWHM by computing [image: image] where a is either CoM or FWHM, instead of analyzing each of x, y, z directional metrics separately. To assess the distribution of the QC metrics, we plotted the histogram for each of them. The distributions characterized using the histogram were used as the reference in the following analysis of the data using the multi-sites multi-sequences. For fMRI, we analyzed 657 scans that were selected also from the ADNI project (age = 74 ± 7, 25–75% = 69–78), which were acquired using a single set of imaging parameters (ADNI Axial resting state fMRI protocol) shown in Table 2.

TABLE 1. Acquisition parameters for structural MRI of the ADNI dataset.

[image: image]

TABLE 2. Acquisition parameters for the two different resting state-fMRI dataset: ADNI represents data acquired using a single set of imaging parameters whereas Track-TBI represents dataset acquired using various parameters from multi-sites for the cross-validation.

[image: image]



Reproducibility of QC Metrics on Data Collected From Multi-Sites, From Different Scanners and Using Multi-MRI Sequences

For sMRI, we used multisite datasets including data from Parkinson’s Progression Markers Initiative (PPMI) (Kang et al., 2016) and Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) projects while using the ADNI data as the reference of the single sequence imaging data. For TRACK-TBI data, we included only those with non-visible injury on images in the analysis. As a result, we analyzed 1196 T1-weighted imaging data from PPMI (age = 62 ± 10, 25–75% = 56–69) and 1569 from TRACK-TBI projects (age = 37 ± 17, 25–75% = 24–52). For fMRI, we analyzed 1555 from TRACK-TBI (age = 37 ± 16, 25–75% = 24–52). The information of MRI acquisition parameters used in these sMRI and fMRI datasets are presented in Tables 2, 3.

TABLE 3. Acquisition parameters for the multi-site datasets used for the cross-validation: structural MRI.

[image: image]

To assess the distribution of the QC metrics, we plotted the histogram for each of them. For each modality of sMRI or fMRI, we created the histogram separately for each of the two datasets and compared the distribution of each metric between the two datasets. To this end, we first computed the z-score per QC metric using the pooled datasets of the two datasets. Then, the histogram in each dataset was normalized using the same number of the bins and by dividing the height of each bin by the area of the histogram, resulting in an empirical probability density map. Finally, to evaluate whether the manufacturer of the scanner affect the distribution of the QC metrics, we compare the histogram of the QC metrics measured in the subjects scanned on the Siemens scanner which comprised the major portion (n = 655; 42%; more information in Table 3) of the TRACK-TBI dataset with those measured in the whole TRACK-TBI dataset.

More subject motion is presumed to be involved in pediatric samples. Furthermore, more CSF volume, less cortical GM volume and smaller GM/WM tissue intensity contrast are expected in elderly (Steen et al., 1995; Salat et al., 2009) and dementia populations (Westlye et al., 2009; Salat et al., 2011). These factors possibly influence the measurement of the QC metrics. Thus, we correlated the age at scanning and each QC metrics. Visual inspection of the shape for each dataset’s probability density map and computing the Dice overlap index between them assessed their similarity.

Finally, a user may expect one or a combination of QC metrics to characterize a different aspect of the image artifacts. To evaluate the independency of a given QC metric to others for each modal image data, we constructed a matrix, each component of which computed a Pearson’s correlation efficient between the given metric and one of the rest of the metrics.



Reproducibility of QC Metrics for the Cases Scanned on the Same Scanner With the Same MRI Protocol

Four healthy volunteers, as well as a BIRN MRI phantom (Friedman and Glover, 2006), were scanned at 1-week intervals for a month (four scans) using the ADNI3 (Weiner and Veitch, 2015) neuroimaging protocol. This consisted of (A) structural MRI scans, including (i) a magnetization-prepared rapid acquisition gradient echo (MP-RAGE) T1-weighted scan, (ii) a spoiled gradient-echo (SPGR) T2∗-weighted scan and (iii) a fluid-attenuated inversion recovery (FLAIR) scan, (B) a 126-direction DTI scan, and (C) an fMRI scan. The acquisition parameters for each of these are listed in Table 4. These volumes were acquired using the 3 T Siemens Prisma MRI scanner at the Mark and Mary Stevens Neuroimaging and Informatics Institute. All volunteers scanned in the single MRI machine provided written informed consent and the study was undertaken with the approval of the Institutional Review Board at the Keck School of Medicine of USC and according to the Declaration of Helsinki. The ages of the volunteers were 24, 25, 25, and 35; all were right-handed and healthy, with no history of a neurologic or psychiatric disease. We expected a very small variability in the QC metrics across these images which were acquired in the same scanner relative to data collected from different scanners with different image sequences. We thus performed an F-test of Variance on a ratio as SD_multi_scanner2/SD_single_scanner2, by comparing the variance of each metric for these four individual images with the variance for the multi-site datasets mentioned above. This sample was created by consisting of only subjects in the same range of age as the four volunteers. The smaller the ratio SD_within_scanner/SD_multi_scanner was, the more reproducible the QC metrics were within a scanner.

TABLE 4. Acquisition parameters for the four healthy volunteers and 1 phantom scanned using the 3T Siemens Prisma MRI scanner at the Mark and Mary Stevens Neuroimaging and Informatics Institute.
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Performance of Auto QC

We assessed the performance of the auto QC in comparison to the result of the visual inspection. To find the best cutoff values as well as compare these values with the human visual QC results, we used the sMRI data of the TRACK-TBI dataset and tested various cutoff values to identify the QC labels (‘good’ vs. ‘bad’) that best agreed with the labels created by systematically performed expert’s visual inspection. Here, we tested only sMRI data as visual inspection of sMRI was performed solely using the evaluation of the original images without checking QC metrics. Visual inspection of fMRI normally entails the examination of the QC metrics as well, which could bias the inspection result. Furthermore, no scalar QC metrics were calculated for DTI data and thus the auto QC of DTI was not included in the current system. For visual inspection, we used the following categories of the artifact to identify ‘questionable (or moderate)’ and ‘bad’ quality images: ringing artifacts due to motion or aliasing, zipper artifact related to blood flow, impulse noise that likely drops the SNR, magnetic susceptibility creating image geometric distortion, wrap around artifacts happening when the size of the imaged object is larger than the field of view and small head coverage. The details of the visual inspection are provided in Supplementary Data 3. Using this protocol and being independent of the auto QC results, one rater (HT) labeled 1,569 individual t1-weighted sMRI data in the TRACK-TBI set and another rater (RECB) did this for a randomly subsampled 100 cases to test their reproducibility. The ‘questionable’ quality data in the visual assessment were either merged to ‘good’ or ‘bad.’

To assess the binary classification accuracy of each QC metric with respect to various cutoff values, we first changed the cutoff values per QC metric from z-score = −5 to z-score = 5 with a very small step size (z-score = 0.05). To compute sensitivity and specificity compared to expert labeling, we calculated the receiver operating characteristics (ROCs) and the related area under the curve (AUC). The logistic ROC analysis used a threefold cross-validation approach to estimate AUC and optimal cutoff score that resulted in the greatest accuracy as ‘(sensitivity + specificity)/2′. Larger AUC values indicated the more accurate classification of participants.

In the Auto QC, more than a user-specified number of computed metrics were flagged as ‘bad’ and the system flagged the assessed case as ‘bad.’ Therefore, we assessed how many ‘bad’ flagged QC metrics should be used to best agree with the labels in the visual inspection. Using the optimal cutoff values that were determined previously, we flagged all the 7 QC metrics either into ‘good’ or ‘bad’ and counted the number of the ‘bad’ labeled metrics per image. At each threshold from 1 to 7, we computed the specificity, sensitivity, and accuracy compared to the visual inspection results.

All p-values were corrected using Bonferroni adjustment.





RESULTS


Processing Time

The processing times for the preprocessing (e.g., brain masking) and calculation of QC metrics (mean ± SD) were approximately 7 min for sMRI, 6 min for CT, 8 min for fMRI and 4 min for DTI on a single Intel i7 CPU. Including the queuing process and possible network traffics, the average computational times were 22.8 ± 6.6 min for sMRI, 18.5 ± 5.9 min for CT, 16.0 ± 4.2 min for fMRI and 7.6 ± 2.2 min for DTI.



Distribution of QC Metrics in Data Collected Using a Single MRI Sequence

For sMRI, the histogram of each QC metric is shown in Figure 3. Their mean and SD were: SNR = 21.4 ± 3.0; SVNR = 233 ± 56; CNR = 7.45 ± 3.33; CVNR = 788 ± 1680; TCTV = 1.00 ± 0.58; FWHM = 5.30 ± 0.3; CoM = 17.4 ± 3.8. A visual evaluation found that the distribution of SNR, SVNR, CNR, and FWHM was left-right symmetric and similar to the shape of a Gaussian function whereas that of CVNR and CoM was skewed and close to the shape of an F-distribution function. The distribution of TCTV displayed with two modes and was like the function of a bimodal Gaussian mixture function.
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FIGURE 3. Distribution of sMRI QC metrics for two different datasets that were acquired with multiple imaging parameter settings and collected from multi-sites. The PPMI dataset is colored in blue and the TRACK-TBI in red while the ADNI dataset that was acquired using a single imaging parameter setting is used a reference and shown with the black outline. All the images included in this analysis were based on T1-weighted acquisition (The image sequence parameters are described in Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from the two multi-sites datasets. This was used as a measure of reproducibility of the metrics. Dice index: 0.6–0.8 – good; 0.8–1.00 – excellent (Altman, 1999).



For fMRI, the histograms are shown in Figure 4. The mean and SD of each QC metic were: maximum FD (maxFD) = 1.60 ± 8.80; the number of frames with FD > 0.5 (FD > 0.5) = 17.4 ± 24.3; average temporal signal-to-noise ratio (avgTSNR) = 126 ± 31; maximum DVARS (maxDVARS = 83.4 ± 37.4; minimum DVARS (minDVARS) = 23.0 ± 6.1; the number of frames with DVARS > 50 (DVARS > 50) = 21.9 ± 28.4. The distribution of avgTSNR, and minDVARS tended to be left-right symmetric and similar to the shape of Gaussian function whereas that of maxDVARS, maxFD, FD > 0.5 and DVARS > 50 was skewed. The estimated FWHM along each of the x, y, and z axes for fMRI was included in the system. However, because the resultant measurement is not a scalar but a time series vector, we did not include this in the result because of the complexity of the time-series vector metric.
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FIGURE 4. Distribution of fMRI QC metrics for two different multi-site data. The ADNI set that was acquired using a single imaging parameter setting is colored in blue while the TRACK-TBI set that was acquired using multiple imaging parameter settings is in red. All the images included in this analysis were based on Axial Resting State fMRI sequence (details in Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from the two datasets. This was used as a measure of reproducibility of the metrics.





Reproducibility of QC Metrics for Data Acquired on a Scanner Using a Single Imaging Sequence


sMRI

All the individual QC metrics computed for the four volunteers’ longitudinal scans are provided in Tables 5–7. The means of all the QC metrics for the T1w MRI data were similar to those computed using the ADNI dataset and the multi-site PPMI and TRACK-TBI datasets whereas the variations for these single-scanner-acquired data were significantly smaller than those acquired from the multiple sites (F-test; F > 19; p < 0.00001). The distribution of each metric did not differ among the four individuals (ANOVA; F < 2.0; p > 0.3). The computation of the QC metrics in T2∗ and FLAIR imaging data showed different characteristics of their means and SDs compared to T1-weighted data (paired t-tests; t > 3.7; p < 0.05), advising the choice of different cutoff values in the auto QC setting depending on the used acquisition sequence. As expected, the mean SNR for the phantom was approximately 3–5 times higher for all three sequences. Similar differences between human subjects and the phantom were observed for the SVNR and FWHM.

TABLE 5. QC metrics for T1-weighted sMRI scans.
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TABLE 6. QC metrics for T2∗ sMRI scans.
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TABLE 7. QC metrics for FLAIR sMRI scans.
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fMRI

The computed QC metrics are shown in Table 8. As in sMRI, their means were similar to those computed using TRACK-TBI and ADNI datasets except minimum DVARS and maximum DVARS (t > 4.2; p < 0.005). The variations for all the metrics were significantly smaller (F-test; F > 15; p < 0.00001). Results illustrated that, as expected, the temporal SNR was four times higher in the phantom whereas the FD and DVARS values were many times larger in human subjects (t > 21; p < 0.00001). This was because both FD and DVARS reflect greater subject motion, such that larger values are associated with more motion during the scan.

TABLE 8. QC metrics for fMRI.
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Reproducibility of QC Metrics for Multi-Site and Multi-Scanner Data


sMRI

All the distributions of the sMRI QC metrics are shown in Figure 3. The overall shapes of the histogram for all the metrics were similar between the PPMI and ADNI single sequence datasets. The distributions in all the QA metrics of PPMI data were well overlapped with those in the ADNI data, whereas the distributions of SNR and CNR in TRACK-TBI data displayed a shift of the whole shape from the PPMI and ADNI data, driven by their higher mean (SNR: +3.1; CNR = +4.2). Indeed, TRACK-TBI data displayed significantly higher mean SNR (26.6 ± 6.0 vs. 27.8 ± 5.8; t = 4.6; p < 0.001), and higher mean CNR (27 ± 0.1 vs. 27 ± 0.1; t = 4.8; p < 0.001) than PPMI data. No other QC metrics differed in their means (p > 0.2).

The overlap between PPMI and TRACK-TBI datasets was generally very high across metrics (Dice index: μ ± σ = 0.88 ± 0.03, range: 0.85–0.93) except SNR and CNR (0.76 ± 0.04) that displayed relatively smaller overlap. The largest overlap was observed in CoM (Dice index = 0.93), followed by CVNR (0.89), FWHM (0.87), TCTV (0.86), SVNR (0.85), SNR (0.78) and CNR (0.73), respectively. Despite the high overlap of the main distribution between TRACK-TBI and PPMI datasets, the FWHM displayed significant smaller peaks unequally located in the right-hand tail for both data sets. We found this was driven by a number of cases with artifacts.

The overlap between Siemens data of the TRACK-TBI and the whole TRACK-TBI data was also high across all the metrics (Dice index: μ ± σ = 0.90 ± 0.05, range: 0.73–0.93) except CoM (0.73) that displayed relatively smaller overlap. The largest overlap was observed in CVNR (Dice index = 0.95), followed by SVNR (0.89), CNR (0.87), TCTV (0.86), SNR (0.85), FWHM (0.82) and CoM (0.73), respectively (Supplementary Data 4).

Analysis of the age at scanning showed no correlation of any QC metric with aging in any dataset (Pearson’s correlation coefficient: r < 0.2; p > 0.1). Subgrouping the TRACK-TBI data into the pediatric (<20 years, n = 220) and adult (>20 years, n = 1349) groups did not display a difference in any QC metric (t < 1.0; p > 0.4) between these two groups. However, subgrouping the TRACK-TBI data into the elderly (>60 years, n = 260) and non-elderly (<60 years, n = 1309) showed a significant drop-down in SNR and CNR in the elderly group relative to the non-elderly (t > 4.7; p < 0.001). The mean of SNR and CNR in the elderly group of TRACK-TBI did not differ from those computed in PPMI or ADNI dataset (t < 1.3; p > 0.3). A subsequent investigation found that the lower SNR in the elderly than in the non-elderly group was driven by a significantly lower mean signal intensity within the head (the numerator of SNR; t = 6.1; p < 0.0001) while a variance of intensity in the background (the denominator of SNR) did not differ between the two age groups (F = 1.4; p > 0.1). The lower CNR in the elderly was due to a lower mean tissue contrast (the numerator of CNR; t = 10; p < 0.00001) while the variance of brain intensity (the denominator) was not different between the elderly and non-elderly group.



fMRI

All the distributions of the fMRI QC metrics are shown in Figure 4. The overall shapes of the histogram for all the metrics were also very similar between the TRACK-TBI dataset with multiple settings of imaging parameters and ADNI dataset with a single setting of imaging parameters. The overlaps between these two datasets were very high (Dice index: μ ± σ = 0.86 ± 0.05, range: 0.80–0.94). The largest overlap was observed in maxFD (Dice index = 0.94), followed by DVARS > 50 (0.88), FD > 0.5 (0.87), avgTSNR (0.82), minDVARS (0.82), and maxDVARS (0.80), respectively. The mean and the variance of each metric did not significantly differ between ADNI data than TRACK-TBI (p > 0.1). There was no correlation between any QC metric and the age in either of the two groups (r < 0.2; p > 0.1).




Association of a Given QC Metric With Other Metrics


sMRI (Figure 5A)

Analysis of the correlations between a given QC metric and others in the pooled dataset of TRACK-TBI and PPMI sets showed that most of metrics were not significantly associated (r < 0.5; p > 0.1) whereas the following pairs were highly correlated: SNR-SVNR, CNR-TCTV, and CoM-FWHM (r > 0.5; p < 0.05). The reason for their significant correlation was likely due to that SNR and SVNR used the same denominator; CNR and TCTV used the same numerator and; CoM and FWHM characterized similarly about the head shape: i.e., the position and the blurriness.
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FIGURE 5. Correlation matrices. Each cell indicates the Pearson’s correlation coefficient computed between two indicated QC metrics. SNR, signal-to-noise ratio; SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance; FWHM, full width-at-half maximum; CoM, center of mass; FD MAX, maximum Frame-wise displacement (FD); FD > 0.5, the number of frames with FD is larger than 0.5 mm; AVG TMP SNR, average temporal SNR; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; DVARS > 50, the number of frames with DVARS > 50; DVARS MAX, maximum DVARS; DVARS MIN, minimum DVARS.





fMRI (Figure 5B)

Analysis of the correlations between a given QC metric and others in the pooled dataset of TRACK-TBI and ADNI sets showed that the following pairs were highly correlated: maxFD-FD > 0.5, maxFD-maxDVARS, FD > 0.5-maxDVARS, FD > 0.5-minDVARS, DVARS > 50-FD > 50, DVARS > 50-maxDVARS, and DVARS > 50-minDVARS, (r > 0.3; p < 0.05). The avgTSNR did not correlate with any other metrics (r < 0.12; p > 0.2).



Evaluation of the Auto QC System

In the visual inspection of 1569 sMRI data in the TRACK-TBI project, 1345 images (85.7%) were classified into ‘good,’ 199 (12.8%) into ‘questionable’ and 25 (1.5%) into ‘bad’ quality. The kappa statistic of the two raters (HT, RECB) was 92%, indicating excellent agreements between the raters using the protocol described in Supplementary Data 3. When merging the ‘questionable’ cases to the ‘good’ group, the auto QC for all QC metrics showed higher agreements with the visual inspection results compared to when merging the ‘questionable’ cases to the ‘bad’ group (0.61–0.91 vs. 0.51–0.73). The QC metric yielding the largest AUC was CNR (0.91 for good + questionable, 0.73 for bad + questionable), followed by CoM (0.88, 0.56), TCTV (0.87, 0.70), FWHM (0.85, 0.54), SVNR (0.74, 0.56), and CVNR (0.62, 0.51), respectively. At the best cutoff values, the auto QC of FWHM showed the highest classification accuracy, which was 0.86, followed by the analyses of CNR (0.84), CoM (0.84), TCTV (0.81), SNR (0.73), SVNR (0.70), and CVNR (0.58). The results including the cutoff values used for the best performance of the auto QC are summarized in Table 9 and Figure 6. We found that 3 or more QC metrics with ‘bad’ flags could be used to identify an image as ‘bad’ and result in the best agreement with the visual inspection (sensitivity = 85%, specificity = 87%, accuracy = 89%; overall AUC = 0.93). This was 3, 0, and 2% higher in sensitivity, specificity, and accuracy compared to the results using the CNR only that yielded the best result among all the QC metrics.

TABLE 9. ROC analysis QC metrics for fMRI.
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FIGURE 6. Receiver–operator characteristic (ROC) curves based on using sMRI QC metrics for classification. (A) ROCs for differentiating bad data from acceptable data (questionable and good). CNR best differentiated bad data from the acceptable data as it yielded the largest area under the curve (AUC = 0.92). (B) ROCs for differentiating poor (bad + questionable) data from good data. CNR and TCTV showed the best performance with AUC = 0.7–0.73. SNR, signal-to-noise ratio; SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance; FWHM, full width-at-half maximum; CoM, center of mass.







DISCUSSION

Here, we have introduced the LONI QC system, a web-based and expandable system which features a rigorous workflow for the review and assessment of multimodal MRI including sMRI, fMRI, and DTI as well as CT. We also detailed the features of the user-friendly GUI that facilitates user’s execution of data uploading, initiating new QC, executing Auto QC, setting parameters for QC, visualizing the resulting QC metrics, vectors and 3D maps, evaluating and revising the QC results, and submitting the final QC. All these functionalities are found in the LONI QC website8 through the GUI that interacts with the various menus, or panels that were explained in the previous sections. A newly added tutorial helps the users follow the testing with demo data9 (yellow ‘tutorial’ button on the top-left corner), which will potentially increase the accessibility of the current functionalities in the system.

In a thorough evaluation of the system using various sets of data acquired from a single scanner and multiple sites and we found a strong degree of similarity among the datasets as well as distinguishing the characteristics specific to each dataset. The QA metrics are generally reproducible both within as well as consistent across subjects. In addition, we found that some data specific properties would be useful to be added as potential covariates in the automated QC method. Notably, anatomical changes due to normal patterns of aging may need to be considered in the user’s analyses, especially for SNR and CNR metrics.

Here, we extensively evaluated the utility of the auto QC by analyzing sensitivity and specificity of the cutoff value per sMRI QC metric to the identification of ‘bad’ quality images in comparison to visual inspection. Our results can be used as a guideline for the proper settings for the QC process and as users’ interpretation on the QC in their own data. To the best of our knowledge, the LONI QC is the first online QC system that uniquely supports to perform the image QC of multi-contrast and multimodal brain imaging data. The LONI QC system provides users a various level of image QC from the first aid of the user’s own image quality assessment to the high-end QC that automatically flags bad quality images based on the user’s setting of cutoff values. This service provides various options of MRI QC (i.e., computation of QC metrics, auto QC, user’s own evaluation on QC metrics and visual QC), depending what type of the QC the users prefer to perform. LONI QC differs from the previously developed tools that push the QC to correction of bad quality images by de-noising or removing the voxels or volume frames affected with artifacts (Zhou et al., 2011; Li et al., 2013; Liu et al., 2015). These correction processes are computationally costly.


Pros and Cons of LONI QC Compared to Other Extant QC Systems

Compared to previously developed QC tools, the current QC system has the following new features: It is the first completely online system which is supported by various web-browsers and requires no preinstalled software. The online system allows users to anonymously upload imaging data to the LONI QC system, either through LONI Integrated Data Archive (IDA) or using a direct uploading interface, thus having no issue of identity theft in the processed data. The automated QC has been set with the default parameters using those determined as in Table 9, which can be adapted to the user’s data. It computes a standard set of QC metrics that have been described in the literature and performs a standardized QC via an automated pre-processing system which is specifically designed to generate a range of scalar and vector statistics along with derived images. The QC data processing is performed on the LONI processing grid in the USC Mark and Mary Stevens Neuroimaging and Informatics Institute making possible parallel computing using a cluster of thousands of central processing units (CPUs) whereas the previously developed approaches were designed to work on a single-core of the personal computer where the source code was downloaded. LONI QC system also features a user-friendly web-based GUI and a tutorial with demo data that help particularly novice users get familiar with the QC system.

There are several important considerations that potentially improve the LONI QC approach compared to the current limitations of other approaches: First, it is freely accessible through the Internet so that it is impossible to process offline data while also provided as a downloadable framework which runs on the user’s local computing environment – but which does necessitate the independent installation of prerequisite software. The LONI QC system is partly dependent on the data archiving capacity of the IDA. Large size image datasets are preferably collected and archived in the IDA prior to the QC execution. The direct data uploading module has been tested with a small set of data (n < 30 at one uploading) with a small number of simultaneous network connections (number of users < 5). This eventually prevents the users from keeping their image data in our online storage after QC reports are generated. The capacity of the network traffic and the data storage in our computing cluster when using the direct uploading module is currently being expanded and tested by our developer team, allowing the affordability of more users who have difficulty or are reluctant to access LONI QC system through the IDA. Second, the current system has yet to support the auto QC of DTI data as no scalar QC metrics for DTI are computed. Roalf and his colleagues in their recent work (Roalf et al., 2016) devised a number of DTI QC metrics and showed a high degree of sensitivity and specificity. Indeed, it is particularly challenging for a human rater to assess the quality of the time series volumes of fMRI and the multidirectional volumes of DTI data. Therefore, we plan to include the quantitative metrics discussed by Roalf et al. (2016) or equivalent ones, to support the auto QC of DTI data in future releases of LONI QC. Third, the optimal setting of cutoff values for auto QC may vary depending on the image sequence and weighting methods, as also shown in the current study. In pediatric imaging data, a greater degree of motion artifact can be involved compared to adult data. This may require an adaptive setting regarding such confounding effects. The current version of the system provides the default setting with the parameters achieved in our evaluation (see Table 9) with a flexibility of scaling cutoff values by the users. Furthermore, the current system only analyzes each QC metric separately using a univariate fashion. A machine learning approach using multivariate modeling of the QC metric’s distribution can classify the quality of each image data with a higher accuracy as found in Pizarro et al. (2016), Esteban et al. (2017), and Fonov et al. (2018). Fourth, recent studies (Li et al., 2013; Oguz et al., 2014; Power et al., 2014) developed and evaluated methods to reduce, correct or remove some types of artifacts existing on DTI and fMRI images. Such image reconstruction or enhancement, albeit with the possibility of inducing a bias, may help to decrease the chance of permanent exclusions of the cases with a bad image quality from the subsequent biological or clinical analyses. Fifth, a previous study (Mortamet et al., 2009) designed QC metrics that are sensitive to the identification of machine-inherent noises (e.g., Gaussian noise, aliasing, zipper pattern) by masking out the head area in measurement whereas we included a more variety of QC metrics that can capture the types of noise occurring inside (e.g., head motion) and outside the brain region. Finally, a future improvement of the study is to evaluate the effects of running LONI-QC on the performance in subsequent image analysis. This can be hinted by the attempts made for the quality assurance of post-image processing such as in the studies evaluating brain structural segmentation on sMRI (Keshavan et al., 2017) and fiber tractography extracted from DTI data (Sommer et al., 2017).



Reproducibility of the QC Metrics Adopted in LONI QC System

The choice of metrics when evaluating the quality of a neuroimaging dataset has substantial implications for how data processing steps are carried out subsequent to image acquisition. In the current system, we included a broad range of QC metrics modeling various aspects of the image artifacts possibly occurring during image acquisition. Many of these metrics were also chosen or developed by other studies in the literature (Friedman and Glover, 2006; Power et al., 2012; Li et al., 2013; Marcus et al., 2013; Pizarro et al., 2016). The histogram analysis of these metrics showed their reproducibility in multiple datasets including those acquired with a single setting of imaging acquisition parameters or with multiple settings of imaging parameters used in multiple scanners. The distributions of these metrics were not significantly influenced by different parameter settings if the analyzed images were acquired using the same sequence (e.g., T1-weighted) and the same modality (sMRI, fMRI, DTI). On the other hand, results in the analysis of T1-weighted sMRI suggest that the means of SNR and CNR can differ when imaging elderly or a dementia patient populations. In the analysis of the possible introduction of larger motion artifacts in younger subjects, we did not observe the influence of the age variation on the QC metrics measured in the data tested here. While this finding shows the age would not be a confounding factor in younger adult cohorts of TRACK-TBI, it does not necessarily imply that the severity of motion artifacts in pediatric data is as same as that in adult data. Previous studies indeed showed that some obvious bad quality images displayed a significant correlation between QC metrics and age (Roalf et al., 2016) and prospective motion correction improved diagnostic sensitivity in pediatric data (Kuperman et al., 2011).

When data are collected in a single machine with uniform imaging parameters, the variance of the QC metrics becomes significantly smaller, suggesting that the variance in the multi-site data partly explains the machine characteristics and the difference in imaging parameters. On the other hand, differences in the image sequence (e.g., T1-weighted, T2-weighted, FLAIR), even acquiring a same modality image appear to create a significant difference in their distribution, suggesting that the direct comparison of the QC metrics resulting from two datasets acquired using different image sequences may not be suitable. The users may need to consider the aforementioned factors in setting the proper cutoff values in the auto QC to identify bad quality images.

Correlational analyses illustrated that the major proportion of the QC metrics in sMRI were not associated each other whereas many in fMRI showed significant correlations each other. The main reason why the many fMRI QC metrics were correlated is likely that these metrics characterize temporal signal changes or head displacements that can be driven by head motion. The LONI QC system was designed with this in mind, and one of its strengths is that it calculates for the users not only standard—and occasionally correlated—metrics such as the CNR and CVNR, but also more information-rich evaluations. In doing so, the LONI QC system provides a platform for evaluating the relationships between a wide variety of QC metrics and allows the users to choose those metrics which may be more relevant in their studies. Generating QC vectors and 3D maps, a greater variety of choices is given for the users to perform image quality assurance and control in depth. This idea is not different from those adopted in the previously published works (Oguz et al., 2014; Esteban et al., 2017). Eventually feature reconstruction approaches such as principal component analysis (Tenenbaum et al., 2000) or independent component analysis (Cao et al., 2003) may reduce the number of QC metrics while keeping their QC performance by projecting them on to the axes that explain larger variations of the data or better explain the information implied in the data.



Auto QC: Comparison to Visual Inspection

Recent studies have made an unprecedented effort to acquire an enormous size of MRI dataset in line with the emergence of the new generation of the analysis in ‘BIG’ data. Nearly every week, more than 1000 new scans of sMRI, fMRI or DTI data are archived in the repository of the LONI-IDA. The tedious and time-consuming visual inspection in the quality of such massive datasets is not practical. Automated QC that quantifies image QC metrics, and labels the degree of image quality is of major interest and there have been recent attempts to substitute the manual QC procedure. In the current paper, we introduced such an automated procedure that used various QC metrics and their cutoff values to flag bad quality images. The strength of LONI QC and other similar methods that were proposed recently (Oguz et al., 2014; Pizarro et al., 2016; Roalf et al., 2016; Esteban et al., 2017) lies on the use of multiple QC metrics that characterize various aspects of image artifacts involved in the brain image acquisition. Furthermore, these metrics have an ability to differentiate the degree of the artifact severity as they are continuous and not categorical or dichotomous (i.e., good or bad).

However, the results from automated QC and similarly those previously published (Pizarro et al., 2016; Roalf et al., 2016; Esteban et al., 2017) do not always fully agree with the visual inspection results. This is because the univariate analysis of each metric may be able to detect one type of the image artifact whereas the visual assessment performs a comprehensive evaluation where the deterioration in image quality is multifaceted with simultaneously occurring multiple noise types. The use of thresholds along with the number of simultaneously occurring ‘bad’ QC metrics further improved the classification accuracy. Another study (Pizarro et al., 2016) used a multivariate analysis by employing a support-vector machine-based classifier and showed the potential improvement against univariate analyses. Interestingly, the QC metrics utilized in LONI QC were more sensitive to the classification when merging the ‘questionable’ or ‘moderate’ quality images to ‘good’ images. We separately performed the 3-class classification, but this showed a worse result (AUC = 0.5–0.6) than 2 class classification. This suggests that questionable cases would not be clustered as an independent "moderate" group, but their characteristics would be closer to that of the "good" group. However, it is not clear whether or not the questionable quality images are potentially problematic in the post-image processing or the subsequent biological/clinical analyses. Further examination of quality clustering will form the basis of ongoing activities for the LONI QC framework.




CONCLUSION

Quality control of neuroimaging data is an essential, though a complex and challenging component of image processing and analysis. Although many previous studies have aimed to identify an ideal set of measures which can distinguish between images of good and bad quality, it remains the case that different researchers have different intuitive, qualitative and quantitative standards of what image quality should be, and of how that quality ought to be quantified. The LONI QC system was specifically designed with these considerations in mind, and is the first both web-based and freely-available QC system which provides users with the ability to specify their own standard of image quality, automatically apply that standard to their data, and then download the results of their QC analysis in CSV and/or PDF format for further post-processing using the tools and methods of their choice. Because it accommodates a wide variety of imaging modalities, the LONI QC system can appeal to a substantial cross-section of researchers in the neuroimaging community who are interested in applying and maintaining the highest standards of image quality to their image analyses and, by extension, to their research efforts. The streamlined integration of the LONI QC system with the LONI IDA and with the LONI Pipeline—both of which are widely used by neuroimaging researchers—throws additional weight behind the argument that this novel, state-of-the-art system can be easily adopted by a large number of neuroimaging researchers worldwide, thereby potentially leading to the formulation and adoption of a much-needed standardized protocol for neuroimaging QC and analysis.
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The NEURON simulator has been developed over the past three decades and is widely used by neuroscientists to model the electrical activity of neuronal networks. Large network simulation projects using NEURON have supercomputer allocations that individually measure in the millions of core hours. Supercomputer centers are transitioning to next generation architectures and the work accomplished per core hour for these simulations could be improved by an order of magnitude if NEURON was able to better utilize those new hardware capabilities. In order to adapt NEURON to evolving computer architectures, the compute engine of the NEURON simulator has been extracted and has been optimized as a library called CoreNEURON. This paper presents the design, implementation, and optimizations of CoreNEURON. We describe how CoreNEURON can be used as a library with NEURON and then compare performance of different network models on multiple architectures including IBM BlueGene/Q, Intel Skylake, Intel MIC and NVIDIA GPU. We show how CoreNEURON can simulate existing NEURON network models with 4–7x less memory usage and 2–7x less execution time while maintaining binary result compatibility with NEURON.

Keywords: NEURON, simulation, neuronal networks, supercomputing, performance optimization


1. INTRODUCTION

Simulation in modern neuroscientific research has become a third pillar of the scientific method, complementing the traditional pillars of experimentation and theory. Studying models of brain components, brain tissue or even whole brains provides new ways to integrate anatomical and physiological data and allow insights into causal mechanisms crossing scales and linking structure to function. Early studies covered for example the levels from channels to cell behavior accounting for detailed morphology (e.g., De Schutter and Bower, 1994; Mainen and Sejnowski, 1996) and integrating this detail into models of networks (e.g., Davies, 1992). More recently, studies have been accounting for increased electrophysiological detail and diversity in the tissue model (e.g., Markram et al., 2015; Arkhipov et al., 2018), giving a glimpse at functional importance of the underlying connectome (e.g., Gal et al., 2017; Reimann et al., 2017) allowing for example the reinterpretation of aggregate brain signals such as LFP (e.g., Anastassiou et al., 2015). At the same time, computational studies have strived to look even deeper into the biochemical workings of the cell, studying the role of intracellular cascades in neuromodulation (e.g., Lindroos et al., 2018) or metabolism (e.g., Jolivet et al., 2015), and to abstract some of the detail while maintaining cell type diversity (e.g., Izhikevich and Edelman, 2008; Potjans and Diesmann, 2012; Dahmen et al., 2016), or to move the integrated and modeled data all the way to fMRI (Deco et al., 2008).

As the biochemical and biophysical processes of the brain span many orders of magnitudes in space and time, different simulator engines have been established over time incorporating the appropriate idioms, computational representations and numerical methods (e.g., at the biochemical level—STEPS Wils and De Schutter, 2009, at the detailed cellular level - NEURON Migliore et al., 2006, using simplified neuron representations—NEST Gewaltig and Diesmann, 2007, or even more abstract—TVB Sanz-Leon et al., 2015 to name a few).

The more detail is included in these models and the larger the models become, the larger are the computational requirements of these simulation engines, making it necessary to embrace advanced computational concepts and faster computers (Hines et al., 2011; Hepburn et al., 2016; Ippen et al., 2017). Table 1 shows exemplarily five different network models used in this paper for benchmarking and indicates their size and complexity.



Table 1. Summary of network models.
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A single-column thalamocortical network model (Traub et al., 2005) is used to better understand population phenomena in thalamocortical neuronal ensembles. It has 3,560 multi-compartment neurons with soma, branching dendrites and a portion of axon. It consists of 14 different neuron types, 3,500 gap junctions and 1.1 million connections. The neurons were connected together by chemical synapses (using AMPA and NMDA receptors) and gap junctions that were non-rectifying and voltage-independent. This model uses standard repertoire of 11 active conductances in all of the cells. A scaled-down variant of the full-scale dentate gyrus model (Dyhrfjeld-Johnsen et al., 2007) developed in the (Soltesz Lab, 2019) is used to understand hippocampal spatial information processing and field potential oscillations. It consists of 5,143 multi-compartment neurons and 4,121 Poisson spike sources, and includes 6 different cell types, 1.2 million connections and about 600 gap junctions. This model uses 9 classes of active conductance mechanisms such as sodium, potassium, calcium channels, and calcium-dependent potassium channels. A synthetic model with specific computational characteristics is often needed to evaluate target hardware based on number of cells, branching patterns, compartments per branch etc. For this purpose, a multiple ring network model of branching neurons and minimal spike overhead is used (Hines, 2017a). The Blue Brain Project has published a first-draft digital reconstruction of the microcircuitry of somatosensory cortex in 2015 (Markram et al., 2015). This model contains about 219,000 neurons, with 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. The neurons in this model employ up to 13 different Hodgkin-Huxley conductance classes, with up to 8 of those classes used in the dendrites. Together with other partners in the European Human Brain Project, this group is also working on a full-scale model of a rat hippocampus CA1 (Human Brain project, 2018). A first draft of this model contains about 789,000 neurons with 13 morphological types and 17 morpho-electrical types. The neurons in this model employ up to 11 active conductance classes, with up to 9 of those classes used in the dendrites.

The number of neurons and synapses, however, is not always the best indicator of the computational complexity of a model. In the model of Markram et al. (2015) each neuron averages to about 20,000 differential equations to represent its electrophysiology and connectivity. To simulate the microcircuit of 31,000 neurons, it is necessary to solve over 600 million equations every 25 ms of biological time–a requirement far beyond the capabilities of any standard workstation. It is necessary to utilize massively parallel systems for such simulations but fully exploiting the capabilities these systems is a challenging task for a large number of scientific codes, including NEURON. Significant efforts are necessary to prepare scientific applications to fully exploit the massive amount of parallelism and hardware capabilities offered by these new systems (Ábrahám et al., 2015).

In this paper we present our efforts to re-engineer the internal computational engine of the NEURON simulator, CoreNEURON, to adapt to emerging architectures while maintaining compatibility with existing NEURON models developed by the neuroscience community. Our work was guided by the goal to leverage the largest available supercomputers for neuroscientific exploration by scaling the simulator engine to run on millions of threads. A key design goal was to reduce the memory footprint compared to NEURON as total memory and memory bandwidth are scarce and costly resources when running at scale. Lastly, for this capability to be easily usable by the normal NEURON community, we endeavored to tightly integrate CoreNEURON with NEURON.



2. NEURON SIMULATION ENVIRONMENT

NEURON is a simulation environment developed over the last 35 years for modeling networks of neurons with complex branched anatomy and biophysical membrane properties. This includes extracellular potential near membranes, multiple channel types, inhomogeneous channel distribution and ionic accumulation. It can handle diffusion-reaction models and integrating diffusion functions into models of synapses and cellular networks. Morphologically detailed models simulated using NEURON are able to represent the spatial diversity of electrical and biophysical properties of neurons.

Individual neurons are treated as a tree of unbranched cables called sections. Each section can have its own set of biophysical parameters, independently from other sections, and is discretized as a set of adjacent compartments (see e.g., Hines, 1993). Compartmental models of neurons take into account not only the connectivity between neurons but also the individual morphologies and inhomogeneities of each neuron. The electrical activity of neurons is modeled using the cable equation (see e.g., Tuckwell, 2005) applied to each section, where the quantity representing the state of a neuron at a given point in space and instant in time is the membrane potential. The general form of the cable equation for a section, in the case of constant parameters and conductance based synapse modeling, is given by:
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where

• [image: image] are biophysical parameters contributing to the passive component of the cable equation (unit conversion factors are not shown but each term has the units of mA/cm2).

• [image: image] is the active contribution arising from ion channels along the section, whose conductances gi and resting potentials ei might depend in a non-linear fashion upon a set of state variables representing those channels.

• [image: image] is the contribution from the synapses placed at positions xj, whose conductances gj and resting potentials ej might depend in a non-linear fashion upon a set of state variables and which take effect in a strongly localized manner. Individual synapses have units of nA and conversion to mA/cm2 involves a Dirac delta function, δ(x−xj), with units 1/μm, and the diameter; i.e., conversion of absolute current to current per unit area implies division by the compartment area where the synapse is located.

One needs to couple (1) to a set of additional differential equations that describe the evolution of the states of ion channels and synapses, thus giving rise to a system of PDEs/ODEs as the final problem. Spatial discretization of the PDEs results in a tree topology set of stiff coupled equations which is most effectively solved by implicit integration methods. In particular, direct Gaussian elimination with minimum degree ordering is computationally optimum in the sense that the number of arithmetic operations is identical to direct Gaussian elimination of a non-branching cable with the same number of nodes (Hines and Carnevale, 1997; Hines et al., 2008). The general structure of a hybrid clock-event driven algorithm (Hines, 1993) in NEURON can be divided into a set of operations that are performed at every integration time step and an interprocess spike exchange operation where a list of spike generation times and identifiers are synchronized across all processors every minimum spike delay interval. The per integration step operations are:

• Event-driven spike delivery step where the callback function of each synapse activated by a spike at a given timestep is executed.

• Matrix assembly step where the Iion and Isyn contributions are computed and included in the matrix.

• Matrix resolution step where the membrane potential for the current step is obtained by solving a linear system.

• State variables update step where the evolution equations for the states of ion channels and synapses are solved to advance to the current timestep.

• Threshold detection step where each neuron is scanned to see if it has met a particular firing condition, and if so a particular list of events is updated.

Although the simulator has demonstrated scaling up to 64,000 cores on the IBM Blue Gene/P system (Hines et al., 2011), with the emerging computing architectures (like GPUs, many-core architectures) the key challenges are numerical efficiency and scalability. The simulator needs to : (1) expose fine grain parallelism to utilize the massive number of hardware cores, (2) be optimized for memory hierarchies and (3) fully utilize processor capabilities such as vector units. To simulate models with billions of neurons on a given computing resource, memory capacity is another major challenge. In order to address these challenges, the compute algorithm of the NEURON simulator was extracted and optimized into a standalone library called CoreNEURON.



3. CORENEURON DESIGN AND IMPLEMENTATION

The integration interval operations (listed in section 2) consume most of the simulation time (Kumbhar et al., 2016). The goal of CoreNEURON is to efficiently implement these operations considering different hardware architectures. This section describes the integration of CoreNEURON with the NEURON execution workflows, major data structure changes to reduce memory footprint, memory transfer between NEURON-CoreNEURON and a checkpoint-restore implementation to facilitate long running simulations.


3.1. NEURON to CoreNEURON Workflow

One of the key design goal of CoreNEURON is to be compatible with the existing NEURON models and user workflows. With the integration of CoreNEURON library, the NEURON simulator supports three different workflows depicted in Figure 1.

• NEURON mode

• CoreNEURON Online mode

• CoreNEURON Offline mode
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FIGURE 1. Different execution workflows supported by NEURON simulator with CoreNEURON : (A) shows the existing simulation workflow where HOC/Python interface is used for building a model which is then simulated by NEURON; (B) shows the new CoreNEURON based workflow where the in-memory model constructed by NEURON is transferred using direct memory access and then simulated by CoreNEURON; (C) shows new CoreNEURON based workflow where NEURON partitions a large network model into smaller chunks, iteratively instantiates each model piece in memory, and copies that subset of model information to disk. CoreNEURON then loads the whole model in memory and simulates it.



Existing users are familiar with the default NEURON mode. The model descriptions written in NMODL (Hines and Carnevale, 2000) are used to build a dynamically loadable shared library. The HOC/Python scripting interface is used to build a network model in memory (Model Setup phase). This in-memory model is then simulated using the hybrid clock-event driven algorithm described in section 2 (Simulation phase). Users have full control over model structure and can introspect or record all events, states, and model parameters using the scripting or graphical user interface (Result phase).

CoreNEURON Online Mode allows users to run their models efficiently with minimal changes. After the Model Setup phase, the in-memory representation is copied into CoreNEURON's memory space. CoreNEURON then re-organizes the memory during Memory Setup phase for efficient execution (see section 4.2). The Simulation phase is executed in CoreNEURON and spike results are written to disk. Note that the same NMODL model descriptions are used both in NEURON as well as CoreNEURON.

CoreNEURON Offline mode is intended for large network models that cannot be simulated with NEURON due to memory capacity constraints. In this mode, instead of loading the entire model at once, the Model Setup phase builds a subset of the model that fits into available memory. That subset is written to disk, the memory used by the subset is freed, and the Model Setup phase constructs another subset. After all subsets are written by NEURON, CoreNEURON reads the entire model from the disk and begins the Simulation phase. Because CoreNEURON's cell and network connection representations are much lighter weight than NEURON's, 4-7x larger models than NEURON can be simulated with CoreNEURON (see section 5).

Users can adapt existing models to the CoreNEURON Online Mode workflow with the trivial replacement of the psolve function call with nrncore_run of the (ParallelContext, 2019) class.



3.2. Data Structure Changes

NEURON is used as a general framework for designing and experimenting with neural models of varying anatomical detail and membrane complexity. Users can interactively create cells with branches of varying diameters and lengths, insert ionic channels, create synapses, and visualize different properties using a GUI. In order to provide this introspection capability, NEURON maintains a large number of complex data structures. Typically, once the users are satisfied with the behavior of the model, they run larger/longer simulations on workstations or clusters where those interactivity or detailed introspection capabilities are often no longer required. In this type of batch execution, memory overhead from many large, complex data structures with many mutual pointers can be significantly reduced by replacing them with fixed arrays of data structures in which the few necessary pointers are replaced by integers. For example, the network connection object (Netcon) and the common synapse base class (Point_process), which are responsible for a significant portion of memory usage in NEURON, were reduced from 56 to 40 and 56 to 8 bytes respectively in CoreNEURON. Table 2 lists the important data structures and their memory usage comparison between NEURON and CoreNEURON. CoreNEURON eliminates the Python/HOC interpreter and so, datastructures like Node, Section, Object are no longer needed. The memory usagemprovements from these optimizations for different network models are discussed in section 5.



Table 2. Memory footprint comparison for different data structures (in bytes).

[image: image]






3.3. Pointer Semantics

NEURON users can define their own data structures and allocate memory through the use of POINTER and VERBATIM constructs of NMODL (Hines, 2019). Many internal data structures of NEURON use pointer variables to manage various dynamic properties, connections, event queues etc. As a model is built incrementally using the scripting interface, various memory pools are allocated during the Model Setup phase. As data structures between NEURON and CoreNEURON are different, serializing memory pools becomes one of the major memory management challenges of the CoreNEURON implementation. With serialization, pointer variables need to be augmented with meta information to allow proper decoding by CoreNEURON. This meta information indicates the pointer semantics. All data variables which potentially are the target pointers are grouped into a contiguous memory pool and pointer variables are converted to an integer offset into the memory pool. When the NEURON pointers are copied to CoreNEURON's memory space, the semantic type associated with the pointer variable is used to compute the corresponding integer offset. Different semantic types with their purpose are listed in Supplementary Material (see Table S1).



3.4. Checkpoint-Restart Support

The network simulations for studying synaptic plasticity can run from a week to a month. Enabling such simulations of long biological time-scales is one of the important use cases for CoreNEURON. Most of the cluster and supercomputing resources have a maximum wall clock time limit for a single job (e.g., up to 24 h). The checkpoint-restart (Schulz et al., 2004) is commonly used technique to enable long running simulations and has been implemented in CoreNEURON. Since the checkpoint operation could take place at anytime with varying degrees of cell firing activity, it was necessary to account for generated yet undelivered synaptic events in addition to saving the in-memory state of the simulator. When a cell fires, it may have many connections to other cells with different delivery delays. During the checkpoint operation, any undelivered messages are collapsed back into the original event of the firing cell so that a single event can be saved. Once the network simulation is checkpointed, users have flexibility to launch multiple simulations with different stimuli or random number streams in order to explore network stability and robustness. The execution workflow of such simulations is shown in Figure 2.
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FIGURE 2. Simulation workflow with the checkpoint-restart feature : CoreNEURON loads the model from disk, simulate it and dumps in-memory state back to disk (SaveState step). CoreNEURON can load checkpoint data (RestoreState step) and continue the simulation on a different machine using the checkpoint data. The user has flexibility to launch multiple simulations with different stimuli or random number streams (Stim or RNG) in order to explore network stability and robustness.





3.5. Spike Communication

In CoreNEURON, the MPI communication and event queue handling for spike delivery is inherited from NEURON and remains on the CPU. Performance of those components is discussed in Kumar et al. (2010); Hines et al. (2011). However, when GPUs are in use, all the spikes within a time step that are destined for a specific synapse type are copied to the GPU to a type specific buffer and thereafter all NET_RECEIVE block computations take place on the GPU. Conversely, threshold detection takes place on the GPU as well and spike generation is buffered until the end of the time step at which point the buffer spikes are copied to the CPU for MPI transfer and enqueueing onto the priority queue. The exception to this strategy is that ARTIFICIAL_CELL instances, which compute and generate spikes solely by their NET_RECEIVE block response to delivered events, exist only on the CPU.



3.6. Portability Considerations

CoreNEURON can transparently handle all spiking network simulations including gap junction coupling with the fixed time step method. The model descriptions written in NMODL need to be (THREADSAFE, 2019) to exploit vector units of modern CPUs and GPUs. A model can be non thread-safe if a MOD file contains GLOBAL variables which are used for temporary storage by getting assigned a value in one procedure and evaluated in another. Such variables need to be converted from GLOBAL to RANGE. This can be achieved with the help of NEURON's mkthreadsafe tool or the user can manually make the minor change to such MOD files. New keywords like COREPOINTER and CONDUCTANCE have been added to NMODL to facilitate serialization and improve performance optimization respectively. These keywords are also backported to NEURON so that the models remain compatible for either NEURON or CoreNEURON execution. For scalability and portability of random numbers on platforms like GPUs, CoreNEURON supports the Random123 pseudo-random generator (Salmon et al., 2011).




4. OPTIMIZATIONS

In order to improve the performance of CoreNEURON on different architectures, different optimization schemes are implemented for multi-threading, memory layout, vectorization, and code generation. These optimizations are described in this section.


4.1. Parallelism

Both NEURON and CoreNEURON use the Message Passing Interface (MPI) to implement distributed memory parallelism. Although NEURON supports multi-threading based on Pthread (Nichols et al., 1996), users commonly use pure MPI execution due to better scaling behavior. But, pure MPI execution will affect scalability due to MPI communication and memory overhead of internal MPI buffers when executing at scale (Lange et al., 2013). To address this scalability and parallelism challenge, CoreNEURON relies on three distinct levels of parallelism. First, at the highest level, a set of neurons that have equivalent computational cost are grouped together and assigned to each MPI rank on the compute node. Second, within a node, an individual neuron group is assigned to an OpenMP (Dagum and Menon, 1998) thread executing on a core. This thread simulates the given neuron group for the entire simulation ensuring data locality. Finally, vector units of the core are utilized for executing groups of channels in parallel. With respect to MPI and OpenMP, simulations may benefit from fewer MPI processes per compute node (down to a single process per node). Based on target architecture, users can choose a number of MPI ranks and corresponding OpenMP threads per rank to reduce communication overhead.



4.2. Memory Layout and Vectorization

Processor memory bandwidth is one of the scarce resources and often the major impediment to improve the performance of many applications including NEURON. The compute kernels of channels and synapses are bandwidth limited and can reach close-to-peak memory bandwidth (Kumbhar et al., 2016). The dendritic structures of a neuron are divided into small compartments and different membrane channels or mechanisms are inserted into different compartments (Figure 3A). For memory locality, both NEURON and CoreNEURON groups the channels by their type as shown in Figure 3B. But, NEURON organizes properties of individual mechanisms (like m, h, ena) in the Array of Structs (AoS) memory layout (Figure 3C). When a specific property is accessed, for example, m, it results in strided memory accesses with inefficient memory bandwidth utilization and hence poor performance. To address this issue, CoreNEURON organizes channel properties into the Structure of Arrays (SoA) memory layout (Figure 3D). This allows efficient vectorization and efficient memory bandwidth utilization for all channel and synapse computations. For code vectorization, CoreNEURON is dependent on the compiler's auto-vectorization capabilities. To assist the compiler in auto-vectorization, hints like #pragma ivdep are used. The performance improvements from this optimization is discussed in Kumbhar et al. (2016).
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FIGURE 3. Dendritic structure and memory layout representation of a neuron: A schematic representation of dendritic structure of a neuron with different mechanisms inserted into the compartment is shown on the left (A). On the right: (B) shows how NEURON and CoreNEURON groups the mechanism instances of the same type; (C) shows how NEURON stores properties of individual mechanism in the AoS layout; (D) shows the new SoA layout in CoreNEURON for storing mechanism properties.





4.3. NMODL Source-to-Source Translator

NEURON has had support for code generation through the model description language, NMODL, since version 2 released in 1989 (Blundell et al., 2018). The code generation program of NEURON has been modified into a standalone tool called MOD2C (MOD2C GitHub Repository, 2019). This tool is used by CoreNEURON to support all NEURON models written in NMODL. Figure 4 shows the high level workflow of MOD2C. The first step of source-to-source translator is lexical analysis where lexical patterns in the NMODL code are detected and tokens are generated. The syntax analysis step uses those tokens and determine if the series of tokens are appropriate in the language. The semantic analysis step make sure if syntactically valid sentences are meaningful as part of the model description. Code generation is the step in which a C++ file is created with compiler hints for auto-vectorization (e.g., #pragma ivdep) and GPU parallelization with the OpenACC programming model (Wikipedia, 2012). MOD2C also takes care of code generation for AoS and SoA memory layouts. MOD2C uses open source flex and bison tools (Levine and John, 2009) for this implementation. More information about the NMODL code generation pipeline can be found in Blundell et al. (2018).
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FIGURE 4. Code generation workflow for CoreNEURON : different phases of the source-to-source compiler are shown in the middle that translates the input model description file (hh.mod) to C++ code (hh.cpp). Compiler hints like ivdep and acc parallel loop are inserted to enable CPU vectorization/GPU parallelization.





4.4. GPU Porting

Prior to the CoreNEURON project, a substantial effort was made to port NEURON to the GPU architecture using the CUDA programming model (Wikipedia, 2006; NVIDIA Corporation, 2006–2017). One of the two major components of this implementation was the extension of the NMODL source-to-source compiler to emit CUDA code. The other major component managed an internal memory transformation from NEURON's thread efficient AoS memory layout to a more GPU memory efficient SoA layout. For generating CUDA code, there was a separate version of the NMODL source-to-source compiler. NEURON maintains complex data structures of section, segment for interactive use. The memory management of these non-POD type (Plain Old Data) data structures between CPU and GPU was quite complex as memory allocations were not contiguous. This experimental NEURON version (Hines, 2014) was quite efficient for matrix setup and channel state integration for cellular simulations but did not reach network simulation capability. The project foundered on software administration difficulties of maintaining two completely separate codebases, the difficulty of understanding the data structure changes involved for memory layout transformation from AoS to SoA, and the difficulty of managing pointer updates in the absence of pointer semantics information. It became clear that a more general view was required that could not only alleviate these problems for the GPU but had a chance of evolving to work on future architectures. This view is embodied in CoreNEURON development. As discussed in section 4.2, CoreNEURON data structures and memory layout have been optimized for efficient memory access. MOD2C supports code generation with the OpenACC programming model that helps to target different accelerator platforms. Users need to compile the CoreNEURON library with a compiler that supports OpenACC. Figure 5 shows GPU enabled execution workflow where different stages of the CoreNEURON simulator running on CPU and GPU are described.
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FIGURE 5. Timeline showing the workflow of GPU-enabled CoreNEURON execution. The Model Building and Memory Setup phases are executed on CPU by NEURON and CoreNEURON respectively. The latter performs an in-place memory AoS to SoA transformation and node permutation to optimize Gaussian elimination. The CoreNEURON in-memory model is then copied to GPU memory using OpenACC APIs. All time step integration phases including threshold detection for event generation and event delivery to synapse models take place on the GPU. At the end of each timestep (dt), the generated spike events are transferred to the CPU. Conversely, all the spike events to be delivered during a step are placed in a per-synapse type buffer and transferred at the beginning of each timestep to the GPU. At the end of mindelay interval all spikes destined to other processes are transferred using MPI Communication.



One of the performance challenges for a GPU implementation is irregular memory accesses due to the non-homogeneous tree structure of neurons. For example, Figure 6A shows three different morphological types and their compartmental tree connection topology in the simulator is shown in Figure 6B. The GPU delivers better performance when consecutive threads (in groups of 16 or 32) perform the same computations and load the data from consecutive memory addresses. When there are a large number of cells per morphological type, it is straightforward to achieve optimal performance by interleaving the compartments of identical cells. But, with few cells per morphological type, Gaussian elimination suffers from non-contiguous layout of parents relative to a group of nodes. This results in irregular, strided memory accesses and hence poor performance (Valero-Lara et al., 2017). To address this, two alternative node orderings schemes, Interleaved layout and Constant Depth layout, are implemented as illustrated in Figures 6D,E. All cells have the same number of compartments but each has a different branching pattern (Figure 6C). Nodes (representing compartments) within a cell are numbered with successive integers. In the case of Interleaved layout, a compartment from each of N cells forms an adjacent group of N compartments. The groups are in any root to leaf order but corresponding compartments in identical cells are adjacent. As an example, for a group of three threads the vertical square braces highlight parent indices that have the same order as the nodes. This results in either contiguous memory loads (CL) or strided memory load (SL). For each Gaussian elimination operation the number of threads that can compute in parallel is equal to the number of cells and hence this scheme is referred as one cell per thread layout. For Constant Depth layout, all nodes at the same depth from the root are adjacent. For a given depth, corresponding nodes of identical cells are adjacent. Children of branch nodes in the same cell are kept as far apart as possible to minimize contention while updating the same node from different threads.
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FIGURE 6. The top row shows three different morphological types with their dendritic tree structure in (A) and dendrograms showing in-memory tree representation of these types in CoreNEURON in (B). The bottom row shows different node ordering schemes to improve the memory access locality on GPUs : (C) Example topologies of three cells with the same number of compartments; (D) Interleaved Layout where a compartment from each of N cells forms an adjacent group of N compartments. For ith node, ni is node index and par[i] is its parent index. With three executor threads, square brace highlight parent indices that result into contiguous memory load (CL) and strided memory load (SL); (E) Constant Depth Layout where all nodes at same depth from root are adjacent; (F) Comparison of two node ordering schemes for Ring network model showing execution time of whole simulation and Gaussian Elimination step.



To analyse the impact of node ordering schemes on the execution time, we used a multiple Ring network model of cells with random tree topology (Hines, 2017a). This test allows to evaluate performance impact when parents of a contiguous group of 32 nodes are not contiguous and executed in chunks of 32 threads (a so-called warp). We used a multiple Ring model with a total of 131,072 cells comprising 10,878,976 nodes running for 10 ms on NVIDIA K20X GPU (NVIDIA Corporation, 2012). Every cell has the same number (83) of nodes but different cell types have a different random branching pattern of the 40 dendrites. The number of identical cells per type ranges from 1 (131,072 distinct branching patterns) to 32 (4096 distinct branching patterns). Note that regardless of the branching pattern, Gaussian elimination takes exactly the same number of arithmetic operations. Figure 6D shows performance of Interleaved Layout and Constant Depth Layout. For both node ordering schemes, performance is optimal with regard to parent ordering when there are at least 32 cells of each type corresponding to the 32 threads operating in Single Instruction Multiple Data (SIMD) mode. With fewer cells per type, parent node ordering becomes less than optimal and the performance of Interleaved layout suffers by up to a factor of two. Note that the total runtime deteriorates more rapidly than Gaussian elimination time due to the fact that the parent contiguity also affects the performance of tree matrix setup during evaluation of a node's current balance equation. The execution time of Constant Depth layout shows that it is possible to permute node ordering so that parent nodes are more likely to be in significant conti guous order relative to their children. The constant ratio between total runtime and Gaussian elimination is due to negligible time contribution of passive dendrites to matrix setup in combination with the significant role of parent ordering in computing the effect of topologically adjacent nodes on matrix setup of the current balance equations.




5. BENCHMARKS AND PERFORMANCE

Not all network models are compute intensive or benefit equally from CoreNEURON optimizations. In order to evaluate the performance improvements with the optimizations discussed in the previous section we ran several published network models listed in Table 1 on different computing architectures. This section describes the benchmarking platforms and compares performance between NEURON and CoreNEURON.

The benchmarking systems with hardware details, compiler toolchains and network fabrics are summarized in Table 3. The Blue Brain IV (BB4) and Blue Brain V (BB5) systems are based on IBM BlueGene/Q (Haring et al., 2012) and HPE SGI 8600 (Hewlett Packard Enterprise, 2019) platforms respectively, hosted at the Swiss National Computing Center (CSCS) in Lugano, Switzerland. The BB4 system has 4,096 nodes comprising 65,536 PowerPC A2 cores. The BB5 system has three different compute nodes: Intel KNLs with low clock rate but high bandwidth MCDRAM, Intel Skylakes with high clock rate, and NVIDIA Volta GPUs. Vendor provided compilers and MPI libraries are used on both systems. The BB4 system is used for strong scaling benchmarks (see Figure 8) as it has a large core count compared to the BB5 system. All benchmarks were executed in pure MPI mode by pinning one MPI rank per core. During the model building phase, NEURON divides model into n equal chunks where n is total number of MPI ranks. CoreNEURON continues execution with the same number of MPI ranks as NEURON. For GPU executions we used one MPI rank per GPU node.



Table 3. Details of benchmarking systems.

[image: image]




We compared the memory footprint of different network models listed in Table 1. Figure 7 on the left shows memory usage reduction with CoreNEURON simulation compared to NEURON simulation. The memory reduction factor depends on various model properties (e.g., number of compartments, sections, synapses, etc.) but one can expect 4-7x reduction with the use of CoreNEURON. Note that CoreNEURON Online mode will need [image: image]x to [image: image]x more memory during the Memory Setup phase. But once the model is transferred to CoreNEURON for simulation, NEURON can free allocated memory.
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FIGURE 7. Memory usage reduction and speedup using CoreNEURON : ratios of memory usage between NEURON and CoreNEURON for different models in Table 1 are shown on the left (measured on BB4 system). Speedups of CoreNEURON simulations compared to NEURON on various architectures (using single node) for the same models are shown on the right.



Figure 7 on the right shows the speedup achieved on a single node for different models with CoreNEURON compared to NEURON. Note that the Cortex and Hippocampus models are very large in terms of memory capacity requirement. For single node performance analysis we used a smaller subset of these two models.

The memory layout and code vectorization optimization described in section 4.2 shows greatest improvement when most of the computation time is spent in channel and synapse computations. The Cortex, Cortex+Plasticity and Hippocampus models have cells with 200 to 800 compartments and 20 different channel types. This makes these models compute intensive and lets them benefit most by CoreNEURON. The Ring network model has computations only from passive dendrites and active soma.

Intel KNL has 512-bit SIMD vectors and high bandwidth memory (MCDRAM). One needs to efficiently utilize these hardware features to achieve best performance. In the case of CoreNEURON, NMODL generated code is auto-vectorized by the compiler and has SoA memory layout to provide uniform, contiguous memory access. NEURON uses AoS memory layout which results in strided memory accesses. Due to the lower clock frequency of KNL cores, the performance impact of non-vectorized code and strided memory accesses is high compared to other architectures. Hence CoreNEURON delivers better performance on KNL compared to NEURON. Note that the Cortex+Plasticity and Hippocampus models have relatively less improvement (2-4x) compared to the Cortex model (3-7x). This is because some of the channel and synapse descriptions explicitly request integration methods that present compilers cannot efficiently vectorize. Alternative code generation for these methods is being considered.

On the BlueGene/Q platform the speedup with most of the models is limited to 2x. This is because the IBM XL compiler is not able to vectorize most of the channel and synapse kernels. Observed performance improvement on this platform is due to more efficient memory accesses from the SoA layout discussed in the section 4.2.

GPU support has been recently added to CoreNEURON. Two models used in this benchmark, Cortex+Plasticity and Hippocampus, use legacy HOC based stimulus implementations which are not adapted for GPU yet. The Ring network model has large number of identical cells which suits SIMD computations on GPU and hence shows significant performance improvement compared to other architectures. The Traub model has a small number of cells exposing limited parallelism and the Dentate model has gap junctions which require copying of voltages between CPU and GPU every timestep. This limits the performance improvement on GPU.

The reduction in the memory footprint of models translates directly into benefits for users of large-scale models. For example, while models of the size of Cortex + Plasticity and Hippocampus models had a memory requirement when using NEURON that necessitated a minimum of 2,048 nodes on an IBM BlueGene/Q system, can now run on the same system requiring only 128 or 256 nodes for the Cortex+Plasticity and Hippocampus model respectively when using the CoreNEURON Offline Mode. This is a significant usability improvement and translates directly into a better use of a user's compute allocation.

Finally, Figure 8 shows that CoreNEURON maintains good strong scaling properties for large models, as illustrated on the example of the Cortex+Plasticity and Hippocampus models simulating one second of biological time on an IBM BlueGene/Q system. As these models are compute intensive and a small fraction of execution time is spent in spike communication, the scaling behavior depends on how well a given number of cells can be distributed across the available number of ranks to yield good load balance. Both models show excellent strong scaling behavior up to 2,048 nodes. Due to the large size range of morpho-electrical neuron types, at least 7–10 cells per MPI process are required to achieve good load balance. With 32,000 MPI processes (16 ranks per node) and about 219,000 cells of Cortex+Plasticity, the load balance is not as good as with the Hippocampus model of about 789,000 cells. Hence, the Cortex+Plasticity model exhibits poorer scaling behavior compared to the Hippocampus model.
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FIGURE 8. Strong scaling of CoreNEURON on the BB4 system for two large scale models listed in Table 1: the Cortex+Plasticity model with 219 k neurons (on the left) and the Hippocampus CA1 model with 789 k neurons (on the right).





6. DISCUSSION

Modern compute architectures can significantly boost application performance and the study of the brain in silico is in dire need to embrace this capability and trend. Accordingly, the widely used NEURON simulator that supports a large variety of models has been over the years successfully adapted to embrace massively parallel architectures, but its primary design goals were to allow for a flexible definition of models and interactive introspection thereof. It was neither designed for ultimate memory efficiency nor maximal performance. However, the larger and more detailed the models get, the larger are the resource requirements to simulate those models. Eventually, the costs of a system required for an un-optimized simulator should be weighed against the effort of reworking the simulator to make more efficient use of resources. In the context of the Blue Brain Project we took the decision to contribute to making the NEURON simulator more efficient for large models, effectively leading to reduced resource requirements, faster time-to-solution, or simply the capability to run bigger models on a given resource.


6.1. Compatibility With Existing NEURON Models

As the neuroscience community has developed and shared thousands of models with NEURON, compatibility and reproducibility has been one of the primary design goals. To maintain maximal compatibility, we chose the path of extracting the computational relevant parts of NEURON into a library called CoreNEURON and adapting it to exploit the computational features of modern compute architectures. This is a different path as for example taken by the Arbor (Akar et al., 2019) which started its developments from scratch. While such a fresh start has its benefits in terms of designing for future architectures from the start, we can show that the transformation approach we took immediately gives compatibility with a large number of existing NEURON models with minimal modification. Currently, CoreNEURON does not handle non thread-safe models and requires NMODL modifications if constructs like POINTER are used. We are working on handling such models transparently.



6.2. Flexibility for Model Building and Efficiency for Model Simulation

Many modeling workflows related to detailed brain models require flexibility for quickly inspecting and changing the models. By extracting the compute engine from the NEURON simulator environment and providing different methods of how it can interact with the NEURON simulator, one maintains the flexibility of NEURON for the construction of the models and can more easily apply optimizations to the compute engine for the costly simulation phase. The Offline execution mode of CoreNEURON provides flexibility to build and simulate large network models that cannot be simulated with NEURON. Thanks to the use of MPI, and the OpenMP and OpenACC programming models to achieve portability across different architectures such as multi-core, many-core CPUs, and GPUs.



6.3. Reduced Memory and Faster Time-to-Solution

The data structure changes allow CoreNEURON to use significantly less memory compared to NEURON. The SoA memory layout and code vectorization allow CoreNEURON to simulate modelsí efficiently. We benchmarked five different network models on different architectures showing 4-7x memory usage reduction and 2-7x execution time improvement.



6.4. Future Work

We discussed the implementation of the most significant changes and optimizations in NEURON and CoreNEURON. Although CoreNEURON can be used transparently within NEURON, users cannot currently access or modify model properties during integration. Work is ongoing in regard to bidirectional data copy routines activated by normal NEURON variable name evaluation and assignment syntax ranging in granularity from the entire model, to specific named arrays, down to individual variables. On the numerical side, CoreNEURON today supports network simulations using the fixed time step method but not the variable time step integration method (CVODE) (Cohen and Hindmarsh, 1996). The latter is rarely used in network simulations because state or parameter discontinuities in response to synaptic events demand continuous re-initialization of variable step integrators. Research is ongoing on how to improve the applicability of variable time step schemes in network simulation and can be considered for inclusion at a later stage. Currently, mapping of multiple MPI ranks to GPUs is not optimal and this will be addressed in future releases. Lastly, the NMODL source-to-source translator will be improved to generate efficient code for stiff, coupled, non-linear gating state complexes that require the derivimplicit integration method as well as the generation of optimal code for GPUs.



6.5. Availability

CoreNEURON and code generation program MOD2C are open sourced and available on GitHub (CoreNEURON GitHub Repository, 2019; MOD2C GitHub Repository, 2019).
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The electroencephalographic activity of particular brain areas during the decision making process is still little known. This paper presents results of experiments on the group of 30 patients with a wide range of psychiatric disorders and 41 members of the control group. All subjects were performing the Iowa Gambling Task that is often used for decision process investigations. The electroencephalographical activity of participants was recorded using the dense array amplifier. The most frequently active Brodmann Areas were estimated by means of the photogrammetry techniques and source localization algorithms. The analysis was conducted in the full frequency as well as in alpha, beta, gamma, delta, and theta bands. Next the mean electric charge flowing through each of the most frequently active areas and for each frequency band was calculated. The comparison of the results obtained for the subjects and the control groups is presented. The difference in activity of the selected Brodmann Areas can be observed in all variants of the task. The hyperactivity of amygdala is found in both the patients and the control group. It is noted that the somatosensory association cortex, dorsolateral prefrontal cortex, and primary visual cortex play an important role in the decision-making process as well. Some of our results confirm the previous findings in the fMRI experiments. In addition, the results of the electroencephalographic analysis in the broadband as well as in specific frequency bands were used as inputs to several machine learning classifiers built in Azure Machine Learning environment. Comparison of classifiers' efficiency is presented to some extent and finding the most effective classifier may be important for planning research strategy toward finding decision-making biomarkers in cortical activity for both healthy people and those suffering from psychiatric disorders.

Keywords: electroencephalography, sLORETA, psychiatric disorders, frequency band analysis, machine learning, Iowa Gambling Task, decision-making


INTRODUCTION

Decision-making is an essential skill in everyday life but currently there is little systematic knowledge about how decision-making is affected in people with a diagnosis of psychiatric disorders. Decision-making is a process in which many cognitive functions are engaged. Probably that is why the IGT was often chosen as a task for investigating the behavior of the people with psychiatric disorders, however, there is relatively not much known about the cortical activity of individuals while making decisions in both healthy people and those with psychiatric disorders diagnosis. Some research has been done on the patients with major depressive disorder (Cella et al., 2010; Brevers et al., 2013). Similarly, the cohort of subjects with borderline personality disorder was investigated using IGT (Haaland and Landrø, 2007) as well as bipolar disorder (Paulus, 2007). IGT applications for a variety of research and different disorders are presented to some extent in a review by Brevers et al. (2013) and originally in Bechara (2007). With many applications in psychiatry, we decided to choose the IGT out of many other tasks for this stage of our research.

Quantitative electroencephalography is at its Renaissance stage in last decades (Sand et al., 2013) and has developed toward some forms of research in modern psychiatry (Kamarajan and Porjesz, 2015; Martínez-Rodrigo et al., 2017).

The rapid increase in the number of publications concerning Brain-Computer Interfaces (BCI) is observed (Mikołajewska and Mikołajewski, 2012, 2013, 2014; Teruel et al., 2017; Ozga et al., 2018; Wierzgała et al., 2018) and the EEG activity can be recognized as one of possible solutions in BCI engineering (Kotyra and Wojcik, 2017a,b). In addition, any ideas for finding biomarkers of psychiatric disorders (Chapman and Bragdon, 1964; Sutton et al., 1965; Campanella, 2013; Golonka et al., 2017) are in demand as the interview is still the most often used tool in psychiatry to make the diagnosis.

The expansion of computational modeling techniques applied to neuroscience makes it possible to simulate selected parts of the brain tissues which we are familiar with (Wojcik et al., 2007; Wojcik and Kaminski, 2008; Wojcik and Garcia-Lazaro, 2010) or even investigate the influence of electrophysiological parameters of single cells on the dynamics of the whole simulated system (Wojcik and Kaminski, 2007; Wojcik, 2012). However, we are still very far from explaining complex phenomena like psychiatric disorders or syndromes e.g., burn-out (Chow et al., 2018). Higher cognitive functions are sometimes a source of inspiration in biomedical engineering (Kaminski and Wojcik, 2004; Ważny and Wojcik, 2014; Wojcik and Ważny, 2015; Kufel and Wojcik, 2018) and artificial intelligence (Ogiela et al., 2008; Szaleniec et al., 2008, 2013) mixed with cognitive science methodology provides some explanation or leads to the construction of classification tools. Nevertheless, we are still in demand for verification theory in the experiment.

There are different electroencephalographic methods that allow visualization of recorded activity on the brain model. One of them is the standardized low-resolution brain electromagnetic tomography algorithm (sLORETA) (Pascual-Marqui et al., 1994, 1999; Pascual-Marqui, 2002). This method advantages come from the high temporal resolution of modern electroencephalographs (Tohka and Ruotsalainen, 2012) and makes possible to compute the subjects brain activity distributed in time and put it on brain topography with the tomography-like quality of detail. Applications of sLORETA were reported e.g., for the attention-deficit-hyperactivity disorder (ADHD) (Mann et al., 1992) and neurodegenerative diseases (Wu et al., 2014). The sLORETA can be also applied in the frequency band analysis (Moretti et al., 2004; Saletu et al., 2010).

Using EEG based source localization techniques for the measurement of subcortical activity can be controversial. We are aware of the fact that for example in Krishnaswamy et al. (2017) authors state that subcortical structures produce smaller scalp EEG signals. This happens because they are farther from the head surface than cortical structures. To make matters worse, subcortical neurons can have a closed-field geometry that further weakens the observed distant fields and subcortical structures are surrounded by the cortical mantle. So measurements of activity in deep brain structures can potentially be explained by a surrogate distribution of currents on the cortex. That is why it can be very difficult to measure subcortical activity when cortical activity is occurring at the same time (Krishnaswamy et al., 2017). However, there are various mathematical models (Grech et al., 2008) that allow us to make some estimation of such kind of activity. Our lab is equipped with the very sophisticated and developed for 25 years GeoSource software1, where such models are implemented and based on the results given by it, having access to the photogrammetry station which generates the head model with high accuracy, we are able to draw some conclusions that are some extrapolated indicators for subcortical areas increased activity. The GeoSource is not the only software with subcortical areas activity algorithmic detectors. We have done some comparative analysis with BESA and its: ERP analysis and averaging2 and source analysis and imaging3 packages getting the same quality of results.

The investigations of Event-Related Potentials are often chosen by experimental psychologists as well as clinicians and biomedical engineers. One of the best-recognized ERP experiments in which decision-making is investigated was proposed by Bechara et al. (1994). It is known as the Iowa Gambling Task (IGT) and is described in detail in the Materials and Methods section of this contribution.

IGT was used in many clinical experiments (Cui et al., 2013; Mapelli et al., 2014; Tamburin et al., 2014). In Tamburin et al. (2014) the patients with chronic low back pain were investigated and the authors tried to find correlations between the ERP responses and the cognitive measures taken on them. On the other hand, in Cui et al. (2013) the students were investigated during IGT and the amplitudes of P3 potential were observed and discussed. Similar research is reported (Mapelli et al., 2014) but in this case it was focused on the people with Parkinson's disease making decisions and after that their ERP potentials were analyzed. The research mentioned above is concentrated on the analysis of the shape of statistically averaged potential and there are no source localization procedures applied to the analysis.

The aim of the research presented herein was to apply the methodology proposed in Wojcik et al. (2018a) and Wojcik et al. (2018b) to the quantitative electroencephalographic analysis of cortical activity from the patients in different frequency bands as well as in the full spectrum of the EEG signal. We used source localization techniques and having measured the average amperage in time for particular Brodmann Areas (BA) the mean electric charge flowing through them during the experiment was conducted for each patient and member of the control group. For this contribution, the brain activity of a group of patients with selected psychiatric disorders was measured using dense array EEG. These results were compared with those obtained from the participants of the control group. Both groups performed IGT.

Additionally, the results gathered for both healthy and disordered people in the broad and particular frequency EEG bands were taken as inputs to seven different machine learning classifiers in order to distinguish two types of responses in IGT, basing only on BA activity. The efficiency of these classifiers was compared and is presented to some extent.



MATERIALS AND METHODS

The Department of Neuroinformatics is equipped with the dense array amplifier recording the cortical activity with up to 500 Hz frequency through 256 channels HydroCel GSN 130 Geodesic Sensor Nets provided by EGI4. In addition, in the EEG Laboratory the Geodesic Photogrammetry System (GPS) was used. Eleven cameras placed in the corners of GPS take a set of subject's photos and then it is possible to make a model of the particular subject brain based on its calculated size, proportion and shape. Next the software imposes all computed activity results on this model with a very good accuracy. The amplifier operates on the Net Station 4.5.4 software, GPS is under control of the Net Local 1.00.00 and GeoSource 2.0. The eye blinks and saccades elimination as well as gaze calibration are obtained owing to the application of dedicated eye-tracker operated by SmartEye 5.9.7. The Event-Related Potentials (ERP) experiments are conducted in the PST e-Prime 2.0.8.90 environment5.

We investigated 30 patients, 9 females and 21 males (avg. age 28.1, s.d. 12.4). They have been diagnosed with a wide range of psychiatric disorders. The disorders are classified in ICD-10 as: 12 × F41 (Panic disorder), 5 × F32.1 (Major depressive episode), 5 × F84.5 (Asperger syndrome), 3 × F40 (Social anxiety disorders), 2 × F31 (Bipolar affective disorder), 2 × F42 (Obsessive-compulsive disorder co-occurrent with the patients with F84.5), 2 × F51.1 (Non-organic hypersomnia), and 1 × F20 (Schizophrenia). The control group of 30 healthy volunteers were also examined. The control group were only males (avg. age 22.4, s.d. 1.7). It is worth noting that about 30% more subjects were investigated from both control and patients' groups as the signal of all those for whom the recordings were too noisy or incomplete had to be eliminated. All participants were right-handed and measured by a handedness questionnaire (Chapman and Chapman, 1987).

The IGT was introduced by Bechara et al. (1994) and since then it has become one of the favorite tasks given to the subjects participating in a wide range of experimental psychology experiments. Originating from the research first carried out at the University of Iowa the IGT was intended to get hold of mechanisms of decision-making process during the reward-punishment oriented card game. The aim of the task is to choose one card deck symbol out of four in each of 100 trials. The participants are told to earn as much of virtual money as possible starting with 0 dollars. In each set of four cards (or symbols) there is a couple of so-called good cards for which there is a reward and a couple of so-called bad cards for which there is a punishment. The participants do not know which card is good and which is bad but they can conclude it from the game behavior. However, at the beginning all cards seem to be good, but for two of them they make impression to be better as the reward for choosing them is remarkably higher than for choosing the others. After several choices of the better cards, the punishments for choosing the next are extremely high. On the other hand the punishment for choosing cards after the initial selection of those worse at the beginning is very low which finally gives the better financial results when compared to the other case. The typical screens shown on the computer on which our participants make decisions is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Typical screens shown to participants during the IGT experiment. Card decks—in the left and reward/punishment with account state in the right. The screens are generated by the PST e-Prime 2.0.8.90 which is synchronized with Net Station 4.5.4 recordings.


The electroencephalographic signal was recorded. After the test the photo of each participant was taken using the GPS. Such a technique allows obtaining spatial resolutions comparable to 1.5 T MRI without the necessity of MRI brain scanning for each participant. Thus, the anatomical models of participants' brains are generated using the GeoSource software and GPS photogrammetry which allows us to estimate the activity of particular BAs with satisfactory precision. Note, that in our approach we do not use the default model of the head, which is also possible. We make use of GPS to achieve the best possible accuracy of source localization.

Such methodology allowed us to apply the source localization algorithm with a satisfactory accuracy and estimate the most active Brodmann Areas in each participant during the decision-making process. The Net Station software along with the GeoSource tool has implemented the most popular version of the sLORETA algorithm which is described in the chapter titled Brain Source Localization Using EEG Signals in Nidal and Malik (2014). It is based on standardization of the current density assumption. That means that both the variance of the noise in the signal and the biological variance in the actual signal are taken into account (Goldenholz et al., 2009; Nidal and Malik, 2014). Independent and uniform distribution of the biological signal variance across the brain cortex is taken into consideration and this results in a linear imaging localization technique having exact, zero-localization error (Goldenholz et al., 2009; Nidal and Malik, 2014). For more details see the comparison of different types of LORETA in Nidal and Malik (2014).

The literature reports a few bands that cover typical rhythmical activity of the brain (Niedermeyer and da Silva, 2005) described as follows: δ—delta band (<4 Hz), θ—theta (4–7 Hz), α—alpha (8–15 Hz), β—beta (16–31 Hz), γ—gamma (more than 31 Hz), and sometimes μ—mu (8–12 Hz) bands. Sometimes the frequency ranges that define each band are slightly different. In our lab by default the frequency bands are set as follow: δ—delta band (0.1–3 Hz), θ—theta (4–7 Hz), α—alpha (7–12 Hz), β—beta (12–30 Hz), γ—gamma (more than 32 Hz).

One of the most useful functions of the GeoSource software is the possibility of estimation of the amperage of the most active areas (Figure 2) varying in time using source localization. The most active BA is indicated by the GeoSource as the BA with the highest electric current flowing through it in time. The activity of a particular BA could last at its maximum value for a longer or shorter period and it could appear more than once during each epoch. The signal was divided into epochs, as usual in ERP, in this case, IGT experiments, then averaged giving amperage in the function of time. Based on the electrical current measured by the EEG amplifier, most active BAs precisely indicated by the photogrammetry station and having precisely estimated time intervals owing to the perfect EEG time resolution, one of many numerical methods for integration can be applied to calculate the mean electric charge ι with good precision (Wojcik et al., 2018a) by integrating the electrical current in time. The details of mean electric charge estimation are described in detail in Wojcik et al. (2018a).


[image: Figure 2]
FIGURE 2. Typical results of GeoSource BA activity visualization on the brain cortex so-called Flat Map. The increase of activity in BA36 (Uncus Lobe, Limbic Lobe) for good choice and BA37 (Fusiform Gyrus, Temporal Lobe) for bad choice are indicated.


The sLORETA can be run for the full EEG frequency band above 0.1 Hz including the γ spectrum and for the selected frequency band analysis. Besides the full band there were taken into consideration each of the following: alpha, beta, gamma, delta, and theta. For each band including the full band, the varying in time value of amperage of particular BAs was obtained from the GeoSource. Having the amperage in the function of time one can calculate the mean electric charge ι flowing through the given BA as described in Wojcik et al. (2018a). The typical visualization of the GeoSource application to the signal is shown in the flat maps in Figure 2.

The time interval in which the BA activity was calculated was set to 5 ms and there was chosen the 800 ms segmentation (each segment starting with the stimuli) for signal averaging.

The BA1, BA2, and BA3 were eliminated from our analysis as they are part of Primary Somatosensory Cortex (S1) which was hyperactive owing to the subject's fingertips contact with the response pad during the experiment.

The scheme of the methodology and research protocol are presented in Figure 3. The full band analysis protocol in the case of P300 experiments was presented in Wojcik et al. (2018a) and the frequency band analysis protocol was described in detail in DIGITS related paper in Wojcik et al. (2018b). For this contribution the mixture of both methods proposed in Wojcik et al. (2018a,b) is applied.


[image: Figure 3]
FIGURE 3. Diagram of the IGT research protocol used in this paper. All scripts used for the preprocessing data in Net Station and post-processing in GeoSource are listed. Participation of the subject in the experiment begins when the Sensor Net is put on and ends when it is taken off. All data is collected by the Mac Pro workstation which is the central computational unit of the lab. Statistical analysis, finding the most active BAs in full or each of α, β, γ, δ, and θ frequency bands as well as ι estimations can be conducted on other machines.


The so-called Waveform Tools package from the Net Station ecosystem was used and all scripts shown in Figure 3 originate from it. The description of algorithms used in the preprocessing and post-processing stages of the research is given in Electrical Geodesics (2003) and the procedures used in the photogrammetry Net Local are described in the EGI Lab documentation (Electrical Geodesics, 2009, 2011). There were 100 trials for each participant, duration of the experiment was around 12 min. For the preprocessing we used the following and suggested by EGI engineers rules: As an average reference the average of all electrodes was taken. The artifact correction parameters were set as follow: bad channels filtering—Max-Min >200 μV; eye-blinks—Max-Min >140 μV, eye movements—Max-Min >140 μV—all performed in moving average of 80 ms. Filtration settings were set to passband gain 99%, stopband gain 1% and rollof 2 Hz, The segmentation was performed from 100 ms before stimulus to 700 after stimulus with offset 13 ms. The baseline correction was set to 100 ms from portion of segment. The rejection of trials took place when there were more than 10 bad channels.

The Holy Grail for the quantitative EEG based psychiatry is finding the biomarkers of particular psychiatric disorders based on the measured electrical activity of the brain. We proposed some idea to find such biomarkers in Wojcik et al. (2018b) by using the frequency band analysis and estimating the most active BAs in an above-mentioned way. Some research was also reported in Zolubak et al. (2019) where authors were investigating low frequency markers in neurofeedback therapy. But indicating the most active BAs can be not enough. In the last decades, we can, however, observe the rapid growth of data science methods applied to big datasets. One of the most important of them are machine learning tools and our idea was to check whether applying different classifiers to our results, both in broadband and specific frequency band analysis, could shed some light on solving diagnoses problems. If there is a secret code of particular disorders to be found in EEG activity—the application of machine learning tools, like classifiers, seems to be the best way to decode this. As the input to classifiers, the activity of BAs in the spectrum of the mean electric charge flowing through them should be considered. Because our patients' group consisted of only 30 subjects and with a wide range of disorders it was impossible to design classifiers that could distinguish the particular disorder from the another. However, the possibility of distinguishing the reward cortical states from the punishment activity was investigated and the efficiency of selected classifiers will be discussed in the following sections to some extent.



RESULTS

For each participant from both the patient and control groups, we estimated the most active BAs in each EEG frequency band during the reward and punishment phases of the IGT experiment.

Thus the most active BAs for the reward variant in the patient group are presented in Table 1 and for the punishment in Table 2. The mean electric charge ι flowing through particular BA when receiving a reward by a patient is shown in Table 3 and for punishment in Table 4.


Table 1. Most active BA in particular subjects of the patients' group while receiving a reward during the IGT experiment in the full and in the alpha, beta, gamma, delta, and theta EEG bands.
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Table 2. Most active BA in particular subjects of the patients' group while receiving a punishment during the IGT experiment in the full and in the alpha, beta, gamma, delta, and theta EEG bands.
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Table 3. The ι for the most active BA in particular patients receiving a reward during the IGT experiment obtained from the sLORETA quantitative analysis.
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Table 4. The ι for the most active BA in particular patients receiving a punishment during the IGT experiment obtained from the sLORETA quantitative analysis.
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In analogy for the control group the reward associated most active BAs are presented in Table 5 and the punishment responses in Table 6. Tables 7, 8 present the values of ι calculated for each member of the control group in the reward and punishment variants of response, respectively.


Table 5. The most active BA in particular subjects of the control group while receiving a reward during the IGT experiment in the full and in the alpha, beta, gamma, delta, and theta EEG bands.
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Table 6. The most active BA in particular subjects of the control group while receiving a punishment during the IGT experiment in the full and alpha, beta, gamma, delta, and theta EEG bands.
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Table 7. The ι for the most active BA in particular subjects of the control group receiving a reward during the IGT experiment obtained from the sLORETA quantitative analysis.
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Table 8. The ι for the most active BA in particular subjects of the control group receiving a punishment during the IGT experiment obtained from the sLORETA quantitative analysis.

[image: Table 8]

As follows from Tables 1–8 in all cases the Amygdala is hyperactive and the order of the value of ι tends to be similar for reward and punishment in both the subject and control groups in each frequency band.

However, the comparison shown in Figure 4 for the rewards and in Figure 5 for the punishment can shed some light on the main differences in cortical responses of people with psychiatric disorders and members of the control group.


[image: Figure 4]
FIGURE 4. The comparison of the most frequently active BAs in the patients and the control groups in the “reward” variant of IGT response for (A)—full, (B)—alpha, (C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity noted.



[image: Figure 5]
FIGURE 5. The comparison of the most frequently active BAs in the patients and the control groups in the “punishment” variant of IGT response for (A)—full, (B)—alpha, (C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity noted.


As far as the frequency of BA appearances in the IGT reward cortical responses are concerned (Figure 4) one can note that:

• The one of the amygdala is significantly higher in the patients compared to the control group when observed in the full, beta and delta frequency bands.

• The one of BA17 is significantly higher in the control group than in the patients when observed in the gamma and theta bands.

• The one of BA09 is higher in the control compared to the patients' group in the full and gamma frequency bands.

When considering the frequency of BA appearance in the IGT punishment responses one can observe that:

• The one of the amygdala is significantly higher in the patients than in the control group members in the full, alpha, beta, delta and gamma frequency bands.

• The one of BA17 is significantly higher in the control than in the patients' group in the full and gamma bands.

• The BA09 is significantly higher in the control group members than in patients when looking at the full and theta frequency bands.

• The BA05 in the control group is higher than in the patients in the full and beta frequency bands while in the alpha band it is lower.

The role of the amygdala during the decision-making process was discussed before even by the authors of IGT (Bechara et al., 2003). It is known that both the amygdala and orbitofrontal cortex are parts of a neural circuit critical for judgement and decision-making being under influence of “primary inducers” defined as stimuli that unconditionally, or through learning (e.g., conditioning and semantic knowledge), can (perceptually or subliminally) produce states that are pleasurable or aversive (Bechara et al., 2003).

In order to verify the somatic marker hypothesis which proposes that decision-making is a process depending on emotion, some research of the destroyed amygdala was carried out (Bechara et al., 1999; Gupta et al., 2011). During some fMRI studies it was shown that amygdala influences the decision-making process in the risk-taking experiments involving information ambiguity (Hsu et al., 2005).

Our experiments show that the people with psychiatric disorders have the amygdala more frequently hyperactive when compared to healthy participants from the control group.

The Azure Machine Learning Studio was used to construct seven different classifiers and next to compare their efficiency in the reward/punishment characteristic cortical activity detection and classification tasks. Our classifiers were designed in order to separate two classes (reward/punishment) and were as follow: logistic regression, decision jungle, support vector machine, boosted decision tree, averaged perceptron, Bayes point machine, classic neural network and locally-deep support vector algorithms. Each classifier had its own characteristics which are shown in Table 10. The registered activity of particular BAs manifesting itself by the mean electric charge ι in all discussed EEG frequency bands, including the broadband was taken as inputs to the classifier.

Under ideal conditions, it would be expected to construct effective classifiers for particular psychiatric disorders, but having only 30 diagnosed subjects in our cohort with so many different diagnoses is far from being enough to perform any statistics. For the machine learning tasks, the control group was extended by an additional 11 healthy males finally reaching 41 subjects. Thus, the joined cohort consisted of 41 healthy males and 30 males with some disorders, in a total of 71 participants. Note that in typical ERP experiments there are standard (STD) and target (TGT) stimuli. In the case of IGT, the punishment is treated as STD and the reward is TGT as practically everyone dares to win. For each participant registered the reward and punishment states, finally giving 2 × 71 = 142 averaged responses to the investigated set.

The 5-fold Cross-Validation method was used to validate the efficiency of all classifiers.

Then the values of classification accuracy, recall and precision were calculated and results are presented in Table 9.


Table 9. Comparison of the discussed classifiers efficiency for all frequency bands, including the broadband in the STD (punishment) and TGT (reward) classification tasks.
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Table 10. Characteristics of the Two-Class classifiers used in IGT analysis.
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As one can see in Table 9 there is no ideal classifier that could be applied to all of the EEG frequency bands, including the broadband.

For the broadband, the best results were achieved by the Locally-Deep Support Vector (acc. 0.698) and the Average Perceptron Classifier (acc. 0.684) methods.

In the α band the Logistic Regression (acc. 0.690) and Neural Network (acc. 0.669) turned out to be the best classifiers

When one looks at classifiers' results in the β band he notes the Logistic Regression (acc. 0.697), Decision Jungle (acc. 0.690) and Support Vector Machine (0.690) as the best, however the Logistic Regression has the highest recall value of 0.676, while the highest precision of 0.714 is achieved by Support Vector Machine.

If one studies the activity in the γ band he finds the highest efficiency for the Support Vector Machine (acc. 0.662) and again Logistic Regression (acc. 0.634).

For the δ band the highest accuracy 0.704 was achieved by the Support Vector Machine and Average Perceptron Classifier.

In case of the θ band, the best three ones were Logistic Regression (acc. 0.704), Support Vector Machine (0.669), and Locally Deep Support Vector (0.669), the Logistic Regression with the highest precision 0.723.

Note that the Bayes Point Machine did not perform well in any of EEG frequency bands.



DISCUSSION

In our experiment the relations between the decision-making process and the emotional responses given by the soma under such experimental conditions are also visible. Somatosensory association cortex (SAC) is mentioned in some papers on decisions making where it is even stated that somatosensory pattern marks the scenario as good or bad (Bechara et al., 2000; Donner et al., 2009). Our results also show that BA05 is one of the few most frequently active BAs in the patients and the control groups members., Moreover, the activity is qualitatively different in different frequency bands.

As well the dorsolateral prefrontal cortex (BA09) is often reported as engaged in decision-making processes. It was even found that damage of this structure results in poor performance in IGT (Fellows and Farah, 2004) and the fMRI studies have shown that the dorsolateral prefrontal cortex plays a role of negotiator establishing the link among sensory evidence, decision, and action during the decision making (Heekeren et al., 2006). Hyperactive BA09 is also reported to be found in other cognitive processes (Elliott, 2003), like working memory (Barbey et al., 2013), cognitive flexibility (Monsell, 2003), and planning (Chan et al., 2008). In our experiments the BA09 seems to be much more active in the control group when compared to the patients.

The visual processing areas provide the sensory evidence for a decision (Heekeren et al., 2004) and our results confirmed that the primary visual cortex is one of the most engaged areas in such processes, much more active in the control than in the patients' group. Some experiments involve the visual motion detection in the decision-making process among macaques (Huk and Shadlen, 2005) and this can be an inspiration for our future research.

The research protocol has been proposed to record the electroencephalographical cortical activity of the human brain during the decision making process. We chose the IGT as one of the tasks that are most often used to investigate people making decisions. The sLORETA was then applied to find the most frequently active BA in the brain cortex both in the patients and the control group.

Some attempts to find biomarkers in the quantitative EEG signals were made for example by John et al. (1988). The frequency band analysis is often used in real-time computing of the engagement index (Lubar et al., 1995; Pope et al., 1995; Chaouachi et al., 2010). Moreover, some cognitive functions in patients with psychiatric disorders are different from those in healthy members of control groups (Trivedi, 2006).

Even though the cohorts were not large we could prove some findings reported after performing such experiments by means of much more sophisticated techniques including fMRI. We had 30 subjects with several different diagnoses. That is why it is hard to apply any more sophisticated statistical analysis. Collecting neurophysiological data is a real challenge for neuroinformatics (Bigdely-Shamlo et al., 2016; Cavanagh et al., 2017). In future it would require building separate cohorts for each particular disorder, for all genders and age ranges. Then it would be possible to make quantitative comparisons of cortical activity which hopefully could even lead to building psychiatric disorders classifiers.

The additional aim of this paper was to check whether it is possible to assess without looking into logs the subject's response in the IGT experiments using only the brain cortical electric activity as the input to the algorithm. The effectiveness of seven different tools from the Azure Machine Learning environment was investigated. The summary of the results is presented in Table 9.

It was shown that there is no universal classifier for each frequency band. However, for the future analysis the Logistic Regression in the α, β, and θ bands should be considered as well as the Support Vector Machine in the β, γ, and δ. Very interesting behavior can be observed for the Averaged Perceptron Classifier in the δ band which together with the Support Vector Machine has one the best recall and precision characteristics in the discussed research.

It is expected that for the larger dataset the efficiency would be much higher. This is the initial stage of our research but one can take it for granted that tuning-up the parameters would also improve the method performance. Now it is hard to predict which methods would be best for additional improving such classifiers. Probably the applications of sophisticated tools offered by applied mathematics (Kakiashvili et al., 2012; Koczkodaj and Szybowski, 2015) or even solutions found for engineering applications in computer science (Bolanowski and Paszkiewicz, 2015; Grabowski et al., 2015) along with big data analysis in such case could add some value.

At this stage, we had access to a limited number of patients. In our methodology, we decided to choose only those who had not taken any psychotropic medicines before. The aim of the research presented in this paper was to show the way in which the biomarkers can be searched. Putting the representatives of several disorders into one group by some readers can be recognized as controversial. On the other hand, we did not intend to give the final answer and to satisfy the definition of a biomarker in the full range of its properties. This would require at least 30 cases for each disorder and if one takes into consideration males and females, different age ranges, handedness—we get the number of about 400 patients for one problem, not saying about the control group. Consideration only the one disorder based on several patients does not make much sense as it would be hard to do the serious statistical analysis. But our results show that there can be quantitative methods to start the hunt for psychiatric disorders biomarkers.

Remembering that the interview is still the most important tool used in current psychiatry we are aware of the fact that developing tools and methods able to support the psychiatrist in the process of diagnosing are in a great demand and would improve the comfort of patients' life in the future.
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FOOTNOTES

1GeoSource 3 electrical source imaging packages: https://www.egi.com/research-division/electrical-source-imaging/geosource

2BESA: ERP analysis and averaging, http://www.besa.de/products/besa-research/features/erp-analysis-and-averaging/

3BESA: Source analysis and imaging, http://www.besa.de/products/besa-research/features/source-analysis-and-imaging/

4Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene, OR, 97401, USA.

5Psychology Software Tools, Inc. PST, Sharpsburg Business Park, 311 23rd Street Ext., Suite 200, Sharpsburg, PA, 15215-2821, USA.
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Heterogeneous mental disorders such as Autism Spectrum Disorder (ASD) are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic process is based purely on the behavioral observation of symptomology (DSM-5/ICD-10) and may be prone to misdiagnosis. In order to move the field toward more quantitative diagnosis, we need advanced and scalable machine learning infrastructure that will allow us to identify reliable biomarkers of mental health disorders. In this paper, we propose a framework called ASD-DiagNet for classifying subjects with ASD from healthy subjects by using only fMRI data. We designed and implemented a joint learning procedure using an autoencoder and a single layer perceptron (SLP) which results in improved quality of extracted features and optimized parameters for the model. Further, we designed and implemented a data augmentation strategy, based on linear interpolation on available feature vectors, that allows us to produce synthetic datasets needed for training of machine learning models. The proposed approach is evaluated on a public dataset provided by Autism Brain Imaging Data Exchange including 1, 035 subjects coming from 17 different brain imaging centers. Our machine learning model outperforms other state of the art methods from 10 imaging centers with increase in classification accuracy up to 28% with maximum accuracy of 82%. The machine learning technique presented in this paper, in addition to yielding better quality, gives enormous advantages in terms of execution time (40 min vs. 7 h on other methods). The implemented code is available as GPL license on GitHub portal of our lab (https://github.com/pcdslab/ASD-DiagNet).
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1. INTRODUCTION

Mental disorders such as Autism Spectrum Disorder (ASD) are heterogeneous disorders that are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic process is based purely on behavioral observation of symptomology (DSM-5/ICD-10) and may be prone to misdiagnosis (Nickel and Huang-Storms, 2017). There is no quantitative test that can be prescribed to patients that may lead to definite diagnosis of a person. Such quantitative and definitive tests are a regular practice for other diseases such as diabetes, HIV, and hepatitis-C. It is widely known that defining and diagnosing mental health disorders is a difficult process due to overlapping nature of symptoms, and lack of a biological test that can serve as a definite and quantified gold standard (National Collaborating Centre for Mental Health (UK), 2018). ASD is a lifelong neuro-developmental brain disorder which causes social impairments like repetitive behavior and communication problems in children. More than 1% of children suffer from this disorder and detecting it at early ages can be beneficial. Studies show that some demographic attributes like gender and race vary among ASD and healthy individuals such that males are four times more prone to ASD than females (Baio et al., 2018). Diagnosing ASD has been explored from different aspects, like monitoring behavior, extracting discriminatory patterns from the demographic information and analyzing the brain data. Behavioral data such as eye movement and facial expression are studied in Liu et al. (2016), Jaiswal et al. (2017), Zunino et al. (2018). For instance, Zunino et al. classified ASD from healthy subjects by applying recurrent neural network to the video clips recorded from them (Zunino et al., 2018).

Quantitative analysis of brain imaging data can provide valuable biomarkers that result in more accurate diagnosis of brain diseases. Machine learning techniques using brain imaging data [e.g., Magnetic Resonance Imaging (MRI) and functional Magnetic Resonance Imaging (fMRI)] have been extensively used by researchers for diagnosing brain disorders like Alzheimer's, ADHD, MCI, and Autism (Colby et al., 2012; Peng et al., 2013; Yang et al., 2014; Deshpande et al., 2015; Hosseini-Asl et al., 2016; Khazaee et al., 2017; Eslami and Saeed, 2018b, 2019).

In this paper, we focus on classifying subjects suffering from ASD from healthy control subjects using fMRI data. We propose a method called ASD-DiagNet which consists of an autoencoder and a SLP. These networks are used for extracting lower dimensional features in a hybrid manner and the trained perceptron is used for the final round of classification. In order to enlarge the size of the training set, we designed a data augmentation technique which generates new data in feature space by using available data in the training set.

Detecting ASD using fMRI data has recently gained a lot of attention, thanks to Autism Brain Imaging Data Exchange (ABIDE) initiative for providing functional and structural brain imaging datasets collected from several brain imaging centers around the world (Craddock et al., 2013). Many studies and methods have been developed based on ABIDE data (Iidaka, 2015; Chen et al., 2016; Abraham et al., 2017; Heinsfeld et al., 2018; Itani and Thanou, 2019). Some studies included a subset of this dataset based on specific demographic information to analyze their proposed method. For example, Iidaka (2015) used probabilistic neural network for classifying resting state fMRI (rs-fMRI) data of subjects under 20 years old. In another work, Plitt et al. (2015) used two sets of rs-fMRI data, one containing 118 male individuals (59 ASD; 59 TD) and the other containing 178 age and IQ matched individuals (89 ASD; 89 TD) from ABIDE dataset and achieved 76.67% accuracy. Besides using fMRI data, some studies also included structural and demographic information of subjects for diagnosing ASD. For example, Parisot et al. (2018) proposed a framework based on Graph Convolutional Networks that achieved 70.4% accuracy. In their work, they represented the population as a graph in which nodes are defined based on imaging features and phenotypic information describe the edge weights. In another study, Sen et al. (2018) proposed a new algorithm which combines structural and functional features from MRI and fMRI data and got 64.3% accuracy by using 1111 total healthy and ASD subjects. Nielsen et al. (2013) obtained 60% accuracy on a group of 964 healthy and ASD subjects using the functional connectivity between 7266 regions and demographic information like age, gender, and handedness attributes. In another study, Parikh et al. (2019) tested the performance of different machine learning methods on demographic information provided by ABIDE dataset including age, gender, handedness, and three individual measures of IQ.

Machine learning techniques such as Support Vector Machines (SVM) and random forests are explored in multiple studies (Abraham et al., 2017; Subbaraju et al., 2017; Bi et al., 2018b; Fredo et al., 2018). For instance, Chen et al. (2016) investigated the effect of different frequency bands for constructing brain functional network, and obtained 79.17% accuracy using SVM technique applied to 112 ASD and 128 healthy control subjects.

Recently, using neural networks and deep learning methods such as autoencoders, Deep Neural Network (DNN), Long Short Term Memory (LSTM), and Convolutional Neural Network (CNN) have also become very popular for diagnosing ASD (Dvornek et al., 2017; Guo et al., 2017; Bi et al., 2018a; Brown et al., 2018; Khosla et al., 2018; Li et al., 2018). Brown et al. (2018) obtained 68.7% classification accuracy on 1, 013 subjects composed of 539 healthy control and 474 with ASD, by proposing an element-wise layer for DNNs which incorporated the data-driven structural priors.

Most recently, Heinsfeld et al. (2018) used a deep learning based approach and achieved 70% accuracy for classifying 1, 035 subjects (505 ASD and 530 controls). They claimed this approach improved the state of the art technique. In their technique, distinct pairwise Pearson's correlation coefficients were considered as features. Two stacked denoising autoencoders were first pre-trained in order to extract lower dimensional data. After training autoencoders, their weights were applied to a multi-layer perceptron classifier (fine-tuning process) which was used for the final classification. However, they also performed classification for each of the 17 sites included in ABIDE dataset separately, and the average accuracy is reported as 52%. The low performance on individual sites was justified to be due to the lack of enough training samples for intra-site training.

Generally, most related studies for ASD diagnosis using machine learning techniques have only considered a subset of ABIDE dataset, or they have incorporated other information besides fMRI data in their model. There are few studies such as Heinsfeld et al. (2018), which only used fMRI data without any assumption on demographic information and analyzed all the 1, 035 subjects in ABIDE dataset. To the best of our knowledge (Heinsfeld et al., 2018) is currently state of the art technique for ASD diagnosis on whole ABIDE dataset, which we use as the baseline for evaluating our proposed method.

Although employing other types of information like anatomical features and demographic attributes of subjects could provide more knowledge to the model and may increase its accuracy, the goal of our study is to merely design a quantitative model for ASD diagnosis based on the functional data of the brain. This model can be used in conjunction with other tools assisting clinicians to diagnose ASD with more precision. Another aspect that we targeted in this study is the running time of the model. Unfortunately, the running time required for training the model or analyzing the data is not discussed in most of research papers mentioned above. Achieving high diagnosis accuracy in a shorter amount of time would be more desirable in clinical studies. Deep learning models are time consuming techniques due to the huge number of parameters that should be optimized. Although utilizing GPUs has reduced the running time needed for training the models tremendously, it still depends on the architecture of the model and size of the data. We considered the running time of the model as a factor while designing the architecture of our model. Using our hybrid learning strategy the model needs fewer number of iterations for training, which reduces the running time of the model. We also decreased the number of features by keeping anti-correlated and highly correlated functional connections and removing the rest, which reduces the size of the network significantly.

The structure of this paper is as follows: First, in section 2 we provide a brief introduction to fMRI data, the dataset we used in this study and explain ASD-DiagNet method in detail. In section 3, we describe the experiment setting and discuss the results of ASD-DiagNet. Finally, in section 4, we conclude the paper and discuss the future direction.



2. MATERIALS AND METHODS


2.1. Functional Magnetic Resonance Imaging and ABIDE Dataset

Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique that is used for studying brain activities (Lindquist et al., 2008; Eslami and Saeed, 2018a). In fMRI data, the brain volume is represented by a group of small cubic elements called voxels. A time series is extracted from each voxel by keeping track of its activity over time. Scanning the brain using fMRI technology while the subject is resting is called resting state fMRI (rs-fMRI), which is widely used for analyzing brain disorders. In this study, we used preprocessed ABIDE-I dataset that is provided by the ABIDE initiative. This dataset consists of 1112 rs-fMRI data including ASD and healthy subjects collected from 17 different sites. We used fMRI data of the same group of subjects which was used in Heinsfeld et al. (2018). This set consists of 505 subjects with ASD and 530 healthy control from all the 17 sites. Table 1 shows the class membership information for each site. ABIDE-I provided the average time series extracted from seven sets of regions of interest (ROIs) based on seven different atlases which are preprocessed using four different pipelines. The data used in our experiments is preprocessed using C-PAC pipeline (Craddock et al., 2013) and is parcellated into 200 functionally homogeneous regions generated using spatially constrained spectral clustering algorithm (Craddock et al., 2012) (CC-200). The preprocessing steps include slice time correction, motion correction, nuisance signal removal, low frequency drifts, and voxel intensity normalization. It is worth mentioning that each site used different parameters and protocols for scanning the data. Parameters like repetition time (TR), echo time (TE), number of voxels, number of volumes, openness or closeness of the eyes while scanning are different among sites.


Table 1. Class membership information of ABIDE-I dataset for each individual site.
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2.2. ASD-DiagNet: Feature Extraction and Classification

Functional connectivity between brain regions is an important concept in fMRI analysis and is shown to contain discriminatory patterns for fMRI classification. Among correlation measures, Pearson's correlation is mostly used for approximating the functional connectivity in fMRI data (Liang et al., 2012; Baggio et al., 2014; Zhang et al., 2017). It shows the linear relationship between the time series of two different regions. Given two times series, u and v, each of length T, the Pearson's correlation can be computed using the following equation:

[image: image]

where ū and [image: image] are the mean of times series u and v, respectively. Computing all pairwise correlations results in a correlation matrix [image: image] where m is the number of time series (or regions). Due to the symmetric property of Pearson's correlation, we only considered the strictly upper triangle part of the correlation matrix. Since we used CC-200 atlas in which the brain is parcellated into m = 200 regions, there are m × (m − 1)/2 = 19, 900 distinct pairwise Pearson's correlations. In this regard, we selected half of the correlations comprising 1/4 largest and 1/4 smallest values and eliminated the rest. To do so, we first compute the average of correlations among all subjects in training set and then pick the indices of the largest positive and negative values from averaged correlation array. We then pick the correlations at those indices from each sample as our feature vector. Keeping half of the correlations and eliminating the rest reduces the size of input features by a factor of 2. There is no limitation of the number of high- and anti-correlations that should be kept. Removing more features results in higher computational efficiency as well as reducing the chance of overfitting, however removing too many features can also cause losing important patterns.

In order to further reduce the size of features, we used an autoencoder to extract a lower dimensional feature representation. An autoencoder is a type of feed-forward neural network model, which first encodes its input x to a lower dimensional representation,

[image: image]

where τ is the hyperbolic tangent activation function (Tanh), and Wenc and benc represent the weight matrix and the bias for the encoder. Then, the decoder reconstructs the original input data

[image: image]

where Wdec and bdec are the weight matrix and bias for the decoder. In this work, we have designed an autoencoder with tied weights, which means [image: image]. An autoencoder can be trained to minimize its reconstruction error, computed as the Mean Squared Error (MSE) between x and its reconstruction, x′. The choice of using autoencoder instead of other feature extraction techniques like PCA is its ability to reduce the dimensionality of features in a non-linear way. The structure of an autoencoder is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Structure of an autoencoder consisting of an encoder that receives the input data and encodes it into a lower dimensional representation at the bottleneck layer, and a decoder that reconstructs the original input from the bottleneck layer.


The lower dimensional data generated during the encoding process contains useful patterns from the original input data with smaller size, and can be used as new features for classification. For the classification task, we used a single layer perceptron (SLP) which uses the bottleneck layer of the autoencoder, henc, as input, and computes the probability of a sample belonging to the ASD patient class using a sigmoid activation function, σ,

[image: image]

where Wslp and bslp are the weight matrix and the bias for the SLP network. The SLP network can be trained by minimizing the Binary Cross Entropy loss, [image: image], using the ground-truth class label, y, and the estimated ASD probability for each sample, f(x):

[image: image]

Finally, the predicted class label is determined by thresholding the estimated probability

[image: image]

Typically, an autoencoder is fully trained such that its reconstruction error is minimized, then, the features from bottleneck layer, henc, are used as input for training the SLP classifier, separately. In contrast, here, we train the autoencoder and the SLP classifier simultaneously. This can potentially result in obtaining low dimensional features that have two properties

1. Useful for reconstructing the original data,

2. Contain discriminatory information for the classification task.

This is accomplished by adding the two loss functions, i.e., MSE loss for reconstruction, and Binary Cross Entropy for the classification task, and training both networks jointly. After the joint training process is completed, we further fine-tune the SLP network for a few additional epochs.



2.3. Data Augmentation Using Linear Interpolation

Machine learning and especially deep learning techniques can be advantageous if they are provided with enough training data. Insufficient data causes overfitting and non-generalizability of the model (Raschka and Mirjalili, 2017). Large training sets are not always available and collecting new data might be costly like in medical imaging field. In these situations, data augmentation techniques can be used for generating synthetic data using the available training set (Karpathy et al., 2014; Eitel et al., 2015; Wong et al., 2016; Xu et al., 2016; Perez and Wang, 2017). There are a few data augmentation methods proposed for different applications, such as random translation/rotation/cropping (for image data), adding random noise to the features (for general type of data), extracting overlapping windows from the original time series (for time series data), as well as more sophisticated methods such as Generative Adversarial Networks. However, these methods are not either applicable to our data due to the structure of our features, not interpretable, or they may be computationally more intensive than our proposed method.

The data augmentation technique that we propose in this study is inspired by Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002). SMOTE is an effective model which is used for oversampling the data in minority class of imbalanced datasets. SMOTE generates synthetic data in feature space by using the nearest neighbors of a sample. After k-nearest neighbors of sample p are found ({q1, q2, ..., qk}), a random neighbor is selected (qr) and the synthetic feature vector is computed using the following equation:

[image: image]

In this equation, α is a random number selected uniformly in the range [0, 1]. Finding the nearest neighbors of a sample is based on a distance or similarity metric. In our work, the samples have feature vectors of size 9, 950 (half of the correlations). One idea for computing nearest neighbors is to use Euclidean distance, however, computing the pairwise Euclidean distances with 9, 950 features is not efficient. In order to compute the similarity between samples and finding the nearest neighbors, we used a measure called Extended Frobenius Norm (EROS). This measure computes the similarity between two multivariate time series (MTS) (Yang and Shahabi, 2004). fMRI data consists of several regions each having a time series so we can consider it as a multivariate time series. Our previous study on ADHD disorder has shown that EROS is an effective similarity measure for fMRI data and using it along with k-Nearest-Neighbor achieves high classification accuracy (Eslami and Saeed, 2018b). This motivated us to utilize it as part of the data augmentation process. EROS computes the similarity between two MTS items A and B based on eigenvalues and eigenvectors of their covariance matrices using the following equation:

[image: image]

where, θi is the cosine of the angle between ith corresponding eigenvectors of covariance matrices of multivariate time series A and B. Furthermore, w is the weight vector which is computed based on eigenvalues of all MTS items using Algorithm 1. This algorithm computes the weight vector w by normalizing eigenvalues of each MTS item followed by applying an aggregate function f (here, we used mean) to all eigenvalues over the entire training dataset and finally normalizing them so that [image: image].


Algorithm 1: Computing weight vector for EROS (Yang and Shahabi, 2004)

[image: Table 7]


Algorithm 2: Data augmentation using EROS similarity measure

[image: Table 8]

The dimension of each sample's covariance matrix is m × m, where m is the number of brain regions. The covariance matrix of each subject is pre-computed in the beginning and is re-used when the sample is selected as a candidate. In order to further reduce the time needed for computing the pairwise similarities, we considered using the first two eigenvectors of each sample. Our experiments showed that this simplification does not affect the results while reducing the running time significantly compared to using all eigenvectors and eigenvalues.

Now, using EROS as the similarity measure, our data augmentation process is shown in Algorithm 2. After finding k = 5 nearest neighbors of each sample i in the training set, one of them is randomly selected, a new sample is generated using linear interpolation between the selected neighbor and sample i. Choosing k = 5 was based on the original implementation of SMOTE algorithm (Chawla et al., 2002). Our experiments did not show a significant change in the results when using different values of k. Using this approach, one synthetic sample is created for each training point which results in doubling the size of the training set. Figure 2 shows the data augmentation process and Figure 3 shows the overall process of ASD-DiagNet method.


[image: Figure 2]
FIGURE 2. Generating new artificial data: Step (1) Selecting a sample (p). Step (2) Find k-nearest neighbors of p from the same class, and pick one random neighbor (qr). Step (3) Generate new sample p′ using p and qr by linear interpolation.



[image: Figure 3]
FIGURE 3. Workflow of ASD-DiagNet: (A) Pairwise Pearson's correlations for each subject in the training set is computed. The average of all correlation arrays is computed and the position of 1/4 largest and 1/4 smallest values in the average array is considered as a mask. Masked correlation array of each sample is considered as its feature vectors. (B) A set of artificial samples is generated using the feature vectors of training samples. (C) Autoencoder and SLP are jointly trained by adding up their training loss in each iteration. (D) For a test subject, the features are extracted using the mask generated in part A, followed by passing the features through the encoder part of the autoencoder, and finally predicting its label using the trained SLP.





3. EXPERIMENTS AND RESULTS

For all the experiments reported in this section, we used a Linux server running Ubuntu Operating System. The server contains two Intel Xeon E5-2620 Processors at 2.40 GHz with a total 48 GBs of RAM. The system contains an NVIDIA Tesla K-40c GPU with 2, 880 CUDA cores and 12 GBs of RAM. CUDA version 8 and PyTorch library were used for conducting the experiments.

We evaluated ASD-DiagNet model in two phases by performing k-fold cross validation. In the first phase, the model was evaluated using the whole 1, 035 subjects from all sites and in the second phase, the model was evaluated for each site separately. As stated earlier, data centers may have used different experimental parameters for scanning fMRI images, so considering all of them in the same pool determines how our model generalizes to data with heterogeneous scanning parameters. On the other hand, by considering each data center separately, fewer subjects are available for training the model and the results indicate how it performs on small datasets. In each of these experiments, the effect of data augmentation is evaluated.

The value of k in k-fold cross validation must be chosen such that train/test partitions are representative of the whole dataset. Since the whole dataset contains a lot more samples than each individual site, using a large value of k like 10 in k-fold cross validation provides more samples in the training process. This helps the model to capture more information from the data while leaving enough test samples to measure the ability of the model in classifying unseen data. On the other hand, we are dealing with a small number of samples in some of the sites, for example, CMU which only contains 27 samples. Hence performing k-fold cross validation with large values of k like 10 results in only 2–3 samples in test set and increases the variance of cross-validation estimation, so we chose k = 5 when analyzing each site separately. Other studies such as Heinsfeld et al. (2018) used the same values of k for performing k-fold cross validation.

We report accuracy, sensitivity, and specificity of different methods for evaluating their classification performance. Accuracy measures the proportion of correctly classified subjects (actual ASD classified as ASD and actual healthy classified as healthy). Sensitivity represents the proportion of actual ASD subjects which are correctly classified as ASD and specificity measures the proportion of actual healthy subjects which are classified as healthy. We also compared the performance of each model's diagnostic test by their Receiver Operating Characteristic (ROC) curves. The area under ROC curves (AUC) shows the capability of the model for distinguishing between ASD and healthy subjects based on different thresholds. The higher AUC value indicates that the model is better in distinguishing between ASD and healthy subjects. We compared the performance of ASD-DiagNet with three other baselines: SVM, random forest and the method proposed by Heinsfeld et al. (2018). Hyperparameter tuning for SVM and random forest classifiers are performed by grid search technique. Hyperparameters such as kernel type, regularization constant (C), kernel coefficient (γ) for SVM, and the number of trees as well as the function to measure the quality of a split for random forest are tuned using grid search. SVM and random forest were trained using 19, 900 pairwise Pearson's correlations for each subject. The implementations of the grid search, SVM, and random forest are carried out using the built-in functions provided by scikit-learn library. In order to speed up the grid search, it is parallelized on 10 cores.

The following subsections explain each experiment in more details.


3.1. Phase 1: Experiments Using the Whole Dataset

In this phase, we performed 10-fold cross-validation on the whole 1, 035 subjects using CC-200 atlas. Table 2 compares accuracy, sensitivity, and specificity of our approach with Heinsfeld et al. (2018), random forest, and SVM. As the results show, ASD-DiagNet achieves 70.3% which outperforms other methods.1


Table 2. Classification performance using 10-fold cross-validation on the whole dataset; Note that our proposed approach, ASD-DiagNet (with data augmentation) achieves the highest accuracy among other methods.

[image: Table 2]

The proposed data augmentation helps to improve the results by around 1%. Based on Figure 4, ASD-DiagNet (with and without data augmentation) achieved higher area under comparing to other methods.


[image: Figure 4]
FIGURE 4. ROC curves of different methods for classification of whole dataset using CC-200 parcellation.




3.2. Phase 2: Intra-Site Evaluation

In this phase, we performed 5-fold cross-validation on each site separately using CC-200 atlas. The accuracy of each method is provided in Table 3. Based on these results, our method achieves the highest accuracy in most cases (10 out of 17 sites) and outperforms other methods on average. In addition, note that the proposed data augmentation helps improving the result around 3% overall. Especially, for OHSU, the data augmentation improves the accuracy significantly (10% increase). However, in a couple of datasets no improvement is observed (e.g., MaxMun). These datasets have shown low prediction accuracy by other methods as well. In these cases, the artificial data generated by data augmentation does not improve the results since the functional connectivity of the original data does not carry enough discriminatory information that can be used by the classifiers.


Table 3. Classification accuracy using 5-fold cross-validation on individual data centers using our proposed method, ASD-DiagNet (with and without data augmentation), compared with other methods.

[image: Table 3]



3.3. Running Time

We measured the running time of performing 10-fold cross validation by different approaches. The training and evaluation for all methods are performed on the same Linux system (described in section 3). The running time needed by each method is as follows: 41 min by ASD-DiagNet, 20 min by ASD-DiagNet (no aug.), 7 h and 48 min by SVM, 17 min by random forest and 6 h by Heinsfeld et al. (2018). As can be observed, ASD-DiagNet performs significantly faster than SVM and Heinsfeld et al. (2018). The data augmentation doubles the size of the training set by generating one artificial sample per subject in the training set. As a result, the data augmentation increases the computation time by a factor of 2.



3.4. Experiment on Other Parcellations

We tested ASD-DiagNet on two other ROI atlases besides CC-200: Automated Anatomical Labeling (AAL) and Talaraich and Tournoux (TT) which parcellate the brain into 116 and 97 regions respectively. The data for these parcellations is provided by ABIDE-I consortium. Similar to CC-200 atlas, for each parcellation, half of the correlations (keeping the 1/4 largest and 1/4 smallest values, and removing the rest intermediate values) are selected as input features to the model. The resulting average accuracy, sensitivity, and specificity of performing 10-fold cross-validation on the whole dataset using different approaches for AAL and TT are shown in Tables 4, 5.


Table 4. Classification accuracy using 10-fold cross-validation on the whole dataset based on AAL atlas.

[image: Table 4]


Table 5. Classification accuracy using 10-fold cross-validation on the whole dataset based on TT atlas.

[image: Table 5]

For AAL parcellation, ASD-DiagNet and SVM outperform other techniques with the classification accuracy of 67.5% and achieve competitive result for TT atlas. Note that the classification accuracy obtained using these parcellations are below the accuracy obtained using CC-200 atlas, which implies that the pairwise correlations among CC-200 regions contain more discriminatory patterns than AAL and TT atlases. Based on Figures 5, 6, SVM and ASD-DiagNet achieved higher AUC than other methods.


[image: Figure 5]
FIGURE 5. ROC curves of different methods for classification of whole dataset using AAL parcellation.



[image: Figure 6]
FIGURE 6. ROC curves of different methods for classification of whole dataset using TT parcellation.




3.5. Experiments on Young Age Group

Diagnosing ASD at early ages and starting medical treatment can have a positive effect on the patient's life. In this experiment, we evaluated our proposed method as well as other baselines on subjects below the age of 15 (550 subjects in ABIDE dataset containing 448 males and 102 females) using CC-200 atlas. Considering this subset of subjects, the classification performance, as well as ROC curves of performing 10-fold cross-validation of different methods are provided in Table 6 and Figure 7.


Table 6. Classification accuracy using 10-fold cross-validation on the subjects below the age of 15.

[image: Table 6]


[image: Figure 7]
FIGURE 7. ROC curves of different methods for classification of subjects below the age of 15 using CC-200 parcellation.


As can be observed from the results, ASD-DiagNet achieves higher accuracy as well as higher AUC value compared to other methods. The overall accuracy is around 2% below the accuracy achieved for classification of the whole dataset, which we believe is due to the smaller training set.




4. CONCLUSION AND FUTURE WORK

In this paper, we targeted the problem of classifying subjects with ASD disorder from healthy subjects. We used fMRI data provided by ABIDE consortium, which has been collected from different brain imaging centers. Our approach, called ASD-DiagNet, is based on using the most correlated and anti-correlated connections of the brain as feature vectors and using an autoencoder to extract lower dimensional patterns from them. The autoencoder and a SLP are trained in a joint approach for performing feature selection and classification. We also proposed a data augmentation method in order to increase the number of samples using the available training set. We tested this method by performing 10-fold cross-validation on the whole dataset and achieved 70.3% accuracy in 40 min. The running time of our approach is significantly shorter than 6 h needed by the state of the art method while achieving higher classification accuracy. In another experiment, we evaluated our method by performing 5-fold cross-validation on each data center, separately. The average result shows significant improvement in accuracy compared to the state of the art method. In this case, data augmentation helps to improve the accuracy by around 3%. A different range of accuracies can be observed among sites, from low accuracies in sites such as Caltech and MaxMun to higher accuracies for OHSU and UCLA. The variable accuracy among different sites can also be observed in other studies (Nielsen et al., 2013; Heinsfeld et al., 2018). It should be noted that the protocols and parameters used for scanning the subjects are heterogeneous among sites, which can cause variability in the functional patterns among different subjects. Also, the difference in demographic information among the datasets, such as age, IQ, and gender, makes the data distribution different among them. These differences could be the reason for variable accuracies. We will consider this issue in our future works by involving the demographic information of the samples in data augmentation and the learning process. This will help the classifier to learn associations between functional connectivity patterns and demographic features which decreases the disparity among accuracies of different sites. We will also analyze other parcellations such as Power-264 by Power et al. (2011). The functional network constructed using this parcellation has shown promising results in diagnosing brain disorders (Greene et al., 2016; Khazaee et al., 2016).

Overall, experiments on different parcellations as well as subjects below the age of 15 show higher accuracy and AUC value for ASD-DiagNet comparing to other methods. These results demonstrate that our approach can be used for both intra-site brain imaging data, which are usually small sets generated in research centers, and bigger multi-site datasets like ABIDE in a reasonable amount of time.

While our model has shown promising results for diagnosing ASD disorder, there is still room for improvement by fusing structural and phenotypic information of the subjects to the functional patterns and creating hybrid features. Combination of discriminatory information provided by these three sources could increase the prediction accuracy of ASD. We consider this feature fusion as one of the future directions of our study. Another direction that we will pursue is improving the data augmentation strategy. Overall, the proposed data augmentation has improved the accuracy by generating synthetic data, but in a couple of cases low or no improvement is observed. Optimizing the current data augmentation method and considering the structural and phenotypic data for generating new samples could potentially improve the data augmentation process, and as a result, may lead to increase the diagnosis accuracy.
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FOOTNOTES

1We like to mention that Heinsfeld et al. (2018) reported 70% accuracy in their paper, however, the accuracy we reported here is the result of running their method on our system using their default parameters and the code they provided online. The different results observed here could be due to some missing details in the implementation.
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Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
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Processing of positron emission tomography (PET) data typically involves manual work, causing inter-operator variance. Here we introduce the Magia toolbox that enables processing of brain PET data with minimal user intervention. We investigated the accuracy of Magia with four tracers: [11C]carfentanil, [11C]raclopride, [11C]MADAM, and [11C]PiB. We used data from 30 control subjects for each tracer. Five operators manually delineated reference regions for each subject. The data were processed using Magia using the manually and automatically generated reference regions. We first assessed inter-operator variance resulting from the manual delineation of reference regions. We then compared the differences between the manually and automatically produced reference regions and the subsequently obtained binding potentials and standardized-uptake-value-ratios. The results show that manually produced reference regions can be remarkably different from each other, leading to substantial differences also in outcome measures. While the Magia-derived reference regions were anatomically different from the manual ones, Magia produced outcome measures highly consistent with the average of the manually obtained estimates. For [11C]carfentanil and [11C]PiB there was no bias, while for [11C]raclopride and [11C]MADAM Magia produced 3–5% higher binding potentials. Based on these results and considering the high inter-operator variance of the manual method, we conclude that Magia can be reliably used to process brain PET data.

Keywords: PET, neuroinformatics, modeling, reference region, carfentanil, raclopride, madam, pib


INTRODUCTION

The statistical power of neuroimaging studies has been widely questioned in recent years, leading to calls for significantly larger samples to avoid false-positive and negative findings (Yarkoni, 2009; Button et al., 2013; Cremers et al., 2017). Additionally, the role of researcher degrees of freedom, i.e., the subjective choices made during the process from data collection to its analysis, has been identified as an important reason for poor replicability of many findings (Simmons et al., 2011). Consequently, the focus in neuroimaging has shifted towards standardized, large-scale neuroinformatics based approaches (Yarkoni et al., 2011; Poldrack and Yarkoni, 2016). Today, several standardized and highly automatized preprocessing pipelines are publicly available for processing functional magnetic resonance images (fMRI; Esteban et al., 2019). Such standardized methods are not, however, currently widely used for the analysis of positron emission tomography (PET) data, although recently some tools have become available (Gunn et al., 2016; Funck et al., 2018).

Compared to fMRI preprocessing, preprocessing of PET data is relatively straightforward because confounding temporal signals are rarely regressed out of the data, and the preprocessing thus only consists of spatial processes, such as frame-realignment and coregistration. Yet, any all-inclusive PET processing pipeline must be able to handle numerous kinetic models to support as many radiotracers as possible. Thus, unlike fMRI preprocessing tools, PET pipelines should handle both the preprocessing as well as the kinetic modeling for numerous tracers, making the development of a comprehensive PET pipeline a challenging task.

A particularly sensitive task in PET analysis is the requirement of the input function. Depending on tracer, the input function can be obtained either from blood samples or directly from the PET images, for example, if a reference region is available for the tracer. The blood samples require manual processing before the input function can be obtained from them. While population-based atlases (Fischl et al., 2002; Tzourio-Mazoyer et al., 2002; Eickhoff et al., 2005) provide an automatic way for defining reference regions (Yasuno et al., 2002; Schain et al., 2014; Tuszynski et al., 2016), they are suboptimal because the process requires warping of either the atlases or the PET images. Ideally, the reference region should be defined separately for each individual before spatial normalization. Consequently, manual delineation is still considered the gold standard for defining the reference regions, thus prohibiting a fully automatic analysis of PET data. Furthermore, manual reference region delineation is time-consuming and relies on numerous subjective choices. To minimize between-study variance resulting from operator-dependent choices (White et al., 1999), a single individual should delineate the reference regions for all studies within a project. Thus, manual delineation is not suited for large-scale projects where hundreds of scans are processed, or neuroinformatics approaches where an even significantly larger number of scans have to be processed.

To resolve these issues, we introduce Magia1 that enables automatic modeling of brain PET data with minimal user intervention The major advantages of this approach involve:


1.    Flexible, parallelizable environment suitable for large-scale standardized analysis.

2.    Fully automated processing of brain PET data starting from raw images.

3.    Visual quality control of the processing steps.

4.    Centralized management and storage of study metadata, image processing methods and outputs for subsequent reanalysis and quality control.



In this study, we compared Magia-derived input functions and the subsequent outcome measures against those obtained using conventional manual techniques with four tracers binding to different sites: [11C]carfentanil, [11C]raclopride, [11C]MADAM, and [11C]PiB. We also assessed inter-rater agreement in the reference region definition and uptake estimates, and regional and voxel-level outcome measures.



MATERIALS AND METHODS


Overview of Magia

Magia1 is a freely available and fully automatic analysis pipeline for brain PET data. Running on MATLAB (The MathWorks, Inc., Natick, MA, USA), Magia combines methods from SPM122 and FreeSurfer3—two freely available and widely used tools–with in-house software developed for kinetic modeling. Magia has been developed alongside a centralized database4 containing metadata about each study, facilitating data storage and neuroinformatics-type large-scale PET analyses. While the implementation of a similar database is highly recommended, Magia can also be installed and used without such database as long as the user can feed in the necessary information about the studies. Magia runs only on Linux/Mac. The Optimization Toolbox for MATLAB is required for fitting some of the models. Magia has been developed using MATLAB R2016b. Magia currently supports the simplified reference tissue model, Logan (Logan, 2000) with both plasma input and reference tissue input, Patlak (Patlak et al., 1983) with both plasma input and reference tissue input, SUV-ratio (Chen and Nasrallah, 2017; standardized uptake value), and fractional uptake ratio (FUR; Thie, 1995) analysis for late scans with plasma input. Also, the two-tissue compartmental model can be fitted to regional-level data.

A box-diagram describing the main steps in Magia processing is shown in Figure 1. Magia starts by preprocessing the PET images. The preprocessing consists of frame-alignment (motion-correction) and coregistration with the MRI. The MRI is processed with FreeSurfer to generate anatomical parcellations for defining regions of interest (Schain et al., 2014), and the reference region if one is required for the chosen kinetic model. FreeSurfer assigns an anatomical label to each brain voxel, and the regions of interest (ROIs) thus consist of all the voxels with the same anatomical label. Magia performs a two-step correction to the reference tissue mask (see below) before obtaining the input function for modeling; the corrections make the reference regions robust for many scanners and individuals. The MRI is also segmented into gray and white matter probability maps for spatial normalization (Ashburner and Friston, 2000). After modeling, the parametric images are spatially normalized and smoothed. In addition to the parametric images, Magia also calculates region-level parameter estimates for each study. Finally, the results are stored in a centralized archive in a standardized format along with visual quality control metrics, facilitating future population-level analyses.
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FIGURE 1. The Magia pipeline combines FreeSurfer cortical mesh generation and parcellation, T1 MR image segmentation and normalization, automatic reference region and region of interest generation, and kinetic modeling.



The above-mentioned steps are only used when applicable. For example, for static PET-images, the frame alignment is skipped, and if there is no related MRI available, then a tracer-specific radioactivity template must be available to normalize the images. For all of the tracers included in this manuscript, such templates can be obtained from https://github.com/tkkarjal/magia/tree/master/templates. Magia also supports tracers that do not have a reference region. For such studies, the preprocessed (e.g., decay-corrected, metabolite-corrected, and possibly extrapolated) plasma input must be available. Magia has default settings for preprocessing, modeling, and post processing that have worked well during its development. However, Magia is also flexible in the sense that the user can override some of these options if needed.



Validation Data

To assess reliability of Magia we used historical control data using four radioligands with different targets and spatial distribution of binding sites: Dopamine D2R receptor antagonist [11C]raclopride, μ-opioid receptor agonist [11C]carfentanil, serotonin transporter ligand [11C]MADAM, and beta-amyloid ligand [11C]PIB. For each radioligand we selected 30 studies (Table 1). We generated reference regions for all the tracers using traditional manual methods and the new automatic method and compared the results. The study was conducted as a part of a register-based study on brain imaging at Turku PET Centre. Per applicable legislation in Finland, fully anonymized medical register data (including PET and MRI scans) can be analyzed in the context of a register study without obtaining an active informed consent from the individuals included in the register, if information identifying the individuals is not obtained. The study protocol was approved by Turku University Hospital Research Board and the legislative team.

TABLE 1. Summary of the studies.
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Manual Reference Region Delineation

Five researchers with good knowledge of human neuroanatomy delineated reference regions for every study according to written and visual instructions (Figure 2A). Cerebellar cortex was used as a reference region for [11C]raclopride (Gunn et al., 1997), [11C]MADAM (Lundberg et al., 2005) and [11C]PiB (Lopresti et al., 2005). For [11C]carfentanil, the occipital cortex was used (Endres et al., 2003). The regions were drawn using CARIMAS5 on three consecutive transaxial slices of T1-weighted MR images, which is the current standard manual method at Turku PET Centre. Cerebellar reference was drawn in the cerebellar gray matter within a gray zone in the peripheral part of cerebellum, distal to the bright signal of white matter. The first cranial slice was placed below the occipital cortex to avoid spill-in of radioactivity. Typically, this is a slice where the temporal lobe is clearly separated from the cerebellum by the petrosal part of the temporal bone. The most caudal slice was typically located in the most caudal part of the cerebellum. Laterally, venous sinuses were avoided to avoid spill-in during the early phases of the scans. Posteriorly, there was about a 5 mm distance from the cerebellar surface to avoid spill-out effects. Anteriorly, the border of the reference region was drawn approximately 2 mm distal to the border of cerebellar white and gray matter, except in the most caudal slice, where the central white matter may no longer be visible.
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FIGURE 2. (A) Visual instructions of the most cranial slice of manually delineated cerebellar (left) and occipital (right) reference regions. The reference regions were delineated on three consecutive transaxial T1-weighted MR images. Cerebellar reference region is shown on the left and occipital reference region on the right. (B) The diagram shows how a T1-weighted MR image of an individual’s brain is processed to produce the final reference region. The shown example is from the [11C]carfentanil data set. The rectangles represent processing steps between inputs and outputs. The FreeSurfer step assigns an anatomical label to each voxel of the subject’s T1 weighted MR image. The ROI extraction step extracts a prespecified ROI from FreeSurfer’s output. The anatomical correction removes voxels that are most likely to suffer from spillover effects; for [11C]carfentanil data this means voxels lateral to the lateral ventricles. In the tail-exclusion step, radioactivity distribution within the anatomically corrected reference region is estimated, and the voxels whose intensities are on the tail-ends of the distribution are excluded.



The occipital reference region was defined on three consecutive transaxial slices, of which the most caudal slice was the second-most caudal slice before the cerebellum. The reference region was drawn J-shaped with medial and posterior parts. The reference region was drawn to roughly follow the shape of the cortical surface, but not individual gyri. The reference region was drawn approximately 1 cm wide with about 2 mm margin to the cortical surface to avoid spill-out effects. The anterior border of the reference region was placed approximately halfway between the posterior cortical surface and the splenium of the corpus callosum. The posterolateral border of the reference region approximated the medial-most part of the posterior horn of the lateral ventricle.



Automatic Reference Region Generation

Figure 2B shows an overview of the automated reference-region-generation process. First, T1-weighted MR images were fed into FreeSurfer to provide subject-specific anatomical masks for cerebellar and occipital cortices. Second, an anatomical correction was applied to the FreeSurfer-generated reference region mask to remove voxels that, based on their anatomical location alone, are likely to suffer from spill-over effects. For the cerebellar cortex, the most important sources of spill-over effects are occipital cortex and venous sinuses. Thus, the most outermost cerebellar voxels were excluded in the anatomical reference region correction. For the occipital cortex, voxels that were lateral to the lateral ventricles were excluded. This is because the most lateral parts of the FreeSurfer-generated occipital cortex extend to areas with specific binding for [11C]carfentanil, and the lateral ventricles provide a reliable anatomical cut-off point for thresholding. Finally, the radioactivity concentration distribution within the anatomically corrected reference region was estimated, and the tails of the distribution were excluded. The lower and upper boundaries for the signal intensities were defined by calculating the full width at half maximum (FWHM) of the mean PET signal intensity distribution. This step ensures that the reference region will not contain voxels with atypically high or low radioactivity (e.g., signal from outside the brain). The automatic reference region generation process thus combines information from anatomical brain scans and the PET images to get a reliable estimate of nonspecific binding.



Quantifying Operator-Dependent Variability

We first investigated how subjective choices in manual reference-region delineation translate into differences in reference region masks, reference-region time-activity curves (TACs), and outcome measures. Anatomical differences in reference region masks were assessed in two ways: first, we calculated within-study spatial overlap between the manual reference regions. The spatial overlap was calculated in two stages: it was first calculated separately for all different manual reference region pairs, and those numbers were then averaged over to obtain a summary statistic for each study. Second, we investigated the differences in volumes of the manually delineated reference regions using the intra-class correlation coefficient (ICC). To estimate ICC, we first estimated a random-effects model y ~ 1 + (1 | operator) + (1 | study), where, y is the variable of interest, and then calculated the proportion of variance explained by the variance of the random-effect-components (Nakagawa et al., 2017). Calculated this way, ICC is restricted to between 0 and 1. The R package brms6 was used to estimate the models, and the R package performance7 was used to estimate ICC.

Differences in reference region TACs were assessed by calculating area under the curve (AUC) of them. Prior to the ICC analysis, we standardized all the AUCs with the mean radioactivity within the union of all manually delineated reference regions. This standardization removes between-study variance resulting from different scanners, body masses and injected doses.



The Volumetric Similarity of the Manual and Automatic Reference Regions

We compared the volumes of reference regions to assess whether the two techniques generate reference regions of systematically different sizes. For each study, we calculated the mean volume from all manually delineated reference regions and compared it to the volume of the Magia-derived reference region. We also quantified the anatomical overlap between the manually and the automatically derived reference regions. The overlap was defined as the ratio between the number of common voxels and the number of manual voxels. For each study, the overlap was first calculated separately for every manually delineated reference region after which the mean overlap was calculated.



Similarity of the Reference Region Radioactivity Concentrations

A functionally homogenous region should have approximately Gaussian distribution of radioactivity measured with PET (Teymurazyan et al., 2013). Functional homogeneousness was assessed using radioactivity distributions within the reference regions. The automatically and manually derived reference region masks were used to extract radioactivity concentration distribution within the reference regions. The study-specific manual distributions were averaged over the manual drawers to provide a single manual distribution for each study. The radioactivity concentrations were converted into SUV, after which the distributions were averaged over studies to provide tracer-specific distributions. Mean, standard deviations, mode, and skewness of the distributions were used to quantify the differences in the distributions.



Similarity of the Reference Region Time-Activity Curves

We compared the similarity of the automatically and manually delineated reference region TACs. For each study, the manual reference region TAC was defined as the average across the manual TACs to minimize the subjective bias in adhering to the instructions for manual reference region delineation. Activities were expressed as standardized uptake values (SUV, g/ml) which were obtained by normalizing tissue radioactivity concentration (kBq/ml) by total injected dose (MBq) and body mass (kg), thus making the different images comparable to each other. To assess the similarity of the shapes of reference region TACs, we calculated Pearson correlations between the manually and automatically delineated TACs for each tracer. Bias was assessed using the area under the curve (AUC).



Assessing the Similarity of the Outcome Measures

We used nondisplaceable binding potential (BPND) to quantify uptakes of [11C]carfentanil, [11C]raclopride and [11C]MADAM. It reflects the ratio between specific and nondisplaceable binding in the brain. The binding potentials were calculated using a simplified reference tissue model whose use has been validated for these tracers (Gunn et al., 1997; Endres et al., 2003; Lundberg et al., 2005). SUV-ratio between 60 and 90 min was used to quantify [11C]PiB uptake (Lopresti et al., 2005). All the studies were first processed using Magia. To obtain the outcome measures resulting from manually delineated reference regions the procedure was repeated with the only exception of replacing the automatically generated reference regions with a manually generated reference region. Thus, the only differences observed in the uptake estimates originate from differences in the reference regions. We estimated the outcome measures in one representative ROI for each tracer, and also calculated parametric images. The ROIs were extracted from the FreeSurfer parcellations.




RESULTS


Operator-Dependent Variation

The influence of different operators on reference region volumes, reference region time-activity AUCs, and outcome measures are presented for each tracer in Table 2. The spatial overlap between the manually delineated masks was modest, as the maximum overlap was 41% for [11C]raclopride studies, while the overlap for the other tracers was 14–22%. The ICC for reference region volumes were moderate to good (0.74…0.83) for all tracers except [11C]MADAM (ICC = 0.46). The reference region TAC AUCs varied substantially especially for [11C]carfentanil and [11C]MADAM, while for [11C]PiB operator had little influence on the AUCs (ICC = 0.95). The operator had the most influence on outcome measures for [11C]carfentanil and [11C]MADAM. For [11C]raclopride and [11C]PiB operators had little influence on outcome measures (ICC ≥ 0.95).

TABLE 2. Operator-caused variation in basic characteristics derived from the reference region masks.
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Differences Between Manually and Automatically Produced Reference Regions


Differences in Reference Region Masks

We first compared the anatomical similarities between the automatically and manually delineated reference regions. For each tracer, automatic reference regions were consistently larger than manually derived reference regions (Figure 3 and Supplementary Figure S1). In four [11C]carfentanil studies at least one of the manually drawn reference regions was larger than the automatic occipital reference region. Magia-generated cerebellar reference regions were always larger than mean manual cerebellar reference regions. The automatically produced reference regions are naturally larger than the manually delineated ones because manual delineation requires mechanic work from highly trained individuals, thus providing a cost to the size of the regions.
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FIGURE 3. (A) Mean volumes of Magia-generated reference regions compared to mean volumes of manually delineated reference regions. (B) Visual examples of Magia-generated and manual reference regions for one study.



Next, we determined whether the Magia-derived reference regions overlap with the manually drawn reference regions. The automatic occipital reference region for [11C]carfentanil overlapped only 14% with a manual occipital reference region. The low overlap is explained by the substantial difference between the sizes of the manually and automatically generated occipital ROIs. Automatic cerebellar reference regions overlapped with manual reference regions by 55%, 59% and 61% for [11C]raclopride, [11C]MADAM and [11C]PiB, respectively.



Differences in Reference Region SUV Distributions

The overlap between the manual and automatic radioactivity distributions was approximately 90% for all tracers (Supplementary Figure S2). All distributions were unimodal and highly symmetric for all tracers. The means of the distributions were practically equal (maximum difference of 0.07%). The standard deviations of the distributions differed by 14%, 11%, 12% and 18% for [11C]carfentanil, [11C]MADAM, [11C]PIB and [11C]raclopride, respectively. The modes of the automatically and manually derived distributions were 1.5 and 1.55 for [11C]carfentanil, 1.95 and 2.05 for [11C]MADAM, 1.65 and 1.70 for [11C]PIB, and 1.35 and 1.35 for [11C]raclopride. Thus, the maximum difference was less than 5%. The skewnesses of the Magia-derived and manually derived distributions were 1.2 and 0.9 for [11C]carfentanil, 1.3 and 1.2 for [11C]MADAM, 2.0 and 1.6 for [11C]PIB, and 2.4 and 2.0 for [11C]raclopride.



Differences in Reference Region Time-Activity Curves

The Magia-produced TACs were on average very similar to the average TACs calculated based on the manually delineated reference regions (Figure 4). The Pearson correlation coefficients were above 0.99 for all tracers. Supplementary Figure S3 shows how the Magia-derived reference region time-activity curve AUCs compare against the manually obtained results. For [11C]carfentanil, the between-study AUC means were practically identical (<1%). The Magia-produced reference regions had 2.6%, 1.1%, and 1.8% lower AUCs than the manual reference regions for [11C]raclopride, [11C]MADAM, and [11C]PiB, respectively.


[image: image]

FIGURE 4. Between-subject mean time-activity curves. Blue = Magia; red = manual.





Differences in Outcome Measures

Pearson correlation coefficients between the mean of manual outcome measures and the Magia-derived outcome measures were 0.79, 0.98, 0.84, and 0.99 for [11C]carfentanil, [11C]raclopride, [11C]MADAM, and [11C]PiB, respectively. The outcome measures derived using automatic and manual methods are visualized in Figure 5 in one representative ROI, the averaged outcome-measure-images are visualized in Figure 6A and the relative bias in the whole brain between them is visualized in Figure 6B. For [11C]carfentanil and [11C]PiB Magia produced basically no bias (less than 1%). For [11C]MADAM, Magia produced up to 3–5% higher binding potential estimates in regions with high specific binding. In cortical regions with low specific binding, the bias was over 10%. For [11C]raclopride, Magia produced approximately 4–5% higher binding potential estimates in striatum. In the thalamus, the bias was 8–10%. Elsewhere in the brain the bias varied considerably between 13–20%. For both [11C]MADAM and [11C]raclopride, the relative bias decreased significantly with increasing binding potential (Figure 6C).


[image: image]

FIGURE 5. Comparison of Magia-derived outcome measures against manually obtained ones.
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FIGURE 6. (A) Visualization of the outcome measure distributions for each tracer. (B) Maps visualizing the relative biases of the Magia-derived outcome measures compared to the averages obtained by manual reference region delineation. The manual method is here presented as the ground truth, because the manual outcome for each scan is an average over five individual estimates, while the Magia result relies on a single estimate. (C) Associations between the outcome measure magnitude and relative bias.







DISCUSSION

We established that the automated Magia pipeline produces consistent estimates of radiotracer uptake for all the tested ligands, with very little or even no bias in the outcome measures. As expected, the manual delineation method suffered from significant operator-dependent variability, highlighting the importance of standardization of the process. The consistency coupled with significant gains in processing speed suggests that Magia is well suited for automated analysis of brain-PET data for large-scale neuroimaging projects.


Outcome Measures Can Substantially Depend on Who Delineated the Reference Region

We estimated the amount of operator-dependent variation in outcome measures. Despite all operators drawing the ROIs using the same instructions (presented both verbally and as visual/written instructions available for reference while working) the ICC analyses show that for [11C]carfentanil and [11C]MADAM, the variation produced by different operators is significant, indicating that for these two tracers the subjective variation in manual ROI delineation (e.g., which transaxial slices to use, how to define ROI boundaries etc.) significantly influences the magnitude of binding potential estimates. Out of the tracers using the cerebellar cortex as the reference region, [11C]MADAM had the lowest ICC with 76%. For [11C]raclopride and [11C]PiB the ICCs were over 95%, indicating that for these tracers manual delineation of reference regions may not be as crucial source of variation.

These differences between tracers likely reflect differences in the uniformity of the PET signal within the reference regions. If the reference region were perfectly homogenous with respect to the PET signal, it would not matter at all which voxels to choose. In reality, however, the PET signal is highly heterogenous. For example, the PET signal depends on the transaxial slices used. Presumably, these heterogeneities are substantial for [11C]carfentanil and, to a lesser extent, for [11C]MADAM, while the PET signal from cerebellar cortex using [11C]raclopride and [11C]PiB is significantly more homogenous. Indeed, the spatial overlap between the manually delineated reference region was higher for [11C]carfentanil (22%) than for [11C]PiB (14%), suggesting that even small differences in spatial overlap translate into substantial differences in binding potential for [11C]carfentanil.

The influence of the operator on reference TAC AUCs was even larger. For all the tracers, the ICC of outcome measures was higher than the ICC for reference TAC AUCs. For example, while [11C]raclopride BPND was barely influenced by the individual manually delineating the reference region, the ICC for [11C]raclopride reference TAC AUC was only 80%, almost 20%-units less than for BPND. Thus, even the reference region TACs for [11C]raclopride was not remarkably consistent between the operators, further highlighting the sensitivity of the delineation process despite detailed written and visual instructions. These results highlight the need for reference-region generation processes that do not suffer from subjectivity.



Reliability of Magia’s Uptake Estimates

Importantly, Magia produced parameter estimates consistent with the averaged manual estimates (Pearson correlation coefficients >0.78 for all tracers). This suggests that: (i) even though individual operators yield different output metrics these are sampled from the same true parameter space; which (ii) is in turn accurately reflected by the Magia output. There was no systematic bias for [11C]PiB SUVR and [11C]carfentanil BPND. For [11C]PiB, the difference between the manual and automatic SUVR estimates fluctuated randomly around zero. Because SUVR was used to quantify [11C]PiB uptake, the random fluctuation was independent of the brain region. For [11C]carfentanil, the random fluctuation was slightly greater in low-binding regions (but still within ±5%). In contrast to [11C]PiB and [11C]carfentanil, there were systematic differences between the manual and automatic binding potential estimates for [11C]raclopride and [11C]MADAM. For both tracers the bias decreased as a function of specific binding, and in high-binding regions (BPND > 1.5) the bias was less than 5%. Even if the bias increased sharply with decreasing binding potential, the problematic regions are not typically considered very interesting because of their poor signal-to-noise ratio.

The systematic bias for [11C]MADAM and [11C]raclopride is also reflected in the small differences in reference to tissue TACs. For the tracers using cerebellar reference region, Magia-derived reference tissue TACs had 2–3% lower AUCs. The peaks of the TACs were also slightly lower. For [11C]PiB, the bias did not propagate into outcome measures because the SUV-ratio was calculated between 60 and 90 min when there was no bias in TACs. Because binding potential reflects the ratio between specific binding and unspecific binding (obtained from reference tissue), the reference TAC AUCs directly propagate into biases in binding potentials. Thus, these data indicate that Magia may produce slightly higher binding potential estimates than traditional methods at least if the cerebellar cortex is used as the reference region. These data do not, however, imply that the bias should be regarded as error: in fact, Magia produces significantly larger reference regions, and consequently the reference tissue TACs are less noisy. This is desirable because the noise in the input function influences model fitting. However, the bias also means that Magia-produced estimates should not be combined with estimates produced with other methods.



Functional Homogeneity of the Reference Regions

We tested whether the assumption of homogenous binding within the reference regions holds for both automatic and manual reference regions. A homogenous source region should produce unimodal and approximately symmetric radioactivity distributions 21. Between-study average distributions were unimodal and symmetric for all tracers for both the manual and automatic methods. The distribution means were practically identical, but the modes were 1–2% higher for Magia. The manual distributions were slightly wider (the standard deviations were approximately 15% larger) because Magia cuts the distribution tails. The manual distributions were also slightly less skewed. Because averaging distributions tends to make them more Gaussian, this difference probably arises from the fact that the manual distributions that were used in the comparison were defined as an average over the five distributions delineated by the independent operators. The distribution overlaps were approximately 90% for all tracers. In sum, these results show that the Magia-generated reference region radioactivity distributions satisfy the requirement of functional uniformity.



Reference Tissue Time-Activity Curves

Despite their topographical differences, the automatically and manually produced reference regions yielded very similar TACs. For all tracers, the Pearson correlation coefficient between average automatic and manual reference tissue TACs was above 0.99. The TAC shapes were thus in excellent agreement. For [11C]carfentanil, also the AUC of reference region TACs were highly similar. The AUCs of cerebellar TACs were 2–3% lower for Magia, indicating that the cerebellar automatic TACs were slightly negatively biased compared to their manual counterparts. The source of this difference unknown but it could result e.g., from heterogenous nonspecific binding within cerebellar cortex or from spill-in or spill-over effects. Whatever explains the small difference, these data do not directly indicate which method produced more realistic TACs. However, because the Magia-generated cerebellar reference regions were without exception substantially larger than their manual counterparts, the TACs of Magia presumably have a higher signal-to-noise ratio, suggesting that the Magia-derived metrics may compare favorably against the manually obtained metrics.



Solving Time Constraints in the Processing of PET Data

On average, drawing the reference region for a single subject took around 15 min, and without any automatization the modeling and spatial processing of the images standard tools (e.g., PMOD or Turku PET Centre modeling software) take on average 45 min. In contrast, it takes less than 5 min to set Magia running for a single study. Although the time advantage—roughly an hour per study—gained from automatization is still modest in small-scale studies (e.g., three 8-h working days for a study with 24 subjects) the effect scales up quickly, and manual modeling of a database of just 400 studies would take already 50 days. This is a significant investment of human resources, in particular, if the analyses have to be redone later with, for example, different modeling parameters requiring repeating of at least some parts of the process.



Comparison of Magia to Existing Tools

Several tools already exist for processing brain PET data. MIAKAT (Gunn et al., 2016) is another MATLAB-based tool that combines preprocessing and kinetic modeling. Compared to Magia, MIAKAT is missing support for the two-tissue compartmental model, SUV-ratio, as well as FUR-analyses. APPIAN (Funck et al., 2018) is another recent development that, unlike Magia, includes partial volume correction. However, APPIAN lacks motion-correction and also supports fewer kinetic models than Magia, and like MIAKAT, APPIAN also uses neuroanatomical atlases for ROI definition. Both of these tools, as well as all the other existing tools, are restricted in the sense that they require both MRI and PET data. Magia, in contrast, can also process brain PET data without MRI if a tracer-specific template is available. Magia also comes with default modeling options for several tracers. Accordingly, Magia is currently the most flexible open-source tool available for automated processing of brain PET data.



Limitations

SMagia is currently fully automatic only for tracers for which a reference region exists. However, even for blood-based inputs, Magia requires minimal user intervention, as Magia can read in the input function from the appropriate location. Magia was originally developed with the assumption that a T1-weighted MR image is available for each subject (for reference region delineation and spatial normalization). Because this assumption limited the applicability of the approach for reanalysis of some historical data, Magia can now also use neuroanatomical atlases for ROI definition and tracer-specific radioactivity templates for spatial normalization. Templates for each of the tracers used in this manuscript are available in https://github.com/tkkarjal/magia/tree/master/templates, and Magia can use whatever templates the user may have available. Thus, the availability of MRI is not necessary, but it is strongly recommended because most of the testing has been done with MRI-based processing, and because the ROIs as well as reference regions can then be generated in the native space. The drawback of FreeSurfer-based ROI-generation is that it is relatively slow (~ 10 h). Partial volume correction is not currently implemented in Magia, yet this feature will be added in future releases. Finally, Magia processes the studies independently of each other. Within-subject designs would benefit from consideration of multiple images per participant, but this is currently not possible.




CONCLUSION

Magia is a standardized and fully automatic analysis pipeline for processing brain PET data. By standardizing the reference region generation process, Magia eliminates operator-dependency in producing outcome-measures. For [11C]carfentanil that uses the occipital cortex as the reference region, the reduced variance comes with no cost for bias in BPND. The SUVR estimates were also unbiased for [11C]PiB. [11C]raclopride and [11C]MADAM BPND was slightly overestimated. However, compared to the variance resulting from operator dependency, this bias was negligible and may actually favor Magia. In any case, bias is meaningless in most population-level analyses. Magia enables standardized analysis of brain PET data, facilitating shift towards larger samples and more convenient data sharing across research sites.
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The main hypothesis of this work is that the time of delay in reaction to an unexpected event can be predicted on the basis of the brain activity recorded prior to that event. Such mental activity can be represented by electroencephalographic data. To test this hypothesis, we conducted a novel experiment involving 19 participants that took part in a 2-h long session of simulated aircraft flights. An EEG signal processing pipeline is proposed that consists of signal preprocessing, extracting bandpass features, and using regression to predict the reaction times. The prediction algorithms that are used in this study are the Least Absolute Shrinkage Operator and its Least Angle Regression modification, as well as Kernel Ridge and Radial Basis Support Vector Machine regression. The average Mean Absolute Error obtained across the 19 subjects was 114 ms. The present study demonstrates, for the first time, that it is possible to predict reaction times on the basis of EEG data. The presented solution can serve as a foundation for a system that can, in the future, increase the safety of air traffic.

Keywords: aircraft control human factors, cognitive workload, data mining, electroencephalography, reaction time, safety, regression, prediction


1. INTRODUCTION

Safety is an important consideration in the modern airline industry. Although many factors have an influence on the proper execution of flight processes, performance of the pilot is one of the most crucial factors. In particular, multiple sources point out that fatigue has a significant adverse impact on pilot performance (Lee and Kim, 2018; Bushmaker et al., 2019). The International Civil Aviation Organization (2016) defines fatigue as:

A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that can impair a crew member's alertness and ability to safely operate an aircraft or perform safety related duties.

Results of a survey published in 2002 demonstrate that fatigue is a significant issue among pilots, and may be responsible for 4–8% of aviation mishaps (Caldwell and Gilreath, 2002). Moreover, a survey conducted in a group of short-haul pilots points out that over 75% of pilots claimed that they have experienced significant fatigue (Jackson and Earl, 2006). In addition, over 70% of corporate pilots claimed that they have fallen into micro-sleep during various phases of the flight (Caldwell, 2005). Such micro-sleep states have been related to a reduced ability to respond to external stimuli (Ogilvie and Simons, 1992), as well as, degradation of performance on cognitive tasks (Belyavin and Wright, 1987).

Another large-scale study blames errors of the cockpit crew on 73% of the 456 aircraft crashes between the years 1959 and 1996 (National Research Council, 1998). Importantly, this trend does not seem to decrease over time, as the same source suggests that 72% out of the 145 accidents between the years 1987 and 1996 can be attributed to the cockpit crew.

In 2003, the National Transportation Safety Board estimated that fatigue contributes to around 20–30% of transportation accidents (i.e., aircraft, marine, railway, road). Given that ~70% of commercial aircraft accidents can be attributed to human errors, fatigue is thought to contribute to 15–20% of total aircraft accidents (Akerstedt et al., 2003).

Recent research study (Bennett, 2019) demonstrate that, on average, 7.3% of pilots who participated in this study and completed the inbound Top-of-Climb-Top-of-Descent scale were found to be either extremely tired or completely exhausted. In addition, 9.3% of pilots who completed the inbound Top-of-Descent-On-Blocks scale also claimed to be either extremely tired or completely exhausted. Of note, the Top-of-Climb-Top-of-Descent and Top-of-Descent-On-Blocks are phases of a flight. According to Bennet, these numbers could be even higher because there is a rule that pilots should not operate when fatigued; thus some pilots may under-report their fatigue level to avoid penalty. Exhaustion has been found to increase with the time of flight and Powell et al. estimated a linear relationship between tiredness and length of duty (Powell et al., 2007). It is worth mentioning that problems related to the workload and fatigue among pilots are important topics that have sparked recent changes in laws. For example, the European Aviation Safety Agency introduced new Flight Time Limitations (European Union Regulation 83/2014).

Considering the substantial impact of human factors on flight safety, there has been a rise of ideas and support for so-called, pilotless aircraft, in recent years (Ross, 2011; Stevenson, 2017). An approach that is most commonly postulated in this area is the idea of ground-based human or artificial intelligence support for a single pilot in an aircraft. However, a reduction in a number of on-board pilots might not necessarily be the best option, because the redundancy and support that two pilots provide to each other may be extremely valuable. Therefore, instead of removing pilots from cockpits, a more promising solution may be to support pilots with systems that can increase their capabilities and improve their performance during flights. The main hypothesis that will be tested in this work is that the electroencephalographic (EEG) signals recorded from a pilot's scalp during flight can be used in such performance-enhancing systems. In particular, we will test for associations between mental activity of pilots (as measured by EEG) and their ability to react quickly and make correct decisions in face of unexpected events. In this study, we also propose and test a basic pipeline that can be used for processing such signals and extracting information that can be used to predict a pilot's delay in response to unexpected events.

Use of EEG data in the context of prediction is most commonly associated with a seizure detection (Varsavsky et al., 2016). In a prospective study of antiepileptic drug withdrawal, a step-wise logistic regression analysis method was employed to predict an outcome of either antiepileptic drug withdrawal or seizure relapse (Overweg et al., 1987). However, an evaluation of the multivariate model showed that none of the variables that were related to the EEG signal contributed to the final score. A recent study presents a use of Deep Convolutional Neural Networks (CNN) for the automated detection and diagnosis of seizures using EEG signals (Acharya et al., 2018). Although CNN-based models are characterized by a high level of complexity, the additional preprocessing used in the work was limited to data standardization and normalization, and is thus fairly basic. Additionally, the aforementioned problem can be considered as more of a classification problem than a regression. EEG has already been utilized to predict a single-trial reaction time in a hand motor task (Meinel et al., 2015). The study by Meinel et al. used EEG band power features that were enhanced by a spatial filtering method called Source Power Comodulation. Alpha band power was found to comodulate with reaction time measured during an isometric hand force control task, which allowed for an average correlation of 0.19, with the best feature explaining up to 17% of the variation between single trials. Multiple studies have been performed to examine the impact of mental activity—as measured by EEG—on traffic safety. Most of these studies have been focused on car transport and driving. For instance, Deep Belief Networks (DBN) have been evaluated for their potential use in feature extraction and dimension reduction in predicting the cognitive state of drivers (Hajinoroozi et al., 2015). These studies show that DBN can predict around 85% of the variation in cognitive state. A subject-transfer framework for detecting drowsiness during simulated driving task based on EEG was also recently developed (Wei et al., 2018). In that study, response time was measured from the onset of a lane deviation to the onset of the response, which served as a behavioral assessment of drowsiness during the lane-keeping task. One interesting study associates periods of mind wandering during 20-min driving sessions with increased power in the alpha band of the EEG recording, as well as, a reduction in the magnitude of the P3a component of the event related potential in response to an auditory probe (Baldwin et al., 2017). Thus, these results suggest that, mind wandering can be detected on the basis of underlying brain physiology which has an impact on driving performance and the associated change in the driver's attentional state. Prior studies have documented changes in EEG activity that are present during the transition from normal drive to high mental workload and ultimately mental fatigue and drowsiness (Borghini et al., 2014). A review of the literature suggests that a high mental workload can be associated with increased EEG power in the theta band and a decreased power in alpha band. Additionally, increased EEG power in the theta, as well as, delta and alpha bands can be observed during the transition between mental workload and mental fatigue. Relatively fewer studies have explored the application of EEG data for the purpose of enhancing aircraft operations (Borghini et al., 2014). A recent study presented the idea of utilizing EEG signals in systems designed to monitor and enhance the performance of aircraft pilots (Binias et al., 2018). This work focuses on the problem of discriminating between states of brain activity related to idle but focused anticipation of a visual cue and the response to this cue. In this study, almost 78% average classification accuracy was obtained. This study can be regarded as a preamble to the work presented in the present article. Accordingly, to the best of our knowledge, no articles published to-date address the problem of predicting the delay in response time based on EEG activity. Therefore, the ideas presented in this article can be considered to be innovative and novel. In addition, the present study used simulators of the Virtual Flight Laboratory; thus, the experimental design used in this study is air-craft oriented. This design is valuable, as it targets a very important, yet not sufficiently explored field.

The remainder of this article is organized as follows. First, we provide a description of the experimental set-up and experimental protocol in section 2.1. Then, a steps of the EEG data processing pipeline proposed in this research are described in detail in section 2.3. Section 2.3.1 provides an overview of the tuning procedure used to find the optimal settings of prediction algorithms, and contains details about the algorithm validation procedure. The obtained results are presented in section 3. A general discussion about the results and the implemented approach can be found in section 4. Appendix A presents a brief theoretical background to all machine learning and statistical methods used in this work.



2. MATERIALS AND METHODS


2.1. Study Population and Experiment Description

The goal of this experiment was to obtain the brain's bioelectrical activity prior to the occurrence of a visual cue. Additionally, we measured the time of delay in the participant's reaction time to that visual cue. To this end, we performed a series of experimental sessions. Each session consisted of a 2-h long simulated flight with activated auto pilot. Participants in this experiment were instructed to stay focused and maintain awareness while waiting for the appearance of the visual cue. Once the cue was observed, participants were instructed to press the button as quickly as possible. The location of the button was chosen to minimize the time required to react to the visual cue by restraining any additional movements of the pilots body, besides their fingers. Additionally, participants were asked to behave as pilots during regular flight, i.e., to observe cockpit instruments and scan the surroundings of the plane. The experiments took place in the Flight Navigational Procedure Training II class simulator and portrayed a Cessna 172RG airplane. To maintain consistency between successive experimental sessions, the simulated flight was on the route between Frankfurt and London. The same section of the flight was presented to each participant during the experiment. Flights took place at an average altitude of 6000 ft., and to simulate flight with auto pilot activated, the take off and landing were removed from the registered material. Moreover, the entire flight that was presented to participants took place over land. Importantly, sounds of engines were also generated in the cockpit.

Visual cues were displayed randomly with a normal distribution characterized by mean μ = 2.5 min, standard deviation σ = 1 min. This variance was introduced to prevent habituation of the human brain to regular patterns. The visual cue was represented by a solid gray-colored box that overlapped 75% of the main simulator screen that was responsible for displaying the terrain. Participants were between the ages of 20 and 65 years. Before start of the session, participants were asked to complete a survey regarding the level of their fatigue. All participants claimed that they were well rested before the session and all provided consent to utilize the outcomes obtained of the experiment for scientific research. During the experimentation phase, 19 participants (3 females and 16 males) were examined. Every experimental session started at the same time of the day—around 12:00 (noon)—to minimize the potential effects of external factors on the experiment.

This experiment was approved by the The Jerzy Kukuczka Academy of Physical Education in Katowice Bioethical committee (protocol number 2/1/2017).



2.2. Hardware Description

This study analyzed EEG signals to examine bioelectrical activity of participants' brains during the experiments. EEG signals were recorded using the Emotiv EPOC+ Headset. This device provides a useful bandwidth in the range of 0.16–43 Hz, and is sequentially sampled at a frequency of 128 Hz. The resolution of the data is on the level of 14 bit (1LSB = 0.51 μV). To avoid interference of the electrical network, a real-time, digital 5-th order Sinc filter and notch filters at 50 and 60 Hz were built into EPOC+ (EMOTIV Systems, 2014). The placement of EPOC+ electrodes follows the 10−10 configuration. Available channels are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. with references in the P3/P4 locations. Emotiv headsets use active electrode placed in P3 location as an absolute voltage reference i.e., Common Mode Sense. The passive electrode located in P4 position serves as a feedback cancellation system to float the reference level on the common mode body potential i.e., Driven Right Leg (EMOTIV Systems, 2014). The position of electrodes is presented in Figure 1 (Koessler et al., 2009).


[image: Figure 1]
FIGURE 1. Positions of electrodes in the standard 10-10 electrode montage system. Highlighted locations reflect positioning of the Emotiv Epoc+ electrode with respect to 10-10 system-based on Koessler et al. (2009).


Emotiv EPOC+ is a relatively inexpensive EEG recording device that was designed for scientific research and other non-medical applications. Due to it's many advantages, EPOC+ is regularly used in Brain-Computer Interface (BCI) and similar solutions (Alrajhi et al., 2017; Setiono et al., 2018; Borisov et al., 2019). EPOC+ has also proven to be useful in a study concerning the classification of brain activity of pilots (Binias et al., 2018). A study evaluating EPOC+ in tasks that measured alpha brain activity and the Visual Steady-State Response showed that EPOC+ is capable of performing at levels comparable to research-grade EEG systems (Grummett et al., 2015). Due to setup difficulties, however, the authors of that study were unable to provide evidence to support the use of Emotiv in paradigms that rely on time-locked events. However, some reports of Emotiv EEG systems use in such tasks are available (Tahmasebzadeh et al., 2013).



2.3. Data Processing and Analysis
 
2.3.1. Prediction of Response Delay

First, regression models were created to predict the delay in participant's response to the visual cue. The response delay is calculated as the offset between the moment in time when the cue was presented to the subject and the moment when subject's reaction to that cue was recorded. The prediction was made using only the segments of the recorded multichannel EEG signal that immediately preceded the onset of the cue. Such defined EEG segments will be referred to as the Temporal Segment of Interest (TSI). In particular, the length of the TSI is defined as the number of samples that will be considered when predicting the length of used time window. An illustrative representation of the concept of the TSI in the EEG signal and other defined names is presented in Figure 2.


[image: Figure 2]
FIGURE 2. An illustrative representation of the EEG signal's TSI. The delay of response is calculated as the offset between the moment in time when the cue was presented to the subject and the moment when the subject's reaction to that cue was recorded. The prediction was made using only the segments of recorded EEG signal that immediately preceded the cue onset- or the “Temporal Segment of Interest” (TSI).


Analysis of the raw, unprocessed signals in the TSI would not prove to be effective. Therefore, such data has to be appropriately preprocessed. First, the raw data were carefully examined to evaluate the significance of artifacts present in the recordings. A detailed description of this phase can be found in section 2.3.2. Next, the raw data from the TSI were divided into multiple signals on the basis of their frequency range, as described in section 2.3.3. From these signals, features were subsequently extracted according to procedure described in section 2.3.4. These features were used to train machine learning algorithms to predict the measured delay in a given subject's response to the occurrence of the visual cue. In the proposed approach, signal from each electrode is analyzed individually. A general flow of the EEG processing pipeline is presented in Figure 3.


[image: Figure 3]
FIGURE 3. EEG signal processing pipeline (for single electrode).


Performance of machine learning models is dependent on the values of the variables-or “hyperparameters.” These hyperparameters differ based on different methods. The problem of choosing the optimal hyperparameters for a learning algorithm that minimizes a predefined loss function is called, hyperparameter optimization or tuning. For hyperparameter optimization, the present study used the Grid Search method (Bergstra et al., 2011). This approach involves an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm. Performance of various hyperparameter combinations was measured by 3-fold cross-validation on the training set with Mean Absolute Error (MAE) selected as the optimized performance metric.

For each subject, ~48 events were obtained during the experimental stage. Samples were then randomly divided so that 75% of samples were used for the training and tuning of prediction algorithms. The remaining 25% of the samples served as an independent dataset on which the best model (i.e., selected after hyperparameter optimization) was tested for each compared algorithm. To reduce the impact of random data division on the final score, datasets for each individual participant were randomly split into train-test datasets 11 times. MAE values obtained for each random repetition were then averaged for each subject. Let us assume that ym is the real time of response delay for sample m, and the predicted delay response time for that sample is ŷm. If M denotes the number of samples in the training set, then the final MAE value obtained from 11 cross-validations for subject s can be calculated with the following formula:

[image: image]

A brief description of regression algorithms selected for the comparison can be found in Appendix A. A list of used hyperparameters and the searched space of their values for each algorithm is presented in Appendix B. For a detailed description of all hyperparameters, please refer to the documentation for the Python-based machine learning library scikit-learn (Pedregosa et al., 2011).



2.3.2. Correction and Removal of Ocular Artifacts

Raw, multichannel time series data was obtained from EPOC+ devices during the experiment. Bioelectrical recordings from the brain are often contaminated with artifacts caused by muscle tensions, which are primarily related to eye movements and facial expressions. Given that these artifacts have a frequency spectrum that overlaps with part of the EEG spectra, the analysis of those signals is not only less effective, but in many cases, is impossible in their presence (Binias et al., 2015). Many approaches for filtering out artifacts and retrieving the underlying neural information have been proposed. Most commonly, regression methods are performed either in time or frequency domains (Binias et al., 2015). These artifact regression methods have been found to be highly effective. However, a requirement of providing at least one signal with a noise reference is a downfall for solutions that favor a limited number of electrodes in the configuration. This is particularly problematic for solutions that are designed for use in aircraft, which is the case for the system developed for the present study. On the other hand, if artifact regression is applied in the time domain, methods based on Adaptive Noise Cancelling (ANC) can be implemented for real-time applications. Indeed, this is a benefit of ANC approaches. There are various other techniques that can be used for detecting and filtering muscle movement-related artifacts, including blind source separation based algorithms (Jung et al., 2000). These algorithms include Principal Component Analysis (PCA) and Independent Component Analysis (ICA), which rely on recorded EEG and noise signals for calibration (Makeig et al., 1996). PCA and ICA approaches are particularly effective when a large amount of data is recorded across many channels. Similar to ANC-based approaches, the high data dimensionality requirement forces an extended electrode set-up, which is an inconvenience for practical solutions. Additionally, it must be noted that these methods function best in semi-automatic approaches, where supervision of an experienced user (i.e., expert) is required (Makeig et al., 1996). Although there are many eye blink correction and filtering methods described in the literature, proper validation of these methods a very demanding matter. To address this would require an uncontaminated EEG signal that can be used to compare the obtained corrected data, to evaluate the quality of filtering. However, since EEG signals are recorded with disturbances already additively mixed, there is no precise way to extract an original, desired component. Thus, it is impossible to recover the exact morphology of the uncontaminated signal and consequently, no unambiguous way of evaluating the accuracy of the reconstruction of the filtered signal (Binias and Niezabitowski, 2017). In light of these limitations, we decided to simply remove highly contaminated TSIs from further analysis. This approach is commonly used in clinical practice. EEG segments were therefore visually inspected for the presence of artifacts that had an amplitude multiple times greater than that of the surrounding data. Based on this criteria, careful inspection of the data revealed that no EEG segments were removed due to their contamination. Since the main goal of this work was to provide an initial validation of the stated thesis rather than to propose a production ready solution, an automatic artifact removal method was not necessary. Additional motivation behind this approach was that the solution described in this work should serve as a baseline and reference for future improvements.



2.3.3. Frequency Analysis

As developments in neuroscience suggest, neural oscillations and their synchronization represent important mechanisms for inter-neuronal communication and the binding of information processed in distributed brain regions (Roach and Mathalon, 2008). Therefore, EEG signals are often analyzed based on their frequency characteristics. Indeed, time-frequency analysis of EEG signals can provide information on which frequencies have the most power at specific points in time and in certain location in the cortex. In the present study, the samples preceding the occurrence of the visual cue i.e., the TSI, will represent neural activity in the moment when performing of an action is required. The information about the spatial nature of observed processes will be obtained from the location of the EEG electrodes. In the proposed pipeline, EEG signals are analyzed in the following frequency bands, which correspond to specific brainwaves (Nunez and Srinivasan, 2006):

• Delta (1–4 Hz) (Landolt et al., 1996; Amzica and Steriade, 1998),

• Theta (4–8 Hz) (Strijkstra et al., 2003),

• Alpha (8–12 Hz) (Beatty, 1971; Strijkstra et al., 2003),

• Low Beta (12–16 Hz) (Beatty, 1971; Ang et al., 2012),

• Middle Beta (16–20 Hz) (Beatty, 1971; Ang et al., 2012),

• Middle-High Beta (20–24 Hz) (Beatty, 1971; Ang et al., 2012),

• High Beta (24–28 Hz) (Beatty, 1971; Ang et al., 2012),

• Gamma 1 (32–36 Hz) (Teplan, 2002; Ang et al., 2012),

• Gamma 2 (36–40 Hz) (Teplan, 2002; Ang et al., 2012),

• Broad band range (8–30 Hz) that is commonly related to the planning of motor movement (Blankertz et al., 2008).

Such bands have proven to be highly useful in a recent study that focused primarily on the problem of EEG-based discrimination between states of brain activity related to idle but focused anticipation of a visual cue and the response to that cue (Binias et al., 2018).

Since EEG is traditionally modeled as a series of sine waves of different frequencies that overlap in time and have different phase angles, the use of Fast Fourier Transform (FFT) for the frequency decomposition of such signal seems to be the most intuitive approach. To obtain bandpass filtered subsignals, each TSI was first decomposed into frequency components using FFT, for each channel separately. Then, the undesired frequencies were removed by changing their Fourier amplitudes to 0. Finally, the filtered signal was reconstructed using this modified Fourier representation using Inverse Fourier Transform algorithm. Although a detailed description of FFT is beyond the scope of this article, one important aspect of this approach warrants mention. That is, it is widely accepted that the larger the length of time window used for the FFT, the greater the frequency resolution of analysis. However, increasing the length of the TSI comes at the cost of decreasing the temporal resolution. This decrease in temporal resolution might cause a situation where the analyzed signal no longer represents the bioelectrical state of a subject's brain prior to the action requirement. As a result, these data might not be useful for predicting the delay in response. This problem is captured in the Heisenberg uncertainty principle (Folland and Sitaram, 1997). To address this problem, the present study utilized the, zero-padding, approach (Marple and Marple, 1987). In this method, the analyzed segment of a signal is extended by a sequence of zeros. This extended sequence is represented as a low frequency peak in the Fourier amplitude spectrum. If such addition is correctly treated during the analysis (i.e., discarded), it won't negatively affect the outcome, but it will increase the frequency resolution. Given that frequency components lower than 1 Hz are not considered in the present study, the zero padding approach could be implemented. For the purpose of this research, 0.5 s time windows were used, which corresponds to 64 samples of TSI length. Analyzed segments were additionally padded with 192 zeros so that the total length of signal to be decomposed with FFT was 256 samples.



2.3.4. Feature Extraction

A common assumption is that changes in EEG power reflect changes in underlying neuronal activity (Roach and Mathalon, 2008). These power changes are typically referred to as Event-Related Synchronization and Event-Related Desynchronization, to describe the changes in EEG power that are related to the occurrence of a specific event (Pfurtscheller and Da Silva, 1999). Therefore, one of the most effective and widely used descriptors of EEG data is the power of the signal calculated in a specific frequency range (Blankertz et al., 2008). Since the mean value of the bandpass filtered signal tends to zero, the variance of such signal can be used to represent its bandpower. To improve the performance of chosen classification algorithm, the distribution of the extracted bandpower features is often normalized using a natural logarithm function (Binias et al., 2016a). The logarithm of variance feature, that will also be referred to as logvar, was chosen as the descriptive statistics in the described pipeline. Since the experimental set up consists of 14 electrodes and each signal is further decomposed into 10 frequency subbands, a total of 140 logvar features were obtained for each trial i.e., appearance of visual cue, in each experiment. Before tuning and training of the prediction algorithms, all features were subjected to the classical standardization and normalization procedures to obtain a zero mean value and unitary standard deviation. Section 2.3.1 contains a detailed description of the implemented approach to the problem of regression.





3. RESULTS

Summary statistics for delay times in response to the cue and a total number of epochs registered for each subject, are presented in Table 1. One of the initial hypotheses was that the delay in reaction time will increase with an increase in the duration of the experiment. To determine whether a relation between the time in experiment when the event happened and response delay, a Robust Linear Model (RLM) was fit to the data. The RLM is estimated via iteratively reweighted least squares (Huber, 1973). The robust criterion function used for downweighting the outliers was Hubers T for M estimation (Huber, 1973; Huber et al., 2013). A more detailed description of this approach lies beyond the scope of this article. The explanatory variable used for the modeling was the timestamp of the event i.e., cue appearance. The delay in response time was the explained variable. Table 1 shows observed slope coefficients of fitted lines, as well as, p-values describing their statistical significance. Only for subjects 6, 7, 8, 9, 13, 14, 16, and 18, p-values of the slope coefficients were lower than 0.03 and can therefore be considered statistically significant. Slope coefficients for those subjects, as well as for other subjects, are very close to 0. Given these observations, it can be assumed that neither a linearly increasing nor decreasing trend can be attributed to the changes in response delay over time. Further analysis was conducted on the basic statistics of the data presented in Table 1, especially the standard deviation σ and the difference between minimal and maximal values for each subject with respect to the median. These additional analyses suggest high variability in response time values throughout each session.


Table 1. Basic statistics of the response delay times summarized for each subject.
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Average MAE scores obtained for different prediction algorithms are presented in Table 2. It can be observed that the best average results were obtained with the SVMRBF algorithm (114 ms). What is worth to notice is that MAE for subjects 10 and 16 is much higher than that of other subjects. However considering that the average reaction delay was around 600 ms, this is a relatively small error. Therefore, the obtained results can be considered satisfactory. Additionally, the standard deviations of absolute errors (AE) were taken into account and presented in Table 3. Again, the SVMRBF results were characterized by the lowest value of 68 ms. The maximal prediction AEs are shown in Table 4. Given that the presented solution is meant to be utilized for safety solutions in the future, this metric is especially important. Failing to predict a single decrease in performance (i.e., a drastic increase in response delay) might lead to more serious consequences than averaging a relatively higher mean error for all events. The average maximal prediction absolute error exceeded 200 ms for all algorithms, with SVMRBF outscoring other algorithms by at least 24 ms.


Table 2. Comparison of prediction's Mean Absolute Errors obtained for each subject.
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Table 3. Comparison of Absolute Errors Standard Deviations obtained for each subject.
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Table 4. Comparison of Maximal Absolute Errors obtained for each subject.
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On average, all scores of both LASSO-based algorithms and Kernel Ridge regression were off by a few milliseconds with respect to SVMRBF. In order to properly examine the performance differences between compared algorithms a one-way ANOVA test was performed, where all AEs of prediction were used as observations and each of the regression algorithms was representing an individual group. The computed F-value of one-way ANOVA test was 2.246. The associated p-value from the F-distribution was 0.081. Since the results of performed ANOVA tests indicate the existence of statistically significant, albeit subtle, differences between AE obtained within each group post-hoc t-tests were performed to investigate this furthermore. Table 5 presents p-values obtained from performed t-tests. The results indicate that the SVMRBF algorithm allowed to obtain a significantly (p < 0.05) values of AE.


Table 5. p-values of pairwise t-tests performed in order to compare absolute errors of prediction obtained with different regression algorithms.
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An additional analysis was carried out in order to validate the proposed solution further. For this purpose, the best performing algorithm—the SVMRBF—was trained with shuffled reaction times. The motivation behind that is to compare how well does the prediction work against simply learning to predict the average reaction time for each subject. Average MAEs obtained for each subject with this approach are presented in Table 2 under Shuffled SVM column. Insignificant differences in MAE between properly trained algorithms and this would indicate that proposed approach is not using EEG information. F-value of performed one-way ANOVA (with Shuffled SVM included as one of the groups) was 20.901 (associated p-value is less than 10−16). This indicates some statistical differences between groups and justifies performing additional post-hoc t-tests. Results presented in Table 5 prove that all proposed algorithms perform significantly better than fitting average.

Since the best performing regression algorithm—SVMRBF—requires initial feature ranking and selection, analysis of the nature of top predictors could provide an interesting and valuable information. Presented in Table 6 is a summary of most commonly selected features, across all 11 cross-validation, for each individual subject. Figure 4 presents a histogram of top feature selections. It can be observed that optimal subset of features varies highly between subjects with most frequently selected features—Gamma 1 in AF3 electrode location and Gamma 1 in F8 electrode location—being common only for 5 subjects each. Further features—Gamma 2 (AF3 electrode), High Beta (AF3 electrode), Delta (T7 electrode) and Gamma 2 (AF4 electrode)—were common only for 4 subjects.


Table 6. Summary of top features selected most commonly for individual subjects, as well as, for all subjects combined for SVMRBF algorithm.
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[image: Figure 4]
FIGURE 4. Histogram of cumulative feature selections for all subjects for SVMRBF algorithms. Only features selected more than once were included.




4. DISCUSSION

The present study provides a novel utilization of EEG to predict delays in response time. Indeed, we demonstrated that it is possible to obtain satisfactory results based solely on the processed EEG signals. The average MAE value for SVMRBF was 114 ms. This is a relatively small error, which indicates that the achieved results are very promising. This is particularly true given that this is the initial phase of this work and the first time that this problem has been approached. For all subjects, the MAE was at least a few times smaller than their lowest reaction delay. The other tested regression algorithms performed significantly worse than SVMRBF; however the gap between LASSO-LARS, LASSO, and Kernel Ridge regression was only couple seconds. With the lowest standard deviation of prediction's AE, SVMRBF was also the most precise algorithm. Additional tests proved that proposed solution performs significantly better than simple average fitting.

Errors obtained for 12 subjects did not exceed 100 ms. A higher score for some of the subjects emphasizes the complexity of the problem. Additionally, another important observation can be made—that none of the algorithms resulted in the lowest MAE for all subjects. Altogether, these findings might indicate that subject-specific algorithm selection might improve the performance of the proposed solution. However, the significantly higher errors for few subjects could be related to the phenomena known as BCI illiteracy (Allison and Neuper, 2010). Indeed, some studies suggest that there is a group of people not capable of using EEG-based BCI systems (Allison and Neuper, 2010; Vidaurre and Blankertz, 2010). While this possibility must be taken into consideration in future work this conclusion should not be drawn hastily to explain the poorer than expected performance of the proposed solution for some subjects.

The statistics presented in Table 1 suggest no significant trend i.e., neither increasing nor decreasing in the lengths of delay in response times. Additionally, high values of standard deviations (compared to the median) might indicate that the times are random, or at least independent from obvious variables such as timestamp of experiment. Such high variability in the data is a good prognostic indicator of the experiment. In particular, when designing machine learning algorithms, great care needs to be taken to avoid tuning the model to strong correlations that have no actual relation to the explained or explanatory variables. If the data where instead aligned to any monotonic function that is dependent upon the timestamp, then relatively low regression errors could be obtained; however, EEG-related variables would have a negligible impact on that score. Since that is not a case, the obtained results can be considered satisfactory with a greater confidence.

The analysis of selected features for—the most effective—SVMRBF algorithm was additionally performed. A high variability between the optimal subsets of features selected for individual subjects was observed. In particular, the greatest number of subjects for whom same features were common (Gamma 1 in AF3 electrode location and Gamma 1 in F8 electrode location) was 5. This is merely over 25% of the total number of subjects. Therefore, no detailed conclusions about the mental processes underlying fast reaction related actions can be drawn at this stage of the experiment. Such differences can be explained by both, or either of individual characteristics of neural activity related to the presented task or overlapping of bioelectrical source activity caused by the effects of volume conduction. It is a common knowledge that due to this phenomena analysis of cortical activity may be less precise. Additionally, some important spatiotemporal features of the EEG signal might not be properly observed (Blankertz et al., 2008). Therefore, among the most important future additions to the pipeline is the implementation of a spatial filtering step (Blankertz et al., 2008). The use of a spatial filtering algorithm has proven to be highly beneficial in various EEG bandpower-based solutions (Binias et al., 2016b, 2018). Authors believe that such addition would no only allow to further decrease the prediction MAE, but also make the analysis of most relevant frequency bandwidths and cortical locations more accurate and exhaustive.

Another feature that should be tested, that may have an impact on prediction error is the removal and correction of short-time, high-amplitude artifacts such as eye movement, blinking, and muscle activity. Several approaches, including Artifact Subspace Reconstruction (ASR) or rejecting the subspace of ICA coefficients, may provide a potent solution to this problem (Le et al., 2011; Akhtar et al., 2012; Mullen et al., 2013). Due to its capability for real-time application, the ASR method, in particular, should be considered for addition to the pipeline.

The presented solution may serve as a starting point for future concepts and improvements. The idea of predicting the delay in response time to an unexpected event hides a much broader concept than the one reflected in the present experiment. The constant monitoring of predicted reaction time might shed new light on how pilot's capabilities change over the course of a flight. These changes over time might then be used to trigger an alarm once a significant decrease in predicted reaction time is expected. Such an approach to addressing the problem would then provide an overview of the overall level of fatigue, rather than being a temporally-limited metric. A future follow-up experiment will be conducted that includes a larger sample size, and a measurement device that provides greater coverage of the brain's cortical areas. This followup experiment will validate the proposed approach and test the potential of the implemented solution.
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Automatic alignment of brain anatomy in a standard space is a key step when processing magnetic resonance imaging for group analyses. Such brain registration is prone to failure, and the results are therefore typically reviewed visually to ensure quality. There is however no standard, validated protocol available to perform this visual quality control (QC). We propose here a standardized QC protocol for brain registration, with minimal training overhead and no required knowledge of brain anatomy. We validated the reliability of three-level QC ratings (OK, Maybe, Fail) across different raters. Nine experts each rated N = 100 validation images, and reached moderate to good agreement (kappa from 0.4 to 0.68, average of 0.54 ± 0.08), with the highest agreement for “Fail” images (Dice from 0.67 to 0.93, average of 0.8 ± 0.06). We then recruited volunteers through the Zooniverse crowdsourcing platform, and extracted a consensus panel rating for both the Zooniverse raters (N = 41) and the expert raters. The agreement between expert and Zooniverse panels was high (kappa = 0.76). Overall, our protocol achieved a good reliability when performing a two level assessment (Fail vs. OK/Maybe) by an individual rater, or aggregating multiple three-level ratings (OK, Maybe, Fail) from a panel of experts (3 minimum) or non-experts (15 minimum). Our brain registration QC protocol will help standardize QC practices across laboratories, improve the consistency of reporting of QC in publications, and will open the way for QC assessment of large datasets which could be used to train automated QC systems.
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INTRODUCTION

Aligning individual anatomy across brains is a key step in the processing of structural magnetic resonance imaging (MRI) for functional MRI (fMRI) studies. This brain registration process allows for comparison of local brain measures and statistics across subjects. A visual quality control (QC) of brain registration is crucial to minimize incorrect data in downstream analyses of fMRI studies. However, no standardized, validated protocol has yet been developed to streamline this QC. Here, we present a standardized procedure for visual QC of brain registration and describe the reliability of QC ratings from both expert raters and a large panel of non-experts recruited through an online citizen science platform1.


Brain Registration

Magnetic resonance imaging is a non-invasive technique that can be applied to study brain structure (sMRI) and function (fMRI). Multiple steps are required to transform raw MRI data to processed images ready for downstream statistical analyses. One critical preprocessing step is brain registration; this involves aligning 3D brain images to a standard stereotaxic space, such as the MNI152/ICBM2009c template (Fonov et al., 2009). State-of-the-art registration procedures use non-linear optimization algorithms such as ANIMAL (Collins and Evans, 1997), DARTEL (Ashburner, 2007), or ANTS (Avants et al., 2009). Dadar et al. (2018) compared five publicly available, widely used brain registration algorithms in medical image analysis and found a failure rate of 16.8 ± 3.13% on their benchmarks. This lack of robustness is mainly due to differences in image quality, shape and cortical topology between individual brains. A visual QC of registered brain images is thus required to ensure good data quality for subsequent analyses.



Visual QC

The specific focus of the visual QC for sMRI registration depends on the intended use of the data. Voxel-based analysis of brain morphology typically calls for a highly accurate registration, as this step can impact brain tissue segmentation. In contrast, fMRI studies usually rely on larger voxel size and spatial blurring, and are less likely to be affected by small registration errors. To our knowledge, as of yet, there are no standardized criteria for tolerable errors in sMRI registration for fMRI processing pipelines. Many fMRI analytical software packages present users with images to assess the quality of T1 image registration. In one of the most recent packages developed by the community, fMRIprep (Esteban et al., 2019), the registered T1 image is presented across 21 brain slices, along with images for three other processing steps (skull stripping, tissue segmentation, and surface reconstruction), yielding a total of 84 brain slices for visual inspection. Established processing tools like FMRIB Software Library (Jenkinson et al., 2012) or the Statistical Parametric Mapping MATLAB package (Wellcome Centre for Human Neuroimaging, n.d.) also present users with reports that often include more than ten brain slices for visual inspection for each subject. This makes visual inspection tedious and time-consuming. Critically, none of these packages offer guidelines on how to assess the quality of structural brain registration for fMRI studies. Without such guidelines and with a large number of images to review, QC is likely to vary significantly across raters.



Inter-Rater Agreement

Quality control studies of preprocessed images rarely report inter-rater reliability, and no such study examined brain registration to our knowledge. Pizarro et al. (2016) applied a support vector machine algorithm on visually rated (N = 1457 usable/unusable) sMRI data from 5 to 9 investigators who rated the same 630 images, but did not report agreement metrics. White et al. (2018) compared automated QC metrics and manual QC from 6662 sMRI data from 4 different cohorts/sites, merging visual inspection across sites, raters, protocols and scan quality but without presenting agreement statistics. Studies that do report inter-rater agreement mostly focus on issues related to raw MRI images (e.g. signal-to-noise ratio or susceptibility artifacts), head motion (e.g. ghosting or blurring), brain extraction, and tissue segmentation. Inter-rater agreement in these studies is found to vary considerably. For example, Backhausen et al. (2016) reported high agreement for two trained raters who visually inspected the same 88 sMRI, achieving an intra-class correlation of 0.931 for two categories of quality (pass-fail) on issues related to MRI acquisition and head motion. Esteban et al. (2017) reported a kappa of 0.39 between two raters for three quality categories (Exclude/Doubtful/Accept) on 100 images when ratings were based on the quality of the MRI acquisition, head motion, brain extraction and tissue segmentation. Table 1 shows recent (2010 onward) studies reporting inter-rater agreements on visual QC of sMRI for a variety of issues. Only one study, Fonov et al. (2018), included brain registration for visual QC assessment. These authors reported a test-retest Dice similarity of 0.96% from one expert rater who evaluated as pass or fail 1000 images twice, but no inter-rater reliability estimate. Variability in reliability across studies may be due to two types of factors: user- and protocol-related factors. Protocol-related factors (e.g. clarity, levels of rating or training set) can be addressed by multiple iteration and refinement of the protocol. Factors related to the rater (e.g. level of expertise, fatigue, motivation, etc.) are more difficult to constrain or control. One solution to circumvent individual rater variability is to aggregate multiple ratings from a large pool of raters.
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TABLE 1. Reported agreement in visual inspection of sMRI data on QC studies.




Crowdsourced QC

Crowdsourcing can be used to achieve multiple QC ratings on large collections of images rapidly. Crowdsourcing, as first defined by Howe in 2016, is “the act of taking a job traditionally performed by a designated agent (usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an open call” (Howe, 2006). Crowdsourcing can be used in citizen science research projects where a large number of non-specialists take part in the scientific workflow to help researchers (Franzoni and Sauermann, 2014; Simpson et al., 2014). Crowdsourcing labor-intensive tasks across hundreds or thousands of individuals has proven to be effective in a number of citizen science research projects, such as modeling complex protein structures (Khatib et al., 2011), mapping the neural circuitry of the mammalian retina (Kim et al., 2014), and discovering new astronomical objects (Cardamone et al., 2009; Lintott et al., 2009).

In brain imaging, recent work by Keshavan et al. (2018) showed the advantages of using citizen science to rate brain images for issues related to head motion and scanner artifacts. These authors were able to gather 80,000 ratings on slices drawn from 722 brains using a simple web interface. A deep learning algorithm was then trained to predict data quality, based on the gathered rating from citizen science. The deep learning network performed as well as a the specialized algorithm MRIQC (Esteban et al., 2017) for quality control of T1-weighted images. QC of large open access databases like HCP (Glasser et al., 2016), UKbiobank (Alfaro-Almagro et al., 2018) or ABCD (Casey et al., 2018) is challenging and time consuming task if done manually. Using crowdsourced rating could be a key element to rate huge databases and eventually use these ratings to efficiently train a machine learning models to perform QC.

Here, we propose a novel, standardized visual QC protocol for the registration of T1 images by non-experts. We formally assessed protocol reliability, first with “expert” raters familiar with visual inspection of brain registration, and second with a large pool of “non-expert” raters with no specific background in brain imaging. These citizen scientists contributed via the world’s largest online citizen science platform, called Zooniverse (Simpson et al., 2014). Zooniverse enabled the enrollment of more than 2000 volunteers from around the globe, thus enabling the evaluation of consensus between non-expert raters on a large scale. Specific aims and hypotheses of the study were as follows:


1.To establish a QC procedure for MRI brain registration that does not require extensive training or prior knowledge of brain anatomy. Our hypothesis was that such a procedure would help raters achieve more reliable visual QC.

2.To quantify the agreement between a consensus panel composed of non-expert raters and that of experts. Our hypothesis was that the consensus of non-experts would be consistent with experts’ assessments, since the protocol requires no knowledge of brain anatomy.





METHOD


Quality Control Protocol Building

The QC protocol was developed iteratively over the past 5 years, with several rounds of feedback from users. Initially, the protocol was used internally in our laboratory (Yassine and Pierre, 2016), and required a visual comparison of T1 slices against a template using the Minctool register (Janke and Fonov, 2012). Although the protocol achieved good consistency of ratings between two expert users (kappa = 0.72), it was time consuming and hard to teach. We then switched from an interactive brain viewer to a static mosaic comprised of 9 different slices (3 axial, 3 sagittal, 3 coronal, see Figure 1B), and we highlighted anatomical landmarks using a precomputed mask. These landmarks were selected because we expected all of them to align well in the case of a successful registration, and the precomputed mask served as an objective measure to decide on the severity of a misalignment. We established guidelines on how to rate a registered image on a three-level scale (“OK,” “Maybe,” or “Fail”) using these landmarks. The new protocol limited the need for extensive training for new users and potentially reduced the subjectivity of decision, notably for edge cases. The following sections describe the details and the validation of the final protocol (brain slices, landmarks and rating guidelines).
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FIGURE 1. QC protocol for brain registration. (A) Brain slices. The rater is presented with two sets of brain slices (3 axial, 3 sagittal and 3 coronal), one of them showing the template in stereotactic space and the other showing an individual T1 brain after registration. In the interface, the two images are superimposed and the rater can flip between them to visually assess the registration. (B) Anatomical landmarks. The landmarks for QC included: the outline of the brain (A), tentorium cerebelli (B), cingulate sulcus (C), parieto-cingulate sulcus occipital fissure (D), calcarine fissure (E), the lateral ventricles (F), central sulcus (G) and the hippocampal formation (H) bilaterally. The landmarks were outlined in stereotaxic space. (C) Rating guidelines. The boundaries of red landmarks act as “confidence interval” for registration: an area is tagged as a misregistration only if the target structure falls outside the boundaries. (D) Tags. Raters put tags on each misregistered brain structure. (E) Final rating. A final decision is reached on the quality of registration: an image with no tags is rated OK, one or more non-adjacent tags are rated Maybe, two or more adjacent tags are rated Fail. An image that is excessively blurry is also rated Fail.




Brain Slices

A mosaic view of nine brain slices was extracted from each registered brain. The x, y, and z coordinates, corresponding to axial, coronal and sagittal views, were as follows:
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Two images were generated: one using the individual T1 image of a subject, after brain registration, and one using the MNI2009c MRI T1 template averaged from 152 adults after iterative non-linear registration (Fonov et al., 2011), see Figure 1A.



Anatomical Landmarks

Notable anatomical landmarks included the central sulcus, cingulate sulcus, parieto-occipital fissure, calcarine fissure, tentorium cerebelli, lateral ventricles, bilateral hippocampal formation and the outline of the brain (see Figure 1B). To highlight these landmarks, we hand-drew a red transparent outline inside the brain with the MRIcron drawing tool (Rorden, 2014) using the MNI 2009 gray matter atlas as a reference. For the outline of the brain, we substracted a 4-mm eroded brain mask (MNI2009c release) from a 4-mm dilated brain mask. This process resulted in a roughly 8-mm thick mask centered on the outline of the brain in template space. The landmark boundaries served as the “confidence interval” of acceptable registration. The width of this confidence interval was somewhat arbitrary, but critically helped raters to consistently assess what amount of misregistration was acceptable. The scripts to generate the mosaic brain images with highlighted landmarks have been made available in the GitHub repository2.



Rating Guidelines

We instructed raters to focus on the brain structures within the red anatomical landmarks, comparing the individual brain, after registration, with the MNI 2009c template. The two images were presented superimposed with each other, and raters were able to flip manually or automatically between the individual and the template brain. For a given anatomical landmark, raters were asked to tag any part of the brain structure that fell outside of the anatomical landmark for the individual brain. The template acted as a reference for what the structure looked like, and where it was supposed to be. Figure 1C provides examples of acceptable and unacceptable registration of brain structures within the landmarks. Raters were instructed to click all misregistered brain structures, which resulted in a series of tag spheres with 4 mm radius (Figure 1D). After an image was fully tagged, the overall registration quality was evaluated by the rater as follows:


•“OK” if no tag was reported,

•“Maybe” if one or several regions were tagged, yet no tag spheres overlapped (less than 8 mm apart),

•“Failed” if two tag spheres overlapped, meaning that an extensive brain area (>8 mm) was misregistered. Alternatively, a “Failed” rating was also issued if the entire image was of poor quality due to motion or a ringing artifact (Figure 1E).





Zooniverse Platform

We used the online citizen science platform Zooniverse (Simpson et al., 2014) as an interface to perform the validation of our QC protocol3. Zooniverse offers a web-based infrastructure for researchers to build citizen science projects that require a human visual inspection and possibly recruit a large number of zooniverse volunteers, who are not familiar with neuroimaging and have no formal requirements to participate (Franzoni and Sauermann, 2014; Simpson et al., 2014). Our project, called “Brain match” was developed with the support of the Zooniverse team, to ensure compliance with Zooniverse policies and appropriate task design for an online audience4, and the project was also approved by our institutional review board. Note that the raters were considered part of the research team, and not participants of the research project, and thus they were not required to sign an informed consent form. The project underwent a “beta review” phase on zooniverse, where we collected feedback on the clarity and difficulty level of the task. Rating was performed by Zooniverse raters and expert raters. All ratings were performed on the zooniverse platform through the Brain Match dashboard5. The rating workflow was the same for the two types of types raters. Note that individuals participating in Zooniverse choose to voluntarily dedicate some of their time to science and thus do not constitute a representative sample of the general population.



Brain Images Validation and Training Sets

We used a combination of two publicly available datasets, COBRE (Mayer et al., 2013) and ADHD-200 (Bellec et al., 2017), for both the beta and the full launch of the project. These datasets have been made available after anonymization by consortia of research team, each of which received ethics approval at their local institutional review board, as well as informed consent from all participants. Each individual sMRI scan was first corrected for intensity non-uniformities (Sled et al., 1998) and the brain extracted using a region growing algorithm (Park and Lee, 2009). Individual scans were then linearly registered (9 parameters) with the T1 MNI symmetric template (Fonov et al., 2011). The sMRI scans were again corrected for intensity non-uniformities in stereotaxic space, this time restricted to the template brain mask. An individual brain mask was extracted a second time on this improved image (Park and Lee, 2009) and combined with template segmentation priors. An iterative non-linear registration was estimated between the linearly registered sMRI and the template space, restricted to the brain mask (Collins et al., 1994). The processed data were finally converted into mosaics and merged with a mask of anatomical landmarks using in-house scripts. Two expert raters (PB,YB) rated each 954 preprocessed images in ADHD-200, achieving a kappa of 0.72 (substantial agreement) from a random subset of 260 images. The COBRE dataset was rated by YB only.

On Zooniverse, raters were first invited to read a tutorial (Supplementary Figure S2) explaining the protocol, and then completed a QC training session, featuring 15 selected images (5 rated OK, 5 rated Maybe and 5 rated Fail, as rated by YB). Because the COBRE structural images were of higher quality, OK images were selected from COBRE while Maybe and Fail were selected from ADHD-200. For each training image, the rater was first asked to assess the image, and was then able to see the tags and the final ratings by an expert rater (YB).

After completing the training session, raters were presented a series of 100 “open label” cases, and were free to rate as many of these images as they wanted. We chose to present only 100 images in order to ensure we would have many ratings by different raters for each image, within a relatively short time frame. We arbitrary selected a subset of 100 images with a ratio of 35 Fail, 35 Maybe, and 30 OK images based on one expert rater (YB). Once again, the OK images were drawn from COBRE, while the Fail and Maybe were drawn from ADHD-200.



Raters

More than 2500 volunteers took part in our Brain Match project. They performed approximately 21,600 ratings of individual images over 2 beta-testing phases and two full workflows for a total of 260 registered brain images (see Brain images section). We used a retirement of 40 ratings, which means each image was rated by 40 different Zooniverse raters before being removed from the workflow. Only individuals who rated more than 15 images were kept in the final study. After data cleaning, 41 Zooniverse volunteer raters were kept. The distribution of rating per image showed a mean number of ratings of 21.76 ± 2.75 (see Supplementary Figure S1).

A group of 9 experts raters were also recruited for this study and each asked to rate all of the 100 validation images using the Brain Match interface. They were instructed to first start with the training session and to carefully read the tutorial before starting the main QC workflow. All raters had prior experience with QC of brain registration in the past. Each rater was free to perform the QC task at her pace without any specific direction on how to do it. The process was completed once all ratings were submitted.

Finally, a radiologist was also recruited for the study. He rated the same 100 images using Brain Match interface, also undergoing the training session before the rating process. Although the radiologist had no prior experience in QC of brain registration, that participant had very extensive experience in examining brain images following a standardized protocol, and served as a gold standard about what to expect from a fully compliant rater, trained on QC solely through available online documentation.



Agreement Statistics

We used Cohen’s kappa (Cohen, 1960) to assess inter-rater reliability across all nine experts (ratings R1–R9). The kappa metric measures the agreement between two raters who rate the same amount of items into N mutually exclusives categories. The kappa is based on the difference between the observed agreement (po, i.e. the proportion of rated images for which both raters agreed on the category) and the probability of chance or expected agreement (pe). Kappa (k) is computed as follows:
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In this work we used a weighted kappa metric, which assigns less weight to agreement as categories are further apart (Cohen, 1968). In our QC cases disagreements between OK and Maybe, and between Maybe and Fail count as partial disagreements; disagreements between OK and Fail, however, count as complete disagreements. We used the R package irr (Gamer, 2012) to estimate the weighted kappa and Landis and Koch’s (1977) interpretation of the strength of agreement for κ ≤ 0 = poor, 0.01–0.20 = slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–1 = almost perfect.

We also used the Sørensen–Dice coefficient (Dice) to assess the agreement within the rating categories of OK, Maybe and Fail (Sørensen et al., 1948), as follows:
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where X is the set of images rated “OK” by one rater and Y is the set of images rated “OK” by a second rater, ⋂ is the intersection between two sets, and |X| is the number of images. In plain English, the Dice between two raters for the OK category is the number of images that both raters rated “OK,” divided by the average number of images rated “OK” across the two raters. The same Dice measure was generated as well for “Maybe” and “Fail” images. We interpreted Dice coefficients using the same range of strength of agreement as for the Kappa coefficient (≤0 = poor, 0.01–0.20 = slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–1 = almost perfect).



Consensus Panels

We also evaluated the reliability of QC ratings after pooling several raters into a consensus panel. The panel consensus was generated by counting the number of OK, Maybe and Fail attributed to an image from different raters (number of votes). The category with the highest vote count was selected as the consensus on that specific image for the panel. If there was a tie between 2 or 3 categories, the worst category was selected (Fail < Maybe < OK).

We tested different panel configurations, large and small, for expert and Zooniverse raters separately. Large panels were composed either by all 9 experts (panel Ec) or 41 Zooniverse users (panel Zc). We compared the agreement between Ec and Zc versus each individual expert rater (R1 to R9) as well as the ratings from the radiologist (Ra). For small panel, experts were arbitrarily split into three panels of three raters (panels Ec1, Ec2, and Ec3). The Zooniverse users were also arbitrarily split into two independent consensus panels of roughly equal size (Zc1 and Zc2). We quantified the agreement between small panels, as well as small vs. large panels.



RESULTS


Expert Raters Achieved Moderate Agreement, With “Fail” Rating Being the Most Reliable

Kappa agreement between expert raters across the three classes (OK, Maybe, Fail) was moderate to substantial (range 0.4–0.68, average of 0.54 ± 0.08), see Figure 2. However, there were marked differences in agreement across the three rating classes. The highest reliability was for “Fail,” with between-rater Dice agreement ranging from substantial to almost perfect (0.67–0.93, average of 0.8 ± 0.06). The second class in terms of reliability was “OK,” with Dice ranging from fair to strong (0.38–0.76), and the least reliable class was “Maybe,” with Dice agreements ranging from slight to strong (0.23–0.72).
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FIGURE 2. Between-expert agreement. (A) Matrix of Kappa agreement between raters (top). Note that R1 to R9 are identification codes for the different expert raters. The distribution of agreement is also presented (bottom). For example, the boxplot for R1 shows the agreement between R1 and R2-R9. (B–D) Matrix and distribution for the Dice agreement between raters in the OK (B), Maybe (C), and Fail (D) categories.




Large Panel of Experts or Zooniverse Raters Give Convergent, Reliable QC Ratings

We found that the kappa between Ec and individual expert raters was, as expected, improved over comparison between pairs of individual experts, with a range from moderate to strong (0.56–0.82), see Figure 3. As observed before, the Dice scores for Ec were highest in the “Fail” category (almost perfect agreement, range of 0.76–0.98), followed by the “OK” category (from substantial to almost perfect: range 0.66–0.85) and finally “Maybe” (fair to almost perfect, ranging from 0.38 to 0.8). These findings confirmed our previous expert inter-rater analysis, with “Fail” being a reliable rating, “Maybe” being a noisy rating, and “OK” being a moderately reliable rating. When comparing the individual experts with the Zooniverse panel Zc, we only observed a slight decrease in average Kappa compared with the Expert panel (0.61 for Zc vs. 0.7 for Ec), mostly driven by the “Fail” (0.82 for Zc vs. 0.88 for Ec) and “Maybe” (0.58 for Zc vs. 0.68 for Ec) ratings. When directly computing the agreement between the two consensus ranels Ec and Zc, the kappa was substantial (0.76), with almost perfect agreement for “Fail” (Dice 0.9) and “OK” (0.82), and substantial agreement for “Maybe” (0.77), see Figure 3. This comparison demonstrated that aggregating multiple ratings improved the overall quality, and that expert and zooniverse raters converged to similar ratings. The radiologist achieved a level of agreement with panels similar to what was observed with expert raters, and was substantially lower than the agreement between panels. This shows that the QC training material alone was enough for a radiologist to agree with QC experts, but a single user can likely not achieve high quality QC ratings by herself.
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FIGURE 3. Zooniverse, expert and radiologist agreements. (A) Matrix of Kappa agreement between consensus of experts (Ec), zooniverse users (Zc) and radiologist (Ra) raters, in rows, vs. individual experts (R1–R9), in column (top). The distribution of agreement is also presented (bottom). (B–D) Matrix and distribution for the Dice agreement in the OK (B), Maybe (C), and Fail (D) categories.




Small Consensus Panels of Expert (N = 3) or Zooniverse (N = 20) Raters Achieve Reliable QC Ratings

Once we established that large panels of raters lead to high levels of agreements, our next question was to determine whether small panels could also lead to reliable assessments. The small expert panels Ec1-3 reached lower agreement with Zc than the full Ec. Specifically, kappa was 0.64, 0.64, and 0.73 for Ec1 to Ec3 (with respect to Zc), compared to kappa of 0.76 for Ec vs. Zc. Similar observations were done when breaking down the comparison per category with Dice, with a decrease of 5% to 10% in this coefficient (see Figure 4). Comparing small zooniverse panels Zc1-2 with the full expert panel Ec, a slight decrease in reliability was observed, very similar in magnitude with comparisons between Ec1-3 and Zc. The agreements Ec1-3 vs. Zc, as well as Zc1-2 vs. Ec, remained substantial. This suggests that reliable three-level QC assessments can be performed by small panels of three experts (n = 3), or moderate panels of zooniverse users, with roughly 20 assessments by image (see Supplementary Figure S1 for distribution).
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FIGURE 4. Agreement between small panels of raters for both experts and Zooniverse panels. (A) Matrix of Kappa agreement between large panel consensus of experts (Ec), zooniverse users (Zc) and a small panel of expert (Ec1 = 3 rater, Ec2 = 3 rater, Ec3 = 3 rater) and small panel of Zooniverse raters (Zc1 = 20 rater, Zc2 = 21 rater) (top). The distribution of agreement is also presented (bottom). (B–D) Dice distribution between group consensus in the OK (B), Maybe (C), and Fail (D) categories.




DISCUSSION

This project proposes a standardized QC protocol with minimal training overhead and no required knowledge of brain anatomy. Our goal was to quantify the reliability of QC ratings between expert raters, as well as panels of expert or Zooniverse raters. Overall, our results demonstrated that our protocol leads to good reliability across individual expert raters, in particular for “Fail” images, and good reliability across panels of raters (both experts and Zooniverse), even for panels featuring only three experts. To our knowledge, this is the first quantitative assessment of between-rater agreement on QC of brain registration.


Visual QC

Our protocol was designed to be simple enough that even a rater without brain anatomy knowledge or prior QC experience could generate meaningful ratings. The mosaic view of 9 slices used in our protocol is similar to display images used in fMRI preprocessing tools like MRIQC (Esteban et al., 2017), fMRIPrep (Esteban et al., 2018) or CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012). These QC tools also use an overlay that highlights brain borders or tissues segmentation. Differentiating aspects of our protocol are (1) fewer number of brain slices in the mosaic view, so that raters can more easily examine all presented images and (2) the overlay provides an objective confidence interval to assess the severity of misregistration in key anatomical landmarks. We believe that these two design principles helped reduce the subjectivity of brain registration QC, and increase between-rater agreement, although we did not formally test these hypotheses.



Inter-Rater Agreement

Table 1 shows that the visual QC agreement reported in recent studies ranged from 0.39 to 0.9. Interestingly, the studies which reached high levels of agreement (0.93–0.96) used ratings with only two levels (ex: pass, fail). Studies with three or more rating levels reported lower agreement scores (0.39–0.85), which were in line with our findings (average of 0.54 for experts). The most challenging rating in our protocol appeared to be the “Maybe” class, featuring mild, spatially limited registration errors. In contrast, good and failed registrations were easily detectable by expert raters. When working with three levels of ratings, the reliability of our protocol is not high enough to work with a single rater. We found that a consensus panel of three experts was sufficient to reach a good level of agreement (average of 0.64), which appears as a minimum panel size to generate high quality QC scores. Aggregating rating between expert or non-expert is a good solution to overcome the variability among human observers on the QC task.



Crowd Sourced QC

Crowdsourcing QC rating could be one solution to generate high quality QC ratings in big datasets like the UK biobank (Alfaro-Almagro et al., 2018). A recent work from Keshavan et al. (2018) showed that crowdsourced QC ratings on raw brain images can reach the performance of an automated state-of-the-art machine learning QC tool (Esteban et al., 2017). This work relied on a large pool (N = 261) of participants, many of whom had prior experience in neuroimaging. We recruited more than 2000 zooniverse non-expert raters, and found that a consensus panel of non-experts with adequate size (about 40 ratings per image) leads to QC ratings of similar quality to a panel of three experts.



Limitations of the Study

Our study has a number of limitations. First, our protocol is intended to be used with anatomical brain registration in the context of fMRI analyses in volumetric space, rather than surface. Structural brain imaging studies (i.e. cortical thickness) or surface-based fMRI analyses need other protocols that examine more closely fine anatomy and tissue segmentation. Also, our primary use case is large-scale research studies, and not clinical applications. Some clinical applications may require more stringent standards being applied on brain registration. Our protocol was validated with a specific brain registration tool, the CIVET pipeline, and may not be well suited for other algorithms.

Second, we did not control for screen size, screen resolution or fidelity of color representations in our validation, be it with experts or zooniverse individuals. The main use case for our protocol is the review of thousands of brain registration [e.g. in the ABCD sample (Casey et al., 2018)] in a relatively short span of time. The quality control procedure only examines coarse anatomical landmarks, and the required precision of the alignment is on the order of couple of millimeters. For that reason, we think that the characteristics of the screen will not affect significantly between-rater agreement. This is however a potential source of variations which may have decreased the observed agreement, both between experts and zooniverse raters.

Third, The success rate of our registration tool varies widely as a function of the imaging protocol. The Cobre dataset has almost only OK registration, while the ADHD has a lot of Maybe and some Fail. So we decided to mix two dataset, in order to assemble representative examples of the three classes. This may influence the results by increasing the potential agreement, if subjects learned to recognize which datasets the examples originated from.

Fourth, our choice on the number of rated images (N = 100) was selected arbitrarily. We checked the appropriateness of that choice by assessing the minimum number of rated cases with a three-choice decision using the R package “irr” (Gamer, 2012), that uses the minimum sample size estimation formula from Flack et al. (1988). We estimated the minimum sample size under the following scenario. The vector of marginal probability was given by rates for the 3 categories, OK = 0.3, Maybe = 0.35 and Fail = 0.35. These marginal probabilities were decided by our team when designing the dataset, based on an initial QC assessment performed by YB and PB. The value of kappa under the null hypothesis was set equal to 0.5 (k0 = 0.5) – i.e. we want to demonstrate an improvement over a baseline κ of 0.5. The true kappa statistic estimated between two expert was set equal to 0.72 (k1 = 0.72), as was observed in our sample. The type I error test was set equal to 0.05 (α = 0.05). The desired power to detect the difference between the true kappa and the null kappa was investigated at 0.8 and 0.9, separately. The required number of ratings was estimated at N = 54 for a power of 0.8, and N = 72 for a power of 0.9. In our case, the number of images rated per expert was N = 100, which is more than required by the power analysis.

Fifth, We were unable to assess to what degree this protocol improves or not over current best practices in the fMRI community, in the absence of other standardized protocols available for comparison. We still produced preliminary evidence while developing the current protocol. During the beta phase of our project, we tested the agreement between consensus of Zooniverse raters and experts raters (on 29 images). The protocol used during that phase was different from the actual one. In particular, we did not instruct raters on how to take the final decision on the quality of registration (Figures 1C–E), and we did not offer a training set. The kappa measure between consensus Zooniverse raters and an expert during phase 1 was 0.34, by contrast with 0.61 using the current protocol. We regard these results as preliminary evidence that our protocol improves over our previous iteration. These results are to be interpreted with caution, as the number of images rated was low and we used only one expert rating. Note that the feedback received by beta testers helped us identify the importance of steps described in Figures 1C–E, and we suspect that protocols that do not include such detailed explanation have poor reliability. But we did not attempt to demonstrate this formally within the scope of the present study.

Finally, our protocol is missing an evaluation of another key registration step, i.e. alignment between functional images and the structural scan (Calhoun et al., 2017). We are currently working on an extension of our protocol for functional registration.



Future Work: Impact of QC on Downstream Analyses

Despite the ubiquity of visual brain registration QC in the neuroimaging research community, the impact of visual QC of brain registration on statistical analyses remains poorly characterized. Gilmore et al. (2019) used a multi-site dataset of structural MRI images with different age ranges to show how automated image quality metrics impacted regional gray matter volumes and their relationship with age. Ducharme et al. (2016) showed a significant impact of visual QC on the estimation of cortical trajectories. They demonstrated that, when omitting to discard subjects that did not pass QC, the developmental trajectory of cortical thickness followed a quadratic or cubic trend. By contrast, after filtering those subjects, the trajectory followed a linear trend. Standardizing the QC protocol will allow different laboratories to join their effort of rating and open up new opportunities to systematically investigate the impact of visual QC on the relationship between the brain and various phenotypes. This represents an important area of future work for brain registration.



CONCLUSION

Our QC protocol is the first reliable visual protocol for brain registration in fMRI studies. The protocol is easy to implement and requires minimum training effort. This protocol demonstrates a good reliability when performing a two level assessment (Fail vs. OK/Maybe) by an individual rater, or aggregating multiple three-level ratings (OK, Maybe, Fail) from a panel of experts (3 minimum) or non-experts (15 minimum). The images necessary to apply the protocol can be generated using an open-source tool, called dashQC_fmri (Urchs et al., 2018) and a live version can be tested on this link https://simexp.github.io/dashQC_BrainMatch/index.html. We hope this new protocol will help standardize the evaluation and reporting of brain registration in the fMRI community. This standardization effort will also enable the generation of high quality QC ratings on large amounts of data, which will in turn allow to train machine learning models to automatically perform brain registration QC, alleviating the need for visual review.
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Monte-Carlo Diffusion Simulations (MCDS) have been used extensively as a ground truth tool for the validation of microstructure models for Diffusion-Weighted MRI. However, methodological pitfalls in the design of the biomimicking geometrical configurations and the simulation parameters can lead to approximation biases. Such pitfalls affect the reliability of the estimated signal, as well as its validity and reproducibility as ground truth data. In this work, we first present a set of experiments in order to study three critical pitfalls encountered in the design of MCDS in the literature, namely, the number of simulated particles and time steps, simplifications in the intra-axonal substrate representation, and the impact of the substrate's size on the signal stemming from the extra-axonal space. The results obtained show important changes in the simulated signals and the recovered microstructure features when changes in those parameters are introduced. Thereupon, driven by our findings from the first studies, we outline a general framework able to generate complex substrates. We show the framework's capability to overcome the aforementioned simplifications by generating a complex crossing substrate, which preserves the volume in the crossing area and achieves a high packing density. The results presented in this work, along with the simulator developed, pave the way toward more realistic and reproducible Monte-Carlo simulations for Diffusion-Weighted MRI.

Keywords: diffusion, MRI, Monte-Carlo, simulations, microstructure, white matter


1. INTRODUCTION

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive technique with enormous potential for the study of the brain's microstructure by measuring the diffusion properties of biological tissue. For instance, state-of-the-art methods can use these measurements to estimate tissue properties of the brain white matter, e.g., axonal diameter estimations (Assaf et al., 2008), orientation and volume fraction of the axonal bundles (Zhang et al., 2011; Daducci et al., 2015b) and neurite dispersion (Zhang et al., 2012). The previous information is valuable to understand the brain's maturation (Nilsson et al., 2012; Sexton et al., 2014) as well as the degeneration process associated with neuronal diseases like axonal degeneration (Lovas et al., 2000) and multiple sclerosis (Trapp et al., 1998).

In DW-MRI, an attenuated signal is usually recovered via a Pulsed Gradient Spin-Echo protocol (PGSE) (Stejskal and Tanner, 1965) sensitive to the displacement of the water molecules. Analytical solutions of the signal attenuation can be derived for simple geometrical shapes such as impermeable planes, cylinders, and spheres (Neuman, 1974). However, for applications where the signal attenuation of complex cellular structures or non-homogeneous media is needed, e.g., to generate ground truth data, an analytical solution is no longer feasible to pursue due to its inherent complexity. Because of this, simplifications of the diffusion media have been used as the backbone of most of the microstructure models in the literature (Bammer, 2003; Panagiotaki et al., 2012; Zhang et al., 2012; Ferizi et al., 2015).

Monte-Carlo Diffusion Simulations (MCDS) provide a fundamental approach to study the diffusion phenomena in scenarios where the analytical solutions cannot be computed due to their complexity. In contrast with other numerical methods, MCDS does not require an explicit model of the diffusion signal for a given geometry. Instead, MCDS require an accurate geometrical and physical representation of the diffusion media (called the substrate), a large number of samples, and an acquisition protocol like the classical Pulsed Gradient Spin-Echo (PGSE). In general, an accurate approximation of the diffusion signals, mimicking the ones obtained from the brain's white matter, can be computed if the substrate captures the relevant white matter microstructure features and the simulation parameters are tuned properly (number of samples and their step sizes). Despite this, many simplifications are usually used in order to decrease the computational burden. The most common ones include the use of substrates of small size, the use of a limited number of samples, the use of simple geometries, and the restriction of the 3D diffusion to the 2D case (Lipinski, 1990; Szafer et al., 1995; Fieremans et al., 2010; Dyrby et al., 2013).

Lipinski (1990) presented the first work, to the best of our knowledge, which employs MCDS to study the extracellular diffusion in brain tissue. In this work, 2D histological data was used to draw binary contours to be used as irregular intracellular barriers. From this study on, most studies simplified the representation of the extracellular space as a collection of restricted corridors in the orthogonal plane of the axonal direction and unrestricted parallel to them (Novikov et al., 2011; Dyrby et al., 2013; Sanguinetti and Deriche, 2014; Lin et al., 2016). In addition, the intracellular compartment is usually idealized as a collection of parallel hollow cylinders with constant radii or radii sampled from a distribution estimated from histological data (Fieremans et al., 2008; Hall and Alexander, 2009; Alexander et al., 2010; Raffelt et al., 2012). Recent studies have suggested that such simplification cannot capture the complexity of the axonal structures of white matter, and thus its diffusion characteristics (Nilsson et al., 2013; Ginsburger et al., 2018). For instance, changes in the diffusion signal and parameters derived from the diffusion tensor, such as the fractional anisotropy (FA) and mean diffusivity (MD), were obtained by introducing regular undulations in the intra-axonal compartment (Nilsson et al., 2012).

Because of the aforementioned problems, a number of works proposed experiments where non-trivial structures were used as intracellular substrates, e.g., dispersed axons (Ginsburger et al., 2018), the presence of abutting cylinders (Yeh et al., 2013) and arbitrarily generated meshes (Panagiotaki et al., 2010). However, to this day, such approaches have not been thoroughly adopted by the DW-MRI community because of the high computational burden they demand and the lack of available tools. Because of this, more realistic diffusion simulations remain virtually unexploited.

In this work, we study three important pitfalls encountered in the design of MCDS in the literature used to reduce the computational burden, namely the number of simulated particles and the number of time steps, the intracellular geometrical representation, and the generated extra-axonal space in terms of the substrate's size. Each experiment presented below illustrates a possible bias induced in the computed signal when such simplifications are not properly addressed, which affects its reproducibility. Finally, driven by the results from the previous experiments, we outline a general framework that can be used to generate complex substrates in order to overcome the limitations of previous studies.



2. THEORY

The obtained signal from a PGSE DW-MRI measurement, at a time t, is given by (Price, 1997)
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where S0 denotes the signal obtained in the absence of a diffusion gradient magnetic field, TE is the echo time, P(ϕ, t) is the phase distribution function of the spin ensemble at time t = TE, and ϕ is the accumulated phase shift of the spin.

The amount of attenuation of a single diffusing spin on the measured PGSE signal is proportional to the dephasing due to the effect of the time-dependent magnetic field G(t), and the spin's displacement. For a single spin and a given magnetic gradient vector, the phase shift due to the applied gradient over time can be numerically formulated as in Price (1997)

[image: image]

where γ is the gyromagnetic ratio, G(t) is the applied magnetic diffusion gradient at time t, x(t) is the spin's displacement from the starting position, and a(t) is a function that shifts the sign of the gradient vector due to the refocusing Radio Frequency (RF) pulse. In a classic PGSE experiment: a(t) is equal to +1 for all time t before the RF pulse and −1 after. The produced attenuated signal is then the result of the accumulated phase shift of the full assembly of spins at the TE, given by
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2.1. Simulation Fundamentals

Equation (3) can be approximated using a finite number of spin samples Ns over a discrete time lapse, following an approach as in Szafer et al. (1995):
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where dt is the step duration, defined as the total diffusion time divided by the number of steps taken (Nt). The value of dt can be fixed as in Hall and Alexander (2009) and Yeh et al. (2013) or normally distributed as in Balls and Frank (2009). In our exploration, we made use of fixed step sizes derived from Einstein's equation: [image: image], where D is the diffusion coefficient and r is the expected mean displacement. A fixed step size have been shown by Hall and Alexander (2009) to “reduce the fluctuation in the mean-square displacement of the spins and improve the convergence in the model.” Moreover, Barlett et al. (2013) have shown the fixed step size to be better suited for non-homogeneous systems.

The idea behind a Monte-Carlo Diffusion Simulator is to compute Equation (4) by simulating the particles' Brownian motion and their interaction with respect to a defined substrate. At the beginning of the simulation, the particles are uniformly placed inside the defined substrate's voxel, or substrate's limits. This way, the number of particles in all compartments is proportional to the defined volume fractions. If necessary, the local position of each particle can be tracked to separate the signal contribution of each compartment by, for example, tracking if the particle is inside a given compartment. Over the duration of the simulation, the simulated particles collide and bounce with the substrate's barriers, depending on the barrier properties. Finally, the accumulated phase shift is tracked depending on the spin-echo protocol using Equation (4).

Overall, the formulation above presents an accurate numerical approximation of the diffusion signal based solely in the phase shift distribution. However, is worth noticing that many other effects such as noise levels or the magnetization relaxation should be considered in order to approximate a more realistic DWI-MRI signal.




3. MATERIALS AND METHODS

All the simulated signals presented below were computed using the sum of the accumulated phase shift approximation showed in Equation (4) implemented in an in-house Monte-Carlo simulator. The simulator employs a similar approach to compute the diffusion signal as the ones presented in Hall and Alexander (2009) and Yeh et al. (2013). The simulator uses a hybrid GPU/Multi-CPU framework, implemented in C++11. It includes routines to optimize the collision detection and the memory consumption based on the complexity analysis of Appendix A; making the software able to handle simulations of 3D meshed substrates with millions of triangles and particles. The simulator was initially validated by verifying that the generated signals from particles within impermeable planes, cylinders, and spheres were equal to those obtained from their corresponding analytical solutions. Moreover, results in more complex domains including the extra-axonal space of brain tissue, were comparable to those obtained from an alternative and independent Finite Element Method approach described in Rafael-Patino et al. (2017). The substrates' data, meshes, and the simulator are available from the corresponding author upon request on the paper's Git-Hub repository: (https://github.com/jonhrafe/Robust-Monte-Carlo-Simulations).


3.1. Confidence Level Estimation

In Monte-Carlo based methods, the number of samples is critical for the confidence level of the estimated results. However, the number of particles has the most significant impact on the computational burden. To highlight the importance of the number of simulated spins, an experiment was performed in order to quantify the variance of the estimated signal as a function of the number of particles sampled in a substrate. To do this, the errors of a set of simulated signals with different numbers of samples were measured. The measured errors were compared against the expected analytical solution in the intra-axonal space and for a gold-standard estimation of the extracellular space. A substrate with 10, 000 parallel cylinders with diameters sampled from a Gamma distribution, Γ(κ, θ), with shape, κ = 4.0, and scale, θ = 4.5 × 10−7, was used, resulting in a mean diameter μ = 1.8 μm with a standard deviation of σ = 0.9 μm, using a packing algorithm as the one described in Hall and Alexander (2009), which results in a distribution of radii comparable to the ones found in the literature (Zhang et al., 2011; Dyrby et al., 2013; Benjamini et al., 2016).

This substrate was used since the analytical signal of the intra-axonal space can be computed using the volume-weighted sum of the individual signals:
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where Si is the ith acquisition, vj is the volume of the jth cylinder and Sci, 1 is the analytical signal of the cylinder obtained using the Gaussian Phase Distribution (GPD) approximation of the signal in cylinders for a given radius (Van Gelderen et al., 1994). Figure 1 shows the resulting distribution of radii as well as the computed ground-truth intra-axonal signal. For the extracellular signal, as there is no analytical model, the gold-standard was estimated using a very high number of particles: 20 × 106 particles, and time-steps: 2 × 104 steps. These parameters were chosen based on previous results (Rafael-Patino et al., 2017) and by studying the convergence properties for higher numbers of particles and time-steps (Hall and Alexander, 2009). In fact, we verified that the signal converges for even less demanding simulation parameters (i.e., 1 × 106 particles, and 5 × 103 steps). In order to keep results as accurate as possible, however, we decided to use simulation parameters higher than the minimum required.


[image: Figure 1]
FIGURE 1. Gamma distributed radii and corresponding intra-axonal diffusion signal. (Left) The distribution of the sampled diameters, the dotted line marks the sampled distribution mean. (Right) The computed ground-truth along with the simulated signal used for the intra-axonal space representation. A total of four curves are plotted corresponding to each b-value = 1925, 1932, 3093, and 13191 s/mm2. The curves corresponding to a b-value = 1925 and 1932 s/mm2 are completely overlapped and corresponds to the lowest decay. The signals of each shell are ordered by the normalized Z coefficient of the gradient direction.


The estimated signals were computed varying the number of particles from 1 × 103 to 1 × 106 particles, and the time-steps from 1 × 102 to 2 × 104 steps. The diffusion coefficient was fixed to D = 0.6 × 10−3 mm2/s (corresponding to an ex-vivo diffusivity), and TE = 0.054 s, for both, the simulations and the ground-truth data. The original optimized ActiveAx PGSE protocol (Alexander et al., 2010) was used, which consist of a four shell HARDI acquisition with 90 orientations per shell, each shell with the following parameters, respectively, (i) b = 1, 930 s/mm2, G = 140 mT/m, δ = 0.010 s, and Δ = 0.016 s; (ii) b = 1, 930 s/mm2, G = 140 mT/m, δ = 0.010 s, and Δ = 0.016 s; (iii) b = 3, 090 s/mm2, G = 131 mT/m, δ = 0.007 s, and Δ = 0.045 s; (iv) b = 13, 190 s/mm2, G = 140 mT/m, δ = 0.017 s, and Δ = 0.035 s. Figure 1 shows the plot of a diffusion signal obtained with this protocol separated by shell and ordered with respect to the angle with the main fiber axis (Z-axis).

A bootstrapping analysis was performed to evaluate the variance of the error between the estimations with different samples sizes: 1 × 103, 2 × 103, 5 × 103, 1 × 104, 2 × 104, 5 × 104, 1 × 105, 2 × 105, 1 × 106, and 2 × 106 samples; and time-steps: 1 × 102, 5 × 102, 1 × 103, 5 × 103, 1 × 104, and 2 × 104. For each combination of the sample sized and time-steps, the signals from 50 repetitions were generated. The error between the ground-truth and each estimated signal was computed using the Relative Mean Absolute Error (RMAE), expressed as a percentage:
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where Sgt is the ground-truth signal, Sc is the estimated signal and Ng is the number of acquisitions. The result is a total of 50 estimated error points for each sample size.



3.2. Intra-Axonal Space Representation

In our second study, we look into the effect of using curved or angled geometries against straight cylinders as representations of the intra-axonal space. Such effect is of special interest on the computation of axonal diameter indexes when it is assumed that straight cylinders capture the diffusion properties of the intra-axonal compartment.

To understand this effect, an experiment extending the previous work from Nilsson et al. (2012) was performed, where the diffusion properties of undulating axonal substrates is studied. In our experiment, we quantified the difference on the diameter fitting estimation between parallel cylinders of constant radius and undulating cylindrical substrates.

To create curved cylindrical substrates for MCDS, a helical undulation parametrization along z was used

[image: image]

where L is the wavelength and Ax, Ay denote the amplitude in the X and Y axis, respectively (Nilsson et al., 2012). The amplitudes Ax and Ay were set to be equal to obtain helical undulations. Using the formulation above, a set of substrates was created by deforming cylinders with diameters 1, 2, and 3 μm. The wavelength and amplitude of the undulations ranged from 4 to 32 μm and from 0.2 to 2.6 μm, respectively; which covers a range of values of interest in the literature (Haninec, 1986; Bain et al., 2004; Nilsson et al., 2012). The resulting undulating cylindrical shapes were triangulated to use them as mesh substrates suited for MCDS. Figure 2 presents three different substrate examples.


[image: Figure 2]
FIGURE 2. Examples of the curved meshes used as intra-axonal substrates in this study, for three different diameters and different undulation parameters.


To compute the diameter estimation error in the intra-axonal signal, a fitting procedure was performed using an exhaustive search approach. The exhaustive search computes the RMAE between the resulting simulated signal of each undulating substrate and the analytical signal of a range of cylinders with different diameters, sampled between 0.4 and 8 μm with a step size of 0.01 μm. The analytical signals were computed using the GPD approximation for the signal in cylinders (Van Gelderen et al., 1994). The fitting procedure returns the range of plausible diameters such that the computed error between them is below a given threshold. For each undulating substrate, the threshold was fixed to a 1% difference from the minimum fitting error, based on the results of the confidence study from section 4.1.

Two different acquisition protocols were used to perform the fitting procedure. First, the original ex-vivo ActiveAx PGSE protocol (Alexander et al., 2010) explained in section 3.1 was used. Second, we used an optimized PGSE protocol for ex-vivo axonal diameter estimation presented in Dyrby et al. (2013). The protocol consists of a three shell acquisition with 90 orientations per shell, and a TE = 0.0359 s. The relevant parameters of each shell are as follows, (i) b = 2081 s/mm2, G = 300 mT/m, δ = 0.0056 s, and Δ = 0.0121 s; (ii) b = 3038 s/mm2, G = 219 mT/m, δ = 0.007 s, and Δ = 0.0204 s; and (iii) b = 9542 s/mm2, G = 300 mT/m, δ = 0.0105 s, and Δ = 0.0169 s. Since the RMAE difference between cylinders of similar diameter depends on the protocol used an analysis of the sensitivity for each protocol was carried out.

Finally, the MC simulation parameters were chosen using a similar analysis as the one presented in section 3.1 (not shown). The confidence estimation was computed ranging the number of particles and time steps on the substrate with higher curvature (higher amplitude and smaller wavelength) and choosing a the parameters that shows almost no variance on the estimations. A total of 5 × 104 particles and 5 × 104 steps were chosen to compute the signal for each individual substrate separately.



3.3. Extra-Axonal Space Representation

In the case of macroscopically homogeneous substrates, e.g., with randomly packed cylinders and in absence of bundle dispersion, it has been shown that extra-axonal spins exhibit an effective diffusivity that can be described by an axi-symmetric tensor, if the volume size of the sample is high enough (Hrabe et al., 2004). Models to estimate white matter microstructure from DW-MRI therefore assume that the extra-axonal radial contribution does not change for any direction aligned to the bundle's perpendicular plane (Assaf et al., 2008; Alexander et al., 2010; Zhang et al., 2011, 2012; Panagiotaki et al., 2012; Daducci et al., 2015a; Benjamini et al., 2016).

Such an assumption seems to fit the validations. However, the importance of the design of the extra-axonal space has been underestimated in MCDS by assuming that substrates with any hindered configuration would match the model. To show the importance of the sample size, in terms of the number of cylinders used to construct a substrate, an analysis of the extra-axonal radial contribution in simulated signals was performed.

The radial extra-axonal DW-MRI signal was simulated for a selection of voxels with different numbers of cylinders, and a fixed distribution of diameters and intra-axonal volume fractions. To do so, N diameters (N = 100, 1, 000, 10, 000, 50, 000 and 100, 000) were sampled from a gamma distribution with parameters Γ(4.0, 4.5 × 10−7), as in our first study. The corresponding cylinders were randomly positioned in substrates with voxel size adapted such that the intra-axonal volume fraction was 60% and ensuring periodicity at the voxel boundaries as is described in Hall and Alexander (2009). The extra-axonal signal was simulated with the following settings: 1 × 106 particles in the extra-axonal space with diffusivity of 0.6 × 10−4 mm2/s, TE = 0.075 s, and 1 × 103 steps. This parameters where chooseng from the previous results showed in section 3.1. The diffusion protocol was set to highlight the radial contribution of the diffusion signal in different diffusion time regimes as follows: G = 300 mT/m, δ = 0.010 s and Δ from 0.015 to 0.060 s, acquired in 180 directions evenly distributed over the xy-plane. The anisotropy of the simulated noiseless signal was quantified by computing the standard deviation of the signal divided by its mean, giving an estimate of how much the signal deviates from a perfectly radially isotropic signal.



3.4. Framework for Complex Substrates Generation

Driven by the results from the previous experiments, and based on a previously published algorithm to generate tractography phantoms (Close et al., 2009) the following section outlines a general framework in order to generate complex substrates. We show that such framework overcomes some of the simplifications presented in the previous sections. To illustrate such capabilities, a crossing of axons bundles was generated as a study case. A qualitative evaluation was performed over the representation of crossing fibers in terms of the resulting intra-axonal volume fraction and diffusion properties in different resolutions.

The framework is a tailored extension of the work presented in Close et al. (2009). The original framework is based in the optimization of a objective function that penalizes the overlap, curvature and length of a set of initial splines called as strands. Each strand has a constant radius used to ensure no overlapping. The optimization cost-function has the following form:
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where the set ∪S of size #S, represents the set of all initialized strands. Si represents the strand i for i = 1, ⋯ , #S. The functions Jo(·), Jc(·), Jl(·) are the overlap, curvature, and length penalization functions; and the coefficients wo, wc, and wl are their, respectively, weights. Each strand Si is parametrized using a discrete set of control points that define the backbone of the strand i and constant given radius; the transversal area associated with this radius is later subdivided to form sub-strands. Finally, the DW-MRI signal is then simulated by assigning a symmetric tensor along each sub-strand trajectory i.e., a simplistic local model of the micro-environment (Daducci et al., 2015b). The reader is referred to Close et al. (2009) for more details.

In our study, the aforementioned framework was modified and used to map a gamma distributed set of diameters inside the resulting strands' trajectories. The 3D-overlapping algorithm between strands implemented in the cost-function Jo, was also modified to make it more suitable for creating 3D meshes. This was done by computing the analytical intersection between two strands' control points, using the cylinder to cylinder collision detection described in Verth and Bishop (2008).

The result is a gamma distributed crossing configuration of deformed cylinders. The main advantage of this configuration is that the bundles inside a common area do not overlap or intersect, but interdigitate, which means that the volume is preserved in the crossing region. In addition, the curvature and length penalizations promotes a higher packing density. Finally, the proposed framework computes the DW-MRI signal by a Monte-Carlo simulation using a mesh substrate created from the configuration obtained above, instead of assigning a symmetric tensor along the sub-strands. Figure 3 shows the crossing configuration before and after the optimization procedure.


[image: Figure 3]
FIGURE 3. Optimization procedure of initial trajectories. (Left) initial trajectories parametrized as a set of control points with constant radius. (Right) the resulting trajectories after the optimization procedure which ensures that there is no overlapping between the resulting strands.


In the presented study case, the diameters from a gamma distribution with parameters Γ(1.2, 1.5 × 10−6) were sampled, resulting in a mean diameter of μ = 1.8 μm and standard deviation σ = 1.6 μm, which are in the range of anatomical interest (Alexander et al., 2010). The resulting values were truncated to avoid strands with diameters smaller than 0.2 μm. The dimensions of the resulting enclosing volume were 1,200 × 240 × 480 μm; the resulting 3D geometrical crossing is shown in Figure 4. The 3D mesh model consists of 1,698,328 triangular faces after a post-processing of decimation and smoothing to reduce the triangle density. The total length end-to-end of the most extended strand is 1.58 mm. The resulting diameter distribution of the overall structure is displayed in the bottom panel of Figure 4.


[image: Figure 4]
Figure 4. (Top panel) Shows a visualization of the resulting fiber crossing substrate after the strand refinement and the smoothing and decimation of the triangular faces. (Left-bottom panel) Shows the resulting sub-strand configuration of one of the crossings bundles. (Right-bottom panel) Shows the overall diameter distribution of the displayed bundle on the (left). A rendered video of the full crossing is included as Supplementary Material.


To compute the simulated MRI signal, the total volume was divided in three voxel resolutions: 80 × 16 × 32, 40 × 8 × 16, and 20 × 4 × 8 voxels. A total of 105 × 106 particles, and 5, 000 steps were used to compute the signal for the three resolutions. The original ActiveAx protocol (Alexander et al., 2010) from the first study was used with a diffusivity coefficient equal to 0.6 × 10−3 mm2/s and a total diffusion time of 0.053 s.

To show qualitative results on the generated signals, the Diffusion Tensor (DT) estimation and the corresponding FA were computed using Dipy (Garyfallidis et al., 2014), as well as the ICVF maps for each of the three resolutions. Only the shell with b = 3, 080 s/mm2 was used to compute the DT in each voxel. Given the lack of an analytic representation of the substrate, the ICVF was approximated by tracking the local position of the uniformly random located particles and labeling them as inside or outside the meshed substrate.

Finally, an evaluation of the axon diameter estimation within the crossing area was performed for the three different voxel resolutions. The axon diameter estimation was performed using the same exhaustive search method described in section 3.2. Only one single bundle orientation was used to compute the analytical GPD approximation; which was selected from the DT estimation at each voxel. The fitting procedure was performed using solely the intra-axonal signal and in voxels with FA greater than 0.25, in order to separate the effect of the extra-axonal space regarding the diameter mis-estimation.




4. RESULTS


4.1. Confidence Level Estimation

The overall results of the bootstrapping analysis are summarized in Figures 5, 6 for the intra- and extra-axonal space, and for both, the number of samples, and the number of time-steps. Figure 5 shows the mean error of the 50 samples for each one of the possible combination of the selected parameters, color-coded in a heat-map. In Figure 5, we show the error of each repetition by (i) fixing the number of steps to the maximum value (2 × 104) and varying the number of particles (left column), and (ii) fixing the number of particles to the maximum value (2 × 106) and varying the number of steps (right column). Each data point represents one repetition of a given sample size. A total of 50 points are plotted in each row, and the mean error for each sample is highlighted with a red asterisk. The total simulation time for each repetition ranged from few seconds for the simulation with a total of 1 × 103 particles to 918 s for the simulation with 1 × 106 particles. Each simulation was performed in a single node of Fidis EPFL's cluster with 14 cores, 2.6 GHz, and 528 MB of RAM.


[image: Figure 5]
FIGURE 5. RMAE for each repetition and sampled size for (Left) the number of samples and (Right) number of time-steps. The two panels on the top row correspond to the intra-axonal results, and the bottom row to the extra-axonal. The X-axis shows each sample size, and the Y-Axis shows the RMAE of all the repetition in same color. The mean RMAE of all the repetitions is depicted with a red marker.



[image: Figure 6]
FIGURE 6. Heat map of the mean RMAE for all the combinations between the number of steps and the number of samples. Each cell corresponds to the mean RMAE of the 50 repetitions.


For the study regarding the number of particles in the intra-axonal space, the mean RMAE between the analytical ground truth and the set of repetitions with the biggest sample size of 2 × 106 particles was of 0.47%. For the extra-axonal space, the mean RMAE between the computed gold-standard with 20 × 106 and the set with 1 × 106 particles was equal to 0.71%. For the analysis varying the number of time-steps, the minimum mean RMAE achieved was of 0.44% for the intra-axonal space and 0.38% for the extra-axonal. The difference between the mean RMAE between 5 × 103 and 2 × 104 was less than 0.2% for both the intra- and extra-axonal space.



4.2. Intra-Axonal Space Representation

The range of diameters, computed from our fitting procedure on both protocols, are displayed in Figure 7. Each cell is colored according to its minimum RMAE. An amplitude (amp) of 0 μm corresponds to a straight cylinder which presented the minimum fitting error achievable for each diameter. Values with the highest amplitude and lowest wavelength (wl) corresponds to the axons with the highest undulation (amp = 2.6 μm, wl = 4 μm); on the other hand, values with the lowest amplitude and highest wavelength (amp = 0.2 μm, wl = 32 μm) corresponds to almost straight axons.


[image: Figure 7]
FIGURE 7. Tables of the fitting results. Left column shows the fitted intervals of the original ex-vivo ActiveAx protocol (Alexander et al., 2010) and the right column of the optimized ex-vivo protocol from Dyrby et al. (2013), for the three simulated diameters. The min and max diameters ( μm) of the fitted range are listed between the square brackets for each simulated amplitude and wavelength. The color of each cell is encoded with respect the minimum RMAE in the fitted range accordingly to the color-bar on the right.


The protocols' sensitivity analysis is shown in Figure 8 which presents a visualization of the RMAE between the analytical signal of straight cylinders with different diameters. Regions with homogeneous values are difficult to differentiate between each other, e.g., the region with diameters between 0 μm and 2.0 μm. The colored line shown in both plots marks the 1% level curve. In this plot, the protocols' contrast in function of the cylinder's diameter can be visualized, which correlates with the intervals showed in Figure 7.


[image: Figure 8]
FIGURE 8. The in-between RMAE of the analytical signal of a cylinder, obtained using the GPD approximation, for the range of diameters used in this study. The original ex-vivo ActiveAx acquisition protocol (Alexander et al., 2010) is displayed on the left panel, and the optimized ex-vivo acquisition protocol from Dyrby et al. (2013) on the right panel. Values of the diagonal correspond to the RMAE of two straight cylinders of the same diameter and therefore equals to 0. The colored line shown in both plots marks the 1% difference level curve.




4.3. Extra-Axonal Space Representation

Three different substrates (with 100, 1, 000 and 10, 000 cylinders, corresponding to voxel sizes of 23 × 23 μm, 71 × 71 μm, and 230 × 230 μm, respectively) and their corresponding radial DW-MRI signals, are shown in Figure 9. The shown voxel sizes were chosen to highlight the radial anisotropy in three representative sizes. The substrate with 10, 000 cylinders, i.e., with the biggest voxel size, had the most isotropic radial DW-MRI signal. On the other hand, the most anisotropic signal was observed for the substrate with the smallest number of cylinders. Figure 10 shows the mean and standard deviation of the radial extra-axonal signal as a function of the voxel size. The same experiment (not shown) was conducted using cylinders with higher diameter. Results indicated that the number of cylinders was the limiting factor. Indeed, the mean of the radial extra-axonal signal also converged for 10,000 cylinders, but this time a voxel size of approximately 400 × 400 μm was required to generate isotropic profiles instead of the 230 × 230 μm limit observed for a distribution with smaller cylinders.


[image: Figure 9]
FIGURE 9. Results for 3 substrates, with 100, 1,000, and 10,000 cylinders, respectively. First row: sampled diameter distributions for each voxel-size, getting closer to the desired distribution law as the voxel-size increases. Second row: cylinder positions in each substrate. White scale bar corresponds to 10 μm. Third row: radial DW-MRI signal simulated from the respective substrates. Each colored line corresponds to one different Δ duration. Dotted lines correspond to the mean radial signal for each diffusion time.



[image: Figure 10]
FIGURE 10. Mean and standard deviation of the radial DW-MRI signal as a function of substrate size. The signal is shown for each of the different Δ.




4.4. Framework for Complex Substrates Generation

The resulting crossing with two fiber populations is outlined in Figure 4. The total optimization time to create the substrate was around 42 h, where most of the optimization time (about 35 h) was needed in the second optimization iteration, after the subdivision on gamma distributed radii, that ensure that no small overlaps were introduced due to the subdivision and abrupt angular changes. The optimization was performed using a single core 2.8 GHz CPU. On the other hand, the total simulation time for the full geometry with 105 × 106 particles was less than 24 h using a total of 8 nodes with 28 cores on fidis EPFL's cluster with 6GB of RAM per node (48GB in total).

The resulting diffusion tensor and FA maps are shown in Figure 11 for the three different resolutions. Local diffusivity changes, as well as signal alterations related to the curvature of the individual axons, can be observed.


[image: Figure 11]
FIGURE 11. From the leftmost to the right: diffusion tensor map, the resulting fractional anisotropy and the two highlighted ROIs in each map, respectively. Each image corresponds to the same volume slice in the XZ-plane. The ROI's highlights one area where different compartments result from the optimization procedure.


Figure 12 shows the intra-axonal volume fraction in all resolutions. In the highest resolution, small water compartments can be seen in the crossing sections; this is an effect of the optimization procedure which ensures no overlapping fibers. In the lowest resolution, such compartments are no longer visible, but they are reflected in the decrease of the intra-axonal volume fractions.


[image: Figure 12]
FIGURE 12. The ICVF maps of one volume slice in the XZ-plane in three different resolutions. The highest achieved ICVF value for each resolution were: 0.8013, 0.5792, 0.4825, from top to bottom, respectively. The two green areas highlighted in the two lowest resolutions were used to evaluate the axon diameter estimation.


Figure 13 shows a visualization of one plane of the axon diameter estimation maps of the volumetric region highlighted in Figure 12, and the obtained diameter distribution for the three resolutions. The higher resolution (80 × 16 × 32) estimation includes a total of 2,848 voxels, while the lowest resolution contains a total of 112 voxels. Figure 4 bottom-right panel shows the resulting sampled diameters inside the crossing configuration, which is noticeably skewed to smaller diameters; this is an effect of the packing algorithm inside individual circular strands which under-represent the tail of the distribution because of the difficulty of packing strands with big diameters. This effect will irremediably affect the effective apparent radius [image: image] (Burcaw et al., 2015) given by the intra-axonal contribution of the signal. The resulting effective diameter of the conjoint assemble of strands was 2*reff = 3.48 μm, which in average agrees with the estimated mean diameters shown in Figure 13 on each resolution.


[image: Figure 13]
FIGURE 13. Axon diameter estimation maps (Left column) of the regions highlighted in Figure 12, and diameter histograms (Right column) estimated on the full volume enclosed by the highlighted regions. Top row shows the axon diameter map and the diameter estimation histogram for the 80 × 16 × 32 nominal resolution; middle row shows the same maps for the 40 × 8 × 16 nominal resolution, and the bottom row shows the same maps for the 20 × 4 × 8 nominal resolution. The dotted line indicates the histograms' mean diameter within the regions, to be compared with the effective apparent diameter (2*reff) of 3.48 um.





5. DISCUSSION

In the past two decades, the research community has used MCDS to generate and validate MR diffusion data and microstructure models (Lipinski, 1990; Hall and Alexander, 2009; Fieremans et al., 2010; Panagiotaki et al., 2010; Nilsson et al., 2012; Barlett et al., 2013; Baxter and Frank, 2013; Plante and Cucinotta, 2013). However, questions have been raised on the accuracy of the simplified geometries used to create the diffusion substrates (Balls and Frank, 2009; Panagiotaki et al., 2010; Nilsson et al., 2012, 2013), emphasizing the need of highly-validated and reproducible simulations. Such oversimplifications have been proven not to capture the complexity of the axonal structures of white matter, and thus its diffusion characteristics (Nilsson et al., 2013). Moreover, it can be argued that the use of such elementary geometries-used as backbone in the microstructure models-as a ground-truth, not only introduce a systematic bias that inherently supports the evaluated method, but also misapplies the very purpose of using Monte-Carlo simulations. In this work, we outlined pitfalls encountered in the design of such simulations. Our experiments showed how the design of each substrate compartment is likely to introduce an estimation bias if it is not addressed appropriately.

Our first study specifically shows the effect of an inappropriate selection of parameters on the reproducibility of a estimated signal, which could also skew an analysis toward inaccurate results. Differently to previous studies (Hall and Alexander, 2009), we compute the extra-axonal ground-truth from high-quality simulations, avoiding the use of tortuosity models that could introduce a bias because of their oversimplifications. The error in the estimation presented in Figure 5 illustrates the great amount of possible estimation variability for a relatively simple substrate. We found that the signal on each compartment showed a high variability for simulations with less than 5 × 105 particles and 1 × 104 steps. We can extrapolate from this that any estimation from more complicated substrates, such as the ones with undulation or crossings, or even higher diffusivity, will likely entail even higher variability. In order to avoid such uncertainty on the estimations for more complicated substrates a similar analysis as the one presented should be procured.

In our second study, we explored the effect of breaking the assumption of straight cylinders as the intra-axonal representation in function of the apparent diameter estimation. The helical representation used in this study, while reported to appear in the nervous system, maybe not be an accurate representation of the axonal angular variations along the longitudinal direction in the brain white matter, specially in the micro-scale. However, it gives us a convenient starting point to study the effect of angular variations in the intra-axonal compartment over the diffusion signal, a theoretical analysis on this type of structures can be found as well in Brabec et al. (2019). From this study, we found a considerable mis-estimation in the presence of undulation for both protocols and in the three studied diameters. The relative fitting error for the smaller diameter (1 μm) was the higher among the three cases (more than 300% for some cases). Previously, Nilsson et al. (2017) proposed a formulation to compute the minimal diameter of a parallel cylinder able to produce a signal attenuation larger than that from a cylinder with a diameter of zero, using standard single-shell PGSE sequences. According to this formalism, the minimum differentiable diameter is [image: image], where σ is the significance level, defined as the minimum tolerated percentage of signal change. For a fixed value σ = 1% change, the resolution limit predicted for both protocols used in this study were dmin = 2.29 μm for |G| = 140mT/m, and dmin = 1.76 μm for |G| = 300mT/m. However, such estimates are based on a number of assumptions which does not hold in our experimental conditions. For example, the formulation is valid for parallel and straight cylinders and for acquisition protocols with a single shell with parameters δ = Δ. As in this experiment we are studying non-parallel and curved cylinders with multi-shell protocols with Δ>>δ, we performed a numerical sensitivity analysis to obtain more accurate resolution limits. From the resulting plots showed in Figure 8, it can be seen that the signal originated from cylinders with diameters below 2.5 μm for the first protocol, and 2.0 μm for the second, are virtually indistinguishable. On the other hand, diameters above 3.0 μm have more significant RMAE, which make them easier to differentiate. We also observed that the range of diameters from our fitting method did not follow a simple trend between protocols; that is to say, increments on the undulation parameters, which effect can be summarized in terms of the tortuosity factor (Nilsson et al., 2012) [image: image], does not follow a simple relationship between protocols (horizontal axis of the results in Figure 7). This is likely to be an effect of the parameters of the acquisition protocol (δ, Δ, and the TE), which vary between shells and thus changing the effective diffusion time. From a comparison of both protocols, we corroborated that the optimized protocol showed better results in terms of the fitted diameter and range of similar diameters. However, there was still a considerable mis-estimation, especially for the undulation of 1 μm diameters. We consider this experiment to be of great interest for any future protocol optimization or diameter estimation framework, since it illustrates how sensible the estimation of the axon's diameter based on the cylindrical model are, even for regular and smooth angular deviations.

Our third experiment showed that a sufficiently rich sampling is required for the simulated signal to converge. Indeed, small substrates have a limited number of cylinders, limiting the variability of hindered micro-environments sampled by the spins during the M.C. simulation—yielding anisotropic patterns in the radial DW-MRI signal. The results also showed a bias in the mean amplitude, with small voxels having lower signal than bigger voxels. Our results suggest that, for a given diameter distribution, substrates with an area smaller than 200 × 200 μm will present biased extra-axonal signals. Such results are in accordance with previously results (Hall et al., 2017) in terms of the voxels' size. However, this lower bound probably depends on the distribution of diameters and cylinder packing on one side, as well as the typical diffusion length of the spins, given by their diffusivity and the diffusion time of the experiment.

Finally, as part of our effort to create more realistic substrates, we outlined a framework to tackle the challenging problem of creating non-overlapping crossing configurations that preserves the volume fractions between the non-crossing and crossing area, while enforcing a high packing density. Configurations which mimic better real tissue (Shacklock, 2007), are important since they provide a more challenging environment to test and validate microstructure models and even tractography methods, in contrast with naive crossings which have been proven to be indistinguishable from a simple superposition of individual fascicles (Rensonnet et al., 2018). From the diffusion tensor and FA maps shown in Figure 11 we can observe the presence of multiple compartments as an effect of the volume preservation condition. Also, Figure 12 shows how the intra-axonal volume fraction changes as the resolution decreases. Such information can be used to study the microstructure information in the presence of several diffusion compartments and volume fractions in different resolutions without using an explicit interpolation. This decrease of the ICVF is an effect of the presence of dispersion and deformation of the fiber bundles. However, even in the lowest resolution, the intra-axonal volume fraction achieved was over 48%, which is considerably higher than the icvf (of 20%) of a previously presented framework for generating realistic numerical phantoms for crossing fascicles (Ginsburger et al., 2018). By optimizing the penalization term of the strands' curvature in our framework, we expect to be able to achieve even higher packing densities—closer to the expected ones from the brain's white matter tissue. On the other hand, the diameter estimations computed over the merging area of the two fiber populations, showed a overestimation in accordance with the results of section 3.2. Such mis-estimation can be explained by angular perturbations in the fiber trajectory in both the micro- and meso- scale of the simulated fibers. In previous studies, the axon diameters were overestimated by factors 3-5 in clinical scanners (Alexander et al., 2010; Zhang et al., 2011). This bias was attributed to the insensitivity of the measurement schemes to small axons (Dyrby et al., 2013), the noise, or the commonly neglected time-dependence of diffusion in the extra-axonal space (De Santis et al., 2016). The diameters reported in this study were estimated by using only the intra-axonal signals, thus the overestimation can be explained only by the dMRI signal insensitivity to the smaller axons and by the signal changes due to axon undulations and microscopic dispersion. This renders our estimations as a best case scenario.


5.1. Considerations and Future Work

The generalisability of the results presented above is subject to certain limitations. For instance, in-vivo diffusion and protocol settings, the use of non-regular deformations in the intra-axonal substrates, and the joint study of the intra- and extra- axonal space, may affect the results toward higher variability or mis-estimations of the axon diameters. In addition, a number of structural features present in white matter tissue -such as the axonal myelin sheath, Ranvier nodes, or diameter changes along the axons trajectory-are missing. Because of this, the results presented above should be taken as a type of lower bound in terms of the minimum parameters needed (for the number of samples and time-steps) and possible mis-estimations (in terms of our axon diameters estimates).

Notwithstanding these limitations, we consider that the aforementioned framework, complemented with the optimized simulator developed, are able to overcome the simulations pitfalls presented in this work. In addition, the parameter selection analysis presented in this work provides a way to ensure the reproducibly of the Monte-Carlo simulations. A thorough study of the properties of more complex substrates generated with the proposed framework is beyond the scope of this study. Future research should therefore concentrate on the generation and study of such configurations, which may help the DW-MRI research community to generate more reliable ground-truth data.




6. CONCLUSIONS

The main contribution of this work can be summarized in three main aspects. First, this paper outlines and investigates a set of pitfalls encountered on the parameter selection and substrates' design for Monte-Carlo simulations. Our results over the effect of the number of particles and time-steps, as well as our quantification over the effect of the substrate's size on the extra-axonal space can be immediately taken to evaluate the design of future experiments. In overall, we found that for experiments with parameters in the range used in this study—which are in the range of interest in the literature—simulations with less than 5 × 105 particles and 1 × 104 steps carried a significant variance between the computed signals for both, the intra- and extra-axonal compartments. In addition, we found that simulations substrates with less than 10,000 sampled cylinders induced an important bias on the directional symmetry of the diffusion signal in directions transversal to the main fiber direction. Such parameters are almost one order of magnitude bigger than previously used on the literature, which inherently affects the reproducibility of such results (Hall and Alexander, 2009; Alexander et al., 2010; Rensonnet et al., 2018, 2019). Second, our evaluation over the effect of introducing angular perturbations in the intra-axonal space representation—by means of the estimated axon diameter based on the cylindrical model—showed a considerable deviation from the expected results. This results are somehow in agreement with previous findings and contributes additional evidence that suggests that performing whole brain axon diameter estimation is still far from being straightforward using simplified models, such as the straight cylindrical diffusion model. Finally, this paper presents a framework able to generate complex fiber configurations with desired microstructure information based on a previous algorithm used to create tractography phantoms. We showed the framework's capabilities to generate complex fibers configurations which, along with the simulator developed in this work, are able to generate more challenging and composite Monte-Carlo simulations.

We consider that the results presented in this work, along with the reported procedure to evaluate the estimations' variability, the substrate generation framework, and the simulator developed, pave the way toward more realistic and reproducible Monte-Carlo simulations for Diffusion-Weighted MRI.
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Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm’s full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools.

Keywords: neuron segmentation, confocal microscopy, 2 photon microscopy, expectation - maximization (EM) algorithm, mixture models, CLARITY


INTRODUCTION

Digitizing a high-fidelity map of the neurons populating the brain is a central endeavor for neuroscience research and a crucial step for the delineation of the full Connectome (Alivisatos et al., 2012). Moreover, single-neuron reconstruction from empirical data can be used to generate models and make predictions about higher-level brain organization, as well as to study the normal development of dendritic and axonal arbors or document neuro-(patho)physiological changes (Budd et al., 2015).

Confocal and two-photon microscopy are considered the best candidates to image defined cellular populations in three-dimensional (3D) biological specimens (Wilt et al., 2009; Ntziachristos, 2010). Their imaging depth, as well as the quality of the acquired datasets can be further improved thanks to recent tissue-clearing solutions, which render brain tissue transparent to photons by reducing the source of scattering, allowing confocal acquisitions with enhanced Signal to Noise Ratios and Contrast to Noise Ratios while maintaining low laser power (Chung and Deisseroth, 2013; Richardson and Lichtman, 2015; Magliaro et al., 2016). While these technologies and protocols, combined with fluorescence-based labeling techniques, enable the imaging of the brain’s intricacies at the microscale, single-cell segmentation algorithms able to deal with these datasets are still lacking (Magliaro et al., 2019), despite targeted initiatives such as the DIADEM (DIgital reconstructions of Axonal and DEndrite Morphology) challenge in 2009–2010 (Gillette et al., 2011) and the BigNeuron project in 2015 (Peng et al., 2015). In fact, different approaches have been implemented for reaching the goal of segmentation of single cells (Acciai et al., 2016). Most of these tools reconstruct the pathway of neurite or neural processes, i.e., neuron tracing (Quan et al., 2016; Kayasandik et al., 2018) using different approaches, ranging from active contour methods (Kass et al., 1988; Wang et al., 2009; Baswaraj et al., 2012) to hierarchical pruning (Peng et al., 2011a; Xiao and Peng, 2013), in an attempt to face the a number of key challenges: (i) noisy points causing over-tracing, (ii) gaps between continuous arbors causing under-tracing, and (iii) non-smooth surfaces of the arbors violating geometric assumptions (Liu et al., 2016). Among them, machine learning approaches are widely considered as robust for neural structure segmentation in image stacks (Januszewski et al., 2018; Sakkos et al., 2018). These methods mainly consist in building a classifier able to discern between foreground and background, thanks to prior information obtained through a training dataset of manually-segmented neuron structures. However, building the training dataset is very time consuming, in particular because it needs to be fleshed out when dealing with different images (e.g., neuron types with different morphology or stacks with different background/foreground features). Finally, many tools and algorithms for neuron segmentation primarily focus on sparsely labeled data, such that their application to images (or volumes) representing densely packed neurons, typical of mammalian brains, is limited (Chothani et al., 2011; Wang et al., 2011, 2017; Peng et al., 2014; Hernandez et al., 2018).

The outcomes of neuron reconstructions are traditionally stored in a.swc file format, where spatial (i.e., x, y, and z coordinates) and morphological (e.g., neurite thickness) information about specific points of interest (e.g., neuron nodes) are listed. This standard describes neuron morphology with a number of structurally connected compartments (e.g., cylinders or spheres representing neuron arborization or soma, respectively), thereby neglecting the morphological and volumetric information along the neuron’s length (Magliaro et al., 2019).

Confocal and 2-photon datasets are characterized by on-plane and intra-plane pixel intensity heterogeneities, deriving from optical phenomena and the non-uniform distribution of fluorophores through the sample (Diaspro, 2001). Given these intrinsic features, a valid procedure for accurately digitizing the neural structures in the stack could be obtained by leveraging on local approaches and methods enforcing spatial constraints, such as region growing procedures (RG) (Brice and Fennema, 1970; Xiao and Peng, 2013; Acciai et al., 2016). RG is a pixel intensity-based segmentation method that identifies the foreground starting from a pixel, i.e., the seed, belonging to the foreground itself. The neighboring pixels of the seed are iteratively examined based on a predefined rule, usually a homogeneity predicate, which can be estimated locally to determine whether they should be added to the foreground or not. The performance of the procedure may be influenced by both the seed selection and the rule (Baswaraj et al., 2012). The choice of the rule may be non-trivial, in particular in view of delivering a general-purpose segmentation algorithm. Adaptive strategies based on mixture models have been successfully used in video foreground/background segmentation (Stauffer and Grimson, 1999; Barnich and Van Droogenbroeck, 2010). Here, we exploit a similar approach that takes into account the image formation process. Here we propose a novel RG strategy based on an estimation which considers the image formation process (Calapez and Rosa, 2010) to define intrinsic properties of signal distribution in the image in question.

Our rationale is that confocal and 2-photon microscopy are based on sampling successive points in a focal plane to reproduce the spatial distribution of fluorescent probes within a sample. Hence, each pixel contains a discrete measure of the detected fluorescence within a sample interval, represented by a photon count, and certain amount of noise, deriving from different sources (Pawley, 2006; Calapez and Rosa, 2010). Therefore, statistical methods represent a natural way of describing confocal or 2-photon datasets. Different models have been proposed to depict confocal image properties (Calapez et al., 2002; Pawley, 2006). Specifically, mixture models (MM) have been suggested as the best descriptor of the sharp peaks and the long tails typical of background and low fluorescence distributions (Calapez and Rosa, 2010).

Given these considerations, we have developed a new Smart Region Growing algorithm (SmRG), which couples the RG procedure with a MM describing the signal statistics, to calculate local homogeneity predicates (i.e., local thresholds) for iteratively growing the structure to be segmented. Here, we describe the SmRG workflow for single-neuron segmentation. Then, we evaluate its performance in segmenting different neuron types from confocal and 2-photon datasets, comparing the results with those obtained with a gold standard manual reconstruction. Furthermore, we compare our algorithm with state-of-the-art (SoA) tools widely used in the field of neuron reconstruction.



THE SMART REGION GROWING (SmRG) ALGORITHM


The Mixture Model

In its original version (Calapez and Rosa, 2010), the model is supposed to describe K different fluorescence levels or classes; the k-th class is described by the linear mixture model:
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where y, K0 and αk denote the pixel intensity level, the system offset and the mixture parameter respectively. ψB is the distribution for the background pixels and is modeled according to a discrete normal distribution, with variance vB and mean K0, and ψSk is the intensity distribution of the k-th class pixels, described by a negative-binomial distribution with variance vSk and mean μSk. In accordance with (Calapez and Rosa, 2010) the negative-binomial distribution is re-parameterized in terms of
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and
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For region growing purposes, it is reasonable to assume the presence of a single class k of pixels, at least locally. In this case, the complete model for a pixel yl is described by the 5-parameter distribution:
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where all the parameters are real values except for K0 which is an integer and α ∈ [0, 1].

The model fitting is done by means of an Expectation-Maximization (EM) algorithm in which:

1. p and r are obtained by the method of moments (eqs. 2, 3)

2. K0 and vB are given by the maximization of the log-likelihood
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3. α is given by the posterior density
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The Algorithm Outlined

The SmRG is an open-source algorithm developed in Matlab (The Mathworks-Inc., United States). A package of the functions needed for running the algorithm are available at http://www.centropiaggio.unipi.it/smrg-algorithm-smart-region-growing-3d-neuron-segmentation.

The SmRG is driven by a homogeneity predicate for establishing a local threshold based on the intensity levels of confocal datasets. Specifically, it exploits the statistics of the background and the signal distributions of the confocal acquisitions and a linear MM to determine the probability with which a given pixel (voxel) can be considered as part of the foreground or not, as described in section “The Mixture Model.” The rule to grow regions is then designed from these probabilities.

The workflow of the SmRG is sketched in Figure 1. It begins by selecting a seed, either manually or automatically (Figure 1A).


[image: image]

FIGURE 1. Workflow of the SmRG. (A) Manual or automatic seed selection. (B) Dip test to test for unimodality against multimodality on a MxNx3 crop centered on the seed. The threshold is determined with Otsu’s method or through the Mixture Model according to whether the distribution is multimodal or not. (C) 3D segmentation of a MxNx3 crop. (D) The regional maxima of the distance transform of the segmented MxNx3 crop are chosen as new seeds. (E) The procedure iterates until there are no more new seeds.


In the first case, the user is asked to identify the seed position by selecting a point on a focal plane (e.g., a pixel belonging to the soma), while in the latter the Hough transform (Nixon and Aguado, 2012) searches for spherical objects within the stack to identify the somata: the seed (or the seeds) is (or are) chosen as the center of the detected sphere (or spheres). Then, the homogeneity predicate is derived locally on an image volume centered on the seed. The volume dimension is a trade-off between the goodness-of-fit of the MM and the localness of the segmentation and by default is set to [image: image], where N and M are the on-plane size of the image stack. To ensure enough data points for MM fitting, the crop size is never smaller than 32×32×3. At this step a Hartigan’s dip test (Hartigan and Hartigan, 1986) (p < 0.01) is performed on the pixel intensity distribution of the crop to test for unimodality against multimodality (Figure 1B). In the case of multimodality the segmentation proceeds with Otsu’s method (Otsu, 1979), a well-known thresholding technique for multimodal distributions (Guo et al., 2012). Otherwise, a linear MM, considering the background as a normal distribution and the signal as a negative binomial, is fitted by means of an Expectation Maximization (EM) algorithm on the crop pixel intensity distribution. Indeed, mixture models combining normal and negative binomial distributions have been observed to fully characterize the signal associated with confocal images (Calapez and Rosa, 2010). The homogeneity predicate is derived from the posterior probability of the MM, α (or 1-α), denoting the probability at which a given pixel can be considered as part of the background (or the signal) distribution. The rule is thus obtained as a user defined threshold for α (e.g., with 1-α > 0.999 all the seed’s neighboring pixels whose probability of belonging to the signal exceeds 99.9% are segmented) (Figure 1C). Each pixel that satisfies this rule and is spatially connected to the seed within the crop is added to the object to be segmented. At this point, new seeds are chosen from the points just recognized as part of the neuron to be segmented. In particular, for each segmented plane the regional maxima of the distance transform (Maurer and Raghavan, 2003) are taken as new seeds (Figure 1D). The algorithm iterates for each detected seed and the process stops when there are no more pixels to add (Figure 1E).

The result of the SmRG is a 3D matrix of logical values, whose true values represent the voxels constituting an isolated neuron. Figure 2 shows an example of a Purkinje cell segmented using the SmRG from a confocal dataset representing a 1 mm-thick slice from murine cerebellum, obtained after applying the CLARITY protocol described in Magliaro et al. (2016).
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FIGURE 2. An example of SmRG outcome: (A) a Purkinje cell from clarified murine cerebellum acquired using a Nikon A1 confocal microscope; (B) the same Purkinje cells identified within its confocal dataset.





MATERIALS AND METHODS

To evaluate the SmRG’s performance, we processed two different sets of data. First, confocal acquisitions of 1 mm-thick slices of clarified cerebellum from a L7GFP mouse were analyzed to isolate Purkinje Cells (PCs) expressing Green Fluorescent Protein (GFP). The aim was to demonstrate (i) the SmRG’s accuracy with respect to a manual segmentation performed by experts, as it is still considered the gold standard for neuron segmentation (Al-Kofahi et al., 2003; Meijering, 2010), (ii) the SmRG’s reproducibility, and (iii) its ability to handle 3D microscopic datasets representing dense-packed neurons compared with other tools available in literature.

Then, Olfactory Projection (OP) Fibers dataset from the DIADEM challenge was processed with the SmRG. The SmRG reconstructions were quantitatively compared to the manually-traced gold-standards provided by the DIADEM. Moreover, 3D neuron segmentation was performed using other SoA tools evaluating the outputs against the DIADEM gold standards through the metrics SD, SSD and SSD%. This allowed an assessment of the SmRG’s ability to reconstruct 3D neuron morphology with the same precision and accuracy as SoA algorithms.

The tools used for both PC and OP datasets were the Vaa3D (version 3.200) app2 (Xiao and Peng, 2013), MST-tracing (Basu and Racoceanu, 2014), SIGEN (Ikeno et al., 2018) and MOST (Ming et al., 2013) plug-ins. They have been extensively validated in other reports and are widely used to compare reconstructions provided by new segmentation algorithms (Peng et al., 2014; Liu et al., 2016). A further quantitative comparative analysis with NeuroGPS (Quan et al., 2016) was performed was performed on the PC datasets.


Datasets Representing PCs


Accuracy Test: SmRG Algorithm Versus Manual Segmentation

The confocal datasets representing dense-packed PCs from 1 mm-thick slices from clarified L7GFP murine cerebellum were those already manually segmented in Magliaro et al. (2017). They are available for download at http://www.centropiaggio.unipi.it/mansegtool. Specifically, n = 3 Purkinje cells from three different datasets were segmented automatically with the SmRG algorithm and manually by 6 experts with the ManSegTool, a tool purposely developed for facilitating the manual segmentation of 3D stacks (Magliaro et al., 2017). The matrix and voxel sizes for the three datasets are: (i) Dataset 1: 512 × 512 × 143, x = 0.62 μm/pixel, y = 0.62 μm/pixel, z = 1.24 μm/pixel; (ii) Dataset 2: 1024 × 1024 × 389, x = 0.31 μm/pixel, y = 0.31 μm/pixel, z = 0.62 μm/pixel (iii) Datasets3: 512 × 512 × 139, x = 0.62 μm/pixel, y = 0.62 μm/pixel, z = 1.24 μm/pixel.

The SmRG’s segmentation accuracy was evaluated by comparing morphometric features extracted from the two outputs. Briefly, we considered (i) the surface area, (ii) the volume, and (iii) the Sholl analysis (Sholl, 1955; Magliaro et al., 2017) of segmented structures. To compare Sholl profiles, we calculated the total area under the curve (AUC) using the trapezoidal rule thus obtaining a single measure for each profile (Binley et al., 2014). Statistical differences between the features in the manual segmented structures and those resulting from the SmRG were evaluated by means of the Friedman’s test with replicates. Friedman’s test allows testing treatments under study (i.e., columns) after adjusting for nuisance effects (i.e., rows). Replicates refer to more than one observation for each combination of factors. In our case, surface area, volume and the AUC of Sholl profiles were blocking factors (i.e., rows) with replicates represented by the three neurons, while users and SmRG represented treatments (i.e., columns). Thus, we are testing the null hypothesis of no difference between manual and SmRG-based segmentation.



SmRG Reproducibility

Reproducibility tests were performed by segmenting the same n = 3 PCs starting from different seeds. Specifically, we randomly chose 10 pixels picked from different regions of the neuron. Volume, surface area and AUC of Sholl profiles were obtained for each seed and the reproducibility was quantified for each neuron as the coefficient of variation of each measure (i.e., the standard deviation normalized by the mean).



SmRG vs. SoA Tools

In order to highlight the SmRG’s ability to segment single-neurons from confocal datasets represented densely-packed cells, we processed a 3D image stack with the App2, MST, SIGEN, MOST Vaa3d plugins and with NeuroGPS.

The reconstructions provided by the Vaa3D plugins and by SmRG were visually compared. On the other hand, n = 6 neurons were segmented with SmRG and NeuroGPS and manually through ManSegTool. After translating the volumetric information obtained with SmRG and ManSegTool in swc format, the three reconstructions were quantitatively compared by means of the following metrics: (i) the spatial distance (SD), (ii) the substantial spatial distance (SSD), and (iii) the percentual substantial spatial distance (%SSD). The spatial distance is estimated as it follows:
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With
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and
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i.e., given two reconstructions, A and B, the spatial distance is obtained by averaging the Euclidean distance between the nodes of A and the nodes of B, i.e., dAB, with the reciprocal measure, i.e., dBA. Specifically, for each node belonging to A, dAB is obtained by selecting the minimum distance between each node of B. dAB is thus obtained by repeating this operation for every node of A and averaging the results. The same operation is performed with the nodes belonging to B, to obtain dBA.

The SSD is obtained by selecting the node pairs in A and B with a minimal distance above a given threshold S and then performing their average. Specifically, given:
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and
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Then, the SSD is defined as follows:
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Finally, the % SSD is obtained by estimating the ratio of nodes contributing to SSD. These metrics express the similarity of two different reconstructions (Peng et al., 2011b). Essentially, SD is a measure of how different two reconstructions are, while SSD and SSD% measure the extent of differences between two reconstructions considering only points above a tolerance threshold S. The tolerance threshold for the evaluation of the SSD metric was 2 (i.e., S = 2) voxels, as suggested in Peng et al. (2011a). Given that the SmRG’s output is a 3D logical matrix constituting the whole neuron, while the DIADEM gold-standard is a set of points of interest (i.e., a ∗.swc file), a thinning procedure was necessary to reduce the volumetric information in SmRG to a skeleton. To this end, we calculated the 3D skeleton of the SmRG output via a 3-D Medial Surface Axis Thinning Algorithm (Lee et al., 1994). From the points constituting the skeleton we reconstructed the corresponding ∗.swc file, ensuring a fair mapping between the DIADEM reference points and the SmRG ones.

Moreover, the precision, recall and F-score of the SmRG reconstructions were determined with respect to the gold-standard, quantifying the spatial overlap between the closest corresponding nodes of the two reconstructions (Powers, 2011) and varying the tolerance threshold from 0.5 to 5 voxels, to evaluate the SmRG’s sensitivity to this parameter (Radojeviæ and Meijering, 2018).




DIADEM Datasets Representing OP Fibers

The dataset representing OP Fibers is available at http://diademchallenge.org/olfactory_projection_fibers_readme.html. It contains 9 separate drosophila olfactory axonal projection image stacks acquired with a two-photon microscope and their respective gold standard reconstructions provided by the DIADEM (Evers et al., 2005; Jefferis et al., 2007). We segmented all the neurons except OP2, since it contains many irrelevant structures (Liu et al., 2016). The SmRG and SoA algorithm reconstructions were compared with the DIADEM gold-standards. Comparisons between automatic tools were made by means of the metrics described in section “SmRG vs. SoA Tools.”




RESULTS


Purkinje Cell (PC) Segmentation


SmRG vs. Manual Segmentation

Figure 3 shows an example of the same PC segmented by an expert and by the SmRG. The SmRG’s accuracy was assessed by comparing volume, surface area and AUC of Sholl profiles extracted from the segmented PCs with the results obtained by manually segmented ones (Figure 4). The single-neuron reconstructions provide quantitative information on the morphology of individual neurons in their native context where they are surrounded by neighboring cells. Clearly the algorithm developed is able to follow neurite arborization, segmenting smaller branches with similar performance to manual segmentation. Furthermore, the structure obtained with the SmRG is consistently characterized by a smooth volume, compared with the manual segmentation. A typical example is reported in Figure 5, showing a zoomed detail of manual and SmRG segmentation results.


[image: image]

FIGURE 3. SmRG versus Manual Segmentation. (A) Gold-standard manual segmentation. (B) SmRG automatic segmentation. (C) Merge of manual (green) and automatic (red) segmentation, common voxels are reported in purple.



[image: image]

FIGURE 4. Testing SmRG accuracy (A) Neuron volume. (B) Neuron surface. (C) AUC (area under the curve) of Sholl profiles. Friedman’s test was performed with Volume, Area and AUC as blocking factors (rows, nuisance effects) with replicates (neurons #1, #2 and #3), and with users and SmRG as treatments (column). No statistical differences were observed (p-value = 0.8233).



[image: image]

FIGURE 5. A detail of the manual and SmRG neuron reconstruction. It is clear that the SmRG segmentation (red) leads to a smoother volume than the manual (green) one.


The Friedman’s test showed no significant differences between the SmRG and the ManSegTool segmentation in terms of surface area, volume and Sholl profiles of the segmented structures (p = 0.8233); a detailed ANOVA table of the Friedman’s test is reported in Table 1. In summary, the results in the table demonstrate that the SmRG’s performance is comparable to that obtained from manual segmentation performed by experts in terms of the accuracy of the morphological parameters considered.


TABLE 1. Friedman’s ANOVA table.
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SmRG’s Reproducibility

Table 2 reports the coefficients of variation of volume, surface area and AUC of Sholl profiles for each segmented PC. The maximum coefficient of variation was equal to 0.0258, demonstrating the robustness of the SmRG to changes in initial conditions (i.e., the position of a seed belonging to the structure of interest).


TABLE 2. Results of SmRG’s reproducibility.
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SmRG vs. Other Tools

Figure 6 shows an example of the outputs obtained segmenting the same confocal 3D stack with the App2, MST, SIGEN and MOST routines and with the SmRG. We were only able to assess the comparisons visually, since none of Vaa3D plugins was able to handle such dense datasets.
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FIGURE 6. An example of a confocal dataset representing PCs from a clarified L7GFP murine cerebellum, segmented with MST, app2, MOST, SIGEN, and SmRG. None of the SOA tools is able to deal with this dense dataset, while the SmRG is able to isolate the PCs within the dataset. Different colors refer to the different neurons recognized.


Figure 7 reports the same dense packed PCs segmented with both SmRG and NeuroGPS, showing that the performance of the two tools is comparable. This is also evident from the SD, SSD and SSD% metrics obtained with respect to the gold standard provided by the manual segmentation for all the neurons segmented except for PC2 (Figure 8). Moreover, the average precision, recall and F-score in Figure 9 shows better precision and accuracy for our tool with respect to NeuroGPS for S = 2.
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FIGURE 7. PCs segmented with SmRG (green) and NeuronGPS (blue) and compared with the manually segmented gold-standard (red).
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FIGURE 8. Accuracy of SmRG and NeuronGPS against the manually segmented gold standard for different PCs. (A) SD (B) SSD, and (C) percentage SSD.
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FIGURE 9. Precision, Recall and F-Score for varying thresholds of SSD evaluation. SmRG has always better performance than NeuronGPS for increasing values of the threshold.





OP Fibers: SmRG vs. the DIADEM Gold-Standard

Olfactory Projection fibers segmented with the SmRG are reported in Figure 10, along with the manually-traced gold-standard provided by the DIADEM.
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FIGURE 10. OP fibers segmented with SmRG and compared with the DIADEM gold-standard (GS). Please note that for OP3, OP5, OP7, and OP8 the gold standard reconstruction misses some terminal branches (see DIADEM FAQ at http://diademchallenge.org/faq.html).


One of the distinctive characteristics of the SmRG is its ability to trace the axon topology of OP fibers while maintaining 3D volumetric information on neurons and their arbors. Indeed, the structure obtained with the SmRG is a smooth three-dimensional volume with voxel-resolution details on neuron morphology; a feature not available from swc structures. As a consequence, the SmRG reconstructions in Figure 10 appear thicker than the 3D rendering of ∗.swc gold-standards.

As evident from the figure, some terminal branches of OP fibers are not comprised in the manually traced gold standard, since they have no effect on DIADEM metrics (Brown et al., 2011; Gillette et al., 2011). Nonetheless, the SD, SSD, and SSD% metrics used in this work are naturally biased by these missing branches. Thus, the comparison between automatic reconstructions and gold standard were limited to those branches included in by the DIADEM gold standard.

When evaluated against other SoA tools, the SmRG was observed to be comparable in terms of SD. On the other hand, our algorithm achieved the lowest values of SSD among all tools considered (with the exception of segmentation of OP5). It should be noted that the value of SSD% was higher for the SmRG with respect to other algorithms, since the estimation of the skeleton from the 3D output of SmRG produced a higher number of nodes compared to the other methods (Figure 11).
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FIGURE 11. Accuracy of SmRG and SoA tools against the DIADEM gold standard for different OP fibers. (A) SD (B) SSD, and (C) percentage SSD.


In Figure 12 the average precision, recall and F-score across OP fibers are reported for SmRG and SoA tools as a function of the value of S. For S = 5, the SmRG outperforms other tools in terms of F-score which highlights its ability to segment OP fibers with high accuracy.
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FIGURE 12. Precision, Recall and F-Score for varying thresholds of SSD evaluation. SmRG and SoA tools have similar performance for increasing values of the threshold. For thresholds greater than four voxels, SmRG has the highest F-Score. For S = 5, we obtained P = 0.9538 ± 0.0350, R = 0.9770 ± 0.0183 and F = 0.9651 ± 0.0248 (mean ± st. deviation) for the SmRG.





DISCUSSION

The SmRG for the automatic segmentation of microscopic data exploits the signal statistics typical of confocal and 2-photon images (Calapez and Rosa, 2010). Datasets representing neural tissues from different species, processed using different protocols (i.e., clarified murine cerebella and Drosophila brains fixed using classical procedures) and acquired with different imaging tools (i.e., confocal and two photon microscopy) were used to test the algorithm. The goodness of the SmRG reconstruction was compared with manually traced gold-standards as well as with algorithms available in the SoA.

A quantitative analysis of the SmRG’s accuracy with PC datasets was performed for three different neurons, whose manually segmented counterpart was available in Magliaro et al. (2017). Although a limited set of neurons were analyzed, the reconstructions of the SmRG and the manually-segmented gold standards were comparable; moreover, the seeding and RG procedure was shown to be robust and independent of initial conditions. The analysis performed on PCs from clarified tissues highlighted the efficacy of the algorithm developed in isolating single neurons from densely-packed data with respect to some of the most widely used single neuron reconstruction tools available in the SoA (i.e., app2, MOST, MST-tracing, SIGEN) (Ming et al., 2013; Xiao and Peng, 2013; Basu and Racoceanu, 2014; Ikeno et al., 2018). In particular, none of the Vaa3D plug-ins allowed the reconstruction of 3D neuron morphology from the confocal stacks representing neurons in their native 3D context, limiting the evaluation of the SmRG’s performance to a visual comparison. Indeed, many SoA algorithms perform extraordinarily well with low-quality images possessing noisy points, large gaps between neurites and non-smooth surfaces (Liu et al., 2016), since they were likely developed specifically for such purposes. On the contrary, they may perform modestly or even fail in reconstructing densely-packed neurons (Hernandez et al., 2018), such as PCs in the murine cerebella because the images have very different properties (i.e., a large number of pixels with high intensities). The quantitative analyses of SmRG and NeuronGPS’ outcomes showed comparable performance of the two tools in terms of reconstructed arbors. In particular, SSD and SSD% values were similar for all PCs except for PC2, in which SmRG performs drastically better than NeuronGPS. Interestingly, SmRG reached a better precision (P) and accuracy (F-score) for all used thresholds with respect to NeuronGPS.

Reconstructions of OP fibers from the DIADEM challenge resulted in a comparable performance between the SmRG and well-established tools for neuron reconstruction in terms of SD, SSD, and SSD%. Specifically, the algorithm proposed here outperformed other tools in terms of SSD, which quantifies the discrepancy between two outcomes (Peng et al., 2011a), in almost all reconstructions. On the other hand, the SmRG exhibited higher values in the SSD% score. It should be noted that the gold-standard OP reconstructions are available in.swc format. Therefore, in order to compare the volumetric SmRG’s outputs with the gold standards, firstly we were forced to reduce the information by means of a thinning algorithm. The thinning algorithm inevitably introduces mismatches, since it depends on the 3D morphology of the neuron, thus biasing the meaningfulness of the SSD% values when comparing SmrG and SoA tools (Liu et al., 2016). The precision and recall of SmRG outcomes with respect to the manually traced gold-standard provided by the DIADEM highlighted the performance of our tool with respect to SoA algorithms in the segmentation of OP fibers). In particular, for the highest values of the tolerance threshold considered, the SmRG’s average values of precision, recall and f-score were all above 95%. This suggests that, although the algorithm was developed for segmenting neurons from clarified cerebral tissue, segmentation procedures based on local signal and noise statistics may be a successful strategy for “single-neuron” settings, and thus for delivering an adaptive and generalized algorithm, applicable to different contexts.

When two neurons naturally touch each other and the signal intensity is high, SmRG may reconstruct the two objects as one, thus requiring their post-splitting. A watershed-based routine for separating neurons is provided at http://www.centropiaggio.unipi.it/smrg-algorithm-smart-region-growing-3d-neuron-segmentation. Nevertheless, we also take advantage of the lower intensity values of neuron boundaries with respect to neuron bodies. This heterogeneity in pixel intensity is exploited in SmRG and quantified by the mixture parameter. As a result, neuron boundaries with lower intensity values are not segmented, controlling for possible false merge errors.

We would like to highlight that SmRG was not compared with SoA segmentation approaches in terms of computational times. Indeed, tools such as app2, MST, SIGEN, MOST and NeuroGPS outperform our algorithm as they provide faster segmentations. However, while the Vaa3D plugins provide 3D neuron reconstructions with comparable accuracy and precision (Figure 8) for sparsely labeled data, they fail when performing segmentations of densely-packed neurons. As regards the tool described by Quan et al. (2016), the strength of SmRG lies in the amount of morphological information it provides with respect to the NeuroGPS neuron tracing.



CONCLUSION

Despite the numerous attempts addressed at 3D neuron reconstruction, little attention has been paid to delivering automatic and robust methods capable of dealing with the large variability of datasets representing densely-packed neurons, as well as for digitizing the morphology and volumetric characteristics of the segmented structures. As a result, the majority of algorithms are only able to handle with sparsely labeled data, compelling neuroscientists to manually segment images representing intricate neuronal arborisations and to reducing 3D space-filling neurons to skeletonized representations.

The SmRG, an open-source Matlab-based algorithm for the segmentation of complex structures in 3D confocal or 2-photon image stacks, overcome these setbacks. It provides an accurate reconstruction of 3D neuronal morphology acquired using confocal microscopy, which accounts for 80% of user needs in imaging facilities. The SmRG can potentially be extended to other imaging modalities (e.g., super-resolution microscopy) adopting the same statistical framework for identifying the signal and noise distribution from 3D images.

In addition, our tool allows the extraction of several useful morphological features from the segmented neurons. Preserving the volumetric information is an essential step for deciphering the Connectome. Besides structural mapping, from a biological perspective, digital 3D neuron reconstruction is crucial for the quantitative characterization of cell type by morphology and the correlation between morphometric features and genes (e.g., between wild-type and model animals) or patho-physiology (e.g., the detection of neuronal morphological anomalies in diseased individuals compared to healthy ones) (Acciai et al., 2016).

Future improvements could be obtained by coupling the NeuroGPS method (Quan et al., 2016) which rely on human strategies to separate individual neurons, with the SmRG’s one, thus leveraging on both the geometric constraints of the former and the statistical properties of the latter, taking the best from both the approaches.

In conclusion, the SmRG can facilitate the identification of the different neural types populating the brain, providing an unprecedented set of morphological information and new impetus toward connectomic mapping.
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In recent years, deep learning (DL) has become more widespread in the fields of cognitive and clinical neuroimaging. Using deep neural network models to process neuroimaging data is an efficient method to classify brain disorders and identify individuals who are at increased risk of age-related cognitive decline and neurodegenerative disease. Here we investigated, for the first time, whether structural brain imaging and DL can be used for predicting a physical trait that is of significant clinical relevance—the body mass index (BMI) of the individual. We show that individual BMI can be accurately predicted using a deep convolutional neural network (CNN) and a single structural magnetic resonance imaging (MRI) brain scan along with information about age and sex. Localization maps computed for the CNN highlighted several brain structures that strongly contributed to BMI prediction, including the caudate nucleus and the amygdala. Comparison to the results obtained via a standard automatic brain segmentation method revealed that the CNN-based visualization approach yielded complementary evidence regarding the relationship between brain structure and BMI. Taken together, our results imply that predicting BMI from structural brain scans using DL represents a promising approach to investigate the relationship between brain morphological variability and individual differences in body weight and provide a new scope for future investigations regarding the potential clinical utility of brain-predicted BMI.
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INTRODUCTION

Over the last few years, the use of deep learning (DL) has become increasingly widespread in the analysis of neuroimaging data in several different application domains (Arbabshirani et al., 2017; Litjens et al., 2017; Shen et al., 2017; Zaharchuk et al., 2018; Davatzikos, 2019). DL is a branch of machine learning that allows the construction of computational models that learn to represent data at increasing levels of abstraction to solve specific tasks (LeCun et al., 2015; Goodfellow et al., 2016). Among DL methods, deep convolutional neural networks (CNNs) (LeCun et al., 1990; Lecun et al., 1998), which are widely adopted in the computer vision community due to their capability to achieve outstanding object detection performance (Krizhevsky et al., 2012), represent a promising approach to analyzing brain imaging data in studies of psychiatric and neurological disorders (Vieira et al., 2017; Durstewitz et al., 2019). The majority of studies employing CNNs used structurl and/or functional magnetic resonance imaging (MRI) data to examine patients with Alzheimer’s disease and mild cognitive impairment (Gupta et al., 2013; Payan and Montana, 2015; Sarraf and Tofighi, 2016; Farooq et al., 2017; Meszlényi et al., 2017; Hosseini-Asl et al., 2018; Islam and Zhang, 2018; Basaia et al., 2019); although there are examples of studies classifying other mental disorders as well, such as attention-deficit hyperactivity disorder (Zou et al., 2017) and alcoholism (Wang et al., 2017).

The potential of these methods lies partly in that—in contrast to conventional mass univariate analytical methods—machine learning in general and DL in particular allow statistical inferences at the individual level (Vieira et al., 2017). Besides the diagnosis of brain disorders, machine learning can also be used to identify individual differences in the brain aging process (Cole and Franke, 2017; Cole et al., 2019). DL methods are increasingly prevalent in this application area as well, as CNNs can be used to predict the chronological age of individual subjects based on structural brain MRI scans with a mean absolute error (MAE) of 4.16 years (Cole et al., 2017). Comparable results can be obtained with CNNs using whole-brain functional connectivity patterns, derived from resting-state fMRI data, as input (Li et al., 2018; Vakli et al., 2018). These findings bear significance for two main reasons. First, they provide proof of concept that a single MRI scan contains information that is strongly related to chronological age (Cole and Franke, 2017). Second, they provide a means to quantify the individual risk of age-related cognitive decline and disease. In fact, several studies have shown that an increase in brain-predicted age relative to chronological age is associated with various neurological and psychiatric disorders, poorer physical fitness, and increased risk of mortality (Franke and Gaser, 2012; Koutsouleris et al., 2014; Cole et al., 2015, 2018; Habes et al., 2016; Löwe et al., 2016; Pardoe et al., 2017).

The above findings demonstrate how computational models aimed at predicting a certain biometric trait have potential clinical applicability. Here we investigated whether structural brain imaging and machine learning can be used for predicting a physical trait that is of significant clinical relevance—the body mass index (BMI) of the individual. The prevalence and disease burden of excessive body weight is on the rise globally (The GBD 2015 Obesity Collaborators, 2017), and there is extensive evidence showing a relationship between obesity—defined as a BMI greater than 30 kg/m2—and brain health. In particular, a number of studies have shown that obesity and associated cardiovascular disease and metabolic disorders in midlife are related to cognitive impairment and dementia in later life (Pedditizi et al., 2016; Dye et al., 2017; Alford et al., 2018; Singh-Manoux et al., 2018). To date, a large number of studies using conventional neuroimaging methods have investigated the differences in brain structure and function between obese/overweight and lean individuals. Increased BMI has been associated with reduced gray matter volume (Pannacciulli et al., 2006; Taki et al., 2008; Raji et al., 2010; Brooks et al., 2013) and white matter integrity (Stanek et al., 2011; Kullmann et al., 2015). Altered resting-state functional connectivity (Avery et al., 2017) and activation to visual food cues in brain regions involved in reward processing and inhibitory control (Carnell et al., 2012; Pursey et al., 2014; Val-Laillet et al., 2015) have also been described in obese individuals. A recent study has investigated the associations between obesity, regional gray matter volumes, and white matter microstructure, as assessed by MRI, in a large sample of 12,087 participants (Dekkers et al., 2019). The authors have found sex differences in the relationship between total body fat percentage and the volume of several subcortical regions of the brain reward system, and contrary to previous findings, a positive association between total body fat percentage and white matter microstructural coherence.

Training a machine learning algorithm to predict individual BMI based on brain imaging data has several potential applications. On the one hand, once sufficiently accurate prediction performance is achieved, it is possible to investigate which features (e.g., structural properties of the brain) contribute significantly to the predicted value. This has the potential to provide complementary information regarding the relationship between brain structure and body weight, besides conventional neuroimaging approaches. On the other hand, it can pave the way for potential clinical applications, inasmuch as the discrepancy between the true and the predicted BMI might be related to individual differences in food intake regulation and associated propensity for future weight gain. This would be analogous to that how the difference between brain-predicted and chronological age is used to quantify health risks.

Here we apply, for the first time to our knowledge, DL to predict individual BMI based on brain imaging data. In particular, we employ a CNN for BMI prediction based on T1-weighted structural MR images, as well as information about the participants’ age and sex. This approach has the advantage of being able to use minimally preprocessed neuroimaging data as input and automatically learn a hierarchical set of representations suitable for solving the task at hand (LeCun et al., 2015), as opposed to conventional neuroimaging and machine learning methods that rely on a priori manual extraction of features from raw data (Vieira et al., 2017). Based on the findings discussed above, we hypothesized that BMI could be accurately predicted based on a single MRI bran scan, and hence a CNN can be trained to effectively perform this task on novel scans as well.

Once a well-performing model has been obtained and tested on new data, a logical next step is to try to make sense of why the model predicts what it predicts. While deep neural networks are usually regarded as “black boxes,” it is possible to give reasonable explanations for their predictions without elucidating the underlying mechanisms (Lipton, 2016). Common approaches include projecting hidden layer activations back to input space to find patterns that excite feature maps the most (Zeiler and Fergus, 2014), examining the effect of occluding different parts of the input image on model performance (e.g., Vakli et al., 2018), or identifying those pixels in the input image that have the greatest impact on the model’s predictions (e.g., Simonyan et al., 2013). With regard to the latter approach, a particular method that has been used extensively in recent years to provide “visual explanations” for CNNs’ decisions is Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). This technique uses the gradient information flowing into the last convolutional layer of the CNN to highlight image regions that played an important role in predicting a certain target concept. Here we adapted this method to the context of regression based on 3D images to localize brain regions that made a significant contribution to BMI prediction.

Since the present study represents one of the first attempts to apply Grad-CAM for analyzing neuroimaging data, we also intended to investigate the neural underpinnings of individual differences in body weight using a more conventional neuroimaging approach and compare the obtained results. To this end, we performed automatic anatomical processing using the FreeSurfer software and general linear modeling to examine the relationship between brain morphology and BMI. FreeSurfer implements the automatic reconstruction of the cortical surface as well as subcortical structure segmentation using a probabilistic atlas (Dale et al., 1999; Fischl et al., 1999). The simultaneous application of the DL and automatic segmentation methods was motivated by the possibility that, as compared to this more conventional latter approach, using minimally preprocessed anatomical images and representation learning paired with gradient-based visualization would yield complementary evidence regarding the relationship between brain structure and body weight.



MATERIALS AND METHODS


Dataset

All analyses reported in this article include participants from the UK Biobank population cohort1. UK Biobank is a large prospective study comprising around 500,000 individuals recruited between 2006 and 2010 from across Great Britain who underwent physical and cognitive assessment, provided biological samples and completed questionnaires examining health and lifestyle (Allen et al., 2012). A subset of the participants (N = 22,392) underwent additional MRI from May 2014 until the data release in October 2018. Participants with a self-reported history of cancer, stroke, heart attack, deep-vein thrombosis, or pulmonary embolism diagnosed by a medical doctor (based on data-fields 2453, 6150, and 6152) were omitted from the current study. Additionally, only participants whose body mass indices were reported at the time of the imaging visit (data-field 21,001 instance 2) were included in the analyses. Finally, participants with a raw T1-weighted structural image deemed “unusable” by the UK Biobank team were also excluded. Image quality control on behalf of UK Biobank consisted of the rough manual review of T1 images supplemented by a beta-version automated quality control pipeline (Alfaro-Almagro et al., 2018). Eventually, 9518 females, aged between 45 and 80 years (mean ± SD = 62.11 ± 7.30 years), and 8420 males, aged between 44 and 80 years (mean ± SD = 63.21 ± 7.59 years), were included in the present study. For females, BMI ranged between 13.39 and 58.70 kg/m2 (mean ± SD = 26.15 ± 4.72 kg/m2), while for males, it ranged between 16.67 and 58.04 kg/m2 (mean ± SD = 27.03 ± 3.99 kg/m2).

All participants provided informed consent to participate in the UK Biobank study. The UK Biobank Research Ethics Committee (REC) approval number is 11/NW/0382. Detailed information on the consent procedure of UK Biobank are available at the following URL: http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200.



Data Acquisition and Preprocessing


Neuroimaging

Data were acquired on Siemens Skyra 3T MRI scanners (Siemens Healthcare, Erlangen, Germany) at the UK Biobank imaging centers in Cheadle, Newcastle, and Reading. A standard Siemens 32-channel RF receive head coil was applied. The brain imaging protocol included a T1-weighted 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence for structural imaging, using in-plane acceleration (iPAT = 2) and a field-of-view (FOV) of 208 × 256 × 256 with isotropic 1 mm spatial resolution.

Raw T1-weighted images were preprocessed by the UK Biobank team using an automated processing pipeline based on FSL tools (Jenkinson et al., 2012). The preprocessing pipeline included gradient distortion correction, cutting down the FOV, skull stripping, and non-linear transformation to MNI152 space (Alfaro-Almagro et al., 2018). In-house preprocessing was limited to reducing the size of the images to ease the computational burden of processing large 3D volumes. In particular, the “zoom” function of the multi-dimensional image processing package (scipy.ndimage) of the SciPy ecosystem2 was used to resample each image by a factor of 0.5 using spline interpolation, resulting in images of shape 91 × 109 × 91 with isotropic 2 mm spatial resolution.



Body Mass Index

Data on weight were collected using a Tanita BC418MA body composition analyzer (Tanita Corporation of America, Inc., Arlington Heights, IL, United States). A Seca 240 cm height measure (Seca Deutschland, Hamburg, Germany) was used to obtain standing height measurement from participants. Body mass index was calculated as follows:
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Further details on the anthropometric measurements can be obtained from the following URL: http://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=146620.



Age and Sex

The age of each participant was derived from the date of birth (data-fields 34, 52) and the date of the imaging visit (data-field 21,003 instance 2) and was given in years with precision to the month. Sex was self-reported (data-field 31) and coded as 0 for female and 1 for male.



Prediction of Body Mass Index


Neural Network Architecture

We used a CNN to predict BMI. The prediction of the model is based on three inputs from each subject:


1. T1-weighted brain image in MNI152 space, encoded in a Numpy3 array of shape 91 × 109 × 91.

2. Chronological age of the participant in years with precision to the month.

3. Sex of the participant (0 for female and or 1 for male).



The output of the network is a single scalar corresponding to the predicted BMI of the subject.

A schematic illustration of the network architecture is given in Figure 1. The network comprises repeated blocks of 3D spatially separable convolutional layers followed by batch normalization (Ioffe and Szegedy, 2015) and rectified linear unit (ReLU) activation function (Nair and Hinton, 2010). In 3D spatially separable convolutional layers, instead of convolving the input with filters of shape N × N × N, a cascade of three asymmetric filters of shapes N × 1 × 1, 1 × N × 1, and 1 × 1 × N is used. Such a factorization of convolution operations reduces the computational cost by reducing the number of parameters (Szegedy et al., 2016) and has been used effectively in 3D medical image processing (Silva et al., 2018). Filter size is N = 5 (with a stride of 1) for the first set of convolution operations and N = 3 afterward. The number of filters is eight in the first convolutional layer and is doubled at regular intervals to enable the learning of a rich set of feature representations of the input brain image. All convolutional layers used SAME padding.


[image: image]

FIGURE 1. Schematic illustration of the architecture of the convolutional neural network used for predicting body mass index. The network comprises repeated blocks of 3D spatially separable convolutional layers followed by batch normalization and ReLU, with every other block followed by a pooling layer to subsample the input. Global average pooling is used to map the feature maps of the last block to a vector (with a single scalar for each feature map) that is fed into a fully connected hidden layer followed by a single output unit for BMI prediction. Dashed lines denote concatenation, S denotes stride.


Every other batch normalization layer is followed by max pooling (filter shape 3 × 3 × 3, stride = 2) to subsample the input images, and global average pooling is implemented after the last batch normalization layer to calculate the average intensity value of each feature map computed by the last convolutional layer. The output of this operation, along with the values representing age and sex, is fed into a fully connected hidden layer with 128 units and ReLU activation function. This hidden layer is connected to a single output unit, the activation of which corresponds to the predicted BMI value.

The CNN has 231,681 parameters overall, out of which 230,961 parameters are trainable. The model was implemented in Python using TensorFlow 1.13.4 and the source code of the model along with the learnt parameters is available on GitHub: https://github.com/vaklip/cnn_3d_regression.

To examine whether information about age and sex was crucial for BMI prediction we also trained a network that was identical to the one described above, except that the values representing age and sex were not concatenated to the output of the global average pooling operation nor were they fed to the network in any other way.



Model Training

The weights of the convolutional and fully connected layers were initialized using Xavier initialization (Glorot and Bengio, 2010). The shifting and scaling parameters of the batch normalization layers were initialized to zeros and ones, respectively. The bias terms of the fully connected layers were initialized to 0.01. To train the network, we used mean squared error as the loss function, Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.0005 (momentum decay hyperparameter β1 = 0.9, scaling decay hyperparameter β2 = 0.999) and a batch size of eight. Dropout regularization (Wager et al., 2013; Srivastava et al., 2014) with a dropout rate of 0.4 was applied to the fully connected hidden layer during training.

The brain images of all participants were randomly assigned to disjoint training (N = 13938), validation (N = 2000), and test (N = 2000) sets. Only data in the training and validation sets were used for training and hyperparameter selection. The model was trained on the training set for a total of 50 epochs, and its performance was evaluated on the validation set after each epoch. A snapshot of the model parameters leading to the best validation set performance was restored and the final model was evaluated on the test set. Model performance is characterized by the MAE, standard deviation of the absolute error (STDAE), coefficient of determination (R2), root mean square error (RMSE), and Pearson’s correlation coefficient (r) between the true and predicted BMI values.

A single NVIDIA Quadro M4000 GPU was used to train the CNN, with a runtime of about 1 h per epoch.



Transfer Learning

We used transfer learning to investigate the generalizability of our approach. Transfer learning refers to the method of training a neural network on one dataset (the source domain) and then adapting the model to a different dataset and/or task (the target domain) by transfer and fine-tuning of the previously learned model weights. In our case, the UK Biobank dataset constituted the source domain and the Information eXtraction from Images (IXI) dataset5 including brain MR images from multiple sites in London constituted the target domain. We included the T1-weighted MR images of 269 subjects from the IXI dataset who fell into the age range corresponding to the UK Biobank sample: 177 females aged between 44 and 78 years (mean ± SD = 60.50 ± 8.32 years) and 115 males aged between 44 and 79 years (mean ± SD = 59.48 ± 9.05 years). These images were recorded using Philips Intera 3T (N = 96; Hammersmith Hospital) and Philips Gyroscan Intera 1.5T (N = 173; Guy’s Hospital) scanners and a FOV of 150 × 256 × 256 and spatial resolution of 1.2 mm × 0.938 mm × 0.938 mm. Images recorded at a third location (Institute of Psychiatry using a GE 1.5T system) were omitted from the current analysis due to the very low number of participants that matched the given age range (N = 23). In-house image preprocessing was limited to spatial normalization to MNI152 space and skull-stripping using the SPM12 toolbox6 and custom-made scripts running on MATLAB 2015a (MathWorks Inc., Natick, MA, United States).

Images were randomly divided into disjoint training (N = 197), validation (N = 36), and test sets (N = 36). The weights of the network were initialized to those learnt on the UK Biobank dataset and then trained on the IXI dataset for 50 epochs, using data augmentation (random rotations of maximum 5 degrees and translations of 10 voxels). The neural network architecture and training hyperparameters were the same as those used for training on UK Biobank data. A snapshot of the model parameters leading to the best validation set performance (evaluated at the end of each epoch) was restored and the final model was evaluated on the test set.



Localizing Brain Regions Relevant for BMI Prediction

In order to obtain localization maps highlighting brain regions that are important for BMI prediction, we used a modified version of the Grad-CAM (Selvaraju et al., 2017). The Grad-CAM method aims to provide visual explanations for the decisions made by a wide variety of CNNs. It uses the gradients of a given target concept flowing into the final convolutional layer to produce a coarse localization map that highlights regions in the input image that are important for predicting that concept. We applied two modifications to the original method. First, we adapted it for processing 3D images, similarly to (Wang et al., 2019). We computed the gradient of the predicted BMI-score y with respect to the feature maps An of the last convolutional layer, and performed global average pooling on these gradients to obtain an importance weight αn for each feature map:

[image: image]

where Z is the number of units in a feature map. Then, the weighted combination of the features maps was calculated to obtain the localization map L ∈ ℝu×v×w:

[image: image]

In the original formulation of Grad-CAM, which was developed to provide class-discriminative visualizations, a ReLU was applied to L in order to highlight features that have a positive influence on the class of interest, as negative values would likely belong to other classes (Selvaraju et al., 2017). Here, since our CNN performed a regression task with a single output unit, and hence we were interested in features that have either positive or negative influence on predicted BMI, we omitted this step.

Localization maps were computed for each individual in the UK Biobank test set. They were upsampled to match the size of the input images using spline interpolation (for details, see section “Neuroimaging”). Intensity values were standardized to have zero mean and unit variance. As all brain images were registered to MNI152 space, a voxelwise grand average localization map across all test subjects could be computed. The resulting map was thresholded at two standard deviations from the mean and superimposed on the ch2bet MRIcron7 template to visualize regions in the brain that made a strong contribution to BMI prediction. To investigate the robustness of the results, a grand average localization map was also computed for the training set. This localization map was visually indistinguishable from the one obtained for the test set.



Examining the Relationship Between BMI and Brain Volumetric and Morphometric Variability

Based on the visualization provided by the modified Grad-CAM method, we performed further exploratory analyses to investigate the association between BMI and morphological variability in the human brain using the UK Biobank data. To this end, we randomly selected a subset of 200 participants from the test set, with the only constraint being that the male–female ratio and the distribution of chronological age and BMI remain similar to those in the overall test set. We used FreeSurfer 6.08 to automatically parcellate the cortical surface and segment the subcortical structures in the anatomical images of these subjects (Dale et al., 1999; Fischl et al., 1999). Then we investigated the relationship between different measures of cortical and subcortical anatomy—estimated by FreeSurfer—and the true BMI of participants, as detailed below.


Subcortical Segmentation

The volume-based stream of FreeSurfer (Fischl et al., 2002, 2004) was used to quantify the volumes of left and right hemisphere subcortical structures. Subcortical structures were selected for volumetric analysis based on the regions highlighted in the localization map produced by the modified Grad-CAM method. We computed partial correlations to examine the relationship between subcortical structure volume and BMI while controlling for chronological age, sex, and overall subcortical gray matter volume. We controlled for the former two variables since they were added as covariates to the CNN model which was therefore able to adjust for structural differences between individuals of different age and sex. Partial correlations were calculated using Statistica 13.4. (TIBCO Software Inc., Palo Alto, CA, United States).



Cortical Parcellation

The surface-based stream of FreeSurfer (Dale et al., 1999; Fischl et al., 1999) was used to construct models of the boundaries between white matter and cortical gray matter (the white surface), and between gray matter and the cerebrospinal fluid (the pial surface). The triangular tessellation of these surfaces allows for the calculation of several morphometric measures at each location (vertex) of the cortex, including cortical thickness, area, and curvature. We investigated the relationship between these three measures and BMI using FreeSurfer’s Query, Design, Estimate, Contrast (QDEC) tool. Specifically, after smoothing individual subject data to the average surface with a 10-mm full-width at half maximum Gaussian kernel, a general linear model (GLM) with one of the morphometric measures as dependent variable was applied at each vertex, accounting for the effects of age, sex, and total cortical gray matter volume. False discovery rate (FDR) correction (threshold at 0.05) was applied to reduce Type I. errors associated with multiple comparisons.

Based on the grand average localization map, we directly investigated the association between the morphology of the right middle temporal gyrus and BMI. In particular, we computed partial correlations to examine the relationship between BMI and surface area, mean thickness and curvature while controlling for age, sex, and total cortical gray matter volume.



RESULTS


BMI Prediction

Overall, results showed that our CNN model can be used to predict BMI with high accuracy. Prediction error on the validation set reached a minimum after 32 epochs (MAE = 2.41 kg/m2, STDAE = 1.93 kg/m2). The model generalized well to the brain images in the test set (Figure 2): MAE = 2.48 kg/m2; STDAE = 2.09 kg/m2; RMSE = 3.24 kg/m2; Pearson r = 0.68; R2 = 0.44.


[image: image]

FIGURE 2. BMI prediction accuracy on the UK Biobank dataset. The scatterplot depicts the true (horizontal axis) and the CNN-predicted BMI (vertical axis) on the test set (N = 2000). A least squares regression line (continuous blue) is superimposed on the scatterplot.


When training the network without feeding information about age and sex to it, it took longer to reach a minimum of prediction error on the validation set (after 41 epochs, MAE = 2.36 kg/m2, STDAE = 2.09 kg/m2). Nevertheless, the model generalized well to the test set images: MAE = 2.41 kg/m2; STDAE = 2.11 kg/m2; RMSE = 3.20 kg/m2; Pearson r = 0.7; R2 = 0.46.

When fine-tuning learned weights on the IXI dataset, validation error reached a minimum after 44 epochs (MAE = 2.53 kg/m2; STDAE = 2.00 kg/m2). We obtained reasonable BMI prediction on the IXI test set (Figure 3; MAE = 3.00 kg/m2; STDAE = 2.12 kg/m2; RMSE = 3.67 kg/m2; Pearson r = 0.49; R2 = 0.21), albeit it was below the performance obtained in the case of the UK Biobank dataset.


[image: image]

FIGURE 3. BMI prediction accuracy on the IXI dataset. The scatterplot depicts the true (horizontal axis) and the CNN-predicted BMI (vertical axis) on the test set (N = 36). A least squares regression line (continuous blue) is superimposed on the scatterplot.




Localization Map

The grand average localization map across all the 2000 subjects’ images in the test set is depicted in Figure 4. The map highlights several regions that, on average, have a strong influence on predicted BMI. These regions include the left caudate, the left medial temporal lobe in the vicinity of the amygdala, and the lateral surface of the right temporal cortex, encompassing the middle temporal gyrus.


[image: image]

FIGURE 4. Grand average localization map highlighting brain regions that strongly contribute to predicted BMI. Activation values are z-scored and thresholded at | Z| > 2. The localization map is superimposed on the ch2bet MRIcron template with MNI coordinates displayed below each slice.




Brain Volumetric and Morphometric Analyses

Based on the localization map, two subcortical regions, the left caudate and amygdala, were selected for volumetric analysis in a subset of the test subjects (Figure 5). On the one hand, there was no significant partial correlation between the volume of the caudate and the true BMI of the subjects when controlling for chronological age, sex, and overall subcortical gray matter volume (r = 0.028, p = 0.7). This may be accounted for by sex differences in the relationship between caudate volume and BMI (Figure 5, left panel). On the other hand, a significant partial correlation between the volume of the amygdala and BMI was observed (r = 0.19, p = 0.008), showing that increased BMI is associated with increased amygdalar volume.


[image: image]

FIGURE 5. BMI and subcortical volumes. Scatterplots depict the volumes of the caudate (left panel) and amygdala (right panel) in the left hemisphere and the true BMI values of male (N = 93) and female (N = 107) subjects in the test set.


Regarding the analysis of cortical morphometry, no significant association between BMI and cortical thickness or curvature was observed after correcting for multiple comparisons (FDR threshold at 0.05). However, a positive relationship was observed between BMI and the area of the isthmus cingulate in the right hemisphere (Figure 6). The direct tests (partial correlations) of the association between BMI and morphological measures of the right middle temporal gyrus yielded no significant results.


[image: image]

FIGURE 6. Vertex-wise analysis of surface area using FreeSurfer. BMI is significantly associated with surface area in a right hemisphere cluster encompassing the isthmus cingulate cortex (when age, sex, and total cortical gray matter volume are controlled for). The cluster survived false discovery rate correction at threshold p < 0.05.




DISCUSSION

In this proof-of-concept study, we established that a deep CNN can be used to predict individual BMI with high accuracy, based on a single structural MRI brain scan and information about age and sex. This finding is in line with the results of several previous studies showing gray and white matter structural alterations in obese individuals (Brooks et al., 2013; Kullmann et al., 2015; Dekkers et al., 2019). We also demonstrated that gradient-based visualization can be used effectively to highlight brain regions that play an important role in BMI prediction. More specifically, we used the Grad-CAM method, based on the gradient information flowing into the last convolutional layer of the CNN (Selvaraju et al., 2017), and adapted it to the context of regression using 3D images to identify brain regions that, on average, made a strong contribution to predicted BMI values. Our results suggest that, in addition to conventional neuroimaging methods and analytical techniques, the use of DL along with visual explanations for model predictions is a suitable approach for identifying the brain structural correlates of individual variability in body weight.

In particular, the localization map produced by the Grad-CAM method highlighted a set of brain regions including a portion of the left medial temporal lobe in the vicinity of the amygdala. The relationship between amygdalar volume and BMI was also confirmed by using FreeSurfer-based subcortical segmentation and partial correlation correcting for age and sex, which showed that higher BMI was associated with larger amygdalar volume. Previous studies using voxel-based (Taki et al., 2008) and tensor-based morphometry (Raji et al., 2010) found a relationship between BMI and the volume of gray and white matter in the medial temporal lobe. With regard to the amygdala, a positive relationship between BMI and amygdalar volume was already found in children and adolescents (Perlaki et al., 2018), young adults (Orsi et al., 2011), and elderly subjects (Widya et al., 2011); although a negative association has also been described (Kharabian Masouleh et al., 2016). Taken together, these results show that the DL approach paired with gradient-based visualization and more conventional neuroimaging methods provide converging evidence regarding the link between body weight and amygdalar structure. This is in accordance with the results of functional neuroimaging studies providing evidence for the involvement of the amygdala in processing visual food cues (van der Laan et al., 2011; Tang et al., 2012; van Bloemendaal et al., 2014).

Besides the commonalities, several discrepancies have been observed between the results of the Grad-CAM-based localization and the vertex-wise analysis using FreeSurfer. On the one hand, the vertex-wise analysis yielded a significant association between BMI and the surface area in a region corresponding to the isthmus cingulate in the right hemisphere. While at least one previous study reported a relationship between BMI and the morphology of the posterior cingulate cortex (Kharabian Masouleh et al., 2016), this region did not light up in the Grad-CAM-based localization map. On the other hand, several other brain structures were deemed important based on the localization map, in the case of which the conventional automatic brain segmentation approach failed to confirm an association with BMI, namely the lateral surface of the right temporal cortex and a region encompassing the left caudate nucleus. With regard to the latter, a previous study has shown that the volume of the caudate heads bilaterally show a positive association with BMI in men, after adjusting for age, lifetime alcohol intake, history of hypertension, and diabetes mellitus (Taki et al., 2008). Sex differences have also been shown to be manifest regarding the relationship between total body fat and caudate volume (Dekkers et al., 2019). Our results regarding the association with BMI are also indicative of such differences (Figure 5, left panel). In addition, the discrepancy between our observations with DL and conventional approaches is likely to stem from the differences in the applied methodologies as well. In our study, we used FreeSurfer for the automated segmentation of predefined subcortical structures and examined the linear relationship between BMI and a single scalar estimate of the volume of the caudate. FreeSurfer segmentation includes a series of pre-processing steps applied to the MRI volumes, followed by labeling the volumes based on a probabilistic atlas built from a set of hand-labeled images, as well as subject-specific measurements (Fischl et al., 2002, 2004). In contrast, the CNN is fed with minimally preprocessed images and learns a series of transformations to map those images to the corresponding BMI values. Each of these transformations map the representation of the input at one level into a representation at a slightly more abstract level (LeCun et al., 2015). Compared to the conventional automated brain segmentation methods, visualizations based on these more abstract representations may provide additional information with regard to the relationship between brain architecture and body weight. Similarly, several recent studies applied the Grad-CAM method to highlight brain regions that made an important contribution to predicting depression and epilepsy (Pominova et al., 2018), brain age (Bermudez et al., 2019), and Alzheimer’s disease (Feng et al., 2018) based on structural MRI data.

Besides being a promising tool for neuroscientific investigation, brain-predicted BMI may also have practical utility. We managed to adapt the CNN model to a novel dataset, suggesting that our method is more generally applicable to a variety of different MR scanner types. Coming back to the relationship between the amygdala and body weight, this brain structure has been shown to be involved in the evaluation of food cues (Siep et al., 2009) and to constitute a part of a neural circuitry involved in the regulation of food craving (Dietrich et al., 2016). In a recent review, it has been argued that structures of the medial temporal lobe, in particular the amygdala and the hippocampus, may play an important role in the regulation of body weight, and that the amygdala is crucial for the regulation of feeding behavior based on environmental cues (Coppin, 2016). Based on the localization map produced by the Grad-CAM method, it is reasonable to hypothesize that brain-predicted BMI may be related to individual differences in the processing of food stimuli and cue-induced feeding. On this basis, one intriguing possibility is that increased brain-predicted BMI relative to the actual BMI might reflect a greater propensity to weight gain. This mode of application is similar to how the difference between brain-predicted and chronological age might have clinical utility (Cole and Franke, 2017). However, it is important to note that brain structural alterations might not be the cause but the consequence of obesity. In fact, obesity-driven neuroinflammation has been shown to affect several brain regions including the hippocampus and the amygdala (Guillemot-Legris and Muccioli, 2017). Further research is necessary to examine whether and how brain-predicted BMI is related to pathophysiological processes and eating behavior.



CONCLUSION

Our findings provide proof of concept that individual BMI can be predicted with high accuracy from a single MRI scan using DL methods and suggest a relationship between the morphology of subcortical structures and body weight.
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Applications based on electroencephalography (EEG) signals suffer from the mutual contradiction of high classification performance vs. low cost. The nature of this contradiction makes EEG signal reconstruction with high sampling rates and sensitivity challenging. Conventional reconstruction algorithms lead to loss of the representative details of brain activity and suffer from remaining artifacts because such algorithms only aim to minimize the temporal mean-squared-error (MSE) under generic penalties. Instead of using temporal MSE according to conventional mathematical models, this paper introduces a novel reconstruction algorithm based on generative adversarial networks with the Wasserstein distance (WGAN) and a temporal-spatial-frequency (TSF-MSE) loss function. The carefully designed TSF-MSE-based loss function reconstructs signals by computing the MSE from time-series features, common spatial pattern features, and power spectral density features. Promising reconstruction and classification results are obtained from three motor-related EEG signal datasets with different sampling rates and sensitivities. Our proposed method significantly improves classification performances of EEG signals reconstructions with the same sensitivity and the average classification accuracy improvements of EEG signals reconstruction with different sensitivities. By introducing the WGAN reconstruction model with TSF-MSE loss function, the proposed method is beneficial for the requirements of high classification performance and low cost and is convenient for the design of high-performance brain computer interface systems.

Keywords: EEG signals reconstruction, generative adversarial network, Wasserstein distance, sampling rate, sensitivity


1. INTRODUCTION

Electroencephalography (EEG) (Cecotti and Graser, 2011; Narizzano et al., 2017; Freche et al., 2018) is one of the most important non-invasive neuroimaging modalities used in cognitive neuroscience research (Mullen et al., 2015; Mete et al., 2016; Luo et al., 2018b) and brain-computer interface (BCI) development (Ahn and Jun, 2015; Arnulfo et al., 2015; Sargolzaei et al., 2015; Kumar et al., 2017). However, EEG-based cognitive neuroscience and BCI fields currently face a bottleneck in that high sampling rate and high-sensitivity EEG amplifier hardware are extremely expensive and generally complicated to operate for collecting signals (Jiang et al., 2017). Ideally, EEG amplifiers with high sampling rates and sensitivities are preferred to record high-resolution brain activities underlying different stimuli. Lowering the sampling rate and sensitivity may influence the utility of acquired signals (Wu et al., 2015). Therefore, extensive efforts have been dedicated to reconstructing high-sampling-sensitivity EEG (HSS-EEG) signals from low-sampling-sensitivity EEG (LSS-EEG) signals to improve performance. The up-sampling operation is one of the conventional time-series reconstruction methods. By using an up-sampling operation, the reconstructed signals are up-sampled and with different sensitivity. The reconstruction methods can be divided into three categories:

1. Reconstruction by interpolation (Erkorkmaz, 2015).

2. Reconstruction by mathematical modeling (Naldi et al., 2017).

3. Reconstruction by deep neural networks (Jin et al., 2017).

Among the methods for reconstructing EEG signals by interpolation algorithms, such as bilinear interpolation, nearest neighbor interpolation, and spline interpolation, several are based on the successive assumption of signal values (Marques et al., 2016). Such an assumption does not consider the complexity of signals, and, therefore, it is difficult to represent brain activity from reconstructed signals. Reconstruction based on mathematical models, such as compressive sensing, subspace projection, and frequency transformation, optimizes an objective function that incorporates mathematical models and prior information in the different domains of the signals. These algorithms greatly improve signal performance and quality; however, they may still lose the details representing brain activity and suffer from artifacts. In addition, reconstruction by a single mathematical model and a single domain has simplified the range of applications of reconstructed EEG signals. These algorithms greatly improve signal performance and quality (Choudhary et al., 2016); however, they may still lose the details representing brain activity and suffer from artifacts. Additionally, the high computational cost of constructing mathematical models remains another potential risk in practical applications.

In contrast to interpolation and mathematical models, the recent explosive development of deep neural networks (DNNs) has shed light on novel opinions and promised potential in the field of signal reconstruction. In recent years, most DNNs studies have focused on image signal reconstruction from the perspective of noise, super-resolution, and denoising (LeCun et al., 2015). A state-of-the-art image reconstruction performance was obtained by the new game theoretic generative model of generative adversarial networks (GANs) (Goodfellow et al., 2014). GANs are used to generate images from artificial data, construct high-resolution (HR) images from low-resolution (LR) copies (Ledig et al., 2017), and denoise CT images from noisy images (Yang et al., 2018), and such models achieve the best performance in reconstruction tasks. Inspired by the applications of GANs in the image reconstruction field, researchers have focused on reconstructing EEG signals using GANs. Research on “GANs conditioned by brain signals” (Kavasidis et al., 2017) has used GANs to generate images seen by subjects from recorded EEG signals. Another deep EEG super-resolution study used GANs to produce HR EEG data from LR samples by generating channel-wise up-sampled data to effectively interpolate numerous missing channels (Hartmann et al., 2018). Such an algorithm produced higher spatial resolution EEG signals to improve performance.

Although GANs have been used to reconstruct images from EEG signals with a visualized spatial feature space, the sampling rate and sensitivity resolution in the temporal feature space are still two key limitations of EEG signals. To counterbalance the performance of EEG signals and the cost of EEG amplifiers, we propose using a GAN with the Wasserstein distance (WGAN) model as the discrepancy measure between different sampling rates and sensitivities and a spatial-temporal-frequency loss function that computes the difference between EEG signals in an established feature space. The GAN/WGAN architecture is used to encourage the reconstructed LSS-EEG signals to share the same distribution as the HSS-EEG signals. Because EEG signals are multi-channels time-series data, instead of using the mean square error by temporal features as the loss function, we propose a novel spatial-temporal-frequency loss function, which is robust enough for the EEG signals, to extract the spatial-temporal-frequency features for reconstruction. By using the GAN/WGAN architecture and the carefully designed loss function to reconstruct HSS-EEG signals from LSS-EEG signals, this study has made two contributions:

1. The GAN/WGAN architectures are trained by EEG signals of different sampling rates and different sensitivities to compare the classification performances of the reconstructed EEG signals.

2. The spatial-temporal-frequency loss is applied to maintain robustness of GAN/WGAN architectures training, and the loss function helps reconstruction signals to obtain more discriminant patterns.



2. METHODS


2.1. EEG Signal Reconstruction Model

For the reconstruction of EEG signals, let [image: image] denote the LSS-EEG signals from distribution PL, and [image: image] denote the HSS-EEG signals from the real distribution PH. In the definition, N denotes the number of channels, and T1 and T2 denote the samples of one trial for LSS-EEG signals and HSS-EEG signals during recordings, respectively. S denotes the number of trials for the motor-based tasks. The reconstruction goal is to formulate a function f(z) that projects LSS-EEG signals z to HSS-EEG signals x:

[image: image]

In fact, the reconstruction function maps the LSS-EEG samples from PL into a certain distribution PC, and our goal is to adjust a certain distribution PC to make it close to the real distribution PH by varying the function f(z). The reconstruction has two procedures with GAN. In the generation procedure, the object is to adjust EEG samples from distribution PL to distribution PC. In the discriminator procedure, the object is to adjust EEG samples from distribution PC to distribution PH. The reconstruction procedure can ultimately be treated as a procedure to adjust EEG samples from one distribution to another.

Typically, since EEG signals are nonlinear and non-stationary, the noise model in such signals is complicated, and the reconstruction mapping relationship is non-uniformly distributed across the signals. Thus, there is no clear indication of how the distributions of LSS-EEG and HSS-EEG signals are related to each other. It is difficult to reconstruct LSS-EEG signals using conventional methods. However, the uncertainties in the noise model and the reconstruction mapping relationship can be ignored by using deep neural networks (DNNs), as the DNNs can efficiently learn high-level features from nonlinear and non-stationary signals and reconstruct a representation of the data distribution from modest-sized signal patches. Therefore, the GAN framework based on DNN is suitable for EEG signal reconstruction. In summary, a modified GAN framework with the Wasserstein distance and temporal-spatial-frequency (TSF) loss is introduced to reconstruct HSS-EEG signals from LSS-EEG signals.



2.2. GAN With Wasserstein Distance

The GAN framework consists of two opposing neural networks, a generator G, and a discriminator D, that are optimized to minimize a two-player min-max problem (Goodfellow et al., 2014). The discriminator is trained to distinguish the generated samples from the real samples, while the generator is trained to generate fake samples that are not determined as fake by the discriminator. For the reconstruction of EEG signals, we further defined the discriminator DθD and the generator GθG to solve the min-max problem:

[image: image]

where E(·) denotes the expectation operator. When the discriminator meets the real data, it will satisfy DθD(x) = 1 to discriminate the real data. Here, DθD(x) = 1 reaches the expectation for logDθD(x). When the discriminator meets the generated data, it will satisfy DθD(GθG(z)) = 0 to discriminate the generated data. Here, DθD(GθG(z)) = 0 reaches the expectation for log(1−DθD(GθG(z))). Therefore, the minimax optimal function is designed by the expectation operator. The general reconstruction idea is to train a generator for the purpose of fooling a differentiable discriminator that is trained to distinguish reconstructed HSS-EEG signals from real HSS-EEG signals. In constructing EEG signals, GANs suffer from remarkable training difficulty due to the nonlinear and non-stationary characteristics of EEG signals. To overcome the training problem of the original GAN framework, instead of using Jensen–Shannon divergence, the WGAN framework uses the Wasserstein distance to compare sample distributions (Gulrajani et al., 2017). From the definition of WGAN, the min-max problem optimized by DθD and GθG can be written:

[image: image]

In the min–max problem, the Wasserstein distance is estimated by the first two terms. The last term is the gradient penalty for network regularization. In the penalty term, PR denotes the distribution of uniform samples [image: image] along straight lines connecting pairs of generated and real samples. [image: image] is the gradient calculator, and the parameter λ is a constant weighting parameter for the penalty term. In fact, the WGAN framework removes the log function and drops the last sigmoid layer to keep the gradient while training the min-max problem. The discriminator DθD and the generator GθG are trained alternatively by optimizing one and updating the other.



2.3. TSF-MSE Loss Function

To allow the generator to transform the data distribution from a low sampling rate and sensitivity to a high sampling rate and sensitivity, another part of the loss function needs to be added to the GAN/WGAN architecture to retain the detail and information content of the EEG signals. A widely used loss function for signal details and information contents is the mean square error (MSE) loss function (Yang et al., 2018). Typically, as the common MSE is computed by minimizing the point-wise error in image processing, the temporal MSE is computed by minimizing the time sampling point-wise error between a LSS-EEG patch and a HSS-EEG patch by the time step:

[image: image]

where ||·||F denotes the Frobenius norm, LT−MSE denotes the temporal MSE for the generator GθG, t is the time step of real EEG signals and generated EEG signals, and T is the number of time steps for each batch. In contrast to images, EEG signals are multi-channel time-series data, and the spatial and frequency features must be considered for reconstruction. Therefore, in addition to the temporal MSE LT−MSE between time steps, the spatial MSE LS−MSE between channels and the frequency MSE LF−MSE between signal batches also need to be considered for encouraging the GAN/WGAN architecture to construct more accurate HSS-EEG signals. Recently, common spatial patterns (CSP) have been widely used to extract spatial features from EEG signals (Luo et al., 2018a), and power spectral density (PSD) features are widely used to extract frequency features from EEG signals (Petroff et al., 2016). The CSP algorithm is used to compute the optimal projection vectors to project the original EEG signal to a new space to obtain good spatial resolution and discrimination between different classes of EEG signals. The PSD algorithm is used to compute the power values on specific frequencies to compose a spectra. Using these two algorithms, the spatial MSE LS−MSE and the frequency MSE LF−MSE are defined for the generator:

[image: image]
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where CSP(·) and PSD(·) are the CSP feature and PSD feature extractor, respectively. c is the channel of real EEG signals and the same of the generated EEG signals, C is the number of channels, n is the batch of real EEG signals and the same as that of the generated EEG signals, and N is the number of batches. For convenience, the TSF loss is computed by weighting three such MSE losses:

[image: image]

where λT, λS, λF are the weights of three such different MSE losses, respectively. Datasets with different sampling rates and sensitivities will obtain different weights, and, thus, the values of the weights will be determined by experiments.

In addition, to confirm that the EEG signals are temporally and spatially coherent, a regularization loss LTV(GθG) based on total variation is used in the generator:

[image: image]

where ∇z(·) is the gradient calculator; the gradient regularization loss will encourage temporal and spatial coherence of the reconstruction. Combining Equations (3), (7), and (8), the overall joint reconstruction loss function is expressed as

[image: image]

where λ1 and λ2 are the weights for controlling the trade-off among the WGAN adversarial loss, the TSF-MSE loss and the TV loss.



2.4. Network Structures

The proposed WGAN-EEG reconstruction framework is illustrated in Figure 1. The WGAN-EEG framework consists of three parts to reconstruct HSS-EEG signals from LSS-EEG signals. For the first part of the deep generator GθG, “B residual blocks” with an identical layout that was proposed by “Kaiming He” (He et al., 2016) are employed in the generator network. To facilitate the high sensitivity of EEG signals, 16 “B residual blocks” are applied to LSS-EEG signals to extract deep features for the generator. In each “B residual block,” following the common usage of the deep learning community, two convolutional layers with small 3*3 kernels, 1 stride, and 64 feature maps (k3n64s1) are followed by a batch-normalization layer (BN) and the ReLU activation function (Ioffe and Szegedy, 2015). To increase the sampling rate of the input EEG signals, the trained deconvolutional layer (stride = 0.5) is followed by “B residual blocks” to increase the sampling rate. In real-world application, the WGAN-EEG architecture is trained well to fit HSS-EEG signals before usage. In the usage scenario, the recorded LSS-EEG signals are incorporated into the well-trained architecture to reconstruct HSS-EEG signals to improve the sensitivity.


[image: Figure 1]
FIGURE 1. The architecture of the WGAN-EEG. The WGAN-EEG framework consists of three parts to reconstruct HSS-EEG signals from LSS-EEG signals. For the first part of the deep generator, “B residual blocks” with an identical layout are employed in the generator network. The second part of the WGAN-EEG framework is the TSF-MSE loss calculator. The third part of the WGAN-EEG is used to discriminate real HSS-EEG signals from generated HSS-EEG samples.


The second part of the WGAN-EEG framework is the TSF-MSE loss calculator, which is realized in Figure 1. The reconstructed output HSS-EEG signals GθG(z) from the generator GθG and the ground truth HSS-EEG signals x are fed into the calculator to extract the CSP features and the PSD features. Then, using the extracted features, the TSF-MSE loss is computed by Equations (4), (5), (6). The reconstruction error computed by the loss function is then back-propagated to update the generator network's weights.

The third part of the WGAN-EEG used to discriminate real HSS-EEG signals from generated HSS-EEG samples, the discriminator network DθD, is shown in Figure 2. Here, we followed the architectural guidelines for the discriminator to use the LeakyReLU activation function and avoid max-pooling along the network (Zhang et al., 2017). The discriminator network contains eight convolutional layers with an increasing number of filter kernels by a factor of 2. In fact, the convolutional kernels are increased from 64 to 512 kernels, and the stride is alternatively increased from 1 to 2 to reduce the EEG signal sampling rate when the number of features is doubled. In the discriminator, each convolutional layer is followed by a LeakyReLU activation function and a batch-normalization layer. After eight convolutional layers, there are two FCN layers, of which the first layer has 1,024 outputs with the LeakyReLU activation function, and the second layer has a single output. Following the instructions of the WGAN (Gulrajani et al., 2017), the discriminator of the WGAN-EEG has no sigmoid cross entropy layer.


[image: Figure 2]
FIGURE 2. Details of the discriminator in the WGAN-EEG. We followed the architectural guidelines for the discriminator to use the LeakyReLU activation function and avoid max-pooling along the network. The discriminator network contains eight convolutional layers with an increasing number of filter kernels by a factor of 2. After eight convolutional layers, there are two FCN layers, of which the first layer has 1,024 outputs with the LeakyReLU activation function, and the second layer has a single output. Following the instructions of the WGAN, the discriminator of the WGAN-EEG has no sigmoid cross entropy layer.


The WGAN-EEG framework is trained by using EEG signal batches and applied on the entity of each signal trial. The details of training the WGAN have been described in the experiments.




3. RESULTS


3.1. Experimental Datasets

To explore the feasibility and performance of the proposed algorithm, three EEG signal datasets with different sampling rates and sensitivities are applied to train and evaluate the proposed networks. Table 1 illustrates the details of these three different EEG datasets.

(1) Action Observation (AO) dataset (Luo et al., 2018b): The AO dataset1 was collected from our previous research on different speed modes during AO. The EEG signals were acquired from the “NeuroScan SymAmp2” device with 64 channels, and the sampling rate and sensitivity were 250 Hz and 0.024 μV/bit, respectively. In this dataset, six subjects were invited to observe a robot's actions at four different speeds. Thus, the dataset had 24 subsets for each subject in each AO speed mode. Each subset contained 384 trials with 192 trials of left leg movements and 192 trials of right leg movements for a binary classification, and each trial lasted 5 s. To train the GAN/WGAN, a “leave-one-rest” strategy is used for training. In our pre-training experiments, more signals caused a problem of over-fitting and a large time complexity for GAN/WGAN training. Since 13 subsets containing 4,992 trials were enough to obtain the best performance, we left one subset and randomly selected 13 subsets from the remaining 23 subsets for training; the left subset was reconstructed after obtaining the well-trained GAN/WGAN. Therefore, all 24 subsets were reconstructed through 24 rounds of the above procedure. Because the AO dataset was acquired at a sampling rate of 250 Hz, we down-sampled all trials of EEG samples to the sampling rate of 125 Hz for the sake of sampling rate reconstruction.

(2) Grasp and Lift (GAL) dataset (Luciw et al., 2014): The GAL dataset2 recorded EEG signals while the subjects grasped and lifted an object. The EEG signals were acquired using the “BrainAmp” device with 32 channels, and the sampling rate and sensitivity were 500 Hz and 0.1 μV/bit, respectively. In this dataset, 12 subjects executed six movements for 1,560 trials, and each trial lasted 0.5 s; thus, the classification of EEG signals contained six categories. To train the GAN/WGAN, a “leave-one-rest” strategy is used for training. The 9,360 trials carried out by six subjects were enough to train the GAN/WGAN, and we thus left one subject's signals and randomly selected six subjects' signals from the remaining 11 subjects' signals for training; the left subjects' signals were reconstructed after obtaining the well-trained GAN/WGAN. Therefore, all 12 subjects' signals were reconstructed through 12 rounds of the above procedure. In the experiment, to validate the reconstruction of the sampling rate, all signals were down-sampled to a sampling rate of 250 Hz.

(3) Motor Imagery (MI) dataset (Tangermann et al., 2012): The MI dataset3 was from the “BCI competition IV dataset 2a.” Nine subjects participated in the MI experiment during which EEG signals were recorded while the subject imagined his/her own leg, foot, and tongue movements, and each trial lasted for 4 s. There were 22 channels, and the sampling rate and sensitivity were 250 Hz and 100 μV/bit, respectively. In this dataset, nine subjects executed four motor imagery tasks, and each subject had 576 trials of EEG signals for a four categories for classification.To train the GAN/WGAN, a “leave-one-rest” strategy is used for training. The 4,032 trials carried out by seven subjects were enough to train the GAN/WGAN, and we thus left one subject's signals and randomly selected seven subjects' signals from the remaining eight subjects' signals for training; the left subjects' signals were reconstructed after obtaining the well-trained GAN/WGAN. Therefore, all nine subsets were reconstructed through nine rounds of the above procedure. For the same purpose, all trials of EEG signals were down-sampled at a sampling rate of 125 Hz.


Table 1. Details of the three different EEG datasets.
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3.2. Training Details

In the training procedure, we trained six models using the GAN/WGAN framework within three different datasets. All down-sampled training EEG samples were fed into the generator, and the real training EEG samples were fed into the discriminator. The generated EEG samples and the real EEG samples were discriminated by the TSF-MSE loss function to update the generator and the discriminator for solving the min-max problem. Because the AO dataset and the GAL dataset have high sampling rates and a high number of channels, models for these two datasets were trained over 30 epochs. However, the MI dataset has a lower sampling rate and fewer channels, and, therefore, this dataset was trained over 20 epochs. Each epoch traverses all the data in the corresponding dataset. According to the different devices used to record EEG signals, the generators of the GAN/WGAN frameworks were specified by different scopes of generation for different datasets. We specified the generation scopes of [−40, 40 μV], [−50, 50 μV], and [−100, 100 μV] for the AO dataset, the GAL dataset, and the MI dataset, respectively.

In our experiments, we randomly extracted pairs of signal patches from down-sampled EEG signals and real EEG signals as our training inputs and labels. The patch size is N*τ, where N is the channel number for different datasets, and τ is the EEG samples from the temporal domain. Since the limited trials of EEG signals (<500 trials for one subject) and smaller values of τ will construct more accurate sequential relationships for the EEG signals, following our previous research (Luo et al., 2018a), we cropped a minimal length for the training of the deep neural network. According to the pre-experiment, we set τ = 12 to satisfy the minimal length for the convolution in the GAN/WGAN architecture. In the optimization of the generator and the discriminator, according to current research (Basu et al., 2018), the GAN models were optimized by the Adam algorithm (Basu et al., 2018), and the WGAN models were optimized by the RMSprop algorithm (Mukkamala and Hein, 2017). The optimization procedure for the GAN/WGAN architectures is shown in Figure 3. The mini-batch size was set to 32. Following the instructions of the GAN/WGAN frameworks (Goodfellow et al., 2014; Gulrajani et al., 2017), the Adam optimizer's hyperparameters were set as [image: image], and the RMSprop optimizer's hyperparameters were set as α = 10−5, β = 0.9. The hyperparameter for the gradient penalty of WGAN framework was set as λ = 10 according to the suggestion in the reference (Gulrajani et al., 2017). The hyperparameters for the SRGAN/SRGAN frameworks in Equation (9) were set as [image: image] and [image: image] by the suggestions of reference (Ledig et al., 2017). The hyperparameters in the TSF-MSE loss function of Equation (7) and the joint reconstruction were set of different values according to the experimental experience of each reconstruction round, and the average values with standard deviations of all parameters in three datasets are given in Table 2. The optimization processes for the GAN framework and the WGAN framework are similar; however, some places are changed to the corresponding optimizer and the loss functions (see Figure 3).


[image: Figure 3]
FIGURE 3. The optimization procedure for the GAN/WGAN. Following the instructions of the GAN/WGAN frameworks, the Adam optimizer's hyperparameters are set as α = 1e−5, β1 = 0.5, β2 = 0.9, and the RMSprop optimizer's hyperparameters are set as α = 1e−5, β = 0.9. The hyperparameter for the gradient penalty is set as λ = 10 according to the suggestion in the reference. The hyperparameters in the TSF-MSE loss function and the joint reconstruction are set as λT = 0.5, λS = 0.25, λF = 0.25, λ1 = 0.1, λ2 = 0.1 according to our experimental experience. The optimization processes for the GAN and the WGAN are similar, except some places are changed to the corresponding optimizer and the loss functions.



Table 2. The hyperparamter λT, λS, λF tuning of the novel TSF-MSE loss function for all experiments.
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The GAN/WGAN frameworks were implemented in Python 2.7 with the Tensorflow 1.8 library. Two NVIDIA 1080Ti GPUs were used in this study.



3.3. Network Convergence

To visualize the convergence of the GAN/WGAN frameworks, the conventional temporal MSE, frequency MSE, spatial MSE, the proposed TSF-MSE losses, and the Wasserstein distance for validation of three different datasets were computed according to Equations (2), (3), (4), and (5). Figure 4 shows the averaged temporal MSE, frequency MSE, spatial MSE, and TSF-MSE losses vs. the number of epochs for different datasets within the GAN/WGAN frameworks.


[image: Figure 4]
FIGURE 4. The averaged MSE and Wasserstein distance estimations for training the GAN/WGAN. In the four figures, all of the iterative curves decreased rapidly within the first 10 epochs (each epoch contains 10 errors recording), and the initial decreases indicated that these two metrics are positively correlated for the EEG signal reconstruction. However, for each dataset or using GAN/WGAN frameworks, the loss results of TSF-MSE are lower than the loss results of conventional temporal, frequency, and spatial MSE. In addition, of these four losses, the WGAN frameworks oscillate in the convergence process, while the GAN frameworks are smoothed in the convergence process. (A) Temporal-spatial-frequency loss, (B) Temporal loss, (C) Frequency loss, (D) Spatial loss.


From Figures 4A–D, for a given framework and dataset, we have compared the variations and differences between the conventional temporal MSE, frequency MSE, spatial MSE, and our proposed TSF-MSE. In the four figures, all of the iterative curves are shown to have decreased rapidly within the first 10 epochs (each epoch contains 10 error recordings), and the initial decreases indicated that these two metrics are positively correlated for the EEG signal reconstruction. However, for each dataset or when using GAN/WGAN frameworks, the loss results of TSF-MSE were lower than the loss results of conventional temporal MSE, frequency MSE, and spatial MSE. In addition, of these four losses, the WGAN frameworks oscillated in the convergence process, while the GAN frameworks smoothed in the convergence process. Comparing the oscillation of losses, the TSF loss exhibited varied smoothing for the WGAN framework compared to the GAN framework for each dataset. These observations of network convergence suggested that the conventional MSE losses and our proposed TSF-MSE loss have different focuses within the GAN/WGAN frameworks. By applying the generators, the difference between conventional MSE losses and our proposed TSF-MSE loss will be further revealed in the reconstructed EEG signals.

Figure 5 illustrates the Wasserstein distance estimation vs. the number of epochs for three different datasets. The plotted Wasserstein values were estimated by the definition of −Ex~PH[DθD(x)]+Ez~PL[DθD(GθG(z))] in Equation (3). From the figure, we have found a reduction in the Wasserstein distances as the number of epochs increased, but different datasets have different decay rates of the reducing Wasserstein distance. For the curves of the three datasets, we noted that the Wasserstein distance we computed is a surrogate that has not been normalized by the total number of EEG signal samplings, and, therefore, the curves would have decreased to close to zero after 100 epochs by using the normalization for the EEG signals.
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FIGURE 5. The Wasserstein distance estimation vs. the number of epochs for three different datasets. The plotted Wasserstein values are estimated by the definition of −Ex~PH[DθD(x)]+Ez~PL[DθD(GθG(z))] in Equation (3). For the curves of these three datasets, we note that the Wasserstein distance we computed is a surrogate that has not been normalized by the total number of EEG signal samplings, and, therefore, the curves would have decreased to close to zero after 100 epochs by using the normalization for the EEG signals.




3.4. Reconstruction Results

To show the reconstruction effects of the GAN/WGAN frameworks with our proposed TSF-MSE loss function, we considered two different aspects of the reconstruction results. The first one was the sampling rate reconstruction by the same sensitivity signals' GAN/WGAN frameworks, which is shown in Figure 6. The second one was the sensitivity rate reconstruction by the different sensitivity signals' GAN/WGAN frameworks, which is shown in Figure 7. Since the proposed reconstruction method used a novel TSF-MSE loss function for the training of GAN/WGAN architectures, the statistical temporal, frequency, and spatial results were also compared between the original signals and the reconstructed signals. Figures 8–10 illustrated the mean temporal error, mean spectra difference, and brain electrical activity mapping on 12 Hz of a single trial compared with the original EEG signals and all reconstructed EEG signals.
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FIGURE 6. Sampling rate reconstruction by the same sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by the same sensitivity GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500, 550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).



[image: Figure 7]
FIGURE 7. Sampling rate reconstruction by different sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by different sensitivity GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500, 550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).
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FIGURE 8. Statistical mean temporal error comparison between the same and different sensitivity GAN/WGAN frameworks.The high-sensitivity EEG signals' GAN/WGAN frameworks reconstruct the low sensitivity EEG signals well, such as the AO and GAL data reconstructed by the MI GAN/WGAN frameworks. However, the low sensitivity EEG signals' GAN/WGAN models cannot reconstruct accurate high-sensitivity EEG signals, such as MI data reconstructed by the AO and GAL GAN/WGAN frameworks. (A) Mean error of same sensitivity, (B) Mean temporal error of different sensitivity.
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FIGURE 9. Statistical mean spectra difference comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of the same sensitivity, the mean spectra results have shown that WGAN architectures outperform than GAN architectures. As for the reconstructions of different sensitivity, we found that higher sensitivity models brought lower spectra difference, while lower sensitivity models brought higher spectra difference. (A) Mean spectra difference of same sensitivity, (B) Mean spectra difference of different sensitivity.



[image: Figure 10]
FIGURE 10. A single reconstruction trial BEAM on 12 Hz comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of the same sensitivity, the BEAM results have shown that WGAN architectures outperform GAN architectures. As for the reconstructions of different sensitivity, we have found that high-sensitivity models bring more distinct ERS/ERD phenomenon on brain electrical activity mappings (BEAMs), while low-sensitivity models bring less distinct ERS/ERD phenomenon on BEAMs. (A) BEAMs of AO datasets with same and different sensitivity reconstruction. (B) BEAMs of GAL datasets with same and different sensitivity reconstruction.


To plot the reconstruction results of different models and situations, we chose the same trial from each dataset for the comparison experiments. Because the number of channels differs for each dataset, we choose the “FPz” channel for the experiments to plot the figures. In addition, as one trial over a long period of time will hide some details of the reconstruction signals, we chose the 50 ms range of (500 and 550 ms) for the AO and MI datasets and the 50 ms range of (100 and 150 ms) for the GAL dataset to plot the details of the reconstruction results. From the reconstruction results by the same details shown in Figure 6, we have found that the signals' proximity between the reconstructed data and the original data decreased in the following order for the three datasets: AO > GAL > MI. The difference between the GAN framework and the WGAN framework cannot be realized at the signal level. In the figures shown in Figure 7, the high sensitivity EEG signals' GAN/WGAN frameworks reconstructed the low sensitivity EEG signals well, such as the AO and GAL data reconstructed by the MI GAN/WGAN frameworks. However, the low sensitivity EEG signals' GAN/WGAN models cannot reconstruct accurate high sensitivity EEG signals, such as MI data reconstructed by the AO and GAL GAN/WGAN frameworks.

For the statistical results in Figures 8–10, we have found that excepting for the temporal errors, reconstructed EEG signals show the same regulations on frequency and spatial features. For the reconstructions of the same sensitivity, the mean spectra results have shown that WGAN architectures outperform than GAN architectures, so do the brain electrical activity mapping (BEAM) results for reconstructions of the same sensitivity. As for the reconstructions of different sensitivity, we have found that higher sensitivity models bring lower spectra difference and more distinct ERS/ERD phenomenon on BEAMs, while lower sensitivity models bring higher spectra difference and less distinct ERS/ERD phenomenon on BEAMs.



3.5. Classification Results

In fact, the qualitative analysis could not yield promising insight regarding HSS-EEG signals reconstructed by LSS-EEG signals. Hence, a quantitative analysis was applied to explore the performance of reconstructed EEG signals. In this paper, because the AO dataset corresponded to action observation, the GAL dataset corresponded to action execution, and the MI dataset corresponded to motor imagery, these three datasets caused the same event-related desynchronization/event-related synchronization (ERD/ERS) phenomenon, which can be classified by filter bank common spatial patterns (FBCSP) and a support vector machine (SVM) (Luo et al., 2018a,b). The ERS/ERD phenomenon from EEG signals is common on three motor-related datasets, and such phenomena are usually used for the motor-based BCI. Therefore, the ERS/ERD phenomenon will be the key index with which to measure the performance of BCI system by EEG signals. This study thus selected the ERS/ERD phenomenon from EEG signals as a quantitative measure, and FBCSP features with an SVM classifier were applied to explore the performances of the original signals and the reconstructed signals. For comparison with different models and different sensitivities, there were several hyperparameters for the FBCSP features, SVM classifier, and deep learning classifier:

(1) Because all three datasets contain the ERD/ERS phenomenon, which is detected on the band of [8, 30 Hz], the filter bank strategy is used to divide the whole band to obtain universality for different subjects. In this study, the width and overlapping ratio were set to 4 and 2 Hz for the filter bank dividing, as shown in Table 3. After the EEG signals are filtered by the optimal filter bank, the CSP algorithm was included to extract FBCSP features (Ang et al., 2012).

(2) The CSP algorithm (Ang et al., 2012) is presented to every filter result to extract the optimal spatial features by computing a problem of maximizing the power ratio for different AO/AE/MI tasks. Then, the maximizing power ratio is computed by the singular value decomposition (SVD) algorithm to obtain eigenvalues and eigenvectors. Because different datasets have EEG signals from different channels, the number of eigenvalues used for constructing the CSP spatial vector were set to m = 8, m = 4, and m = 4 for the AO dataset, the GAL dataset, and the MI dataset, respectively.

(3) In the classification, the SVM classifier was issued to classify the extracted FBCSP features from three different datasets. To overcome the non-stationary and nonlinear characteristics of EEG signals, the linear kernel with hyperparameters was set to c = 0.01 and g = 2 for the classifiers for all datasets. To compare the classification performance for both the original data and the reconstructed data, an 8*8 cross-validation strategy was applied to each dataset, and the average classification results were recorded.

(4) In order to validate the performance improvement of reconstructed signals, a convolutional neural networks based deep learning model “FBCSPNet” from reference (Schirrmeister et al., 2017) was introduced to compare the classification performance between original signals and reconstructed signals. Experimental parameters were set as the same from the reference for AO/GAL/MI datasets.


Table 3. The optimal division of bandpass filters.
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Classification results for the sampling rate reconstruction by the same sensitivity signals' GAN/WGAN frameworks are shown in Tables 4–6 for AO dataset, GAL dataset, and MI dataset, respectively. In addition, classification results for the sensitivity rate reconstruction by the different sensitivity signals' GAN/WGAN frameworks are shown in Tables 7–9 for AO datset, GAL dataset, and MI dataset, respectively. In all tables, the results are presented by classification accuracy forms, and a paired t-test statistical technique was used to detect whether the reconstructed EEG signals significantly outperform than the original EEG signals. P-value of the t-test statistics are provided in the tables, and *p <0.05 and **p <0.01 represent the results compared among two columns are significantly different and extremely significantly different.


Table 4. Classification results of GAN/WGAN frameworks for the sampling rate reconstruction of the same sensitivity signals in AO dataset.
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Table 5. Classification results of GAN/WGAN frameworks for the sampling rate reconstruction of the same sensitivity signals in GAL dataset.
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Table 6. Classification results of GAN/WGAN frameworks for the sampling rate reconstruction of the same sensitivity signals in the MI dataset.
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Table 7. Classification results for the sensitivity rate reconstruction of AO dataset by the different sensitivity signals' GAN/WGAN frameworks.
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Table 8. Classification results for the sensitivity rate reconstruction of GAL dataset by the different sensitivity signals' GAN/WGAN frameworks.
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Table 9. Classification results for the sensitivity rate reconstruction of MI dataset by the different sensitivity signals' GAN/WGAN frameworks.
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Tables 4–6 illustrate the up-sampling classification results compared with the original data, the spline reconstructed data, the GAN reconstructed data, and the WGAN reconstructed data. Among the three datasets, we have found that the WGAN reconstructed data achieved the best classification performance. In the AO dataset, the WGAN reconstructed signals achieved the best classification accuracy (67.67%), which was higher than those of the original data (63.57%), the spline reconstructed data (60.91%), and the GAN reconstructed data (65.41%). In the GAL dataset, the WGAN reconstructed signals achieved the best classification accuracy (73.89%), which was higher than those of the original data (69.78%), the spline reconstructed data (68.25%), and the GAN reconstructed data (73.63%). In the MI dataset, the WGAN reconstructed signals achieved the best classification accuracy (64.01%), which was higher than those of the original data (61.98%), the spline reconstructed data (60.41%), and the GAN reconstructed data (63.61%).

From the t-test statistical results that computed compared signals, the reconstructed GAN/WGAN model signals exhibited significant improvement of classification, producing a better performance than the original signals, while spline reconstructed signals exhibited significant reduction of classification performance, lower that of the original signals. The significant improvement and reduction are presented for all AO/GAL/MI datasets (*p <0.05). Specifically for the WGAN model in AO dataset and GAN/WGAN model in MI dataset, the classification performances presented were extremely significant (**p <0.01). Therefore, we have concluded that the GAN/WGAN models with proposed TSF-MSE loss function showed a significant improvement for reconstructing EEG signals with the same sensitivity.

Tables 7–9 give the classification results compared with the GAN/WGAN models trained with different sensitivities. Table 7 gives the classification results of the AO data reconstructed by the GAL/MI trained GAN/WGAN models. Table 8 gives the classification results of the GAL data reconstructed by the AO/MI trained GAN/WGAN models. Table 9 gives the classification results of the MI data reconstructed by the AO/GAL trained GAN/WGAN models. For the AO dataset, signals reconstructed by the GAL-GAN model achieve the best average classification accuracy (64.55%), which was higher than those of the original data (63.51%) and the data reconstructed by the GAL-WGAN (64.40%), the MI-WGAN (62.07%), and the MI-GAN (62/08%). For the GAL dataset, signals reconstructed by the AO-GAN model achieve the best average classification accuracy (70.60%), which is higher than those of the original data (69.78%) and the data reconstructed by the AO-WGAN (70.34%), the MI-WGAN (69.57%), and the MI-GAN (70.21%). For the MI dataset, signals reconstructed by the AO-GAN model achieved the best average classification accuracy (64.93%), which was higher than those of the original data (61.98%) and the data reconstructed by the AO-WGAN (63.29%), the MI-WGAN (63.66%), and the MI-GAN (63.39%). The GAN model performed better than the WGAN model for reconstructing EEG signals by different sensitivities, and LSS-EEG signals reconstructed by HSS-EEG models will increase the sampling rate and sensitivity of signals, which will increase the classification performance.

From the t-test statistical results that computed between compared signals, the AO dataset reconstructed signals by GAL-WGAN and GAL-GAN, showing significant improvement of classification performance than the original signals (*p <0.05), while other datasets reconstructed signals showed no significant performance compared to the original signals(*p > 0.05). In addition, AO dataset reconstructed signals by MI-GAN a classification performance that was significantly worse than the original signals (*p <0.05). Therefore, we have concluded that the GAN/WGAN models with proposed TSF-MSE loss function showed significant performance improvement with enough data and no significant performance improvement without enough data for reconstructing EEG signals with the same sensitivity. Besides, if there is a large gap of sensitivity between two EEG signals datasets, the lower sensitivity based GAN model will cause significant worse performance of reconstructing high sensitivity signals to low sensitivity signals (such as MI-GAN applied to AO dataset).

Since this study has proposed a novel loss function to build the GAN/WGAN architectures for reconstructions, we have also compared the mean classification accuracy between temporal-MSE based GAN/WGAN architectures and TSF-MSE based GAN/WGAN architectures. Due to the single spatial-MSE and frequency-MSE cannot reconstruct signals, these two losses were not included in the comparison. Table 10 illustrates the comparison results for all reconstructions and datasets. We have also used a paired t-test statistical technique to detect whether the TSF-MSE based GAN/WGAN architectures significantly outperform than the temporal-MSE based GAN/WGAN architectures. In Table 10, AO−>AO means AO dataset reconstructed by the same sensitivity AO dataset, GAL−>AO/MI−>AO represents AO dataset reconstructed by the different sensitivity GAL/MI datasets, and so forth. Experimental results have shown that no matter GAN architecture or WGAN architecture, TSF-MSE loss function outperformed the conventional temporal-MSE loss function (*p <0.05). Therefore, the novel loss function proposed by us will significantly improve the performance of the reconstructed EEG signals.


Table 10. The comparison results between Temporal-MSE and TSF-MSE of constructing GAN/WGAN architectures for reconstruction.
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Classification of reconstructed signals between the “FBCSP+SVM” classifier and “FBCSPNet” classifier Schirrmeister et al. (2017) are illustrated in Table 11. The results have shown average classification results of “FBCSP+SVM” and “FBCSPNet” for both GAN and WGAN models on three datasets. The improved ratios have shown that the GAN model and WGAN model bring 3.75 and 5.25% improvement on the average, respectively, to all three datasets for the “FBCSP+SVM” classifier. In addition, the GAN model and WGAN model bring 1.68 and 2.21% improvement on average, respectively, for all three datasets for “FBCSPNet” classifier. Therefore, we have concluded that EEG signals reconstructions by GAN/WGAN model are advantageous to the classification performance for different classifiers. If the classifier exhibits the a better performance, it has the ability to obtain more discriminant ERD patterns, so the improvement of the deep learning classifier is less than the conventional classifier.


Table 11. The comparison average results of three datasets between FBCSP+SVM classifier and FBCSPNet classifier.
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In order to intuitively represent the differences between EEG signals reconstruction by the same sensitivities or different sensitivities of EEG signals, Figure 11 illustrates the average results of these comparisons. In Figure 11, the Figure 11A shows the average results of Tables 4–6 and Figure 11B shows the average results of Tables 7–9. From the average figures, the disciplines of EEG signals reconstruction by the GAN/WGAN models analyzed above can be found.
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FIGURE 11. Reconstruction results comparison between the same and different sensitivity GAN/WGAN frameworks. In order to intuitively represent the differences between EEG signals reconstruction by the same sensitivities or different sensitivities of EEG signals, the average results of such compared experiments are illustrated to show the disciplines of EEG signals reconstruction by the GAN/WGAN models analyzed above. (A) Average results of the same sensitivities, (B) Average results of different sensitivities.





4. DISCUSSION


4.1. Reconstruction by Using GAN/WGAN Frameworks and TFS-MSE Loss

The purpose of this paper is to reconstruct HSS-EEG signals from LSS-EEG signals by using GAN/WGAN frameworks with a carefully designed loss function. In this paper, among the experiments of three different EEG datasets, we have compared the performance of GAN/WGAN frameworks for up-sampling with the same sensitivity and reconstruction with different sensitivities. The classification performances show significant improvement in terms of reconstructions of the same sensitivity. For AO dataset, the classification performances also show significant improvement by reconstructions of GAL-WGAN and GAL-GAN. However, other datasets reconstruction signals with different sensitivity have no significant improvement than original signals. There are two possible reasons for the statistical results. One possible reason is that the AO dataset has enough subsets (a total of 24) to compute the t-test index. However, datasets GAL and MI with 12 subsets and nine subsets, respectively, are not sufficient to compute the t-test index. Another possible reason may be due to the signal amplitude range for the GAN/WGAN reconstruction. In our experiments, the reconstructed signals amplitude range was set as the same as the original signals, and the amplitude range may have prevented the variations of reconstructed signals brought by the signals with different sensitivity. Therefore, in future works, more experiments for different ranges are also needed for a same dataset to confirm the relationship between signal amplitude range and patterns classification performance. For the average classification accuracy for all experiments, the up-sampled EEG signals performed better than the original data, and we think this might be due to the fact that the reconstruction procedure obtains more discriminant signals. In addition, the original temporal-MSE and the proposed TSF-MSE as loss functions were also compared.

The up-sampling reconstruction with the same sensitivity results have demonstrated that using the WGAN helps to improve signal qualities and statistical properties. Comparing the reconstruction HSS-EEG signals and the original real HSS-EEG signals in Figures 6, 8A, 9A, 10A, we can see that the WGAN framework helps to solve the problem of the over-smoothing effect suffered by the conventional temporal-MSE signal generators (Aydin et al., 2015). Although the reconstructed HSS-EEG signals shared a similar result, as in Figures 6, 8A, 9A, and 10A,B, the quantitative analysis of classifying signals by a machine learning model, as given in Tables 4–6, Figure 11A, have shown that the WGAN framework yields a higher classification accuracy and obtains more reliable statistical properties due to more discriminant patterns. However, if we use GAN/WGAN frameworks alone, the critical ERD/ERS of brain activity characteristics in the EEG signals will be reduced along with the single temporal loss. Theoretically, the GAN/WGAN frameworks are based on generative models, and such models generate naturally appearing HSS-EEG signals but cause severe distortion of the ERD/ERS characteristics in the EEG signals (Choi et al., 2017). Therefore, an additive loss function should be included to guarantee that the ERD/ERS characteristics remain the same for the reconstruction.

Beyond the above analysis, the TSF-MSE loss function was introduced to guarantee the ERD/ERS characteristics during the training of the GAN/WGAN frameworks, and the classification performance of ERD/ERS characteristics can be found in the compared results in Table 10. As is well known, the temporal-MSE loss was the basis of the time-series data, and such loss will guarantee the reconstructed shape of the temporal domain. However, EEG signals are multi-channel time-series data, and the spatial domain is thus also important in the reconstruction. In addition, most ERD/ERS characteristics are reflected in the frequency domain, making the frequency domain also important in the reconstruction. Therefore, the TSF-MSE constructed by the original signals from the temporal domain, the FB-CSP features from the spatial domain, and the PSD features from the frequency domain have been introduced in this paper to guarantee the EEG signals temporal characteristics, spatial characteristics, and ERD/ERS characteristics (Strohmeier et al., 2016). Additionally, the TSF-MSE-based GAN/WGAN models cause lower losses than the temporal MSE, frequency MSE, and spatial MSE-based GAN/WGAN models (see Figure 4). Our proposed TSF-MSE-based WGAN framework outperformed the other models in reconstructing up-sampled EEG signals with the same sensitivity. These results demonstrate that we can use this method to increase the sampling rate of EEG signals to achieve higher performance in brain-computer interfaces (BCIs) or EEG-based rehabilitation treatments.



4.2. EEG Signal Reconstruction With Different Sensitivities

In this paper, in addition to reconstructing HSS-EEG signals from the same sensitivity, we also reconstructed HSS-EEG signals from different sensitivities. In fact, if EEG signals with low sensitivity can be reconstructed into high-sensitivity signals, the reconstructed HSS-EEG signals will contain more details of the ERD/ERS characteristics, which will improve the classification performance for many applications. Among the experimental results shown in Tables 4–9, we can conclude that the average classification accuracies of WGAN framework are higher than GAN framework for reconstruction with the same sensitivity on all datasets, while the GAN framework obtained better average classification accuracies for reconstruction with different sensitivities on all datasets. In addition, a larger gap in the sensitivity will significantly increase the average classification accuracies of all datasets, while a smaller gap in the sensitivity will result in a smaller difference in the average classification accuracies of all datasets (see the comparison results in Tables 7–9, Figure 11B). We can also find indicators for different sensitivity gaps in Figure 7. For example, considering the AO data reconstructed by the MI-GAN and MI-WGAN models (see Figure 7B), a high-sensitivity signal reconstructed by the low-sensitivity GAN/WGAN models caused the signals to be overfitted and exceed the original data range. Hence, the reconstructed results contained fewer ERD/ERS characteristics to classify the EEG signals, and the classification accuracy was lower than the results using the original data. Conversely, for the MI data reconstructed by the AO-GAN and AO-WGAN models (see Figure 7F), we can see that the low-sensitivity MI data reconstructed by the high sensitivity models presented more variations in the temporal domain. Because the variations in the time-series represented detailed characteristics of ERD/ERS, the reconstructed high sensitivity EEG signals performed better in the classification of ERD/ERS characteristics. Therefore, in practical applications, we can train a high-sensitivity GAN model for EEG signal reconstruction. By applying the GAN/WGAN models, the ERD/ERS characteristics extracted from low sensitivity devices can be enhanced for use in real-time and real-application BCI or rehabilitation treatment.

In contrast to the results of reconstructing HSS-EEG signals with the same sensitivity, the GAN framework performed better than the WGAN framework for reconstructing HSS-EEG signals with different sensitivities. An approaching value range caused a smaller difference between the GAN framework and the WGAN framework (the AO dataset and the GAL dataset), but a separated value range caused a large difference between the GAN framework and the WGAN framework. Therefore, the difference in the classification performance was caused by the different value ranges of different sensitivities. We suggest two reasons for this difference: first, the WGAN framework contained a gradient penalty, and such a penalty would be out of the value ranges for different value ranges. The penalty then influenced the convergence of the WGAN framework (Mescheder et al., 2018), and, thus, the results of the WGAN framework were lower than the results of the GAN framework. Second, the WGAN framework used an RMSprop optimizer to train deep neural networks, but the GAN framework used an Adam optimizer (Basu et al., 2018). In fact, the Adam optimizer has a momentum gradient procedure, which will be fitted for regressing different value ranges. Hence, the different value ranges can be reconstructed by the Adam optimizer (Zou et al., 2018). In all of these, if we have recorded the highest sensitivity EEG signals, we must also record low-sensitivity EEG signals. We can use the highest sensitivity EEG signals to train a GAN/WGAN model to reconstruct the low sensitivity EEG signals, and the reconstructed EEG signals can be used to improve classification performance for the construction of real-time and real-application BCIs or rehabilitation treatment.



4.3. The Application of Reconstructed EEG Signals by GAN/WGAN Frameworks

Over the past decade, most EEG-based studies have been focused on constructing BCIs or developing rehabilitation treatments (Ang et al., 2015). However, there are two main limitations to the application of EEG signals when constructing such systems, namely, the cost and portability of EEG recording devices. In fact, HSS-EEG signals will yield the best performance in BCIs and rehabilitation treatments, although HSS-EEG signals are usually recorded by expensive devices, posing an inconvenience. For example, in the “NeuroScan SymAmp2” device (Chu et al., 2016), the recording system consists of two computers and one device to link them together. One computer is used to present a stimulus for the BCI or rehabilitation treatment, and the other computer is used to record and store the EEG signals for computing the BCI or rehabilitation results. Subjects must sit in a room to wear a “NeuroScan Quik Cap” to collect data. The collection procedure is complex, and the resistance must be maintained under 5 kΩ by using conductive paste on each electrode (Agnew et al., 2012). Because the resistance is kept low and the device has a high sensitivity, the recorded EEG signals will have the ERD/ERS characteristics required for classification in BCI and rehabilitation treatment.

In general, the “NeuroScan SymAmp2” device is expensive, and the EEG signals must be recorded indoors in a limited environment (e.g., a dimly lit, sound-attenuated room). Hence, it is difficult to implement the results of the “NeuroScan SymAmp2” device (the same sensitivity as signals in AO dataset) in applications such as BCI and rehabilitation treatment. Nevertheless, low-cost and portable devices, such as “Emotiv” (the same sensitivity as signals in MI dataset), have high electrode resistance and a low sampling rate and sensitivity for recording EEG signals. The device only provides poor ERD/ERS characteristics for classification in BCI and rehabilitation treatment applications. The “Emotiv” device can be worn at any time via a simple process without requiring the resistance to be kept level (Neale et al., 2017). The energy supply for the device is a battery, and the device uses WiFi or Bluetooth communication. These advantages allow the device to be inexpensive, portable, and convenient for constructing BCIs and developing rehabilitation treatment. These mutual contradictions for signal precision and signal cost and portability inspire us to train a model to reconstruct HSS-EEG signals from LSS-EEG signals. The trained model meets the requirements of high precision and portability with low cost and can be used to improve EEG-based applications.

In fact, signal reconstruction is a difficult problem in digital signal processing, but an effective and feasible reconstruction method could significantly promote the application of signals. In this study, by using a GAN framework with Wasserstein distance and the carefully designed TSF-MSE loss function, well-trained reconstruction models have been shown to be able to reconstruct HSS-EEG signals from LSS-EEG signals. Experimental results reveal that LSS-EEG signals (just like those recorded by “Emotiv”) reconstructed by the HSS-EEG signals (just like those recorded by “NeuroScan SymAmp2”) trained models and enhanced the average classification accuracies of ERD/ERS characteristics for action observation, action execution, and motor imagery. These results inspire new ways to construct BCIs or develop novel rehabilitation treatments, but more researches need to be done to explore significant enhancement reconstruction methods across EEG signals with different sensitivities.

Based on the method of this paper, the improvement of sampling rate and sensitivity will improve the specific ERD/ERS phenomenon of MI, AO, and AE, so as to improve the performance of the BCI system. Although the CNN- based GAN/WGAN architectures will take a significant amount of time to build an available GAN/WGAN architecture, once the reconstruction model is built, the use of such a model will not take long, and the reconstructed EEG time series can be obtained within a specific time (<1 s for a trial). In future works, we can either reduce the complex of GAN architecture or improve the computational efficiency to reduce the usage time for reconstructing GAN/WGAN architecture. Then, the GAN/WGAN architectures will be used for real-time inference. In general, we used a low-cost, portable device to collect LSS-EEG signals for use in BCI or rehabilitation treatment. Before analyzing the collected data, the GAN/WGAN reconstruction models were applied to reconstruct HSS-EEG signals. The reconstructed HSS-EEG signals can significantly improve the classification performance and information transfer rate for use in BCIs or rehabilitation treatments.




5. CONCLUSION

In this paper, we have proposed a contemporary deep neural network that uses a GAN/WGAN framework with a TSF-MSE-based loss function for LSS-EEG signal reconstruction. Instead of designing a complex GAN framework, this work has been dedicated to designing a precise loss function that guides the reconstruction process so that the reconstructed HSS-EEG signals are as close to the ground truth as possible. Our experimental results suggest that the GAN/WGAN frameworks give a significant improvement on the classification performance of EEG signals reconstruction with the same sensitivity, but the classification performance improvements of EEG signal reconstructions with different sensitivity were not significant, which further exploration. The carefully designed TSF-MSE-based loss function solves the well-known over-smoothing problem and seems to result in more discriminant patterns than the original EEG signals; this will improve the classification performance of EEG signals. The reconstructed HSS-EEG signals will be beneficial for use in BCI and rehabilitation treatment applications. Future studies will focus on the reconstruction signal amplitude ranges of EEG signals with different sensitivity and selection of datasets to confirm the required number of signals and to explore the significant performance improvement of EEG signal reconstruction with different sensitivity. In addition, the efficiency of EEG signal reconstruction by the GAN/WGAN frameworks will be studied further in the future.
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The Tomographic Quantitative Electroencephalography (qEEGt) toolbox is integrated with the Montreal Neurological Institute (MNI) Neuroinformatics Ecosystem as a docker into the Canadian Brain Imaging Research Platform (CBRAIN). qEEGt produces age-corrected normative Statistical Parametric Maps of EEG log source spectra testing compliance to a normative database. This toolbox was developed at the Cuban Neuroscience Center as part of the first wave of the Cuban Human Brain Mapping Project (CHBMP) and has been validated and used in different health systems for several decades. Incorporation into the MNI ecosystem now provides CBRAIN registered users access to its full functionality and is accompanied by a public release of the source code on GitHub and Zenodo repositories. Among other features are the calculation of EEG scalp spectra, and the estimation of their source spectra using the Variable Resolution Electrical Tomography (VARETA) source imaging. Crucially, this is completed by the evaluation of z spectra by means of the built-in age regression equations obtained from the CHBMP database (ages 5–87) to provide normative Statistical Parametric Mapping of EEG log source spectra. Different scalp and source visualization tools are also provided for evaluation of individual subjects prior to further post-processing. Openly releasing this software in the CBRAIN platform will facilitate the use of standardized qEEGt methods in different research and clinical settings. An updated precis of the methods is provided in Appendix I as a reference for the toolbox. qEEGt/CBRAIN is the first installment of instruments developed by the neuroinformatic platform of the Cuba-Canada-China (CCC) project.

Keywords: Statistical Parametric Mapping, qEEGt, CBRAIN, EEG tomography, quantitative EEG, open science


INTRODUCTION

Electroencephalography (EEG) is one of the oldest, most useful, and widely deployable methods to study normal and pathological brain function. It is characterized by its sensitivity and exquisite temporal resolution (Niedermeyer et al., 2010). Unfortunately, this type of physiological measurement fell out of favor in research and clinical applications a few decades ago, “eclipsed” by the new neuroimaging techniques (Single Photon Emission Tomography—SPECT, Positron Emission Tomography—PET, and Functional Magnetic Resonance Imaging—fMRI) that were deemed to have true 3D spatial resolution. In fact, it was affirmed that EEG was not even an imaging modality, or in any case, was one with a very poor spatial resolution. This neglect of EEG has been detrimental to translational Neurotechnology.

The negative perception of electrophysiology is now being reversed. Fundamental to this is the development of EEG Source Imaging (ESI) that has achieved considerable maturity (Michel et al., 2004) by leveraging Bayesian estimation prior information about source localizations and connectivity (Wang et al., 2019). As recently reviewed in Babiloni et al. (2019b) ESI is currently an active area of clinical research.

A convergent, but separate, strand of EEG clinical research has been known as “quantitative analysis of EEG” (qEEG) (John et al., 1977; Pardoux, 2008). For a detailed history see Hernandez-Gonzalez et al. (2011). In its most widely used form, the Tomographic Quantitative Electroencephalography (qEEGt) technique extracts frequency specific information about normal and abnormal brain states via the EEG frequency spectrum at scalp electrodes. It then tests for compliance of each electrode and frequency bin (or band) to a normative, most commonly by transformation of each log spectral value to a z transform with respect to an age specific mean and standard deviation. This has been shown to be a useful preprocessing step for either visual inspection or to use multivariate methods to detect and classify brain pathology (Fernández-Bouzas et al., 1995; Hernandez-Gonzalez et al., 2011; Nunez et al., 2019). z values are displayed as topographic maps on the scalp as statistical tests for deviations from normative data. This “significance probability mapping” (spm) inspired developments in Neuroimaging. In fact, SPM (acronym in capitals, Statistical Parametric Mapping) (Friston et al., 1995) owes its acronym to this type of spatial display of statistical tests, but for 3D neuroimages from other imaging modalities (PET, MRI, fMRI). The transition from EEG spm to SPM required to provide a 3D extension of qEEG by means of ESI.

This transformation of qEEG spm to SPM was originally achieved in 2001 (Bosch-Bayard et al., 2001). In this work:

a) The Variable Resolution Electrical Tomography (VARETA) electrophysiological source imaging method was used to obtain source spectra and their log transforms over a defined grid of voxels with high frequency resolution (Szava et al., 1994).

b) Statistical Parametric maps of z-sores for the log source spectra were obtained for each voxel and each frequency bin. Each z score is obtained by subtracting an age-dependent mean and dividing by the age-dependent standard deviation.

c) These age dependent means and standard deviations are embodied in a set of age regression equations for each voxel and each frequency bin.

This “normative SPM of EEG source spectra” is what we have termed “quantitative EEG tomography” or qEEGt. It is essential to note that the current qEEGt toolbox was based on the first wave (1988–2003) of the Cuban Human Brain Mapping Project (CHBMP) (Hernandez-Gonzalez et al., 2011), which acquired the EEG of 211 subjects aged 5–87, randomly selected from the general population. Due to the lack of an individual Magnetic Resonance Image (iMRI) for each subject, an “average head model” was used (Evans et al., 1993). The validity and accuracy of this approach to calculate an approximate lead field has been described elsewhere (Valdés-Hernández et al., 2009). Rather than being a drawback, this use of an approximate head model for ESI has proven to be a valuable instrument in settings which preclude the use of iMRIs (Bosch-Bayard et al., 2012). qEEGt has thus been acknowledged as the first application of Statistical Parametric Mapping to electrophysiology (Friston, 2007, p. 8: “The MEG-EEG years”). The full formal specification for qEEGt is provided in Appendix I.

In view of these developments it is surprising that most of the major brain initiatives such as the UK Biobank (www.ukbiobank.ac.uk), ADNI (adni.loni.usc.edu), ABCD (https://abcdstudy.org) have no electrophysiological component. Fortunately the Human Connectome Project (http://www.humanconnectomeproject.org/) and the CAMCAN (www.cam-can.org) project have at least included MEG data collections, thus providing temporal resolution equivalent to EEG. In Canada, the Brain-Code project (https://braininstitute.ca/research-data-sharing/brain-code) has been launched, which is an informatics platform that hosts several biological EEG/MEG data across a growing list of brain pathologies that is shared by over 20 institutions in Ontario, and around 120 researchers. This initiative supports the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND) that elaborates guidelines for EEG recording and processing standardization (Farzan et al., 2017).

We believe that this situation is partly due to the lack of open-access, structured pipelines, embedded in a major neuroimaging Neuroinformatics platform. While there exist now many different source imaging methods (Vega-Hernández et al., 2008), current packages for this purpose do not provide SPM for the comparison of spectral parameters against validated, population based normative data. Those few packages which in effect provide this functionality, do not make their high dimensional set of regression equations publicly available but rather keep them proprietary.

In this paper we provide an open-access pipeline integrating the qEEGt analysis toolbox developed at the Cuban Neuroscience Center (CNEURO) with a major processing portal for deployment of advanced neuroimaging pipelines: the Canadian Brain Imaging Research Platform (CBRAIN) (Sherif et al., 2014) and the Longitudinal Online Research and Imaging System (LORIS) (Das et al., 2012). Not only can this pipeline be accessed via CBRAIN but the exact version of the qEEGT toolbox, which includes the VARETA source imaging method, the full set of regression equations with regard to age, as well as the procedures for calculation of z-spectra are also publicly available in Github: https://github.com/CCC-members/QEEGT-Toolbox (doi: https://doi.org/10.5281/zenodo.3745563). Making the code available also facilitates its use by users who may want to merge the qEEGT with their own tools or want to integrate it with other tools like EEGLAB via plugins. This last choice may be attractive for EEGLAB users since EEGLAB can read many different EEG formats. In the future it would be possible creating text files from different EEG formats loaded by EEGLAB to be used by the qEEGT toolbox widening the scope of the present contribution.

For those interested in comparing the formulation described in Appendix I for the frequency domain VARETA (FD-VARETA), with the code provided in the github and Zenodo repositories, the major part of its implementation can be found among lines 1090–1230 and then from lines 1719–1804 of the github/Zenodo code. In this version we only implemented part of the FD-VARETA methodology. Some quantities were pre-calculated and assumed constant since their calculation is time-consuming. It is explained in Appendix I. A modern full implementation of FD-VARETA, that fulfills the formulation described in Appendix I can be found in https://github.com/CCC-members/BC-VARETA_Toolbox. In that toolbox, the equivalent version to the formulation of the present paper is the ridge penalty. A more advanced methodology also included in that toolbox is based on the graphical lasso penalty.



NORMATIVE DATABASE

A feature of this toolbox is that it includes normative data which allows the calculation of univariate measurement of deviation from normality of the log EEG spectra both at the scalp and at the sources. To our knowledge, this is the first qeeg toolbox that makes freely available this type of information.

The normative data provided with this toolbox were obtained from the first wave Cuban Human Brain Mapping project (CHBMP) (Hernandez-Gonzalez et al., 2011). They comprise age regression coefficients for all scalp channels and sources in the frequency range of 0.39–19.11 Hz, with a sampling resolution of 0.39 Hz. The age range goes from 5 to 87 years old of a sample of 211 normal subjects obtained from the normal Havana population.

Age dependent regressions were calculated for the Eyes Closed, Eyes Open, and Hyperventilation states. The sample was selected from Havana population using a quasi-random algorithm, to guarantee a balanced age representation. Strict clinical criteria were followed to eliminate from the sample subjects who were not functionally healthy.

The subjects were recorded during the morning to guarantee the state of wakefulness. The following instructions were given prior to the EEG recording and checked for just before the session: (a) to go to bed before 11 pm the night before and sleep for at least 8 h; (b) to abstain from alcohol, coffee, black tea, chocolate or soda the day before; (c) to and to have abnormal breakfast in the morning. Additionally, before starting the recording at the clinic they were offered a snack to avoid prolonged fasting period.



CBRAIN OVERVIEW

CBRAIN is a Montreal Neurological Institute (MNI) initiative developed to address the storage and processing needs driven by the unprecedented growth of neuroimaging data and distributed computing infrastructure. It has been developed as a collaborative high-performance computing (HPC) portal enabling efficient processing of high volumes of data across national networks such as the Compute Canada clusters. The platform allows researchers to perform computationally intensive analyses by connecting to a national or international network of HPC facilities via a user-friendly web-based interface.

The CBRAIN platform provides many Neuroinformatics tools and methods including those developed by the MNI-based McGill Center for Integrative Neuroscience (MCIN) headed by Dr. Alan Evans for the study of the different types of anatomical and functional MRI techniques such as CIVET image processing (http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-Introduction, MacDonald et al., 2000) and the MINC toolkit (https://github.com/BIC-MNI/minc-toolkit-v2). The platform also provides other neuroimaging pipelines from third parties such as Freesurfer (https://surfer.nmr.mgh.harvard.edu/), FSL (Smith et al., 2004; https://www.fmrib.ox.ac.uk/fsl), SPM (https://www.fil.ion.ucl.ac.uk/spm/; Friston, 2007), and others. Deployment of pipelines throughout the CBRAIN computational ecosystem automated through the use of the Boutiques JSON standard and Singularity containers that allow for machine-independent execution with no additional software development (Glatard et al., 2018). Once deployed, any user from any geographical region may benefit of the remote resources offered within the CBRAIN ecosystem. The CBRAIN computational ecosystem is comprised of multiple compute and storage resources located in Canada and around the world. At the time of writing this report, CBRAIN has a current user base of over 600 users over 191 sites in 29 countries and provides over 50 preconfigured tools for neuroscience and other research domains. This platform has let to over 60 peer-reviewed publications and has served over 100 million CPU hours of computing and 100 TBs of data creating a collaborative research network spanning the globe.

Traditionally, researchers are left to work with laborious scripting and command line interfaces to run advanced analyses on HPC resources, requiring extensive training and expertise to accomplish science. Additionally, creating large sets of experiments and aggregation and visualizing results are usually done by hand or by customized software packages. CBRAIN solves this problem by giving researchers a central location and an easy-to-use interface for submitting complicated software packages on computational resources, handling the logistics of such large-scale work behind the scenes so that scientists can concentrate on getting science done. After logging into the platform, users can utilize CBRAIN's web-based portal to upload and move data, set up and execute computational tasks, and visualize and download results on any of the high-performance computing and cloud resources registered in CBRAIN. An open-source codebase and extensive documentation for administrators enable new cloud resources or data centers to be connected to CBRAIN in a clearly documented and secure manner.

Users can have fine-grained permission control over all resources, data and tools, enabling relevant and secure sharing, and collaboration across geographically distant groups. New toolkits are provided through containerized pipelines (i.e., software installed on a light-weight virtual machine) so that they are highly portable and reproducible. Leveraging this platform for deployment enables wide access to an easily executable and live environment for the of the qEEGt toolbox, with security and cloud connectivity for user-specific datasets.

The pipelines mounted on CBRAIN for data processing and analysis facilitate the reproducibility of research and support the transparency of provenance, i.e., documenting steps to reach the same results in future and how to process other datasets. All these concepts are in line with the goals of open science.

CBRAIN is linked to the Longitudinal Online Research and Imaging System (LORIS), which is an open-source, web-based, data, and project management software aimed at storing behavioral, clinical, neuroimaging, and genetics data. LORIS is designed to gather longitudinal data from patients and to facilitate its curation and further processing. It also offers visualization tools and allows users to leverage external tools. Features include project management and study design; data collection supporting multiple modalities; workflows for data management and quality control; 3D visualization tools; and data querying and sharing tools. LORIS currently has over 400 international projects and partner sites (Das et al., 2016).

At present, CBRAIN and LORIS have developed the capability to accommodate EEG data in a standardized format in LORIS for further processing in CBRAIN. Additionally, our new pipeline has been added to CBRAIN to perform Tomographic Quantitative EEG analysis (qEEGt) of data stored either in LORIS or loaded directly via CBRAIN-connected servers. The EEG data is stored in LORIS in the newly defined BIDS-EEG format (Madjar et al., 2018; Pernet et al., 2018) to address the challenges of data exchange across projects.



THE QEEGT PLUGIN FOR CBRAIN


User Options

We provide tools in CBRAIN capable of running quantitative analysis of EEG both at the sensors space (qEEG) and the sources level (qEEGt).

The qEEGt tool assumes that the analysis windows (epochs) have been previously selected by an expert neurophysiologist using some other system and any necessary preprocessing steps have already been performed. The selected EEG epochs are passed to the plugin and the following options are available:

a. Changing the EEG reference to any of the leads included in the recording montage or re-referencing the data to the average reference;

b. Correcting the EEG by the Global Scale Factor (GSF) (Hernández et al., 1994), which is a factor to account for a high percent of variability present in the EEG related to technical details and not to neurophysiological variability, thus, this factor makes the recordings from different devices and different persons more comparable;

c. Transforming the EEG signal to the frequency domain by means of the FFT;

d. Calculating the cross-spectral matrices for the set of leads recorded at the scalp, including the power spectra for the leads for two models: the narrow band and the broad band models;

e. Calculating the coherence1 and phase differences between all leads in the whole frequency range;

f. Estimating the power spectra at the sources by means of solving the EEG inverse problem, using the VARETA methodology;

g. Calculating the Z-probabilistic measurements for the spectra of the currents at the sources, using the norms of the Cuban population, in a range from 5 to 87 years old; and

h. Selecting different visualization tools.

i. A step by step guide of how to proceed to run the qEEGT pipeline in CBRAIN is provided in Appendix II.



qEEGt Visualization

Once the qEEGT has been run (following the steps shown in Appendix II), the user can select the option to visualize the results. In that case, all the different measurements calculated are loaded in a tabbed display for showing the results in the best possible way, either as 2D topographic maps or 3D tomographic images depending on the data type.

The CBRAIN visualization tool opens a graphical user interface, in which all qEEGt results can be visualized: either raw or Z spectra at the sensors space at each frequency, synchronized with the corresponding 3D tomographic maps at the sources, for the narrow band model (high resolution spectral model) (see Figure 1).


[image: Figure 1]
FIGURE 1. CBRAIN qEEGt visualization tool. The results of a qEEGt session are shown: the raw EEG spectra at the scalp for each electrode. A cursor indicates the specific frequency (0.78 Hz), where the spectral topographic map for all electrodes are shown. Correspondingly, the 3D tomographic view is shown for the EEG spectra at the sources for the same frequency. The red color of the topographic map at the electrodes shows an increased frontal activity, that extents to the temporal in the right hemisphere. The three views of the tomographic map show that the maximum of the activity is in the temporal pole. A similar graph can be obtained for the Z values, both at the sensors as well as at the sources.


A compact visualization of the Broad Band Model, both for the raw spectra as well as for the normative data is also provided, as topographical maps, for the calculated frequency bands (see Figure 2). A bipolar color palette has been created for the Z-scores, which allows to highlight the negative values (decrement) in blue and positive values (excess) in red. In the case of the raw values, the same color palette is used for simplicity. Otherwise specified, the traditional bands are calculated: Delta, Theta, Beta, Alpha, Beta, and Total for the Absolute Power (AP) and the Mean Frequency (MF). Meanwhile, the Relative Power (RP) does not include the Total band.


[image: Figure 2]
FIGURE 2. Broad Band Model visualization of raw and Z spectra. The three upper rows show the raw Absolute Power (AP), Relative Power (RP), and Mean Frequency (MF) of the individual's spectra respectively. The three bottom lines show the corresponding Z scores, calculated against the Cuban Normative Database. The red color in the raw Absolute Power maps (first row) show the same frontal and temporal higher slow activity (Delta and Theta) that was observed in Figure 1 in the right hemisphere, while the Alpha activity is concentrated in the contrary part of the contrary hemisphere (O1). The blue colors show the leads where the amplitude of the raw activity is smaller. In the case of the Z maps, the red colors indicate areas of excess of activity regarding the values of the normative database and blue colors indicate decrements of activity compared to the normative database. For example, the red colors of the Delta Z Absolute Power in the 4th row show values which are more than 6 standard deviations above the normative values. Meanwhile, in the same row, blue colors show values which are 4 standard deviations below the normative values in the parietal leads of the right hemisphere.


It is also possible to visualize topographic maps of coherence, frequency by frequency, showing the coherences between one channel vs. the rest of the head, as it is shown in Figure 3.


[image: Figure 3]
FIGURE 3. Topographical maps of the coherences of one electrode against the rest, at a specific frequency (8.6 Hz in the example). In each map, the blue dot refers to the position of the target electrode, showing its coherence regarding the rest of the head. Values in these maps go from 0 (blue) to red (1). For example, the maps of T5, P3, and O1 show a very high coherence between the parieto-occipital leads of the left hemisphere with the frontal and temporal leads of the contrary hemisphere. In the case of Fp2, it has high coherence values both with the frontal and temporal leads of its same hemisphere and the parietal and occipital leads of the contrary hemisphere.




Example of Use: A Case Presentation

To illustrate the use of the qEEGt plugin in CBRAIN, we present the processing of an EEG study of a male patient, 71 years old, who suffered thrombotic brain stroke in the middle cerebral artery of the right hemisphere, 3 days before the EEG study. The accident produced a facial paralysis and dysarthria, visual impairment, and motor deficit in the left side of the body.

The EEG was recorded with a MEDICID IV System, sampled every 5 ms, and was edited offline. The patient was seated in a comfortable chair in a dimly lit room, with the eyes closed. The EEG was recorded from 19 leads of the 10–20 International System, using linked earlobes as a reference. A1–A2 reference was used so that the measurements were taken under the same conditions as the Cuban normative database, distributed with the qEEGt software. The amplifier bandwidth was set from 0.5 and 30 Hz. An expert electroencephalographer, visually edited the recording, selecting 24 artifact-free epochs of 2.56 s each, for the quantitative analysis.

With the qEEGt software, we first calculated the EEG spectra at the 19 electrodes of the 10/20 system, for the Eyes Closed (EC) condition. The Log of the spectra was compared against the normative EEG database of the Cuban Neuroscience Center and the probabilistic Z values were obtained for each lead and frequency.

Figure 4 shows the results of the analysis for some selected frequencies: 1.5 Hz for Delta band; 3.5 and 5.85 Hz for Theta band; and 15 Hz for Beta band. The significance thresholds have been corrected for multiple comparisons using the Z maximum statistic criterion (Galan et al., 1994) for a p value of 0.05. However, in Theta band we show the significant areas also for p = 0.01 (corrected by multiple comparisons) to better highlight the more pathological areas.


[image: Figure 4]
FIGURE 4. Summary of the qEEGt analysis of the 71 years old patient. The more significant results are shown for bands Delta, Theta, and Gamma at two thresholds (p = 0.05 and p = 0.01). (A) (p =0.05) and (B) (p = 0.01) show a pathological excess of Delta activity in the right hemisphere. (C) (p = 0.05) and (D) (p = 0.01) show the excess of pathological activity in the right hemisphere and frontal part of the left hemisphere. (D) Shows that the most pathological areas in Theta coincide with the exact location of the surrounding area of the lesion. (E) Shows that no pathological activity was significant at 5.85 Hz for p = 0.01. (F) Shows a pathological decrease of activity in the Beta band, related to the location of the lesion and the edema area. No significant differences were found in the Alpha band. The implications of these results are discussed in the text.


Figures 4A,B show a pathological excess of Delta activity at 1.5 Hz in the right hemisphere, with a location coincident with the lesion. Figure 4B shows the pathological areas at a threshold of p = 0.01. The area is limited to the territory of the middle cerebral artery. At the same time, Figure 4F shows a defect of Beta activity in the same area as Figure 4A, except that it extends to the occipital area of the contrary hemisphere too.

At the limit between Delta and Theta (Figures 4C,D), the excess of pathological activity is extended to almost the whole right hemisphere and to the frontal part of the left hemisphere. The threshold at p = 0.01 shown in Figure 4D is to stress the point that at this frequency the most pathological areas does not coincide with the exact location of the lesion but with the surrounding area. This result is consistent with previous results by Fernández-Bouzas et al. (2002) in a qEEGt study of persons who suffered brain infarcts they found two major areas of pathological excess of slow activity: one coincident with the localization at the slower frequencies (Delta) and a second one coincident with the localization of the ischemic penumbra, which surrounds the lesion.

Note that from Figures 4A–F, the threshold value for the Z activity is decreasing with the frequency (Z = 3.75 at 1.5 Hz; Z = 2.3 at 5.85 Hz). It means that the slower the frequency the more significant pathological values. This is also consistent with the Gloor's hypothesis (Gloor et al., 1977) about the origin of the Delta waves in the brain produced by the neuronal deafferentation in the brain cortex directly below the lesion. Finally, in Figure 4E, at 5.85 Hz the pathological activity was only significant at the threshold of p = 0.05 but not for p = 0.01 after correction for multiple comparisons. In the same way, there was no significant pathological activity in Alpha band.

As an independent confirmation we show a morphometric analysis of the T1 MRI of the same person (Figure 5). The statistical parametric map was performed using the plugin IBASPM (https://www.fil.ion.ucl.ac.uk/spm/ext/#IBASPM) based on the regional volume of the MRI. The subject's values were compared with the normative values obtained from the Cuban Normative database (Z values). The yellow color identified the regions with brain damage: occipital damage responsible of visual impairment; and the lesion in Broca's area may explain the language impairment, not detected by MRI. These two abnormality patterns are in consonance with the qEEGt findings shown in Figures 4C,F.


[image: Figure 5]
FIGURE 5. Morphometric analysis of the T1 MRI of the same case. Statistical parametric mapping using the plugin IBASPM based on the regional volume of the MRI in comparison with the normative data (Z values). The yellow area identified the regions with brain damage, occipital damage responsible of visual impairment, and lesion in Broca's area which explained the language impairment, not detected by MRI. The correspondence with Figure 4 is striking.


This case presentation of a clinical patient is only to illustrate the use of the toolbox and its possibilities. This section is not intended as a validation of the VARETA methodology, which has been widely used and validated for many years in different clinical and experimental settings. A non-exhaustive list of about 200 citations retrieved from Google Scholar in September 2019 (excluding auto citations) is provided as a supplemental material (53 of them belong to the period 2013–2019).

It is also important to emphasize that in this toolbox we do not include statistical tools for group analysis of neuroimages. The z score is only an intermediate step, useful for visualization purposes and classification. The true multivariate nature of the data must be considered in further applications. Tools for group statistics of neuroimages developed at the Cuban Neuroscience Center will be added as CBRAIN plugins in the future, for example, Mahalanobis maps (Galan et al., 1994) for visualization, or stable biomarker identification (Bosch-Bayard et al., 2018) among others.




IMPLEMENTATION DETAILS AND CHALLENGES

The Matlab code of the qEEGt procedure was modified to condense it in a single procedure, which performs all the analysis and produces all the necessary outputs. This procedure was compiled and use as the input for the CBRAIN plugin.

A Boutique JSON descriptor for qEEG (doi: 10.5281/zenodo.1451003) was created to define the format of the command line execution and the various options that can be set. Then a Singularity container was created to provide a machine independent installation of the qEEG tool. Finally, CBRAIN can automatically import the Boutique descriptor to create the tool and deploy it for users.

The highly interactive qEEGt visualization capability is built in the highly modular ReactJS framework (which makes it independent of the computer platforms) with any modern internet browser. The application is designed as an SDI (Single Document Interface) with a graphical user interface oriented to provide the maximum amount of information with the minimum amount of user input.

Note that there are facilities for the creation of data structures for storing EEG information in the LORIS data platform as well as the implementation within the CBRAIN high-performance computing platform of a core of tools developed at CNEURO.



DISCUSSION AND CONCLUSIONS

The present qEEGt plugin is the first step to introduce EEG functionalities in CBRAIN, one of the most widely used ecosystems for brain imaging analysis. Will facilitate the extended use the qEEGt method and toolbox, which has proven to be a useful tool for the quantitative EEG analysis, both at the electrode and at the sources level.

This method introduced the concept of “normative SPM of EEG source spectra” based on the use of EEG normative databases. The resulting SPM “z maps” that compare individuals to age appropriate norms is an essential pre-processing tool which facilitates assessment of pathological states (or at least deviation from normality). It is to be noted that the normative data encoded in the regression equations of the current qEEGt toolbox are the first open source information of this type. Importantly, they are not only for the usual brain states available in most databases namely Eyes Closed and/or Eyes Open, but also include other states that are clinically relevant such as Hyperventilation. Although these tools are still mainly used for research, they have a clinical usefulness, specifically the assessment of deviation from normality (Nuwer et al., 1994, 1999; Babiloni et al., 2019a).

The plugin resulted easy to operate for totally naive users in a reasonable time for a single task. Familiarity with the tool and batch processing of several EEG recordings will increase productivity with the toolbox. Nevertheless we continue to evaluate both the CBRAIN interface as well as the toolbox to increase its user friendliness.

As mentioned in the introduction, our development of qEEG was based on the Cuban Human Brain Mapping Project (CHBMP), which was carried out in three waves: the first one (1988–2003) acquired the EEG of 211 subjects aged 5–87, randomly selected from the general population. At that time, only EEG was recorded since there were no MRI systems available. While useful in setting for which MRI is not feasible or costly, future work must extend the methods to individualized brain morphology. This is the more necessary since though there has been work with EEG SPM in individualized source space (Park et al., 2002), it yet has to be extended to age corrected normative measures.

Fortunately two subsequent waves (2004–2014) and (since 2018) of the CHBMP have been launched since then, which now included individualized MRI, DWI as well as high resolution EEG (more details in Hernandez-Gonzalez et al., 2011). These projects have generated normative data that has been used in different Public Health Systems (Hernandez-Gonzalez et al., 2011; Valdés-Sosa et al., 2018) which will lead to successive versions of qEEGt in CBRAIN, and whose results will be described in further publications and will certainly address individualized head models.

Among the additional facilities to be included to qEEGt soon are:

d) Individualized head geometry for Human Connectome compatible pipelines

e) Improved approximate head models (Valdés-Hernández et al., 2009) for situations in which MRI is difficult to acquire.

f) Extension of EEG sources features to non-stationary and nonlinear phenomena.

g) Inclusion of third generation methods for joint estimation of EEG source activation and connectivity (Paz-Linares et al., 2017, 2018).

h) A toolbox for biomarker selection from EEG source features (Bosch-Bayard et al., 2018).

This step, of making our toolbox available in CBRAIN (as well as the methods in Github) will allow us to place in the public scrutiny the procedures and, we hope, to increase the contributions and interactions with other similar efforts.
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FOOTNOTES

1The coherence matrix has been included in this toolbox because of historical reasons, although this is not a connectivity toolbox. The coherence is a basic measurement that is included in most of the quantitative analysis. This measurement is widely used in EEG research to assess electrical symmetry between pairs of homologues channels (right-left hemispheres same position channels) rather than for connectivity. This use is important to assess normal brain functioning and it is of clinical importance. It is not intended to be a measurement of connectivity. It is a well-known fact that any connectivity measurement at the scalp is affected by the volume conduction effect. Therefore, none of the recently defined methods to estimate brain coupling in the frequency domain can provide a real estimation of the functional connections among the brain regions. Additionally, Nolte et al. (2019) have shown that most of the phase coupling measurement are in fact a function of the complex coherency.
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Reference Technology Tech. domains Tech. services Research method Subjects Research goal
Agrigoroaie and Tapus (2016)  Generic Robot Assistance Autonormy Proof of Concept ~ None Present preliminary resuts from a focus
group
Agrigoroaie and Tapus (2017) ~ Meka M1 Robot Assistance Emotion Experimental trial in 9HC Propose a method for extracting and
Kompai Robot a HRI scenario analyzing physiological data
Batista et al. (2015) Smarphone Assistance Social Sphere Pilot Test in real life 16 MCI Describe the architecture of the SIMPATIC
system as well as its functionality
Bellotto et al. (2017) Kompai Robot Assistance Autonormy Lab set test 1HC Describe a distributed architecture for AL
services; probabilistic solution for objects
localization based on RFID; vision-based
approach for estimating the level of activity
of a person; entropy-based system for
detecting anomalous motion patterns
Broughton et al. (2016) ENRICHME robot Assistance Autonomy Lab set test None Provide the implementation of an library
(Kompil platform) application to detect RFID tags for
performing object localization with a
mobile robot
Bruno et al. (2013) Customized Assistance Autonomy Proof of Concept  None Define principles and requirements for a
Robot Prototype Social Sphere wearable SAR aimed at assisting MC
Global Cognition subjects in the execution of everyday
activities
Chan and Nejat (2010) SAR Treatment Memory (LTM; STM)  Proof of Concept 6HC Develop new therapeutic protocols to
Brian 2.0 Social Sphere laboratory manage individuals suffering from
experiments cognitive impairment by stimulating social
and cognitive functioning with a SAR
Darragh et al. (2017) Generic SAR Assistance Autonomy Questionnaire 7MCI Gather information about how a robot in
2MD (mild the home could assist MCI subjects
dementia)
8 Caregivers
16 Experts
Demetriadiis et al. (2016) PROTEAS Cognitive Assessment Memory Test/re-test 25 MCl Study the usability of a tangible
Tangble Interface for Treatment Language experiment programming interface as a tool for
Lego NXT Robot Attention cognitive assessment and evaluate the
Emotion impact of this type of cognitive training on
the patient condition
Diaz-Orueta et al. (2014) TV Avater Assistance Autonormy Experimental traial 10 MCI Evaluate what cognitive functions may be
Social Sphere 10 AD involved in the correct interaction with the
avatar
Dougherty et al. (2010) PC-based test battery Cognitive Assessment Working Memory ~ Experimental trial 27 MCI Compare the accuracy in screening
Visual spatial 84 AD between healthy and cognitive impaired
Executive 104 HC subjects between CST and paper and
processing pencil test
Verbal Fluency
Attention
Orientation
Processing Speed
Fiorini et al. (2017) Inertial Sensor Cognitive Assessment Auditory Sustained  Feasibility Study el Present a sensorized approach which
Treatment Attention 11HC combines aerobic exercise and traditional
cognitive tools for daily training
Foukarakis et al. (2017) RANCIP Assistance Autonomy Pilot Study 8MCl Descrive the Ul framework, its application
Robot V1 10HC in RAMCIP and the initial experiences
regarding the use of the framework
gathered from the preliminary pilot trials of
the project with actual patients.
Garcia-Sanjuan et al. (2017)  Customized Tangible-Mediated Treatment Working Memory Usability study 12 MCI Present a customized tangible-mediated
Robot Prespective Memory 12 PWD robot enabling more intuitive and
Episodic Memory 16 HC appealing interactions for MCI
Attention
Executive Functions
Granata et al. (2010) Robot Kompai Assistance Autonomy Usabilty test 5MCl Study the concomitant use of voice and
6HC graphical support to increase the usabity
of a SAR for MCI support
Granata et al. (2013) Robot Kompai Assistance Autonomy Usabilty test 11 MCl Present the results from usabilty testing of
Treatment 11 HC grocery shopping list services and an
agenda application provided by a SAR for
MC subjects
Gross et al. (2011) Customized Assistance Autonomy Proof of Concept  None
Robot Prototype Social Sphere
Gross et al. (2012) Customized Assistance Autonormy Usabiity Study amcl Describes the final implementation of the
Robot Prototype Social Sphere Acceptance Study  4CG comparnion robot and presents resuilts of
functional user tests
Kintsakis et al. (2015) NAO supported by a Cloud System ~ Cognitive Assessment Memory Proof of Concept  None Present a novel system for performing
Treatment Working Memory personalized, robot assisted cognitive
Reasoning exercise and tracking the performance of
Awareness patients
Ksnig et al. (20153) RGBD cameras Assistance ADL Lab based test 23 MCl Investigate the use of video analyses
12 AD assessment of IADL
14 HC
Ksnig et al. (2015b) Audio Technica AT2020 Cognitive Assessment Backward Counting ~ Experimental trial 23 MCI Determine the value of automatic analyses
Condenser Microphone Sensors Repeating Sentence 26 AD of voice recordings during vocal tasks for
Describing images 15HC the early diagnosis of AD
Verbal Fluency Task
Korchut et al. (2017) Generic SAR Assistance Global Cognition Focus group 83 MCl Find MCI's needs
Treatment ADL Surveys 810G and preferences
Emotion 100 Experts toward SAR
Social Sphere
Kyriazakos et al. (2017) Tablet Assistance Memory Exploratory studyin 48 MCI Present an opens-source e-Health
PC Treatment ADL home environment platform for MCI
Smart-phone
Kinect
Fitbit
Phiips Hue
Plugwise
Pulse Oxi Meter
Omron
ThinkLabs
Lazarou et al. (2016) Jawbone UP24 Assistance Memory Case study 2Mel Propose a system for continuous and
Withings Aura Social Sphere 2AD objective remote monitoring of
Wireless Tags Emotion problematic daly fving activity areas and
Plugwise Circles design personalized interventions
Mainetti et al. (2016) Smartphone Assistance ADL Proof of Concept  None Describe the goal of Gity4Age project
BLE Beacon
GPS
Smart Plugs
Mainetti et al. (2017) Accelerometers Assistance ADL Proof of Concept  None Describe the goal of Gity4Age project
Gyroscopes
Inertial Modules
GPS
Smartphone
BLE Beacon,
Smart Appliance (TV)
Manera et al. (2017) Serious Game Cognitive Assessment Global Cognition Web-Surveys 23 Experts. Present recommendations for the use of
Virtual Reality Treatment Workshop SGs in assessment and stimulation of MCI
subjects
Martinez et al. (2011) Reed Switch Assistance ADL Questionnaires 13CG Define MCI behavioral markers
Pressure Sensors Focus group 10 Experts.
Power Plug Sensor
Temperature Sensor
Smoke Sensor
Phone Sensors
Masell et al. (2017) Smart Tissue Cognitive Assessment Episodic Feaslbilty Study el Understand system technical viabity and
Treatment Verbal Memory 11 HC its level of sensitivity in measuring memory
Meiland et al. (2014) Movement Sensors. Assistance Mermory Workshops 3Mel Summarize the end users’ needs and
Cameras Social Sphere Interviews 11 PWD wishes regarding the development and
Expert Consultation 26 CG: design of the Rosetta system
Mighali et al. (2017) Wearable devices Assistance ADL Lab based test 10HC Define a reliable system for controling the
Smartphone position and the body motilty of the elderly
BLE devices in unobirusive, low-cost and low-power
MPU-92509 9-axis MotionTracking way
device
Digital Motion Processor (DMP)
ARM Cortex M3 Microcontroller
Mitseva et al. (2009) Domestic Sensors Assistance Autonomy Proof of concept None Describe the intial phases of nitiative of
Mobile offering an intelligent and personalized
Computer system for independent iving and self-care
Personal Digital Assistants of seniors with MCI or mild dementia
Muscio et al. (2015) Serious Game Treatment Global Cognition Proof of concept None Define harmonized S@s parameters, and
to propose the implementation of
biomarkers as enrichment strategy and
outcome measures in SGs trial design for
Ml
Nakahara et al. (2016) Customized Assistance ADL Preliminary study 3HC Propose a method for logging
Robot Prototype micro-motion of dally activity based on the
skeleton recognition
Nishiura et al. (2014) PaPeRo Robot Assistance Autonomy Report Case 1Ml Reveal how the robot should talk to an
older woman with dementia to convince
her to perform daly activities
Pahl and Varadarajan (2015)  SCITOS G5 Robot Assistance Social Sphere Proof of Concept  None Study the use of acoustic sensors utiized
for detecting affective haptic inputs
Pino et al. (2012) Kompai equipped with a tablet PC Assistance ADL Usability test 11 MCI GUI test
11HC
Pino et al. (2015) Robul AB10 equipped with a tablet  Assistance ADL Questionnaire 10 MCI Investigate SAR acceptance
PC Social Sphere Focus Groups 8HC
70G
Reppou et al. (2016) NAO supported by a smart Assistance Attention Focus Groups 6HC Describe an architecture system
environment Treatment Memory Interviews 10 Experts
Awareness
Social Sphere
Saccoetal. (2012) Cameras Assistance ADL Observational study 19 MCI Propose DAS score that detects functional
16 AD impairment using ICTs in AD and MCI
29HC compared with healthy subjects
Schroster et al. (2013) SCITOS G3 Robot Assistance Autonomy Interview 2MCl Analyze the added value of a moblle robot
Questionnaire 4PWD companion in a smart home environment,
Observation 5CG and to evaluate users experience, proving
Robots testing that the robot can act autonomously to
provide useful and enjoyable services
Seelye et al. (2012) VGo Robot System Assistance Autonomy Pilot Study 1MCl Test the feasibility of use and acceptance
Social Sphere 7HC of the VGo Robot system
Segkouli et al. (2015) PC Treatment Memory Simulation trial 10 Ml Introduce novel virtual user models with
Smart-phone Attention 26 HC enhanced predictive validity in mental
PDA Judgment processes that will be utilized for accurate
Tablet Communication simulation results in interface design
Abiity
Stavropoulos et al. (2017) RGB-D Cameras Assistance Autonomy Preliminary study 15 HC Propose a novel computer vision-based
automatic action recognition to increase
robustness in realistic assistive robot
applications
Tapus et al. (2009) Custom-designed Treatment Attention Pilot Study 2MCl Develop methods toward SAR therapist
humanoid torso 70 for individuals suffering from cognitive
mounted on a impairments through the use of
ActivMedia Pioneer 2DX music-based cognitive games
Tiberio et al. (2012) Giraf Robot Treatment Memory Wizard of 8MCl Describes a study related to the use of
Language Oz experiment 9HC such robots in the interaction with elderly
Emotion people affected by MCI
Tsardoulias et al. (2017) NAO robot Assistance Attention Focus Group 8MCl Propose a novel integrated robotics
Memory architecture targeting the needs of
Autonomy individual with MCI at risk for social
exclusion
Vasieiadis et al. (2016) PIR Sensors, Assistance ADL Piot Study 4MCl Evaluate a proposed infrastructure for
RGB-D cameras investigating activity monitoring needs
Wuetal. (2011) Generic SAR Assistance Memory Interview 30 MCI Find MCIs needs and preferences toward
Treatment ADL Questionnaire SAR
Wuetal. (2012) Generic SAR Assistance Autonomy Focus group 7MCl Give recommendations about the design
Social Sphere 8HC of the robot appearance.
Wuetal. (2013) Nabaztag Robot Assistance Global Cognition Mixed-method: 15MCl Examine the perception of the robots
PC Treatment Autonomy qualitative and 43HC expression and the role of agent
Virtual Agent Social Sphere experimental embodiment
Wuetal. (2014) Kompai Robot Assistance Autonormy Acceptance study 6 MCI Investigate acceptance of a SAR and the
Social Sphere 5HC effect of direct experience with it over a
1-month period on its acceptance
Wuetal. (2016) Kompai Robot Assistance Global Cognition Acceptance 20 MCI Explore perceived diffculties and needs of
Treatment Autonormy Usabilty study older adults with mild cognitive impairment
Social Sphere (MCJ) and ther attitudes toward a SAR to
develop appropriate robot functionality
Yamaguchi et al. (2014) Bono-01 Robot Treatment Social Sphere Experimental tral 10HC Propose a robot that warms up group
conversations in which have been used
conversation technique called
“coimagination”, for preventing mild
cognitive impairments
Zaccarelii et al. (2013) SOCIABLE Treatment Reasoning Efficacy study 106 MCI Evaluate the effects of SOCIABLE on the
computer battery Memory 118 AD cognition and social sphere, and the
Praxis 124 HC affection and the functional abilties of
Executive Functions cognitively intact elderly, patients with MCI
Attention and patients with mild AD
Social sphere
Zuchela et al. (2014) Serious Game Cognitive Assessment Working Memory ~ Usabilty test 50HC Describe the process used to create the
Virtual Reality Treatment Prospective Memory Smart Aging platform for the early

L™
‘Spatial Orientation
Selective Attention
Executive Functions

identification and characterization of MCI
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Reported visual inspection issue related to

Study QC agreement details MRI Aquisition Head motion Brain extraction Tissue segmentation Brain registration
Backhausen et al., Nb. Images 88 Image sharpness, Ghosting or blurring N.R N.R N.R
2016 ringing. Contrast to
noise ratio
Nb. Raters 2 (subcortical
Rating scale Include/Exclude structurgs and
gray/white matter)
QC Manual Supplementary Material and susceptibility
Agreement ICC =0.93 artifacts
Esteban et al., Nb. Images 100 signal-to-noise Head motion Gray/white matter Gray-white matter N.R
2017 Nb Raters 2 ratio. Image artifacts and the pial segmentation
Rating scale Exclude/Doubtful/ contrast and delineation
Accept Ringing
QC Manual N.R
Agreement Cohen’s Kappa =0 39
Rosen et al., 2018 Nb. Images Phasel = 100, Phase2 = 100 N.R N.R N.R N.R N.R
Nb. Raters Phase! =2 Phase? =3
Rating scale 0/1/2
QC Manual N.R
Agreement Phasel = 100%,
Phase2 = 85%
Fonov et al., 2018 Nb. Images 9693 (1000 rated twice) Effect of noise and N.R N.R N.R Incorrect estimates
(preprint) image intensity of, translation,
Nb. Raters 1 non-uniformity scaling in all
Rating scale Accept/Fail directions and
QC Manual Dadar et al., 2018 paper gtatier:
Agreement intra-rater Dice
similarity = 0.96
Klapwijk et al., Nb. Images 80 N.R Ringing Division between Gray-white matter N.R
2019 Nb. Raters 5 gray/white matter segmentation
Rating scale Excellent/Good/ and pial surface
Doubtful/Failed
QC Manual Supplementary Material
Agreement Reliability = 0.53

QC studies since 2010 that uses sMRI and reported their inter/intra-raters agreement (Pizarro et al., 2016; Esteban et al., 2017; Dadar et al., 2018; Fonov et al., 2018; Rosen et al., 2018; Klapwijk et al., 2019). N.R: Not

reported.
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Model name

Traub

Dentate

Ring

Cortex + Plasticity
Hippocampus

Summary

A single column thalamocortical network model

Dentate Gyrus model including Granule cels with dendritic compartments
Ring network of branching cells

Somatosensory cortex model with synaptic plasticity

Rat Hippocampus CA1 model

#Neurons

3,560

5,137
32,768
219,422
789,595

#Compartments

465,740
175,719
9,635,488
99,581,138
565,495,731

#Synapses

1,099,820
1,199,988
33,280
872,922,040
361,937,388





OPS/images/fninf-13-00021/math_9.gif
Ewl(lllln+l) = ):wllr-.+~ R =il

|ROm; — 7 — (i — 7 (9)






OPS/images/fninf-13-00063/fninf-13-00063-g008.gif





OPS/images/fninf-14-00009/fninf-14-00009-e010.jpg
Dga = {dpa (j) ldsa (j) > S} (11)





OPS/images/fninf-13-00021/math_8.gif





OPS/images/fninf-13-00063/fninf-13-00063-g007.gif
056-QB Siiake BrxLEGPU






OPS/images/fninf-14-00009/fninf-14-00009-e009.jpg
Dap = {dag (i) ldas (i) > S} (10)





OPS/images/fninf-13-00021/math_7.gif





OPS/images/fninf-13-00063/fninf-13-00063-g006.gif
N7
/ a

e )}f ot

|






OPS/images/fninf-14-00009/fninf-14-00009-e008.jpg
si€ (L |nall,j € (1, |npl]
©)

dpagjy = argmin; |ng (j) — na (i)





OPS/images/fninf-13-00021/math_6.gif
0= 2= 2w (Rt m)

(5 ) R (5 ) 25 @





OPS/images/fninf-13-00063/fninf-13-00063-g005.gif





OPS/images/fninf-14-00009/fninf-14-00009-e007.jpg
2 J €l Ingl], i €1, |nall
8)

daGy = argmin; |na (i) — ng (j)





OPS/images/fninf-13-00021/math_5.gif
(Ro) = armgin Y wi | (R + ) — > [6





OPS/images/fninf-13-00063/fninf-13-00063-g004.gif





OPS/images/fninf-14-00009/fninf-14-00009-e006.jpg
_ 2idap (i) + 2dea ()

SD =
2|na| 2 |np|






OPS/images/fninf-13-00021/math_4.gif





OPS/images/fninf-13-00063/fninf-13-00063-g003.gif
" CEOE - OE®-OEO:

[———






OPS/images/fninf-14-00009/fninf-14-00009-e005.jpg
©)





OPS/images/fninf-13-00021/math_3.gif





OPS/images/fninf-13-00063/fninf-13-00063-g002.gif





OPS/images/fninf-14-00009/fninf-14-00009-e004.jpg
max Y

LOY,X)= > In(y)

y=min Y

5)





OPS/images/fninf-13-00021/math_24.gif
O=VIRU—=V=RU=—=R=VUT (29






OPS/images/fninf-13-00063/fninf-13-00063-g001.gif





OPS/images/fninf-14-00009/fninf-14-00009-e003.jpg
b (1 Ko vt o p) = a VLR
B. p) “Z(VE)S‘P( 28

F(n—Ko+1)

+—a et
=K 0

Fa-p @





OPS/images/fninf-13-00063/crossmark.jpg
©

2

i

|





OPS/images/fninf-14-00009/fninf-14-00009-e002.jpg
2
Wk

Vsk — Wsk

3)





OPS/images/fninf-14-00009/fninf-14-00009-e001.jpg
= Bk
Vsk

@)





OPS/images/fninf-13-00030/fninf-13-00030-g001.gif





OPS/images/fninf-13-00060/fninf-13-00060-t008.jpg
S1
S2
S3
S4
All

P

max (FD)

0.868 + 0.591
0.57 +£0.318
0.505 +0.118
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1.08 £0.419
0.047 +£0.011

No. FD > 0.5

11.4 £14.0
(o124 S
T = T2

140+£123

11.1+£135

0.05 £ 0.01

max (DVARS)

104.2 £ 18.9
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1122+ 31.4
13.7+£0.9

min (DVARS)

30.7 £ 0.8
29.4 4+ 49
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32.6+23
18.1+£0.9

No. DVARS > 50

20.2 +10.1
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11.3+15.6
166+ 17.6
20.1+£18.5
0.05 & 0.01

Temporal SNR

101.8+£7.6
128.9 +13.8
1124 £59
88.5+11.7
108.0 £9.8
438.5 & 40.1

Shown are the mean u and standard deviation o for each subject (S1, S2, S3, and S4) as well as for the phantom (P). SNR averages are computed across time. FD
values are multiplied by 100 to facilitate comparison.
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S1 21.4+£05 164 £ 12 8622 435 +£17.7 1.31 £0.40 8.81 +£0.27 0.14 & 0.01
S2 25[7:09 212+ 14 18.2+0.3 341 +£21 1.81 £0.04 9.59 + 0.29 0.16 & 0.01
S3 25.0+£0.8 199 £+ 16 11.0+£04 19.4 £ 41 1.66 +£0.08 9.81 +£0.20 0.15 4 0.00
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All 23.8+0.8 190+ 15 11.1+£0.9 32.8 +£6.8 1.60 £0.18 9.49 4+ 0.24 0.15 & 0.01
P 67.0+£ 3.9 186 + 36 = = = 18.3 £ 0.6 0.13 & 0.01

Shown are the mean u and standard deviation o for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.





OPS/images/fninf-14-00009/cross.jpg
3,

i





OPS/images/fninf-13-00060/fninf-13-00060-t006.jpg
SNR SVNR CNR CVNR TCTV FWHM CoM

S1 26.1+0.3 214+ 4 22+09 343 + 32 0.21 £ 0.09 21.3+0.3 0.19 & 0.01
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Shown are the mean u and standard deviation o for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.
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Shown are the mean u and standard deviation o for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.





OPS/images/fninf-14-00008/math_7.gif
U@ = (A,ms(zz—:),A,n'n(






OPS/images/fninf-13-00060/fninf-13-00060-t004.jpg
sMRI DTI fMRI

Weighting T4 To* FLAIR To* N/A
Sequence MP-RAGE SPGR SE EPI FSE EPI
TR [ms] 2300.00 650.00 4800.00 3400.00 607.00
TE [ms] 2.95 20.00 441.00 71.00 32.00
T [ms] 900.00 N/A 1650.00 N/A N/A
Flip angle [degrees] 9 20 120 90 50
ETL 1 1 243 87 88
Acquisition type 3D 2D 3D 2D 2D
Matrix size 256 x 240 256 x 192 256 x 256 116 x 116 88 x 88
In-plain voxel size [mm] 1.06 % 1.056 0.86 x 0.86 1.00 x 1.00 1.00 x 1.00 2.50 x 2.50
Slice thickness [mm] 12 4.0 12 2.0 25
Phase FOV [%] 98.78 100.00 100 100 100
Bandwidth [Hz/pixel] 240 200 850 2270 2365

The imaging parameters used in this acquisition were chosen in accordance with ADNI3 protocol. sMRI, structural magnetic resonance imaging; DTI, diffusion tensor
imaging; MR, functional MRI; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient recalled echo, SE, spin echo; EPI, echo planar
imaging; FSE, fast SE; TR, repetition time; TE, echo time; Tl, inversion time; ETL, echo train length; FOV, field of view; 2D, two-dimensional; 3D, three-dimensional.
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Track-TBI PPMI

Sequence Sagittal 3D T1 MPRAGE / 3D T1 IR-SPGR Sagittal 3D T1 MPRAGE or 3D T1 IR-SPGR

TR [ms] 4-35 1160 — 2530 5~11 1650 - 2400

TE [ms] 1-8 2-20 2-6 2-20

Tl [ms] 400 - 750 500 - 1300 400 - 500 844 - 1100

Flip angle [degrees] 8-30 7-160 8-30 8-160

Matrix (224 - 512) x (256 - 512) (204 - 512) x (245-512) (256 -512) x (160 -512) (192—560) x (192 —560)

Voxel size [mm?3] (0.4-1.4) x (04— 04-1)x (04-1)x (05-3) (0.4-1.2) x (0.4-1) x (0.4-1.3) x (0.4-1.3) x
1.4) x (0.5-3) 0.7-2) 0.5—=3)

FOV [mm] (220 - 350) x (2134 —340) (220 - 260) x (214 — 252) (160 — 266) x (155 —258) (220-270) x (214 -262)

Number of axial slices 60 - 336 64 —208 72 - 256 72 - 240

Number of scans 800 769 286 910

Scanner name (n) Simens Triotrim (655) Philips Achiava (631) GE N/A N/A
Simems Skyra (145) Signa-HDXT (238)

TR, repetition time; TE, echo time; T, inversion time; FOV, field of view; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient
recalled echo; N/A, not available.
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Sequence

TR [ms]

TE [ms]

Tl [ms]

Flip angle [degrees]
Matrix

Voxel size [mm?]

FOV [mm]

Number of axial slices
Number of frames
Number of scans

ADNI

ADNI2 Axial resting-
state MR

3000

30

N/A

80

64 x 64

33 x33x33

212 x 206
48

140

657

Track-TBI

Axial Resting State MR

3000 - 3671

30

N/A

80

(60— 480) x (64— 512)
(2.8-3.4) x (2.75-3.4) x
(1-3.4)

(64 - 512) x (62 - 497)
39 - 52

140, 200

1555

TR, repetition time; TE, echo time; T, inversion time; FOV, field of view.
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Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Sequence Sagittal MP-RAGE/IR-SPGR
TR [ms] 7

TE [ms] 3

Tl [ms] 400

Flip angle [degrees] 1

Matrix 256 x 256

Voxel size [mm?] 1x1x1

FOV [mm] (260 - 270) x (252 - 262)
Number of axial slices 176 - 196

Number of scans 642

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view; MP-
RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled
gradient recalled echo.
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Bad vs. Good and

Bad and Questionable

SNR

SVNR

CNR

CVNR

cTv

FWHM

CoM

AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)
AUC
Sensitivity/Specificity
Cutoff (Z-score)

Questionable

0.7235
0.7090/0.7500
13.0972 (—2.5500)
0.7369
0.6870/0.7083
57.0564 (—1.6500)
0.9189
0.8171/0.8696
5.6558 (—0.9500)
0.6169
0.6047/0.5652
106.2423 (—0.400)
0.8689
0.7999/0.8261
0.4680 (—1.1000)
0.8447
0.8935/0.8261
14.3189 (1.3000)
0.8774
0.9446/0.7391
0.2877 (2.8500)

vs. Good

0.6732
0.6465/0.6547
14.2491 (-2.3500)
0.5596
0.5685/0.4798
77.4662 (—1.5000)
0.728
0.6744/0.6528
9.5552 (—0.2000)
0.5131
0.4465/0.5648
228.6781 (—0.300)
0.696
0.5444/0.7963
1.3580 (0.2500)
0.5346
0.5667/0.4861
9.9080 (—0.3500)
0.5559
0.7428/0.3843
0.0615 (0)

For each QC metric, the area under the ROC curve (AUC), as well as the sensitiv-
ity, specificity and cutoff value at the best performance are displayed. For an
easier choice of the cutoff values, we provide the readers the cutoff values in
the original metric and z-score. We tested two different classifications: (1) Bad
vs. Good and Questionable categories; (2) Bad and Questionable vs. Good. We
found that the classification of (1) is overall more accurate using the QC metrics
used in our system.
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1 Amygd
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12 BAO4
13 BA17
14 BAOS
15 BAO9
16 Amygd
17 BAY
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20 Amygd.
21 BA17
22 BA17
2 BA17
24 BA41
25 BA17
2 BA0Y
27 BAOS
28 BAOS
29 BAOY
30  Amygd.

o«

BAOS
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“Amygd.” indicates Amygdala, “Hipp.” the Hippocampus areas.
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2 Amygd.
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12 BAO9
13 BA17
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27 BAOS
28 BAdS
29 Amygd.
30 BA17

“Amygd.” indicates Amygdala, “Hipp." the Hippocampus areas.
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1 F20
2 F31
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13 F41
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20 F41
21 F41
22 3
23 F41
24 F51.1
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26 F84.5
27 F84.5
28 F84.5
29 F84.5, F42
30 F84.5, F42

For detail see the Discussion section in the text.
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For detail see the Discussion section in the text.
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No. Diag. Fullband  « B y 5 o

1 F20 BAO5S  BA34 BA29 BAOS BAS4 BA20
2 F31 BAOO  Amygd. Amygd. BA09  Amygd. Amygd.
3 F31 Amygd.  Amygd. Amygd. BA17  Amygd. Amygd.
4 F32.1 BAI7  BAOS Amygd. Amygd. Amygd. BA17
5 F32.1 BAOS  Amygd. BAO5  BAI7  BAOS Amygd.
6 F32.1 BASS  Amygd. Amygd. BA17  BASS  BAI7
7 F32.1  Amygd.  Amygd. Amygd. Amygd. Amygd. Amygd.
8 F32.1 BAI7  BAO9 BAOS BAOO  BA34  BAO9
9 F40 Amygd.  BAOS  BAO4 Amygd. BAOS  BAI7
10 F40 BAOO  BA20 BA29 BAO9 BA29  BAI7
11 F40 BAO5  Amygd. BA36 Amygd. Amygd. BA17
12 Fa Amygd.  Amygd. BAOS  BA09 Amygd. BAOS
13 Fa1 BAO4  Amygd. BA29  BAOS  BA29  Amygd.
14 Fat BAI3  BAI7  BAOS Amygd. BA36  BAI7
15 Fa1 Amygd.  BAOS  Amygd. Amygd. Amygd. Amygd.
16 Fat Amygd.  BAOS  BAOS  BAOS Amygd. BAO9
17 Fa1 Amygd.  Amygd. Amygd. Amygd. Amygd. Amygd.
18 Fat Amygd.  BA4S  BA4S Amygd. BA4S  BA4S
19 Fat Amygd.  Amygd. Amygd. Amygd. Amygd. Amygd.
20 Fat BA27  Amygd. Amygd. BA23 Amygd. BA17
21 Fa1 BAO4  Amygd. Amygd. BA09 Amygd. BAO4
22 Fat BAO4  Amygd. Amygd. Amygd. Amygd. Amygd.
23 Fa1 BAO5S  BAOS  BA27 Amygd. BA41  BAOS
24 514 BAO5  Amygd. Amygd. Amygd. Amygd. Amygd,
25 514 BAO5S  BAOS BA34 BAI7 Amygd. BAI7
2 F845  Amygd. Amygd. Amygd. BAOS Amygd. BAOS
27 P85 BAOO  Amygd. BA17  BAO9  BA17  BAO9
28 F84.5 BA41 Hipp.  Hipp. BA45  BA31  BA45

20 Fe4s F42  Amygd.  BAOS Amygd. Amygd. Amygd. BAOS
30 Fe4sF42  BAOS  BAOS BAOS BAOS  BAOS  BAOS

“Amygd.” indicates Amygdala, “Hipp.” for Hippocampus areas. For detail see Discussion
section in text.
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3D U-net (Gigek

ConvNet (Yu et al.,

DUnet (proposed)

ResDUnet (proposed)

etal, 2016) 2017)
CA1-3 0,065 (0.011)'# 0.064 (0.000)"# 0.062 (0.009) 0062 (0.010)
CA/DG 0077 (0,014 0,079 (0.015)" 0075 (0.015)" 0,072 (0.014)
suB 0.069 (0.013)"# 0.066 (0.013)"# 0.064 (0.012) 0,085 (0.013)#
Average 0,070 0070 0.067 0.066

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.

“Indicates thet ResDUnet achieves significant improvement over the corresponding method, and *indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.
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No. Diag.
1 F20
2 F31
3 F31
4 F32.1
5 F32.1
6 F32.1
7 F32.1
8 F32.1
9 F40
10 F40
1 F40
12 F41
13 Fa1
14 F41
15 Fa41
16 Fa1
17 Fa1
18 Fa1
19 Fa1
20 Fa1
21 Fa1
22 Fa1
23 Fa1
24 F51.1
25 F51.1
26 F84.5
27 F84.5
28 F84.5
29 F84.5, F42
30 F84.5,F42

Full band
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BA17
BAO4
BA09
BA4S

Amygd.

BA0O

BAS4
Amygd

Amygd.
Amygd.

Amygd
BASG
BASG
BAB4
BAOS
BAOB
BAOS

Amygd.

BA29

Amygd.
Amygd.
Amygd.
Amygd.

BA4S
Amygd

Amygd.
Amygd.
Amygd.

BA27
BAOS
BA36

Amygd.

BA17
BA4S

Amygd.

BAOS

Amygd.

“Amygd.” indicates Amygdala, *Hipp.” for Hippocampus areas. For detail see Discussion

section in text.
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Neuron Volume Area AUC

#1 0.0015 0.0025 7.8e—04
#2 0.0176 0.0258 0.0138
#3 0.0017 6.1e—04 0.0026

Coefficients of variation for neuron volume, area and AUC for n different RG seeds.
*The coefficient of variation corresponds to the standard deviation divided by the
mean o/ p.
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HIPS (Romero 3D U-net (Gigek ConvNet (Yu DUnet ResDUnet

etal, 2017) etal, 2016) etal, 2017) (proposed) (proposed)
CA1-3 0916 (0.015) 0916 (0.011)# 0918 (0.010)# 0919 (0011) 0.920 (0.011)
CA%/ DG 0.862 (0.034) 0871 (0.021)" 0870 (0.016)" 0875 (0.020)" 0.879 (0.020)
suB 0.886 (0.021) 0.883 (0.016)"# 0.887 (0.018)"# 0.890 (0.016) 0.888 (0.018)#
Average 0888 0.8% 0892 0895 0.896

Higher Dice velues indicate better segmentation performance. Best results are shown in bolc.
“Indicates that ResDUnet achieves significant improvement over the corresponding method, and *indicates that DUnet achieves significant improvement over the corresponding method
in the Wilcoxon signed rank tests with p < 0.05.





OPS/images/fninf-13-00073/fninf-13-00073-g005.gif





OPS/images/fninf-14-00009/fninf-14-00009-t001.jpg
Source SS

Columns 110.94
Interaction 64.89
Error 2132.67
Total 2308.5

Df

6
12
42
62

MS Chi-sq p>Chi-sq

10.4907 2.08 0.8233
5.4074
50.7778

SS =Sum of Squares due to each sources; Df = Degree of freedom associated with
each source; MS = Mean Squares, which is SS/Df; Chi-sq: Freedman Chi-square
statistic; p: p-value for the Chi-square statistic.
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3D U-net (Gigek et al., 2016) ConvNet (Yu et al., 2017) DUnet (proposed) ResDUnet (proposed)
CA1 0.175 (0.089)" 0.146 (0.033) 0.158 (0.048) 0.147 (0.034)
cA2/3 0211 (0.104° 0.175 (0.020) 0.178 (0.028)" 0.170 0.025)
suB 0.153 (0.073)" 0.132 (0.030) 0.136 (0.040) 0.134 (0.089)
CA/DG 0.157 (0.080) 0.133 (0.019) 0.134 (0.019) 0.133(0.020)
Uncus 0.179 (0.055)" 0.168 (0.038) 0.170(0.041) 0.167 (0.044)
Average 0.175 0.151 0.185 0.150

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.
*Indicates that ResDUnet achieves significant improvement over the corresponding method in the Wilcoxon signed rank tests with p < 0.05.
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3D U-net (Gigek et al., 2016)

ConvNet (Yu et al., 2017)

DUnet (proposed)

ResDUnet (proposed)

CA1 0.648 (0.078)"# 0.670 (0.046) 0.665 (0.061) 0.672(0.050)
cA2/3 0567 (0.082)" 0584 (0.038)" 0589 (0.045)" 0598 (0.041)
suB 0.719 (0.080)"# 0.737 (0.045) 0.742 (0.062) 0.745 0.051)
CA4DG 0.709 0.072)# 0.726 (0.030) 0.733 0.028) 0729 (0.032)
Uncus 0.712 0.050)"# 0.721 (0.035) 0.733 (0.034) 0.736 (0.035)
Average 0671 0683 0692 0.696

Higher Dice values indicate better segmentation performance. The best results are shown in bold.
*Indicates that ResDUnet achieves significant improvement over the corresponding method, and *indicates that DUnet achieves significant improvement over the corresponding method
in the Wilcoxon signed rank tests with p < 0.05.
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Tiw Tow Tiw+T2w

CA1 0.674 (0.044) 0604 (0.142)"# 0672 (0.050)
CA23 0571 (0.069)" 0546 (0.104)" 0598 (0.041)
suB. 0.745 (0.032) 0.644 (0.223)'# 0.745 (0.051)
CA4/DG 0.723 (0.027) 0662 (0.157)" 0.729 (0.032)
Uncus 0.725 (0.031) 0.645 (0.208)'# 0.736 (0.035)
Average 0688 0.620 069

Higher Dice values indicate better segmentation performance. The best results are shown
in bold.

“Indicates that T1w + T2w achieves significant improvement over the cormesponding
method, and *indicates that Tiw achieves significant improvement over the
coresponding method in the Wilcoxon signed rank tests with p < 0.05.
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R=16 R=24 R=32
cAt 0635 (0.066) 0.648 (0.078) 0638 (0.107)
cA2/3 0565 (0.071) 0.567 (0.082) 0556 (0.099)
suB 0717 (0.038) 0.719 (0.080) 0708 (0.123)
CA4/DG 0.711 (0.063) 0.709 (0.072) 0.706 (0.057)
Uncus 0.710 (0.034) 0.712 (0.050) 0.704 (0.069)
Average 0.668 0671 0662

Higher Dice values indicate better segmentation performence. The best resuits are shown

in bold.
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Matrix Fov Resolution mm3 FA TE TR Slices orientation AF/MB Time

Tiw 320 x 320 256 x 256 08x08x08 8 2.24 2,400/1,060 208/Sag AF=2 6:38
Tow 320 x 320 256 x 256 08x08x08 VAR 564 3,200 208/Sag AF 5:57
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(8B4)

Intel Skylake
(885)

Intel KNL.
(8B5)

NVIDIA GPU
(885)

Processor

Compiler toolchain
Network
Processor

Compiler toolchain
Network
Processor

Compiler toolchain
Network,
Processor

Compiler toolchain
Network

1BM PowerPC A2, 16 cores @
1.6 GHz, 16 GB DRAM

IBM XL 12.1 and IBM MPI
Integrated 5-D torus

2 Xeon 6140, 36 cores @ 2.3
GHz, 384 GB DRAM

Intel 2018.1 and HPE-MPI (MPT)
InfiniBand EDR

Xeon Phi (7230), 64 cores @ 1.3
GHz, 96 GB DRAM

Intel 2018.1 and HPE-MPI (MPT)
InfiniBand EDR

NVIDIA GPU V100 SXM2, 2
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PGl 18.10, OpenMPI 2.0
InfiniBand EDR





OPS/images/fninf-14-00009/fninf-14-00009-g002.jpg





OPS/images/fninf-13-00063/fninf-13-00063-t002.jpg
Data structure Purpose NEURON  CoreNEURON

Node Compartment of the 128 -
neuron

Section Unbranched cable of the 9% -
neuron

Object High level HOC object 64 -

Presyn Synapse object at origin 208 64

InputPresyn Similar to Presyn - 24

Point_process Synapse overhead 56 8

Prop Property object in 48 -
compartment

Netcon Connection between 56 40
neuron

Pointer Memory address 8 4

Mermb_ist List of mechanisms or 56 64
channels

NrnThreadMemblList  Mechanism list for group 34 40
of neurons

PreSynHelper Helper object for PreSyn - 4

Symbol Token parsed by HOC 56 -

interpreter
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Connection types Weight [nS] Delay[ms]

Glom-GrG 9.0 40
Glom-GoC 20 4.0
GoC-GrC (GoC-Glom-GrC) -5.0 20
GoC-GoC -8.0 1.0
aa-GoC 20.0 20
pf-GoC 0.4 5.0
SC-sC -20 1.0
BC-BC -25 1.0
pf-SC 02 5.0
pf-BC 02 5.0
SC-PC -85 5.0
BC-PC -9.0 4.0
aa-PC 75.0 20
pf-PC 0.02 5.0
PC-DCNC —0.0075 4.0
Glom-DCNC 0.006 4.0

The parameters result from  tuning procedure based on data reported in different papers
and summarized/in Maex and De Schutter (1998), Solinas etal. (2010), and Suchakar et al.
(2017). A main adcitional constraint i that the connection weight is larger from aa then
pf connections, both for GoCs and PCs (Sims and Hartell, 2005; Cesana et al., 2013).
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DCNC

CmlpF]

7%

620
14.6

14.6
89

m(= Cm*Rin) [ms]

21
2
88
146
14.6
57

Ey[mV]

-65
-74
-62
—-68
—68
-59

Atrerlspike width)ms]

2
15
0.8
16
16
37

lelpA]

36.8
o
600
156
15.6
56.8

Vr[mVv]

-75
-84
-72
-78
—78
-69

Vin[mV]

-85
—42
—a7
-53
-53
48

Texc[ms]

05
05
05
0.64
0.64
71

Tinh[ms]

10
10
16
2
2
136

The table shows the paremeters used to define specific neuronal properties in the model, Cm, membrane capecitance; tm, membrane time constant; Rin, input membrane resistance;
EL, leakage resting potential; Atref, refractory period; le, endogenous current; VI reset potential; Vth, threshold potential; zexc, vinh, excitatory and inhibitory synaptic exponential time
constants). Data are obtained from NeuroElectro (https://neuroelectro.org/) (Tripathy et al,, 2014).
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Type Soma radius Density (neurons/

(wm) wmd) *(/ pm?)
Golgi cell (GoC) 8 9x10-8
Glomerulus (Glom) 15 3x 1074
Granule cell (GrC) 25 39 x10-3
Purkinje cell (PC) 75
Basket cell (BC) 6
Stelate cell (SC) 4
DCN glutamatergic cell (DCNC) 10

The table reports the density of neurons in the layer volume (neurons/um?®), *except for
PCs for which the planar density is used (neurons/n?). Data for Glom, GrC, GoC, PC,
SC, BC from Korbo et al. (1993). The density of DONC was estimated from the ratio of
PCs to DCNCs (Person and Raman, 2012).
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Input: An n x N matrix S, where n is the number of variables for
the dataset and N is the number of MTS items in the dataset.
Each column vector s; in S represents all the eigenvalues for iy,
MTS item in the dataset. s;; is a value at column i and row j in S.
Sxi 18 iy rOW in S. iy i fy, column

: fori=1toN do

si < si/ Z/”:lsl')
end for
fori=1tondo

wi < [(s4i)
end for
fori=1tondo

Wi Wi/ 3
: end for

e N W e
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Method

ASD-DiagNet
ASD-DiagNet (no aug)
SWM

Random forest
Heinsfeld et al., 2018
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Method Accuracy Sensitivity Specificity

ASD-DiagNet 67.5 634 715
ASD-DiagNet (no aug.) 645 609 68
Svm 675 639 709
Random forest 65 56.8 727
Heinsfeld et al., 2018 633 586 67.8

Bold values show the highest accuracy among all methods.
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site ASD- ASD- SVM  Random-
DiagNet ~ DiagNet ~Heinsfeld Forest
(no etal,, 2018
aug.)
Caltech 528 49.9 523 46.9 54.2
oMU 685 67.4 453 66.6 62.4
KKI 69.5 68.6 582 66.4 66.6
Lewven 613 57 518 59.8 59.8
MaxMun 486 514 543 538 49.2
NYU 68 65.1 645 4 61.8
OHSU 82 719 74 79.4 543
Olin 65.1 58.8 44 595 522
Pitt 67.8 65.9 598 66.3 59.9
SBL 516 475 46.6 60 483
spsu 63 613 636 58.7 627
Stanford 64.2 53 485 514 62.1
Trinity 54.1 51.2 61 531 545
UCLA 73.2 70.3 57.7 72.4 69.3
usM 682 65.1 62 78.2 58
UM 638 65.7 576 64.2 64.8
Yale 636 61.7 53 61.6 553
Average 63.8 60.7 56.1 62.6 586

Bold and color values corresponds to highest accuracy achieved among all datasets.
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Method Accuracy Sensitivity Specificity

ASD-DiagNet 703 683 722
ASD-DiagNet (10 aug) 69.4 696 69.2
SVM 683 644 72

Randorn forest 663 60.8 714
Heinsfeld et al., 2018 65.4 61 69.3

Bold values show the highest accuracy among all methods.
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Site Caltech CMU KKI Leuven MaxMun NYU OHSU OLIN PITT SBL SDSU Stanford Trinity UCLA UM USM Yale

ASD 19 14 20 29 24 75 12 19 20 15 14 19 22 54 66 46 28
Healthy control 18 13 28 34 28 100 14 15 27 15 22 20 25 44 74 25 28
Male count 29 21 36 55 48 139 26 29 48 30 29 31 47 86 M3 7 40
Female count 8 6 12 8 4 36 0 5 8 0 7 8 0 12 27 0 16

Average age 27 26 10 18 25 15 10 16 18 34 14 9 16 13 14 22 12
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For detail see the Discussion section in the text.
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["'Clcarfentanil ["*Clraclopride [""CIMADAM ["cpiB
N (fernale) 30(12) 30(29) 30(17) 30 (18)
Age (mean, range) 32 (20-51) 39 (20-60) 42 (25-57) 71 (86-80)
Scanners HRRT GE Advance HRRT HRRT
PET/CT PET/CT
PET/MR HRRT
Data range (years) 2007-2016 1998-2014 2008-2015 2014-2016

Scanners: HRRT (HRAT, Siemens Mecical Solutions); PET/CT (Discovery 690 PET/CT, GE Healthcare); PET/MR (ingenuity TF PET/MR, Philips Healthcare); GE Acvance (GE Advance,

GE Healthcare).
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Statistics/

Work Experiment Features Results
Classifier
Hosseini et al., 2010 15 subjects FDP, CD®, and WEnd LDA® and SVM LDA: 80.1% SVM: 84.9%
5 EEG channels
1APS?
Bastos Filho et al., 2012 32 subjects Statistical features, PSD', and HOCY KNN Stat.: 66.25%
4 EEG channels PSD: 70.1%
Videoclips HOC: 69.6%
Peng etal, 2013 13 subjects D, LZC", LLE/, PSD ANOVA Higher complexity in stress

3 EEG channels
Eyes closed, no stimuli

Garcia-Martinez et al., 2016 32 subjects SE, QSEK, and DE! Decision tree 75.29%
32 EEG channels
Videoclips

Garcia-Martinez et al,, 2017 32 subjects QSE, PE, and AAPE swm 81.31%
32 EEG channels
Videoclips

Garcia-Martinez et al., 32 subjects QSE, CE™, and CCE" SVM 80.31%
2019b

32 EEG channels
Videoclips

This work 32 subjects DPE and MPE KNN 92.32%
32 EEG channels
Videoclips

@ IAPS, International Affective Picture System. © FD, Fractal dimension. ¢ CD, Correlation dimension. ¢ WEn, Wavelet entropy. © LDA, Linear discriminant analysis. ! PSD, Power spectral
density. 9 HOG, High-order crossings.  LZC, Lempel-Ziv complexity. ! LLE, Largest Lyapunov exponent. | SE, Semple entropy. k QSE, Quadatic sample entropy. ! DE, Distribution
entropy. ™ CE, Conditional entropy. " CCE, Corrected condtional entropy.
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Intra-class correlation coefficient

Tracer Spatial overlap (%) Reference region volume Reference TAC AUC Outcome measure
["Clearfentanl 22 83 61 75
["'Clraclopride M 79 80 97
[''CIMADAM 18 46 58 76
['ClPiB 14 74 9% 9%

TAC, time-activity curve; AUC, area under curve.
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FBCSP+SVM FBCSPNet

Datasets Original ~ TSF- TSF-  Original ~ TSF- TSF-
data GAN WGAN data GAN WGAN

AQ dataset 6357 6541 6767  67.29 6841 6884
GAL dataset 69.78 73.63 73.89 73.61 74.82 75.23

MI dataset 61.98 63.61 64.01 65.47 66.64 66.86
Average 65.11 67.55 68.52 68.79 69.95 70.31
Improved - 375%  525% - 1.68%  221%

Ratio





OPS/images/fninf-13-00040/fninf-13-00040-g002.gif
v

B 0.9, 0.9, oL
/ os os
|zstss7xymw|zztss7s9m°'7|214561xum
o os @ o S
NV N
o7 or

23435678010

i23ise78000
Time lag.

12345678010





OPS/images/fninf-13-00070/math_3.gif
X =d¢,.(h,)






OPS/images/fninf-14-00015/fninf-14-00015-t010.jpg
Reconstruction Temporal-GAN  TSF-GAN Temporal-WGAN TSF-WGAN

(a) () (© @
AO- > A0 64.86 65.41 64.32 6767
GAL- > GAL 71.43 7464 7268 73.89
Mi— > Mi 62.43 63.61 63.83 64.01
GAL- > AO 64.16 6455 63.85 64.40
M- > AO 62.31 62.07 61.84 62.08
AO- > GAL 68.84 70.60 68.73 7034
M- > GAL 68.93 70.21 69.29 69.57
AO=>MI 62.35 64.93 62.86 63.29
GAL- > MI 62.19 63.39 62.28 63.66
T-test - bvs.a - dvs.c
p-value - “p <001 - p <005

The bold text is the best performance.
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Subjects Original ~ AO-WGAN ~ AO-GAN GAL-WGAN GAL-GAN
data (a) (&) © @ (e

MI dataset reconstructed by the gal and ao
GAN/wgan models

MI-1 60.59 61.63 59.90 68.33 67.53
M2 7031 71.70 60.10 75.00 73.26
M3 53.47 58.16 54.17 53.99 55.08
M4 5038 6858 6858 64.41 66.67
M5 7222 68.92 76.22 73,09 66.67
MI-6 67.36 70.49 70.49 69.62 68.75
M7 56.25 58,68 73.44 58.85 60.07
M-8 57.81 54.34 54.51 63.54 56.60
M9 60.42 57.12 57.99 56.08 55.90
AVG 61.98 63.29 64.93 63.66 63.39
T-test - bvs.a cvs.a dvs.a evs.a
p-value - p=0380 p=0215 p=0175 p=0215

The bold text is the best performance.
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Subjects Original ~ AO-WGAN ~ AO-GAN MI-WGAN MI-GAN (e)
data (a) (b) [C] [C]

GAL dataset reconstructed by the ao and mi models

GAL-1 6023 73.53 72.76 72.56
GAL2 65.06 63.21 62.88 61.86
GAL3 74.04 59.74 66.03 61.99
GAL-4 69.17 59.74 66.03 61.99
GAL'5 7994 7628 80.96 76.15
GAL-6 69.04 73.33 72.56 7321
GAL-7 74.33 69.77 66.25 64.82
GAL8 7981 7853 7447 81.92
GAL-9 64.04 65.58 65.58 64.30
GAL10 6538 62.76 62.24 60.64
GAL-11 6321 85.13 85.00 85.51
GAL12  74.10 76.47 7276 69.94
AVG 69.78 70.34 70.60 69.57
T-test - bvs.a cvs.a dvs.a
p-value - p=0821 p=0731 p=0937

The bold text is the best performance.
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Subjects  Original GAL-WGAN GAL-GAN MI-WGAN ~ MI-GAN (e)
data (a) (b) © @

AO dataset reconstructed by the gal and mi models

AO-1 62.83 64.81 64.57 60.73 61.82
A02 53.12 55.82 56.18 5327 52.63
A03 7031 72.13 73.18 60.53 70.83
AO-4 75.26 73.44 75.78 67.71 69.53
A0S 50.12 61.73 62.16 58.83 56.76
A0-6 7422 7656 7787 76.82 75.26
AOT 55.43 57.61 56.89 55.43 54.68
AO-8 68.27 59.46 58.83 66.27 56.29
A0-9 77.08 7656 7734 72.44 73.44
AO-10 68.49 72.66 70.57 75.26 71.09
AO-11 79.47 83.07 83.85 78.91 8151
AO-12 73.44 71.62 7257 7057 66.93
AO-13 55.83 56.73 56.94 54.87 55.16
AO-14 6182 62.73 6381 60.57 6081
AO-15 55.49 56.81 56.43 55.36 55.61
AO-16 62.42 6355 64.31 6128 61.37
AO-17 64.58 61.72 60.03 55.47 56.25
AO-18 53.28 5389 53.61 52.13 5228
AO-19 52.82 53.61 54.18 52.36 53.17
AO-20 63.83 64.81 63.76 62.67 62.89
AO-21 68.72 63.59 62.18 57.62 58.73
AO-22 57.66 59.11 59.56 60.42 61.46
A0-23 61.83 62.81 63.75 62.19 61.68
AO-24 5027 60.73 60.81 59.36 50.81
AG 63.51 64.40 64.55 62.07 62.08
T-test - bvs.a cw.a  dwa evs.a
p-value - <005 p<005 p= ‘p <005
00738

The bold text is the best performance.
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Subjects  Original Spline GAN WGAN

data (a) data())  up-sampling (c) up-sampling (d)
Mi-1 60.59 57.82 61.62 62.81
M2 7031 6858 71.18 7335
M3 53.47 53.82 5493 56.81
M4 50.33 56.71 61.83 60.62
MI-6 7222 70.49 73.88 76.57
M6 67.36 65.73 68.72 68.81
M7 56.25 55.41 58.83 57.61
M-8 57.81 56.43 58.81 57.69
M9 60.42 58,67 6273 61.85
AVG 6198 60.41 63.61 64.01
T-test - avs.b cvs.a dvs.a
p-value - *p <001 “p <001 *p <001

The bold text is the best performance.
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Neuron type N.cells N. Excited (or Before During After

inhibited) cells (%) (300ms) [Hz] (50ms) [Hz] (300ms) [Hz]
Gloms 7,070 Engst: 2,932 (41%) 10£18 1408 & 4.2 09+18
EnguRoN: 2,932 (41%) 10£18 1408 % 4.2 0918
GiCs 83,158 Engsr: 26,195 (20%) 20+26 114.0 £ 822 18£25
EngURON: 26,240 (28%) 20+26 1148+ 328 18£25
GoCs 219 Engst: 146 (66%) 22.7 £ 13.1 157.1+87.2 235+ 113
EnguroN: 158 (69%) 221+ 12.4 154.2 + 289 249 % 120
SCs 603 Engst: 445 (73%) 339+ 167 1262+ 17.4 37.0+ 143
EnEURON: 452 (74%) 342+ 159 131.8 + 19.6 36.9 + 15.0
8Cs 603 Engst: 429 (71%) 30.1 £ 15.1 124.1 % 18.4 33,6 + 14.0
EnguRon: 447 (74%) 20.1 + 163 1233 %249 338+ 14.4
PCs 69 Engst: 45 (65%) 58585 2555 + 63.0 628+ 83
Enguron: 47 (68%) 600+9.3 256.5 + 63.8 630+ 116
DCNGs 12 IngsT: 12 (100%) 164 £ 1.2 00£00 16.3 £ 09
Inguron: 12 (100%) 16.6 £ 0.0 0000 16.6 £ 0.0

For each neuronal population, the fiing rates (mean == sd) are reported before, during and after stimulation. Excited (inhibited) celks are defined as those increasing (decreasing) the
number of spikes during the stimulus (see Methods). Simulation results are shown for pyNEST (white rows) and for pyNEURON (gray rows). In the column “During stim,” the velues
indicate the firing rates only averaged on the sub-group “Excited (Inhibited) cells.”
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Subjects  Original Spline GAN WGAN

data (a) data()  up-sampling (c) up-sampling (d)
GAL-1 69.23 68.71 7281 7563
GAL-2 65.06 65.42 68.93 68.72
GAL3 74.04 71.69 79.83 80.54
GAL-4 50.17 58,66 62.82 61.93
GAL'5 7994 74.48 8361 82.83
GAL6 69.04 69.76 74.63 7559
GAL-7 7433 6879 68.67 68.27
GAL8 79.81 77.62 79.82 80.42
GAL-9 64.04 63.48 7224 72,68
GAL-10 65.38 65.48 7481 7561
GAL-11 63.21 62.52 72,60 72.07
GAL-12 74.10 72.42 7285 72.36
AVG 60.78 68.25 7363 73.89
T-test - avs.b cws.a dvs.a
p-value - <005 <005 'p <005

The bold text is the best performance.
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Subjects  Original Spline GAN WGAN

data (a) data(b)  up-sampling (c) up-sampling (d)
AO-1 62.83 58.72 64.51 69.52
AO-2 53.12 51.67 52.83 55.61
A0-3 7031 68.92 73.96 72.66
AO-4 7526 7178 73.96 80.99
AO-5 59.12 5827 61.28 64.22
A0-6 7422 7030 73.95 76.82
AOT 55.43 5428 60.72 50.83
A08 5827 55.42 59.82 50.73
AO-9 77.08 76.07 83.85 84.37
AO-10 68.49 68.78 75.26 7057
AO-11 7917 7464 87.76 89.85
AO-12 73.44 66.15 66.67 7553
A0-13 55.83 59.42 61.42 63.49
AO-14 61.82 5523 63.83 65.72
AO-15 55.49 53.82 56.29 58.73
AO-16 62.42 57.59 63.85 65.82
AO-17 6458 57.81 58.59 67.44
AO-18 5328 5328 55.87 57.89
AO-19 5282 5187 55.89 57.63
A0-20 63.83 6257 6859 67.83
AO-21 7031 61.98 61.98 7291
AO-22 5755 5573 57.29 50.37
AO-23 61.83 58.89 63.82 63.58
AO-24 59.27 58.73 62.82 63.93
AG 63,57 6091 65.41 67.67
T-test - avs.b cvs.a dvs.a
p-value - “p <001 p <005 *p <0.01

The bold text is the best performance.
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D LASSO LASSO- KernelRidge SVMRBF Shuffled

Is] LARS sl Is] SVM [s]
Is1
1 0305 0304 0313 0.261 0476
2 0.180 0.180 0213 0.168 0311
3 0.119 0113 0.103 0.182 0240
4 0.144 0144 0.183 0.164 0282
5 0.129 0129 0.120 0.143 0.172
6 0076 0076 0.083 0.0%0 0.129
7 0.211 0211 0.262 0.236 0.485
8 0.446 0448 0380 0.467 0706
9 0.122 0119 0.124 0.120 0.169
10 0505 0505 0628 0.3% 0719
11 0.131 0131 0.132 0.126 0.140
12 0.124 0124 0.131 0.129 0.188
18 0389 0.389 0398 0284 0719
14 0.167 0471 0.176 0.139 0249
15 0110 0110 0103 0.115 0.136
16 0814 0911 0873 0.605 1.666
17 0201 0201 0274 0.161 0.439
18 0.168 0476 0477 0.168 0390
19 0250 0250 0257 0.243 0.442

AVG 0.242 0.242 0.260 0.218 0.424
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D LASSO LASSO- KernelRidge SVMRBF Shuffled

Is] LARS sl Is1 SVM [s]
Is1
1 0.103 0.103 0.107 0.082 0.170
2 0.062 0.062 0073 0.056 0.102
3 0039 0037 0.034 0.044 0.085
4 0056 0056 0072 0.061 0.102
5 0044 0044 0.040 0.046 0,053
6 0020 0020 0.024 0.025 0038
7 0.066 0.066 0.081 0.076 0.163
8 0.141 0142 0123 0.163 0262
9 0038 0037 0.040 0.038 0,052
10 0.165 0.165 0.196 0.1 0.230
1 0040 0040 0.041 0,037 0,040
12 0.040 0.040 0.044 0.042 0.061
13 0.119 0119 0.121 0.089 0255
14 0085 0085 0.057 0.044 0.081
15 0083 0033 0.034 0.032 0.041
16 0253 0252 0312 0.172 0590
17 0.061 0.061 0.091 0.054 0.156
18 0058 009 0058 0085 0131
19 0.086 0085 0.083 0,073 0.140

AVG 0.078 0.078 0.086 0.068 0.145
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D LASSO LASSO- KernelRidge SVMRBF Shuffled

Is1 LARS Is1 Is] SVM [s]
[s]
1 0.140 0.140 0.144 0.125 0.230
2 0077 0077 0.082 0.082 0.144
3 0,076 0070 0,062 0077 0.138
4 0081 0081 0.103 0.092 0.164
5 0.062 0.062 0.059 0073 0.001
6 0,046 0046 0,044 0.050 0.066
7 0.121 0.121 0.138 0.121 0.196
8 0.264 0264 0210 0231 0317
9 0.067 0.066 0.066 0.065 0.086
10 02902 0202 0380 0265 0.425
11 0,063 0.063 0.083 0.064 0079
12 0,058 0058 0,053 0.061 0.088
13 0.190 0.190 0.199 0.132 0.233
14 0085 0088 0094 0069 0.104
15 0,058 0088 0.050 0.059 0.069
16 0.411 0.409 0.406 0340 0.684
17 0.105 0.105 0.138 0.087 0.146
18 0.074 0074 0,076 0073 0.127
19 0.105 0.105 0.106 0.108 0.167

AVG 0.125 0.125 0.130 0114 0.187
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Subject Min. Median Max.[s] of[s] Slope p-value No.
Is] [s1 [s/s] epochs.

1 0.408 0563 1616 0305 1.82E-12 0.161 50
2 0468 0.659 1129 0154 7.26E-13 0.527 44
3 0402 0592 1124 0.163 -361E-12 0.120 46
4 0450 0627 0934 0130 -2.35E-12 0.393 45
5 0386 0495 0784 0.097 1.01E-12 0.106 50
6 0304 0408 0704 0087 -1.14E-12 0016 48
7 0.443 0616 1498 02384 276E-12 0.027 49
8 0323 0544 2113 0426 7.43E-12 0.020 48

9 0381 0487 108 0128 226612 <1ES 50
10 0658 1.199 3279 0613 657E-12 0468 48
1 0412 0541 0743 0093 -859-13 0250 a7
12 0421 0560 0994 0.129 -7.99E-13 0.208 49
13 0414 0759 2610 0432 5647E-12 <1ES 51
14 0379  0.664 1982 0238 -190E-12 0.025 49
15 0278 0.421 0665 0.091 3.90E-14 0.956 47
16 0436 1009 3.192 0749 148E-11 <1ES 43
17 0390 0.555 1660 0229 -887E-13 0.301 50
18 0375  0.547 1296 0181 159E-12 0.017 53

19 0362 0533 1.947 0297 -199E-12 0.078 51
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